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Abstract

A new generation of imaging spectrometers is emerging in the field of planetary remote sensing by
adding an additional view of measurement, the angular dimension. Multi-angle imaging spectroscopy
is conceived to provide a more accurate characterization of planetary materials and a higher success
in separating the signals coming from the atmosphere and the surface. The Compact Reconnaissance
Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter is a hyperspectral
camera that operates systematically in multi-angle mode from space. Multi-angle hyperspectral images
are nonetheless related to problems of manipulation, visualization and analysis because of their size
and complexity. In this framework this thesis proposes robust statistical and physical algorithms to an-
alyze images acquired by the CRISM instrument in an efficient manner. First, I propose a tailor-made
data pipeline aimed at improving the radiometric quality of CRISM data and generating advanced
products, the latter data being devised to perform fine analysis of the planet Mars. Second, I ad-
dress the atmospheric correction of CRISM imagery by exploiting the multi-angle capabilities of this
instrument. An innovative physically-based algorithm that compensates for atmospheric effects is put
forward in order to retrieve the reflectance of the surface of Mars. In this thesis this approach is used to
infer the photometric properties of the materials coexisting in a specific site of Mars, the Gusev crater.
Third, I perform an intercomparison of a selection of state-of-the-art techniques aimed at performing
spectral unmixing of hyperspectral data acquired by the CRISM instrument. This family of techniques
is proved to be useful to analyze hyperspectral images in an unsupervised manner, that is, without any
a priori on the scene. An original strategy is proposed to discriminate the most suitable techniques for
the exploration of Mars based on ground truth data built from independent high resolution imagery.
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Introduction

Space exploration began when our ancestors started gazing upon the sky. These first astronomers
called the bright objects moving among the stars “planets”, or the wanderers. They were named
after Roman deities and since then have driven the curiosity of the human race. Among all planets
Mars has given rise to many questions such as whether life exists, or ever existed, in outer space.
This inquisitiveness still persists nowadays largely because of the findings provided by the set of
techniques named “remote sensing”. Remote sensing allows the exploration of planetary objects
through spacecrafts from orbit and has been used by more than fifty years now, from the pioneering
Sputnik 1 satellite, launched in 1957, to the modern Mars Reconnaissance Orbiter (MRO), launched in
2006. Technological improvements have made possible the development of increasingly sophisticated
instruments to arm spacecrafts. Nowadays different types of instruments provide unique data on
topics such as the formation, the geology and the atmospheric conditions of planetary objects. The
planet Mars has especially benefited from remote sensing techniques with a few tens of unmanned
missions that have provided an unprecedented view on the Red Planet, improving our understanding
of the mysteries that Mars hosts.

Remote sensing is commonly divided into passive and active techniques. While the instruments based
on the latter technique emit a signal that is subsequently sensed after reflecting on a planet, passive
remote sensing is based on the illumination of planetary objects by the Sun. Solar photons go through
planetary atmospheres, reflect on the surface and reach the sensors after a second path through the at-
mosphere. The physical interactions happening along this path modulate the signal sensed by passive
scanners providing clues on the composition of materials at the surface and atmospheric components.
A few tens of years ago technological improvements in the field of spectroscopy and traditional imag-
ing gave rise to hyperspectral imaging. This passive technique couples spectroscopy and imaging
to determine the spatial distribution of the materials at the surface and of their physical properties.
Hyperspectral imaging expands traditional imagery to the range of the electromagnetic spectrum that
is invisible to the human eye. In this way hyperspectral sensors have the capability of discriminating
between different materials that look similar in the visible range. In front of this potential planetary
spacecrafts have been equipped with hyperspectral imagers since the late 1980s. Nowadays two hy-
perspectral instruments orbit the planet Mars, the Observatoire pour la Minéralogie, l’Eau, les Glaces,
et l’Activité (OMEGA) aboard the Mars Express orbiter, launched in 2003, and the Compact Recon-
naissance Imaging Spectrometer for Mars aboard MRO.

The OMEGA and the CRISM instruments provide unprecedented data on Mars. However, the volu-
minousness and the complexity of hyperspectral images entail challenges regarding the visualization,
manipulation and exploitation of these data. This is particularly the case of the CRISM sensor whose
major technical improvements with respect to OMEGA are its higher spatial resolution and the fact
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that CRISM is the first hyperspectral imager to operate systematically in multi-angle mode from space.
The first attribute allows CRISM to provide a finer spatial outlook on the surface of Mars while main-
taing the spectral resolution of OMEGA. Second, the mechanical configuration of CRISM allows it to
spectrally explore a given martian scene at different observation geometries. This exclusive novelty of
CRISM is originally intended to improve the characterization of the atmosphere of Mars. As a result
of these two technical capabilities the images released from the CRISM instrument are not only related
to a unique information but also to an unprecedented complexity and size.

In this framework this thesis proposes a series of statistical and physical algorithms to process and
analyze CRISM hyperspectral images. These tools are conceived to help planetary scientists to address
fine analysis of the planet Mars using data acquired by CRISM. This thesis looks into the fields of plan-
etary sciences and Earth observation to develop state-of-the-art tools to process CRISM data. The major
goals are to develop unsupervised techniques to perform automatic processing of CRISM images for
the retrieval of meaningful planetary features and to propose physically-based approaches to carry out
fine analysis of the physical and chemical properties of materials at the surface of Mars. These two ob-
jectives are addressed taking into consideration the multi-angle capabilities of the CRISM instrument,
not only for a better characterization of the atmosphere but also in the seek of photometric properties
of the surface according to observation geometry. The latter data shall indeed give significant hints
about the physical state of surface materials, which are nowadays largely unknown. Additionally, this
dissertation investigates the sensitivity of the CRISM instrument to instrumental artifacts coming from
its demanding technological requirements. In this matter, the improvement of the radiometric accuracy
of the CRISM data is also explored. Although the proposed algorithms in this thesis are recurrently
tested and validated on selected CRISM images they are reusable in other contexts and are not limited
to a particular case.

This Ph.D. dissertation is divided into four major parts:

• In the first part I introduce the context of the present thesis. The first chapter starts with a
summary of the exploration of Mars and the use of hyperspectral imagers, in particular. After-
ward, I detail the instruments and products related to the hyperspectral imaging of planetary
objects followed by the description of the CRISM instrument. In the second chapter I provide an
overview on the physics related to passive remote sensing, that is, the radiative transfer between
solar photons, the atmosphere, and the surface. This chapter sets the background for the third
part of this document. The first part of the dissertation concludes by detailing the objectives
of this thesis, that is, the solutions that I propose to overcome the challenges associated to the
remote sensing of Mars using the CRISM instrument.

• In the second part I investigate the automatic processing of CRISM multi-angle data by intro-
ducing a tailor-made data pipeline. First, this set of routines aims at improving the radiometric
quality of CRISM data by addressing the correction of several instrumental artifacts. These tech-
nical limitations compromise the analysis of CRISM data by the algorithms that shall be proposed
in this thesis. Second, the data pipeline is devised to produce advanced CRISM products taking
into consideration the geometric, atmospheric, and instrumental conditions under which CRISM
images are acquired. In this way I shall explore the compensation for heterogeneous illumination
conditions and atmospheric effects that may disguise the features related to the surface. Like-
wise, the proposed data pipeline produces multi-angle products encompassing the full angular
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information made available by CRISM from a single martian site.

• In the third part I explore further the atmospheric correction of CRISM data by proposing an
original approach that exploits the multi-angle capabilities of the CRISM instrument for the sake
of an accurate compensation of atmospheric effects. This technique is devised to retrieve the
information related to the surface from at-sensor data with a higher fidelity than when using
traditional atmospheric correction methods. In this part of the thesis I shall go further by inves-
tigating the photometric properties according to the geometry of acquisition of the materials of a
given site of Mars. This photometric study is made possible thanks to the proposed atmospheric
correction algorithm and supposes a pioneering investigation of this type using orbital imagery.

• In the fourth part I investigate the use of statistic techniques to extract physically meaningful
features from CRISM imagery in an unsupervised manner. In particular I propose the use of
spectral unmixing techniques that are able to transform a voluminous hyperspectral image into
a set of a few feature images, some of them related to the existent materials at the surface. These
techniques represent a remarkable tool to process hyperspectral data in an automatic and sig-
nificant manner. In addition the unmixing concept makes possible a compact visualization of
hyperspectral images due to the mentioned dimensionality reduction. In this part of the dis-
sertation I perform a comparison between some state-of-the-art techniques typically used for
analyzing terrestrial hyperspectral images. The most appropriate techniques for the remote sens-
ing of Mars are identified by a validation strategy based on original ground truth data built from
independent high resolution imagery.

Each of the aforementioned parts begins with a short introduction to the problems to be addressed and
concludes with the related conclusions and outlook. A chapter summarizing the main points discussed
along the thesis and highlighting the major conclusions and future prospects is included at the end of
this dissertation. This thesis is concluded by a series of appendices describing different aspects related
to the topics discussed along this work.
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Introduction

Since the very first close-up of the Red Planet taken in the 1960s spacecraft missions to Mars have
revealed a world somewhat familiar yet different enough to trigger our curiosity. Every time we feel
close to understanding Mars, new discoveries make us review existing theories. Like Earth, Mars
has polar ice caps, seasonal weather patterns, clouds in its atmosphere, volcanoes, canyons and other
recognizable features. However, conditions on Mars greatly vary from those on Earth. Over the past
five decades space exploration programs have led the discover that Mars is cold and rocky beneath its
reddish hazy sky. The first part of this Ph.D. thesis starts with an introduction on the planet Mars and
its most relevant geological features in section 1.1.

Space exploration is mainly accomplished by remote sensing techniques. The term “remote sensing”
is commonly used to describe the science of identifying, observing, and measuring an object without
coming into direct contact with it. The technology of modern remote sensing began with the invention
of the camera, more than 150 years ago. However, the idea of looking down at the Earth’s surface
emerged in the 1840s when pictures were taken from cameras secured to balloons for mapping pur-
poses. This was the precedent of the current observation and exploration satellites performing remote
sensing of planetary objects using several types of sensors. In this thesis I focus on passive remote
sensing which uses the radiation of the Sun as source of illumination. In the following section 1.2 I
provide a brief review on the space exploration of the planet Mars by means of remote sensing orbiters
and rovers on the surface. The latter crafts will indeed help us to complement and validate the results
obtained from space.

Recent advances in remote sensing have led the way for the development of hyperspectral sensors.
Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology
that is currently being investigated by researchers and scientists with regard to the detection, identi-
fication, and characterization of minerals, ices, and other materials at the surface. These techniques
have been incorporated to space missions since the late 1980s and have provided unprecedented data
on the surface and atmosphere of the Red Planet. In section 1.3 I give a review on the principles of
imaging spectroscopy and the related instruments, products and analysis techniques. The chapter is
concluded in section 1.4 by introducing the Compact Reconnaissance Imaging Spectrometer for Mars,
which represents the main instrument of study of this thesis.

Because satellites measure radiation, the interpretation of their data requires the study of radiative
transfer in the atmosphere and through the upper few millimeters to centimeters of the surface. Radia-
tive transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation and
is crucial to understand the at-sensor signal that eventually forms hyperspectral images. In chapter 2
I explain the radiative phenomena happening in the remote sensing of planetary surfaces. The main
elements such as the atmospheric gases, the aerosols, and the surface itself are described by their scat-
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tering and absorption properties that condition the travel of light from the Sun to the spacecraft. This
radiative interaction characterizes the spectral signatures that will be sensed by imaging spectrometers
and that will be key in the exploitation of hyperspectral images that will be accomplished in this dis-
sertation. As a matter of fact, chapter 2 establishes the basis of some of the physically-based methods
that shall be presented in this thesis to process and analyze multi-angle hyperspectral images of Mars.

Size comparison of Earth and Mars.
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1
Remote sensing of Mars

The first chapter of this thesis is divided into four sections. First, I give a description of the planet
Mars and the geological and atmospheric features that have been discovered by remote sensing from
space. The second section is devoted to the exploration of Mars by the combination of orbiters, landers
and rovers. In this way I detail the successful (and fruitless) unmanned missions that have been
carried out to the date, introducing the main on board instruments that shall be considered in this
dissertation. Third, I describe a specific imaging technique to explore planetary surfaces, imaging
spectroscopy. Imaging spectrometers, or hyperspectral imagers, provide a unique insight into the
chemical composition and physical state of materials at the surface and particles in the atmosphere.
This technique represents the principal remote sensing tool that will be used in this thesis. Eventually,
the hyperspectral imager named Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)
aboard the Mars Reconnaissance Orbiter is introduced in the fourth section by detailing its technical
attributes and the resulting image products.

1.1. The planet Mars

Our curiosity for Mars goes back in time to the ancient eras. A legacy of it is our use of the name Mars,
which comes from the ancient Roman God of war. Nonetheless, other ancient civilizations already
named the planet after warrior gods due to its reddish-orange color. Absolute fascination, however,
began in the late 19th century when several astronomers theorized on the presence of liquid water on
the surface of Mars based on telescopic observations. This speculation was founded on an observed
network of dark straight lines in the equatorial regions of Mars that were interpreted to be irrigation
channels. These “canals” were first observed by the Italian astronomer Giovanni Schiaparelli in 1877
(see Figure 1.1) and confirmed by later observers. Some people went further with their speculations
and even proposed these patterns to be irrigation canals built by a intelligent civilization on Mars!
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Chapter 1. Remote sensing of Mars

Figure 1.1.: Historical map of planet Mars from Giovanni Schiaparelli.

This enigma, among other mysteries of the universe, has made the human race to spare no effort in
exploring space in order to learn about the planetary objects of the Solar system. Sadly for believ-
ers, advanced astronomical observations revealed in the early 20th century that the aforementioned
“canals” were an optical illusion. Today, high resolution mapping of the Martian surface aboard space-
crafts shows no such features. Although this might be considered to be disappointing, unmanned
missions have gathered information on other enigmas. In the recent times, for example, spacecrafts
on orbit and rovers on the surface have collected geological evidence suggesting that Mars once had
water coverage at large scale on its surface. The human race hence keeps wondering.

The planet Mars is half the size of the Earth and represents the fourth planet closest to the Sun at a
distance of more than 230 millions of kilometers. The British astronomer William Herschel determined
in the 19th century its rotational period to be 24 hours 37 minutes, only 41 minutes longer than a
day on Earth. Mars is related to other Earth-like characteristics such as its seasonal cycles that result
from a similar obliquity of its rotational axe than Earth’s. During a journey around the Sun of a little
more than two Earth years, Mars goes through the first day of spring in the northern hemisphere at
LS = 0°1, the northern summer solstice at LS = 90°, the northern autumnal equinox at LS = 180°
and the northern winter solstice at LS = 270°. In this voyage Mars is accompanied by its two moons,
Deimos (panic) and Phobos (fear) named after the horses that pulled the chariot of the Greek war god
Ares and discovered in 1877 by the American astronomer Asaph Hall. Table 1.1 summarizes some of
the mentioned characteristics of Mars among other physical attributes.

Regarding its geology, the surface of Mars is mainly composed of basalt often mantled by a layer of
finely grained iron oxide dust. Also, latest discoveries have revealed the presence of hydrated sulphates
and phyllosilicates at the surface. Mars has many features similar to the valleys, polar caps, deserts,
and volcanoes of Earth as well as the impact craters of the Moon. Mars is the site of Valles Marineris,
the largest known canyon in the Solar System, and Olympus Mons, the highest known mountain with
more than 21 km from the base to the summit. The lowest point is situated in the Hellas impact

1LS is the longitude of the Sun and is widely referred to determine the position of Mars in relation to the Sun
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Chapter 1. Remote sensing of Mars

Attribute Mars Earth
Mass 6.42⇥1023 kg 58.35⇥1023 kg

Equatorial radius 3396 km 6378 km
Solar day 24h 37m 23h 56m

Surface gravity 3.71 ms�2 9.78 ms�2

Bond albedo 0.250 0.306
Orbital period 779.94 days 365.25 days

Obliquity 25.19° 23.44°
Distance to Sun 2.3⇥108km 1.5⇥108km

Table 1.1.: Orbital, rotational and physical characteristics of Mars.

basin at less than -8 km. This huge difference in elevation is evidenced in Figure 1.2, displaying the
hemispheric dichotomy between the elevated southern highlands and the lower northern plains.

Olympus Mons!

Valles Marineris!

Hellas Basin!

Figure 1.2.: Global topography of Mars from the Mars Global Surveyor Mars Orbiter Laser Altimeter
experiment. The geological features named in the text are highlighted. Credit: National Aeronautics
and Space Administration.

Although Mars lost its magnetosphere a few billion years ago, a thin atmosphere remains. The atmo-
sphere of Mars is composed of 95% carbon dioxide (CO2) and contains suspended dust and water ice
particles called aerosols. These particles can be highly mobilized during the storms that happen on
Mars, ranging from local storms to huge global storms that can cover the entire planet.

As for the existence of water on Mars, the Mars Pathfinder rover measured a pressure on the surface
too low to host liquid water (i.e. a few millibars). Nevertheless, large quantities of water ice are known
to be stocked in the poles of Mars. The polar caps at both poles consist primarily of water ice covered
by a thin layer of frozen carbon dioxide about one meter thick on the northern cap in winter only and
by a permanent eight-meter thick layer made of the same component on its southern twin cap. Water
ice is indeed predominant in both poles as the northern permanent polar cap has an average thickness
of 2 km and a diameter of roughly 1000 km (see Figure 1.3) while the southern permanent polar cap
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has a thickness of 3 km and a diameter of 350 km. Only the volume of water stored in the southern ice
cap would be sufficient to cover the entire planet with a resulting depth of 11 meters.

Figure 1.3.: Viking Orbiter’s view of the northern ice cap of Mars.

Apart from being huge reservoirs of water ice, the poles of Mars drive the massive CO2 cycle that
happens on the Red Planet. During winter, the poles lie in complete darkness, cooling off the surface
and causing that up to 30% of the atmosphere condenses generating deposits of seasonal CO2 ice
sometimes in the form of thick slabs. When the spring comes, the frozen CO2 on the poles sublimes
due to exposition to sunlight, creating winds. These seasonal effects transport large amounts of dust
and water vapor, giving rise to cirrus clouds and Earth-like frost. As the regions permanently covered
by frost warm with the arrival of spring, pressure from subliming CO2 increases under the seasonal
slabs, elevating and ultimately rupturing it. This leads to geyser-like eruptions of CO2 gas mixed with
dust.

These processes, among many others, represent the type of targets aimed by remote sensing explo-
ration. As a matter of fact, the instruments mounted on spacecrafts orbiting around Mars have been
decisive to detect, monitor and quantify the aforementioned attributes and processes of Mars. In the
following section, I detail in brief the 50 years of exploration of Mars principally accomplished by
remote sensing techniques.

1.2. Space exploration

Mars has been the focus of intense scientific study throughout history. Even before the invention
of the telescope by Galileo in 1609, the Polish astronomer Nicolas Copernicus already performed
observations of the Red Planet with the naked eye. Later on, telescopic observations expanded our
knowledge by revealing, for example, the presence of polar caps and atmosphere on Mars. However,
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their compositions remained unknown. Progress on the size and the types of telescopes have greatly
increased the quality and kinds of martian observations in recent years.

Most of the contemporary understanding on Mars has been acquired thanks to unmanned space mis-
sions composed by orbiters, landers and rovers. Mars has been indeed a popular destination of space-
crafts since the early days of space exploration. This is explained not only by its proximity to Earth
but also because of the question of whether life could ever have existed on the Red Planet. In the
present section of the thesis, I briefly summarize the exploration of Mars since the first mission. I
recommend, however, the excellent works of Barlow and Bell that provide a much more detailed story
on this subject [8, 11].

Albeit the considerable interest in Mars, the Red Planet has not been the easiest place to explore.
Indeed, up to this day, about two-thirds of all space missions directed to the Red Planet have been
partially or completely failed. The Soviets were the first to send a spacecraft to Mars with the Mars 1
mission, launched on 1 November 1962. This spacecraft was designed to photograph the planet and
determine if Mars had a magnetic field. Unfortunately, after some critical failures, data were never
returned. The United States took over from the Soviets and launched the Mariner 3 and 4 spacecrafts
in Mars 1964. Although both missions were launched successfully, the solar panels powering Mariner
3 did not deploy properly and that mission ended up in solar orbit. Mariner 4, however, returned the
first ever close-up photos of Mars, revealing a heavily cratered surface (see Figure 1.4). Additionally,
Mariner 4 confirmed the existence of an atmosphere primarily composed of carbon dioxide and a faint
magnetic field.

Figure 1.4.: View of the martian surface taken by the Mariner 4 spacecraft. Craters can be seen, but
little else is discernible in this image. Credit: National Aeronautics and Space Administration/Jet
Propulsion Laboratory.

Also in the mid-sixties the Soviets sent a couple of spacecrafts, Zond 2 and Zond 3, which failed
because of different technical reasons. A few years later, Mariners 6 and 7 expanded on the discoveries
made by Mariner 4 by reaching Mars in mid-1969. Instruments on these two spacecrafts revealed a
heavily cratered, geologically dead world that sadden the planetary community, eager of finding life
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on Mars. However, the question of life on Mars arose again right after Mariner 9 entered orbit on
November 1971. Among the several findings made during this mission, Mariner 9 observed channels
on the surface that were though to be formed by a flowing liquid. These geological features seemed to
indicate that conditions could have changed through martian history.

A few weeks after Mariner 9 arrived at Mars, the Soviet Mars 2 and 3 orbiters achieved orbit (see
Figure 1.5). Their temperature observations of the north polar cap were close to the condensation
temperature of carbon dioxide, indicating that CO2 is a major component of the ice caps. Both Mars
2 and 3 also carried landers which were meant to be the first human artifacts to explore in-situ the
surface of Mars. Unfortunately, both of them crashed onto the surface and contact was lost. Although
the same happened with Mars 6 and 7 landers in mid-1973, the Soviets got more lucky with Mars 4
and 5 orbiters that acquired substantial data from the surface and the atmosphere of the planet.

Figure 1.5.: Artist’s conception of the Soviet Mars 2 spacecraft. The Mars 2 and Mars 3 missions
consisted of identical spacecrafts, each with an orbiter and an attached lander. The latter were the
first human artifacts to impact the surface of Mars.

At the end of the space race between the Soviet Union and the United States, the next two missions
of the National Aeronautics and Space Administration (NASA), Vikings 1 and 2, were launched on
August and September 1975, respectively. These two missions included landers which successfully
landed and explored the soil for evidence of microorganisms. Both returned the first color views of
the surface of Mars, revealing a rocky and dusty surface. Viking 2 provided one of the first proofs
that water might exist on the surface by observations of water frost (see Figure 1.6). In addition to the
landers, each mission also consisted of an orbiter to provide detailed views of the entire planet. The
Viking orbiters mapped the entire surface of Mars and acquired more than 50000 images, becoming
one of the most successful first missions in the space exploration of Mars.

The Soviets were definitely out of luck as both the Phobos 1 and 2 spacecrafts, launched on July
1988, suffered from critical failures. As the spacecraft names suggest, the main target was Mars’
largest moon, Phobos. Phobos 2 managed, however, to made a limited number of observations of
Mars, including the first near-infrared (NIR) spectra acquired by the infrared spectrometer (ISM), the
ancestor of imaging spectrometers such as the CRISM instrument. The United States had not better
luck than the Soviets as the communications with the ambitious Mars Observer mission, launched on
September 1992, were lost while the spacecraft was entering Mars orbit.

The first mission to recover some of the initial investigations of Mars Observer was Mars Global Sur-
veyor (MGS) which was launched on November 1996 and operated during ten years. The data acquired
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Figure 1.6.: Pictured acquired by the Viking Lander 2 showing an unusual image of the martian surface
in 1979 sporting a thin layer of seasonal water ice in the form of frost.

by MGS have proved to be of an excellent quality and are still used in current studies. MGS was
equipped with severals instruments out of which I highlight the Mars Orbiter Camera that provided
unprecedented high-resolution imagery (1.5 to 12 m/pixel resolution) and the Mars Orbiter Laser Al-
timeter (MOLA) that used laser pulses to determine the topography of the surface. Russia tried to
compete with MGS with the ambitious Mars 96 mission containing an orbiter, two surface landers, and
two penetrators. Mars 96 was launched in November 1996 but a failure affecting the rockets caused the
mission to crash into the ocean. One month later, the American Mars Pathfinder lander was launched
to become the first mission to carry a robotic rover. The lander safely landed on Mars and the rover
traveled a distance of a hundred meters during which it characterized the composition of some soils
and rocks.

The end of the 90s was disastrous for Mars exploration. First, Japan attempted to join the international
exploration of Mars in July 1998 with the Nozomi mission. However a malfunctioning valve caused the
spacecraft to lose some fuel that eventually led to the abandon of the mission. Second, the American
Mars Climate Orbiter and Mars Polar Lander missions failed due to different technical reasons in 1998
and 1999, respectively.

The success came back with Mars Odyssey orbiter, launched on April 2001. In this orbiter, I highlight
the Thermal Emission Imaging System (THEMIS) instrument which still observes the planet in both
visible (18 m/pixel resolution) and infrared (100 m/pixel resolution) wavelengths. Two years later,
the two Mars Exploration Rovers (MER) Spirit and Opportunity were sent to Mars to investigate sites
which were thought to contain evidence of ancient water. Each rover carries a Panoramic Camera (Pan-
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cam) to survey the surrounding areas among other instruments. In this thesis, data coming the Pancam
instrument of Spirit is used in Part III. While Spirit got definitely stuck in May 2009, Opportunity keeps
exploring the surface of Mars at the present time.

The European Space Agency (ESA) joined the exploration of Mars in June 2003 with the launch of Mars
Express (MEX). MEX consisted of an orbiter and the Beagle 2 surface lander, although unfortunately
no signal was detected from Beagle 2 after its landing. The MEX orbiter, however, has been very
successful as all of its instruments are returning precious data nowadays. Instruments include several
that were lost on the Mars 96 mission, including the Observatoire pour la Minéralogie, l’Eau, les Glaces,
et l’Activité (OMEGA). OMEGA is an imaging spectrometer with co-aligned channels working in the
visible and near-infrared (VNIR) range and the short wavelength infrared (SWIR) range. OMEGA
has provided evidence of water ice in the martian polar caps and mineralogical variations across the
surface. I specially call attention to this instrument as it represents the predecessor of CRISM, the main
instrument that shall be studied in this thesis. Likewise, recurrent references will be made to OMEGA
and even some particular experiments are conducted based on its characteristics (e.g. see chapter 11).
I recommend the Ph.D. dissertation of Schmidt for a detailed outlook on the OMEGA instrument and
the science that it makes possible [157]. Aboard MEX, I also highlight the High Resolution Stereo
Camera (HRSC), which has produced impressive three-dimensional images of the martian surface as
the one shown in Figure 1.7.

Figure 1.7.: This image of the Noctis Labyrinthus region on Mars was taken by the HRSC onboard
MEX. The HRSC took these pictures with a ground resolution of approximately 16 m/pixel. This
future prospect view has been calculated from the digital terrain model derived from the stereo
channels. Credit: ESA / German Aerospace Center / Freie Universität Berlin

The last orbiter to be launched has been the Mars Reconnaissance Orbiter (MRO). MRO is a NASA
multipurpose spacecraft which entered Mars orbit on March 2006. As MRO reached Mars it joined
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four other active missions, namely MGS, MEX, Mars Odyssey and MER, a then record. MRO contains
a host of scientific instruments such as the High Resolution Imaging Science Experiment (HiRISE)
(25 cm/pixel) and the imaging spectrometer CRISM, which is aimed at analyzing the surface and at-
mosphere of Mars. In November 2008, MRO completed its primary science phase which started in
November 2006. The MRO spacecraft operates in a sun-synchronous, near-circular (255⇥320 km alti-
tude) and near-polar orbit and it is expected to transfer more data to Earth than all previous planetary
missions combined.

Eventually, the Phoenix lander descended on Mars on May 25, 2008. Phoenix was NASA’s sixth
successful landing out of seven attempts and is the most recent spacecraft to land successfully on
Mars as well as the first successful landing in a martian polar region. Indeed, Phoenix discovered
the presence of shallow subsurface water ice. The mission was declared concluded on late 2008, after
engineers were unable to re-contact the craft.

The Phoenix lander concludes the race for martian exploration for now. More advanced instruments
will follow the steps started by the Soviet Mars 1 mission such as the upcoming Mars Science Labora-
tory carrying the rover Curiosity that is scheduled to launch in late 2011. The Curiosity rover will help
assess whether Mars is or ever was an environment able to support microbial life. The show has just
begun.

1.3. On the use of imaging spectroscopy

For more than a decade visible and infrared imaging spectroscopy, or hyperspectral imaging, has been
an active area of research and development. With the recent imaging spectrometers, or hyperspectral
imagers, devised for space exploration and Earth observation, hyperspectral imaging constitutes a key
remote sensing technique to study planetary objects. The advantage of spectral imaging, as opposed
to single-field-of-view spectrometers and traditional imaging systems, is its ability to simultaneously
detect, identify, and map compositional units on planetary surfaces. As solar light is transmitted,
reflected and diffused by interaction with the atmosphere and the surface, the analysis of reflectance
spectra allows the identification, characterization and quantification of chemical species. As a matter
of fact, chemical components have characteristic spectral features in the VNIR and SWIR observed by
imaging spectrometers that allow the investigation of the geochemical evolution of surfaces as well as
the compositional properties of atmospheres.

In planetary sciences the first imaging spectrometer was the ISM aboard the Phobos 2 mission. Before
contact was definitely lost with this spacecraft, ISM obtained a few thousand spectra in the NIR and
SWIR (from 0.75 to 3.2 µm) in the equatorial areas of Mars, with a spatial resolution ranging from 7
to 25 km/pixel, and a few hundred spectra of Phobos at 700 m/pixel resolution. These observations
made possible the first mineralogical maps of the planet and its satellite. The ISM instrument was
followed by the Near Infrared Mapping Spectrometer (NIMS) experiment on the Galileo spacecraft.
The Galileo mission was launched in October 1989 and was aimed at the exploration of Jupiter and its
moons, the Galilean satellites (see Figure 1.8 for a picture of the moon named Europa acquired during
the Galileo mission). After six years traveling through space, Galileo arrived at Jupiter. On the travel
to the red giant, the NIMS camera, along other instruments aboard Galileo, explored the planet Venus,
the Earth/Moon system and a couple of asteroids. NIMS provided unprecedented information to the
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scientific community on the composition of each of these planetary objects.

Figure 1.8.: This image of Europa and an enlargement of the Thrace region gives visual evidence of the
dramatic advance in our knowledge of Jupiter’s second Galilean satellite due to the Galileo mission.
Credit: Arizona State University.

The Phobos 2 and Galileo missions were pioneers in using imaging spectroscopy for the study of plan-
etary objects. Later on the ISM and NIMS instruments were followed by other hyperspectral imagers
such as the Visual and Infrared Mapping Spectrometer sensor on the Cassini spacecraft, the OMEGA
instrument aboard MEX, the CRISM sensor aboard MRO and the Visible and Infrared Thermal Imaging
Spectrometer (VIRTIS) experiment on the Venus Express mission. This series of increasingly powerful
sensors has been decisive in addressing issues related to the surface and the atmosphere of Saturn, its
moons, Mars and Venus. Furthermore, imaging spectroscopy represents a key remote sensing tech-
nique to study not only the planets of the Solar system but the Earth itself. I recommend the reading
of the Ph.D. dissertation of Guanter in which a comprehensive review of the imaging spectrometers
used in Earth observation is given [68].

Nowadays, we find two imaging spectrometers orbiting around Mars, the OMEGA and the CRISM
instruments. Similarly to other hyperspectral imagers, both instruments have provided substantial
clues on environmental conditions and present and past activity. For example, ESA announced in 2004
the discovery of water ice in the south polar ice cap, using data taken with the OMEGA instrument.
In particular, the orbiter detected a polar ice cap whose bulk composition is dominated by water ice
with various amounts of dust overlaid by a veneer of carbon dioxide ice 10-15 meters thick over a
fraction of its surface [3]. In 2005, Poulet et al. reported on the presence of hydrated sulphates,
silicates and various rock-forming minerals using OMEGA data [144]. Alternatively, in the primary
science phase of CRISM, international researchers performed a comprehensive investigation of past
aqueous environments, structure of the planet’s crust, past climate and current meteorology [128]. The
main technological difference between CRISM and OMEGA is that the former instrument is the first
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hyperspectral imager to operate systematically in multi-angle mode at high spatial resolution from
orbit. As it shall be seen in this thesis, this attribute represents a state-of-the-art advance toward a
more complete understanding of the Red Planet.

In the following I detail the advantage of using imaging spectroscopy complementarily to classical
techniques. The data products generated by these instruments, the different systems of acquisition as
well as the major analysis trends are detailed afterward.

1.3.1. Exploring the surface

Imaging spectroscopy begins with sunlight reflected off a delimited area of a planet. Hyperspectral
imagers have the ability of decomposing this light into a few hundreds of wavelengths forming the
measured spectra. The use of a broad spectral range provides hyperspectral imagers with the ability
of determining the composition of the observed area. The science of using reflected radiation leaving
materials at a set of wavelengths to measure composition is called reflectance spectroscopy. In the same
way that someone with a little familiarity with rocks can recognize a piece of basalt (black, hardened
volcanic lava) or limestone (whiter, sedimentary rock) by their color and texture, spectroscopy extends
mineral and rock discrimination based on wavelength (or color in the case of the “rock expert”) to
spectral ranges that are not visible to the eye (e.g. the infrared).

The concept of spectroscopy is based on the fact that each chemical component is more likely to ab-
sorb solar radiation at certain wavelengths, defining intrinsic spectral signatures. Low signals in a
reflectance spectrum occur at wavelengths where the observed material absorbs light, the so-called ab-
sorption bands. The portion of the electromagnetic spectrum that is not absorbed is named spectrum
continuum. These two fingerprints characterize each type of material as well as its physical state.
Figure 1.9 highlights these spectral features for a spectrum of olivine, an igneous mineral common on
Mars. The dotted line depicts the spectrum continuum while arrows point to absorption bands. As
it can be seen, the fingerprints of olivine are different than the other two kinds of pyroxenes, becom-
ing distinctive features of the former material. Other typical martian materials such as water ice or
frozen CO2 have likewise distinctive fingerprints which are sensed by spectrometers working in the
visible and infrared ranges. Data acquired by this type of instruments are hence unique to detect and
characterize the materials coexisting in planetary surfaces.

The advantage of imaging spectrometers in front of single-shot spectrometers, that is, acquiring a
single spectrum, is that the mentioned discrimination between materials can be extended to a whole
spatial scene. Imaging spectrometers produce hyperspectral images in which each pixel is related to a
spectrum, allowing a compositional mapping over the full extent of the image.

1.3.2. Hyperspectral images

A hyperspectral image is a compilation of typically a few hundred spectral images, each one express-
ing the sensed radiance coming from a given scene at a given wavelength. The stacking of spectral
images produces hyperspectral images, or data cubes, in which two axis correspond to the two spatial
dimensions and the third one to the spectral dimension according to wavelength. Generally, hyper-
spectral images cover the visible (400 < l < 700 nm), the near-infrared range (0.7 < l < 3.5 µm)
and the shorter wavelengths of the thermal infrared (3.5 < l <⇠ 5 µm). Figure 1.10 depicts the three
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: spectrum continuum;! : absorption band;!

Figure 1.9.: Spectra of typical minerals at the martian surface. The dotted line and the arrows
point to the spectrum continuum and the absorption bands of the olivine spectrum. Credit:
http://crism.jhuapl.edu.

mentioned dimensions as well as the major elements in a hyperspectral image. Each stacked image
composed by a set of pixels corresponding to a given wavelength is called a spectral band. However,
if we refer to the spectral data contained within a given spatial position, we use the term spectrum. A
spectrum expresses the variance according to wavelength of the measured radiance. Figure 1.9 shows
the spectra corresponding to three different materials. I note, however, that a spectrum may not cor-
respond to a single material at the surface but a mixture of a few components due to an insufficient
spatial resolution, for instance. The issue of mixed spectra constitutes a major issue in hyperspectral
imagery and shall be addressed in Part IV. From a spectral point of view, a hyperspectral image can
be considered as an ensemble of spectra arranged according to their original position at ground. In
this case each element composing a spectrum is no longer named a pixel but a spectel.

1.3.2.1. Geometry of acquisition

Passive remote sensing of planetary surfaces is sensitive to the position of the spacecraft with respect
to the scene of study and with respect to the Sun. This sensitivity comes from the scattering properties
of the surface and the variation of the amount of energy falling on the surface depending on the Sun
elevation (more details on these processes are given in chapter 2). For this reason hyperspectral images
are typically released along with ancillary data that describe the acquisition conditions under which
each single spectrum was acquired.

I define the acquisition geometry related to a remote sensing problem as the following triplet of angles
(see Figure 1.11 for complementary details):

• The angle of incidence of the Sun, or Sun zenith angle (SZA), determines the illumination, or
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Figure 1.10.: Scheme of a hyperspectral image. Note that the image is composed by a set of pixels,
each one assigned to a spectrum like the one in the example. In hyperspectral images acquired
by spaceborne or airborne instruments, the two spatial axis are called along-track dimension and
cross-track dimension. These two notions are further described in subsection 1.3.3.

incidence, direction in the scene of study. It is defined as the angle between the direction of the
Sun as regards the target and the zenith and is usually mentioned by symbol q0. The SZA is
crucial to determine the solar energy per unit of surface as higher values of q0 result in lower
radiation over an elementary terrain unit. This fact is taken into account in the study of surface
photometry (see subsection 4.2.3). The SZA can also be expressed in its cosine form µ0 = cos q0.

• The angle of emergence, or view zenith angle (VZA), determines the elevation of the spacecraft
in relation to the ground. The VZA is defined as the angle between the zenith and the viewing
(or emergence) direction, namely the line that goes from the target to the craft. VZA is usually
expressed by the symbol q. The angle of emergence is important when dealing with surfaces
whose appearance changes according to the viewing direction such as ices and some minerals.
Spacecrafts working at nadir correspond to q ⇡ 0º. The VZA can also be expressed in its cosine
form µ = cos q.

• The relative azimuth, or simply azimuthal angle, indicates the relative position of the Sun and
the spacecraft projected on ground. The relative azimuth is defined as the angle between the
projections of the Sun and spacecraft positions on ground and is referred to as j. There is one
case in which this angle relating the source and the craft becomes useless, namely the presence
of materials at the surface with privileged scattering directions. In this case, a reference point is
necessary to define the absolute azimuth of the Sun j0 and that of the spacecraft j (e.g. these
two angles are usually given with the north as reference). In this thesis, I will use the symbol j

as the relative azimuth j0 � j, unless mentioned in the text otherwise, as most martian materials
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do not have privileged scattering directions.
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Figure 1.11.: Scheme of the acquisition geometry in remote sensing of planetary surfaces.

These three angles fully determine the geometry of acquisition in a passive remote sensing problem.
Alternatively, this acquisition triplet can be expressed by replacing the relative azimuth by the phase
angle. The phase angle g is defined as the angle between the illumination and the viewing directions
and can be calculated such that cos g = cos q0 cos q + sin q0 sin q cos j. The phase angle is useful when
analyzing scattering processes by atmospheric particles or by the surface.

Figure 1.11 also details two other concepts related to the geometry of acquisition, the solar principal
plane and the solar cross-principal plane. The former direction is defined by the infinite imaginary
line determined by j = 0º and j = 180º. Contrarily, the cross-principal plane is defined as being
orthogonal to the principal plane.

Eventually, we define the airmass, or n, that is the geometrical path length along the incidence and
emergence directions through a planet’s atmosphere such that:

n =
1

cos (q0)
+

1
cos (q)

. (1.1)

Following this expression, the airmass cannot be lower than 2. This extreme value corresponds to
the case in which the sensor operates at nadir q = 0º and the Sun is at zenith q0 = 0º. Airmass
increases as the angle between the source and the zenith, or the spacecraft and the zenith, increases
too. In this thesis, the parameters g and n will allow us to reduce the acquisition geometry triplet to two
parameters or even a single one. This is useful in those cases in which three angles result too confusing
or lower computational times become necessary. However, I stress that multiple combinations of Sun
and view zenith angles may produce the same airmass, for example.

1.3.2.2. Units of hyperspectral images

To conclude with this section I define some of the units typically used for hyperspectral images. A
more detailed look on the following physical concepts will be given in chapter 2. For a comprehensive
reading on this subject I recommend the seminal work of Nicodemus in [133] or the most recent work
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of Schaepman-Strub et al. in [154].

A hyperspectral imager senses the amount of reflected light that it receives from a planet in each wave-
length band. In addition to surface reflectance, which exclusively depends on the surface properties
and what we actually aim at retrieving, the spectral radiance measured by an orbital sensor depends
on several aspects of the remote sensing chain, namely:

1. The spectrum of the input solar energy.

2. The geometry of illumination.

3. The interactions of this energy during its downward and upward passages through the atmo-
sphere.

4. The characteristics of the sensor system.

The last aspect intervenes on board when the intensity of sensed radiation is transformed into digital
number (DN) units. DNs are related to the intrinsic sensitivity of the instrument. Data preprocessing
before the release of the data (see Part II) transforms DN units into radiance units. Radiance is a
radiometric measure, noted L, that describes the amount of light that passes through or is emitted from
a particular area and falls within a given solid angle in a specified direction. The units of radiance is
watts per steradian per square meter [Wsr�1m�2].

The first aspect of the list above is also typically considered in preprocessing steps by transforming
radiances into I/F units. I/F units make data independent on the spectral properties of the light
source, the Sun in the case of passive remote sensing (see Figure 1.12). In particular, I/F stands for the
ratio of measured intensity to solar flux, where the intensity I [Wsr�1] is the measure of the energy
flux [W] per unit of solid angle [sr] and the solar flux F [W] is the rate of transfer of energy through
a surface adjusted for the squared distance between the observed surface and the Sun. I/F units are
[sr�1] and are used by several imaging spectrometers such as the CRISM instrument.

In order to take into account the decrease of energy as function of q0 (second aspect of the list above),
spectral reflectance r (l) is defined as the fraction of incident radiation reflected by a surface to the
incident irradiance (i.e. flux per squared meter) from a collimated source2 as a function of wavelength
l. In order to transform I/F data into reflectance units, illumination conditions are typically taken
into account making

r ⇡ qL =
I/F

cos q0
=

I/F
µ0

(1.2)

This expression weights the I/F data by the amount of received energy (e.g. the fainter light at high
SZA is compensated by higher 1/ cos q0 values). If we assume equal scattering in all directions (i.e.
isotropic scattering), a property only accomplished by the so-called Lambertian surfaces, the latter
can be characterized by a reflectance value not depending on illumination direction called Lambert
albedo or qL [94]. In this thesis, we shall also use the term apparent reflectance, or R, to refer to
Lambert albedos in order to emphasize that atmospheric effects have not yet been accounted for.
Indeed, aspect number 3 of the list above shall be considered when performing atmospheric correction
(see subsection 4.2.2 and Part III).

2Collimated light is radiation whose rays are nearly parallel defining a single illumination direction.
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1.2 Parts of the Spectrum 3

1.2.1 Extraterrestrial Solar Flux
In this section we consider some elementary aspects of solar radiation and the origin
of its deviations from blackbody behavior. We will assume the reader is familiar with
the concept of absorption opacity, or optical depth, t(v) at frequency v. The basic
ideas are reviewed in Appendix G and covered more thoroughly in Chapter 2.

In Fig. 1.1 we show the measured spectral flux, or irradiance, of the Sun's radiative
energy at a distance of one astronomical unit re(r® = l .SxiO6]™).1 Integrated over
all frequencies, this quantity is called the solar constant, S [W • m"2]. These data were
taken by a spectrometer on board an Earth-orbiting satellite, beyond the influences of
the atmosphere.2 The solar constant is not actually a constant but is slightly variable.
For this reason, the modern term is the total solar irradiance, whose value3 is about
1368 W • m~2. The total solar irradiance S represents the total instantaneous radiant
energy falling normally on a unit surface located at the distance r e from the Sun. It
is the basic forcing of the Earth's heat engine, and indeed for all planetary bodies
that derive their energy primarily from the Sun. The quantity S(r^/r2) is the total
instantaneous radiant energy falling normally on a unit surface at the solar distance r.

Near IR
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Figure 1.1 Extraterrestrial solar flux, or irradiance, measured by a spectrometer on board an
Earth-orbiting satellite. The UV spectrum (119 < X < 420 nm) was measured by the
SOLSTICE instrument on the UARS satellite (modified from a diagram provided by G. J.
Rottmann, private communication, 1995). The vertical lines divide the various spectral
subranges defined in Table 1.1. The smooth curves are calculated blackbody spectra for a
number of emission temperatures.
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Figure 1.12.: Extraterrestrial solar irradiance E [Wm�2] measured by a spectrometer on board an Earth-
orbiting satellite. The vertical lines divide the various spectral subranges that are typically defined
in the literature. The smooth curves are calculated blackbody spectra for a number of emission
temperatures. Credit: [170].

Nevertheless, most materials are, however, non-Lambertian and therefore their reflectance must be
expressed depending on the directional distribution of incoming radiation and the viewing direction.
This is done by defining the bidirectional reflectance distribution function (BRDF) that characterizes
the scattering properties of a surface accurately. The BRDF is defined as the ratio of the reflected
radiance L (q0, q, j, l) [Wsr�1m�2], in an infinitesimal solid angle in the direction (q0, q) to the incident
irradiance at ground, E (q0, l) [Wm�2] such that

f (q0, q, j, l) =
L (q0, q, j, l)

E (q0, l)

h

sr�1
i

, (1.3)

Unfortunately, BRDF values are not accessible directly by measurement in most field studies since
natural light is not collimated but includes both direct solar and diffuse radiations [154]. In other
words, in remote sensing problem we can only deal with the term L (q, j, l) instead of L (q0, q, j, l). In
this case, the unitless hemispherical directional reflectance function (HDRF) represents the accessible
parameter, which means that the incident beam is integrated over the whole incident hemisphere W+

such that

h (q, j, l) =
L (q, j, l)´

2p

E (q0, l) cos q0dW+
, (1.4)

To conclude, I define a last parameter, namely the spectral spherical albedo. The also called bi-
hemispherical reflectance is the ratio of reflected radiation to the incident irradiance at a given wave-
length after integration in the upper incidence and emergence hemispheres. This measure is also called
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Bond albedo and is measured on a scale from zero, for no reflecting power of a perfectly black surface,
to unity, for perfect reflection of a white surface. The Bond albedo depends on the frequency of the
radiation and is crucial to determine the energetic balance of an objet3.

q (l) =
1
p

ˆ

2p

ˆ

2p

f (q0, q, j, l) cos q0 cos qdW+dW�. (1.5)

1.3.2.3. Processing hyperspectral data

Hyperspectral imaging is used in a wide array of applications ranging from remote sensing of plane-
tary surfaces to surveillance purposes on Earth. However, this type of images present some challenges
for the analyst. While providing the fine spectral resolution needed to characterize the spectral prop-
erties of surface materials, the volume of data in a single scene may be overwhelming. Additionally,
the difference in spectral information between two adjacent spectral bands may be apparently rather
small. Nonetheless, embedded in these data there is critical information that can be used to identify
the ground surface materials. Finding appropriate tools and approaches for visualizing and analyzing
the essential information in a hyperspectral scene is an area of active research. Most approaches to
analyze hyperspectral images concentrate on the spectral information in individual pixels, although
spatial variations start being considered as well, creating advanced analysis algorithms. Here I briefly
detail some of the principal families of analysis methods in hyperspectral imaging.

1. Spectral classification consists in the assignment of each spectrum in the image into classes
such that spectra in the same class are similar in some sense. The use of conventional analysis
methods is, however, not adequate for classifying high-dimensional data due to the so-called
curse of dimensionality, referring to the fact that the classification problem becomes intractable as
the number of spectral bands increases. Therefore, more sophisticated classifiers are considered
such as those based on machine learning principles. Support Vector Machines (SVM) are the
state of the art in this analysis field [23, 28]. Advanced classification methods are, however, often
supervised, thus requiring ground truth to train the classifier. This represents a major drawback
in planetary remote sensing as ground truth data are very scarce.

2. Dimensionality reduction algorithms aim at overcoming the curse of dimensionality by reduc-
ing the number of features (i.e. the spectral bands in the case of hyperspectral images) under
consideration. This family of methods are divided into feature selection and feature extraction.
The latter techniques have the capability to transform the data into a feature space in which re-
sulting features may be more significant than those in the original spectral space. Dimensionality
reduction techniques are useful in planetary sciences and shall be used in this thesis. A pair of
examples are the classical Principal Component Analysis (PCA) and the Maximum Noise Frac-
tion (MNF), the latter producing new features ordered according to signal-to-noise ratio (SNR)
after two cascaded PCA transformations and a noise whitening step [67] (see section 14.1 for a
detailed explanation of the MNF). In planetary sciences the PCA has been widely used to detect
and map materials at the surface as it is done in [33, 141].

3Adapted from [133, 154].

27



Chapter 1. Remote sensing of Mars

3. Spectral unmixing is based on the premise that a scene is composed by a certain number of mate-
rials, or endmembers, with distinct spectral properties. When the spatial resolution is moderate,
it is likely that more than one material contributes to an individual spectrum measured by the
sensor. The result is a composite or mixed spectrum composed by a combination of the endmem-
ber spectra. Spectral unmixing aims firstly at identifying the endmember spectra, and secondly at
unmixing each pixel spectrum to identify the relative abundances to each endmember material.
Assuming a linear mixture model, each spectrum can be modeled as the sum of the fractional
abundances multiplied by the corresponding endmember spectra. Spectral unmixing techniques
based on the linear assumption are potentially interesting tools in planetary exploration as they
are totally unsupervised and provide satisfactory results [143]. In addition, spectral unmixing
techniques perform dimensionality reduction of hyperspectral images as they transform them
into a few abundance images. The use of these techniques on planetary hyperspectral data shall
be investigated in Part IV.

4. Segmentation aims at partitioning an image into multiple regions encompassing similar pixels.
These techniques differ from classification approaches in the fact that they generally take into
account the spatial information while the latter approaches are devised in a pixel-wise fashion.
In addition, pixels classified as a same class do not necessarily have to form an ensemble of
contiguous pixels while segmented regions are usually defined as spatially continuous segments.
In hyperspectral imagery, classical segmentation techniques are improved by incorporating the
spectral dimension [176]. Nonetheless, these techniques still are in an early stage of development
and thus will not be considered in this dissertation.

5. Anomaly detection aims at detecting and identifying spatially resolved or unresolved objects on
the basis of spectral signatures. If each material had a unique spectrum, the solution of detection
and identification problems would be straightforward. Unfortunately, variabilities in material
composition and atmospheric propagation, in addition to sensor noise, introduce random spec-
tral variations. Also, for pixels containing unresolved objects, the measured spectrum includes
a mixture of object and background contributions. Thus, every detection algorithm has to over-
come two major obstacles, namely spectral variability and background interference [112]. The
study of these techniques is not addressed in this thesis as they are more oriented toward Earth
observation issues.

1.3.3. Imaging spectrometers

Hyperspectral images are produced by instruments called imaging spectrometers. The development
of these complex sensors has involved the convergence of two related but distinct technologies: spec-
troscopy and imaging.

A spectrometer is an instrument used to measure the properties of light over a specific range of the
electromagnetic spectrum. Spectrometers are typically used in spectroscopic analysis to identify dif-
ferent types of materials by their spectral properties. A single-shot spectrometer generates a spectrum
according to wavelength, or wavenumber, after the incident light from the target goes through a slit, is
scattered according to wavelength using a diffraction grating and is eventually projected onto a line of
photodetectors, each one receiving a given wavelength (see Figure 1.13).
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slit 

Figure 1.13.: Scheme of a spectrometer.

An imaging spectrometer is an instrument used in hyperspectral imaging to acquire a spectrally re-
solved image of the observed scene. The operating principle is the same than that of single-shot
spectrometers with the expansion of the acquisition to two spatial dimensions thanks to a mechan-
ical system and/or the use of a two dimensional matrix of detectors. Due to this technological im-
provement, imaging spectrometers offer advanced spatial performances whereas accurate calibration
to avoid optical aberrations becomes sometimes challenging. Examples of the most common types
of imaging spectrometers used in planetary sciences and Earth observation include the whiskbroom
scanner and the pushbroom scanner. Since this thesis exclusively focuses on imaging spectrometers, I
therefore may often use the term spectrometer instead of imaging spectrometer for brevity.

• Whiskbroom sensors, also known as cross-track scanners, acquire a series of lines (i.e. an image)
in the direction perpendicular to the satellite orbital motion based on a single-shot spectrometer
and a mechanical system. First, a limited set of detectors, sensitive to a specific wavelength range,
captures the radiation reflected by the planet at one edge of the swath. The remaining points of
the swath are then sensed thanks to a continuously rotating mirror (see Figure 1.14). The motion
of the spacecraft allows the scanning of the next line at ground. As Figure 1.14 illustrates, the
field of view (FOV) of the scanner is set by the length of the sweep. Since each scan line at the
ground consists of multiple ground cells to be sensed, the resulting dwell time for each ground
cell, characterized by its instantaneous FOV (IFOV), is very short, compromising the related SNR
of the resulting hyperspectral image.

Under this design, whiskbroom sensors achieve high spectral and spatial uniformity if long in-
tegration times are available. Therefore, these scanners are more appropriate for airborne rather
than orbiting platforms, as the limited integration time of the latter spacecrafts due to the higher
speed on ground may result in inadequate SNR performance. However, a whiskbroom scanner
owns a single linear photodetector array and thus careful calibration of the response of each de-
tector element suffices to eliminate most artifacts. The whiskbroom approach is implemented on
the terrestrial Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor, which is a stan-
dard of high-accuracy hyperspectral imager. In planetary exploration, the SWIR channel (0.93-5.1
µm) of the OMEGA instrument operates in the whiskbroom mode. In this case, a scanning mir-
ror in front of the telescope provides cross-track swaths 16-128 pixels wide corresponding to a
maximum FOV of 8.8°.

• Pushbroom sensors, or along-track scanners, differ from the whiskbroom design in the replace-
ment of the rotating mirror by an array of detectors that capture simultaneously a single scan
line at ground. Each row of the two-dimensional detector array used in pushbroom scanners is
indeed an independent spectrometer. The detector array is typically a charged-coupled device
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Figure 1.14.: Scheme of a whiskbroom scanner.

in which one axis corresponds to the cross-track dimension and the second to wavelength (see
Figure 1.15 for a scheme). The number of cross-track pixels is equal to the number of ground cells
for a given swath, and thus defines the FOV of the sensor. Similarly to whiskbroom scanners,
the motion of the spacecraft provides the along-track dimension of hyperspectral images. Pushb-
room scanners are the standard for orbital imaging spectrometers as integration times are longer
than in the whiskbroom concept, and thus the SNR performances. Examples of pushbroom scan-
ners in planetary sciences are the VNIR channel (0.38-1.05 µm) of the OMEGA instrument and
the CRISM imaging spectrometer.

While pushbroom spectrometers offer excellent performances regarding SNR, spatial alignment
and spatial resolution, I highlight other intrinsic problems. In particular, these scanners are
affected by non-uniformities of their spatial-spectral detector matrix. For example, it would be
desirable to have the same point spread function (PSF), or spectral response, for all detectors in
a given row of the array, that is to say, the detectors belonging to the same wavelength. That
of course is not straightforward as it multiplies the already demanding whiskbroom calibration
procedure by the number of spatial pixels, typically several hundreds. In this thesis I shall
address the compensation of a typical artifact of pushbroom sensors in subsubsection 4.1.2.1. To
conclude I recommend the reader the seminal work of Mouroulis et al. for an in-depth outlook
on pushbroom-type imaging spectrometers [123].

In the following section I describe the CRISM imaging spectrometer that constitutes the main instru-
ment of study in this thesis.
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Figure 1.15.: Scheme of a pushbroom scanner. Credit: [7].

1.4. Description of the CRISM instrument

The Compact Reconnaissance Imaging Spectrometer for Mars is a visible and infrared imaging spec-
trometer operating around Mars aboard MRO since November 2006. CRISM was designed, built, and
tested by the Johns Hopkins University Applied Physics Laboratory under the supervision of principal
investigator Scott Murchie. The present Ph.D. dissertation is focused on the remote sensing of Mars
made possible through CRISM and therefore this instrument constitutes a keystone of it. In the fol-
lowing, I provide a summary of the design, attributes and functioning of the CRISM instrument. For
further reading on this sensor, I recommend the main article on CRISM of Murchie et al. [126].

The scientific objectives of the CRISM instrument are summarized as follow:

1. To map the entire surface using a subset of bands to characterize crustal mineralogy.

2. To map the mineralogy of key areas at high spectral and spatial resolution.

3. To measure spatial and seasonal variations in the atmosphere.

In addition, CRISM is being used to identify locations on Mars that may have hosted water. In fact,
the seek for evidence of aqueous or hydrothermal activity is one of the major goals of the MRO
mission [192]. CRISM addresses this problem by mapping the presence of minerals and chemicals that
may indicate past interaction with water such as iron and oxides, which can be chemically altered by
water, and phyllosilicates and carbonates, which form in the presence of water. All these materials
have characteristic fingerprints in their visible and infrared spectra that are readily seen by CRISM.
In addition, CRISM monitors CO2 and H2O seasonal deposits at the surface and dust and water ice
particles in the martian atmosphere to study the martian seasons and climate.

In order to achieve the mentioned objectives, the CRISM imaging spectrometer senses the electro-
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magnetic spectrum from 362 to 3920 nm in more than 500 spectral bands. CRISM is designed as a
combination of three assemblies. The largest, the Optical Sensor Unit (OSU), contains optics, detec-
tors, radiators, and a cryogenic system, all of which can be gimbaled, or pivoted, to track the martian
surface. A Data Processing Unit (DPU) provides power, command and control, and data editing and
compression, and the Gimbal Motor Electronics (GME) runs the gimbal. A close-up of the three as-
semblies is given in Figure 1.16.

Figure 1.16.: Picture of the three main assemblies of CRISM, namely OSU, DPU and GME. Credit:
http://crism.jhuapl.edu/instrument/innoDesign.php.

Being this thesis on remote sensing, I focus on the OSU, containing two pushbroom imaging spec-
trometers. After the light passes through a common telescope and slit, a beam splitter directs it to
two independent diffraction gratings with separate detectors. In each spectrometer, a scan line of the
planet is dispersed into its component wavelengths that are projected onto different rows of that spec-
trometer’s 2D detector. One spectrometer uses an array of silicon photodiodes to capture hyperspectral
images covering the wavelengths 362-1053 nm. In this thesis, I shall denote this spectrometer as VNIR
channel. The other spectrometer uses an array of HgCdTe diodes to take hyperspectral images at
1002–3920 nm. I will denote this spectrometer as IR channel. Both VNIR and IR channels sample the
electromagnetic spectrum at an average step of 6.55 nm per detector row, that is to say, two contiguous
spectral bands are separated by only Dl = 6.55 nm, Dl constituting the spectral sampling of CRISM.
Both detectors have a 640⇥480 (spatial⇥spectral) format, giving acquisition scan lines one-pixel high
and 640-column wide. Each element of this line contains a data spectrum. Similar to other pushbroom
scanners, CRISM constructs a hyperspectral image by stacking multiple scan lines as MRO flies over
the surface. When the MRO spacecraft is at an altitude of 300 km, each CRISM line scan on the Martian
surface is about 18 meters long (the maximum spatial resolution of CRISM) and ~11 km across. The
latter figure results in a FOV of 2.1º. This and other technical attributes of the CRISM instrument are
summarized in Table 1.2 along with a comparison with those of its ancestor, the imaging spectrometer
OMEGA.

As support to following sections, I briefly detail the spectral attributes of CRISM. In order to distinguish
spectrally similar materials at the surface, adequate spectral resolution is necessary. This requires not
only a high spectral sampling but a sufficiently high spectral resolution. Spectral resolution is set
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Attribute CRISM OMEGA
Spectral range 0.36-3.92 µm 0.38-5.10 µm

Spectral sampling 6.5 nm (544 bands) 13.4 nm (352 bands)
Spectral resolution FWHM = 8-15 nm FWHM = 7-20 nm
Spatial resolution > 18 m/pixel > 350 m/pixel

Signal-to-noise ratio > 100 dB > 100 dB
Field of view 2.1º 8.8º

Table 1.2.: Technical attributes of the imaging spectrometers CRISM and OMEGA.

by the full-width at half maximum (FWHM) of the instrument spectral response, or PSF. CRISM was
designed such that FWHM is 8±2 nm and 10-15±2 nm across the FOV in the VNIR channel and the
IR channel, respectively. The broader spectral responses correspond to the off-axis detectors. The
point spread function PSF (l) of the elements of the detector array were determined by pre-launch
calibration and modeled by a 3-Gaussian function such that

PSF (l) =
3

Â
i=1

aie�gi(l�Li)
2

(1.6)

where the three values of terms ai, gi and Li are unique to each position of the detector matrix and
are stored in calibration data records as it will be further detailed in Part II.

The CRISM instrument has two modes of functioning:

• In the multispectral untargeted mode, CRISM senses the martian surface using fixed pointing
(i.e. the gimbal is disabled) and 72 of its 544 spectral bands at a resolution of 200 m/pixel. This
spatial degradation is performed by an internal ⇥10 spatial pixel binning. CRISM mapped half
of the planet Mars in this mode within the period from June to September 2007 (see Figure 1.17)
[128]. The untargeted mode is meant to identify new scientifically interesting locations to be
further investigated by the targeted mode. The untargeted multispectral mode is, however, not
considered in this thesis.

• In the hyperspectral targeted mode, the CRISM spectrometer measures energy covering 0.36-3.92
microns using all 544 spectral bands. In targeted observations the gimbal is used to track a point
on the surface and prevent smear from motion of the spacecraft. If the surface is scanned at
the full spatial resolution of 18 m/pixel, the product is called “full-resolution targeted” (FRT).
Alternatively, spatial resolution can also be set to 36 m/pixel using a 2⇥ binning, producing
products named “half-resolution short” (HRS) or “half-resolution long” (HRL). Ten additional
abbreviated, 10⇥ spatially binned images are taken before and after the main image, or central
scan, providing measurements of the same scene with different path lengths through the atmo-
sphere. This sequence of multiple measurements at different geometries is called an emission
phase function (EPF). As I show in Part III, when analyzed using a radiative transfer model
that incorporates a model of surface scattering and wavelength-dependent attenuation by atmo-
spheric gases and aerosols, the combination of the main image and the EPF allows separation of
atmospheric and surface contributions. As mentioned before, the multi-angle properties of the
CRISM instrument represent its main innovative attribute along with its high spatial resolution.
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Figure 1.17.: Coverage by multispectral survey data acquired during the primary science phase. Credit:
[128]

Targeted observations are aimed to specific martian sites whose scientific interest requires a more
in-depth investigation than that made possible by untargeted observations. Figure 1.18 details
the coverage of this type of products during the primary science phase.

Figure 1.18.: Coverage of Mars by CRISM targeted observations taken during the primary science
phase, indicated by black symbols overlain on a color-coded MOLA elevation map in which red-
der colors indicate higher elevations. Credit: [128]

In this dissertation, I define the set of eleven hyperspectral images taken during the gimbal’s
tracking of a target as a CRISM multi-angle observation, or simply CRISM observation. Each
one of the eleven hyperspectral images are referred to as CRISM scans, or simply CRISM images.

In Figure 1.19, I detail the acquisition geometry of a targeted observation. The eleven scans forming
the observation are numbered in hexadecimal notation, that is, ’01’, ’02’, ’03’, ’04’, ’05’, ’07’, ’09’, ’0A’,
’0B’, ’0C’, and ’0D’. The central scan ’07’ corresponds to the main image at full spatial resolution while
the rest form the bracketing EPF. Scans with labels ’06’ and ’08’ are not data images as they correspond
to shutter close measurements that are used to calibrate in-flight internal noise (see Part II). According

34



Chapter 1. Remote sensing of Mars

to the motion of MRO, EPF scans from ’01’ to ’05’ correspond to the inbound direction while those
ranging from ’09’ to ’0D’ are related to the outbound direction. Typically, the relative azimuth j in
a CRISM observation presents two main values, or modes, one for the inbound direction jinbound and
another for the outbound direction joutbound. The central scan ’07’ is divided by the two azimuthal
modes as the border between them happens for the central scan lines acquired at nadir, q ⇡ 0º.
Regarding the VZA, targeted images present variations by more than 70º between the most extreme
scans, ’01’ and ’0D’, and the central scan ’07’. Regarding the main image ’07’, variations of 30º in
VZA are expected. This attribute of CRISM is driven by the combination of the gimbal and the motion
of MRO (see Figure 1.19) and represents an unprecedented opportunity to study Mars from a multi-
angular point of view.

…!

Surface!

Atmosphere!

target!

11th (0D)!6th (07)!1st (01)!

…!

�≈70º! �≈70º!�≈0º! �≈30º!�≈30º!

ϕinbound! ϕoutbound!

Figure 1.19.: Scheme of a targeted observation acquired by the CRISM sensor. Only three scans out
of the total eleven are shown in this figure. Green color corresponds to the central scan at high
resolution ’07’ while the presented EPF scans, ’01’ and ’0D’, are detailed in blue. Dash-dotted lines
correspond to the first scanned line of a CRISM image. Conversely, dashed lines indicate the last
line that is sensed. All scans are acquired as a combination of the gimbal and the MRO motion. In
the quasi-nadir central scan, viewing angles can range from 0º to 30º.

Figure 1.20 shows the difference in spatial resolution between the central scan and the accompanying
EPF. The bracketing images are indeed degraded aboard MRO by a binning factor of 10 in order to
reduce the size of the images before sending them to Earth. Indeed, the EPF was originally intended
exclusively for atmospheric studies and thus the higher heterogeneity of the surface was not meant
to be preserved [126]. This attribute will represent a limitation when exploiting CRISM multi-angle
observation for studying the surface in Part III. As it can be seen in Figure 1.20, all eleven scans are
projected onto a map space. Originally, each CRISM scan is, however, released in the image space,
which is defined by the width of the detector matrix and the scanning time of a CRISM image both
divided by the binning factor (i.e. typically 640⇥420 pixels for a FRT central scan and 15⇥60 pixels
for the EPF individual images). Each CRISM image comes with an ancillary data set containing the
acquisition and geographic attributes of each pixel, among other information. In particular, each pixel
is characterized by its latitude, longitude and acquisition angular triplet (q0, q, j) by the information
enclosed in the corresponding Derived Data Record (DDR) that accompanies each CRISM image. In
this way, the data in the image space can be projected onto a map space (i.e. the one defined by
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the latitude and longitude dimensions and by a given projection system) by placing each pixel in its
geographic coordinates.
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Figure 1.20.: Projection onto the map space of the eleven scans of a CRISM observation. Note the
different coverage and footprint of the different eleven hyperspectral images. Also, remark the higher
spatial resolution of the central scan (encompassed by a green line) in front of the accompanying EPF
(embraced by a blue box).

In conclusion the CRISM instrument represents an unprecedented tool to study the planet Mars, es-
pecially because of its unprecedented multi-angle capabilities. Extraction of mineralogically useful
spectral data at high spatial and spectral resolution requires high SNR, which is met by CRISM thanks
to its pushbroom concept. In general most requirements that were set up by the CRISM team are
satisfied. However, Murchie et al. argue that there are some cases in which small deviation in ac-
tual performance are expected [126]. These limitations are greatly overcome by the data pipeline
undergone by CRISM data before being released to the scientific community. After this data pipeline,
targeted observations are called Targeted Reduced Data Records (TRDR), namely radiometrically cal-
ibrated CRISM spectra. For the majority of the length of this Ph.D., the version of the data pipeline
has been TRDR version 2 (TRDR2 for brevity) while some products with the improved TRDR version
3 (TRDR3 for brevity) started to be released in the previous months of the writing of this disserta-
tion. Unfortunately, some residual anomalies coming from intrinsic limitations of CRISM are not fully
resolved in the TRDR products and thus may compromise the radiometric quality of the data. These
issues shall be addressed in Part II.
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2
Radiative transfer

In the present chapter I provide an introduction to the interaction between surface, atmosphere and
radiation. The following notions represent the basis of the atmospheric correction of remote sensing
data that will be addressed in Part III. For this purpose I describe the absorption and scattering
processes affecting the solar electromagnetic radiation in its path across the atmosphere toward the
sensor. A brief description of atmospheric components, namely gases and aerosols, is given as well as
their influence on radiation. The mathematical formulation of the macroscopic radiative transfer (RT)
is then detailed. Eventually, I discuss on different models of the surface bidirectional reflectance. For
a more complete outlook on RT in planetary atmospheres I recommend to the reader the seminal and
comprehensive book of Thomas and Stamnes [170].

2.1. Extinction in the atmosphere

The atmosphere of Mars can be considered as a series of parallel atmospheric layers, each layer contain-
ing a mixture of gas and aerosols that define the optical thickness of the layer. The optical thickness,
or depth, or opacity, is a measure of transparency of a medium related to the fraction of radiation that
goes directly through the atmosphere without finding any obstacle. The other fraction of radiation
is said to be extinct, or attenuated. Extinction is the result of two different phenomena, absorption
and scattering. In this thesis we consider that there is no emission by particles. All these concepts are
defined below. The optical depth therefore expresses the quantity of light removed from a beam by
scattering or absorption during its path through a medium as Figure 2.1 illustrates.

If E0 (l) is the irradiance of radiation at wavelength l at the top of the atmosphere (TOA), and Ed (l) is
the direct irradiance at the surface after a given atmospheric path (see Figure 2.1), the intrinsic optical
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Figure 2.1.: Scheme of a single-layer atmosphere characterized by its intrinsic optical thickness t1. E0
is the incident irradiance on the layer that is partially transmitted downward after going through
extinction. L (t1, �µ, j) is the radiance incident on the surface. The upward radiance L (0, µ, j)
results from the transmitted radiation that has been previously reflected on the surface and from
the solar irradiance reflected by the atmosphere alone. The two vertical positions TOA (top-of-
atmosphere) and BOA (bottom-of-atmosphere) are depicted.

depth t (l) of the medium is defined as

Ed (l) /E0 (l) = e�t(l). (2.1)

In this way t (l) ⌧ 1 when the atmosphere is transparent and t (l) � 1 when it is opaque. I stress
that the previous expression is only true for the coherent direct fraction of the irradiance along the
incident direction and not for the incoherent part resulting from the multi-scattering of the former.

2.1.1. Atmospheric absorption

Absorption is the process by which incident radiant energy is retained by the atmosphere. When the
atmosphere absorbs energy, the result is an irreversible transformation of radiation into another form
of energy, typically heat. This energy is transformed according to the nature of the absorbent medium.

A large fraction of the absorbed light in the atmosphere is due to atmospheric gases since aerosols
are related to a single scattering albedo close to unity in the SWIR (our preferred spectral range in
this thesis)1. The atmosphere of Mars consists of 95% carbon dioxide, 3% nitrogen, 1.6% argon and
contains traces of oxygen and water. Out of the optically active molecules, CO2 is the most influencing
component due to its predominance in the atmosphere and its numerous absorption bands in the

1Single scattering albedo is the ratio of scattering efficiency to total extinction efficiency. A single scattering albedo close to
unity implies that almost all particle extinction is due to scattering. Conversely, a single scattering albedo of zero implies
that all extinction is due to absorption.
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visible, NIR and SWIR spectrum. A typical transmittance (i.e. the fraction of incident light that
passes through a medium) spectrum of gaseous carbon dioxide is plotted in Figure 2.2 in the SWIR
region covered by the IR channel of CRISM. The main absorption bands due to carbon dioxide are
pointed out. These often strong absorption features modulate the radiation leaving the surface that is
eventually sensed at the TOA by imaging spectrometers.
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Figure 2.2.: Typical one way transmission spectrum through the CO2 dominated martian atmosphere
in the near-infrared range.

In this context the absorption of gases is typically expressed by the transmission function of the
atmosphere Tgaz (l) along a single vertical path depending on wavelength. On Mars this term can be
approximated by the transmission of the gaseous CO2 after accounting for the elevation of the target
(i.e. the lower the elevation, the thicker the atmosphere). Atmospheric transmission functions are
used in the literature to take into account the impact of gases on TOA radiance and therefore shall be
considered in the atmospheric correction algorithms proposed in subsection 4.2.2 and Part III.

2.1.2. Atmospheric scattering

Scattering is the process by which small particles suspended in a medium of a different refractive
index2 diffuse a portion of the incident radiation in other directions. Contrarily to absorption, scat-
tering does not involve an energy transformation but a change in the directional distribution of it.
In the atmosphere of Mars light is mainly scattered by aerosols, suspended particulates about 1.5
µm in diameter which give the Martian sky an orange-brown color when seen from the surface (see
Figure 2.3).

Scattered, or diffuse, radiation results from collisions of photons with atmospheric particles. Assuming
that the shape of these particles is spherical and much smaller than the radiation wavelength, this
extinction phenomenon can be evaluated using the Maxwell equations. John William Strutt, most
known as Lord Rayleigh, proposed in 1871 a solution based on this hypothesis [147]. This solution
explains the blue color of the sky on Earth, for instance.

2The refractive index of a substance is expressed as a ratio of the speed of light in vacuum relative to that in the considered
medium.
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Figure 2.3.: The tenuous atmosphere of Mars, visible on the horizon in this low-orbit photo taken by
the Viking Orbiter.

The Rayleigh theory is, however, not valid when the particle size is similar to the incident radiation
wavelength. Lorenz and Mie independently developed a similar and more general theory in 1890
and 1908, respectively, relying on classical electromagnetic equations with continuity conditions at the
boundary between the particle and its surroundings. The Lorenz-Mie, or simply Mie, scattering theory
derives a solution for the interaction of a plane wave with an isotropic homogeneous sphere, although
the theory can be extended to any size and some shapes of regular geometry[120].

The effect of particle size on scattering is inferred by a physical term called size parameter x. In
the case of a spherical particle it is defined as the ratio of the particle circumference to the incident
wavelength l such that x = 2pr/l, where r is the particle radius. If we define l in meters, three
cases are defined such that (i) when x ⌧ 1, scattering is well explained by the Rayleigh theory, (ii)
when x � 1, scattering is analyzed by means of classical geometric optics, and (iii) in the intermediate
case, scattering is interpreted by the Mie theory. Figure 2.4 details the shape of scattering in each case.
Even though the nature and the shape of the atmospheric aerosols is highly variable, the Mie theory is
usually employed for the study of their radiative properties.

In those media with a high concentration of scatterers the photons scattered by a particle are likely to
collide with other ones, a process called multiple scattering. Multiple scattering happens when radi-
ation is scattered more than once, making that some of the incident light that has been first scattered
away from a single direction may reappear in this direction. Multiple scattering is the source of diffuse
radiation. This is an important process for the transfer of radiant energy in the martian atmosphere,
especially when aerosols are involved.

Two parameters must be introduced to quantify the scattered light, the phase function P (g), and
the scattering cross section ss. The phase function describes the spatial distribution of the scattered
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Figure 2.4.: The scattering from molecules and very tiny particles is predominantly Rayleigh scattering.
For particle sizes larger than a wavelength, Mie scattering predominates. This scattering produces a
pattern like an antenna lobe, with a sharper and more intense forward lobe for larger particles. Note
that the scattering in larger particles tend to a simple reflection and refraction of light explained by
geometric optics.

radiation. It is normalized in the way

ˆ

4p

P (g) dg = 4p, (2.2)

where g is the phase angle defined in subsection 1.3.2. Phase functions can also be defined depending
on the scattering angle Q, which is simply equal to p � g.

A widely used phase function is the so-called Henyey-Greenstein function [74]. This expression was
originally devised to mimic the angular dependence of light scattering by small particles of interstellar
dust clouds. The Henyey-Greenstein scattering function is determined by the anisotropy factor x

and has proved to be useful in approximating the angular scattering dependence of single scattering
events in many fields (see Figure 2.6 for a couple of phase function examples). The Henyey-Greenstein
function is expressed as

PHG1 (g) =
1 � x

2

[1 + 2x cos g + x

2]3/2 , (2.3)

However, the previous function only allows a single scattering lobe. In order to consider phase func-
tions with two scattering lobes, Henyey and Greenstein proposed the 2-lobe phase function such that

PHG2 (g) = c
1 � b2

[1 � 2b cos g + b2]3/2 + (1 � c)
1 � b2

[1 + 2b cos g + b2]3/2 , (2.4)

In this case b is the asymmetry parameter describing the width of both lobes. This term ranges in 0 <

b < 1, larger b values corresponding to narrower and greater lobes. The backward scattering fraction
c is also comprised in the interval 0 < c < 1. If c > 0.5 the particle is predominantly backscattering,
whereas c < 0.5 implies predominant forward scattering. There exist several conventions respecting
the b and c parameters. In this thesis I use the convention used by many authors such as Cord et al. in
[40].
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The scattering cross section represents the amount of incident energy that is removed from the original
direction because of a single scattering event such that the energy is redistributed on the area of a
sphere whose center is the scatterer and whose radius is r. The scattered intensity is proportional to
those variables, and can be expressed, for molecules and aerosols, by

I (Q, l) = I0
ss

4pr2
l

4 P (Q) . (2.5)

where I0 is the intensity of the incident radiation.

As I mentioned before martian aerosols are the principal scattering elements in the atmosphere of
Mars. This is especially true in the NIR and SWIR range where Rayleigh scattering coming from
martian gases is negligible because of a faint atmosphere (~6 mbar of pressure on average at the
martian surface) and because the fact that scattering cross section falls off as l

4. In this thesis we
therefore define the aerosol optical thickness (AOT) as the value resulting from integrating the optical
thickness exclusively due to aerosols along the vertical of the atmosphere. This parameter, namely
taer (l), is usually calculated at reference wavelength 1 µm in which the transmission of martian gases
is roughly 1. This integration along the vertical is adequate because the atmosphere is usually well
mixed. In this way taer (l) characterizes the degree of transparency of the whole atmosphere outside
the absorption bands of the gases.

2.1.3. Martian aerosols

The influence of the atmosphere on radiation leaving the surface demands an adequate characterization
of atmospheric aerosols. In this way the corresponding attenuation and scattering contribution to the
measured TOA radiances can be compensated by atmospheric correction algorithms. Figure 2.5 gives
an example on the effect of martian mineral aerosols on a typical H2O ice spectrum in the SWIR.

Figure 2.5.: Effect of heavy aerosol content on a NIR spectrum of water ice. The black line corresponds
to an opacity taer = 0.1 while red line is associated to a thicker atmosphere taer = 2. Note the
decrease in spectral contrast affecting the ice spectrum. As a matter of fact, aerosols make bright
surfaces to look darker and dark surfaces to look brighter.
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The atmospheric dust drifting over Mars is a key radiative factor in the heating of the atmosphere and
plays an important role in radiative and dynamical models of the martian atmosphere [134]. These
suspended particles are related to different sizes, origins and optical properties, as well as to strong
spatial and temporal variability. While martian gases are well-known, scattering by martian aerosols
is still largely unknown. Indeed, optical properties of martian aerosols such as the scattering phase
function are still somewhat imprecise. Furthermore, the typically strong forward component of aerosol
scattering makes RT modeling difficult. A correct parametrization of aerosols is crucial for atmospheric
modeling and, thus atmospheric correction3.

Recent studies have improved our understanding on the optical properties of Martian mineral aerosols
[93]. In some cases composition, shape, size distribution, and phase function are evaluated in the
visible and infrared using multi-instrumental observations at nadir or limb (i.e. q ⇡ 90º). This is
achieved by considering the particles to be homogeneous and using models of regular geometries such
as spheres or cylinders. Orbital observations are then inverted based on these models using numerical
algorithms founded on the Mie theory or the T-Matrix method, the latter approach being used for light
scattering by non-spherical particles.

Clancy and Lee characterized the radiative properties of martian aerosols using EPF data from the In-
frared Thermal Mapper and the Thermal Emission Spectrometer of the Viking orbiters [34]. Contrarily,
a complete scattering model for the martian aerosols is developed by Drossart et al. using quasi-nadir
ISM/Phobos-2 observations [56]. This model was corroborated later on by the independent study of
Erard et al. using multi-angle ISM data [59]. Another approach consists in constructing a synthetic
model of the aerosol optical properties based on experimental data. In this matter Ockert-Bell et al. ad-
dressed the characterization of absorption and scattering properties (e.g. single scattering albedo and
phase function, among other parameters) of martian suspended dust using Viking lander images and
a 1-lobe Henyey-Greenstein phase function with x = 0.63 [134]. Similarly, Tomasko et al. exploit the
upward-viewing geometry of the Imager for Mars aboard the rover Pathfinder to estimate the aerosol
properties minimizing the impact of the surface [173]. Almost ten years later, Vincendon et al. use the
same scattering model than Ockert-Bell’s based on orbital OMEGA observations [180, 181]. This phase
function is, however, valid only for the phase angle range spanned by OMEGA nadir observations
as the Henyey-Greenstein function proves to be somewhat inaccurate for the broader CRISM angular
operating range. In this thesis I favor the optical properties retrieved in the CRISM spectral range by
Wolff et al. in [187] using CRISM multi-angular observations. In this case a non-parametric phase
function based on cylindrical particles is considered (see Figure 2.6). Nonetheless, Wolff et al. stress
that such radiative properties may be specific to the very dusty observations that were used for their
inversion and therefore may be somewhat incorrect under other atmospheric conditions.

