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Recently the radiative B-decay to strange axial-vector mesons, B → K 1 (1270)γ, was observed with a rather large branching ratio. This process is particularly interesting as the subsequent K 1 -decay into its three-body final state allows us to determine the polarization of the photon, which is mostly left(right)-handed for B(B) in the Standard Model while various new physics models predict additional right(left)-handed components. In this thesis, a new method is proposed to determine the polarization, exploiting the full Dalitz plot distribution, which seems to reduce significantly the statistical errors on the polarization parameter λ γ measurement.

This polarization measurement requires, however a detailed knowledge of the K 1 → Kππ strong interaction decays, namely, the complex pattern of various partial wave amplitudes into the several possible quasi-two-body channels as well as their relative phases. A number of experiments have been done to extract all these information while there remain various problems in the previous studies. In this thesis, we investigate the details of these problems. As a theoretical tool, we use the 3 P 0 quark-pair-creation model in order to improve our understanding of strong K 1 -decays.

Finally we try to estimate some theoretical uncertainties: in particular, the one coming from the uncertainty on the K 1 mixing angle, and the effect of a possible "off-set" phase in strong decay S-waves. According to our estimations, the systematic errors are found to be of the order of σ th λγ 20%. On the other hand, we discuss the sensitivity of the future experiments, namely the SuperB factories and LHCb, to λ γ . Naively estimating the annual signal yields, we found the statistical error of the new method to be σ stat λγ 10% which turns out to be reduced by a factor 2 with respect to using the simple angular distribution.

We also discuss a comparison to the other methods of the polarization measurement using processes, such as B → K * e + e -, B d → K * γ and B s → φγ, for the determination of the ratio of the Wilson coefficients C ′ ef f 7γ /C ef f 7γ . We show an example of potential constraints on the C ′ ef f 7γ /C ef f 7γ in several scenarios of supersymmetric models.

Résumé

La désintégration radiative du méson B en méson étrange axiale, B → K 1 (1270)γ, a été observée récemment avec un rapport d'embranchement assez grand que B → K * γ. Ce processus est particulièrement intéressant car la désintégration du K 1 dans un état final à trois corps nous permet de déterminer la polarisation du photon, qui est surtout gauche (droit) pour B(B) dans le Modèle Standard tandis que des modèles divers de nouvelle physique prédisent une composante droite (gauche) supplémentaire. Dans cette thèse, une nouvelle méthode est proposée pour déterminer la polarisation, en exploitant la distribution totale du Dalitz plot, qui semble réduire considérablement les erreurs statistiques de la mesure du paramètre de la polarisation λ γ . Cependant, cette mesure de la polarisation nécessite une connaissance détaillée de la désintégration forte K 1 → Kππ : c'est-à-dire l'ensemble complexe des différentes amplitudes d'ondes partielles en plusieurs canaux en quasi-deux-corps ainsi que leurs phases relatives. Un certain nombre d'expériences ont été faites pour extraire ces informations bien qu'il reste divers problèmes dans ces études. Dans cette thèse, nous étudions en détail ces problèmes en nous aidant d'un modèle théorique. Nous utilisons ainsi le modèle 3 P 0 de création d'une paire de quarks pour améliorer notre compréhension des désintégrations fortes du K 1 .

A partir de ce modèle nous estimons les incertitudes théoriques : en particulier, celle venant de l'incertitude de l'angle de mélange du K 1 , et celle due à l'effet d'une phase "off-set" dans les désintégrations fortes en ondes-S. Selon nos estimations, les erreurs systématiques se trouvent être de l'ordre de σ th λγ 20%. D'autre part nous discutons de la sensibilité des expériences futures, notamment les usines SuperB et LHCb, pour λ γ . En estimant naïvement les taux annuels d'évenements, nous trouvons que l'erreur statistique de la nouvelle méthode est σ stat λγ 10%, ce qui est deux fois plus petit qu'en utilisant seulement les distributions angulaires simples.

Nous discutons également de la comparaison avec les autres méthodes de mesure de la polarisation en utilisant les processus tels que B → K * e + e -, B d → K * γ et B s → φγ, pour la détermination du rapport des coefficients de Wilson C ′ ef f 7γ /C ef f 7γ . Nous montrons un exemple de contraintes possibles sur C ′ ef f 7γ /C ef f 7γ dans plusieurs scénarios de modèles supersymétriques.

Introduction

The radiative decay b → sγ has been extensively studied as a probe of the flavour structure of the Standard Model (SM) as well as new physics beyond the SM. While the majority of studies has been focused on the prediction of the decay rates of exclusive and inclusive b → sγ decays, there is one very interesting feature of this process which has attracted far less attention: in the SM, the emitted photon is predominantly left-handed in b, and righthanded in b decays. This is due to the fact that the dominant contribution is from the chiral-odd dipole operator s L(R) σ µν b R(L) . As only left-handed quarks participate in weak interaction, this effective operator induces a helicity flip on one of the external quark lines, which results in a factor m b for b R → s L γ L and a factor m s for b L → s R γ R . Hence, the emission of right-handed photons is suppressed by a factor m s /m b . This suppression can be relieved in some new physics models where the helicity flip occurs on an internal line, resulting in a factor m N P /m b instead of m s /m b . Unless the amplitude for b → sγ R is of the same order as the SM prediction, or the enhancement of b → sγ R goes along with the suppression of b → sγ L , the impact on the branching ratio is small since the two helicity amplitudes add incoherently. This implies that there can be a substantial contribution of new physics to b → sγ escaping detection when only branching ratios are measured. Therefore, the photon polarization measurement could provide a good test of the SM. In Chapter 1, after a mini-review of the SM, we present the basic theoretical knowledge needed for the polarization study in b → sγ such as operator product expansion. We also briefly discuss QCD effects and the consequent contamination from the right-handed polarization in exclusive processes.

Although the photon helicity is, in principle, a measurable quantity, it is very difficult to measure it directly. In this thesis we investigate one of the methods based on the study of the recently observed exclusive decay B → K 1 (1270)γ followed by the threebody decay K 1 (1270) → Kππ. Since the photon helicity is parity-odd and we measure only the momenta of the final state particles, one can form a triple product of three momenta like p γ • ( p π × p K ) which is a pseudo-scalar and applying parity transformation it has the opposite sign for left-and right-handed photons. Therefore, this process is particularly interesting as the subsequent K 1 -decay into its three-body final state allows us to determine the polarization directly. In Chapter 2, we derive the master formula for the decay distribution of B → (Kππ) K 1 γ and introduce a new method for the polarization determination. We propose a new variable, ω, to determine the polarization parameter λ γ . The use of ω significantly simplifies the experimental analysis and allows us to include not only the angular dependence of the polarization parameter but also the three-body Introduction Dalitz variable dependence to the fit.

In order to measure the polarization parameter λ γ precisely, a sufficiently accurate modelling of the hadronic decays of K 1 → Kππ is required. We first introduce the basic hadronic parameters required in our analysis, namely the various partial wave amplitudes into several possible quasi-two-body channels, as well as their relative phases. These parameters can, in principle, be determined by experimental measurements of the K 1 (1270) → Kππ decay. On the other hand, although the ACCMOR experiment had provided an extensive study of this decay, we find that the information one can extract from it is not accurate enough. In Chapter 3, we describe some of the problems encountered in our analysis, which include the strong phase between different intermediate resonance states and the controversial K 1 (1270) → κπ channel. Being unable to obtain the hadronic parameters from the fundamental theory, we resort to combine experimental data and phenomenological models. In particular, combining the experimental results of the partial wave analysis of the K 1 -decays using the K-matrix formalism and the predictions of the 3 P 0 quark-pair-creation model, we determine the phenomenological parameters of the model such as the K 1 mixing angle and the universal quark-pair-creation constant.

