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“The symbols only dreamt about by most human beings are expressed in graphic
form by the artists... We participate in the myth of creation. Order comes out
of disorder, form out of chaos, as it did in the creation of the universe.”
“But what the artist or creative scientist feels is not anxiety or fear; it is joy.”
“The harmony of an internal form, the inner consistency of a theory, the char-
acter of beauty that touches your sensibilities – these are significant factors that
determine why one given insight comes into consciousness rather than another.”

Rollo May – The courage to create.
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Notation

N = {1, 2, 3, . . .} set of natural numbers (positive integers)
Z,Q,C sets of integer, rational and complex numbers
R,R2 real line and real plane
Z/nZ or Zn ring of residue classes modulo n
Fp = {0, 1, . . . , p− 1} field of residue classes modulo the prime p
Fq finite field with q elements
F×q multiplicative group of the field Fq
P1(Fq) projective line over Fq
K[x],K(x) ring of polynomials and field of rational fractions over K
T2 torus of dimension 2

Diff+(M) group of orientation-preserving homeomorphisms of M
Ω(M) vector space of holomorphic 1-forms on M
χ(M) Euler characteristic of M
Mg moduli space of compact connected Riemann surfaces of genus g
ΩMg moduli space of Abelian differentials
H(d1, . . . , ds) stratum of connected translation surfaces (M,ω) such that ω has zeros

of orders d1, . . . , ds
H1(M,Σ; C) first relative cohomology group of M over C
dimC V complex dimension of V
T (m,n) trivial origami with mn squares
L(m,n) corner origami with m+n−1 squares
X(n), E(n) tress and stair origamis with n squares
Sq(O) set of squares of the origami O
Mon(O) monodromy group of O
Aff+(M,ω) affine group of the translation surface (M,ω)
Aut(M,ω) automorphism group of (M,ω)
Γ(M,ω) real Veech group of (M,ω)
SL(M,ω), GL(M,ω) integer Veech groups of (M,ω)
GL(O) direct integer Veech group of O
GL×(O) dual integer Veech group of O
N pr
n (d1, . . . , ds) number of primitive n-square origamis in H(d1, . . . , ds)

An(d1, . . . , ds) number of n-square origamis in H(d1, . . . , ds) with monodromy An
Sn(d1, . . . , ds) number of n-square origamis in H(d1, . . . , ds) with monodromy Sn
OG,g1,g2 regular origami with monodromy group G generated by g1, g2

OG/H,g1,g2 coset origami defined by the group G, the subgroup H and the pair of
generators (g1, g2) of G
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Chapter 1
Introduction

1.1 English version

An origami is a covering of the torus T2, possibly ramified above the origin. It is endowed with a
flat metric coming from that on the torus and having conical singularities at the ramification points.
If the covering is connected then the origami is also called connected.

Notice that the torus is obtained from a unit square by identifying the opposite sides, and the
preimages of that square under a covering f : O → T2 provide a tiling of O. Therefore, an origami
can be viewed as a finite collection of copies of the unitary Euclidian square together with a gluing
of the edges:

� the right edge of each square is identified to the left edge of some square,

i − j− or i− −

� the top edge of each square is identified to the bottom edge of some square.

i

−

k

−

or i

−
−

That is why origamis are widely called square-tiled surfaces – the term was first suggested to
Anton Zorich by Alex Eskin. It seems that the connected square-tiled surfaces came into sight in
1970s through the works of William P. Thurston [92] and William A. Veech [95] on the moduli spaces
of curves. Their growing popularity is due to research papers by Alex Eskin, Giovanni Forni, Eugene
Gutkin, Frank Herrlich, Pascal Hubert, Chris Judge, Maksim Kontsevich, Samuel Lelièvre, Howard
Masur, Carlos Matheus, Curtis T. McMullen, Martin Möller, Andrei Okounkov, Thomas A. Schmidt,
Gabriela Schmithüsen, John Smillie, Barak Weiss, Jean-Christophe Yoccoz, Anton Zorich and others.
The name ‘origami’ appeared around 2000 and is attributed to Pierre Lochak [60].

An n-square origami can be encoded by a pair of permutations (σ, τ) ∈ Sn × Sn, where Sn is the
symmetric group on the set {1, 2, . . . , n}. Indeed, number the squares by the integers from 1 to n and
define the permutations as follows:

σ(i) = j, if the right edge of the ith square is glued to the left edge of the jth one,

τ(i) = k, if the top edge of the ith square is glued to the bottom edge of the kth one.

Since an origami is defined regardless of numbering of the squares, it corresponds to the conjugacy
class of (σ, τ) which we denote by (σ, τ)∗ =

{
(µ−1σµ, µ−1τµ) | µ ∈ Sn

}
.
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16 CHAPTER 1. INTRODUCTION

Let O be a connected square-tiled surface with s ramification points over the origin of T2. A small
circle of length 2π · ε around the origin of the torus T2 lifts to a closed curve of length 2π(di + 1) · ε
around the ith ramification point of O with di ∈ N. By the Gauss-Bonnet formula we have

d1 + d2 + . . .+ ds = 2g − 2,

where g is the genus of the surface O. The set of connected origamis with the same parameters
{d1, d2, . . . , ds} forms a ‘discrete’ subset of a complex-analytic orbifold H(d1, d2, . . . , ds) which is called
a stratum (see the chapter 2).

It is easy to check that the origami O encoded by a pair (σ, τ) is connected if and only if the
subgroup gp {σ, τ} ⊆ Sn is transitive, and O belongs to H(d1, d2, . . . , ds) if and only if the commutator
[σ, τ ] is a product of s nontrivial disjoint cycles of lengths (d1 + 1), (d2 + 1), . . ., (ds + 1). The group
gp {σ, τ} will be called the monodromy group of the origami O and denoted by Mon(O). This
group is defined up to isomorphism. Conversely, if we have

� a finite two-generator group G,
� a pair of generators (g, h) of G,
� a faithful representation ρ : G ↪→ Sn,

then the pair of permutations (ρ(g), ρ(h)) gives an n-square origami O with Mon(O) ' G. By the
way, any finite non-abelian simple group is generated by two elements. There are two types of faithful
permutation representations: the first is induced by the action of G on its elements and the second
by the action of G on the cosets {g1H, . . . , gnH} for some proper subgroup 1 ⊂ H ⊂ G such that⋂
g∈G gHg−1 = 1. An origami O obtained in the first case will be called regular and in the second

case – coset. Due to the classification of transitive representations (Proposition 2.10), any connected
origami is either regular or coset.

We say that O covers an origami O′ if the following diagram

O O′

T2

p

f f ′

commutes for a (possibly ramified) covering p. A square-tiled surface is called primitive if the only
square-tiled surfaces it covers are the torus T2 and itself.

A nonempty subset ∆ of Λn = {1, 2, . . . , n} is called a block for a permutation group G ⊆ Sn if,
for each g ∈ G, either g(∆) = ∆ or g(∆) ∩∆ = ∅. A permutation group G is said to be primitive if
it has no blocks except the singletons and the entire set Λn. It is straightforward that a connected n-
square-tiled surface O is primitive if and only if its monodromy groupMon(O) ⊆ Sn is primitive (see
Proposition 2.4). We can thus apply results from the theory of permutation groups, e.g. Theorems 2.5
and 2.6, to conclude that in a given stratum for large enough n the monodromy group of any primitive
n-square origami is either An or Sn.

There is a natural action of the general linear group GL2(Z) on the square-tiled surfaces. It is seen
geometrically in the plane: a matrix transforms the squares that can be cut and re-glued in order to
get new squares, as shown in the figure below (parallel edges with the same marking are identified).
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)

In terms of permutations, we will have(
1 0
0 −1

)
· (σ, τ)∗ = (σ, τ−1)∗,

(
1 1
0 1

)
· (σ, τ)∗ = (σ, τσ−1)∗,

(
0 −1
1 0

)
· (σ, τ)∗ = (τ−1, σ)∗,

(
1 0
−1 1

)
· (σ, τ)∗ = (στ, τ)∗.

The stabilizer of an origami O for this action is called the integer Veech group of O and is denoted
by GL(O). An immediate and important remark is that the monodromy group is an invariant of the
GL2(Z)-orbits.

For any group G, the automorphism group Aut(F2) acts on the set G×G by Nielsen transforma-
tions. Recall the exact sequence (see the section 2.4):

0→ Inn(F2)→ Aut(F2)
Φ−→ GL(2, Z)→ 0, Φ : γ 7−→

(
ex(γ(x)) ex(γ(y))
ey(γ(x)) ey(γ(y))

)
,

where ex(w) and ey(w) denote the sums of the exponents of x and y, respectively, in the word w ∈ F2.
This induces a GL2(Z)-action on the set (G × G)∗ = (G × G)/Inn(G) of conjugacy classes of pairs
such that the following diagram commutes

Aut(F2)× (G×G) G×G

GL2(Z)× (G×G)∗ (G×G)∗

which is given explicitly in section 2.6. It turns out that the case of G = Sn corresponds to the action
of GL2(Z) on the n-square origamis.

Structure of the thesis

Chapter 2

We recall and discuss some known notions and facts on translation surfaces, permutation groups,
Nielsen equivalence classes. An interpretation of those notions in the language of square-tiled surfaces
leads to the definition of primitivity, monodromy groups, direct and dual GL2(Z)-actions on origamis.
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Chapter 3

We start by noticing that in the stratum H(2), due to the works [45] and [67], the monodromy group
is a complete invariant of the GL2(Z)-orbits of primitive square-tiles surfaces: for any n ≥ 4 there is
exactly one orbit corresponding to Sn and at most one orbit corresponding to An. A natural question
arises what monodromy group can a primitive origami from a given stratum have. Using results from
the 19th, 20th and 21st centuries we obtain the following theorem:

Theorem (3.12). If p ≥ 5 is a prime but not Mersenne, then in the stratum H(p−1) the monodromy
group of any primitive n-square-tiled surface with n ≥ p+2 is either An or Sn. If p ≥ 7 is a Mersenne
prime, then the same is true for n ≥ p+ 3.

In the stratum H(m), where m is an even positive integer, the monodromy group of any primitive
n-square-tiled surface with n ≥ 3

2m+ 2 (the bound is not exact) is either An or Sn.

Due to a work of Camille Jordan [53] going back to 1875, we also get:

Theorem (3.21). For each integer n 6= 6, the monodromy group of any primitive n-square-tiled surface
from H(1, 1) is either An or Sn.

Afterwards, we construct and study two families of n-square-tiled surfaces in H(1, 1) for which the
alternating and symmetric groups are realized.

Chapter 4

We investigate the regular square-tiled surfaces corresponding to Cayley diagrams of finite two-
generator groups. We develop a method of determining the Veech group of such an origami through
a presentation of its monodromy group in terms of generators and relations. It turns out that the
GL2(Z)-orbits of regular origamis such that Mon(O) = G are in bijection with the T2-systems of G
(see Theorem 4.4). Among all square-tiled surfaces with a given monodromy group, the regular ones
possess the largest Veech groups:

Theorem (4.7). Consider a finite group G generated by two elements g and h. Let ρreg : G ↪→ Sym(G)
be its regular representation, and ρ : G ↪→ Sm another faithful permutation representation. Denote by
Oreg and Oρ the origamis defined by the pairs (ρreg(g), ρreg(h)) and (ρ(g), ρ(h)) respectively. Then

GL(Oρ) ⊆ GL(Oreg).

Moreover, if the representation ρ is structural1, then one has the equality GL(Oρ) = GL(Oreg).

In this chapter, several old families of regular square-tiled surfaces are revisited and new interesting
families are constructed. The idea is to take a finite two-generator group (for instance, a simple one),
to fix a pair of generators and to consider a presentation with (if possible) few relations. In some cases
we succeed to find the strata and the Veech groups for a family of origamis, in the others we explain
the degree of difficulty and connect the questions with well-known conjectures.

We also estimate the number of distinct GL(2, Z)-orbits and strata of regular square-tiled surfaces
with a given monodromy group. In order to find a lower bound for alternating origamis, we prove the
following theorem:

Theorem (4.26). Let d be a positive integer, and let p be the least prime number such that
[

3d
4

]
≤

p ≤ d−3. Every permutation µ ∈ Ad moving at least p+ 2 points can be presented as the commutator
of a generating pair of Ad, one of the elements being a p-cycle.

Remark that when d ≥ 14 and d 6= 19, there exists a prime p such that
[

3d
4

]
≤ p ≤ d− 3.

1that is, for each automorphism φ ∈ Aut(ρ(G)) there exists σ ∈ Sm such that φ(τ) = στσ−1 for all τ ∈ ρ(G).
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Corollary (4.31). For some real C > 0 and any positive integer d, the number of different strata

containing a regular origami O such that Mon(O) = Ad is greater than C
d e

π
√

2d
3 .

Chapter 5

We partially generalize the theory of the chapter 4, and consider the square-tiled surfaces corresponding
to coset digraphs of groups. Projective and alternating coset origamis are studied. In particular, since
the permutation representations PSL(2, p) ↪→ Sp+1 and An ↪→ Sn in question are structural, we apply
Theorem 4.7 to show that the Veech groups coincide with those of the regular origamis.

Chapter 6

We consider the orbits of the Veech group SL(O) of an origami on the projective line P1(Q). It turns
out that in particular cases, the set of elements Ā ∈ PSL2(Z) such that p

q and Ā · pq lie in the same

SL(O)-orbit for all pq ∈ P
1(Q) coincides with SL(O)/{±I}. This inspires us to introduce the following

notion. Let G be a group acting transitively on a set M , A subgroup Γ ⊆ G is called M-straining if
the stabilizer of the Γ-orbits on M is exactly Γ. When G = PSL2(Z) we have:

Theorem (6.3). There exist infinitely many subgroups Γ ⊆ PSL2(Z) of finite index which are not
P1(Q)-straining.
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1.2 Version française

Un origami est un revêtement du tore T2, éventuellement ramifié au-dessus de l’origine. Il est muni
d’au moins une métrique plate provenant de celle standard sur le tore et ayant des singularités coniques
en les points de ramification. Si le revêtement est connexe, alors on dit que l’origami est connexe.

Remarquons que le tore est obtenu du carreau unitaire en collant ses côté opposés, et les images
réciproques de ce carreau pour un revêtement f : O → T2 fournissent un pavage de O. Donc, un
origami peut être vu comme un ensemble fini de copies du carreau unitaire euclidien qui sont collées
en respectant les règles suivantes :

� chaque côté droit est identifié par translation avec un et un seul côté gauche,

i − j− ou i− −

� chaque côté haut est identifié par translation avec un et un seul côté bas.

i

−

k

−

ou i

−
−

Voilà pourquoi les origamis sont aussi appelés surfaces à petits carreaux, le terme ayant été proposé
à Anton Zorich par Alex Eskin. Les surfaces à petits carreaux ont été découvertes dans les années
1970 à travers des travaux de William P. Thurston [92] et William A. Veech [95] sur les espaces des
modules de courbes. Leur popularité croissante est due à des articles de Alex Eskin, Giovanni Forni,
Eugene Gutkin, Frank Herrlich, Pascal Hubert, Chris Judge, Maksim Kontsevich, Samuel Lelièvre,
Howard Masur, Carlos Matheus, Curtis T. McMullen, Martin Möller, Andrei Okounkov, Thomas A.
Schmidt, Gabriela Schmithüsen, John Smillie, Barak Weiss, Jean-Christophe Yoccoz, Anton Zorich et
d’autres. Le nom “origami” est apparu autour de 2000, il est attribué à Pierre Lochak [60].

Un origami à n carreaux peut être encodé par une paire de permutations (σ, τ) ∈ Sn × Sn, où Sn
est le groupe symétrique sur l’ensemble {1, 2, . . . , n}. En effet, on numérote les carreaux de l’origami
par les entiers de 1 à n et on lui associe deux permutations σ and τ telles que :

σ(i) = j, si le côté droit du carreau i est collé au côté gauche du carreau j,

τ(i) = k, si le côté haut du carreau i est collé au côté bas du carreau k.

Puisqu’un origami ne dépend pas de la numérotation de ses carreaux, il correspond à la classe de
conjugaison diagonale de (σ, τ) que nous allons désigner par (σ, τ)∗ =

{
(µ−1σµ, µ−1τµ) | µ ∈ Sn

}
.

Soit O une surface à petits carreaux connexe avec s points de ramification au-dessus de l’origine
de T2. Un petit cercle de longueur 2π · ε autour de l’origine du tore T2 se relève en une courbe fermée
de longueur 2π(di + 1) · ε autour du iième point de ramification de O avec di ∈ N. D’après la formule
de Gauss-Bonnet on a

d1 + d2 + . . .+ ds = 2g − 2,

où g est le genre de la surface O. L’ensemble des origamis connexes avec les mêmes paramètres
{d1, d2, . . . , ds} forme un sous-ensemble “discret” d’une orbifolde complexe analytiqueH(d1, d2, . . . , ds)
que l’on appellera une strate.

Il est facile de vérifier que l’origami O encodé par une paire (σ, τ) est connexe si et seulement
si le sous-groupe gp {σ, τ} ⊆ Sn est transitif, et que O appartient à la strate H(d1, d2, . . . , ds) si
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et seulement si le commutateur [σ, τ ] est un produit de s cycles non-triviaux disjoints de longueurs
(d1 + 1), (d2 + 1), . . ., (ds + 1). Le groupe gp {σ, τ} sera appelé le groupe de monodromie de O,
on le désignera par Mon(O). Ce groupe est défini à isomorphisme près. Inversement, si l’on a

� un groupe fini G,
� un couple générateur (g, h) de G,
� une représentation fidèle ρ : G ↪→ Sn,

alors la paire de permutations (ρ(g), ρ(h)) détermine un origami O à n carreaux avec Mon(O) ' G.
(Par ailleurs, tout groupe fini non-abélien simple est engendré par deux éléments.) Il y a deux types
de représentations fidèles : la première est induite par l’action de G sur ses éléments et la deuxième
par l’action de G sur les classes {g1H, . . . , gnH} suivant un sous-groupe propre 1 ⊂ H ⊂ G tel que⋂
g∈G gHg−1 = 1. Un origami O obtenu dans le premier cas sera appelé régulier et celui obtenu dans

le deuxième cas quotient. Selon la classification des représentations transitives (le théoréme 2.10),
tout origami connexe est soit régulier soit quotient.

On dit que O est un revêtement d’un origami O′ si le diagramme suivant

O O′

T2

p

f f ′

commute pour un revêtement p (éventuellement ramifié). Une surface à petits carreaux O est dite
primitive si le tore T2 et O sont les seules surfaces à petits carreaux dont elle est un revêtement.

Un sous-ensemble non vide ∆ de Λn = {1, 2, . . . , n} est appelé un bloc pour le groupe de permu-
tation G ⊆ Sn si pour tout g ∈ G on a g(∆) = ∆ ou g(∆)∩∆ = ∅. Un groupe G est dit primitif s’il
n’a pas de blocs excepté les singletons et l’ensemble Λn. Il est immédiat qu’une surface à n carreaux O
est primitive si et seulement si son groupe de monodromie Mon(O) ⊆ Sn est primitif (voir la propo-
sition 2.4). Ainsi, nous pouvons appliquer des résultats de la théorie des groupes de permutation, par
exemple les théorèmes 2.5 et 2.6, afin de conclure que dans une strate donnée pour n suffisamment
grand le groupe de monodromie d’un origami primitif à n carreaux est soit An soit Sn.

− = ≡

= ≡

−

=

− −

=

−

=

≡
=

≡−

=

−

− =

1

5
2

3

4

=

− =

−

=

−=

−

= 5

3

1

4 2

(
1 1
1 2

)

Il y a une action naturelle du groupe général linéaire GL2(Z) sur les surfaces à petits carreaux.
On la décrit géométriquement dans le plan : une matrice transforme les carreaux en parallélogrammes
que l’on peut découper en morceaux, que l’on recolle en respectant les identifcations de telle façon que
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l’ensemble obtenu soit encore un origami (cf. un exemple sur la figure ci-dessus, où les côtés parallèles
avec le même nombre de traits sont identifiés). En termes de permutations, on aura(

1 0
0 −1

)
· (σ, τ)∗ = (σ, τ−1)∗,

(
1 1
0 1

)
· (σ, τ)∗ = (σ, τσ−1)∗,

(
0 −1
1 0

)
· (σ, τ)∗ = (τ−1, σ)∗,

(
1 0
−1 1

)
· (σ, τ)∗ = (στ, τ)∗.

Le stabilisateur d’un origami O pour cette action s’appelle le groupe de Veech entier de O et est
désigné par GL(O). Une remarque immédiate et importante est que le groupe de monodromie est un
invariant des GL2(Z)-orbites.

Pour tout groupe G, en notant F2 le groupe libre sur {x, y}, le groupe des automorphismes Aut(F2)
agit sur l’ensemble G×G par les transformations de Nielsen. Rappellons la suite exacte (voir la partie
2.4) :

0→ Inn(F2)→ Aut(F2)
Φ−→ GL(2, Z)→ 0, Φ : γ 7−→

(
ex(γ(x)) ex(γ(y))
ey(γ(x)) ey(γ(y))

)
,

où ex(w) et ey(w) désignent les sommes des exposants de x et y respectivement dans le mot w ∈ F2.
Cela induit une GL2(Z)-action sur l’ensemble (G×G)∗ = (G×G)/Inn(G) des classes de conjugaison
diagonale des paires telle que le diagramme suivant commute

Aut(F2)× (G×G) G×G

GL2(Z)× (G×G)∗ (G×G)∗

ce qui est explicitement donné dans la section 2.6. Il se trouve que le cas G = Sn correspond à l’action
de GL2(Z) sur les origamis à n carreaux.

La structure de la thèse

Chapitre 2

Nous rappelons et discutons plusieurs notions et faits connus concernant les surfaces de translation,
les groupes de permutation, les classes d’équivalence de Nielsen. Une interprétation de ces notions en
langage des surfaces à petits carreaux nous conduit à la définition de la primitivité, d’un groupe de
monodromie, des GL2(Z)-actions directe et duale sur les origamis.

Chapitre 3

On commence par remarquer que dans la strate H(2), grâce aux travaux [45] et [67], le groupe de
monodromie est un invariant complet des GL2(Z)-orbites de surfaces à petits carreaux primitives :
pour tout n ≥ 4, il y a exactement une orbite correspondant au groupe Sn et au plus une orbite corres-
pondant à An. Une question naturelle se pose : dans une strate donnée, quels groupes apparaissent
comme groupe de monodromie d’un origami primitif ? En utilisant des résultats des 19ième, 20ième et
21ième siècles, nous obtenons le théorème suivant :
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Théorème (3.12). Si p ≥ 5 est un nombre premier qui n’est pas de Mersenne, alors dans la strate
H(p−1) le groupe de monodromie de toute surface à n petits carreaux primitive avec n ≥ p+ 2 est An
ou Sn. Si p ≥ 7 est un nombre premier de Mersenne, alors le même résultat est vrai pour n ≥ p+ 3.

Dans la strate H(m), où m est un entier positif pair, le groupe de monodromie de toute surface à
n petits carreaux primitive avec n ≥ 3

2m+ 2 (la borne n’est pas exacte) est An ou Sn.

Grâce à un travail de Camille Jordan [53] publié en 1875, on obtient aussi :

Théorème (3.21). Pour tout entier n 6= 6, le groupe de monodromie de toute surface à n petits
carreaux primitive dans H(1, 1) est An ou Sn.

Ensuite, nous construisons et étudions deux familles de surfaces à n petits carreaux dans H(1, 1) pour
lesquelles les groupes alterné et symétrique sont réalisés.

Chapitre 4

Nous examinons les surfaces à petits carreaux régulières correspondant aux diagrammes de Cayley de
groupes finis à deux générateurs. Nous développons une méthode pour déterminer le groupe de Veech
d’un tel origami en utilisant une présentation de son groupe de monodromie en termes de générateurs
et relations. Il se trouve que les GL2(Z)-orbites des origamis réguliers O tels que Mon(O) = G sont
en bijection avec les T2-systèmes de G (voir le théorème 4.4). Parmi les surfaces à petits carreau avec
un groupe de monodromie donnée, les origamis réguliers possèdent le plus grand groupe de Veech :

Théorème (4.7). On considère un groupe fini G engendré par deux éléments g et h. Soit ρreg : G ↪→
Sym(G) une représentation régulière, et soit ρ : G ↪→ Sm une autre représentation fidèle. On désigne
par Oreg et Oρ les origamis définis par les paires (ρreg(g), ρreg(h)) et (ρ(g), ρ(h)) respectivement. Alors

GL(Oρ) ⊆ GL(Oreg).

De plus, si la représentation ρ est structurelle2 alors on a l’égalité GL(Oρ) = GL(Oreg).

Dans ce chapitre, plusieurs familles connues de surfaces à petits carreaux régulières sont revisitées,
et de nouvelles familles intéressantes sont construites. L’idée est de prendre un groupe fini à deux
générateurs (par exemple, un groupe simple), de fixer une paire de génératrice et de considérer une
présentation avec (si possible) peu de relations. Dans certains cas, nous réussissons à trouver les
strates et les groupes de Veech pour des familles d’origamis, dans d’autres cas, on explique le degré
de difficulté et on lie les questions avec des problèmes ouverts.

Nous estimons également le nombre de GL(2, Z)-orbites et strates distinctes des surfaces à petits
carreaux régulières avec un groupe de monodromie donné. Afin de trouver une borne inférieure pour
les origamis alternés, nous montrons le théorème suivant :

Théorème (4.26). Soit d un entier positif, et soit p le plus petit nombre premier tel qu’on ait les
inégalités

[
3d
4

]
≤ p ≤ d − 3. Alors chaque permutation µ ∈ Ad qui bouge au moins p + 2 points

peut être présentée comme le commutateur d’une paire engendrant Ad, dont l’un des éléments est un
p-cycle.

Remarquons que quand d ≥ 14 et d 6= 19, il existe un nombre premier p tel que
[

3d
4

]
≤ p ≤ d− 3.

Corollaire (4.31). Il existe un réel C > 0 tel que, pour tout entier positif d, le nombre de strates

différentes qui contiennent un origami régulier O tel que Mon(O) = Ad est au moins C
d e

π
√

2d
3 .

2c’est-à-dire pour tout automorphisme φ ∈ Aut(ρ(G)) il existe σ ∈ Sm telle que φ(τ) = στσ−1 pour tout τ ∈ ρ(G).
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Chapitre 5

Nous généralisons partiellement la théorie du chapitre 4 et considérons les surfaces à petits carreaux
correspondant aux graphes quotients de groupes. Les origamis réguliers projectifs et alternés sont
étudiés. En particulier, puisque les représentations PSL(2, p) ↪→ Sp+1 et An ↪→ Sn en question sont
structurelles, nous appliquons le théorème 4.7 pour montrer que les groupes de Veech cöıncident avec
ceux des origamis réguliers.

Chapitre 6

Nous considérons les orbites du groupe de Veech SL(O) d’un origami sur la ligne projective P1(Q).
Il se trouve que dans des cas particuliers, l’ensemble des éléments Ā ∈ PSL2(Z) tels que p

q et Ā · pq
sont dans la même SL(O)-orbite pour tout p

q ∈ P
1(Q) cöıncide avec SL(O)/{±I}. Cela nous invite à

introduire la notion suivante. Soit G un groupe agissant transitivement sur un ensemble M , un sous-
groupe Γ ⊆ G est dit M-contraint si le stabilisateur de toutes les Γ-orbites sur M est exactement Γ.
Pour G = PSL2(Z), nous montrons :

Théorème (6.3). Il existe une infinité de sous-groupes Γ ⊆ PSL2(Z) d’indice fini qui ne sont pas
P1(Q)-contraints.



Chapter 2
Conception

2.1 Translation surfaces

In this work, a surface is a two-dimensional topological manifold that is not necessarily connected.
LetMg denote the moduli space of compact connected Riemann surfaces of genus g ≥ 1. This space is
defined as follows. First, fix a compact connected orientable topological surface S of genus g. Second,
consider the space Cg of all complex structures on S. Finally, say that two complex structures are
equivalent if there exists an orientation preserving homeomorphism of S carrying one structure to the
other. We obtain, thus, the moduli space

Mg = Cg/Diff+(S),

where Diff+(S) is the group of orientation-preserving homeomorphisms of S acting on Cg by pullback.
If M is a compact connected Riemann surface of genus g ≥ 1, then the vector space Ω(M) of

holomorphic 1-forms on M (also called Abelian differentials) has dimension g over C. The moduli
space of Abelian differentials, denoted by ΩMg, forms a natural vector bundle over the space Mg. A
point (M,ω) of ΩMg consists of a Riemann surface M ∈ Mg equipped with a holomorphic 1-form
ω ∈ Ω(M). Such a pair (M,ω) is called a connected translation surface if ω 6= 0. An arbitrary,
not necessarily connected, translation surface is just a finite disjoint union of connected translation
surfaces.

We are going to explain the term ‘translation’ involved here. Let Σ = {Z1, . . . , Zs} be the set of
zeros of the 1-form ω. In local coordinates, outside Σ, this form can be written as ω = dz. Indeed, if
ω = f(v)dv in a chart (U, v) on M with U ∩ Σ = ∅, then for a point P0 ∈ U we take

z(P ) :=

∫ P

P0

ω

for any P ∈ U . Furthermore, defining in such a way local coordinates z0 and z1 on two charts (U0, v0)
and (U1, v1) for some base points P0 ∈ U0 and P1 ∈ U1, we will have

z0(P )− z1(P ) =

∫ P

P0

ω −
∫ P

P1

ω =

∫ P1

P0

ω = c ∈ C

constantly, for any point P ∈ U0 ∩ U1. Therefore, the transition maps are just translations.
A graphic way of constructing translation surfaces consists in taking a finite set of polygons in the

real plane R2 and gluing pairs of their sides: every side is identified by translation to another one.
As for a neighbourhood of a zero, in an appropriate local coordinate z the holomorphic 1-form ω

can be written as ω = zddz, where d is the multiplicity (or order) of the zero. Since zddz = d
(
zd+1

d+1

)
,

the zero is a conical point with cone angle 2π(d + 1). For example, the vertices of the polygon in

25
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≥

Figure 2.1: A translation surface as a polygon with identification of pairs of sides.

Figure 2.1 after gluing the pairs of sides with the same marking will turn into one conical singularity
of angle π(8− 2) = 2π(2 + 1).

By the Gauss-Bonnet formula we have

s∑
i=1

di = 2g − 2,

where di is the multiplicity of the zero Zi.
The connected translation surfaces (M,ω) such that ω has zeros of orders d1, . . . , ds form a stratum

H(d1, . . . , ds) in ΩMg. This stratum may be naturally endowed with a structure of complex-analytic
orbifold of dimension

dimCH(d1, . . . , ds) = 2g + s− 1,

while dimCMg = 3g − 3.
For example, in genus 2, we have a decomposition of the moduli space of Abelian differentials into

ΩM2 = H(1, 1)tH(2), where dimCH(1, 1) = 5 and dimCH(2) = 4.

2.2 Square-tiled surfaces and their monodromy groups

A special ‘integer’ case of translation surfaces is that of the surfaces which can be tiled by squares.
To every translation surface (M,ω) corresponds a class [ω] ∈ H1(M,Σ; C) in the relative coho-

mology group, where Σ = {Z1, . . . , Zs} is the set of zeros of the holomorphic 1-form ω. The cohomol-
ogy space H1(M,Σ; C) contains a natural integer lattice H1(M,Σ; Z ⊕

√
−1Z). In the case where

[ω] ∈ H1(M,Σ; Z ⊕
√
−1Z), all relative periods of ω are integer-valued, that is,

∫ Zk
Zj

ω ∈ Z ⊕
√
−1Z

for any j, k ∈ {1, . . . , s}. Consider then the map f from M to the standard torus T2 = C/(Z⊕
√
−1Z)

set by

f : P 7→
(∫ P

Z1

ω

)
mod Z⊕

√
−1Z,

where P ∈ M . Since f is holomorphic and onto, it is a ramified covering. Moreover, it has exactly s
ramification points – the zeros Z1, . . . , Zs of ω, they project to 0 ∈ T2.

Conversely, a covering M → T2 ramified only above the origin gives rise to a translation surface
(M,ω) whose cohomology class [ω] belongs to H1(M,Σ; Z ⊕

√
−1Z), and we suggest the following

definition:

Definition 2.1. A square-tiled surface, or else an origami , is a translation surface corresponding to
a covering of the torus T2 unramified everywhere except, possibly, above the origin1.

1Note that, by definition, it is not compulsory for an origami to be a connected surface.
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The torus itself is obtained from a unit square by identifying the opposite sides, and the preimages
of that square under the covering f : M → T2 provide a tiling of M . Therefore, an origami can be
viewed as a finite collection of copies of the unit square {z ∈ C | 0 ≤ <(z),=(z) ≤ 1} together with a
gluing of edges: the right edge of each square is identified to the left edge of some square and the top
edge of each square is identified to the bottom edge of some square. Examples of origamis represented
in such a way are shown in Figure 2.2, where any boundary edge without marking is identified
with its opposite boundary edge (in the horizontal or the vertical direction).

Let O = (M,ω) be an origami with n squares. This origami can be encoded by a pair of permuta-
tions (σ, τ) ∈ Sn × Sn, where Sn denotes the symmetric group on the set {1, . . . , n}. Indeed, number
the squares by integers 1, . . . , n, and define the permutations as follows2:

σ(i) = j, if the right edge of the ith square is glued to the left edge of the jth one;

τ(i) = k, if the top edge of the ith square is glued to the bottom edge of the kth one.

Since renumbering of the squares causes conjugation of σ and τ by the same permutation, an n-square-
tiled surface corresponds to the diagonal conjugacy class of (σ, τ), that is, to an element of the set
(Sn × Sn)/Inn(Sn) of orbits under the diagonal action of the group of inner automorphisms.

Obviously, the origami O represented by a pair (σ, τ) is connected if only if the permutation
subgroup gp {σ, τ} generated by the permutations σ and τ is transitive. Besides, it is the commutator
[σ, τ ] = στσ−1τ−1 that indicates to which stratum the origami belongs: if [σ, τ ] is a product of s
nontrivial disjoint cycles of lengths (d1 + 1), . . ., (ds + 1), then we have O ∈ H(d1, . . . , ds).

Trivial origamis T (m,n)

n

m

Tress origamis X(2n)

2n

Corner origamis L(m,n)

n

m

Stair origamis E(2n− 1) and E(2n)

n steps

Figure 2.2: Some well-known series of origamis.

Definition 2.2. We call a monodromy group of an origami O the group gp {σ, τ} generated by two
permutations representing O, and denote it by Mon(O).

In fact, for a given n-square-tiled surface O such a definition does not determine its monodromy
group uniquely, but only up to conjugation in Sn. However, what we really mean here is thatMon(O)
is being regarded as an abstract group (isomorphism class), and also we keep in mind an embedding
into the symmetric group Sn. More precisely, if we have

� a finite two-generator group G,
� a pair of generators (g, h) of G,
� a faithful representation ρ : G ↪→ Sn,

2If ν is a permutation on a set V , then ν(x), or ν · x, denotes the image of x ∈ V under ν.
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then the pair of permutations (ρ(g), ρ(h)) gives an n-square origami O with Mon(O) ' G. Further-
more, two triples (G, (g, h), ρ) and (G, (g, h), η) correspond to the same origami if and only if the
representations ρ and η are equivalent3.

The monodromy groups of well-known square-tiled surfaces are listed in Table 2.1, where Cn is
the cyclic group of order n and Dn is the dihedral group of order 2n. Let us, for example, explain
how we found the group of the corner origami L(m,n), where m,n > 1. This origami is represented
by the permutations σ = (1 2 . . . m) and τ = (m m+1 . . . m+n−1). It is a matter of direct
verification (see also [50] for a proof using Jordan’s theorem), that gp {σ, τ} is the whole symmetric
group Sm+n−1, unless both m and n are odd, in which case we get the alternating group Am+n−1.

Table 2.1: Characteristics of some origamis.

Origami Genus Stratum Monodromy group Primitivity4

T (m,n) 1 H(0) Cm × Cn
no, if mn is

composite

X(2n) n H(n−1, n−1) Cn ×Dn for n odd no, if n > 1

L(m,n)
for m,n > 1

2 H(2)
Am+n−1 for m,n odd,
Sm+n−1 otherwise

yes

E(2n−1) n H(2n−2) D2n−1
no, if 2n− 1 is

composite

E(2n) n H(n−1, n−1) D2n no, if n > 1

The word ‘monodromy’ is not used by chance. Let O = (M,ω) be the square-tiled surface cor-
responding to a covering f : M → T2 ramified above 0. If we puncture the origin 0 of the torus
and the points on the surface M belonging to the fiber f−1(0), we will obtain an unramified covering
f0 : M0 → T2

0. Consider a point x ∈ T2
0, let Λ = f−1(x) be the fiber over x, so that |Λ| is the number of

squares of M . For any loop γ : [0, 1]→ T2
0 based at x and any point x̃ ∈ Λ, denote by γ · x̃ the endpoint

γ̃(1), where γ̃ is the lift of γ starting at x̃. This gives a well-defined action of the fundamental group
π1(T2

0, x) ' F2 on the set Λ, that is, a homomorphism π1(T2
0, x) ↪→ Sym(Λ) into the symmetric group

on Λ. The image of this homomorphism is known as the monodromy group of the covering f0 with
base point x, and it is isomorphic to Mon(O). Choosing another base point results in conjugating
the group.

2.3 Primitivity

Let O = (M,ω) be a connected origami, and f : M0 → T2
0 the corresponding unramified covering of

the punctured torus. The preimage M0 = f−1(T2
0) is a finite union of open squares whose closure

tile O. Denote by Sq(O) the set of these squares. The origami O is encoded by two permutations
σ, τ ∈ Sym(Sq(O)) corresponding to gluing to the right and to the top respectively. We say that O

3Permutation representations ρ : G → Sym(V ) and η : G → Sym(V ′) are equivalent if there exists a bijection
λ : V → V ′ such that λ(ρ(u) ·x) = η(u) ·λ(x) for all u ∈ G and x ∈ V . In the case that V = V ′ this means the following:
for some α ∈ Sym(V ) we have η(u) = αρ(u)α−1.

4See the definition of primitivity in Section 2.3.
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covers an origami O′ = (M ′, ω′) if the following diagram

M M ′

T2

p

f f ′

(2.1)

commutes for a ramified covering p. Moreover, we say that O is a proper ramified covering of O′ if
the degrees of the ramified coverings p and f ′ are greater than 1. Interpreting the former definition
in terms of permutations, we have:

Proposition 2.1. Consider two connected square-tiled surfaces O and O′ represented by permutations
σ, τ ∈ Sym(Sq(O)) and σ′, τ ′ ∈ Sym(Sq(O′)). The origami O covers the origami O′ if and only if
there exists a function

π : Sq(O)→ Sq(O′) such that π ◦ σ = σ′ ◦ π and π ◦ τ = τ ′ ◦ π.

Proof. ⇐= Suppose such a function π exists, then it must be surjective since the origami O′ is
connected (that is, the group gp {σ′, τ ′} is transitive). Let Sq(O) = {D1, . . . ,Dn}. If two squares
Di and Dj are glued in one direction, say σ(Di) = Dj , then so are the squares π(Di) and π(Dj), as
π(Dj) = σ′(π(Di)). Therefore, define p to be a mapping from O to O′ projecting a square Di to π(Di).
This is a ramified covering and we have the commutative diagram (2.1).
=⇒ Suppose the diagram (2.1) commutes. If the right (top) edge of a square Di of O is glued to the

left (bottom) edge of a square Dj , then obviously the same is true for the squares p(Di) and p(Dj) of
the origami O′. Therefore, we can take π : Di 7→ p(Di).

Definition 2.3. A connected square-tiled surface (M,ω) is called primitive5 if it is not a proper
ramified covering of another square-tiled surface.