This section is concluded by defining the adjacency effect that will be mentioned in Part IV. Aerosol
scattering implies that the signal received by a satellite is a combination of the radiance leaving the
target pixel and radiance from surrounding pixels. Because the apparent signal at the TOA of a pixel
comes also from adjacent pixels, this effect is called adjacency effect [178].

3Although water ice crystals may also be frequently present drifting over Mars, they are not considered in this thesis for
simplicity and because this is out of the scope of my work.
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Figure 2.6.: Different phase functions of martian aerosols calculated based on orbital observations.
Plain line corresponds to the phase function retrieved by Wolff et al. from CRISM observations used
in this thesis. We also show two Henyey-Greenstein phase functions using asymmetry parameter
x=0.65 and x=0.75. Credit: [187]

2.2. Atmosphere/surface radiative transfer

The theory of radiative transfer originated in astrophysics with the work of Chandrasekhar for stel-
lar atmospheres [30]. As we have seen, the propagation of radiation through a medium is affected
by emission, absorption and scattering processes. The radiative transfer equation (RTE) describes
mathematically at each point of the medium the balance between the gains and the losses affecting
the multidirectional fluxes of radiant energy. RTEs have application in remote sensing as they allow
simulating the multiple diffuse reflections occurring between the surface and the atmosphere in terms
of radiation, helping in the study of atmospheric effects affecting at-sensor signal. In this way forward
simulation of RT models enhances our understanding on the sensitivity of measured radiance to ex-
ternal parameters such as atmospheric or acquisition conditions. Contrarily, inverse simulations are
necessary to compensate TOA radiances for these external effects in the retrieval of surface properties.
The availability of a solid mathematical base to formulate the RT problem is crucial to implement the
RT codes that will carry out these simulations.

There exist many algorithms for atmospheric RT. Analytic solutions to the RTE exist for simple cases
but advanced numerical methods are required for media with more realistic multiple scattering effects.
In this thesis I use the Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-Parallel
Medium (DISORT) which is a general and versatile RT code applicable to problems within a broad
range of the electromagnetic spectrum. DISORT solves the RTE by means of a proper implementation
of the so-called discrete ordinate method developed by Chandrasekhar in the 1950s [168]. The physical
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processes included in DISORT and of interest in this thesis are scattering, absorption and bidirectional
reflection at the lower boundary, the surface. However, the use of DISORT, as well as other similar
RT codes, is related to high computational times, and I will thus limit its use to some specific compu-
tations in which high accuracy is required. The main factor for such a computational burden is that
the boundary condition at the bottom of the atmosphere, the surface BRDF, is considered in the RT
problem. As a consequence, each time DISORT simulates a radiance value at any point of the atmo-
sphere it considers each combination of physical parameters of the surface (see section 2.3 for some
examples on parametrized surface reflectance models) as well as those related to the atmosphere (e.g.
taer). Numerical methods such as discrete ordinates are therefore traditionally used for the problem
with a Lambertian surface (i.e. f (q0, q, j, l) ⇡ qL (l)), which reduces significantly the computational
burden. Anisotropic reflectance, if considered, is usually treated by means of numerical integration
[92].

In this thesis I propose to adopt an alternative, robust, and fast resolution of the RTE problem based
on the Green’s function formulation4 allowing a partial decoupling of RT between the surface and the
atmosphere. This formulation will be the basis of the algorithm for atmospheric correction of CRISM
multi-angle observations introduced in Part III.

2.2.1. Expression of the top-of-atmosphere radiance

Throughout this thesis I make a few suppositions regarding the RT in the atmosphere and surface
of Mars. The former medium is considered to be vertically stratified with respect to solar radiation
according to a plane-parallel geometry. Likewise, the surface is supposed to be flat. Under these
circumstances I am considering a one-dimensional RT problem in which potential interactions between
different facets of the surface are not considered. Three different types of illumination on the surface
are distinguished as (i) direct illumination coming directly from the Sun, (ii) diffuse illumination
coming from photons scattered once or many times by aerosols, and (iii) illumination resulting from
round trips (multiple diffuse reflection) undergone by photons between the surface and the aerosols.
The mentioned assumptions and concepts form the basis of the surface/atmosphere RT formulation
that I shall consider for the atmospheric correction for CRISM data. For an operational version of the
correction as described in subsection 4.2.2, we will additionally consider the surface to be Lambertian
in terms of reflection. Contrarily, in Part III I propose an advanced atmospheric correction approach
that considers an anisotropic surface. In this case, however, the atmosphere is described by a single
layer characterized by a sole optical thickness, as the example illustrated in Figure 2.1.

The concept of the Green’s formulation has been used in many works on RT recently [22, 145]. I
retain the seminal work of Lyapustin and Knyazikhin in which an application of the Green’s function
formulation to the one-dimensional RT problem with a non-Lambertian surface is described [107]. This
work is carried out under similar conditions regarding the atmosphere and the surface as mentioned
above. Lyapustin and Knyazikhin propose a robust expression for the spectral radiance at the top
of the atmosphere LTOA (l) accounting for the interactions of radiation with the atmosphere and the
surface detailed in previous sections. In the present chapter I give a brief introduction to the basis of
this RT formulation. Some necessary terms are introduced as follow:

4The use of the Green’s function method in remote sensing is detailed in subsection 5.3.1.
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• s0, s: incidence and emergence directions defined by pairs of zenith and azimuthal angles (q0, j0)

and (q, j), respectively.

• µ0, µ: cosines of SZA and VZA; the z axis is pointed downward, so µ0 > 0 for the solar beam and
µ < 0 for the reflected beam.

• W+, W�: incidence (or downward) and emergence (or upward) upper hemisphere, respectively.

• pS: extraterrestrial solar spectral irradiance as detailed in Figure 1.12.

• r: surface bidirectional reflectance factor (BRF). r is given by the ratio of the reflected radiant flux
from the surface to the reflected radiant flux from an ideal Lambertian surface under identical
view geometry and illumination direction. BRF is unitless as it is proportional to the BRDF [sr�1]
of the surface by a factor p [sr] such that r (q0, q, j, l) = p f (q0, q, j, l).

• r1 and r2 are different moments of the BRF and will be detailed in section 5.3.

• c0, q: spherical albedo of the atmosphere and the surface, respectively (review Equation 1.5).

• D: atmospheric path radiance made by the photons that reach the sensor without interacting
with the surface.

• Gd: the Green’s function of the diffuse component of the atmosphere, or bi-directional upward
diffuse transmittance divided by p. The diffuse Green’s function stands for the response of
the atmosphere illuminated from below with an elementary and collimated beam of light. The
calculation of this term can be achieved with classical RT codes such as DISORT as I shall explain
in section 5.4.

The method in [107] is based on three main ideas regarding the parametrization of the RT in the
atmosphere as follow:

1. The total upward radiance Ll at level of the atmosphere l, with optical thickness tl and with
direction of propagation s is decomposed into a term embracing the radiance of those photons
that did not interact with the surface Dl , and the radiance coming from the rest Jl .

2. If we apply any kind of upward radiance L at the bottom of the atmosphere, the response of the
atmosphere in terms of radiation can be calculated with Gd as a weighted sum of elementary
contributions.

3. Radiance resulting from the interaction with the surface J is considered as a convergent series of
terms Â•

i=0 Ji that quantifies the energy of group of photons having undergone a given number
of round trips i in the system atmosphere-surface.

The formal expression of the upward radiation at any point of the atmosphere resulting from these
ideas cannot be used in practice due to its complexity. A couple of assumptions are hence made to
simplify the expression.

1. After a sufficiently large number of round trips in the atmosphere/surface system, two successive
terms in the series of terms of J become proportional. Under this assumption, a maximum-
eigenvalue method allows faster calculation of the series only requiring the first three orders of
the surface-reflected radiance.

2. The multiple reflections in the surface-atmosphere system can be approximated as a Lambertian
contribution.

These two suppositions result in a simplified expression of the upward radiance at the bottom of the
atmosphere as the sum of intelligible contributions. The last step is the transfer by direct and diffuse
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transmission of this radiance into the TOA radiance (i.e. the one sensed by a sensor in orbit) thanks
to the Green’s function. After all radiance at the sensor level LTOA is expressed as the sum of the
following terms:

• The atmospheric path radiance:

LTOA (s0, s) = D (s0, s) (2.6)
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par conséquent la structure angulaire se conserve dans l’opération qui se réduit à une
multiplication par � . La seconde contribution peut être également approximée mais
de façon moins radicale. Cette étape donne l’expression finale pour la luminance
montante à l’interface surface-atmosphère :

J�(�0;s) = S�µi exp(��0/µi)



�(si,s)+
c0�1(s)�2(si)

1� c0�0

�

+
1

� [1� c0�0]

ˆ

�+

ds0�(s0
,s)µ 0D(�0;si,s0)

(1.56)
avec :

�1(s) =
1

2�

ˆ

�+

ds0�(s0
,s) et �2(si) =

1
2�

ˆ

��

ds0�(si,s0) (1.57)

respectivement l’albédo hémisphérique-directionnel et directionnel-hémisphérique
de la surface.

La dernière étape est le transfert de cette luminance au sommet de l’atmosphère
grâce à la fonction directe et diffuse de Green. En définitive le signal reçu par le
capteur est la somme de contributions intelligibles :

la contribution additive pure de l’atmosphère :

I(0;si,se) = D(0;si,se)

le flux direct solaire collimaté réfléchi par la surface et transféré sans diffusion
vers le capteur :

• The direct collimated flux reflected by the surface and directly transmitted to the sensor:

+Sµ exp (�t/µ0) exp (�t/µ) r (s0, s)
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respectivement l’albédo hémisphérique-directionnel et directionnel-hémisphérique
de la surface.

La dernière étape est le transfert de cette luminance au sommet de l’atmosphère
grâce à la fonction directe et diffuse de Green. En définitive le signal reçu par le
capteur est la somme de contributions intelligibles :

la contribution additive pure de l’atmosphère :

I(0;si,se) = D(0;si,se)

le flux direct solaire collimaté réfléchi par la surface et transféré sans diffusion
vers le capteur :

• The direct collimated flux reflected multiple times by the system surface/atmosphere and directly
transmitted to the sensor:

+Sµ exp (�t/µ0) exp (�t/µ) r (s0, s)
c0r1 (s) r2 (s0)

1 � qc0
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+S�µiexp(��0/µi)exp(��0/µe)�(si,se)

le flux direct solaire collimaté réfléchi de multiple fois par le système surface-
atmosphère puis transféré sans diffusion vers le capteur :

+S�µiexp(��0/µi)exp(��0/µe)
co�1(se)�2(si)

1��0c0

le flux solaire diffus réfléchi de multiple fois par le système surface-atmosphère
puis transféré sans diffusion vers le capteur :

+
1

� [1��0co]
exp(��0/µe)

ˆ
�+

D(�0,si,s0)�(s0
,se)µ 0ds0

le flux direct solaire collimaté réfléchi par la surface et transféré par diffusions
multiples vers le capteur :

+

ˆ
��

S�µiexp(��0/µi)�(si,s0)Gd(0,s0
,se)ds0

• The diffuse flux reflected multiple times by the system surface/atmosphere and directly trans-
mitted to the sensor:

+
1

p (1 � qc0)
exp (�t/µ)

ˆ

W0

D
�

t, s, s0�
r

�

s0, s
�

µ

0ds0
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• The direct collimated flux reflected by the surface and transmitted by multiple scattering to the
sensor:

+
ˆ

W

Sµ0 exp (�t/µ0) r

�

s, s0�Gd �s0, s
�

ds0
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• The direct collimated flux reflected multiple times by the system surface/atmosphere and trans-
mitted by multiple scattering to the sensor:
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le flux direct solaire collimaté réfléchi de multiple fois par le système surface-
atmosphère puis transféré par diffusions multiples vers le capteur :

+

ˆ
��

S�µiexp(��0/µi)
co�1(s0)�2(si)
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Gd(0,s0

,se)ds0

le flux solaire diffus réfléchi de multiple fois par le système surface-atmosphère
puis transféré par diffusions multiples vers le capteur.

+

ˆ
��

ds1Gd(0,s1,se)
1

� [1��0c0]

ˆ
�+

D(�,si,s0)�(s0
,s1)µ 0ds0

1.3.3 Surface non uniforme

Les trois idées et les deux hypothèses de la méthode de Green 1D sont reprises
mais dans le cas d’une surface plate non uniforme dont la réflectance bidirectionnelle
varie spatialement �(r;s0

,s). Nous perdons donc l’invariance par translation ce qui
oblige à définir une luminance montante à l’interface surface-atmosphère J(�0;r;s)
qui varie elle même selon une coordonnée (radiale r) de l’espace et la direction s.
Cette luminance va être transférée dans l’atmosphère et en particulier à son sommet
selon la réponse impulsionnelle tridimensionnelle (3D) de l’atmosphère qui vérifie
les équations et conditions aux limites classiques du transfert radiatif atmosphérique :

L̂3G3 = ŜG3

G+3(0;r � r0) = 0, G�3(�0;r � r0) = � (r � r0)� (s� s1)

• The diffuse flux reflected multiple times by the system surface/atmosphere and transmitted by
multiple scattering to the sensor:

+
ˆ

W

Gd (s1, s)
1

p (1 � qc0)
ds1

ˆ

W0

D
�

t, s, s0�
r

�

s0, s1
�

µ

0ds0.
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This expression of the radiance at the top of the atmosphere provides the means for robust forward
and inverse simulations of the remote sensing RT problem. This will be further discussed in Part III.

2.3. Modeling the surface reflectance

As introduced in the previous section, formulation of the RT happening in planetary atmospheres
considers a lower boundary determined by the surface medium. Materials at the surface are charac-
terized by their reflectance properties, which are described by the BRDF. This distribution function
provides the reflectance of the surface as a function of illumination and viewing geometries and has
been already briefly introduced in Equation 1.3.

In other words, the BRDF simply expresses the fact that objects look differently when viewed from
different angles, and when illuminated from different directions. Figure 2.7 provides an example of
the anisotropic BRDF of a soil surface in terms of phase angle g. The observed soil looks featureless
for small phase angles while details increase for higher phase angles (i.e. with the Sun in front of the
observer). At this point, I note that in the case of a Lambertian, or isotropic, surface both images would
look similar. The anisotropy expressed by the BRDF depends on wavelength (although definitions
in this section will not express this dependence for brevity) and is determined by the optical and
structural properties of the materials at the surface through multiple scattering, absorption, shadow-
casting, and facet orientation distribution, among others phenomena. The BRDF is crucial in remote
sensing applications such as correction of view and illumination angle effects or atmospheric correction
as it represents the lower boundary condition of the RTE.

One of the major challenges in RT is the use of parametric yet realistic BRDF models that represent
accurately the different materials at the surface. In the following, I provide a brief review on BRDF
models, including those that shall be used in this dissertation. For a more extensive review on BRDF
models I strongly recommend the study of Jupp in [86].

2.3.1. BRDF models

If the scattering surface is sufficiently smooth, it will behave like a mirror, resulting in specular scatter-
ing or specular reflection. In this limiting case of surface scattering, radiation incident from direction
(q0, j0) is scattered only into the direction (q = q0, j = j0 � p). The opposite limiting case in terms of
scattering is that of an ideally rough surface, resulting in Lambertian scattering. Lambertian surfaces
have the property that, for any illumination that is uniform across the surface, the scattered radiation
is distributed isotropically. Therefore, the BRDF has a constant value fL (q0, q, j) = qL/p, or BRF
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Figure 2.7.: A soil field with rough surface. (left) backscattering direction, Sun behind observer. Note at
the bottom of the picture the bright region (hotspot) where all shadows are hidden. (right) forward
scattering direction, Sun opposite to the observer. Note the specular, or mirror-like, reflection. Soils
with similar scattering properties are common on Mars. Credit: http://www-modis.bu.edu/brdf/.

rL (q0, q, j) = qL, where qL is the Lambertian albedo. Both limiting cases of scattering are illustrated in
Figure 2.8 (a) and (c).

In the recent times, researchers have proposed many BRDF models that consider the physics behind
the scattering of light by surfaces and that are useful to be included in the RTE.

2.3.1.1. Minnaert’s model

A simple modification of the Lambertian scattering is the Minnaert’s analytical model. This empirical
model originated in the study of the photometric properties of the Moon by Minnaert in the 40s [121].
The Minnaert’s scattering model depends on a constant k, commonly called Minnaert’s constant or
index of limb darkening effect. This model is associated with the limb region because the roughness
plays an important role in the photometry of airless bodies observed obliquely. The model is written
as follows:

rMinnaert (µ0, µ, g) = qMinnaertµ
k
0µ

k�1, (2.7)

where qMinnaert is the Minnaert’s albedo and parameter k has the effect of increasing or decreasing the
radiance scattered in the direction of the surface normal. An example with k = 2 is given in Figure 2.8
(d). Lambertian scattering is the special case of the Minnaert’s model when k = 1.

However, the Minnaert’s model does not account for the fact that real surfaces may also show addi-
tional backscattering or specular scattering. These attributes can be incorporated by devising an em-
pirical model combining a Lambertian or Minnaert’s components with, for example, a quasi-specular
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Figure 2.8.: Schematic illustration of different types of surface scattering. The lobes describe the
strength of radiation and how diffuse it is. (a) Specular reflection. (b) quasi-specular scattering.
(c) Lambertian scattering. (d) Minnaert’s model with k = 2. (e) 1-lobe Henyey-Greenstein model
of forward scatter (x = 0.7). (f) 1-lobe Henyey-Greenstein model of backscatter (x = �0.5). Credit:
[148].

term [see Figure 2.8 (d)]. One common modification is to multiply the Lambert or Minnaert’s BRDF
by a Henyey-Greenstein term (see Equation 2.3) as it is done in Figure 2.8 (e) and (f) [148].

2.3.1.2. Hapke’s model

Although being a satisfactory first approximation, analytical models such as Minnaert’s are empirical
(i.e. founded on observations) and often fail to reproduce accurately the different scattering processes.
Contrarily, theoretical analytical BRDF models are based on RTEs and hence provide more realistic
expressions for the surface bidirectional reflectance. In this matter a widely used model for studying
the scattering properties of surfaces is the scattering model of Hapke [71]. This model is based on
the equations of RT taking into account several phenomena at the cost of additional parameters. The
Hapke’s model was originally developed for the study of granular surfaces, and has been applied
satisfactorily to different types of soils in the Solar system [84, 85, 44]. Being w the single scattering
albedo of a volume element and P (g) its phase function, the BRF of an arbitrary surface can be
expressed as

rHapke (µ0, µ, g) =
w

4
1

µ0 + µ

{[1 + B (g)] P (g) + H (µ0) H (µ) � 1} , (2.8)

where

B (g) =
B0

1 + (1/h) tan (g/2)
, (2.9)

H (x) ' 1 + 2x
1 + 2x

p
1 � w

. (2.10)

where B0 and h are the strength and the angular width of the opposition effect, respectively. Both
B0 and h characterize the non-linear increase in brightness with decreasing phase angle shown in
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Figure 2.9. As for the phase function P (g) the Henyey-Greenstein function defined in Equation 2.3 or
Equation 2.4 is commonly adopted for the Hapke’s model [84, 44, 80, 188].

Figure 2.9.: Apollo 11 photo taken by Neil Armstrong of the terrain in front of the lunar module. Note
how the opposition effect brightness the area around Armstrongs’s shadow due to the backscattering
properties of lunar regoliths. Credit: NASA, Neil Armstrong.

In addition to the opposition effect the Hapke’s model accounts for other physical processes such as
multiple scattering and anisotropy of surfaces. An improved version of this BRDF model also includes
the surface macroscopic roughness. Surface roughness is a measure of the complex geometry of the
interface between the surface materials and the atmosphere quantified for example by the vertical
deviations of a real surface from its ideal form (see Figure 2.10). If these deviations are large, the
surface is rough while if they are small, the surface is smooth. Roughness plays an important role
in determining how light interacts with its environment and its consideration results in more realistic
scattering models.

There are three important effects of macroscopic roughness that may modify the reflectance (i) scat-
tering of light from one facet to another may increase the reflectance, (ii) unresolved shadows cast on
one part of the surface by another may decrease the reflectance, and (iii) as the surface is viewed and
illuminated at increasing zenith angles, the facets that are tilted away from the observer or source may
tend to be hidden or in shadow. In order to account for the latter two effects Hapke writes the rough-
surface bidirectional reflectance factor rRough�Hapke (µ0, µ, g) as the product of a shadowing function
S (µ0, µ, g) and the original Hapke’s BRF rHapke (µ0, µ, g) of a smooth surface of effective area Ae tilted
so as to have effective angle of incidence q0e, effective angle of emergence qe, with the same phase angle
g such that

rRough�Hapke (µ0, µ, g) =
w

4
1

µ0e + µe
{[1 + B (g)] p (g) + H (µ0e) H (µe) � 1} S (µ0, µ, g) , (2.11)

Hapke defines q̄ as the mean roughness slope angle or, in other words, the averaged mean slope angle
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330 12. Photometric effects of large-scale roughness

and viewing, these expressions will be evaluated to obtain analytic
functions that are exact for these conditions. Next, the equations will
be evaluated for vertical viewing and illumination. The two solutions
will be connected by analytic interpolation to give approximate expres-
sions for intermediate angles.

Consider a detector that views a surface having unresolved rough-
ness from a large distance <^ and that accepts light from within a
small solid angle Ao> about a direction with zenith angle e. The signal
I(i,e,g) from this detector is interpreted as if it came from a smooth,
horizontal area A = c^2Aa>sec e on the mean surface with bidirec-
tional reflectance rR(l,e,g); that is,

, (12.7)

where / is the incident irradiance.
The model assumes that the light actually comes from a large

number of unresolved facets that are tilted in a variety of directions
and are both directly illuminated by light from the source and visible
to the detector. Let the bidirectional reflectance of each individual
facet be r(l, e,g), and let each facet have area Af <̂c A. The geome-
try is shown schematically in Figure 12.2. Then the true expression for

Figure 12.2. Schematic diagram of the intersection of the surface and a
vertical plane containing the detector. Shown are the actual surface,
consisting of a multitude of unresolved facets Af, the nominal surface A,
and the effective tilted surface A t. A cut by a vertical plane containing

the source would be similar.
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Figure 2.10.: Schematic diagram of the intersection of the surface and a vertical plane containing the
detector. Shown are the actual surface, consisting of a multitude of unresolved facets A f , the nominal
surface A, and the effective tilted surface At. Credit: [71].

over all spatial scales on the surface between some upper and lower limits that are determined by the
angular resolution of the detector and the physics of the RTE. The upper limit is the footprint of the
detector on the surface of the planet, which in planetary remote sensing is typically tens of centimeters
to kilometers. Being µe and µ0e the modified angle cosines, two cases are defined such that:

• if q0 < q,

S (µ0, µ, g) ' µe

µe (0)
µ0

µ0e (0)

c

�

q̄

�

1 � t (j) + t (j) c

�

q̄

�

[µ0/µ0e (0)]
, (2.12)

µ0e ' c

�

q̄

�



cos q0 + sin q0 tan q̄

cos jE2 (q) + sin2 (j/2) E2 (q0)
2 � E1 (q) � (j/p) E1 (q0)

�

, (2.13)

µe ' c

�

q̄

�



cos q + sin q tan q̄

E2 (q) � sin2 (j/2) E2 (q0)
2 � E1 (q) � (j/p) E1 (q0)

�

, (2.14)

• if q0 � q,

S (µ0, µ, g) ' µe

µe (0)
µ0

µ0e (0)

c

�

q̄

�

1 � t (j) + t (j) c

�

q̄

�

[µ/µe (0)]
, (2.15)

µ0e ' c

�

q̄

�



cos q0 + sin q0 tan q̄

E2 (q0) � sin2 (j/2) E2 (q)
2 � E1 (q0) � (j/p) E1 (q)

�

, (2.16)

µe ' c

�

q̄

�



cos q + sin q tan q̄

cos jE2 (q0) + sin2 (j/2) E2 (q)
2 � E1 (q0) � (j/p) E1 (q)

�

, (2.17)

where t (j) is the fraction of the visibility shadow hidden in the illumination shadow,

t (j) = exp
✓

�2 tan
y

2

◆

, (2.18)
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µ0e (0) and µe (0) are the effective cosines at 0º,

µe (0) ' c

�

q̄

�



cos q + sin q tan q̄

E2 (q)
2 � E1 (q)

�

, (2.19)

µ0e (0) ' c

�

q̄

�



cos q0 + sin q0 tan q̄

E2 (q0)
2 � E1 (q0)

�

, (2.20)

and

E1 (x) = exp
✓

� 2
p

cot q̄ cot x
◆

, (2.21)

E2 (x) = exp
✓

� 1
p

cot2
q̄ cot2 x

◆

, (2.22)

c

�

q̄

�

= 1/(1 + p tan2
q̄)1/2. (2.23)

These equations can be used to calculate the effects of macroscopic roughness on light scattered by a
surface having an arbitrary diffuse-reflectance function. This improved Hapke’s model is often used
in the literature and shall be also used in this thesis. The main deficiency of this model is its neglect of
inter-facet multiple scattering. This will be negligible if the reflectances of the facets are low, but it can
be important if the surface is bright, especially at high phase angles where many shadows are visible
but are partially diffusely illuminated.

2.3.1.3. Rahman-Pinty-Verstraete model

The main drawback of the Hapke’s model is related to its complexity due to its numerous physical
parameters (up to six if we consider a 2-lobe Henyey-Greenstein phase function). The Hapke’s model
is hence not practical in inverse surface-atmosphere simulations of the RT because of the high compu-
tational cost of retrieving all parameters and its non-linearity. In this thesis, I shall use the Hapke’s
model to fit atmospherically corrected TOA radiances by other inverse methods. Even in this case,
however, some parameters may remain unconstrained if enough measurements are not available [84].

In an effort to develop simpler parametric models, Rahman et al. propose the Rahman-Pinty-Verstraete
(RPV) model [146]. This fully parametric model expresses bidirectional reflectance of the surface as
dependent on the Minnaert’s parameter k, the spherical albedo of the surface q, and parameter x such
that

rRPV (µ0, µ, j) = qM (k) PHG1 (g, x) H (q)
M (k) = [µµ0 (µ + µ0)]

k�1

H (r0) =
n

1 + 1�q
1+G

o

(2.24)

where G =
q

tan2
q0 + tan2

q + 2 tan q0 tan q cos (j) and PHG1 (g, x) is simply the 1-lobe Henyey-Greenstein
phase function.

A modified version of the RPV model (MRPV) is used in the atmospheric correction algorithm for the
Multi-angle Imaging SpectroRadiometer (MISR) aboard the NASA Terra spacecraft by simply replacing
PHG1 (g, x) for exp a cos x, yielding a quasi-linear expression for the model parameters after logarithmic
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transformation [113]. The MRPV has proved to be adequate to represent very anisotropic surfaces such
as snow in [106].

2.3.1.4. Ross-Thick Li-Sparse model

Recently, a few RT algorithms adopt the kernel-based semi-empirical Ross-Thick Li-Sparse (RTLS)
model. In [151] Roujean et al. develop a parametric scattering model for the correction of surface
bidirectional effects in time series of satellite observations, where both Sun and viewing angles are
varying. The RTLS model defined in [102] inherits the basis of Roujean’s model to describe the surface
by only three adjustable parameters, kL, kG and kV . This model considers that the observed surface
bidirectional reflectance is the sum of three terms operating at a local scale: (i) an isotropic contribution,
(ii) a diffuse reflection component taking into account the geometrical structure of opaque reflectors
on the surface, and shadowing effects, and (iii) a volume scattering contribution by a collection of
dispersed facets which simulates the volume scattering properties of canopies and bare soils. The
RTLS model decomposes the BRF as follows:

rRTLS (µ0, µ, j) = kL + kG fG (µ0, µ, j) + kV fV (µ0, µ, j) . (2.25)

where subscripts refer to isotropic (L), volumetric (V) and geometric (G) components. The RTLS model
uses predefined geometric functions (kernels) fG, fV to describe different angular shapes which are
independent on land conditions. Since the BRF of a pixel is characterized by a linear combination of
three kernel weights ~K = {kL, kG, kV}, this model is very advantageous to be included in RT algorithms
to process remote sensing data in an efficient and rapid manner. The RTLS model is used in operational
atmospheric correction algorithms for the Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard the Terra and Aqua spacecrafts [153, 108]. In this thesis I shall use the RTLS in the atmospheric
correction of CRISM multi-angle observations presented in Part III.

Regarding the predefined kernel functions, a suitable expression for fV was derived by Roujean et al.
[151]. It is called the Ross-Thick kernel and was developed for a dense leaf canopy. This kernel is a
single-scattering approximation of RT theory consisting of a layer of small scatterers with uniform leaf
angle distribution, a Lambertian background, and equal leaf transmittance and reflectance. Figure 2.11
(left) shows some curves of fV according to VZA and SZA. As I will prove in Part III the fact that the
Ross-Thick kernel was defined based on vegetation does not affect its suitability to recreate martian
surfaces. The form of this kernel, normalized to zero for q0 = 0, q = 0, is

fV (µ0, µ, j) =
(p/2 � g) cos g + sin g

cosq0 + cosq

� p

4
(2.26)

A suitable expression for fG that works well with observed data was derived by Wanner et al. [184]. It
is called the Li-Sparse kernel for its assumption of a sparse ensemble of surface objects casting shadows
on the background, which is assumed Lambertian. This geometric term is given by the proportions
of sunlit and shaded scene components in a scene consisting of randomly located spheroids of height-
to-center-of-crown and crown h vertical-to-horizontal radius ratio b/r. Figure 2.11 (right) shows some

55



Chapter 2. Radiative transferLUCHT et al.: ALGORITHM FOR THE RETRIEVAL OF ALBEDO 981

Fig. 2. Principal plane and cross-principle solar plane plots of the RossThick (upper curves) and LiSparse-R (lower curves) BRDF model kernel values (arbitrary
units; the LiSparse-R kernel values were divided by 2 for better plotting). The sun is located at positive zenith angles of 0 (dotted lines), 20 (dashed lines), 45 (solid
lines), and 70 (dashed-dotted line) solar zenith angle. The parameter of the LiSparse-R kernel was set to 2.0 and the parameter to 1.0.

Fig. 3. BRDF shapes which the Ross–Li BRDF model acquires under natural conditions on the principal solar plane for a solar zenith angle of 45 . Left panel:
shape of the BRDF using typical values for the model parameters. The two solid lines represent the maximal volume scattering and geometric-optical scattering
found for 18 field-observed BRDF’s representing a wide range of barren and vegetated cover types in the red and near-infrared wavebands. The dotted lines are
intermediate cases where the parameters take on either their respective maximal value, half of it, or are zero in all possible combinations. Right panel: shape of the
BRDF using observed model parameters in the red (solid lines) and near-infrared (dotted lines) wavebands. The datasets used represent sparse brushland, dense
broadleaf forest, dense barren trees on snow, dense needleleaf forest, sparse grass, dense grassland, and barren soil (data collected by numerous investigators).

Here, is the overlap area between the view and solar shadows.
The term should be constrained to the range [ 1,1], as
values outside of this range imply no overlap and should be
disregarded. Note that the dimensionless crown relative height
and shape parameters and are within the kernel and
should therefore be preselected. For MODIS processing and the
examples given in this paper, and (i.e., the
spherical crowns are separated from the ground by half their
diameter). Generally, the shape of the crowns affect the BRDF
more than their relative height [33].
Full derivations of the RossThick and the LiSparse kernels

can be found in Wanner et al. [33]. The combination of the
RossThick with the LiSparse-R kernel has been called the
RossThick–LiSparse-R model, but will here be simply referred
to as the Ross–Li BRDF model, as it is the standard model to
be used in MODIS BRDF processing. Fig. 2 shows the shapes
of these kernels for different solar zenith angles, and Fig. 3
shows the shape of the resulting BRDF when using realistic
model parameters taken from BRDF datasets observed in the
field over a variety of land cover types. Note that the behavior
of the two kernels is different in nature over large angular

ranges. While they are not perfectly orthogonal functions, as
would be ideal for the inversion process, they are sufficiently
independent to allow stable recovery of the parameters for
many angular sampling distributions. The absence of excessive
kernel-to-kernel correlation is key to reliable inversions.
When deriving the model parameters by minimization of

the error term , care should be taken that the resulting model
parameters are not negative. This is required from physical con-
siderations and in order to maintain the semiorthogonality of
the scattering kernels. If the mathematical inversion produces a
negative parameter, the next best valid value for this parameter
is zero, under which imposed condition, the remaining kernel
parameters should be rederived [35].

B. Ross–Li Polynomial Albedo Representation

The solar zenith angle dependence of the black-sky albedo in-
tegrals of the RossThick and LiSparse-R kernels are rel-
atively benign functions, shown in Fig. 4. Therefore, a simple
mathematical expression may be found to express these func-
tions. Such a representation may be more convenient in land

Figure 2.11.: Principal plane and cross-principal solar plane plots of the Ross-Thick (upper curves) and
Li-Sparse (lower curves) BRDF model kernel values (arbitrary units; the Li-Sparse kernel values were
divided by 2 for better plotting). The Sun is located at positive zenith angles of 0º (dotted lines), 20º
(dashed lines), 45º (solid lines), and 70º (dashed-dotted line) solar zenith angle. The parameter h/b
of the Li-Sparse kernel was set to 2 and the parameter b/r to 1. Credit: [102].

curves of fG according to VZA and SZA. The original form of this kernel is not reciprocal in q0 and q, a
property that is approximately expected from homogeneous natural surfaces viewed at coarse spatial
scale. The main reason for this non-reciprocity is that the scene component reflectances are assumed
to be constants independent of solar zenith angle. If the sunlit component is simply assumed to vary
as 1/ cos q0, the kernel takes on the reciprocal form given here

fG (µ0, µ, j) = O (µ0, µ, j) � sec q

0
0 � sec q

0 +
1
2
�

1 + cos g0� sec q

0
0 sec q

0 (2.27)
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Similar to the MPRV scattering model, the fully parametric RTLS model has proved to be useful to
recreate BRF of very anisotropic surfaces such as snow-covered regions [106]. However, in this thesis
this model is preferred to the RPV model as its linear expression has very convenient mathematical
properties that allow the linearization of the RTE. As for the drawbacks, the RTLS model becomes
less accurate for large zenith angles due to the increasing values of the kernels at extreme angles
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(see Figure 2.11). Likewise, the RTLS kernels are not orthogonal, not positive-only functions, and the
geometric-optical function fG is normalized with a rather arbitrary convention that is not related to RT
theory [102]. Eventually, the RTLS model does not have a kernel to model the opposition effect. The
advantage and drawbacks of the RTLS model shall be made clear in Part III.
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Summary and objectives of the thesis

In the first part of the dissertation I have provided the basis of the hyperspectral remote sensing of
Mars. First, I have described the major attributes of the Red Planet and the geological and atmospheric
features that shall be of interest in this thesis. Afterward, the technique named as imaging spectroscopy
has been introduced as it represents the remote sensing tool for which I shall propose analysis algo-
rithms. I remind the reader that the major advantage of imaging spectrometers with respect to other
imaging systems is their ability to decompose a given scene of study into the spectral dimension, thus
providing unique information in the spectral range which is invisible to the human eye. In this matter
I have introduced the main concepts of hyperspectral imagery, the associated products, and the main
instrument whose data I shall exploit in the following chapters, the Compact Reconnaissance Imaging
Spectrometer for Mars instrument. In the second chapter I have introduced some principles of the
radiative transfer in the atmosphere of Mars in interaction with the materials at the surface. The main
physical phenomena controlling the signal received by an orbital sensor have been introduced as well
as the elements originating such effects (e.g. the martian aerosols). I have likewise proposed a robust
parametrization of the RT by adopting a smart expression of the at-sensor signal that decomposes the
several contributions of the radiance at the top of the atmosphere. Eventually, a review on the models
that are devised to recreate the scattering properties of different types of surfaces has been made.

Mars is an appropriate scenario for the use of imaging spectroscopy. Quite different materials coexist
in the surface of the Red Planet ranging from dark soils to bright ices, each one related to specific
fingerprints. These spectral features have been the key to some of the discoveries of Mars in which
imaging spectrometers have played an important role. Technological improvements such as the multi-
angle capabilities of the CRISM instrument are devised to further improve our understanding of the
planet Mars. Nonetheless, I focus attention on some remaining hurdles toward the exploitation of the
full potential of this pioneering instrument:

1. Advanced imaging spectrometers such as CRISM are related to increasingly demanding techno-
logical performances that augment their sensitivity to potential instrumental artifacts. Unfortu-
nately, these limitations are only partially overcome by pre-launch calibration and preprocessing
before the release of the data. Further processing is therefore required to overcome to the poten-
tially limited radiometric quality of the data.

2. Data acquired by the CRISM instrument are released without fully exploiting the mentioned
multi-angle characteristics of this instrument. As a matter of fact, each hyperspectral image
forming a single CRISM observation is released separately. The consideration of this multi-angle
data sets as a sole product is crucial to perform advanced studies of the photometric properties
of the atmosphere and the surface of Mars according to incidence angle.

3. Remote sensing of surfaces is typically disturbed by the presence of an overlaying atmosphere.
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On Mars, the predominant mineral aerosols significantly alter the radiance incident on space-
crafts, thus masking the features of interest at the surface. Advanced techniques are therefore
required to perform accurate atmospheric correction. In this matter RTEs are useful as they al-
low the modeling of the energy transfer of photons through the atmosphere/surface system to
the sensor. However, RT formulations may be very complex and at-sensor signal may become
intractable when exploited by RT-based inversion methods.

4. Insufficient spatial resolution or intimate microscopic mixtures of several components, among
other causes, result in the sensing of mixed spectra. In the first situation each individual spec-
trum may be linearly decomposed into several spectral signatures that are differently weighted
according to its predominance in the area delimited by the corresponding pixel at ground. Mixed
spectra are very common in planetary remote sensing as materials at the surface are commonly
mixed, each type of mixture forming spatially well defined terrain units.

5. Imaging spectrometers are related to a high technical complexity and voluminous data sets.
These two facts results in more challenging, manually-unfeasible data analysis and processing
than for traditional imaging. Moreover, the increased complexity of CRISM data due to the
multi-angle dimension make traditional analysis methods such as PCA not enough powerful.
Advanced and unsupervised algorithms are therefore required for the automatic analysis of hy-
perspectral data in order to extract the most significant data features.

6. Eventually, one of the major hurdles in planetary remote sensing is the scarcity of ground truth
data to validate the scientific results provided by the mentioned methods applied on in-orbit
data. Ground truth data on Mars are available only for a few specific places and dates, being
too scarce to perform operational validation of algorithms that are meant to work on any site of
Mars.

In this dissertation I suggest to address the previous issues as follow:

• In Part II I propose to overcome obstacle number 1 by putting forward a data pipeline that
improves the radiometric quality of the data acquired by the CRISM instrument. The proposed
pipeline is composed by original tailor-made algorithms that aim at correcting those instrumental
artifacts that compromise the data accuracy. In this part of the dissertation I also address hurdle
number 2 by devising a data pipeline module that generates advanced products embodying the
eleven hyperspectral images that form a single CRISM multi-angle observation. Point number
3 is also considered as I adopt existing atmospheric correction techniques into the proposed
data pipeline. Eventually, point number 5 is partially addressed as the present data pipeline is
fully automated, performing the improvement and processing of CRISM observations in a totally
unsupervised manner.

• In Part III I propose to simultaneously address both drawbacks 2 and 3 by proposing an original
atmospheric correction approach for CRISM multi-angle observations. In this part of the thesis I
suggest to exploit the multi-angle capabilities of the CRISM instrument to devise an advanced ap-
proach that compensates aerosol scattering effects taking into account the anisotropic reflectance
of the surface. The proposed algorithm compensates for atmospheric effects based on the robust
radiative transfer formulation that has been presented above. I further address point number 2
by retrieving unprecedented and meaningful multi-angle products of the surface, namely photo-
metric curves in units of bidirectional reflectance. This is achieved after applying the proposed
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atmospheric correction approach onto a specific area of Mars, the Gusev crater. The study of the
photometry of this location gives meaningful hints about the physical state of the materials at the
surface.

• In Part IV I propose to address hurdles number 4, 5 and 6 by investigating on the use of spectral
unmixing techniques for analyzing hyperspectral data of Mars. I overcome point number 4 by
distinguishing the most relevant unmixing techniques in the martian case thanks to an intercom-
parison between a selection of state-of-the-art techniques. The selected techniques represent a
reliable tool in the unsupervised processing of large collections of hyperspectral images because
of its speed and the fact that they are not based on any a priori on the scene. These two proper-
ties, as well as the intrinsic dimensionality reduction performed by spectral unmixing strategies,
overcome obstacle number 5. In the last part of the dissertation, I also investigate the capabilities
of the mentioned reduction of dimensionality as a tool to provide physically meaningful quick
look products for planetary scientists in the form of abundance maps. Eventually, I propose to
overcome point number 6 for a specific region of Mars by setting up an original strategy that
builds ground truth data from independent high resolution imagery. This ground truth data,
not available otherwise, are actually used as a reference in the aforementioned intercomparison
between spectral unmixing techniques.
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Part II.

Data pipeline for postprocessing CRISM
observations
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Introduction

The first part of the dissertation has been committed to the introduction of the main concepts that shall
be used throughout this thesis. For instance, the imaging spectrometers that are currently exploring
the planet Mars have been presented along with their main instrumental characteristics. This is the
case of the CRISM camera aboard the MRO spacecraft that represents a unique tool in the exploration
of the Red Planet. Imaging spectrometers such as CRISM are complex sensors as they are related to
demanding instrumental requirements. One of the most challenging attributes is the combination of
high spectral and spatial capabilities. In general remote sensing instruments emphasize one of the
two requirements by providing either high spatial resolution in the case of panchromatic cameras
(down to tens of centimeters per pixel at a single spectral band) or high spectral resolution in the
case of traditional spectrometers (a single acquired spectrum at a few hundreds of spectral bands). In
addition to dealing with both requirements, imaging spectrometers must confront other instrumental
exigencies such as satisfactory spatial coverages at ground (resulting in quite large detector matrices),
precise pre-launch detector alignment (to exactly determine the wavelength corresponding to each
spectral band) and satisfactory SNR levels [123].

As it has been described in subsection 1.3.3 push-broom imaging spectrometers such as CRISM par-
ticularly satisfy the required SNR performances because of the 2-D detector matrix. Nonetheless,
push-broom imaging spectrometers do not easily yield high-quality spectroscopic data caused by non-
uniformities affecting the multiple elements of the detection matrix. Recovered spectra of planetary
features may hence contain significant artifacts that compromise the identification of the features of
interest. Instrumental artifacts may indeed cause image processing algorithms to fail, producing un-
satisfactory results.

In this context accurate calibration of data acquired by push-broom imaging spectrometers becomes
necessary before their release to the scientific community. The CRISM team established a data pipeline
to process orbital observations for improvement of the radiometric calibration and for cleaning of
instrumental artifacts. Nonetheless, processing hyperspectral data is generally delicate since faulty
correction for artifacts may result in disturbances making the original data unrecoverable. Therefore,
the data pipeline that CRISM data undergo before being released was devised to correct only the
major artifacts corrupting the data. In this way the resulting radiometric accuracy is acceptable for
many scientific studies tolerating some inaccuracies in the data (e.g. a classification method based on
a band ratio thresholding does not require the same level of radiometric accuracy than a RT-based
atmospheric correction approach).

Further processing of CRISM observations is, however, required to achieve the objectives of this thesis
defined in the conclusions of Part I. Optical artifacts such as the so-called spectral smile effect detailed
in subsubsection 4.1.2.1 are not overcome by the original data pipeline while they prove to be critical
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for fine data processing such as atmospheric correction and investigations related to icy surfaces. In
this part of the thesis I put forward an original postprocessing pipeline for fine calibration of CRISM
observations. The proposed pipeline also addresses the transformation of CRISM observations into
advanced products that take into account the multi-angle capabilities of CRISM, for example. The
exploitation of the multi-angular capabilities of CRISM is indeed not addressed in the original data
pipeline. This part of the thesis is twofold. First, I briefly summarize the data pipeline undergone by
CRISM data before being released in chapter 3. Second, I describe the proposed postprocessing data
pipeline that is adapted to the scientific interests of this thesis.

The Compact Reconnaissance Imaging Spectrometer for Mars aboard the Mars Reconnaissance
Orbiter is devised to study water occurring as polar ice, as clouds and vapor in the atmosphere,

locked in minerals, and as ice or groundwater below the surface. Credit: NASA/JPL-Caltech.
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3
Preprocessing CRISM data

In this chapter I briefly detail the processing that data acquired by the CRISM instrument undergo
before the release via the Planetary Data System (PDS). This information is crucial to understand the
postprocessing pipeline that has been developed in this thesis.

The attributes of the CRISM instrument were characterized by calibration and testing strategies before
and after integration onto the MRO spacecraft [126]. Two types of calibration are defined:

• Ground calibration. Before launching MRO, the CRISM team calibrated the attributes of the
instrument that are difficult to measure in-flight and are detector-specific. For example, the spec-
tral response function of the elements of the detector matrix were calibrated using a laboratory
monochromator and collimator. Likewise, the VNIR and IR detectors were aligned in the optical
assembly for best focus and to minimize optical distortions.

• In-flight calibration. Some attributes of the instrument are highly time-variable and thus must
be calibrated in-flight. For example, the bias and the thermal background (i.e. different types of
thermal noise) in the infrared spectral range depend on the temperature of the detector and the
spectrometer housing, and therefore are measured periodically throughout the MRO mission.

Data resulting from the ground and in-flight calibrations are stored in the so-called CRISM calibration
data records (CDR). These data are crucial for processing CRISM hyperspectral images accounting for
the technical attributes of this imaging spectrometer. Table 3.1 summarizes the CDR that shall be used
in this thesis for the improvement of the radiometric quality of released CRISM data.

Like any spacecraft instrument the CRISM imaging spectrometer requires corrections beyond the basic
calibration due to instrument artifacts. I distinguish three types of effects that cause these artifacts:

• Electronic effects that come from electrical disturbances affecting the electronics in the instru-
ment. For example, I highlight the so-called spikes that denote pixel-dependent non-linearities
resulting in anomalous, or “bad”, pixels, or the so-called stripes that originate in the non-
uniformities of electronic attributes of the detector elements (see subsection 4.1.1 for details).

69



Chapter 3. Preprocessing CRISM data

Product Acronym
Bias file: time-tagged, fitted VNIR and IR images BI
Bad pixel mask: time-tagged map of bad pixels BP

Non-uniformity file: time-tagged flat-field correction NU
Full width half maximum determined on ground for each pixel SB

Time-tagged uncertainties in short-exposure images for each pixel to calculate bias UB
Wavelength determined on ground for each pixel WA

CRISM temperature dependent wavelength shift coefficient table WC

Table 3.1.: Description of CRISM Calibration Data Records used in this thesis.

Electronic artifacts corrupt the data by creating false radiance values that may mask physical
features. In this matter in-flight calibration generates periodically the BP CDR storing a “bad”
pixel mask, for example.

• Thermal effects are originated in the noise produced by the intrinsic temperature of the spec-
trometer components. The impact of thermal artifacts is similar to electronic effects as they may
result in “bad” pixels, or spikes, and random bias levels affecting the columns in the data, or
stripes. As for the calibration of thermal effects, the evolution of the detector thermal bias mea-
sured in-flight is stored in the BI CDR based on shutter-closed measurements, for example. In
addition to random noise, thermal effects have an impact on the optics of CRISM as it is explained
in subsection 4.1.1.

• Optical effects coming from limitations of the optics of the CRISM instrument such as the fold
mirrors, the diffraction grating or the telescope (see subsection 1.3.3). Artifacts related to optical
inaccuracies include the second order leakage, which corrupts the IR channel, and the so-called
spectral smile effect, which makes the CRISM spectral response dependent on the column posi-
tion in the image space (see subsection 4.1.2 for details). The latter artifact is common to push-
broom sensors and impacts CRISM data in particular. Due to the presence of the spectral smile
the CRISM team defined the so-called sweet spot that encompasses the central spatial elements
of the VNIR and IR detectors in which optical distortions are minimal. Without further calibra-
tion of the data, it is recommended to work in this restricted area to avoid unsatisfactory results.
As for the optical ground calibration of CRISM, the measured wavelengths of the detector matrix
are stored in the WA CDR while the shape of the individual spectral responses are stored in the
SB CDR, for example.

In order to overcome these artifacts data are processed before the data release by the CRISM data
pipeline (hereafter referred to as CRISM-DP). I recommend the article of Murchie et al. for precise
details on this preprocessing stage [126]. The main calibration process is briefly summarized as follows:

1. After uncompressing the data and dividing them by exposure time, thermal and electronic arti-
facts are corrected in a first approximation. For example, thermal bias is subtracted from the raw
data using the corresponding BI CDR. Similarly, electronic artifacts such as spikes are corrected
using a function that considers the BP CDR.

2. Optical effects coming from the second order leakage affecting the IR channel are partially over-
come by the CRISM-DP. However, the correction for other optical artifacts such as the spectral
smile effect is not addressed.

70



Chapter 3. Preprocessing CRISM data

3. The CRISM-DP eventually converts the original DN units, to physical units of at-sensor spectral
radiance L [Wsr�1m�2]. In a second step, radiance units are converted to apparent I/F [sr�1]
(see subsubsection 1.3.2.2).

The resulting data are released via the PDS at http://pds.nasa.gov/ in radiance and I/F units.

Even though the most significant artifacts were found early enough during calibration either to be
corrected or to be characterized sufficiently to be removed during postprocessing, residues remain
after the CRISM-DP. There is therefore a real need for postprocessing CRISM observations. The major
issues are:

1. Residual thermal and electronic effects such as spurious striping and spiking effects.

2. Optical problems affecting the spectral accuracy of CRISM such as the spectral smile which is not
addressed by the CRISM-DP.

3. The independent functioning of the the VNIR and IR channels. The CRISM-DP treats each
channel independently and thus fully consistent spectra (from 0.4 µm to 4.0 µm) are not available
for the scientific community.

4. Photometric effects in the images due to a heterogeneous acquisition geometry are not consid-
ered.

5. There is lack of multi-angle products that combine the eleven hyperspectral images composing a
single CRISM multi-angle observation.

In this matter the CRISM Analysis Toolkit (CAT) was developed by the CRISM science team. The
CAT is a collection of ENVI1 and IDL2 routines for reading, displaying, and analyzing CRISM data
released through the PDS3. However, the CAT addresses only the first point of the list above, namely
the correction of residual thermal and electronic noise. Issues 2-5 therefore remain unsolved nowadays,
thus not allowing fine processing of CRISM data required to carry out some of the objectives of this
thesis.

In this context one of the first tasks of this thesis has been to devise a postprocessing data pipeline
(hereafter referred to as IPAG-DP) to complement the original CRISM-DP and to replace the CAT.
Figure 3.1 shows the scheme of the processing of CRISM data since their acquisition to their processing
by the IPAG-DP. As it shall be presented in chapter 4, the IPAG-DP is designed as a combination
of tailor-made algorithms and existing routines from the CAT. The IPAG-DP has been crucial for
automating the process of CRISM hyperspectral observations in this thesis.

Data 
acquired 

by!
CRISM!

CRISM-DP! IPAG-DP!Released!
CRISM!

data!

Proces. 
CRISM 

data!

Figure 3.1.: Block diagram illustrating the processing of CRISM data from their acquisition to their
improvement by the proposed data pipeline after the release via the PDS. The position of the two
data pipelines, CRISM-DP and IPAG-DP, is highlighted.

1
http://www.ittvis.com/language/en-US/ProductsServices/ENVI.aspx

2
http://www.ittvis.com/language/en-US/ProductsServices/IDL.aspx

3The CAT software is available for downloading at http://pds-geosciences.wustl.edu/missions/mro/crism.htm.
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Chapter 3. Preprocessing CRISM data

Before detailing the different blocks of the IPAG-DP I remark that the presented CRISM-DP processes
data corresponding to the TRDR2 version (see section 1.4). Since mid-2011 CRISM products are being
released with the TRDR3 version, including improved calibration procedures [160, 159]. Compared to
TRDR2, TRDR3 products present a lesser presence of instrumental artifacts and noise. The IPAG-DP
that I present in this thesis was developed at the beginning of this Ph.D. (i.e. early 2009) and therefore
is originally adapted to TRDR2 data. Nonetheless, most of the procedures are valuable for TRDR3 data
and therefore the IPAG-DP is still used at the present time.
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4
Postprocessing CRISM data

The proposed IPAG-DP is summarized in Figure 4.1 by detailing its two main parts, the first step
related to the improvement of the radiometric accuracy of the data, and the second step involving the
generation of advanced products. In section 4.1 I first propose to enhance the radiometric quality of the
PDS-released data in both the spatial and the spectral domains. In particular the IPAG-DP is devised
to address substantial correction for (i) instrumental artifacts that are not considered in the CRISM-DP
and (ii) residues of those anomalies that have been partially addressed. As a second step I propose
in section 4.2 to further process CRISM hyperspectral products toward the generation of advanced
outcomes. These products shall be crucial to perform fine analysis of the planet Mars. In this second
block of the IPAG-DP the data corresponding to the two CRISM spectral channels VNIR and IR are first
combined to produce hyperspectral images in the full spectral range (i.e. 0.4-4.0 µm). CRISM data are
then corrected for atmospheric effects to generate products revealing the features specifically linked to
the surface. Additionally, I propose to investigate the normalization of the heterogeneous illumination
conditions of CRISM targeted observations by traditional and advanced strategies. Eventually, the
proposed IPAG-DP is designed to generate multi-angle products that combine the high resolution
central scan and the EPF of a single CRISM observation. I note that the proposed IPAG-DP is conceived
to process any type of hyperspectral observation produced by the CRISM instrument, namely FRT,
HRL, and HRS products.

The present chapter describes the several blocks that form the IPAG-DP. Two different types are dis-
tinguished. On the one hand, I underline those blocks that have been adopted from existing proce-
dures in the CAT (e.g. subsubsection 4.1.1.1), that have not been completely devised in the frame-
work of this thesis (e.g. subsection 4.2.2), or that had been already developed before this Ph.D. (e.g.
subsection 4.2.4). These blocks are only briefly introduced in this thesis while they are further detailed
in the appendix chapter 14. On the other hand, I highlight those blocks that have been specifically
conceived for this thesis in order to overcome those hurdles that remained unsolved. In this matter I
detail each one of the developed strategies as they represent a main contribution of this thesis. First, I
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Chapter 4. Postprocessing CRISM data

Generation of advanced products!

Improvement of the calibration accuracy!
Released!
CRISM!

data!

Chanel 
registration!

Atmospheric 
correction!

Photometric 
correction!

Processed!
CRISM!

data!
CSP cube 

generation!

Destriping! Despiking! Desmiling! Wavelength!
calibration!

Thermal and electronic artifacts! Optical artifacts!

Figure 4.1.: Block diagram illustrating the IPAG-DP proposed in this thesis. The calibration accuracy
of the PDS-released CRISM data is first improved while the second part of the IPAG-DP is aimed at
generating advanced data products. The position of the IPAG-DP in the processing of CRISM data
is illustrated in Figure 3.1.

introduce each processing step by detailing the instrumental artifact to be corrected or the undesired
effects to be compensated. I follow with the summary of the state of the art on the subject. The strat-
egy that is adopted for each block of the IPAG-DP is eventually introduced by describing the related
technical procedure and the testing that has been performed for its validation.

4.1. Improvement of the radiometric accuracy

The first stage of the IPAG-DP is the refinement of the radiometric accuracy of the CRISM hyperspectral
products released via the PDS. With this aim I propose to address the correction of the previously
identified instrumental artifacts (i.e. thermal, electronic and optical residues) by a combination of
tailor-made approaches and routines of the CAT. The different blocks of the first part of the IPAG-
DP are presented in their actual order of execution by detailing the attributes of the artifacts and the
adopted correction algorithms. The sole exception is the wavelength calibration step that, although it
is executed before the spectral smile correction, is detailed afterwards for the sake of clarity. In this
way an arbitrary CRISM hyperspectral image is first corrected for thermal and electronic artifacts as
explained in subsection 4.1.1. Optical artifacts such as the spectral smile effect are then minimized in
subsection 4.1.2. Previous to the correction of this particular optical artifact, the set of wavelengths of
the CRISM instrument are calibrated from in-flight data in subsection 4.1.3. The order of execution
shall be justified in the following sections.

4.1.1. Electronic and thermal artifacts

Hyperspectral remote sensing images are generally affected by different types of thermal and electronic
noise. According to our experience with CRISM data I distinguish three major artifacts affecting the
PDS-released products:
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• Thermal spectral shift: CRISM suffers from an additive shift to the nominal wavelengths that
were estimated on ground for all spectral bands. Smith et al. found that the wavelength for a
given CRISM band varies by as much as 1.5 nm caused by the instrument temperature [165].
This thermal effect was also observed by McGuire et al. when performing atmospheric correc-
tion [117]. In this way warmer (colder) temperatures lead to a slight shift toward higher (lower)
wavelengths affecting all CRISM spectral bands. Although this amount of shift is not important
for many applications (the shift is much lower than the CRISM spectral sampling), some appli-
cations need its consideration in the original set of wavelengths to perform accurate processing.
For example, Smith et al. state that the wavelengths shift makes difficult to retrieve the weak and
narrow absorption bands corresponding to carbon monoxide. In our case a wrong calibration of
the instrument may impact fine atmospheric correction (see section 14.2).

• Stripes: The so-called striping effect results in complex disturbance patterns that arise in a large
number of push-broom imaging instruments. These spatial anomalies are characterized by a
vertical (or horizontal) pattern caused by the random variation of the intensity of a homogeneous
imaged area according to column (or line). Stripes are intrinsic to the image formation process
and affect the radiometric quality of cross-track sensors such as CRISM but also the Compact
High Resolution Imaging Spectrometer (CHRIS) aboard the PRoject for On–Board Autonomy
(PROBA) spacecraft or the MODIS instrument [65, 16, 175]. In the case of CRISM this anomaly is
manifested by a columnar pattern in the image space, the dimension corresponding to the along-
track dimension (see subsection 1.3.3). Figure 4.2 illustrates the typical striping effect affecting
the CRISM sensor by showing a spectral band of the central scan FRT64D9. As it can be seen,
each data column is affected by a different bias value that can be negative (darker stripes) or
positive (brighter stripes).
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Figure 4.2.: FRT64D9 IR band 10. Note the strong striping effect arranged in a columnar organization.

Regarding the causes of the striping effect I recommend the Ph.D. dissertation of Bouali on
destriping of MODIS data [15]. Bouali describes two main types of stripes:

– Periodic stripes caused by a poor radiometric calibration of the relative gain and offset of
the individuals detectors of the acquisition system. These slight deviations between the in-
put/output transfer function of neighboring elements of the detector matrix remain constant
with time. Periodic stripes are also originated in variations in the width of the slit along its
length. The bias induced by these stripes can be straightforwardly characterized to set up
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a correction algorithm such as the common flat fielding, already included in the CRISM-DP
(see subsubsection 4.1.3.1).

– Random stripes caused by thermal noise or random fluctuations in the sensor response.
This type of disturbance results in bright and dark stripes with random length within the
along-track dimension. The complexity of this instrumental artifact lies in the impossibility
of characterizing permanently the resulting spurious bias caused by its random variation
with the spectral dimension of the CRISM detector matrix and time.

The main effects of the residual stripes affecting CRISM is the reduction of the quality and
interpretability of the associated hyperspectral images. Stripes may introduce strong biases in
the outcomes of posterior processing aimed at extracting qualitative and quantitative parameters.
For example, the southern seasonal cap of Mars is scrutinized in the work of Langevin et al. for
the detection of water ice using an approach based on a ratio of three spectral bands of the
OMEGA instrument [95]. These spectral ratios aim at detecting the materials that coexist at the
surface level by removing the principal atmospheric features, for example. In this way subtle
contributions in the image are revealed. The quality of such a method may be severely impacted
due to the randomness of random stripes.

In this matter the CRISM-DP addresses the correction of this artifact by deriving the quasi-
instantaneous detector bias from flight measurements with the shutter closed (CRISM scans ’06’
and ’08’, see section 1.4), stored as the BI CDR (see Table 3.1), and subtracted in the radiometric
calibration. Figure 4.3 illustrates the detector bias captured within a CRISM dark frame with the
shutter closed that varies with detector temperature [126]. The high variability of random stripes
may result in persistent residual stripes after the mentioned correction, however.
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Figure 4.3.: Frame acquired by CRISM with shutter close showing column-arranged bias. Although
this noise is partially corrected by the CRISM-DP, residual random stripes may remain in the PDS-
released data.

• Spikes: Dropouts, or spikes, are those pixels whose effective SNR or available dynamic range
are adversely impacted, thus resulting in anomalous high radiance values [65]. According to
our experience the location and value of these erroneous pixels is fully random and they often
form small clusters of spikes that are visible in the spectral bands of CRISM observations (see
Figure 4.4). The CRISM team attributes these dropouts to pixel-dependent non-linearities and
partially correct them in the CRISM-DP based on the BP CDR [126].
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Figure 4.4.: FRT64D9 IR band 10. This figure is the same than Figure 4.2 using a gray stretch whose
upper value is set to the value of the spurious spikes. Red boxes frame two spikes formed by a few
pixels.

Regarding the correction of the aforementioned artifacts I adopt several strategies to be integrated
in the IPAG-DP. First, the CRISM team shared with us the WC CDR (see Table 3.1) that tabulate the
spurious spectral shift according to the temperature of CRISM. The thermal shift is then overcome by
the IPAG-DP by simply updating the pre-launch wavelengths stored in WA CDR by the shift value that
corresponds to the temperature of the image to be processed. This is done by adding (subtracting) the
corresponding positive (negative) spectral shift. Second, after some investigations that shall be detailed
below I decide to overcome the striping effect by integrating the proposed methodology in the CAT to
the IPAG-DP. This selection is justified based on a comparison of the CAT method against the state of
the art in destriping methods (see subsubsection 4.1.1.1). As said before, only a brief description on the
adopted destriping method is given while further details can be found in the appendix section 14.1.
Third, I investigate the spiking artifact by examining the state-of-the-art algorithms for their correction
in subsubsection 4.1.1.2. Similarly to the striping effect, I evaluate the strategy adopted by the CAT to
overcome this artifact against the methods proposed in the literature. By contrast, this time I suggest
an alternative tailor-made despiking algorithm that suits better the purposes of this thesis.

4.1.1.1. Destriping CRISM data

Investigation of several CRISM images proves that albeit periodic stripes seem to be overcome by the
CRISM-DP random stripes strongly persist. In this matter the CRISM science team argues that, in
operational situations, postprocessing approaches are preferable to a full pre-launch characterization
of the whole system producing gain correction factors and allowing an improved calibration [126]. The
reason is that the latter solution is not practical due to random stripes. In addition, Murchie et al. argue
that the system may be affected due to the rocket launch in such a way that the characterization would
never completely remove the noise. Under these circumstances I decide to incorporate a destriping
algorithm into the IPAG-DP. As a first step toward this objective I investigate the state of the art
concerning this instrumental artifact.

The correction of hyperspectral images for spurious stripes has been widely addressed by the remote
sensing community. I distinguish two main families of destriping algorithms as follow:

1. Filtering approaches are based on the application of a filter to the data to normalize the sensor
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response. In other words, the filtering process aims at eliminating the spurious contributions
introduced by the instrument in order to produce a constant output for a bland input. In the lit-
erature Gomez-Chova et al apply a low-pass filter to the perturbed data using a cut off frequency
that is independently estimated for each image [65]. In this way the contribution of the spatial
high frequencies of the surface is excluded from the stripes removal based on the information
contained in the spectral domain. Similarly to [65], Tsai and Chen propose the destriping of
remotely sensed image by edge-detection and line-tracing algorithms in [175]. The stripes are
first flagged by treating gray values of each line or column as a piecewise spline curve. After
identifying the positions of the stripes, noise-free pixels of each line or column are collected and
used as control points to construct a cubic spline of reference. This destriping system is restricted
by limiting the maximum stripe thickness to five pixels because of an unreliable spline interpo-
lation in this case. Contrarily to [65] and [175], Liu and Morgan propose a destriping algorithm
based on a frequency-domain filtering via the Fast Fourier Transform (FFT) [101]. In the spectral
domain the stripes are easily recognized by frequency spots due to the periodic pattern of the
striping noise. The main idea of [101] is to mask the spurious spots off before performing the
inverse FFT back to the original space.

On the one hand, filtering techniques produce visual improvement by reducing the periodic
and random stripes. In addition, they are sensor-independent, straightforward to implement
and applicable to small images. On the other hand, the main disadvantage of these techniques
is related to the risk of filtering out spatial components that are not due to the striping effect
but to real features of the observed area. This issue may result in a lost of information, or
blurring, in methods similar to [65], and ringing phenomena, or the so-called Gibbs phenomenon,
in the case of the FFT-based destriping strategy in [101]. In addition, the method proposed
by Liu and Morgan in [101] requires information on the spatial frequency content to define
the optimal frequency filter. Regarding the destriping method proposed by Tsai and Chen in
[175], investigation of CRISM images reveals multiple stripes that are thicker than five pixels. In
conclusion this family of methods present a good trade-off between efficiency and simplicity but
may compromise the radiometric accuracy of the data.

2. Statistical methods represent an alternative to remove artifact stripes from hyperspectral images
by statistical modeling. This is the case of the destriping algorithm developed by Carfantan et
al. in which a statistical unsupervised method is proposed to perform linear response correction
based on a Markov random field (MRF) model [24]. The main disadvantage of this method lies in
the assumption of a linear response of the detectors. In addition, the efficiency of the destriping
process depends on the validity of the MRF model. Alternatively, Bouali and Ladjal propose a
variational approach for the destriping of orbital MODIS images [16]. In functional analysis the
calculus of variations is a set of methods for determining the critical points or extremal function-
als using the Euler-Lagrange equation. Variational principles, which are statistical or physical
principles expressed in a variational form, are used in the field of computer vision to develop
general methods for finding functions which minimize, or maximize, the value of quantities that
depends upon those functions. The geometric shape of the unidirectional variations of stripes is
considered as statistical principle by Bouali and Ladjal in their work. These authors then define
an iterative method based on the minimization of distortion indicators leading to the estimation
of the optimal correction factor. In particular the correct definition of this factor is the main
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hurdle of this algorithm as there exists a trade-off between the full removal of the stripes and
the distortion minimization. Likewise, testing on CRISM data proved that this iterative process
results in high computational times.

The main advantage of this family of destriping methods are the low interference with the ra-
diometric accuracy of the data. Furthermore, statistical methods have the ability (though not
always exploited) of dealing with non-linear detector responses. On the other hand, statistical
destriping methods are usually developed for a specific sensor while filtering approaches can be
used for data acquired by different imaging spectrometers. Statistical assumptions also represent
a major drawback as the input of all elements of the detector matrix are assumed to have similar
statistical characteristics in order to correct response functions of the detectors. Eventually, sta-
tistical methods are proved to be ineffective on small-size images, in particular when the image
contains along track-oriented structures that are not related to stripes. Unfortunately, I consider
this disadvantage to be critical for the correction of hyperspectral images forming the EPF, which
are only 15⇥60 pixels.

In front of the striping effects the CRISM team put forward a destriping technique in the flavor of
the work of Gomez-Chova et al. in [65] that is available via the CAT. This filtering method was
proposed by Parente in [136] and is detailed in section 14.1. As it is demonstrated by the experiments
detailed in the appendix, the CAT destriping method is found to be appropriate for the correction of
CRISM hyperspectral images. The satisfactory results obtained after applying this method to several
CRISM images justify the integration of the CAT destriping algorithm into the IPAG-DP. The adopted
destriping method is fast and tunable in order to embrace different striping magnitudes. In the current
implementation of the IPAG-DP I adapt the CAT destriping algorithm by defining a ’cleaning flag’
that allows three degrees of destriping, namely ’LOW’, ’MODERATE’ and ’HIGH’, the second being
the option by default. In this way, if a given CRISM presents atypically low or high striping effects,
this intrinsic flag of the IPAG-DP can be modified accordingly by the user. This flag shall also be used
in the despiking process presented in the following section1.

4.1.1.2. Despiking CRISM data

Extensive exploration of several CRISM images led to the discover that residual, rather strong spikes
remain after the CRISM-DP. Although seeming a cosmetic correction spikes compromise the reliability
of some processing steps (e.g. the smile correction in subsubsection 4.1.2.1) and therefore correction
methods become necessary. Under these circumstances I propose to include a despiking method into
the IPAG-DP. Contrarily to the destriping algorithm included in the CAT, the despiking approach is
not appropriate in our case as it is demonstrated below. I therefore propose an alternative tailor-made
algorithm to overcome residual spikes. Again, I first summarize the state of the art in correction of
dropout pixels.

In the literature spikes are typically corrected using a twofold strategy. The first step consists in
detecting the pixels owning an anomalous radiance value compared to its neighbors. The flagged
pixels are corrected in a second step by a restoration strategy that typically consists in assigning the

1The new calibration TRDR3 is related to an improved radiometric accuracy thanks to the consideration of a statistical
model of the noise in the CRISM-DP. The new calibration version therefore enhances the quality of the images in terms
of striping noise, making the destriping algorithm less crucial.
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average radiance value of the surrounding spectral/spatial neighbors. This is the case of the work
of Gomez-Chova et al. aiming at the cleaning of CHRIS hyperspectral images [65]. First, dropouts
are selected as those pixels whose difference with contiguous pixels is larger than the difference with
the pixels two columns away. The detected dropout errors are then corrected based on both spatial
and spectral context of the anomalous pixel. In particular each invalid pixel value is replaced by
a weighted average of the values of the spatial neighboring pixels, the weights being computed by a
similarity test. Similarly, Davies et al. correct CHRIS data for dropout pixels by subtracting a smoothed
version of each spectral image to the original spectral band [46]. The smoothing is done by taking the
logarithm to base 10 of the column averages and convolving a smoothing kernel with the logarithm
of the column average values. The differences between the smoothed and non-smoothed data are
considered as dropout pixels.

Alternatively, the proposed method in the CAT is based on the work of Parente [136]. The work of
Parente differs from other methods in the fact that a dropout pixel is defined as a disturbance in the
spectral dimension affecting the radiance value of a given spectel. This disturbance must satisfy two
conditions:

1. The value of the spectel needs to vary from its spectral neighbors, at one spectral band of distance,
by more than a user-defined threshold.

2. The given pixels is declared as a spike only if the adjacent pixels are both higher, or both lower,
than the current pixel. A different sign is considered as a steep slope, otherwise.

After the spikes are flagged following the previous conditions, the spectra are corrected by classical
interpolation. In order to avoid the artificial smoothing of regions of high spectral frequency Parente
adds a preprocessing filter to remove high frequency signals. By dividing all spectra by the average
spectrum of the image, all of the features which are consistent over the spatial domain, are minimized.
In this way the dominant, high frequency atmospheric variations are isolated and removed. In addition,
each spectral band is similarly divided by the average band of the entire image cube. By the application
of these two filters, Parente considers all that is left as noise and variation due to change in composition,
easing the retrieving of the spikes. At the end, the spectral and spatial information is reincorporated
by multiplying by the filters.

Similarly to the striping effect, I first considered the integration of the despiking method proposed by
CAT into the IPAG-DP. Unfortunately, exhaustive testing of this algorithm on several CRISM images
resulted in unsatisfactory results. I conclude that the filtering by the average spectrum and the average
spectral band does not consider cross-track variations due to the spectral smile effect [see Figure 4.7
(left)], which severely modulate the radiance value of pixels at the edges of some spectral images (this
shall be explained in detail in subsubsection 4.1.2.1). Therefore, these anomalous pixels due to the
smile effect are mistakenly considered as dropout pixels by the CAT strategy. In addition, I consider
that the second condition that defines a spike in the CAT (see item 2) is not always satisfied as spikes
can be found in very steep portions of spectra. In this case the values of the neighboring spectels may
be associated to a higher or lower radiance value than the spike.

As a result of these unsatisfactory results I put forward an alternative despiking strategy for the IPAG-
DP. This innovative algorithm is in the flavor of the method proposed in [65] and has been specially
adapted to the nature of the CRISM spikes. The proposed technique is twofold:

1. Detection: The distance of every pixel xl,c to its n⇥n neighbors Xl,c = {xl�D,c�D, . . . , xl+D,c+D},
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where D = n�1
2 , is computed for every spectral band by a n⇥n filtering mask M illustrated in

Table 4.1. This mask is devised to be robust against clusters of spikes in the form of rather small
squared (3⇥3 inner kernel set to zero) and vertical (central column set to zero) structures that
can impact the detection of spikes otherwise (see an example of spike cluster in Figure 4.4). The
parameter n is typically set to 11 as this value provides a good trade-off between a successful
detection of all types of spikes and a satisfactory degree of correction. A distance image D =

{d1,1, . . . , dn,n} is then generated by the following expression:

dl,c =
xl,c

Â Xl,c·M
. (4.1)

Equation 4.1 assigns dropout pixels to large dl,c values. In this way two different populations are
usually distinguished when inspecting the histogram of the matrix distance D, (i) a Gaussian-
shaped population centered at unity belonging to the majority of the pixels and (ii) some outliers
with distances dl,c which are significantly higher than unity. The pixels belonging to the latter
population are considered to be spikes. Dropout pixels are flagged by thresholding the histogram
by a predefined cutoff value. This parameter has three possible values that are predefined ac-
cording to three typical magnitudes of the spiking effect and that is chosen by the user through
the ’cleaning flag’ also used in the destriping method (see subsubsection 4.1.1.1).

M = 1
104

1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 0 0 0 1 1 1 1
1 1 1 1 0 0 0 1 1 1 1
1 1 1 1 0 0 0 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1

Table 4.1.: Filtering mask used in the despiking of CRISM spectral bands when n = 11. See text for
details.

2. Restoration: Flagged pixels are corrected by a simple spatial interpolation. I assign each selected
pixel to the average of the 3⇥3 adjacent neighbors in the same spectral band. If one of the
adjacent neighbors is also detected as a spike, its value is not considered in the interpolation. In
the infrequent case of small clusters of spikes I suggest to use a larger neighboring window (e.g.
5⇥5) to obtain a realistic output radiance value. Contrarily to the study of Gomez-Chova in [65],
I do not consider spectral interpolation in the despiking method adopted by the IPAG-DP as this
might bias the corrected I/F value for spectral bands within steep portions of spectra.

As for the experiments, Figure 4.5 shows the IR band 10 of central scan FRT64D9 after applying the
proposed despiking procedure (see Figure 4.4 for comparison). As it can be seen, the spikes that were
initially highlighted by the red boxes have completely disappeared. According to the similar results
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obtained on many spectral bands of different CRISM images, the proposed despiking technique is
incorporated to the IPAG-DP.2.

Figure 4.5.: Same figure as Figure 4.4 but after applying the despiking correction proposed in this
thesis and adopted by the IPAG-DP. Red boxes frame two previous spikes formed by a few pixels
that have been satisfactorily corrected.

Eventually, I investigate the order of execution of the destriping and despiking algorithms by consid-
ering several issues. On the one hand, striping disturbances are found to affect the new pixel value
produced by the despiking algorithm if the local average is performed by using contiguous columns
due to the different multiplicative factors of each image column. On the other hand, dropout pixels
can alter the estimation of the detection matrix in the destriping algorithm due to the high spurious
radiance values. Based on the latter reason Gomez-Chova et al. apply the despiking technique before
the correction for stripes by considering only the values of the vertical neighbors for the despiking
interpolation [65]. In our case I decide contrarily to apply the destriping technique in the first place
because of (i) the presence of vertical spikes that make impossible an interpolation restricted to only
the vertical dimension, and (ii) the use of a trimmed average in the destriping step for the estimation
of the detector image (see section 14.1). Due to the latter strategy the presence of spikes have a null
impact on the destriping algorithm and the despiking algorithm can deal with destriped data.

4.1.2. Optical artifacts

As it is introduced in chapter 3 two main optical effects are identified to affect CRISM observations.
On the one hand, the spectral bands at >2600 nm are corrupted by residual light coming from lower
wavelengths. On the other hand, the spectral bands embracing strong absorption features coming from
the atmosphere or the surface are altered by the so-called spectral smile effect. The two artifacts are
detailed as follow.

• Second order leakage: One of the side effects of imaging spectrometers based on diffraction
gratings such as CRISM is the existence of multiple orders. Multiple orders make that a per-
centage of the light corresponding to the spectral band at 1000 nm (first order) is refracted on
those bands at 2000 nm (second order), a smaller percentage is refracted at 3000 nm (third order)
and so forth [99]. In the design of the CRISM instrument higher orders were prevented from

2While the recently released TRDR3 data present a slightly reduced number of dropout pixels, the despiking method is still
used in the IPAG-DP due to the presence residual spikes and its low computational time.
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contaminating first-order light by using blocking filters [126]. In particular the installed filters
admit up to 3% of the second order light from the grating at wavelengths 1400-1950 nm that falls
at spectral bands whose nominal wavelengths are 2800-3900 nm. Band leakage is found in this
spectral range with a peak at a nominal wavelength of 3400 nm [see Figure 4.6 (left)]. In addition,
the relative magnitude of the leakage is enhanced up to tens of percent of the total signal caused
by the falloff of both the solar spectrum and the martian reflectance spectrum and the increase
of the thermal noise at this wavelength range. Figure Figure 4.6 (right) shows the SNR expected
for a full resolution targeted observation and the corresponding falloff at wavelengths >2600 nm.
Murchie et al. state that while pre-launch optical testing provided sufficient data for an empirical
correction for this effect, the correction was not included in the TRDR2 calibration [126]. As a
consequence, the accuracy of the IR detector at >2600 nm and the magnitude of the expected
residues are unknown.

direction, with a magnitude !10–30% of the primary
scene. This was remediated by a software fix, in which
‘‘open’’ was redefined to position 3, which moves the
origin of the ghost image to an angle further from the
FOV at which it is baffled by the telescope. Secondary
artifacts created by this fix are discussed in more detail in
section 5.3.2.
[166] Fifth, zone 1 of the IR order sorting filter was found

to have a red leak at >4200 nm, beyond CRISM’s nominal
wavelength range but within the spectral range at which the
detector responds. Hence thermal background is unexpect-
edly large at 1000–1700 nm in the IR (Figure 18d, bottom).
This was discovered too late for redesign of the filter; the
main effect is decreased (but still high) SNR at the affected
wavelengths (Figure 33b).
[167] Sixth, it was intended originally that the maximum

wavelength would be 4050 nm (compared to MRO’s
requirement of "3600 nm) in order to cover the center of
the strong carbonate band at 3980 nm. Due to tolerances in
the manufacturing process, the peak response of the zone 3

linearly variable filter was mismatched from the peak
required for 4050 nm light to fall on the detector. The
mismatch was greater than the 80-nm band pass of the filter.
To maintain responsivity at >2700 nm, a long-wavelength
cutoff of 3920 nm was accepted to properly align the filter
with light dispersed from the gratings.
[168] Finally, the spectrometer slit, which defines the

mapping of wavelengths to detector rows as well as the
spatial FOV, is mounted on a curved surface whose axis of
curvature is parallel to the wavelength direction. The slit
assembly is fixed with pins through holes whose diameters
are oversized to provide margin for fastening the assembly.
During instrument-level vibration testing between calibra-
tion stages 3 and 4, the slit assembly shifted in the
wavelength direction by the tolerance in the hole diameters,
shifting wavelength calibration by !15 nm in both the
VNIR and IR. Although vibration testing exceeded
expected launch vibrations by !50%, additional shifting
of the slit assembly during launch cannot be ruled out. If it

Figure 32. Preliminary estimates of system responsivity without spatial binning. (a) VNIR, derived
using measurements of the spectralon plate. (b) IR, derived using the spectralon plate at shorter
wavelengths, and a field-filling blackbody at longer wavelengths.

Figure 33. VNIR and IR SNR expected for a reference surface material expected during targeted
observations without spatial binning. Frame rate is 3.75 Hz, with gimbal scanning to compensate for
MRO motion, permitting up to 266 ms integration time. Actual integration times are 102 ms for the
VNIR and 167 ms for the IR, to allow sufficient overhead to accommodate clouds without saturating.
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Figure 4.6.: (left) Estimated magnitude of the leakage relative to nominal signal, including effects of the
solar spectrum and martian reflectance spectrum. (right) Expected SNR for the CRISM IR detector for
a reference surface material expected during targeted observations without spatial binning. Credit:
[126].

• Spectral smile effect: The CRISM instrument is affected by a common artifact to push-broom-
type sensors, the so-called spectral smile effect. The smile effect is generally described as low-
frequency artifacts affecting some spectral bands in hyperspectral images as that shown in Figure 4.7
(left). These spurious effects were discovered at the very beginning of this Ph.D. with the visual-
ization of the first CRISM images. The origin of this instrumental artifact comes from limitations
of the intrinsic functioning of push-broom spectrometers. Optical aberrations degrade the quality
of the scattered light projection depicted in Figure 1.15, thus creating spectral artifacts in the gen-
erated hyperspectral images [123]. The impact of the optical aberrations onto the sensor spectral
response is summarized by two major effects:

1. The distorted shape of the light projection makes that the photons corresponding to a given
wavelength are sensed by detector elements that are assigned to a different spectral range.
Figure 4.8 illustrates this spectral anomaly by plotting the projection of the decomposed
light in the absence and in the presence of the optical aberrations. As a consequence of this
distortion, the central wavelengths of the PSFs of the CRISM instrument vary according to
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Figure 4.7.: Spectral band at 2013 nm of the CRISM central scan FRT5AE3 (left) before and (right) after
correction for the smile effect. In the first image, note the typical cross-track brightness gradient
caused by this spectral artifact.

the spatial dimension of the detector matrix (the columns in the image space).