In Chapter 4, we estimate the sensitivity of the future experiments to λ γ using Monte Carlo simulation and discuss statistical errors and theoretical uncertainties of the hadronic model. It turns out that the probability density function, or equivalently the properly normalized differential decay width distribution, is linearly dependent on the polarization parameter λ γ : W (ω) = ϕ(ω)(1 + λ γ ω). In principle, ϕ(ω) is a very complicated and unknown function which analytical form is very hard to derive. Thus, we use a numerical Monte Carlo method in order to simulate the ω-distribution. We find out that the inclusion of the full Dalitz information can improve the sensitivity by typically a factor of two compared to the pure angular fit. In Chapter 5, we discuss the sensitivity of the future experiments, namely the SuperB factories and LHCb to λ γ , and compare our new method with the other methods of the polarization determination using different processes, such as B 0 → K * 0 e + e -, B 0 → K * 0 (→ K S π 0 )γ and B s → φγ. Combining these different methods, we give an example of possible future constraints on the ratio of the Wilson coefficients C ′ ef f 7γ /C ef f 7γ in several scenarios of the Minimal Supersymmetric Standard Model. We give our conclusions and perspectives for the future potential measurement of the photon polarization in Chapter 6. Some more technical aspects and details are discussed in the Appendices.

Chapter 1

Flavour physics in the Standard Model and beyond

The Standard Model

The Standard Model (SM) of strong, weak and electromagnetic interactions is a relativistic quantum field theory that describes all known interactions of quarks and leptons. The SM is made up of the Glashow-Weinberg-Salam model of the electroweak interactions and Quantum Chromodynamics (QCD). The SM is a gauge theory based on the gauge group SU (3) c × SU (2) L × U (1) Y . The SU (3) c gauge group describes the strong colour interactions among quarks, and the SU (2) L ×U (1) Y gauge group describes the electroweak interactions. At the present time three generations of quarks and leptons have been observed. The measured width of the Z boson does not permit a fourth generation with a massless (or light) neutrino. Many extensions of the minimal SM have been proposed, and there is evidence in the present data for neutrino masses, which requires new physics beyond the SM. Low-energy supersymmetry, dynamical weak symmetry breaking, extra dimensions, or something totally unexpected may be discovered at the next generation of high-energy particle accelerators.

The matter fields in the minimal SM are three families of spin-1/2 quarks and leptons, and a spin-zero Higgs boson, shown in Table 1.1. Q i L , u i R , d i R are the quark fields and L i L , e i R are the lepton fields. All the particles associated with the fields in Table 1.1 have been observed experimentally, except for the Higgs boson. The index i on the fermion fields is a family or generation index (i = 1, 2, 3), and the subscripts L and R denote left-and right-handed fields respectively,

ψ L = P L ψ, ψ R = P R ψ (1.1)
where P L and P R are the projection operators

P L = 1 2 (1 -γ 5 ), P R = 1 2 (1 + γ 5 ) (1.2) 1 2 -1/2 (1/2, 0) e i R 1 1 -1 (0, 1/2) φ = φ + φ 0 1 2 1/2 (0, 0)
Table 1.1: Matter fields in the SM.

The SU (2) L × U (1) Y symmetry of the electroweak sector is not manifest at low energies. In the SM, the SU (2) L × U (1) Y symmetry is spontaneously broken by the vacuum expectation value of the Higgs doublet φ. The spontaneous breakdown of SU (2) L ×U (1) Y gives mass to the W ± and Z 0 gauge bosons. A single Higgs doublet is the simplest way to achieve the observed pattern of spontaneous symmetry breaking, but a more complicated scalar sector, such as two doublets, is possible.

The terms in the SM Lagrangian density that involve only the Higgs doublet

φ = φ + φ 0 (1.3) are L Higgs = (D µ φ) † (D µ φ) -V (φ) (1.4)
where D µ is the covariant derivative and V (φ) is the Higgs potential

V (φ) = µ 2 (φ † φ) + λ(φ † φ) 2 (1.5) 
For µ 2 < 0 the Higgs potential is minimized when φ † φ = -µ 2 /2λ. This gives the vacuum expectation value in the standard form

φ = 0 υ/ √ 2 (1.6)
where υ = -µ 2 /λ is real and positive.

The gauge covariant derivative acting on any field ψ is

D µ = ∂ µ -ig s A a µ t a -ig 2 W i µ T i -ig 1 B µ Y (1.7)
where t a (a = 1, . . . , 8) are the eight color SU (3) generators, T i (i = 1, 2, 3) are the weak SU (2) generators, and Y is the U (1) hypercharge generator. The generators are chosen to be in the representation of the field ψ on which the covariant generator acts. The gauge 1.1 The Standard Model bosons and the coupling constants associated with these gauge groups are denoted A a µ , W i µ and B µ and g s , g 2 and g 1 respectively. The kinetic term for the Higgs field contains a piece quadratic in the gauge fields when expanded about the Higgs vacuum expectation value. The quadratic terms that produce a gauge-boson mass are

L gauge boson mass = g 2 2 υ 2 8 (W 1 W 1 + W 2 W 2 ) + υ 2 8 (g 2 W 3 -g 1 B) 2 (1.8)
where for simplicity of notation the Lorentz indices are suppressed. The charged W -boson fields

W ± µ = W 1 µ ∓ iW 2 µ √ 2 (1.9)
have mass

M W = g 2 υ 2 (1.10)
It is convenient to introduce the weak mixing angle θ W defined by

sin θ W = g 1 g 2 1 + g 2 2 , cos θ W = g 2 g 2 1 + g 2 2
(1.11)

The Z-boson field and photon field A are defined as linear combinations of the neutral gauge-boson fields W 3 and B:

Z µ = W 3 µ cos θ W -B µ sin θ W A µ = W 3 µ sin θ W + B µ cos θ W (1.
12)

The Z boson has a mass at tree level

M Z = g 2 1 + g 2 2 2 υ = M W cos θ W (1.13)
and the photon is massless. The covariant derivative in Eq. (1.7) can be expressed in terms of the mass-eigenstate fields as 

D µ = ∂ µ -ig s A a µ t a -i g 2 √ 2 (W + µ T + +W - µ T -)-i g 2 1 + g 2 2 (T 3 -Q sin 2 θ W )Z µ -ig 2 Q sin θ W A µ (1.
L Yukawa = Y ij u u i R φ T ǫQ j L -Y ij d d i R φ † Q j L -Y ij e e i R φ † L j L + h.c. (1.15)
Since φ has a vacuum expectation value, the Yukawa couplings in Eq. (1.15) give rise to the 3 × 3 quark and lepton masses

M ij u = υY ij u / √ 2, M ij d = υY ij d / √ 2, M ij e = υY ij e / √ 2 (1.16)
Neutrinos do not get mass from the Yukawa interactions in Eq. (1.15) since there is no right-handed neutrino field.

Any matrix M can be brought into diagonal form by separate unitary transformations on the left and right, M → U L M diag U † R , where U L and U R are unitary and M diag is real, diagonal and non-negative. One can make separate unitary transformations on the leftand right-handed quark and lepton fields, while leaving the kinetic energy terms for the quarks,

Q i L i / ∂Q i L , u i R i / ∂u i R and d i R i / ∂d i R
, and also those for the leptons, invariant. The unitary transformations are

u L = U u L u ′ L , u R = U u R u ′ R , d L = U d L d ′ L , d R = U d R d ′ R , e L = U e L e ′ L , e R = U e R e ′ R .
(1.17)

Here u, d and e are three-component column vectors (in flavour space) for the quarks and leptons, and the primed fields represent the corresponding mass eigenstates. The transformation matrices U are 3 × 3 unitary matrices which are chosen to diagonalize the mass matrices:

U u † R M u U u L = Diag(m u , m c , m t ) U d † R M d U d L = Diag(m d , m s , m b ) U e †
R M e U e L = Diag(m e , m µ , m τ ) (1.18) Diagonalizing the quark mass matrices in Eq. (1.18) requires different transformations of u L and d L , which are part of the same SU (2) doublet Q L . The original quark doublet can be rewritten as

u L d L = U u L u ′ L U d L d ′ L = U u L u ′ L V CKM d ′ L (1.19)
where the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix V CKM [START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF][START_REF] Kobayashi | CP Violation in the Renormalizable Theory of Weak Interaction[END_REF] is defined as

V CKM = U u † L U d L (1.20)

Motivation for New Physics beyond the Standard Model

It is convenient to reexpress the SM Lagrangian in terms of the primed mass-eigenstate fields. The unitary matrices in Eq. (1.19) leave the quark kinetic terms unchanged. The Z and photon couplings are also unaffected, so there are no flavour-changing neutral currents (FCNC) in the SM Lagrangian at tree level. The W couplings are left unchanged by U u L but not by V CKM :

g 2 √ 2 u L γ µ d L W + µ = g 2 √ 2 u ′ L γ µ V CKM d ′ L W + µ (1.21)
As a result there are flavour-changing charged currents at tree level.