Let us see what it means in terms of permutations. A nonempty subset ∆ of Λn = {1, . . . , n} is
called a block for a permutation group G ⊆ Sn if, for each α ∈ G, either α(∆) = ∆ or α(∆)∩∆ = ∅. In
particular, the singletons {x} and the whole set Λn are blocks, which are called trivial . A permutation
group G is said to be primitive if it has no nontrivial blocks.

It is easy to see that a primitive permutation group is automatically transitive. The inverse is not
always true when n is composite: a transitive group can have a nontrivial block ∆, and, if it does, the
images α(∆) form a G-invariant partition of Λn in which all parts have equal size 1 < |∆| < n. In
this case |∆| must divide n. This observation can also be stated as:

Lemma 2.2. Let G be a transitive permutation group on V , and x ∈ V . Then G is primitive if and
only if the only blocks containing x are {x} and V .

The following lemma and proposition are useful criteria for a group and an origami, respectively,
to be primitive:

Lemma 2.3. A transitive permutation group G on a set V is primitive if and only if the point
stabilizers Gx (x ∈ V ) are maximal subgroups of G.

Proof. Recall that in a transitive permutation group all point stabilizers are conjugate.
⇐= If G is not primitive and ∆ ⊂ V is a nontrivial block, then for any x ∈ ∆ the subgroup Gx is

not maximal, since it is properly contained in the subgroup

G∆ := {α ∈ G | α(y) ∈ ∆ for any y ∈ ∆} 6= G.

5In some articles the notion of primitivity stands for a different property. We will also introduce reduced origamis in
Section 2.6.
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=⇒ Conversely, suppose that a subgroup Gx is not maximal, Gx � H � G. Let us show that the
orbit ∆ = H · x is a nontrivial block for G. First, ∆ 6= {x} and ∆ 6= G, since H 6= Gx and H 6= G
respectively. Second, if for some α ∈ G and β, γ ∈ H we have α(β(x)) = γ(x) ∈ ∆ then γ−1αβ ∈ Gx.
Therefore, α ∈ H and α(∆) = ∆. Thus ∆ is a nontrivial block for G, and G is not primitive.

Proposition 2.4. A connected n-square-tiled surface O is primitive if and only if its monodromy
group Mon(O) ⊆ Sn is primitive.

Proof. Let (σ, τ) ∈ Sn × Sn be a pair of permutations corresponding to the n-square-tiled surface O,
so that we have Mon(O) = gp {σ, τ}.
=⇒ Suppose that the permutation group G =Mon(O) is not primitive, i.e. that it has a nontrivial

block ∆ ⊂ Λn = {1, . . . , n}. Denote by B = {∆1, . . . ,∆k} the G-orbit of the block ∆, it gives a
G-invariant partition of Λn, since G is transitive. The action of σ and τ on the set B induces two
permutations σ′ and τ ′ from Sym(B) ' Sk respectively. Let O′ be the origami represented by (σ′, τ ′).
We affirm that the ramified covering f ′ : O′ → T2 factorizes the ramified covering f : O → T2 (see an
example in Figure 2.3).

1 2 3

4

5 6 7

8

9 10 11

12

≡

≡ −

=−
=

− −= =

σ = (1 2 3 5 6 7 9 10 11)(8 12),

τ = (1 4)(3 7 11)(5 8)(9 12)

∆ = {1, 5, 9} {2, 6, 10} {3, 7, 11}

{4, 8, 12}

σ

τ

σ

τ

σ

τ

σ

τ

Figure 2.3: The left origami covers the origami induced by the graph on the right.

Indeed, define a map p : O → O′ such that, for all 1 ≤ i ≤ k, the squares of O enumerated by integers
from the block ∆i ⊂ Λn project to the ∆i-th square of O′ (i.e. the one enumerated by ∆i ∈ B). By
construction of the origami O′, if the right (resp. top) edge of the a-th square of O is identified with
the left (resp. bottom) edge of the b-th square of O, then the same is true for the ∆i-th and ∆j-th
squares of the origami O′, where a ∈ ∆i and b ∈ ∆j . Thus, the map p is a well-defined ramified
covering, and O is not primitive.
⇐= Conversely, suppose that the following diagram of ramified coverings

O O′

T2

p

f f ′

commutes for some origami O′ different from O and T2. Let D ⊂ O′ be the interior of one of the
squares by which the surface O′ is tiled (the open square D is projected by f ′ onto the torus T2

deprived of two loops). Consider the preimage p−1(D), it is a disjoint union of open squares from
the tiling of O. Denote by ∆D ⊂ Λn = {1, . . . , n} the subset of integers enumerating these squares.
Obviously, the set B = {∆D | D is an open square of O′} forms a nontrivial partition of Λn. We want
to show that this partition is invariant under the action of the permutations σ and τ and, thus, is
G-invariant, where G =Mon(O) = gp {σ, τ}. Indeed, for any open square Di ⊂ O′, the integers from
the set σ(∆Di) ∪ τ(∆Di) correspond to the squares which are glued to the squares of O enumerated
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by integers from ∆Di . Therefore, we have σ(∆Di) = ∆Dj and τ(∆Di) = ∆Dk , where Dj is the square
glued to the right edge of Di and Dk is the one glued to the top edge of Di. So, the partition B is
G-invariant, and the permutation group G is not primitive.

It is evident that the alternating and symmetric groups of degree n > 2 are transitive and primitive.
An old conjecture of Eugen Netto [72, 1892], which is now a theorem of John D. Dixon proved in [24,
1969], states that the probability that a random pair of permutations from Ad generates the entire Ad
tends to 1 as d → ∞. As László Babai showed in [6, 1989], the probability has the asymptotic form
1− 1/n+O(1/n2).

Question 2.1. Let pn be the probability that a random pair (σ, τ) of permutations from Sn, such
that the commutator [σ, τ ] = στσ−1τ−1 is conjugate to a given even permutation, generate Sn or An.
Is it true that pn tends to 1 as n→∞? (For instance, is the following limit

lim
n→∞

# {(σ, τ) ∈ Sn × Sn | [σ, τ ] is a 3-cycle and gp {σ, τ} = Sn or An }
# {(σ, τ) ∈ Sn × Sn | [σ, τ ] is a 3-cycle}

equal to 1, where #M denotes the cardinal of a set M?)

The following classical theorem will be of interest to us:

Theorem 2.5 (Jordan [52], 1873). Let G be a primitive subgroup of Sn.

1. If G contains a transposition then G = Sn.

2. If G contains a 3-cycle then G ⊇ An.

3. In general, if G contains a cycle of prime order p 6 n− 3, then either G = An or G = Sn.

We refer the reader to Helmut Wielandt’s textbook [98, 1964] for a proof (e.g. Theorem 13.9). See
also the article [50, 1995] giving an elementary proof in the cases p = 2 and 3.

Since the result of Camille Jordan, several generalisations have been achieved. One of them is the
theorem below (that can be found in the book [25], see Theorems 5.3A and 5.4A). For a permutation
σ ∈ G acting on a set V denote by supp(σ) its support , i.e. the set of moved points, and let m(G) be
the minimal degree of G defined as the minimum of |supp(σ)| over all nontrivial elements in G:

supp(σ) := {v ∈ V | σ(v) 6= v} and m(G) := min |supp
σ∈G, σ 6=1

(σ)|.

Theorem 2.6 (Babai [4]-[5], 1981-1982, and Pyber [80], 1991). For every primitive permutation group
G of degree n which does not contain the alternating group, we have n < 4(m(G))2. Moreover, if G is
2-transitive, then n ≤ (m(G)− 1)2 and n ≤ 8m(G).

Corollary 2.7. In the stratum H(d1, . . . , ds) the monodromy group of any primitive origami with at

least 4(s+
s∑
i=1

di)
2 squares is equal to An or Sn.

The corollary follows from the fact that the commutator of two permutations representing an origami
from H(d1, . . . , ds) is a product of s cycles of orders (d1 + 1), . . . , (ds + 1), and therefore its support
contains exactly

s+
s∑
i=1

di = s+ 2g − 2 = dimCH(d1, . . . , ds)− 1

points, where g is the genus of the origami.
Within a fixed stratum, the corollary tells us that for n large enough, all primitive n-square-tiled

surfaces will have the monodromy group An or Sn. An estimation of the starting moment for n to
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have such a property is given by the corollary in an effective way but not optimally. For instance, in

the stratum H(1, 1), we have 4(s +
s∑
i=1

di)
2 = 4(2 + 1 + 1)2 = 64, however, as we shall establish in

Section 3.4, the monodromy group of a primitive origami with n > 7 squares must be An or Sn (and
7 < 64).

2.4 Nielsen equivalence and T -systems

An important technical tool of the combinatorial group theory are Nielsen transformations (see [62]
or [61]). Recall the definition. Let G be a group and let (g1, . . . , gk) be an ordered k-tuple of its
elements. The following operations are called elementary Nielsen moves:

(N1) interchange gi and gj , where i 6= j;

(N2) replace gi by g−1
i ;

(N3) replace gi by gigj or gjgi, where i 6= j.

A composition of such elementary operations is a Nielsen transformation. The set of Nielsen
transformations of Gk = G× . . .×G︸ ︷︷ ︸

k

is denoted by NT(Gk). One has a well-defined equivalence

relation on Gk: two k-tuples g and g′ of elements of G are said to be Nielsen equivalent if there exists
a Nielsen transformation mapping one tuple to another. Write g

N∼ g′. Notice that the set NT(Gk)
forms a subgroup of permutations on Gk, and the Nielsen equivalence classes are the transitivity sets
for this subgroup.

Besides, a Nielsen transformation carries any generating vector (that is, a tuple of elements which
generates G) to a generating vector. In particular, a Nielsen transformation of a free basis of the
free group Fk defines an automorphism of Fk: with a Nielsen transformation sending (x1, . . . , xk) to
(y1, . . . , yk) we associate the automorphism (x1, . . . , xk) 7→ (y1, . . . , yk). Let x1, . . . , xk be a free basis
of Fk, the following automorphisms are called elementary :

(A1) xi 7→ xj , xj 7→ xi, xl 7→ xl (l 6= i, j);

(A2) xi 7→ x−1
i , xl 7→ xl (l 6= i);

(A3) xi 7→ xixj or xjxi, xl 7→ xl (l 6= i).

The classical results of Jacob Nielsen give us valuable information about the free group F2 = 〈x, y〉
of rank two:

Theorem (Nielsen [75], 1917).

1. The automorphism group Aut(F2) is generated by the elementary automorphisms on x, y, and
all pairs of generators of F2 form a single Nielsen equivalence class.

2. (Nielsen’s commutator test) A pair (a, b) of elements of F2 is Nielsen equivalent to (x, y) if and
only if [a, b] is conjugate to [x, y]±1.

3. One has an exact sequence

0→ Inn(F2) −→ Aut(F2)
Φ−→ GL(2, Z)→ 0,
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for the homomorphism

Φ : γ 7−→
(
ex(γ(x)) ex(γ(y))
ey(γ(x)) ey(γ(y))

)
,

where ex(w) and ey(w) are the sums of the exponents of x and y, respectively, in the word w ∈ F2.

The first statement of this theorem holds for a free group of any finite rank (also proved by Nielsen,
see [76]): the group Aut(Fk) is generated by the elementary automorphisms on a free basis. We would
like to make three important remarks, of which the reader should be aware:

– It is easy to check that if an elementary Nielsen move sends a pair (g, h) of elements of a group
G to (g′, h′), then [g, h] is conjugate to [g′, h′]±1. This observation gives us the first invariant
of the Nielsen equivalence classes, namely, the union of two conjugacy classes [g, h]G ∪ [h, g]G,
where uG stands for the set

{
g−1ug | g ∈ G

}
. For instance, in the alternating group A5 the

commutator of a generating pair is either a 3-cycle or a 5-cycle. Since both can occur, for
[(1 2 3), (1 2 3 4 5)] = (1 2 4) and [(1 3 4 2 5), (1 2 3 4 5)] = (1 4 5 2 3), there are at least two
nontrivial Nielsen equivalence classes in A5.

Using the commutator invariant, Robert Guralnick and Igor Pak [34] showed that the number of
Nielsen classes in PSL(2, Fp) is unbounded as p → ∞. Such a result was generalised by Shelly
Garion and Aner Shalev [30] to other families of finite simple groups. As for the case that G is
infinite, in particular we know that the group of a torus knot G(p, q) = 〈g, h | gp = hq 〉, where
p, q > 1 and p + q > 4, has infinitely many distinct Nielsen classes of generating pairs (Heiner
Zieschang [100]).

In contrast to the case of F2, the commutator invariant is not always complete. For example,
in the alternating group A6 the permutations σ = (1 3 6), τ = (1 2 3 4 5) and σ′ = (1 3)(2 6),
τ ′ = (1 2 6 4 5) satisfy [σ, τ ] = [σ′, τ ′] = (1 3 6 4 2). However, the generating pairs (σ, τ) and
(σ′, τ ′) belong to distinct Nielsen classes (and even to distinct T -systems, a consequence of
calculations by Daniel Stork [89]).

– Let us illustrate an easy criterion for two tuples to be Nielsen equivalent (confining ourselves to
the case k = 2). Consider a two-generator group G, and let (g, h) and (g′, h′) be two generating
pairs of G (see Figure 2.4). By Nielsen’s theorem, given free bases (x, y) and (x′, y′) of F2,
there always is a sequence ε1, ε2, . . . , εm of elementary Nielsen moves carrying the pair (x, y) to
(x′, y′). Applying analogous moves to (g, h) we will get another generating pair (gm, hm), and

(x, y)
(x1, y1)

. . .

(xm, ym) = (x′, y′)
ε1 ε2 εm

F2

(g, h)
(g1, h1)

. . .

(gm, hm)
(g′, h′)

ε1
ε2 εm

G

f
f

f
f ′

Figure 2.4: Nielsen equivalence classes.

it will coincide with (g′, h′) if and only if the epimorphism f : F2 � G, x 7→ g, y 7→ h also sends
the pair (x′, y′) to (g′, h′).
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– We already mentioned that a Nielsen transformation of a free basis of Fk gives rise to an ele-
ment of Aut(Fk). We are going to give a generalisation to this, as a corollary to an easy but
fundamental theorem of Walther Dyck (see [20], page 8).

Theorem (Dyck [26], 1882). Let H = 〈X; R〉 and K be groups. Given a mapping ψ : X → K
there exists a homomorphism Ψ : H → K such that

Ψ(x) = ψ(x) for any x ∈ X

if and only if the set ψ(X) ⊂ K satisfies the relations R. Moreover, the homomorphism Ψ is
uniquely determined.

Proof. ⇐= For any x1, . . . , xk ∈ X and ε1, . . . , εk ∈ {−1, 1}, we put Ψ(xε11 · . . . ·x
εk
k ) = ψ(x1)ε1 ·

. . . · ψ(xk)
εk . As soon as ψ preserves the relations R, the mapping Ψ is well-defined and a

homomorphism. It is unique, because X generates H. =⇒ Obvious.

Since an action of a group H on a set V is given by a homomorphism from H to the symmetric
group Sym(V ), we immediately obtain:

Corollary 2.8. Let H = 〈X | (Rk(X))k∈K 〉 be a presentation of H with X = (xi)i∈I . Suppose
that to each generator xi ∈ X corresponds a permutation αi of a finite set V . Then these per-
mutations determine (uniquely) an action of the group H on the set V if and only if Rk((αi)i∈I)
is the identity permutation of V for all k ∈ K.

We have the following corollary (cf. [62], p. 134):

Corollary 2.9. Let G = 〈g1, . . . , gk; R〉 be a hopfian6 group, and let ψ : Gk → Gk be a Nielsen
transformation sending the tuple (g1, . . . , gk) to (h1, . . . , hk). There exists an automorphism Ψ
of G such that

Ψ(gi) = hi for any 1 ≤ i ≤ k

if and only if the tuple (h1, . . . , hk) satisfies the relations R.

Proof. ⇐= Suppose that the tuple (h1, . . . , hk) satisfies the relations R. Then, according to
Dyck’s theorem, there exists a homomorphism Ψ : G→ G with the property that Ψ(gi) = hi for
any 1 ≤ i ≤ k. It is surjective, because (h1, . . . , hk) is a generating vector of G. Since the group
G is hopfian, the epimorphism Ψ must be automorphism.

=⇒ Conversely, if there exists such an automorphism Ψ ∈ Aut(G), then for any relation
W (g1, . . . , gk) = 1 we automatically have W (h1, . . . , hk) = Ψ(W (g1, . . . , gk)) = 1.

Let G be a finite group, let d(G) be the minimal number of generators in G, and for k ≥ d(G)
denote by Gk(G) the set of k-tuples generating G. The group Aut(Fk) acts on this set by Nielsen
transformations, and the orbits are just the Nielsen equivalence classes. More accurately, if we fix a
free basis (x1, . . . , xk) of Fk, then Gk(G) can be identified with the set of epimorphisms Epi(Fk, G) =
{f : Fk � G}. Indeed, a surjective homomorphism f sends (x1, . . . , xk) to a generating k-tuple of the
group G, and any generating k-tuple of G is obtained in such a way due to the universal property of
the free groups. From this point of view, the left action of Aut(Fk) on Gk(G) is given by composition

γ · f = f ◦ γ−1 for γ ∈ Aut(Fk) and f ∈ Epi(Fk, G).

6A group is called hopfian if it is not isomorphic to any of its proper quotients. For instance, finite groups and
finitely-generated free groups are hopfian. In 1951, Graham Higman discovered a non-hopfian group G and a Nielsen
transformation ψ : (g1, . . . , gk) 7→ (h1, . . . , hk) such that the tuple (h1, . . . , hk) satisfies the relations of G but an auto-
morphism Ψ as in Corollary 2.9 does not exist.
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This action defines the same permutation subgroup on the set Gk(G) that the left action of NT(Gk)
does. Take, for instance, the automorphisms γ1 : x 7→ x, y 7→ yx−1 and γ2 : x 7→ xy−1, y 7→ y
of the free group F2, and compare them to the Nielsen transformations ε1 : (g, h) 7→ (g, hg) and
ε2 : (g, h) 7→ (gh, h). Since we have

(x, y) (x, yx) (xy, yxy)
γ−1
1 γ−1

2

,

γ1γ2 · [ (x, y) (g, h) ]
f

= γ1 · [ (x, y) (gh, h) ]
f ◦ γ−1

2

= [ (x, y) (gh, hgh) ]
f ◦ γ−1

2 ◦ γ−1
1

,
ε1ε2 · (g, h) = ε1 · (gh, h) = (gh, hgh),

the permutations of Gk(G) induced by γ1, γ2, γ1γ2 and ε1, ε2, ε1ε2 respectively are the same.
In fact, extending this reasoning to the action of Aut(Fk) on the set Gk by considering the set of

all homomorphisms Hom(Fk, G) instead of Epi(Fk, G), we obtain an epimorphism

Aut(Fk)� NT(Gk). (2.2)

And also we have Aut(Fk)� NT(Gk(G)) as a restriction of (2.2).
Now, consider the diagonal action of the group Aut(G) on Gk(G). This action commutes with that

of the group Aut(Fk), as we have

ϕ · (γ · f) = ϕ ◦ f ◦ γ−1 for ϕ ∈ Aut(G), γ ∈ Aut(Fk) and f ∈ Epi(Fk, G).

The orbits of the product Aut(Fk)×Aut(G) acting on the set Gk(G) are called the systems of transi-
tivity (or Tk-systems) of G. As a result, we have got new equivalence classes, larger than the Nielsen
ones: two generating vectors g = (g1, . . . , gk) and g′ = (g′1, . . . , g

′
k) lie in the same Tk-system if and

only if there exist an automorphism γ of Fk and an automorphism ϕ of G such that g′ = ϕ · (γ · g).
We denote the set of Aut(G)-orbits on Gk(G) by Ĝk(G).
Another way to obtaining the systems of transitivity comes from the action of Aut(Fk) on the set

of G-defining subgroups of Fk. A G-defining subgroup of Fk is a normal subgroup N such that Fk/N
is isomorphic to G. Clearly such subgroups are in one-to-one correspondence with the Aut(G)-orbits
of Gk(G), and the action of Aut(Fk) on Ĝk(G) is equivalent to its action on G-defining subgroups. For
if we have an exact sequence

1→ N −→ Fk
f−→ G→ 1,

then, for any automorphism γ ∈ Aut(Fk),

1→ γ(N) −→ Fk
f◦γ−1

−−−−→ G→ 1

is an exact sequence as well.
Systems of transitivity were introduced by Bernhard H. Neumann and Hanna Neumann in [73],

where they also discuss the significance of T -systems. A connection with the product replacement
algorithm and an overview of results can be found in Igor Pak’s article [79].

2.5 Real Veech groups

There is a natural action of GL+(2, R) on the moduli space ΩMg. Let A be a real matrix and (M,ω)
a translation surface. The new surface A ·(M,ω) = (M,A ·ω) is defined in local coordinates as follows:
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if (U, v) is a chart for ω, then (U,A ◦ v) is a chart for A · ω,

where v : U → C and A ◦ v : U
v→ C ' R2 A→ R2 ' C.

If the translation surface is presented as a polygon in the real plane, then the action is effectuated in
a common way (see Figure 2.5). The orientation of M being induced by the complex structure, any
matrix A ∈ GL+(2, R) preserves it.

−

=

≡ ≥ −

=

≡

≥ −

=

≡

≥ −

=

≡

≥

e−
π
√
−1
6

(
1 1
1 2

)

Figure 2.5: Action of a matrix on a translation surface.

As is easy to check, the GL+(2, R)-action on ΩMg doesn’t change orders of the zeros of holomor-
phic 1-forms, and thus descents to an action on each stratum. The stabilizer of a translation surface
(M,ω) is called its (real) Veech group. We will denote it by

Γ(M,ω) := StabGL+(2,R)(M,ω).

Note that translation surfaces are endowed with a choice of vertical direction. For instance, the

origamis and differ while isomorphic as Riemann surfaces.
Let us mention the action of some subgroups of GL+(2, R):

. the special linear group SL(2, R) preserves area;

. the diagonal group

{(
t 0
0 t

)
, t ∈ R

}
rescales the surface;

. the special orthogonal group SO(2, R) rotates the surface (or else its vertical direction), and
corresponds to multiplying the holomorphic 1-form by a complex number of norm one;

. the diagonal group

{(
et 0
0 e−t

)}
acts continuously on each stratum and induces a natural flow,

which is called the Teichmüller geodesic flow. A theorem of Howard Masur and William A.
Veech states that both actions of this group and the group SL(2, R) are ergodic on connected
components of normalized strata with respect to a well-defined measure (see [65], [94], and also
the survey [102] of Anton Zorich, pp. 464-465). Moreover, Artur Avila, Sébastien Gouëzel and
Jean-Christophe Yoccoz [3] proved the exponential rate of mixing for the Teichmüller geodesic
flow.

. the parabolic groups

{(
1 t
0 1

)}
and

{(
1 0
t 1

)}
shear the charts of the surface horizontally and

vertically, respectively, and determine the horocycle flows in strata.

Veech groups have been intensively studied since the late 1980s (e.g. [95]), in particular, with
the purpose of classifying closures of orbits of translation surfaces in a given stratum. Recently, the
closures of the SL(2, R)-orbits of elements (M,ω) ∈ ΩMg were fully described by Curtis T. McMullen
(see [68]) for genus g = 2. In the general case, this is an open problem.
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In fact, the Veech group of a translation surface (M,ω) is the derivative of its affine group. The
affine group Aff+(M,ω) is defined to be the subgroup of orientation-preserving homeomorphisms of
the surface M which keep the set Σ of zeros of ω invariant and which are given by affine maps in the
charts (U, z : P 7→

∫ P
P0
ω) outside Σ. So, an element f ∈ Aff+(M,ω) can be locally written as

f : z 7→ A ◦ z + c for some A ∈ SL(2, R) and c ∈ C,

where the matrix A is independent of the charts, since all transition maps are translations. This
provides a homomorphism

D : Aff+(M,ω)→ SL(2, R),

and the Veech group of the surface is just the image of D. One has an exact sequence

1→ Aut(M,ω) −→ Aff+(M,ω)
D−→ Γ(M,ω)→ 1,

where Aut(M,ω) is the automorphism group of (M,ω), consisting of those homeomorphisms of M
which preserve Σ and induce translations in the charts.

Martin Möller shows in [70] that the affine group of a generic surface of genus g ≥ 2 is trivial
or isomorphic to Z/2, where ‘genericity’ (in a stratum) means ‘all outside a countable union of real
codimension one submanifolds’. Therefore, the real Veech group of a translation surface from a stratum
H(d1, . . . , ds) 6= H(0) almost surely is trivial or {±I}.

Special attention has been paid to investigation of several properties of the Veech group of a
connected translation surface:

I Γ(M,ω) is always a discrete subgroup of SL(2, R), this fact is originally due to Veech [95], an
easy proof can be found in the article [96] of Yaroslav Vorobets;

I Γ(M,ω) is never cocompact , that is, in the natural quotient topology the space SL(2, R)/Γ(M,ω)
is not compact (see [46]);

I if Γ(M,ω) is a lattice in SL(2, R), that is, the quotient SL(2, R)/Γ(M,ω) is of finite volume,
then (M,ω) is called a Veech surface. A theorem of John Smillie states that in this case and
only this case the GL+(2, R)-orbit of (M,ω) is closed in its stratum (for a proof, see the paper
[69] of Yair Minsky and Barak Weiss).

Speaking of the geometry of Veech surfaces, let us first recall some notions. By a direction δ on
a given translation surface we mean the pullback of the straight lines of slope δ from R2 ' C
using the charts. A linear flow Fδ on (M,ω) is the map from M × R+ to M sending a pair
(P, t) to the point Pt such that the line segment from P to Pt has direction δ and length t. A
saddle connection is a geodesic segment for the flat metric |ω| joining a zero of ω to another
one (or to itself), and not containing any zero in its interior. The saddle connections lie on
orbits of the flows Fδ and bound cylinders, that is, maximal connected sets of homotopic simple
closed geodesics. The modulus of a cylinder equals µ = h/l, where h is its height and l is its
circumference.

The linear flow Fδ is called periodic if in the direction δ the surface decomposes into a finite
number of cylinders. The following important result is referred to as the Veech dichotomy or
alternative (see also [96]):

Theorem (Veech dichotomy [95]). If (M,ω) is a Veech surface, then for each direction δ the
flow Fδ is either uniquely ergodic or periodic with commensurable moduli of cylinders (i.e. the
ratio of any two moduli is rational).
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I if Γ(M,ω) is arithmetic, that is, commensurable7 to SL(2, Z), then the translation surface (M,ω)
is in the SL(2, R)-orbit of an origami. This fact together with the converse statement, which is
true, compose the well-known theorem of Eugene Gutkin and Chris Judge, see the papers [35]
and more detailed [36]. A proof different from the original one is given in [45].

2.6 Actions of GL(2, Z) on origamis

The action of the real special linear group SL(2, R) on translation surfaces descends to an action
of SL(2, Z) on square-tiled surfaces. This comes from the following fact: if all relative periods of ω

are integer-valued (i.e.
∫ Zk
Zj

ω ∈ Z ⊕
√
−1Z for any Zj , Zk ∈ Σ), then so are those of A ◦ ω for any

A ∈ SL(2, Z). In the real plane one applies a ‘cut-and-glue’ procedure to picture how an integer matrix
acts on an origami (see Figure 2.6, where parallel edges with the same marking are identified).
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Figure 2.6: Action of a matrix on an origami.

Given a connected square-tiled surface (M,ω), the linear combinations of the relative periods
∫ Zk
Zj

ω

with integer coefficients form a subgroup of Z⊕
√
−1Z, which is called the lattice of periods of ω and

denoted by Per(ω). The map p from M to the torus C/Per(ω) defined by

p : P 7→
(∫ P

Z1

ω

)
mod Per(ω), for any P ∈M and a fixed zero Z1 of ω,

is a covering ramified over 0. We have a commutative diagram

(M,ω)
p //

f

��

(C/Per(ω), dz)

f ′ww
(T2, dz)

where the degree of f ′ equals [Z⊕
√
−1Z : Per(ω)].

7In a group G two subgroups H and K are commensurable when for some G-conjugate Hg the intersection Hg ∩K
has finite index both in Hg and K.
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A connected origami will be called reduced when Per(ω) = Z⊕
√
−1Z. Thus, reduced square-tiled

surfaces are exactly those surfaces which do not cover a torus of area > 1 with one branch point. For
example, all primitive origamis are automatically reduced.

In theory, classification of square-tiled surfaces is brought to that of reduced surfaces. This is
explained by the first of the following properties:

a) Any origami belongs to the GL+(2, Q)-orbit of a reduced one. Indeed, for a square-tiled surface
(M,ω) let (e1, e2) be a basis of the lattice Per(ω) over Z and let A be the rational matrix sending
this basis to (1,

√
−1). Then the origami A · (M,ω) is reduced, because Per(A ·ω) = A ·Per(ω) =

Z⊕
√
−1Z.

b) For any reduced origami (M,ω), its real Veech group is a subgroup of SL(2, Z). Indeed, if a
matrix A preserves the origami, then it sends a saddle connection to a saddle connection and,
thus, preserves the lattice Per(ω) = Z⊕

√
−1Z. (One just has A·Per(ω) = Per(A·ω) = Per(ω) =

Z⊕
√
−1Z.)

c) The SL(2, Z)-orbit of a reduced origami (M,ω) consists of all reduced origamis in its SL(2, R)-
orbit. Indeed, another square-tiled surface (M,A · ω) with A ∈ SL(2, R) is reduced if and only
if A · Per(ω) = Z⊕

√
−1Z = Per(ω), that is, A ∈ SL(2, Z).

In view of the property b), one is interested in finding integer Veech groups of square-tiled surfaces,
namely, the following groups

SL(M,ω) := StabSL(2,Z)(M,ω) and GL(M,ω) := StabGL(2,Z)(M,ω).

We are now going to describe two actions of the integer linear group GL(2, Z), having the presen-
tation (2.3) below, on the set (Sn × Sn)∗ of conjugacy classes of pairs, that is, on the set of n-square
origamis. The first one – the natural (or else direct) action ‘·’ – is the restriction of the natural action
of GL(2, R) on the moduli space ΩMg, it will be given by (2.4). The second one – the dual action
‘×’ – corresponds to Nielsen transformations through the isomorphism GL(2, Z) ' Aut(F2)/Inn(F2),
it will be defined by the diagram (2.5). Stabilizers for the two actions will be related by (2.6). An
important property of the actions, as we will see, is that they don’t change the monodromy group of
an origami.

The natural action of GL(2, Z). Moving towards the description of a GL(2, Z)-action, let us
introduce the matrices

J =

(
1 0
0 −1

)
− axial symmetry, T =

(
1 1
0 1

)
− horizontal shear,

S =

(
0 −1
1 0

)
− rotation by π/2, U =

(
1 0
−1 1

)
− vertical shear.

As is well-known, the group GL(2, Z) is generated by J and any two of the other three matrices.
Consider the following presentations:

SL(2, Z) =
〈
T,U

∣∣ TUT = UTU, (TUT )4
〉
,

GL(2, Z) =
〈
T,U, J

∣∣ TUT = UTU, (TUT )4, J2, (JT )2, (JU)2
〉
.

(2.3)

We already mentioned that the natural action of the group SL(2, R) on the moduli spaces gives
an action of the group SL(2, Z) on the square-tiled surfaces. Defining in the standard manner an
orientation-reversing action of the matrix J , one gets an action of the general linear group GL(2, Z)
on the origamis. We call this action direct and write it as A · (M,ω).
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Let O be a square-tiled surface encoded by a pair of permutations (σ, τ) ∈ Sn × Sn, we write
O = (σ, τ)∗, where (σ, τ)∗ =

{
(µ−1σµ, µ−1τµ) | µ ∈ Sn

}
denotes the conjugacy class of (σ, τ). Our

affirmation is that the matrices above act on the origami O in the following way:

J · (σ, τ)∗ = (σ, τ−1)∗

S · (σ, τ)∗ = (τ−1, σ)∗

T · (σ, τ)∗ = (σ, τσ−1)∗

U · (σ, τ)∗ = (στ, τ)∗.

(2.4)

This can be rapidly checked by considering a geometric presentation of the origami O = (σ, τ)∗ in the
real plane. The matrix J reflects the squares with respect to the first coordinate axis, the matrix S
performs a counterclockwise rotation around the origin by angle π/2 as shown in the figure.
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The matrix T shears the squares horizontally, and we have to apply a cut-and-glue procedure: the
new ith square will contain the image of the bottom left triangle of the old ith square. Likewise we
do for U , which is a vertical shear.
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Therefore, the equalities (2.4) are correct. Moreover, just by looking at the actions of J , T and U , we
draw an important conclusion8:

the monodromy group Mon(O) is an invariant of the GL(2, Z)-orbit of O.

To be specific,Mon(O) = gp {σ, τ} gets conjugated inside Sn when another conjugacy class represen-
tative (σ, τ) for the origami O is chosen, but it does not change whatsoever as an abstract group.

Generalities: direct and dual actions of GL(2, Z). Recall that, for any group G, we have a left
action of Aut(F2) on the set G×G by Nielsen transformations. It is given by

γ · (g, h) := (w1(g, h), w2(g, h)), for any γ ∈ Aut(F2), such that γ−1 :

(
x 7→ w1(x, y)
y 7→ w2(x, y)

)
,

and any (g, h) ∈ G×G.

Since generators of the linear groups satisfy non-redundant relations, one cannot define a non-
trivial model action of GL(2, Z) on G × G as we did for Aut(F2). However, we shall introduce a
GL(2, Z)-action on the set (G × G)∗ = (G × G)/Inn(G) of conjugacy classes of pairs, by means of a
commutative diagram

8Announced by the author during his talk at the workshop Dynamics in the Teichmüller space, Roscoff, France, June
2008.
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Aut(F2)× (G×G) G×G

GL(2, Z)× (G×G)∗ (G×G)∗

(2.5)

It is constructed in details as follows:

(γ, (g, h)) (g′, h′)

(A, (g, h)∗) (g′, h′)∗

where (g, h)∗ denotes the conjugacy class of a pair (g, h), and

• γ is an automorphism of F2 = 〈x, y〉 such that γ−1 :

(
x 7→ w1(x, y)
y 7→ w2(x, y)

)
,

• (g′, h′) is equal to γ · (g, h) = (w1(g, h), w2(g, h)),

• A is the matrix such that A = Φ(γ), where Φ is the epimorphism from Nielsen’s theorem giving
the exact sequence

0→ Inn(F2)→ Aut(F2)
Φ−→ GL(2, Z)→ 0, Φ : γ 7−→

(
ex(γ(x)) ex(γ(y))
ey(γ(x)) ey(γ(y))

)
,

ex(w) and ey(w) denote the sums of the exponents of x and y, respectively, in the word w ∈ F2.

For instance, if γ :

(
x 7→ xy
y 7→ y

)
then

γ−1 :

(
x 7→ xy−1

y 7→ y

)
, γ · (g, h) = (gh−1, h), A = Φ(γ) =

(
1 0
1 1

)
,

and so (A, (g, h)∗) = (gh−1, h)∗.

The action of GL(2, Z) on the set (G×G)∗ defined by the diagram (2.5) will be called direct and
written as A · (g, h)∗. Remark that, in the case where G = Sn, the direct action coincides with the
natural action of GL(2, Z) on the origamis.

If we replace in the definition above the equality A = Φ(γ) by the equality A =
(
Φ(γ−1)

)t
, then we

will obtain another GL(2, Z)-action on (G×G)∗. We will call that action dual , and write A×(g, h)∗.
For instance, we have

(
1 0
1 1

)
· (g, h)∗ = (gh−1, h)∗,

(
1 0
1 1

)
×(g, h)∗ = (g, gh)∗,

but (
1 −1
0 1

)
×(g, h)∗ = (gh−1, h)∗.
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Let us give several examples for the dual action (checking, by the way, that the relators in the
presentations (2.3) induce the identity permutation on the set (G×G)∗):

J×(g, h)∗ = (g, h−1)∗,
T×(g, h)∗ = (gh, h)∗,
U×(g, h)∗ = (g, g−1h)∗,

TUT×(g, h)∗ = TU×(gh, h)∗ = T×(gh, h−1g−1h)∗ = T×(hg, g−1)∗ = (h, g−1)∗,
UTU×(g, h)∗ = UT×(g, g−1h)∗ = U×(h, g−1h)∗ = (h, h−1g−1h)∗ = (h, g−1)∗,

(TUT )4×(g, h)∗ = (TUT )2×(g−1, h−1)∗ = (g, h)∗,
J2×(g, h)∗ = (g, h)∗,

(JT )2×(g, h)∗ = JT×(gh, h−1)∗ = (g, h)∗,
(JU)2×(g, h)∗ = JU×(g, h−1g)∗ = (g, g−1hg)∗ = (g, h)∗,

The stabilizers of a conjugacy class (g, h)∗ for the direct and dual actions will be denoted respec-
tively by

GL(g, h) := {A ∈ GL(2, Z) | A · (g, h)∗ = (g, h)∗} ,
GL×(g, h) := {A ∈ GL(2, Z) | A×(g, h)∗ = (g, h)∗} .

In particular, when G = Sn, the elements of the set (Sn × Sn)∗ encode the n-square-tiled surfaces.
The stabilizer GL(O) of an origami O = (σ, τ)∗ for the direct action is the integer Veech group, the
stabilizer GL×(O) for the dual action will be called the dual (integer) Veech group.

In general, the direct and dual stabilizers are not the same thing. We shall see how they are
related. One may notice that

J · (g, h)∗ = J×(g, h)∗ = (J−1)t×(g, h)∗,

T · (g, h)∗ = U×(g, h)∗ = (T−1)t×(g, h)∗,

U · (g, h)∗ = T×(g, h)∗ = (U−1)t×(g, h)∗.

By these relations and the fact that GL(2, Z) is generated by the matrices J , T and U , we conclude
that the stabilizer GL(g, h) is obtained from the stabilizer GL×(g, h) by transposing its elements:

GL(g, h) = (GL×(g, h))t .

And so we have
GL(O) = (GL×(O))t , (2.6)

in the case where G = Sn.

2.7 Labeled digraphs

By a labeled digraph we mean a triple (V,E,L) consisting of a set V , a totally ordered alphabet L
and a subset E ⊂ V × V ×L. The elements of V are called vertices, those of E edges and those of L
labels. If the alphabet L = {l1, . . . , lk} has k letters and for any i from 1 to k there is an edge with
label li, then the digraph is also called k-labeled . We say that a finite sequence of edges (v0, v1, li1),
(v1, v2, li2), . . . , (vp−1, vp, lip) is a directed path from v0 ∈ V to vp ∈ V . A path is closed if v0 = vp.

An isomorphism between two labeled digraphs (V,E,L) and (V ′, E′,L′) is a pair of bijections
f : V → V ′ and φ : L → L′, such that φ respects order and we have (u, v, l) ∈ E if and only if
(f(u), f(v), φ(l)) ∈ E′.
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Along with L and E, we consider the set of inverse labels L−1 = {l−1
1 , . . . , l−1

k } and the set of inverse
edges E−1 = {(v, u, l−1) | (u, v, l) ∈ E}. It allows us to introduce an undirected path as a sequence of
edges (v0, v1, l

ε1
i1

), (v1, v2, l
ε2
i2

), . . . , (vp−1, vp, l
εp
ip

) from E ∪ E−1, where ε1, ε2, . . . , εp ∈ {1,−1}.

Definition 2.4. Let V be a finite set and let O be an origami corresponding to a pair of permutations
(σ1, σ2) ∈ Sym(V )× Sym(V ). We define a digraph of the square-tiled surface O, or else an origamal
digraph of O, to be a 2-labeled digraph (V,E,L) with the set of vertices V , an ordered alphabet
L = {l1, l2}, l1 ≺ l2, and the set of edges

E =
⋃
i=1,2

{(v, σi(v), li) | v ∈ V }.