2. The spectral resolution of the CRISM instrument becomes poorer progressing toward the
off-axis detectors elements because of a degraded sharpness of the projection. Hence, the
width of the CRISM PSFs is also dependent on the spatial dimension of the detector matrix.
While this consequence of the optical aberrations is traditionally ignored in the literature, it
proves to be as critical as the wavelength shift (see subsubsection 4.1.2.1).

w
avelength!
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"Sweet spot" detectors!

Across-track direction!Across-track direction!

Projected light!

Smile-free projection! "Smiled” projection!

Light corresponding!
to a given �i!

Figure 4.8.: Projection of the light scattered by the grating of a push-broom spectrometer onto the
detector matrix in the (left) absence and (right) presence of optical aberrations leading to the so-
called spectral smile effect.

These two anomalies are illustrated in Figure 4.9 in which I explore the pre-launch calibration
measurements that are stored in WA CDR and SB CDR (see Table 3.1). On the left hand side,
the PSF corresponding to three different spatial positions of the CRISM spectral band centered at
2013 nm are plotted. The dashed line corresponds to the average PSF of the CRISM sweet spot
where the distortions are minimal [126]. The plain lines illustrate the alteration of the PSF central
wavelength and width for the most off-axis detectors. Figure 4.14 (right) further explores the
variation of these two parameters along the whole cross-track dimension. Considering the sweet
spot as the detectors owning the best performances, CRISM shows increasing optical aberrations
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as the off-axis detector elements are inspected.
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Figure 4.9.: (left) PSF belonging to three cross-track positions of CRISM channel at 2013 nm. Dashed
line corresponds to the average PSF of the CRISM sweet spot. (right) Central wavelength and FWHM
according to column position of CRISM at 2013 nm.

The aforementioned optical aberrations result in the generation of hyperspectral images whose
spectra are collected using different spectral responses. Spectral analysis becomes very challeng-
ing under these circumstances as the majority of techniques developed for analyzing hyperspec-
tral images are based on the assumption that data within a given spectral band are acquired
under the same spectral conditions. The distortions in the shape and the spectral position of the
CRISM PSFs particularly affect the acquisition of off-axis spectra, which suffer from strong spec-
tral shifting and amplitude smoothing. These two effects are shown in Figure 4.12 (top) and are
especially aggravated for spectra having strong and thin absorption bands (e.g. solid or gaseous
CO2). In this case, the slightest inaccuracy in the acquisition results in a significant error bias.
Contrarily, slowly varying spectra such as most of martian minerals are less affected by the smile
effects.

Unfortunately, the planet Mars is a challenging scenario in terms of smile correction due to
the predominance of atmospheric CO2. Indeed, the related strong absorption bands in the near-
infrared (see Figure 2.2) produce smile effects in the data, thus affecting all orbital CRISM images.
Except in atmospheric studies, CRISM data can be corrected for smile effects by performing an
accurate atmospheric correction considering the real set of PSFs for each column. However,
CO2 is also found on the surface of Mars in the form of frozen carbon dioxide in the high
latitudes. Since CO2 ice also shows strong absorption features that result in notable smile effects,
an accurate atmospheric correction alone is insufficient to desmile the images of these regions of
Mars.

Based on the previous description of the smile effect, the cross-track artifact illustrated in Figure 4.7
(left) can be now explained. This spectral band corresponds to a narrow spectral range centered
at 2013 nm of the CRISM central scan FRT5AE3. This particular spectral range encompasses a
strong absorption feature of the predominant gaseous and solid CO2 in the atmosphere and the
surface, respectively. The conjugation of the strong variation of the radiance level in this spectral
range and the mentioned optical aberrations of CRISM result in the observed cross-track bright-
ness gradient, which is typically called the smile effect. This instrumental artifact introduces
non-linearities in the hyperspectral data that may impact following data processing.

85



Chapter 4. Postprocessing CRISM data

As regards the correction of the aforementioned optical artifacts, I decide to adopt several strategies
to be included in the IPAG-DP. First, I propose to overcome the second order leakage by working
only with the spectral range lower than 2600 nm of the IR channel (spectral bands IR 1-250). This
wavelength range has proved to be sufficient enough for a first analysis of the planet Mars as it hosts
many spectral features of the atmosphere and the surface3. Second, I propose the development of
an original algorithm that compensates substantially for the smile effects. This correction approach
represents one of the main contributions of this thesis due to the complexity of the artifact and the
importance of its correction for upcoming analysis of CRISM data. The description of the desmiling
method as well as its application to real CRISM data is presented in the following section.

4.1.2.1. Correction for the spectral smile effect

The correction for the smile effects has been addressed by many authors since the appearance of push-
broom-type imaging spectrometers. This has been the case of the Hyperion sensor aboard the Earth
Observing-1 satellite. According to the literature I distinguish two main families of desmiling methods:

1. First, we find those techniques that are driven by the artifacts observed in the data. In particular
I highlight the work of Dadon et al. who propose the combination of derivative calculations
issued from atmospheric absorption features and the MNF transformation (see section 14.1 for a
description of this technique) for detecting and correcting the smile effects in Hyperion images
[45]. In that study the spectral smile is overcome by adapting the MNF component that embodies
the cross-track brightness gradient before rotating the data set back to the radiance space. The
desmiling of Hyperion images is also addressed by Goodenough et al. in [66]. The problem is
first tackled by a method that uniforms the average value of all columns to the average of the
corresponding spectral band. Goodenough et al. state, however, that this technique proves to
be inadequate when performed on either the radiance or the MNF space due to the apparition
of false spectra caused by the assumption of the image cross-track uniformity. Similarly, Jupp
et al. investigate the desmiling of Hyperion images in [87]. First, the MNF component that
encompasses the smile effects is de-trended by a polynomial fit before rotating the data back to
the radiance space. Another strategy is based on the cross-track illumination correction in the
ENVI software. In this method, each value is corrected by subtracting the difference regarding
a polynomial that is fitting the averaged line of the corresponding spectral band. These two
techniques also fail to provide satisfactory results because of the apparition of false spectra. The
main drawback of these methods is their lack of instrumental basis.

2. Second, the second family embraces those techniques that are based on the knowledge of the
instrument characteristics. For instance, the works of Goodenough et al. and Jupp et al. address
similar desmiling techniques that aim at resampling all spectra to a set of reference wavelengths
resulting from the Hyperion pre-launch calibration [66, 87]. The accuracy of this kind of approach
is increased by linearly interpolating the data before the resampling. Albeit some smile residues
are still detected in the mentioned works, this approach is considered to provide reasonable
results. Contrarily, Schläpfer et al. underline the need to correct not only the bias induced by the
varying central wavelength of the PSFs but also the non-uniformities coming from the inconstant

3The second-order IR leakage is partially solved in the TRDR3 calibration. Therefore, full analysis of the IR channel can be
considered now.

86



Chapter 4. Postprocessing CRISM data

spectral width [156]. In this matter Schläpfer et al. suggest a degradation of the imagery to
obtain a uniform spectral response on the basis of the broadest occurring PSF. Nevertheless, this
strategy is not tested on real data.

The spectral smile effect is a recurrent problem for planetary scientists working with CRISM data. In
this matter McGuire and the CRISM team overcome the varying spectral response by modifying their
albedo retrieval method in [118]. In particular CRISM spectra are corrected for atmospheric absorption
effects in the major CO2 gas bands by using an approach that is applied separately for the sweet spot
and the off-axis columns. Alternatively, Smith et al. overcome the smile effects by performing their
atmospheric study only on the sweet-spot columns, thus minimizing the optical distortions in the data
[165]. Similarly, Massé et al. limit their study on the detection of gypsum in the north polar cap of
Mars to the center of the image [114]. Sadly, this method ignores more than 80% of the data in a CRISM
observation. Recently, Seelos and the CRISM team proposed a empirical smile correction that is applied
to some specific products belonging to the TRDR3 version [159]. The proposed method is based on the
resampling of the data to a set of reference wavelengths in the flavor of the aforementioned techniques
developed for the Hyperion instrument. Unfortunately, to our knowledge there is no study addressing
the correction of the bias induced by the non-uniformities of the PSF width.

In front of the absence of a standard method to perform a full correction of the smile effects I propose
to tackle the desmiling of CRISM data by defining an innovative and robust method. The desmiling
approach is based on the combination of a traditional resampling technique and the correction for the
non-uniform PSF width, as suggested by Schläpfer [156] but maintaining the spectral resolution at the
level of the sweet spot for the whole image. The main goal is to minimize the smile effects while pre-
serving the quality of the information coming from Mars. This original method belongs to the second
family of mentioned desmiling techniques as the consideration of the instrumental characteristics is
crucial for the sake of an accurate smile correction. With that aim a detailed investigation of the CRISM
CDR that could be useful to the desmiling algorithm was carried out4.

The desmiling method is threefold and is defined as follows:

1. Smile indicator. First, I propose a measure of the extent of the smile effects in a CRISM image
based on the transformation of the hyperspectral data onto the MNF space. This measure is
also adopted by other authors [66, 87, 45]. In the MNF space CRISM images typically show
an eigenimage corresponding to a high eigenvalue (i.e. the smile effects are generally related
to a high SNR) that encompasses the repetitive brightness gradient that affect some spectral
bands [see Figure 4.7 (left)]. Figure 4.10 (right) shows the MNF eigenimage (hereafter referred
to as MNF-smile) related to the central scan of the CRISM observation FRT64D9 embracing the
typical cross-track artifact. I therefore propose the eigenvalue of the MNF-smile eigenimage as an
estimation of the significance, or energy, of the smile effect. Other transformations such as PCA
or the Independent Component Analysis (ICA) were investigated in this thesis but discarded
right after as they perform worse than the MNF when retrieving a component related to the
smile (see chapter 15 for more details).

2. Spectral resampling. The second step of the proposed desmiling method aims at overcoming the
non-uniform central wavelength by resampling all spectra to the sweet-spot parameters. With

4In this dissertation I briefly detail the proposed desmiling algorithm. Further details can be found in [26] that is attached
to this dissertation in chapter 15.
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Figure 4.10.: MNF eigenimages of the central scan of observation FRT64D9 corresponding to the three
highest eigenvalues. Note the cross-track brightness pattern introduced by the spectral smile in the
third eigenimage.

this aim, the central wavelength of each element in the detector matrix is retrieved from the WA
CDR. Each reflectance value is then recomputed at the corresponding sweet-spot wavelength af-
ter locally interpolating the spectrum by a cubic spline. I consider this interpolation as being
meaningful because wavelength shifts caused by the smile are hardly ever a whole number of the
spectral sampling Dl. The use of cubic splines to interpolate is preferred as they reproduce the
fidelity of steep absorption features contrarily to linear interpolation methods as it is done in [66].
In this way the proposed approach assumes that the missing data between two consecutive spec-
tels correspond to the points resulting from the interpolation. This hypothesis is reasonable since
CRISM is close in meeting the Nyquist sampling theorem for the off-axis detectors (in particular,
FWHM& 2Dl, see section 1.4), which undergo a stronger smile correction [126]. The interpola-
tion step underlines the relevance of the despiking algorithm presented in subsubsection 4.1.1.2
as the interpolation of dropout pixels would propagate the error toward the bracketing spectral
bands. A weakness of the resampling of CRISM data is the strong sensitivity to potential inac-
curacies in the WA CDR. For example, the IPAG-DP is conceived to modify the WA CDR for
each CRISM image by adding the corresponding wavelength shift caused by the thermal effects
(review subsection 4.1.1). In subsubsection 4.1.3.2 I detail another wavelength anomaly that is
taken into account by the IPAG-DP to perform a more accurate resampling of the data.

3. Spectral sharpening. In the third step of the desmiling approach I propose to overcome the non-
uniform spectral resolution within a given spectral band. The last stage of the desmiling approach
is rather innovative as it represents the first attempt in the literature toward the improvement of
the non-uniform spectral resolution in push-broom spectrometers. This heterogeneity causes
sharp absorption features to be convolved by increasingly wider PSFs as we depart from the
sweet-spot columns. As a consequence, spectra become over-smoothed progressively (i.e. the
absorption feature becomes shallower), thus contributing to the cross-track brightness gradient.
Instead of a global degradation of the spectral resolution as it is suggested in [156], I propose to
implement an original sharpening approach inspired by image processing techniques in order to
mimic a global increase of the spectral resolution up to the one of the sweet spot. In this way,
the spectral contrast of the data is normalized for all the image columns while preserving all
the physically meaningful information. In this processing step, the PSF of each detector element
(review section 1.4) is assumed to be represented by a single equivalent Gaussian function for
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simplicity such that:
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where g
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E stands for the width of the equivalent spectral response for column c and spectral

band b. The proposed sharpening algorithm aims at making this term constant regardless of
column such that g

c,b
E ⇡ g

b
E, 8c. This objective is achieved in a few sub-steps as follow:

• Estimation of the spectral smile energy: The energy ES of the smile effects affecting a
hyperspectral CRISM image is estimated as the eigenvalue of the MNF-smile component.

• Selection of the smile-affected spectral bands: I propose to perform spectral sharpening
only on those spectral bands that are significantly affected by the smile effect. In this way,
the inherent risk of sharpening techniques to increase the noise in the data is limited. In this
band selection, I include those spectral bands that are affected by the cross-track brightness
gradient. This selection is automatically done by exploring the eigenvector related to the
MNF-smile component and choosing those spectral bands whose corresponding value is
higher than a given threshold. In addition, the spectral bands that are systematically critical
in the martian scenario are included, that is, those encompassing the CO2 gas absorption
features (see Figure 2.2).

• Sharpening: Every previously selected spectral band is sharpened in order to increase the
local spectral resolution. For this processing step, I consider sharpening techniques that are
classically applied in image processing for contrast enhancing [155]. Spectral sharpening
is individually adapted to each spectral band by taking into account the local shape of the
spectra and the instrument spectral response by the following expression
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where f whm
l

is the FWHM of all detector elements (retrieved from the SB CDR) and r

l

is the largest sharpening degree for the spectral band l. Using the FWHM of the CRISM
detector elements, I impose the degree of the desmiling correction to be dependent on the
degradation in spectral resolution. Equation 4.4 is defined such that the parameter w

l

(c)
is zero for the sweet-spot spectra (i.e. corresponding to a null sharpening) and maximum
for the off-axis data (the most affected by the smile effect). In addition, the sharpening
approach is defined to become negligible when flat spectra are processed since rsh

l

⇡ r
l
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r

l�1 ⇡ r
l
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l+1.

• Sharpening degree determination: The optimal sharpening degree strongly depends on the
shape of the observed spectra. I therefore propose an iterative strategy that determines the
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set of optimal r

l

factors based on the minimization of the smile energy ES. For every selected
spectral channel, the sharpening degree r

l

is set as the value which makes ES minimal
without degrading the quality of the image. More details on this iterative procedure can be
found in chapter 15.

• Desmiling of CRISM observations: After desmiling the central scan of a CRISM observa-
tion, each bracketing image forming the EPF is corrected similarly by undergoing a sharp-
ening strategy applied to the same spectral bands and using the same set of r

l

values that
those determined for the central scan in the first place. Nevertheless, the set of FWHM func-
tions is of course specific to the EPF as this parameter is intrinsic to the instrument and not
to the desmiling approach. This choice is made to perform a spectrally uniform sharpening
on the eleven hyperspectral images forming a single CRISM observation. In addition, the
individual desmiling of the EPF is almost unfeasible as the 15⇥60-pixel images are too small
to define the MNF-smile component. Indeed, the smile indicator is based according to the
typical cross-track pattern induced by the smile, which is not always distinguishable in such
small images.

4.1.2.1.1. Application to CRISM data The proposed desmiling technique is applied to the central
scan of the CRISM observation FRT5AE3. This observation was acquired over the so-called “Swiss
cheese” terrains in the southern latitudes of Mars (see Figure 4.11). According to recent studies this
area of Mars is very rich in CO2 ice [21]. For this reason, the observation FRT5AE3 is singularly
challenging in terms of desmiling due to the presence of frozen carbon dioxide in the surface in
addition to the atmospheric CO2 over it.

Figure 4.11.: Central scan of the CRISM FRT5AE3 observation acquired over the southern residual cap
at 86º S, 6º W. This image is the original image space and in approximative real color. The so-called
“Swiss cheese” features can be observed. Credit: CRISM team.

In this experiment I only consider spectral bands from number 138 to 168 of the IR channel for the
evaluation of the smile correction method. Indeed, the corresponding spectral range is particularly
demanding as it embraces the strong 2-µm absorption feature due to CO2. This feature is of great
interest in (i) many scientific atmospheric studies for the determination of the surface pressure [167]
or the retrieval of the AOT (see section 14.2), (ii) processing by spectral unmixing techniques as it is
explained in Part IV, or (iii) physical characterization of the remotely sensed signal by modeling as in
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Part III. In order to monitor the correctness of the results the spectra forming the FRT5AE3 central
scan are carefully inspected at the mentioned spectral range. In Figure 4.12 I explore the evolution of
the spectra throughout the desmiling process depending on the number of column. Albeit this image
is quite homogeneous I decide to average the central 100 lines of the central scan to minimize the
remaining heterogeneity of the surface. These data are explored at each step of the desmiling process
as follow:

1. Figure 4.12 (top) illustrates the spectral shift and the degradation in spectral resolution as the
off-axis positions of the PDS-released data are explored. The red spectrum, which corresponds
to the average of the first column in the left hand side of the detector matrix, is shifted close to
two spectral bands (~10 nm) toward lower wavelengths. Furthermore, we note that the lower
contrast of this spectrum is close to eliminate the weak absorption features at the spectral bands
IR 158-162. The eigenvalue corresponding to the MNF-smile component ES is detected to be
equal to 100.1.

2. After the resampling step Figure 4.12 (center) underlines the removal of the spectral shift. At
this point the CO2 ice absorption features of the four averaged spectra share the same spectral
position. Nonetheless, spectra close to the edges of the detector matrix are still too smooth in
comparison with the spectrum corresponding to the sweet spot. In this figure the impact of the
non-uniform spectral resolution on the spectra is highlighted in comparison to Figure 4.12 (top).
After the resampling step, the smile energy ES undergoes a decrease of ~90% down to a value of
7.6.

3. As for the last step of the desmiling technique, Figure 4.12 (bottom) illustrates the increase of the
local spectral contrast of the CO2 absorption features. Indeed, the proposed sharpening technique
enhances the spectra by focusing particularly on the spectra belonging to the off-axis columns.
By contrast, the sweet-spot spectrum remains untouched. We note that the fidelity of the spectra
is preserved and there are no spikes caused by overcorrection. However, special attention must
be paid to the features around the spectral band IR 162. Unfortunately, the strong, original
degradation caused by the poor spectral response of the off-axis detectors makes impossible
to enhance the spectra in this case. Eventually, the inspection of the smile energy ES shows a
second decrease of ~70% down to a value of 2.1, which is close to the noise threshold in a MNF
transformation, usually set to unity [67].

In addition to the previous investigation the benefits of the desmiling approach are also evident in
the spatial dimension of CRISM data, the spectral bands, as Figure 4.7 (right) illustrates. The spurious
cross-track brightness gradient is greatly corrected revealing a secondary along-track gradient coming
from the anisotropic photometry of the planet Mars, mostly due to atmospheric aerosols. The residual
cross-track trend in the form of a darker pattern in the center of the image may come from the limita-
tions of the desmiling method or, again, the anisotropic photometry of the planet Mars. As a matter
of fact the highest cross-track variation in VZA in central scans (~5º) happens for the central lines and
therefore highly anisotropic scenes, such as the one presented by the FRT5AE3 due to the presence of
ice and aerosols, are suitable to present a cross-track component coming that is not spurious.

In conclusion a special effort is dedicated to the correction of the smile effects in CRISM observations.
This artifact corrupts the data in a very particular manner that puts in danger some of the primary
objectives that are defined in this thesis. First, smile effects impact severely the absorption features
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Figure 4.12.: Spectra belonging to four different column positions throughout the desmiling process
(top to bottom). All spectra are the result of averaging the 100 central lines of the FRT5AE3 central
scan.

related to the atmospheric CO2. As it is explained in section 14.2, the accuracy of the adopted atmo-
spheric correction strategy for CRISM data depends on the knowledge of the exact wavelengths of the
CRISM detectors and on the fidelity of the shape of the 2-µm absorption features.

An example on the benefits of the proposed desmiling method for this thesis is summarized in
Figure 4.13. In this figure I investigate a set of photometric curves retrieved from a CRISM multi-
angle observation (see subsection 4.2.4 for a definition of photometric curve). Figure 4.13 plots as
black crosses the whole ensemble of at-sensor apparent reflectance values of the CRISM observation
FRT5AE3 (i.e. the central scan and the EPF) at 2013 nm. Data are plotted according to phase angle,
which is a key descriptor of the acquisition geometry. As it can be seen, the data clusters (corre-
sponding to each of the eleven scans) show a recurrent curved pattern caused by the simultaneous
variation according to column of the brightness intensity due to the smile effect and the phase angle.
Furthermore, this artifact is annoying in the fact that a given terrain unit sensed by the eleven scans
within a CRISM observation is typically observed by detector elements belonging to different column
positions, and thus to different spectral responses. The smile effect may thus corrupt the processing
of these angular signatures in the retrieval of the surface BRDF as it is done in Part III. The gray
crosses in Figure 4.13 represent the apparent reflectance data after undergoing the proposed desmiling
method. According to the presented results, data are strongly compensated for the smile bias while
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the apparent reflectance preserves the main dependence on the phase angle.
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Figure 4.13.: Apparent reflectance values of spectral band IR 155, observation FRT5AE3. The data of
the 11 scans are plotted before and after desmiling (offset for clarity).

4.1.2.1.2. Discussion and future prospects As one of the initial objectives of this thesis I have pro-
posed an original technique for the correction of the so-called spectral smile effect. The desmiling al-
gorithm aims at normalizing the non-homogeneous spectral response of CRISM along the cross-track
dimension of the matrix detector. According to the presented experiments, among others performed
during this thesis, the proposed method is robust even for challenging CRISM observations. Further-
more, the proposed algorithm is suitable to correct for smile effects affecting other push-broom sensors
as long as accurate pre-launch calibration records are available.

Regarding the limitations of this original method I highlight the sensitivity of the resampling method
to existent inaccuracies in the pre-launch measurements. Indeed, some disagreements were found be-
tween the pre-launch WA CDR and the operative wavelengths as it shall be explained in subsection 4.1.3.
These discrepancies may result in a deficient resampling of the spectral data. Furthermore, the sharp-
ening procedure may be unsatisfactory when enhancing absorption features that have nearly disap-
peared in the off-axis columns due to a very degraded spectral resolution. Unfortunately, the decon-
volution of the signal performed by the sharpening process is no longer possible under these circum-
stances. In this case I remark that a spectral degradation of the image as it is proposed in [156] may be
more appropriate than the current spectral improvement. It is important to bear in mind that sharpen-
ing techniques are intrinsically related to noise increase. Albeit the amount of sharpening is carefully
set to cause the minimum noise increase the method is not optimized for considering all the variability
embraced by CRISM observations. In order to constrain the optimal set of correction factors r

l

I pro-
pose as a future future prospect the use of quantitative indexes that evaluate the impact of the spectral
sharpening on the corrected spectral bands. Some possible distortion indicators are summarized in
the Ph.D. dissertation of Bouali in which these tools are used to measure the image degradation intro-
duced by destriping algorithms [15]. Eventually, I point out that the rather high computational time of
the desmiling algorithm may trouble the processing of large collections of CRISM images. Indeed, the

93



Chapter 4. Postprocessing CRISM data

iterative process to determine the set of optimal sharpening factors r

l

is based on the monitoring of
a MNF transformation. In this context the large size of CRISM observations (~100e6 pixels) results in
executions times around a few hours in a regular computer. Alternative and less computing demand-
ing definitions of the smile energy ES may be considered to lighten the computational burden such as
the correlation coefficient between the MNF-smile eigenimage and each of the CRISM spectral bands.

4.1.3. Calibration of in-flight wavelengths

Another spectral anomaly was discovered while testing the presented desmiling correction. Accurate
investigation of CRISM spectra after the resampling step of the desmiling algorithm (see item 2) re-
vealed a persistent column-dependent spectral shift affecting the position of some absorption features.
In Figure 4.14 I illustrate this anomaly for the central scan of observation FRT5089 acquired over icy
terrains of Mars. In this figure only the spectral range embracing the strong 1.43-µm absorption band
related to CO2 ice is considered. Each curve is the result of averaging all spectra belonging to columns
1, 50, 100 or those forming the sweet spot. This averaging is appropriate while analyzing the image
FRT5089 as it embraces a very homogeneous area of the CO2-ice dominated southern polar cap of
Mars. On the left hand side of Figure 4.14, a typical negative spectral shift due to the smile effect can
be observed as we depart from the sweet spot. Given that the ice is homogeneously present all over the
image, the depicted absorption maximum should be situated at the same wavelength regardless of the
number of column. In Figure 4.14 (right) I show the same spectral range after resampling the FRT5089
central scan to the sweet spot wavelengths, that is, after undergoing the first step of the proposed
desmiling method in subsubsection 4.1.2.1. As it can be seen, the spectral shift not only persists but its
sign is inverted. In this case the resampling overcorrects the spectra by introducing a positive shift that
still corrupts the radiometric accuracy of the data. This anomaly is observed with different intensities
for several absorption features. In this context I proposed to investigate the causes of this anomaly
as this irregularity does not allow to carry out fine spectral analysis of CRISM data (e.g. atmospheric
correction).
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Figure 4.14.: Line-averaged spectra according to different column positions of the central scan of the
CRISM FRT5089 before and after spectral resampling using the WA CDR.

This anomaly was first mistakenly thought to belong to a disagreement between the pre-launch cali-
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brated wavelengths and the in-flight ones. I came to this preliminary conclusion since it agreed with
the typical mismatch described in the literature affecting other imaging spectrometers such as the Hy-
perion sensor caused by vibrations during the spacecraft launch. Figure 4.15 illustrates this anomaly
in Hyperion data in the study of Neville et al. in [132]. As it can be seen, the curves of the in-flight
wavelengths retrieved for different Hyperion images do not agree with the pre-launch calibration mea-
surements. In this matter Murchie et al. detail that, although vibration testing for CRISM exceeded
expected launch vibrations by 50%, spectral shifting during launch can not be ruled out [126]. I there-
fore was ready to address the characterization of the on-orbit radiometric performance of CRISM to
compare it against the performance established during pre-flight acceptance tests. This type of study
has been done in the past by many authors such as in [9, 62, 70].

Figure 4.15.: In-flight wavelengths calculated at the 1136 nm water vapor band, with their polynomial
fits, for three Hyperion data sets: Coleambally, Ranger Mill and Saskatchewan. The laboratory
calibration for the Hyperion 1134 nm band is included. The disagreement in shape between both
can be observed. Credit: [132]

Unexpectedly, further investigation proved that the strength of this anomaly varies for different CRISM
images acquired within a short interval of time. Albeit some modifications of the capabilities of CRISM
are expected due to temperature variations, the intensity of the observed fluctuations made us look at
other instrumental reasons. After discussion with some engineers of the CRISM team we found out
that this spectral anomaly comes from a faulty processing step of the CRISM-DP, the so-called flat field
correction5.

In this thesis I suggest to incorporate to the IPAG-DP an original algorithm to compensate for the ef-
fects of the presented anomaly. In subsubsection 4.1.3.1 I briefly detail the anomaly caused by the flat
fielding on the CRISM spectral bands encompassing strong absorption features. I then introduce the
innovative method that estimates the operative in-flight wavelengths based on synthetic reference data
in subsubsection 4.1.3.2. This set of retrieved wavelengths may be used for performing a refined cor-
rection for the smile effects as in subsubsection 4.1.2.1. I conclude this section by testing the calibration
method on the central scan of the CRISM observation FRT5089.

5The origin of the spectral anomaly was indeed discovered (partially based on our observations) by David Humm from the
John’s Hopkins University Applied Physics Laboratory. David Humm is part of the CRISM team and has collaborated
with us during this Ph.D.
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4.1.3.1. Flat fielding anomaly

As it has been shown in previous sections, push-broom imaging spectrometers suffer from several non-
uniformities. In particular the elements of the detector matrix are not homogeneous in responsivity
(i.e. the input-output gain of a detector system), which, furthermore, varies during flight due to
thermal shifts (see chapter 3). This varying heterogeneity of the sensor results in artifacts affecting
the data. Flat fielding techniques are a standard calibration procedure used to correct this effect from
conventional digital cameras to high precision optical telescopes. Particularly, flat field correction aims
at uniforming the responsivity of each spectral band at all spatial positions. After a detector matrix
is appropriately flat-fielded, a uniform signal as input creates a uniform output, that is to say, free of
systematic errors. The so-called flat-field refers to the set of weights by which the input data must be
rationed to be flat fielded [135].

In order to overcome these non-uniformities, a classical flat field correction is integrated by the CRISM
team into the CRISM-DP [126]. Flat fields are generated periodically using flight data by taking an
average of many lines of several CRISM images of bland scenes of Mars. The resulting spatial-spectral
array is considered as an estimate of the detector matrix responsivity at that time and is stored in a
NU CDR (see Table 3.1). Each CRISM image is divided by the closest NU CDR in time as part of the
CRISM-DP. Figure 4.16 shows the flat field stored in the NU CDR which corresponds to the CRISM
image FRT5089. The construction of flat fields based on pre-launch calibration data is not considered
by the CRISM team due to launch shifts, thermal shifts, and other factors.
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Figure 4.16.: Flat field used for the spectral range from 1 µm to 2.6 µm of the CRISM image FRT5089.
Note the spectral ranges for which the flat field is disabled (put to unity) and the ones affected by
the spectral smile artifact (e.g. spectral band IR 67).

A side effect of this preprocessing step is the interaction of the smile effects with the flat field correction.
In the NIR spectrum, fairly sharp spectral features (i.e. mainly absorption maxima of atmospheric
gases) affect the bland scenes that are used to generate the flat fields. In the presence of spectral smile,
the flat field used for correcting a given spectral band is not acquired at the same wavelength, and
therefore the typical smile brightness gradient is considered as being part of the non-uniformitites that
must be flat fielded. In other words, the flat field is formed by the non-uniform responsivity of the
detectors plus the smile effects, the latter being often stronger than the former. The objectives of the flat
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field correction do not include the correction of the smile effects (in fact, a simple rationing with the NU
CDR cannot accurately desmile the data), and therefore the flat fielding is disabled in the CRISM-DP
for those spectral bands embracing strong CO2 gas absorption features (i.e. 1546-1638 nm, 1921-2126
nm and 2563-2933 nm. See red strips in Figure 4.17 and the result in NU CDRs in Figure 4.17) [126]. In
these precise spectral bands, the uniformity in responsivity is not assured but stronger artifacts coming
from the smile effect are prevented.

This conservative flat fielding is appropriate for most CRISM images in which the absorption maxima
due to the CO2 gas are the unique source of the smile. However, the high latitudes of Mars encompass
another hazard in terms of smile effects, namely the terrains covered by CO2 ice. In particular the
CRISM spectral bands encompassing the strong absorption features of this type of ice (e.g. at 1.43
µm) are outside the spectral range in which the flat fielding is disabled. The smile effects at these
wavelengths may be therefore mistaken for the instrument responsivity (note the higher variations of
the flat field for spectral band number 67, corresponding to 1.43 µm, in Figure 4.16). As a consequence,
the flat fielding mistakenly removes the brightness gradient due to the smile that is found in the bland
scenes. This miscorrection of the smile effects is not adequate as the strength of the smile artifact
is generally different from image to image (and thus is not the same for the bland scenes and the
flat fielded image) due to different chemical composition. In other words, a faulty flat fielding may
imitate a desmiling correction if both strengths are equal while the spurious spectral shift will be
overcorrected or under-corrected otherwise (as it happens for FRT5089 in Figure 4.14). This anomaly
results in a spectral shifting of the affected absorption bands, making “apparent” in-flight wavelengths
no longer correspond to pre-launch measurements.

The present faulty flat fielding may severely impact the analysis of CRISM data from the high latitudes
of Mars at the wavelengths that correspond to the ice absorption features, for example. I highlight the
work of Appéré et al. who monitor the CO2 deposits of the northern terrains of Mars observed by the
OMEGA instrument using a method based on the CO2 feature at 1.43 µm [4]. A similar study cannot
be done using PDS-released CRISM data even with an accurate desmiling of the data. As a matter
of fact, fine data processing such as spectral smile or atmospheric correction are based on the exact
knowledge of the position of the operating wavelengths (which are typically retrieved from the WA
CDR) and therefore inaccuracies caused by the faulty flat fielding may remarkably impact the results.

4.1.3.2. Methods

After the faulty flat fielding has been identified, I propose a novel method to overcome the resulting
anomalies in the data. This calibration improvement is included in the IPAG-DP and can be applied to
those images which especially suffer from this artifact, typically those containing CO2 ice such as the
central scan FRT5089.

I address the faulty flat fielding by considering that it produces a typical wavelength miscalibration.
In other words, I consider that the stored WA CDR do not correspond to the operating wavelengths
(hereafter refereed to as apparent wavelengths) within the affected spectral ranges as it is shown in
Figure 4.14. This assumption is verified by the observation of Figure 4.14. In this context, I propose a
method for estimating the in-flight apparent wavelengths inspired by those studies that address the on-
board calibration of the Hyperion spectrometer such as the works of Neville et al. [132] and Barry et al.
[9]. In the former study, the central wavelength and the width of the Hyperion PSFs are estimated by
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iterative atmospheric corrections considering different spectral responses. The optimal PSF parameters
are the ones that yield to the smoothest surface spectra after atmospheric correction. Contrarily, the
work of Barry et al. retrieves the in-flight wavelengths based on a reference atmospheric spectrum
at the sensor spectral resolution. These synthetic data are used to estimate the apparent wavelengths
of a given spectral band of the affected image by comparison with the closest absorption feature in
the reference spectrum. In this thesis I propose to implement a wavelength calibration method in the
flavor of [9] but adapting it to consider a reference solid CO2 spectrum. The proposed method is fast,
simple and accurate enough to determine the apparent CRISM wavelengths of those spectral bands
corresponding to the critical absorption features. The wavelength calibration is performed for each
absorption feature that is depicted by an arrow in Figure 4.17 and not falling within the red strips as
follows:

1. A synthetic CO2 ice spectrum is generated at very high spectral resolution by the RT model in [54]
using optical properties of ice measured in the laboratory by [158]. The physical properties of the
ice are chosen to be representative of the polar terrains of Mars. Likewise, a typical transmission
spectrum of the gases in the high latitudes of Mars is simulated to be multiplied by the ice
spectrum. In this way, the realism of the resulting reference spectrum is improved.

2. The reference spectrum is convolved by the CRISM spectral response retrieved from the ancillary
data SB CDR. I do this for every spatial position of the detector matrix, thus generating a refer-
ence spectrum for each of the 600 columns of CRISM. Figure 4.17 shows, at the CRISM spectral
resolution, the CO2 ice spectrum, the vertical transmission of the gases and the resulting spec-
trum after multiplication of an arbitrary column in green, red and blue, respectively. Likewise,
the corresponding average spectrum of the image FRT5089 is plotted in gray to underline the
realism of the reference spectrum.
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Figure 4.17.: Reference and real spectra summarizing the wavelength calibration strategy. All spectra
except for the atmospheric transmission spectrum in red are modified by an offset for clarity. Arrows
point to the potentially-affected ice absorption features and identify the number of the corresponding
CRISM spectral bands. Red strips highlight those spectral ranges in which the flat fielding has been
disabled. See text for details.
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3. In the processing of a given CRISM image, the apparent wavelength of each ice absorption feature
is determined, for each column, for both the reference and the in-flight spectra based on a minima
search strategy. If the CRISM image is homogeneous enough, spectra can be averaged along the
line dimension to increase the SNR in the minima search.

4. The apparent wavelengths of the spectral bands close to the absorption feature are obtained
by extrapolation (taking Dl=6.55 nm [126]). Reference and in-flight data are interpolated with
cubic splines for retrieving accurate in-flight wavelengths. I prefer cubic splines rather than other
interpolation methods according to the satisfactory results provided for the desmiling approach.
Figure 4.18 details an example in which the reference and real spectra corresponding to a given
column are fitted by cubic splines before determining the absorption maxima around 1.43 µm
(green and orange dashed lines, respectively). The wavelength axis corresponds to the reference
spectrum while the horizontal axis of the real spectrum is considered unknown due to the faulty
flat fielding. By assuming that the separation between spectral bands is 6.55 nm, the difference
between the real minimum and the reference minimum can be straightforwardly determined (i.e.
1.5 nm in the example). This calculation is repeated for each column position in order to plot the
curve that determines the wavelength distance for the closest spectral band, namely the IR band
67 in the example in Figure 4.18.
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Figure 4.18.: Example on the determination of the wavelength distance between real and reference
spectra. See text for details.

The accuracy of the proposed method is tested empirically by calibrating the CRISM-like reference
data set, whose wavelengths are known. Comparison of the estimated wavelengths with the WA CDR
curves, which are used to generated the reference data set, gives a maximum error of ±0.01 nm.

The calibration method is included in the IPAG-DP to estimate the in-flight wavelengths for a given
CRISM image, at every column, for each absorption feature that is affected by the faulty flat fielding. I
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remark that in the absence of spatially extended CO2 ice, the presented wavelength calibration could be
done if a synthetic spectrum of the material having the strongest absorption features is made available.
For example, the faulty calibration in spectral bands corresponding to atmospheric absorption features
could be overcome by considering a synthetic atmospheric spectrum as it is done in [9]. As for mineral
materials, they do not generally present strong absorption features, and thus the faulty flat fielding
does not have a remarkable impact.

4.1.3.3. Experiments and discussion

Before including this processing step in the IPAG-DP, several experiments were carried out on different
CRISM images. In this thesis, I detail the calibration of the central scan of the CRISM observation
FRT5089 from 1.0 to 2.6 µm. This image is indeed very challenging as there are many strong absorption
bands due to the presence of CO2 ice.

Table 4.2 details the compatibility of the estimated in-flight wavelengths with the WA CDR for each
ice absorption feature detailed by an arrow in Figure 4.17. In this experiment, spectral bands that
are already well calibrated due to a disabled flat fielding are also processed for comparison with the
affected ones. The fourth column of Table 4.2 details the average of the set of spectral shifts obtained
as in Figure 4.18. As it can be seen, spectral bands for which the flat fielding is disabled present lower
spectral shifts while absorption features outside the red strips in Figure 4.17, and thus affected by
the faulty flat fielding, present average shifts up to 1.1 nm. The average value of the former group
(i.e. ~0.34 nm) is acceptably low and may be explained by inaccuracies in the thermal shift (as it is
explained in subsubsection 4.1.2.1). By contrast, the latter group of absorption features, which show
significant spectral shifts, correspond to strong absorption features that are affected by the faulty flat
fielding (e.g., IR bands 32, 67 and 133). The reason why features corresponding to greater wavelengths
(> 2.15 µm) are less impacted may be a weaker strength of the absorption feature.

Wavelength Spectral band Flat fielding Average spectral shift
1.20 µm 32 Enabled 1.13 nm
1.43 µm 67 Enabled 0.87 nm
1.58 µm 89 Disabled 0.25 nm
1.61 µm 94 Disabled 0.44 nm
1.87 µm 133 Enabled 1.10 nm
2.00 µm 154 Disabled 0.26 nm
2.11 µm 171 Disabled 0.43 nm
2.16 µm 177 Enabled 0.71 nm
2.28 µm 196 Enabled 0.64 nm
2.34 µm 205 Enabled 0.70 nm
2.43 µm 218 Enabled 0.40 nm

Table 4.2.: List of absorption features of the CO2 ice encompassed by the CRISM spectral range con-
sidered in this study. The average spectral shift between the apparent and the WA CDR wavelengths
is detailed according to the use or not of the flat field correction.

Further testing is performed by exploring a couple of representative absorption features. In particular
Figure 4.19 details the wavelength calibration in a similar way to Figure 4.15. The red lines correspond
to the estimated apparent wavelengths while the pre-launched measurements WA CDR are shown
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by the black dashed lines. As it can be seen, both curves match satisfactorily for the feature at 2
µm due to the lack of flat field correction [see Figure 4.19 (left)]. Small differences are explained
by the quadratic approximation that was used to fit pre-launch measurements [126]. Contrarily, the
absorption feature at 1.43 µm suffers from the faulty flat fielding according to the distorted red line
shown in Figure 4.19(right). This behavior is observed for other problematic bands. As it can be seen,
there exists a correlation between the sign of the wavelength shift regarding the WA CDR and the flat
field value. A flat field value greater than unity (e.g. central columns) induces a spectral shift toward
greater wavelengths while spectra are shifted in opposite for a flat field value lower than unity (note
the offset applied to the flat field curve in Figure 4.19).
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Figure 4.19.: Calibration results corresponding to (left) the spectral band IR 154 at 2 µm and (right) the
spectral band IR 67 at 1.43 µm are plotted in red. The dashed black line corresponds to the WA CDR
and the flat field (extracted from the corresponding NU CDR) is shown in blue with an offset for
clarity.

The use of the WA CDR curve instead of the distorted red one in the desmiling resampling results
in the deficient results shown in Figure 4.14. In this context, I propose the use of calibrated apparent
wavelengths for data processing that needs an accurate knowledge of the CRISM spectral response
(e.g. correction for smile effects and atmospheric correction). This calibration must be performed
independently for each CRISM observation because of the dependence of the anomaly magnitude on
the physical properties of the flat fielded image and the bland scenes that are used for generating the
flat field.

In this matter, I perform a last experiment to underline the substantially better performances that are
obtained based on the estimated in-flight wavelengths when correcting for the smile effects among
other processing. The original spectra of the central scan FRT5089 are resampled to the sweet spot
wavelengths as detailed in subsubsection 4.1.2.1 using, on the one hand, the typical WA CDR, and,
on the other hand, the estimated wavelengths by the proposed original method. A third experiment
is performed by processing the TRDR3 version of the image FRT5089. As a matter of fact, this new
calibration disables the flat field correction in the spectral ranges corresponding to the CO2 ice absorp-
tion features among other improvements6. Table 4.3 shows the energy associated to the smile artifacts
by means of the MNF transformation (see subsubsection 4.1.2.1) before and after resampling. As it
can be seen, the eigenvalue related to the MNF component embracing the smile effects is very similar

6The release of the TRDR3 data started in mid-2011. The proposed method was developed in early 2010 as an alternative
solution to the faulty flat fielding. This work was used among other studies by the CRISM team to define the spectral
ranges for which the flat fielding should be disabled [159].
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when using the in-flight wavelengths for the processing of the TRDR2 image and the WA CDR for
the improved TRDR3 image. It is important to remark that the MNF-smile eigenvalue pertains to all
wavelengths affected by the smile and not only to those suffering from a faulty flat-fielding. That is the
reason why the MNF-smile eigenvalue also decreases significantly (although to a lesser extend than
otherwise) after resampling when the TRDR2 + WA CDR is considered.

FRT5089 TRDR2+WA CDR TRDR2+in-flight wave. TRDR3+WA CDR
Original MNF eigenv. 743 743 754

Resampled MNF eigenv. 139 113 112

Table 4.3.: Eigenvalue of the MNF component corresponding to the spectral smile effects for three
different cases. See text for details.

According to the presented results, the in-flight wavelengths retrieved by the proposed calibration
method may compensate the distortion produced by the faulty flat fielding in spectral bands encom-
passing a strong absorption feature. I therefore consider this innovative method to be appropriate to
be integrated in the IPAG-DP for processing those CRISM images which require fine processing.

4.2. Generation of advanced products

After the refinement of the radiometric accuracy of CRISM hyperspectral products, the second part
of the IPAG-DP is devoted to the generation of advanced data products. Remotely sensed images
are intended to be used in many types of scientific applications such as the analysis of planetary
atmospheres or surfaces. Each scientific study is thus performed at specific spectral ranges, determined
spatial locations and for relevant physical units (e.g. TOA radiance, surface reflectance, etc.). In our
case I devise the IPAG-DP to carry out fine analysis of the surface of Mars at the whole spectral
range of CRISM. In this way I first put forward a fusion algorithm in subsection 4.2.1 that combines
the channels VNIR and IR into a single hyperspectral image ranging from the visible to the mid-
wavelength infrared wavelengths. Likewise, an atmospheric correction step is included in the IPAG-
DP to correct hyperspectral CRISM data for atmospheric effects that coexist with, and thus pollute,
the signal coming from the materials at the surface (see subsection 4.2.2). In subsection 4.2.3 I propose
the transformation of I/F data into reflectance units by considering the heterogeneous conditions in
illumination that happen within a single CRISM observation. The IPAG-DP is designed to conclude by
generating a new data product that incorporates the eleven hyperspectral images forming each CRISM
multi-angle observation. The resulting multi-angle data product is crucial for the fine analysis that is
carried out in Part III, for example.

4.2.1. Fusion of VNIR and IR channels

As explained in section 1.4 the CRISM instrument is composed by two different spectral channels VNIR
and IR that share some optical elements such as the telescope and the shutter. The side effects of this
division are exposed in scientific studies that are based on the exact wavelength range that separates
both channels (i.e. ~1 µm) or full spectra coming simultaneously from both channels. In particular I
highlight the work of Clénet et al. who address the detection and characterization of mafic minerals on
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Mars [37]. Different types of these chemical components (e.g. olivine and pyroxenes) are discriminated
by specific spectral features around 1 µm. Clénet et al. utilize a method that models a given spectrum
by a sum of Gaussian functions and a polynomial for the spectral continuum. However, the absorption
band at 1 µm cannot be reproduced with the PDS-released CRISM data. In front of this limitation I
propose a method that addresses the combination of the VNIR and IR hyperspectral images of a same
CRISM observation. In this way full spectra from 0.4 to 4.0 µm are made available for the surface of
Mars.

Unfortunately, a simple stacking of the spectral bands is not appropriate for the fusion of the VNIR
and IR channels. As a matter of fact, the area at the surface imaged by the VNIR detector matrix is
slightly larger that the one of the IR channel. In addition, a higher number of detector columns are
operational in the latter detector matrix (an arbitrary martian scene is sensed by columns 25-625 of the
VNIR detector and 29-632 of the IR detector). These two effects results in a lower spatial resolution
for the VNIR channel. In this context, a simple stacking of the VNIR and IR data cubes into a single
product would make correspond the VNIR and IR spectral ranges of an arbitrary spectrum to two
different points at the surface. This effect is illustrated in Figure 4.20 in which a full spectrum (in red)
is plotted after the simple stacking of the VNIR and IR channels of the CRISM central scan FRT6415.
This CRISM observation acquired over the Alga crater of Mars is particularly significant as it is used
to detect mafic rocks in the study of Clénet et al. [37]. As it can be seen, the red spectrum is affected
by a notable falloff at 1 µm. Although some radiometric inaccuracies are expected for the extreme
bands of both detectors (corresponding to the largest wavelengths of the VNIR channel and the lowest
wavelengths of the IR channel) due to higher noise, the observed discontinuity is anomalous. Such
fall-off is explained by the fact that each spectral range (0.4 to 1.0 µm for the VNIR, and 1.0 to 4.0 µm
for the IR) corresponds to a different point at the surface.

Figure 4.20.: Full spectrum extracted from the CRISM observation FRT6415 after combining the VNIR
and the IR channels based on a simple band stacking in red, and the proposed fusion strategy in
black. Note the blue ellipse pointing at the spectral falloff at 1 µm for the red spectrum caused by
the different instrumental characteristics of the CRISM instrument in the VNIR and IR channels.

The spectral anomaly shown in Figure 4.20 is repeated for all the area covered by a CRISM observation.
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I thus decide to consider these disturbances as a faulty registration of both images. To illustrate this
Figure 4.21 (centre) shows the ratio between two spectral bands of the central scan FRT6415, namely the
VNIR spectral band corresponding to 0.95 µm and IR spectral band at 1.05 µm. I note that the direct
comparison of the same wavelength is not possible because the spectral bands within the common
spectral interval between the two channels (~1 µm) are quite noisy as they are situated in the extrema
of the detector matrices. For this reason I decide to compare two spectral bands that are separated
by 0.1 µm. This spectral gap is expected to introduce a negligible bias because this spectral range
corresponds to a continuum in the spectra for the majority of the image. In this way Figure 4.21
(centre) is a useful indicator to assess the presented spectral drop-off by assigning a value different to
unity to those areas in the image that are most affected by the faulty registration of the CRISM channels.
Likewise, these inaccuracies may be combined with the spectral variations around 1 µm produced by
the presence of different types of mafic minerals. Both contributions can be distinguished in some cases
such as the craters situated in the south of the displayed area. As it can be seen the misregistration
between the two channels results in the occurrence of low ratio values in the shadows casted by the
contour of the craters. Such discontinuous patterns come from the instrumental limitations and not
from the variability of the surface. In order to overcome the spurious patterns in Figure 4.21 (centre) I
incorporate in the IPAG-DP an original and accurate fusion strategy for the VNIR and IR channels.

Figure 4.21.: Channel registration. (left) Real color CRISM image FRT6415. (center) Band ratio between
VNIR band at 0.95 microns and IR band at 1.05 microns. (right) Previous band ratio after channel
registration.

In the IPAG-DP I consider the fusion of the VNIR and IR channels as a traditional image registration
problem. Image registration is the process of transforming different sets of data into one common
coordinate system in order to be able to compare or integrate the data obtained from these different
measurements. A comprehensive review of the state of the art in this subject is found in the seminal
work of Zitová and Flusser [190]. In planetary sciences a similar problem to the one introduced in this
section for CRISM is found for the OMEGA sensor. As a matter of fact the OMEGA channels VNIR
and SWIR cannot be directly combined as the latter sensor owns an improved spatial resolution. In
the Ph.D. thesis of Clénet the registration of both OMEGA channels is addressed based on a set of
control points and a warping of the VNIR image to match the characteristic of the SWIR channel [36].
Contrarily, I decide to implement an innovative method that performs accurate registration between
the CRISM VNIR and IR channels based on the ancillary DDR data set that is provided along with
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each CRISM observation. In this way misregistration inaccuracies resulting from the definition of the
control points and the warping process are avoided. DDR data contain the geographic position of each
pixel in latitude and longitude. The accuracy of these geographic data is generally very high and some
potential inaccuracies can be ignored as the generation process of these auxiliary data relies on the
same spacecraft orbit/altitude models and data for both CRISM channels [126].

The scheme in Figure 4.22 describes the original channel fusion strategy that I propose to integrate in
the IPAG-DP. This method is based on the projection of the VNIR data set XVNIR =

n

xVNIR
1,1 , . . . , xVNIR

Nl,Nc

o

,

where xVNIR
l,c is the spectrum that corresponds to the lth line and cth column, onto the IR image

space. The Nl ⇥ Nc image space is geographically characterized by the set of latitude coordinates
latIR =

n

latIR
1,1, . . . , latIR

Nl,Nc

o

and the set of longitude coordinates lonIR =
n

lonIR
1,1, . . . , lonIR

Nl,Nc

o

, which
are retrieved from the ancillary DDR data corresponding to the IR image. The transformation of XVNIR

into an improved registered product YVNIR =
n

yVNIR
1,1 , . . . , yVNIR

Nl,Nc

o

is preferred to the processing of XIR

because of the lower number of spectral bands of the former data set (i.e. 107 against 437) and the re-
sulting lower computational time. Note that YVNIR is associated to the geographical coordinates latIR

and lonIR. For a given spatial position of YVNIR defined by lth line and the cth column and related to the
latitude latIR

c,l and longitude lonIR
c,l , we fulfill the position yVNIR

l,c by the “closest” spectrum xVNIR
c0,l0 in the

original VNIR data set XVNIR in which the duplet (c0, l0) is generally not equal to (c, l) because of the
aforementioned differences between the VNIR and the IR spectrometers and because of a resampling
that we apply to the VNIR channel. The channel fusion strategy is described as follows:

VNIR image 
data XVNIR!

VNIR DDR 
data latVNIR, 

lonVNIR!

IR image 
data XIR!
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filter!
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Figure 4.22.: Scheme of the fusion strategy for combining the VNIR and IR CRISM channels.

1. First, the VNIR ancillary DRR data latVNIR and longitude lonVNIR are processed by a classical
low-pass filter. In this way I correct for disturbances that are originated in thermal and electronic
noise affecting the georeferencing system of the MRO spacecraft. Spurious high-frequency fea-
tures affecting the smooth variations in latitude and longitude are filtered out by a classical mean
filter. Testing on several CRISM images proved that a mean filter based on a 17⇥17 kernel is
satisfactory when dealing with FRT central scans.
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2. In order to build the output image YVNIR with the closest spectra to the corresponding set of
latIR and lonIR coordinates I increase the spatial density of points of XVNIR by a factor n based
on a linear interpolation. This processing step is found to be judicious in the common case
in which the position (c, l) corresponding to

⇣

latIR
l,c , lonIR

l,c

⌘

is in the middle way between two
pixels of the VNIR image space. The increase of the density of points provides an estimate of
the spectrum corresponding the originally missing position

⇣

latIR
l,c , lonIR

l,c

⌘

by assuming a certain
spatial homogeneity in the image. The factor n is generally set to 4 as it offers a good trade-off
between accuracy in retrieving the closest spectrum and acceptable computational time. This
data extrapolation is performed to obtain the VNIR image YVNIR and the ancillary data latVNIR

and lonVNIR.

3. The spatial resolution of a CRISM image is not uniform due to variations in the altitude of MRO
and the VZA angle. I decide to overcome this heterogeneity by computing the spatial resolution
of XIR in units of latitude and longitude. In this way the search for the “closest” spectra is per-
formed on a normalized image space in which the distance between two pixels is homogenous
over the whole image space. The spatial resolution in latitude rlatIR =

n

rlatIR
1,1, . . . , rlatIR

Nl,Nc

o

(longitude rlonIR =
n

rlonIR
1,1, . . . , rlonIR

Nl,Nc

o

) is calculated based on the average difference be-
tween the latitude latIR

l,c (longitude lonIR
l,c ) of an arbitrary pixel and that of its adjacent neighbors

at a one-pixel distance.

4. The improved spectrum yVNIR
l,c is filled by the spectrum in the interpolated version of XVNIR that

minimizes the following cost function

d =

v

u

u

t

 

lonVNIR � lonIR
l,c

rlonIR

!2

+

 

latVNIR � latIR
l,c

rlatIR

!2

(4.5)

The evaluation of the presented algorithm for combining the VNIR and IR channels has been tested
on several CRISM images. In this dissertation I summarize the results obtained on the central scan
FRT6415 in Figure 4.20, Figure 4.21 and Figure 4.23. First, the black line in Figure 4.20 represents the
full spectrum from 0.4 to 2.6 µm that is obtained after the fusion of the two channels. I note that
the data in the VNIR spectral range is not the same contrarily to the IR spectrum. According to this
figure the absorption band at 1 µm has been satisfactorily recreated by the fusion approach except
for a small dropout in the first spectral band of the IR channel due to noise. Likewise, Figure 4.21
(right) corroborates the correctness of the proposed approach by showing the same spectral band ratio
as the one displayed in Figure 4.21 (center) but after the registration of the VNIR image. As it can
be seen, most of the spurious features have been substantially removed making the band ratio much
smoother. Thanks to this processing step, the absorption band at 1 µm can be satisfactorily modeled
by the approach of Clénet et al. in [37]. From that work I highlight Figure 4.23 in which an image
product mapping the chemical properties of pyroxenes is shown over the area covered by the CRISM
image FRT6415 in the vicinity of Valles Marineris. These results come from the analysis of the 1-µm
feature and are obtained using the full spectra obtained after combining the VNIR and IR channels by
the proposed methodology. As it can be seen, the pixels in Figure 4.21 (right) that do not correspond
to unity reveal a different composition of the surface expressed by Figure 4.23.

The previous study among others would be unfeasible without the proposed fusion of the VNIR and IR
channels. Hence, I include this fusion strategy in the IPAG-DP to systematically process each CRISM
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observation.

Figure 4.23.: Absorption centers around 1 µm as an indicator of pyroxene chemical composition. The
position of the absorption center is directly related to the content in calcium and iron. This image
product has been generated based on full spectra data of the CRISM central scan FRT6415 resulting
from the channel fusion approach. Credit: [37].

4.2.2. Atmospheric correction

Although the atmosphere of Mars is fainter than Earth’s, its composition dominated by CO2 gas results
in many strong absorption bands that often overlap with surface features such as the CO2 ice. In
addition to atmospheric gases, suspended mineral and water ice particles generally drift over the
martian surface. These aerosols have a strong influence on the observed spectra of the surface that
varies with time and location. In this thesis I envisage accurate analysis of the materials at the surface
and therefore I require a previous modeling and correction for the atmospheric effects.

Atmospheric correction, or compensation (as we rarely know what we have to correct for exactly), is
not straightforward and often unconstrained. In that matter many algorithms for atmospheric correc-
tion have been proposed in the literature. These algorithms often result from a combination of the
consideration of the real physics behind the remote sensing problem and acceptable assumptions that
ease the retrieval of the surface properties. In subsection 5.1.2 I provide a detailed state of the art on
the algorithms that have been developed in planetary sciences and Earth observation.

The IPAG-DP integrates an original method that corrects CRISM observations in TOA radiance units
for the effects of atmospheric gases and aerosols. This method was developed by Douté during the time
of this Ph.D. and is detailed in section 14.2. The adopted method takes into account the multi-angle
capabilities of the CRISM spectrometer in order to refine the accuracy of the atmospheric compensation
in front of that performed for single-shot spectrometers. The IPAG-DP first retrieves the integrated
optical thickness due to aerosols (i.e. the AOT) at the reference wavelength of one micron by the
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so-called b-method using at once the central scan and the EPF of a same CRISM observation. The
Lambertian albedo of the surface qL (see subsubsection 1.3.2.2) is then inferred based on the AOT
estimate. As a matter of fact, one of the main drawbacks of the adopted algorithm is the assumption
that the surface behaves as a Lambertian reflector or, in other words, that the quantity of scattered
light is the same regardless of the viewing direction. This limitation is overcome by the advanced
atmospheric correction method that is presented in Part III. This improved technique retrieves the
surface BRF r (q0, q, j, l) that depends on illumination and viewing directions.

I conclude this section by remarking the importance of an accurate radiometric accuracy of the CRISM
data. According to our experience, bias in the TOA radiances may result in faulty atmospheric cor-
rection by the adopted method. This issue underlines the importance of previous corrections for
instrumental artifacts such as the non-uniformity of the detector response, the smile effect, and the
calibration of in-flight wavelengths. In particular the last spectral anomalies in the data can result in
residual distortions in the spectral bands encompassing the strongest atmospheric absorption features
as it is detailed in section 14.2.

4.2.3. Photometric normalization

The local illumination angle, or SZA, is typically heterogeneous in an arbitrary CRISM image due to the
sometimes rugged topography of Mars. The emergence angle varies for the same reason but also owing
to the motion due to the gimbaled OSU of CRISM (see section 1.4). These variations cause significant
alterations in the solar reflected radiance acquired from orbit [174]. In this context photometric models
of the surface are usually used in accurate analysis by transforming radiance data into reflectance units
that limit the effects of the varying illumination and viewing conditions. In this section I investigate
the techniques that allow this objective.

Photometry is the study and the measurement of electromagnetic radiation depending on the incidence
and emergence directions. In the exploration of planetary surfaces the photometry is applied to the
study of the interaction between the solar radiation and the studied area at the surface. Indeed, solar
photons reaching the surface are partly absorbed, transmitted, diffused and reflected according to
the physical state and chemical properties of the terrain of study. Properties of the surface can be
therefore retrieved based on a photometric model and the study of the reflected radiation sensed by
a spacecraft at varying acquisition geometries. The main difficulty of these photometric models is to
understand what is the relationship and the meaning between parameters and physical characteristics
of the observed surface. I recommend the Ph.D. dissertation of Jehl for a comprehensive lecture on the
photometry of planetary surfaces [79].

CRISM data are released via the PDS in radiance or I/F units which are dependent on surface photo-
metric effects. The widely adopted photometric normalization in the literature is based on the classical
Lambert’s cosine law defined in Equation 1.2. This simple photometric model divides I/F data by the
cosine of the Sun incidence angle q0 and is valid in the often restrictive case in which the surface is
isotropic, or Lambertian (review subsubsection 1.3.2.2). Despite the obvious limitations of this pho-
tometric model, the Lambertian assumption is widely adopted for processing CRISM data due to its
simplicity and its correctness at first order [129, 118, 20]. The resulting Lambertian albedo qL is typi-
cally considered as the real reflectance for following processing. The Lambert’s model may be replaced
by more realistic and complex models such as the Hapke’s model described in subsubsection 2.3.1.2.
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However, a priori knowledge on the scattering properties of the surface is required in that case, which
is rarely the case (see [44] for an example). I therefore propose to adopt the classical photometric nor-
malization for the IPAG-DP in order to treat systematically all CRISM observations due to its simplicity
and correctness at first order.

The aforementioned practice to overcome the heterogeneous illumination conditions is based on the
corresponding ancillary DDR data. In particular these auxiliary data provide the solar incidence angle
that is computed in-flight for each pixel. Unfortunately, the routines used for the CRISM team consider
the incidence angle that is relative to the martian geoid7

q

0
0 and not the angle relative to the surface

normal q0. Consequently, the topography of the image is not considered in the photometric normal-
ization of CRISM data and thus the Lambert’s method results in false reflectance values in most of the
cases (see Figure 4.24). The resulting error is specially severe for images acquired over rugged surfaces
for which q

0
0 is far from being close to q0. This particularity of the classical normalization adds another

limitation that combines with the likely error coming from the Lambertian assumption. In this thesis
I investigate the improvement of this procedure by considering the topography of the surface in the
photometric normalization of some particular CRISM observations.
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Figure 4.24.: Scheme illustrating the error introduced by adopting the incidence angle with respect to
the martian geoid. In the presence of a perfectly flat surface (example on the left), the normal vector
to the surface n is identical to the normal vector to the geoid n0, and so the two SZAs. Nonetheless,
this equality becomes false in the presence of rugged terrains (example on the right).

4.2.3.1. On the use of Digital Terrain Models

In order to improve the accuracy of the aforementioned classical photometric normalization, I explore
the use of digital terrain models (DTM) to compute the Sun incidence angle that is relative to the surface
normal q0. A DTM is a digital representation of the ground surface topography that expresses the
elevation of a given spatial point. The normal vector to the surface can be straightforwardly obtained
using a DTM by calculating the inclination of the slope and its azimuth from north. The local SZA
is then determined knowing the Sun elevation above the geoid, which is simply the complementary
angle of q

0
0. More details on this strategy can be found in the work of Shibata et al. [162]. This strategy

has been adopted by many authors such as Jehl et al. or Walter et al. when processing HRSC/MEX

7The martian geoid is the hypothetical shape of the Red Planet defined by a reference ellipsoid based on a model gravity.
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data in [80] and [182], respectively, and has been validated based on terrestrial ground experiments in
[174].

As for the availability of DTMs on the surface of Mars, we find those generated by the MOLA altimeter
or the HRSC multi-angle sensor (see section 1.2). Nonetheless, both instruments provide DTMs that
own an insufficient spatial resolution for processing ~18-m/pixel CRISM images (i.e. ~400 m/pixel for
MOLA [164] and down to ~200 m/pixel for HRSC [80]). Such difference in spatial resolution makes
impossible a photometric normalization based on these DTMs without degrading the CRISM spatial
resolution. Contrarily, DTMs are generated at 1 m/pixel for a few specific areas of Mars by stereoscopic
acquisitions acquired by the HiRISE camera [115]. In addition to a sufficiently high spatial resolution,
HiRISE DTMs are acquired over areas of Mars that are also sensed by CRISM since both instruments
are often coordinated. For example, Figure 4.25 shows the HiRISE DTM that is generated for the
Russell dune in the south of Mars and that shall be used in subsection 10.1.1.

Figure 4.25.: Detail on the DTM of the Russell crater dune of Mars generated by the HiRISE instrument.
Credit: http://hirise.lpl.arizona.edu/dtm/dtm.php?ID=PSP_007018_1255.

In this thesis I investigated the exploitation of high resolution HiRISE DTMs for fine photometric
normalization of those CRISM images for which a DTM is available. According to the conducted
experiments, albeit the spatial resolution of the HiRISE DTMs is large enough for calculating the
real incidence angle for each CRISM pixel, photometric normalization based on these products is not
straightforward due to intrinsic problems that are especially critical for areas with accentuated relief.
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A pixel-wise photometric normalization requires indeed an optimal registration between the DTM
and the CRISM image, which are acquired by two different instruments. This issue becomes very
challenging due to the high spatial resolution and the large size of the data sets. Comprehensive test-
ing revealed that expectable inaccuracies coming from a non-optimal registration are combined with
intrinsic noise of the DTM that remains even after downsampling it to a lower resolution. The men-
tioned inaccuracies result in notable bias affecting the photometric normalization since variations of
the illumination angle at the pixel scale magnify the smallest inaccuracy of the DTM or the registration
process [80]. As a matter of fact, a slightly faulty value of q0 in Equation 1.2 may produce considerable
bias in the calculation of the corresponding Lambertian albedo. Also in this thesis, a procedure based
on clustering the image according to q0 was investigated to minimize the aforementioned issues. How-
ever, this strategy was found to be unsatisfactory as the surface features are critically corrupted after
correcting for the average photometry of each area homogeneous in q0.

I conclude this investigation by stating that the normalization for photometric effects based on DTMs
requires high quality DTMs optimally registered with the image data, which is not the case in reality.
As stated above, the classical procedure assuming a Lambertian surface is therefore used in this thesis
by the IPAG-DP. Although the Lambert’s normalization can be considered as accurate at first order, we
must keep in mind the potential limitations of this postprocessing. In some specific cases DTMs have
been used to perform a homogeneous photometric normalization using the average q0 of the region of
interest instead of q

0
0. In this way more realistic levels of reflectance are obtained for very rugged areas

that are far from being flat as assumed by the martian geoid. This particular procedure is considered
in Part IV, subsection 10.1.1.

4.2.4. Generation of an integrated multi-angle product

One of the main objectives of this thesis is the exploitation of the multi-angle capabilities of the CRISM
instrument. Albeit CRISM represents a unique opportunity to scan the surface of Mars with up to
eleven hyperspectral images at different emergence angles, the CRISM-DP releases separately these
scans via the PDS. In this thesis the multi-angle sampling of CRISM shall be further exploited in
Part III for the exploration of the surface and the atmosphere of Mars in the angular dimension, com-
bined with the classical spatial and spectral dimensions. The spatial exploration of surfaces at several
emergence angles is performed on Earth observation using multi-angle data coming from the imaging
spectrometers CHRIS in [57] and MISR in [188]. Multi-angle imaging spectrometers are unprecedented
tools to retrieve spectro-photometric signatures of materials at the surface depending on the observa-
tion geometry (see Figure 4.13). A spectro-photometric curve is defined as the ensemble of spectra
corresponding to the same terrain unit under different observation conditions. In the same way a pho-
tometric curve is defined as a spectral sample of spectro-photometric curves, or in other words, the
radiation observed from a given area at different geometries at a single wavelength. This two types of
products are of great interest to delineate and characterize planetary terrain units by image processing
and modeling, respectively.

The IPAG-DP concludes by spatially rearranging the spectra corresponding to the set of eleven hy-
perspectral images into an original data set, namely the CSP cube (“courbe spectro-phométrique”,
spectro-photometric curve in French). The generation of a CSP cube from a given CRISM multi-angle
observation is integrated into the IPAG-DP from existing codes that had been developed in our lab-
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oratory before this Ph.D.. The CSP cube represents an innovative and efficient way to retrieve the
spectro-photometric curve, or one of the photometric curves, corresponding to a given point at the
surface. Details on the generation of the CSP cube are given in the appendix section 14.3.
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Summary and future prospects

In the present part of this thesis I have proposed a robust and original data pipeline for postprocessing
hyperspectral CRISM images. After carefully investigating the processing that CRISM data undergo
before being released through the PDS I have put forward a series of routines that transform PDS-
released CRISM images into advanced data products owing an improved radiometric accuracy. This
decision is justified by three main reasons. First, the automatic processing of PDS-released data into
advanced products represents a crucial objective of this thesis. Second, although the radiometric ac-
curacy of the PDS-released data is reliable, it is somewhat insufficient for fine processing. Third, this
Ph.D. started during the preliminary science phase of the CRISM instrument in which some improve-
ments still had to be done. Many improvements and routines aimed at enhancing the quality of CRISM
products have been released during the time of this thesis (and still do!). Nonetheless, a IPAG-DP has
been necessary to overcome the existing limitations meanwhile.

I hence put forward a postprocessing data pipeline based on two primary objectives. First, the IPAG-
DP takes into consideration the substantial improvement of the radiometric accuracy of the CRISM hy-
perspectral products due to residual artifacts coming from thermal, electronic and optical limitations.
Second, the PDS-released CRISM images are further processed to generate advanced products fully
exploiting the capabilities of the CRISM instrument. In this matter the proposed IPAG-DP has been
designed to produce original outcomes that make use of the full spectral resolution, the multi-angle
information encompassed by CRISM observations and the information coming from the materials at
the surface. As shown in the present part of the thesis, both objectives are satisfactorily achieved by
the IPAG-DP. Consequently, the current postprocessing pipeline has become a very demanded tool not
only in the IPAG but also in the planetary science community. I highlight, for example, the work of
Clénet et al. in which advanced products generated by the IPAG-DP are used to perform studies on the
surface of Mars [37]. Furthermore, several blocks of the proposed data pipeline may be used for other
instruments. For example, I cite the Moon Mineralogy Mapper aboard the Chandrayaan-1 spacecraft
which produces hyperspectral images affected by stripes due to its push broom design [139]. These
data may benefit from the destriping method in the IPAG-DP.

Regarding the hurdles that were initially defined to be overcome by the IPAG-DP, I specially highlight
those artifacts that affect the spectral properties of the CRISM instrument. In this family of anomalies
we find the spectral smile effect that results in complex spurious effects on the data produced by the
CRISM instrument. The desmiling algorithm that I have developed and integrated into the IPAG-
DP reflects the efforts that have been required for the sake of its compensation. In my opinion the
principal reason for such an issue is the conjugation of the intrinsic optical limitations of CRISM and the
abundance of CO2 on Mars. As we have seen, the conjugation of the smile and the very sharp spectra
related to this chemical component in its gaseous or solid form deteriorates the spectral capabilities

113



of CRISM making some spectral bands unprofitable without further processing. Carbon dioxide is
indeed involved in the most challenging issues regarding the processing of CRISM data. For example,
images acquired over the high latitudes of Mars are usually rich in CO2 ice and therefore result in
higher spectral smile effects, worse spectral calibration due to the faulty flat fielding, the failure of
the despiking method proposed in the CAT, as well as a more complex atmospheric correction due
to the superposition of the solid and the gaseous carbon dioxide. Being interested in these particular
areas of the Red Planet, the IPAG-DP is developed to address all the aforementioned challenges while
remaining operational for the rest of CRISM observations.

I believe that this part of the dissertation represents a brief but substantial review of the limitations
that commonly affect push-broom imaging spectrometers, their impact on the produced data, and the
state-of-the-art methods to overcome them. As a matter of fact the development of the IPAG-DP in
the beginning of this Ph.D. resulted in a deep and complete comprehension of the functioning of the
CRISM instrument that has been crucial in accomplishing the other objectives of this thesis.

Some indications have already been given regarding the future prospects to carry out for each block of
the IPAG-DP. For instance, a detailed outlook on the improvement of the desmiling algorithm has been
given in paragraph 4.1.2.1.2. In my opinion future prospects must be also led toward the consideration
of the surface topography in the postprocessing of CRISM data. According to subsection 4.2.3 the non-
consideration of the real terrain unavoidably forces us to adopt the Lambertian surface assumption
and the martian geoid to compute the solar incidence angle over a scene. This simplistic, yet rarely
avoidable, hypothesis represent a crucial hurdle toward the obtention of accurate properties of the
surface. A clue toward that direction is based on the use of improved registration algorithms that may
allow the satisfactory superposition of an arbitrary hyperspectral image with its accompanying DTM.
Another future prospect would be the improvement of the flat fielding of a given CRISM observation
using the proposed desmiling technique. As a consequence of the faulty flat fielding, spectral bands
encompassing some specific absorption features are not corrected for non-uniformities affecting the
sensor’s detector matrix in the CRISM-DP. This conservative strategy was adopted by the CRISM team
to avoid greater bias coming from the combination of the flat fielding and the smile effect. I therefore
propose to correct the bland scenes that are used to generate the flat field for smile effects. In this
way the corresponding CRISM observation may be flat fielded without having to exclude any spectral
band. To conclude I highlight a limitation of the proposed post-DC, the supposition by the adopted
atmospheric correction algorithm that the surface is isotropic. This restrictive assumption shall be
overcome in an original way in the following Part III.

114



Part III.

Atmospheric correction of CRISM
observations and surface retrieval
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Introduction

Part II of this dissertation has been devoted to the introduction of a data pipeline to improve the
radiometric quality of released CRISM data and to produce advanced products to carry out specific
planetary studies. As stated in Part I, one of the major objectives of this thesis is the exploitation of
the multi-angle capabilities of the CRISM instrument for the fine analysis of the planet Mars. Until
now the algorithm adopted by the IPAG-DP to evaluate the AOT (see section 14.2) represents the sole
example in this matter. In the present part of the thesis I introduce an approach that uses the full
angular coverage that is made available by CRISM in order to retrieve unprecedented photometric
information on the surface of Mars from space.

Although other instruments aboard MRO such as the Mars Color Imager and the Mars Climate
Sounder sensors are exclusively designed for atmospheric studies, the multi-angle capabilities of
CRISM may greatly enhance the characterization of the atmosphere in the spectral range in which
CRISM works [192]. As a matter of fact the EPF in CRISM observations is originally intended to allow
atmospheric studies such as the observation of water vapor, carbon monoxide and dust aerosols as it is
done in [165, 187]. These investigations benefit substantially from multi-angle measurements providing
information corresponding to several atmospheric path lengths at different azimuthal configurations.
These data allow an in-depth characterization of the atmosphere of Mars that is not possible with tra-
ditional single-shot imaging spectrometers. In this thesis I propose to investigate the potential of the
angular coverage of CRISM to compensate targeted observations for atmospheric effects. Atmospheric
correction represents the first step toward the retrieval of the reflectance of the materials at the surface.

As it has been explained in Part I atmospheric aerosols and materials at the surface are related to
anisotropic scattering properties that depend on illumination and viewing directions. Currently adopted
methods for atmospheric correction of data acquired by single-shot spectrometers cannot deal prop-
erly with the atmosphere/surface RT problem due to the lack of multiple measurements of the same
target. In this context the supposition that solid surfaces behave as a Lambertian scatterer (see
subsubsection 1.3.2.2) is generally adopted to constraint the inverse problem of retrieving surface re-
flectance from orbital data. This is the case, for example, of the atmospheric correction technique
integrated into the IPAG-DP. The Lambertian hypothesis is, however, not realistic since most types
of surfaces are anisotropic in terms of scattering. The common strategy to solve correctly the at-
mosphere/surface RT problem entails the consideration of the unknown surface BRDF. In practice
this procedure makes the atmospheric correction problem unconstrained when a sole measurement is
available. Multi-angle imaging spectroscopy may, however, constrain this problem.

The community of Earth observation has recently led some efforts toward the use of multi-angle mea-
surements for improved atmospheric corrections. In this thesis I investigate the development of an
innovative strategy in this direction to be applied to CRISM targeted observations. In this part of
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the dissertation I eventually come up with an original method that inherits the work done in Earth
observation, namely the Multi-angle Approach for Retrieval of Surface Reflectance for CRISM Obser-
vations (MARS-ReCO). MARS-ReCO is an original atmospheric correction algorithm for the retrieval
of surface reflectance. This approach represents an improvement regarding other atmospheric correc-
tion techniques as it considers a non-Lambertian surface. The algorithm MARS-ReCO achieves the
extraction of accurate photometric signatures of surface materials depending on acquisition geometry
and wavelength from CRISM targeted observations. These signatures of the surface shall be of great
interest to delineate and characterize martian terrain units by image processing and modeling.

This part of the thesis is threefold. First, I describe the proposed approach MARS-ReCO in chapter 5 by
detailing the RT formulation and the atmospheric correction strategy on which it is based. Afterward
a sensitivity study is carried out in chapter 6 to validate the proposed algorithm using simulated data.
In this way I identify the most problematic atmospheric and acquisition configurations to perform
accurate surface retrievals. In chapter 7 MARS-ReCO is applied to a set of CRISM observations to re-
trieve photometric signatures of mineral surfaces which shall be validated with data from independent
studies. This part is concluded eventually by evaluating the benefits of adopting a non-Lambertian
surface in the atmospheric correction of CRISM data.

This image mosaic taken by the panoramic camera Pancam onboard the MEX rover Spirit shows the
rover’s landing site, the Columbia Memorial Station, at Gusev Crater, Mars. A portion of Spirit’s solar

panels appear in the foreground. Credit: NASA.
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5
Multi-angle Approach for Retrieval of Surface

Reflectance for CRISM Observations

In the following chapter I introduce the algorithm referred to as Multi-angle Approach for Retrieval
of Surface Reflectance for CRISM Observations (MARS-ReCO) by giving some notions on inverse
problems, by reviewing the state of the art in atmospheric correction of orbital data, and by detailing
the technical aspects of this novel algorithm.

5.1. Atmospheric correction, surface retrieval and radiative transfer

5.1.1. Inverse problems

Retrieving surface parameters from remotely sensed images is a classic inverse problem. To predict
the result of a measurement y = (y1, ..., ym) we require a model of the system under investigation
and a relationship F(·) linking the parameters of the model to the measurements. Given the values
of the parameters x = (x1, ..., xn) that define the model, the prediction of observations constitutes the
so-called forward problem y = F(x). Figure 5.1 illustrates the forward and inverse problem. The
inverse problem, which is expressed as x = F�1(y), consists in using the measurement to infer the
values of the parameters characterizing the system under investigation. In the case of inversion of
remote sensing data y correspond to the set of TOA radiances sensed by the camera, and x are the
physical parameters that define the model such as the BRDF of the surface, the atmospheric AOT or
the acquisition geometry expressed by the angular triplet q0, q and j. The physical theory F(·) to pass
from a set of parameters to another resides with the RT model of the atmosphere, the surface being
the lower boundary condition. Inverse problems may be difficult to solve for, at least, two different
reasons, (i) the problem may be unconstrained and different values of x may be consistent with the
measurement y (knowing the weight of an elephant is not sufficient for calculating its age), and (ii)
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discovering the values of the model parameters may require the exploration of a enormous parameter
space (finding a bottle with a message in the ocean is complicated).

In this thesis I deal with the inverse problem that is defined as the retrieval of surface properties, x (e.g.
by means of the BRDF), from TOA measurements, y. This problem is typically solved by performing
atmospheric correction, that is, the inverse method.11.1 Introduction 401

y = F(x)

x = F −1(y)

(Estimated) state vector Vector of measurements
x = (x1, . . . , xn) y = (y1, . . . , ym)

Fig. 11.1 Forward and inverse problem in remote sensing applications. Note that
the solution to the inverse problem in general provides only an estimate for the
true state of the atmosphere.

For the forward problem the function F can be seen as the RTE. It should be kept
in mind, however, that this is only true for an ideal instrument. In practice, F has to
consider the instrumental properties, such as slit function, response function, field
of view and noise. This means that the forward model has to simulate the instrument
signal by performing a convolution of the radiance spectrum as seen by an ideal
instrument with the various instrument characterizing functions.

While y = (y1, y2, . . . , ym) is the radiance at the instrument’s location for a set
of m different wavelengths, i.e. a radiance spectrum, the vector x = (x1, x2, . . . , xn)
could be temperature values T (z1), T (z2), . . . , T (zn) at n altitudes z1, z2, . . . , zn .

The determination of a medium’s state based on measured spectra is not limited
to atmospheric applications. Similar problems arise in other disciplines, e.g. the
determination of the composition of the Earth’s interior by exploiting seismic waves,
the derivation of the properties of single stars and galaxies on the basis of radio
waves, infrared or gamma ray observations, or in medicine using nuclear spin
computer tomography, techniques of nuclear medicine or ultrasound. In all these
applications the derivation of the target’s properties and/or composition is called
an inverse problem.

In general it is not possible to exactly reconstruct the state of the target under
investigation. One reason for this is the fact that any measurement contains to some
degree noise signals. Thus the relation y = F(x) is only approximately fulfilled.
Likewise the measurement apparatus may possess certain systematic inaccuracies
which lead to a distorted observation, and the forward model F renders only an
approximate solution to the real problem. Finally, one has to keep in mind that
with a discrete set of observations, that is with a limited number of observations,
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Figure 5.1.: Scheme of forward and inverse problems. In remote sensing applications, y = (y1, ..., ym)
stands for the remotely sensed data and x = (x1, ..., xn) encompasses the physical parameters that
correspond to the measurements.