The CKM matrix V CKM is a 3×3 unitary matrix, and so is completely specified by nine real parameters. Some of these can be eliminated my making phase redefinitions of the quark fields. The u and d quark mass matrices are unchanged if one makes independent phase rotations on the six quarks, provided the same phase is used for the left-and righthanded quarks of a given flavour. An overall phase rotation of all the quarks leaves the CKM matrix unchanged but the remaining five rotations can be used to eliminate five parameters, so that V CKM can be written in terms of four parameters. One of the most convenient CKM parametrizations of V CKM was introduced by Wolfenstein [START_REF] Wolfenstein | Parametrization of the Kobayashi-Maskawa Matrix[END_REF] which is defined by four parameters λ, A, ρ and η in the following way:

V CKM =   V ud V us V ub V cd V cs V cb V td V ts V tb   =   1 -λ 2 /2 λ Aλ 3 (ρ -iη) -λ 1 -λ 2 /2 Aλ 2 Aλ 3 (1 -ρ -iη) -Aλ 2 1   + O(λ 4 ) (1.
22) The analysis for leptons is similar to that for quarks, with one notable difference-because the neutrinos are massless, one can choose to make the same unitary transformation of the left-handed charged leptons and neutrinos.

Motivation for New Physics beyond the Standard Model

For the present moment the SM has been very successful in explaining a wide variety of existing experimental data. It covers a wide range of phenomena from low energy (less than a GeV) physics, such as kaon decays, to high energy (a few hundred GeV) processes involving real weak gauge bosons and top quarks. However, the SM is not satisfactory as the theory of elementary particles beyond the TeV energy scale. First of all, it does not explain the characteristic pattern of the mass spectrum of quarks and leptons. The second generation quarks and leptons are several orders of magnitude heavier than the corresponding first generation particles, and the third generation is even heavier by another order of magnitude. The quark flavour mixing CKM matrix also has a remarkable hierarchical structure, i.e. the diagonal terms are very close to unity and θ 13 ≪ θ 23 ≪ θ 12 ≪ 1, where θ ij denotes a mixing angle between the i-th and j-th generations. The observation of neutrino oscillations implies that there is also a Flavour physics in the Standard Model and beyond rich flavour structure in the leptonic sector. All of these masses and mixings are free parameters in the SM, but ideally they should be explained by some higher scale theory that could be responsible for this disparity.

The particles in the SM acquire masses from the Higgs mechanism. As is well known, the Higgs potential (1.5) is described by a scalar field theory, which contains a quadratic mass divergence due to the quantum corrections. This means that a Higgs mass of the order 100 GeV 1 is realized only after a huge cancellation between the bare Higgs mass squared µ 2 and the quadratically divergent mass renormalization, both of which are quantities of order Λ 2 where Λ is the cutoff scale of the theory. If Λ is of the order of the Planck scale (M Pl ∼ 10 19 GeV), then a cancellation of more than 30 orders of magnitude is required. This represents a fine-tuning which is often called the hierarchy problem. It would be highly unnatural if the SM was the theory valid at a very high energy scale, such as the M P l . Hence, the SM should be considered as an effective theory of some more fundamental theory, which most likely lies in the TeV energy region.

CP -violation is needed to produce the observed baryon number (or matter-antimatter) asymmetry in the universe. In the SM the complex phase of the CKM matrix (the V ub and V td matrix elements in Eq. (1.22) are complex) provides the only source of CP -violation, but models of baryogenesis suggest that it is quantitatively insufficient (for example, the V ub and V td contain the dominant source of the complex phase). This is another motivation to consider new physics models.

Several scenarios have been proposed for the physics beyond the SM. They introduce new particles, dynamics, symmetries or even extra-dimensions at the TeV energy scale. One of the most popular scenarios are the supersymmetric theories (SUSY). In SUSY one introduces a new symmetry between bosons and fermions, and a number of new particles (superpartners) that form supersymmetric pairs with the existing SM particles. The quadratic divergence of the Higgs mass term is then canceled out among the superpartners. The large extra space-time dimension models solve the problem by extending the number of spacetime dimensions beyond four. The Planck scale is diluted due to the large extra dimensions in the ADD-type models [START_REF] Arkani-Hamed | The hierarchy problem and new dimensions at a millimeter[END_REF] since gravity is much more weaker because of this extra volume. In the Randall-Sundrum-type models [START_REF] Randall | A large mass hierarchy from a small extra dimension[END_REF] the hierarchy between the electroweak and Planck branes is diluted due to the exponential factor of the warped metric. Of course, this list is not complete and there exist many other proposed scenarios and models.

FCNC processes, such as B -B mixing and the b → sγ transition, provide strong constraints on new physics beyond the SM. If there is no suppression mechanism for FCNC processes, such as the Glashow-Iliopoulos-Maiani (GIM) mechanism [START_REF] Glashow | Weak Interactions with Lepton-Hadron Symmetry[END_REF] in the SM, the new physics contribution can easily become too large to be consistent with the experimental data. Therefore, the measurement of FCNC processes provides a good test of the flavour structure in new physics models. In chapter 5 we will illustrate one 1.3 b → sγ in the SM 19 particular supersymmetric scenario and demonstrate the possible constraints on some SUSY parameters coming from the study of the b → sγ process.

b → sγ in the SM

The b → sγ process has played an important role in our understanding of the electro-weak interaction of the SM. The GIM mechanism shows that in the SM, FCNC such as b → sγ is forbidden at the tree level and only occurs through a loop level diagram. Inside of the loop, heavy particles, much heavier than b quark, can propagate. Therefore, the b → sγ process can be used to probe indirectly such heavy particles, namely top quarks in the case of SM or as yet unknown particles introduced by given models beyond the SM.

By now, the branching ratio of the inclusive B → X s γ process is measured at a quite high precision (B(B → X s γ) exp = (3.55 ± 0.24 ± 0.09) × 10 -4 [START_REF] Asner | Averages of b-hadron, c-hadron, and τ -lepton properties[END_REF]). The SM theoretical predictions for this observable are obtained at the next-to-next-to-leading order in QCD (B(B → X s γ) th = (3.15 ± 0.23) × 10 -4 [START_REF] Misiak | The first estimate of B(B → X s γ) at O(α 2 s )[END_REF]) and they are in relatively good agreement with the experimental value. However, these predictions have theoretical uncertainties coming from the CKM matrix element as well as various kinds of QCD corrections. As a result, even if we add some new physics contributions to the theoretical predictions, the total branching ratio often agrees with the experimental value within those theoretical uncertainties. While tremendous efforts in order to improve the precision of the theoretical prediction have been made so as to match the experimental precision, which could become even higher at future machines, it is necessary to investigate the characteristics of the particles inside the loop of the b → sγ process using another kind of observable. In this thesis, we discuss a measurement of the circular-polarization of the photon of the b → sγ process, which has the left-and right-handedness of the couplings of the interactions among the particles inside of the loop. In the SM, the fact that the W boson couples to left-handed quarks induces the photon polarization to be mostly left-handed. On the other hand, many new physics models contain new particles which couple differently from the SM. Therefore, the measurement of the photon polarization can be a useful tool to distinguish the interactions of the particles inside the b → sγ loop from the SM-like ones.