The labels l1 and l2 correspond to the horizontal and vertical directions respectively. For any vertex
v ∈ V and any label li ∈ L of an origamal digraph (V,E,L), there is exactly one edge with label li
beginning at v and one edge with label li ending at v. Therefore any path (v0, v1, l

ε1
i1

), (v1, v2, l
ε2
i2

), . . . ,

(vp−1, vp, l
εp
ip

) is uniquely determined by the initial point v0 ∈ V and the labels lεmim ∈ L ∪ L
−1. We

denote such a path by l
εp
ip
. . . lε2i2 l

ε1
i1

[v0], and by l
εp
ip
. . . lε2i2 l

ε1
i1
· v0 its endpoint vp.

Two 2-labeled digraphs stand for the same origami if and only if they are isomorphic. The digraph
of the origami defined by the permutations σ1 = (1 2 3) and σ2 = (1 4) is shown in Figure 2.7, where
V = {1, 2, 3, 4}, the edges with label l1 are solid, and those with label l2 are dashed.

1 2 3
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4

>

>

>

<

>

Figure 2.7: A digraph of the origami L(3, 2).

2.8 The main idea of construction

Given a two-generator9 group G acting on a finite set V , we can construct origamis associated to
this action. Indeed, we have a permutation representation ρ : G → Sym(V ), and for any generating
set {g, h} of G the pair (ρ(g), ρ(h)) defines an n-square origami O, where n = |V |. The number of
connected components of O is equal to the number of orbits under the action of G, so that O is
connected if and only if this action is transitive.

Whenever the representation ρ is faithful (i.e. ker ρ = {1}), the monodromy group of the square-
tiled surface O is isomorphic to G: Mon(O) = gp {ρ(g), ρ(h)} ' G.

Among the most curious choices of the group G are classical groups. For instance, this can be a
finite nonabelian simple group (as Gunter Malle, Jan Saxl and Thomas Weigel proved in [63], such a
group is generated by two elements, one of which is an involution).

We will focus our attention, first, on the regular representation ρreg corresponding to the left action
of G on the set of its elements, and, second, on coset representations ρH corresponding to the action
of G on the set of left cosets modulo a subgroup H.

9We consider that cyclic groups are particular cases of two-generator groups.
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Proposition 2.10 (Classification of transitive representations). Every transitive representation
of a group G is equivalent to its coset representation ρH for some H ⊆ G. It is faithful if and only if⋂

g∈G
gHg−1 = 1.

Moreover, two coset representations ρH and ρH′ are equivalent exactly when H and H ′ are conju-
gate in G.

For a proof, see Lemma 1.6B of the book [25] by John D. Dixon and Brian Mortimer.



Chapter 3
The moduli space ΩM2 and beyond

Consider a connected square-tiled surface (M,ω) of genus 2. Suppose that it is not primitive, and let
(M ′, ω′) be an intermediate square-tiled surface, so that we have a commutative diagram of ramified
coverings:

M M ′

T2

p

f f ′

Denote by g′ the genus of M ′ and by k the degree of the ramified covering p. Since the surface M
topologically is a pretzel, its Euler characteristic is equal to χ(M) = −2, and by the Riemann-Hurwitz
formula we have

−2 = χ(M) = k · χ(M ′)−
∑

(ri − 1) 6 k · χ(M ′) = k(2− 2g′).

where ri are ramification indices: at some conical points P ∈M the cone angle is ri · 2π(di + 1) whilst
the angle at p(P ) ∈M ′ equals 2π(di+1). The only possibilities to satisfy the inequality k · (g′−1) ≤ 1
are either k = 1 or g′ = 1. In the first case M ′ coincides with M , and in the second case M ′ is a torus.

We conclude that in order to verify the primitivity of a square-tiled surface of genus 2, it suffices
to check that it is not a covering of any torus of area greater than 1.

Recall that by definition, a reduced square-tiled surface must not cover a torus of area > 1 with
one branch point. Therefore, in the stratum H(2), all reduced origamis are automatically primitive
(there is a unique branch point). In general, it is not prohibited for a reduced surface to be a proper
covering of a torus ramified over two points. Thus,

Lemma 3.1. In the stratum H(1, 1), the reduced origamis which are not primitive correspond to
coverings of tori with two ramification indices r1 = r2 = 2.

In the next sections (see Proposition 3.3, Theorems 3.12 and 3.21), we will investigate the following
question: given a stratum H and a positive integer n, is there a primitive n-square-tiled surface in H
with monodromy group different from the alternating and symmetric groups of degree n?

Minimal number of squares in a given stratum

We have the following statement:

Theorem 3.2. The minimal number N = N(d1, . . . , ds), for which there exists an N -square-tiled
surface in the stratum H(d1, . . . , ds), is equal to s+d1+· · ·+ds.

Moreover, for any n ≥ N , there exists an n-square-tiled surface in H(d1, . . . , ds) consisting of one
horizontal cylinder of height 1.

45
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Proof. First of all, an n-square origami O encoded by two permutations σ, τ ∈ Sn belongs to
H(d1, . . . , ds) if and only if the commutator [σ, τ ] is a product of s disjoint cycles of lengths d1 + 1,
. . . , ds + 1 respectively. Therefore, we have N ≥ s+d1+· · ·+ds.

Conversely, let n ≥ s+d1+· · ·+ds and let µ ∈ Sn be a permutation that decomposes into a product
of s disjoint cycles of lengths d1 + 1, . . . , ds + 1. Obviously, µ is even as d1 + · · · + ds = 2g − 2,
where g is the genus of the origamis in H(d1, . . . , ds). Our goal is to show that the permutation µ is
a commutator of two permutations σ, τ ∈ Sn such that σ is an n-cycle.

A. M. Gleason proved in 1962 that any permutation µ ∈ An is a product of two n-cycles, cf. [49,
Proposition 4]. Since two n-cycles are conjugate, this means that µ = σ(τστ−1) = [σ, τ ] for some
σ, τ ∈ Sn, where σ is an n-cycle. Such permutations σ and τ obviously generate a transitive subgroup
of Sn, and so (σ, τ)∗ is a connected origami belonging to the stratum H(d1, . . . , ds). We conclude that
N = s+d1+· · ·+ds.

Moreover, since σ is an n-cycle, for any n ≥ N , an n-square origami O ∈ H(d1, . . . , ds) encoded
by the pair of permutations (σ, τ) consists of one horizontal cylinder of height 1.

Remark. Preceding Gleason’s result, a theorem of Øystein Ore [78, 1951] states that each even
permutation is a commutator of permutations. Thus, the famous Ore conjecture arose: any element
of a finite non-abelian simple group is a commutator. In his Ph.D. thesis [10, 1972, Corollary 2.1]
Edward Bertram generalized the Gleason’s result by showing that any element of An, n 6= 4, is a
product of two l-cycles if and only if

[
3n
4

]
≤ l ≤ n.

SL2(Z)-orbits versus GL2(Z)-orbits

Let O be an origami. Denote its stabilizers for the SL2(Z)- and GL2(Z)-actions respectively by
Γ := SL(O) and Γ̃ := GL(O). Since the special linear group is a normal subgroup of the general one,

we may apply the second isomorphism theorem: the product Γ̃·SL2(Z) =
{
AB

∣∣∣ A ∈ Γ̃, B ∈ SL2(Z)
}

is a subgroup of GL2(Z), the intersection Γ̃ ∩ SL2(Z) = Γ is a normal subgroup of Γ̃, and

Γ̃/(Γ̃ ∩ SL2(Z)) = (Γ̃ · SL2(Z))/SL2(Z).

This implies the following inequalities:

1 ≤ |Γ̃/Γ| ≤ 2.

• In the case that |Γ̃/Γ| = 2, the SL2(Z)- and GL2(Z)-orbits of the origami O coincide.

• In the case that |Γ̃/Γ| = 1, the GL2(Z)-orbit is twice bigger and consists of the SL2(Z)-orbits of

the origamis O and J ·O, where J =

(
0 1
1 0

)
.

In other words, we have{
GL2(Z) ·O = SL2(Z) ·O if J ·O ∈ SL2(Z) ·O,
GL2(Z) ·O = SL2(Z) ·O ∪ SL2(Z) · (J ·O) else,

(3.1)

because GL2(Z) = 〈J, SL(2, Z)〉.
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3.1 The stratum H(2)

The number N pr
n (2) of primitive n-square-tiled surfaces in the stratum H(2) is given by the formula

N pr
n (2) =

3

8
n2(n− 2)

∏
p|n

p prime

(
1− 1

p2

)
, (3.2)

as indicated in the paper [28] by Alex Eskin, Howard Masur and Martin Schmoll.

As for the monodromy group of a primitive origami in H(2), we have the following statement:

Proposition 3.3. Let p > 2 be a prime number and let n > p + 3 be a positive integer. Then for
any primitive n-square origami O from the stratum H(p−1), the monodromy group Mon(O) is either
alternating (An) or symmetric (Sn).

In H(2), the monodromy group of any primitive origami is either alternating or symmetric.

Proof. For the square-tiled surface O from H(p−1) represented by a pair (σ, τ), we have that the
commutator [σ, τ ] is a cycle of prime order p belonging to the groupMon(O) = gp {σ, τ}. If now the
origami O is primitive, then the permutation group Mon(O) is primitive (see Proposition 2.4) and,
thus, must be equal to An or Sn by Jordan’s theorem (Theorem 2.5).

So, we haveMon(O) = An or Sn for every primitive n-square-tiled surface belonging toH(2). If for
some n both groups are realized, then we obtain at least two GL(2, Z)-orbits, because the monodromy
group is GL(2, Z)-invariant. On the other hand, due to the work [67] of Curtis T. McMullen and the
work [45] of Pascal Hubert and Samuel Lelièvre we know that the primitive n-square origamis in H(2)
constitute at most two GL(2, Z)-orbits. Precisely, if n > 4 is even, then there is only one orbit: it is
represented by the origami

Pn = encoded by σn = (1 2 . . . n),
τ2 = (1 2).

If n > 5 is odd, then besides the orbit of Pn there is another orbit represented by

Qn = encoded by σn = (1 2 . . . n),
τ3 = (1 2 3).

Remark. For even n, the origamis Pn and Qn are in the same GL(2, Z)-orbit.

We obviously have Mon(Pn) = gp {σn, τ2} = Sn for any n and

Mon(Qn) = gp {σn, τ3} =

{
Sn if n is even;

An if n is odd.

Therefore, we have just described a complete invariant of the orbits of primitive origamis in the stratum
H(2): one has Mon(O) =Mon(O′) if and only if O and O′ are in the same GL(2, Z)-orbit.

It does not take long to determine in which orbit the origami O defined by (σ, τ) falls: if at least
one of the permutations σ and τ is odd, then O is in the orbit of Pn, otherwise both permutations are
even and O is in the orbit of Qn.

As a consequence of the paper [44] by P. Hubert – S. Lelièvre and the paper [58] by S. Lelièvre –
E. Royer, we have the following result:
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Theorem 3.4 (Hubert, Lelièvre, Royer, 2005). For any k > 2, the Veech groups GL(P2k), GL(P2k+1)
and GL(P2k+1) are noncongruence subgroups of GL(2, Z) of indices

[GL(2, Z) : GL(P2k)] = 3(k − 1)k2
∏
p|2k

(
1− 1

p2

)
,

[GL(2, Z) : GL(P2k+1)] =
3

8
k(2k + 1)2

∏
p|2k+1

(
1− 1

p2

)
,

[GL(2, Z) : GL(Q2k+1)] =
3

8
(k − 1)(2k + 1)2

∏
p|2k+1

(
1− 1

p2

)
,

where p stands for a prime number.

For instance, consider the corner origami L(m,n), where m,n > 1 and (m,n) 6= (2, 2). It has N =
m+n−1 squares, belongs toH(2) and is primitive. If both m and n are odd, thenMon(L(m,n)) = AN

L(m,n) =
n

m

with
σ = (1 2 . . . m),
τ = (m m+1 . . . m+n−1),

and so L(m,n) is in the GL(2, Z)-orbit of QN . If at least one of m and n is even, thenMon(L(m,n)) =
SN and the origami is in the GL(2, Z)-orbit of PN . Therefore, the integer Veech groups GL(L(m,n))
are noncongruence subgroups.

3.2 A generalization: the strata H(m)

Given a set Ω, denote by Ω(k) the set of k-tuples with distinct entries. If |Ω| = n, then |Ω(k)| = n!
(n−k)! .

A permutation group G acting on Ω is called k-transitive if the diagonal action of G on the set Ω(k) is
transitive, that is, for any two k-tuples (x1, . . . , xk) and (y1, . . . , yk) ∈ Ω(k) there exists a permutation
σ ∈ G such that (σ(x1), . . . , σ(xk)) = (y1, . . . , yk). In this definition, requiring uniqueness of the
permutation σ brings the notion of a sharply k-transitive permutation group.

Lemma 3.5. Let G be a transitive permutation group on a set Ω, and x ∈ Ω. Then G is k-transitive
if and only if the stabilizer Gx is (k − 1)-transitive on the set Ω \ {x}.

As a corollary of the lemma, the order of a k-transitive subgroup G of Sn is a multiple of

n(n− 1) . . . (n− k + 1) =
n!

(n− k)!
,

or else the index [Sn : G] divides the number (n− k)!.

Obviously, the symmetric group Sn is sharply n-transitive. The fact that the alternating group
An is (n− 2)-transitive follows by induction from Lemma 3.5. We also have:

Lemma 3.6. A permutation group of degree n, which is neither alternating nor symmetric, can be at
most

([
n
3

]
+1
)
-transitive.
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Proof. This is the statement of Theorem IV, §138 in the book [14] by William Burnside.

Lemma 3.7 (Otto Hölder [43], 1895). If n is a positive integer different from 2 and 6, then Aut(Sn) =
Sn, that is, all automorphisms of the symmetric group of degree n are inner. Else, Aut(S2) = 1 and
Aut(S6) = S6 o C2.

Proof. See Theorem 8.2A in the book [25], Theorem 7.5 in the book [81] by Joseph J. Rotman or the
original paper [43] by Otto Hölder.

Lemma 3.8. Let n > 2 be a positive integer.

1. If n 6= 4 then the alternating group An is the only subgroup in Sn of index less than n.

2. If n 6= 6 then Sn has exactly n subgroups of index n, which are the symmetric groups of degree
n− 1 fixing one of the letters 1, 2, . . . , n.

Proof. 1. Suppose that H 6= An is a subgroup of Sn of index k, where 2 ≤ k < n. The group Sn acts
transitively on the set of left cosets Sn/H, and we have a homomorphism ρH : Sn → Sk. The kernel
ker ρH = ∩g∈Sn gHg−1 is a normal subgroup of Sn of index at least 2, and so is trivial (when n 6= 4,
the only proper normal subgroup of Sn is An). In other words, we obtain an isomorphic copy of Sn in
the group Sk, which is impossible, since k! < n!.

For n = 4, the Klein four-group C2 × C2 = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is an index 3
subgroup of S4.

2. If H is a subgroup of index n in Sn, then the action on the left cosets gives a homomorphism
ρH : Sn → Sym(Sn/H) ' Sn. The kernel of ρH is a normal subgroup of index at least n, and so is
trivial (for n 6= 4, Sn does not have proper normal subgroups except of An, as for n = 4, the Klein four-
group and A4 are the only proper normal subgroups of S4). Therefore, we obtain an automorphism

Sn
'→ Sn, for which the image of H is the stabilizer StabSn(i) ' Sn−1 of the letter i ∈ {1, 2, . . . , n}

corresponding to the coset H through ρH . According to Lemma 3.7, all automorphisms of Sn where
n 6= 6, are inner, that is, H is conjugate to the stabilizer of a letter, and so it is the stabilizer of a
letter itself.

Given a group G acting on a set Ω and a subset ∆ ⊆ Ω, denote by G∆ the subgroup of G stabilizing
all elements x ∈ ∆. We say that a subset Γ ⊆ Ω is a Jordan set for G if |Γ| > 1 and the group GΩ\Γ
acts transitively on Γ. In this case, the set ∆ = Ω \ Γ is called a Jordan complement .

Theorem 3.9 (Bernhard Marggraf [64], 1892). Let G be a primitive permutation group of degree n.

1. If the group G contains an m-cycle with 1 < m < n, then it is (n−m+1)-transitive.

2. If the group G contains an m-cycle with 1 < m < n−
[
n
3

]
, then G ⊇ An.

3. If G has a Jordan set of size m with 1 < m < n
2 , then G ⊇ An.

4. If the group G has a Jordan set Γ of size m with 1 < m < n −
[
n
3

]
and the group GΩ\Γ acts

primitively on Γ, then G contains the alternating group.

Proof. 1. See Theorem 13.8 in the textbook [98] by Helmut Wielandt,

2. By the first part of the theorem, the group G is (n−m+1)-transitive. If G does not contain An,
then according to Lemma 3.6, we have n−m+ 1 ≤

[
n
3

]
+ 1, that is, n−

[
n
3

]
≤ m.

3. See Theorem 13.5 in [98] or Proposition 7.4B in the textbook [25].

4. See Theorem I, §160 in Burnside’s textbook [14].

The theorem stated below is another refinement of Jordan’s theorem (see Theorem 2.5), in which
the cases n = p, p+ 1, p+ 2 are accomplished.
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Theorem 3.10 (Thilo E. Zieschang [101], 1995). Let G be a primitive permutation group of degree n
containing a p-cycle, where p is prime. Then one of the following situations occurs (see the remark
below for the notation):

1) G = An or G = Sn;

2) n = p+ 2 = 2k + 1 and G ' PSL(2, 2k) or G ' PΓL(2, 2k);

3) n = p+ 1 and G ' PSL(2, p) or G ' PGL(2, p);

4) n = p and G ⊆ AGL(1, p) such that G ' Fp oH, where1 H ⊆ F×p ;

5.a) n = p+ 1 = 12 and G 'M11 or G 'M12;

5.b) n = p+ 1 = 24 and G 'M24;

5.c) n = p+ 1 = 2m and G ⊆ ASL(m, 2) such that G = Fm2 oH, where2 Zp ⊆ H ⊆ SL(m, 2);

6.a) n = p = 11 and G ' PSL(2, 11) or G 'M11;

6.b) n = p = 23 and G 'M23;

6.c) n = p and PSL(m, q) ⊆ G ⊆ PΓL(m, q), where n = qm−1
q−1 .

Remark. The following mostly standard notation is used:

◦ q = pk0 is a power of a prime number p0 (not to be confused with p).

◦ Tr(m, q) denotes the group of translations on an m-dimensional vector space over the field Fq,
so Tr(m, q) ' Fmq .

◦ GL(m, q) and SL(m, q) are the general and special linear groups of degree m over Fq with orders

|GL(m, q)| = q
m(m − 1)/2(q − 1)(q2 − 1) . . . (qm − 1) and |SL(m, q)| = 1

q − 1
|GL(m, q)|. (3.3)

◦ AGL(m, q) and ASL(m, q) are the general and special affine groups of degree m over Fq, that is,

AGL(m, q) = Fmq oGL(m, q) and ASL(m, q) = Fmq o SL(m, q), (3.4)

where GL(m, q) acts on Fmq in the natural manner.

The group AGL(m, q) acts faithfully on the space Fmq by x 7→ A ·x+y, where A ∈ GL(m, q) and
y ∈ Fmq . The groups ASL(m, q), Tr(m, q), GL(m, q), SL(m, q) can be viewed as subgroups of
AGL(m, q) corresponding to the additional conditions detA = 1, A = 1, y = 0, y = 0∧detA = 1,
respectively. Hence, all these groups constitute subgroups of Sqm .

◦ PGL(m, q) and PSL(m, q) are the projective general and special linear groups of degree m over
the field Fq with orders

|PGL(m, q)| = 1

q − 1
|GL(m, q)| and |PSL(m, q)| = 1

gcd(m, q − 1)
|PGL(m, q)|, (3.5)

since we have PGL(m, q) = GL(m, q)/Z and PSL(m, q) = SL(m, q)/SZ, where Z consists of
all nonzero scalar transformations of Fmq and SZ consists of those with unit determinant. In

particular, we have |PGL(2, q)| = q(q2 − 1) and |PSL(2, q)| =
{
q(q2 − 1) if q = 2k,
1
2q(q

2 − 1) else.

1The affine group AGL(m, q) contains the subgroup of translations Tr(m, q) ' Fmq and the diagonal subgroup{
λI

∣∣ λ ∈ F×q
}
' F×q . In the case that m = 1, we have AGL(1, q) ' Fq o F×q .

2The stabilizer U of 0 for the action of SL(m, q) on the vector space Fmq is a group of order qm−1, since U acts
regularly on Fmq − {0}. In our case, q = 2 and p = 2m−1 is prime, so U ' Zp. See also the textbook [48] by Bertram
Huppert and Norman Blackburn.
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The group PGL(m, q) acts faithfully and transitively on the projective space Pm−1(Fq), which
has n = qm−1

q−1 points. This gives faithfull representations of PGL(m, q) and PSL(m, q) in Sn.

Moreover, as Évariste Galois showed in 1832, the groups PSL(2, p) have exceptional faithful
transitive actions of degree p when p = 5, 7 and 11.

◦ ΓL(m, q) is the general semilinear group of degree m over Fq, that is, the semidirect product

ΓL(m, q) = GL(m, q)oGal(Fq), (3.6)

where Gal(Fq) is the Galois group of the field Fq = Fpk0 over Fp0 , acting componentwise on the

vectors from Fmq . Recall also that Gal(Fq) is cyclic of order k.

◦ AΓL(m, q) is the affine semilinear group of degree m over Fq,

AΓL(m, q) = Fmq o ΓL(m, q). (3.7)

The group AΓL(m, q) acts faithfully on the space Fmq by x 7→ A · xσ + y, where A ∈ GL(m, q),
y ∈ Fmq and σ ∈ Gal(Fq). Thus, we have embeddings of AΓL(m, q) and ΓL(m, q) in Sqm .

◦ PΓL(m, q) is the projective semilinear group of degree m over Fq,

PΓL(m, q) = PGL(m, q)oGal(Fq). (3.8)

The faithfull action of the group PΓL(m, q) on the projective space Pm−1(Fq) corresponds to
the permutations [x1 : . . . : xm] 7→ A · [xσ1 : . . . : xσm], where A ∈ PGL(m, q) and σ ∈ Gal(Fq).
This gives an embedding of PΓL(m, q) in Sn for n = (qm − 1)/(q − 1). Notice that the elements of
PΓL(m, q) are semilinear transformations of Pm−1(Fq), i.e. bijections preserving the property
of points to be collinear. If m ≥ 3, then the projective semilinear group PΓL(m, q) is the full
collineation group of the projective space Pm−1(Fq), cf. Theorem 2.26 in the textbook [2] by
Emil Artin.

◦ M11,M12,M23,M24 are Mathieu groups, which are the first sporadic simple groups discovered
(we will not explicit these groups here).

Linear groups play a special role here, and we shall give more information.

Fact 1. The commutator [A,B] of two elements A,B ∈ PSL(2, q) is well-defined in SL(2, q).

Fact 2. If [A,B] = ±I, then A and B don’t generate the group PSL(2, q), since it is non-abelian.

Fact 3. If tr([A,B]) = 2, then A and B don’t generate PSL(2, q). Indeed, we can assume by conju-

gation that [A,B] =

(
1 λ
0 1

)
. For λ = 0, use Fact 2. Otherwise, we have ABA−1 =

(
1 λ
0 1

)
· B =(

a+ λc b+ λd
c d

)
, and equating the traces shows that c = 0. Therefore, the matrices B and A (by

symmetry argument) are upper-triangular, and so they don’t generate PSL(2, q).

Fact 4. Let A,B ∈ SL(2, q) be two matrices such that tr(A) = tr(B) 6= ±2. Then the matrix A is
conjugate to B. For each of the traces 2 and −2, there are:

– two conjugacy classes if q is even: the class of −I =

(
−1 0
0 −1

)
and the class containing all

other matrices with trace −2;
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– three conjugacy classes if q is odd: the class {−I} and two classes represented by

(
−1 z
0 −1

)
and

(
−1 z′

0 −1

)
, where z, z′ ∈ F×q such that z is a square and z′ is a non-square. The last two

classes are conjugated by

(
u 0
0 1

)
∈ GL(2, q), where u ∈ Fq is a non-square.

We will need the following theorem:

Theorem 3.11 (Darryl J. McCullough and Marcus Wanderley [66], 2008). When q ≥ 13 is an odd
prime power, every non-identity element of PSL(2, q) is the commutator of a generating pair. When
q = 2k, an element of PSL(2, q) is the commutator of a generating pair if and only if its trace is
distinct from 0.

When q < 13, necessary and sufficient conditions for a matrix A ∈ SL(2, q) \ {−I} to be the
commutator of a generating pair of SL(2, q) are:

� tr(A) 6= 2, for q = 2, 4, 8;

� tr(A) /∈ {1, 2}, for q = 3, 9, 11;

� tr(A) /∈ {0,−1, 2}, for q = 5;

� tr(A) /∈ {0, 1, 2}, for q = 7.

Sketch of proof. For q < 13, the statement of the theorem can be checked by direct calculations.

We assume from now on that q ≥ 13. Let x, y ∈ F×q such that x generates F×q . Consider the
matrices

Hx =

(
x 0
0 x−1

)
and Jy =

(
y + 1 1
y 1

)
.

It can be shown that these matrices generate SL(2, q), using the following points (it suffices to prove
that the images of Hx and Jy in PSL(2, q) generate the whole group):

Point 1. Let q = pk with p prime and denote d = gcd(2, q−1). Then every subgroup of PSL(2, q) is
isomorphic to one of the following groups3:

(a) (small subgroups) The dihedral groups of orders 2(q ± 1)/d and their subgroups;

(b) (triangular subgroups) A group H of order q(q − 1)/d and its subgroups;

(c) (exceptional subgroups) A4, S4 or A5;

(d) (linear subgroups) PSL(2, pr) or PGL(2, pr), where r divides k.

Point 2. The orders of nonparabolic4 elements of PSL(2, q) are exactly the divisors of (q ± 1)d, as
is shown in the paper [32] by Henry Glover and Denis Sjerve. So, the maximum order of a
nonparabolic element of PSL(2, q) is (q + 1)/d.

Point 3. One has the commutator [Hx, Jy] =

(
1−Dxy Dx(y + 1)
−Dx−1y 1 +Dx−1y

)
and the trace tr([Hx, Jy]) =

2−D2y, where D = x− x−1.

Point 4. As q > 7, the elements [Hx, Jy] and [H−1
x , Jy] do not commute in PSL(2, q).

3cf. Theorem 6.25 (Chapter 3) in the textbook [91] by Michio Suzuki.
4An element of PSL(2, q) is called parabolic if its trace is ±2.
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Point 5. Let G be the group generated by Hx and Jy. Since small and triangular subgroups of
PSL(2, q) have abelian commutator subgroups, Point 4 implies that G is neither of type (a)
nor of type (b). The order of Hx is q−1

2 ≥ 6, and so G is not of type (c). Furthermore,
the matrix Hx is not parabolic: its trace x + x−1 is not ±2 as x generates Fq − {0}. The
linear groups PSL(2, pr) and PGL(2, pr) with r < k are ruled out by Point 2, because the

inequality pk−1
2 ≤ pr+1 doesn’t hold for pk ≥ 13.

Therefore, we have SL(2, q) = 〈Hx, Jy〉. Remark that, for a fixed generator x ∈ F×q , the trace
tr([Hx, Jy]) = 2−D2y runs over all elements of Fq − {2} as y runs over F×q .

Let A ∈ SL(2, q) be a matrix with tr(A) 6= 2. Consider a generating pair (Hx, Jy) such that
tr(A) = tr([Hx, Jy]). Evidently, [Hx, Jy] is not −I, since the images of Hx and Jy generate PSL(2, q).

When tr(A) 6= −2 or q is even, it follows from Fact 4 above that [Hx, Jy] = C−1AC for some
C ∈ SL(2, q), and so the generating pair (CHxC

−1, CJyC
−1) has commutator A.

When tr(A) = −2 and q is odd, by Fact 4 there exists D ∈ GL(2, q) such that [Hx, Jy] = D−1AD,
and the generating pair (DHxD

−1, DJyD
−1) of SL(2, q) has commutator A.

Now, we are able to establish the main result of the section (recall that by Theorem 3.2 the number
of squares of an origami from H(m) can be equal to m+1,m+2, . . . ):

Theorem 3.12. Let m be an even positive integer. Denote by a(m) the minimal natural number
greater than m such that, for any primitive n-square-tiled surface in the stratum H(m) with n ≥ a(m),
the monodromy group is either An or Sn. We have

1. a(2) = 3;

2. if p = m+ 1 ≥ 5 is a prime but not Mersenne5, then a(m) = m+ 3, and for n ∈ {m+1,m+2}
there are primitive n-square origamis in H(m) with monodromy group not containing An;

3. if p = m + 1 ≥ 7 is a Mersenne prime, then a(m) = m + 4, and for n ∈ {m+1,m+2,m+3}
there are primitive n-square origamis in H(m) with monodromy group not containing An;

4. a(m) ≤ 3
2m+ 2 for all even m ∈ N.

Proof. Consider an n-square primitive origami O ∈ H(m) corresponding to a pair (σ, τ) ∈ Sn × Sn.
The monodromy group G =Mon(O) = gp {σ, τ} is primitive and contains [σ, τ ], which is an (m+1)-
cycle.

1. We saw in Section 3.1 that the monodromy group of any primitive n-square origami from the
stratum H(2) is either An or Sn.

2. Let p = m + 1 be a prime but not Mersenne. If n ≥ p + 3 = m + 4, then by Proposition 3.3 the
group G contains An. For n = p + 2 = m + 3, due to Theorem 3.10 case 2) we have that either G
contains An or p+ 2 = 2k + 1. Since the latter is false (p is not Mersenne), we obtain a(m) ≤ m+ 3.

Let us now show that, for n = p + 1 and p, primitive groups distinct from An and Sn occur as
monodromy groups of n-square origamis in the stratum H(m):

→ Case n = p + 1 = m + 2 ≥ 8. Corresponding to Theorem 3.10 case 3), the natural action of
PSL(2, p) on the projective line P1(Fp) is faithful and primitive, that is, we have a primitive
permutation group G ⊂ Sp+1 isomorphic to PSL(2, p). When p ≥ 7, we know from Theorem 3.11
that there exist two elements A and B generating PSL(2, p) such that

[A,B] =

(
−1 1
0 −1

)
,

5A Mersenne prime is a prime of the form 2k−1. In this case, it is easy to show that a number k must also be prime.
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which is an element of order p. Translating to G, we obtain a generating pair (σ, τ) such that
[σ, τ ] is a p-cycle. Hence, the (p+1)-square origami O encoded by this pair belongs to H(p−1)
and has primitive monodromy group G ' PSL(2, p) of order 1

2p(p
2 − 1) < 1

2(p+ 1)!.

→ Case n = p + 1 = m + 2 = 6. When p = 5, the 6-square origami given by the permutations
σ = (1 2)(5 6) and τ = (1 3 4)(2 5 6) belongs to the stratum H(4), and its monodromy group is
PSL(2, 5) ' A5, see Table B.1.

→ Case n = p = m + 1. Corresponding to Theorem 3.10 case 4), the action of AGL(1, p) on the
space Fp is faithful and primitive, that is, we have a primitive permutation group G ⊂ Sp+1

isomorphic to AGL(1, p). Let a ∈ F×p and b ∈ Fp such that ab− b 6= 0. Consider the elements f, g
of AGL(1, p) such that

f(x) = ax and g(x) = x+ b for any x ∈ Fp.

Then the commutator h = [f, g] satisfies h(x) = x + ab − b, and so it’s an element of order p.
Translating to G, we obtain a generating pair (σ, τ) such that [σ, τ ] is a p-cycle. Hence, the
(p+1)-square origami O given by this pair belongs to H(p−1) and has primitive monodromy
group G ' AGL(1, p) of order p(p− 1) < 1

2(p+ 1)!, when p ≥ 5.

3. Let p = m + 1 = 2k − 1 be a Mersenne prime. If n ≥ p + 3 = m + 4, then by Proposition 3.3 the
group G contains An.

If n = p+ 2 = m+ 3 = 2k + 1, then Theorem 3.10 case 2) and Theorem 3.11 provide a primitive
origami in H(p−1) with monodromy group PSL(2, 2k). For n = p+1 = m+2 ≥ 8 and n = p = m+1,
we also construct primitive origamis in H(p−1) with monodromy group not containing An, as in the
part 2 of the proof.

4. Let n ≥ 3
2m+ 2. Then we have the following inequality

m+ 1 ≤ 2

3
(n− 2) + 1 <

2

3
n ≤ n−

[n
3

]
.

By Theorem 3.9, the monodromy group of O contains the alternating group An.

Example 1 (the stratum H(4)). Let us give a list of the primitive monodromy groups which can
occur in the stratum H(4). The minimal number of squares of an origami in H(4) is 5, so take n ≥ 5.
Consider the following n-square origamis:

On =

1

2 3 · · · n−2 n−1

n

encoded by
σn = (2 3 . . . n−1 n),
τn = (1 2)(n−1 n)

and

O′n =

1

2 3 · · · n−2 n−1

n

encoded by
σ′n = (2 3 . . . n−1),
τn = (1 2)(n−1 n).
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We have [σn, τn] = [σ′n, τn] = (1 n n−1 2 3), so these origamis belong to H(4). Moreover, their
monodromy groups are primitive. Indeed, let ∆ and ∆′ be some blocks for Mon(On) and Mon(O′n),
respectively, containing 1 and another integer x 6= 1. Since σn and σ′n don’t move 1, we have that
(σn)k(∆) = ∆ and (σ′n)k(∆′) = ∆′ for any k ∈ N. Therefore, the block ∆ contains all integers from 1
to n, and ∆′ contains the integers from 1 to n−1, as well as the integer n, because |∆′| divides n. By
Lemma 2.2, the groups Mon(On) and Mon(O′n) are primitive.

According to Theorem 3.12 part 2, for all primitive n-square origamis in H(4) with n ≥ 7, the
monodromy group must be An or Sn. Therefore, when n ≥ 7, we obtain

Mon(On) =

{
Sn if n is odd,

An if n is even.
and Mon(O′n) =

{
Sn if n is even,

An if n is odd,
(3.9)

which depends on the parities of σn and σ′n. This shows that bothAn and Sn are realized as monodromy
groups in H(4).

The cases of n = 5 and 6 are brought in Table B.1, and we are going to display them. Let O(σ, τ)∗

be an n-square-tiled surface in H(4) with monodromy group G =Mon(O) containing a 5-cycle [σ, τ ].

Suppose that n = 5 and G doesn’t contain A5. By Theorem 3.10 (cf. the cases 4 and 6.c), either
G ' F5 oH for a subgroup H ⊆ F×5 , or PSL(m, q) ⊆ G ⊆ PΓL(m, q), where m is a natural number
and q is a prime power satisfying the equality qm−1

q−1 = 5. For the first case, since G has a 5-cycle which

is a commutator of two elements, the subgroup H cannot be {1}, and so it is either {1, 4} or F×5 . For
the second case, the equality q(5 − qm−1) = 4 implies that m = 2 and q = 4. However, the order of
PSL(2, 4) is 4(42 − 1) = 60 = 5!/2, and so if G ⊇ PSL(2, 4), then G contains A5 by Lemma 3.8. Thus
the second case is excluded.

Suppose that n = 5+1 = 6 and G doesn’t contain A6. Then Theorem 3.10 (cf. case 3) implies that
either G = PSL(2, 5) or G = PGL(2, 5). (See Table B.1 classifying the 5- and 6-square SL2(Z)-orbits
in H(4). It turns out that all 5- and 6-square origamis in this stratum are primitive.)

3.3 Background: orbitals and their graphs

Let G be a transitive permutation group on a set Ω (possibly infinite). An orbital of G is an orbit of
G for its usual action on the cartesian product Ω× Ω. The cardinal r = r(G) of the set of orbitals is
called the rank of G. We have the following extremal cases:

� r = 1 if and only if G = {1},

� r = 2 if and only if G is 2-transitive,

� r = |Ω| for a finite Ω if and only if G is regular6 (there is a one-to-one correspondence between
the orbitals and the orbits of a point stabilizer Gx acting on the set Ω, see below).

The orbital {(x, x) | x ∈ Ω} is called diagonal , the others are nondiagonal . The orbital paired with
an orbital Θ is the following set (denoted by Θ∗)

Θ∗ := {(y, x) | (x, y) ∈ Θ} .

We say that Θ is self-paired if Θ = Θ∗.

6that is, Gx = 1 for any x ∈ Ω.
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For each orbital Θ, the orbital graph Graph(Θ) is the digraph with vertex set Ω and edge set Θ:
there is a directed edge from x to y if and only if (x, y) ∈ Θ. For instance, the orbital graph of the
diagonal orbital has one loop at each vertex. None of the other orbital graphs have loops. The digraph
Graph(Θ∗) is obtained from Graph(Θ) by reversing the directions of the edges.

The orbital graphs for the cyclic group C4 = gp {(1 2 3 4)} and the dihedral group D5 =
gp {(1 2 3 4 5), (1 4)(2 3)} are shown in Figure 3.1.
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Figure 3.1: Orbital graphs for the groups C4 and D5.

Recall that, by definition, an automorphism of a digraph (Ω, E) is a permutation σ ∈ Sym(Ω) of
its set of vertices such that, for any edge e = (x, y) ∈ E, the pair σ(e) = (σ(x), σ(y)) is also an edge.
Clearly, the automorphism group of each orbital graph for the group G contains G:

G ⊆ Aut(Graph(Θ)), for any orbital Θ. (3.10)

Other properties of orbital graphs:

� the orbital graphs are vertex-transitive digraphs: for any two vertices x and y of Graph(Θ),
there is an automorphism of the digraph that sends the vertex x to the vertex y (it is given by
a permutation σ ∈ G such that σ(x) = y);

� each vertex has the same indegree, as well as outdegree7 (this follows from vertex-transitivity);

� if G is finite, then the indegree and outdegree of each vertex are equal to each other (since the
sums of the indegrees and outdegrees are equal).

Thus, all finite nondiagonal orbital graphs are regular digraphs (i.e. there are no loops, each vertex
has the same indegree and outdegree that are equal to each other).

There is a natural bijection between the orbitals of G and the orbits of a point stabiliser Gx

(recall that since G is transitive, the point stabilizers are conjugate in G). To the orbital Θ corresponds
the following Gx-orbit

Θ(x) := {y ∈ Ω | (x, y) ∈ Θ} = Gx · y0, for an arbitrary y0 ∈ Ω such that (x, y0) ∈ Θ.

In other words, Θ(x) is the set of vertices lying on an edge from x in the digraph Graph(Θ). The
bijection Θ 7→ Θ(x) in particular tells us that the number of Gx-orbits is equal to the rank r of G.

7The indegree of a vertex x is the number of edges to x, its outdegree is the number of edges from x.



3.3. BACKGROUND: ORBITALS AND THEIR GRAPHS 57

The Gx-orbits are called suborbits, and their cardinalities are the subdegrees of G. If the transitive
permutation group G is of finite degree n, then the list of its subdegrees

1 = n1 ≤ n2 ≤ . . . ≤ nr, where n = n1 + n2 + . . .+ nr,

is an invariant of G (that is, of the equivalence class of representations G → Sym(Ω)). The first
subdegree n1 = 1 corresponds to the trivial orbit {x}, or else to the diagonal orbital. As for the
second subdegree, remark that the set ∆ = fix(Gx) = {y ∈ Ω | Gx · y = {y}} is a block for G:

if y ∈ ∆ then Gx ⊆ Gy, and so Gx = Gy due to transitivity of G,

if also σ(y) ∈ ∆ for some σ ∈ G, then Gx = Gσ(y) = σGyσ
−1 = σGxσ

−1, and so σ(∆) = ∆.

Therefore, in the case where G is primitive, there are two possibilities:

� either fix(Gx) = {x} implying the inequality n2 > 1,

� or fix(Gx) = Ω, that is, Gx = {1} and the group G is regular of prime degree (in a primitive
group, the point stabilizers are maximal subgroups). In this case, we have r = n and n1 = n2 =
. . . = nr = 1.