One of the hurdles toward an accurate inversion of TOA radiances is to provide a realistic model F(·),
that is, a robust expression for TOA radiance. In subsection 2.2.1 I detail an expression that is not only
robust but analytically invertible as it shall be shown. Another difficulty is related to the accuracy of
the measurements y. In this matter it is important to work with the most accurate measured radiance
values and therefore the IPAG-DP introduced in Part II becomes crucial for the sake of a satisfactory
atmospheric correction. I note that in the case of the inversion of TOA radiances for retrieval of
surface reflectance y may be complemented by some other input parameters. For example, the triplet
of acquisition angles are available for all CRISM images thanks to the corresponding ancillary data
DDR [127]. Likewise, the atmosphere can be modeled using the radiative properties of gases and
aerosols that have been estimated in previous works [180, 187, 52]. Side effects coming from intrinsic
limitations of TOA measurements can also be minimized by considering other a priori information such
as experimental BRDF measurements that help constraining the inverse problem. Last but not least, the
major obstacle for a robust retrieval of surface properties is the scarcity of measurements at different
acquisition angles. Aerosols in the atmosphere and materials at the surface scatter light depending
on illumination and viewing directions and therefore the success in retrieving accurate estimates of
surface parameters drastically depends on the number and the distribution of the available angular
measurements.

5.1.2. State of the art and motivation

After presenting the atmospheric correction problem I investigate the efforts that have been done in this
direction in the literature. In the past years imaging spectrometers around Mars have been traditionally
corrected by the so-called volcano-scan technique [96]. In this method, used by the OMEGA and
CRISM science teams, a reference transmission spectrum of the atmosphere is built by ratioing two
spectra acquired nearly simultaneously, one over the summit of the volcano Olympus Mons and one
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from the base of it. Both spectra are acquired over areas with minimal amounts of aerosols to minimize
their effects on the reference spectrum. This ratio gives the transmission through the atmospheric
column between the summit and the base of Olympus Mons. The reference spectrum is then scaled
to a spectrum of interest such that, after division by the scaled reference, the Lambertian albedo of
the surface is forced to be the same at a wavelength outside the atmospheric CO2 absorption bands
(typically 1.89 µm) and another wavelength inside a CO2 absorption feature (typically 2.01 µm). In this
way the volcano-scan method can remove the gas absorption bands of any spectrum. McGuire et al.
adapted and improved this atmospheric correction technique for CRISM in [117]. Unfortunately, this
technique does not correct for aerosol effects and cannot operate for surfaces made of CO2 ice.

In the literature we find advanced methods that address the correction of aerosols drifting over the
surface. In this matter Vincendon et al. [180] quantify the contribution of mineral aerosols in the SWIR
based on multi-temporal nadir OMEGA observations corresponding to significantly different SZA. In
this way the AOT is inferred and the aerosol-free surface reflectance is retrieved. Nonetheless, this
method relies on the restrictive assumption that the AOT remains constant during the time spanned
by the employed acquisitions. Furthermore the authors of [180] select a Lambertian hypothesis for
the surface considering that the signal variations at the TOA with the illumination and phase angles
are exclusively related to the contribution of aerosols. In this case the surface is characterized by
a wavelength-dependent single value of albedo. In [181] the same authors monitor the AOT above
the south polar cap of Mars based on the assumption that the reflectance in the 2.64-µm saturated
absorption band of the CO2 ice at the surface is due only to the light scattered by aerosols. Although
a single observation is sufficient in this case and the Lambertian hypothesis has no influence on the
retrieved AOT (as the surface is assumed to be totally absorbing at 2.64 µm), the AOT retrieval is
restricted to the areas of Mars covered by pure CO2 ice. Alternatively, Douté proposes efficient RT-
based algorithms and tailor-made methods for operational retrieval of surface reflectance using single-
shot and multi-temporal OMEGA images [52]. Similarly to [180], Douté considers the surface as
isotropic. In the literature the Lambertian assumption becomes unavoidable when processing single-
view sensors such as OMEGA for atmospheric correction [52]. This limitation can be eased if series
of multi-temporal images are considered to build a single multi-angular data set [180]. In this case
other hurdles arise as we must suppose that the surface did not change in the time spanned by the
images, and the atmospheric conditions must be treated independently since each image corresponds
to a different AOT.

The Lambertian assumption is generally adopted, even when multi-angle data are available (e.g. [180]),
as it largely simplifies the RT model, reduces the size of the look-up tables (LUTs) used in the inversion,
and creates faster algorithms. All these factors are crucial in operational processing [177]. Although
the Lambertian surface assumption may work in some limited cases (e.g. very turbid atmospheres),
it has been proved that anisotropic scattering properties play a significant role for most minerals [163,
84, 166] (see Figure 5.2 for an example on Mars) and ices [106]. The fact that the martian surface is not
Lambertian has also been proved using Earth-based observations of the Red Planet [47]. In this context
the Lambertian hypothesis creates systematic angle-dependent biases in derived surface reflectance,
thus reducing the anisotropy of final reflectance [111]. I shall further discuss this point in section 7.4.

As for the atmospheric correction of CRISM data, McGuire and the CRISM science team define a
DISORT-based model to retrieve the AOT caused by dust and water ice particles using the measured
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Figure 5.2.: Phase curves of BRDF corrected for diffuse skylight extracted from a Pancam image aboard
the MER Spirit. These curves correspond to the mineral units (Gray rocks, Red rocks, and Soils)
found in the east and west from the Cahokia region at West Spur on Mars. The different symbols
stand for three wavelengths for each unit of interest. The anisotropy of the three surface units
according to phase angle can be observed. Credit: [84]

I/F spectrum by CRISM and independent data records [118]. In that study the surface spectrum is
computed in Lambertian albedo units after correction of the gaseous and aerosol contributions. This
algorithm does not, however, retrieve the AOT from the images nor takes advantage of the multi-
angle capabilities of the CRISM instrument. Alternatively, Brown et al. propose a first attempt in
this direction by proposing a DISORT-based algorithm to model the remotely sensed signal at a single
wavelength [19]. In that study three parameters (i.e. surface albedo, dust opacity and water ice opacity)
are iteratively adjusted in order to fit a set of TOA radiances from the same terrain unit that have been
observed with different emergence angles. Nevertheless, this method is very time consuming and
the surface is assumed to reflect light isotropically, that is, under a Lambertian hypothesis. In all the
mentioned studies as well as the method adopted by the IPAG-DP (see [53]) the Lambertian albedo of
the surface rL is inferred after retrieving the AOT based on the assumption of an isotropic surface.

In Earth observation we find identical problems regarding the atmospherical correction of remote
sensing data. In this twin field of study most inversion algorithms for retrieval of surface reflectance
from multi-angle data also make assumptions regarding the scattering properties of the surface. In
particular the Lambertian assumption is commonly adopted such as in the work of Guanter et al. in
which multi-angle hyperspectral observations acquired by the CHRIS instrument are corrected for at-
mospheric effects under this assumption [69]. Alternatively, some works propose an effort towards the
relaxation of the Lambertian assumption by adopting a surface retrieval strategy based on a converging
iteration loop [76, 178]. In the first iteration the BRF of the surface is retrieved adopting the Lambertian
assumption. The inferred model of the surface is then injected into the iterative process as an input
parameter. This process is repeated until convergence is reached, thus improving the quality of the
final BRF estimate. Nonetheless, this method is not plausible for highly anisotropic surfaces such as
snow or ice since the error in the first iteration greatly impacts the succeeding retrievals.

Alternative assumptions are made on the angular shape of the surface BRDF. For example, the MODIS
BRDF/Albedo algorithm utilizes a priori knowledge on the likely anisotropy of the surface reflectance
that is characterized by the semi-empirical RTLS model (see subsubsection 2.3.1.4) [153]. In particular
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archetypal BRDF shapes coming from either well-sampled field data or previous retrievals by MODIS
are assumed for those pixels with insufficient or poor angular sampling. Alternatively, the currently
adopted algorithm for the multi-angle MISR instrument assumes that the implied angular shape of
the surface BRDF is similar among the five MISR wavelengths (i.e. 446, 558, 672, and 866 nm) [50].
Although the angular reflectance shapes may be somewhat similar, the authors of [50] affirm that they
are not necessarily identical, especially in such a large spectral range.

Further investigation on the impact of the commonly adopted assumptions regarding the scattering
properties of the surface leads us to devise an atmospheric correction method based on as little as-
sumption as possible. In the following I describe the two major motivations that justify such decision.

1. It has been proved that the Lambertian supposition induces a substantial error, even for low
anisotropic surfaces [111]. In that study Lyapustin proves that the error in terms of BRF caused
by the Lambertian approximation is as high as 10-15% for moderate view angles at t = 0.5
and up to 30% in the principal plane (see Figure 5.3 for details). Furthermore, this assumption
creates flatter BRF patterns, the true BRF being more anisotropic. This consequence may impact
processing of CRISM observations acquired over the high latitudes of Mars mostly composed of
ice and snow, which are highly anisotropic, or even over equatorial areas where surface materials
may also be anisotropic (e.g. see Figure 5.2). In a complementary study Hu et al. study the
interrelationship between surface BRF retrieval and atmospheric correction [76]. The results of
this work corroborates that the assumption of a Lambertian surface causes relative errors in the
retrieved surface reflectances up to about 15% under turbid atmospheric conditions.

Figure 5.3.: Errors of BDRF retrieval from space in the Lambertian approximation for different atmo-
spheric opacities (t = 0.05, 0.25 and 0.5). The retrievals are performed for a wheat surface presenting
a high anisotropy in the NIR. Credit: [111].
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2. Multi-angle imaging spectroscopy carried out by cameras such as CRISM provides unprece-
dented sets of TOA radiance values from the same target at different observation angles. These
unique data sets may help constraining the present inverse problem. I therefore propose to
exploit the angular coverage of CRISM in a integrated manner in order to carry out accurate
atmospheric correction. This can be achieved by introducing the BRDF of the surface in the RT
formulation, thus considering the anisotropy of the surface in addition to that of atmospheric
aerosols.

Eventually, I highlight the recent work of Cull et al. in which surface retrievals are carried out for
multi-angle CRISM data considering a non-Lambertian surface driven by a Hapke’s model [42]. In
that study a DISORT-based LUT is generated by storing surface spectra corresponding to multiple
atmospheric situations. Although this algorithm does not assume a Lambertian surface, it cannot be
used for our purposes, nor in a general case, since it is developed to work for a specific mineral region
of Mars. This atmospheric correction procedure assumes that the surface in the processed images has
similar scattering properties than some materials previously characterized by independent studies.

To our knowledge, an inversion method for the retrieval of surface reflectance from CRISM targeted
observations considering a non-Lambertian surface without any a priori on the surface properties has
not been proposed yet.

5.2. Outline

The algorithm MARS-ReCO that I propose in this thesis inherits the basis of currently adopted methods
for imaging spectrometers in Earth observation1. In this twin field of research simultaneous AOT and
surface retrievals are carried out for series of multi-temporal MODIS images by the algorithm referred
to as MAIAC (MultiAngle Implementation of Atmospheric Correction) [108, 110]. MAIAC inherits the
basis of previous works developed for MISR [113] and Meteosat [142] data that incorporate the surface
BRDF in the RT formulation to account for variations of the surface according to viewing geometry.
In contrast to other methods MAIAC solves the aerosol/surface coupling problem considering a non-
Lambertian surface without strong reductionist assumptions.

In the AOT retrieval step MAIAC uses an initial estimate of the surface BRF that is obtained from a
MODIS waveband for which the effects of aerosols are negligible. The final BRF is re-estimated with the
retrieved AOT value. Unfortunately this strategy is not valid in our case since there is no homologous
waveband in the CRISM instrument. Martian aerosols are mostly formed by mineral particles that are
larger than those found drifting over Earth and therefore their contribution to the at-sensor signal is
strong in the SWIR range [93]. In this context I propose an atmospheric correction chain for CRISM
multi-angle observations resulting from the combination of (i) the AOT retrieval approach adopted by
the IPAG-DP (see section 14.2), (ii) the gas correction strategy also adopted by the IPAG-DP, and (iii)
the aerosol correction method MARS-ReCO inspired by the surface retrieval algorithm of MAIAC (see
Figure 5.4). Contrarily to MAIAC or the MODIS BRDF/Albedo algorithm in [153], MARS-ReCO is
devised to process multi-angle data acquired practically at the same time instead of multi-temporal
series of images.

1This work has been carried out in collaboration with Dr. Alexei Lyapustin from the NASA Goddard Space and Flight
Center, MD, USA, and Dr. Mike Wolff form the Space Science Institute, Boulder, Colorado.
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Figure 5.4.: Block diagram illustrating the atmospheric correction chain for CRISM multi-angle obser-
vations. The AOT and the photometric curves of the surface in BRF units are retrieved using the
corresponding CSP cube produced by the IPAG-DP.

I summarize the key points of the MARS-ReCO approach as follow:

• The surface is assumed to be flat or, in other words, there are no adjacency effects between
neighboring areas.

• The TOA reflectance is expressed using a RT formulation of the atmosphere/surface system
based on a Green’s function of the atmosphere. This formulation was originally developed by
Lyapustin and Knyazikhin in [107] and has been detailed in subsection 2.2.1. The Green’s func-
tion method allows the analytical combination of the atmospheric reflectance and transmissivity
with the surface BRDF in order to calculate the radiance reaching the sensor for an arbitrary AOT
and acquisition geometry.

• The surface anisotropy is taken into account by expressing its BRF using a semi-empirical RTLS
model (see subsubsection 2.3.1.4). This reflectance model used by the algorithms MAIAC and
BRDF/Albedo allows the linearization of the TOA reflectance expression, thus enabling a highly
efficient inversion by a classical least-square method. As a matter of fact the RTLS coefficients
characterizing the surface BRF model can be calculated analytically from measurements. Be-
sides its mathematical properties, the RTLS model has proved to be appropriate for recreating
scattering properties of natural surfaces such as soils.

• The AOT is an input parameter which is generally provided by the b-method integrated in the
IPAG-DP (see section 14.2). In the case that the b-method does not work (e.g. in the presence of
surfaces covered by CO2 ice), MARS-ReCO may be fed by other means such as the AOT estimates
provided by the Pancam instrument aboard the MER rovers.

• Contrarily to MAIAC, the gaseous contribution in the at-sensor signal is corrected before using
MARS-ReCO. This is done by the IPAG-DP following the procedure described in section 14.2
which takes into consideration the coupling between the gases and the aerosols. In this way
MARS-ReCO deals exclusively with the correction for aerosol effects, which are conjugated with
the signal coming from the surface.

• A LUT is generated using DISORT to store atmospheric quantities that are needed for the atmo-
spheric correction of CRISM observations. Each quantity is computed for multiple scenarios of
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the remote sensing of Mars by CRISM. The use of a precomputed LUT implies an initial and sole
calculation of the atmospheric quantities that shall be used repeatedly afterwards. The LUT of
MARS-ReCO does not depend on the surface properties because of the qualities of the Green’s
function method and the RTLS model. The current LUT considers an homogeneous atmosphere
exclusively composed by mineral aerosols. The radiative properties of these suspended particles
are used in the calculation of the LUT and are obtained from the study of Wolff et al. [187] based
on CRISM multi-angle observations (review subsection 2.1.3). Nonetheless, there is not any in-
trinsic restriction for considering different or more complex atmospheres (e.g. considering gases
or water ice aerosols). A new LUT must be computed in this case. The current LUT depends on
the state of the atmosphere, by means of the AOT, and on the acquisition geometry, by means of
the angles q0, q0 and j.

• Surface retrieval is carried out using a fast and robust iterative least-square strategy based on a
matrix inversion similar to what is done in the algorithm MAIAC. The reliability of the retrieved
BRF is validated by an ensemble of tests.

In this framework the MARS-ReCO approach aims at providing the BRF that is associated to each
super-pixel forming a CSP cube (see subsection 4.2.4 for definition of super-pixel). The properties of
the atmosphere (i.e. the AOT and the radiative properties of the aerosols) are known. In its current
implementation MARS-ReCO processes each spectral band individually, treating all super-pixels in
a sequential manner. In the conclusions of this part of the thesis I shall give some details on the
improvement of MARS-ReCO toward the simultaneous consideration of the angular and spectral in-
formation contained in CRISM observations. The atmospheric correction of the at-sensor photometric
curve corresponding to a given super-pixel is threefold:

1. The RT model based on the Green’s function of the atmosphere is first fitted to the angular
measurements forming the photometric curve. This is done by knowing the acquisition geometry
corresponding to each measurement (retrieved from the ancillary DDR) and the AOT.

2. The coefficients of the RTLS surface model are retrieved by inversion of the fitted TOA reflectance
expression.

3. The retrieved BRF model undergoes a validation step that aims at detecting and excluding those
solutions that are not realistic.

The algorithm MARS-ReCO represents an original tool to infer crucial properties of the surface, namely
the surface BRF and the albedo. The proposed technique provides unprecedented data from CRISM
targeted observations while being fully operational. As a matter of fact MARS-ReCO processes a single
spectral band of a CSP CRISM cube in a few tens of seconds. In the following two sections I describe
the theoretical background and the technical aspects of the proposed atmospheric correction.

5.3. Algorithm theoretical background

The RT formulation on which MARS-ReCO is based is adopted from the processing of MODIS multi-
temporal data by the MAIAC algorithm [108]. This formulation was initially put forward by Lyapustin
and Knyazikhin some years ago in [107]. The main novelty of MARS-ReCO in front of other LUT-based
methods is the injection into the RTE of the diffuse Green’s function of the atmosphere and the RTLS
expression to model the surface BRF.
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5.3.1. The Green’s function method in radiative transfer

The concept of the Green’s function, developed in neutron transport several decades ago [10], repre-
sents a powerful approach to solve the RT problem with complex boundary conditions and internal
sources. This mathematical concept entails the reformulation of the general problem in terms of sim-
pler basic sub-problems and the expression of the general solution as a superposition of these basic
solutions. The virtues of the Green’s function method in the problem of atmospheric radiative trans-
port are demonstrated in [64, 145, 22]. I recommend the work of Lyapustin and Knyazikhin in which
further development of this method is offered for one-dimensional RT problems with a non-Lambertian
surface [107]. A brief introduction to the mathematical principles of the Green’s function can be found
in the appendix section 13.1.

The Green’s function describes the solely atmospheric radiative transport and serves to find radiance
in an arbitrary direction and altitude in the atmosphere, given the angular orientation of an exciting
beam at the surface level. The Green’s function can be used to compute the radiation field generated
by virtually any source. The benefit of using such an explicit expression for the Green’s function
is twofold. Firstly, an analytical expression for the superposition of the basic solutions allows for
analytical computations of the total radiation field. Secondly, computing the Green’s function is much
more efficient than solving for the integrated surface-RT. The Green’s function approach is especially
suitable for inversion problems such as the one addressed in this thesis where the radiation field needs
be computed repeatedly for changing surface BRDF [145].

5.3.2. Expression of the top-of-atmosphere reflectance

The parametrization of the surface/aerosol RT problem on which MARS-ReCO is based is detailed
as follows. Throughout this section I use the notation and atmospheric quantities that have been
introduced in subsection 2.2.1. Some parameters are summarizes as follow:

• s0, s: incidence and view directions defined by pairs of zenith and azimuthal angles (q, j); in this
thesis I do not consider surfaces with privileged scattering directions and therefore j0 = 0. For
brevity, j stands for the relative azimuthal angle between both directions j � j0.

• µ0, µ: cosines of the SZA and VZA (µ = cos q); the z axis is pointed downward, so µ0 > 0 for the
solar beam and µ < 0 for the reflected beam.

• pS: extraterrestrial solar spectral irradiance.

• r: surface BRF.

• c0, q: spherical albedo of the atmosphere and the surface, respectively.

• taer: aerosol optical thickness, or the atmospheric opacity exclusively due to aerosols.

As stated before, CRISM data are previously corrected for atmospheric gases following the method
adopted by the IPAG-DP and detailed in the appendix section 14.2. In this appendix the symbol
Laer stands for the TOA radiance in a gas-free atmosphere, that is, only altered by the aerosols. In
the present part of the dissertation I shall use the symbol L for simplicity. Likewise, the following
formulation does not express the dependence of atmospheric quantities on wavelength for brevity.

The TOA radiance L reaching the CRISM instrument can be expressed as it is done in subsection 2.2.1
by means of Equation 2.6. Rearranging atmospheric quantities depending on their scattering nature,
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radiance L can be decomposed as a sum of the atmospheric path radiance (D), and the radiance
reflected by the surface and that is directly (Ls) and diffusely (Ld

s ) transmitted through the atmosphere,

L(s0, s) = D(s0, s) + Ls(s0, s)e� taer
|µ| + Ld

s (s0, s). (5.1)

The first term of the surface-reflected radiance can be written as

Ls(s0, s) ⇠= Sµ0e� taer
µ0 {r (s0, s) + ac0r1 (µ) r2 (µ0)} +

a

p

ˆ
W+

Ds
�

s0, s0�
r

�

s0, s
�

µ

0ds0, (5.2)

where Ds is the path radiance incident on the surface and

r1 (µ) =
1

2p

ˆ
W+

r

�

s0, s
�

ds0, r2 (µ0) =
1

2p

ˆ
W�

r (s0, s) ds. (5.3)

Parameter a is a multiple reflection factor, a = (1 � q(µ0)c0)�1, that depends on the surface albedo q.

The diffusely transmitted surface-reflected radiance at the TOA is calculated from Ls with the help of
one-dimensional diffuse Green’s function of the atmosphere Gd,

Ld
s (s0, s) =

ˆ
W�

Gd(s1, s)Ls(s0, s1)ds1. (5.4)

The function pGd is often called bidirectional upward diffuse transmittance of the atmosphere. The
method of its calculation is discussed in detail in section 5.4.

The surface albedo is defined as a ratio of reflected and incident radiative fluxes at the surface,

q(µ0) = FUp(µ0)/FDown(µ0), (5.5)

FDown(µ0) = pSµ0e� taer
µ0 +

ˆ
W+

Ds
�

s0, s0�
µ

0ds0 = FDir
s (µ0) + FDi f

s (µ0), (5.6)

FUp(µ0) = pSµ0e� taer
µ0 q2(µ0) +

ˆ
W+

µ

0q2(µ

0)Ds
�

s0, s0� ds0, (5.7)

and its moment,

q2(µ0) =
1
p

ˆ
W�

r (s0, s) µds. (5.8)
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These formulas give an explicit expression for the TOA radiance as a function of surface BRF. The
accuracy of the above formulas is high, usually within a few tenths of a percent [107].

In the following, I use the TOA apparent reflectance in a gas-free atmosphere at a given wavelength l

defined as

R = L/ (µ0S) . (5.9)

For simplicity, I shall use the symbol R instead of Raer to refer to units of TOA apparent reflectance in
a gas-free atmosphere populated by aerosols.

5.3.3. Including a surface model

Based on the described semi-analytical solution, TOA apparent reflectance is expressed as an explicit
function of the parameters involved in the parametrization of the surface BRF. In this case I use the
linear, kernel-driven, semi-empirical RTLS model (review subsubsection 2.3.1.4), which is reminded
here as follows

r (µ0, µ, j) = kL + kG fG (µ0, µ, j) + kV fV (µ0, µ, j) . (5.10)

The BRF of a pixel is thus characterized by a combination of three kernel weights, ~K =
�

kL, kG, kV T.
The substitution of Equation 5.10 into Equation 5.1-Equation 5.8 radically modifies the RT formulation
into a quasi-linear expression. This attribute of the RTLS is crucial for the fast and robust inversion of
multi-angle data. After normalization to the apparent reflectance units following Equation 5.9, I detail
the last two terms of equation Equation 5.1 after incorporating the RTLS model as

Rs (µ0, µ, j) = e� taer
µ0 {kL + kG fG (µ0, µ, j) + kV fV (µ0, µ, j)

+ac0r1 (µ) r2 (µ0)} + aµ

�1
0 {kLEd

0 (µ0)

+kGD1
G (µ0, µ, j) + kV D1

V (µ0, µ, j)},
(5.11)

Rd
s (µ0, µ, j) = e� taer

µ0 ⇥ {
⇥

kLGav (µ) + kGG1
G (µ0, µ, j) + kVG1

V (µ0, µ, j)
⇤

+ac0
⇥

kLGav (µ) + kGG11
G (µ0, µ, j) + kVG11

V (µ0, µ, j)
⇤

r2 (µ0)}
+aµ

�1
0

�

kLEd
0 (µ0) Gav (µ) + kG H1

G (µ0, µ, j) + kV H1
V (µ0, µ, j)

 

.
(5.12)

The surface albedo is now written as

q (µ0) = E�1
0 (µ0)

n

e� taer
µ0 q2 (µ0) + kLEd

0 (µ0) + kGD3
G (µ0) + kV D3

V (µ0)
o

. (5.13)

Different functions in these equations represent different integrals of the incident path radiance on
the surface (Ds) and diffuse atmospheric Green’s function (Gd) with the BRF kernels. The method of
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their numerical calculation is described in section 5.4. Below, I give the integral expressions for these
functions:

r1 (µ) = kL + kG f 1
G (µ) + kV f 1

V (µ) , (5.14)

r2 (µ) = kL + kG f 2
G (µ) + kV f 2

V (µ) , (5.15)

q2 (µ) = kL + kG f 3
G (µ) + kV f 3

V (µ) , (5.16)

D1
k (µ0, µ, j) =

1
p

1ˆ

0

µ

0dµ

0
2pˆ

0

dj

0Ds
�

µ0, µ

0, j

0� fk
�

µ

0, µ, j � j

0� , (5.17)

D3
k (µ0) =

1
p

2pˆ

0

dj

0
1ˆ

0

µ

0 f 3
k
�

µ

0� Ds
�

µ0, µ

0; j

0� dµ

0, (5.18)

Gav (µ) =

0ˆ

�1

dµ1

2pˆ

0

Gd (µ1, µ, j � j1) dj1, (5.19)

G11
k (µ) =

0ˆ

�1

f 1
k (µ1) dµ1

2pˆ

0

Gd (µ1, µ, j � j1) dj1, (5.20)

G1
k (µ0, µ, j) =

0ˆ

�1

dµ1

2pˆ

0

Gd (µ1, µ, j � j1) fk (µ0, µ1, j1) dj1, (5.21)

H1
k (µ0, µ, j) =

0ˆ

�1

dµ1

2pˆ

0

Gd (µ1, µ, j � j1) D1
k (µ0, µ1, j1) dj1. (5.22)

The subscript k in the above expressions refers to either geometric-optical (G) or volumetric (V) kernels.
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The moments of the geometric BRF kernels are given by

f 1
k (µ) =

1
2p

1ˆ

0

dµ

0
2pˆ

0

fk
�

µ

0, µ; j

0 � j

�

dj

0, (5.23)

f 2
k (µ0) =

1
2p

0ˆ

�1

dµ1

2pˆ

0

fk (µ0, µ1, j1) dj1, (5.24)

f 3
k
�

µ

0� =
1
p

0ˆ

�1

µdµ

2pˆ

0

fk
�

µ

0, µ, j � j

0� dj. (5.25)

The diffuse and total spectral surface irradiance are calculated from Equation 5.6 as

Ed
0 (µ0) = FDi f (µ0) / (pS) , E0 (µ0) = FDown (µ0) / (pS) . (5.26)

Let us rewrite equations Equation 5.11 and Equation 5.12 separating the kernel weights. First, separate
the small terms proportional to the product c0r2(µ0) into the non-linear term

Rnl (µo, µ) = ac0r2 (µo) e�taer/µ0{e�taer/|µ|
r1 (µ)

+kLGav (µ) + kGG11
G (µ) + kVG11

V (µ)}.
(5.27)

Second, collect the remaining multiplicative factors for the kernel weights,

FL (µo, µ) =
⇣

e�taer/µ0 + aµ

�1
0 Ed

0 (µ0)
⌘ ⇣

e�taer/|µ| + Gav (µ)
⌘

, (5.28)

Fk (µo, µ; j) =
n

e�taer/µ0 fk (µ0, µ, j) + aµ

�1
0 D1

k (µ0, µ, j)
o

e�taer/|µ|

+e�taer/µ0 G1
k (µ0, µ, j) + aµ

�1
0 H1

k (µ0, µ, j) , k = V, G.
(5.29)

With these notations, the TOA apparent reflectance becomes

R (µo, µ, j) = RD (µo, µ, j) + kLFL (µo, µ) + kGFG (µo, µ, j)

+kV FV (µo, µ, j) + Rnl (µo, µ) .
(5.30)

This last equation, representing TOA apparent reflectance as an explicit function of the BRF model
parameters, provides us with the means for an efficient atmospheric correction by MARS-ReCO.
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5.4. LUT generation and numerical aspects

Look-up tables are a very convenient way to store numerical results that are used repeatably by other
calculations. In MARS-ReCO I precompute a LUT to store the RT quantities that are related only to the
atmosphere and the acquisition geometry. The LUT of MARS-ReCO does not depend on the surface
kernel weights

�

kL, kG, kV� thanks to the Green’s formalism that I use in the RT formulation. The
precomputed LUT for processing CRISM data is devised by inheriting basic principles from the MISR
and MODIS surface retrieval algorithms. In this matter I follow the recommendations of King et al. in
[91] that define the best LUT as the one that preserves the realistic physical variability while keeping
its size within reasonable limits. In particular I follow the next principles to minimize the size of the
LUT and the computational cost to generate it:

1. Only data coming from multiple scattering of light are stored in the LUT. Single-scattering, which
is less computational expensive, is calculated analytically for a given set of parameters, or super-
pixel, in the inversion process.

2. I use a dense grid of acquisition angles, namely µo, µ, j, to use a nearest neighbor strategy for
inversion instead of costly multi-dimensional interpolation.

3. In the current version of LUT CRISM observations have been previously corrected for gas effects
and only mineral aerosols are considered. The AOT, or taer, is therefore the integrated optical
depth produced exclusively by mineral aerosols.

4. A single-layer homogeneous atmosphere is selected as it is accurate enough for modeling the
aerosol effects. Likewise, I choose this strategy to reduce the computational time to generate the
LUT.

The LUT is defined to store functions f 1
k , f 2

k , f 3
k , which depend on geometry of observations; c0, which

depends on aerosol content AOT; and functions D1
k , D3

k , Gav, G1
k , G11

k , H1
k , Ed

0, E0 and RD, which
depend on both the geometry and the aerosol content. Index k refers to either volumetric (V) or
geometric-optical (G) kernel function of the RTLS model. I compute the LUT for a dense grid of µ, µo,
and j angles (Dµ = Dµ0 = 0.02 and Dj = 3° for the ranges q0 = {14º . . . 81º}, q = {0º . . . 70º}, and
j = {0º . . . 180º}). I choose the range of viewing and illumination angles according to the functioning
of CRISM. For example, the investigation of several CRISM observations reveal that viewing condi-
tions never exceed q = 70º, which is the highest value for the first and last EPF scan (see section 1.4).
Similarly to processing of MISR and MODIS data, I select the nearest neighbor angle to fit the CRISM
multi-angle measurements due to its higher speed. In this way MARS-ReCO avoids costly 3D inter-
polation in angles. Eventually, I calculate the LUT for a set of twelve atmospheric opacities values
taer = {0, 0.05, 0.1, 0.2, 0.33, 0.5, 0.75, 1, 1.4, 2.0, 2.8, 4.0}. The selected set of AOT values are not homo-
geneously distributed because the contribution of a varying aerosol content to the remotely sensed
signal is more variable for low dust concentrations (see Figure 5.6). In this case the consideration of a
nearest neighbor strategy is not adequate since increasing the number of AOT values would increase
substantially the size of the LUT as well. A linear interpolation is therefore used to extrapolate the
LUT functions for the required AOT. This rather simple interpolation strategy is appropriate in our
case because of its speed and the fact that functions stored in the LUT vary rather smoothly according
to AOT, thus not presenting high variations that could not be reproduced by a linear interpolation.
The grid density in terms of acquisition and atmospheric configurations is selected empirically from
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considerations of accuracy and of minimal required memory as it is done in [108]. The current size of
the LUT is ⇠50 megabytes for each CRISM spectral band.

At this point, a few basic input radiative functions are necessary in order to compute the functions
stored in the LUT. I decide to compute these four functions, namely

�

RD, Ds, Gd, c0
�

, for the aforemen-
tioned set of atmospheric conditions and acquisition angles using the RT program DISORT [168]. In
Figure 5.5 I show a scheme illustrating the role of each of the aforementioned functions that play a
role in the atmospheric RT. In the following I detail each input function and the way in which they are
computed.

Surface! target!

Gd 

Ds 

RD 

c0 

Atmosphere!

Figure 5.5.: Scheme depicting the four input atmospheric functions
�

RD, Ds, Gd, c0
�

that are needed to
calculate all the functions stored in the LUT of MARS-ReCO. In this figure, straight lines stand for
direct and diffuse radiation.

• RD ⇥

sr�1⇤: The atmospheric path reflectance refers to the additive component of radiation di-
vided by µ0S

l

received by a sensor that does not originate from the surface but exclusively
through scattering in the atmosphere. I compute this term using DISORT by considering a dark
surface (surface albedo set to 0) and simulating the TOA radiation at the sensor level.

• Ds
⇥

Wm�2sr�1⇤: The path radiance incident on the surface can be computed at the bottom-of-
atmosphere, the inferior boundary condition of the RTE. Again, I consider a completely dark
surface in order to avoid multiple reflections between the surface and the atmosphere.

• Gd ⇥sr�1⇤: The diffuse Green’s function is also called the bi-directional upward diffuse transmit-
tance divided by p. I calculate this term similarly to the path radiance incident on the surface
Ds by simply reversing the direction of light propagation or, in other words, by setting the atmo-
spheric layers in reverse order and normalizing the result by pS

l

. In the case of an homogeneous
atmosphere like ours, the problem for the Green’s function becomes identical to the problem for
Ds provided that the substitution s0 ! s is done. In the calculation of Gd I also put the surface
albedo to 0.

• c0: The spherical albedo of the atmosphere is the fraction of the total light falling on the atmo-
sphere that is reflected from it in all directions. I choose a special option of DISORT that allows
retrieving the albedo of the entire medium as a function of SZA cosine. In this way I obtain
the final spherical albedo of the atmosphere of Mars after integration of this DISORT output in
µ0 following Equation 1.5. Figure 5.6 illustrates the albedo of the entire medium depending on
illumination angle and dust content.
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Figure 5.6.: Albedo of the atmosphere depending on illumination angle SZA and AOT. As expected,
albedo is higher for high dust contents and large optical path lengths n (n µ q0). These data have
been generated using DISORT by considering an atmosphere with different values of AOT and a
completely dark surface. The integration of these data in SZA provides the spherical albedo c0 that
is used in the generation of the LUT of MARS-ReCO.

Once these basic functions are precomputed, I calculate the derived quantities from Equation 5.17
to Equation 5.26 for the specified set of geometries and atmospheric opacities of the LUT. For this
purpose, I utilize classical numerical methods in order to solve the different types of integrals in a
smart yet accurate manner. I distinguish two types of integrals (see Equation 5.23 as reference), namely
(i) integrals in azimuthal angle j from 0 to 2p and (ii) integrals in cosine of illumination µ0 or viewing
angle µ from 0 to 1 or from -1 to 0.

First, I propose to solve the first type of integrals using the Fourier series expansion. Being f (j) an
arbitrary function to be integrated in j, it can be decomposed such that

f (j) =
1
2

a0 +
•

Â
n=1

an cos (nj) +
•

Â
n=1

bn sin (nj) . (5.31)

Given the 2p-periodicity in azimuthal angle of all functions used in RT, the solution of the first type of
integrals can be expressed such that

ˆ 2p

0
f (j) dj =

1
2

a02p = pa0. (5.32)

The first term of the Fourier series expansion a0 can be calculated by computational techniques such as
the FFT. This technique allows the calculation of the frequency components for any data. More details
on this mathematical method as well as the Fourier series expansion are given in section 13.2.
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Second, integrals in µ0 or µ may be resolved by approximating them to a quadrature rule in the domain
of integration equal [0 . . . 1] or [�1 . . . 0]. In particular I use a n-point Gaussian quadrature rule that
yields an accurate result by a suitable choice of the evaluation points and corresponding weights. The
rule is stated as

ˆ b

a
f (x) dx ⇡

n

Â
i=1

wi f (xi) , (5.33)

where xi are the evaluation points and wi are the corresponding weights, which are tabulated in the
literature. Gaussian quadratures produce accurate results if the function f (x) is well approximated
by a polynomial function within the integration range. In our case all atmospheric functions are
quite smooth and thus Gaussian quadratures are appropriate. Severe testing revealed that a 16-point
Gaussian quadrature is satisfactory to compute all integrals since higher orders did not improve the
results. More details on this mathematical method are given in section 13.3.

Eventually, I highlight Equation 5.17, Equation 5.21 and Equation 5.22 which represent a different type
of integral. Indeed, these functions depend on an integral in j

0 that is formed by one function that
depends on j

0 and another that depends on j � j

0. Under these circumstances I propose to solve this
type of integrals using the convolution theorem that is defined as

bˆ
a

f (j

0)g(j � j

0)dj

0 = F�1 {F { f ⇤ g}} = F�1 {F { f } F {g}} , (5.34)

where F { f } is the Fourier transform of function f . Again I use a FFT algorithm to compute the
Fourier transform. This mathematical theorem is summarized in section 13.4.

By following the previous numerical methods, I build the LUT by computing functions f 1
k , f 2

k , f 3
k , c0,

D1
k , D3

k , Gav, G1
k , G11

k , H1
k , Ed

0, E0, and RD for every geometric and atmospheric combination that is
defined at the beginning of the present section. Results are stored in memory individually for each
CRISM spectral band, ready to use for processing with MARS-ReCO.

5.5. Inversion strategy for surface retrieval

At this point I have introduced the RT formulation and the LUT on which MARS-ReCO is built. This
two key elements provide the means for a robust and fast retrieval of the surface BRF by considering
a non-Lambertian surface. In the present section I describe the strategy that is adopted to perform
atmospheric correction. This strategy is inspired by the approach referred to as ASRVN (AERONET-
based Surface Reflectance Validation Network) developed by Wang et al. in [183] and based on the RT
formulation described in section 5.3.

Given an arbitrary CRISM multi-angle observation the IPAG-DP introduced in chapter 4 generates
the corresponding CSP product. I remind the reader that this data set is composed by a collection
of photometric curves in TOA apparent reflectance units, each one corresponding to a given super-
pixel. Each super-pixel corresponds to a given ~180⇥180 m2 area at the surface (see section 14.3 for
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details). MARS-ReCO is devised to perform atmospheric correction due to aerosols of all photometric
curves within a given spectral band of the CSP product by sequentially processing each super-pixel
independently.

Being Rp =
�

R1, . . . RNg
 

the photometric curve corresponding to the pth super-pixel of an arbitrary
CSP spectral band, the set of three RTLS coefficients that determine the surface BRF of the associated
area at the surface are directly retrieved by fitting the RT solution described in Equation 5.30 to the set
of Ng (Ng  11) available angular measurements. The quasi-linear form of Equation 5.30 leads to a
very efficient iterative algorithm aimed at minimizing the root mean square error (RMSE) between the
angular measurements and the RT model defined as

RMSE = Â
j

⇣

r(n)
j � FL

j kL(n) � FV
j kV(n) � FG

j kG(n)
⌘2

, (5.35)

where

r(n)
j = Rj � RD

j � Rnl(n�1)
j , (5.36)

where index j denotes each measurement at a different viewing angle, and n is the iteration number.
Equation 5.35 provides an explicit least-squares solution for the RTLS kernel weights ~K =

�

kL, kG, kV T.
In matrix form the solution is written as:

~K(n) = A�1
~b(n), (5.37)

where

A =

2

6

6

6

6

4

Âj

⇣

FL
j

⌘2
Âj FG

j FL
j Âj FV

j FL
j

Âj FG
j FL

j Âj

⇣

FG
j

⌘2
Âj FV

j FG
j

Âj FV
j FL

j Âj FV
j FG

j Âj

⇣

FV
j

⌘2

3

7

7

7

7

5

, ~b(n) =

2

6

6

4

Âj r(n)
j FL

j

Âj r(n)
j FG

j

Âj r(n)
j FV

j

3

7

7

5

. (5.38)

At each iteration the retrieved ~K provides a refined estimate of the surface BRF that will be used
in the upcoming iteration. The iterative process starts with a couple of assumptions regarding the
surface (detailed in subsection 5.5.1) and stops when an intrinsic process checking the validity of the
retrieved BRF (detailed in subsection 5.5.2) decides that the current ~K is satisfactory. MARS-ReCO then
addresses the correction of the associated photometric curve of the following super-pixel and so forth.

The described inversion strategy represents the core of the algorithm MARS-ReCO and has proved to
be very robust and fast when processing CRISM multi-angle data. In particular I observe computa-
tional times of roughly 20 seconds to process one spectral band of a CSP product (~3000 photometric
curves) in a traditional computer. The computational burden is insignificant in front of traditional
inversion algorithms. The major reason of this improvement stems from the linearization of the RT
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formulation and the low size of the LUT due to the RTLS model and the Green’s function method,
respectively.

5.5.1. Initial assumptions

In the following I detail a couple of hypothesis regarding the surface that must be done to start the
described iterative strategy. The non-linear term Rnl and the multiple reflection factor a depend on the
surface reflectance, which is unknown at first, making Equation 5.30 weakly non-linear.

• On the one hand, function Rnl describes the contribution resulting from the direct or diffuse
transmission of the upward radiance at the surface arising from the reflection of the environ-
mental illumination. This function is due to the multiple reflections of the direct-beam sunlight
between the surface and the atmosphere. Since function Rnl is small in front of other terms be-
cause Rnl µ qc0, Wang et al. propose to neglect this term in the first iteration of the ASRVN
strategy putting Rnl(0)

j = 0 [183].

• On the other hand, functions Fk are still weakly non-linear via parameter a, which describes
the contribution resulting from the direct or diffuse transmission of the upward radiance at the
surface arising from the reflection of the direct and the diffuse incident sunlight. This non-
linearity is also omitted by Wang et al. by setting a

(0) = 1.

Considering these two assumptions Equation 5.30 becomes a linear function of the RTLS parameters
and MARS-ReCO can thus estimate the coefficients ~K in the first iteration. In following iterations
both terms Rnl and a are calculated using the ~K values of the previous iteration until convergence
is achieved. In this study I decided to investigate the impact of these two assumption on the final
retrieved BRF.

Regarding the assumption for Rnl(0)
j , MARS-ReCO proves to converge with high accuracy in a few

iterations because the non-linear terms are usually quite small. Nevertheless, the assumption regarding
the multiple reflection factor a

(0) is adapted to work for dark surfaces whose albedo q is close to zero
(if a = (1 � qc0)�1 = 1, then q = 0). It is straightforward to realize that the inversion problem
will converge more slowly for brighter surfaces such as snow-covered terrains with q ⇡ 1. In this
matter Lyapustin et al. performs surface retrievals from snow-covered images with a similar inversion
strategy than Wang et al. but assuming a spectrally dependent albedo such that a

(0) 6=1 [106]. In this
case convergence is achieved over bright snow in the visible range in a higher number of iterations
than for longer wavelengths where snow is less reflective. This strategy, however, requires a priori
knowledge on the reflectance properties of the surface in order to set a

(0) for each spectral band.

Given the large variety of surface types that exist on Mars I propose to adopt a different strategy for
MARS-ReCO. Since the proposed atmospheric correction approach is intended to work on any type
of surface I do not consider appropriate to consider any a priori on the surface. I therefore propose
to set the surface albedo for the first iteration q(0) as the value resulting from averaging the TOA
apparent reflectances that correspond to those viewing geometries for which aerosol contribution is
less predominant. This first guess is usually close to the real surface albedo as aerosols mostly scatter
in the forward direction. As a consequence, measurements acquired under low phase angles are less
affected by aerosols and are appropriate for the first guess on q(0). This approach is made possible
because of the two modes in terms of relative azimuth (one of them corresponding to low phase
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angles) that are generally present in CRISM observations (review section 1.4 for details). The proposed
strategy is intended to speed up the convergence of the inversion strategy and to avoid potential false
solutions.

5.5.2. Checking the validity of the retrieved surface

The quality and the physical sense of the retrieved BRF are not always assured by the inversion per-
formed by Equation 5.37. Although the RTLS model leads to an efficient inversion algorithm there are
some limitations associated with this BRF model (review subsubsection 2.3.1.4). These factors reduce
the stability and uniqueness of the solutions such that small perturbations in measurements may lead
to significantly different solutions. In some cases a mathematical solution may exist for the inverse
problem (i.e. a triplet of RTLS coefficients kL, kG, kV minimizing the RMSE) while its physical correct-
ness may be unsatisfactory. As a matter of fact, the high goodness-of-fit at the measurement angles
does not guarantee the correct shape of the retrieved BRF and may result in negative BRF values at
other angles not considered in the inversion.

For this reason, the approach MARS-ReCO adopts a set of original tests inspired by the work of Wang
et al. [183] that aims at validating the retrieved BRF of a given super-pixel by checking its quality and
physical sense. If the solution is found to be deficient, the current inversion is aborted, and MARS-
ReCO proceeds with the following super-pixel. The inversion of a given photometric curve is carried
out iteratively. For each iteration n, the retrieved solution undergoes the following tests.

1. Before carrying out the inversion at iteration n MARS-ReCO checks if the photometric curve
has sufficient angular sampling. A simple criterion is chosen based on the range of cosine of the
VZA, namely µmax � µmin � 0.2. This simple yet efficient test is usually sufficient to ensure robust
retrievals as Wang et al. prove with MODIS multi-temporal data. Furthermore, I devise MARS-
ReCO such that the inversion is only performed if there are at least three angular measurements.
This threshold is adopted according to the results obtained from the sensitivity study that I shall
carry out in section 6.1. As might be expected, if the number of available measurements goes
below three or the range of VZA cosine goes below 0.2, the retrieval of the photometric curve is
aborted for the current spectral band. The inversion continues with the next test otherwise.

2. After the inversion performed following Equation 5.38 we check that the maximal difference over
all points of the photometric curve between measured and computed TOA reflectance does not
exceed a given threshold J such that

�

�

�

RCRISM
j � RRTLS

j

�

�

�

> J, (5.39)

Experiments proved that J = 0.05 provides a good trade-off between rejection of unsatisfactory
solutions and intrinsic limitations of the inversion strategy. Whether some angular measurements
surpass the previous threshold, the one with the highest deviation is excluded from the process
and the inversion is repeated in iteration n + 1. Contrarily, if a set of angular measurements
greater than three provides a good agreement with the model within J for all points, MARS-
ReCO proceeds with the next test.

3. The third trial verifies that the values of the direct-beam albedo q (q0) at q0 = 15º, 45º, 60º are
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positive and lower than unity. The inversion of the current photometric curve is discarded other-
wise as we consider that the retrieved ~K coefficients do not recreate a physically meaningful BRF.
The albedo, being an integral function of BRF and a fraction of radiation ranging from 0 to 1, is
especially sensitive to an incorrect BRF shape.

4. Whether the albedo values are found to be positive the new solution n is checked to be consistent
with the previous solution n � 1. This is done by checking that

�

�qn (q0) � qn�1 (q0)
�

�

< k, where
k is a threshold that has been empirically set to 1e�3. As might be expected, this test is only
performed when n > 0.

5. The consistency of the derived BRF and albedo from the photometric curve is further assured
by defining a confidence index. The confidence in the solution is initially low ( f lag = 0, when
n = 0). Each time the new retrieval agrees with the previous retrieval according to test number
four, f lag is increased by 1 and MARS-ReCO proceeds with the following iteration n + 1. The ~K
coefficients used in the n + 1 iteration when f lag increases are calculated as follow

~K(n) = w~K(n) + (1 � w)~K(n�1). (5.40)

The weight w depending on the confidence in the previous solution, which increases with the
value of f lag. In particular the weight is w = 1 when f lag = 1, w = 0.8 when f lag = 2, w = 0.6
when f lag = 3, and w = 0.5 thereafter. The retrieval is considered to be reliable when f lag = 4
. This updating method mitigates the random noise of retrievals and increases the quality of
solutions when the non-linear term Rnl(0)

j is not negligible and the first guess of a

(0) is far from
reality.

According to this validation step super-pixels passing test number 2 may reach convergence after
n = 4, which is the minimum number of iterations to reach f lag = 4. The number of iterations may be
higher n > 4 for those super-pixels for which an angular measurement is discarded in test number 2.
In general most successfully inverted super-pixels reach convergence after 4-5 iterations. The presented
validity process has proved to reject the majority of physically meaningless BRF solutions provided by
MARS-ReCO.
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6
Validation

In this chapter I aim at testing thoroughly the atmospheric correction addressed by MARS-ReCO. In
this way its suitability to process data acquired by the CRISM spectrometer is tested. On the one hand,
the accuracy of the semi-analytical formula for the TOA radiance derived with the Green’s function
method expressed by subsection 5.3.3 is proved to be very high, usually within a few tenths of a
percent, in [107, 109]. The accuracy of the RT formulation on which MARS-ReCO is based is hence not
evaluated in this dissertation. On the other hand, I propose to test the capabilities of MARS-ReCO on
simulated data mimicking the surface and atmospheric properties of the planet Mars before applying it
to real CRISM data. This goal is achieved by a sensitivity study that aims at identifying the acquisition
geometries and atmospheric configurations under which MARS-ReCO becomes less reliable. With this
aim the use of synthetic data is required as a sensitivity study based on real data would be limited to
a few sites of Mars and dates for which ground truth data are available.

6.1. Sensitivity study

In this section I perform the validation of the proposed algorithm for atmospheric correction of CRISM
targeted observations. With this goal I carry out the inversion of realistic simulated data by MARS-
ReCO. Synthetic data sets are made available by considering the optical properties of the martian
atmosphere and several types of martian materials that have characterized in the past using data from
the MER Spirit (see section 1.2). In the generation of the simulated data I consider a large range of
atmospheric conditions in order to test MARS-ReCO under clear and turbid atmospheric conditions.
Likewise, I mimic the functioning of the CRISM instrument to generate CRISM-like data sets within
the range of acquisition geometries in which this sensor operates. The goal of this sensitivity study
is to identify the potential atmospheric or geometric conditions that may substantially decrease the
quality of the surface retrievals or may simply make then unfeasible.
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6.1.1. Validation strategy

Figure 6.1 details the sensitivity study devised to test the algorithm MARS-ReCO. First, I consider four
types of mineral materials that are present in the Gusev crater of Mars and whose reflectances were
acquired by the Pancam instrument aboard the MER Spirit at 753 nm and fitted to a BRDF model in
[84]. In that study Johnson et al. use a Hapke’s model accounting for the roughness of the surface
(see subsubsection 2.3.1.2 and Equation 2.11). The Gusev crater represents a benchmark in the martian
community and shall be further detailed in section 7.1. Second, the surface BRDF data are manipu-
lated to simulate an overlaying atmosphere composed of mineral aerosols. For that purpose I use the
radiative transfer properties of aerosols retrieved from CRISM multi-angle data by Wolff et al. in or-
der to be consistent with the functioning of MARS-ReCO. Simulated TOA radiances encompassing the
contributions of the surface and of the aerosols are generated by DISORT using several combinations of
illumination geometry, azimuthal geometry and dust content, from typical to extreme configurations.
I then manipulate the synthetic TOA radiances in order to build CRISM-like photometric curves at 753
nm by mimicking the typical viewing angles of a CRISM multi-angle observation. The construction
of CRISM-like data sets from these realistic photometric (see bullet number 1 in Figure 6.1) curves is
described in subsection 6.1.2. Afterward all simulated data sets are processed by MARS-ReCO to re-
trieve the RTLS coefficients ~K that model the surface BRDF corresponding to each configuration set by
a given acquisition geometry and atmospheric opacity. The configurations for which MARS-ReCO fails
to provide a satisfactory result are investigated in subsection 6.1.3 (see bullet number 2 in Figure 6.1).
Eventually I carry out BRF comparisons between the original Hapke’s model and the retrieved BRF
one for a large range of angles (see bullet number 3 in Figure 6.1) in subsection 6.1.4. In this way the
potential limitations of MARS-ReCO are identified. In the processing of CRISM-like simulated data
I feed MARS-ReCO with the exact AOT value, which is not the case in reality. I hence remark that
observed errors come only from the intrinsic limitations of MARS-ReCO under unfavorable conditions.

4 types of mineral 
components 

observed by Pancam!

DISORT!

MARS-
ReCO!

CRISM-
like 

simulated 
data sets!

BRF from 
Hapke 
model!

BRF from  
RTLS model!

Retrieved 
RTLS 

parameters!

Hapke parameters 
retrieved by 

Johnson et al. 2006!

?! 1!

2!

3!

Figure 6.1.: Schematic diagram of the comparison strategy performed for the sensitivity study. The
accuracy of MARS-ReCO is studied by comparing the retrieved surface BRF from simulated CRISM-
like data with the original Hapke’s model for the surface reflectance. Yellow bullets refer to the three
major steps described in the text.
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6.1.2. Simulated data

I consider two types of endmembers to recreate the properties of the surface of Mars. Two regions of
interest identified by Johnson et al. in [84] are selected, namely “Soil”, which corresponds to typical
soils of intermediate redness and albedo, and “Red rock”, which is related to rock facets exhibiting red-
ness and albedo comparable to typical soils. I choose the endmember “Soil” because it is representative
at the spatial scale of analysis that is carried out using orbital CRISM data. To expand the simulation,
the endmember “Red rock” is also chosen as its photometric properties are more anisotropic than
soils’. Figure 6.2 shows a set of composite images acquired by Pancam illustrating the two selected
endmembers and others.

Figure 6.2.: (top) Color composite mosaics derived from three different times of day for the same
wavelength: (a) 432 nm, (b) 753 nm, and (c) 1009 nm. (bottom) Regions of interest selected for
photometric analyses: green = Bright soil; yellow = Soil; magenta = Dark soils; cyan = Bright rocks;
red = Red rocks; blue = Gray rocks. Credit: [84].

Table 6.1 details the Hapke’s parameters retrieved by Johnson et al. for each endmember of study. In
[84] measurements are fitted using a Hapke’s model using a 1-lobe and a 2-lobe Henyey-Greenstein
phase functions. I consider the second case in order to test the validity of the RTLS model in the
challenging case accounting for the variation of the surface BRDF in azimuthal angle in the presence
of two scattering lobes. The Pancam measurements that were used to fit the surface model by Johnson
et al. are related to a phase domain of 0-100° for the endmember “Red rock” and 0-125° for the
endmember “Soil”. I consider this phase domain as sufficient to constrain the BRDF model that will
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be eventually compared with the one retrieved from CRISM data by MARS-ReCO. As it is shown in
Table 6.1 I consider two cases, one bright and one dark (indexes 1 and 2, respectively), for every selected
surface endmember. In this way the consequences of processing brighter surfaces with MARS-ReCO
are also explored. For instance, the endmember Soil-2 represents a backscattering (cSoil�2 = 0.55 > 0.5,
see subsection 2.1.2) and more darker (wSoil�2 = 0.65) surface than Soil-1 (wSoil�2 = 0.69) probably
because to its rocky nature, while Red rock-1 is related to the brightest and most forward scattering
surface (wRed rock�1 = 0.83, cRed rock�1 = 0.25) out of the four endmembers considered in this study.
In this way the present sensitivity study deals with a complete and diverse range of martian mineral
surfaces embracing the variability of dusty and rocky surface properties in a representative manner.

Endmember / Hapke’s param. at 753 nm w q̄ b c h B0

Soil-1 (table 4c in [84]) 0.69 11 0.24 0.48 0.085 1
Soil-2 (table 6c in [84]) 0.65 12 0.17 0.55 0.073 1

Red rock-1 (table 4b in [84]) 0.83 19 0.45 0.25 0.0079 0.14
Red rock-2 (table 8b in [84]) 0.65 14 0.17 0.80 0.069 1

Table 6.1.: Hapke’s parameters of the four endmembers considered in the sensitivity study. These data
are retrieved from the study of Johnson et al. with Pancam data of the Spirit Mars Exploration Rover
[84].

In Figure 6.1 I detail how the DISORT engine is fed by the Hapke’s BDRF model in Equation 2.11
using one of the four sets of parameters described in Table 6.1, depending on the chosen endmember.
Alternatively, Table 6.2 details the set of 264 combinations of geometric and atmospheric properties that
are chosen to generate the CRISM-like photometric curves. I decide to use a single configuration in
terms of VZA since the set of eleven viewing angles in CRISM observations is quite constant. As it can
be seen, the first and last measurements correspond to the most extreme VZA values while the sixth
point is acquired at 25º, which corresponds to the average VZA value of CRISM central scans. Up to six
SZA values are considered to embrace the angular range in which CRISM works, going from equatorial
observations (60º > q0 > 30º) to polar acquisitions (q0 > 70º) . Regarding the phase domain I select
four archetypal types of photometric curves in terms of azimuthal mode of a CRISM observation (see
section 1.4). The sole case with a single azimuthal mode is the fourth combination which represents
the extreme case when the Sun and the satellite positions are orthogonal (jin = jout = 90º). It is
straightforward to see that the azimuthal combination number 1 is related to the photometric curves
with higher phase domain while number 4 represents the poorer one. Since surfaces are not considered
to have privileged scattering directions, and I therefore work with relative azimuthal angles (j0 = 0º),
azimuthal angles such that j > 180º are not considered in this study. I finally consider a varying
range of atmospheric opacities to alter the CRISM-like data sets by simulating TOA radiance at eleven
different atmospheric opacities. The determination of the highest AOT for which MARS-ReCO is able
to retrieve surface signatures satisfactorily is one of the major objectives of this sensitivity study.

6.1.3. Atmospheric correction

In this section the simulated data set introduced above is corrected for aerosol effects using the pro-
posed algorithm MARS-ReCO. Each CRISM-like photometric curve is processed by the inversion strat-
egy described in section 5.5. In Figure 6.3 I illustrate the quality of the inversion process in terms of (i)
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Parameter Combinations
q (deg.) 1 comb.: [70, 63.5, 57.5, 52, 46.5, 25, 46.5, 52, 57.5, 63.5, 70]
q0 (deg.) 6 comb.: [30; 40; 50; 60; 70; 80]

jin, jout (deg.) 4 comb.: [0, 180; 30, 150; 60, 120; 90, 90]
taer 11 comb.: [0; 0.1; 0.33; 0.5; 1; 1.5; 2; 2.5; 3; 3.5; 4]

Table 6.2.: Geometric and atmospheric configurations that are considered for the simulated CRISM-like
data set of the sensitivity study of MARS-ReCO.

percentage of super-pixels that have failed to be inverted and (ii) average RMSE between the simulated
measurements and the TOA expression fed by the LUT (see Equation 5.35). The two indicators are
presented individually for every surface endmember and their dependence. The parameters of study
(i.e. AOT, SZA and phase domain) are explored as follow.
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Figure 6.3.: (top) Percentage of unsuccessful retrievals obtained by MARS-ReCO according to AOT,
SZA and azimuthal configuration detailed in Table 6.2. (bottom) Average RMSE resulting from
fitting the TOA reflectance expression fed by the LUT to the synthetic data.

According to the percentage of unsuccessful surface retrievals detailed in Figure 6.3 (top-left) I con-
clude that MARS-ReCO performs satisfactorily for AOT values up to 3 regardless of the geometric
configuration. Endmember Soil-2 represents the sole exception as the atmospheric correction fails
when taer > 2.5. Unsatisfactory retrievals usually happen when negative values of surface albedo or
high errors between the measurements and the RTLS model are obtained (review subsection 5.5.2). As
it can be seen, more than 50% retrievals are unsuccessful when processing photometric curves that have
been generated with an AOT greater than 3. In this case the higher contribution of the atmosphere
disables the retrieval of the weaker signal coming from the surface. I draw the attention to the case
of very clear atmospheric conditions (taer  0.1) for which MARS-ReCO surprisingly performs several
unsuccessful retrievals. Further investigation carried out in Figure 6.1.4 and Figure 6.1.4 shows that
these results correspond to the configurations with poor phase domain and maximum SZA. I deduce
that these results point to the lower performance of the RTLS model to recreate surfaces in these rather
extreme configurations (see subsubsection 2.3.1.4). As regards the study on the SZA, experiments
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summarized in Figure 6.3 (top-center) show that MARS-ReCO does not perform satisfactorily with a
rejection rate up to 40% when the simulated data are acquired with the most extreme illumination
angle, namely q0 = 80º. This circumstance may be explained again by the intrinsic limitations of the
RTLS parametrization under these illumination conditions (see subsubsection 2.3.1.4). Regarding the
phase domain, MARS-ReCO becomes more unstable for those simulated super-pixels that are related
to a poor sampling in terms of azimuth. I consider this result as evident since photometric curves
related to a single mode of azimuthal angle have theoretically half measurements that are similar to
the other half. In this extreme case I deal with the shortest range of phase angles, thus justifying
the worse results. As for the four types of endmembers, results show that the endmember Soil-2 is
more problematic in terms of unsatisfactory retrievals. This circumstance could be caused by its lower
albedo and anisotropy that make this endmember less distinguishable by MARS-ReCO under turbid
atmosphere conditions.

Figure 6.3 (bottom) details the average error in terms of RMSE between the observations and the
model. According to the results I note that the error of fitting made by MARS-ReCO decreases with
higher atmospheric opacities. I do not consider this result to be surprising since the additive term
of the atmosphere, namely the atmospheric path reflectance RD, predominates in this range of AOT
while the contribution of the surface is minimal. In this case the RT model does not need an accurate
estimate of the surface (i.e. coefficients ~K) to recreate satisfactorily the TOA reflectance. Contrarily,
the TOA reflectance fitting is less satisfactory for higher SZA values similarly to what it happened
with the percentage of unsuccessful retrievals. As for the azimuthal configuration, lower RMSE values
are obtained for those configurations related to poorer phase domain. At this point I note that lower
RMSE values do not necessarily mean better surface retrievals since the RTLS model can satisfactorily
fit the multi-angle measurements while providing a physically incorrect solution. This is the case of
the data combinations generated at high AOT as it is explained in Figure 6.6. Eventually, I underline
that the endmember Soil-2 shows one of the lowest RMSE errors while Figure 6.3 (top) shows that it
corresponds to the highest rate of unsuccessful retrievals. This result may mean that although this
endmember is harder to retrieve because of its lower albedo and lower degree of anisotropy (w = 0.65
and c = 0.55), the corresponding bland BRF is fitted in a more accurate manner by the RTLS model.
Contrarily, endmember Red rock-1 presents the higher RMSE reasonably because of its higher albedo
and anisotropy (w = 0.83 and c = 0.25). In this matter I suggest that the forward scattering peak
of endmember Red rock-1 might be more difficult to be retrieved accurately due to the predominant
contribution of aerosol at these specific azimuthal angles.

I conclude this experiment by stating the BRF retrieval by MARS-ReCO is generally possible, yet not
necessary accurate, when the signal coming from the surface is significant compared to the signal
coming from the atmosphere. By significant I mean a favorable combination of (i) surface albedo,
which must not be too low; (ii) surface anisotropy, which must be different from the photometric curve
of the aerosols; (iii) and AOT, which must not be very high.

6.1.4. Evaluation of retrieved surface

After the ~K coefficients of the RTLS model are obtained for every super-pixel that has been satisfactorily
processed, I propose to evaluate MARS-ReCO in the following manner:

1. The retrieved BRF of a given super-pixel, which corresponds to a specific endmember and a
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specific geometric/atmospheric configurations, is reconstructed based on the estimated ~K coeffi-
cients and the RTLS model described in Equation 5.10.

2. The same set of BRF values are generated based on the Hapke’s model in Equation 2.11 and the
reference parameters summarized in Table 6.1. This second data set represents the reference BRF.

The second stage of the sensitivity study aims at evaluating the differences between the reference BRF
derived from Pancam measurements and the BRF retrieved by MARS-ReCO from the the CRISM-like
data set. I remind the reader that the simulated data set is generated by DISORT by feeding it with
the scattering properties of the surface retrieved by Pancam. In order to perform this evaluation I
consider a large and representative grid of geometries that explores the whole upper hemisphere (i.e.
q = [0º . . . 85º]; Dq = 2º; j = [0º . . . 180º]; Dj = 3º) at the Sun incidence angle q0 that was used for
the generation of each super-pixel. I restrict the evaluation of the retrieved BRF model to this sole
illumination direction since it would be too unpredictable to investigate other ranges of q0 in which
the BRF can be completely different.

Figure 6.4 shows the average absolute difference in BRF units between the retrieved RTLS model and
the reference Hapke’s model. Results according to AOT illustrate the goodness of the BRF retrievals
when taer < 2. In the interval 2 < taer < 3 all endmembers are also characterized satisfactorily
(error ⇠ 0.1) except for Soil-2. I underline the agreement of this result with Figure 6.3 (top), which
detects the endmember Soil-2 as the most problematic material in terms of percentage of satisfactory
retrievals. Again, the darker nature of this endmember along with its less marked anisotropy may
make it less distinguishable under turbid atmospheres when the contribution of aerosols predomi-
nates. The Figure 6.4 (center) and Figure 6.4 (right) are computed for all geometric combinations when
taer  2. I make this decision according to Figure 6.3 (top-left), which proves that retrievals above this
atmospheric opacity are not reliable enough. In this case none of the two graphs provides valid infor-
mation that can be generalized as the BRF retrieval error seems quite homogeneous according to SZA
and azimuthal configuration. I remark, however, that Figure 6.4 (center) and Figure 6.4 (right) do not
consider the unsuccessful retrievals that mostly happen for high SZA values and poor phase domains.
According to these two figures I draw the conclusion that the BRF error mostly depends on the AOT
and the intrinsic photometric properties of the surface or, in other words, the selected endmember. Re-
garding the latter I remark that endmember Red rock-1 is related to the less accurate surface retrievals
according to the associated error, which is the highest among the four endmembers regardless of SZA
and phase domain. Contrarily, endmember Soil-1 obtains the most accurate retrievals. According to
these results I deduce that lower BRF errors may be obtained for darker and more isotropic surfaces,
albeit the retrieval of this type of surface is more problematic in presence of turbid atmospheres. This
conclusion agrees with the deductions drawn based on Figure 6.3. Contrarily, bright and anisotropic
surfaces may be easier to distinguish even in rather turbid atmospheres while the difficulty to derive an
accurate BRF model becomes higher. The previous inferences regarding the properties of the observed
surface shall be of great interest for the atmospheric correction of real CRISM data.

The present investigation continues by exploring the surface BRF reconstructed from the retrieved
coefficients ~K for a set of specific acquisition configurations in terms of AOT, SZA and phase domain.
The following plots from Figure 6.5 to Figure 6.10 show the reconstructed BRF in polar coordinates
with fixed SZA and in which the radial and angular coordinates correspond to the VZA and the
relative azimuth, respectively. Note that the backscattering direction, j = 0º, is situated at the right-
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Figure 6.4.: Average absolute error between the BRF computed by the reference Hapke’s model and the
RTLS model fed by the kernel weights retrieved by MARS-ReCO. (left) Error according to aerosol
optical thickness. Y axis is in logarithmic scale to appreciate the differences among endmembers
under a clear atmosphere. (center) Error according to illumination angle. (right) Error according to
the four azimuthal configurations. In the last two plots, only data with AOT<2 are considered.

hand side of the plots.

• Impact of the AOT. Figure 6.5 illustrates the validation of the retrieved RTLS model that is
estimated by MARS-ReCO for the endmember Soil-2 when taer = 1 and q0 = 30º. In this case I
select the first combination in azimuthal angle in which CRISM acquires the eleven measurements
with jin, jout = {0º,180º}, resulting in an acquisition phase domain g = {5º � 100º}. First, the
reference surface BRF is generated for the value of acquisition SZA (the one that was used in
the generation of the synthetic photometric curve) and a dense grid of VZA and j using the
Hapke’s parameters inferred by Johnson et al. in [84] [see Figure 6.5 (left)]. Similarly, the RTLS
model described in Equation 5.10 is then used to reconstruct the estimated BRF based on the
RTLS coefficients retrieved by MARS-ReCO [see Figure 6.5 (center)]. I use the same geometrical
grid for the evaluation of the retrieved RTLS. Eventually, Figure 6.5 (right) expresses the quality
of the estimated surface BRF by plotting the difference between both BRF data sets in terms of
percentage. As it can be seen, the RTLS model retrieves a predominantly backscattering surface,
which corresponds satisfactorily to the BRF shown by the Hapke’s model. I note a relatively low
average error around 4%. The sole exception is observed at azimuthal angle 0° where the RTLS
model is not able to reproduce the strong backscattering lobe of the Hapke’s model. I consider
this limitation of MARS-ReCO as expectable since the eleven available measurements do not
sample such a narrow lobe. As a possible solution to recreate the opposition effect, I propose the
combination of several CRISM observations corresponding to different configurations in terms of
azimuth and solar incidence angle. However, it is important to remember that the RTLS model
does not consider the opposition effect. This strategy will be adopted in chapter 7.

The same experiment is now repeated for a greater atmospheric opacity in order to study the
effects of more turbid atmospheres on the accuracy of MARS-ReCO. In Figure 6.6 I consider an
opacity of taer = 3 which corresponds to a much higher probability of non-satisfactory retrievals
according to Figure 6.4. In this case I select one of the few configurations for which MARS-
ReCO works and, theoretically, provides a valid solution. As a matter of fact all tests detailed in
subsection 5.5.2 are satisfactorily passed by the configuration of study. According to Figure 6.6
MARS-ReCO, however, retrieves a surface BRF model that is far from being close to that used
in the generation of the synthetic data. This is especially the case for high viewing angles.
Under these extreme conditions MARS-ReCO overestimates the surface reflectance up to 100%
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Figure 6.5.: Surface BRF corresponding to the endmember Soil-2 generated using (left) the reference
Hapke’s model and (center) the RTLS model estimated by MARS-ReCO when taer = 1, q0 = 30º
and jin, jout = {0º,180º}. (right) Relative difference in percentage between the BRF obtained by
the Hapke’s model and the RTLS one. The BRF is plotted in polar coordinates for a dense range
of VZA and azimuthal angle and for the value of SZA that is used for generating the investigated
photometric curve.

in terms of BRF. I interpret this result as an under-correction of the aerosol contribution resulting
in an overestimation of the signal coming from the surface. This example illustrates that surface
retrievals may be physically incorrect despite a low inversion RMSE as it is shown in Figure 6.3
(bottom-left).
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Figure 6.6.: Same as Figure 6.5 when taer = 3.

• Impact of the SZA. In Figure 6.7 and Figure 6.8 I investigate the validation of the retrieved
surface BRF according to the illumination angle of acquisition. In this case the anisotropic end-
member Red rock-1 is retrieved by MARS-ReCO using a synthetic CRISM observation built with
a quite clear atmosphere (taer = 0.5) and a large azimuthal domain (jin, jout = {0º,180º}). Two
different values q0 = 30º and q0 = 80º are selected to explore the impact of high acquisition
illumination angles on the retrieval of very anisotropic surfaces such as endmember Red rock-
1. As it can be seen in Figure 6.7, when q0 = 30º (corresponding phase domain of acquisition
g = {5º � 100º}) the RTLS model reproduces satisfactorily a surface that presents a main forward
scattering lobe. Again, the narrow backscattering lobe of Red rock-1 is slightly detected (see
higher BRF values when j = 0º) but not well reproduced as TOA measurements are restricted
to the principal plane. Except for this problematic scattering feature, a closer look to Figure 6.7
(right) reveals that the average absolute error is 5% in percentage, even for the forward scattering
peak.
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Figure 6.7.: Surface BRF corresponding to the endmember Red rock-1 generated using (left) the refer-
ence Hapke’s model and (center) the RTLS model retrieved by MARS-ReCO with taer = 0.5, q0 = 30º
and jin, jout = {0º,180º}. (right) Relative difference between the BRF obtained by the Hapke’s model
and the RTLS one. The BRF is plotted in polar coordinates for a dense range of VZA and azimuthal
angle and the value of SZA that is used for generating the investigated photometric curve.

Contrarily, the higher Sun zenith angle that is used to acquire the TOA measurements related
to Figure 6.8 (i.e. q0 = 80º, acquisition phase domain g = {10º � 50º, 105º � 150º}) results in a
greater misclassification of endmember Red rock-1. In this case MARS-ReCO succeeds in retriev-
ing the backscattering lobe while it totally fails in detecting the forward scattering one. Although
the lobe at azimuth 0º is predominant at this specific SZA I cannot consider this retrieval to be
satisfactory because of the large average error (up to 140% in BRF units) that happen especially in
the forward scattering direction and the cross-principal plane. This result may explain the results
summarized in Figure 6.3 (top-left) in which some unsatisfactory retrievals are detected under
clear atmospheres. Albeit the present photometric curve of study is related to a low atmospheric
opacity (taer = 0.5) the extreme SZA used in the acquisition may prevent the RTLS model to
accurately fit the observations (see subsubsection 2.3.1.4). Furthermore, the phase domain is not
continuous in this case, which may also trouble the BRF retrieval.
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Figure 6.8.: Same as Figure 6.7 when q0 = 80º.

• Impact of the azimuthal modes. In order to study the phase domain of photometric curves I
carry out an experiment using a synthetic CRISM-like data set composed by endmember Red
rock-2 and observed by CRISM with taer = 0 and q0 = 30º. I select a completely clear atmosphere
to further investigate the few unsatisfactory retrievals that are found under these conditions [see
Figure 6.3 (top-left)]. Figure 6.9 and Figure 6.10 explore the two extreme cases in azimuthal angle
when jin, jout = {0º,180º} (acquisition phase domain g = {5º � 100º}) and jin, jout = {90º,90º}
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(acquisition phase domain g = {38º � 73º}), respectively. I remind that the phase domain that
can be explored by CRISM also depends on the solar incidence angle. Since considering multiple
solar incidence angles would considerably expand this section I decide to only consider one
value of acquisition SZA (i.e. q0 = 30º). In the first case MARS-ReCO succeeds in reconstructing
the photometry of the endmember of study although it reproduces a broader and more diffuse
backscattering lobe. This limitation is in agreement with the lack of angular measurements that
has been detailed in previous experiments. As it is shown by Figure 6.9 (right) the average error
in percentage is roughly 5%, except for the opposition effect in which the limitations of the RTLS
model are visible.
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Figure 6.9.: Surface BRF corresponding to the endmember Red rock-2 generated using (left) the refer-
ence Hapke’s model and (center) the RTLS model retrieved by MARS-ReCO with taer = 0, q0 = 30º
and jin, jout = {0º,180º}. (right) Relative difference between the BRF obtained by the Hapke’s model
and the RTLS one. The BRF is plotted in polar coordinates for a dense range of VZA and the value
of SZA that is used for generating the investigated photometric curve.

In the second case illustrated by figure Figure 6.10 I perform the same experiment but considering
a narrower acquisition phase domain. In this experiment the photometric curve of study is
exclusively acquired at j = 90º. Surprisingly, MARS-ReCO retrieves the backscatter properties of
the endmember Red rock-2 with retrieval errors that are quite similar to the previous case with a
larger phase domain. I consider this result to be totally fortuitous as the available measurements
do not correspond to the principal plane. Nevertheless, some relatively high inaccuracies are
observed in the forward scattering direction where the reconstructed BRF is underestimated by a
30% in average. This result does not happen in the case when jin, jout = {0º,180º} and may point
to the reason why a few unsatisfactory retrievals happen under clear atmosphere conditions [see
Figure 6.3 (left)]. I conclude that unsatisfactory retrievals may indeed happen for limited phase
domains.

To conclude this experiment I remark that MARS-ReCO generally succeeds in retrieving a satisfactory
model for the surface reflectance. The proposed atmospheric correction method infers the primary
scattering properties of the surface (i.e. backscatter or forward scattering) for most of the cases. As
for the type of material MARS-ReCO presents some difficulties in retrieving surfaces characterized
by a weakly anisotropic BRF under relatively turbid atmospheric conditions. Contrarily, brighter and
strongly anisotropic materials are detected satisfactorily, while the retrieved BRF is more susceptible
to contain some inaccuracies. In general higher discrepancies occur under extreme illumination and
viewing angles in which the BRF is more anisotropic and less easily reproduced by the RTLS model. I
conclude that the eleven viewing geometries are generally not enough to represent narrow scattering

153



Chapter 6. Validation

85 57 29 0 29 57 85
85

57

29

0

29

57

85

VZ
A

Hapke; SZA=30 deg

 

 

85 57 29 0 29 57 85
85

57

29

0

29

57

85
Hapke − RTLS; SZA=30 deg

 

 

85 57 29 0 29 57 85
85

57

29

0

29

57

85

VZA

LSRT; SZA=30 deg

 

 

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

−5

0

5

10

15

20

25

30

�=180 �=0 �=180 �=0 �=180 �=0

Figure 6.10.: Same as Figure 6.9 when jin, jout = {90º, 90º}.

lobes (e.g. the opposition effect) in an accurate manner. Another reason to this limitation is that the
RTLS model does not have a kernel to model such a scattering effect. Nonetheless, experiments show
that the average BRF value is generally retrieved satisfactorily in most of the cases, especially at mild
VZA angles. I deduce that the Lambertian component of the RTLS model kL is generally estimated
accurately. Contrarily, the volumetric kV and geometric-optical kG kernel coefficients are harder to
constrain due to the scarcity of angular measurements. Special attention must be paid to data acquired
at high AOT, high SZA or poor phase domain for which the inversion may not be satisfactory as it
is shown in Figure 6.6, Figure 6.8 and Figure 6.10, respectively. This information must be taken into
account while processing CRISM observations acquired over the high latitudes of Mars, which are
usually acquired at q0  80. Regarding turbid atmospheres, Mars atmospheric conditions are usually
related to taer < 1 and thus MARS-ReCO is suitable for processing most of the CRISM observations.
Eventually, CRISM observations related to poor phase domains must be handled with care as it is
shown in subsection 7.3.1.

I propose a last experiment to conclude the present sensitivity study. Until now, eleven measurements
have been made available to perform atmospheric correction. Unfortunately, this is not the common
case for real CRISM observations as less than 40% of the area encompassed by a given observation is
observed by more than four geometries (see Figure 14.3). In this experiment I aim at determining the
worst case in terms of available measurements for which MARS-ReCO can operate with an acceptable
level of accuracy. With that aim I degrade the simulated CRISM-like data set by randomly removing
an increasing number of measurements of each photometric curve. I detail the results of performing
atmospheric correction by MARS-ReCO on the resulting data set as follow:

• Impact of the available measurements. Figure 6.11 plots the two parameters that have been
used to monitor the quality of MARS-ReCO in the previous experiments. First Figure 6.11 (left)
shows the percentage of unsuccessful surface retrievals. As it can be seen, this indicator is quite
stable up to four removed measurements while it increases by 10% for the range between six
and three available measurements. According to these results I state that MARS-ReCO is quite
robust when dealing with low numbers of angular measurements. Beyond the threshold of
three measurements the success rate drops as expected by more than 50%, reaching a 80% of
unsuccessful retrievals when only a couple of measurements are available. On the other hand, I
consider the inversion RMSE indicator as not being relevant in this particular experiment since it
is easier to fit the RTLS model when there are a few available measurements.

Further experiments are performed by evaluating the average absolute error between the BRF

154



Chapter 6. Validation

10 9 8 7 6 5 4 3 2 1
0

20

40

60

80

100

Available measurements

Ra
te

 o
f u

ns
uc

ce
ss

fu
l i

nv
er

sio
n 

(p
er

ce
nt

ag
e)

10 9 8 7 6 5 4 3 2 1
3

4

5

6

7

8

9

10
x 10−4

Available measurements

in
ve

rs
io

n 
RM

SE

Figure 6.11.: (left) Percentage of deficient retrievals for a decreasing number of available measurements.
(right) Inversion RMSE depending on available angular measurements.

retrieved by MARS-ReCO and the one generated using the reference Hapke’s model. Figure 6.12
details experiments performed with 11, 9, 7, 5 and 3 available measurements. According to
the presented results I remark that the performances observed for the eleven measurements are
severely degraded when more than six measurements are removed. However, the average error
remains relatively acceptable, especially if low dust contents and SZA values are considered.
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Figure 6.12.: Same as Figure 6.4 but the average absolute error is now plotted according to the available
measurements.