Although, there have been several proposals for how to measure this photon polarization, a precise measurement has not been achieved yet. In this chapter, we revisit the method proposed by Gronau et al. [START_REF] Gronau | Photon polarization in radiative B decays[END_REF][START_REF] Gronau | Measuring the photon helicity in radiative B decays[END_REF] (the GGPR method in the following) using the exclusive B → K resonance γ followed by the three-body decay of the K resonance . Most interestingly, the Belle collaboration recently observed one of these decay channels, B → K 1 (1270)γ → (Kππ)γ, and found a relatively large branching ratio [START_REF] Yang | Observation of B + → K 1 (1270) + γ[END_REF] B(B + → K + 1 (1270)γ) = (4.3 ± 0.9(stat) ± 0.9(syst)) × 10 -5 (1.23) which dominates over the decay to K 1 (1400), previously studied in detail by Gronau et al. [START_REF] Gronau | Photon polarization in radiative B decays[END_REF][START_REF] Gronau | Measuring the photon helicity in radiative B decays[END_REF]. In this thesis, we introduce a new variable, ω, which was originally proposed by Davier et al. [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF] for the τ polarization measurement at LEP (the DDLR method in the following). As we show later-on, the fact that the decay width of

B → K 1 γ → (Kππ)γ
Flavour physics in the Standard Model and beyond process depends only linearly on the polarization parameter λ γ , allows us to use the variable ω in our study. The simplification in the fit by using ω makes it easier to include in the fit not only the angular dependence of the polarization parameter but also the three-body Dalitz variable dependence, which improves the sensitivity to the polarization parameter as also pointed out in [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF]. On the other hand, the new radiative decay to K 1 (1270)γ instead of the K 1 (1400)γ, implies a more complex pattern of hadronic decay channels, not only through K * π, but also through Kρ and a possible κπ. In this thesis, we discuss in detail the hadronic parameters required in this analysis. In particular, having various difficulties to extract them fully from the currently available experimental data, we attempt to evaluate them with the help of the so-called 3 P 0 decay model.

Photon polarization of the quark level b → sγ process in the SM

In the SM, the quark level b → sγ vertex without any QCD corrections is given as:

s Γ b→sγ µ b = e (4π) 2 g 2 2M 2 W V * ts V tb F 2 siσ µν q ν m b 1 + γ 5 2 + m s 1 -γ 5 2 b (1.24)
where q = p bp s with p b and p s four-momentum of the b and s quark, respectively, F 2 is the loop function, whose expression can be found in [START_REF] Inami | Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes K L → µµ, K + → π + νν and K 0 ↔ K 0[END_REF]. If we fix the three momentum direction, namely the q direction, as +z in the b quark rest frame (i.e. q µ = (| q|, 0, 0, | q|)) and define the right-and left-handed polarization vectors as

ε µ R,L = ∓ 1 √ 2     0 1 ±i 0     (1.25)
one can compute the helicity amplitude and demonstrate explicitly that

s L σ µν q ν b R ε µ * R = s R σ µν q ν b L ε µ * L = 0 (1.26)
So we readily find that the first(second) term in Eq. (1.24) is non-zero only when we multiply by the left(right)-handed circular-polarization vector. That means that the first term in Eq. (1.24), proportional to m b , describes the b R → s L γ L transition while the second one, proportional to m s , describes the b L → s R γ R transition2 . Since m s /m b ≃ 0.02 ≪ 1, the photon in b → sγ in the SM is known to be predominantly left-handed.

Once we include the QCD corrections, other types of Dirac structure contribute and the above conclusion can be slightly modified. The result can typically be described in terms of the following effective Hamiltonian:

H ef f = - 4G F √ 2 V * ts V tb 6 i=1 C i (µ)O i (µ) + C 7γ (µ)O 7γ (µ) + C 8g (µ)O 8g (µ) + 6 i=1 C ′ i (µ)O ′ i (µ) + C ′ 7γ (µ)O ′ 7γ (µ) + C ′ 8g (µ)O ′ 8g (µ) (1.27)
where C i are the short-distance Wilson coefficients that can be calculated in perturbation theory, O i are the local long-distance operators which originate from diagrams in Fig. 1.1 and are given as follows:

Current-current:

O 1 = (s αL γ µ c βL )(c βL γ µ b αL ), O ′ 1 = (s αR γ µ c βR )(c βR γ µ b αR ) (1.28a) O 2 = (s αL γ µ c αL )(c βL γ µ b βL ), O ′ 2 = (s αR γ µ c αR )(c βR γ µ b βR ) (1.28b)
QCD-penguins:

O 3 = (s αL γ µ b αL ) q (q αL γ µ q αL ), O ′ 3 = (s αR γ µ b αR ) q (q αR γ µ q αR ) (1.29a) O 4 = (s αL γ µ b βL ) q (q βL γ µ q αL ), O ′ 4 = (s αR γ µ b βR ) q (q βR γ µ q αR ) (1.29b) O 5 = (s αL γ µ b αL ) q (q αR γ µ q αR ), O ′ 5 = (s αR γ µ b αR ) q (q αL γ µ q αL ) (1.29c) O 6 = (s αL γ µ b βL ) q (q βR γ µ q αR ), O ′ 6 = (s αR γ µ b βR ) q (q βL γ µ q αL ) (1.29d)
Magnetic penguins:

O 7γ = e 16π 2 m b s αL σ µν b αR F µν , O ′ 7γ = e 16π 2 m b s αR σ µν b αL F µν (1.30a) O 8g = e 16π 2 m b s αL σ µν t a αβ b βR G a µν , O ′ 8g = e 16π 2 m b s αR σ µν t a αβ b βL G a µν (1.30b)
where α, β are the colour indices, q R,L = 1±γ 5 2 q, σ µν = i 2 [γ µ , γ ν ], t a (a = 1, . . . , 8) are the SU(3) colour generators, F µν and G a µν denote the electromagnetic and chromomagnetic field strength tensors correspondingly. The µ is the renormalization scale which is usually chosen as around m b . One can notice that, making the Fourier transform

-σ µν F µν → 2iσ µν q ν (1.31)
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b W s u, c, t u, c, t g q q b W s u, c, t u, c, t γ b u, c, t s W W γ b W s u, c, t u, c, t g b c W c s b c W c s g b c W c s g b c W c s g (a) (b) (c) (d) (e) (f) (g) (h)
C ′ 7γ C 7γ = C ′ 8g C 8g = m s m b ≃ 0.02 (1.32)
At leading order (LO), one has to calculate and match the full end effective theory without taking into account QCD corrections and compute the anomalous dimension 8 × 8 matrix to order α s . The corresponding leading logarithmic contribution is then obtained by calculating the tree-level matrix element of the O 7γ operator and one-loop matrix elements of four-quark operators {O 1 , . . . , O 6 }4 (see Fig. 1.2). Their effect can be absorbed into redefinition of the C 7 coefficient by introducing the so-called "effective" coefficient, C ef f 7γ (for more details see Appendix A). So that the amplitude of the b → sγ can be written as

M(b → sγ) LO = - 4G F √ 2 (C (0)ef f 7γ (µ) O 7γ (µ) + C ′ (0)ef f 7γ (µ) O ′ 7γ (µ) ) (1.33)
where

C (0)ef f 7γ
denotes the leading logarithmic approximation to C ef f 7γ . The renormalization scale µ is often chosen as of order of m b .

The strong enhancement of C (0)ef f 7γ by short-distance QCD effects can be seen using Eq. (A.19b). For instance, for m t = 170 GeV/c 2 , m b = 5 GeV/c 2 and α [START_REF] Aaltonen | Combined CDF and D∅ Upper Limits on Standard Model Higgs Boson Production with up to 8.2 fb -1 of Data[END_REF] s (M Z ) = 0.118, one obtains [START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF] More recently, there has been a new development in computing the perturbative QCD corrections to the matrix element part [START_REF] Bosch | Constraining the unitarity triangle with B → V γ[END_REF][START_REF] Matsumori | The mixing-induced CP asymmetry in B → K * γ decays with perturbative QCD approach[END_REF]. Such corrections are important particularly to cancel the renormalization scale dependence in Eq. (1.33). Examples of diagrams of such corrections are shown in Fig. 1.3 and 1.4. Most importantly, it turned out that the photon coming from these diagrams could potentially carry different polarization from that ones we expect from the O 7γ diagram. Many efforts to evaluate such effects have been made in the case of B → K * γ [START_REF] Bosch | Constraining the unitarity triangle with B → V γ[END_REF][START_REF] Matsumori | The mixing-induced CP asymmetry in B → K * γ decays with perturbative QCD approach[END_REF][START_REF] Grinstein | The photon polarization in B → Xγ in the Standard Model[END_REF][START_REF] Grinstein | The CP asymmetry in B 0 (t) → K S π 0 γ in the Standard Model[END_REF]. In the next section, we will follow the work by Khodjamirian et al. and Ball et al. based on the QCD sum rules and give some idea on the size of this "wrong" chirality contamination. However, it should be mentioned that there are some theoretical issues remaining on this issue 5 and further 5 For example, in Ref. [START_REF] Grinstein | The photon polarization in B → Xγ in the Standard Model[END_REF][START_REF] Grinstein | The CP asymmetry in B 0 (t) → K S π 0 γ in the Standard Model[END_REF], authors made the dimensional estimate in the framework of the so-called Soft Collinear Effective Theory of the O 2 contribution shown in Fig. 1.4 (left).