Recall that a digraph is connected if for any two vertices x and y there exists an undirected path
from x to y (that is, a sequence of vertices x = v0, v1, . . . , vm = y such that, for each i, the vertices vi
and vi+1 are adjacent). The digraph is called strongly connected if such a path can always be chosen
directed (for each i, there is an edge from vi to vi+1).

A graph-theoretic test of primitivity is provided by the following theorem.

Theorem 3.13 (Higman). A transitive permutation group G is primitive if and only if all its nondi-
agonal orbital graphs are connected.

Proof. =⇒ Let Θ be a nondiagonal orbital. The set ∆ of vertices of a connected component of the
graph Graph(Θ) is a block for G. This is due to (3.10) and the fact that the automorphisms of a
graph permute its connected components. Therefore, if G is primitive, then Graph(Θ) is connected.
⇐= Let Graph(Θ) be a connected orbital graph and ∆ be a block for G. For any point x ∈ ∆, the

set N(x) of the neighbours of the vertex x in the orbital graph satisfies the condition:

either N(x) ∩∆ = ∅ or N(x) ⊂ ∆.

Indeed, if y ∈ N(x) ∩ ∆ and z ∈ N(x) then, by definition of Graph(Θ), there exists a permutation
σ ∈ G such that σ−1 · {x, z} = {x, y} ⊂ ∆. Since ∆ is a block for G and x ∈ σ(∆)∩∆, it follows that
σ(∆) = ∆ and so z ∈ ∆.

Suppose now that ∆ has at least two points x0 and y, and let Θ be the orbital which contains
the pair (x0, y). Then y ∈ N(x0) ∩ ∆ implies that N(x0) ⊂ ∆. Furthermore, for any neighbour x1

of the vertex x0, we have x0 ∈ N(x1) ∩∆ and thus N(x1) ⊂ ∆. By recurrence on k, we prove that
any undirected path {x0, x1, . . . , xk} of length k in the orbital graph is a subset of ∆. Since the graph
Graph(Θ) is connected, we obtain ∆ = Ω, that is, the block ∆ must be trivial.

Proposition 3.14. If a finite vertex-transitive digraph is connected, then it is strongly connected.
In particular, each nondiagonal orbital graph for a finite primitive permutation group G is strongly
connected.

Proof. Let x be a vertex of the connected digraph, and denote by D(x) the set of vertices which
can be reached by directed paths from x. For any vertex y ∈ D(x), we have the evident inclusion
D(y) ⊆ D(x). Moreover, if σ is an automorphism of the graph such that σ·x = y, then σ·D(x) = D(y).
Thus D(x) and D(y) have the same (finite) cardinality, and so are equal. As a conclusion: if there is
a directed path from x to y, then there is a directed path from y to x as well. Since the digraph is
connected, it is strongly connected.
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The proposition above is false in the infinite case: let G = 〈σ〉 be an infinite cyclic group acting
on Z by the shift σ · n = n+ 1. Then the graph of the orbital Θ = {(n, n+ 1) | n ∈ Z } is connected
but not strongly connected (see the figure).

. . . . . .−2 −1 0 1 2

Proposition 3.15. Let G be a primitive permutation group of finite degree n and rank 1 < r < n.
The following inequalities for the subdegrees 1 = n1 < n2 ≤ . . . ≤ nr of the group G are satisfied:

ni+1 ≤ ni(n2 − 1) for all i > 1.

In particular, we have the following upper bound

n ≤ 1 + n2 + n2(n2 − 1) + · · ·+ n2(n2 − 1)r−2 =
n2(n2 − 1)r−1 − 2

n2 − 2
.

Proof. See Theorem 3.2B and Lemma 3.2B in the book [25] by John D. Dixon and Brian Mortimer,
or Theorem 3.14 in the book [15] by Peter J. Cameron.

Remark. Recall that for r = 1 and r = n, we have n1 = n2 = . . . = nr = 1.

Lemma 3.16. Let (V,E) be a connected graph with edges colorod blue and red. Suppose that the
subgraph induced by the blue edges has r connected components and that the subgraph induced by the
red edges has s connected components and m vertices. Then one has the inequality r + s ≤ m+ 1.

Proof. Denote by C1, C2, . . ., Cs the red connected components. Since the graph (V,E) is connected,
through each blue connected component passes at least one Ci.

Ci Cj

Let us compress the vertices from every blue connected component into one point and erase the blue
edges – we will obtain a connected graph (V ′, E′) with r vertices and only red edges (more accurately,
(V ′, E′) will be a multigraph, that is, it may contain multiple edges). Such a graph is also a union
of the s red connected components, in which some vertices are identified. Identifications of vertices
from distinct components can be performed in order. Namely, if s > 1, then the graph C1 is glued
to another red component, let it be C2. (We say that two graphs X and Y are glued if a vertex x of
X is identified with a vertex y of Y , giving a graph of cardinal |X|+ |Y | − 1, that we will denote by
X ?

x=y
Y or simply by X ? Y .) If s > 2, then another component, for instance C3, is glued to C1 ? C2.

And so on, the graph Ck is glued to C1 ? C2 ? . . . ? Ck−1 for k from 2 to s, due to the connectivity of
(V ′, E′). Since the graph (V ′, E′) is the result of s− 1 such gluings plus possibly other identifications
of vertices, and since after each gluing the number of vertices is decreased by 1, we get

r ≤ m− (s− 1) = m− s+ 1,

where m = |C1|+ |C2|+ . . .+ |Cs|.
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Proposition 3.17. Let G ⊆ Sn be a primitive permutation group containing a permutation σ with s
nontrivial disjoint cycles and |supp(σ)| = m. Then the rank of G is bounded from above by:

r(G) ≤ m− s+ 1.

Proof. Let u ∈ supp(σ). Since the group G is primitive, the stabilizer Gu is a maximal subgroup and
so G = gp {σ,Gu}. Construct an undirected graph (V,E) with edges colored blue and red as follows:
the set of vertices is V = {1, 2, . . . , n}, two vertices x, y ∈ V are connected by a blue edge if there is a
permutation τ ∈ Gu such that τ(x) = y, and they are connected by a red edge if x 6= y and σ(x) = y.
The subgraph of (V,E) induced by the blue edges has n vertices and r(G) connected components.
The subgraph induced by the red edges has m vertices and consists of s disjoint cycles, denote them
by C1, C2, . . ., Cs. Since the group G is transitive and G = gp {σ,Gu}, the graph (V,E) is connected.
By Lemma 3.16, we obtain

r(G) ≤ m− s+ 1,

where m = |C1|+ |C2|+ . . .+ |Cs| as required.

Lemma 3.18. Let G ⊆ Sn be an arbitrary permutation group, and let ∆1 and ∆2 be two subsets of
{1, 2, . . . , n}. If we have σ(∆1) ∩∆2 6= ∅ for all σ ∈ G, then there exists x0 ∈ ∆1 such that

|G · x0| ≤ |∆1| · |∆2|.

Proof. We will use the following classical lemma of Bernhard Hermann Neumann (see [74, 1954]): if
a group G is a finite union of left cosets

G =

m⋃
i=1

giHi

for some subgroups Hi ⊆ G and some elements gi ∈ G, then |G : Hi| ≤ m for at least one i.
Delegate to every x ∈ ∆1 and y ∈ (G · x) ∩ ∆2 a permutation σxy ∈ G sending x to y. By the

hypothesis, for any σ ∈ G there exists x ∈ ∆1 such that σ(x) ∈ ∆2. Hence, the permutation σ lies
in the coset σxyGx, where y = σ(x). Since there are at most |∆1| · |∆2| of these cosets, Neumann’s
lemma shows that |G : Gx0 | ≤ |∆1| · |∆2| for some x0 ∈ ∆1 as required.

Lemma 3.19. Let σ, τ ∈ Sn be two permutations, and denote ∆ = supp(σ) ∩ supp(τ). Then

supp([σ, τ ]) ⊆ ∆ ∪ σ(∆) ∪ τ(∆).

In particular, if the supports of σ and τ have exactly one point in common, then [σ, τ ] is a 3-cycle.

Proof. A point x ∈ supp([σ, τ ]) belongs to the union supp(σ)∪ supp(τ), say σ(x) 6= x. Let us suppose
that x /∈ ∆ ∪ σ(∆) ∪ τ(∆).

y

x
σ σ

τ

τ

Then it follows from x /∈ ∆ and σ(x) 6= x that τ−1(x) = x. Furthermore, from σ−1(x) /∈ ∆ and
σ(σ−1(x)) 6= σ−1(x) we have that τ(σ−1(x)) = σ−1(x). This gives

[σ, τ ] · x = στσ−1τ−1(x) = στ(σ−1(x)) = x,

which contradicts the assumption that x ∈ supp([σ, τ ]). Therefore, x ∈ ∆∪σ(∆)∪τ(∆) as required.
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Theorem 3.20. Let G be a primitive permutation group of degree n not containing An. Suppose that
the group G has an element σ with |supp(σ)| = m, where m ≥ 4. Then

n < (m− 1)2m.

Moreover, if G is 2-transitive, then necessarily n ≤ 1 + (m− 1)2.

Proof. Consider the set ∆ = supp(σ) \ {x} for some point x ∈ supp(σ). Suppose that there exists a
permutation τ ∈ Gx such that τ(∆) ∩∆ = ∅. Then

for any y ∈ supp(σ) \ {x} one has τ(y) /∈ supp(σ) \ {x},
that is, either σ(τ(y)) = τ(y) or τ(y) = x,

and so y /∈ supp(τ−1στ) \ {x}.

Therefore, the supports of the permutations σ and τ−1στ have exactly one point in common, namely
supp(σ) ∩ supp(τ−1στ) = {x}, and so Lemma 3.19 shows that G contains a 3-cycle. By Jordan’s
theorem, the group G must be An or Sn, which is not the case.

Now, we have that τ(∆)∩∆ 6= ∅ for any τ ∈ Gx. According to Lemma 3.18, the group Gx has an
orbit Gx · x0, where x0 ∈ ∆, of length

|Gx · x0| ≤ |∆| · |∆| = (m− 1)2.

In particular, the second subdegree n2 of the permutation group G is not greater than (m−1)2. Using
Proposition 3.15 and the fact that the rank r = r(G) of G is at most m (see Proposition 3.17), we get:

n ≤ 1 + n2 + n2
2 + . . .+ nr−1

2 < nr2 ≤ (m− 1)2m.

When G is 2-transitive, we have r = 2 and n ≤ 1 + n2 ≤ 1 + (m− 1)2 as required.

3.4 The stratum H(1, 1)

The total number N pr
n (1, 1) of primitive n-square-tiled surfaces in the stratum H(1, 1),

N pr
n (1, 1) =

1

6
n2(n− 2)(n− 3)

∏
p|n

p prime

(
1− 1

p2

)
, (3.11)

that can be derived from the results of the papers [11] by Spencer Bloch and Andrei Okounkov and
[23] by Robbert Dijkgraaf.

Table 3.1: The number of primitive n-square-tiled surfaces in the stratum H(1, 1) for 4 ≤ n ≤ 17.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N pr
n (1, 1) 4 24 48 160 240 504 672 1440 1440 3080 3168 4992 5824 10080

The theorem below is based on results of Camille Jordan going back to 1875 (see [53]). The proof,
that we are going to present, mostly follows Example 3.3.1 of the textbook [25] by John D. Dixon and
Brian Mortimer.
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Theorem 3.21. For each integer n 6= 6, the monodromy group of any primitive n-square-tiled surface
from H(1, 1) is either An or Sn.

Proof. By Theorem 3.2, the smallest origamis in the stratum H(1, 1) have 4 squares. The SL(2, Z)-
orbits of n-square-tiled surfaces with n ∈ {4, 5, 6} are given in Table B.2 (the data is obtained using
mathematics software systems Sage and GAP). As we see in the table, when n = 4, only one primitive
group occurs, namely A4. When n = 5, there is only S5. An exception for n = 6: besides A6, we have
another primitive monodromy group, which is an index 6 subgroup of S6.

When 7 ≤ n ≤ 17, there are two orbits of primitive origamis in H(1, 1) – they correspond to the
monodromy groups An and Sn. This is illustrated in Table B.3, obtained using a program in Sage.
An algorithm for such a program is quite simple:

. for a given n from 11 to 17, pick an origami OA with monodromy group An, and an origami OS
with monodromy group Sn,

. find the lengths lA and lS of the SL2(Z)-orbits of the origamis OA and OS , respectively,

. check that lA + lS = N pr
n (1, 1), see Table 3.1, and conclude that there are only two orbits of

primitive n-square origamis.

This is closely related to Conjecture 1 stated at the end of the section.

Now, assume that n ≥ 18 and consider a primitive n-square-tiled surface O = (σ, τ)∗ from the
stratum H(1, 1). The monodromy group G = Mon(O) is a primitive permutation subgroup of Sn
containing the following element (up to conjugation of σ and τ):

µ = [σ, τ ] = (1 2)(3 4).

Note that |supp(µ)| = 4. According to Proposition 3.17, the rank r of G is not greater than 4−2+1 = 3.
Suppose that G is distinct from An and Sn. Then by Theorem 3.20, when G is 2-transitive (the case
that r = 2), we have the upper bound n ≤ 1+(4−1)2 = 10, which is false. Thus, the rank of G is 3.

Denote by H ⊂ G the stabilizer of 1 for the action on the set {1, 2, . . . , n}, and let ∆1 = {1}, ∆2

and ∆3 be the orbits of H. The respective lengths 1 = n1 ≤ n2 ≤ n3 of these orbits are the subdegrees
of the group G. Due to Proposition 3.15, we obtain

18 ≤ n = n1 + n2 + n3 ≤ 1 + n2 + n2(n2 − 1) = 1 + (n2)2,

from where n2 ≥ 5.

By the primitivity of G, the subgroup H is maximal (see Lemma 2.3), and so G = gp {H,µ}.
Hence, neither ∆2 nor ∆3 contains all the numbers 2, 3 and 4.

Define the following subsets of H:

Bxy = {λ ∈ H | λ(x) = y} , where 2 ≤ x, y ≤ 4.

Let us show that the union of these subsets is the whole H,

H =
⋃

2≤x,y≤4

Bxy.

Indeed, for any permutation δ ∈ H such that

δ : 2 7→ a
3 7→ b
4 7→ c
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we must have {a, b, c}∩{2, 3, 4} 6= ∅. Otherwise, the commutator of the permutations µ = (1 2)(3 4)
and δµδ−1 = (1 a)(b c) would be a 3-cycle (1 2 a), and by Jordan’s theorem G would contain An.

Furthermore, let us find the cardinals of Bxy. If x and y belong to the same orbit ∆i for i ∈ {2, 3},
then Bxy is a coset of the point stabilizer Bxx in the group H acting transitively on ∆i, and we have

|Bxy| = |Bxx| = |Byy| = |Byx| =
|H|
|∆i|

=
|H|
ni
.

If x and y belong to distinct orbits, then Bxy is empty, |Bxy| = 0.
Since a ∆p, where p ∈ {2, 3}, contains exactly two of the numbers 2, 3, 4 and another ∆q, where

q ∈ {2, 3} \ {p}, contains the third one, we get

|H| =

∣∣∣∣∣∣
⋃

2≤x,y≤4

Bxy

∣∣∣∣∣∣ ≤
⋃

2≤x,y≤4

|Bxy| = 4 · |H|
np

+
|H|
nq

.

However, the lower bounds 5 ≤ n2 ≤ n3 and 18 ≤ 1 + n2 + n3 imply that 4
np

+ 1
nq
< 4

5 + 1
5 = 1. This

contradiction shows that the primitive group G is either An or Sn.

Let us give, for n ≥ 4, two families of n-square-tiled surfaces from H(1, 1) with monodromy
groups containing the alternating group of degree n. Consider the following n-square-tiled surfaces
(“panties”), where 1 ≤ l < h ≤ n/2:

P l,hn =
1 · · · l l+1 · · · h

h+1 · · · h+l
h+l
+1

· · · n−1 n

encoded by
σn = (1 2 . . . h)(h+1 h+2 . . . n),

τn = (1 h+1)(2 h+2) . . . (l h+l)

and

Ql,hn =
1 · · · l l+1 · · · h

h+1 · · · h+l
h+l
+1

· · · n−1 n

=

=−

−
encoded by

υn = (1 2 . . . n) = (1 h+1)σn,

τn = (1 h+1)(2 h+2) . . . (l h+l).

We have [σn, τn] = [υn, τn] = (1 h+1)(l+1 h+l+1), so these origamis belong to H(1, 1).

Proposition 3.22. The origamis P l,hn and Ql,hn are reduced if and only if gcd(l, h, n) = 1. They are
primitive if and only if gcd(h, n) = 1.

Proof. (Reducibility) ⇐= Consider an origami P l,hn , the case of Ql,hn being analogous. It has two
ramification points, indicated at the picture below by • and ◦:

•

•

•

•

•

•

•
1 · · · l l+1 · · · h

h+1 · · · h+l
h+l
+1

· · · n−1 n

The lattice of periods Per(ω) ⊆ Z⊕
√
−1Z of the square-tiled surface P l,hn = (M,ω) is the set of linear

combinations of the relative periods
∫ Zk
Zj

ω with integer coefficients, and thus contains the vectors

1 + 0
√
−1, l = 0 + l

√
−1, h = 0 +h

√
−1 and n = 0 +n

√
−1. Suppose that gcd(l, h, n) = 1, then there

exist integers a, b, c ∈ Z for which al+ bh+ cn = 0 + 1
√
−1. Hence, we have Per(ω) = Z⊕

√
−1Z, and

the origami P l,hn is reduced.
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=⇒ Conversely, if gcd(l, h, n) = m > 1, then the origami P l,hn is a one branch point covering of the
torus obtained from the rectangle 1 ×m by gluing its opposite sides (see the picture below). In this
case, the origami is not reduced.

•

•

•

•

•

•

•

(Primitivity) ⇐= Suppose that the integers h and n are coprime, where 1 ≤ l < h < n/2. Let us

show that the monodromy group G = Mon(P l,hn ) = gp {σn, τn} is primitive. Indeed, take a block
∆ for G, containing 1 and another integer x 6= 1. Consider the case where h ≤ x ≤ n. Since
gcd(h, n−h) = 1, for any integer c there exists a ∈ Z such that ah ≡ c mod (n − h). Then the
permutation (σn)ah = (h+1 h+2 . . . n)c stabilizes 1, and, for a suitable c, sends x to any integer
from h + 1 to n. Therefore, we have (σn)ah(∆) = ∆, and so the block ∆ contains the integers
1, h + 1, h + 2, . . . , n, which is more than n/2 elements. As the cardinal |∆| divides n, it must be n,
and Lemma 2.2 implies that the group G is primitive. In the case where 1 < x ≤ h, let k be a positive
integer such that (1 2 . . . h)k · 1 > l but (1 2 . . . h)k · x ≤ l. Then we have

σ−kn τnσ
k
n · 1 = 1 and σ−kn τnσ

k
n · x = y with h ≤ y ≤ n.

This means that σ−kn τnσ
k
n(∆) = ∆ and the block ∆ contains 1 and y, which allows us to use the

previous argument to conclude that the group G is primitive.

Let us now show that the monodromy group H = Mon(Ql,hn ) = gp {υn, τn} is primitive too.
Consider a block ∆ for H containing 1 and another integer x 6= 1. Denote λ = τ(υn)h. Since υn is
an n-cycle and gcd(h, n) = 1, the permutation (υn)h is also an n-cycle. Each integer a ∈ [1, l] is sent
by (υn)h to the integer h+a ∈ [h+1, h+l]. As (a h+a)(. . . s a h+a t . . .) = (. . . s h+a t . . .), the
permutation

λ = τ ·υhn = (1 h+1)(2 h+2) . . . (l h+l)·υhn

is an (n−l)-cycle fixing the integers 1, 2, . . . , l. In particular λ stabilizes 1, implying that λ(∆) = ∆
and λk · x ∈ ∆ for any k ∈ Z. Therefore, if l < x ≤ n, then the integers from l+1 to n belong to the
block ∆, that is |∆| > n/2 and so |∆| = n. By Lemma 2.2, the group H is primitive. In the case
where 1 < x ≤ l, we have

τ(υn)h+1−x · x = 1 and τ(υn)h+1−x · 1 = y, where y =

{
h+ 1− x if h+ 1− x > l,

2h+ 1− x if h+ 1− x ≤ l.

Hence, τ(υn)h+1−x(∆) = ∆ and the block ∆ also contains an integer y such that l < y ≤ n, allowing
us to apply the previous argument for the primitivity of H.

•

•

•
•

•

•

•

=⇒ Conversely, if gcd(h, n) = m > 1, then the origamis P l,hn and Ql,hn are ramified coverings of the
torus obtained from the rectangle 1×m by gluing its opposite sides (see the picture above).
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Remark. Let us sketch another proof of the fact that the condition gcd(h, n) = 1 implies the prim-

itivity of P l,hn and Ql,hn . By the first part of the proposition, we obtain that the origamis P l,hn and
Ql,hn are reduced. Suppose that they are not primitive. Then they must be ramified coverings of tori
with two branch points (see Lemma 3.1). Therefore, P l,hn and Ql,hn are paved by horizontal rectangles

1×m with m > 1. For the origami P l,hn , this means that m is a common divisor of h and n, which is
impossible, and so P l,hn is primitive. As for Ql,hn , we have a commutative diagram:

Ql,hn T

T2

p

f f ′

where T is a trivial origami of area m (rectangle 1 ×m with glued opposite sides) and p : Ql,hn → T

is a covering with two branch points. The ramification point x̃ ∈ Ql,hn (corresponding to • at the
picture) is projected by the map p to one of the branch points, denote it by x ∈ T . The conditions
gcd(h, n) = 1 and m|n imply that gcd(h,m) = 1, and so x̃ occurs at vertices and in the interior of
sides of the pavement rectangles, as shown at the picture below:

−

= −

=
•

•

•

•

•

•

•x̃

x̃

p

x

u

Namely, the preimage p−1(u) of a point u from a neighbourhood of x ∈ T has at least n/m+ 1 points,

whilst the degree of the covering p is n/m. This contradiction proves that the origami Ql,hn is primitive.

Lemma 3.23. Let l, h, l′, h′ be positive integers such that 1 ≤ l < h ≤ n/2, 1 ≤ l′ < h′ ≤ n/2 and

(l, h) 6= (l′, h′). Then the origamis P l,hn , Ql,hn , P l
′,h′
n and Ql

′,h′
n are distinct.

Proof. The square-tiled surfaces in question are encoded by the following permutations:

σn = (1 2 . . . h)(h+ 1 h+ 2 . . . n),

τn = (1 h+ 1)(2 h+ 2) . . . (l h+ l),

υn = (1 2 . . . n),

σ′n = (1 2 . . . h′)(h′ + 1 h′ + 2 . . . n),

τ ′n = (1 h′ + 1)(2 h′ + 2) . . . (l′ h′ + l′),

namely, P l,hn = (σn, τn)∗, Ql,hn = (υn, τn)∗, P l
′,h′
n = (σ′n, τ

′
n)∗ and Ql

′,h′
n = (υn, τ

′
n)∗. Remark at once

that P l,hn 6= Ql,hn and P l,hn 6= Ql
′,h′
n , since the permutations σn and υn are not conjugate.

If l 6= l′, then we have P l,hn 6= P l
′,h′
n and Ql,hn 6= Ql

′,h′
n , because τn and τ ′n are not conjugate. When

l = l′ but h 6= h′, we also have P l,hn 6= P l,h
′

n , since the permutations σn and σ′n are not conjugate.

Finally, the origamis Ql,hn and Ql,h
′

n are distinct as well. Indeed, the only connected figures with a 2× l
rectangle, that can be obtained from the figure

Ql,hn =
1 · · · l l+1 · · · h

h+1 · · · h+l
h+l
+1

· · · · · · n−1 n

=

=−

−

by re-gluing squares, are
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=

=−

−

l

c d

a b

where {a+ d, b+ c} = {h− l, n− h− l}. Since either b or d must be less than h′ − l ≤ n− h′ − l, we

have Ql,hn 6= Ql,h
′

n .

Let 1 = d1 < d2 < . . . < dϕ(n) = n− 1 be the numbers less than n that are coprime to n. Denote
by ϑ1(n) and ϑ2(n) the following sums

ϑ1(n) :=

ϕ(n)∑
i=1

di and ϑ2(n) :=

ϕ(n)/2∑
i=1

di. (3.12)

By ϑ′1(n) and ϑ′2(n) we denote the following sums

ϑ′1(n) :=

ϕ(n)∑
i=1

[
di
2

]
and ϑ′2(n) :=

ϕ(n)/2∑
i=1

[
di
2

]
. (3.13)

Lemma 3.24. a) For any positive integer n > 1, one has8 ϑ1(n) =
nϕ(n)

2
.

b) In the case that n is a multiple of 4, one has ϑ2(n) =
nϕ(n)

8
.

c) If n > 1 is odd, then ϑ′1(n) =
ϑ1(n)

2
− ϕ(n)

4
, else ϑ′1(n) =

ϑ1(n)

2
− ϕ(n)

2
.

d) If n > 1 is even, then ϑ′2(n) =
ϑ2(n)

2
− ϕ(n)

4
.

Proof. a) From the relations

d1 + dϕ(n) = n, d2 + dϕ(n)−1 = n, . . . , dϕ(n)/2 + dϕ(n)/2+1 = n, (3.14)

we obtain ϑ1(n) = n · ϕ(n)
2 that shows the first part of the lemma.

b) If n is divisible by 4, then we have gcd(n2 + di, n) = 1 and the sets {d1, d2, . . . , dϕ(n)} and
{d1, . . . , dϕ(n)/2,

n
2 + d1, . . . ,

n
2 + dϕ(n)/2} coincide. Therefore,

ϑ1(n) =

ϕ(n)∑
i=1

di =

ϕ(n)/2∑
i=1

di +

ϕ(n)/2∑
i=1

(n
2

+ di

)
= 2 ·

ϕ(n)/2∑
i=1

di +
n

2
· ϕ(n)

2
,

and so ϑ2(n) = 1
2

(
ϑ1(n)− nϕ(n)

4

)
= nϕ(n)

8 as required.

c) If n is odd, then all numbers di and dϕ(n)−i+1 = n−di have opposite parities for all 1 ≤ i ≤ ϕ(n)
2 .

Thus
[
di
2

]
+
[
dϕ(n)−i+1

2

]
= di

2 +
dϕ(n)−i+1

2 − 1
2 , and so

ϑ′1(n) =

ϕ(n)∑
i=1

[
di
2

]
=

ϕ(n)∑
i=1

di
2
− 1

2
· ϕ(n)

2
=
ϑ1(n)

2
− ϕ(n)

4
.

8Here ϕ is Euler’s totient function, ϕ(n) = n
∏
p|n

p prime

(
1− 1

p

)
.
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If n is even, then all di are odd and
[
di
2

]
= di

2 −
1
2 . Therefore,

ϑ′1(n) =

ϕ(n)∑
i=1

[
di
2

]
=

ϕ(n)∑
i=1

(
di
2
− 1

2

)
=
ϑ1(n)

2
− ϕ(n)

2
. (3.15)

d) For even n, we obtain that ϑ′2(n) = ϑ2(n)
2 − ϕ(n)

4 if we replace ϕ(n) by ϕ(n)/2 in (3.15).

Proposition 3.25. Let n ≥ 4 be a positive integer. If n is odd, then one has the following 2ϑ2(n)−ϕ(n)
distinct primitive n-square-tiled surfaces in the stratum H(1, 1):

ϑ2(n)− ϕ(n)
2 origamis P l,hn such that Mon(P l,hn ) = Sn,

ϑ′2(n) origamis Ql,hn such that Mon(Ql,hn ) = Sn,

ϑ2(n)− ϑ′2(n)− ϕ(n)
2 origamis Ql,hn such that Mon(Ql,hn ) = An.

If n is even, then one has the following 2ϑ2(n)− ϕ(n) distinct primitive n-square-tiled surfaces in
the stratum H(1, 1):

ϑ2(n)
2 − ϕ(n)

4 origamis P l,hn such that Mon(P l,hn ) = Sn,

ϑ2(n)
2 − ϕ(n)

4 origamis P l,hn such that Mon(P l,hn ) = An,

ϑ2(n)− ϕ(n)
2 origamis P l,hn such that Mon(P l,hn ) = Sn.

Proof. According to Proposition 3.22, for any pair (l, h) of positive integers such that 1 ≤ l < h ≤ n/2

and gcd(h, n) = 1, the square-tiled surfaces P l,hn and Ql,hn are primitive. By Theorem 3.21 for n ≥ 7,
the monodromy group of such a surface is either the alternating An or symmetric Sn, which depends
on the parities of σn, υn and τn. We obtain Table 3.2.

Table 3.2: The monodromy groups of P l,hn and Ql,hn , when gcd(h, n) = 1.

n l τn σn υn Mon(P l,hn ) Mon(Ql,hn )

odd odd odd odd even Sn Sn
even even An

even odd odd even odd Sn Sn
even even An

Due to Lemma 3.23, all square-tiled surfaces P l,hn and Ql,hn are distinct. Among them, there are

2 ·
∑

1≤l<h≤n/2
gcd(h,n)=1

1 = 2 ·
ϕ(n)/2∑
i=1

∑
1≤l<di

1 = 2 ·
ϕ(n)/2∑
i=1

(di − 1) = 2ϑ2(n)− ϕ(n)

primitive ones, where 1 = d1 < d2 < . . . < dϕ(n) = n− 1 denote the positive integers less than n and
coprime to n (we have dϕ(n)/2 < n/2 and dϕ(n)/2+1 > n/2 by (3.14)). The number of distinct primitive

origamis P l,hn and the number of distinct primitive origamis Ql,hn coincide and are equal to∑
1≤l<h≤n/2
gcd(h,n)=1

1 = ϑ2(n)− ϕ(n)

2
.
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• If n is odd, then the number of distinct n-square origamis Ql,hn with Mon(Ql,hn ) = Sn is given by

∑
1≤l<h≤n/2
gcd(h,n)=1

l odd

1 =

ϕ(n)/2∑
i=1

∑
1≤l<di
l odd

1 =

ϕ(n)/2∑
i=1

[
di
2

]
= ϑ′2(n).

So, the number of distinct n-square origamis Ql,hn with Mon(Ql,hn ) = An equals ϑ2(n)− ϑ′2(n)− ϕ(n)
2 .

• If n is even, then the number of distinct n-square origamis P l,hn with Mon(P l,hn ) = Sn is given by

∑
1≤l<h≤n/2
gcd(h,n)=1

l odd

1 =

ϕ(n)/2∑
i=1

∑
1≤l<di
l odd

1 =

ϕ(n)/2∑
i=1

[
di
2

]
= ϑ′2(n) =

ϑ2(n)

2
− ϕ(n)

4
, due to Lemma 3.24-d.

This is also half of the number of all primitive n-square origamis P l,hn .

Remark. Compare the statement of Proposition 3.25 with the total number N pr
n (1, 1) of primitive

n-square-tiled surfaces in the stratum H(1, 1), see (3.11).

We end the section by formulating a conjecture:

Conjecture 1. For any n ≥ 7, there are exactly two orbits of primitive n-square-tiled surfaces in the
stratum H(1, 1). Moreover, when n is odd, the positive integers

An(1, 1) =
1

24
n2(n− 3)(n− 5)

∏
p|n

p prime

(
1− 1

p2

)
,

Sn(1, 1) =
1

8
n2(n− 1)(n− 3)

∏
p|n

p prime

(
1− 1

p2

)

are the cardinals of the orbits of n-square-tiled surfaces with monodromy group An and Sn, respectively.
When n is even, the positive integers

An(1, 1) =
1

24
n3(n− 2)

∏
p|n

p prime

(
1− 1

p2

)
,

Sn(1, 1) =
1

8
n2(n− 2)(n− 4)

∏
p|n

p prime

(
1− 1

p2

)

are the cardinals of the orbits of n-square-tiled surfaces with monodromy group An and Sn, respectively.





Chapter 4
Regular representations

4.1 General theory

Suppose here that G is finite, and consider the action of the group G on the set V = G induced
by left multiplication: u · v = uv, where u ∈ G and v, uv ∈ V . The corresponding representation
ρreg : G ↪→ Sym(G) is called (left) regular . It is always faithful, in particular any finite group can be
embedded into a symmetric group.

Recall that for any generating set {g, h} of G one constructs a labeled digraph, called Cayley
diagram, that illustrates the multiplicative structure of G in terms of generators. The set of vertices
of such a digraph is the set of elements of G and the directed edges are labeled by g and h: there is
an edge with label g (resp. h) from a vertex u ∈ G to a vertex v ∈ G if and only if v = gu (resp.
v = hu). Figure 4.1 shows the diagram of the group G =

〈
g, h

∣∣ g3, h2, (gh)2
〉
, the edges with label

h being dashed.

1

g

g2

h gh

g2h

>

>

>

>

<

<
>

<

<

>

<
>

Figure 4.1: The Cayley diagram of S3 =
〈
g, h

∣∣ g3, h2, (gh)2
〉
.

The Cayley diagram of a group G = 〈X | R 〉 with a set of generators X and a set of defining
relators R is denoted by C(X; R) (or simply by C(G), once X and R are fixed).

Remark that the Cayley diagram of a finite two-generator group G = 〈g, h | R 〉 is isomorphic to
the graph of the origami O defined by (ρreg(g), ρreg(h)) ∈ Sym(G) × Sym(G), and the monodromy
group Mon(O) = gp {ρreg(g), ρreg(h)} ' G is a regular1 subgroup of Sym(G). Here in purpose to
distinguish directions on the origami, we order the set of generators X = {g, h}, say g ≺ h, attaching
g to the horizontal direction and h to the vertical one (or else we consider the ordered pair (g, h) that
indicates ‘g ≺ h’).

1A permutation group is called regular if none of its elements, except the identity, fixes a point.
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Conversely, we would like to understand when a graph of an origami is isomorphic to a Cayley
diagram of a group. The answer to this is given by the following proposition (see [62], Theorem 1.6,
for a proof).

Proposition 4.1. An origamal digraph (V,E,L) is isomorphic to the Cayley diagram of a group if
and only if for any vertices v, v′ ∈ V and any sequence of labels lε1i1 , l

ε2
i2
, . . . , l

εp
ip
∈ L ∪ L−1 the path

l
εp
ip
. . . lε2i2 l

ε1
i1

[v] is closed whenever the path l
εp
ip
. . . lε2i2 l

ε1
i1

[v′] is closed.

Using this criterion, we can in a finite number of steps verify whether an origamal digraph (V,E,L),
where L = {l1, l2}, is isomorphic to the Cayley diagram of a given group G = 〈X | R 〉, where
X = {g1, g2} and R is a finite set of relators (the method is not effective though):

• check that |V | = |G|,

• check that there is a bijection λ : X → L such that for any word2 W (g1, g2) from R and any
vertex v ∈ V the path W (λ(g1), λ(g2))[v] is closed.

Further, for a finite group G = 〈g, h | R 〉 we will denote the corresponding origami by OG,g,h, or
implicitely by OG or Oreg, and call such an origami regular . To make it clear: the origami OG,g,h is
defined by the group G together with the choice of a generating pair (g, h). Then, we would like to
know when two different generating pairs of a group give rise to the same origami:

Lemma 4.2. Let (g, h) and (g′, h′) be two pairs of generators of a finite group G. The origamis OG,g,h
and OG,g′,h′ coincide if and only if there exists an automorphism α ∈ Aut(G) such that α(g) = g′ and
α(h) = h′.

Proof. ⇐= If an automorphism α ∈ Aut(G) sends (g, h) to (g′, h′), then the induced set bijection
α : G → G determines an isomorphism of the labeled digraphs C(g, h;R) and C(g′, h′;R′) of G.
Indeed, for any vertices u, v ∈ G there is an edge from u to v with label g, resp. h, if and only if there
is an edge from α(u) to α(v) with label g′ = α(g), resp. h′ = α(h), that is,

g · u = v ⇐⇒ α(g) · α(u) = α(v) and h · u = v ⇐⇒ α(h) · α(u) = α(v).

=⇒ Conversely, if the origamis OG,g,h and OG,g′,h′ coincide, then the labeled digraphs (G,E, {g, h})
and (G,E′, {g′, h′}), i.e. the corresponding Cayley diagrams of G, are isomorphic. Thus, by Propo-
sition 4.1 for any word W the path W (g, h)[1] is closed if and only if the path W (g′, h′)[1] is closed,
that is, W (g, h) = 1 if and only if W (g′, h′) = 1. Due to Dyck’s theorem there exists an automorphism
α ∈ Aut(G) such that α(g) = g′ and α(h) = h′.

Besides, if α : G → G′ is a group isomorphism then the origamis OG,g,h and OG′,α(g),α(h) are the
same. In other words, we have a one-to-one correspondence between regular origamis and isomorphism
classes of finite two-generator marked groups.

Lemma 4.3. Let (g, h) and (g′, h′) be two pairs of generators of a group G. If for a matrix A from
GL(2, Z) we have (g′, h′)∗ = A · (g, h)∗ then OG,g′,h′ = A ·OG,g,h.

2Let L̂ be a system of letters. A word over L̂ is a formal expression

W ≡W (L̂ ) ≡ Lε11 L
ε2
2 . . . Lεmm , where Li ∈ L̂ and εi = ±1.

Given a generating system X for a group G such that there is a bijection L̂ → X, it is convenient to identify L̂ with X.
Care must be taken to distinguish a word W (L̂ ) from the element W (X) it represents – this should always be clear from
the context.
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Proof. Consider the regular representation ρreg : G → Sym(G). By the description of the GL(2, Z)-
actions on origamis, the condition (g′, h′)∗ = A · (g, h)∗ signifies that there exist an automorphism
ηA ∈ Aut(F2) and an element u ∈ G such that

u(g′, h′)u−1 = ηA · (g, h),

where (ηA · (g, h))∗ = A · (g, h)∗.
Recall that, for any group H, the group Aut(F2) acts on H ×H by Nielsen transformations (see

Section 2.4). We have σ (ρreg(g′), ρreg(h′))σ−1 = ηA · (ρreg(g), ρreg(h)), where σ = ρreg(u) ∈ Sym(G).
Therefore, (ρreg(g′), ρreg(h′))∗ = A · (ρreg(g), ρreg(h))∗, that is, OG,g′,h′ = A ·OG,g,h.

The following theorem is a useful tool for finding the Veech group of an origami, given a presentation
of its monodromy group. Hereafter, if a pair (a, b) ∈ G × G satisfies a relation W (a, b) = 1, then we
also say that the conjugacy class (a, b)∗ = {c(a, b)c−1 | c ∈ G} satisfies the relation W .

Theorem 4.4. Let 〈g, h | R 〉 be a presentation of a finite group G. The integer Veech group of the
square-tiled surface OG,g,h consists of the matrices which preserve R, namely,

A ∈ GL(OG,g,h) ⇐⇒ the conjugacy class A · (g, h)∗ satisfies the relations R.

Moreover, the number of GL(2, Z)-orbits of regular origamis OG,g,h over all pairs of generators (g, h)
is equal to the number of T2-systems of the group G.

Remark 1 (The dual version of the theorem). Remind that there are two GL(2, Z)-actions on
origamis, the natural and dual ones. The orbits for these actions coincide and the stabilizers are
related by (2.6). Thus, we could replace GL by GL× and ‘·’ by ‘×’ in the statement above.

Remark 2. The first part of the theorem (the direct version) can be viewed as a special case of a
result by Gabriela Schmithüsen, see [83, Proposition 2.1].