In conclusion of this last experiment I determine that the minimum number of available measurements
assuring the reliability of MARS-ReCO is equal to three as indicated by Figure 6.11 (left). This value
is defined as a minimum threshold in the inversion strategy detailed in subsection 5.5.2. The reason
for such a low value in comparison with the maximum number of measurements (i.e. 11) may be the
intrinsic angular functioning of the CRISM instrument. As a matter of fact, multi-angle measurements
are always aligned onto the same axis and therefore three appropriate measurements (e.g. one in the
forward scattering direction, one at nadir and one in the backscattering direction) may be enough to
retrieve the primary photometric properties of the investigated surface. While a higher number of mea-
surements may improve the retrieved BRF model I stress that the angular position of the measurements
may be much more relevant. Eventually, retrievals with a few measurements under non favorable con-
ditions (e.g. high dust contents and high SZA values) must be considered with skepticism according
to Figure 6.12.
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7
Experiments on CRISM data

After testing the capabilities of MARS-ReCO on simulated data, the goal of the present chapter is
to evaluate the suitability of the proposed atmospheric correction algorithm when applied to real
CRISM targeted observations1. For this purpose we define a validation strategy focused on CRISM
data acquired over a specific area of Mars, the Gusev crater, and summarized in Figure 7.1. The Gusev
crater is a suitable martian site to validate any atmospheric correction algorithm since it corresponds to
the landing site of the MER Spirit. Since 2004 this rover has acquired data on the terrains surrounding
the landing site under different atmospheric conditions. In particular photometric properties of the
minerals at the surface of this crater have been made available using data acquired by the Pancam
instrument aboard the rover Spirit. In the present experiment we propose to contrast the photometric
properties retrieved from orbital CRISM images using the MARS-ReCO approach with those presented
in previous works using Pancam data. With that aim four CRISM targeted observations of the Gusev
crater are selected and initially processed by the IPAG-DP proposed in this thesis in Part II. Afterward,
each corresponding multi-angle CSP product is individually processed by MARS-ReCO to compensate
for atmospheric effects and retrieve the BRF of each super-pixel. According to the sensitivity study
performed in section 6.1 the four retrieved data sets in BRF units are combined into a single data set
in order to increase the available angular sampling and therefore improve the photometric properties
of the materials in the crater to be retrieved from orbital data. This is possible since each CRISM
observation is related to a different acquisition geometry. The resulting integrated BRF data set is
fitted to a Hapke’s model as it is done in the experiments using Pancam data in [84]. MARS-ReCO
is eventually evaluated by performing a comparison, for several super-pixels, between the Hapke’s
parameters derived from the CRISM observations and those from the Pancam instrument.

This chapter is organized as follows. First, I present the study site in section 7.1 by giving details on

1This work has been done in collaboration with the “Institut de Recherche en Astrophysique et Planétologie”, Toulouse,
France, and the “Laboratoire Interactions et Dynamique des Environnements de Surface”, Paris, France, under the frame-
work of the M.Sc. thesis of Jennifer Fernando [60].
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Figure 7.1.: Scheme of the validation of the MARS-ReCO approach using real CRISM observations and
photometric properties retrieved from data acquired by the MER Spirit. Yellow bullets refer to the
three major steps described in the text.

the Gusev crater and the MER mission. In section 7.2 I introduce the data sets used in this study.
section 7.3 then details the comparison between the results of the surface retrieval and those from
independent studies. In section 7.4 I eventually report on a short experiment that is carried out to
evaluate the benefits of using an atmospheric correction algorithm that does not assume a Lambertian
surface.

7.1. The Gusev crater and the MER Spirit

The Gusev crater is a martian impact crater dated from the Noachian Period (between 4.1 and about
3.7 billion years ago) that is located at latitude 14.5º S and longitude 176.5º E (see Figure 7.2). This
geological structure measures about 160 km of diameter and was named in 1976 after the Russian as-
tronomer Matvei Gusev. The Gusev crater is located between the high cratered terrains of the southern
hemisphere and the flat plains of the northern hemisphere.

The Gusev crater was selected as a landing site for one of the MER in the NASA "Follow the water"
mission. This mission aimed at understanding how the water may have affected the martian envi-
ronment in the past. The Gusev crater was chosen by international scientists due to the hypothesis
that it could have played the role of a former lake where water and sediments carried by the southern
canyon Ma’adim Vallis might have been unloaded. Given this scientific interest the robotic rover Spirit
landed in the Gusev crater on January 4, 2004, in the region formed by the cratered plains in the west
of Columbia Hills. Spirit explored the surface of the crater from 2004 to 2010 in search of evidence of
water activity in the past (e.g. hydrated minerals). Figure 7.3 details the traverse map through the two
main types of terrain that have been explored by Spirit, the cratered plains and the Columbia Hills.
Both terrains are mainly composed of basalts rich in olivine [6].

In this scenario we choose to carry out the following experiments on the cratered plains that are close
to the landing site of Spirit. Indeed, photometric studies have been conducted in this region in the past
using in situ measurements acquired by the Pancam instrument aboard Spirit [84] and orbital HRSC
images [81]. The results presented in the literature represent a unique opportunity to evaluate the
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Figure 7.2.: An overall view of MER-A Spirit landing site (denoted with a star). Plotted using Generic
Mapping Tools and gridded MOLA data.

quality of the photometric properties retrieved by MARS-ReCO.

7.2. Selection of CRISM observations

Many CRISM observations have been acquired over the landing zone of the rover Spirit due to the
scientific interest of this area. Among all of them, we select four CRISM observations, namely FRT3192,
FRT553B, FRT8CE1 and FRTCDA5. These observations are chosen according to their corresponding
acquisition characteristics. All observations present a substantial spatial overlapping among them
and a high diversity of geometric conditions (i.e. various illumination configurations). The latter
element is crucial to constitute a complete data set in terms of angular sampling from which to retrieve
accurate and reliable photometric properties of the materials at the surface. According to the results
of the sensitivity study in chapter 6 we decide to discard those observations with high atmospheric
contributions (i.e. taer � 2) according the results of the sensitivity study in section 6.1. Figure 7.4
shows the central scan of each observation, which is roughly centered at the Columbia Hills (review
Figure 7.3). Additionally, Table 7.1 details each observation by the corresponding illumination angle,
azimuthal mode, AOT and time of the martian year. As it can be seen, the four images represent a
comprehensive collection of data on the Gusev crater in terms of acquisition angles.

First, selected observations are processed by the IPAG-DP as described in chapter 4. In this way,
the AOT values detailed in Table 7.1 are estimated by the b-method as explained in section 14.2. The
eleven hyperspectral images forming each FRT CRISM observation are combined by the step described
in subsection 4.2.4 using an output spatial resolution of ~180 m/pixel. Figure 7.4 (left) shows the
four 180⇥180-meter super-pixels that are chosen close to the landing site of Spirit and from which
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Figure 7.3.: Spirit traverse map, up to sol 1506 (April 02,2008). The term sol refers to the duration of a
solar day on Mars (24 hours, 39 minutes, and 35 seconds). The landing site is in the upper left.

the corresponding photometric properties will be estimated and evaluated. Super-pixels are selected
according to the availability of measurements and the average slope of the terrain. As a matter of
fact, each super-pixel is related to a high number of available angular measurements (up to eleven)
and a flat area. The latter condition is important to assure the validity of the traditional photometric
normalization adopted by the IPAG-DP (see subsection 4.2.3 for details). Eventually, we conduct the
photometric study at 750 nm for two reasons. First, this wavelength corresponds to a spectral window
in which the transmittance of the atmosphere is maximum and therefore the photometric results are
less sensitive to the potential residues of the correction for atmospheric gases (see Figure 2.2). Second,
similar studies such as [84, 81] were performed at this very wavelength and therefore our results can
be contrasted.

7.3. Retrieving photometric properties of the surface

The validation of the surface BRF retrieved by the MARS-ReCO algorithm is carried out for the set of
CRISM observations as follows. First, CRISM data are corrected for aerosol effects using the MARS-
ReCO approach (see bullet number 1 in Figure 7.1) in subsection 6.1.4. For that purpose the AOT
estimation at 1 µm as detailed in Table 7.1 is used. We then fit the retrieved surface BRF of every
super-pixel to a Hapke’s macroscopic model with a two-term Henyey-Greenstein phase function (see
bullet number 2 in Figure 7.1). As it will be shown in the validation step (see bullet number 3 in
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Figure 7.4.: Selection of CRISM observations for the photometric study of the Gusev crater. The high-
resolution central scan of each observation is shown. The Columbia Hills are the triangular geolog-
ical formation that appear in each image. The approximative position of the four super-pixels are
highlighted by orange circles in the snapshot corresponding to image FRT3192.

Param.\Obs. FRT3192 FRT553B FRT8CE1 FRTCDA5
SZA 60.4º 53.1º 40.2º 62.8º

Azimuthal mode 65º, 135º 90º 60º, 120º 55º, 125º
AOT at 1 µm 0.38 1.00 0.40 0.95

Solar longitude 139º (summer) 218º (fall) 4º (spring) 138º (summer)

Table 7.1.: Acquisition details of the CRISM observations used in chapter 7. AOT is retrieved with the
b-method. Seasons correspond to the northern hemisphere.

Figure 7.1), the satisfactory agreement between the results obtained from orbital CRISM data and from
previous studies underlines the validity of the retrieved photometric curves at 750 nm.

7.3.1. Atmospheric correction

Atmospheric correction of the four CRISM observations corresponding to the Gusev crater is per-
formed by MARS-ReCO. Table 7.2 details the results of the surface retrieval by means of the percent-
age of successfully processed super-pixels and the corresponding average RMSE of the TOA reflectance
fit. As it can be seen, a maximum of ~20% photometric curves are corrected satisfactorily for atmo-
spheric effects. I consider this result to be fully coherent as less than 30% of the super-pixels of a
CRISM observation are usually sensed by more than three scans (see subsection 4.2.4). According to
the small RMSE of fit, I consider the surface retrievals to be robust while results cannot be assured to
be physically meaningful yet.

CRISM observation FRT3192 FRT553B FRT8CE1 FRTCDA5
# processed super-pixels 15.0% 0% 19.9% 12.5%
RMSE with RTLS model 1.4e-03 NaN 4.9e-04 3.1e-03

Table 7.2.: Results obtained by MARS-ReCO applied to the selection of CRISM observations over the
Gusev crater.

At this point I draw the attention to observation FRT553B. As it can be seen in Table 7.2 MARS-ReCO
fails to retrieve the surface BRF of all the photometric curves of the corresponding CSP cube. As a
matter of fact the validity testing step of MARS-ReCO (see subsection 5.5.2) finds the inferred surface
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albedo to be negative for each processed photometric curve and therefore the inversion is aborted. I
highlight two different causes that may explain this series of unsuccessful retrievals:

1. Overestimation of the AOT. If the IPAG-DP overestimates the signal coming from dust aerosols,
the contribution of the surface may be extremely low after atmospheric correction, thus resulting
in negative surface albedos.

2. Poor acquisition conditions. As it is proved in section 6.1 some extreme acquisition conditions
may trouble the retrieval of realistic BRFs.

I investigate the most likely cause of this unsatisfactory functioning by repeating the inversion process
using the AOT estimation provided by the Pancam instrument aboard the rover Spirit (available at
http://starbrite.jpl.nasa.gov/pds) and the retrieval method of Wolff et al. in [187]. In practice
the latter option is not considered since the corresponding AOT estimate is greater (tWol f f

aer = 1.4) than
the one provided by the IPAG-DP (tb�method

aer = 1.0). In this case the processing of FRT553B by MARS-
ReCO with this AOT value would definitely fail too. As for the Pancam estimate, the corresponding
AOT is slightly lower (tPanCam

aer = 0.8) and thus MARS-ReCO should work if reason number 1 is true.
However, only 0.3% of the CSP cube (8 super-pixels out of 2667) were inverted satisfactorily in this
case. Further experiments proved that the inversion provides an acceptable rate of inverted super-
pixels when taer < 0.2. If reason 1 is right, it would mean that all the available AOT estimations
for observation FRT553B are wrong. Given the robustness demonstrated by the three AOT retrieval
methods in other experiments I discard reason number 1.

On the other hand, the inspection of the angular coverage of FRT553B shows that there is only one
mode in azimuthal angle (review Table 7.1). According to the results shown by Figure 6.3 in the sensi-
tivity study, the inversion of observation FRT553B may not be satisfactory caused by its poor angular
coverage in terms of phase domain. Another outcome of the sensitivity study is that MARS-ReCO
has some trouble retrieving rather isotropic materials under relatively turbid atmospheric conditions.
As it shall be explained in the following sections, soils predominate in the Gusev crater at the CRISM
resolution. This type of material is less anisotropic than other martian components at the surface
(review Table 6.1). Eventually, FRT553B corresponds to the highest AOT out of the four selected ob-
servations. All these limitations may explain the failure of MARS-ReCO in processing observation
FRT553B. According to this interpretation I thus exclude this observation from the photometric study.

Following sections detail the numerical method used to fit the Hapke’s model to the retrieved BRF
photometric curves and the comparisons with the previous studies.

7.3.2. Fitting the retrieved surface to a Hapke’s model

The Hapke’s formalism has been widely used to study the bidirectional reflectance of planetary sur-
faces, including cases in which the phase angle coverage is incomplete (review subsubsection 2.3.1.2).
This is the case of previous studies with Mars data in the region of Gusev such as [84, 81, 43]. In
terrestrial remote sensing I highlight a similar study using MISR data over desert areas performed by
Wu et al. in [188].

As it is introduced in the beginning of chapter 7 the selected overlapping observations under varied
geometry conditions in units of surface BRF are combined as in [81] to better constrain the photometric
modeling. A single CRISM observation senses the surface of Mars at a maximum of eleven different
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emergence angles. This set of measurements are distributed along the same line of trajectory that
corresponds to two different azimuthal angles at best. Unfortunately, this range of angles may not
be enough to determine robustly the photometric parameters of the materials at the surface as it is
shown in subsection 6.1.4. In order to improve the number of observational geometries we propose to
combine the surface BRF retrieved by MARS-ReCO corresponding to observations FRT3192, FRT8CE1
and FRTCDA5.

In this study we select a Hapke’s BRDF model taking into account the roughness of the surface as
detailed in Equation 2.11. As for the phase function we choose a two-term Henyey-Greenstein phase
function (see Equation 2.4) as Johnson’s in [84]. Given the three photometric curves in BRF units of a
given super-pixel observed by the three observations, the set of parameters involved in the Hapke’s
model are determined by the approach described in [40]. Cord et al. put forward a regression method
founded on a genetic algorithm. The principal advantages in applying this technique are (i) all Hapke’s
parameters are treated simultaneously with no a priori additional assumptions, (ii) all the available
data have the same weight and are used to solve the problem, (iii) it requires less computational time
than a Monte Carlo routine. This genetic algorithm starts with a set of randomly generated suitable
solutions. After evaluating the error between the model and the measurements, the best solutions are
combined among them. In this way a new set of solutions is formed, expecting that the error of the
fitting is lower than the previous one. This is repeated until a threshold is attained.

In the absence of small phase angles (CRISM data acquired over the region of Gusev present phase
angles above 20º), we ignore the opposition parameters (h and B0) in the regression because they are
inconsequential (review subsubsection 2.3.1.2).

7.3.3. Evaluation

Table 7.3 shows the values of the Hapke’s parameters w, q̄, b and c provided by the regression algorithm
detailed in subsection 7.3.2 for the four super-pixels of study. The robustness of the regression is
assessed by monitoring the relative and absolute RMSE between the Hapke’s model and the BRF
measurements. As it can be seen, results show that the Hapke’s model reproduces the retrieved surface
BRF with low absolute and relative quadratic residues.

w q̄ (º) b c Abs. RMSE Rel. RMSE # of meas.
SP I 0.72±0.01 18.9±0.3 0.24±0.01 0.52±0.03 0.010 0.037 24/33
SP II 0.71±0.02 19.0±0.4 0.25±0.02 0.46±0.03 0.011 0.039 22/33
SP III 0.69±0.02 18.3±0.5 0.22±0.02 0.57±0.04 0.013 0.039 24/33
SP IV 0.69±0.01 18.3±0.3 0.21±0.01 0.54±0.02 0.013 0.045 25/33
Avg. 0.70 18.6 0.23 0.52 0.012 0.040 24/33

Table 7.3.: Retrieved physical parameters corresponding to the Hapke’s macroscopic model fitted to
CRISM multi-angle surface reflectance. Parameters correspond to the fusion of CRISM observations
FRT3192, FRT8CE1 and FRTCDA5. SP stands for super-pixel.

In this section we aim at validating the photometric properties inferred from CRISM orbital data
based on the results provided by MARS-ReCO by comparison to previous photometric studies. We
propose the seminal work of Johnson et al. in which spectro-photometric observations acquired using
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the Pancam instrument aboard the robot Spirit are processed to study the photometric properties
of the rocks and soils in the cratered plains close to the Columbia Hills [84]. In that study in situ
reflectance data are fitted to the Hapke’s RT model at 750 nm, among other wavelengths. We also
highlight the study of Jehl et al. which was carried out using HRSC data in [81]. In that study,
photometric parameters of the Gusev crater are determined under some limitations, namely the lack
of atmospheric correction of the HRSC images. To mitigate this inconvenient, HRSC observations with
low atmospheric opacities (taer < 0.9) and VZA are selected. Nonetheless, as some inaccuracies are
expected (e.g. overestimation of the single scattering albedo w caused by the misinterpretation of the
brightness caused by aerosols as coming from the surface), we therefore decide to focus exclusively on
the work of Johnson et al. Alternatively, Cull et al. retrieve photometric properties of the Gusev crater
from CRISM data using an algorithm that is specifically developed for this region of Mars [43]. The
retrieved physical properties presented in that study are similar to those inferred in [84].

Hapke’s parameters w, q̄, b and c retrieved from CRISM observations are evaluated by contrasting them
with the results obtained by Johnson et al.. We remark that the present study compares two types of
results that are arguably contrastable under some specific situations. As a matter of fact Pancam
provides in situ measurements while CRISM acquires data from orbit corresponding to lower spatial
resolution. Figure 6.2 shows how soils are the most predominant terrain class while endmembers
named as Red Rock and Gray Rock are much more spatially confined. The most appropriate Pancam
observations for our study are consequently selected in the cratered plains, namely the NW of Missoula
at Sol 102-103, where the endmember Soil is predominant (see [84] for more details on this specific
location).

Regarding the single scattering albedo w, Johnson et al. find variations from 0.65 to 0.85, for the three
endmembers studied by the robot at different sites (see Figure 7.5). In particular a value of w = 0.69
is derived for measurements at Sol 102-103. These values are consistent with those obtained using the
CRISM targeted observations as the average w is 0.70 when the three observations are combined (see
Table 7.3).

As for the two parameters of the Henyey-Greenstein phase function b and c, values obtained by the
genetic algorithm are plotted along with the results obtained from Pancam measurements at Sol 102-
103 in Figure 7.6. In addition, we plot the b and c values from the study carried out by McGuire and
Hapke on the photometric properties of artificial particles [116]. The results presented in Figure 7.6
show that the photometric properties retrieved from orbital CRISM data are close to the Soil endmem-
ber.

Regarding the macroscopic roughness of the surface, parameter q̄ is found to be between 10 and 14
degrees in the site NW of Missoula at Sol 102-103 for the endmember Soil (see Figure 7.7). These values
are slightly lower than those obtained in our study (average q̄ of 18.6º). We interpret this difference as
a higher concentration of rocks in the field of view of CRISM that may result in a higher roughness of
the surface. Indeed, rocks are generally have a higher macroscopic roughness than soils as it can be
seen in Figure 7.7.

We conclude that the Hapke’s parameters w, q̄, b and c estimated by the genetic algorithm from
retrieved BRF of the Gusev crater are substantially consistent with independent studies based on in-
situ Pancam data. These results validates the atmospheric correction approach MARS-ReCO proposed
in this thesis. We draw the attention to the spatial resolution of CRISM observations as MARS-ReCO
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Figure 7.5.: Single scattering albedo (w) values for the three endmembers studied in [84] at different
wavelengths. The range of parameter w retrieved from CRISM data by MARS-ReCO is shown using a
red marker. The blue box corresponds to the results obtained by the method based on the Lambertian
assumption in [52]. Credit: [84]

infers surface BRF from areas that are homogeneous within an extent of ~180⇥180 m2. Indeed, the
spatial resolution of the EPFs (down to ~180 m/pixel) sets the minimum resolution of the super-pixels
in a CSP product (see section 14.3). On the other hand, we note that the accuracy of the BRF retrieved
by MARS-ReCO benefits from the combination of several CRISM observations of the same area. In
this matter I conclude that, contrarily to what is done in this section, it may be beneficial to combine
the observations in units of TOA radiance, that is to say, before the atmospheric correction performed
by MARS-ReCO. By slightly modifying the expression in Equation 5.35 such that a different AOT is
considered for each CRISM observation, the surface retrieval can be performed based on all available
TOA radiances at once. In this way inversion results may become more robust due to the higher
number of angular measurements. With this modification data from observation FRT553B could be
exploited in the present study. This issue represents an immediate future prospect of this work. Further
investigations will be led toward a finer validation of MARS-ReCO by combining more observations
of the Gusev crater and by performing this study on other study sites. The complementary study of
Johnson et al. focused on the landing site of the MER Opportunity represents a potential validation
site [85].

7.4. On the benefits of assuming a non-Lambertian surface

To conclude the present part of the dissertation I propose to look into the benefits of performing atmo-
spheric correction based on a non-Lambertian surface with regard other traditional methods adopting
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Figure 7.6.: Asymmetry parameters (b) versus backward scattering fraction parameters (c) for end-
members retrieved by Johnson et al. from Pancam data at Sol 102-103 (see green box). Values for
different types of artificial particles estimated by McGuire and Hapke [116] are also shown by hollow
symbols. Artificial materials correspond to varied shapes, absorption coefficients, and conditions of
surface roughness, and containing differing densities of internal scatterers. The range of parameters
b and c retrieved from CRISM data using MARS-ReCO is shown using a red box. The blue box cor-
responds to the results obtained by the method based on the Lambertian assumption in [52]. Credit:
[84]

the isotropic assumption. As it is discussed in chapter 5, although the Lambertian hypothesis greatly
simplifies the RT modeling and allow more operational and faster algorithms, this assumption creates
systematic biases in retrieved surface reflectance, particularly reducing the estimated anisotropy of the
surface. In particular the Lambertian assumption enhances the derived reflectance where BRF is low
and reduces it where BRF is high. The magnitude of this error increases with higher aerosol contents
since the amount of scattering in the atmosphere is more important [111].

In this section I assess the impact of the Lambertian assumption on retrieved scattering properties of
the surface by comparing two different surface retrieval methods. With this aim experiments presented
in section 7.3 are repeated using the algorithm based on a Lambertian assumption described in [52].
The latter method is based on a RT formulation based on the Green’s function of the atmosphere and
a Lambertian surface. The retrieved photometric properties are contrasted with the results obtained
using the proposed algorithm MARS-ReCO. The error bias caused by the Lambertian assumption is
assessed by comparing both results.

Table 7.4 shows the retrieved values for the Hapke’s parameters w, q, b and c provided by the method
in [52]. For comparison, the results obtained with MARS-ReCO are also shown. Likewise, the results of
the method based on the Lambertian hypothesis are also shown by means of blue markers in Figure 7.5,
Figure 7.6 and Figure 7.7.

According to the results we note that the retrieved photometric properties under the Lambertian as-
sumption differ substantially from those obtained by MARS-ReCO. For example, an underestimation
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Figure 7.7.: Average macroscopic roughness (q̄) values and their standard deviations derived from 2-
term HG models for the main unit types studied in [84]. The range of parameter q̄ retrieved from
CRISM data by MARS-ReCO is also shown using a red arrow. The blue arrow corresponds to the
results obtained by the the method based on the Lambertian assumption in [52]. Credit: [84]

w q (º) b c Abs. RMSE Rel. RMSE # of meas.
MARS-ReCO 0.69-0.72 18.0-19.0 0.22-0.25 0.46-0.57 0.012 0.040 24/33

Lamb. [52] 0.62-0.67 18.7-20.5 0.10-0.15 0.53-0.63 0.016 0.073 24/33

Table 7.4.: Retrieved physical parameters corresponding to the Hapke’s macroscopic model fitted to
the surface reflectance obtained from CRISM data. Surface BRF is retrieved using MARS-ReCO and
the method based on the Lambertian assumption in [52]. Parameters correspond to the fusion of
CRISM observations FRT3192, FRT8CE1 and FRTCDA5.

of 17% is observed regarding the single scattering albedo. This effect may be due to a overcorrection
of the aerosol effects for low azimuthal angles when they are negligible. Figure 7.5 underlines this
underestimation when compared to the parameters obtained by Johnson et al. for the area of study
at Sol 102-103. In addition, results do not agree any more with the endmembers “Gray Rock” and
“Red Rock”. Contrarily, Figure 7.7 shows how the average roughness suffers from an overestimation
of 6% when the Lambertian assumption is considered that makes the parameter q̄ less similar to the
values obtained in [84]. According to Table 7.4, the Henyey-Greenstein parameters b and c undergo
an underestimation of 90% and an overestimation of 11%, respectively. Figure 7.6 suggests that results
obtained under the Lambertian assumption are biased as the corresponding b and c ranges of values
do not correspond to the comprehensive selection of materials that McGuire and Hapke used in [116].

Another way of assessing the quality of the retrieved photometric properties is by means of the RMSE
associated to the photometric fitting in subsection 7.3.2. Assuming that the Hapke’s model expressed
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by Equation 2.11 is suitable to represent granular surfaces, the higher absolute and relative errors
obtained by the atmospheric correction method under the Lambertian assumption in Table 7.4 indicate
a somewhat worse quality of the surface BRF measurements.

To conclude this experiment, we provide an outlook of the impact of the atmospheric correction on
real photometric curves. Figure 7.8 details the BRF curve corresponding to super-pixel IV after the two
investigated atmospheric corrections and the fitting by the Hapke’s model. In Figure 7.8 (top) we show
how the atmospheric correction under the Lambertian assumption overcorrects the released data for
lower phase angles while it overestimates the contribution of aerosols for the large phase angles. This
result is in agreement with the previously cited study of Lyapustin in [111]. Additionally, Figure 7.8
(bottom) highlights the lower RMSE that results from fitting by the measurement by the Hapke’s model
when we use the BRF retrieved by MARS-ReCO. As a matter of fact, the regression method described
in subsection 7.3.2 does not succeed in fitting the processed BRF under the Lambertian assumption as
it does with the results obtained with MARS-ReCO. We conclude that this result may come from the
fact that BRF retrieved by the proposed algorithms is substantially more physically meaningful than
the one produced assuming a Lambertian surface.

I bring to an end the present part of the thesis by remarking that the impact produced by the Lamber-
tian assumption on the photometric properties of the surface is substantial according to the presented
quantitative assessment. In this context original and advanced atmospheric corrections such as the
proposed MARS-ReCO algorithm are necessary. In addition, I note that the presented inaccuracies are
likely to increase for surfaces presenting stronger anisotropic properties. The obtained results in this
section agree with previous works such as [76, 111].
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Figure 7.8.: BRF according to phase angle for super-pixel IV. (top-left) Photometric curve after being
released and after atmospheric correction under a Lambertian assumption with the method in [52].
(top-right) Photometric curve after being released and after atmospheric correction by MARS-ReCO.
(bottom-left) BRF corresponding to the atmospheric correction with a Lambertian assumption and
after fitting it to a Hapke’s model. (bottom-right) (bottom-left) BRF corresponding to the atmospheric
correction MARS-ReCO and after fitting it to a Hapke’s model. Credit: [60]
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Summary and future prospects

In the present part of this dissertation I have proposed an original method to retrieve surface reflectance
from orbital CRISM data by performing accurate atmospheric correction. The Multi-angle Approach
for Retrieval of Surface Reflectance for CRISM Observations, or MARS-ReCO, takes advantage of the
multi-angle capabilities of the CRISM instrument to perform an accurate separation between the con-
tributions of the atmosphere and of the surface. The main novelty of the proposed method is the
consideration of the anisotropic scattering properties of the materials at the surface, as well as those
of the atmospheric aerosols, into the atmospheric correction. A complete sensitivity study has been
carried out to determine the suitability of the algorithm MARS-ReCO under varied atmospheric and
geometric configurations. It has been proved that MARS-ReCO is suitable to operate for most CRISM
observations. Afterward, the application of MARS-ReCO on real CRISM data has been carried out. A
specific region of Mars has been selected since data coming from other independent studies are avail-
able for validation. Results show a satisfactory agreement between the retrieved photometric properties
of the surface by MARS-ReCO and those from previous independent studies. Furthermore, the benefits
of considering a non-Lambertian surface has been investigated through original experiments.

I conclude that the proposed method for retrieval of surface reflectance is a powerful tool to study
the surface reflectance of the martian surface using orbital CRISM data. According to the presented
experiments the use of the RTLS model may be appropriate for recreating the scattering properties
of martian surfaces. To our knowledge MARS-ReCO is the first algorithm for retrieval of surface
reflectance of any region of Mars assuming a non-Lambertian surface. Nonetheless, it is important
to note that MARS-ReCO is not meant to immediately replace the currently adopted atmospheric
correction method for CRISM images detailed in section 14.2. Indeed, the lower spatial resolution
of the EPF data makes impossible the direct atmospheric correction of the central scan of targeted
observations at full spatial resolution. The resolution of the resulting CSP cubes, roughly 180 m/pixel,
is not acceptable to generate significant spatial products due to the limited spatial coverage at this
resolution (e.g. the central scan of CRISM at 180 m/pixel is formed by only 60⇥15 pixels which are
not sufficient to distinguish spatial features). Further research will address the extrapolation of the
results obtained by MARS-ReCO to the atmospheric correction of the central scan at high resolution.
In the meantime I propose to use MARS-ReCO for the retrieval of photometric properties of the surface
of Mars while the method adopted by the IPAG-DP will be used for operational correction of CRISM
hyperspectral data. As I state in the conclusions of Part II the results produced by the IPAG-DP must
be handled with care as the adopted method for atmospheric correction is based on the Lambertian
assumption.

In this thesis the approach MARS-ReCO is based on a LUT that considers a homogenous atmosphere
composed by a single layer of mineral aerosols. These dust particles are characterized by the radiative
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transfer properties inferred by Wolff et al. in [187]. This atmospheric model is suitable for most of
CRISM observations acquired over the equatorial regions of Mars. Future versions of MARS-ReCO
may nonetheless consider a LUT encompassing different atmospheric situations such as the presence
of mineral aerosols with different grain size or the existence of icy aerosols, typical from the high
latitudes of Mars. In this matter the LUT may also consider the gases in the atmosphere of Mars in
order to perform a full compensation for atmospheric effects. Furthermore, the MARS-ReCO approach
may be adapted to work for multi-angle data acquired by other sensors orbiting Mars and other bodies
of the Solar system such as Titan. The properties of the aerosols surrounding this moon of Saturn start
getting documented by several authors (e.g. [172]).

The following step is the mapping of the photometric properties of several study sites on Mars. For
instance, MARS-ReCO represents an unprecedented tool to study the photometric properties of the
polar regions of Mars, mainly made of frozen CO2. To our knowledge this study has never been car-
ried out before. The properties retrieved from this type of surfaces will be interpreted using scattering
models and experiments carried out in the laboratory. In this matter MARS-ReCO needs to be further
tested on polar observations. As a matter of fact snow-covered and icy terrains represents theoreti-
cally the most challenging scenario for atmospheric correction as they are related to very bright and
anisotropic surfaces. In addition, the illumination configurations of CRISM are usually rather extreme
at these latitudes. In this situation a reliable AOT estimate is crucial to avoid inaccuracies coming from
a deficient characterization of the atmospheric opacity. Unfortunately, the currently adopted b-method
for AOT retrieval does not work for snow-covered and icy surfaces due to the presence of frozen CO2.
Therefore, the capabilities of other AOT retrieval methods must be tested for this type of scenario.

In this matter I have recently drawn an outline of an evolution of MARS-ReCO that shall perform
simultaneous retrievals of atmospheric AOT and surface BRF. The improved MARS-ReCO algorithm
will be a self-consistent method (i.e. it will not depend on the quality of the AOT estimate provided by
independent methods) that will be operative for any type of surface. This new version of the proposed
method for atmospheric correction of CRISM observations is in an early stage of development and thus
is not presented in this thesis.

To conclude I detail another future prospect that is related to the work addressed in the present section.
Contrarily to inferring surface properties based on the knowledge of the scattering properties of the
aerosols, the latter could be further refined if the former are known. As I previously stated, aerosol
properties are still largely undocumented. For example, the RT properties from the work of Wolff
et al. in [187] are retrieved based on CRISM observations during highly dusty periods. In this case
the nature of the aerosol particles might be different from that of clearer atmospheric conditions. The
Gusev crater of Mars represents, again, a unique benchmark to refine the current RT properties of
aerosols as in situ data of the surface are available. Based on the robust MARS-ReCO technique, an
improved photometric curve of martian aerosols could be retrieved by finding the scattering properties
that provide the exact surface parameters observed with Pancam data.
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Part IV.

On the use of spectral unmixing for the
study of Mars
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Introduction

In Part III of this dissertation I have proposed an original method to infer the reflectance of the surface
of Mars from hyperspectral images acquired by the CRISM instrument. This algorithm is founded on
physical laws that explain the RT happening in planetary atmospheres with the surface as a boundary
condition. As it has been seen, physically-based approaches may enhance our understanding on spe-
cific areas of Mars when applied to orbital images as they take into account the physical elements and
phenomena that shape the remote sensing signal.

Hyperspectral images are also traditionally processed with analysis methods that treat these data
without any a priori knowledge on the physics of the observed scene. In the literature it has been
widely proved that this type of algorithms may produce reliable information on the spatial distribution
of compounds and processes as well as on the recognition of objets. Efficient analysis algorithms
become decisive for processing hyperspectral data in front of the recent trends that influence the field
of planetary remote sensing. Constant technological improvements such as the multi-angle capabilities
of CRISM contribute to the increase of the volume and the complexity of planetary data sets. In
addition, planetary remote sensing entails the additional challenge regarding the scarcity of ground
truth data to confront and to validate the outcomes of analysis methods. In this context there is an
increasing need for automatic, operational, and accurate algorithms to extract the most meaningful
features from remotely sensed hyperspectral images. The most relevant features unveiled by these
analysis methods can be further analyzed by more specific and complete physically-based tools.

Spectral unmixing techniques are potentially relevant unsupervised analysis tools in planetary sci-
ences. As it is introduced in section 1.3, materials at the surface are characterized by their spectral
signatures that are shaped by their intrinsic chemical composition and physical state. Limited spatial
resolution of orbital sensors and multiple scattering of photons between distinct components, with
or without transfer through the atmosphere, generate linear and non-linear combinations of several
spectral signatures in the remotely sensed signal that forms the at-sensor spectra. Spectral unmixing
methods can be successfully applied to hyperspectral data in order to decompose mixed spectra into
the original contributions. Two products are generated in this process. First, a representative spectral
signature is extracted for every data source, or endmember, that is detected in the image. Second,
optimization strategies allow the generation of fraction abundance maps that reveal the spatial dis-
tribution of each endmember over the area covered by the processed image. In this way the spectral
unmixing concept allows the transformation of a hyperspectral cube into a few feature bands. This
dimensionality reduction may benefit extensive analysis of collections of planetary data.

In the fourth part of the dissertation I aim at evaluating the potential of spectral unmixing techniques
for retrieving accurate information on the surface and the atmosphere of Mars. This family of analysis
techniques is potentially useful to complement the physically-based methods such as the MARS-ReCO
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approach presented in Part III. In chapter 8 I first introduce the basis of the spectral unmixing problem
and give some details on the use of these techniques in remote sensing applications. In chapter 9 I in-
vestigate the suitability of these techniques on simulated data that recreate a realistic martian scenario
observed by the imaging spectrometers orbiting around it. In chapter 10 I process real hyperspectral
data acquired by CRISM over a specific region of Mars, the Russell crater megadune, using the spectral
unmixing concept. This area of Mars is of great interest from a methodological point of view since
a ground truth can be built in order to evaluate the capabilities of different spectral unmixing tech-
niques. An accurate intercomparison based on this ground truth is performed among a comprehensive
selection of state-of-the-art unmixing techniques in order to discriminate those that are more suitable
to process CRISM data. I eventually conclude Part IV by introducing an original strategy in chapter 11
to retrieve atmospheric AOT based on spectral unmixing and without any information regarding the
radiative transfer properties of the aerosols or of the surface.

The Russell crater dune field is covered seasonally by carbon dioxide frost which has already
sublimated in this HiRISE image. Numerous dark dust devil tracks can be seen meandering across

the dunes. Credit: University of Arizona.
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8
Introduction to spectral unmixing

The concept of spectral unmixing goes further than traditional analysis algorithms by exploiting the
sub-pixel information. Spectral unmixing techniques originate in the concept of blind signal separation
that is introduced by Jutten et al. in [88]. In a signal, or source, separation problem we consider that
each signal is the result of several contributions, each one corresponding to a source, or endmember.
Extending this definition to the field of image processing in remote sensing, endmembers may be
shaped not only to the contributions coming from materials at the surface but also to the contribution
of the atmosphere or even to instrumental artifacts.

In remote sensing spectral unmixing techniques are used to deconvolve complex surface signatures and
open a number of possibilities for characterizing and monitoring mineralogical surface properties and
changes in both planetary sciences [32] and Earth observation [140]. Extending the concept of source
separation to hyperspectral imagery, each spectrum may be decomposed into the combination of sev-
eral spectral signatures corresponding to distinct materials at the surface in the absence of atmosphere
and instrumental artifacts [90]. It is important to note that the concept of an endmember is generally
ill-posed since there is often a degree of detail in which a given endmember can be considered to be
formed by a combination of a few sub-endmembers (e.g. an arbitrary endmember “ice” sensed by the
OMEGA instrument at 300 m/pixel can be observed as a combination of a few sub-endmembers, “ice
slab”, “granular ice”, and “dusty ice”, at the higher resolution of CRISM, 18 m/pixel). When applied
to hyperspectral imagery spectral unmixing techniques extract, for each endmember, a representative
spectral signature and an abundance map (i.e. an ensemble of weights for all pixels in the image).
The most common reasons for the existence of mixed spectra in a remote sensing problem are:

1. Insufficient spatial resolution to resolve “pure” endmembers [2] and overlapping among the PSFs
attached to each pixel of the image [161].

2. Mixtures of different chemical species, or the same species with different physical properties, at
the grain scale [25]. This kind of scenario is common to natural surfaces such as those on Mars.
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3. Stratified surfaces whose upper layers are optically-thin enough to let the solar photons go
through [157].

4. Adjacency effects between pixels by transfer of photons through the atmosphere (see subsection 2.1.3).
Such effects make spectra dependent on their corresponding area on the surface but also on the
surrounding ones [178].

The first reason is the origin of the so-called sub-pixel geographical mixtures or, simply, geographical
mixtures [see Figure 8.1 (right) for an example]. In the absence of an atmosphere the spectrum of
the leaving reflectance is the result of adding the weighted spectral signatures of each component
within the conjugated footprint at the surface. In this particular case weights correspond to the surface
fraction of each endmember [e.g. in Figure 8.1 (right) each material covers an area of one third of the
pixel, thus all weights are equal to one third]. Linear spectral unmixing methods assume this linear
relationship among the different endmembers. All the remaining reasons are related to non-linear
mixtures, namely intimate granular mixtures for reason number 2 [see Figure 8.1 (left)] or stratified
intimate mixtures for reason number 3 [see Figure 8.1 (center)]. This type of mixtures are addressed
by the so-called non-linear spectral unmixing techniques.

Figure 8.1.: Different types of sub-pixel mixtures corresponding to distinct arrangements of chemical
species: (left) intimate granular mixture, (center) stratified intimate mixture, and (right) sub-pixel
geographical mixture. Credit: [157].

Another major division in spectral mixing analysis is set by the origin of the constituent spectral
signatures that are used to reconstruct the at-sensor spectra. In this matter I highlight two main
families of strategies as:

• Unsupervised spectral unmixing, or blind source separation, in which spectral signatures are
directly derived from the image without any a priori on the endmembers.

• Supervised spectral unmixing, in which spectral signatures are obtained from libraries of end-
members.

In this thesis I focus on the first group of techniques since I aim at developing automatic analysis tools
that can deal with any type of scenario. In addition, a major disadvantage of library endmembers is
that they may have not been collected at the same scale or under the same conditions than the data to
be analyzed. In that case library endmembers are less easily associated with real features in the scene
[150]. This drawback is especially significant for ices as they are potentially related to more physical
states than minerals, for example. Unsupervised spectral unmixing becomes, however, more complex
and unstable when considering non-linear mixtures. First, a priori data on the image are required. For
example, accurate information on the scattering properties of the atmosphere is needed to consider
reason number 4 of the list above. Second, non-linear spectral unmixing must be monitored due to the
intrinsic risk of dealing with an infinite number of solutions otherwise [89].
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In this context this part of the dissertation is focused on the evaluation of unsupervised linear unmix-
ing algorithms when applied to hyperspectral images of Mars. In particular I propose to investigate
the ability of these methods to decompose each measured spectrum into a combination of a set of
significant endmembers described by their corresponding spectral signatures and abundance maps. I
remark that the concept of blind source separation is potentially very useful to complement those prod-
ucts produced by physically-based methods. For instance, abundance maps may be useful to explore
the presence of a given endmember over the whole area covered by the image. While physically-
based methods require some knowledge on the physics that rule the scene of investigation analysis
approaches such as those based on the unmixing concept may produce accurate results without any a
priori information.

In order to illustrate the typical outcomes produced by spectral unmixing techniques I illustrate the
main results of the study of Moussaoui et al. in [125] in Figure 8.2. In that work a hyperspectral image
acquired by the OMEGA sensor over the south polar cap of Mars is processed by a strategy based on
source separation techniques. After three endmembers related to martian dust and two types of ice
are detected, the corresponding spectral signatures and abundance maps are extracted and estimated,
respectively. The products shown in Figure 8.2 are of great interest for the characterization and the
mapping of the chemical species that predominate in the polar cap. These goals are achieved in a
more efficient way than when dealing with the few hundreds of spectral bands that form the original
hyperspectral data set.

Figure 8.2.: Reference and retrieved spectral signatures (bottom) and abundance maps (top) of the three
endmembers detected in the south polar cap of Mars observed by the OMEGA instrument. Credit:
[125].

In the following I investigate the limitations of the linear mixture assumption, or linear mixture model.
Again I highlight the work of Moussaoui et al. in [125] in which the physical assumptions that lead to
the linearity of the remotely sensed signal are enumerated as:

1. Predominance of geographical sub-pixel mixing at the ground [see Figure 8.1 (right)].

2. Absence of non-linear mixing at the surface in the form of intimate granular mixtures or stratified
mixtures.

3. Lambertian surface or homogeneity of illumination conditions. Procedures aimed at performing
photometric normalization may be used to satisfy this assumption (see subsubsection 4.2.3.1).
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4. Absence of adjacency effects, especially at high spatial resolutions such as the one made possible
by the CRISM instrument. Advanced atmospheric correction may be carried out to meet this
assumption.

In addition to the previous hypothesis I include the supposition that there are no non-linearities com-
ing from instrumental artifacts such as the spectral smile effect (see subsubsection 4.1.2.1). As Schmidt
argues in his Ph.D. dissertation, all these assumptions are, in practice, invalid in a real planetary sit-
uation [157]. I therefore underline that the interpretation of the results obtained by spectral unmixing
based on the linear mixture model must take into account this evidence. Nonetheless, results ob-
tained on data sets which meet, or are close to meet, the previous requirements can be considered as
approximative estimates of the reality.

One of the major objectives of this thesis is to propose strategies to perform efficient dimensionality
reduction. Spectral unmixing techniques are able to transform a data set of hundreds of spectral
bands into a few abundance maps or, in other words, a thousand spectra into a few significative
spectral signatures. Therefore, this part of the thesis investigates the potential of exploiting the sub-
pixel information contained in hyperspectral images in order to extract the most physically meaningful
features. In this matter I recommend the Ph.D. thesis of Villa in which spectral unmixing techniques are
used to optimize the processing of terrestrial remote sensing data [179]. In the following section I first
describe the spectral unmixing problem based on a linear mixture model from a mathematical point
of view. Afterward, section 8.2, section 8.3, and section 8.4 detail the three main steps in a classical
spectral unmixing problem and provide an overview of the state of the art in this subject.

8.1. Mathematical background

We note X the matrix representing the flatten hyperspectral image cube such that X = {x1, x2, . . . , xNp},
where xk = {x1,k, x2,k, . . . , xNs,k}T are the constituent spectra. The terms x

l,k represent the value of the
kth pixel at the l

th channel, Np is the number of pixels and Ns is the number of spectral channels. We
assume that the spectrum of each pixel can be reduced to a linear mixture of Nc endmember spectra,
leading to the following instantaneous model:

X = M · S + e, (8.1)

where e stands for the additive noise in the image, M = {m1, m2, . . . , mNc} is the mixing matrix,
being mn the spectral signature, or the characteristic spectrum, of the nth endmember, and S =

{s1, s2, . . . , sNc}T is the source matrix with sn = {sn,1, sn,2, . . . , sn,Np}. Coefficients sn,k correspond to
the abundance of the nth endmember at the kth pixel.

Two physical constrains are traditionally imposed on the model described in Equation 8.1 as it is
introduced by Heinz et al. in [73]. Positivity of sn = {sn,1, sn,2, . . . , sn,Np} is generally imposed such
that sn,k � 0 to avoid unphysical negative abundances. In addition, if we assume that there are only Nc

endmembers in the image, endmember abundances must respect the sum-to-one constraint such that
ÂNc

n=1 sn,k = 1, 8k . I remark that these two assumptions are crucial in planetary remote sensing as we
are interested in retrieving physically meaningful endmembers that help understanding the planetary
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scenes.

Regarding the linear mixture assumption, I remark that existent non-linear contributions in the data
may lead to perturbations on the mixture model described in Equation 8.1. For example, non-linear
residues coming from the surface or a deficient photometric, artifact or atmospheric correction may
corrupt the linear model (this point is further discussed in chapter 10). All the existent non-linear
factors F = {f1, f2, . . . , fNc} may transform the linear mixing assumption into the following degenerated
model

X = = (M · S) + e ' F · M · S + e, (8.2)

where = (X) = F · X + F2 · X2 + ... ' F · X. In this case the term e not only includes the noise of the
image but also residues coming from the non-linearities. As a conclusion, special attention must be
paid to those results obtained in this situation when performing spectral unmixing under the linear
mixture hypothesis.

Figure 8.3 shows the classical scheme of a spectral unmixing problem in which M and S are estimated
from X without any a priori information. In the first place the number of endmembers Nc in the
data is estimated. An endmember extraction approach is then applied to retrieve M, followed by
the reconstruction of S based on the extracted spectra and the linear mixture model expressed by
Equation 8.1. I shall further detail these three steps in the three following sections.

Determination 
of the number of 
endmembers Nc!

Extraction of Nc 
representative 

spectral 
signatures mn!

Estimation of 
the associated 
abundances sn!

Figure 8.3.: Outline of a classical spectral unmixing problem.

8.2. Estimation of the number of endmembers

The first step in a spectral unmixing problem consists in estimating the number of sources, or end-
members, that exist in the image. In this matter I highlight the seminal work of Chang et al. who
define the concept of virtual dimensionality (VD) as the minimum number of spectrally distinct signal
sources that characterize a hyperspectral data set [31]. The VD is one of the most critical parameters
for resolving satisfactorily a spectral unmixing problem, thus many efforts have been done to address
this issue. In the literature PCA-based thresholding is a classical method to determine the number
of endmembers in a hyperspectral image. In [125] Moussaoui et al. set Nc = 7 after observing that
more than the 98% of the variance of the image of study is concentrated in the first seven principal
components. The main drawback of this strategy, however, is to set the cut-off threshold since the ein-
genvalues caused by the relevant sources and those caused by the noise are usually comparable. In this
context more sophisticated approaches have been proposed in the literature. I distinguish two main
families of techniques, the first one based on the eigenvalues of the covariance and correlation matrices

183



Chapter 8. Introduction to spectral unmixing

of the data, and the second one based on the minimization of the error resulting from projecting the
data onto another subspace.

In the following I briefly detail three illustrative methods that aim at estimating the VD of a given
hyperspectral data set. First, I introduce the seminal method Harsanyi–Farrand–Chang (HFC) whose
theoretical concept is used by many other state-of-the-art methods. This is the case of the Eigenvalue
Likelihood Maximization (ELM) algorithm that was first tested on martian data acquired by OMEGA.
These two algorithms are part of the first family of methods. Finally, I detail the widely used Hyper-
spectral Signal-subspace Identification by Minimum Error (HySime) method that belongs to the second
family of approaches.

• Harsanyi–Farrand–Chang. Probably the most known detection theory-based thresholding method
developed to determine the VD of hyperspectral imagery is the HFC method. This approach was
originally developed to determine the number of endmembers in AVIRIS data [72].

HFC is based on the difference between the eigenvalues of the sample correlation matrix and
sample covariance matrix. The VD is assumed to be equal to the total number of relevant eigen-
values, each eigenvalue specifying a component dimension and providing an indication of the
relevance of that particular component in terms of energy. If a particular component does not
contain signal source, the corresponding correlation and covariance eigenvalues should reflect
only the noise energy. In that case the correlation and covariance eigenvalues are equal because
the noise is assumed to have zero mean. This fact provides with a base on which we can formu-
late that the VD is determined as the number of eigenvalues which associated difference between
the correlation eigenvalue and its corresponding covariance eigenvalue is greater than zero.

The main disadvantage of the HFC approach is the setting of an internal parameter, namely the
false alarm probability, as Bioucas-Dias states in [14]. As a matter of fact the estimated number of
endmembers by HFC is quite sensitive to this parameter. Furthermore, the HFC approach may
fail to give the exact number in front of colored noise.

• Eigenvalue Likelihood Maximization. In the flavor of the approach HFC the technique referred
to as ELM is based on the difference between the eigenvalues corresponding to the correlation
and covariance matrices [104].

Contrarily to HFC, the algorithm ELM is proposed as a parameter-free automatic method to
estimate the number of endmembers in hyperspectral images. ELM assumes that the distribution
of the difference between a couple of eigenvalues zn is asymptotically modeled by a Gaussian
probability density function centered at zero for n > Nc for the noise features, and a non-zero
value otherwise, that is, for the data features. Based on this property ELM builds a likelihood
function depending on zn that presents a global maximum when n = Nc. This approach has
been validated on simulated and real data acquired by the OMEGA and the CRISM instruments
in [104] and [28], respectively.

According to the experiments that shall be performed in the following chapters I remark that
the main drawback of the approach ELM resides in its assumption that the noise is Gaussian.
Unfortunately, the noise of the CRISM instrument is hardly Gaussian [126].

• Hyperspectral Signal-subspace Identification by Minimum Error. The approach referred to
as HySime has been recently proposed as a minimum MSE-based approach to infer the signal
subspace in hyperspectral imagery in an unsupervised manner [14]. HySime uses multiple re-
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gression theory to accurately determine the noise value per pixel. Afterward, the noise vector is
subtracted from the sample vector for each pixel. Eventually HySime estimates the signal and
noise correlation matrices before selecting the subset of eigenvalues that best represents the sig-
nal subspace in the least squared error sense. In [14] this approach has been tested on simulated
and real hyperspectral AVIRIS data and its performances have been proved to be satisfactory in
front of other widely used algorithms such as HFC.

The work that shall be presented in chapter 10 (and that is fully detailed in [28]) concludes
that HySime might be related to a high sensitivity that may lead to the detection of subtle, yet
unwanted, contributions such as residual artifacts.

8.3. Endmember extraction

After the number of endmembers of a given hyperspectral image is estimated as Nc, the next task in
spectral mixing analysis consists in extracting an appropriate set of Nc constituent spectral signatures.
Over the past decade many algorithms have been developed to accomplish this task. In this section I
briefly summarize the use of endmember extraction techniques based on the linear mixture model and
applied to planetary and terrestrial hyperspectral images. The following review does not pretend to
be exhaustive and I detail only the state-of-the-art algorithms that shall be used in this thesis.

According to the literature I define four major divisions as follow:

• The so-called geometric methods exploit the parallelism between mixing models and the geo-
metric orientation of hyperspectral data in multi-dimensional spaces. A detailed review of these
algorithms can be found in [143]. I point out two sub-families that are separated by the so-called
pure pixel assumption:

– Geometric methods belonging to the first sub-family seek for endmembers in the data of
investigations and therefore require the existence of a pure sample (i.e. a pure spectrum) for
each endmember. These methods include the widely-used algorithms referred to as Vertex
Component Analysis (VCA) [131] and N-FINDR [186] that have been satisfactorily applied
to planetary remote sensing data [104, 171, 27].

– The second sub-family embraces those techniques which are able to extract endmembers
whose representative spectra do not exist in the hyperspectral image. This is the case of the
approaches referred to as Minimum Volume Simplex Analysis (MVSA) [100], Minimum-
Volume Enclosing Simplex [29], and Simplex Identification via Split Augmented Lagrangian
[13]. All these methods have proved to be very efficient when dealing with highly mixed
data.

In order to illustrate the pure pixel assumption I show in Figure 8.4 the extraction of endmembers
from synthetic data by the methods named VCA, MVSA and Minimum Volume Constrained
Non-negative Matrix Factorization (MVC-NMF). The last algorithm is a hybrid technique that
is not based on the pure pixel assumption and that shall be introduced in the next family of
algorithms. In Figure 8.4 the simulated data set has been generated based on three endmembers
and then, the purest samples have been removed. These data are projected on a 2-D subspace in
which the so-called data simplex (i.e. the cloud formed by the data points, that is, the spectra) is
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observed as a triangle with eroded extrema. As it can be seen, VCA extracts the endmembers by
selecting the extrema of the data cloud while MVSA and MVC-NMF select the extrema of the so-
called minimum volume simplex, which embraces the data cloud as tightly as possible (see the
red triangle in Figure 8.4). Strategies based on the minimum volume constraint are able to extract
endmembers for which a pure sample does not exist in the data set of analysis. Alternatively,
Figure 8.5 illustrates the benefits of the second sub-family of methods in the unmixing of data
acquired by OMEGA over the icy terrains of Mars [55]. In this case the hyperspectral image is
formed by three endmembers (i.e. water ice, CO2 ice and mineral dust). Nevertheless, a pure
spectrum is available only for the endmember dust. The majority of the spectra result from
mixtures of two or three endmembers. In this case I remark that a method based on the pure
pixel assumption would inevitably fail to extract the pure spectral signatures corresponding to
the endmembers water ice and CO2 ice. By contrast, techniques such as MVSA or MVC-NMF
are theoretically able to do so. The disadvantage of the second sub-family of geometric methods,
however, is that they may extract endmembers that are not physically correct (e.g. showing
non-meaningful absorption features or negative reflectance values).

Figure 8.4.: Extraction of endmember spectral signatures from a synthetic data set formed by three
endmembers by the algorithms MVSA, MVC-NMF, and VCA. Dots represent spectral vectors. All
other symbols represent inferred endmembers by the unmixing algorithms. The minimum volume
constraint imposed by MVSA is highlighted by a red triangle. Credit: [100].

• An alternative method to solve the linear unmixing problem is based on the seminal concept
called non-negative matrix factorization (NMF) and proposed by Lee et al. in [97]. In multi-
variate analysis and linear algebra NMF embraces a group of algorithms where a matrix X is
usually factorized into two matrices, W and H. The concept NMF differs from classical matrix
factorization methods such as PCA by enforcing the constraint that factors W and H must be
non-negative, that is, all elements must be equal to or greater than zero. Approaches based on
NMF have been used for processing terrestrial remotely sensed hyperspectral data in [77] and
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any simple physical effect, although we can sometimes
distinguish spatial variations correlated to changes of
illumination and viewing conditions within the scene. The
subsequent MNF bands (#6 and larger) seem to combine
(non-linearly) some of the previous effects and begin to
loose their spatial coherence after band #15 typically as
they become dominated by noise. Thus if we apply a
forward MNF transform to an image, then keep the first 15
MNF bands, and finally return to the initial spectral space
by the inverse procedure, the image noise has been filtered
out while keeping almost entire the spectral physical
information. As a consequence we continue the statistical
analysis with only the first 15 MNF bands.

We compute the PPI by repeatedly projecting the body
of n-dimensional ðn ¼ 15Þ vectors of points formed in the
reduced MNF space by all the spectra of an image onto a
unit vector randomly oriented in the same MNF space. The
extreme pixels in each projection—those pixels that fall
onto the ends of the unit vector—are recorded and the total
number of times each pixel is marked as extreme is noted.
We perform 15 000 random projections and we select the
8000 spectra ($ 4% of the pixels) that get the highest
scores.

We visualize this collection of spectra as a n-dimensional
ðn ¼ 15Þ cloud of points with various projections and
perspectives to manually locate, identify and cluster the
purest spectra in the image. One of the most informative
view of the cloud of points is to plot the second MNF band
of each spectrum as a function of the first band on a 2D
scatter plot. For each image of Table 1 we obtain the same
type of triangular diagram (Fig. 2a) characteristic of the
South Pole at the end of summer. We recognize 4–6 quite
well separated and dense clusters of points, generally
located close to the vertices of the triangle.

Each vertex materializes an ‘‘end-member’’, i.e. the
spectrum that would be generated by observing a pure

compound occupying the entire area conjugated to an
instrument pixel. The ‘‘end-members’’ may or may not be
present in the real image. Using the other MNF axis may
allow to (i) identify other end-members (for example,
mineral end-members located in dry area) (ii) classify
spectra into sub-classes having substantial differences in
some of their properties. In our case, with the first two axis,
we get three end-members that involve compounds that can
be clearly identified as CO2 ice, H2O ice and hydrated
mineral dust. Indeed, after calculating their average
spectra, we recognize distinctive absorption bands listed
in Table 2. The position of each cluster of selected points in
the scatter plot of Fig. 2a, at short distance from the
nearest triangle vertex, tells that the extreme spectra
approximate in nature one ‘‘end-member’’ but contain a
significant amount of a second one. This is especially the
case for H2O ice where a significant part of the corner of
the triangle is missing.
Fig. 2b shows the scatter plot we obtain when all the

image pixels are taken into account. The transitions
between each couple of end-members (CO2–H2O,
H2O–mineral and CO2–mineral) are continuous, at least
spectrally. The diagram thus expresses that these pure
compounds are all mixed in various relative abundances
within most pixels, except in both hydrated mineral and
some dusty water ice area where CO2 is absent (pixels
along the dust–H2O transition line of the diagram). The
missing points along the H2O–CO2 and most notably
along the dust–CO2 transition lines indicate that H2O and
dust are always part of the mixture. In addition the extreme
part of the CO2 corner of the triangle contain no image
pixel. In other words, not a single pixel covering the BPPC
exhibits pure CO2 ice. A priori, the mixture of pure
compounds could be of two different types: geographic
(macroscopic) or granular (intimate). Vertical stratification
may possibly lead to out-of-triangle points due to the
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Fig. 2. Typical triangular diagrams obtained by applying the MNF transform to the observations of Table 1. The spectra are represented in the plane
formed by the first and second MNF axis. (a) Only the purest spectra selected by the PPI transform are represented. (b) All spectra are represented as well
as the theoretical position of the pure dust, CO2 ice and H2O ice end-members. See text for a detailed description.

S. Douté et al. / Planetary and Space Science 55 (2007) 113–133 117

Figure 8.5.: Cloud diagram obtained by applying a MNF transform to a set of OMEGA hyperspectral
observations. Three endmembers are found in this case, water ice, CO2 ice and mineral dust. The
transitions between each couple of endmembers reveal that there is only a pure sample for end-
member dust. Each color represents an identified class in the work of Douté et al. in [55]. Credit:
[55].

in planetary exploration to characterize the surface composition of Mars in [137]. In particular I
highlight the MVC-NMF algorithm that is a hybrid geometric/NMF-based method because it is
regularized by minimization of the simplex volume [119]. MVC-NMF is not based on the pure
pixel assumption and therefore is able to extract endmembers whose representative spectra are
not included in the analyzed hyperspectral image.

• Mixed spectra are also processed using statistical representations by statistical methods. For
example, the classical PCA is widely used along with a linear mixture model to access relevant
information from natural scenes [98, 32]. Likewise, the alternative transformation ICA is also
used to perform endmember extraction by supposing that the physical sources are mutually
independent and non-Gaussian. In [58] meaningful endmembers are retrieved applying ICA to
images acquired by the VIRTIS instrument on the nightside of Venus. In that study extracted
endmembers are related to physical processes or components in view of the good correlation of
the endmember spectra with known atmospheric structures of Venus. The role of ICA to carry
out spectral unmixing is, however, questioned by Nascimento and Bioucas-Dias in [130]. As a
matter of fact hyperspectral data do not satisfy the independence of abundance distributions.
Furthermore, ICA does not consider the positivity constrain. Alternatively, the NMF problem
has been solved in a Bayesian framework by the algorithm referred to as Bayesian Positive Source
Separation (BPSS) [124]. In [125] a robust BPSS-based strategy applied to data acquired by the
OMEGA instrument leads to endmembers whose associated spectra and abundance maps are
physically meaningful. Traditionally, this family of endmember extraction methods does not
take into account the pure pixel assumption.

• Last but not least there exists a recent trend to include spatial information into the endmem-
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ber extraction process. All aforementioned methods do not take into consideration the spatial
organization of the spectra and therefore they do not consider the cross-information that may
exist among adjacent pixels. I remark that this fact does not mean, however, that the previously
introduced methods are pixel-wise as the extraction of the endmembers is based on the consid-
eration of the complete collection of spectra at once. A few studies have recently addressed the
inclusion of spatial information into the extraction of endmembers such as the works in [82, 191].
For instance, the authors of [191] propose a spatial preprocessing that enhances the search for
endmembers in the unmixing problem. This procedure has proved to provide better extracted
spectra and more relevant abundance maps after its combination with a traditional endmember
extraction method.

In the following I detail five state-of-the-art algorithms that belong to the four mentioned families and
that are based on different principles. Albeit this list is not exhaustive, it is meant to be representative
of the different types of algorithms that are used for endmember extraction nowadays. The following
methods shall be used in chapter 10 and chapter 11.

• Vertex Component Analysis. The algorithm VCA is proposed as a fast geometric method for
extracting endmembers under a linear mixing supposition [131]. According to the sum-to-one
condition the data vectors xk are always inside the simplex formed by M · S whose vertex are
the spectra of the endmembers. VCA iteratively projects the data onto the orthogonal direction
to the subspace spanned by the already extracted endmembers, designating the most extreme
projection as the next endmember. The process is repeated until Nc endmembers are found. In
this process VCA assumes that (i) there are pure pixels in the data and (ii) there is no noise.
In practice, vectors xk (i.e. the spectra) may be outside the simplex if noise is present, which is
actually the common case.

The method VCA represents a powerful tool in planetary exploration as it has been evaluated
satisfactorily on OMEGA and CRISM data in [104] and [27], respectively.

• Minimum Volume Simplex Analysis. The method MVSA belongs to the family of geometric
algorithms and addresses spectral unmixing by fitting a minimum volume simplex to the hyper-
spectral data [100]. The main weakness of the minimum volume constraint is that even a single
outlier may force it to be far away from a reasonable solution. In order to cope with outliers
and noise the positivity constraint imposed on the abundance fractions is replaced by a soft con-
straint. This formulation seeks for a minimum volume simplex where most abundance fractions
are non-negative but allowing, however, some negative values.

In [100] the performances of the MVSA algorithm are confirmed when applying it to simulated
mixed data and comparing the results with those obtained with the state-of-the-art and more
complex method MVC-NMF. As a matter of fact MVSA can be considered as a method lying
between MVC-NMF and the simpler VCA.

• Minimum Volume Constrained Non-negative Matrix Factorization. The geometrically regular-
ized technique MVC-NMF is proposed for endmember extraction of highly mixed hyperspec-
tral data [119]. This method is developed to deal with the realistic scenario in which the pure
pixel assumption is not fulfilled (see Figure 8.4 for an example). In these conditions the method
MVC-NMF yields much better performances than the pure pixel-based algorithms. MVC-NMF
decomposes mixed pixels by analyzing the connection between the spectral unmixing analysis
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and the NMF. A minimum volume constraint makes the MVC-NMF learning robust to different
levels of noise, less sensitive to the estimated number of endmembers and applicable to images
with or without pure pixel representations.

Experiments in [119] and [27] indicate that MVC-NMF has the potential of identifying less-
prevalent endmembers, which is relevant in planetary sciences. In chapter 10 I shall show that
MVC-NMF is indeed a very pertinent technique to detect rare sources in planetary data sets.

• Bayesian Positive Source Separation. The statistical algorithm referred to as BPSS proposes to
estimate the matrices M and S in a Bayesian framework, under a linear mixture model, with
inherent positivity and additivity constraints, and without pure pixel assumption [51]. The noise
and the matrices S and M are assumed to follow a Gaussian, Dirichlet and Gamma probability
density functions, respectively. The algorithm BPSS is based on hierarchical Bayesian models to
encode prior information regarding the parameters of interest. The complexity of the estimation
from the resulting posterior distribution is overcome using Markov chain Monte Carlo methods.
In BPSS the degree of uncertainty affecting the extracted endmember spectra can be estimated
since results are computed as probability distribution functions.

This statistical method has been applied satisfactorily on OMEGA and CRISM hyperspectral
images in [125] and [27], respectively.

• Spatial preprocessing. The authors of [191] propose a preprocessing to incorporate spatial in-
formation into the unmixing of hyperspectral images. First, the importance of the spectral in-
formation associated to each spectrum is weighted based on its spectral similarity as regards a
certain spatial neighborhood. After applying a traditional endmember extraction technique on
the preprocessed image, the spatial position of each endmember is retrieved. Second, the recon-
struction of the abundance maps (see section 8.4) is carried out using the analogous spectra from
the original image and the linear mixture model. This preprocessing enhances the search for
endmembers in spatially homogeneous areas while it may penalize the detection of anomalous
sources as it is shown in [27]. This preprocessing can be combined only with methods based on
the pure pixel assumption, which is required to retrieve the position of the endmembers in the
preprocessed image.

8.4. Abundance determination

After the spectral signatures representing the endmembers M are extracted, each spectrum of the orig-
inal image is reconstructed based on the linear model. The goal is to estimate the abundances, or
weights, S that must be applied to each endmember to recreate the data spectra X by a linear combina-
tion such that X = M·S. Abundances are generally obtained using least square error approximations
that eventually generate fraction abundance maps. These products are unique to explore the spatial
distribution of a given endmember, or associated chemical component, over the area at ground covered
by remotely sensed images.

A common choice to estimate endmember abundances consists in the so-called algorithm UnCon-
strained Least Squares (UCLS) because of its efficiency in terms of computation. By unconstrained we
mean that both the non-negativity and the sum-to-one conditions are not considered. The expression
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of the UCLS strategy is

ŜUCLS = arg min
S

kX � MSk2 . (8.3)

A more realistic choice consists in the so-called Fully Constrained Least Squares (FCLS) algorithm that
is proposed by Heinz and Chang in [73]. In addition to its efficiency in terms of computation, both
the non-negativity and the sum-to-one conditions are satisfied to get rid of unphysical solutions. The
expression of the FCLS strategy is

ŜFCLS = arg min
S

kX � MSk2 ,

3 S �0;
Nc

Â
n=1

s (n, k) = 1, 8k. (8.4)

This optimization method does not have a closed-form mathematical solution due to the non-negativity
constraints and therefore a numerical solution is required. The non-negativity constraint is considered
first. The idea is to minimize the least squared error by estimating the non-negative abundance values
using Lagrange multipliers in an iterative process. The sum-to-one constraint is handled by a slight
modification of the aforementioned algorithm. I recommend the reader the Ph.D. dissertation of Villa
to find more details on this method [179].
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9
Evaluation of spectral unmixing to analyze

hyperspectral data of Mars

In this chapter I carry out a first experiment to investigate the performances of unsupervised linear
unmixing to analyze hyperspectral data of Mars. The goal is to explore whether or not these techniques
are suitable to discriminate between the spectral signatures of different martian chemical species. For
this purpose I generate a simulated data set that mimics the composition of the surface of Mars as
well as the acquisition conditions under which spacecrafts operate from orbit. In this experiment three
chemical components are linearly combined to generate mixed spectra. First, the technique ELM is
applied to the resulting synthetic data set in order to estimate the number of endmembers. Second,
the widely used algorithm VCA is applied in its UCLS flavor to evaluate its capabilities to decompose
mixed spectra of martian materials1.

9.1. Simulated data

Synthetic spectra are simulated with a RT-based model of the surface based on the work of Douté et al.
in [54]. Three chemical species that are common of the surface of Mars are considered, (i) CO2 ice, (ii)
H2O ice, and (iii) mineral dust. In particular I use the optical properties of the two types of ice from the
study of Schmitt et al. [158]. As for the mineral dust I use data retrieved from OMEGA observations
of dusty sites of Mars. The spectral signatures in the NIR and SWIR of the three chemical species are
shown in Figure 9.1 and form the matrix M of the unmixing problem.

A synthetic data set of 4224⇥21 spectra is generated based on the linear mixture model (see Equation 8.1)
fed by the spectral signatures M and the fraction maps detailed in Figure 9.2. These abundance maps

1This work was carried out in collaboration with the GIPSA-Lab of the Grenoble Institute of Technology. More details on
this experiment can be found in [105].
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Figure 9.1.: Reference spectral signatures of the three chemical species used in the simulated data set
when illumination angle SZA is equal to 45 degrees. (left) m1: H2O ice. (center) m2: CO2 ice. (right)
m3: mineral dust.

form the matrix S of the unmixing problem and illustrate how the three chemical species are spatially
distributed. The resulting 4224 linear combinations among the three materials are arranged along
the vertical axis of the synthetic data set. In order to consider the consequences of sensing plane-
tary surfaces under varying illumination conditions I define the horizontal axis to include 21 different
configurations in terms of SZA within the range q0 = {45º . . . 85º}. This acquisition parameter is
considered in the simulated data as the shape of sensed spectra depends on illumination conditions.
Gaussian noise is included into the data set according to Equation 8.1. The noise variance of every
spectral band is adjusted to the values estimated for the CRISM imaging spectrometer.

Figure 9.2.: Reference abundance maps of the three chemical species. The distribution of the illumi-
nation angle, or SZA, is also shown. From left to right: (1) s1: H2O ice abundance. (2) s2: CO2 ice
abundance. (3) s3: mineral dust abundance. (4) s4: SZA in degrees. For example, the spectrum
corresponding to the first column and the first row is made of 100% of H2O ice, 0% of CO2 ice, 0%
of mineral dust and has been simulated using q0 = 45º.
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9.2. Experiments

The synthetic data set is first processed by the algorithm ELM. The first goal of this study is to inves-
tigate if this method succeeds in detecting the three chemical species that have been used to generate
the data set of study. The algorithm ELM distinguishes, however, the existence of four endmembers
(i.e. Nc = 4). The number of endmembers is therefore overestimated.

The spectral signature representing each endmember is extracted as a second step using the technique
VCA. Figure 9.3 shows the extracted signatures along with the reference spectra that have been used
in the data simulation. As it can be seen, the VCA approach extracts two endmembers corresponding
to the species CO2 ice due to the overestimation of the number of endmembers by ELM. The two
associated spectral signatures differ only in terms of average reflectance value and spectral slope.
Further investigation showed that m̂3 and m̂4 correspond to a CO2 ice surface observed at 45º and
85º in SZA, respectively. I identify the reason of this outcome to be related to the so-called source
splitting effects. These effects stand for the phenomena for which a given data source (e.g. a chemical
species) is split into two or more endmembers due to the existence of non-linearities in the data. These
non-linear, typically residual, components corrupt the linear mixture model expressed by Equation 8.1
and therefore impact the extraction of the real endmembers. In the present experiment the varying
SZA results in a non-linear effect that impacts the spectral signature of the CO2 ice extracted by VCA.
The reason why the source splitting effects affect the data source corresponding to the frozen carbon
dioxide may be related to the higher energy of its spectral signature due to a higher value of reflectance
and its numerous strong absorption bands. The issue of the source splitting effects shall be further
investigated in section 10.2.

As for the quality of the extracted spectral signatures, the reference spectra in Figure 9.3 underline the
satisfactory estimation of the spectral shape for all chemical species. Likewise, the average reflectance
value is well estimated in all cases except for the fourth endmember for which the reference spectrum
has been scaled to fit the extracted signature. This exception comes from the source splitting effects.

Figure 9.3.: Spectral signatures of the four endmembers extracted by VCA. From left to right: (1) m̂1:
mineral dust estimated spectrum. (2) m̂2: H2O ice estimated spectrum. (3) m̂3: CO2 ice estimated
spectrum. (4) m̂4: CO2 ice estimated spectrum.

Figure 9.4 shows the abundance maps reconstructed following the UCLS strategy described in Equation 8.3.
The choice of this rather simple reconstruction strategy is made to investigate the consequences of ig-
noring the additivity and positivity constraints. Regarding the spatial distribution of the estimated
abundances, the maps ŝ1 and ŝ2 present a high correlation coefficient as regards s3 and s1, 0.954 and
0.948, respectively (see Figure 9.2 and Figure 9.4). Similarly, the fraction map resulting from the sum
of ŝ3 and ŝ4, both corresponding to the CO2 ice, is related to a correlation coefficient of 0.963 with
regard the original input s2. Nevertheless, the quality of the estimated abundances is not satisfactory
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from an absolute point of view since ŝ1, ŝ3 and ŝ4 show abundances out of the physical range [0 . . . 1].
I therefore conclude that the abundance maps provided by the UCLS strategy are clearly unphysical
and do not agree with the ground truth in Figure 9.2. Furthermore, the abundances corresponding to
the spectra whose corresponding SZA is greater that 70º (right-hand side of the abundance maps in
Figure 9.4) present a reconstruction noise that comes from the presence of the fourth endmember m̂4.

Figure 9.4.: Estimated abundance maps of the four endmembers extracted by VCA. From left to right:
(1) ŝ1: mineral dust abundance fraction. (2) ŝ2: H2O ice abundance fraction. (3) ŝ3: CO2 ice abun-
dance fraction. (4) ŝ4: CO2 ice abundance fraction.

9.3. Conclusions

I conclude this experiment by stating that the combination of the algorithms ELM and VCA may be
suitable to decompose mixed data if certain precautions are taken. First, non-linearities in the data
such as varying illumination conditions may produce source splitting effects that may alter the real
number of endmembers estimated by ELM. As a matter of fact, the homogeneity of the illumination
conditions makes part of the requirements stated at the beginning of chapter 8 to assure the absence of
non-linearities in the remotely sensed signal. Second, special attention must be paid when ignoring the
positivity and sum-to-one constraints in the reconstruction of the abundance maps based on the spectra
extracted by VCA. In particular the physical sense of the retrieved maps cannot be assured when
using the UCLS strategy. The quality of these spatial outputs being critical for mapping purposes in
planetary sciences, I therefore recommend to use the FCLS strategy in order to constrain the retrieved
abundances in the physical range [0 . . . 1]. This decision shall be taken in the following study described
in chapter 10. Despite these two limitations, results prove that the ELM+VCA strategy may provide
satisfactory spectral signatures and abundance maps of the chemical species present in a martian
scene, at least in a qualitative manner. As a matter of fact, the absence of the physical constraints on
the estimated abundances severely impacts the quantitative quality of the present study. Eventually
the unmixing process has proved to be robust in front of the typical noise in imaging spectrometers.
Similar experiments carried out on real planetary data acquired by the OMEGA sensor and presented
in [105] show similar satisfactory results. In the following chapter I take into account of the conclusions
drawn in this chapter when using the spectral unmixing concept to analyze real planetary data.
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Spectral unmixing for the study of planetary

surfaces

In chapter 9 I have investigated the capabilities of blind source separation to decompose simulated data
under a linear mixture model. One could argue, however, that the reality is much more complex than
the scenario considered in the synthetic data set. In this matter many authors have recently addressed
satisfactorily the unmixing of real planetary remotely sensed data. For example, Moussaoui et al.
[125] and Luo et al. [105] obtain satisfactory results when processing data acquired by the imaging
spectrometer OMEGA by the aforementioned techniques BPSS and VCA, respectively. In this matter
one could argue that the conditions under which OMEGA senses the surface of Mars may be suitable
for the existence of linear mixtures because of its moderate spatial resolution, up to 350 m/pixel. As
a matter of fact several terrain units are likely to coexist geographically within a given pixel at this
spatial resolution. By contrast, the CRISM instrument provides data with an unprecedented detail,
up to 18 m/pixel, thus increasing the complexity of the observed surface. As detailed in chapter 8
the probability of dealing with non-linear mixtures typically increases with higher spatial resolutions,
thus questioning the suitability of spectral unmixing techniques based on a linear mixture model in
the CRISM case.

In this chapter I go further than in chapter 9 by investigating the suitability of the linear mixture model
in the planetary context made available by the CRISM instrument. By suitability I mean the capacity
of linear unmixing techniques to reveal relevant features related to the chemical composition and the
physical state of planetary surfaces. Scientists working with CRISM hyperspectral data may benefit
substantially from this original study since spectral unmixing approaches are potential tools to map
and quantify the abundance of chemical species such as minerals (e.g. [137]). Additionally, these
techniques allow the transformation of a hyperspectral cube formed by hundreds of spectral bands
into a set of a few relevant features, each one characterized by a spectral signature and an abundance
map.
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In this matter the second objective of this chapter is defined as the evaluation of the capacity of un-
mixing techniques to perform dimensionality reduction. In front of the volume increase of planetary
data collections the potential of source separation to ease this problem is explored in this chapter. With
this aim I focus on unsupervised techniques that allow the automatic processing of such collections
of data. As I shall conclude in section 10.4 the concept of spectral unmixing is appropriate to gener-
ate significant quick look products that squeeze out the meaningful information from hyperspectral
images.

Eventually spectral unmixing has proved to be a unique tool to detect rare minerals provided that
the corresponding, often weak, signals are conserved in the process. This issue has been recently
investigated by some authors in [119, 138, 27, 1]. This point shall also be investigated in the present
chapter as planetary scientists usually require methods that are sensitive to rare materials at the ground
(e.g. [37]). At this point I remark that the aim of this study is not to explore the capability of spectral
unmixing to detect rare signals that are different to the rest (e.g. anomalies). In this special case
anomaly detection algorithms or unmixing techniques considering the sparsity of the data must be
used and this is out of the scope of this thesis.

In order to address these objectives I put forward an original validation strategy to assess the per-
formances of spectral unmixing applied on CRISM data in a quantitative manner1. The validation of
spectral unmixing techniques is a very challenging issue in planetary sciences because ground truth
data are very scarce. Similarly to what is done in chapter 9 the validation of unmixing outputs is
traditionally addressed either by comparison of the extracted endmembers with reference spectral sig-
natures [35, 48, 122, 189] or by using simulated data [82, 83, 191]. In the martian case I do not consider
this evaluation strategy as fully satisfactory as only a few specific areas of Mars are characterized
to the extend of making available reliable reference spectral signatures. Contrarily, the validation of
abundance maps obtained from unmixing real martian data has never been addressed. I highlight the
work of Jia et al. that represents to our knowledge the sole attempt in this direction. In that work the
authors perform the validation of spectral unmixing techniques by comparing abundance maps with
reference data [82]. Nevertheless I cannot consider this validation to be independent of the unmixing
problem since the abundance maps of reference are built from spectra that are manually extracted from
the original image. To our knowledge, the validation of spectral unmixing techniques applied on real
data through the evaluation of extracted abundance maps in an independent manner has been never
addressed.

In this chapter I present an innovative strategy to validate unsupervised spectral unmixing techniques
applied to CRISM data. For this purpose a specific CRISM observation displaying the Russell crater
megadune is selected. This particular area of Mars is very suitable to validate spectral unmixing
techniques based on the linear mixture model. First, the existence of geographic sub-pixel mixtures
coming from two predominant materials at the ground is confirmed by very high-resolution imagery.
Second, it is possible to build a ground truth for validating the extracted abundance maps using
the same independent imagery. Following original experiments I perform quantitative assessment of
surface abundances obtained by a selection of state-of-the-art unmixing algorithms. This choice is
performed among spectral unmixing techniques that are widely used in planetary sciences and/or

1This work has been carried out in collaboration with the Laboratoire IDES, Orsay, France, the GIPSA-lab, Grenoble, France,
and the LIESMARS, Wuhan, China. More details can be found in the published article [27] that has been attached to this
dissertation in chapter 16.
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Earth observation. In this experiment the most appropriate and efficient techniques for analyzing
CRISM data are identified by evaluating their spatial outcomes.

This chapter is organized as follows. In section 10.1 I present the site of study by describing the Russell
dune and the corresponding data sets. Experiments are carried out in section 10.2 followed by the
intercomparison and validation of the spectral unmixing techniques using the reference ground truth
in section 10.3. In section 10.4 I draw the conclusions on the proposed strategy, the tested unmixing
techniques, and the potential of spectral unmixing in planetary sciences.

10.1. The Russell crater megadune

The Russell crater is a 134-km wide impact crater situated in the southern hemisphere of Mars.
Figure 10.1 (top-right) shows an image of the 1700 km2 dune field situated on the northeastern part
of the Russell crater. This uncommon 500-m high megadune is made of mineral materials that are
completely covered by seasonal CO2 ice during the southern winter of Mars [63].

In this experiment I propose to study the southwest facing scarp of the Russell megadune because
it displays many defrosting features in late winter. These features appear at the beginning of the
retreat of the CO2 ice in the form of dark elongated patterns (mainly along the gullies that erode the
scarp) and dark spots (mostly on the top of the dune) as it is shown in Figure 10.1. In late winter the
Russell dune represents a potential benchmark for testing spectral unmixing algorithms in a planetary
context. With the beginning of the sublimation of predominant ice, the sandy mineral substratum
is gradually uncovered. This geographical coexistence of two components has been observed during
the MRO mission by very high resolution imagery and imaging spectroscopy with the HiRISE and
the CRISM instruments, respectively. The former sensor fully resolves the geographical coexistence
of dark dusty features and brighter ice while the latter instrument does not. In this case I consider
that assumption of linear mixtures in the hyperspectral signal leaving from the Russell dune becomes
reasonable at the CRISM resolution. Figure 10.1 illustrates the existence of geographical sub-pixel
mixtures by superposing the footprint of a CRISM pixel onto the HiRISE image. The displayed pixel
actually encompasses two potential endmembers that are distinctly defined.