C (0)ef f 7γ (µ b ) = 0.695 C (0) 7γ (µ W ) + 0.085 C (0) 8g (µ W ) -0.158 C (0) 2 (µ W ) = 0.
M(B → K * γ R ) M(B → K * γ L ) ∼ 1 3 
C (0) 2 C (0)ef f 7γ Λ QCD m b (1.35)
This result indicates up to 10% of "wrong" chirality contamination. However, as we will see, this value is much larger than other computations, such as the one we present in the next section. In this subsection, we follow [START_REF] Khodjamirian | QCD estimate of the long-distance effect in B → K * γ[END_REF] and [START_REF] Ball | Time-dependent CP asymmetry in B → K * γ as a (quasi)null test of the Standard Model[END_REF] to have a brief view of how the O 2 contribution leads to the "wrong" chirality contribution in light-cone QCD sum rules 6 . The theoretical description of the exclusive b → sγ decays involves both short-and long-distance contributions. In terms of the effective Hamiltonian the decay amplitude, for instance for the B → K * γ decay, can be written as

M(B → K * γ) = - 4G F √ 2 V tb V * ts K * γ|C 7γ O 7γ + C ′ 7γ O ′ 7γ + iε µ * γ i =7 C i d 4 xe iqx T {j em µ (x)O i (0)}|B (1.36)
A possibility to relieve the helicity suppression of right-handed photons is to consider an additional gluon emission resulting into three-particle final state b → sγg. The main effect comes from the cc resonances and is contributed by the O 2 operator as depicted in Fig. 1.5. In the inclusive decay this is a bremsstrahlung correction and can be calculated in the perturbation theory. In the exclusive decays the emitted gluon can be either hard or soft. If it is hard, it attaches to the spectator quark (see Fig. 1.3), which induces O(α s ) corrections. If it is soft (i.e. |k 2 g | ≪ 4m 2 c ), it must be interpreted as a parton in one of the external hadrons [START_REF] Khodjamirian | QCD estimate of the long-distance effect in B → K * γ[END_REF][START_REF] Ball | Time-dependent CP asymmetry in B → K * γ as a (quasi)null test of the Standard Model[END_REF]. The later case is beyond the perturbation theory. Thus, here we apply one of the non-perturbative QCD approaches called light-cone QCD sum rules. Using the property

t a αβ t a γδ = - 1 2N c δ αβ δ γδ + 1 2 δ αδ δ βγ (1.37)
Flavour physics in the Standard Model and beyond (where N c = 3 is the number of colours) and performing the Fierz transformation, the dominant O 2 operator can be rewritten as .39) where F αβ = i(q α ε β *q β ε α * ) and the dots denote terms of higher order in 1/m c . Two hadronic matrix elements can be parametrized in terms of three form factors, T 1 , L and L in the following way [START_REF] Ball | Time-dependent CP asymmetry in B → K * γ as a (quasi)null test of the Standard Model[END_REF]:

O 2 = 1 3 (c αL γ µ c αL )(s βL γ µ b βL ) O 1 +2(c αL γ µ t a αβ c βL )(s ρL γ µ t a ρδ b δL ) (1.
O F = iε µ * γ d 4 xe iqx T {[c(x)γ µ c(x)]O 2 (0)} = - 1 48π 2 m 2 c (D ρ F αβ )[sγ ρ (1 -γ 5 )g s Ga αβ t a b] + . . . ( 1 
K * γ|O (′) 7γ |B = - e 8π 2 m b T (K * ) 1 (0) ǫ µνρσ ε µ * γ ε ν * K * p ρ K * q σ ± i{(ε * γ ε * K * )(p K * q) -(ε * γ p K * )(ε * K * q)} (1.40)
and

K * γ|O F |B = K * γ|(D ρ F αβ )[sγ ρ (1 -γ 5 )g Ga αβ t a b]| B = 2 K * γ|sγ µ (1 -γ 5 )q µ g s Gαβ b|B ε α * γ q β = 2 Lǫ µνρσ ε µ * γ ε ν * K * p ρ K * q σ + i L[(ε * γ ε * K * )(p K * q) -(ε * γ p K * )(ε * K * q)] (1.41) 
The B → K * form factor T 1 and L, L are computed using the light-cone QCD sum rules. Note that L and L are functions of the three-particle (s-quark, spectator quark and gluon) K * wave function. The difference between L and L comes e.g. from the different distribution amplitudes of the vector and axial vector wave functions of K * . The T 1 form factor was computed in Ref. [START_REF] Ball | B d,s → ρ, ω, K * , φ Decay Form Factors from Light-Cone Sum Rules Revisited[END_REF] and its updated value can be found in [START_REF] Ball | B → K * γ vs B → ργ and |V td /V ts[END_REF] T (K * ) 1

(0) = 0.31 ± 0.04 (1.42) and the most recent calculation by Ball and Zwicky [START_REF] Ball | Time-dependent CP asymmetry in B → K * γ as a (quasi)null test of the Standard Model[END_REF] gives the values of L and L:

L = (0.2 ± 0.1) GeV 3 , L = (0.3 ± 0.2) GeV 3 (1.43)

Photon polarization with new physics

Writing explicitly the left-and right-handed polarization vectors of the photon and K * , one finds that the operator O F induces corrections of (L ± L)/(m b m 2 c ) to the left/righthanded amplitudes. Thus the amplitudes for the left-and right-handed photon emission in the B → K * γ can be written as follows:

M(B → K * γ L ) = - 4G F √ 2 C L K * γ L |O 7γ |B (1.44a) M(B → K * γ R ) = - 4G F √ 2 C R K * γ R |O ′ 7γ |B ) (1.44b)
where the new left/right-handed coefficients are defined as [START_REF] Ball | Time-dependent CP asymmetry in B → K * γ as a (quasi)null test of the Standard Model[END_REF] C

L = C (0)ef f 7γ (m b ) -C (0) 2 (m b ) L + L 36m b m 2 c T (K * ) 1 (0) (1.45a) C R = C ′ (0)ef f 7γ (m b ) -C (0) 2 (m b ) L - L 36m b m 2 c T (K * ) 1 (0) (1.45b) 
Therefore, in addition to the small m s /m b contribution of O ′ 7γ , there is potentially nonnegligible right-handed pollution non-perturbative contribution. A numerical estimate for them is extremely important. Khodjamirian et al. [START_REF] Khodjamirian | QCD estimate of the long-distance effect in B → K * γ[END_REF] and later Ball and Zwicky [START_REF] Ball | Time-dependent CP asymmetry in B → K * γ as a (quasi)null test of the Standard Model[END_REF] roughly agree on the magnitude of the non-perturbative contribution of the O 2 operator. We quote the estimate for B → K * γ using the form factors calculated by Ball and Zwicky:

C L = C (0)ef f 7γ (m b ) × (1 + (0.02 ± 0.01)) C R = C (0)ef f 7γ (m b ) × m s m b × (1 -(0.17 ± 0.18)) (1.46) which gives the ratio C R C L ≃ m s m b × (0.8 ± 0.2) (1.47)
Therefore, the right-handed contribution is rather small and the non-perturbative correction is of the order of 20% decrease to the leading m s /m b term (in particular, this correction is important for the precise determination of the time-dependent CP asymmetry in B → K S π 0 γ decay which is proportional to C R /C L ). Note that this calculation has not been provided for the case of B → K 1 γ. without contradicting the precise measurement of the inclusive B → X s γ branching ratio as well as the time-dependent CP asymmetry of B → K S π 0 γ [START_REF] Ushiroda | Time-dependent CP asymmetries in B 0 → K 0 S π 0 γ transitions[END_REF][START_REF] Aubert | Measurement of Time-Dependent CP Asymmetry in B 0 → K 0 S π 0 γ Decays[END_REF] (see Ref. [START_REF] Everett | Alternative approach to b → sγ in the uMSSM[END_REF][START_REF] Altmannshofer | Symmetries and Asymmetries of B → K * µ + µ -Decays in the Standard Model and Beyond[END_REF][START_REF] Foster | New constraints on SUSY flavour mixing in light of recent measurements at the Tevatron[END_REF][START_REF] Goto | Patterns of flavor signals in supersymmetric models[END_REF][START_REF] Aushev | Physics at Super B Factory[END_REF][START_REF] Lunghi | Huge right-handed current effects in B → K * (Kπ)ℓ + ℓin supersymmetry[END_REF] for some examples of the constraints on the right-handed contribution obtained for specific new physics models).