Proof. Let (g′, h′)∗ = A · (g, h)∗ for a matrix A ∈ GL(2, Z), then by the previous Lemma 4.3 we have
OG,g′,h′ = A ·OG,g,h. The matrix A belongs to the Veech group GL(OG,g,h) if and only if the square-
tiled surfaces OG,g,h and OG,g′,h′ coincide. By Lemma 4.2 it is equivalent to say that there exists an
automorphism α ∈ Aut(G) such that α(g) = g′ and α(h) = h′. As we know from the definition of the
natural GL(2, Z)-action (2.4), the mapping (g, h) 7→ (g′, h′), up to conjugation by an element of G, is
a Nielsen transformation. By Corollary 2.9 we conclude that a necessary and sufficient condition of
the inclusion A ∈ GL(OG,g,h) is for the pair (g′, h′) to satisfy the relations R.

Moreover, due to Lemma 4.2 for a given group G, the regular origamis OG,g,h are in bijection
with the Aut(G)-orbits of pairs (g, h), that is, in bijection with the G-defining subgroup of F2 (see
Section 2.4). The dual action of GL(2, Z) on origamis OG,g,h corresponds to the action of Aut(F2)
on G-defining subgroups. Therefore, the number of GL(2, Z)-orbits in question equals the number of
T2-systems of the group G.

Corollary 4.5. Let G be a finite group generated by two elements g and h such that the origami
OG,g,h is stabilized by GL(2, Z). Then, for any pair (u, v) Nielsen equivalent to the pair (g, h), the
four elements g, h, u and v are of the same order in the group G.

First proof. Consider a presentation 〈g, h | R 〉 of the group G. Let k, l, m and n be orders of the
elements g, h, gh and gh−1 respectively, and let us add the corresponding four relations to the set R
(if there are not already in) so that

G =
〈
g, h

∣∣∣ R, gk = 1, hl = 1, (gh)m = 1, (gh−1)n = 1
〉
. (4.1)
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The Veech group of the origami OG,g,h is the whole group GL(2, Z). Then by Theorem 4.4 the
following conjugacy classes

(h−1, g)∗ = S×(g, h)∗,
(gh−1, h)∗ = T−1×(g, h)∗,

(gh, h)∗ = T×(g, h)∗

satisfy the new relations. In particular we have hk = gl = 1, (gh−1)k = gm = 1 and (gh)k = gn = 1,
that is, l|k, k|l, n|k, k|m and m|k, k|n. Hence, k = l = m = n.

We conclude that for any pair (u, v) = ε1 · (g, h), where ε1 is an elementary Nielsen move, the
elements g, h, u and v are of the same order in G. Suppose that the same is true for (u, v) =
εN−1 · . . . ε1 · (g, h), N ≥ 2, and prove it for (u′, v′) = εN · (u, v), where εN , εN−1, . . . , ε1 are elementary
Nielsen moves. Indeed, by definition of the GL(2, Z)-action there exists a matrix A ∈ GL(2, Z) such
that (u, v)∗ = A×(g, h)∗, and so OG,u,v = A×OG,g,h. The origami OG,g,h is stabilized by GL(2, Z), we
have OG,u,v = OG,g,h, and according to what was already shown the four elements u, v, u′ and v′ are
of the same order in G = 〈u, v | . . . 〉, as (u′, v′) = εN · (u, v). We are done by induction.

Second proof. The origami OG,g,h is defined by the pair of permutations (ρreg(g), ρreg(h)). For any
pair (u, v) Nielsen equivalent to the pair (g, h) there exists a matrix A ∈ GL(2, Z) such that (u, v)∗ =
A×(g, h)∗. The origami OG,g,h coincides with the origamis OG,u,v = A×OG,g,h, and so the pairs of
permutations (ρreg(g), ρreg(h)) and (ρreg(u), ρreg(v)) are conjugate. Since ρreg : G ↪→ Sym(G) is an
injective homomorphism the elements g and u must have the same order in G, as well as h and v.
Applying this argument to the pair (v−1, u), where (v−1, u)∗ = (SA)×(g, h)∗, we conclude that g, h, u
and v are of the same order in G.

Definition 4.1. A faithful permutation representation ρ : G → Sm is called structural if for each
automorphism φ ∈ Aut(ρ(G)) there exists σ ∈ Sm such that

φ(τ) = στσ−1, for all τ ∈ ρ(G).

Proposition 4.6. The regular representation ρ = ρreg : G ↪→ Sym(G) is structural.

Proof. Indeed, an automorphism φ ∈ Aut(ρ(G)) is a composition ρ ◦ α ◦ ρ−1 for some α ∈ Aut(G)
(consequently α ∈ Sym(G)). Let us show that φ(ρ(g)) = αρ(g)α−1 for any g ∈ G, that is, ρ(α(g)) =
αρ(g)α−1. Recall that the permutation ρ(g) ∈ Sym(G) is defined by ρ(g) : h→ g · h, and so one has
αρ(g)α−1 : h→ α(g · α−1(h)). In other words, we want to show that α(g) · h = α(g · α−1(h)) for any
g, h ∈ G, which is obviously true, since α is an automorphism of G.

Note that for any subgroup H ⊆ Sm and any permutation σ from the normalizer of H in Sm, the
mapping φσ : µ 7→ σµσ−1, where µ ∈ H, is an automorphism of H. Hence, if ρ : G→ Sm is a faithful
structural representation, then we have

Aut(G) ' NSm(ρ(G))/CSm(ρ(G)),

where NSm(ρ(G)) and CSm(ρ(G)) are the normalizer and the centralizer of ρ(G) in Sm respectively.

Theorem 4.7. Consider a finite group G generated by two elements g and h. Let ρreg : G ↪→ Sym(G)
be its regular representation, and ρ : G ↪→ Sm another faithful permutation representation. Denote by
Oreg and Oρ the origamis defined by the pairs (ρreg(g), ρreg(h)) and (ρ(g), ρ(h)) respectively. Then

GL(Oρ) ⊆ GL(Oreg).

Moreover, if the representation ρ is structural, then one has the equality GL(Oρ) = GL(Oreg).
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Remark. In her Ph.D. thesis [84, Corollary 5.2], Gabriela Schmithüsen showed that the Veech group
of an origami O is related (by inclusion) to the Veech groups of three regular origamis naturally
associated to O.

Proof. Let A ∈ GL(2, Z) be a matrix which stabilizes the origami Oρ = (σ, τ)∗, where σ = ρ(g)
and τ = ρ(h). Then, by the definition of the direct GL(2, Z)-action (see Section 2.6), there exist
γA ∈ Aut(F2) and δ ∈ Sm such that

γA · (σ, τ) = δ(σ, τ)δ−1,

where γA is actually a preimage of A in the exact sequence

0→ Inn(F2)→ Aut(F2)
Φ−→ GL(2, Z)→ 0, that is, Φ(γA) = A

We have γA · (σ, τ) = (w1(σ, τ), w2(σ, τ)), where γ−1
A :

(
x 7→ w1(x, y)
y 7→ w2(x, y)

)
, implying

γA · (σ, τ) = (w1(ρ(g), ρ(h)), w2(ρ(g), ρ(h))) = (ρ× ρ)(w1(g, h), w2(g, h)) = (ρ× ρ)(γA · (g, h)),

and also

γA · (σ, τ) = δ(σ, τ)δ−1 = δ(ρ(g), ρ(h))δ−1 = φδ ◦ (ρ× ρ)(g, h).

Here φδ : µ 7→ δµδ−1 is an automorphism of ρ(G), since the pair (σ, τ) generates the group ρ(G) and
δ(σ, τ)δ−1 = (w1(σ, τ), w2(σ, τ)) ∈ ρ(G)×ρ(G). Therefore, the mapping ρ−1 ◦φδ ◦ρ is an automorhism
of G such that

(ρ−1 ◦ φδ ◦ ρ)(g, h) = γA · (g, h),

and so by Lemma 4.2 we have A ∈ GL(Oreg). This proves the inclusion GL(Oρ) ⊆ GL(Oreg).
Now, suppose that ρ is a structural representation, and let A ∈ GL(Oreg). We have the following

logical order:

A ∈ GL(Oreg)
Lemma 4.2

=⇒ ∃α ∈ Aut(G) such that (α× α)(g, h) = γA · (g, h),

where γA ∈ Aut(F2) with Φ(γA) = A

=⇒ φ = ρ ◦ α ◦ ρ−1 ∈ Aut(ρ(G)) and (φ× φ)(σ, τ) = γA · (σ, τ),

where σ = ρ(g) and τ = ρ(h)

ρ is structural
=⇒ ∃δ ∈ Sm such that γA · (σ, τ) = δ(σ, τ)δ−1

=⇒ A ∈ GL(Oρ).

Thus, together with the first part of the proof, we obtain the equality GL(Oρ) = GL(Oreg).

Rephrasing the statement of the theorem gives an immediate

Corollary 4.8. Let O = (σ, τ)∗ be an m-square origami, and G = Mon(O) = gp {σ, τ} ⊂ Sm its
monodromy group, then GL(O) ⊆ GL(OG,σ,τ ).

Proposition 4.9. A regular square-tiled surface OG,g,h is primitive if and only if G is a cyclic group
of prime order or trivial.

Proof. =⇒ Due to Proposition 2.4, if the square-tiled surface OG is primitive then its monodromy
groupMon(OG) = ρreg(G) ' G is a primitive permutation group on the set V = G, and so any point
stabilizer Gx (x ∈ V ) is a maximal subgroup (see Lemma 2.3). On the other hand, the stabilizer of 1
for the action of G on itself by left multiplication trivially equals {1}. Thus {1} is a maximal subgroup
of G, that is, G has prime order or trivial.
⇐= Conversely, if |G| = p is prime then the origami OG has p squares and is primitive.



74 CHAPTER 4. REGULAR REPRESENTATIONS

In order to find out the stratum of a regular origami OG,g,h, we shall look at the cycle pattern
of the permutation ρreg([g, h]). Let n be the order of the group G, and k the order of its element

[g, h] = ghg−1h−1. For the action of the commutator [g, h] by left multiplication on G, we get n/k
orbits of length k. Therefore,

OG,g,h ∈ H(k−1, . . . , k−1︸ ︷︷ ︸
n/k

) and genus(OG,g,h) =
k − 1

2
· n
k

+ 1, (4.2)

with the regular origami OG,g,h having n squares.

Before we proceed to the examples of regular square-tiled surfaces, we shall point out that much
work was done in that direction by Frank Herrlich and Gabriela Schmithüsen. Also in a similar with
ours spirit, that is, from the point of view of monodromy groups, Karsten Kremer studies families of
origamis in his Ph.D. thesis [56].
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4.2 Examples

4.2.1 Trivial or abelian origamis

Consider a finite group G generated by two elements g and h, and let ρreg : G ↪→ Sym(G) be its
regular representation. We affirm that G ia abelian if and only if the origami OG is a torus. Indeed,
the origami OG belongs to the stratum H(0) if and only if the commutator [ρreg(g), ρreg(h)] is the
identity pemutation, i.e. [g, h] = 1.

Any finite two-generator abelian group is a product of two cyclic groups and has the following
presentation in terms of generators and relators:

G = Zm × Zn = 〈g, h | gm = hn = [g, h] = 1〉 ,

where one takes g = (1, 0) and h = (0, 1). Remark that for m and n coprime the group Zm × Zn is
generated by (s, r), where mr + ns = 1, and thus it is isomorphic to Zmn.

The corresponding regular origami is the trivial origami T (m,n), see Figure 4.2 where the solid
edges are labeled by g and the dashed ones by h.

0,0 1,0 m,0

0,1

0,n

. . .

. . .

. . .

. . .

. . .

. . ....

1,1 m,1

1,n m,n

g

h

Figure 4.2: The Cayley diagram of Zm × Zn.

For the dual action of GL(2, Z) we have

J×(g, h)∗ = (g,−h)∗, T×(g, h)∗ = (g + h, h)∗ and U×(g, h)∗ = (g, h− g)∗,

where J =

(
1 0
0 −1

)
, T =

(
1 1
0 1

)
and U =

(
1 0
−1 1

)
.

Since an action of a group is uniquely defined by the action of its generating system (cf. Corollary 2.8),
we conclude that

A×(g, h)∗ = (ag + bh, cg + dh)∗ = ((a, b), (c, d))∗ for any A =

(
a b
c d

)
∈ GL(2, Z).

According to Theorem 4.4, a matrix A preserves the origami OG if and only if

m · (a, b) = (ma,mb) = (0, 0) and n · (c, d) = (nc, nd) = (0, 0),

that is, we obtain

GL×(T (m,n)) =

{(
a b
c d

)
∈ GL(2, Z) | b ≡ 0 mod

n

gcd(m,n)
, c ≡ 0 mod

m

gcd(m,n)

}
.



76 CHAPTER 4. REGULAR REPRESENTATIONS

4.2.2 Dihedral origamis

A regular polygon with m ≥ 3 sides has 2m symmetries: m rotations and m reflections. These
symmetries form a group denoted by Dm and called dihedral group. It is non-abelian and has the
following presentation:

Dm =
〈
s, t

∣∣ s2 = t2 = (st)m = 1
〉
' Zn o Z2, (4.3)

where s and t are two reflections as shown in Figure 4.3.

t

s

t

s

Figure 4.3: Symmetries of regular polygons.

The corresponding regular origami ODm,s,t will be called dihedral . The commutator [s, t] = (st)2

has order m if the number m is odd, and m/2 else. Thus, by the formulas (4.2), we have

ODm belongs to

 H(m−1,m−1) and has genus m if m is odd,

H(m2 −1, m2 −1, m2 −1, m2 −1) and has genus m−1 if m is even.

1

s

ts sts

tstst

t

· · ·

· · ·

s

t

(st)
m−1

2 s = t(st)
m−1

2 if m is odd,

(st)
m
2 = (ts)

m
2 if m is even

Figure 4.4: The Cayley diagram of Dm.

Proposition 4.10. The dual Veech group of the dihedral origami ODm is

GL×(ODm) =

{(
a b
c d

)
∈ GL(2, Z) | a+ b and c+ d are odd

}
,

which is an index three subgroup of GL(2, Z).

Proof. For the dual action of GL(2, Z) we have(
a b
c d

)
×(s, t)∗ = (w1(s, t), w2(s, t))∗,
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and words w1 and w2 can be chosen such that

es(w1) = a, et(w1) = b,
es(w2) = c, et(w2) = d,

where es(w) and et(w) denote the sums of the exponents of s and t in the word w respectively.
Since s2 = t2 = 1, there are three types of elements in the group Dm:

(st)ks, t(st)l and (st)r, where k, l ∈ N ∪ {0}, r ∈ Z.

According to Theorem 4.4 a matrix A =

(
a b
c d

)
stabilizes the regular origami ODm if and only if

w2
1 = 1, w2

2 = 1 and (w1w2)m = 1.

Remark that if the integers a+ b and c+ d are both odd then the three equalities are satisfied in Dm,
because in this case each of the words w1 and w2 is of the form (st)ks or t(st)l with k, l ∈ N∪{0}. Thus,
the group Γ consisting of the matrices A with a+ b and c+ d odd is a subgroup of GL×(ODm). Since
Γ is exactly the stabilizer of the point [1 : 1] for the transitive action of GL(2, Z) on the projective
line P1(F2), it is an index three subgroup of GL(2, Z).

Taking into account the fact that the origami ODm is not preserved by the matrix T ,

T /∈ GL×(ODm) as T×(s, t)∗ = (st, t)∗ and (st)2 = [s, t] 6= 1,

we conclude that GL×(ODm) = Γ.
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4.2.3 Heisenberg origamis

Let p > 2 be an odd prime number. The Heisenberg group modulo p is the following non-abelian
subgroup of SL(3,Fp) of upper-triangular matrices:

Hp =


1 a b

0 1 c
0 0 1

 ∈ SL(3,Fp) | a, b, c ∈ Fp

 .

It has order p3 and can be presented as

Hp = 〈s, t | sp = tp = [s, t]p = 1, s[s, t] = [s, t]s, t[s, t] = [s, t]t〉 ,

where

s =

1 1 0
0 1 0
0 0 1

 , t =

1 0 0
0 1 1
0 0 1

 , [s, t] =

1 0 1
0 1 0
0 0 1

 .

The Heisenberg group Hp is periodic of period p, since1 a b
0 1 c
0 0 1

k

=

1 ka kb+ k(k−1)
2 ac

0 1 kc
0 0 1

 .

The corresponding regular origami OHp is called a Heisenberg origami (they were first studied by
Frank Herrlich in [40]).

Proposition 4.11. The dual Veech group of OHp is the entire GL(2, Z),

GL×(OHp) = GL(2, Z).

Proof. By Theorem 4.4, it follows that

J ∈ GL×(OHp) as J×(s, t)∗ = (s, t−1)∗ and [s, t−1] = t−1(tst−1s−1)t = t−1[s, t]−1t = [s, t]−1;

T ∈ GL×(OHp) as T×(s, t)∗ = (st, t)∗ and [st, t] = [s, t];

U ∈ GL×(OHp) as U×(s, t)∗ = (s, s−1t)∗ and [s, s−1t] = s−1[s, t]s = [s, t],

and so OHp is stabilized by GL(2, Z),

By the formulas (4.2), the square-tiled surface belongs to the stratum H(p−1, . . . , p−1︸ ︷︷ ︸
p2

) and is of

genus 1
2p

2(p− 1) + 1.
For p = 3 the Heisenberg origami OH3 coinsides with the Burnside origami OB(2,3). Indeed, by

Dyck’s theorem there is an homomorphism Ψ : H3 → B(2, 3), s 7→ g, t 7→ h, since the orders of
the elements of H3 divide 3 and thus the relations (4.6) are also satisfied in H3. Moreover, Ψ is an
isomorphism in view of the fact that |H3| = |B(2, 3)| = 27.
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4.2.4 The quaternion origami

The quaternion group Q8 is a non-abelian group of order 8. It has the following presentations:

Q8 =
〈
−1, i, j, k

∣∣ (−1)2 = 1, i2 = j2 = k2 = ijk = −1
〉

=
〈
x, y

∣∣ x2 = y2, xy = yx−1
〉
,

where, for instance, i = x, j = y , k = xy, and we have x4 = y4 = 1.
The regular origami OQ8,x,y, called the quaternion origami , has a lot of interesting properties (see,

for instance, the paper [41] by Frank Herrlich and Gabriela Schmithüsen). In particular it is stabilized
by GL(2, Z), what we are going to establish.

1

2

3

4

5

6

7

8

x

y

Figure 4.5: An origamal digraph for OQ8 .

Let us verify the invariance of the relations x2 = y2, xy = yx−1 under each of the three substitutions
y → y−1, x→ xy, y → x−1y. We have

(y−1)2 = y2 = x2 and xy−1 = x(x−1y−1x−1) = y−1x−1,

(xy)2 = (xyx)y = y2 = x2 and (xy)y = xy2 = x3 = x−1 = y(xy)−1,

(x−1y)2 = x−1(yx−1)y = x−1(xy)y = y2 = x2 and x(x−1y) = y = (x−1y)x−1.

Therefore, by Theorem 4.4 the quaternion origami is preserved by the matrices J, T, U , and so

GL×(OQ8) = GL(2, Z).

Since the commutator [x, y] = x(yx−1y−1) = x2 is of order 2, the origami lies in the stratumH(1, 1, 1, 1)
and has genus 3 by the formulas (4.2).
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4.2.5 Generalized quaternion origamis

The generalized quaternion group Q4n, where n ≥ 2, is the group of order 4n given by the presentation

Q4n =
〈
x, y

∣∣ x2n = 1, xn = y2, xy = yx−1
〉
. (4.4)

The case that n = 2 corresponds to the classical quaternion group Q8 considered above. The gener-
alized quaternion group is di-cyclic, that is, an extension of a cyclic group by a cyclic group,

1 −→ C2n −→ Q4n −→ C2 −→ 1.

The group Q4n can be realized as the subgroup of GL2(C) generated by(
0 −1
1 0

)
and

(
e
iπ/n 0

0 e−
iπ/n

)
.

The generalized quaternion group has a close connection with the dihedral group:

Q4n/gp
{
y2
}
' Dn.

Indeed, the set {1, y2} = gp
{
y2
}

is the center of Q4n, and if we add the relation y2 = 1 to (4.4) we
will obtain the presentation (4.3) of the dihedral group, where s = xy−1 and t = y.

x

y

Figure 4.6: An origamal digraph for OQ12 .

The regular origami OQ4n,x,y will be called a generalized quaternion origami . By the formulas
(4.2), since the commutator [x, y] = x(yx−1y−1) = x2 is of order n, the origami belongs to the stratum
H(n−1, n−1, n−1, n−1) and has genus 2n− 1.

Let m be a positive integer, introduce the following notation

Γ0(m) =

{(
a b
c d

)
∈ GL(2, Z) | b ≡ 0 mod m

}
,

which is a congruence subgroup of GL(2, Z).
Let us establish a known result:

Proposition 4.12. The index of the subgroup Γ0(m) of GL(2, Z) is equal to

m
∏
p |m

p prime

(
1 +

1

p

)
.
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Proof. Denote by ψ(m) the index |GL(2, Z) : Γ0(m)|. For a prime number p, the subgroup Γ0(p) is
exactly the stabilizer of the point [0 : 1] for the transitive action of GL(2, Z) on the projective line3

P1(Fp), and so ψ(p) = p + 1. Further, the index |Γ0(p) : Γ0(pk)| of the subgroup Γ0(pk) in Γ0(p)

is equal to pk−1, since {I, T p, T 2p, . . . , T (pk−1−1)p} is a complete list of representatives of the cosets
Γ0(p)/Γ0(pk). Indeed, for any matrix(

a b
c d

)
∈ Γ0(p), where

b = b′pk + xp, 0 ≤ x < pk−1,
d = d′pk + y, 0 < y < pk, p - y,

there exists an integer 0 ≤ z < pk−1 such that zy ≡ x mod pk−1, and(
1 zp
0 1

)(
a b
c d

)
=

(
a+ zcp b+ zdp

c d

)
∈ Γ0(pk).

Therefore, we have ψ(pk) = |Γ0(p) : Γ0(pk)| · |GL(2, Z) : Γ0(p)| = pk−1(p+ 1).
Now, let us show that ψ is a multiplicative function (in terms of number theory), that is,

ψ(mn) = ψ(m) · ψ(n) for any coprime positive integers m,n.

First, recall that for any subgroup H and K of a group G, there is a natural bijection

H/(H ∩K)←→ HK/K, h(H ∩K)↔ hK,

where HK denotes the set of products hu with h ∈ H, u ∈ K. Second, any matrix A =

(
a b
c d

)
from

GL(2, Z) can be presented in the form

A = B · C for some B ∈ Γ0(m) and C ∈ Γ0(n). (4.5)

Indeed, if gcd(d, n) = 1 then there exist x, y ∈ Z such that xmd+ yn = b, and so(
a b
c d

)
=

(
1 xm
0 1

)(
a− xmc yn

c d

)
.

Else, if d and n are not coprime then, as gcd(b, d) = 1 for ad− bc = ±1, there is an integer z such that
gcd(zb+ d, n) = 1, for instance we can choose z to be the greatest divisor of n coprime to d. Thus, by
what we have just seen, one gets a presentation (4.5) for the matrix

U−zA =

(
1 0
z 1

)(
a b
c d

)
=

(
a b

za+ c zb+ d

)
= B · C, where B ∈ Γ0(m) and C ∈ Γ0(n),

implying A = (U zB) · C, where U zB ∈ Γ0(m) and C ∈ Γ0(n).
Hence, we have Γ0(m)Γ0(n) = GL(2, Z), and finally

|Γ0(m) : Γ0(mn)| = |Γ0(m) : Γ0(m) ∩ Γ0(n)| = |Γ0(m)Γ0(n) : Γ0(n)|
= |GL(2, Z) : Γ0(n)| = ψ(n).

This proves that ψ(mn) = ψ(m) · ψ(n). In particular, we conclude that if m = pk11 · · · pkss then
ψ(m) = ψ(pk11 ) · · ·ψ(pkss ) = m(1 + 1/p1) · · · (1 + 1/ps).

3A projective line over an (associative, with 1) ring R is the space of equivalence classes of pairs from R2 such that

(a, b) ∼ (c, d) if and only if a = uc, b = ud for some u ∈ U ,

where U is the group of units (i.e. invertible elements) of the ring R. The projective line over R is denoted by P1(R),
and its points by [a : b]. If R is a field then P1(R) consists of the points [a : 1], where a ∈ R, and the point ∞ = [1 : 0].
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Proposition 4.13. For n > 2, the dual Veech groups of the generalized quaternion origamis are

GL×(OQ4n) =

{
Γ0(4) if n is odd,

Γ0(2) if n is even,

which are congruence subgroups of GL(2, Z) of index 6 and 3 respectively.

Proof. Recall, as usual, that for the dual action of GL(2, Z) we have(
a b
c d

)
×(x, y)∗ = (w1(x, y), w2(x, y))∗,

and words w1 and w2 can be chosen such that

ex(w1) = a, ey(w1) = b,
ex(w2) = c, ey(w2) = d,

where ex(w) and ey(w) denote the sums of the exponents of x and y in the word w respectively.
Moreover, using the relation xy = yx−1, it is easy to see that

w1(x, y) = xkyb, where k ≡ a mod 2,

w1(x, y) = xlyd, where l ≡ c mod 2.

According to Theorem 4.4, a matrix A =

(
a b
c d

)
stabilizes the regular origami OQ4n if and only if

w2n
1 = 1, wn1 = w2

2 and w1w2 = w2w
−1
1 .

Let us show that the three relations are satisfied if 2 | b and 4 | bn. Indeed, if b is even then y2b = 1,
x commutes with yb and the integers k and d are odd, as ad− bc = ±1. In particular, xkn = xn and
y2d = y2. Also, ybn = 1 when bn is divisible by 4. Therefore, we have:

w2n
1 = (xkyb)2n = (x2n)ky2bn = 1,

wn1 = (xkyb)n = xknybn = xn and w2
2 = (xlyd)2 = xl−ly2d = y2 = xn,

w1w2 = (xkyb)(xlyd) = xk+lyb+d and w2w
−1
1 = (xlyd)(y−bx−k) = xk+lyd−b = xk+lyb+d.

One concludes that Γ0(4) ≤ GL×(OQ4n) for any n, and Γ0(2) ≤ GL×(OQ4n) if n is even. We know from
Proposition 4.12 that the congruence subgroups Γ0(4) and Γ0(2) are of indices 6 and 3 in GL(2, Z)
respectively. By Theorem 4.4, there are at least 4 (resp. 2) different cosets in GL(2, Z)/GL×(OQ4n)
when n > 2 is odd (resp. even):

T /∈ GL×(OQ4n) as T×(x, y)∗ = (xy, y)∗ and (xy)y = xy2 = xn+1 6= x−1 = y(xy)−1;

T 2 /∈ GL×(OQ4n) if 2 - n as T×(x, y)∗ = (xy2, y)∗ and (xy2)n = xny2n = y2(n+1) = 1 6= y2;

T 3 /∈ GL×(OQ4n) as T×(x, y)∗ = (xy3, y)∗ and (xy3)y = xy4 = x 6= x−n−1 = y(xy3)−1.

So, the dual Veech group GL×(OQ4n) is exactly Γ0(4) and Γ0(2) respectively for n odd and even.



4.2. EXAMPLES 83

4.2.6 The tetrahedral origami

The group of orientation-preserving symmetries of a regular tetrahedron has 12 elements (identity, 8
rotations by 120◦ and 3 rotations by 180◦). It can be presented as

Tet =
〈
s, t

∣∣ s2 = t3 = (st)3 = 1
〉
' A4,

where s is a rotation by 180◦ with respect to an axis connecting the midpoints of two opposite edges,
and t is a rotation by 120◦ with respect to an axis passing through a vertex and the center of the
opposite face (see Figure 4.7).

s, 180◦

t, 120◦

Figure 4.7: Symmetries of a regular tetrahedron.

The corresponding regular origami OTet,s,t is called tetrahedral . Since [s, t] = (sts)t2 = t−1s−1t
has order 2, from the formulas (4.2) follows that the regular origami OTet belongs to H(1, 1, 1, 1, 1, 1)
and has genus 4.
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Figure 4.8: An origamal digraph for OTet.

Proposition 4.14. The dual Veech group GL×(OTet) of the tetrahedral origami is Γ0(3).

Proof. Since Tet ' A4, the order of any element in Tet is 1, 2 or 3. Moreover, by Dyck’s theorem we
have a homomorphism

ϕ : Tet� Z3, s 7→ 0, t 7→ 1,

which is surjective, so that an element w(s, t) is sent to et(w) mod 3, where et(w) denotes the sum of
the exponents of t in the word w. The kernel kerϕ consist of the identity and three elements of order
2, namely s, tst−1 and t−1st – the three rotations by 180◦. This gives a criterion: w2 = 1 in the group
Tet if and only if et(w) is a multiple of 3. (In particular if 3 - et(w) then w has order 3.)
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Now, for the dual action of GL(2, Z) we have

A×(s, t)∗ = (w1(s, t), w2(s, t))∗, A =

(
a b
c d

)
,

where words w1 and w2 can be chosen such that

es(w1) = a, et(w1) = b,
es(w2) = c, et(w2) = d.

According to Theorem 4.4 a matrix A stabilizes the regular origami OTet if and only if

w2
1 = 1, w3

2 = 1 and (w1w2)3 = 1.

By the argument above, w2
1 = 1 implies 3 | b. Conversely, if 3 | b then w2

1 = 1. Besides, 3 - d, as
ad− bc = ±1, and so w3

2 = 1, (w1w2)3 = 1. Therefore, according to Theorem 4.4,

GL×(OTet) =

{(
a b
c d

)
∈ GL(2, Z) | b ≡ 0 mod 3

}
,

which is an index 4 congruence subgroup (see Proposition 4.12).
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4.2.7 An octahedral origami

The octahedral group Oct is the group of orientation-preserving symmetries of a regular octahedron
(or a cube, which is its dual). It has 24 elements (identity, 6 rotations by 90◦, 8 rotations by 120◦,
3 rotations by 180◦ about a 4-fold axis and 6 rotations by 180◦ about a 2-fold axis). The octahedral
group is isomorphic to S4 and can be presented as

Oct =
〈
s, t

∣∣ s2 = t3 = (st)4 = 1
〉
' S4,

where s is a rotation by 180◦ with respect to an axis connecting the midpoints of two opposite edges
(a 2-fold axis), and t is a rotation by 120◦ with respect to an axis passing through the centers of two
opposite faces (see the figure below).

s, 180◦

t, 120◦

Figure 4.9: A regular octahedron.

The corresponding regular origami OOct = OOct,s,t is called octahedral . By the formulas (4.2),
the regular origami OOct belongs4 to the stratum H(28) and has genus 9, since the commutator
[s, t] = (sts)t2 = t−1s−1t−1s−1t = (st)−1t−1(st) has order 3 in Oct.

Proposition 4.15. The direct Veech group of the octahedral origami OOct is

GL(OOct) = gp

{(
1 0
0 −1

)
,

(
−1 0
0 −1

)
,

(
1 −2
0 1

)
,

(
−5 −2
3 1

)
,

(
−3 −2
5 3

)}
,

which is a noncongruence subgroup of GL(2, Z) of index 9.

Proof. The symmetries from Oct permute the four pairs of opposite sides of the octahedron, and there
is an enumeration of the pairs providing an isomorphism

ρ : Oct
'−→ S4 such that ρ(s) = (1 2) and ρ(t) = (2 3 4).

Since all automorphisms of the group ρ(Oct) = S4 are inner (cf. Lemme 3.7), the representation ρ is
structural and by Theorem 4.7 we have

GL(Oρ) = GL(OOct),

where Oρ is the 4-square-tiled surface encoded by the permutations (1 2) and (2 3 4), or else it is the
corner origami L(2, 3).

4The abbreviation H(ab) = H(a, . . . , a︸ ︷︷ ︸
b

) is employed.
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L(2, 3) =
S =

(
0 −1
1 0

)
L(3, 2) =

According to Gabriela Schmithüsen [85], the SL(2, Z)-stabilizer of L(3, 2) is

SL(L(3, 2)) = gp

{(
−1 0
0 −1

)
,

(
1 0
2 1

)
,

(
1 3
0 1

)
,

(
1 −3
2 −5

)
,

(
3 −5
2 −3

)}
,

where the generator

(
1 3
0 1

)
is actually redundant. The group SL(L(3, 2)) is a noncongruence subgroup

of SL(2, Z) of index 9 = 3(2− 1)22(1− 1
22

), due to [85] or by Theorem 3.4.
We have SL(Oρ) = S · SL(L(3, 2)) · S−1, and

S

(
a b
c d

)
S−1 =

(
0 −1
1 0

)(
a b
c d

)(
0 1
−1 0

)
=

(
−c −d
a b

)(
0 1
−1 0

)
=

(
d −c
−b a

)
.

Finally, the matrix J =

(
1 0
0 −1

)
belongs to GL(Oρ), since

J ·Oρ = J · ((1 2), (2 3 4))∗ = ((1 2), (2 4 3))∗ = (δ(1 2)δ−1, δ(2 3 4)δ−1)∗ = Oρ, where δ = (3 4).

Therefore, the statement of the proposition is verified.
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4.2.8 Two icosahedral origamis

A regular icosahedron has 20 identical equilateral triangular faces, 30 edges and 12 vertices (see the
picture below). The icosahedral group Ico is the group of orientation-preserving symmetries of a
regular icosahedron (or its dual – a regular dodecahedron). The group Ico consists of 60 elements:

• the identity,

• the rotations by k · 72◦ with k = 1, 2, 3, 4 about the axes passing through two opposite vertices
(i.e. 4× 12

2 = 24 rotations),

• the rotations by 180◦ about the axes passing through the midpoints of two opposite edges (i.e.
30
2 = 15 rotations),

• the rotations by k ·120◦ with k = 1, 2 about the axes passing through the centers of two opposite
faces (i.e. 2× 20

2 = 20 rotations).

5

4

8
9

6

1

10

2

7

3

12

11

Figure 4.10: A regular icosahedron.

The icosahedral group is isomorphic to A5 and PSL(2,F5), and can be presented as

Ico =
〈
s, t

∣∣ s2 = t3 = (st)5 = 1
〉
' A5 ' PSL(2,F5).

An isomorphism ρ1 : Ico
'−→ A5 is constructed as follows5. Let us divide the 30 edges of the

icosahedron into 5 disjoint subsets, containing six edges parallel or perpendicular to each other:

a = {1-2, 7-8, 4-5, 10-11, 6-9, 3-12},
b = {1-3, 7-9, 5-6, 11-12, 4-8, 2-10},
c = {1-4, 7-10, 2-6, 8-12, 5-9, 3-11},
d = {1-5, 7-11, 2-3, 8-9, 6-10, 4-12},
e = {1-6, 7-12, 3-4, 9-10, 5-8, 2-11}.

Define s to be the rotation by 180◦ about the axis passing through the midpoints of the opposite edges
1-6 and 7-12. Then in the alternating group Alt({a, b, c, d, e}), it is represented by the permutation

5There are several distinct ways to obtain such an isomorphism. A peculiar one lies in the fact that the centers of
the faces of the icosahedron form the 20 vertices of a regular dodecahedron, which is, in its turn, the compound of five
tetrahedra (the convex hull of the compound is the dodecahedron), or else the compound of five cubes. Each rotational
symmetry of the icosahedron permutes these five tetrahedra.
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(a b)(c d). Further, define t to be the counterclockwise rotation by 240◦ about the axis passing through
the centers of the opposite faces 1-6-2 and 7-12-8. Then t is represented by the permutation (a c e).
Since Ico is generated by the rotations s and t, we obtain an isomorphism

ρ1 : Ico
'−→ gp {(a b)(c d), (a c e)} = Alt({a, b, c, d, e}) ' A5.

The corresponding regular square-tiled surface OIco,s,t is called the first icosahedral origami . By
the formulas (4.2), the origami OIco,s,t belongs to the stratum H(412) and has genus 25, since the
commutator

[s, t] = (sts)t2 = t−1s−1t−1s−1t−1s−1t = (tst)−1(st)(tst)

is of order 5 in Ico.

Proposition 4.16. Let O1 be the 5-square origami encoded by the permutations (1 2)(3 4) and (1 3 5).
Then GL(OIco,s,t) = GL(O1).

Proof. The composition of the isomorphism ρ1 : Ico
'−→ A5 defined above and the inclusion A5 ↪→ S5

gives a faithful permutation representation ρ : Ico ↪→ S5. This representation is structural, since all
automorphisms of the alternating group of degree 5 are conjugations by a permutation from S5, that
is, Aut(A5) = S5. By Theorem 4.7, we have GL(O1) = GL(Oρ) = GL(OIco,s,t).

The origami O1 in the proposition belongs to the stratum H(4) and is of genus 3.

O1 =

1 2

34

5

Using the mathematics software system Sage, we found its Veech group

GL(O1) = gp

{(
1 0
0 −1

)
,

(
−1 0
0 −1

)
,

(
1 2
0 1

)
,

(
1 0
3 0

)
,

(
−4 3
−7 5

)}
which is a subgroup of GL(2, Z) of index 10.

The icosahedral group has another presentation

Ico =
〈
u, v

∣∣ u3 = v3 = (uv)5 = (uv−1uv)2 = 1
〉
,

where u the counterclockwise rotation by 120◦ about the axis passing through the midpoints of the
faces 5-9-6 and 11-3-12, and v is the counterclockwise rotation by 240◦ about the axis passing through
the midpoints of the faces 5-8-9 and 11-2-3. The rotations u and v correspond to the permutations
(a b c) and (c d e). Thus, we obtain an isomorphism

ρ2 : Ico
'−→ gp {(a b c), (c d e)} = Alt({a, b, c, d, e}) ' A5.

The regular square-tiled surface OIco,u,v is called the second icosahedral origami. We have

(uv)−1 · [u, v] · (uv) = u−1v−1uv = u(uv−1uv) = u(uv−1uv)−1 = uv−1(u−1)vu−1,

i.e. the commutator [u, v] is of order 3 in the group Ico. Hence, by the formulas (4.2), the origami
OIco,u,v belongs to the stratum H(220) and has genus 21.

Proposition 4.17. Let O2 be the 5-square origami encoded by the permutations (1 2 3) and (3 4 5).
Then GL(OIco,u,v) = GL(O2).

Proof. Analogous to the proof of the previous proposition.
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The origami O2 belongs to the stratum H(2) and has genus 2.

O2 = L(3, 3) =

3 1 2

4

5

Using Sage, we found that its Veech group is generated by the following matrices

GL(O2) = gp

{(
1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
3 −1
1 0

)
,

(
5 −9
4 −7

)}
and is a subgroup of GL(2, Z) of index 9.
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4.2.9 Burnside origamis

Consider the Burnside group B(m, k), m > 1, defined as the largest m-generator group in which the
identity xk = 1 holds for all elements x. Burnside’s famous problem asks whether the group B(m, k)
is finite. For instance, the group B(m, 2) is elementary abelian of order 2m, since xyx−1y−1 =
x2(x−1y)2y−2. In the historical 1902 paper [13], William Burnside himself showed that the order of
B(m, 3) is bounded by 32m−1, and also |B(2, 4)| ≤ 212. Only almost 40 years later Ivan N. Sanov [82]
proved that B(m, 4) is finite, and in 1958 Marshall Hall Jr. [54] established finiteness of B(m, 6). The
particular case of B(2, 5) remains open: it is not known whether this group is finite. In a series of
fundamental articles published in 1968, Petr S. Novikov and Sergei I. Adjan [77] gave the negative
answer to the question of Burnside for odd k ≥ 4381. Afterwards, Adjan [1, 1975] improved the result
by showing that already for odd k ≥ 665 the group B(m, k) is infinite.

Proposition 4.18. Let B(2, k) be a finite two-generator Burnside group. The integer Veech group of
the regular origami OB(2,k) is the whole group GL(2, Z).

Proof. By presenting the Burnside group B(2, k) as follows

B(2, k) =
〈
g, h

∣∣∣ (W (g, h))k = 1 for any word W
〉
, (4.6)

and by applying Theorem 4.4, we immediately conclude.