Another reason that I consider to be valid to designate the Russell dune as a study site is the possibility
of constructing a ground truth based on high resolution HiRISE imagery. These ground truth data can
be used to evaluate the capabilities of spectral unmixing techniques as it will be done in section 10.3.

I distinguish two major difficulties linked to the choice of the Russell dune, the quite accentuated
relief and the presence of icy materials. The former hurdle is related to the multiple scattering that
may occur between the different tilted facets of the dune and that is not considered in the unmixing
process. Second, the remaining CO2 ice over the main scarp of the dune is susceptible to display quite
strong anisotropic photometric effects throughout the image. In addition, the presence of ice increases
the complexity of the atmospheric correction that the selected CRISM image will undergo.

10.1.1. CRISM data and preprocessing

In this study I select the central scan of the CRISM observation FRT42AA acquired in late winter when
the CO2 sublimation starts and the defrosting features appear. Figure 10.2 shows the 80-km2 area of
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Figure 10.1.: Detail of the HiRISE image PSP_002482_1255_RED over the Russell dune showing the ge-
ographical coexistence of brighter areas made of CO2 ice and the dark features. The dark spots and
the elongated patterns are observed. The approximative footprint of a 18⇥18 m2 CRISM pixel is su-
perposed on the HiRISE image at 25 cm/pix to illustrate the likely geographical mixtures happening
in the remotely sensed signal.

study embracing a large portion of the southern facing scarp of the Russell dune. A region of interest
(ROI) is defined to enclose the southwest facing scarp containing the defrosting features (see yellow
line in Figure 10.2). As regards the spectral dimension, I only consider the CRISM spectral bands
ranging from 1.0 to 2.6 µm because of the less marked features of CO2 ice in the visible range (<1.0
µm) and the high impact of thermal noise for greater wavelengths (>2.6 µm) due to the second order
leakage detailed in subsection 4.1.2.

Before the spectral unmixing stage, the FRT42AA central scan is processed by the IPAG-DP introduced
in chapter 4 as Figure 10.3 illustrates. In this way the test image is compensated for instrumental arti-
facts, atmospheric effects and photometric issues. These contributions are not related to the materials
at the surface and therefore may introduce non-linearities in the data that would invalidate the linear
mixture assumption. At this point I make the following comments as regards the application of the
IPAG-DP on the FRT42AA central scan:

1. The correction of the FRT42AA central scan for smile effects is particularly challenging due to
the presence of CO2 ice (review subsubsection 4.1.2.1). While the proposed desmiling method
compensates the majority of the smile effects some residues are therefore expected.

2. Imprecisions in the adopted scattering properties of the aerosols (review subsection 2.1.3) may
result in atmospheric residues affecting the spectra corresponding to the upper and lower rows of
the image (corresponding to the most extreme VZA values) by means of spurious spectral slopes.

3. Correction for photometric effects is performed on the FRT42AA central scan by considering the
average illumination conditions of the ROI. The average SZA used in the photometric normaliza-
tion is estimated from the HiRISE DTM covering the Russell dune (see Figure 4.25).

As a consequence of the mentioned limitations residues coming from the heterogeneous photometry,
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Figure 10.2.: True color image of the central scan of FRT42AA showing the Russell dune. The still
frosted scarp displays dark spots on the ridge of the dune and dark elongated patterns along the
gullies. The ROI is highlighted in yellow. The upper-right figure displays the location of the test
image over the megadune observed by the THEMIS instrument.
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Figure 10.3.: Block diagram illustrating the spectral unmixing of the central scan of the CRISM obser-
vation FRT42AA after processing by the IPAG-DP.

instrumental artifacts and atmospheric effects may still affect the data related to the surface after the
IPAG-DP. This point is made obvious in the following section 10.2 where I show how these non-linear
residues have an impact on the linear mixture model. In any case I consider the central scan FRT42AA
to be suitable to perform linear spectral unmixing according to the conditions stated in chapter 8. First,
the presence of geographic sub-pixel mixtures in the Russell dune is proved by inspecting HiRISE
imagery. Figure 10.1 shows that the radiance leaving the surface may be reasonably composed by a
linear combination of, at least, two physically distinct components at the spatial resolution of CRISM.
Despite the likely presence of residues I assume the absence of atmospheric effects as well as the
homogeneity of the solar illumination after the IPAG-DP. The lack of non-linear contributions coming
from the surface cannot be, however, guaranteed. In this situation the linear mixture model is subject to
be degenerated, as it is expressed in Equation 8.2, and spurious transformations arising from the non-
linear factors F = {f1, f2, . . . , fNc} may alter the estimated endmembers M as it happened in chapter 9.
The semi-validity of the linear mixture model is taken into consideration in the analysis that is carried
out in the following section.
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10.2. Experiments

Experiments are conducted on the area of the FRT42AA central scan delimited by the introduced ROI.
As for the unmixing stage I define a comprehensive selection of state-of-the-art algorithms based on
geometric, NMF-based, statistical and spectral-spatial first principles2. In this selection I discard those
algorithms typically used in planetary sciences that are supervised [e.g. the Iterative Linear Spectral
Unmixing Model (ILSUM) [122]] or that have been proved to be less appropriate to retrieve physically
meaningful features (e.g. the PCA and the MNF transformations, see [55]). With the resulting com-
prehensive selection of algorithms I aim at performing an intercomparison to determine those that are
more suitable to analyze CRISM data. The essential result in order to consider an analysis technique
to be reliable is the obtention of physically meaningful endmembers that are related to the materials at
the surface such as the dark features presented in Figure 10.1.

10.2.1. Spectral unmixing

As detailed in chapter 8 the first step toward the unmixing of hyperspectral data consists in the de-
termination of the number of endmembers. With this aim I use the state-of-the-art technique referred
to as ELM (review section 8.2). In this case ELM detects the coexistence of six endmembers in the
hyperspectral image of investigation. This result is considered satisfactory given that the Russell dune
is assumed to be composed by at least two major components (i.e. CO2 ice and mineral dust). The
slight disagreement existing between the expected (i.e. ~2) and the detected (i.e. Nc = 6) number of
materials is explained by the so-called source splitting effects (see section 9.2). I note that the alterna-
tive method HySime was discarded in this study as it determined the presence of 14 endmembers, a
result largely exceeding the expected number of sources. The reason of this result may be related to the
higher sensitivity of HySime to the non-linearities in the data which severely impact the endmember
reconstruction.

In this investigation experiments are carried out by a selection of four endmember extraction methods
based on different principles detailed as follow:

1. The geometric method VCA with assumption of pure pixels.

2. The statistical technique BPSS with no assumption of pure pixels and based on a Bayesian frame-
work.

3. The hybrid approach MVC-NMF with no assumption of pure pixels and suitable for identifying
less-prevalent endmembers.

4. The algorithm spatial-VCA resulting from the fusion of the method VCA and the preprocessing
procedure introduced in Figure 8.3. The latter routine aims at incorporating the existent spatial
information in the image into the unmixing problem.

The MVSA algorithm is not used in this study as it is based on similar principles than MVC-NMF. As
for the reconstruction of the abundance maps using the linear mixture model I take into account the
non-negativity and the sum-to-one constraints by considering the FCLS strategy (see Equation 8.4) as
it is concluded from the study performed in chapter 9. In this framework one spectral signature and

2In this thesis I present only results obtained by a selection of four algorithms that provided satisfactory results on the
FRT42AA image. Further experiments were carried out with other techniques (see article in chapter 16).
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one abundance map is provided for each of the six endmembers by each the analysis methods. I make
the following comments at this point:

• After the scrutiny of the extracted spectral signatures by a team of planetary scientists, all spec-
tra are considered to be physically meaningful. This is also the case of those provided by the
techniques MVC-NMF and BPSS, which are not based on the pure pixel assumption. Nonethe-
less, residual non-linear contributions make that one physical source, typically a material at the
surface, can be split into two or more endmembers. This outcome is caused by source splitting
effects (see section 9.2).

• After the inspection of the six spectral signatures and the six corresponding abundance maps
provided by each method, I distinguish three physical data sources related to the surface in the
central scan of the FRT42AA observation. These three materials are detected in the outcomes
provided by the four endmember extraction methods that are tested in this study.

• A recombination effort is therefore needed to reconstruct each physical source (three in total)
based on the forming endmembers (six in total). The algorithms MVC-NMF and BPSS are the
sole techniques providing a self-consistent endmember embracing the dark features observed in
Figure 10.1.

In the following section I detail the recombination process that is carried out on the endmembers
extracted by the method MVC-NMF. Details on the recombination efforts done for the rest of techniques
are given in the enclosed article in chapter 16.

10.2.2. Analysis and recombination of endmembers

The spectral signatures corresponding to the six endmembers extracted by the method MVC-NMF are
plotted in Figure 10.4. Alternatively, Figure 10.5 shows the associated abundance maps.
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Figure 10.4.: Spectral signatures extracted by the method MVC-NMF.

In order to identify the origin of each endmember I define two parameters that characterize each
extracted spectrum. Let R1.1 be the apparent reflectance value at 1.1 µm and let B2.3 be the absorption
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depth at 2.3 µm such that B2.3 = 1 � R2.3/R2.2. These two spectral parameters are decisive for the
interpretation of the spectral signatures together with the information coming from the abundance
maps. In particular large values of R1.1 and B2.3 are related to a higher content of CO2 ice because of
the higher reflectance of ice in comparison to dust and the fact that absorption at 2.3 µm is specific
to ice, respectively. Due to inaccuracies in the atmospheric correction extracted spectra may have an
anomalous positive or negative slope that must be accounted for in the calculation of B2.3. In order
to overcome this anomaly I propose to multiply B2.3 by the spectrum average slope b1.1�2.2 that is
calculated as R2.2/R1.1 . Table 10.1 details the two spectral parameters for each endmember extracted
with MVC-NMF.

Endmember: 1 (D) 2 (W) 3 (S) 4 (W) 5 (W) 6 (W)
R1.1: 0.24 0.39 0.36 0.37 0.34 0.38

b1.1�2.2: 1.01 1.17 1.04 1.00 1.16 1.03
B2.3: 0.08 0.08 0.16 0.08 0.10 0.10

Table 10.1.: Spectral parameters of the endmembers extracted by MVC-NMF. Apparent reflectance at
1.1 µm and absorption depth at 2.3 µm - (D): dark source, (S): strong bright source, (W): weak bright
source.

According to the defined spectral parameters and the abundance maps in Figure 10.5 three physical
sources are defined to coexist in the central scan of FRT42AA. They are characterized by their spectral
and spatial characteristics as follow:

1. Definition of dark source: physical source related to the presence of dark features. The corre-
sponding R1.1 and B2.3 are the lowest among the three sources due to a high content in dust and
a few residual CO2 ice. This source predominates along the ridge of the dune and within the
gullies in the form of dark spots and elongated patterns, respectively.

2. Definition of strong bright source: physical source related to a high content of CO2 ice. The
corresponding B2.3 is the highest among the three sources while R1.1 is higher than for the dark
source due to a lower dust content. This source predominates principally in the areas surround-
ing the dark source.

3. Definition of weak bright source: physical source related to a high content of CO2 ice. The
corresponding R1.1 is the highest among the three sources while B2.3 is higher than for the dark
source but lower than for the strong bright source. This source greatly predominates on the dune
scarp and may correspond to a different physical state of the ice than the one of the strong bright
source.

In the following I detail the designation of each endmember to one of the physical sources. This classi-
fication is conducted based on the spectral parameters detailed in Table 10.1, the associated spectra in
Figure 10.4, and the abundance maps in Figure 10.5. Afterward, the abundance map of each physical
source is obtained by adding the individual abundance maps of the endmembers associated by the
assignation. The results of the recombination are shown for the MVC-NMF case in Figure 10.6 (C).

• Reconstruction of dark source: I identify endmember 1 to be related to the dark source due to the
lowest R1.1 among all endmembers and a moderately low values of parameter B2.3. This choice
is justified by the abundance map related to endmember 1, revealing the dark structures over
the Russell dune [see Figure 10.5 upper-left and red pixels in Figure 10.6 (C)]. The composite

202



Chapter 10. Spectral unmixing for the study of planetary surfaces

abundance map highlights the areas that are prone to contain dark sources as it is observed with
HiRISE imagery, namely the dark spots on the top of the dune, the dark elongated patterns along
the gullies, and some areas belonging to the base of the northeast-facing defrosted scarp.

• Reconstruction of strong bright source: I establish endmember 3 to be related to the strong bright
source due to the highest B2.3 among all the extracted endmembers. The abundance map of the
strong bright source [see Figure 10.5 upper-right and green pixels in Figure 10.6 (C)] shows a
spatial coherence with the dark source as the green areas typically surround the red pixels,
particularly on the top of the dune.

• Reconstruction of weak bright source: I identify endmembers 2, 4, 5, and 6 as belonging to
the weak bright source due to a common higher R1.1 and a moderately low B2.3. In this case
source splitting phenomena coming from non-linear residues affect this physical source. On
the one hand, the predominance of the CO2 ice leads to a typical cross-track pattern due to
spectral smile affecting the abundance map of endmember 6 (see subsubsection 4.1.2.1). This is
pointed out by the anomalous lower abundances that happen in the horizontal edges similarly
to what is shown in Figure 4.7. In this context residues of the smile effect make endmember
6 energetic enough to be extracted separately. On the other hand, the differences in terms of
reflectance of the spectral signature corresponding to endmember 2 are explained by the different
illumination conditions that happen in the scene. This result is similar to the outcome of the
experiment in section 9.2 in which the non-uniform SZA results in the splitting of the ice source
into two endmembers. The inspection of the HiRISE DTM corresponding to the Russell dune
revealed that endmember 2 predominates at low SZA while other endmembers correspond to
SZA values that are similar to the average SZA used in the photometric normalization of the
IPAG-DP. An optimal normalization by the real SZA would decrease the average reflectance of
endmember 2, thus matching the rest of endmembers in terms of R1.1. Eventually, the splitting
of endmembers 4 and 5 is justified by the opposite vertical trend that affects the corresponding
abundance maps. As it is seen in Figure 10.5 (bottom-left) and in Figure 10.5 (bottom-center),
both maps show very low spurious abundances, either for the top or the bottom rows, coming
from the atmospheric residue described in subsection 10.1.1. This interpretation is also pointed
out by the complementary slopes of the spectra (b1.1�2.2 > 1 for endmember 4 and b1.1�2.2 < 1 for
endmember 5). Figure 10.6 (C) highlights in blue the abundance map resulting from the fusion
of endmembers 2, 4, 5 and 6 the areas and that is complementary to the dark and strong bright
sources.

Eventually I propose to assess the quality of the spectra reconstruction based on the absence of non-
linearities as it is done in [143]. The accuracy of the conducted spectral unmixing is evaluated by
reconstructing the CRISM central scan using the extracted spectral signatures mn and their associated
abundance maps sn based on the linear mixture model as follows:

X̂k = M·S =
Nc

Â
n=1

mnsn,k, n = {1 . . . Nc} , k =
�

1 . . . Np
 

. (10.1)

If the linear mixture hypothesis is fully satisfied and the endmember extraction is performed satisfacto-
rily the resulting error (the term e in Equation 8.1) is equal to the noise of the data. In practice, however,
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Figure 10.5.: Abundance maps corresponding to the six endmembers extracted from the FRT42AA
central scan using the endmember extraction algorithm MVC-NMF.

the term e corresponds to the reconstruction error of the image coming from the non-linearities that
exist in the data. The reconstruction error is calculated for each endmember extraction approach in
terms of signal-to-noise ratio such as 36 dB for VCA, 41 dB for BPSS, 43 dB for MVC-NMF, and 35 dB
for spatial-VCA. These results along with the fact that the abundance maps are accurate (as it shall be
shown in the next section) prove an accurate reconstruction in all cases. The results of this last exper-
iment are a solid evidence that the linear mixture model is appropriate for the study of the Russell
dune observed by CRISM.

10.3. Validation

In the previous section the robustness of the planetary scenario formed by three physical sources is
validated in a qualitative manner by the four composite abundance maps in Figure 10.6. As a matter
of fact the notable spatial similarities among these four products coming from different techniques
validate the spectral unmixing step. In the following I perform further validation of the obtained
outcomes using a ground truth that expresses the abundance fractions of the dark source for every
pixel. This reference in the form of an abundance map is constructed from HiRISE imagery, assuring
the independence of the resulting ground truth. I propose to use this ground truth to validate the
planetary scenario unveiled by spectral unmixing. In particular I propose to evaluate the abundance
maps related to the dark features of each tested technique in a quantitative manner.

204



Chapter 10. Spectral unmixing for the study of planetary surfaces

Figure 10.6.: A: Color composite image illustrating the spatial distribution of the three physical sources
over the Russell dune extracted by VCA. The dark, strong bright and weak bright sources are show
in red, green and blue, respectively. B, C and D: Same as Figure Figure 10.6-A for BPSS, MVC-NMF
and spatial-VCA.

10.3.1. Ground truth

The validation of outcomes coming from planetary data is a very challenging issue in front of the
scarcity of available ground truth data. Only a few specific sites on Mars have been explored to
a sufficient degree to allow contrasting data coming from different instruments. The Gusev crater
presented in chapter 7 represents one of the few sites on Mars that have been scrutinized by the
combination of spacecrafts from orbit and rovers on the ground. Nonetheless, confronting different
kinds of results is not a straightforward task because of the different spatial resolution and conditions
under which the measurements are acquired. In this chapter I present a novel strategy to validate the
outcomes provided by unmixing strategies from planetary data by building a ground truth based on
HiRISE imagery.
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10.3.1.1. HiRISE image

The HiRISE camera is an unprecedented tool to explore the surface of Mars. HiRISE consists of a
half-meter reflecting telescope that allows sensing geological formations of the Red Planet at a very
high spatial resolution, up to 0.25 m/pixel [115]. HiRISE is aboard MRO and thus explores the planet
Mars simultaneously with CRISM. Figure 10.7 (upper-right) shows the footprints of the HiRISE image
PSP_002482_1255 that was acquired at the same time than CRISM’s FRT42AA. Likewise, Figure 10.7
shows a small area of the Russell dune observed simultaneously by the CRISM and the HiRISE instru-
ments. As it can be seen, HiRISE is able to resolve spatially the dark features from the surrounding
brighter ice while the CRISM image is composed of highly mixed pixels. In this situation I propose
to exploit the HiRISE image PSP_002482_1255_RED at 550-850 nm to build a reference abundance
map for the dark features that shall be used in the evaluation of the corresponding spectral unmixing
outcomes (i.e. the red pixels in Figure 10.6).

Figure 10.7.: (main) Detail of the Russell dune observed by the CRISM and the HiRISE instruments.
(upper-right) footprints of the images CRISM FRT42AA in blue (604×420 pixels, non-map pro-
jected), HiRISE PSP_002482_1255_RED in green (29862×63004 pixels, map projected) and HiRISE
PSP_002482_1255_COLOR in yellow (11776×61257 pixels, map projected). In this study, the COLOR
product is discarded in favor of the RED image because of its smaller coincident footprint with
the CRISM image and twice worse spatial resolution (see chapter 16 for more details). The ROI is
enclosed with a white line.

I propose the following threefold strategy to generate the ground truth:

1. The HiRISE image is first classified in order to extract the dark features.

2. The resulting classification map is registered with the CRISM hyperspectral image. The HiRISE
geographic space is preferred as output in order to keep its higher spatial resolution for the final
comparison between the two products.

3. The reference abundance map is generated by counting the labels classified as dark features that
fall within the footprint of a given CRISM pixel.

206



Chapter 10. Spectral unmixing for the study of planetary surfaces

In the following sections I further detail these three steps.

10.3.1.2. Image classification

The dark features are first extracted from the HiRISE image PSP_002482_1255_RED by classifying each
pixel of the image as belonging to the class “dark features” or the class “brighter ice”. The definition
of these two classes is straightforward according to the geomorphologic analysis based on Figure 10.1
and Figure 10.7. I use a traditional unsupervised k-means strategy that was introduced in the 60s and
firstly applied to remote sensing data by Richards et al. in [149]. After splitting the image into k = 7
clusters according to the gray value of the HiRISE image, the darkest cluster is selected to represent the
dark features. Some manual improvement based on local thresholding is performed in order to avoid
misclassifying other dark zones in the image such as shadows that could be misinterpreted as dusty
features of interest. Figure 10.8 (a) shows the resulting classification map encompassing the dark spots
and the dark elongated features.

Classification map Ground truth
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Figure 10.8.: A: Classification map embracing the dark features after extraction from the original
HiRISE image. The label occurrences corresponding to the dark features are represented by white
points. B: Reference abundance map used as ground truth.

10.3.1.3. Image registration

The resulting classification map must be transformed into an abundance map to be comparable to
the spatial outcomes of the unmixing stage. For this purpose I propose to overlap the grid formed
by the footprints of all CRISM pixels onto the classification map in order to calculate the fraction
of dark features within each CRISM pixel. Nonetheless, the generation of an abundance map from
HiRISE imagery to be compared to products coming from CRISM data is a challenging problem due
to the different functioning of both instruments. The major hurdle is related to the spatial resolution
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of the instruments, differing by more than a factor 70 (18 m/pixel for CRISM against 0.25 m/pixel for
HiRISE). For this purpose I first project the CRISM hyperspectral image, originally in its image space,
onto the HiRISE geographic space3 using the DDR ancillary data [127]. At this point both images
should be theoretically correctly registered. Nevertheless, this processing step is not enough since
there exist incompatibilities between the instrument models that are used to generate the geographic
data of each sensor.

In this context I decide to perform the direct registration of both images for the sake of an accurate
pixel-wise comparison between the two products of interest (i.e. the HiRISE-based ground truth and
the abundance maps resulting from the spectral unmixing of CRISM data). With this aim I use a
feature matching method that warps a CRISM spectral band of control (i.e. the one at 1.1 µm, in the
continuum of the spectra) to fit the original HiRISE image. As a matter of fact it would not be safe to
perform the direct registration of the unmixing abundance maps as they could be wrong. After this
processing step is satisfactorily achieved the registration procedure can be repeated for the unmixing
abundance maps.

I define a threefold procedure to register both images as follows:

1. The control spectral band of the CRISM image is projected onto the geographic space of the
HiRISE data using its geographic data in the ancillary DDR (i.e. latitude and longitude).

2. A coarse registration is first performed by applying to the CRISM product the spatial translation
in the vertical and horizontal dimensions that maximizes the correlation coefficient between both
images.

3. A fine registration is eventually carried out using a classical Delaunay triangulation [49]. In this
way the CRISM image is warped based on a set of more than 200 manually-selected ground
control points defined over the southwest-facing scarp and, in particular, for the dark spots along
the ridge of the dune. This registration method is chosen for its simplicity and robustness.

The registration process is illustrated in Figure 10.9 (A) and Figure 10.9 (B) showing, respectively,
the HiRISE and the CRISM images with the associated ground control points. The quality of the
registration is expressed by Figure 10.9 (C) depicting the spatial distribution of the local correlation
coefficient rreg between the HiRISE image and the control CRISM spectral band after registration.
The rreg values are obtained using a 10⇥10 sliding window over the coinciding area resulting from
the intersection of the two images and the ROI (review Figure 10.7). Figure 10.9 (C) underlines the
satisfactory accuracy of the registration with an average correlation of ~0.7. I remark that the manual
selection of control points may introduce misregistration inaccuracies, particularly on the borders of
the processed area where control points are difficult to define due to the lack of information on the
surrounding areas.

10.3.1.4. Reference abundance map

After registration the classification map obtained based on HiRISE imagery is ready to be transformed
into an abundance map that is comparable to the unmixing results. Given that the data manipulation
has been performed on the HiRISE geographic space, each CRISM pixel is now associated to a footprint
containing several pixels at the HiRISE resolution (see red polygon in Figure 10.1 for an example). I

3HiRISE products are released using an equidistant cylindrical projection.
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Figure 10.9.: (A): HiRISE image with the corresponding registration control points as red crosses. (B):
The same as Figure Figure 10.9 (A) for the CRISM image. (C): Registration accuracy map displaying
the local correlation coefficient computed on the intersection between the two images and the ROI
on a 10 ⇥ 10-pixel basis.

therefore compute the reference abundances by counting the number of dark labels (i.e. white points
in Figure 10.8) occurring in each CRISM footprint, and then normalizing by the total number of labels.
In this way I obtain a ground truth product that provides the fraction of dark features at the CRISM
resolution.

The resulting ground truth is eventually improved to become more realistic. In remote sensing any
sensed radiance value of a given pixel is determined by the contribution coming from the conjugated
area on the surface and spurious contributions originated by two principal causes:

1. The overlapping of the PSFs corresponding to the pixel of interest and those of the neighboring
detectors (review section 1.4).

2. The so-called adjacency effect introduced in subsection 2.1.3.

In the spatial dimension this effect result in a blurring of the whole hyperspectral image that has not
been taken into account in the generation of the ground truth. I therefore mimic an image blurring
by filtering the reference abundance map by a Gaussian low-pass filter. More details on this image
degradation can be found in chapter 16.

Figure 10.8 shows the transformation of the classification map into the final ground truth that is used
for validation of the unmixing products. Additionally, Figure 10.10 provides a summary of the different
steps in the construction of the ground truth on a small area of the Russell dune.

10.3.2. Evaluation of abundance maps

The abundance maps related to the dark source produced by spectral unmixing of the FRT42AA
central scan are validated using the introduced ground truth. For this purpose I make the reasonable
assumption that the dark features resolved by the HiRISE instrument correspond to the extracted
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Figure 10.10.: Detail of the ground truth generation. A, B: HiRISE and CRISM images after registra-
tion. C: Classification map highlighting the dark features. D: Reference abundance map after pixel
counting.

dark source. As it is introduced in subsubsection 10.3.1.3 the registration step is repeated, using the
same parameters, on the abundance maps provided by the algorithms VCA, BPSS, MVC-NMF, and
spatial-VCA. Figure 10.11 displays the products related to the dark source after cropping them to be
comparable to the ground truth in Figure 10.8 (B).

I propose two indicators to assess the similarity between the ground truth and the unmixing abun-
dance maps, namely the Pearson correlation coefficient r and the average absolute error e. The former
indicator is chosen to measure the spatial similarity of both products, while the latter is selected to give
a more quantitative assessment of the comparison. As it is shown in Figure 10.9 (C), misregistration
problems may alter the comparison on some specific areas. Consequently, I carry out three experi-
ments by calculating r and e according to the registration accuracy. Each experiment is detailed in the
caption of Table 10.2 and results are summarized as follow:

1. According to the results of the first experiment the unmixing outcomes are quite satisfactory with
r up to 0.69 and e as small as 0.08.

• The algorithms MVC-NMF and spatial-VCA provide the best and the worst results in terms
of r, respectively. BPSS performs slightly worse than VCA and MVC-NMF because of the
noisy background that affects the dark abundance map (see Figure 10.11). I interpret this
result as a higher sensitivity of BPSS to the presence of residual dust invisible to HiRISE
within the ice surrounding the dark features.

• The examination of results in terms of e reveals that abundances provided by spatial-VCA
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Figure 10.11.: From left to right, abundance maps corresponding to the dark source extracted by
the algorithms VCA, BPSS, MVC-NMF and spatial-VCA. The matching ground truth is found in
Figure 10.8 (B) for comparison.

Method VCA BPSS MVC-NMF spatial-VCA
Indicator r e r e r e r e

1: All pixels 0.68 0.08 0.57 0.10 0.69 0.09 0.50 0.14
2: Accurate registration 0.73 0.08 0.59 0.09 0.72 0.08 0.56 0.13

3: Best registration 0.81 0.19 0.80 0.13 0.83 0.14 0.77 0.33

Table 10.2.: Pearson correlation coefficient r and average absolute error e for (1) all pixels (mean(rreg) =
0.7), (2) the moderately well registered areas (rreg > 0.7, ⇠50% of the pixels with mean(rreg) = 0.83)
and (3) an area with an improved registration (⇠1% of the pixels with mean(rreg) = 0.96). The region
corresponding to the third experiment is shown in Figure 10.10.

are slightly worse than the rest with e = 0.14. This bias is mostly originated in the at-
mospheric residue affecting the upper rows in the form of a small overestimation that is
conjugated with a poorer registration accuracy [see Figure 10.9 (C) and Figure 10.11]. Addi-
tionally, Figure 10.6 (D) shows an excess of red pixels in the upper rows that may indicate a
deficient endmember recombination in the spatial-VCA case.

2. Misregistration issues are proved to be an important source of error since the obtained results in
the second experiment outperform those from the first experiment.

• All methods undergo a significant correlation improvement up to 0.06 in terms of r.

• The improvement of e is less notable as this indicator is less sensible to the spatial distribu-
tion of the abundance values. According to this result, I remark that the best value e = 0.08
may represent the intrinsic accuracy of the proposed methodology.

3. The third experiment corroborates the improvement according to the registration quality under-
lined by the second experiment.

• There is a clear trend of improvement in terms of r with values up to 0.83 for the algorithm
MVC-NMF.

• The average error e is slightly higher in this case because of the high heterogeneity of the se-
lected area in terms of dark abundance [see Figure 10.10 (A)]. This heterogeneity of the area
makes the comparison more sensitive to PSF and adjacency effects that especially degrade
the absolute levels of the abundance maps. Another reason to such error increase may come
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from potential non-linearities coming from the selected portion of surface. As regards the
tested techniques, parameter e reveals a notable disagreement between the results obtained
with VCA and, especially, spatial-VCA with regard to the ground truth. I consider this
result to point to a faulty extraction of the dark source by these two approaches.

Eventually I perform a last experiment by computing the distribution of abundance values for the
ground truth and the unmixing outcomes. Results of this experiment are summarized in Figure 10.12
and conclusions are detailed as follow:
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Figure 10.12.: Distribution of the dark abundances corresponding to the ground truth and the unmix-
ing abundance maps.

• VCA: this approach severely underestimates the dark abundances in comparison with the ground
truth according to the presence of null abundances. This result may be originated from the trun-
cation of the actual abundance maps caused by the non-positivity and the sum-to-one constraints.
These two restraints result in a more restrictive final abundance map of the dark sources.

• BPSS: the statistical technique presents a notable agreement with the ground truth as the cor-
responding histogram suffers only from a small overestimation (average abundance of 0.17 for
BPSS and 0.08 for the ground truth). At this point I underline the relevance of Figure 10.12 as
first conclusions drawn based on Table 10.2 seem to indicate a lower accuracy of BPSS in front of
other techniques.

• MVC-NMF: the hybrid geometric/NMF-based method provides the best histogram in terms of
average abundance, equal to 0.16. A little overestimation is still observed in comparison with the
ground truth.

• spatial-VCA: the histogram of this approach confirms the initial conclusions drawn according to
Table 10.2. As a matter of fact the dark abundances are generally overestimated with an average
abundance of 0.21. The side effects resulting from the truncation imposed by the unmixing
constraints is observed as it happens for the VCA case, especially for low abundance values.

I conclude this section by questioning the relatively small abundance overestimation that is observed
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for the majority of the methods. This anomaly could be misleading as it may be explained conversely
by underestimated abundances in the reference abundance map. In this study the ground truth is
built by selecting the dark regions in the HiRISE image, that is, those pixels whose radiance values
are lower than the neighboring pixels. Nevertheless, I can reasonably assume that the surrounding
ice is contaminated by dust particles that are not considered in the classification process as they are
not resolved spatially by HiRISE. These particles are, however, likely sensed by the CRISM instrument
because of its accurate spectral discrimination. Consequently, I conclude that the average abundance
of the real ground truth may be slightly higher. This would therefore shift the corresponding reference
histogram in Figure 10.12 to higher abundances, thus increasing the average accuracy of methods BPSS,
MVC-NMF, and spatial-VCA. The remaining differences may be related to the intrinsic limitations of
the endmember extraction methods and to spurious non-linear contributions.

10.4. Conclusions

The present investigation represents an unprecedented study regarding the performances of spectral
unmixing techniques applied to high resolution planetary data. First, I prove that the Russell dune
of Mars is suitable to be considered as a benchmark to evaluate the capabilities of spectral unmixing
under the linear mixture model. The satisfactory results obtained after comparison of the unmixing
outcomes to the ground truth prove that the linearity assumption may be valid for processing CRISM
images corresponding to areas of Mars with similar properties than the Russell dune. Second, relevant
planetary information on the physical state of the Russell megadune has been provided by unmixing
techniques. The planetary community may benefit of these results as the phenomena happening on
the Russell dune are an ongoing research topic for the understanding of Mars geology and activity
[63]. These two conclusions mean that the presented methodology could be applied to other CRISM
observations similar to Russell’s.

As for the intercomparison of endmember extraction techniques, albeit all tested methods reveal the
same three physically meaningful sources, an effort of recombination is required due to repeated
splitting of physical sources into a few endmembers. The reason of such anomaly is the existence of
residual non-linearities that come either from the surface or from residues of the IPAG-DP. Based on
original experiments I have proved that most of the discrepancies in the validation using the ground
truth come from limitations of the registration process between the HiRISE and CRISM images. I draw
some conclusions on each of the tested endmember extraction methods as follow:

• VCA. I conclude that this geometric method provides satisfactory spectral signatures while the
estimated abundance maps after the endmember recombination are not satisfactory. This limi-
tation is caused by the lack of sensitivity due to the positivity and sum-to-one constrains that
are imposed on the original abundance maps. This side effect of the physical constraints causes
extremely low dark abundances, frequently set to zero. I therefore deduce that the physical con-
straints may be less relevant when a recombination effort is needed since the physical meaning
imposed by these constraints is required for the recombined sources and not for the intermedi-
ary endmembers. Nonetheless, VCA is the fastest among all techniques and therefore is of great
interest to perform dimensionality reduction of large collections of hyperspectral data sets.

• BPSS. According to the presented results the abundance maps provided by this statistical method
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are generally accurate, that is, sufficient for an initial planetary interpretation. BPSS shows signifi-
cantly satisfactory performances according to its histogram and the second lowest reconstruction
error in terms of reconstruction error. In addition, no recombination is needed to retrieve the
abundance map related to the dark source. An advantage of BPSS is that this method provides
error bars for estimated abundance due to its statistical basis. The main disadvantage of BPSS
is, however, related to the high computational time. An issue deserving further research would
be to evaluate the risks of extracting unphysical endmembers when performing unmixing with
BPSS as it does not consider the pure pixel assumption.

• MVC-NMF. This method holds the first position of the ranking since it provides the best results
among the four tested techniques. The abundance map corresponding to the dark source is in-
deed the most accurate when compared to the ground truth. In addition, MVC-NMF extracts the
dark source directly without the need of the recombination process, which reasonably increases
the accuracy. I deduce that this result may come from the higher sensitivity of MVC-NMF in
front spatially confined physical sources as it is stated in [119]. Furthermore MVC-NMF is a very
fast algorithm and results can be considered by planetary scientists as a primary quick look to
reveal physical sources in a hyperspectral data set. Additionally, I propose to use this method
in order to detect and evaluate subtle residues coming from faulty instrumental or atmospheric
corrections.

• spatial-VCA. According to presented results I deduce that the combination between the VCA
technique and the spatial preprocessing are affected by the lack of sensitivity induced by the
physical constraints, similarly to what it happens with VCA. While spectral signatures are quite
significant due to the pure pixel assumption, experimental results point to somewhat unsatis-
factory abundance maps with regard to other methods. I relate this underperformance to the
inherent penalization of the spatial preprocessing for spatially confined sources such as the dark
features on the Russell dune [191].

As a conclusion I remark that linear spectral unmixing can be considered as a relevant tool to infer
physical information on specific areas of Mars. In this study the products provided by these techniques
are related to a high accuracy when compared to the independent ground truth and therefore constitute
a valuable product for planetary scientists. These techniques are certainly not limited to the Russell
dune and can be applied to other sites of Mars as along as the linear mixture assumption is met.
An issue deserving further research is the evaluation of residual non-linearities in the central scan
of observation FRT42AA. Non-linear contributions may come from the intrinsic spectral variability
of the physical sources, the presence of granular intimate mixtures, and the occurrence of adjacency
effects due to multiple scattering between the atmosphere and the surface. As it has been seen, these
factors may result in inaccuracies affecting the estimated abundance maps. In order to improve the
accuracy of the results I propose a thorough study of the image FRT42AA that would account for
non-linearities by inverting a physical model of the spectra. The simulation of the spectral signatures
of the physical sources using RT codes can drive the determination of a physical model of the scene
based on the source abundances among other parameters. CRISM spectra can then be inverted using
the determined physical model and constraining it with the estimated abundance maps as the most
probable solution.
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11
Retrieval of AOT using spectral unmixing

Up to this point I have proposed to exploit the concept of spectral unmixing to infer physical param-
eters of planetary surfaces. Nonetheless, the radiation sensed by orbital instruments is shaped by the
atmospheric contribution as well as the signal that comes from the surface. Atmospheric studies are
typically addressed by physically-based methods that aim at characterizing the atmospheric by means
of the AOT, or taer, for example. These methods are often unstable since the inverse problem is highly
unconstrained or they are limited by the properties of the materials at the surface (e.g. the b-method
adopted by the IPAG-DP does not operate for surfaces covered by CO2 ice). In addition, physically-
based methods do not typically exploit the coherency between neighboring pixels whereas it is widely
known that the AOT varies slowly in the spatial dimension in most of cases, for example.

In this context our group proposes to exploit the fingerprint of atmospheric aerosols, as well as the
existent spatial coherency, to derive atmospheric properties using analysis techniques based on the
spectral unmixing concept1. In particular we address the retrieval of AOT from hyperspectral images
based on linear unmixing techniques as those that have been previously presented. As it has been
proved in Part III the AOT is a crucial atmospheric parameter for performing fine analysis of surface
reflectance. Unlike materials at the surface, the contribution of aerosols cannot be extracted as a regular
endmember as it is done for surface materials such as the dark features in chapter 10. The impact of
aerosols on the radiation leaving the surface is indeed non-linear and therefore is not linearly mixed
with spectral signatures of surface materials. In order to illustrate this I refer the reader to Figure 2.5
where the effect of mineral aerosols on a water ice spectrum is illustrated.

In order to account for the contribution of aerosols we propose to introduce a parametric model of
the remote sensing signal into an iterative solving procedure. The TOA data are first corrected for
gaseous absorption based on an initial assumption regarding the content and the spatial distribution of
aerosols. Eventually, the iterative use of linear spectral unmixing techniques and a gaseous correction
that is improved at each iteration allows the final estimation of the correct AOT.

1This work has been carried out in collaboration with the Gipsa-lab, Grenoble, France. More details are given in [103].
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Chapter 11. Retrieval of AOT using spectral unmixing

The outline of this chapter is as follows. First, in section 11.1 I introduce the algorithm for AOT retrieval
based on a parametrized model of the TOA apparent reflectance accounting for the gas transmission
and the aerosol scattering. I then report on the test of the proposed algorithm in section 11.2 on
realistic synthetic data simulating the typical atmospheric conditions on Mars. Eventually, I draw the
conclusions and detail the future prospects of this work in section 11.3.

11.1. Description of the algorithm

The proposed AOT retrieval algorithm is based on the RT formulation that is adopted by the IPAG-DP
to perform atmospheric correction. I therefore recommend the lecture of the appendix section 14.2
since only some concepts shall be remembered in the present chapter. The TOA apparent reflectance
RTOA (k; l) at a given wavelength l and for pixel k is expressed as a function of the gaseous vertical
transmission TGas and the surface reflectance only altered by the aerosols Raer as follows:

RTOA (k; l) = TGas (k; l)e(k) Raer (k; l) . (11.1)

In this formulation I remind the reader that the AOT is closely related to the exponent parameter e

because of the dependencies of the latter (see Equation 14.2). Based on this physically-based expression
we propose an iterative strategy aiming at estimating the AOT by means of the e parameter as schemed
in Figure 11.1. I summarize the most important points as follows:

1. In iteration j, the original hyperspectral image RTOA (k; l) is corrected for atmospheric effects as
it is done by the IPAG-DP by following

Raer,j (k; l) =
RTOA,j (k; l)

TGas (k; l)ej(k) . (11.2)

• TGas (k; l) is the vertical transmission of the gases and is computed depending on the topography
and meteorological conditions of the processed image as it is explained in section 14.2. This
parameter is not updated during the iterative process.

• In the first iteration j = 1, we assume a homogeneous distribution of the AOT t1 (k) fixed at
a typical average value ¯

taer. The exponent parameter e1 (k) is readily computed from the AOT
following Equation 14.2.

2. Spectral unmixing is then performed on the atmospherically-corrected data set Raer,j (k; l) using
the unsupervised MVSA approach based on the linear mixture model (review Figure 8.3). The
MVSA algorithm is adopted for the proposed AOT retrieval approach as MVSA is fast, simple yet
not based on the pure pixel assumption. In this way, MVSA may extract the spectral signatures
of the existing endmembers. Following the linear mixture model, the hyperspectral data are
decomposed into a ensemble of spectral signatures mn and abundance maps sn that are related
to the components at the surface as follows
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Figure 11.1.: Scheme of the algorithm for retrieval of AOT using the unmixing-based strategy.

Raer,j (k; l) =
Nc

Â
n=1

mj,n (l) sj,n,k + ej (l) , (11.3)

n = {1 . . . Nc} ,k =
�

1 . . . Np
 

.

3. The original atmospherically-corrected image is then reconstructed using mj,n and sj,n,k based on
Equation 10.1

ˆRaer,j (k; l) = Raer,j (k; l) � ej (l) =
Nc

Â
n=1

mj,nsj,n,k. (11.4)

4. Then, the difference between the original and the reconstructed data set ej (l) = Raer,j (k; l) �
ˆRaer,j (k; l) is assumed to come from the atmospheric absorption residues induced by the erro-

neous AOT estimation. Under this assumption, the optimal exponent parameter e (k) minimizes
the reconstruction error as follows

ej+1 (k) = arg min
e2<

�

�

�

ln
⇣

RTOA (k; l) � TGas (k; l)ej+1(k) Raer,j (k; l)
⌘

�

�

�

, (11.5)

ej+1 (k) =
ln
�

Â
l

TGas (k; l)
�

RTOA (k; l) � ˆRaer,j (k; l)
��

ln
⇣

Â
l

TGas (k; l)2
⌘ . (11.6)

5. Points 1-4 are repeated using the retrieved ej+1 (k) until convergence is achieved in terms of the
reconstruction error.
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11.2. Experiments

In order to evaluate the capabilities of the proposed AOT retrieval method based on spectral unmixing I
set up an original validation based on simulated data that recreate realistic atmospheric and acquisition
conditions. The following experiment constitutes the preliminary evaluation that has been done toward
the full validation of the proposed algorithm.

11.2.1. Simulated data

Experiments are performed on an original 128⇥128-pixel synthetic data set. I consider two typical
components of the surface Mars, namely mineral dust and H2O ice, as it is done in chapter 9. CO2 ice is
not considered in the preliminary tests as the similarities between the absorption bands of the gaseous
and the solid carbon dioxide may make the problem much more challenging. Similarly to chapter 9
synthetic spectra are simulated using the RT model described in [54]. In this experiment TOA apparent
reflectance is simulated in the SWIR range 0.93-2.73 µm at 128 wavelengths. Figure 11.2 shows the
complementary abundance maps that are used to generate the synthetic data set RTOA (k; l). By using
these two fraction maps I recreate the sub-pixel geographic mixtures between the two endmembers.
As it can be seen, the majority of the pixels contains highly mixed spectra. In order to introduce
some intrinsic variability into the data set I randomly generate the spectra using a varying grain
size for the mineral dust particles as well as for the granular H2O ice. The ranges of grain size are
selected according to the observed properties of these materials on Mars as it is done in the study
of Bernard-Michel et al. [12]. Furthermore, I simulate the acquisition conditions corresponding to
the high latitudes of Mars by generating synthetic spectra at nadir (q = 0º) with q0 = {65º . . . 85º}.
The latter angle of acquisition follows the geometry map shown in Figure 11.3 (left). By setting high
SZA values, the proposed algorithm is tested under a challenging scenario as the signal coming from
the surface at these incidence angles is especially fainter due to aerosols. The AOT is given by the
simulated abundance map taer (k) shown in Figure 11.3 (right). The corresponding e (k) is computed
following Equation 14.2 and is shown in Figure 11.4 (left). I propose to generate the AOT map using
plasma fractals to give a cloud-like realistic result. In the final aerosol product [see Figure 11.3 (right)],
AOT varies from 0.1 to 1.6 and the average opacity is equal to 1.2, which corresponds to a quite dusty
atmospheric scenario2.

The previous conditions set by the surface, the illumination geometry, and the atmospheric opacity are
taken into account to generate the image Raer (k; l). I then combine this intermediary product with
the atmospheric effects by simply multiplying the synthetic image Raer (k; l) by an atmospheric data
set TGas (k; l)e(k) to obtain RTOA (k; l) according to Equation 11.1. In this way the surface, which has
been previously altered by the aerosols, is altered this time by the transmission of the atmospheric
gases TGas (k; l) also modulated by the suspended aerosols according to parameter e (k). For the
purpose of simulating a real scenario I adopt the gas transmission estimated from a real OMEGA image
acquired over the polar regions Mars. In this way the variability of atmospheric effects depending on
a heterogeneous topography are reproduced.

2The MATLAB code that is used for simulating plasma fractals can be found in http://library.thinkquest.org/26242/

full/progs/a8.html.
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Figure 11.2.: Ground truth describing the fraction abundance of the two synthetic endmembers (water
ice on the left, and mineral dust on the right) forming the simulated image.

Figure 11.3.: Ground truth describing the distribution in the simulated data set of (left) the solar inci-
dent angle, and (right) the AOT or taer.

11.2.2. Results and analysis

In the present experiment a number of 3000 iterations are carried out to estimate the original exponent
e (k) that is originally used in the simulation of RTOA (k; l). The initial atmospheric conditions were
previously set such as e0 (k) = 2, 8k. The adopted value corresponds to the average value of the
ground truth shown in Figure 11.4 (left). In order to evaluate the quality of the retrieval the correlation
coefficient rj and the mean squared error (MSE) ej between the ground truth e (k) and the retrieval
ej (k) are computed at the jth iteration such that

rj =
Â
�

ej,k � Â ej,k
�

(ek � Â ek)
q

Â
�

ej,k � Â ej,k
�2 Â (ek � Â ek)

2
, (11.7)

ej = Â
�

ej,k � ek
�2 , (11.8)

where all sums are done over all pixels, that is, ÂNp
k=1.

Figure 11.5 monitors the two quality parameters according to the number of iterations. The robustness
of the iterative algorithm in terms of convergence is observed as the correlation coefficient constantly
increases from 0.55 to 0.75 while the MSE decreases exponentially by more than 60%.

219



Chapter 11. Retrieval of AOT using spectral unmixing

Figure 11.4.: (left) Ground truth exponent e (k), and (right) estimate after 3000 iterations e3000 (k).
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Fig. 2. Ground truth of the abundance of the two endmembers
for the simulated image.

– Compute Rj by using Equation (5);
– Use linear unmixing approach to unmix Rj for obtain-
ing m̂j and ŝj ;

– Reconstruct R̂j by using Equation (6);
– Update �j+1(x) by using Equation (8).

• end

4. EXPERIMENTS AND RESULTS

4.1. Simulated data

Experiments are performed on a 128⇥128-pixel synthetic
data for evaluation of the aerosol retrieval strategy. Two
Martian-like endmembers are present on the surface: water
ice and dust. Two complementary abundance maps were
generated to simulate a sub-pixel geographic mixture (see
Figure 2). Uncertainty was introduced in the data by ran-
domly selecting the grain size of both surface components.
Two physical-meaningful ranges of grain size values were
chosen according to Martian properties. Then, each surface
spectrum was altered by a layer of aerosol which �aero is
given by an aerosol abundance map (see Figure 3c). This
map was generated by plasma fractals to give a cloud-like
realistic result. �aero values were selected from 0.1 to 1.6 to
correspond with a Mars-like scenario. Synthetic spectra were
differently generated by the method in [5] depending on the
value of �0 - from 65 to 85 expressed by the geometry map
in Figure 3(a). The high values of airmass mimics the polar
regions of the Mars. Finally, the surface cube was multiplied
by a data set containing the atmospheric transmission of a
polar OMEGA image. That was done to reproduce the atmo-
spheric gas effects as well as the topography of the scene. As
a matter of fact, the atmospheric contribution on the surface
changes depending on the elevation.

4.2. Estimation results

We have performed 3000 iterations (of which the scheme is
shown in Section 3) to estimate the ✏(x). The initial value of
✏0 = 2, which is between the maximal and the minimal value
of the ground truth. In order to evaluate the estimation results,
we have computed between the ground truth and each ✏j(x)
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Fig. 3. (a) Incident angle; (b) The ground truth of ✏(x); (c)
the ground truth of aerosol abundance.
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Fig. 4. (a) Correlation coefficients Cj between ✏(x) and the
estimation results ✏j(x); (b) Mean Square Root Error Ej be-
tween ✏(x) and the estimation results ✏j(x);

obtained at the jth iteration, the correlation coefficientCj , the
mean squared error (MSE) Ej respectively by

Cj =
E(✏j � E(✏j))(✏ � E(✏))

�

E(✏j � E(✏j))2E(✏ � E(✏))2
.

Ej = E((✏j � ✏)2).

The larger Cj is, the better ✏j(x) is, while the smaller Ej is,
the better ✏j(x) is. In Figure 4, we have shown Cj and Ej as
the function of iteration step j. It can be seen that, the corre-
lation coefficient between the estimated ✏(x) and the ground
truth always increases (from 0.71 to 0.75), which indicates
that the estimated ✏(x) is more and more similar to the ground
truth. However, after 1000 iterations, the correlation coeffi-
cient increases very slightly. In addition the MSE between
the estimated ✏(x) and the ground truth always decreases.
It can be seen that the correlation coefficients always in-

crease. In Figure 5(b), we have shown the ✏3000(x) estimated
at the 3000th iteration. For comparison, we have shown in
Figure 5(b), the ground truth of the ✏(x) is shown.

Figure 11.5.: (left) Correlation coefficient and (right) MSE between the original e (k) and the estimate
ej (k). j stands for the number of iteration in the AOT retrieval process.

Figure 11.4 (right) shows the estimation of the exponent parameter retrieved after 3000 iterations
e3000 (k) for comparison with the ground truth in Figure 11.4 (left). According to results, the retrieved
AOT agrees with the ground truth at first order. First, the range of retrieved e3000 values agree with
that of the ground truth according to the color bars of each plot in Figure 11.4. Second, areas corre-
sponding to high/low dust contents (i.e. low/high e values) are assigned satisfactorily to low/high
estimations of e3000. Nonetheless, we detect some disagreements at the contour lines corresponding to
the distribution in SZA and the abundance maps. As for the former product, the related impact on
the retrieval of e seems to be quite critical when the illumination angle varies. We explain this effect
by the relatively high incremental step that is used in the variation of q0. In this matter I remark that
the impact on e produced by the variations in q0 are expected as it is already present in the expo-
nent ground truth [see Figure 11.4 (left)]. The exponent parameter actually depends on the airmass,
and thus the SZA. Eventually, the retrieval strategy reveals a moderate sensitivity to the grain size of
the components according to the granular pattern affecting the e3000 (k) map [see Figure 11.4 (right)].
However, this source of inaccuracy is not considered to be as critical as other parameters since the
variation in grain size that has been considered in the ground truth is somewhat exaggerated and is
not expected to be found on the surface of Mars.

220



11.3. Conclusions

In this chapter an innovative approach has been introduced to retrieve the AOT of a hyperspectral
image based on the spectral unmixing concept. I stress that the proposed analysis method is not based
on any information on the properties of the components at the surface nor in the atmosphere. As
a consequence this method is theoretically suitable to retrieve the AOT over snow-covered surfaces
for which the b-method currently adopted by the IPAG-DP does not work. According to results
obtained on realistic simulated data, this strategy provides rather satisfactory estimates of the dust
content in the atmosphere. The main limitation is that all non-linearities in the data are assumed to
come from the contribution of the aerosols. This assumption is, however, not true in reality as other
non-linear contributions such as those coming from the surface or the varying acquisition conditions
are expected. As a matter of fact results show an important sensitivity to the varying grain size
of the surface components and to the heterogeneous illumination conditions that are considered to
generate the synthetic spectra. In this matter we propose further testing to determine the limitations
of the presented retrieval strategy. Subject to the obtention of satisfactory results, real CRISM and
OMEGA data will be then processed and retrieved AOT values will be compared to those estimated
by independent techniques.

According to the preliminary results I conclude that this original method represents the first step to-
ward a non-physically-based analysis approach for retrieval of AOT. For instance, the results obtained
in this study prove that the retrieved AOT may be suitable to be used as a first guess that may be
refined afterward by more sophisticated methods.
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Summary and future prospects

This part of the dissertation has been dedicated to investigate the capabilities of the concept referred
to as source separation in the analysis of hyperspectral images of Mars. Source separation is also
referred to as spectral unmixing when dealing with hyperspectral images since it aims at “unmixing”
the observed spectra into constituent spectral signatures. In the present part of the thesis I have
investigated the role of spectral unmixing as a robust tools to identify and extract endmembers related
to the surface, the atmosphere or even the instrument itself. In spectral unmixing each endmember is
characterized spectrally and spatially by means of a spectral signature and a fraction abundance map,
respectively. These outcomes have proved to be decisive in the analysis of collections of terrestrial and
planetary remotely sensed data.

A major issue that I have addressed in this part is the evaluation of the linear mixture model. Only
spectral unmixing methods based on this somewhat reductionist supposition have been considered as
techniques based on a non-linear model are generally supervised and more complex to implement. In
chapter 9 and chapter 10 I have carried out experiments on simulated data and real CRISM images,
respectively. In the first study I have proved that the widely used endmember extraction method
VCA is suitable to process mixed data composed of geographic sub-pixel mixtures that are similar
to those found on Mars. The results of this first study have been then questioned in the second
investigation by arguing that the spatial resolution of the CRISM instrument may be too high for the
existence of this type of linear mixtures. Nonetheless, results obtained in chapter 10 on the Russell
crater megadune observed by CRISM prove that the linear mixture model may be accurate enough to
distinguish surface materials and provide reliable information on their composition. In this chapter
I have also introduced an original strategy to evaluate the capabilities of any endmember extraction
algorithm in an independent manner by means of a ground truth.

Globally the results obtained on the Russell dune are satisfactory according to the presented reference.
The reason to this success is the predominance of geographic sub-pixel mixtures in this particular area
of Mars. Similarly I conclude that other regions of Mars observed by CRISM may be appropriate for
being analyzed by these techniques. Based on this original study I propose the use of unsupervised
unmixing techniques based on the linear mixture model to process large collection of planetary hyper-
spectral images. While some attention must be paid to the most challenging cases techniques such as
MVC-NMF or BPSS are theoretically suitable to provide accurate results at first order. Nonetheless, I
underline the likely difficulty of these algorithms to extract satisfactorily the physical sources in the
image in some cases. In the study of the Russell dune an endmember recombination is required by
some of the tested methods to reconstruct the test dark source. This postprocessing is done manu-
ally as it requires the analysis of the unmixing outcomes based on some knowledge on the expected
scenario. This drawback prevents the processing of large collections of planetary data sets in a fully
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unsupervised manner. I hence infer that the adoption of the linear mixture model at the CRISM spatial
resolution may restrain the unsupervised analysis of hyperspectral data to the rather restricted case
where a single type of mixture predominates (i.e. linear geographical mixtures). This issue points out
that future prospects may consider the incorporation of physical constraints into the unmixing process
to obtain accurate results without the need of any postprocessing. I propose that these constraints
consider phenomena such as the intimate mixtures that may happen at the surface or the multiple
scattering in the atmosphere. In fact these two factors of the remote sensing problem cause non-linear
mixtures at the signal level that are not considered by a linear mixture model. In the future I suggest
the consideration of improved non-linear methods that gradually become an interesting alternative
such as those in [18, 75]. Another future prospect in this matter would be to use the BRDF of the ma-
terials at the surface estimated with the MARS-ReCO approach to project the data onto a more linear
space in which perform a classical linear unmixing such as it is done in [41].

An undeniable benefit of spectral unmixing is the ability of performing dimensionality reduction. In
this matter I have proved that a hyperspectral image can be transformed from a set of a few hundreds
spectral bands into a few relevant feature bands. This information can definitely benefit planetary
scientists who are interested in analyzing large series of images. This key advantage is based on the low
computational time of the so-called geometric techniques that typically perform endmember extraction
in a few tens of seconds. The outcomes coming from these techniques can be considered as a quick-
look that helps unveiling the prevailing components in the data. In this matter I also propose the use
of fast unmixing techniques to drive iterative postprocessing strategies that may use the endmembers
to detect and monitor residues coming from faulty atmospheric or instrumental corrections.

In chapter 11 I have eventually explored the potential of spectral unmixing for characterizing plane-
tary atmospheres. Albeit further investigations must be performed in the future preliminary results
evidence that unmixing techniques may be appropriate to drive retrieval strategies. According to the
obtained results I conclude that the proposed iterative strategy based on the MVSA method and a
formulation of the at-sensor signal can provide satisfactory initial estimates of AOT over an arbitrary
scene of Mars. Subject to further testing, at the present time there is no theoretic limitation regarding
the composition of the surface on which the AOT is estimated. I underline this last property to be very
interesting for processing hyperspectral images acquired over the high latitudes of Mars for which
traditional AOT retrieval algorithms (e.g. the b-method adopted by the IPAG-DP) do not often work.

Finally I envisage the investigation of the benefits of spectral unmixing on different types of data. Up
to this time I have used these tools to decompose at-sensor spectra into constituent spectral signatures
while the source separation concept can be applied to any type of data. In subsection 4.2.4 I have
presented a new type of planetary product derived from the multi-angle capabilities of the CRISM
sensor, namely photometric curves depending on viewing angle. Similarly to the spectral unmixing
of spectra, photometric curves may be potentially decomposed into constituent angular endmembers.
In this case source separation techniques shall aim at separating components related to the physical
state of the materials rather than their chemical composition. The moderate spatial resolution of the
photometric curves (~180 m/pixel) should be enough to include several terrain units corresponding to
a different photometric nature. In addition to the angular dimension source separation techniques may
also consider the spectral dimension when applied to spectro-photometric curves. To our knowledge
this type of investigation has never been addressed before.
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Conclusions and future prospects

Under the title Evaluating the potential of statistical and physical methods to analyze hyperspec-
tral images of Mars - Application to the multi-angle instrument CRISM, this Ph.D. thesis proposes
a series of tools to analyze the information encompassed by observations of Mars produced by the
CRISM instrument. The Compact Reconnaissance Imaging Spectrometer for Mars is a hyperspectral
imager aboard the Mars Reconnaissance Orbiter that provides unique data on the surface and the
atmosphere of the Red Planet. In the targeted mode CRISM acquires systematically multi-angle obser-
vations that allow an innovative and fine exploration of Mars. The complexity and size of these data
represent nonetheless a real hurdle for planetary scientists. This thesis proposes a series of tools that
facilitates the visualization, manipulation and analysis of CRISM observations while considering the
whole information that they encompass. Although the proposed algorithms are recurrently tested and
validated on selected CRISM images they are designed to be reusable for other images belonging to
many different contexts.

The present work is divided into four main parts. The first part establishes the environment in which
the work is framed. The others refer explicitly to the three major contributions that have been made in
response to the need of a combined set of unsupervised tools to process hyperspectral data in a fast
and efficient manner and of physically-based algorithms to fully exploit the potential of the multi-angle
hyperspectral CRISM instrument. Going into more detail:

1. In Part I I have defined the framework of this thesis by firstly detailing the reason why imaging
spectrometers constitute a key tool in the exploration of the Solar system and, in particular, of
Mars. In this matter I have introduced the basis of hyperspectral imaging by detailing the re-
lated instruments, the resulting products, the major families of tools for processing hyperspectral
images, and the related challenges in terms of data visualization and analysis. The first chapter
ends by describing the CRISM instrument whose key technological attributes are its high spatial
resolution up to 18 m/pixel and its multi-angle capabilities, the latter feature making available
up to eleven viewing geometries from a same martian target. The second chapter describes the
physical background in planetary remote sensing, with special attention to the processes that
shape the spectral radiation arriving to the MRO spacecraft. Based on a radiative transfer model,
I have proposed to adopt a robust and smart expression of the at-sensor signal that decomposes it
into several simpler contributions. The theory in this chapter is the basis of the physically-based
atmospheric correction approaches that are described in the following parts of the dissertation.

2. In Part II I have investigated the existent limitations of the CRISM data products as regards the
objectives of this thesis. For instance, the radiometric quality of the released CRISM products is
observed to be affected by spectral anomalies coming simultaneously from intrinsic limitations
of push broom scanners and from the martian scenario itself. In the fourth chapter of this thesis
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I have showed how the presence of carbon dioxide in the atmosphere, as well as in some specific
regions of the surface of Mars, amplifies some technical limitations of the CRISM instrument.
Furthermore the release of CRISM data does not consider the generation of an integrated multi-
angle product to perform further processing on it nor classical issues in remote sensing such
as the compensation for atmospheric effects. In this context I have proposed an original and
automatic data pipeline that addresses the previous issues among others in a sequential and
efficient manner. The recurrent and successful use of the data pipeline throughout the thesis
for processing CRISM observations corresponding to different martian scenarios validates it as a
convenient and automatic tool for planetary scientists interested in improving meaningfully the
original radiometric quality of CRISM data and in advanced products such as atmospherically-
corrected CRISM images.

3. In Part III I have exploited the multi-angle capabilities of the CRISM instrument in order to
define an original method to correct for atmospheric effects. As originally intended the multi-
angle dimension of CRISM eases the separation of the contributions coming from the surface
and the atmosphere using radiative transfer modeling. Traditional single-shot instruments must
inevitably assume a Lambertian surface to correct satisfactorily for anisotropic effects of atmo-
spheric aerosols. Unfortunately this assumption is proved to bias severely the obtained estimates
of the surface properties. The use of multiple measurements from a given target observed at
different observation angles eases considerably this complexity. The problem remains, how-
ever, complicated as the consideration of the surface BRDF in radiative transfer-based inversion
methods increases exponentially the computational burden. Under these circumstances I have
proposed a robust atmospheric correction method that is based on an original expression of the
at-sensor radiation using a semi-empirical model for the surface BRDF and a Green’s function to
model the atmosphere. The proposed algorithm MARS-ReCO inherits the state of the art from
atmospheric correction of multi-angle sensors in Earth observation.

4. In Part IV I have looked into the use of spectral unmixing techniques for an unsupervised anal-
ysis of CRISM hyperspectral images. Hyperspectral images are not only associated to a unique
information but also to a high dimensionality that might seem redundant at first. As a con-
sequence the retrieval of meaningful information on the different contributions enclosed in a
hyperspectral image cannot be done straightforwardly by simple inspection. Moreover, although
physically-based approaches are very useful to perform fine analysis of specific martian areas,
they prove to be limited when a priori information on the scene is not available. In front of this
hurdle automatic algorithms are increasingly demanded to accurately process large collections
of hyperspectral observations. In this context I have investigated the use of spectral unmixing
techniques that automatically decompose a hyperspectral image into a set of physically mean-
ingful endmembers. An intercomparison between several state-of-the-art endmember extraction
methods has been carried out based on an original strategy using high resolution imagery as a
reference. As shown by the results unmixing techniques are able to detect significant martian
endmembers and to quantify their fraction at the surface by means of abundance maps. This
type of product constitutes a valuable quick look for planetary scientists. Also in this thesis I
have explored the use of unmixing techniques for the retrieval of physical quantities related to
the atmosphere.
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Many statements and conclusions have been highlighted in the individual conclusions of each part of
this thesis. I outline some of them here as the main concluding remarks:

• The improvement of the radiometric quality of CRISM data by the data pipeline represents
a major contribution of this thesis. Fine analysis of hyperspectral data requires low levels of
noise and accurate sensed radiances. For instance, physical models are complex tools that often
seek weak signals and therefore become sensitive to minor artifacts affecting the images. The
CRISM instrument represents a unique tool as regards its accuracy, performances and design.
Unfortunately, the increasingly demanding applications along with the also demanding martian
scenario result in an inevitable sensitivity of the former to instrumental artifacts. The proposed
data pipeline is designed to overcome these technical limitations. I highlight the correction for
the spectral smile effect that is addressed in this dissertation. Although the presented results
show a notable improvement of severely affected images in terms of radiometric quality, I re-
mark that the smile effect may result in the degradation of meaningful data that might become
unrecoverable. As it is shown in chapter 4 spectral features encompassed by the most affected
columns might be too much degraded to be recovered by desmiling methods. In my opinion
the main reason of this drawback is not linked to CRISM itself but to the martian scenario itself.
CRISM has been designed with a push broom concept and therefore the smile effects are some-
how inevitable. However, the remote sensing of Mars with hyperspectral pushbroom scanners is
particularly affected by the carbon dioxide that predominates in the atmosphere and in the high
latitudes of Mars. This chemical component has strong and steep absorption bands that increase
the smile effects, as well as the complexity of other technical issues. In this situation slight non-
uniformities affecting the two-dimensional matrix of pushbroom scanners are severely magnified
when sensing carbon dioxide, resulting in data artifacts such as the smile effect. According to
my experience acquired throughout this thesis an improved spectral calibration of the instrument
would inevitably end up in smile effects due to the strong steepness of the mentioned spectra.
This is especially the case of images acquired over the high latitudes of Mars that are rich in
frozen CO2 on the surface and gaseous CO2 in the atmosphere. This limitation could be over-
come in the future by advanced methods inspired by the desmiling algorithm presented in this
dissertation. As I detail in the conclusions of Part II, advanced indicators of the spatial distortion
induced by the smile effect may be used for the sake of a refined desmiling. To conclude this
point I stress the potential ability of the presented desmiling technique to carry out an improved
flat fielding of CRISM hyperspectral images. This goal can be achieved by incorporating the
desmiling approach into the CRISM-DP. In this way the bland images that are used to generate
the flat fields could be corrected for the smile effect, which is the cause of the faulty flat fielding
mentioned in the second part of this dissertation.

• Another contribution of this thesis as regards the data pipeline is the generation of advanced
products, namely atmospherically corrected images and the multi-angle CSP product. These two
outcomes of the proposed IPAG-DP have proved to be crucial in many experiments carried out
in this thesis. I highlight the study of the Russell dune based on spectral unmixing techniques
applied to the central scan of the observation FRT42AA. Before the unmixing step this image is
corrected for atmospheric effects by the IPAG-DP. This preprocessing is crucial to focus exclu-
sively on the features linked to the surface. Similarly, the MARS-ReCO method processes the
CSP products created from CRISM observations by the IPAG-DP. This multi-angular product has
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revealed to be key for the exploitation of CRISM multi-angle observations that are originally re-
leased as a set of eleven independent products. As for the drawbacks of the proposed pipeline,
I spotlight the correction for heterogeneous illumination conditions within a single targeted
CRISM observation. After some investigation I have come to the conclusion that an improved
photometric normalization using digital terrain models is not possible nowadays from an opera-
tional point of view. Such an advanced correction requires DTMs linked to a high resolution and
a high accuracy as it is shown in [182]. Although the DTMs provided by the HiRISE instrument
may satisfy these requirements, the required registration process represents the major hurdle.
First, registration algorithms are often supervised as they require a set of control points. Second,
even the slightest error in the registration results may end in large bias affecting the photometri-
cally corrected CRISM image. In this context I recommend to conduct future efforts toward the
accurate fusion of these two products by advanced unsupervised registration methods that start
to emerge nowadays. Eventually, I draw the attention to the fact that processes such as multiple
reflections between multiple facets must be considered for the sake of an improved photometric
normalization, especially when dealing with high resolution imagery such as CRISM’s.

• The algorithm MARS-ReCO symbolizes one of the major contributions of this thesis. In this
matter we are pioneers in developing an atmospheric correction method that can consider a non-
Lambertian surface regardless of its location and its composition. Presented results obtained on
CRISM observations acquired over the Gusev crater confirm this statement. Nonetheless, I stress
that further testing of MARS-ReCO is required when dealing with other areas on Mars. First, the
testing shall be performed on the landing site of the MER Opportunity, Meridiani Planum, for
which photometric data are available in [85]. Although the proposed atmospheric correction has
proved to be accurate over minerals surfaces, the real challenge is found in the high latitudes of
Mars. As mentioned throughout this thesis, these regions of Mars are very challenging in terms
of acquisition geometry and estimation of the aerosol optical thickness. First, the poles of Mars
are related to high Sun zenith angles that may put in trouble MARS-ReCO as it was shown by the
sensitivity study. A second sensitivity study should be therefore carried out simulating reference
data using scattering properties of martian ices. The main problem is, however, that these data
are unknown, the retrieval of the photometric properties of martian ices and snow being exactly
one of the main objectives of MARS-ReCO. In this context I propose to use scattering models
built from measurements in laboratory. Second, the currently adopted AOT retrieval algorithm
is not operational for surfaces covered by frozen carbon dioxide due to the superposition of
the ice absorption bands with those belonging to the gaseous state of this component. In this
matter I have proposed in the partial conclusions of Part III the development of a new version of
MARS-ReCO by taking into account the spectral information enclosed by hyperspectral imagery.
By increasing the information in the present inverse problem, it should be possible to retrieve
simultaneously the surface BRF and the AOT regardless of the surface type.

• Also regarding the atmospheric correction of CRISM multi-angle observations, the MARS-ReCO
algorithm represents a unprecedented tool to study the photometric properties of the surface of
Mars from space. While this type of study has been already done by rovers on the surface, these
robots are limited to very precise locations on Mars. By contrast, CRISM makes available data
regarding 15 by 15 km sites spread over the entire planet. Similar to what I have done on the
Gusev crater, any location can be potentially considered to be atmospherically corrected using
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MARS-ReCO as long as the acquisition and the atmospheric conditions under which the corre-
sponding image has been acquired are in agreement with the results of the sensitivity study. The
study of the photometry of the surface is crucial to understand the physical state of the materials
coexisting in it. As mentioned, the next step in this matter is the processing of polar images
encompassing geological formations made of frozen carbon dioxide or water. Although the ex-
istence of the former component has been repeatedly ensured in the past, the different physical
states that this type of ice can adopt on Mars still remain a mystery. I therefore conclude that an
operating tool such as the MARS-ReCO method represents a unique opportunity to address such
an issue. Again, the success in the future improvement of this atmospheric correction algorithm
shall be crucial in the achievement of the mentioned goal. Eventually, another future prospect
would be to use the retrieved BRDF for the whole spectral range of CRISM to map the bolometric
albedo (i.e. the reflectance integrated in all angular directions and in the spectral dimension) of
several martian sites as Bell et al. do using Pancam data [78].

• As for the use of the spectral unmixing concept to analyze CRISM hyperspectral images, the
presented results have proved that the estimated abundances maps of the Russell dune largely
agree with the independent ground truth. Therefore, it seems reasonable to state that this result
can be repeated for other site of Mars sharing the conditions happening in the Russell dune.
Nonetheless, a closer look to the results reveals a meaningful issue, the non-validity of the lin-
ear mixing model. Although this assumption has proved to be largely correct for data with a
moderate spatial resolution such as OMEGA’s, the higher performances of CRISM expose some
intrinsic limitations of the linear mixing model. I therefore stress that while unmixing techniques
based on this assumption can be considered to be reliable, results must be considered as a first
approximation of the planetary reality embodied in a CRISM hyperspectral image. As it is has
been shown, the presence of often weak non-linearities in the data such as residual instrumen-
tal artifacts or atmospheric residues results in a significant impact on the unmixing outcomes.
Unfortunately, such impact transforms the unmixing of the data into a semi-supervised process
due to the required recombination step. In my opinion two main considerations must be done
at this point. First, the extracted endmembers in their spectral and abundance forms represent
a remarkable product reducing a few hundred spectral bands to a few features, highlighting
the major contributions enclosed in the data. Even in the presence of non-linearities, these out-
comes provide useful information on the radiometric quality of the data, the accuracy of the
atmospheric correction and the major terrain units. Some postprocessing is of course necessary
if more refined products are desired. Second, non-linear spectral unmixing algorithms represent
a potential and more robust alternative to linear-based techniques. Recent technical advances
are gradually developing more unsupervised methods that may be used in broader situations.
Unfortunately, non-linear methods are nowadays related with several technical hurdles toward
the automatic processing of hyperspectral images.
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12
Acronyms

• AERONET: AErosol RObotic NETwork.

• AOT: Aerosol Optical Thickness.

• ASRVN: AERONET-based Surface Reflectance Validation Network.

• AVIRIS: Airborne Visible Infrared Imaging Spectrometer.

• BRDF: Bidirectional Reflectance Distribution Function.

• BRF: Bidirectional Reflectance Factor.

• BPSS: Bayesian Positive Source Separation.

• CAT: CRISM Analysis Toolkit.

• CDR: Calibration Data Records.

• CHRIS: Compact High Resolution Imaging Spectrometer.

• CRISM: Compact Reconnaissance Imaging Spectrometer for Mars.

• CSP: “Courbe Spectro-Phometrique, spectro-photometric in French.

• DDR: Derived Data Record.

• DISORT: Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-Parallel Medium.

• DN: Digital Number.

• DTM: Digital Terrain Model.

• EPF: Emission Phase Function.

• ESA: European Space Agency.

• FCLS: Fully Constrained Least Squares.

• FFT: Fast Fourier Transform.

• FOV: Field Of View.

233



Chapter 12. Acronyms

• FRT: Full-Resolution Targeted.

• FWHM: Full-Width at Half Maximum.

• HDRF: Hemispherical Directional Reflectance Function.

• HFC: Harsanyi–Farrand–Chang.

• HiRISE: High Resolution Imaging Science Experiment.

• HRL: Half-Resolution Long.

• HRS: Half-Resolution Short.

• HRSC: High Resolution Stereo Camera.

• HySime: Hyperspectral Signal-subspace Identification by Minimum Error.

• ICA: Independent Component Analysis.

• IFOV: Instantaneous Field Of View.

• IR: InfraRed.

• ISM: Infrared SpectroMeter.

• LUT: Look-up table.

• MAIAC: MultiAngle Implementation of Atmospheric Correction.

• MGS: Mars Global Surveyor.

• MER: Mars Exploration Rovers.

• MEX: Marx EXpress.

• MISR: Multi-angle Imaging SpectroRadiometer.

• MNF: Maximum Noise Fraction.

• MOLA: Mars Orbiter Laser Altimeter.

• MODIS: Moderate Resolution Imaging Spectroradiometer.

• MRF: Markov Random Field.

• MRO: Mars Reconnaissance Orbiter.

• MSE: Mean Squared Error.

• MVC-NMF: Minimum Volume Constrained Non-negative Matrix Factorization.

• MVSA: Minimum Volume Simplex Analysis.

• NASA: National Aeronautics and Space Administration.

• NIMS: Near Infrared Mapping Spectrometer.

• NMF: Non-negative Matrix Factorization.

• OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité.

• OSU: Optical Sensor Unit.

• Pancam: Panoramic Camera.

• PCA: Principal Component Analysis.

• PDS: Planetary Data System.

• PROBA: PRoject for On–Board Autonomy.

• PSF: Point Spread Function.
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• RMSE: Root Mean Square Error.

• ROI: Region Of Interest.

• RT: Radiative Transfer.

• RTE: Radiative Transfer Equation.

• VCA: Vertex Component Analysis.

• VD: Virtual Dimensionality.

• VIRTIS: Visible and Infrared Thermal Imaging Spectrometer.

• VNIR: Visible and Near-InfraRed.

• VZA: View Zenith Angle.

• SNR: Signal to Noise Ratio.

• SWIR: Short Wavelength InfraRed.

• SZA: Sun Zenith Angle.

• THEMIS: Thermal Emission Imaging System.

• TRDR: Targeted Reduced Data Records.
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13
Mathematical appendix

13.1. Green’s function

A Green’s function is an integral kernel that can be used to solve an inhomogeneous differential equa-
tion with boundary conditions. It serves roughly an analogous role in partial differential equations as
do Fourier series in the solution of ordinary differential equations. Here we expose a brief introduction.
Further reading can be obtained in [5].

For an arbitrary linear differential operator eL in three dimensions, the Green’s function G (r, r0) is
defined by analogy with the one-dimensional case by

eLG
�

r, r0� = d

�

r � r0� . (13.1)

The solution to eLf = f is then

f (r) =
ˆ

G
�

r, r0� f
�

r0� d3r0. (13.2)

Explicit expressions for G (r, r0) can often be found in terms of a basis of given eigenfunctions fn (r1)

by expanding the Green’s function

G (r1, r2) =
•

Â
n=0

an (r2) fn (r1) , (13.3)
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and delta function,

d

3 (r1 � r2) =
•

Â
n=0

fn (r1) fn (r2) . (13.4)

By plugging in the differential operator, solving for the variables an, and substituting into G, the
original non-homogeneous equation then can be solved.

The coefficient S of ln(1/r) in all normalized fundamental Green’s function solutions

f (x, y; x0, y0) = S (x, y; x0, y0) ln (1/r) + T (x, y; x0, y0) , (13.5)

with

r =
q

(x � x0)
2 + (y � y0)

2, (13.6)

of the elliptic partial differential equation

Ku = uxx + vyy + A(x, y)ux + B(x, y)uy + C(x, y)u = 0, (13.7)

with analytic coefficients is an analytic function of four variables and is equal to the Riemann function
S = R⇤(x, h; x0, h0) of the conjugate equation

K⇤v = v(x, h) � (av)(x) � (bv)(h) + cv = 0, (13.8)

which can be produced from Ku = 0 by the change of variables

x = x + iy,

h = x � iy,

x0 = x0 + iy0,

h0 = x0 � iy0,

4a (x, h) = A (x, y) + iB (x, y) , (13.9)

4b (x, h) = A (x, y) � iB (x, y) ,

4c (x, h) = C (x, y) .
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13.2. Fourier transform

13.2.1. Fourier series expansion

In this section, f (x) denotes a function of the real variable x. This function is usually taken to be
periodic, of period 2p, which is to say that f (x + 2p) = f (x), for all real numbers x. I attempt to write
such a function as an infinite sum, or series of simpler 2p-periodic functions. I start by using an infinite
sum of sine and cosine functions on the interval [�p, p] and we then discuss different formulations
and generalizations. More details on Fourier series expansions can be found in [152].

For a periodic function f (x) that is integrable on [�p, p], the numbers

an =
1
p

ˆ
p

�p

f (x) cos(nx) dx, n � 0,

and

bn =
1
p

ˆ
p

�p

f (x) sin(nx) dx, n � 1,

are called the Fourier coefficients of f . One introduces the partial sums of the Fourier series for f , often
denoted by

(SN f )(x) =
a0

2
+

N

Â
n=1

[an cos(nx) + bn sin(nx)], N � 0.

The partial sums for f are trigonometric polynomials. One expects that the functions SN f approximate
the function f , and that the approximation improves as N tends to infinity. The infinite sum

a0

2
+

•

Â
n=1

[an cos(nx) + bn sin(nx)],

is called the Fourier series of f . The notion of a Fourier series can also be extended to complex
coefficients to become the basis for the Discrete Fourier transform (DFT).

13.2.2. Fast Fourier transform

A fast Fourier transform (FFT) is an efficient algorithm to compute the DFT and its inverse. A FFT
algorithm computes the DFT and produces exactly the same result as evaluating the DFT definition
directly in a much faster manner. More details can be found in [17].

Let x0, ...., xN�1 be complex numbers. The DFT is defined by the formula
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Xk =
N�1

Â
n=0

xne�i2pk n
N , k = 0, . . . N � 1.

Evaluating this definition directly requires O(N2) operations: there are N outputs Xk, and each out-
put requires a sum of N terms. An FFT is any method to compute the same results in O(N log N)

operations.

To illustrate the savings of an FFT, consider the count of complex multiplications and additions. Eval-
uating the DFT’s sums directly involves N2 complex multiplications and N(N � 1) complex additions
[of which O(N) operations can be saved by eliminating trivial operations such as multiplications by
1]. The well-known radix-2 Cooley–Tukey algorithm, for N a power of 2, can compute the same re-
sult with only (N/2) log2 N complex multiplies (again, ignoring simplifications of multiplications by
1 and similar) and N log2 N complex additions. In practice, actual performance on modern computers
is usually dominated by factors other than arithmetic and is a complicated subject, but the overall
improvement from O(N2) to O(N log N) remains.

By far the most common FFT is the Cooley-Tukey algorithm [39]. This is a divide and conquer algo-
rithm that recursively breaks down a DFT of any composite size N = N1N2 into many smaller DFTs
of sizes N1 and N2, along with O(N) multiplications by complex roots of unity traditionally called
twiddle factors.

The most well-known use of the Cooley-Tukey algorithm is to divide the transform into two pieces of
size N/2 at each step, and is therefore limited to power-of-two sizes, but any factorization can be used
in general. These are called the radix-2 and mixed-radix cases, respectively. Although the basic idea is
recursive, most traditional implementations rearrange the algorithm to avoid explicit recursion. Also,
because the Cooley-Tukey algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily
with any other algorithm for the DFT.