1.4.1 Extra source of flavour violation in MSSM Supersymmetric models are an example of new physics models beyond the SM at the TeV scale. The SUSY models are attractive not only because they solve the Higgs mass hierarchy problem. They can also be consistent with Grand Unification. This provides the unification of all three gauge couplings under the renormalization group running by the supersymmetric partners causing them to intersect at the same point at M GUT ≃ 10 16 GeV. General SUSY model contains sufficiently large number of parameters corresponding to the masses and mixings of the superpartners for each SM particle. Even in the Minimal Supersymmetric Standard Model (MSSM) the number is more than a hundred. These masses and mixing parameters are, at least partially, generated by the soft supersymmetry breaking mechanism, which is necessary to make all superpartners heavy enough such that they have not been detected at existing collider experiments. Therefore, in order to predict the masses and flavour mixing parameters of the SUSY particles one has to specify the mechanism of the SUSY breaking.

The MSSM is a minimal supersymmetric extension of the SM, containing a superpartner for each SM particle and two Higgs doublets (for the introduction to SUSY see for instance Ref. [START_REF] Martin | A Supersymmetry Primer[END_REF]). Its matter fields are organized in the chiral supermultiplets as

Q i (3, 2, 1/6), U i ( 3, 1, -2/3), D i ( 3, 1, 1/3) (1.48)
for the left-handed (Q) and right-handed (U , D) quark sector,

L i (1, 2, -1/2), E i (1, 1, 1) (1.49)
for the left-handed (L) and right-handed (E) lepton sector, and

H 1 (1, 2, -1/2), H 2 (1, 2, -1/2) (1.50)
for the Higgs fields. As before, index i = 1, 2, 3 denotes a generation index. Under the condition of R-parity conservation, which is required to avoid a large proton decay rate, the superpotential can be written as 

W MSSM = Y ij D D i Q j H 1 + Y ij U U i Q j H 2 + Y ij E E i L j H 1 + µH 1 H 2 (1.
L soft = (m 2 Q ) ij q † Li qLj + (m 2 U ) ij ũ † Ri ũRj + (m 2 D ) ij d † Ri dRj + (m 2 L ) ij l † Li lLj + (m 2 E ) ij ẽ † Ri ẽRj + M 2 H 1 h † 1 h 1 + M 2 H 2 h † 2 h 2 -(Bµh 1 h 2 + h.c.) + (A ij U ũ † Ri qLj h 2 + A ij D d † Ri qLj h 1 + A ij E ẽ † Ri lLj h 2 + h.c.) + M 1 2 B B + M 2 2 W W + M 3 2 gg (1.52)
This soft SUSY breaking part of Lagrangian in MSSM consists of mass terms for scalar fields (q Li , ũRi , dRi , lLi , ẽRi , h 1 , h 2 ), Higgs mixing terms, trilinear scalar couplings and gaugino ( B, W , g) mass terms. One can see from Eq. (1.52) that after the spontaneous symmetry breaking the squark mass can come from any combination of left-and right-handed couplings:

L squark mass soft = (m 2 Q ) ij q † Li qLj + (m 2 U ) ij ũ † Ri ũRj + (m 2 D ) ij d † Ri dRj + (υ 2 A ij U ũ † Ri qLj + υ 1 A ij D d † Ri qLj + h.c.) (1.53) 
where υ 1,2 are the vacuum expectation values of the Higgs fields. Since the squark mass matrices (m Q , m U , m D ) and the trilinear couplings (A ij U , A ij D ) are not diagonal in the quark basis, the squark propagators can change flavour and chirality (see Fig. 1 Once these new terms are introduced, the b → sγ process could receive a significantly new contribution. In particular, the chirality can be flipped on the squark propagator in the loop of b → sγ which can lead to a right-handed photon emission. As was discussed in detail in the previous sections, the right-handed suppression factor m s /m b comes from the left-handed coupling of W to quarks. However, if the loop contains right-handed coupling SUSY contribution (as an example, see Fig. 1.7), this suppression can be reduced.

Mass Insertion Approximation

As discussed in the previous subsection, the soft SUSY breaking terms which provide a new source of flavour violation, contain a huge number of parameters. In order to organize them, the so-called mass insertion approximation (MIA) [START_REF] Hall | New Flavor Violations in Supergravity Models[END_REF] is used. In the MIA, one uses a basis where the fermion and sfermion mass matrices are rotated in the same way to diagonalize the fermion mass matrix (the super-CKM basis). In this basis, the couplings of fermions and sfermions to neutral gauginos are flavour diagonal, leaving the source of flavour violation in the off-diagonal terms of the sfermion mass matrix. These terms are described by (∆ q AB ) ij , where A, B denote the chirality (L/R) and q indicate the (u/d) type. The sfermion propagator can be expanded as [START_REF] Aushev | Physics at Super B Factory[END_REF] 

qAi q * Bj = i(k 2 -m 2 q -∆ q AB ) -1 ij ≃ iδ ij k 2 -m 2 q + i(∆ q AB ) ij (k 2 -m 2 q ) 2 + . . . (1.54) 
where m q is the average squark mass. One assumes that ∆ 2 ≪ m 2 q so that the first term in expansion is sufficient. In this way, the flavour violation in SUSY models can be parametrized in a model independent way by dimensionless mass insertion parameters

(δ q AB ) ij ≡ (∆ q AB ) ij m 2 q (1.55)
which can be constrained by various flavour experiments.

Here we consider the gluino contribution to the C (′) ef f 7γ

Wilson coefficients. Then C (g) 7γ

and C ′ (g) 7γ are written in terms of down-type mass insertion parameters as

C (g) 7γ = - 4 √ 2α s π 9G F V tb V * ts m 2 q (δ d LR ) 23 m g m b M 1 (x) + (δ d LL ) 23 M 3 (x) + (δ d LR ) 33 m g m b M a (x) (1.56a) C ′ (g) 7γ = - 4 √ 2α s π 9G F V tb V * ts m 2 q (δ d RL ) 23 m g m b M 1 (x) + (δ d RR ) 23 M 3 (x) + (δ d RL ) 33 m g m b M a (x) (1.56b)
where x = m 2 g/m 2 q and the loop functions M i can be found in Ref. [START_REF] Gabbiani | A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model[END_REF]. One can note that in SUSY models with large RL mixing the factor m b is replaced by the internal gluino mass as can be seen from the first term in Eq. (1.56). As we will see in Chapter 5, this effect, often called chiral-enhancement, could lead to a dramatic enhancement of the right-handed photon emission in b → sγ process.

Chapter 2

The B → K 1 γ → (Kππ)γ decay and polarization measurement

In this chapter, we introduce our new method for the photon polarization measurement using the B → K 1 γ decay. In Section 2.1, the basic idea, first proposed by Gronau et al. [START_REF] Gronau | Photon polarization in radiative B decays[END_REF], is discussed. It is explained why we need a three-body decay of the K 1 meson in order to have a direct measurement of the polarization. Section 2.2 contains the discussion of photon polarization determination using exclusive B → K 1 γ decay. In Section 2.3, the angular decay distribution of B → K 1 (→ Kππ)γ is calculated and the master formula is derived. Section 2.4 considers a general introduction of the method, proposed by Davier et al. [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF]. It is shown that a new introduced variable ω, which contains not only the angular but also the tree-body Dalitz variable information, turns out to be very sensitive to the photon polarization parameter λ γ .