Case k = 3. Let us show that any Burnside group B(m, 3) is finite. First, introduce two definitions.
A group is called periodic if all its elements have finite orders (not necessary the same). A group G is
called locally finite if any finitely generated subgroup of G is finite.

Proposition 4.19. If some normal subgroup N and the quotient G/N of a group G are locally finite,
then G is locally finite as well.

Proof. Let S = {s1, . . . , sp} be a finite subset of G. By assumption, the cosets siN generate a finite
group H = {t1N, . . . , tqN}, q ≥ p. The set of representatives T = {t1, . . . , tq} can be chosen such that
all si and s−1

i belong to it. For any 1 ≤ i, j ≤ q we have

ti · tj = trnij , where 1 ≤ r ≤ q and nij ∈ N.

Therefore, any word ti1 · · · tir is equal to a word t · n, where t ∈ T and n is a product of nij ’s (for
instance, t1t2t3 = t1tan23 = tb · n1an23). Since the finite set {nij} generates a finite subgroup of N ,
the subgroup of G generated by the set S ⊂ T is finite as well.

Corollary 4.20. Any periodic solvable group G is locally finite.

Proof. An abelian periodic group is locally finite because any elements a1, · · · , ap with orders k1, . . . , kp
generate a subgroup of order at most k1 · · · kp. The corollary follows by induction on the length of a
subnormal series of G using Proposition 4.19.

Remark that in a periodic group G of period6 3, any element commutes with its conjugates, that
is, x(yxy−1) = (yxy−1)x for any x, y ∈ G. Indeed, we have (xy)3 = y3 = (x−1y)3 = 1, and so

(xyx)(y−1)(x−1yx−1)(y−1) = (y−1x−1y−1)(y2)(y−1xy−1)(y2) = 1.

Let now {g1, . . . , gm} be a generating system of G = B(m, 3). Take the subgroup N1 generated
by all conjugates of g1. Obviousely, it is normal in B(m, 3), and by the remark we made N1 is
abelian. Further, consider the group G/N1 which is also periodic with period 3. Let N2/N1, where

6A period of a group G is a positive integer n such that xn = 1 for all x ∈ G.
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N1 C N2 ≤ G, be the subgroup of G/N1 generated by the conjugates of g2N1. Again, it is normal
and abelian. Continue this procedure recursively on i from 1 to m − 1 by defining Ni+1/Ni, where
Ni C Ni+1 ≤ G, to be the subgroup of G/Ni ' (G/Ni−1)/(Ni/Ni−1) generated by the conjugates of
gi+1Ni. We will get a subnormal series

{1}CN1 CN2 C · · ·CNm = G,

whose factor groups are abelian. Thus, the group B(m, 3) is solvable. By Corollary 4.20 it is locally
finite, and so finite.

Friedrich Levi and B. L. van der Waerden [59, 1933] showed that

|B(m, 3)| = 3m+(m2 )+(m3 ).

In particular, the Burnside group B(2, 3) has order 27 and is given by the following presentation:

B(2, 3) =
〈
g, h

∣∣ g3 = h3 = (gh)3 = (gh−1)3 = 1
〉

(4.7)

By Proposition 4.18, the corresponding regular origami is invariant under the action of GL(2, Z),

GL×(OB(2,3)) = GL(2, Z).

Further, the order of the commutator [g, h] is 3, thus by the formulas (4.2) this Burnside origami
belongs to the stratum H(2, . . . , 2︸ ︷︷ ︸

9

) and is a surface of genus 10.

Case k = 4. In his Ph.D. thesis [93, 1954], Sean Tobin proved that B(2, 4) has order 212 and can be
presented in the following way (see also [55]):

B(2, 4) =
〈
g, h

∣∣ g4 = h4 = (gh)4 = (g−1h)4 = (g2h)4 = (gh2)4 = 1, (g−1h−1gh)4 = (g−1hgh)4 = 1
〉
.

The corresponding regular origami OB(2,4) is also stabilized by GL(2, Z). It belongs to the stratum
H(3, . . . , 3︸ ︷︷ ︸

210

) and has genus 3 · 29 + 1.

Case k = 6. Marshall Hall Jr. showed in [54] that the group B(m, 6) has order

2a3b+(b2)+(b3), where a = 1 + (m− 1)3m+(m2 )+(m3 ), b = 1 + (m− 1)2m.

In particular, we have |B(2, 6)| = 228325. The square-tiled surface OB(2,6) corresponding to the
presentation (4.6) is stabilized by GL(2, Z), lies in the stratum H(5, . . . , 5︸ ︷︷ ︸

227324

) and has genus 5 ·226324 +1.
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4.2.10 Polynomial origamis

The following set of polynomials over a finite field Fp, where p is prime,

Gn(p) =
{
x+ a2x

2 + · · ·+ anx
n | ai ∈ Fp

}
forms a group under the binary operation of composition of functions modulo xn+1. This is a two-
generator group of order pn−1, see the textbook [51, p. 68] by D. L. Johnson. The corresponding
regular origamis OGn(p) are called polynomial .

• When n = 3, wa have a group of order p2:

G3(p) =
{
x+ ax2 + bx3 | a, b ∈ Fp

}
.

Take an element R = x+ ax2 + bx3 and calculate its powers. Denote

Rk = x+ akx
2 + bkx

3,

where a1 = a and b1 = b. Then

Rk+1 = R ◦Rk = (x+ akx
2 + bkx

3) + a(x+ akx
2 + bkx

3)2 + b(x+ akx
2 + bkx

3)3

= x+ (ak + a)x2 + (bk + 2aak + b)x3,

that is, ak+1 = ak + a and bk+1 = bk + 2aak + b, from where

ak = ka,

bk = kb+ 2aa1 + 2aa2 + . . .+ 2aak−1 = kb+ 2a2(1 + 2 + . . .+ k − 1)

= kb+ k(k − 1)a2,

for any k ≥ 1. Therefore, one has Rp = x, which is the identity element.

Recall that any group of order p2 is abelian7, i.e. isomorphic to Cp ×Cp or Cp2 . Since Rp = x for
any element R ∈ G3(p), we conclude that

G3(p) ' Cp × Cp.

In particular, according to the subsection 4.2.1 we get the following proposition:

Proposition 4.21. The origami OG3(p) is trivial and GL(OG3(p)) = GL(2, Z).

• When n = 4, we are dealing with a group of order p3:

G4(p) =
{
x+ ax2 + bx3 + cx4 | a, b, c ∈ Fp

}
.

7 Indeed, let G be a group of order p2 and Z its center. The group G acts on its elements by conjugation, each
orbit has length [G : Gg] for some g ∈ G and Gg =

{
h ∈ G

∣∣ hgh−1 = g
}

. Denote by g1, g2, . . . , gl representatives of the
conjugacy classes of G. Then we obtain that

p2 = |G| =
l∑
i=1

[G : Ggi ] =
∑
gi∈Z

1 +
∑
gi /∈Z

[G : Ggi ].

Since the first sum equals |Z| and the second one is a multiple of p, the order of the center |Z| is a multiple of p as well
(for the same reason, the center of a nontrivial p-group is never trivial). If |Z| = p2, then the group G = Z is abelian.
Else |Z| = p, implying that both Z and G/Z are cyclic groups of order p. Suppose that Z is generated by u and G/Z by
vZ, where u, v ∈ G. Then the group G is generated by u and v that do commute as u ∈ Z.
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The group G4(p) is never abelian. Indeed, the elements V = x+ x2 and W = x+ x3 don’t commute:

V ◦W = (x+ x3) + (x+ x3)2 = x+ x2 + x3 + 2x4,

W ◦ V = (x+ x2) + (x+ x2)3 = x+ x2 + x3 + 3x4.

Consider an arbitrary element F = x+ ax2 + bx3 + cx4 of the group G4(p), and let

F k = x+ akx
2 + bkx

3 + ckx
4

with a1 = a, b1 = b and c1 = c. Then

F k+1 = F ◦ F k = (x+ akx
2 + bkx

3 + ckx
4) + a(x+ akx

2 + bkx
3 + ckx

4)2

+ b(x+ akx
2 + bkx

3 + ckx
4)3 + c(x+ akx

2 + bkx
3 + ckx

4)4

= (x+ akx
2 + bkx

3 + ckx
4) + (ax2 + 2aakx

3 + 2abkx
4 + aa2

kx
4) + (bx3 + 3bakx

4) + cx4

= x+ (ak + a)x2 + (bk + b+ 2aak)x
3 + (ck + c+ 2abk + 3bak + aa2

k)x
4.

This means that ak+1 = ak + a, bk+1 = bk + b + 2aak and ck+1 = ck + c + 2abk + 3bak + aa2
k, from

where we find that

ak = ka,

bk = kb+ 2a

k−1∑
i=1

ai = kb+ 2a2
k−1∑
i=1

i = kb+ k(k − 1)a2,

ck = kc+ 2a
k−1∑
i=1

bi + 3b
k−1∑
i=1

ai + a
k−1∑
i=1

a2
i

= kc+ 2a
k−1∑
i=1

(
ib+ i(i− 1)a2

)
+ 3b

k−1∑
i=1

ia+ a
k−1∑
i=1

(ia)2

= kc+ 5ab

k−1∑
i=1

i+ a3
k−1∑
i=1

(
2i(i− 1) + i2

)
= kc+ 5ab

k(k − 1)

2
+ a3

k−1∑
i=1

(
3i2 − 2i

)
= kc+ 5ab

k(k − 1)

2
+ a3

(
3

(k − 1)k(2k − 1)

6
− 2

k(k − 1)

2

)
= kc+ 5ab

k(k − 1)

2
+ a3 k(k − 1)(2k − 3)

2

for any k ≥ 1. Therefore, one has

F p =

{
x+ (ab+ a3)x4 if p = 2,

x if p ≥ 3.
(4.8)

It is known (see Exercise 7.5.2 of the textbook [7] by Homer Bechtell) that up to isomorphism
there are exactly 5 distinct groups of order p3:

the abelian groups Cp × Cp × Cp, Cp2 × Cp and Cp3 ;

(for p = 2) the dihedral group D4 =
〈
s, t

∣∣ s2 = t2 = (st)4 = 1
〉

of order 8 and the quaternion
group Q8 =

〈
s, t

∣∣ s2 = t2, st = ts−1
〉

;

(for p ≥ 3) the Heisenberg group

Hp =


1 a b

0 1 c
0 0 1

 ∈ SL(3,Fp) | a, b, c ∈ Fp


= 〈s, t | sp = tp = [s, t]p = 1, s[s, t] = [s, t]s, t[s, t] = [s, t]t〉
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and the group Lp =

{(
a b
0 1

) ∣∣ a, b ∈ Fp2 , a ≡ 1 mod p

}
=
〈
s, t

∣∣∣ t−1st = s1+p, sp
2

= tp = 1
〉
.

The polynomial group G4(p) is a non-abelian group of order p3. For p = 2, it follows from (4.8) that
G4(2) has exactly 6 involutions corresponding to

(a, b, c) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}.

Since in the quaternion group there are exactly two involutions 1 and −1 and all other elements have
order 4, we obtain G4(2) ' D4. For p ≥ 3, the equation F p = x is satisfied for each F ∈ G4(3), and
so G4(3) ' Hp.

Denote by (X,Y ) the generating pair of the group G4(p) that is sent by an isomorphism to the
generating pair (s, t) of D4 and Hp respectively for p = 2 and p ≥ 3 (see the presentations of D4 and
Hp above). Consider the origami OG4(p) = OG4(p),X,Y . According to the subsections 4.2.2 and 4.2.3,
the following proposition takes place:

Proposition 4.22. The origami OG4(2) is dihedral and its Veech group is

GL(OG4(2)) =

{(
a b
c d

)
∈ GL(2, Z) | a+ c and b+ d are odd

}
.

For any prime p ≥ 3, the origami OG4(p) is Heisenberg, and GL(OG4(p)) = GL(2, Z).

• Now, let us study the case that n = 5 and p = 2 corresponding to the group G5(2) of order 16. It
has the following presentation:

G5(2) =
〈
P, Q

∣∣ P 4 = Q4 = (PQ)2 = (PQ−1)2 = 1
〉
,

where P = x + x2, Q = x + x3 and the identity 1 stands for the polynomial x, see [51, p. 68]. For
instance,

P 2 = (x+ x2) + (x+ x2)2 = x+ x4,

P 3 = (x+ x4) + (x+ x4)2 = x+ x2 + x4,

Q2 = (x+ x3) + (x+ x3)2 = x+ x5,

Q3 = (x+ x5) + (x+ x5)3 = x+ x3 + x5.

Using the relations PQ = Q−1P−1 and PQ−1 = QP−1, one concludes that any element w(P,Q) of
the group G5(2) can be uniquely presented in the form

P iQj , for some 0 ≤ i, j ≤ 3.

Moreover, such integers i and j have the same parities as eP (w) and eQ(w) respectively, where eP (w)
and eQ(w) are sums of the exponents of P and Q in the word w. Denoting χ(k) = 1 + (−1)k ∈ {0, 2},
one has

P iQj = Q(−1)ijP (−1)ji,

(P iQj)2 = Pχ(j)iQχ(i)j ,

and so (P iQj)2 = 1 if and only if (i− j) is even (if i is odd and j is even then χ(j)i is not a multiple
of 4). Also, since χ(k) is always even,

(P iQj)4 = Pχ(j)iQχ(i)jPχ(j)iQχ(i)j = P 2χ(j)iQ2χ(i)j = 1,

that is, the order of any nontrivial element in G5(2) is either 2 or 4.
The order of the commutator [P,Q] = P (QP−1)Q−1 = P 2Q−2 = P 2Q2 is 2. Therefore, by the

formulas (4.2), the origami OG5(2),P,Q is of genus 5 and belongs to the stratum H(18).
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Proposition 4.23. The dual Veech group of the polynomial origami OG5(2),P,Q is

GL×(OG5(2),P,Q) =

{(
a b
c d

)
∈ GL(2, Z) | a+ b and c+ d are odd

}
,

which is an index three subgroup of GL(2, Z).

Proof. The dual action of GL(2, Z) on the conjugacy classes of pairs is given by

A×(P,Q)∗ = (w1(P,Q), w2(P,Q))∗, A =

(
a b
c d

)
,

where words w1 and w2 can be chosen such that

eP (w1) = a, eQ(w1) = b,
eP (w2) = c, eQ(w2) = d.

According to Theorem 4.4, a matrix A stabilizes the regular origami OG5(2),P,Q if and only if

w4
1 = 1, w4

2 = 1, (w1w2)2 = 1 and (w1w
−1
2 )2 = 1.

The first two relations are automatically satisfied, since the group G5(2) has only elements of order 1, 2
and 4. For the third relation, we shall present the element w1w2 in the form P iQj , where i and j have
the same parities as a+ c and b+ d respectively. Thus, (w1w2)2 = 1 if and only if (i− j) is even, that
is, k = (a+ c)− (b+d) is even. By analogy, (w1w

−1
2 )2 = 1 if and only if (a− c)− (b−d) = k+ 2(d− c)

is even.
For integers a, b, c, d such that ad− bc = ±1, the condition 2 | (a+ c)− (b+ d) is equivalent to the

condition that both a+ c and b+ d are odd (as ad− bc = d(a+ c)− c(b+ d)), or else that a+ b and
c+ d are odd. This proves the proposition.

Remark that the groups G5(2) and D8 are both of order 16, and the corresponding regular origamis
have the same Veech groups (cf. Propositions 4.10 and 4.23). However, the group G5(2) is not
isomorphic to the dihedral group, since the order of any of its elements is at most 4, meanwhile D8

has an element of order 8 (rotation by π/4).

Question 4.1. Study the polynomial origamis OGn(p) with n ≥ 5. For instance, is it true that the
Veech group of such an origami is a congruence subgroup?
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4.2.11 Projective origamis

Let p be a prime number. The projective special linear group PSL(2, p) = PSL(2,Fp) over the field
Fp is a quotient of the special linear group SL(2, p),

PSL(2, p) = SL(2, p)/SZ,

where SZ consists of nonzero scalar transformations of F2
p with unit determinant, that is,

SZ =

{(
a 0
0 a

) ∣∣ a ∈ Fp, a2 = 1

}
.

Since SZ = {±I} = {I} for p = 2 and SZ = {±I} for p ≥ 3, where I =

(
1 0
0 1

)
, we obtain

n := |PSL(2, p)| = 1

gcd(2, p− 1)
|SL(2, p)| = p(p2 − 1)

gcd(2, p− 1)
=

{
6 if p = 2,
1
2p(p

2 − 1) if p ≥ 3.

The regular square-tiled surfaces with monodromy group PSL(2, p) will be called projective, and
denoted by OPSL(2,p), or explicitely by OPSL(2,p),Ā,B̄ with (Ā, B̄) a generating pair of PSL(2, p).

Proposition 4.24. The number of distinct GL(2, Z)-orbits of projective n-square origamis OPSL(2,p),
where p > 2 is prime and n = p(p2−1)/2, tends to infinity as p→∞.

Proof. By Theorem 4.4, the number of GL(2, Z)-orbits of regular origamis OPSL(2,p) is equal to the
number of T2-systems in the group PSL(2, p). Due to a result of Martin J. Evans [29], the number of
T2-systems in PSL(2, p) tends to infinity as p→∞. (See also the paper [34] by Robert Guralnick and
Igor Pak.)

Remark. As Darryl J. McCullough and Marcus Wanderley showed in [66], the number of T2-systems
in PSL(2, ps), for p = 2 or ps ≥ 13, is greater than

1

s

∑
r|s

ϕ
(s
r

)
pr, where ϕ is the Euler totient function.

•When p = 2, an isomorphism PSL(2, 2) ' S3 is easily observed though the faithful action of PSL(2, 2)
on the projective line P1(F2) = F2 ∪ {∞}. In the symmetric group

S3 ' Sym(P1(F2)) = {id, (0 1), (0∞), (1∞), (0 1∞), (0∞ 1)},

there are exactly 2 ·
(

5
2

)
− 2 = 18 generating pairs:

G2(S3) = {(σ, τ) | σ, τ ∈ S3 \ {id}, σ 6= τ } \ { ((0 1∞), (0∞ 1)), ((0∞ 1), (0 1∞))}.

The commutator of any generating pair is a 3-cycle. Moreover, the elements of G2(S3) form a single
T2-system. Therefore, by Theorem 4.4 all 6-square projective origamis OPSL(2,2) belong to the same
GL(2, Z)-orbit (cf. also below).

•When p ≥ 3, the projective group PSL(2, p) is a two-generator group with the following presentation8:

PSL(2, p) =
〈
t, u

∣∣∣ tp = 1, tut = utu, (u4t
(p + 1)/2)2 = 1

〉
, (4.9)

8This presentation was obtained in the dissertation of J. H. Renshaw (1982). He applied the results of the paper [90]
by J. G. Sunday and the paper [8] by H. Behr and J. L. Mennicke. See also the paper [17] by Colin M. Campbell and
Peter P. Campbell, the Ph.D. thesis [99] by P. D. Williams and the paper [16] by Colin M. Campbell.
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where t and u are the images of the matrices T =

(
1 1
0 1

)
and U =

(
1 0
−1 1

)
from SL(2, p).

The commutator of two elements from PSL(2, p) being well-defined in SL(2, p), we have

[t, u] = [T,U ] =

(
1 1
0 1

)(
1 0
−1 1

)
·
(

1 −1
0 1

)(
1 0
1 1

)
=

(
0 1
−1 1

)
·
(

0 −1
1 1

)
=

(
1 1
1 2

)
.

It follows by induction on m ≥ 1 that the positive powers of the integer matrix

C =

(
1 1
1 2

)
=

(
0 1
1 1

)2

∈ SL(2, Z)

are Cm =

(
f2m−1 f2m

f2m f2m+1

)
,

where (fm) is the Fibonacci sequence defined recurrently via

f0 = 0, f1 = 1 and fm+1 = fm + fm−1 for any m ∈ N.

Denote by C̄ the image of the matrix C in the projective group PSL(2, p). Let k be the order of C̄,
that is, the minimal integer greater than 1 such that{

f2k−1 ≡ f2k+1 ≡ ±1 mod p,
f2k ≡ 0 mod p.

• When p = 2, we have n = 6 and k = 3, so according to (4.2),

OPSL(2,2),t,u ∈ H(2, 2) and genus(OPSL(2,2),t,u) = 3.

Under the isomorphism PSL(2, 2) ' Sym(P1(F2)) described above, the elements x and y correspond
to the permutations σ = (0 1) and τ = (1∞) respectively, since T : x 7→ x+1 and U : x 7→ x/(−x+1)
for any x ∈ P1(F2). Hence, the regular origamis OPSL(2,2),t,u and OS3,σ,τ are the same. The latter is
also the dihedral origami OD3 , and by Proposition 4.10 we find that the Veech group

GL(OPSL(2,2),t,u) = GL(OD3)

is an index three subgroup of GL(2, Z).

• When p ≥ 3, the order k of C̄ divides (p± 1)/2 due to the following lemma:

Lemma 4.25. Let A ∈ SL(2, p) be a nonparabolic9 matrix, and Ā its image in PSL(2, p). Then the
order of Ā is a divisor of p−1

2 or p+1
2 .

Proof. Let λ1, λ2 ∈ Fp2 be the eigenvalues of A =

(
a b
c d

)
– we have λ1λ2 = 1 and λ1 6= λ2. Take

z = λ1/λ2 = (λ1)2. The cyclic group gp
{
Ā
}

acts faithfully on the projective line P1(Fp) = Fp ∪ {∞}
via

Ā · x =
ax+ b

cx+ d
for any x ∈ Fp and Ā · ∞ =

a

c
.

If the eigenvalues of A belong to Fp, then this action is equivalent to the multiplication by z ∈ Fp,

since the matrix A is conjugate to

(
λ1 0
0 λ2

)
. The equivalence means that the actions of gp

{
Ā
}

and

gp {z} on P1(Fp) correspond to conjugate subgroups in the symmetric group Sym(P1(Fp))). Thus the

9that is, with trace distinct from ±2.
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order of Ā is equal to the order of z = (λ1)2 in the multiplicative group F×p , and so it must divide the

integer p−1
2 as (λ2

1)
p−1
2 = λp−1

1 = 1.
If the eigenvalues of A don’t belong to Fp, then we also consider the faithful action of gp

{
Ā
}

on
the projective line P1(Fp2) = Fp2 ∪ {∞}. Again, it is equivalent to the multiplication by z ∈ Fp2 ,
implying that the lengths of the respective orbits for the actions of the cyclic groups gp

{
Ā
}

and
gp {z} on P1(Fp2) are the same. Let k be the order of z in F×

p2
. Multiplying the elements of P1(Fp2)

by z, there are exactly two orbits of length 1 and p2 − 1 orbits of length k. Since A is not parabolic,
the element Ā has no fixed points in P1(Fp). Therefore, all orbits of gp

{
Ā
}

on P1(Fp) ⊂ P1(Fp2) have
length k. In particular, k divides p+ 1, that is, zp+1 = 1. Since λ2

1 − (a+ d)λ1 + 1 = 0, we obtain

1 = (λ2
1)p+1 = (λ2

1)p · λ2
1 = ((a+ d)λ1 − 1)p · λ2

1 = ((a+ d)λp1 − 1) · λ2
1

= (a+ d)λp+2
1 − (a+ d)λ1 + 1,

and so (a+ d)λp+1
1 = (a+ d).

When (a+ d) 6= 0, we have λp+1
1 = 1. When (a+ d) = 0, we have λ2

1 = −1. Moreover, p ≡ 3 mod 4:
otherwise, λ1 ∈ Fp as −1 is a quadratic residue modulo p if and only if p ≡ 1 mod 4 (a nonzero a ∈ Fp
is a square if and only if a

p−1
2 = 1). Hence, λp+1

1 = (−1)
p+1
2 = 1. In any case, we obtain λp+1

1 = 1,

and so (λ1)
p+1
2 = ±1 = (λ2)

p+1
2 . This gives the relation A

p+1
2 = ±I as required.

In particular, the lemma implies that k ≤ p+1
2 . According to (4.2), we have OPSL(2,p),t,u ∈

H((k − 1)n/k) and

genus(OPSL(2,p),t,u) =

(
1− 1

k

)
· n

2
+ 1

≤
(

1− 2

p+ 1

)
· p(p

2 − 1)

4
+ 1 =

1

4
p(p− 1)2 + 1.

Note that k is equal to k̂ or k̂/2, where k̂ is the order of the image of the integer matrix C in the
finite group SL(2, p). As easy to show, the integer 2k̂ > 1 is the period of the Fibonacci sequence (fm)
modulo p. There are several papers on the subject, see for instance [97] by Donald D. Wall.

Finding a general formula for the order k, that depends on the prime p, seems to be a hard problem.

To solve this problem, one should be able to determine the orders of the golden ratio 1+
√

5
2 in the

fields Fp2 for all prime numbers p > 2. The degree of difficulty is comparable with that of Artin’s
conjecture on primitive roots10. We also refer the reader to the subsection 5.2.1.

Recall, by the way, some well-known isomorphisms for groups PSL(2, q), where q is a power of p:

PSL(2, 3) ' A4, PSL(2, 4) ' PSL(2, 5) ' A5, PSL(2, 9) ' A6.

10A famous conjecture of Emil Artin states that, given a non-square integer a 6= −1, there are infinitely many prime
numbers p, for which a is a primitive root. See Problem F9 in the book [37] by Richard K. Guy.
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4.2.12 Alternating origamis

Let d ≥ 3 be a positive integer. The alternating group Ad is a two-generator group of order n :=
|Ad| = d!/2. For any generating pair (α, β) of Ad, the regular n-square-tiled surface OAd,α,β will be
called alternating of degree d.

Due to Øystein Ore [78, 1951], any element of the alternating group Ad with d ≥ 5 is a commutator
of two elements. Shelly Garion and Aner Shalev showed in [30, 2009, Theorem 1.7] that almost all
elements of Ad are commutators of generating pairs of Ad. We are going to establish the following
strong and apparently new result:

Theorem 4.26. Let d be a positive integer, and let p be a prime number such that
[

3d
4

]
≤ p ≤ d− 3.

Then every permutation µ ∈ Ad moving at least p+ 2 points can be presented as a commutator [σ, τ ],
where (σ, τ) generates Ad and σ is a p-cycle.

Proof. First, let us show that for any permutation µ ∈ Ad moving at least p+ 2 points, there are two
permutations σ, τ ∈ Ad such that

1) µ = [σ, τ ], 2) σ is a p-cycle and 3) σ, τ generate a transitive subgroup of Ad.

According to Edward Bertram [10, 1972], every even permutation is a commutator [σ, τ ], where σ is
an l-cycle and τ ∈ Sd, if and only if

[
3d
4

]
≤ l ≤ d. So, this is true if one takes l = p: we have µ = [σ, τ ]

for a p-cycle σ ∈ Ad. We may suppose that σ = (1 2 . . . p), otherwise conjugate σ, τ, µ by a suitable
permutation. We have to prove two things:

• The permutation τ ∈ Sd can be chosen so that gp {σ, τ} is a transitive subgroup of Sd. Indeed,
consider the decomposition of τ into disjoint cycles:

τ = γ1γ2 . . . γr. (4.10)

Lemma 4.27. Two permutations σ = (1 2 . . . p) and τ ∈ Sd generate a transitive subgroup if
and only if τ fixes no integer in the interval [p+ 1, d] and each disjoint cycle of τ moves at least
one integer in the interval [1, p], that is,

{p+ 1, p+ 2, . . . , d} ⊆ supp(τ) and [1, p] ∩ supp(γi) 6= ∅ for any 1 ≤ i ≤ r.

Proof. ⇐= The integer 1 can be moved by cycle σ to any integer a ∈ [1, p], afterwards it can
be moved to any integer b ∈ {p+ 1, . . . , d} ⊆ supp(γ1γ2 . . . γr) by means of a cycle γi:

if γmi (a) = b, then (τ ′)m(a) = b.

=⇒ If some interger from p+1 to d is not in the support of τ , then it can’t be sent to 1 by means
of the permutations σ and τ . If there is a cycle γi containing only integers from the interval
[p+ 1, d], then again those integers don’t lie in the orbit of 1 for the action of gp {σ, τ}.

We may suppose that each cycle γi of τ moves at least one integer in the interval [1, p], otherwise
remove all cycles permuting only integers from p + 1 to d, this will not affect the commutator
[σ, τ ]. Since

µ = σ(τσ−1τ−1) = (1 2 . . . p) · (τ(p) . . . τ(2) τ(1)) (4.11)

and |supp(µ)| > p, there is an integer x ∈ [1, p] which is sent by τ to an integer y ∈ [p + 1, d],
say γ1(x) = y. Denote by y1, y2, . . . , ys the integers from p+ 1 to d which are fixed by τ ,

{y1, y2, . . . , ys} = fix(τ) ∩ [p+ 1, d],

and let τ ′ = τ · (y y1 y2 . . . ys) = (A x y y1 . . . ys) · γ2 . . . γr, where γ1 = (A x y). Then we have

[σ, τ ′] = στ · (y y1 . . . ys)σ
−1(y y1 . . . ys)

−1 · τ−1 = στσ−1τ−1 = [σ, τ ],

and the group gp {σ, τ ′} is transitive by Lemma 4.27.
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• Moreover, τ can be chosen even. We have just obtained two permutations σ ∈ Ad and τ ∈ Sd
satisfying 1), 2) and 3). It follows from (4.11) and |supp(µ)| ≥ p + 2 that at least two distinct
integers x, x′ ∈ [1, p] are sent by τ to some integers y, y′ ∈ [p + 1, d]. In terms of a cycle
decomposition (4.10), we are dealing with situations of two kinds:

either γ1(x) = y and γ1(x′) = y′

or γ1(x) = y and γ2(x′) = y′

In the first situation, we have γ1 = (A x y B x′ y′) and so

τ · (y y′) = (A x y)(B x′ y′) · γ2γ3 . . . γs.

In the second situation, we have γ1 = (A x y), γ2 = (B x′ y′) and so

τ · (y y′) = (A x y B x′ y′) · γ3 . . . γs.

So far, the commutator hasn’t changed,

[σ, τ(y y′)] = στ · (y y′)σ−1(y y′) · τ−1 = στσ−1τ−1 = [σ, τ ],

and gp {σ, τ(y y′)} is still a transitive subgroup of Sd due to Lemma 4.27. Since the permutations
τ and τ(y y′) have distinct parities, one of them is even, as required.

Second, let us show that permutations σ, τ ∈ Ad satisfying the conditions 2) and 3) above,
actually generate the entire alternating group Ad. By Jordan’s theorem, we know that a primitive
group containing a p-cycle with p ≤ d− 3 is either alternating or symmetric. So, it is enough to check
that the group G = gp {σ, τ} is primitive, which is true due to

Lemma 4.28. If a transitive permutation group G of degree d contains a p-cycle, where p > d/2 is
prime, then it is primitive.

Proof. Let ∆ ⊆ {1, . . . , p, p+ 1, . . . , d} be a block for the transitive group G such that 1 ∈ ∆. If this
block contains an integer x > p, then σm(∆) ∩∆ 6= ∅ for any m ∈ Z, and so {1, 2, . . . , p} ⊂ ∆. Thus
|∆| = d, because |∆| divides d and |∆| ≥ p > d/2. Now, If ∆ ⊆ {1, 2, . . . , p} then it is a block for
the subgroup gp {σ} ⊆ G acting transitively on the set {1, . . . , p}, and so either ∆ = {1} or |∆| = p,
which is impossible as p - d. In all cases we obtained that |∆| = 1 or d. By Lemma 2.2 the group G
is primitive.

Therefore, the group G = gp {σ, τ}, where σ, τ are even and σ is a p-cycle with p ≥ [3d/4], is
primitive, and by Jordan’s theorem G = Ad. We conclude that any even permutation µ moving at
least p+2 points is the commutator of a generating pair of Ad, one of the elements being a p-cycle.

Remark. When d ≥ 14, except for d = 19, there exists a prime p such that
[

3d
4

]
≤ p ≤ d− 3. Indeed,

Jitsuro Nagura [71, 1952] proved that, for any m ≥ 25, the interval between m and 6
5m contains a

prime number. Therefore, for
[

3d
4

]
≥ 25, or else for all d ≥ 34, there exits a prime p such that

[
3d

4

]
≤ p ≤ 6

5

[
3d

4

]
≤ 9d

10
,

and so

[
3d

4

]
≤ p ≤

[
9d

10

]
= d+

[
− d

10

]
.

(4.12)

For d ∈ [14, 33] \ {19}, a prime p is given in Table 4.1.
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Table 4.1: A prime number p such that
[

3d
4

]
≤ p ≤ d− 3, where d ∈ [14, 33] \ {19}.

d 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33[
3d
4

]
10 11 12 12 13 15 15 16 17 18 18 19 20 21 21 22 23 24 24

p 11 11 13 13 13 17 17 17 17 19 19 19 23 23 23 23 23 29 29

Corollary 4.29. a) When d ≥ 20, except maybe for d = 32, every permutation µ ∈ Ad that fixes at
most

[
d
10

]
− 1 points is the commutator of a generating pair of Ad.

b) Given a real number r > 4, there exists an integer D(r) such that for all d ≥ D(r), any
permutation µ ∈ Ad fixing at most

[
d
r

]
points is the commutator of a generating pair of Ad.

Proof. a) Take an integer d ≥ 20 not equal to 32. It follows from (4.12) and Table 4.1 that there exists
a prime p such that

[
3d
4

]
≤ p ≤ d −

[
d
10

]
− 1. If a permutation µ ∈ Ad fixes at most

[
d
10

]
− 1 points,

then it moves at least d−
[
d
10

]
+ 1 ≥ p+ 2 points. The required statement is, thus, a consequence of

Theorem 4.26.

b) If r > 4 then the number h = 4
3 ·

r−1
r is greater than 1. Take a real ε > 0 satisfying h− ε > 1.

For any integer d large enough, there exists a prime p between
[

3d
4

]
and (h− ε)

[
3d
4

]
. Indeed, for each

k > 1 and n large enough there is always a prime between n and kn: due to the asymptotic estimate
π(n) ∼ n/lnn of the prime-counting function, we have π(kn)− π(n) −→

n→∞
∞. Therefore,

[
3d

4

]
≤ p ≤

(
4

3
· r − 1

r
− ε
)[

3d

4

]
≤ r − 1

r
d− ε

[
3d

4

]
= d− d

r
− ε

[
3d

4

]
.

In particular, p ≤ d−
[
d
r

]
−2 when [3d/4] ≥ 2/ε. Thus for sufficiently large d, any permutation µ ∈ Ad

that fixes at most
[
d
r

]
points, moves at least d−

[
d
r

]
≥ p+ 2 points. According to Theorem 4.26, such

a permutation µ is the commutator of a generating pair of Ad.

Corollary 4.30. The probability that a random element of the alternating group Ad is the commutator
of a generating pair tends to 1 as d→∞.

Proof. The number of permutations in Sd that fix at least k points doesn’t exceed
(
n
k

)
(d − k)! = d!

k! .
Indeed, for given k points there are (d−k)! permutations fixing them, and there are

(
n
k

)
ways to choose

k points among d.

The number of permutations in Ad fixing at most k − 1 points is not less than d!
2 −

d!
k! . Therefore,

due to Corollary 4.29a, the probability pd that a random element of the group Ad is the commutator
of a generating pair is bounded by

pd ≥
d!
2 −

d!
[d/10]!

d!/2
= 1− 2

[d/10]!
for d ≥ 33.

This implies that lim
d→∞

pd = 1, as required.

Remark. It is well known and easy to prove by inclusion-exclusion principle, that the number of
permutations in Sd fixing no point (such permutations are called derangements) is equal to

ad = d!

d∑
m=0

(−1)m

m!
=

[
d!

e
+

1

2

]
. (4.13)
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Moreover, denote by bd and cd the numbers of even and odd derangements respectively. Then11

bd − cd = (−1)d−1(d− 1). (4.14)

Indeed, let A = (xij)
d
i,j=1 be the d× d matrix with zeroes on the diagonal and ones elsewhere, that is,

xii = 0 and xij = 1 for any 1 ≤ i 6= j ≤ d. We have

detA =
∑
λ∈Sd

sign(λ) · x1λ(1)x2λ(2) . . . xdλ(d),

where each even derangement contributes 1, each odd derangement contributes −1 and the permuta-
tions that fix a point contribute 0. It is easy to show that the eigenvalues of the symmetric matrix A are
−1 with multiplicity d−1 and d−1 with multiplicity 1. Thus, we obtain that detA = (−1)d−1(d−1),
implying the relation (4.14).

From (4.13), (4.14) and ad = bd + cd follows the formula

bd =
1

2

[
d!

e
+

1

2

]
+

(−1)d−1(d− 1)

2
.

So, the number of even permutations fixing at most k points is equal to(
d

0

)
bd +

(
d

1

)
bd−1 + . . .+

(
d

k

)
bd−k =

1

2

k∑
i=0

(
d

i

)[
(d− i)!

e
+

1

2

]
+

1

2

k∑
i=0

(−1)d−1−i
(
d

i

)
(d− 1− i).

Corollary 4.31. For any real r > 4 and sufficiently large integer d, the number of different strata
containing an alternating origami of degree d is greater than

1

2
P (d)− 1

2
P
(
d− [d/r]

)
,

where P (m) denotes the number of unrestricted partitions12 of a positive integer m.

Proof. By Theorem 4.4, the number of GL(2, Z)-orbits of regular origamis with monodromy group Ad
is equal to the number of T2-systems in Ad. If a pair of even permutations (σ, τ) is a representative
of a T2-system, then the conjugacy class of the commutator [σ, τ ] is an invariant of the T2-systems.
Hence, the number of T2-systems in Ad is not less than than the number of conjugacy classes of the
commutators [σ, τ ], where (σ, τ) generate Ad. Due to Corollary 4.29b, this includes all conjugacy
classes of even permutations fixing at most

[
d
r

]
− 1 points for sufficiently large d.

According to József Dénes, Paul Erdős and Paul Turán [22, 1969], the number c(d) of conjugacy
classes in the alternating group Ad is equal to13

c(d) =
1

2
P (d) +

3

2
Q(d), (4.15)

where Q(d) denotes the number of partitions of d into distinct odd summands (see also [31, 1980] by
Robert D. Girse). Notice that the number of conjugacy classes in Ad containing permutations that fix
at least k points is clearly c(d− k). Therefore, the number of conjugacy classes in Ad of permutations
fixing at most k − 1 points is equal to c(d)− c(d− k). For k =

[
d
r

]
this gives

c(d)− c
(
d− [d/r]

)
classes.

11See, for instance, the note [9, 2005] by Arthur T. Benjamin, Curtis T. Bennett and Florence Newberger.
12that is, the number of ways of writing m as a sum of positive integers; two sums that differ only in the order of their

summands are considered to be the same partition.
13from this equation they derived the expansion c(d) ∼ 1

2
P (d) ∼ 1

8d
√
3
eπ
√

2d
3 as d→∞.
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It is easy to see that Q(d) > Q
(
d− [d/r]

)
for sufficiently large d. From this and the relation (4.15),

we deduce a lower bound for the number of conjugacy classes of permutations in Ad fixing at most
[d/r]− 1 points:

c(d)− c(d− [d/r]) =
1

2

(
P (d)− P (d− [d/r])

)
+

3

2

(
Q(d)−Q(d− [d/r])

)
>

1

2

(
P (d)− P (d− [d/r])

)
,

when d is large enough, as required.

Remark 1. A famous result of Godfrey H. Hardy and Srinivasa Ramanujan [39, 1918] states that

P (d) ∼ 1

4d
√

3
e
π
√

2d
3 as d→∞.

From this asymptotic behaviour follows that

lim
d→∞

P
(
d− [d/r]

)
P (d)

=
r

r − 1
lim
d→∞

e
π
√

2
3

(√
d−[d/r]−

√
d
)

= 0,

and so P (d)− P
(
d− [d/r]

)
∼ 1

4d
√

3
e
π
√

2d
3 as d→∞.