13.3. Gaussian quadrature rule

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function,
usually stated as a weighted sum of function values at specified points within the domain of integra-
tion. An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule
constructed to yield an exact result for polynomials of degree 2n � 1 or less by a suitable choice of the
points xi and weights wi for i = 1, ..., n. Further reading can be obtained in [169].

The domain of integration for such a rule is conventionally taken as [�1, 1], so the rule is stated as

ˆ 1

�1
f (x)dx ⇡

n

Â
i=1

wi f (xi).

Gaussian quadrature as above will only produce accurate results if the function f (x) is well approxi-
mated by a polynomial function within the range [�1, 1]. The method is not, for example, suitable for
functions with singularities. However, if the integrated function can be written as f (x) = W(x)g(x),
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where g(x) is approximately polynomial, and W(x) is known, then there are alternative weights wi

such that

ˆ 1

�1
f (x)dx =

ˆ 1

�1
W(x)g(x)dx ⇡

n

Â
i=1

wig(xi).

For the integration problem stated above, the associated polynomials are Legendre polynomials, Pn(x).
With the nth polynomial normalized to give Pn(1) = 1, the ith Gauss node, xi, is the ith root of Pn; its
weight is given by

wi =
2

�

1 � x2
i
�

[P0
n(xi)]2

.

Some low-order rules for solving the integration problem are listed in Table 13.1. The integration
problem can be expressed in a slightly more general way by introducing a positive weight function w

into the integrand, and allowing an interval other than [�1, 1].

Number of points, n Points, xi Weights, wi

1 0 2
2 ±1

p
3 1

3
0

±
p

3/5
8/9
5/9

4
±
q

(3 � 2
p

6/5)/7

±
q

(3 + 2
p

6/5)/7

8/9
5/9

5

0

± 1
3

q

(5 � 2
p

10/7

± 1
3

q

(5 + 2
p

10/7

128/225
322+13

p
70

900
322�13

p
70

900

Table 13.1.: Low-order rules of the Legendre polynomials

The error of a Gaussian quadrature rule can be stated as follows. For an integrand which has 2n
continuous derivatives,

ˆ b

a
w(x) f (x)dx �

n

Â
i=1

wi f (xi) =
f (2n)(x)
(2n)!

(pn, pn),

for some x in (a, b), where pn is the orthogonal polynomial of degree n and where

( f , g) =
ˆ b

a
w(x) f (x)g(x)dx.

In the important special case of w(x) = 1, we have the error estimate
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(b � a)2n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(x), a < x < b.

Important consequence of the above equation is that Gaussian quadrature of order n is accurate for all
polynomials up to degree 2n � 1.

13.4. Convolution theorem

Let f , g belong to L1(Rn). Let F be the Fourier transform of f and G be the Fourier transform of g:

F(n) = F{ f } =
ˆ

Rn
f (x)e�2pix·ndx,

G(n) = F{g} =
ˆ

Rn
g(x)e�2pix·ndx,

where the dot between x and n indicates the inner product of Rn. Let h be the convolution of f and g

h(z) =
ˆ

Rn

f (x)g(z � x)dx.

Now notice that

ˆ ˆ
| f (z)g(x � z)| dx dz =

ˆ
| f (z)|

ˆ
|g(z � x)|dxdz

=
ˆ

| f (z)| kgk1 dz = k f k1kgk1.

Hence by Fubini’s theorem we have that h 2 L1(Rn) so its Fourier transform H is defined by the
integral formula

H(n) = F{h} =
ˆ

Rn
h(z)e�2piz·ndz =

ˆ
Rn

ˆ
Rn

f (x)g(z � x)dxe�2piz·ndz.

Observe that | f (x)g(z � x)e�2piz·n| = | f (x)g(z � x)| and hence by the argument above we may apply
Fubini’s theorem again:

H(n) =
ˆ

Rn
f (x)

✓ˆ
Rn

g(z � x)e�2piz·ndz
◆

dx.

Substitute y = z � x; then dy = dz, so:
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H(n) =
ˆ

Rn
f (x)

✓ˆ
R

g(y)e�2pi(y+x)·ndy
◆

dx,

=
ˆ

Rn
f (x)e�2pix·n

✓ˆ
Rn

g(y)e�2piy·ndy
◆

dx,

=
ˆ

Rn
f (x)e�2pix·ndx

ˆ
Rn

g(y)e�2piy·ndy.

These two integrals are the definitions of F(n) and G(n), so:

H(n) = F(n) · G(n).

QED [185].
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14
Postprocessing CRISM images

In this appendix I describe those blocks of the IPAG-DP that have been adopted from existing proce-
dures in the CAT, that have not been completely devised in the framework of this thesis, or that were
already developed.

14.1. Destriping algorithm

A destriping technique is proposed by the CRISM team via the CAT. This filtering method in the flavor
of [65] is described by Parente in [136] as follows:

1. First, the hyperspectral data cube is averaged over the along-track direction for each spectral
band resulting in a two-dimensional image representing an estimate of the detector matrix. A
trimmed average is used instead of a regular mean because of the presence of dropout pixels (see
subsubsection 4.1.1.2).

2. A Gaussian smoothing filter is used over this image to remove calibration variations among
detector elements. The destriping method for CAT users allows the adjustment of the input
spatial kernel size and the standard deviation in the Gaussian filter (the larger the spread, the
smoother the results). After exhaustive testing on several CRISM images, I propose to adopt a
30-pixel kernel size and a 15-pixel Gaussian spread for the 600-column FRT images. These values
are divided by a factor two for HRL and HRS observations while they are set to 4 and 2 for the
60-column EPF images, respectively. Experiments demonstrate that these values provide a good
trade-off between destriping accuracy and preservation of the radiometric accuracy.

3. A residual image is generated by dividing the original detector image by the smoothed one, being
the residual image the correction factor to be applied in order to obtain the optimal calibration
from the initial one.

4. This residual factor is applied to filter each line of the original image.
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In order to evaluate the destriping method proposed by the CAT, Figure 14.1 shows the results of
destriping the original IR spectral band 10 of the central scan FRT64D9, which is originally shown in
Figure 4.2. As it can be seen, the stripes have nearly disappeared while preserving the main features
of this area of Mars.
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Figure 14.1.: Destriped FRT64D9 IR band 10.

I propose to carry out further investigation by investigating the central scan FRT64D9 in another data
space defined by an MNF transformation (see subsubsection 1.3.2.3). An MNF rotation produces new
components, or eigenimages, that are ordered according to SNR after two cascaded PCA transforma-
tions and a noise whitening step [67]. The first PCA decorrelates and rescales the noise in the data
based on the noise covariance matrix. In the case of CRISM the covariance matrix of the noise is calcu-
lated based on the noise file of each image stored in the UB CDR (see Table 3.1). Eventually, a second
PCA is applied to the noise-whitened data. The transformed data set can be divided into significant
eigenimages with high eigenvalues (i.e. corresponding to high SNR) and noise-dominated compo-
nents corresponding to low eigenvalues. The MNF transformation is very appropriate to determine
the features that exist in the data and their relevance in terms of SNR.

Figure 14.2 shows the three eigenimages corresponding to the largest eigenvalues of the CRISM central
scan FRT64D9 before and after destriping. The three eigenimages represent the spatial features that
are related to a higher SNR, that is, the most robust components against noise. First, Figure 14.2 (top)
illustrates how the striping effect affects the second and the third MNF eigenimages, which embrace
the average albedo of the scene and the typical cross-track pattern due to the spectral smile artifact
(see subsubsection 4.1.2.1 for more details), respectively. Indeed, the stripes are quite energetic and
therefore impact other features due to their non-linear properties. As it can be seen in Figure 14.2
(bottom), the adopted destriping method overcomes this residual bias as the columnar pattern due
to stripes is satisfactorily removed from the MNF eigenimages. Further experiments showed that
the stripping effect reappears in eigenimages corresponding to lower eigenvalues, closer to the noise
domain.

The present results show satisfactory performances in the original and the MNF space. Similar results
were obtained for other CRISM images. The filtering method is very fast and process a single CRISM
observation (encompassing the eleven hyperspectral images) in some tens of seconds in a traditional
computer. In addition, the correction can be tuned to embrace a large range of cases. However, this
option also represents a disadvantage as the cut-off frequency, which is defined by kernel size and
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Figure 14.2.: MNF eigenimages of the central scan of observation FRT64D9 corresponding to the three
highest eigenvalues. Eigenimages are plotted before (first row) and after (second row) applying the
destriping method proposed in the CAT. Note the columnar pattern introduced by stripes in the
second and third eigenimages corresponding to the PDS-released data.

width, must be set, making the destriping method somewhat semi-supervised. Eventually, I remark
that even though a satisfactory cut-off value is selected, any high-frequency vertical structure within a
martian scene may be considered as a stripe by the destriping algorithm and thus it is suitable to be
mistakenly filtered. This side effect must be considered in the subsequent processing of the data.

14.2. Atmospheric correction

The adopted method by the IPAG-DP for atmospheric correction is based on the work of Douté in
[52, 53]. In short, atmospheric effects are compensated by using a parametrization of the radiative
coupling that happens between mineral aerosols and CO2 gas and by determining the absorption
band depth at 2 µm, among other factors. This coupling comes from the absorption and multiple
scattering that photons undergo when interacting with the gas particles and the aerosols. The strategy
for atmospheric correction is based on several reasonable assumptions:

1. Water ice aerosols are not considered by assuming that there are not ice clouds or their contribu-
tion to the remotely sensed signal is minimal.

2. The optical thickness of aerosols taer is constant over the area covered by a CRISM observation.
This assumption is reasonable because of the limited spatial extent of CRISM targeted observa-
tions (~80 km2).

3. The optical path length of the observation, expressed by the airmass n, is long enough such that
the coupling between the gases and the aerosols is predominant over other effects. This condition
is satisfied by CRISM multi-angle observations because of their intrinsic range in emergence angle
from -70º to 70º.

4. The optical depth layer is assumed to follow an exponential drop off with a typical scale. The
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scale height of the aerosols, or H, is considered to be known, adopting a value around 8-11 km
as suggested by several studies such as [181].

5. The surface is assumed to behave as a Lambertian scatterer. In this way the surface is charac-
terized by its Lambertian albedo qL, only depending on wavelength. Nonetheless, the proposed
algorithm minimizes the sensitivity of the aerosol retrieval on this assumption. Because the ra-
diative coupling between aerosols and gas is sensitive to the surface properties through multiple
scattering between the surface and the atmosphere, the AOT is weakly dependent on the Lam-
bertian assumption.

6. The absence of frozen carbon dioxide on the surface is assumed. As a matter of fact, the cur-
rently adopted method for atmospheric correction does not operate for icy surfaces as the related
absorption features at 2 µm overlap with those coming from the CO2 gas.

7. Absorption of atmospheric gases behaves as a multiplicative factor on the TOA radiance resulting
from the reflection of solar light by the surface and the aerosols.

According to the last assumption, the TOA radiance observed by the CRISM instrument is written such
that (the dependence of all parameters on wavelength have been omitted for brevity):

LTOA (q0, q, j) ⇡ Tgas (h, lat, long)e(q0,q,j,taer ,H,qL) Laer (q0, q, j) , (14.1)

where the effects of gases are characterized by the spectral transmission of the atmosphere along the
vertical dimension Tgas and Laer is the TOA radiance altered only by aerosols. The former term is
calculated for each pixel of a hyperspectral image based on the Line-By-Line radiative transfer model
(LBLRTM) described in [38]. In this calculation we consider the vertical compositional and thermal
profiles of the actual date, location and altitude using the European Mars climate database [61]. More
details on the generation of Tgas for a given CRISM observation can be found in [52].

According to Equation 14.1, the contribution of the gases is scaled by an exponent e that accounts for
the acquisition geometry defined by the angular triplet (q0, q, j), the dust content by means of the AOT
taer, the scale height H, and the Lambert albedo of the surface qL. Factor e is further decomposed into
two terms such that

e (q0, q, j, taer, H, qL) = y (n) b (q0, q, j, taer, H, qL) . (14.2)

First, factor y only depends on the acquisition geometry and thus can be easily determined from
ancillary data. Second, factor b expresses specifically the effect of aerosol particles on the gaseous
absorption and depends on the aerosol content, their vertical distribution, the acquisition geometry,
and, to a lesser extend, the surface albedo.

The atmospheric parameter b provides the means for retrieving the dust content over a given scene
because it directly depends on the AOT and is invertible provided that H is known and qL can be
estimated. On the one hand, factor b can be readily evaluated from CRISM observations. This done by
comparing the absorption depth at 2 µm in an observed spectrum with the equivalent feature in the
aerosol-free transmission spectrum Tgas(h, lat, long) that is calculated by the LBLRTM and subsequently
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scaled by y(n). On the other hand, a LUT of synthetic data stores the dependency of factor b regarding
aerosol content and vertical distribution, acquisition geometry, and surface albedo. In this way, the
AOT, as well as the Lambertian albedo of the surface qL, are retrieved by iterative inversion of the
LUT embodying the TOA model by using the TOA radiance LTOA at 2 µm and the estimation of
factor b as input parameters. The choice to work at this specific wavelength range makes that the
previous desmiling of the data is crucial for a good atmospheric correction. The LUT is computed
by a radiative transfer algorithm based on the optical properties of aerosols derived from multi-angle
CRISM observation by Wolff et al. in [187].

The AOT values estimated by the presented method have proved to be robust in comparison with
other independent techniques. Table 14.1 summarizes the comparison of the estimated AOT values by
the so-called b-method for a set of CRISM observations that have been acquired on the landing site
of the MER Spirit. This rover is equipped with the Pancam instrument that can measure the AOT by
directly looking at the Sun and comparing the observed transmission with solar reference data. As it
can be seen, the agreement between the two data sets is quite notable. The slight differences between
the estimated AOTs may be explained by the fact that the b-method cannot see low aerosol layers
contrarily to the Pancam instrument.

Retrieval method \ CRISM observation 7D6C 812F B6B5 3192 CDA5
Proposed method 1.41 1.00 0.46 0.38 0.33

Pancam instrument on MER 1.29 0.90 0.47 0.31 0.41

Table 14.1.: AOT retrieved for a set of CRISM observations based on the proposed b-method and on-
ground measurements realized by the Pancam instrument aboard the MER Spirit.

Once the AOT, or taer, over a given image is estimated, the radiative transfer formulation in Equation 14.1
allows the calculation of the radiance coming from the surface that is altered only by the atmospheric
aerosols, that is, Laer (q0, q, j). The absorption by the gases is compensated by ratioing the observed
spectrum by the corresponding modified transmission spectrum such that

Laer (q0, q, j) ⇡ LTOA (q0, q, j)

Tgas (h, lat, long)e(q0,q,j,taer ,H,qL)
. (14.3)

The resulting TOA parameter Laer (q0, q, j) is used in Part III to retrieve the surface reflectance using a
method which is not based on the Lambertian assumption. This expression stresses the importance of
an accurate wavelength calibration of LTOA as the one proposed in subsubsection 4.1.3.2. Equation 14.3
indeed requires the position of the several strong atmospheric absorption bands to be equal in the LTOA

and the Tgas spectra. Strong spectral spurious spikes can happen otherwise.

The presented algorithm for correction of atmospheric effects allows an operational processing of
CRISM observations. On the one hand, the retrieved AOT values have been proved to be robust against
other independent measurements. Furthermore, the assumptions on which the proposed retrieval
method is based have been proved to be reasonable in the processing of CRISM observations. On
the other hand, a first order estimate of the surface reflectance is inferred by means of the ratioing
by the modified gaseous transmission of Equation 14.3 and by means of the correction of the aerosol
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contribution. This product is refined by further processing in Part III of this thesis.

14.3. Generation of an integrated multi-angle product

The first step toward the extraction of spectro-photometric curves from a CRISM observation is the
generation of a data object that incorporates the eleven hyperspectral images forming a single multi-
angle observation. In this way, the proposed IPAG-DP spatially rearranges the spectra corresponding
to the set of eleven hyperspectral images to generate the so-called CSP cube. With this aim, the central
scan is first binned by a factor ten to match the spatial resolution of the EPF images. The CRISM team
did not consider necessary to preserve the full resolution for the bracketing images due to downlink
limitations and since the downgraded resolution of the EPF is enough for the characterization of the
atmosphere. This represents a disadvantage of the CRISM instrument in front of other multi-angle
spectrometers such as MISR in which all angular images are acquired at the same spatial resolution.
The whole sequence of images are then projected onto a common geographical space in which a regular
grid of super-pixels is defined. Figure 14.3 illustrate this fusion step by showing the approximative
grid over the projected footprints of individual images for a given CRISM observation. We note the
rather good overlap of the set of hyperspectral images, thus assuring the existence of a high number
of super-pixels that are sensed at several emergence angles. In this matter, approximatively 30% of the
scene defined for a CRISM observation are scanned by 4 or more angular scans.

Figure 14.3.: Same as Figure 1.20 with overlapping grid pointing to the location of the super-pixel
centers (colored crosses) that are used in the construction of the CSP cube corresponding to the
CRISM observation. The color code describes the number of available angular measurements. The
grid presented here is approximative and it is usually more dense, generally one super-pixel for each
pixel of the EPF images (~180 m/pixel).

After the definition of the set of super-pixels, the CSP data cube is constructed by arranging the
corresponding spectra according to the angular configuration (i.e. the rank of the scan from ’01’ to ’0D’,
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Figure 14.4.: Scheme of a CSP cube in which we define a horizontal dimension containing the pho-
tometric curves ordered by scan rank from ’01’ to ’0D’ Central measurement ’07’ corresponds to a
binned version of the central scan. The set of super-pixels to which the photometric curves belong
are arranged sequentially along a vertical dimension by the number of available angular measure-
ments. Each line corresponds to a cross in Figure 14.3 and follows the same color code. The spectral
dimension corresponds to the set of wavelengths of a typical CRISM spectrum.

horizontal dimension. See section 1.4) and the super-pixel index (vertical dimension). Consequently
the sequence of up to eleven spectra forming each super-pixel, or spectro-photometric curve is arranged
along the horizontal dimension. Figure 14.4 shows a scheme of a CSP data product to illustrate the
arrangement. Under this configuration, a spectro-photometric curve corresponds to a horizontal matrix
of elements, while a photometric curves is composed by a line of elements. This new data cube
provides the means to utilize the multi-angle data provided by the CRISM sensor as it is shown in
Part III. However, we remind the reader that the spatial resolution of the CSP data cube is degraded
in front of the maximum capabilities of CRISM as its spatial resolution can be up to ~180 m/pixel, the
resolution of the EPF images.
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Spectral Smile Correction of CRISM/MRO
Hyperspectral Images

Xavier Ceamanos, Student Member, IEEE, and Sylvain Douté

Abstract—The Compact Reconnaissance Imaging Spectrometer
for Mars (CRISM) is affected by a common artifact to pushbroom-
type imaging spectrometers, the so-called “spectral smile.” For
this reason, the central wavelength and the width of the instrument
spectral response vary according to the spatial dimension of the
detector array. As a result, the spectral capabilities of CRISM get
deteriorated for the off-axis detector elements while the distortions
are minimal in the center of the detector array, the so-called “sweet
spot.” The smile effect results in a data bias that affects hyper-
spectral images and whose magnitude depends on the column
position (i.e., the spatial position of the corresponding detector
element) and the local shape of the observed spectrum. The latter
is singularly critical for images that contain chemical components
having strong absorption bands, such as carbon dioxide on Mars
in the gas or solid phase. The smile correction of CRISM hy-
perspectral images is addressed by the definition of a two-step
method that aims at mimicking a smile-free spectral response for
all data columns. First, the central wavelength is uniformed by
resampling all spectra to the sweet-spot wavelengths. Second, the
nonuniform width of the spectral response is overcome by using
a spectral sharpening which aims at mimicking an increase of the
spectral resolution. In this step, only spectral channels particularly
suffering from the smile effect are processed. The smile correction
of two CRISM images by the proposed method show remarkable
results regarding the correction of the artifact effects and the
preservation of the original spectra.

Index Terms—Compact Reconnaissance Imaging Spectrometer
for Mars (CRISM), hyperspectral imagery, imaging spectrome-
ters, Mars, planetary remote sensing, spectral smile.

I. INTRODUCTION

THE COMPACT Reconnaissance Imaging Spectrometer
for Mars (CRISM) is a visible/short-wave infrared hyper-

spectral imager on board of the Mars Reconnaissance Orbiter
spacecraft. In the targeted mode, CRISM aims at mapping the
mineralogy of Martian key areas at high spectral (544 spectral
channels) and spatial (15–19 m/pixel) resolution. This is done
by two spectrometers (VNIR for the visible and near-infrared
and IR for the short-wave infrared) that cover the 362–3920 nm
range [1]. Each targeted CRISM observation is composed of
a nadir hyperspectral image at high-spatial resolution and a
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Fig. 1. Reflectance values of channel IR 155, observation FRT5AE3. Data of
the 11 scans are plotted before and after desmiling (offset for clarity).

sequence of ten spatially binned off-nadir images that are
acquired before and after flying over the target. Thanks to this
particularity of CRISM, multiangle hyperspectral data from
the same Martian site are made available. The set of low-
spatial resolution images, the so-called emission phase function
(EPF), was originally intended for atmospheric studies as it is
done in [2] and [3]. Nevertheless, the multiangle capabilities
of CRISM can be further exploited for the 4-D exploration
(i.e., one spectral, one angular, and two spatial dimensions)
of Mars, as it is done for other Earth-based spectrometers
such as the Compact High Resolution Imaging Spectrometer/
Project for On Board Autonomy (CHRIS/PROBA) [4], [5].
In particular, this type of multiangular imaging spectrometers
may be used for retrieving spectrophotometric signatures of
materials in the surface, depending on the observation geom-
etry. These signatures would be of great interest in order to
delineate and characterize Martian sites by image processing
and modeling.

Nevertheless, pushbroom-type spectrometers need to be
carefully corrected for instrumental artifacts before data
exploitation. In particular, CRISM is affected by spectral smile,
a common artifact to pushbroom-type sensors to which CRISM
belongs. The smile effect is caused by optical distortions onto
the spatial/spectral detector array which make the instrument
spectral response nonuniform for the cross-track dimension.
As a consequence, data belonging to the same spectral channel
are acquired according to different spectral parameters, and
therefore, the coherent analysis of the spectra making the
image turns into an unreliable task [2], [6], [7]. In this paper,
we propose a “desmiling” method that minimizes the smile
effects of a CRISM hyperspectral observation while preserving
the information coming from the observed Martian site.

Spectrophotometric signatures may be particularly corrupted
by the smile effect. Fig. 1 shows a sample of the 4-D object
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Fig. 2. Central wavelength and FWHM according to column position of
CRISM spectral channel IR 155.

that we constituted from CRISM observation FRT5AE3. The
black crosses represent all reflectance values of a single channel
before the correction while the gray ones show the same data
after applying the desmiling method that is presented in this
paper. Both data are plotted according to the phase angle, which
describes the acquisition geometry. First, the CRISM data show
a repetitive smile pattern that is caused by the correlation of the
smile bias (depending on the column position) and the cross-
track variation of the phase angle. This effect may corrupt the
spectrophotometric signatures since a given terrain unit is typi-
cally sensed by detector elements belonging to different column
positions (and thus different spectral responses) throughout the
11 acquisitions. It can be seen that the addressed desmiling
method strongly reduces the smile bias while preserving the
main reflectance dependence on the phase angle.

This paper is organized as follows. First, spectral smile is
introduced in Section II along with its consequences on the
CRISM spectral response and data. The desmiling method is
put forward in Section III, then followed by experiments in
Section IV. Finally, conclusions are drawn in Section V.

II. SPECTRAL SMILE

A. Definition and Consequences

Spectral smile is widely referred as cross-track low-
frequency artifacts that affect spectroimages. In pushbroom-
type spectrometers, the received light corresponding to a line
of adjacent terrain units is scattered according to wavelength
before being projected onto a spatial/spectral detector array.
Due to aberrations in imaging optics, the projection becomes
defective, thus resulting in spatial and spectral artifacts (i.e.,
keystone and spectral smile, respectively) [8].

The smile effect results in two main consequences that affect
the instrument spectral response. First, the distortions in the
projection make that the light corresponding to a given wave-
length is sensed by more than one line of detector elements,
some of them assigned to a different spectral range. Second,
the spectral resolution becomes poorer progressing toward the
off-axis detector elements due to a decrease in the projection
sharpness. As a result of these effects, both the central wave-
length and the width of the point spread function (PSF) of
the detector elements vary according to the spatial dimension
of the instrument which corresponds to the columns in the
data. Fig. 2 shows the central wavelength and the full-width at
half maximum (FWHM) of the spectral channel corresponding

Fig. 3. PSF belonging to three cross-track positions of CRISM channel
IR 155. Dashed line corresponds to the average PSF of the sweet spot.

to 2013 nm. In particular, CRISM shows an increasing error
as the off-axis detector elements are inspected. Fig. 3 depicts
the PSF of three different positions within the same spectral
channel. The dashed line corresponds to the average PSF of
the so-called “sweet spot”, the central detector elements where
the distortions are minimal. The plain lines illustrate the PSF
shifting and broadening that happen at the edges of the detector
array.

The distortions in the PSF parameters affect the data ac-
quisition. In particular, off-axis spectra suffer from spectral
shifting and amplitude smoothing. The magnitude of both
effects depends on the column position and the shape of the
observed spectra, the latter being critical for steep spectra (e.g.,
absorption bands). In this case, the slightest inaccuracy in the
acquisition may result in a significant error bias. Fig. 8 (left)
shows the typical cross-track brightness gradient due to the
smile effect of a spectral channel encompassing an absorption
band.

B. Mars Case

The planet Mars represent a challenging scenario regarding
the smile correction due to the presence of carbon dioxide
(CO2). In fact, the atmosphere of Mars consists of 95% CO2

gas, which has very strong absorption bands for the near and
short-wave infrared. As a result, the atmosphere of Mars is
a source of the smile effect that must be taken into account
in each image for the sake of a good data analysis. An ac-
curate atmospheric correction may remove most of the smile
effects since the surface of Mars is mostly composed by “flat-
spectrum” minerals that do not lead the smile effect. In the
literature, CRISM hyperspectral images are typically corrected
for atmospheric effects (and thus partially desmiled) by tech-
niques based on the volcano-scan technique that was originally
developed by the Observatoire pour la Minéralogie, l’Eau, les
Glaces et l’Activité (OMEGA) team. A description of this
technique can be found in the supplementary materials of [9].

However, the prior strategy becomes unsatisfactory in two
cases. First, atmospheric signatures in CRISM data may be of
interest for some studies such as a surface pressure investigation
based on the probing of the atmospheric CO2 absorption bands
[10] or water vapor and carbon monoxide observations [2]. This
type of atmospheric studies becomes unviable in the presence
of the smile effect. Second, CO2 is also found in the form of dry
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ice (frozen carbon dioxide) in the polar caps of Mars [11]. CO2

ice shows similar spectral features to atmospheric CO2, and
therefore, it becomes a strong source of the smile effect. In this
case, an accurate atmospheric correction would not be enough
since the smile effects coming from the strong absorption bands
of the CO2 ice would still affect the data.

C. State of the Art

In the literature, the problem of the smile effect in
CRISM data has been tackled differently by some authors.
McGuire et al. overcome the varying spectral response by
modifying their albedo retrieval method, as discussed in [12]. In
that study, CRISM spectra are corrected for atmospheric effects
in the major CO2 gas absorption bands by using an approach
that is applied separately for the sweet spot and the off-axis
columns. By contrast, Smith et al. overcome the smile effects
by considering only the central 100 columns of the images,
thus minimizing the optical distortions in the data [2]. A similar
procedure is done in [6], where the presence of the smile effect
restricts the detection of gypsum in the north polar cap of Mars
to the center of the image. To the best of our knowledge, a
method aiming a full correction of the smile effect has not yet
been proposed for CRISM.

Nevertheless, several studies have addressed the correc-
tion of the smile effects in other pushbroom-type sensors.
Dadon et al. propose the use of derivative calculations issued
from atmospheric absorption features and the maximum noise
fraction (MNF) transformation for detecting and correcting
the smile effects in Hyperion/Earth Observing 1 (Hyperion/
EO-1) images [13]. In that study, the spectral smile is overcome
by adapting the MNF component that embodies the cross-track
effects before rotating the MNF data set back to the radiance
space. The main drawback of this method, however, is the lack
of an instrumental basis. The desmiling of Hyperion images has
also been addressed by Goodenough et al. in [14]. The problem
is first tackled by a method that uniforms all column average
values to the spectral channel mean. This technique proves to
be inadequate when performed on either the radiance or the
MNF space due to the apparition of false spectra caused by
the assumption of the image cross-track uniformity. A second
technique resamples spectra to a set of wavelengths resulting
from the Hyperion prelaunch calibration after linearly inter-
polating the data. This approach provides reasonable results,
although a residual smile is still detected after the correction.
Jupp et al. also investigate the desmiling of Hyperion images
in [15]. First, the MNF component that encompasses the smile
effects is detrended by a polynomial fit before rotating the data
back to the radiance space. Another strategy is based on the
cross-track illumination correction in the ENVI software. In this
method, each value is corrected by subtracting the difference
regarding a polynomial that is fitting the averaged line of the
corresponding spectral channel. Finally, the resampling of the
spectra after interpolation is also proposed. All techniques,
excluding the resampling, fail to provide satisfactory results
because of the apparition of false spectra. Unlike the preceding
methods, Schläpfer et al. address the correction of the bias
induced by the nonuniformity of the PSF width [16]. In that

study, a degradation of the imagery is suggested to obtain a
uniform spectral response on the basis of the broadest occurring
PSF. However, this method is not tested on real data.

III. METHODS

Most desmiling techniques are driven by the artifacts ob-
served in the data [13]–[15]. We believe that an approach
aiming an accurate correction of the smile effect must take into
account the instrument parameters as well as the shape of the
observed spectra. In fact, the error bias induced by the smile
effect depends on both attributes. Consequently, we propose
a two-stage smile correction technique aiming at correcting
the data sensibly by mimicking an optimal smile-free spectral
response (in the case of CRISM, the PSFs owned by the
sweet-spot detector elements). The nonuniformities affecting
the central wavelength and the width of the instrument PSFs are
overcome by a resampling strategy and a sharpening approach,
respectively. Furthermore, the evolution of the smile effect in
the data is assessed throughout the desmiling process by using
a smile indicator.

A. Spectral Smile Indicator

Assessing the impact of the smile effect is crucial for evalu-
ating the capabilities of a desmiling method. Hence, a measure
of the extent of the artifact in a CRISM image is investigated.

First of all, the original hyperspectral space proves to be
unsatisfactory to define a reliable quantitative indicator. Hence,
an MNF transformation of the hyperspectral data is proposed
as in [13]–[15]. An MNF rotation produces new components
(eigenimages) that are ordered according to signal-to-noise
ratio (SNR) after two cascaded principal components analy-
sis (PCA) transformations and a noise whitening step [17].
The first transformation decorrelates and rescales the noise
in the data based on the noise covariance matrix. Then, a
standard PCA transformation is applied to the noise-whitened
data. As a result, the transformed data can be divided into
two parts: coherent eigenimages with large eigenvalues (i.e.,
high SNR) and noise-dominated components corresponding to
lower eigenvalues. Although many authors have discussed the
determination of the noise-free eigenimages (e.g., [18]), we
propose the widely used criterion that defines the unity as the
threshold between both types of eigenimages [17].

After an MNF rotation, CRISM images typically show an
eigenimage (hereafter called MNF-smile) that embodies the
cross-track brightness gradient of all spectral channels that
are affected by the smile effect [see, e.g., Fig. 4 (center)]. The
eigenvalue of the MNF-smile can be then considered as a mea-
sure of the artifact energy due to its relation to the SNR. None-
theless, the MNF-smile must be handled carefully since it may
contain other spatial components apart from the artifact [13].

Two other data rotations were studied to derive a smile in-
dicator: PCA and independent component analysis (ICA). The
PCA transforms a series of probably correlated variables into a
smaller number of uncorrelated variables arranged by variance.
By contrast, the ICA aims at separating a multivariate signal
into additive subcomponents supposing the mutual statistical
independence of the non-Gaussian source signals. Neither of
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Fig. 4. MNF eigenimages corresponding to the three largest eigenvalues of
nadir scans FRT5AE3 and FRT64D9.

the two transformations provided a reliable measure of the
smile effect in comparison to the MNF. First, the PCA does
not take into account the noise in the data, and therefore, the
transformation axes might be ill defined. On the other hand,
the ICA does not result in a clear “ICA-smile” eigenimage
probably because of the dependence of the smile effect on other
components in the data.

B. Spectra Resampling by Cubic Spline Interpolation

The first desmiling step aims at overcoming the nonuniform
central wavelength by resampling all spectra to the sweet-spot
parameters. First, CRISM Calibration Data Records (CDR) are
used to retrieve the central wavelength of each detector element
in the detector array (see Appendix). Then, each reflectance
value is reevaluated at its corresponding sweet-spot wavelength
after locally interpolating each spectrum. The interpolation is
meaningful since wavelength shifts are hardly ever a whole
number of the spectral sampling (��). By doing this, the ap-
proach assumes that the missing data between two consecutive
spectels correspond to the points resulting from the interpola-
tion. We consider this hypothesis reasonable since CRISM is
close in meeting the Nyquist sampling theorem FWHM �
2�� since �� ⇡ 6.55 nm/channel and FWHM ⇡ 8–15 nm
for the sweet spot [1]. Moreover, FWHM increases by ⇠2 nm
for the off-axis detector elements, whose data are the most
likely to undergo a significant correction.

Now, we investigate the error due to interpolation. Three
different types of interpolation (linear, piecewise cubic
Hermite, and cubic spline) are tested to study the preservation
of the spectra shape. First, a CO2 ice laboratory spectrum at
high spectral resolution is separately convolved by the sweet-
spot spectral response and the CRISM “poorest” one (the one
corresponding to the first column). The PSFs of the latter are

TABLE I
MEAN SQUARE ERROR IN THE RECONSTRUCTION OF A SWEET

SPOT CO2 ICE SPECTRUM FROM A SMILE-SHIFTED ONE

modified to make the wavelength shift the only difference
between the two spectra. Then, the smile-affected spectrum is
interpolated by the three methods to be eventually sampled to
the sweet-spot wavelengths. The accuracy of the reconstruction
is determined by computing the mean square error as

MSE =
1

n

n
�

�=1

⇥

s

corr(�) � s

SS(�)
⇤2

where n is the number of channels and s

corr and s

SS are the
resampled and the sweet spot spectra, respectively.

The results in Table I show how the cubic spline interpola-
tion yields the best reconstruction error. Although all methods
provide apparently similar errors, the difference among them
is significant for the absorption maxima where the data are
modified the most. In fact, the strong absorption bands are
likely to be oversmoothed by a linear interpolation method as
it is done in [14]. Furthermore, cubic splines have been used
satisfactorily in other complex situations such as the spatial
resampling of hyperspectral data [19]. Hence, we propose a
spectral resampling algorithm based on cubic splines which is
individually performed on each image of a CRISM observation
(nadir scan + EPF).

C. Spectral Sharpening of Smile-Affected Spectral Channels

The second step of the proposed approach aims at overcom-
ing the nonuniform spectral resolution within a given spectral
channel. This heterogeneity causes that the strong absorption
bands that are convolved by increasingly wider PSFs become
oversmoothed progressively, thus contributing to the cross-
track brightness gradient. A global degradation of the spectral
resolution as in [16] would not be satisfactory since the CRISM
capabilities would be drastically reduced by losing an average
30% of the spectral resolution.

A spectral sharpening approach inspired by image processing
techniques is addressed in this paper. The proposed method
mimics an increase of the spectral resolution up to the sweet-
spot reference by enhancing the local contrast of the data that
are most affected by the smile effect.

1) Estimation of the Spectral Smile Energy: First of all,
the relevance of the smile effect in the data is investigated by
estimating its energy as it was introduced in Section III-A.

First, the MNF-smile component from the nadir hyperspec-
tral image is determined as the eigenimage which maximizes

arg max
�MNF

�(�MNF) =

�

var
⇥

�(�MNF)
⇤

� [�(�MNF)]

�

(1)

where �(�MNF) and �(�MNF) are the average line and average
column of the MNF eigenimage with index �

MNF, respectively.
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var[·] and �[·] are the variance and the standard deviation
operators, respectively. The MNF-smile eigenimage maximizes
� since the smile bias mostly depends on the column position.
The impact of the existing along-track structures in the image
on the MNF-smile (due to their correlation with the smile ef-
fect) is minimized by calculating the standard deviation instead
of the variance. The smile energy (hereafter denoted as E

S)
is estimated as the eigenvalue corresponding to the selected
MNF-smile.

2) Selection of Smile-Affected Spectral Channels: Sharpen-
ing techniques bear the inherent risk of increasing the noise in
the data. In order to avoid this, the second step of the desmiling
approach is only performed on those spectral channels that are
significantly affected by the smile effect.

For a given CRISM observation, the smile-affected channels
are regrouped as

� = �[�MNF � �

CO2 ] (2)

where �

MNF is the ensemble of channels showing a greater
cross-track smile gradient and �

CO2 encompasses those that
are systematically critical in all observations. �[·] includes a
conservative spectral neighborhood for every selected channel.

First of all, an automatic strategy is put forward to define
�

MNF. The MNF rotation of a hyperspectral image I with n

spectral channels can be expressed as I

MNF = I ⇥ A, where
I

MNF is the rotated image and A is the MNF composite
transformation matrix such that

A =

�

�

�

1
1 . . . �

n
1

. . . . . . . . .

�

1
n . . . �

n
n

�

�

where �i is the eigenvector of the MNF-i component that
expresses the linear combination of the spectral channels that
give rise to the eigenimage MNF-i.

The absolute value of the eigenvector corresponding to the
MNF-smile (hereafter called |�S |) is examined for outliers that
reveal those channels whose cross-track brightness gradient is
more significant. �

MNF is then defined as the channels whose
corresponding |�j

S | departs by more than 1�|�S |.
The previous thresholding may prove to be inaccurate due

to the noisy nature of �S caused by the correlation of the
smile effect with other data components. As a result, |�S | may
contain strong outliers not corresponding to the smile effect that
may entail the absence of some moderately-affected channels
(corresponding to medium |�j

S | values) that need to be cor-
rected. This problem is overcome by the definition of �

CO2 that
regroups the spectral channels that are most likely to be affected
by the smile effect according to a Martian scenario: the chan-
nels encompassing the CO2 gas absorption bands. In [11], the
spectral channels of the OMEGA sensor, whose wavelengths
correspond to the main absorption features of the atmospheric
CO2, were specified. We update these data according to CRISM
and define �

CO2 as the spectral channels in Table II.
Lastly, an ensemble of adjacent spectral channels (hereafter

called “packet”) is added for the correction of every previously

TABLE II
CRISM CHANNELS WITHIN THE MAJOR CO2 GAS ABSORPTION BANDS

selected channel. This last step is done to avoid spurious dif-
ferential effects that may degrade the spectra integrity if single
channels are processed. A packet is defined as

�[�j ] = {8�✏[�j�p . . . �j+q]/sgn [s00(�)] = sgn [s00(�j)]}
(3)

where s

00 is the second local derivative of the average spectrum.
In doing so, the fidelity of the original data is preserved since
each packet encompasses the local spectral concavity or con-
vexity instead of a single spectel.

3) Sharpening: The sharpening technique is performed on
every smile-affected channel belonging to � by

r

sh
� (�) =

r�(�) � 1
2��(�) (r��v(�) + r�+v(�))

1 � ��(�)
(4)

where r�(�) is the reflectance of channel � for column � and
for any line position, v sets the pair of bracketing channels that
are considered for the correction, and ��(�) is the sharpening
degree within [0 . . . 1).

Equation (4) aims at increasing the local resolution of the
spectra, an operation that becomes more significant for off-axis
data. This sharpening process is individually adapted to each
spectral channel by taking into account the local shape of the
spectra and the instrument parameters.

First, v is set to be equal to unity to correspond to thin
absorption bands that are represented by three adjacent spectels.
Furthermore, (4) is suitable for false alarms in � that may be
linked to other components than the smile effect. In fact, the
sharpening approach becomes negligible when flat spectra are
processed since

r

sh
� (�) ⇡ r�(�), if r��v(�) ⇡ r�(�) ⇡ r�+v(�).

Second, ��(�) is linked to the ratio between the current PSF
width and that of the sweet spot by the relation

��(�) = ����(�) (5)

where �� is the largest sharpening degree for the current
channel and ��(�) provides the shape of ��(�) such that

��(�) =
f�(�) � min(f�)

max(f�) � min(f�)
(6)

where f� is the FWHM of all detector elements correspond-
ing to spectral channel � (see, e.g., Fig. 2). In doing so, ��(�)
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TABLE III
MNF-SMILE EIGENVALUE EVALUATION

is close to zero for the sweet-spot spectra (i.e., negligible
sharpening) and at the maximum for the image edges.

4) Sharpening Degree Determination: Setting �� is not
straightforward since the optimal sharpening degree mainly
depends on the shape of the observed spectra. Hence, �� is not
unique, and it differs from channel to channel.

A strategy based on the examination of the smile energy E

S

is proposed to determine the ensemble of �� values. Specifi-
cally, for every spectral channel in �, �� is set as the sharpening
degree which makes E

S minimal. An iterative procedure is
proposed as follows:

Input: a hyperspectral cube I = [I�1 . . . I�n ], an ensemble
of spectral channels � = [�1 . . . �m], with I�j 2 I,8�j , and an
initial smile energy E

S

1) FOR every �j

2) E

S
0 = E

S

3) i = 1
4) �

i
�j

= �

1

5) WHILE 1
6) Sharpening of I�j with ��(�) = �

i
�j

��j (�)

7) Compute new smile energy E

S
i

8) IF E

S
i � E

S
i�1 BREAK

9) i = +1
10) �

i
�j

= �

i�1
�j

+ ��

11) IF �

i
�j

= �

max BREAK
12) END
13) P (�j) = �

i
�j

� ��

14) END

where �

1 and �� are the initial sharpening degree and the
increasing step, respectively. Both are typically set to be equal
to 0.1.

Finally, the impact of the sharpening approach on the noise
in the data is studied by SNR investigation. By doing this,
the sharpening degree from which the noise increase becomes
critical (�max) is defined. The SNR is estimated by the method
in [20], which performs a linear regression of �j�1 and �j+1

to estimate �j . The data resulting from �̂j � �j are considered
as noise. The SNR probing of several CRISM channels showed
that the SNR generally becomes unacceptable when �� > 0.5.
Hence, the iterative process is stopped when �� is equal to
�

max = 0.6.
5) Desmiling of CRISM Observations: CRISM observa-

tions are processed by the sharpening of the high-resolution
nadir scan in the first place. Then, the same � and P are used
for the correction of the corresponding EPF images. In this
way, a spectrally uniform sharpening is performed on the whole
observation.

IV. EXPERIMENTS

The proposed desmiling approach is applied to CRISM data
for evaluation. Two targeted observations are considered, each
one belonging to a science case for which an atmospheric
correction is not of interest (or enough) to desmile the data.

A. CRISM Observations

First, an icy surface of the residual south polar cap is con-
sidered by selecting FRT5AE3. This observation shows the
“Swiss cheese” pits that are supposed to be formed in a thin
layer of CO2 ice [21]. FRT5AE3 is singularly challenging in
terms of desmiling due to the presence of dry ice in addition to
the atmospheric CO2. Second, observation FRT64D9, revealing
the Nili Fossae fracture, is chosen. This near equatorial zone
of Mars presents a mineral surface that is singularly rich in
carbonate minerals. In this case, the desmiling of FRT64D9
must be considered for an accurate analysis of the atmosphere.

B. Data Postprocessing

CRISM data products are delivered in apparent I/F units
(the ratio of the reflected intensity to the incident intensity
of sunlight). We assume a Lambertian surface and divide the
data by the cosine of the solar incidence angle to transform
the data into reflectance units [1]. Although CRISM data are
radiometrically calibrated, electronic artifacts such as spikes
and stripes must be corrected. Both test images were corrected
for these distortions by the method in [22] prior to the smile
correction.

C. Spectral Smile Correction

Spectral channels 138–168 of the IR spectrometer are con-
sidered for the evaluation of the smile correction method.
The corresponding spectral range of study (1902–2099 nm)
is particularly challenging since it contains the strong 2-µm
CO2 absorption triplet that is of great interest in many research
investigations [10], [23].

The quality of the proposed technique is evaluated in detail
by examining the correction of the nadir scan of both test
observations. First, the smile energy is investigated throughout
the desmiling process in Table III, illustrating the evolution of
the three largest MNF eigenvalues. Then, the spectra are care-
fully inspected to evaluate their physical correctness. Figs. 5
and 6 represent the evolution of four spectra corresponding to
different column positions. The plotted spectra are the result of
averaging the central 100 lines of the nadir scan, so the likely
effects coming from the surface photometry are minimized.
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Fig. 5. FRT5AE3 spectra belonging to four different column positions
throughout the desmiling process (top to bottom). All spectra are the result of
averaging the 100 central lines of the image.

Fig. 6. FRT64D9 spectra belonging to four different column positions
throughout the desmiling process (top to bottom). All spectra are the result of
averaging the 100 central lines of the image.

Finally, Fig. 8 depicts FRT5AE3 spectral channel IR 155 before
and after the correction. This channel is particularly of interest
since its sweet spot falls precisely on the maximum of the CO2

absorption at 2 µm.
The desmiling process starts with the MNF rotation of both

nadir images for the evaluation of the smile impact. Fig. 4
shows the MNF eigenimages corresponding to the three largest
eigenvalues of both images (see also Table III). First, FRT5AE3
MNF-1 shows a correlation with the image photometry caused

Fig. 7. (Red dashed line) FRT64D9 average spectrum after resampling and
(black circles) �� values corresponding to (vertical lines) the ensemble of
selected spectral channels �.

by the ice bidirectional reflectance anisotropy and the along-
track variation of the solar emergence angle. MNF-2 shows a
significant cross-track brightness gradient, and therefore, it is
considered as the MNF smile of FRT5AE3 by (1). The smile
eigenimage is far from being negligible since its eigenvalue
(ES = 100.1) is ten times larger than MNF-3’s, which is de-
picting the average albedo. On the other hand, MNF-1 of image
FRT64D9 illustrates the average albedo. Again, MNF-2 is
designated as the smile eigenimage due to the high cross-track
variance. In the absence of dry ice, the atmospheric CO2 is the
only source of the smile effect in this image, and therefore, the
smile energy is lower (ES = 12.3). MNF-3 of image FRT64D9
corresponds to the noise since its corresponding eigenvalue is
lower than unity. Regarding Figs. 5 and 6 (top), the spectra
appear to be shifted and smoothed as the off-axis columns are
investigated. Lastly, Fig. 8 (left) shows the typical cross-track
brightness gradient corresponding to the smile-affected bands.
In fact, the reflectance values of channel IR 155 increase when
moving toward the edges since the weight of the absorption
wings intensifies as a result of the PSF shifting and broadening.

Once the smile energy is determined, the desmiling process
proceeds with the resampling of each image to the sweet-spot
wavelengths. By doing this, ES is drastically reduced by ⇠90%
in both cases, and the spectra are no longer shifted [see Table III
and Figs. 5 and 6 (center)]. However, the data belonging to the
edges are still corrupted by smoothing as a result of the still
nonuniform spectral resolution.

The resampled data are now corrected by the proposed
spectral sharpening strategy. After following the procedure
introduced in Section III-C2, the nadir scans of FRT5AE3 and
FRT64D9 present the same �. In fact, spectral channels IR
145–164 are selected for the correction in both cases as they
encompass the CO2 absorption triplet. Fig. 7 gives the details
on the sharpening of FRT64D9. The average spectrum, the
selected spectral channels �, and the corresponding degrees of
sharpening �� are shown. At first, the 2.07-µm (⇠IR band 161)
feature, which is oversmoothed after resampling, is missed in
�

MNF due to the high impact of the smile effect on the 2.01-µm
(⇠IR band 154) and the 1.97-µm (⇠IR band 147) absorption
bands. However, this feature is also processed in the sharpening
procedure thanks to �

CO2 . Finally, � includes the entire CO2

absorption triplet, and it is corrected as a whole feature. Regard-
ing the optimal sharpening degrees, a high correlation between
the positions of the CO2 absorption maxima and the greatest
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Fig. 8. IR spectral channel 155 of FRT5AE3 before and after smile correction.

values can be observed (e.g., IR channels 147 and 155). Fur-
thermore, Fig. 7 illustrates how the procedure based on the E

S

examination assigns low �� values for the channels showing a
low impact after the resampling, e.g., IR 145 and 164.

Concerning the final evaluation of the desmiling technique,
Figs. 5 and 6 (bottom) illustrate how the local contrast of the
CO2 absorption bands are enhanced by the proposed sharpen-
ing technique. As expected, the spectra belonging to off-axis
columns are further corrected than the sweet-spot ones, whose
correction is negligible. It can be observed that the integrity
of the spectra is preserved, conserving their physical meaning
and free of spikes due to a faulty correction. Regarding E

S ,
the smile energy of FRT5AE3 is reduced by ⇠70%, being
eventually close to the noise threshold (see Table III). The
complexity of the correction due to the presence of both types of
CO2 explains why the smile effects are not entirely corrected by
the desmiling process. Fig. 8 (right) shows, however, how the
smile correction strongly attenuates the cross-track brightness
gradient in FRT5AE3 channel IR 155. FRT64D9 smile also
experiences a notable reduction by ⇠80% thanks to the second
desmiling step as the MNF-smile eigenvalue is reduced below
unity. In this case, the residual smile can be considered as noise
[17]. Lastly, Table III illustrates how the proposed desmiling
method involves a minimal impact on other components in the
data since their eigenvalues do not change significantly.

V. CONCLUSION

In this paper, the correction of the smile effect affecting
CRISM hyperspectral images has been addressed. First, an
exhaustive study of the artifact was carried out, and its main
effects on the instrument spectral response and the acquisition
of the data were identified. The Martian scenario was also
investigated, and two different science cases were defined as
critical regarding the smile effect. Then, a two-stage method for
desmiling CRISM observations was put forward. The presented
approach takes into account both the instrument parameters and
the shape of the observed spectra. In addition, a smile indicator
is defined in order to evaluate the artifact energy throughout
the correction process. First, the spectral shifting due to the
drift of the central wavelength of the detector elements is
corrected. Spectels are first interpolated by cubic splines and
then resampled by taking into account the ground calibration
of the instrument. The fidelity of the spectra shape is preserved
because of the properties of the interpolation method. Second,
the nonuniformities of the PSF width of the detector elements
are adjusted by a spectral sharpening technique that enhances
the local contrast of the spectra. The method reliability is

emphasized since the sharpening is only performed on spectral
channels particularly suffering from the smile effect. As a
result, the noise increase is minimized, and other components
in the data are not affected by the desmiling process. Again, the
sharpening method is based on the instrument parameters by
choosing a degree of correction that depends on the variations
of the spectral resolution among the detector elements. In
addition, the increase of the spectral resolution is mimicked
by taking account of the observed spectra shape. In fact, the
optimal degree of the sharpening is set individually for every
spectral channel depending on the decrease of the spectral
smile energy induced by the correction method. By contrast,
the sharpening procedure might prove to be unsatisfactory for
correcting the spectral features having nearly disappeared for
the off-axis columns.

The previous statements have been confirmed by the
presented experimental results. The CRISM nadir images
FRT5AE3 and FRT64D9 show a notable reduction of the smile
energy after following the proposed method. Regarding the
whole observation correction, Fig. 1 corroborates the validity of
the introduced approach as the smile pattern greatly disappears
for all scans. Furthermore, the approach may be improved with
new versions of the CRISM data calibration. Future research
will be conducted on the extraction of spectrophotometric sig-
natures, followed by their inversion to obtain sampled bidirec-
tional reflectance distribution functions of the Martian surface.

APPENDIX

CALIBRATION DATA RECORDS

CRISM Calibration Data Records (CDR) are used in the
desmiling process. In particular, WA CDR, which contain the
calibrated central wavelength of each detector element, are used
in the resampling process. Then, SB CDR, containing the para-
meters to calculate the spectral PSF for each detector element,
are used for ��(�) in the sharpening process. Finally, UB CDR,
which give the standard deviation of each detector element in
a CRISM shutter closed measurement, are used to compute the
noise covariance matrix in all MNF transformations.
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Abstract—As the volume of hyperspectral data for planetary
exploration increases, efficient yet accurate algorithms are decisive
for their analysis. In this paper, the capability of spectral unmixing
for analyzing hyperspectral images from Mars is investigated.
For that purpose, we consider the Russell megadune observed
by the Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) and the High-Resolution Imaging Science Experiment
(HiRISE) instruments. In late winter, this area of Mars is ap-
propriate for testing linear unmixing techniques because of the
geographical coexistence of seasonal CO2 ice and defrosting dusty
features that is not resolved by CRISM. Linear unmixing is carried
out on a selected CRISM image by seven state-of-the-art ap-
proaches based on different principles. Three physically coherent
sources with an increasing fingerprint of dust are recognized by
the majority of the methods. Processing of HiRISE imagery allows
the construction of a ground truth in the form of a reference
abundance map related to the defrosting features. Validation of
abundances estimated by spectral unmixing is carried out in an
independent and quantitative manner by comparison with the
ground truth. The quality of the results is estimated through
the correlation coefficient and average error between the recon-
structed and reference abundance maps. Intercomparison of the
selected linear unmixing approaches is performed. Global and
local comparisons show that misregistration inaccuracies between
the HiRISE and CRISM images represent the major source of
error. We also conclude that abundance maps provided by three
methods out of seven are generally accurate, i.e., sufficient for a
planetary interpretation.
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I. INTRODUCTION

V ISIBLE and near-infrared imaging spectroscopy is a key
remote sensing technique to study planetary objects.

Since their first appearance in 1989, imaging spectrometers
have been aboard an increasing number of orbiters aimed at
exploring our solar system. This kind of sensors have been
decisive when addressing issues related to the surface or the
atmosphere of Mars, Venus, Jupiter, Saturn, and their moons
[1]–[5]. In particular, imaging spectroscopy gives outstand-
ing results regarding the chemical composition and physical
state of solid surfaces, thus providing clues about present and
past activity and environmental conditions. Constant techno-
logical improvements promote the acquisition of dramatically
expending collections of hyperspectral images. For instance,
the Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) aboard Mars Reconnaissance Orbiter (MRO) is the
first hyperspectral imager to operate systematically in multi-
angle mode at high spatial resolution from orbit [1].

Because of the increasing volume and complexity of plane-
tary hyperspectral data such as CRISM’s, efficient yet accurate
algorithms are decisive for their analysis. Unsupervised spectral
unmixing techniques are potentially relevant tools, particularly
in planetary sciences for which only few ground truth data
are available. These techniques aim at separating the existent
mixtures between the different contributions—coming mainly
from materials at the surface—that form the remotely sensed
signal. Materials (i.e., physical sources) at the surface are char-
acterized by their spectral signatures determined by their intrin-
sic chemical composition. Due to limitations of sensor spatial
resolution and multiple scattering of solar photons occurring
among distinct physical sources, different spectral signatures
may be combined both linearly (i.e., geographic mixtures) and
nonlinearly (e.g., intimate mixtures).

First attempts in applying spectral unmixing techniques to
planetary hyperspectral data are based on a linear model of
the signal, even though nonlinear processes might prevail. The
Independent Component Analysis (ICA) has been proposed to
extract the existent spectral components (i.e., endmembers) in
a hyperspectral image by assuming that physical sources are
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non-Gaussian and mutually independent. Application of ICA
on images acquired by the Observatoire pour la Minéralogie,
l’Eau, les Glaces et l’Activité (OMEGA) hyperspectral imager
allows the retrieval of meaningful endmembers in [6]. Likewise,
spectra measured by the Visible and Infrared Thermal Imaging
Spectrometer (VIRTIS) on the nightside of Venus are analyzed
with ICA in [7]. In that study, several extracted endmembers
are related to physical components or processes due to good
correlation of the corresponding distribution maps with known
structures of the Venusian atmosphere. Nonetheless, the role of
ICA to carry out spectral unmixing is questioned in [8] since
the independence of abundance distributions is not satisfied.
Another important limitation of ICA is the potential unphysical
results in the form of negative values affecting the extracted
spectra or abundances. On the other hand, for more than a
decade, the Non-negative Matrix Factorization (NMF) has been
an alternative method to solve the unmixing problem under a
linear model with non-negative constraint [9]. For instance, the
NMF approach has been used in planetary exploration to esti-
mate the surface composition of Mars using data acquired by
the Martian rovers [10]. Likewise, the NMF problem has been
solved in a Bayesian framework through the Bayesian Positive
Source Separation (BPSS) [11] ensuring a unique robust solu-
tion. In [12], a combination of spatial ICA and BPSS applied on
OMEGA data leads to endmembers whose associated spectra
and abundance maps correlate satisfactorily with reference
signatures and outcomes of physical models, respectively.

In terrestrial remote sensing, many approaches have been
proposed as efficient tools for linear unmixing of hyperspectral
data. These methods include the Vertex Component Analysis
(VCA) [13] which retrieves the spectra of the existent endmem-
bers by extracting the extrema of the simplex formed by the
hyperspectral data. In [14], this geometric method is performed
on OMEGA data from Mars with satisfactory results. Similarly
to VCA, the widely used N-FINDR [15] algorithm is proposed
for endmember extraction of linearly mixed data, showing
notable performances on many types of hyperspectral data such
as CRISM’s in [16]. Contrary to VCA and N-FINDR that
require the existence of pure pixels in the data, many methods
have been developed without the pure pixel assumption. This
is the case of the techniques referred to as Minimum Volume
Constrained Non-negative Matrix Factorization (MVC-NMF),
Minimum Volume Enclosing Simplex (MVES), and Simplex
Identification via Split Augmented Lagrangian (SISAL), which
are proposed for endmember extraction of highly mixed data.
MVC-NMF decomposes mixed pixels based on the NMF and
a minimum volume constraint and has proved to be very
efficient on simulated and real data and less sensitive to the
estimated number of endmembers [17]. In the same way,
MVES proposes a convex analysis by minimizing the simplex
volume subject to the constraint that all dimension-reduced
pixels are enclosed in it [18]. Eventually, SISAL [19] has been
recently proposed to solve the linear unmixing problem based
on a non-convex optimization problem with convex constraints
[19]. Last but not least, many studies have recently addressed
the inclusion of spatial information into endmember extrac-
tion [20], [21]. For instance, the authors of [21] propose a
spatial preprocessing that enhances the search for endmem-

bers in the unmixing problem. This procedure has proved
to provide better extracted spectra and more relevant abun-
dance maps after combination with a traditional endmember
extraction method.

In this paper, we propose to evaluate the suitability of
spectral unmixing techniques in a planetary context by test-
ing the following comprehensive selection of state-of-the-art
algorithms: BPSS, VCA, N-FINDR, MVC-NMF, MVES, and
SISAL. In addition, spatial information is integrated into the
unmixing process by considering the spatial preprocessing
proposed in [21]. In this way, a large scope of methods based
on geometric, Bayesian, and spectro-spatial first principles is
considered. Unfortunately, the validation of spectral unmixing
techniques is a very challenging yet crucial issue, particularly
in planetary sciences due to the scarcity of ground truth. In that
matter, previous studies traditionally address the validation of
unmixing outcomes either through comparison of endmember
spectra extracted from real data with reference spectral signa-
tures [22], [23] or by using simulated data [20], [21], [24]. As
for abundance maps obtained from unmixing of real data, only
the authors of [20] perform their validation by comparing these
outcomes with a reference. In that study, reference abundance
maps are built from reference spectra manually extracted from
the original image. To our knowledge, the validation of spectral
unmixing techniques applied on real data through the evaluation
of extracted abundance maps in an independent and quantitative
manner has never been addressed. We therefore propose an
innovative case study that overcomes this hurdle by choosing
a CRISM image displaying the Russell dune of Mars. In late
winter, this particular area is very suitable for validation of
spectral unmixing techniques under a linear model due to two
principal reasons: (i) The very likely existence of geographic
subpixel mixtures coming from the two predominant materials
at the surface and (ii) the possibility of building a ground truth
for validation of extracted abundance maps using very high-
resolution imagery and geomorphological techniques. Based
on original experimentations, we perform quantitative assess-
ment of surface proportions obtained by spectral unmixing
techniques on real hyperspectral data. In addition, an intercom-
parison of the selected unmixing methods is carried out by
evaluating their spectral and spatial outcomes independently.
Eventually, the linear mixing model and the limitations of
the assumptions made by the algorithms are evaluated for the
problem at hand.

This paper is organized as follows. In Section II, we present
the case study of the Russell dune through the description of the
area of interest, the data sets that are used, and the construction
of the ground truth. Then, the selection of spectral unmixing
algorithms is briefly described in Section III by highlighting
the properties of each method that may be suitable for our case
study. Likewise, the techniques used for estimating the number
of endmembers are introduced. Experiments are carried out in
Section IV followed by the intercomparison and validation of
the unmixing methods in Section V. Section VI concludes by
discussing on the proposed methodology based on unmixing
techniques and preprocessing, drawing some conclusions on
the potential of unmixing techniques for planetary sciences, and
giving some indications for further research.
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II. CASE STUDY: THE RUSSELL CRATER MEGADUNE

A. Description of the Area

The selected area of study is the megadune in the Russell
crater of Mars (55� S 12� E). This 134-km wide crater hosts
a 1700 km2 dune field with an uncommon large dune on its
northeastern part. This megadune is about 500 m high, 20 km
wide, and 40 km long. In particular, the southwest facing
scarp of the dune displays many defrosting features in late
winter when the retreat of CO2 ice starts. These phenomena
in the form of dark spots—mostly on the top of the dune—and
dark elongated patterns—all over the scarp—precede the global
sublimation of the ice, eventually uncovering the sandy mineral
substratum [25]. The defrosting features as well as the gullies
are an ongoing key research topic for the understanding of Mars
geology and activity.

The Russell dune represents a potential benchmark for test-
ing spectral unmixing algorithms in a planetary context. During
the MRO mission, this area of Mars has been extensively
scrutinized in a coordinated manner by very high-resolution im-
agery and imaging spectroscopy. In late winter, the former fully
resolves the geographical coexistence of dark features—mostly
made of dust—and brighter ice while the latter does not. Hence,
the assumption of linear mixing in the hyperspectral signal
coming from the contributions of both components is very
reasonable. In addition, the use of very high-resolution imagery
can be used for constructing a ground truth against which
abundance maps provided by unmixing techniques applied to
hyperspectral images can be evaluated.

B. CRISM Data

In the targeted mode, the CRISM instrument maps the min-
eralogy of Martian key areas at high spectral (362–3920 nm,
6.5 nm/channel) and spatial (up to 18 m/pix) resolution [1].
CRISM offers a new insight into the planet Mars because of its
high resolution and its multi-angle capabilities provided by its
gimbaled optical sensor unit (OSU). In this way, each targeted
observation is composed of a central hyperspectral image at
full spatial resolution and a sequence of ten bracketing spatially
binned images that are acquired before and after MRO flies over
the target.

In July 2009, CRISM had scanned the Russell megadune
15 times of which 4 in late winter when the CO2 sublimation
starts and the defrosting features appear. We therefore select the
central image of the targeted observation frt000042aa covering
an area of 80 km2, in which the southern facing scarp of the
Russell dune is visible (see Fig. 1). Due to the OSU functioning,
this image was acquired with view zenith angles (VZA) varying
by more than 60� from the first to the last image row.

1) Preprocessing: Before the unmixing stage, the test image
frt000042aa is processed to get rid of the contributions that
are not related to the components at the surface. In particular,
these contributions may introduce nonlinearities in the data
affecting the linear mixture model of the signal. In this way, the
test image is corrected for instrumental artifacts, atmospheric
effects, and photometric issues. First, residual stripes and spikes
are corrected as in [26]. Likewise, the spectral smile effect af-

Fig. 1. CRISM frt000042aa true color image showing the Russell dune.
The still-frosted scarp displays dark spots on the ridge of the dune and dark
elongated patterns along the gullies. The region-of-interest (ROI) is highlighted
in yellow. The upper right figure displays the location of the test image over the
megadune observed by the THEMIS instrument.

fecting CRISM images is corrected by the method in [27]. This
step is particularly challenging due to the presence of CO2 ice,
which results in a higher strength of the smile artifacts. Second,
the contribution of the Martian atmosphere, which is mainly
composed by CO2 gas and mineral aerosols, is corrected as in
[28], [29]. The widely used volcano scan algorithm for CRISM
data in [30] is not applicable as it does not operate for icy
surfaces nor corrects it for aerosol contribution. Imprecisions in
the adopted scattering properties of the aerosols as a function of
VZA may induce atmospheric residues in the upper and lower
rows of the image by means of spurious spectral slopes. Third,
atmospherically corrected spectra are transformed into apparent
reflectance units R in a similar way as it is done in [1]. For this
photometric correction, we take into account the average illu-
mination conditions on the whole scarp by means of the solar
zenith angle (SZA). The average SZA of the scarp is retrieved
by using a digital terrain model (DTM) of the Russell dune
generated by the High-Resolution Imaging Science Experiment
(HiRISE) camera. This procedure results in better levels of R

for the majority of the spectra when compared to the traditional
procedure in which the surface is approximated by the Martian
areoid [1]. A complete pixel-wise photometrical correction is
not realizable due to noise in the DTM. Likewise, a procedure
based on clustering the image according to SZA had to be
abandoned as the spatial information coming from the surface is
critically corrupted after correcting for the average photometry
of each SZA-similar area. Hence, residues coming from the
heterogeneous photometry, as well as instrumental artifacts
and atmospheric effects, may remain after the data pipeline.

Eventually, an region-of-interest (ROI) is defined as we are
only interested in the southwest facing scarp displaying the
defrosting features (see yellow line in Fig. 1). In addition,
only the 250 CRISM channels ranging from 1.0 to 2.6 µm are
considered due to the high impact of thermal noise for greater
wavelengths and the less marked features of CO2 ice in the
visible range.
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Fig. 2. Detail of the Russell dune observed by the CRISM and the HiRISE
instruments. Upper right image: footprints of the images CRISM frt000042aa in
blue (604 ⇥ 420 pixels, non-map projected), HiRISE PSP_002482_1255_RED
in green (29 862 ⇥ 63 004 pixels, map projected), and HiRISE PSP_002482_
1255_COLOR in yellow (11 776 ⇥ 61 257 pixels, map projected). The ROI is
enclosed with a white line.

C. Building a Ground Truth

Although Mars is the planet other than Earth for which
more data are available, the scarcity of ground truth to validate
the statistical and physical algorithms that are used to retrieve
information on the surface of the red planet is a crucial issue. On
the one hand, only a few specific areas of Mars are enough char-
acterized by a combined coverage of spacecrafts and rovers.
Furthermore, both types of experiments provide information at
very different spatial scales and thus confronting their results
is a very challenging task. On the other hand, validation using
simulated data generated from realistic surface and atmosphere
models is not fully satisfactory due to the unavoidable limita-
tions of the models. In this paper, a new strategy to validate
the processing of planetary data is introduced. In particular, we
propose the use of another type of imagery acquired over the
Russell dune to build a ground truth for validation of spectral
unmixing techniques.

1) HiRISE Data: The HiRISE camera is a unique tool to
study the surface of Mars due to its very high spatial resolution.
HiRISE consists of a half-meter reflecting telescope which
allows taking three-channel (near-infrared, red, and blue-green)
pictures with resolutions up to 25 cm/pix [31]. Two products are
made available by HiRISE, a red-channel image making use of
the full field of view and a three-channel image whose extent
on the ground is significantly reduced.

Being aboard MRO, HiRISE is coordinated with CRISM
to generate pair of images CRISM-HiRISE, displaying the
same area of Mars. Fig. 2 (upper right) shows the foot-
prints of the two products corresponding to the HiRISE im-
age PSP_002482_1255 to be compared to the CRISM image
frt000042aa. In this paper, the red-channel product is selected
because of its larger coincident footprint as regards the CRISM
image and twice better spatial resolution in comparison with
the three-band image. Likewise, Fig. 2 shows the same area of
the Russell dune observed by the CRISM and the HiRISE in-
struments. As it can be seen, HiRISE displays the dark features
with a much greater detail, making them very distinguishable
from the surrounding brighter ice. Hence, we propose to use the

red-channel image PSP_002482_1255_RED to generate a ref-
erence abundance map corresponding to the dark features. The
resulting ground truth will be then compared to the abundance
maps obtained from the image frt000042aa, thus evaluating
the performances of each unmixing technique in a similar and
independent way.

The generation of the ground truth is as follows. First, the
HiRISE image is classified by extracting the dark features. The
resulting classification map and the CRISM image—previously
projected onto the HiRISE geographic space—are registered by
means of a feature matching method. Then, labels correspond-
ing to the dark features are counted within the footprint of each
CRISM pixel projected on the classification map. By doing
this, the classification outcome is transformed into a reference
abundance map against which the unmixing abundance maps
will be compared in a pixel-wise manner.

2) Classification Map: The dark features are extracted
by classifying the image PSP_002482_1255_RED into two
classes, dark features and brighter ice, as suggested by geo-
morphologic analysis and the image histogram. With this aim,
the image is split into k clusters according to gray value using
a k-means strategy [32]. A value of k = 7 is satisfactory in
our case. We note {L1, . . . , L7} the labels of the clusters and
{C1, . . . , C7} their average values such that (C1 < . . . < C7).
In order to represent the dark features, we select the darkest
cluster L1 which is manually improved by locally threshold-
ing the original image. This operation takes into account the
presence of shadows within the gullies that can be confused
with elongated dark structures. Eventually, only the dark spots
and the dark elongated features are classified as dark features
while the rest of the image is classified as brighter ice. Fig. 3(a)
shows the resulting classification map.

3) Image Registration: The classification map must be pro-
cessed along with the CRISM image to allow an accurate
pixel-wise comparison between the two final products (i.e., the
ground truth coming from the HiRISE image and the abundance
maps coming from the unmixing techniques). With this aim, we
perform the registration of the HiRISE original image and the
CRISM channel at 1.1 µm, which corresponds to the continuum
of the spectra. One should note that the direct registration of the
unmixing products is not reasonable since this might introduce
some bias (e.g., if the unmixing results are wrong). The registra-
tion of CRISM and HiRISE images is very challenging because
of the notable differences as regards the spatial resolution of
both cameras (⇠72 times larger for HiRISE).

First, the selected CRISM channel is projected onto the
HiRISE geographic space using the ancillary data of the image
frt000042aa, which provide the latitude and longitude coordi-
nates for each pixel. After this step, the two images are not cor-
rectly registered due to inaccuracies of pointing and limitations
of the instrument models used to generate the geographical
data of each sensor. That being so, we first perform a coarse
registration of both images by applying a spatial translation
whose �l and �c (where l and c stand for line and column,
respectively) maximize the correlation coefficient between both
images. Eventually, a Delaunay triangulation refines the regis-
tration by warping the CRISM image using a set of manually
selected ground control points.
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Fig. 3. (a) Classification map corresponding to the dark features extracted from the original HiRISE image. The label occurrences corresponding to the dark
features are represented by white points. (b) Reference abundance map used as ground truth.

Fig. 4. (a) HiRISE image with the corresponding registration control points as red crosses. (b) The same as Fig. 4(a) for the CRISM image. (c) Registration
accuracy map displaying the local correlation coefficient computed on the intersection between the two images and the ROI on a 10 ⇥ 10-pixel basis.

The registration step is detailed in Fig. 4. Fig. 4(a) and
(b) show, respectively, the HiRISE and the CRISM images
with the corresponding ground control points. More than 200
reference points are defined over the southwest-facing scarp,
particularly for the dark spots along the ridge of the dune as
they are critical features in the upcoming comparison. The
accuracy of the registration is evaluated by calculating the local
correlation coefficient rreg between the HiRISE image and the
CRISM channel at 1.1 µm after registration. Fig. 4(c) shows
the ensemble of rreg values that are obtained using a 10 ⇥ 10
sliding window over the area, resulting from the intersection
of the two images and the ROI [see Fig. 2 (upper right)].
The resulting correlation map underlines the accuracy of the
registration with an average correlation rreg = 0.7. In addition,
Fig. 4(c) provides valuable information on the distribution of
the registration accuracy that will be used in the validation
stage. Given the manual selection of control points and the
size of the images (29 862 ⇥ 63 004 pixels for the HiRISE
image), misregistration inaccuracies affect this processing step,
particularly on the borders of the processed area.

4) Reference Abundance Map: After registration, the
HiRISE classification map is transformed into an abundance
map. Since the data manipulation is performed on the HiRISE
geographic space, each CRISM pixel is now associated to a
footprint containing several pixels at the HiRISE resolution.

That being so, the reference abundances are calculated by
counting the number of dark labels occurring in each CRISM
footprint. The result is then divided by the total number of
labels. By doing this, we obtain an image that provides the
abundance of dark features at the CRISM resolution.

One should note that the remotely sensed signal that deter-
mines the radiance value of each CRISM pixel comes not only
from its conjugated area at the Martian surface (i.e., the theoret-
ical footprint) but also the areas corresponding to the neighbor-
ing pixels. This additive contribution to the signal is originated
by two principal causes. First, the spatial response of a single
CRISM detector element—characterized by its Gaussian-
shaped point spread function (PSF)—partially overlaps the
PSFs of the neighboring detectors [1]. As a consequence, the
final radiance value is the weighted sum of the contribution
coming from the target pixel and its neighbors. In addition,
CRISM images suffer from the so-called adjacency effect that
is common to all 2-D imagers [33]. Due to the aerosol particles
in the atmosphere, some photons coming from the neighboring
area of a given pixel are scattered toward its corresponding
detector element, thus contributing to the final radiance value.
These two effects result in a blurring of the image that is not
taken into account by the label counting process introduced pre-
viously. Since evaluating the coupling of the adjacency and PSF
effects is not straightforward, the image blurring is mimicked
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Fig. 5. Detail of the ground truth generation. (a), (b) HiRISE and CRISM
images after registration. (c) Classification map highlighting the dark features.
(d) Reference abundance map after pixel counting.

by filtering the reference abundance map by a Gaussian
low-pass filter. The size of the Gaussian kernel is determined
by optimizing the correlation coefficient between the registered
CRISM channel at 1.1 µm and the filtered HiRISE image.

Fig. 3(b) shows the final ground truth that will be used for
validating the unmixing products. Lastly, Fig. 5 illustrates the
different processing steps on a small area of the Russell dune.

III. SPECTRAL UNMIXING

We note X the matrix representing the flatten hyperspectral
image cube such that X = {x1,x2, . . . ,xNp}, where xk =
{x1,k, x2,k, . . . , xNs,k}T . xl,k represents the value of the kth
pixel at the lth channel, Np is the number of pixels, and Ns is
the number of spectral channels. We assume that the spectrum
of each pixel can be reduced to a linear mixture of Nc endmem-
ber spectra, leading to the following instantaneous model:

X = M · S + e (1)

where e stands for the additive noise in the image,
M = {m1,m2, . . . ,mNc} is the mixing matrix, being
mn the spectral signature—the characteristic spectrum—of
the nth endmember, and S = {s1, s2, . . . , sNc}T is the source
matrix with sn = {sn,1, sn,2, . . . , sn,Np}. sn,k correspond
to the abundance of the nth endmember at the kth pixel and
its positivity is generally imposed. Besides, the endmember
abundances must respect the sum-to-one constraint such that
PNc

n=1 sn,k = 1, 8k. In order to extract M and S from X

without any a priori information, Nc must be estimated in the
first place. An endmember extraction approach is then applied
to retrieve M, followed by the reconstruction of S based on the
extracted spectra and the linear model of (1).

Physical assumptions leading to the linearity of the remote
sensing signal are enumerated in [12] as: (i) predominance of
linear subpixel mixing at the ground; (ii) absence of nonlinear
mixing; (iii) Lambertian surface or homogeneity of surface
illumination conditions; and (iv) absence of atmospheric ab-
sorption and scattering. In this paper, the presence of linear

subpixel mixing in some specific areas of the Russell dune
has been demonstrated by the scrutiny of the HiRISE image
in Section II-C-1. Due to the lower spatial resolution of the
CRISM instrument, the hyperspectral signal corresponding to
some specific areas is composed by the signatures of two
physically distinct components at the surface, resulting in ge-
ographic subpixel mixtures. By contrast, the absence of non-
linear mixtures cannot be assured as that would require data
at the grain-size scale. A first attempt to address this point is
presented in Section V by relating the reconstruction error of
the spectra to the existence of nonlinearities. Future work will
further expand this issue by performing a complete physical
analysis of the test image as it is stated in Section VI. As regards
atmospheric contributions, assumptions of linearity are met
after the preprocessing in Section II-B-1. However, potential
residues may lead to perturbations on the spectral unmixing
process. Likewise, the heterogeneity of surface illumination
may also result in some artifacts. All the previous factors F =
{f1, f2, . . . , fNc}, including residues coming from instrumental
artifacts, may transform the linear mixing assumption into the
degenerated model

X = =(M · S) + e ' F · M · S + e (2)

where =(X) = F · X + F2 · X

2 + . . . ' F · X . Furthermore,
spurious transformations arising from F may affect the physical
sources M. In that case, the number of endmembers estimated
by the following methods may become higher for F · M · S
than it is for M · S.

A. Estimation of the Number of Endmembers

Two methods are considered in order to estimate the number
of endmembers in the image frt000042aa, the widely used
Hyperspectral Signal Subspace Identification by Minimum Er-
ror (HySIME) approach and the recent Eigenvalue Likelihood
Maximization (ELM) technique, which has been originally
developed for hyperspectral data from Mars.

1) HySIME: This approach has been recently proposed as a
minimum mean square error-based approach to infer the signal
subspace in hyperspectral imagery [34]. HySIME is eigen-
decomposition-based, unsupervised, and fully automatic. It first
estimates the signal and noise correlation matrices and then
selects the subset of eigenvalues that best represents the signal
subspace in the least squared error sense. The performances of
HySIME have been validated satisfactorily by using simulated
and terrestrial remotely sensed hyperspectral data.

2) ELM: This technique is proposed as an automatic and
unsupervised algorithm for estimating the number of endmem-
bers of hyperspectral images [14]. This approach is based on the
distribution of the eigenvalues corresponding to the correlation
and covariance matrices of X. In particular, ELM assumes
that the couple of nth eigenvalues of both matrices correspond
to the variance of the noise for n > Nc. That being so, the
distribution of the difference between a couple of eigenvalues
zn is asymptotically modeled by a Gaussian probability density
function centered at zero for n > Nc and a non-zero value
otherwise. Based on this property, ELM builds a likelihood
function depending on zn that shows a global maximum for
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n = Nc. In [14], this approach is validated using simulated data
and hyperspectral images from Mars acquired by the OMEGA
instrument. However, ELM supposes the Gaussianity of the
noise while CRISM noise is hardly Gaussian.

B. Endmember Extraction

After estimating the number of endmembers Nc of the test
image, we perform a selection of state-of-the-art algorithms
based on different principles as follows: (i) geometric tech-
niques assuming the presence of pure pixels in the image;
(ii) geometric approaches without pure pixel assumption; and
(iii) statistic methods based on a Bayesian framework. In
addition, we consider the incorporation of spatial information
by performing spatial preprocessing on the image frt000042aa.
The endmember extraction techniques considered in this paper
are briefly explained as follow.

1) VCA: VCA has been proposed as an efficient and fast
geometric method for extracting endmembers under a linear
mixing supposition [13]. According to the sum-to-one condi-
tion, the data vectors xk are always inside a simplex formed by
M · S whose vertex are the spectra of the endmembers. VCA
iteratively projects the data onto the orthogonal direction to the
subspace spanned by the already extracted endmembers, desig-
nating the most extreme projection as the next endmember. The
process is repeated until Nc endmembers are found. That being
so, VCA assumes that (i) there are pure pixels in the data and
(ii) there is no noise. However, the latter means that xk may be
outside the simplex if noise is present. In [14], VCA is evaluated
satisfactorily on OMEGA data from Mars and therefore it may
be suitable for spectral unmixing of CRISM data.

2) N-FINDR: The widely used N-FINDR algorithm ex-
tracts extreme points of the simplex of maximum volume that
can be inscribed within X using a simple nonlinear inversion
[15]. This approach iteratively selects random endmembers
and evaluates whether the volume of the simplex sustained by
those endmembers changes or not. The convex nature of hyper-
spectral data allows this operation to be performed in a quick
and relatively straightforward manner. Contrarily to VCA,
N-FINDR is a truly simplex volume-based technique. However,
this method may become less efficient and not reproducible due
to its randomness. N-FINDR has been applied on CRISM data
with satisfactory results in [16].

3) MVC-NMF: This technique is proposed for endmember
extraction of highly mixed hyperspectral data without the pure
pixel assumption [17]. MVC-NMF decomposes mixed pixels
by analyzing the connection between the spectral unmixing
analysis and the non-negative matrix factorization. A minimum
volume constraint makes the MVC-NMF learning less depen-
dent on the initializations, robust to different levels of noise,
less sensitive to the estimated number of endmembers, and
applicable to images with or without pure pixel representations.
Experiments in [17] indicate that MVC-NMF has the potential
of identifying less prevalent endmembers and thus it may be
suitable for extracting the dark features in frt000042aa.