How to measure the polarization: basic idea

In this section, we first demonstrate why the B → K 1 γ decay is useful to determine the photon polarization, and why the other simpler mode such as B → K * γ is not sufficient. One can not determine directly the polarization in the B → K * (→ Kπ)γ decay by the following reason: since the photon helicity is parity-odd and we measure only the momenta of the photon and the final hadrons, we can not form a hadronic quantity that would be also parity-odd. Moreover, one can demonstrate that the decay plane Kπ is symmetric around helicity axis (i.e. the photon momentum direction) in the B reference frame (see Fig. 2.1); that means that we can not distinguish between left and right circular rotations. That is why the two-body decay of K * provides no helicity information. That is not the case for the three-body decay of K 1 into Kππ final state, which is no longer symmetric around the photon direction. In this case one can form a triple product of three momenta like

p γ • ( p π × p K ) (2.1)
The B → K 1 γ → (Kππ)γ decay and polarization measurement which is a pseudo-scalar and applying parity transformation it has the opposite sign for left-and right-handed photons. On the other hand, it is known that the triple product is odd under time reversal and that the final state interactions break T -parity. Hence, the K 1 → Kππ amplitude must involve a strong phase, coming from the interference of at least two amplitudes leading to a common tree-body final state. That could be an interference between two different charge states of K * π (K * + π 0 and K * 0 π + for instance), or between the K * π and Kρ intermediate channels, or between their different partial S-and D-waves. According to Watson's theorem (for more details see Appendix B), the phase generated by the strong interactions coincides with the phases of the S-wave elastic scattering below the first threshold taken at the mass of the decaying particle [START_REF] Bigi | CP violation[END_REF]. Parametrization of the intermediate isobar states, K * and ρ, in terms of Breit-Wigner forms provides a good estimation of the strong rescattering phases. The importance of the interference terms and the relative signs of the amplitudes will be discussed in detail later in Chapter 3.

γ z K * π K symmetric B N O h e l i c i t y i n f o r m a t i o n 2 → 3-body π γ z K 1 π K * K B

Photon polarization determination with B → K 1 γ decay

The decay width of the exclusive decay B → K 1 γ can be written as

M(B → K 1 γ) = - 4G F √ 2 V * ts V tb C L K 1 γ|O 7γ |B + C R K 1 γ|O ′ 7γ |B (2.2)
Note that the left/right-handed coefficients C L,R in this equation are different from the ones determined by Eq. (1.45) for the B → K * γ due to the difference in the B → K * and B → K 1 hadronic form factors and the unknown contribution of the long-distance effects of the O 2 operator for B → K 1 γ. Therefore, we will neglect the long-distance O 2 potential contribution in the following, but keeping in mind the theoretical uncertainty of the order of 10% to the right-handed polarization amplitude (see Eq. (1.35)).

In the exclusive radiative B-decays the matrix elements of the electromagnetic penguin operator for the B → K 1 transition can be parametrized in terms of the hadronic form 2.2 Photon polarization determination with B → K 1 γ decay factors using the following convention:

K 1 |sσ µν (1 ± γ 5 )q ν b|B = T (K 1 ) 2 (q 2 ) ε * K 1 µ (m 2 B -m 2 K 1 ) -(ε * K 1 • p B )(p B + p K 1 ) µ + T (K 1 ) 3 (q 2 )(ε * K 1 • p B ) q µ - q 2 m 2 B -m 2 K 1 (p B + p K 1 ) µ ± 2T (K 1 ) 1 (q 2 )ǫ µνρσ iε ν * K 1 p ρ B p σ K 1 (2.3) with T (K 1 ) 1 (0) = T (K 1 ) 2 
(0) to avoid a kinematical singularity of the matrix element at q 2 = 0. Since the outgoing photon is on-shell, q 2 = 0 and q µ ε µ * = 0. Thus the second term in Eq. (2.3), proportional to T

(K 1 ) 3
, vanishes when it is multiplied by ε µ * , and the hadronic matrix element is parametrized with only one form factor T

(K 1 ) 1 in radiative B-decays.
Due to the angular momentum conservation and the fact that B-meson is a pseudoscalar meson, helicity is conserved. Thus in order to determine the photon polarization it is sufficient to measure the polarization of K 1 through its three-body decay into Kππ final state. The angular distribution of this three-body decay carries the information of the K 1 polarization, ε ν * K 1 . Setting the helicity axis z along the K 1 direction in the B reference frame, the polarization vectors of K 1 will be determined by Eq. (1.25) while the photon polarization vectors will be obtained by a rotation (e.g. around x-axis) which takes the z-axis into the direction of q so that

ε µ K 1 R,L = ∓ 1 √ 2     0 1 ±i 0     , ε µ γR,L = ∓ 1 √ 2     0 1 ∓i 0     (2.4)
Thus, fixing the momentum and the polarization vectors of the photon and K 1 in the B reference frame and using the parametrization (2.3), one obtains the matrix elements for the left-and right-handed operators

K 1L γ L |O 7γ |B = K 1R γ R |O ′ 7γ |B = i e 8π 2 m b (m 2 B -m 2 K 1 )T (K 1 ) 1 (0) (2.5)
and

K 1R(L) γ R(L) |O (′) 7γ |B = K 1L(R) γ R(L) |O 7γ |B = K 1L(R) γ R(L) |O ′ 7γ |B = 0 (2.6)
as expected from Eq. (1.26). As a result, we obtain

Γ(B → K 1L γ L ) = αG 2 F 32π 4 |V * ts V tb | 2 |C L | 2 m 2 b m 3 B 1 - m 2 K 1 m 2 B 3 |T (K 1 ) 1 (0)| 2 (2.7a) Γ(B → K 1R γ R ) = αG 2 F 32π 4 |V * ts V tb | 2 |C R | 2 m 2 b m 3 B 1 - m 2 K 1 m 2 B 3 |T (K 1 ) 1 (0)| 2 (2.7b)
The B → K 1 γ → (Kππ)γ decay and polarization measurement

In the SM, C R /C L ≃ C ′ ef f 7γ /C ef f 7γ ≃ m s /m b ≪ 1,
thus, the photons are predominantly left(right)-handed polarized in B(B) decays. Although at leading logarithmic approximation (LLA) only electromagnetic penguin operator O 7γ contributes, one has always not to forget about the long-distance contribution of the other operators, especially of O 2 , which can lead to an enhancement of the right(left)-handed photon emission in the B(B) decays up to 10% (as discussed in the end of Chapter 1).

If we could measure these two decay widths with different polarization separately, the ratio |C R /C L | would provide a direct information of the right-handed current contribution of new physics in b → sγ process. However, experimentally, what we can only measure is the sum:

Γ(B → K 1 γ) = Γ(B → K 1L γ L ) + Γ(B → K 1R γ R ) (2.8)
As it has been explained in the previous sections, we use the kinematical information of the subsequent decay of K 1 in order to disentangle these two contributions. Assuming the narrow width of K 1 , one can write the total quasi-four body decay width by Γ(B → K 1L γ L ) and Γ(B → K 1R γ R ), respectively, followed by the three-body decay widths

Γ(K 1L → Kππ), Γ(K 1R → Kππ) (2.9) 
Now, our decay widths can be written as:

dΓ(B → K 1 γ → (Kππ)γ) dsds 13 ds 23 dφdψd cos θ ∝ pol.=L,R Γ(B → K 1pol. γ pol. ) × dΓ(K 1pol. → Kππ) dsds 13 ds 23 dφdψd cos θ × 1 (s -m 2 K 1 ) 2 + m 2 K 1 Γ 2 K 1 (2.10)
where s = (p 1 + p 2 + p 3 ) 2 is the off-shell "p 2 " of the K 1 and s ij = (p i + p j ) 2 with p i to be the four-momentum of the final state mesons. The orientation of the Kππ decay system in the K 1 reference frame is determined by three angles θ, φ, ψ. The polar and azimuth angles, θ and ψ1 respectively, determine the orientation of the normal n to the Kππ plane with respect to z-axis. Defining the -z direction as the photon direction in the K 1 rest frame (see Fig. 2.2), the polar angle θ is given as cos θ

≡ p 1 × p 2 | p 1 × p 2 | z
. The third angle φ defines the common rotation of p 1 and p 2 in the decay plane.