Therefore, we obtain a lower bound

1

2

(
P (d)− P

(
d− [d/r]

))
≥ C

d
e
π
√

2d
3 ,

for any d > r and some real constant C > 0 small enough.

Remark 2. In the proof of the corollary above we used the fact that Q(d) − Q
(
d − [d/r]

)
> 0 for

sufficiently large d. Actually, we even have

Lemma 4.32. For m ≥ 3, the function Q is non-decreasing: Q(m) ≥ Q(m− 1).

Proof. The generating function for the sequence (Q(m))m∈N is

f(x) =

∞∏
l=1

(1 + x2l−1) = (1 + x)(1 + x3) . . . (1 + x2l−1) . . . = 1 +
∑
m∈N

Q(m)xm.

Denote by R(m) the number of partitions of m into distinct odd summands greater than 2. Then

∞∏
l=2

(1 + x2l−1) = 1 +
∑
m∈N

R(m)xm,

and so we obtain

1 +

∞∑
m=2

(
Q(m)−Q(m− 1)

)
xm = (1− x)f(x)

= (1− x2)

∞∏
l=2

(1 + x2l−1) = 1− x2 +

∞∑
m=3

(
R(m)−R(m− 2)

)
xm,

as Q(1) = 1 and R(1) = R(2) = 0. Therefore, the relation Q(m) −Q(m − 1) = R(m) − R(m − 2) is
satisfied for any m ≥ 3. Let us show that R(m) ≥ R(m− 2). Indeed, if

m− 2 = a1 + a2 + . . .+ ar
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is a partition of m− 2 with all ai’s odd and such that a1 > a2 > . . . > ar ≥ 3, then we get a partition
of m having the same property:

m = (a1 + 2) + a2 + . . .+ ar.

This gives an injection from the set of partitions for m− 2 with distinct odd summands ≥ 3 into the
set of such partitions for m. As a result, Q(m)−Q(m− 1) = R(m)−R(m− 2) ≥ 0.

The number of GL(2, Z)-orbits of regular origamis with monodromy group Ad is equal to the
number of T2-systems in Ad. Thus, we obtain Table 4.2, by using the following papers, where the
T2-systems in the alternating group were calculated:

[73, 1951] by Bernhard H. Neumann and Hanna Neumann, and [38, 1936] by Philip Hall (for d = 5),

[89, 1972] by Daniel Stork (for d = 6),

[42, 1998] by Osamu Higuchi and Izumi Miyamoto (for d = 7, 8, 9).

Table 4.2: Alternating n-square-tiled surfaces of degree d with 3 ≤ d ≤ 9.

n = |Ad|
Monodromy

group (Ad)

Number

of strata

Number of

GL(2, Z)-orbits

Number

of origamis

3 A3 1 1 4

12 A4 1 1 4

60 A5 2 2 19

360 A6 3 4 53

2520 A7 6 16 916

20160 A8 7 18 7448

181440 A9 10 38 77004

• When d > 3 is odd, we have the following presentation:

Ad =

〈
σ, τ

∣∣∣∣ σd−2 = τ2 = (στ)d = 1, (τσ−kτσk)2 = 1 for any 1 ≤ k ≤ d− 3

2

〉
, (4.16)

where σ = (3 4 . . . d), τ = (1 2 3).

The commutator [σ, τ ] = (1 3 4) is of order 3. According to the formulas (4.2), the alternating origami
OAd,σ,τ belongs to the stratum H(2d!/6) and has genus d!/6 + 1.

• When d > 3 is even, we have the following presentation:

Ad =

〈
σ, τ

∣∣∣∣ σd−2 = τ2 = (στ)d−1 = 1, (τ (−1)kσ−kτσk)2 = 1 for any 1 ≤ k ≤ d− 2

2

〉
, (4.17)

where σ = (1 2)(3 4 . . . d), τ = (1 2 3).

The commutator [σ, τ ] = (1 3)(2 4) is of order 2. According to the formulas (4.2), the alternating
origami OAd,σ,τ belongs to the stratum H(1d!/4) and has genus d!/8 + 1.
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The presentations (4.16) and (4.17) were found by Carmichael in [19, 1923, p.262], they are also
given in the classical textbook [21] by Harold S. M. Coxeter and William O. J. Moser. The complexity
of these presentations, as for finding Veech groups using Theorem 4.4, is that the number of relations
grows together with d. The existence of presentations with uniformly bounded number of generators
and relations was established by several mathematicians (e.g. [12, 2011] and [33, 2008]). For instance,
R. M. Guralnick, W. M. Kantor, M. Kassabov and A. Lubotzky showed in the paper [33, Lemma 2.2
and Theorem 3.17] that, for any natural d, the group Ad has a presentation with at most 35 generators
and 116 relators.

However, we are interested only in two-generator presentations, because the alternating origamis
are given by the choice of a pair of elements generating Ad.

Definition 4.2. Let G be a finite group, and let Ĝ be a covering group of G, that is, a group of
maximal order for which there exists a subgroup A ⊆ Ĝ with the properties14

A ⊆ Z(Ĝ) ∩ [Ĝ, Ĝ] and Ĝ/A ' G.

In general, Ĝ is not uniquely defined, but A is unique up to isomorphism and is called the Schur
multiplier of G – it is denoted by M(G).

Consider a presentation G = 〈X | R 〉. It is known that the Schur multiplier M(G) is isomorphic
to the second homology group H2(G,Z), or else to the second cohomology group H2(G,C×), and
satisfies the formula

M(G) =
R ∩ [F, F ]

[R,F ]
,

where F = F (X) is the free group on X, and R is the normal closure of R in F . In the important
paper [87, 1907], Issai Schur proved that

(i) the group M(G) is an invariant of G, that is, independent of the finite presentation 〈X | R 〉,

(ii) the group M(G) is finite abelian,

(iii) the inequality |R| − |X| ≥ rg(M(G)) holds for any presentation G = 〈X | R 〉, where rg(M(G))
is the cardinal of a minimal generating system for the abelian group M(G).

When G has a finite presentation for which the equality |R| − |X| = rg(M(G)) takes place, we
say that the group G is efficient (after D. B. A. Epstein [27]). For instance, the projective groups
PSL(2, p), where p is an odd prime, are efficient due to (4.9) and the fact that M(PSL(2, p)) = Z2

according to the textbook [47, Theorem 25.7] by Bertram Huppert.
In the case of the alternating group G = Ad, Issai Schur [88, 1911] found that

M(Ad) =


0 for d < 4,

Z6 for d = 6, 7,

Z2 for d = 4, 5 and d ≥ 8.

The group Ad is efficient for d ≤ 9. However, it is not known whether Ad is efficient for all d, see the
paper [18, 2004] by C. M. Campbell, G. Havas, C. Ramsay and E. F. Robertson. Moreover, a much
weaker question appears to be open:

Question 4.2. Does there exist a two-generator presentation Ad = 〈X | R 〉 such that the number of
relations |R| is independent of d?

14As usual Z(H) and [H,H] stand for the center and the commutator subgroup of H:

Z(H) =
{
g ∈ H

∣∣ ghg−1 = h for any h ∈ H
}
, [H,H] = gp {[g, h] | g, h ∈ H} .





Chapter 5
Coset representations

5.1 General theory

For any group G and any subgroup H ⊆ G of finite index, the action of G by left multiplication on
the set of left cosets {g1H, . . . , gnH} defines a representation ρH : G→ Sym(G/H). It will be called
a coset representation of G. Obviously, it is transitive but not necessary faithful.

If an element u ∈ G lies in the kernel of ρH then ugH = gH for any g ∈ G, that is u ∈ gHg−1,
and we have

ker ρH =
⋂
g∈G

gHg−1.

Thus, the kernel of ρH is the largest normal subgroup of G contained in H.

Let G = 〈X | R 〉 be a presentation of the group G, where the system X is finite. The ideas used
for constructing Cayley diagrams now lead to their generalization – to coset diagrams. More precisely,
it is a labeled digraph: the set of its vertices is {g1H, . . . , gnH} and its directed edges are labeled by
generators from X, so that an edge with label g ∈ X from giH to gjH means that g · giH = gjH. We
suppose that the finite set X is endowed with a total order.

We will denote the coset diagram of G by C(X; R/H), or if it is clear simply by C(G/H). In
the trivial case we have C(G) = C(G/{1}). An example for the free group F2 = 〈x, y | −〉 and its
subgroup H = gp

{
x2, y2, xyx, yxy

}
is given in Figure 5.1.

H xH

yH

>

>

<

>

1 2

3

x

y

x
y

x

y

Figure 5.1: The coset diagram C(F2/gp
{
x2, y2, xyx, yxy

}
).

In a coset diagram C(G/H) the subgroup H is exactly the stabilizer of the vertex v =‘H’, that is,
consists of all words W (X) such that the path W (X)[v] is closed. The stabilizer of the vertex ‘gH’,
for g ∈ G, obviousely is gHg−1.

By definition, for a two-generator group G = 〈g, h | R 〉 and a finite index subgroup H ⊆ G, the
coset diagram C(g, h; R/H) is an origamal digraph (say, with g ≺ h). The corresponding square-tiled
surface will be denoted by OG/H or explicitely by OG/H,g,h. It will also be called a coset origami . By
construction we have Mon(OG/H) ' ρH(G).

107
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Proposition 5.1. Given a finite two-generator group G, let O be a square-tiled surface with mono-
dromy group Mon(O) ' G. Then there exist a generating pair (g, h) ∈ G×G and a subgroup H ⊆ G
such that O = OG/H,g,h.

Proof. The statement is an immediate consequence of the classification of the transitive permutation
representations G→ Sn, see Proposition 2.10.

Now, a natural question arises: given a connected origami O, what are the groups G such that

O = OG/H for a subgroup H ⊆ G? (5.1)

For example, we always can assign G = F2 (the construction that follows is due to Gabriela
Schmithüsen, see [83]). Indeed, take a look at an origamal digraph Υ of O, let x and y be its la-
bels with x ≺ y. Fix a vertex v0 and consider the set S0 of all words W (x, y) over the letters
{x, y} ∪ {x−1, y−1} such that the path W (x, y)[v0] is closed. Endowed with the standard formalism
(concatenation of pathes, inverse path and empty path), the set S0 is a group with two-generators x
and y. It is a subgroup of the free group F (x, y) = 〈x, y | −〉, and the origamal digraph Υ is isomor-
phic to C(F (x, y)/S0). For there is a bijection between the vertices of Υ and the cosets F (x, y)/S0 :
if v is a vertex and Wv(x, y)[v0] a path from v0 to v then

v 7→Wv(x, y) · S0.

Thus the group F2 satisfies the property (5.1).

In general case we have:

Proposition 5.2. Let G = 〈g, h | R 〉 be a group, and Υ a connected origamal digraph with n vertices
and two labels {l1, l2}, l1 ≺ l2. The digraph Υ is isomorphic to a coset diagram C(G/H) for some
subgroup H ⊆ G of index n if and only if for any vertex v of Υ and any relator W (g, h) ∈ R the path
W (l1, l2)[v] is closed.

Proof. ⇐= Suppose that the path W (g, h)[v] is closed for any vertex v of Υ and any W (g, h) ∈ R.
For a fixed vertex v0 construct its stabilizer S0 as above so that Υ ' C(F (l1, l2)/S0), where the
group F (l1, l2) is free of rank 2. Consider the epimorphism f : F (l1, l2) � G, l1 7→ g, l2 7→ h, and
take H = f(S0), which of course is a subgroup of G. By assumption a word W (l1, l2) belongs to S0

whenever W (g, h) = 1 in G, that is, the subgroup S0 contains the kernel ker f . Therefore, S0 is the full
preimage of the subgroup H (if f(s) = f(t) ∈ H for some s ∈ S0 and t ∈ F (l1, l2), then s−1t ∈ ker f
and t ∈ S0 · ker f = S0).

We have a mapping from the cosets F (l1, l2)/S0 onto the cosets G/H :

wS0 7→ f(w)H,

which is also injective, since f(w1)H = f(w2)H implies w−1
1 w2 ∈ f−1(H) = S0. At the same time, in

the coset diagram C(F (l1, l2)/S0) there is an edge labeled by li from wS0 to w′S0 if and only if there
is an edge labeled by f(li) from f(w)H to f(w′)H in the diagram C(G/H). Indeed, liwS0 = w′S0

implies f(li)f(w)H = f(w′)H, and the converse is true because only one edge with label f(li) starts
at f(w)H. This shows that Υ ' C(F (l1, l2)/S0) ' C(G/H) for the subgroup H = f(S0), which is of
index n in G since the diagram C(G/H) has n vertices.
=⇒ Conversely, suppose Υ ' C(G/H). For any relation W (g, h) = 1 in G and any coset uH, we

have W (g, h) · uH = uH. Thus, the path W (g, h)[v] is closed in Υ, where the vertex v corresponds to
uH under the bijection between the sets of vertices of Υ and C(G/H).

Corollary 5.3. The monodromy group Mon(O) is the smallest group satisfying the property (5.1).
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Proof. Let (σ, τ) be a pair of permutations encoding the origami O. Consider an origamal digraph Υ
for O with labels {l1, l2}. By the definition of an origamal digraph, a path W (l1, l2)[v] is closed in
the digraph Υ whenever W (σ, τ) = 1 holds in the monodromy group Mon(O) = gp {σ, τ}. It follows
from Proposition 5.2 that Mon(O) satisfies the property (5.1).

On the other hand, for any group G such that O = OG/H for some H ⊆ G we have by construction
of the coset origami that ρH(G) 'Mon(O). Therefore, |Mon(O)| = |G/ ker ρH | ≤ |G|.

Given an origamal digraph Υ with two labels {l1, l2}, we can use this proposition to describe
in terms of presentations all groups G such that, for some H ⊆ G, the coset diagram C(G/H) is
isomorphic to Υ. Denote by R(Υ) the set of formal words W over two letters such that the path
W (l1, l2)[v] is closed for any vertex v of Υ. We will call R(Υ) the realizer of the origamal digraph Υ.
If we consider the words in R(Υ) as elements of the free group F2 = F (l1, l2) then for any vertex
stabilizer S0 we have R(Υ) = ∩w∈F2 wS0w

−1 being a finite index subgroup of F2.
Let 〈g, h | R 〉 be a presentation of a group G. We obtain that

Υ ' C(G/H) for a subgroup H of G ⇐⇒ R ⊆ R(Υ).

The following is a generalisation of Lemma 4.2:

Lemma 5.4. Let (g, h) and (g′, h′) be two pairs of generators of a group G, and H a finite index
subgroup of G. The origamis OG/H,g,h and OG/H,g′,h′ coincide if there exists an automorphism α ∈
Aut(G) such that

α(g) = g′, α(h) = h′ and α(H) = H.

Proof. Let us show that an automorphism α ∈ Aut(G) satisfying the above conditions determines
an isomorphism of the labeled digraphs C(g, h;R/H) and C(g′, h′;R′ /H). First of all, we have a
bijection uH 7→ α(u)H between their sets of vertices. Secondly, for any two vertices uH and vH,
there is an edge from uH to vH with label g (analogically for the label h) if and only if there is an
edge with label g′ = α(g) from α(u)H to α(v)H. Indeed,

g · uH = vH =⇒ α(g) · α(u)H = α(v)H and

α(g) · α(u)H = α(v)H =⇒ α(gu) = α(v) · w =⇒ gu = v · α−1(w),

where w and α−1(w) belong to H. Therefore, the origamal digraphs of OG/H,g,h and OG/H,g′,h′ are
isomorphic.

Proposition 5.5. Let G = 〈g, h | R 〉 be a two-generator group, and H a finite index subgroup of G.
The origami OG/H,g,h is primitive if and only if H is a maximal subgroup.

First proof. =⇒ Let H ⊆ H1 be two subgroups of G. Then the origami OG/H,g,h covers the origami
OG/H1,g,h. Indeed, for the natural mapping π : G/H → G/H1, sending uH to uH1, we have

π(w · uH) = wuH1 = w · π(uH) for any w, u ∈ G.

Thus Proposition 2.1 can be applied. In particular, if OG/H,g,h is a primitive square-tiled surface, then
the subgroup H must be a maximal in G.
=⇒ Suppose that the origami O = OG/H,g,h is not primitive, that it covers properly another origami
O1 by means of p : O → O1. Let us draw origamal digraphs of O and O1 directely on the square-tiled
surfaces by choosing for the vertices the centers of the squares, and for the edges (labeled by g and h)
geodesics connecting these vertices. Further, pick such a vertex v on O, and let v1 = p(v). Then for
any word W such that W (g, h)[v] is a closed path on O, the path p(W (g, h)[v]) will be closed as well.
Therefore, by Proposition 5.2 the origamal digraph of O1 is isomorphic to a coset diagram C(G/H1).
Assuming without loss of generality that the subgroups H and H1 are the stabilizers of the vertices v
and v1 = p(v) respectively, we obtain H ( H1 ( G. So, H is not a maximal subgroup of G.
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Second proof. By Proposition 2.4 the origami OG/H,g,h is primitive whenever the permutation group
Mon(OG/H,g,h) = ρH(G) is primitive. The permutation group ρH(G) on the set V = G/H is primitive
if and only if all point stabilizers Gx (x ∈ V ) are maximal subgroups of G (see Lemma 2.3). On the
other hand, the stabilizer of a coset uH for the left action of G is the subgroup uHu−1. It is maximal
if and only if H is a maximal subgroup of G.
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5.2 Examples

5.2.1 Projective coset origamis

Let p be a prime number, and q = pm for some m ∈ N. Consider the projective general linear group
PGL(2, q) and the projective special linear group PSL(2, q) over the finite field Fq. By definition,

PGL(2, q) = GL(2, q)/Z and PSL(2, q) = SL(2, q)/{±I},

where I is the 2×2 identity matrix and Z is the subgroup of nonzero scalar matrices aI with a ∈ F×q . It
is well known that PSL(2, q) is a simple two-generator group, with two exceptions: PSL(2, 2) ' S3 and
PSL(2, 3) ' A4. Note that PSL(2, q) is not necessary a subgroup of PGL(2, q). However, PSL(2, q) is
isomorphic to a normal subgroup of PGL(2, q) via

PGL(2, q) =
GL(2, q)

Z
⊇ SL(2, q) · Z

Z
' SL(2, q)

SL(2, q) ∩ Z
= PSL(2, q),

where SL(2, q) · Z = {A ·B | A ∈ SL(2, q), B ∈ Z } ,

so we shall ignore the subtle distinction.
For a matrix A ∈ GL(2, q) we will denote by Ā its image in PGL(2, q). Consider the projective

line over the field Fq,

P1(Fq) = {[x : y] | x, y ∈ Fq }/
(
[x : y] ∼ [ax : ay] for any a ∈ F×q

)
= Fq ∪ {∞} with ∞ = [1 : 0].

The group PGL(2, q) acts on P1(Fq) in the following way:

if A =

(
a b
c d

)
∈ GL(2, q), then Ā · [x : y] = [ax+ by : cx+ dy] =

a x/y + b

c x/y + d
.

This action is faithful and transitive, giving a permutation representation of degree q + 1,

ρ : PGL(2, q) ↪→ Sym(P1(Fq)) ' Sq+1. (5.2)

For instance, the images of the matrices T =

(
1 1
0 1

)
and U =

(
1 0
−1 1

)
permute the elements

x ∈ P1(Fq) = Fq ∪ {∞} by the rule

T̄ · x = x+ 1 and Ū · x =
x

−x+ 1
=

1

x−1 − 1
, or else Ū · 1

x
=

1

x− 1
.

If p is odd, there are three types of elements in the group PGL(2, q) according to the number of
distinct eigenvalues, or else to the action on the projective line, as shown in Table 5.1.

The automorphisms of the group PSL(2, q) are well-understood. Let PΓL(2, q) be the projective
semilinear group over Fq, that is, a semidirect product

PΓL(2, q) = PGL(2, q)oGal(Fq/Fp).

This group acts on PSL(2, q) via Ā 7→ B̄ AφB̄−1, where B̄ ∈ PGL(2, q) and Aφ is the matrix obtained
by applying an automorphism φ of Fq to each entry of A ∈ SL(2, q). This gives a homomorphism

f : PΓL(2, q) −→ Aut(PSL(2, q)), (5.3)

which is onto as the following theorem states.
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Table 5.1: Three types of elements in the groups PGL(2, q) and PSL(2, q).

Number of distinct
eigenvalues in Fq

Action on P1(Fq) Order in PGL(2, q) Order in PSL(2, q)

0 no fixed points divides q + 1 divides 1
2(q + 1)

1 fixes 1 point p p

2 fixes 2 points divides q − 1 divides 1
2(q − 1)

Theorem 5.6 (O. Schreier and B. L. van der Waerden [86], 1928). The homomorphism f defined
above is onto. In particular when q = p, every automorphism of PSL(2, p) is induced via conjugation
by an element of PGL(2, p).

Let us now examine the case where m = 1 and q = p. In this case,

P1(Fp) = {0, 1, . . . , p− 1,∞},

ρ(T̄ ) = (0 1 . . . p−1)(∞) and ρ(Ū) = (∞ 1

p−1
. . .

1

2

1

1
)(0).

As easy to notice, the stabilizer of the point ∞ = [1 : 0] for the action of PSL(2, p) on P1(Fp) is the
cyclic subgroup H = gp

{
T̄
}

generated by T̄ . The square-tiled surface Op = OPSL(2,p)/H,T̄ ,Ū will be

called a projective coset origami . This is a (p+1)-square origami encoded by the permutations ρ(T̄ )
and ρ(Ū).

Proposition 5.7. The Veech groups of the projective coset origami Op = OPSL(2,p)/H,T̄ ,Ū and the
regular origami Oreg = OPSL(2,p),T̄ ,Ū coincide,

GL(Op) = GL(Oreg).

Proof. Denote by ρ1 the restriction of the faithful representation ρ in (5.2) to the normal subgroup
PSL(2, p)E PGL(2, p),

ρ1 : PSL(2, p) ↪→ Sp+1.

According to Theorem 5.6, any automorphism of the group PSL(2, p) is induced via conjugation
Ā 7→ B̄ĀB̄−1 by an element B̄ ∈ PGL(2, q). Hence, any automorphism of the image ρ1(PSL(2, p))
comes from conjugation ρ1(Ā) 7→ ρ(B̄) · ρ1(Ā) · ρ(B̄)−1 by a permutation ρ(B̄) ∈ Sp+1. This means
that the representation ρ1 is structural, and by Theorem 4.7 we obtain GL(Oρ1) = GL(Oreg), where
Oρ1 = (ρ1(T̄ ), ρ1(Ū))∗ = Op.

For the purpose of finding the genus and stratum of Op, one should take a look at the commutator

C = [T,U ] =

(
1 1
0 1

)(
1 0
−1 1

)(
1 −1
0 1

)(
1 0
1 1

)
=

(
1 1
1 2

)
,

C̄ · x =
x+ 1

x+ 2
for any x ∈ P1(Fp).

The eigenvalues of the matrix C are the roots of the polynomial P (λ) = (λ−1)(λ−2)−1 = λ2−3λ+1.
Both of them belong either to Fp or to Fp2 \ Fp.

• When p = 2, we have ρ(T̄ ) = (0 1), ρ(Ū) = (∞ 1) and ρ(C̄) = [(0 1), (1∞)] = (∞ 1 0), so
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the origami O2 =
0 1

∞
is in the stratum H(2) and has genus g = 2.

• When p = 3, we have ρ(T̄ ) = (0 1 2), ρ(Ū) = (∞ 2 1) and ρ(C̄) = (0 2)(1∞), so

the origami O3 =
0 1

∞

2

−
−

=

=

is in the stratum H(1, 1) and has genus g = 2.

• When p = 5, we have ρ(T̄ ) = (0 1 2 3 4), ρ(Ū) = (∞ 4 2 3 1) and ρ(C̄) = (0 3∞ 1 4), so

the origami O3 =
0 1

∞

2 3 4

−

−

=

=
≡

≡

×
×

is in the stratum H(4) and has genus g = 3.

• When p ≥ 7, the characteristic polynomial P (λ) has two distinct roots

λ− =
3−
√

5

2
and λ+ =

3 +
√

5

2
,

that are elements of the field Fp if and only if 5 is a quadratic residue modulo p. As easy to determine,
1 and 4 are quadratic residues modulo 5, while 2 and 3 are not. By quadratic reciprocity, we obtain(

5

p

)
=
(p

5

)
(−1)

5−1
2
· p−1

2 =
(p

5

)
=

{
+1 if p ≡ 1, 4 mod 5,

−1 if p ≡ 2, 3 mod 5,

where
(
a
p

)
stands for the Legendre symbol1.

We have the following decomposition

C =

(
1 1
1 2

)
= B

(
λ− 0
0 λ+

)
B−1, where B =

 1 (
√

5)−1

1−
√

5
2

1+(
√

5)−1

2

 . (5.4)

•• If p ≡ 1 or 4 mod 5, then λ−, λ+ ∈ Fp and B ∈ SL(2, p). So, there is a one-to-one correspondence
between the orbits for the action of C̄ ∈ PSL(2, p) on the projective line P1(Fp) and the orbits for the
multiplication by

z =
λ−
λ+

=
3−
√

5

3 +
√

5
=

(3−
√

5)2

4
=

7− 3
√

5

2
, or else z =

(
1−
√

5

2

)4

,

since

(
λ− 0
0 λ+

)
· x =

λ−
λ+
· x.

Obviously z · 0 = 0 and z · ∞ =∞, and so the fixed points of C̄ are

B̄ · 0 =
2(
√

5)−1

1 + (
√

5)−1
= −1−

√
5

2
and B̄ · ∞ =

2

1−
√

5
= −1 +

√
5

2
.

1For a prime p and an integer a, the Legendre symbol is

(
a

p

)
=


0 if p divides a,

+1 if x2 ≡ a mod p has a nonzero solution in Fp,
−1 if x2 ≡ a mod p has no solution in Fp.



114 CHAPTER 5. COSET REPRESENTATIONS

Let k ∈ N be the order of z in the group F×p . Then there are exactly

2 orbits of length 1 and
p− 1

k
orbits of length k,

when one multiplies the elements of the projective line P1(Fp) by z. The orbits of length k are the
cosets in F×p of the cyclic subgroup generated by z. We obtain that the cycle pattern of the permutation

ρ(C̄) is 12k
p−1
k , and so

the origami OPSL(2,p)/H,T̄ ,Ū belongs to the stratum H
(
(k−1) p−1

k

)
and has genus

(k−1)(p−1)

2k
+1.

•• If p ≡ 2 or 3 mod 5, then λ−, λ+ ∈ Fp2 \ Fp and B ∈ SL(2, p2). In this case, we have a one-to-one

correspondence between the orbits in the projective line P1(Fp2) for the multiplication by z = λ−
λ+
∈ Fp2

and the orbits for the action of C̄ ∈ PSL(2, p) on P1(Fp2). Namely, for any x ∈ P1(Fp2) = Fp2 ∪ {∞},
to the orbit

orbz(x) = {x, zx, z2x, . . . , zk−1x}

corresponds the orbit
orbC̄(x) = {B̄ · x, B̄ · zx, B̄ · z2x, . . . , B̄ · zk−1x},

where k is the order of z in the cyclic group F×
p2

and the order of C̄ in the projective group PSL(2, p)

at the same time. Since λ0
− = 2−0·

√
5

2 , λ1
− = 1−1·

√
5

2 and λr+1
− = λr−+λr−1

− , for any r ∈ N, it follows by
induction on r that

λr− =

(
1−
√

5

2

)r
=

(fr + 2fr−1)− fr ·
√

5

2
,

where fr is the rth Fibonacci number2. Therefore, the order s of λ− in the group F×
p2

is the smallest
positive r such that fr ≡ 0 mod p and fr−1 ≡ 1 mod p. In other words, s is the period of the Fibonacci
sequence modulo p (it is also called the pth Pisano period). This period is always even (p ≥ 7), because

fr+1fr−1 = f2
r + (−1)r for all r ∈ N,

and in particular fs+1 ≡ (−1)s mod p. We conclude that the order k of z =
(

1−
√

5
2

)4
in F×

p2
is the

minimum integer amongst s
4 and s

2 .

There are exactly p+1
k orbits of length k for the action of C̄ on the projective line P1(Fp). Thus,

the cycle pattern of the permutation ρ(C̄) is k
p+1
k , and so

the origami OPSL(2,p)/H,T̄ ,Ū belongs to the stratum H
(
(k−1) p+1

k

)
and has genus

(k−1)(p+1)

2k
+1.

In Table B.4 are given the strata and genera of the projective coset origamis OPSL(2,p)/H,T̄ ,Ū for
the first 328 primes p. This table is obtained by a program written in Java (see Appendix A).

2The Fibonacci numbers are defined recurrently by f0 = 0, f1 = 1 and fr+1 = fr + fr−1 for all r ∈ N.
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5.2.2 Alternating coset origamis

Let n be a positive integer, and An the alternating group of degree n. Denote by H the stabilizer of the
point 1 for the action of An on the set {1, 2, . . . , n}. This subgroup consists of the even permutations
fixing 1 and so H ' An−1.

Pick a generating pair (σ, τ) of An. The square-tiled surface OAn/H,σ,τ will be called an alternating
coset origami of degree n. Evidently, we have OAn/H,σ,τ = (σ, τ)∗.

Proposition 5.8. If n 6= 6, then the Veech groups of the alternating coset origami OAn/H,σ,τ and the
regular origami OAn,σ,τ coincide,

GL(OAn/H,σ,τ ) = GL(OAn,σ,τ ).

Moreover, the number of GL2(Z)-orbits of alternating coset origamis of degree n is equal to the
number of GL2(Z)-orbits of regular alternating origamis of degree n.

Proof. Denote by ρ : An ↪→ Sn the natural inclusion An ⊆ Sn, and by ρreg : An ↪→ Sn the regular
representation of An.

According to Theorem 8.2A and Exercise 8.2.2 of the textbook [25] by John D. Dixon and Brian
Mortimer, for each automorphism f ∈ Aut(An) there exists β ∈ Sn such that f(α) = βαβ−1 for
all α ∈ An. This means that the representation ρ is structural, and so by Theorem 4.7 we obtain
GL(OAn/H,σ,τ ) = GL(OAn,σ,τ ).

Moreover, the number of distinct alternating coset origamis of degree n is equal to the number
GL2(Z)-orbits of regular alternating origamis of degree n (and so, since the Veech groups of OAn/H,σ,τ
and OAn,σ,τ coincide for any generating pair (σ, τ), the respective numbers of GL2(Z)-orbits are
equal as well). Indeed, the alternating coset origamis correspond to the conjugacy classes (σ, τ)∗ ={

(δσδ−1, δτδ−1) | δ ∈ Sn
}

, where σ and τ generate An. The regular alternating origamis correspond,
according to Lemma 4.2, to the Aut(An)-orbits of the generating pairs. As we already noticed,
Aut(Ad) = Sd and so the conjugacy class (σ, τ)∗ coincides with the Aut(An)-orbit of (σ, τ). This
completes the proof of the proposition.

Due to Proposition 5.8 and Theorem 4.4, the number of GL2(Z)-orbits of the coset origamis with
monodromy group An is equal to the number of T2-systems in An. Appropriate information for that
matter is given in Table B.5. To fill in the table when n 6= 6, we used the following papers, in which
the T2-systems of the alternating group were calculated:

[73, 1951] by Bernhard H. Neumann and Hanna Neumann, and [38, 1936] by Philip Hall (for d = 5),

[42, 1998] by Osamu Higuchi and Izumi Miyamoto (for d = 7, 8, 9).

When n = 6 (the case that we cannot apply Proposition 5.8), we obtained the 5 orbits with the help
of the mathematics system GAP.





Chapter 6
Subgroups of PSL2(Z) and Veech groups

We will use the following notation:

I =

(
1 0
0 1

)
, S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, U =

(
1 0
−1 1

)
;

Ā is the image of a matrix A ∈ SL2(Z) in the projective group PSL2(Z) = SL2(Z)/{±I};

T and U denote the subgroups of PSL2(Z) generated by T̄ and Ū respectively;

O denotes the set of all square-tiled surfaces, including non-connected ones;

Ō denotes the set of orbits of O for the action of the two-element group gp {−I};

Ō is the element of the set Ō corresponding to an origami O, that is, Ō = {O, −I ·O};

P1(Q) or Q̂ = Q ∪ {∞} denotes the projective line over the field Q of rational numbers, where
∞ designates [1 : 0] = 1

0 ;

PSL(Ō) denotes the integer Veech group of a modular origami Ō (see below);[
p
q

]
O

denotes the PSL(Ō)-orbit of an element p
q ∈ Q̂.

Definition 6.1. The elements of the set Ō are called modular square-tiled surfaces, or else modular
origamis. In terms of permutations, a modular n-square origamis corresponds to the union of two
conjugacy classes (σ, τ)∗ ∪ (σ−1, τ−1)∗, where σ, τ ∈ Sn.

A modular origami Ō is said to be connected if the origami O is connected.

6.1 Action of PSL2(Z) on P1(Q)

In the section 2.6, we described the natural action of the special linear group SL2(Z) on the set O of
origamis. Consider the action of the projective group PSL2(Z) on the set Ō of modular origamis such
that the following diagram commutes:

SL2(Z)×O O

PSL2(Z)× Ō Ō

(A, O) A ·O

(
Ā, Ō

)
Ā · Ō

(6.1)

117
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In other words, we define Ā · Ō to be A ·O = {A ·O, −A ·O}.

Definition 6.2. The integer Veech group of a modular origami Ō is its stabilizer for the action of the
projective group PSL2(Z). It will be denoted by PSL(Ō).

Recall that there is a transitive action of PSL2(Z) on the projective line P1(Q), namely,

Ā · [p : q] = [ap+ bq : cp+ dq], where A =

(
a b
c d

)
.

Without loss of correctness we will refer to P1(Q) by means of the expanded set of rational numbers
Q̂ = Q∪ {∞}, where ∞ stands for [1 : 0] = 1

0 . In this context, the action of the modular group on Q̂
is given by

A · p
q

=
ap+ bq

cp+ dq
.

The stabilizer of ∞ is the group T generated by the matrix T̄ , and the stabilizer of 0 is the group U
generated by Ū . We are going to see how this action is related to Veech groups of modular origamis.

Let Ō be a connected modular origami. Consider the decomposition of its PSL2(Z)-orbit into
T -orbits

PSL2(Z) · Ō =
⊔

16i6N

T · (ĀiŌ), (6.2)

where Āi · Ō are some representatives of the T -orbits with Āi ∈ PSL2(Z) and 1 ≤ i ≤ N . This gives
rise to a partition of the set Q̂ into equivalence classes

Q̂ =
⊔

16i6N

[Ā−1
i ∞]O (6.3)

via the following definition:

Definition 6.3. Consider two fractions

p

q
= Ā−1 · ∞ and

r

s
= B̄−1 · ∞, where Ā, B̄ ∈ PSL2(Z),

We say that p
q and r

s are T -equivalent , and write p
q ∼T

r
s , if the modular origamis Ā · Ō and B̄ · Ō lie

in the same T -orbit, that is, if T · ĀŌ = T · B̄Ō.

The equivalence class of p
q ∈ Q̂ is denoted by

[
p
q

]
O

or [Ā−1∞]O, and called a T -class.

An explicit way of expressing T -equivalence is

Ā−1∞ ∼
T
B̄−1∞ ⇐⇒ Ā = T̄ kB̄C̄ for some k ∈ Z, C̄ ∈ PSL(Ō), (∗)

and an integer k can actually be chosen in the interval [0, #(T · ĀŌ) − 1], where #(T · ĀŌ) is the
number of origamis in the T -orbit of ĀŌ.

The geometric source of the above definition is the following: let ∞ correspond to the horizontal
direction on the square-tiled surface O, then any rational direction p

q on O (imagine a directional

flow with the slope p
q ) will, in its turn, correspond to the horizontal direction on another square-tiled

surface O(p/q). More exactly, if p
q = A−1∞ for some A ∈ SL(2, Z), then O(p/q) = A · O. Now

from this perspective, two rational numbers p
q and r

s are T -equivalent if and only if the corresponding
square-tiled surfaces O(p/q) and O(r/s) are in the same gp {−I, T}-orbit, roughly meaning that they
have similar decompositions into horizontal cylinders.
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Replacing ∞ by 0, horizontal direction by vertical one and T -orbits by U-orbits we obtain the
notions of U-equivalence and U-classes:

Ā−1 · 0 ∼
U
B̄−1 · 0 ⇐⇒ Ā = ŪkB̄C̄ for some k ∈ Z, C̄ ∈ PSL(Ō). (∗∗)

To the decomposition of the PSL2(Z)-orbit of Ō into U-orbits

PSL2(Z) · Ō =
⊔

16i6N

U · (B̄iŌ) (6.4)

corresponds a partition of the set Q̂ into U-classes

Q̂ =
⊔

16i6N

[B̄−1
i 0]O . (6.5)

Here are some immediate properties of the T - and U-equivalences:

A) The partitions of Q̂ into T -classes and U-classes corresponding to a modular origami O co-
incide: for any Ā ∈ PSL2(Z) we have

[Ā−1 · ∞]O = [Ā−1S̄ · 0]O .

Indeed, since U = STS−1, together with the decomposition (6.2) into T -orbits we get the

decomposition into U-orbits:

PSL2(Z) · Ō =
⊔

16i6N

U · (S̄ĀiŌ).

Furthermore, a fraction p
q = Ā−1∞ is T -equivalent to r

s = B̄−1∞ if and only if Ā · Ō = T̄ kB̄ · Ō
for some k ∈ Z, that is,

S̄Ā · Ō = (S̄T̄ kS̄−1)S̄B̄ ·O = ŪkS̄B̄ · Ō.

Thus, the fractions Ā−1S̄ · 0 = p
q and B̄−1S̄ · 0 = r

s are U-equivalent (recall that S̄ = S̄−1).

In fact, A) is also a direct consequence of the following property that allows us to speak of
“classes” without reference1 to T or U .

B) (Lemma of Anton Zorich) The T -classes and the U-classes are exactly the PSL(Ō)-orbits of Q̂.

If two fractions p
q = A−1∞ and r

s = B−1∞ drop in the same T -class, then Ā−1 = C̄B̄−1T̄ k for

some k ∈ Z and C̄ ∈ PSL(O), implying that p
q = C̄B̄−1T̄ k∞ = C̄ · B̄−1∞ = C̄ · rs . Conversely,

if p
q = C̄ · rs with C̄ ∈ PSL(O), or else ∞ = ĀC̄B̄−1 ·∞, then ĀC̄B̄−1 = T̄ k for some k ∈ Z, and

so p
q ∼T

r
s by (∗). Therefore, the T -classes are the PSL(Ō)-orbits of Q̂, and the same is true for

the U-classes.

1From now on, if p
q

and r
s

are in the same T -class or U-class for a modular origami Ō, we will also write p
q
∼
O

r
s

or

implicitly p
q
∼ r

s
.



120 CHAPTER 6. SUBGROUPS OF PSL2(Z) AND VEECH GROUPS

C) Swapping initial modular origami Ō for a modular origami C̄ · Ō, where C̄ ∈ PSL2(Z), means
multiplying initial classes by C̄.

Indeed, by definition two fractions p
q = C̄−1A−1∞ and r

s = C̄−1B−1∞ are T -equivalent (for Ō)

if the origamis Ā · C̄Ō and B̄ · C̄Ō lie in the same T -orbit, that is, if the fractions Ā−1∞ = C · pq
and B̄−1∞ = C̄ · rs are T -equivalent (for C̄ · Ō).

D) Let

p

q
= a1 +

1

a2 +
. . .

+
1

am

and
pk
qk

= a1 +
1

a2 +
. . .

+
1

am + k

be continued fractions with ai, k ∈ Z.

. If m is odd introduce three matrices

Bm = T a1U−a2 . . . T am−2U−am−1 , Cm = BmT
am−1U−1 and Dm = BmT

am .

Then the number p
q lies in the class [C̄m · ∞]O = [D̄m · 0]O. Moreover, if k is divisible by the

number of modular origamis in the T -orbit of B̄−1
m Ō, then p

q ∼O
pk
qk

.