4) MVES: The recent MVES approach proposes a convex
analysis without involving pure pixels [18]. Through an affine
set fitting of observed pixels followed by the use of Craig’s

unmixing criterion, the MVES problem aims at minimizing a
simplex volume subject to the constraint that all the dimension-
reduced pixels are enclosed in the simplex. MVES utilizes
linear programs to approximate the unmixing problem in a
cyclic fashion. MVES might be suitable for this paper since it
has proved to work well for endmembers with low purity levels
and to outperform the VCA and MVC-NMF algorithms [18].

5) SISAL: Recently, the SISAL method has been proposed
to solve the linear unmixing of the minimum volume sim-
plex without pure pixel assumption [19]. Being a non-convex
optimization problem with convex constraints, the positivity
constraints are replaced by soft constraints, forcing the spec-
tral vectors to belong to the convex hull of the endmember
signatures. The resulting problem is solved by a sequence of
augmented Lagrangian optimizations. SISAL may be appropri-
ate for the unmixing of the test image due to its effectiveness.
In [19], SISAL is satisfactorily validated on simulated data
through comparison to other state-of-the-art methods such as
VCA and MVES.

6) BPSS: This algorithm proposes to estimate the matrices
M and S in a Bayesian framework under a linear model with
inherent positivity and additivity constraints and no pure pixel
assumption [35]. In BPSS, the noise S and M are assumed to
follow a Gaussian, Dirichlet, and Gamma probability density
functions, respectively. BPSS is based on hierarchical Bayesian
models to encode prior information regarding the parameters
of interest. The complexity of the estimation from the resulting
posterior distribution is overcome using Markov chain Monte
Carlo methods. In BPSS, the degree of uncertainty affecting
the extracted endmember spectra can be estimated since results
are computed as probability distribution functions. In [36],
numerical schemes are devised to reduce the computation time
which is a critical point of BPSS. This method has been applied
satisfactorily on OMEGA hyperspectral images in [12] yet
never on CRISM’s.

7) Spatial Preprocessing: The authors of [21] propose a
preprocessing to incorporate spatial information into the un-
mixing of hyperspectral images. For each pixel, a scalar factor
related to the spectral similarity of spectra lying within a certain
spatial neighborhood—determined by the window size ws—is
estimated. This value is then used to weigh the importance of
the spectral information associated to each spectrum in terms
of its spatial context. After applying a traditional endmember
extraction technique on the preprocessed image, the spatial
position of each endmember is retrieved. Then, the recon-
struction of the abundance maps is carried out by using the
analogous spectra from the original image and a linear mixture
model. This preprocessing enhances the search for endmembers
in spatially homogeneous areas while it may penalize the
detection of anomalous sources. This Preprocessing can be
combined only with methods such as VCA and N-FINDR, as
the existence of pure pixels is required to retrieve the position
of the endmembers in the preprocessed image.

IV. EXPERIMENTS

Experiments are conducted on the preprocessed image
frt000042aa. We recall that only the spectra encompassed by
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Fig. 6. Extracted spectra by the (a) VCA, (b) BPSS, (c) MVC-NMF, and (d) spatial-VCA methods.

the defined ROI are considered. By performing spectral unmix-
ing, we consider two main objectives, (i) the extraction of phys-
ically meaningful sources and their corresponding distribution
maps that help understanding the physical state of the Russell
dune and (ii) the obtention of a physical source related to the
dark features to be compared to the ground truth generated
in Section II-C. One should note that while the achievement
of the second purpose is not mandatory (yet desirable), the
first objective is crucial for the validation of spectral unmixing
techniques in a planetary context.

First, the number of endmembers in the image frt000042aa
is determined by the two methods presented in Section III-A.
On one hand, the HySIME technique determines Nc = 14.
Given that the Russell dune is assumed to be composed by two
components—CO2 ice and dust—this result largely exceeds
the expected number of sources in the image. Furthermore,
the analysis of 14 extracted endmembers turns into a rather
unfeasible task. The reason of this result may come from a
higher sensitivity of HySIME to subtle contributions in the
image that could be valuable in other situations out of the
scope of this paper such as the detection of residual artifacts.
Therefore, HySIME is not further considered in this paper.
On the other hand, the ELM technique detects the presence
of six endmembers. This result seems to correspond more
satisfactorily to the physical scenario prevailing in the Russell
dune and corroborates the good performances of ELM when
applied to OMEGA hyperspectral data from Mars [14]. As
regards the requirement of Gaussian noise by ELM, the VCA
endmember extraction was conducted with Nc = {4 . . . 8}
in order to evaluate the robustness of the Nc estimation by

ELM. However, experiments with Nc 6= 6 did not provide any
significant improvement regarding the unveiling of the physical
sources. For this reason and since a similar conclusion would be
likely drawn from operating the other methods in the same way,
all the presented experiments are carried out by using Nc = 6.

As regards endmember extraction, all the techniques intro-
duced in Section III-B are applied on the test image. However,
the results of a few methods are not shown in this paper, as they
do not meet the main objectives detailed above. For example,
MVES and SISAL are not further considered as they both
extract an endmember whose associated spectrum cannot be
explained from a physical point of view. This is in agreement
with the fact that both methods are based on simplex volume
optimization and therefore may extract endmembers absent in
the image. Although MVC-NMF and BPSS do not consider
the pure pixel assumption either, they provide satisfactory end-
members and therefore are considered in this paper. Likewise,
the results of the N-FINDR algorithm are not shown in this
section since a satisfactory source related to the dark features
could not be extracted, contrarily to VCA. As a consequence,
the spatial preprocessing introduced in Section III-B7 is ex-
clusively combined with the VCA approach, thus defining the
method referred to as spatial-VCA. The window size ws is
set equal to five as it is recommended in [21] and given that
larger values may affect the endmembers related to the spatially
confined dark features. Hence, in this paper, we present the
experimental results of performing spectral unmixing of the
image frt000042aa by the following endmember extraction
methods based on different principles: (i) the VCA method with
assumption of pure pixels; (ii) the BPSS technique based on
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Fig. 7. Abundance maps corresponding to the six endmembers extracted using VCA.

a Bayesian framework; (iii) the MVC-NMF approach with no
assumption of pure pixels; and (iv) the spatial-VCA algorithm
that incorporates the existent spatial information in the image.
As for the reconstruction of the abundance maps using the
linear mixing model, the non-negativity and the sum-to-one
constraints are considered for all methods.

A. General Interpretation

The spectra corresponding to the six endmembers extracted
by each method are plotted in Fig. 6. Then, Figs. 7–10 show the
associated abundance maps. Based on the information coming
from both products, a similar physical interpretation of the
scene is performed independently for each method, leading
to the definition of three physical sources. Due to residual
artifacts and other nonlinearities, the spectral unmixing of the
image frt000042aa is affected by source splitting effects (see
Section III), thus making necessary the recombination of the six
endmembers into three physical sources. After assigning each
extracted endmember to one of the three physical sources, the
abundance map of a given physical source is obtained by adding
the individual abundances of the associated endmembers. The
results of this recombination are shown in Fig. 11. The robust-
ness of the proposed interpretation is underlined by the notable
similarities among the physical sources that are reconstructed
for each method.

In order to identify the origin of each endmember, two
parameters are defined from each extracted spectrum. Let R1.1

be the apparent reflectance value at 1.1 µm and let B2.3 be the
absorption depth at 2.3 µm such that B2.3 = 1 � R2.3/R2.2.
These two spectral parameters are decisive for the interpretation
of the endmembers together with the information coming from
the abundance maps. In particular, large values of R1.1 and B2.3

are related to a higher content of CO2 ice because of its higher

reflectance in comparison to dust and the fact that absorption
at 2.3 µm is specific to ice, respectively. Due to inaccuracies
in the atmospheric correction (see Section II-B-1), extracted
spectra may have an anomalous positive or negative slope that
must be accounted for the calculation of B2.3. With this aim,
we multiply B2.3 by the spectrum average slope b1.1�2.2 that
is calculated as R2.2/R1.1. Tables I–IV detail the previous
parameters for each endmember extracted with VCA, BPSS,
MVC-NMF, and spatial-VCA, respectively.

The three physical sources that are defined based on the
unmixing results are briefly described by detailing their spectral
and spatial characteristics. The physical interpretation of each
source is kept to a minimum since it is not the aim of this
paper.

• Dark source: physical source related to the presence of
dark features. The corresponding R1.1 and B2.3 are the
lowest among the three sources due to a high content in
dust and a few residual CO2 ice. This source predominates
along the ridge of the dune and within the gullies in the
form of dark spots and elongated patterns, respectively.

• Strong bright source: physical source related to a high
content of CO2 ice. The corresponding B2.3 is the highest
among the three sources while R1.1 is higher than for
the dark source due to a lower dust content. This source
predominates principally in the areas surrounding the
dark source.

• Weak bright source: physical source related to a high
content of CO2 ice. The corresponding R1.1 is the highest
among the three sources while B2.3 is higher than for the
dark source but lower than for the strong bright source.
This source may correspond to a physical state of the ice—
different from the strong bright source—that greatly pre-
dominates on the dune scarp.
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Fig. 8. Abundance maps corresponding to the six endmembers extracted using BPSS.

Fig. 9. Abundance maps corresponding to the six endmembers extracted using MVC-NMF.

In the following sections we detail, for each method, the
recombination process that is carried out to reconstruct the three
physical sources.

B. VCA

The interpretation of the endmembers extracted by VCA is
conducted by examining the associated spectra and abundance
maps in Figs. 6(a) and 7, respectively. The spectral parameters

R1.1 and B2.3 are detailed in Table I. Lastly, the recombined
abundance maps corresponding to the physical sources are
displayed in Fig. 11(a).

1) Dark Source: Endmembers 1 and 5 are identified to be
related to the dark source due to the lowest R1.1 and B2.3

among the six endmembers.
The combination of the two endmembers into a single phys-

ical source is also justified by the opposite vertical trends
that affect the abundance maps 1 and 5. Both maps show
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Fig. 10. Abundance maps corresponding to the six endmembers extracted using spatial-VCA.

very low spurious abundances, either for the top or the bot-
tom rows, coming from the atmospheric residue described in
Section II-B-1. This interpretation is also pointed out by the
complementary slopes of the spectra (b1.1�2.2 > 1 for endmem-
ber 1 and b1.1�2.2 < 1 for endmember 5).

The abundance map resulting from the fusion of the two ini-
tial abundance maps eliminates the vertical trend, thus revealing
the dark structures over the Russell dune. As a matter of fact,
the red pixels of the recombined abundance map highlight the
dark spots on the top of the dune, the dark elongated patterns
along the gullies and some areas belonging to the base of the
northeast-facing defrosted scarp.

2) Strong Bright Source: Endmember 3 is identified to rep-
resent the strong bright source due to the highest B2.3 among
all the extracted endmembers and a medium R1.1.

The abundance map of the strong bright source shows a
spatial coherence with the dark source as the green areas
surround the red pixels, particularly on the top of the dune.

3) Weak Bright Source: Endmembers 2, 4, and 6 are iden-
tified as being related to the weak bright source as they all
correspond to the highest R1.1 and a medium B2.3.

The splitting phenomenon that affects this physical source
comes from the coupling of two nonlinear residues. On the
one hand, the predominance of CO2 ice for this physical
source leads to a typical smile pattern in the abundance map
of endmember 6 (see Section II-B-1). This is pointed out
by the anomalous lower abundances for the horizontal edges.
The presence of a spectral smile residue makes endmember 6
enough energetic to be extracted independently. On the other
hand, the differences of R1.1 among the three endmembers are
explained by the different illumination conditions that happen
over the scene. A qualitative study of the HiRISE DTM corre-

sponding to the Russell dune (see Section II-B-1) reveals that
endmember 6 predominates at low SZA while endmembers 2
and 4 correspond to SZA values that are similar to the av-
erage angle used in the photometric correction. An accurate
photometric correction by the real SZA would increase R1.1

for endmember 6, thus matching the other two endmembers in
terms of apparent reflectance.

The abundance map resulting from the fusion of the three
endmembers highlights in blue the areas which are poor in dark
and strong bright sources.

C. BPSS

Given the nature of the BPSS algorithm the interpretation of
the corresponding results must be carried out differently than
it is done for VCA. As it is stated in Section III-B, BPSS may
extract associated spectra that do not exist in the hyperspectral
image. As a consequence, the parameters R1.1 and B2.3, shown
in Table II, are less relevant and must be taken into account in
an indicative manner. Similarly to VCA, Figs. 6(b), 8, and 11(b)
detail the results of BPSS.

1) Dark Source: Endmember 5 is identified to be related to
the dark features according to the lowest B2.3. While having the
lowest R1.1, endmember 2 is not interpreted as representing the
dark source since such a low level of apparent reflectance does
not exist in the image and is unphysical (see Section IV-C2 for
more details).

Besides the agreement of the extracted spectrum with the
characteristic spectral features of the dark source, the abun-
dance map of endmember 5 is correlated with the dark struc-
tures revealed by the other methods.
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Fig. 11. (a) Color composite image illustrating the spatial distribution of the three physical sources over the Russell dune extracted by VCA. The dark, strong
bright, and weak bright sources are show in red, green, and blue, respectively. (b), (c) and (d) Same as Fig. 11(a) for BPSS, MVC-NMF, and spatial-VCA.

TABLE I
VCA ENDMEMBERS—APPARENT REFLECTANCE AT 1.1 µm AND

ABSORPTION DEPTH AT 2.3 µm—(D): DARK SOURCE, (S): STRONG
BRIGHT SOURCE, (W): WEAK BRIGHT SOURCE

TABLE II
BPSS ENDMEMBERS—APPARENT REFLECTANCE AT 1.1 µm AND

ABSORPTION DEPTH AT 2.3 µm—(D): DARK SOURCE, (S): STRONG
BRIGHT SOURCE, (W): WEAK BRIGHT SOURCE

2) Strong Bright Source: Endmembers 1 and 2 are related
to the strong bright source. Due to the combination of the
atmospheric residue and the BPSS properties, this source has

TABLE III
MVC-NMF ENDMEMBERS—APPARENT REFLECTANCE AT 1.1 µm AND

ABSORPTION DEPTH AT 2.3 µm—(D): DARK SOURCE, (S): STRONG
BRIGHT SOURCE, (W): WEAK BRIGHT SOURCE

TABLE IV
spatial-VCA ENDMEMBERS—APPARENT REFLECTANCE AT 1.1 µm AND

ABSORPTION DEPTH AT 2.3 µm—(D): DARK SOURCE, (S): STRONG
BRIGHT SOURCE, (W): WEAK BRIGHT SOURCE

been split into two endmembers that do not exist in the image
and are difficult to explain from a physical point of view.
The combination of both endmembers is necessary to obtain
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a coherent strong bright source in terms of spectrum and
abundance map. This interpretation is justified by the following
reasons based on the examination of the associated spectra:
(i) The spectral slope of both spectra is complementary due
to the atmospheric residue as in Section IV-B1 (b1.1�2.2 > 1
for endmember 1 and b1.1�2.2 < 1 for endmember 2);
(ii) a spurious fingerprint at 2 µm for endmember 1, which is
reversed for endmember 2; and (iii) the R1.1 values of both
endmembers are either too high or too low from a physical
point of view. Likewise, the abundance maps also confirm
this interpretation since (i) the endmembers 1 and 2 show a
strong anticorrelation (for all k pixels with s1,k + s2,k > 50%,
correlation(s1,k, s2,k) = �0.62) and (ii) endmembers 1 and 2
are always present in similar proportions (for all k pixels with
s1,k + s2,k > 50%, mean(s1,k) = 0.26, var(s1,k) = 3.10�3,
mean(s2,k) = 0.30, var(s2,k) = 4.10�3). It is straightforward
to verify that the combination of these two endmembers using
similar proportions results in a spectrum with similar R1.1 and
B2.3 to the strong bright source extracted by the other methods.

Similarly to VCA, the resulting abundance map of the strong
bright source shows a strong correlation with those areas sur-
rounding the dark source pixels. In addition, several yellow
pixels coming from the combination of the dark and strong
bright sources are observed over the dune ridge. This is in
agreement with a linear mixing scenario for which the spatial
resolution of CRISM may not suffice to resolve both sources.

3) Weak Bright Source: The weak bright source is com-
posed by endmembers 3, 4, and 6. The associated spectra of
endmembers 4 and 6 correspond to a high R1.1 and medium
B2.3. Again, the spectrum of endmember 3 presents a R1.1 and
B2.3 that cannot be found in the image.

Similarly to the VCA dark source, endmembers 4 and 6
show strong values at the bottom or the top of the image.
This anomaly is originated in the atmospheric residue as the
slopes of the two endmembers underline (b1.1�2.2 > 1 for
endmember 4 and b1.1�2.2 < 1 for endmember 6). Contrarily,
endmember 3 is particularly dominant in the center of the image
with abundance values up to 0.6, indicating an origin linked
with the smile effect residue (see Section IV-B3).

The regions corresponding to the weak bright source are
widespread over the dune scarp as shown by the combined
abundance map.

D. MVC-NMF

The examination of the endmembers extracted by the MVC-
NMF algorithm are conducted by examining the associated
spectra and abundance maps shown in Figs. 6(c) and 9, re-
spectively. The corresponding spectral parameters R1.1 and
B2.3 are detailed in Table III while the combined abundance
maps corresponding to the physical sources are displayed in
Fig. 11(c). Similarly to BPSS, MVC-NMF may extract spectra
that are absent from the image and thus the spectral parameters
must be considered carefully.

1) Dark Source: Endmember 1 is identified as the dark
source due to the lowest R1.1 among all endmembers. Contrary
to VCA and BPSS, the parameter B2.3 is less discriminative for

MVC-NMF as all spectra, except for number 3, have similar
low values.

Again, the corresponding abundance map reveals the struc-
tures related to the dark features with high accuracy.

2) Strong Bright Source: Endmember 3 is identified to be
related to the strong bright source due to the highest B2.3

among all the extracted endmembers.
Similarly to the other methods, the corresponding abundance

map highlights the areas that surround the dark features, partic-
ularly on the top of the dune.

3) Weak Bright Source: Endmembers 2, 4, 5, and 6 are
identified as belonging to the weak bright source due to a high
R1.1 and a medium B2.3.

Again, the splitting phenomenon affecting this physical
source comes from atmospheric and photometric residues. For
example, the abundance maps of the endmembers 4 and 5
present the vertical dichotomy detailed in Section IV-B1.

The abundance map obtained by combining the original ones
is in agreement with the spatial distribution of the weak bright
source extracted by the other methods.

E. Spatial-VCA

The scrutiny of the endmembers extracted by the spatial-
VCA algorithm is based on the examination of the correspond-
ing extracted spectra and abundance maps shown in Figs. 6(d)
and 10, respectively. Likewise, the spectral parameters are
detailed in Table IV and the combined abundance maps are
shown in Fig. 11(d).

1) Dark Source: Endmembers 4 and 5 are identified to be
related to the dark source due to the lowest R1.1 and B2.3

among the six endmembers.
Similarly to VCA, the fusion of the two endmembers is jus-

tified by spectral and spatial reasons, respectively, the vertical
dichotomy and the complementary spectral slopes caused by
the atmospheric residue.

Although the combined abundance map is broadly in agree-
ment with the dark sources extracted by the other methods, a
slight overestimation of abundance is detected for the upper
rows probably due to a persistent residual contribution from the
atmosphere.

2) Strong Bright Source: Endmember 3 is recognized as
being the strong bright source because of the highest B2.3

among all the extracted endmembers and a higher R1.1 than
for the dark source.

Contrarily to other methods, the associated abundance map
shows some differences as the green areas mask the red pixels
on some places of the top of the dune. This may come from
the penalization of spatially confined sources—such as the dark
source—coming from the spatial preprocessing.

3) Weak Bright Source: Endmembers 1, 2, and 6 are asso-
ciated to the weak bright source due to the highest R1.1 and a
medium B2.3.

This source splitting may come from both atmospheric and
photometric residues. The recombination of these three end-
members is justified by the coherence of the resulting abun-
dance map in comparison to other methods.
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Fig. 12. From left to right, abundance maps corresponding to the dark source extracted by the algorithms VCA, BPSS, MVC-NMF, and spatial-VCA.

V. VALIDATION

In this section, we aim at validating the results obtained
by the proposed methodology based on spectral unmixing
followed by recombination of the extracted endmembers into
meaningful sources. First, Fig. 11 underlines the validity of
both processes in a qualitative way as a quite similar relevant
planetary scenario is unveiled after interpretation of the color
composite images. The notable spatial similarities among the
four composite abundance maps represent a cross-validation
of the different endmember extraction techniques as well as it
validates the corresponding recombination effort. A more in-
depth validation is carried out by using the ground truth for
the dark source that was introduced in Section II-C. In this
matter, abundance maps are validated using the ground truth
assuming that the dark features resolved by the HiRISE instru-
ment correspond to the extracted dark source. Unfortunately,
reference abundance maps cannot be built for the bright sources
from the HiRISE image as they are not distinct by neither
markedly different level of apparent reflectance nor structural
specificities. Prior to the comparison, the registration procedure
(see Section II-C3) is repeated using the same parameter values
for the abundance maps provided by the VCA, BPSS, MVC-
NMF, and spatial-VCA algorithms. Fig. 12 displays the four
maps related to the dark source after cropping them to fit the
intersection between the CRISM ROI and the HiRISE image.
These products must be compared with the reference map
in Fig. 3(b).

Several indicators are used to assess the similarity between
the ground truth and the unmixing abundance maps. First, the
Pearson correlation coefficient r is computed between both
types of abundance maps to measure the similarity as regards
to relative spatial distribution. Second, the average value of
the absolute error ✏ is computed to complete the quantitative
validation. Since misregistration is expected to be one of the
main sources of error, several experiments are carried out by
calculating r and ✏ according to registration accuracy [see
Fig. 4(c)]. In this way, r and ✏ are summarized in Table V by
(1) considering all pixels (mean(rreg) = 0.7), (2) taking into
account only those areas whose associated registration correla-
tion meets rreg > 0.7 (⇠50% of the pixels with mean(rreg) =
0.83), and (3) by selecting the best registered area (⇠1% of the
pixels with mean(rreg) = 0.96). The region corresponding to
the third experiment is shown in Fig. 5. A last experiment is

Fig. 13. Distribution of the dark abundances corresponding to the ground truth
and the unmixing abundance maps.

performed for the whole population of pixels by computing the
distribution of abundance values for the ground truth and the
unmixing results (see Fig. 13).

In the first experiment, results show a quite good agreement
between the unmixing results and the ground truth with r and ✏

values up to 0.69 and down to 0.08, respectively. As regards
to correlation, all methods provide notable r values—close
to 0.7—except for BPSS, which attains r = 0.57. This slight
underperformance may be explained by the noisy background
of the BPSS dark abundance map displayed in Fig. 12 and
may point to a higher sensitivity of this method to the presence
of dust. On the other hand, the examination of ✏ reveals that
the abundances provided by the spatial-VCA approach are
slightly worse with ✏ = 0.14. This bias is mostly originated in
the atmospheric residue affecting the upper rows in the form
of a small overestimation that is conjugated with a poorer
registration accuracy [see Figs. 4(c) and 12]. Contrarily, the
average error for other methods is always ✏  0.10. As for the
second experiment, misregistration issues are proved to be an
important source of error since the corresponding results out-
perform those of the first experiment, particularly in terms of r.
As a matter of fact, all methods undergo a significant correlation
improvement up to 0.06. The improvement of ✏ is less important
as this indicator is less sensible to the spatial distribution of the
abundance values. In this matter, the best value ✏ = 0.08 seems
to represent the intrinsic accuracy of the proposed methodology.
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TABLE V
VALIDATION RESULTS REGARDING (1) ALL PIXELS(mean(rreg) = 0.7), (2) THE MODERATELY WELL-REGISTERED AREAS (rreg > 0.7,

mean(rreg) = 0.83), AND (3) AN IMPROVED REGISTRATION (mean(rreg) = 0.96). r IS THE PEARSON CORRELATION
COEFFICIENT AND ✏ IS THE AVERAGE VALUE OF THE ABSOLUTE ERROR

Likewise, the third experiment corroborates the improvement
tendency according to registration accuracy as r increases up
to 0.83 for the MVC-NMF algorithm. Contrarily, the average
error is slightly higher in this particular case probably because
of the high heterogeneity of the selected area in terms of dark
abundance [see Fig. 5(a)] or the presence of nonlinearities
coming from the surface. As for the spatial-VCA algorithm,
parameter ✏ reveals a notable disagreement with the ground
truth that may underline a somewhat faulty extraction of the
dark source by this approach.

Several conclusions can be drawn regarding the experiment
expressed by Fig. 13. First, the VCA approach underestimates
dark abundances in comparison with the ground truth as many
pixels correspond to null abundances. This fact may come from
the non-positivity and the sum-to-one constraints that result
in more restrictive abundance maps. Second, BPSS shows a
rather good agreement with the reference abundance map as the
abundance distribution only suffers from a small overestimation
(average abundance of 0.17 for BPSS and 0.08 for the ground
truth). This point underlines the relevance of Fig. 13 since
conclusions drawn based on Table V might have indicated an
inferior accuracy of BPSS as regardss the other techniques.
Third, MVC-NMF presents the best histogram in comparison
to the ground truth (average abundance of 0.16) even though
a little overestimation is still observed. Eventually, the results
of the spatial-VCA approach confirm the initial conclusions
drawn according to Table V. As a matter of fact, the dark abun-
dances are generally overestimated with an average abundance
of 0.21.

In relation to the small overestimation affecting the major-
ity of the methods, it should be noted that the ground truth
may contain slightly underestimated abundances. The reference
abundance map generated from the HiRISE image is built by
selecting those pixels whose radiance value is much lower than
the neighboring pixels. Nonetheless, the dark source may exist
in areas classified as brighter ice in the form of a minor dust
contamination. The corresponding dust particles may be too
small to be resolved spatially by the HiRISE instrument while
the corresponding spectral contribution may be strong enough
to be detected by the CRISM instrument. As a consequence,
the corresponding abundances in the unmixing outcomes would
be wrongly considered as being overestimated in comparison
to the ground truth. In that case, the average abundance of the
ground truth would increase and so would the accuracy of the
methods BPSS, MVC-NMF, and spatial-VCA. Another reason
to explain the differences between the results coming from the
unmixing and the reference may be related to nonlinear contri-
butions and limitations of the endmember extraction methods.

Eventually, an indication of the accuracy of the conducted
unmixing is provided by the reconstruction of the original
image with the estimated endmembers and their associated
abundances. This is done by using the linear mixture model
to approximate each pixel by the corresponding linear combi-
nation of endmembers weighted by the estimated abundances.
By doing this, the average reconstruction error of the image
[i.e., the term e in (1)] is calculated by means of the signal-
to-noise ratio as 36 dB for VCA, 41 dB for BPSS, 43 dB
for MVC-NMF, and 35 dB for spatial-VCA. These results
show a very satisfactory reconstruction by all methods, BPSS
and MVC-NMF particularly. After inspection of the signal-to-
noise ratio maps, the reconstruction error was found to be very
homogeneous with no pixels under 30 dB. These results are an
additional proof that the linear model is indeed relevant and
may be valuable in future research to locate those confined
areas with slightly higher reconstruction errors that may point
to nonlinear effects.

VI. CONCLUSIONS

In this paper, we have carried out validation and intercom-
parison of a comprehensive selection of state-of-the-art spectral
unmixing techniques applied on planetary hyperspectral data.
An appropriate case study has been defined by choosing a hy-
perspectral image acquired by the CRISM instrument display-
ing the Russell dune. This particular area of Mars is suitable for
testing the benefits of spectral unmixing under a linear model
because of the coexistence of two distinct materials—dark
features and brighter ice—resulting in geographic subpixel
mixtures at the CRISM resolution.

First, while two methods were considered for evaluating the
number of endmembers in the test image only the ELM tech-
nique provided a realistic input for the subsequent endmember
extraction. Then, spectral signatures extracted by the selected
unmixing techniques were characterized and examined by spec-
tral indicators to ensure their physical correctness. As a result,
the initially selected methods N-FINDR, MVES, and SISAL
were discarded due to unsatisfactory results. By contrast, the
techniques VCA, BPSS, MVC-NMF, and spatial-VCA revealed
the same three physically meaningful sources. An effort of
recombination was however required due to repeated splitting
of physical sources into a few endmembers caused by residual
nonlinearities. For that purpose, the spectral indicators were
considered together with spatial correlations among the end-
member abundance maps. In that matter, we noted that spectra
belonging to the physical sources are better reconstructed from
endmembers extracted by the VCA and spatial-VCA methods
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due to the pure pixel assumption. Exhaustive evaluation of
the unmixing outcomes was also conducted by comparison
of derived abundance maps with a reference. In that matter,
very high-resolution HiRISE imagery and geomorphological
techniques were used to generate a reference abundance map
for the physical source related to the dark features happening in
the Russell dune.

The quality of the results is estimated through several
indicators— the correlation coefficient and average error be-
tween the reconstructed abundance maps and the groud truth
and the superposition of the abundance distributions by means
of the corresponding histograms. To our knowledge, this quan-
titative assessment represents the very first attempt to validate
abundance maps produced by spectral unmixing of real data in
an independent and quantitative manner. In that matter, global
and local comparisons show that misregistration inaccuracies
between the HiRISE and CRISM images represent the major
source of error. For the best registered areas, the MVC-NMF
and VCA methods outperform the BPSS and spatial-VCA
techniques in terms of correlation coefficient. This ranking
is however put into perspective after considering the average
error and, particularly, the distribution of abundance values and
average reconstruction error. As a matter of fact, BPSS shows
significantly better performances than stated by the correla-
tion indicator, agreeing quite satisfactorily with the reference
histogram and showing the second lowest reconstruction error
in terms of signal-to-noise ratio. On the other hand, the first
position of the MVC-NMF method is never questioned since
it generally provides the best results. As for the spatial-VCA,
experimental results point to slightly lower performances which
are probably due to the inherent penalization of the spatial
preprocessing as for spatially confined sources such as the
dark features on the Russell dune [21]. Eventually, the side
effect of imposing the positivity and sum-to-one constrains
turns into a lack of sensitivity, particularly in the VCA case,
in the form of extremely low dark abundances frequently set to
zero. As matter of fact, the abundance constraints might be less
relevant in our case since physical sources—related to positive
abundance values—are obtained after recombination of initial
endmembers.

We conclude that abundance maps provided by VCA, BPSS,
and MVC-NMF are generally accurate, i.e., sufficient for an ini-
tial planetary interpretation. In this matter, the results given by
VCA and MVC-NMF—rather than BPSS which is much more
computer intensive—can be considered as a primary quick look
that helps revealing physical sources in the scene of study
together with subtle residues of instrumental or atmospheric
corrections. As a matter of fact, unmixing results may be used
to iteratively drive the improvement of the image preprocessing,
which has proved to be critical as for the existence of non-
linearities in this paper. As regards to the pure pixel assumption,
the algorithms BPSS and MVC-NMF seem to outperform the
VCA-based approaches in terms of estimated abundances while
the latter extract more physically coherent spectra. An issue
deserving further research would be to evaluate the risks of
extracting unphysical endmembers when performing unmixing
with BPSS and MVC-NMF as it happens for the MVES and
SISAL algorithms.

Although examination of the HiRISE image and experimen-
tal results regarding reconstruction error confirm the linear
mixing hypothesis in our case, some residual nonlinearities
may prevail. Major causes are (i) intrinsic variability of the
physical sources, (ii) nonlinear mixing at the grain size scale,
and (iii) adjacency effects due to multiple scattering between
the atmosphere and the surface. All these factors may be
related to uncertainties affecting the abundance maps provided
by spectral unmixing. In order to take into account existent
nonlinearities and improve the accuracy of the results, linear
unmixing must be followed by a complete physical analysis
of the image through the inversion of a physical model. First,
simulating the spectra of the physical sources with radiative
transfer algorithms will allow building a comprehensive physi-
cal model of the scene with some free parameters including the
source abundances. Second, model inversion will be performed
for all CRISM spectra using the estimated abundance maps as
the most probable solution. By doing this, the risk of multiple
solutions will be diminished as regards to the improved abun-
dance maps.
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Résumé

Une nouvelle technique de télédétection émerge dans le domaine de l’exploration spatiale. L’imagerie
spectroscopique classique est dotée d’une dimension de mesure supplémentaire - la dimension an-
gulaire - afin de permettre une meilleure séparation des signaux provenant de l’atmosphère et de la
surface. Elle peut fournir aussi une caractérisation plus précise des matériaux planétaires. Le capteur
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) à bord de la sonde Mars Reconnais-
sance Orbiter est une caméra hyperspectrale qui fonctionne systématiquement dans le mode multi-
angulaire depuis l’orbite. Néanmoins, les images multi-angulaires hyperspectrales posent certains pro-
blèmes de manipulation, de visualisation et d’analyse en raison de leur taille et de leur complexité.
Dans ce cadre, cette thèse propose des algorithmes statistiques et physiques pour analyser les images
acquises par l’instrument CRISM de manière efficace et robuste. Premièrement, je propose une chaîne
de post-traitement visant à améliorer la qualité radiométrique des données CRISM et à générer des
produits avancés, ces dernières données étant conçues pour permettre une analyse fine de la planète
Mars. Deuxièmement, je m’intéresse à la correction atmosphérique des images CRISM en exploitant
les capacités multi-angulaires de cet instrument. Un algorithme innovant, à base physique est mis en
oeuvre pour compenser les effets atmosphériques afin d’estimer la reflectance de surface. Cette ap-
proche est particulièrement utilisée dans cette thèse pour déduire les propriétés photométriques des
matériaux qui coexistent dans un site spécifique de Mars, le cratère de Gusev. Troisièmement, j’effectue
une comparaison d’une sélection des meilleures techniques existantes, visant à réaliser une déconvo-
lution spectrale des données acquises par l’instrument CRISM. Cette famille de techniques s’est avérée
très utile lors de l’analyse d’images hyperspectrales de manière non supervisé, c’est à dire, sans au-
cun à priori sur la scène. Une stratégie originale est proposée pour discriminer les techniques les plus
appropriées pour l’exploration de Mars par CRISM à partir d’une vérité du terrain construite à partir
d’images indépendantes à haute résolution .

Introduction

Parmi toutes les planètes du système solaire, Mars a donné lieu depuis toujours à de nombreuses
questions telles que l’existence de vie extraterrestre. Cette curiosité persiste aujourd’hui grâce aux in-
formations fournies par un ensemble de technologies dites de télédétection. La télédétection permet
l’exploration d’objets planétaires par des sondes en orbite. Depuis le début de la télédétection, il y a
plus de cinquante ans, des améliorations technologiques ont rendu possible le développement d’instru-
ments sophistiqués qui sont installés sur ces sondes. Aujourd’hui, plusieurs types d’instruments four-
nissent des données uniques sur la formation, la géologie et l’atmosphère des objets planétaires, parmi
d’autres sujets. La planète Mars a particulièrement bénéficié des missions planétaires avec quelques
dizaines de sondes qui ont fourni une vue sans précédent de la planète rouge.

Les instruments de mesure utilisés typiquement en télédétection sont basés sur des techniques dites
passives ou actives. En particulier, les capteurs passifs acquièrent des photons provenant du soleil
après passage dans l’atmosphère dans un premier temps, réflection sur la surface et passage dans l’at-
mosphère une deuxième fois. Les interactions physiques qui ont lieu sur ce chemin modulent le signal
qui est finalement détecté par ces scanners. Ainsi, le signal acquis contient des informations sur la
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composition des composants de surface et d’atmosphère. La convergence des domaines de la spectro-
scopie et de l’imagerie traditionnelle a donné lieu à l’imagerie hyperspectrale qui vise à cartographier
ces propriétés. Cette technique passive est devenue cruciale pour la détection, la caractérisation et la
cartographie des matériaux qui coexistent sur les surfaces planétaires. Les capteurs hyperspectraux, ou
spectro-imageurs, ont en effet la capacité de discriminer parmi des matériaux différents, qui peuvent
parfois se ressembler dans le domaine visible. Devant ce potentiel, les sondes spatiales ont été équipées
avec un spectro-imageur depuis la fin des années 1980.

Aujourd’hui, deux spectro-imageurs tournent autour de la planète Mars : l’Observatoire pour la Mi-
néralogie, l’Eau, les Glaces, et l’Activité (OMEGA) à bord de la sonde Mars Express et le Compact
Reconnaissance Imaging Spectrometer for Mars (CRISM) à bord de la sonde Mars Reconnaissance Or-
biter (MRO). Bien que ces deux instruments fournissent des informations sur Mars sans précédent, le
volume et la complexité des images hyperspectrales impliquent des défis concernant leur manipulation
et exploitation. Ceci est particulièrement le cas de CRISM, dont les principales améliorations techniques
par rapport à OMEGA sont une meilleure résolution spatiale et une acquisition systématique d’images
hyperspectrales à plusieurs angles de visée sur un même site de Mars. Le premier attribut permet à
CRISM de fournir une vue très fine de la surface de Mars. Deuxièmement, chaque observation CRISM
est composée par onze images hyperspectrales acquises à des angles d’observation différents, comme
le montre la Figure 16.1. L’image centrale est acquise à haute résolution (18 m/pixel) tandis que les
images à des angles d’observations plus importants (dites EPF) sont acquises à 180 m/pixel. Cette
particularité permet une meilleure caractérisation de l’atmosphère et une exploration innovatrice de la
surface de Mars, mais aussi comporte une augmentation de la complexité et la taille des données.

…!

Surface!

Atmosphère!

cible!

11th (0D)!6th (07)!1st (01)!

…!

�≈70º! �≈70º!�≈0º! �≈30º!�≈30º!

ϕentrant! ϕsortant!

Figure 16.1.: Schéma d’une observation CRISM. Trois images hyperspectrales des onze au total sont
montrées. La couleur verte correspond à l’image centrale à haute résolution tandis que seulement
les images les plus extrêmes de l’EPF sont détaillées en bleu. q est l’angle d’observation et j l’azimut
relatif.

Dans ce contexte, cette thèse propose une série d’outils pour faciliter la visualisation, le post-traitement
et l’analyse d’observations multi-angulaires CRISM, tout en considérant l’ensemble des informations
qu’elles contiennent. Les techniques développées dans cette thèse sont conçues vis-à-vis de l’état de
l’art en traitement d’images de télédétection, que cela soit en planétologie ou en observation de la Terre.
L’objectif principal est le développement de techniques non supervisées pour extraire des informations
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planétaires significatives ainsi que des approches à base physique pour effectuer une analyse fine
des propriétés physiques et chimiques des matériaux à la surface de Mars. Ceci est abordé en tenant
compte des capacités multi-angulaires de l’instrument CRISM, non seulement pour une meilleure ca-
ractérisation de l’atmosphère mais aussi pour l’estimation de propriétés photométriques de la surface.
Ces dernières données fournissent des indices précieux sur l’état physique des matériaux martiens qui
sont encore largement inconnus. De plus, cette thèse étudie l’impact de plusieurs artefacts instrumen-
taux sur l’analyse des données CRISM et propose une amélioration de la qualité radiométrique des
images. Bien que les algorithmes proposés dans ce manuscrit sont validés de manière récurrente sur
des images dites de test, ils ont été conçus pour être utilisés dans d’autres contextes et ils ne sont pas
limités au cas CRISM en particulier.

Le présent manuscrit est divisé en quatre parties. La première établit le contexte dans lequel le travail
est encadré tandis que les autres se réfèrent aux trois contributions qui ont été réalisées vis-à-vis du
besoin d’outils pour traiter des données CRISM de façon précise et automatique. Plus en détail :

• Dans la première partie, je présente le contexte de la thèse. D’abord je résume l’exploration de
Mars par des techniques de télédétection et, en particulier, par des spectro-imageurs. Les raisons
pour lesquelles ces instruments constituent des outils clefs en exploration planétaire sont préci-
sées. Ensuite, je détaille le fonctionnement des spectro-imageurs et les produits qu’ils génèrent,
suivi par une description détaillée de l’instrument CRISM. Dans un deuxième temps, je donne
un aperçu sur la physique en télédétection passive : le transfert radiatif entre les photons, l’at-
mosphère et la surface. Ce contexte physique est décrit avec une attention particulière portée aux
processus qui façonnent le signal acquit par les sondes. Finalement, je détaille les objectifs de la
thèse et les solutions proposées pour surmonter les défis associés à la télédétection de Mars par
CRISM.

• Dans la deuxième partie, j’étudie les limitations des données CRISM concernant les objectifs
de la thèse. D’abord, la qualité radiométrique de ces produits est affectée par des anomalies
provenant des limitations intrinsèques du type de scanner dont CRISM fait partie ainsi que par
les propriétés spectrales de Mars. Pour surmonter ceci, je propose un traitement automatique des
observations CRISM par une chaîne de traitement. Cet ensemble de routines vise à améliorer la
qualité radiométrique des données à travers la correction de plusieurs artefacts instrumentaux.
Dans un deuxième temps, la chaîne de traitement génère des produits avancés qui prennent en
considération les conditions atmosphériques et géométriques dans lesquelles les images ont été
acquises. En effet, celles-ci peuvent masquer les informations provenant de la surface. Finalement,
la chaîne de traitement génère des produits multi-angulaires intégrés. Cet outil de traitement
s’avère donc clef pour les planétologues qui sont intéressés par une amélioration significative de
la qualité radiométrique des données CRISM et par des produits avancés.

• Dans la troisième partie, j’exploite les capacités multi-angulaires de CRISM dans la définition
d’une méthode de correction des effets atmosphériques à base physique. Ces méthodes se basent
traditionnellement sur l’hypothèse d’une surface dite lambertienne quand elles sont appliquées
sur des images acquises par des instruments ayant une seule prise de vue (nadir). Dans ce cas,
le problème est souvent sous-contraint. Malheureusement, cette hypothèse biaise l’estimation
des propriétés photométriques de surface. Par contre, l’utilisation de plusieurs mesures d’une
même cible à des angles d’observation différents dans une modélisation du transfert radiatif
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facilite la séparation des contributions provenant de la surface et l’atmosphère. Cependant, la
correction atmosphérique d’observations multi-angulaires CRISM reste compliquée, en ce qui
concerne l’algorithmique, et chère, en temps de calcul. Dans ces circonstances, je propose une
méthode de correction atmosphérique basée sur une formulation originale de la luminance en
haut de l’atmosphère qui permet une inversion rapide et robuste. Cet algorithme, nommé MARS-
ReCO, est inspiré par l’état de l’art en correction atmosphérique utilisée en observation de la
Terre et permet de récupérer des informations relatives à la surface avec une meilleure fidélité
que celle fournie par les méthodes classiques. Dans cette partie de la thèse, j’étudie aussi les
propriétés photométriques des matériaux dans le cratère de Gusev grâce à MARS-ReCO à partir
d’imagerie orbitale, ce qui constitue une étude pionnière.

• Dans la quatrième partie, j’étudie l’utilisation de techniques dites de déconvolution spectrale
pour réaliser une analyse non supervisée des données CRISM. Les images hyperspectrales sont
typiquement formées de la combinaison de multiples contributions qui fait de l’extraction d’in-
formations significatives une tâche compliquée. Vis-à-vis de cet obstacle, des algorithmes auto-
matiques sont de plus en plus demandés afin de traiter des grandes collections d’images hyper-
spectrales avec une précision satisfaisante. Dans ce contexte, j’étudie l’utilisation de techniques
de déconvolution spectrale qui visent la décomposition automatique d’une image hyperspectrale
en un ensemble de composantes spectrales physiquement significatives, tout en exploitant les
informations sous-pixel. Avec ce but, j’effectue une comparaison entre plusieurs techniques de
déconvolution spectrale qui sont typiquement utilisées pour l’analyse d’images hyperspectrales
terrestres ou planétaires. Les méthodes les plus appropriées pour les données CRISM sont identi-
fiées par une stratégie de validation basée sur une vérité du terrain construite à partir d’imagerie
à haute résolution.

Dans ce résumé en français, je détaille les trois dernières parties dédiées aux contributions majeures
de cette thèse.

1. Chaîne de traitement de données CRISM

Les spectro-imageurs doivent conjuguer une haute résolution spatiale et spectrale, tout en assurant
un rapport signal sur bruit satisfaisant [123]. Le capteur CRISM appartient à la famille de spectro-
imageurs du type push broom qui satisfait à ces exigences en raison de leur matrice de détection à
deux dimensions. Néanmoins, la qualité spectroscopique des données résultantes est soumise aux non-
uniformités qui affectent les éléments de détection de cette matrice. Les spectres acquis peuvent donc
contenir des artéfacts d’origine thermique, optique ou électronique qui compromettent l’identification
des informations d’intérêt par les algorithmes d’analyse. Dans ce contexte, l’équipe CRISM a établi une
chaîne de traitement (ci-après nommée CRISM-DP) qui traite les observations CRISM avant les rendre
publiques. Néanmoins, le traitement des données hyperspectrales est délicat car une correction erronée
des artefacts peut entraîner des perturbations plus importantes que celles de départ, notamment dans
la dimension spectrale. Ainsi, la chaîne CRISM-DP a été conçue pour corriger exclusivement les arte-
facts majeurs. La précision radiométrique résultante est donc acceptable pour des nombreuses études
scientifiques dans lesquelles un certain degré d’inexactitude peut être toléré. Ainsi l’équipe CRISM a
développé le CRISM Analysis Toolkit (CAT) qui représente un outil d’analyse opérationnel pour de
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nombreux planétologues. Toutefois, le CAT ne traite que certains artefacts et donc plusieurs questions
restent toujours non résolues.

Dans ce cadre, un traitement supplémentaire des observations CRISM est nécessaire. Dans la première
partie de la thèse, je présente une chaîne de post-traitement automatique (ci-après dénommée IPAG-
DP) pour une calibration fine des observations CRISM (voir Figure 16.2). Cet ensemble de routines
propose également une transformation des données originales en produits avancés prenant en compte,
par exemple, les capacités multi-angulaires de CRISM. En effet, ceci n’est pas fait par le CRISM-DP.

Données 
acquises 

par!
CRISM!

CRISM-DP! IPAG-DP!Données 
publiques!

CRISM!

Données 
traitées!
CRISM!

Figure 16.2.: Schéma du traitement des données CRISM depuis leur acquisition.

La chaîne de traitement IPAG-DP est résumée dans la Figure 16.3. Je note deux parties principales :
la première liée à l’amélioration de la qualité radiométrique des données, et la seconde impliquant
la génération de produits avancés. L’outil IPAG-DP est formé par deux types de blocs de traitement
différents : ceux qui ont été adoptés du CAT ou qui n’ont pas été conçus dans le cadre de cette thèse,
et ceux que j’ai conçu afin de surmonter les obstacles qui ne sont pas résolus ni par le CRISM-DP ni
par le CAT. L’outil IPAG-DP corrige les artefacts suivants :

Génération de produits avancés!

Amélioration de la calibration radiométrique!
Données!

publiques 
CRISM!

Recalage des 
deux canaux 

CRISM!
Correction 

atmosphérique!
Correction 

photométrique !

Données 
traitées!
CRISM!

Génération 
du cube 

CSP!

Correction 
des stripes!

Correction 
des spikes!

Correction 
du spectral 

smile!

Calibration 
des longueurs 

d’onde!

Artéfacts thermiques et électroniques! Artéfacts optiques!

Figure 16.3.: Schéma de la chaîne de traitement IPAG-DP.

• Stripes : cet artefact provoque des perturbations complexes sur les données acquises par des
instruments du type push broom. Ces anomalies dans la dimension spatiale sont caractérisées
par des structures verticales (ou horizontales) causées par la variation aléatoire de l’intensité
d’une zone homogène de l’image selon la dimension des colonnes (ou des lignes). Les stripes
sont intrinsèques au processus de formation de l’image et affectent la qualité radiométrique des
données des capteurs tels que CRISM. Dans cette thèse, je surmonte cet artefact en intégrant à
l’IPAG-DP la méthode de correction proposée dans le CAT. Le CAT propose un filtrage qui vise
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à éliminer les fausses contributions instrumentales afin de produire une sortie constante pour
une entrée constante [136]. Ceci est obtenu en appliquant un filtre passe-bas sur les données
perturbées avec une fréquence de coupure qui est estimée de façon indépendante pour chaque
image. Selon des expériences faites dans cette thèse sur des données réelles, cette méthode est
appropriée pour les observations CRISM.

• Spikes : les spikes se référent aux pixels dont le rapport signal sur bruit est anormalement bas,
résultant en valeurs de luminance anormales [65]. La localisation de ces pixels, ainsi que leur
erreur associée, est totalement aléatoire. Les spikes forment souvent des ensembles de quelques
pixels qui sont très visibles dans les observations CRISM. Dans cette thèse, j’étudie cet artefact
à origine électronique en comparant la stratégie adoptée par le CAT pour surmonter cet artefact
avec l’état de l’art dans ce sujet. Cette fois, je suggère de développer une méthode alternative
qui convient mieux aux buts de cette thèse. La stratégie proposée se déroule en deux étapes : (i)
la première consiste à détecter les spikes comme les pixels possédant une valeur anormale par
rapport à celle de leurs voisins spatiaux, (ii) les pixels détectés sont ensuite corrigés dans une
seconde étape par une stratégie de restauration qui remplace leur valeur de luminance anormale
par la valeur moyenne de leurs voisins.

• Effet du spectral smile : cet artefact à origine optique est décrit comme des anomalies à faible
fréquence affectant certaines bandes spectrales des images hyperspectrales. Le spectral smile
provient des limitations intrinsèques des spectro-imageurs du type push broom. L’impact de ces
aberrations se résume par deux effets sur la réponse spectrale de CRISM : (i) une partie de la
luminance à une longueur d’onde est détectée par des éléments de détection assignés à d’autres
longueurs d’onde, et (ii) la résolution spectrale devient de plus en plus pauvre pour les détec-
teurs hors axe de la matrice de détection. Ces effets font que les spectres des images sont acquis
en utilisant des réponses spectrales différentes en fonction de la position de la colonne. Dans ce
contexte, une analyse spectrale fine devient très difficile car les techniques d’analyse supposent
que toutes les données dans une même bande spectrale ont été acquises dans les mêmes condi-
tions. Je propose d’aborder la correction du spectral smile par le développement d’une méthode
innovante et robuste car il n’en existe pas de pareil dans le CAT. Cette stratégie est basée sur les
données de calibration fournies par l’équipe CRISM qui permettent de gérer cet artefact, l’objectif
principal étant la minimisation des anomalies dans les données tout en préservant l’information
utile. La méthode de correction suit trois étapes : (i) d’abord, un indicateur de l’énergie du spec-
tral smile est défini grâce à une transformation de données dites Maximum Noise Fraction [67],
(ii) la longueur d’onde centrale non-uniforme est normalisée par un ré-échantillonnage de tous
les spectres aux paramètres optimaux de CRISM, et (iii) la résolution spectrale non-uniforme est
surmontée par une technique dite de sharpening inspirée sur le traitement d’image traditionnel.
Selon les expériences présentées dans ce manuscrit, la méthode proposée est robuste, même pour
les observations CRISM les plus difficiles.

• Images à champ-plat erronées : la visualisation des spectres CRISM révèle un décalage anormal
des spectres dans la dimension spectrale, dont la magnitude dépend du numéro de colonne.
Cet artefact affecte notamment la position de certaines bandes d’absorption liées à des compo-
sants chimiques, notamment à celles du CO2. Dans le CRISM-DP, des images de champ-plat sont
générées pour normaliser ensuite la sensibilité de tous les éléments de la matrice de détection

290



de CRISM. Des aberrations ont lieu car cette correction ne prend pas en compte les effets du
spectral smile. Ainsi, les longueurs d’onde de CRISM en vol ne correspondent pas à celles mesu-
rées avant le lancement, et qui sont utilisées dans le traitement des images. La chaîne IPAG-DP
prend en compte ces anomalies en considérant une mauvaise calibration des longueurs d’onde
avant le lancement. Je propose donc une méthode de calibration qui détermine, pour une image
CRISM donnée, toutes les longueurs d’onde réelles par une comparaison avec des données de
référence bien calibrées. Selon les résultats obtenus sur des données réelles, les longueurs d’onde
récupérées par cette méthode permettent ensuite une compensation satisfaisante de la distorsion
produite par les images de champ-plat défectueuses.

La deuxième étape de la chaîne IPAG-DP transforme les observations CRISM en produits avancés qui
sont utilisés pour réaliser une analyse fine de la planète Mars. Plus en détail :

• Recalage des deux canaux CRISM : l’instrument CRISM est composé de deux voies différentes
qui travaillent respectivement dans le visible/proche infrarouge et dans l’infrarouge. Les données
correspondantes aux deux voies doivent parfois être combinées pour mener à bien des études
basées sur des bandes spectrales à l’interface c’est à dire sur des spectres dites full spectrum.
Un simple empilement des bandes spectrales correspondantes à chaque voie n’est pas approprié
car la zone de surface conjuguée est légèrement différente dans les deux cas. Ainsi, je décide
de considérer cette problématique comme un recalage défectueux entre les deux voies. Pour
surmonter cela, je mets en oeuvre une méthode originale qui effectue un recalage précis entre les
deux voies sur la base de données géographiques auxiliaires. Des expériences sur des données
réelles prouvent la validité de cet algorithme de fusion.

• Correction atmosphérique : l’atmosphère de Mars est dominée par les nombreuses bandes d’ab-
sorption liées au CO2 atmosphèrique qui souvent recouvrent des signatures provenant de la
surface. En plus des gaz, des particules dites aérosols sont généralement en suspension au des-
sus de la surface martienne. Les aérosols ont souvent une forte influence sur les spectres observés.
Comme cette thèse se place dans le cadre d’une analyse des matériaux à la surface, une stratégie
de correction des effets atmosphériques se révèle donc nécessaire. La chaîne IPAG-DP intègre une
méthode originale pour corriger les observations CRISM des effets des gaz et des aérosols atmo-
sphériques. Cette méthode, développée au laboratoire parallèlement à cette thèse [52, 53], prend
en compte les capacités multi-angulaires du capteur CRISM. Par contre, elle suppose que la sur-
face est lambertienne ou, en d’autres termes, que la quantité de lumière diffusée par celle-ci est
la même quelle que soit la direction d’observation. Dans ce contexte, la chaîne IPAG-DP estime
l’épaisseur optique des aérosols (AOT, sigles en anglais) ainsi que l’albédo de surface lambertien.

• Normalisation photométrique : dans une observation CRISM, l’angle d’éclairage local est géné-
ralement hétérogène en raison de la topographie souvent accidentée de Mars. L’angle d’observa-
tion peut varier pour la même raison mais aussi en raison des fonctionnalités multi-angulaires
de CRISM. Toutes ces variations se reflètent dans les valeurs de luminance acquises au sommet
de l’atmosphère par les capteurs de télédétection [174]. Dans ce contexte, des modèles photo-
métriques de surface sont habituellement utilisés pour transformer des données de luminance
en unités de reflectance, limitant donc les effets d’une acquisition variable. Les données CRISM
sont délivrées dans des unités de luminance et donc dépendent des effets photométriques de
surface. La normalisation photométrique au premier ordre la plus adoptée dans la littérature se
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base sur la loi de Lambert et produit des données de reflectance par une division par le cosinus
de l’angle d’éclairage. Toutefois, ce modèle photométrique est valable uniquement pour le cas
restrictif dans lequel la surface est lambertienne. Malgré les limitations de ce modèle, l’hypothèse
lambertienne est largement adoptée pour le traitement des données de télédétection en raison
de sa simplicité et sa précision au premier ordre. Le modèle de Lambert peut être remplacé par
des modèles plus réalistes, mais une connaissance à priori sur les propriétés de diffusion de la
surface est nécessaire dans ce cas. Suite au besoin de méthodes automatiques non supervisées, la
chaîne IPAG-DP adopte donc cette normalisation classique.

• Génération du produit multi-angulaire : les spectro-imageurs multi-angulaires sont des instru-
ments uniques pour récupérer des signatures inédites des matériaux de surface dites des courbes
spectro-photométriques. Une courbe spectro-photométrique est définie comme l’ensemble des
spectres correspondant à la même unité de terrain observée dans des conditions géométriques
différentes. De la même façon, une courbe photométrique est définie comme étant la luminance
observée d’une zone à la surface donnée à des géométries différentes et à une seule longueur
d’onde. Bien que CRISM représente une occasion unique pour étudier la surface de Mars à
plusieurs géométries, la chaîne CRISM-DP délivre de façon séparée chacune des onze images
hyperspectrales qui forment une observation CRISM. La chaîne IPAG-DP conclut donc en réar-
rangeant spatialement les spectres correspondants à l’ensemble des onze images dans un cube
nommé CSP. Chaque zone à la surface observée par plus d’une prise de vue (ci-après nommée
super-pixel) est associé à la courbe photométrique correspondante par la chaîne IPAG-DP.

2. Correction atmosphérique d’observations multi-angulaires CRISM

Les capacités multi-angulaires de CRISM sont conçues pour réaliser une caractérisation fine de l’état
de l’atmosphère martienne pour une observation donnée [192]. Par exemple, l’EPF de chaque ob-
servation CRISM peut être exploité pour la caractérisation physique des aérosols [187]. Les études
atmosphériques bénéficient substantiellement des mesures multi-angulaires dans la mesure où ces
dernières rendent accessibles des parcours atmosphériques différents. Cette caractéristique instrumen-
tale améliore substantiellement le traitement que l’on peut faire par rapport à ceux qui s’appliquent
aux données des spectro-imageurs traditionnels. Dans cette thèse, j’étudie le potentiel de la couverture
angulaire de CRISM pour compenser les effets atmosphériques présents dans le signal de télédétection.
L’objectif étant ensuite de caractériser la reflectance bidirectionnelle de surface.

Les aérosols atmosphériques et les matériaux à la surface présentent des propriétés de diffusion aniso-
tropes, c’est à dire, qui varient avec les directions d’éclairage et d’observation. Les méthodes de correc-
tion atmosphérique conçues pour des spectro-imageurs ayant une seule prise de vue ne peuvent pas
traiter correctement le problème du transfert radiatif qui a lieu dans l’atmosphère et dans la surface.
L’hypothèse que la surface se comporte comme un diffuseur isotrope, ou lambertien, est donc géné-
ralement adoptée afin de contraindre l’inversion des données orbitales pour récupérer la reflectance
de surface. Ceci est le cas, par exemple, de la technique de correction atmosphérique intégrée dans la
chaîne IPAG-DP. Néanmoins, l’hypothèse lambertienne n’est pas réaliste puisque la plupart de surfaces
sont anisotropes. La stratégie afin de résoudre correctement ce problème inverse implique la considé-
ration de la fonction distribution de la reflectance bidirectionnelle (BRDF, sigles en anglais) de surface
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dans un modèle de transfert radiatif. En pratique, cette procédure rend le problème sous-contraint si
une seule mesure angulaire est disponible car la BRDF est typiquement inconnue. Toutefois, l’imagerie
multi-angulaire est capable de contraindre mieux ce problème.

La communauté scientifique en observation de la Terre a récemment mené des efforts vers l’utilisation
de mesures multi-angulaires pour améliorer les résultats de la correction atmosphérique de données
satellitaires. Dans cette thèse, je propose une stratégie originale à base physique pour traiter des ob-
servations CRISM. Cette méthode hérite du travail effectué en observation de la Terre et porte le nom
de Multi-angle Approach for Retrieval of Surface Reflectance for CRISM Observations (MARS-ReCO).
Ceci est un algorithme de correction atmosphérique qui estime la reflectance de surface suite à l’in-
version d’une formulation du signal en haut de l’atmosphère (TOA, sigles en anglais). Cette approche
représente une amélioration par rapport à d’autres techniques de correction atmosphérique en consi-
dérant une surface qui n’est pas lambertienne. Ainsi, l’algorithme MARS-ReCO réalise une extraction
précise de signatures photométriques des matériaux de surface en fonction de la géométrie d’acqui-
sition et de la longueur d’onde à partir d’observations multi-angulaires CRISM. Comme le montre
la Figure 16.4, ces données sont corrigées auparavant des effets des gaz atmosphériques tandis que
l’épaisseur optique des aérosols est estimée par une méthode indépendante. Je résume les points clés
de MARS-ReCO comme suit :

Courbes 
photométriques 

en unitées de 
luminance en 

haut de 
l’atmosphère 
(cube CSP)!

Estimation de 
l’AOT [Douté 

2010]!

Correction des 
gaz [Douté 

2009]!

Correction des 
aérosols 

MARS-ReCO!

Courbes 
photométriques 

de surface en 
unitées de BRF!

Observation 
ciblée 

CRISM!
IPAG-DP!

Figure 16.4.: Schéma de la chaîne de correction atmosphérique d’observations multi-angulaires CRISM.
L’AOT et les courbes photométriques de surface sont estimés à partir du cube CSP produit par la
chaîne de traitement IPAG-DP.

• La reflectance en haut de l’atmosphère est exprimée en utilisant une formulation de Green du
transfert radiatif dans le système atmosphère/surface [107]. Cette méthode mathématique permet
la combinaison analytique de la réflectivité et la transmissivité atmosphériques avec la BRDF de
surface afin de calculer la luminance atteignant le capteur pour une épaisseur optique et une
géométrie d’acquisition arbitraires.

• L’anisotropie de la surface est prise en compte en paramétrisant sa BRDF par un modèle semi-
empirique dite de Ross-Thick Li-Sparse (RTLS). Ce modèle de reflectance rend linéaire l’expres-
sion du signal arrivant au capteur, permettant ainsi une inversion très efficace. Outre ses pro-
priétés mathématiques, le modèle RTLS s’est avéré être approprié pour recréer les propriétés de
diffusion des surfaces naturelles telles que les sols.
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• L’épaisseur optique des aérosols, ou AOT, est un paramètre d’entrée fournie par la chaîne IPAG-
DP. De même, la contribution gazeuse dans le signal reçu par le capteur CRISM est corrigée par
la chaîne de traitement avant l’utilisation de MARS-ReCO. De cette façon, MARS-ReCO traite
exclusivement la correction des effets des aérosols.

• Un abaque, ou look-up table (LUT, sigles en anglais), est généré pour stocker des quantités at-
mosphériques nécessaires pour la correction atmosphérique d’observations CRISM. L’utilisation
d’un LUT implique un seul calcul initial de ces quantités qui sont ensuite utilisées de façon répé-
tée. Le LUT de MARS-ReCO ne dépend pas des propriétés de surface en raison des qualités de la
formulation de Green et du modèle RTLS. Le LUT actuel considère une atmosphère homogène
composée exclusivement par des aérosols minéraux. Les propriétés radiatives élémentaires de ces
particules qui sont utilisées dans le calcul de la LUT sont obtenues grâce à l’étude de Wolff et
al. basée sur des observations CRISM [187]. Le LUT sauvegarde chaque quantité atmosphérique
calculée pour plusieurs valeurs d’AOT et plusieurs géométries d’acquisition.

• L’estimation des propriétés de surface est réalisée par une stratégie basée sur une minimisation
de l’erreur aux moindres carrés qui consiste à ajuster la courbe photométrique d’un super-pixel
avec le modèle basé sur le LUT. Cette stratégie est très rapide car elle est basée sur une simple
inversion de matrice. La fiabilité de la BRDF estimée par MARS-ReCO est ensuite validée par
une stratégie itérative basée sur un ensemble de tests.

L’approche MARS-ReCO fournit un échantillonnage de la BRDF associée à chaque super-pixel aux
géométries d’acquisition CRISM. Dans son implémentation actuelle, MARS-ReCO traite individuelle-
ment chaque bande spectrale, en corrigeant les effets atmosphériques pour tous les super-pixels d’une
manière séquentielle. La traitement de la courbe photométrique en unités de luminance TOA corres-
pondant à un super-pixel donnée est décrite comme suit :

1. L’expression de la luminance TOA basée sur la formulation de Green du transfert radiatif est
ajustée tout d’abord aux mesures angulaires CRISM qui forment la courbe photométrique. Ceci
est fait en connaissant l’AOT et la géométrie d’acquisition correspondant à chaque point de
mesure (extraites à partir des données auxiliaires CRISM).

2. Les coefficients du modèle de surface RTLS sont ainsi obtenus par inversion de l’expression de
la luminance TOA.

3. Les valeurs de BRDF estimées subissent finalement une étape de validation qui vise à détecter et
à exclure les solutions qui ne sont pas réalistes.

L’algorithme MARS-ReCO représente un outil non seulement original mais aussi opérationnel pour
déduire les propriétés de surface à partir d’observations CRISM. En effet, une bande spectrale d’un
cube CSP est traitée en quelques dizaines de secondes.

Dans cette thèse, je teste la correction atmosphérique adressée par MARS-ReCO grâce à des données
simulées qui imitent les propriétés de surface et atmosphériques de la planète Mars. Une étude de
sensibilité basée sur ces données de référence identifie les géométries d’acquisition et les configuration
atmosphériques dans lesquelles MARS-RECO devient moins fiable. Cette étude conclue que l’estima-
tion de la BRDF de surface par MARS-ReCO est possible en général, mais pas nécessairement précise,
lorsque le signal provenant de la surface est significatif par rapport à celui provenant de l’atmosphère.
Par significatif je veux dire une combinaison favorable de (i) un albédo de surface pas trop bas, (ii) une
anisotropie de la surface différente de celle des aérosols, (iii) et un AOT pas très élevé. Si ces circons-
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tances sont satisfaites, MARS-ReCO estime un modèle de la reflectance de surface qui est satisfaisant
dans la plupart des cas. Toutefois, les lobes de diffusion très étroits ne sont pas estimés de manière
précise en raison du nombre relativement petit des mesures angulaires (jusqu’à onze) et les limitations
intrinsèques du modèle RTLS. En ce qui concerne le type de surface, l’étude de sensibilité prouve
que MARS-ReCO présente quelques difficultés pour estimer les propriétés des surfaces caractérisées
par une faible anisotropie dans des conditions atmosphériques relativement opaques. Au contraire,
les matériaux très brillants et fortement anisotropes sont détectés de manière satisfaisante, tandis que
la BRDF récupérée est plus susceptible de contenir des inexactitudes. En général, les erreurs les plus
importantes se produisent pour les angles d’éclairage et d’observation extrêmes. Dans ce cas, la BRDF
est plus anisotrope et moins facilement reproduite par le modèle RTLS. En conséquence, une atten-
tion particulière doit être accordée aux observations CRISM acquises avec un grand AOT ou un angle
d’observation élevé. Toutes ces informations sont prises en compte dans la thèse lors du traitement
d’observations CRISM réelles.

Après avoir testé les capacités de MARS-ReCO sur des données simulées, cette thèse évalue la per-
tinence de cette correction atmosphérique lorsqu’elle est appliquée à de vraies observations CRISM.
A cet effet, nous définissons une stratégie de validation basée sur des observations acquises sur une
zone spécifique de Mars, le cratère de Gusev. Cette zone de Mars est un site approprié pour valider
des algorithmes de correction atmosphérique puisqu’il est le site d’atterrissage du robot Spirit. Depuis
2004, ce robot a acquis des données de terrain sous différentes conditions atmosphériques. En particu-
lier, les propriétés photométriques des minéraux à la surface de ce cratère ont été mis à disposition en
utilisant des données acquises par l’instrument Pancam à bord de Spirit. Dans cette thèse, je compare
les propriétés photométriques extraites à partir d’observations orbitales CRISM par MARS-ReCO avec
celles présentées dans des travaux basés sur des données Pancam. Dans ce résumé en français, je ne
discute que deux paramètres relatifs à la fonction de phase de surface et correspondant au modèle dit
de Henyey-Greenstein à deux lobes de diffusion. La première quantité est le paramètre d’asymétrie b,
décrivant la largeur des deux lobes et allant de 0 < b < 1. Des grandes valeurs de b correspondent
aux lobes les plus étroits décrivant alors une BRDF très anisotrope. La fraction de rétrodiffusion c est
également comprise dans l’intervalle 0 < c < 1. Si c > 0, 5, la particule est principalement rétrodiffu-
sante, tandis que c < 0, 5 implique une diffusion vers l’avant prédominante. Les valeurs de ces deux
paramètres obtenues à partir d’observations CRISM par MARS-ReCO sont tracées avec les résultats
obtenus à partir des mesures Pancam dans la Figure 16.5. En outre, je trace les valeurs b et c de l’étude
réalisée par McGuire et Hapke sur les propriétés photométriques de quelques surfaces artificielles
[116]. Les résultats montrent que les propriétés photométriques récupérées à partir des données orbi-
tales CRISM sont proches des propriétés des sols, qui est le matériel le plus présent dans le cratère de
Gusev. Ceci valide la correction atmosphérique effectuée par MARS-ReCO dans ce cas et dans d’autres
pour lesquels des observations CRISM similaires vont être traitées.

3. Déconvolution spectrale d’images hyperspectrales CRISM

En plus des méthodes à base physique, les images hyperspectrales sont traditionnellement traitées avec
des méthodes d’analyse qui utilisent très peu ou pas d’à priori concernant les phénomènes physiques
ayant lieu dans la scène observée. Par contre ces méthodes intègrent souvent des données mesurées sur
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Figure 16.5.: Paramètres d’Hapke d’asymétrie b et de rétrodiffusion c pour les pôles extrêmes définis
par Johnson et al. à partir de données Pancam (dans le carré vert). Les valeurs estimées par McGuire
et Hapke [116] pour plusieurs types de surfaces artificielles sont aussi présentées. L’intervalle des
paramètres b et c estimé à partir de données CRISM par l’algorithme MARS-ReCO est montré par
un carré rouge. Afin de montrer les avantages de considérer une surface non-lambertienne dans une
correction atmosphérique, le carré bleu correspond aux résultats obtenus par la méthode basée sur
une hypothèse Lambertienne détaillée en [52]. Crédit : [84]

le terrain ou en laboratoire pour réaliser des apprentissages. Ces algorithmes dont la mise en oeuvre
est en général plus aisée peuvent être décisifs pour le traitement de volumes croissants de données
hyperspectrales. Cependant la télédétection planétaire implique un défi supplémentaire lié à la rareté
des données dites de vérité du terrain pour éduquer les méthodes d’analyse ou valider leurs résultats.
Dans ce contexte, il existe un besoin croissant d’algorithmes automatiques qui soient à la fois précis et
opérationnels pour extraire les informations significatives des images hyperspectrales de télédétection.

Les techniques dites de déconvolution spectrale, ou démixage en aveugle, sont des outils d’analyse
non supervisés potentiellement utiles en planétologie. Les matériaux à la surface sont caractérisés par
des signatures spectrales qui sont façonnées par leur composition chimique et leur état physique. La
résolution spatiale limitée des capteurs orbitaux et la diffusion multiple des photons entre plusieurs
matériaux génèrent des combinaisons linéaires et non linéaires entre plusieurs signatures spectrales
dans le signal de télédétection. Ces facteurs, parmi d’autres, conduisent à l’existence des spectres dites
mélangés dans les données fournies par les capteurs hyperspectraux. Dans ce contexte, des méthodes
de déconvolution spectrale sont conçues pour décomposer ces spectres mélangés en leurs contributions
spectrales originales. Après avoir estimé le nombre de sources, ou pôles extrêmes, dans une image
hyperspectrale, deux produits sont générés par le processus de déconvolution spectrale. Comme la
Figure 16.6 le montre, une signature spectrale représentative est extraite tout d’abord pour chaque pôle
extreme détecté dans l’image. Deuxièmement, des stratégies d’optimisation permettent la génération
des cartes d’abondance qui révèlent la distribution spatiale de chaque pôle extrême sur la zone cou-

296



verte par l’image. De cette manière, la déconvolution spectrale permet la transformation d’une image
hyperspectrale en quelques produits significatifs, facilitant donc l’analyse de grandes collections de
données planétaires.

Détermination 
du nombre de 
pôles extrêmes 

Nc!

Extraction de Nc 
signatures 

spectrales mn!

Estimation 
d’abondances 

sn!

Figure 16.6.: Schéma de déconvolution spectrale en aveugle d’une image hyperspectrale.

Concernant les différents types de mélanges existants, une résolution spatiale modérée est typiquement
à l’origine des mélanges dites géographiques [voir Figure 16.7 (droite)]. Dans ce cas, le spectre de
luminance montante est le résultat d’une combinaison linéaire des signatures spectrales des matériaux
à la surface pondérées par leurs couvertures spatiales dans le pixel [par exemple, dans la Figure 16.7
(droite) chaque matériel couvre une superficie d’un tiers du pixel, et donc tous les poids sont égaux
à un tiers]. Les méthodes de déconvolution spectrale du type linéaire supposent cette relation linéaire
impliquant les pôles extrêmes. Par contre, les autres types de mélanges sont abordés par des techniques
de déconvolution spectrale du type non-linéaire. Cette partie de la thèse se focalise sur l’évaluation
d’algorithmes de démixage linéaire non supervisés pour estimer des informations relatives à la surface
et à l’atmosphère de Mars à partir d’images hyperspectrales. En particulier, j’examine la pertinence
de ces techniques sur des données simulées et d’autres réelles acquises par CRISM sur une région
spécifique de Mars. La quatrième partie de la thèse se termine par la description d’une stratégie pour
estimer l’épaisseur optique atmosphérique basée sur des techniques de déconvolution spectrale. Dans
ce résumé, je détaille seulement l’étude sur des données CRISM.

taille du pixel! taille du pixel! taille du pixel!

Figure 16.7.: Différents types de mélange sous-pixel : (gauche) mélange intime granulaire, (centre)
mélange intime stratifié, et (droite) mélange géographique. Credit : [157].

Bien que la déconvolution spectrale d’images acquises par le spectro-imageur OMEGA a été abordé de
manière satisfaisante (e.g. [125]), on pourrait revendiquer que les conditions dans lesquelles OMEGA
détecte la surface de Mars est adaptée à l’existence de mélanges linéaires en raison de sa résolution
spatiale modérée (au mieux 350 m/pixel). En revanche, l’instrument CRISM fournit des données avec
une précision spatiale sans précédent (jusqu’à 18 m/pixel), ce qui augmente la complexité de la sur-
face observée et la probabilité de faire face à des mélanges non-linéaires. Dans cette thèse, j’examine
la pertinence du modèle de mélange linéaire dans le contexte planétaire mis à disposition par CRISM.
Par pertinence, j’entends la capacité des techniques de déconvolution linéaire de révéler des caracté-
ristiques relatives à la composition chimique et l’état physique des surfaces planétaires. Avec ce but,
des expériences sont menées sur l’image centrale de l’observation FRT42AA acquise par CRISM sur la
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dune Russell de Mars [voir Figure 16.8 (en haut à gauche)]. Ce site est d’un grand intérêt pour valider
des techniques de déconvolution spectrale basées sur un modèle linéaire. Premièrement, l’existence de
mélanges géographiques qui ont lieu sur la dune en fin d’hiver (i.e. des structures sombres liées au dé-
givrage côtoyant, de la glace de CO2 résiduelle) est confirmée par de l’imagerie à très haute résolution.
Deuxièmement, il est possible de construire une vérité du terrain à partir de cette même imagerie afin
de valider les cartes d’abondance estimées par déconvolution spectrale.

Figure 16.8.: (en haut à gauche) : Image centrale FRT42AA en vraies couleurs dans laquelle la dune
du cratère de Russell est visible. (en haut à droite) : Carte d’abondance composite des trois pôles
extrêmes extraits par la méthode MVC-NMF. (en bas à gauche) : Vérité du terrain du pôle sombre.
(en bas à droite) : Carte d’abondance du pôle correspondant aux structures sombres estimée par la
méthode MVC-NMF.

Suite à des expériences originales, j’effectue une évaluation quantitative des abondances de surface
obtenues par une sélection de quatre algorithmes de déconvolution spectrales linéaires basés sur des
principes différents qui portent le nom de : (i) Vertex Component Analysis (VCA) [131], (ii) Bayesian
Positive Source Separation (BPSS) [51], (iii) Minimum Volume Constrained Non-negative Matrix Facto-
rization (MVC-NMF) [119], et (iv) une combinaison de la méthode VCA avec un prétraitement spatial
proposé dans [191] nommé spatial-VCA. Ce choix est effectué parmi les techniques non supervisées
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les plus utilisées en planétologie et observation de la Terre. Des expériences sont menées sur la région
d’intérêt encerclé en jaune dans la Figure 16.8 (en haut à gauche). Après avoir estimé le nombre de
pôles extrêmes comme étant égal à six par une méthode automatique, l’image centrale FRT42AA est
déconvoluée spectralement par les quatre algorithmes. Après l’examen des signatures spectrales et des
cartes d’abondance extraites pour chacun, trois sources physiques liées à deux matériaux à la surface
sont détectées par toutes les méthodes : une concerne les structures sombres et deux sont associées à
la glace. Un effort de recombinaison est donc nécessaire pour reconstruire chaque source physique sur
la base des pôles extrêmes. L’existence des non linéarités dans l’image est à l’origine de cette inégalité
entre le nombre de pôles extrêmes (six au total) et celui des sources physiques (trois au total). Fina-
lement, les résultats de chaque méthode sont comparés avec la vérité du terrain pour déterminer les
techniques les plus appropriées dans l’analyse de données CRISM.

La Figure 16.8 (en haut à droite) montre la carte d’abondance composite des trois sources physiques
reconstruites à partir des pôles extrêmes extraits par la méthode MVC-NMF. Je propose une stratégie
originale pour évaluer les performances de la déconvolution spectrale de données CRISM de manière
quantitative. La caméra High Resolution Imaging Science Experiment (HiRISE) est un outil sans pré-
cédent pour explorer Mars car elle offre une très haute résolution spatiale, jusqu’à 0,25 m/pixel [115].
HiRISE est en mesure de résoudre spatialement les structures sombres tandis que l’image CRISM
est presque entièrement composée par des spectres mélangés. Dans cette situation, j’exploite l’image
HiRISE PSP_002482_1255_RED afin de construire une carte d’abondance de référence des structures
sombres. Cette vérité terrain sera utilisée dans l’évaluation des résultats de déconvolution spectrale [i.e.
les pixels rouges dans la Figure 16.8 (en haut à droite) ou encore la Figure 16.8 (en bas à gauche)]. Je
propose la stratégie suivante pour générer une telle vérité du terrain : (i) l’image HiRISE est classifiée
afin d’extraire les structures sombres, (ii) la carte de classification qui en résulte est recalée avec l’image
hyperspectrale CRISM, (iii) la carte d’abondance de référence est générée par le comptage des pixels
classifiés comme étant des structures sombres dans l’empreinte de chaque pixel CRISM. Le produit
issu de cette stratégie est montré dans la Figure 16.8 (en bas à gauche).

Je propose deux indicateurs pour évaluer la similarité entre la vérité du terrain et les cartes d’abondance
issues de la déconvolution spectrale, à savoir le coefficient de corrélation r et l’erreur moyenne e. Le
premier indicateur mesure la similarité spatiale au sens relatif entre les deux produits, tandis que le
deuxième exprime l’écart absolu. Étant donné que des problèmes de recalage lors de la génération
de la vérité du terrain peuvent altérer cette comparaison sur certaines zones de l’image, je réalise
trois expériences en calculant les deux indicateurs en fonction de la précision de recalage rreg. Chaque
expérience est détaillée dans la légende du Tableau 16.1. En général, les résultats de comparaison
sont positifs pour toutes les méthodes sauf pour spatial-VCA. Cette méthode, basée sur l’information
spatiale de la scène, pénalise les pôles extrêmes rares, et donc les structures sombres. En général,
les résultats de comparaison montrent une amélioration pour un recalage de qualité croissante, les
meilleurs résultats étant obtenus pour la troisième expérience. La méthode fournissant la meilleure
carte d’abondance relative aux structures sombres par rapport la vérité du terrain est la technique
MVC-NMF. Plus des détails peuvent être trouvés dans le manuscrit en anglais.

Le présent travail représente une étude sans précédent sur les performances des techniques de dé-
convolution spectrale appliquées sur des images hyperspectrales à haute résolution spatiale. Premiè-
rement, je prouve que la dune Russell de Mars est une référence pour évaluer les capacités de ces
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Méthode VCA BPSS MVC-NMF spatial-VCA
Indicateur r e r e r e r e

1 : Tous les pixels 0.68 0.08 0.57 0.10 0.69 0.09 0.50 0.14
2 : Recalage précis 0.73 0.08 0.59 0.09 0.72 0.08 0.56 0.13

3 : Recalage optimale 0.81 0.19 0.80 0.13 0.83 0.14 0.77 0.33

Table 16.1.: Coefficient de corrélation r et erreur absolue moyenne e pour (1) tous les pixels
(mean(rreg) = 0.7), (2) les zones qui sont bien recalées (rreg > 0.7, ⇠50% des pixels avec mean(rreg) =
0.83) et (3) une zone avec un recalage optimale (⇠1% des pixels avec mean(rreg) = 0.96).

techniques sous un modèle de mélange linéaire. Les résultats de démixage satisfaisants obtenus après
comparaison avec une vérité du terrain indépendante prouvent que l’hypothèse de linéarité est va-
lable pour le traitement d’images CRISM acquises sur des sites de Mars avec des propriétés similaires
à la dune de Russell. Deuxièmement, j’ai évalué une série de techniques de déconvolution spectrale
qui représentent l’état de l’art dans ce sujet. Les planétologues travaillant avec des données CRISM
pourront profiter de cette étude car ces approches s’avèrent utiles pour cartographier et quantifier
les abondances des espèces chimiques à la surface, aussi bien que pour effectuer une réduction de
dimensionnalité à des fins de classification par exemple.
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