. If m is even introduce three matrices

Bm = T a1U−a2 . . . U−am−2T am−1 , Cm = BmU
−am and Dm = BmU

−am+1T.

Then the number p
q lies in the class [C̄m · ∞]O = [D̄m · 0]O. Moreover if k is divisible by the

number of origamis in the U-orbit of B̄−1
m Ō, then p

q ∼O
pk
qk

.

Indeed, for any rational number x we have

T̄ · x = x+ 1 and Ū−1 · 1

x
=

1

1 + x
.

Thus, it is easy to check by induction that in both case (m odd and even) we obtain the equalities

p

q
= C̄m · ∞ and

p

q
= D̄m · 0.

For instance,

T̄ a1Ū−a2 . . . T̄ am−1Ū−am · 1

0
= T̄ a1Ū−a2 . . . T̄ am−1 · 1

am
= T̄ a1Ū−a2 . . . Ū−am−2 ·

(
am−1 +

1

am

)
= T̄ a1Ū−a2 . . . Ū−am−2 ·

1

1

am−1 +
1

am

= T̄ a1Ū−a2 . . . T̄ am−3 ·
1

am−2 +
1

am−1 +
1

am

= . . . =
p

q
.
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So, we will always have p
q ∈ [C̄m · ∞]O = [D̄m · 0]O.

Now, let m be odd. The following equality holds (check by induction on m):

pk
qk

= B̄mT̄
kB̄−1

m

p

q
.

If we suppose that k is divisible by the number of origamis in the T -orbit of B̄−1
m Ō, then

T̄ kB̄−1
m Ō = B̄−1

m Ō, that is, the matrix B̄mT̄
kB̄−1

m is in the Veech group of Ō. Therefore, we can
conclude that pk

qk
∼
O

p
q using the property E) below.

If m is even and k is divisible by #(U · B̄−1
m Ō), then pk

qk
= B̄mŪ

−kB̄−1
m

p
q and pk

qk
∼
O

p
q by analogy.

E) An element C̄ ∈ PSL2(Z) preserves2 the classes for Ō if and only if, for any Ā ∈ PSL2(Z), the
modular origamis Ā · Ō and Ā · C̄Ō belong to the same T -orbit. The statement stays true when
one replaces “T -orbit” by “U-orbit”.

In particular, if C̄ ∈ PSL(Ō), then C̄ preserves the classes for Ō.

Indeed, an element C̄ preserves the classes whenever C−1 does. From the definition 6.3 follows
that, for each Ā ∈ PSL2(Z), we have C̄−1Ā−1∞ ∼

T
Ā−1∞ if and only if the modular origamis

Ā · Ō and ĀC̄ · Ō are in the same T -orbit. By analogy one proves the U-version of the statement.

6.2 Subgroups that are not Q̂ -straining

A natural question arises whether the inverse of the last statement of the property E) is satisfied.

Question 6.1. Describe the modular origamis Ō such that if an element C̄ ∈ PSL2(Z) preserves the
classes of Q̂ for Ō, then C̄ is in the Veech group PSL(Ō).

In the stratum H(2), all primitive origamis have this property:

Proposition 6.1. Let O be a primitive origami from H(2). If C̄ ∈ PSL2(Z) preserves the classes of
Q̂ for the modular origami Ō, then C̄ ∈ PSL(Ō).

Proof. Due to the property C), once we fixed a PSL2(Z)-orbit, it is enough to verify the proposition
for just one modular origami in the orbit. As we already know from the section 3.1, all primitive
n-square origamis from the stratum H(2) get to at most two SL2(Z)-orbits: the first one contains the
origami

Pn = =

and in the second one, which exists for odd n > 5, there is

Rn =

2this means that C̄ · p
q
∼
O

p
q

for any p
q
∈ Q̂.
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(the origami Rn is primitive and both permutations encoding Rn are even). Remark that the origamis
Pn and Rn are stabilized by −I, and does any origami in their SL2(Z)-orbits. Therefore, for each
primitive origami O ∈ H(2) we have Ō = {O}. We are going to proceed in two different ways.

1st method. Consider an element C̄ ∈ PSL2(Z) preserving the classes for P̄n. By the property E),
the modular origamis P̄n and C̄ · P̄n must be in same T - and U-orbits. However, in the U-orbit of P̄n
there are exactly two modular origamis: P̄n and the origami Ū · P̄n, where

U · Pn = .

The modular origamis P̄n and Ū · P̄n are not in the same T -orbit, since the origami UPn has two
horizontal cylinders whilst Pn only one. We conclude that C̄ · P̄n = P̄n, that is, C̄ ∈ PSL(Ō).

The case of the second PSL2(Z)-orbit is even easier, because there is a U-orbit consisting of only
one modular origami, due to the relation Rn = U ·Rn.

2nd method. Suppose there exists a matrix C̄ ∈ PSL2(Z), that preserves the classes for P̄n but doesn’t
preserve the modular origami P̄n. In order to get a contradiction, it suffices to look at two classes:
[∞]Pn and [S̄ · ∞]Pn .

Since C̄−1∞ ∼
T
∞ and C̄−1S̄−1∞ ∼

T
S̄−1∞, according to (∗) we obtain

C̄ = T̄ kC̄1 and C̄ = S̄−1T̄ lS̄C̄2

for some k, l ∈ Z and C̄1, C̄2 ∈ PSL(P̄n). Moreover, such an integer l can be chosen in the set
{0, 1, . . . , #(T ·S̄P̄n)−1}, where #(T · S̄P̄n) is the number of modular origamis in the T -orbit of
S̄ · P̄n, that is, #(T · S̄P̄n) = 2 and 0 6 l < 2. Since C̄ is not in PSL(P̄n), it follows that l = 1.
Therefore,

T̄−kS̄−1T̄ S̄ = C̄1C̄
−1
2 ∈ PSL(P̄n).

In terms of permutations, we have

Pn = (σ, τ)∗ for σ = (1 2 . . . n), τ = (1 2)

and

(σ, τ)∗ �
S // (τ−1, σ)∗ �

T // (τ−1, στ)∗ �
S−1
// (στ, τ)∗ �

T−k // (στ, τ(στ)k)∗.

As the element T̄−kS̄−1T̄ S̄ preserves the modular origami P̄n = {Pn}, the pairs (σ, τ) and (στ, τ(στ)k)
should be conjugate, which is impossible because the permutations σ and στ have unmatched parities.
Contradiction.

Speaking of the modular origami R̄n, we notice that it is U-invariant. So, (∗∗) shows that if
C̄−10 ∼

U
0 then C̄ ∈ PSL(R̄n).

For any subgroup Γ ⊆ PSL2(Z), we can consider the orbits for the action of Γ on the projective
line Q̂ and determine which elements of PSL2(Z) preserve those orbits.

Definition 6.4. A subgroup Γ ⊆ PSL2(Z) will be called Q̂-straining if it is exactly the stabilizer of
the Γ-orbits on Q̂.

In other words, Γ is Q̂-straining if from the fact that C̄ · pq ∈ Γ · pq for any p
q ∈ Q̂ , follows that

C̄ ∈ Γ. We can now reformulate the question 6.1: for which modular origamis the integer Veech group
is Q̂-straining?

As shown in Proposition 6.1, the Veech group PSL(Ō) for any primitive origami O ∈ H(2) is
Q̂-straining.
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Lemma 6.2. Let Γ be a subgroup of PSL2(Z). An element C̄ ∈ PSL2(Z) preserves the Γ-orbits on Q̂
if and only if, for any Ā ∈ PSL2(Z), there exist B̄ ∈ Γ and k ∈ Z such that

ĀC̄ = T̄ kĀB̄.

The same is true if we replace T̄ by Ū .

Proof. The element C̄−1 preserves the Γ-orbits if and only if, for any Ā ∈ PSL2(Z), we have

C̄−1 · Ā−1∞ = B̄−1 · Ā−1∞ for some B̄ ∈ Γ,

that is, there exists k ∈ Z such that
ĀC̄B̄−1Ā−1 = T̄ k,

or else, ĀC̄ = T̄ kĀB̄. The same is true if we replace ∞ by 0 and T̄ by Ū .

The projective group G = PSL2(Z) has the following presentation:

G =
〈
T̄ , Ū

∣∣ T̄ Ū T̄ = Ū T̄ Ū , (T̄ Ū T̄ )2 = 1
〉
. (6.6)

To every subgroup Γ ⊆ G of finite index corresponds a coset diagram C(G/Γ), that is a 2-labeled
digraph with labels T̄ and Ū . Moreover, a finite connected 2-labeled digraph Υ is isomorphic to a coset
diagram C(G/Γ) for some subgroup Γ ⊆ G if and only if the paths (T̄ Ū T̄ )2[v] and Ū−1T̄−1Ū−1T̄ Ū T̄ [v]
are closed for any vertex v of Υ. This is shown in Proposition 5.2.

We have the following theorem:

Theorem 6.3. There are infinitely many finite index subgroups Γ ⊆ G which are not Q̂-straining.

Proof. Take m ∈ {2, 3, 6}. Let Γ0 be a finite index subgroup of G such that the smallest positive
integers x, y for which T̄ x, Ūy ∈ Γ0, are coprime with m. Moreover, we assume that the same is true
for any conjugate of Γ0: the smallest positive exponents of T̄ and Ū in ĀΓ0Ā

−1 are coprime with m.
There are infinitely many such subgroups Γ0 (for instance, principal congruence subgroups of level
coprime with m). According to Proposition 5.2, the coset diagram Π = C(G/Γ0) has the following
property:

(P) the paths (T̄ Ū T̄ )2[v] and Ū−1T̄−1Ū−1T̄ Ū T̄ [v] are closed for any vertex v.

We are going to construct another coset diagram with this property.
Let Υ = Π× Zm be a 2-labeled digraph with vertices (v, k), where v is a vertex of Π and k ∈ Zm.

We connect any two vertices (v, k) and (T̄ · v, k + 1) by an edge with label T̄ , and any two vertices
(v, k) and (Ū · v, k + 1) by an edge with label Ū . See an example in Figure 6.1, where vk := (v, k).
The digraph Υ is connected: if v = W (T̄ , Ū) · Γ0 for a word W , then we have

W (T̄ , Ū) · (Γ0, 0) = (v, l), where l is the length of the word W.

Since x is coprime to m, there exists an integer z such that zx ≡ k − l mod m, and so

W (T̄ , Ū) T̄ zx · (Γ0, 0) = W (T̄ , Ū) · (Γ0, k − l) = (v, k).

Thus, any vertex (v, k) is connected to (Γ0, 0). Also, the property (P) is verified for Υ:

(T̄ Ū T̄ )2 · (v, k) = ((T̄ Ū T̄ )2 · v, k + 6) = (v, k),

Ū−1T̄−1Ū−1T̄ Ū T̄ · (v, k) = (Ū−1T̄−1Ū−1T̄ Ū T̄ · v, k) = (v, k).

Due to Proposition 5.2, the digraph Υ is the coset diagram C(G/Γ) for a finite index subgroup Γ ⊆ G
that can be taken to be the stabilizer of the vertex (Γ0, 0).
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a0b1

a2

b0 a1

b2

c0

c2

c1

Υ =

=

T̄

Ū

Π

a b c

Figure 6.1: Two coset diagrams Π and Υ = Π× Z3.

According to Lemma 6.2, an element C̄ ∈ G preserves the Γ-orbits on Q̂ if and only if, for any
Ā ∈ G, the vertices Ā · Γ and ĀC̄ · Γ of the coset diagram C(G/Γ) are in the same U-cycle3 (that is,
ĀC̄ ·Γ = ŪaĀ ·Γ for some a ∈ Z). Now, let us show that this is the case for C̄ = T̄ x. Indeed, write Ā
as a word on T̄ and Ū : Ā = W (T̄ , Ū). Then

Ā · Γ = W (T̄ , Ū) · (Γ0, 0) = (v, l), where v = W (T̄ , Ū) · Γ0 and l is the length of the word W,

ĀC̄ · Γ = W (T̄ , Ū) T̄ x · (Γ0, 0) = W (T̄ , Ū) · (Γ0, x) = (v, x+ l).

By what we assumed in the beginning, the vertex v gets into a U-cycle of the digraph Π of length
b ∈ N which is coprime to m. Thus there is an integer z such that zb ≡ x mod m, and so

Ū zbĀ · Γ = Ū zb · (v, l) = (v, l + x) = ĀC̄ · Γ.

We conclude that the element C̄ preserves the Γ-orbits on Q̂. It is left to notice that C̄ doesn’t belong
to Γ, since C̄ · Γ = T̄ x · (Γ0, 0) = (Γ0, x) 6= (Γ0, 0) = Γ. This completes the proof that the subgroup Γ
is not Q̂-straining.

3We call a T -cycle (a U-cycle) a cycle with all edges labeled by T̄ (respectively Ū).



Appendix A
Projective coset origamis (Java)

// File FField.java

class FField{

// Arithmetics in the projective line over a finite field modulo p.

// All elements of the field are thought of as non -negative integers:

// 0, 1, ..., p-1.

// We take 2^{31} -1 for the infinity.

int p;

public static int infty = Integer.MAX_VALUE;

FField(int p){

this.p = p;

}

static int residue(int i, int p){

if ((i == 0)||(i == infty))

return i;

int res = i - p*(int)(i/p);

if (res >= 0)

return res;

return (p + res); // if i=-5, p=3 then res=-2

}

public int inv(int i){ // gives i^{-1} modulo p

int p = this.p;

if (i == 0)

return infty; // infinity

if (i == infty)

return 0;

for(int j=1; j<p; j++)

if (residue(i*j, p) == 1)

return j;

return -2;

}

public int opp(int i){ // gives -i modulo p

if ((i == 0)||(i == infty))

return i;

return (p - residue(i, p));

}

public int sum(int a, int b){

125
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// for (a,b) in P1(Fp)\{( infty ,infty)} gives a + b modulo p

if ((a == infty )||(b == infty))

return infty;

return residue(a + b, this.p);

}

public int difference(int a, int b){

// for (a,b) in P1(Fp)\{( infty ,infty)} gives a - b modulo p

if ((a == infty )||(b == infty))

return infty;

return residue(a - b, this.p);

}

public int product(int a, int b){

// for (a,b) in P1(Fp)\{(0, infty),(infty ,0)} gives a * b modulo p

if ((a == infty )||(b == infty))

return infty;

return residue(residue(a, p) * residue(b, p), this.p);

}

public int division(int a, int b){

// for (a,b) in P1(Fp)\{(0 ,0) ,(infty ,infty)} gives a / b modulo p

if (a == infty)

return infty;

return product(a, inv(b));

}

}

// File ProjCosetOrigami.java

class ProjCosetOrigami{

// Finds the stratum and genus of the projective coset origami

// with monodromy group PSL(2,p) for p_{imin} <= p <= p_{imax}.

static String folder = "/Users/Dave/PSL/output/";

// The destination (output) folder

public static void main(String [] args){

StringBuffer buf = new StringBuffer ();

String file = folder + "file.txt";

final int imin = 1; // index of the first prime

final int imax = 328; // index of the last prime

int[] prime = new int[imax +1]; // array of primes

int i = 2, p = 3;

prime [1] = 2;

while (i <= imax){ // find imax first primes

boolean b = true;

for(int d=2; d<(int)(Math.sqrt(p)) + 1; d++){

if (d*(int)(p/d) == p){

b = false;

break;

}

}
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if (b){

prime[i] = p;

++i;

}

++p;

}

buf.append("$\\small" + (char )10 +

"\\ begin{array }{|lcl|} \\hline");

buf.append( (char )10 );

buf.append("\\ textbf{Prime }(p) & \\ textbf{Stratum } " +

"& \\ textbf{Genus }(g)\\\\ \\hline");

buf.append( (char )10 );

for(i=imin; i<= imax; i++)

{

p = prime[i];

FField Fp = new FField(p);

boolean [] bool = new boolean[p+1];

int count = 0;

int period = 0;

for(int j=0; j<p; j++)

bool[j] = false;

int res = FField.residue(p, 5);

if ((res == 1)||( res == 4))

buf.append("\\ centerdot \\; ");

else buf.append("\\;\\;");

buf.append("p="); buf.append(p); buf.append(" & ");

buf.append("\\ mathcal{H}(");

int a = 0, c = 0;

int k = 1; // degree of a zero

int nzeros = 0; // number of zeros

int g = 0; // genus

while(count < p+1){

while (bool[a]) ++a;

bool[a] = true; period = 1;

++ count;

if (a == p)

a = FField.infty;

c = Fp.difference (1, Fp.inv( Fp.sum(a, 2) ));

while ((c != a)&&( count < p+1)){

if (c == FField.infty)

bool[p] = true;

else bool[c] = true;

++ period; ++count;

c = Fp.difference (1, Fp.inv( Fp.sum(c, 2) ));

}
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if (period > 1){

k = period;

++ nzeros;

}

g = g + period - 1;

}

buf.append(k-1);

if (nzeros > 1){

buf.append("_{");

if ((res == 1)||( res == 4))

buf.append ((int)((p-1)/k));

else buf.append ((int )((p+1)/k));

buf.append("}");

}

buf.append(") & ");

g = (g + 2)/2;

buf.append("g="); buf.append(g);

buf.append("\\\\"); buf.append( (char )10 );

}

buf.append("\\ hline"); buf.append( (char )10 );

buf.append("\\end{array}$");
FichierIO.ouvrir(file);

FichierIO.ecrire(buf);

FichierIO.fermer ();

}

}

// File FichierIO.java

import java.io.*;

class FichierIO{

// Writes a StringBuffer to a file

final static int N = 256;

static BufferedWriter fichierSortie = null;

static void ouvrir(String nom) {

try{ fichierSortie = new BufferedWriter(new FileWriter(nom)); }

catch (IOException e){ throw new Error(e.getMessage ()); };

}

static void fermer () {

try{ fichierSortie.close (); }

catch (IOException e){ throw new Error(e.getMessage ()); }

}

static void ecrire(StringBuffer buf) {

try{

String s = buf.toString ();

fichierSortie.write(s,0,s.length ());

}

catch (IOException e){ throw new Error(e.getMessage ()); }

}

}
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Table B.1: SL2(Z)-orbits of the 5- and 6-square origamis in the stratum H(4). Note that the mono-
dromy groups of all such origamis are primitive.

Number
of squares

An orbit
representative

Orbit
length

Monodromy
group (G)

Order of G

n = 5
σ = (1 2)(4 5)
τ = (1 3)(2 4)

3 F5 o {1, 4} ' D5 10

σ = (1 2)(4 5)
τ = (2 3 4 5)

12 F5 o F×5 ' AGL(1, 5) 20

σ = (1 2)(4 5)
τ = (2 3 4)

10 A5 60

σ = (1 2)(4 5)
τ = (1 3)(2 4 5)

15 S5 120

n = 6
σ = (1 2)(5 6)
τ = (1 3 4)(2 5 6)

10 PSL(2, 5) ' A5 60

σ = (1 2)(5 6)
τ = (2 3 4 5)

15 PGL(2, 5) ' S5 120

σ = (1 2 3)
τ = (2 4 5 3 6)

15 A6 360

σ = (1 2 3)
τ = (2 4 3 5 6)

15

σ = (1 2)(5 6)
τ = (2 3 4 5 6)

20

σ = (1 2)(5 6)
τ = (1 3 4)(2 5)

30 S6 720

σ = (1 2 3)
τ = (2 4)(3 5 6)

60

129
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Table B.2: SL2(Z)-orbits of all n-square-tiled surfaces in H(1, 1) with 4 ≤ n ≤ 6.

Number
of squares

An orbit
representative

Orbit
length

Monodromy
group (G)

Order of G Prim.

n = 4
σ = (1 2)
τ = (1 3)(2 4)

6 D4 8 no

σ = (1 2)(3 4)
τ = (2 3 4)

4 A4 12 yes

n = 5
σ = (1 2)
τ = (1 3)(2 4 5)

24 S5 120 yes

n = 6
σ = (1 2)(3 4)
τ = (1 3 5)(2 4 6)

4 A4 12 no

σ = (1 2)
τ = (1 3 5)(2 4 6)

12 A4 × C2 24 no

σ = (1 2)
τ = (1 3)(2 4 5 6)

24 (S3)2 o C2 72 no

σ = (1 2)(3 4)(5 6)
τ = (2 3 5 4 6)

24 S5 120 yes

σ = (1 2 3)
τ = (2 3 4 5 6)

24 A6 360 yes
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Table B.3: SL2(Z)-orbits of the primitive n-square origamis in H(1, 1) with 7 ≤ n ≤ 17.

n An orbit representative
Orbit
length

G = gp {σ, τ} Order of G

7
σ = (1 2)(3 4)
τ = (1 3 5 2 4 6 7)

16 A7 2520

σ = (1 2)
τ = (1 3)(2 4 5 6 7)

144 S7 5040

8
σ = (1 2)(3 4)
τ = (1 3 5)(2 4 6 7 8)

96 A8 20160

σ = (1 2)
τ = (1 3 4)(2 5 6 7 8)

144 S8 40320

9
σ = (1 2)(3 4)
τ = (1 3 5 6 2 4 7 8 9)

72 A9 181440

σ = (1 2)
τ = (1 3)(2 4 5 6 7 8 9)

432 S9 362880

10
σ = (1 2)(3 4)
τ = (1 3 5)(2 4 6 7 8 9 10)

240 A10 1814400

σ = (1 2)
τ = (1 3 4)(2 5 6 7 8 9 10)

432 S10 3628800

11
σ = (1 2)(3 4)
τ = (1 3 5 2 4 6 7 8 9 10 11)

240 A11 19958400

σ = (1 2)
τ = (1 3)(2 4 5 6 7 8 9 10 11)

1200 S11 39916800

12
σ = (1 2)(3 4)
τ = (1 3 5 6 7)(2 4 8 9 10 11 12)

480 A12
12!/2

σ = (1 2)
τ = (1 3 4 5 6)(2 7 8 9 10 11 12)

960 S12 12!

13
σ = (1 2)(3 4)
τ = (1 3 5 2 4 6 7 8 9 10 11 12 13)

560 A13
13!/2

σ = (1 2)
τ = (1 3)(2 4 5 6 7 8 9 10 11 12 13)

2520 S13 13!

14
σ = (1 2)(3 4)
τ = (1 3 5)(2 4 6 7 8 9 10 11 12 13 14)

1008 A14
14!/2

σ = (1 2)
τ = (1 3 4)(2 5 6 7 8 9 10 11 12 13 14)

2160 S14 14!

15
σ = (1 2)(3 4)
τ = (1 3 5 6 2 4 7 8 9 10 11 12 13 14 15)

960 A15
15!/2

σ = (1 2)
τ = (1 3)(2 4 5 6 7 8 9 10 11 12 13 14 15)

4032 S15 15!

16
σ = (1 2)(3 4)
τ = (1 3 5)(2 4 6 7 8 9 10 11 12 13 14 15 16)

1792 A16
16!/2

σ = (1 2)
τ = (1 3 4)(2 5 6 7 8 9 10 11 12 13 14 15 16)

4032 S16 16!

17
σ = (1 2)(3 4)
τ = (1 3 5 2 4 6 7 8 9 10 11 12 13 14 15 16 17)

2016 A17
17!/2

σ = (1 2)
τ = (1 3)(2 4 5 6 7 8 9 10 11 12 13 14 15 16 17)

8064 S17 17!
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Table B.4: Projective coset origamis OPSL(2,p)/H,T̄ ,Ū with 2 ≤ p ≤ 2203.

Prime (p) Stratum Genus (g)
p = 2 H(2) g = 2
p = 3 H(12) g = 2
p = 5 H(4) g = 3
p = 7 H(32) g = 4
� p = 11 H(42) g = 5
p = 13 H(62) g = 7
p = 17 H(82) g = 9
� p = 19 H(82) g = 9
p = 23 H(112) g = 12
� p = 29 H(64) g = 13
� p = 31 H(142) g = 15
p = 37 H(182) g = 19
� p = 41 H(94) g = 19
p = 43 H(212) g = 22
p = 47 H(76) g = 22
p = 53 H(262) g = 27
� p = 59 H(282) g = 29
� p = 61 H(144) g = 29
p = 67 H(332) g = 34
� p = 71 H(342) g = 35
p = 73 H(362) g = 37
� p = 79 H(382) g = 39
p = 83 H(412) g = 42
� p = 89 H(108) g = 41
p = 97 H(482) g = 49
� p = 101 H(244) g = 49
p = 103 H(512) g = 52
p = 107 H(176) g = 52
� p = 109 H(264) g = 53
p = 113 H(186) g = 55
p = 127 H(632) g = 64
� p = 131 H(642) g = 65
p = 137 H(682) g = 69
� p = 139 H(226) g = 67
� p = 149 H(364) g = 73
� p = 151 H(246) g = 73
p = 157 H(782) g = 79
p = 163 H(812) g = 82
p = 167 H(832) g = 84
p = 173 H(862) g = 87
� p = 179 H(882) g = 89
� p = 181 H(444) g = 89
� p = 191 H(942) g = 95
p = 193 H(962) g = 97
p = 197 H(982) g = 99
� p = 199 H(1018) g = 91
� p = 211 H(2010) g = 101
p = 223 H(1112) g = 112
p = 227 H(1132) g = 114
� p = 229 H(564) g = 113
p = 233 H(1218) g = 109
� p = 239 H(1182) g = 119

Prime (p) Stratum Genus (g)
� p = 241 H(594) g = 119
� p = 251 H(1242) g = 125
p = 257 H(1282) g = 129
p = 263 H(436) g = 130
� p = 269 H(664) g = 133
� p = 271 H(1342) g = 135
p = 277 H(1382) g = 139
� p = 281 H(1320) g = 131
p = 283 H(1412) g = 142
p = 293 H(1462) g = 147
p = 307 H(2114) g = 148
� p = 311 H(1542) g = 155
p = 313 H(1562) g = 157
p = 317 H(1582) g = 159
� p = 331 H(546) g = 163
p = 337 H(1682) g = 169
p = 347 H(576) g = 172
� p = 349 H(864) g = 173
p = 353 H(586) g = 175
� p = 359 H(1782) g = 179
p = 367 H(1832) g = 184
p = 373 H(1862) g = 187
� p = 379 H(1882) g = 189
p = 383 H(1912) g = 192
� p = 389 H(964) g = 193
p = 397 H(1982) g = 199
� p = 401 H(498) g = 197
� p = 409 H(1014) g = 203
� p = 419 H(2082) g = 209
� p = 421 H(2020) g = 201
� p = 431 H(2142) g = 215
p = 433 H(2162) g = 217
� p = 439 H(2182) g = 219
p = 443 H(2212) g = 222
� p = 449 H(1114) g = 223
p = 457 H(2282) g = 229
� p = 461 H(2220) g = 221
p = 463 H(2312) g = 232
p = 467 H(2332) g = 234
� p = 479 H(2382) g = 239
p = 487 H(2432) g = 244
� p = 491 H(2442) g = 245
� p = 499 H(2482) g = 249
p = 503 H(2512) g = 252
� p = 509 H(1264) g = 253
� p = 521 H(1240) g = 241
p = 523 H(2612) g = 262
� p = 541 H(4412) g = 265
p = 547 H(2732) g = 274
p = 557 H(3018) g = 271
p = 563 H(936) g = 280
� p = 569 H(1414) g = 283



133

Prime (p) Stratum Genus (g)
� p = 571 H(2842) g = 285
p = 577 H(2882) g = 289
p = 587 H(2932) g = 294
p = 593 H(2962) g = 297
� p = 599 H(2982) g = 299
� p = 601 H(1494) g = 299
p = 607 H(3032) g = 304
p = 613 H(3062) g = 307
p = 617 H(3082) g = 309
� p = 619 H(1026) g = 307
� p = 631 H(3142) g = 315
� p = 641 H(1594) g = 319
p = 643 H(3212) g = 322
p = 647 H(3232) g = 324
p = 653 H(3262) g = 327
� p = 659 H(3282) g = 329
� p = 661 H(5412) g = 325
p = 673 H(3362) g = 337
p = 677 H(1126) g = 337
p = 683 H(3412) g = 342
� p = 691 H(6810) g = 341
� p = 701 H(1744) g = 349
� p = 709 H(5812) g = 349
� p = 719 H(3582) g = 359
p = 727 H(3632) g = 364
p = 733 H(3662) g = 367
� p = 739 H(3682) g = 369
p = 743 H(1236) g = 370
� p = 751 H(3742) g = 375
p = 757 H(3782) g = 379
� p = 761 H(948) g = 377
� p = 769 H(4716) g = 377
p = 773 H(3862) g = 387
p = 787 H(3932) g = 394
p = 797 H(5614) g = 393
� p = 809 H(1008) g = 401
� p = 811 H(1346) g = 403
� p = 821 H(2044) g = 409
p = 823 H(4112) g = 412
p = 827 H(4132) g = 414
� p = 829 H(6812) g = 409
� p = 839 H(4182) g = 419
p = 853 H(4262) g = 427
p = 857 H(4282) g = 429
� p = 859 H(3822) g = 419
p = 863 H(4312) g = 432
p = 877 H(4382) g = 439
� p = 881 H(4320) g = 431
p = 883 H(4412) g = 442
p = 887 H(4432) g = 444
p = 907 H(4532) g = 454
� p = 911 H(3426) g = 443
� p = 919 H(5018) g = 451
� p = 929 H(2314) g = 463
p = 937 H(4682) g = 469
� p = 941 H(2344) g = 469

Prime (p) Stratum Genus (g)
p = 947 H(4732) g = 474
p = 953 H(5218) g = 469
p = 967 H(4322) g = 474
� p = 971 H(4842) g = 485
p = 977 H(1626) g = 487
p = 983 H(4912) g = 492
� p = 991 H(9810) g = 491
p = 997 H(4982) g = 499
� p = 1009 H(6216) g = 497
p = 1013 H(5062) g = 507
� p = 1019 H(5082) g = 509
� p = 1021 H(2544) g = 509
� p = 1031 H(10210) g = 511
p = 1033 H(5162) g = 517
� p = 1039 H(5182) g = 519
� p = 1049 H(1308) g = 521
� p = 1051 H(5242) g = 525
� p = 1061 H(2644) g = 529
p = 1063 H(5312) g = 532
� p = 1069 H(8812) g = 529
p = 1087 H(3134) g = 528
� p = 1091 H(5442) g = 545
p = 1093 H(5462) g = 547
p = 1097 H(1826) g = 547
p = 1103 H(2346) g = 530
� p = 1109 H(2764) g = 553
p = 1117 H(5582) g = 559
p = 1123 H(5612) g = 562
� p = 1129 H(2814) g = 563
� p = 1151 H(11410) g = 571
p = 1153 H(5762) g = 577
p = 1163 H(5812) g = 582
� p = 1171 H(5842) g = 585
� p = 1181 H(2944) g = 589
p = 1187 H(5932) g = 594
p = 1193 H(5962) g = 597
� p = 1201 H(2994) g = 599
p = 1213 H(6062) g = 607
p = 1217 H(2026) g = 607
p = 1223 H(2036) g = 610
� p = 1229 H(3064) g = 613
� p = 1231 H(2046) g = 613
p = 1237 H(6182) g = 619
� p = 1249 H(1558) g = 621
� p = 1259 H(6282) g = 629
p = 1277 H(2126) g = 637
� p = 1279 H(2126) g = 637
p = 1283 H(6412) g = 642
� p = 1289 H(1608) g = 641
� p = 1291 H(2146) g = 643
p = 1297 H(6482) g = 649
� p = 1301 H(3244) g = 649
p = 1303 H(6512) g = 652
p = 1307 H(2176) g = 652
� p = 1319 H(6582) g = 659
� p = 1321 H(3294) g = 659
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Prime (p) Stratum Genus (g)
p = 1327 H(6632) g = 664
� p = 1361 H(1698) g = 677
p = 1367 H(6832) g = 684
p = 1373 H(6862) g = 687
� p = 1381 H(11412) g = 685
� p = 1399 H(6982) g = 699
� p = 1409 H(1758) g = 701
p = 1423 H(7112) g = 712
p = 1427 H(4134) g = 698
� p = 1429 H(3564) g = 713
p = 1433 H(7162) g = 717
� p = 1439 H(7182) g = 719
p = 1447 H(7232) g = 724
� p = 1451 H(7242) g = 725
p = 1453 H(7262) g = 727
� p = 1459 H(7282) g = 729
� p = 1471 H(2446) g = 733
� p = 1481 H(3694) g = 739
p = 1483 H(10514) g = 736
p = 1487 H(7432) g = 744
� p = 1489 H(3714) g = 743
p = 1493 H(7462) g = 747
� p = 1499 H(7482) g = 749
� p = 1511 H(15010) g = 751
p = 1523 H(2536) g = 760
� p = 1531 H(7642) g = 765
p = 1543 H(7712) g = 772
� p = 1549 H(3864) g = 773
p = 1553 H(2586) g = 775
� p = 1559 H(7782) g = 779
p = 1567 H(7832) g = 784
� p = 1571 H(7842) g = 785
� p = 1579 H(2626) g = 787
p = 1583 H(7912) g = 792
p = 1597 H(1694) g = 753
� p = 1601 H(3940) g = 781
p = 1607 H(8032) g = 804
� p = 1609 H(4014) g = 803
p = 1613 H(8062) g = 807
� p = 1619 H(8082) g = 809
� p = 1621 H(4044) g = 809
p = 1627 H(8132) g = 814
p = 1637 H(8182) g = 819
p = 1657 H(8282) g = 829
p = 1663 H(8312) g = 832
p = 1667 H(8332) g = 834
� p = 1669 H(4164) g = 833
p = 1693 H(8462) g = 847
p = 1697 H(8482) g = 849
� p = 1699 H(2826) g = 847
� p = 1709 H(4264) g = 853
� p = 1721 H(2148) g = 857
p = 1723 H(8612) g = 862
p = 1733 H(2886) g = 865
� p = 1741 H(4344) g = 869
p = 1747 H(8732) g = 874

Prime (p) Stratum Genus (g)
p = 1753 H(8762) g = 877
� p = 1759 H(8782) g = 879
p = 1777 H(8882) g = 889
p = 1783 H(8912) g = 892
p = 1787 H(8932) g = 894
� p = 1789 H(4464) g = 893
� p = 1801 H(4494) g = 899
� p = 1811 H(9042) g = 905
p = 1823 H(3036) g = 910
� p = 1831 H(9142) g = 915
p = 1847 H(9232) g = 924
� p = 1861 H(4644) g = 929
p = 1867 H(9332) g = 934
� p = 1871 H(18610) g = 931
p = 1873 H(9362) g = 937
p = 1877 H(3126) g = 937
� p = 1879 H(9382) g = 939
� p = 1889 H(4714) g = 943
� p = 1901 H(4744) g = 949
p = 1907 H(9532) g = 954
p = 1913 H(3186) g = 955
� p = 1931 H(9642) g = 965
p = 1933 H(9662) g = 967
� p = 1949 H(4864) g = 973
� p = 1951 H(19410) g = 971
p = 1973 H(3286) g = 985
� p = 1979 H(9882) g = 989
p = 1987 H(9932) g = 994
p = 1993 H(9962) g = 997
p = 1997 H(9982) g = 999
� p = 1999 H(3326) g = 997
p = 2003 H(10012) g = 1002
� p = 2011 H(10042) g = 1005
p = 2017 H(10082) g = 1009
p = 2027 H(3376) g = 1012
� p = 2029 H(5064) g = 1013
� p = 2039 H(10182) g = 1019
p = 2053 H(10262) g = 1027
p = 2063 H(10312) g = 1032
� p = 2069 H(5164) g = 1033
� p = 2081 H(6432) g = 1025
p = 2083 H(10412) g = 1042
p = 2087 H(10432) g = 1044
� p = 2089 H(2608) g = 1041
� p = 2099 H(10482) g = 1049
� p = 2111 H(10542) g = 1055
p = 2113 H(10562) g = 1057
� p = 2129 H(5314) g = 1063
� p = 2131 H(10642) g = 1065
p = 2137 H(10682) g = 1069
� p = 2141 H(5344) g = 1069
p = 2143 H(10712) g = 1072
p = 2153 H(10762) g = 1077
� p = 2161 H(19108) g = 1027
� p = 2179 H(9822) g = 1079
p = 2203 H(11012) g = 1102
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Table B.5: GL2(Z)-orbits of n-square alternating coset origamis with 3 ≤ n ≤ 9.

n
Monodromy
group (An)

Stratum
Number
of orbits

Orbit
length(s)

3 A3 ' Z3 H(0) 1 4

4 A4 H(1, 1) 1 4

5 A5 H(2) 1 9
H(4) 1 10

6 A6 H(1, 1) 1 24
H(3, 1) 1 32
H(4) 3 15, 15, 20

7 A7 H(1, 1) 1 16
H(2) 1 36
H(2, 1, 1) 3 24, 36, 48
H(2, 2) 2 36, 72
H(3, 1) 1 192
H(4) 3 30, 40, 120
H(6) 5 21, 21, 56, 84, 84

8 A8 H(1, 1) 1 96
H(2, 1, 1) 2 252, 432
H(2, 2) 2 90, 198
H(3, 1) 1 768
H(3, 3) 2 96, 384
H(4) 2 260, 270
H(4, 2) 4 15, 45, 480, 540
H(5, 1) 1 1296
H(6) 3 42, 1092, 1092

9 A9 H(1, 1) 1 72
H(1, 1, 1, 1) 2 114, 138
H(2) 1 81
H(2, 1, 1) 3 162, 222, 3144
H(2, 2) 4 25, 324, 360, 828
H(2, 2, 2) 2 486, 612
H(3, 1) 1 2560
H(3, 2, 1) 1 5760
H(3, 3) 2 864, 4320
H(4) 4 25, 90, 135, 940
H(4, 1, 1) 2 460, 3980
H(4, 2) 4 300, 315, 3120, 6300
H(5, 1) 1 12960
H(6) 5 231, 252, 574, 3304, 5964
H(8) 5 243, 432, 567, 7452, 9288
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[70] Martin Möller, Affine groups of flat surfaces, Preprint (https://titus.uni-frankfurt.de/
fb/fb12/mathematik/ag/personen/moeller/summaries/styled_affine_groups.pdf). 2.5

https://titus.uni-frankfurt.de/fb/fb12/mathematik/ag/personen/moeller/summaries/styled_affine_groups.pdf
https://titus.uni-frankfurt.de/fb/fb12/mathematik/ag/personen/moeller/summaries/styled_affine_groups.pdf


BIBLIOGRAPHY 141

[71] Jitsuro Nagura, On the interval containing at least one prime number, Proceedings of the Japan
Academy 28 (1952), no. 4, 177–181. 4.2.12

[72] Eugen Netto, The theory of substitutions and its applications to algebra, Ann Arbor, Michigan,
1982. 2.3

[73] Bernhard H. Neumann and Hanna Neumann, Zwei Klassen charakteristischer Untergruppen und
ihre Faktorgruppen,, Mathematische Nachrichten 4 (1951), 106–125. 2.4, 4.2.12, 5.2.2

[74] Bernhard Hermann Neumann, Groups covered by finitely many cosets, Publicationes Mathemat-
icae Debrecen 3 (1954), 227–242. 3.3

[75] Jacob Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden,
Mathematische Annalen 78 (1917), 385–397. 2.4

[76] , Ober die isomorphismen unendlicher gruppen ohne relation, Mathematische Annalen
79 (1918), 269–272. 2.4

[77] Petr S. Novikov and Sergei I. Adjan, Infinite periodic groups i, ii, iii, Mathematics of the USSR
Izvestiya 2 (1968), 209–236, 241–479, 665–685. 4.2.9

[78] Øystein Ore, Some remarks on commutators, Proceedings of the American Mathematical Society
2 (1951), no. 2, 307–314. 3, 4.2.12

[79] Igor Pak, What do we know about the product replacement algorithm?, Groups and Computation,
vol. III, de Gruyter, Berlin, 2001, pp. 301–347. 2.4
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