Here, the width of the K 1 is not really negligible (Γ(K 1 (1270)) = 90 MeV/c 2 , Γ(K 1 (1400)) = 174 MeV/c 2 according to PDG [START_REF] Nakamura | Review of particle physics[END_REF]). Therefore, we present for completeness, in the following, a prescription that includes the initial state width of the K 1 decay into the three-body final state assuming the Breit-Wigner form, but which will not be used in practice. The Breit-Wigner factor is common for both polarizations and appears in modulus squared (therefore, its phase does not affect the crucial interference between different amplitudes).

;

; n = p 1 × p 2 | p 1 × p 2 | γ π( p 1 ) K( p 3 ) π( p 2 ) ; x y z ψ θ φ Figure 2.2:
The K 1 → Kππ decay plane in the rest frame of K 1 . Defining the -z direction as the photon direction, the θ is given as cos θ

≡ p 1 × p 2 | p 1 × p 2 | z . 2.3 Master formula for B → K 1 γ → (Kππ)γ decays 2.3.

Master formula

In the following section, we will derive the master formula for the differential decay distributions of B → K 1 γ → (Kππ)γ:

dΓ(B → K 1 γ → (Kππ)γ) dsds 13 ds 23 d cos θ ∝ 1 4 | J | 2 (1 + cos 2 θ) + λ γ 1 2 Im[ n • ( J × J * )] cos θ × 1 (s -M 2 K 1 ) 2 + M 2 K 1 Γ 2 K 1 (2.11)
where J (s, s 13 , s 23 ) is the helicity amplitude of the K 1 → Kππ decay. The "photon polarization parameter" λ γ is defined as

λ γ ≡ Γ(B → K 1R γ R ) -Γ(B → K 1L γ L ) Γ(B → K 1 γ) = |C R | 2 -|C L | 2 |C R | 2 + |C L | 2 (2.12)
which we want to extract. In the SM, λ γ ≃ 1(-1) for the B(B) decays. It is clear from this master formula, that in order to determine λ γ from the angular and the Dalitz plot analysis, we need a precise information on the helicity amplitude J , which we will discuss in detail in this thesis. Before closing this subsection, we make a comment on the master formula. In order to determine the polarization parameter λ γ , we need non-zero value for Im[ n • ( J × J * )], which requires the amplitude J to contain more than one amplitude with a non-vanishing The B → K 1 γ → (Kππ)γ decay and polarization measurement relative phase. Such a condition can be nicely realised in this decay channel since when K 1 decays into three-body final states through more than one intermediate quasi-twobody channels, such as K * π and Kρ (the different decay channels and the possible vector resonances for K + 1 (1270/1400) and K 0 1 (1270/1400) are listed below in Eq. (2.13)), there is a non-vanishing relative strong phase originating from their Breit-Wigner forms (based on the isobar model) 2 .

I : K + 1 (1270/1400) → π 0 (p 1 )π ρ + K * + + (p 2 )K K * 0 0 (p 3 ) (2.13a
)

II : K + 1 (1270/1400) → π -(p 1 )π ρ 0 + (p 2 )K K * 0 + (p 3 ) (2.13b
)

III : K 0 1 (1270/1400) → π 0 (p 1 )π ρ - K * 0 -(p 2 )K K * + + (p 3 ) (2.13c
)

IV : K 0 1 (1270/1400) → π + (p 1 )π ρ 0 -(p 2 )K K * + 0 (p 3 ) (2.13d)
Since the two K 1 resonances, K 1 (1270) and K 1 (1400), are rather close to each other and also relatively wide, the overlap between these two resonances may play a significant role in the polarization determination. On the other hand, the Belle collaboration [START_REF] Yang | Observation of B + → K 1 (1270) + γ[END_REF] found no significant signal for B → K 1 (1400)γ and set only the upper limit at 90% CL. Indeed, in [START_REF] Hatanaka | B → K 1 γ Decays in the Light-Cone QCD Sum Rules[END_REF][START_REF] Lee | Radiative B → K 1 decays in the light-cone sum rules[END_REF] it has been shown that such a suppression can be explained by taking into account the fact that these two states are a mixture of 13 P 1 and 1 1 P 1 states and by a reasonable choice of the mixing angle: our fitted value for the mixing angle gives a suppression of a factor of 40 in B → K 1 (1400)γ mode with respect to the observed B → K 1 (1270)γ. Nevertheless, this issue must be kept in mind 3 .

Derivation of the master formula

Helicity amplitude of K 1 → P 1 P 2 P 3 decay

The differential decay width of K 1L,R decay into three pseudoscalar mesons (P 1 , P 2 , P 3 ) can be described by the helicity amplitude, J µ , which we define as:

M(K 1L,R → P 1 P 2 P 3 ) = ε µ K 1L,R J µ (2.14)
Considering that J µ represents the decay amplitude of the K 1 decaying into three pseudoscalar mesons, we can parameterize it in terms of two functions C 1,2 :

J µ = C 1 (s, s 13 , s 23 )p 1µ -C 2 (s, s 13 , s 23 )p 2µ (2.15)
where we omitted to write explicitly the Dalitz and angular variable dependences of J µ . Here p 1 and p 2 denote the four-momenta of two pions defined in Eq. (2.13). Note the s-dependence of the coefficients, which means that in principle there could be some dependence on the off-shell p 2 of the K 1 . Nevertheless, this dependence is not important as soon as the integration is limited to the K 1 bump, especially for the ratio ω which is the relevant quantity in our method (see next section). The detailed expressions of C 1,2 (s, s 13 , s 23 ) for given channels are derived later in this subsection but here we note that C 1,2 (s, s 13 , s 23 ) can contain complex numbers.

Since the product of four-vectors is invariant under Lorentz transformations, the amplitude (2.14) is invariant under spacial rotation transformations. In this case it is convenient to express the J -function in the K 1 -decay reference frame, which is rotated by (θ, ψ, φ) angles as shown in Fig. 2.2 (z ′ -axis is directed along the normal to the decay plane n while the other rotated axes x ′ and y ′ are set to form an orthogonal basis). In this reference frame, J , which is a linear combination of the p 1 and p 2 (Eq. (2.15)), has only two spacial x ′ -and y ′ -components which significantly simplifies the calculations. Performing three subsequent rotation transformations of the xyz-system of coordinates by angle θ around the y-axis, then by angle ψ around the z-axis and finally by angle φ around the new z ′ -axis (which coincides with the normal n) one obtains

J =   cos θ cos ψ(J ′ x cos φ -J ′ y sin φ) -sin ψ(J ′ x sin φ + J ′ y cos φ) cos θ sin ψ(J ′ x cos φ -J ′ y sin φ) + cos ψ(J ′ x sin φ + J ′ y cos φ) sin θ(-J ′ x cos φ + J ′ y sin φ)   (2.16)
where vector J ′ = (J ′ x , J ′ y , 0) is defined in the rotated x ′ y ′ z ′ -system and is lying in the decay plane of P 1 P 2 P 3 .

Using Eq. (2.16) and the definition of helicity in Eq. (1.25), we can rewrite the K 1 -
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The B → K 1 γ → (Kππ)γ decay and polarization measurement decay amplitude (2.14) in the K 1 reference frame as 4

M(K 1R,L → P 1 P 2 P 3 ) = -ε K 1R,L • J = i √ 2 e ±iψ [(J ′ x sin φ + J ′ y cos φ) ∓ i cos θ(J ′ x cos φ -J ′ y sin φ)] (2.17)
Squaring the helicity amplitude (2.17) and integrating over φ one finds

1 2π 2π 0 |M(K 1R,L → P 1 P 2 P 3 )| 2 dφ = 1 4 (1 + cos 2 θ)| J ′ | 2 ± 2i cos θ(J ′ y J ′ * x -J ′ x J ′ * y ) (2.18) where | J ′ | 2 = |J ′ x | 2 + |J ′ y | 2 .
One can easily notice by writing explicitly by components that

i(J ′ y J ′ * x -J ′ x J ′ * y ) = Im[ n ′ • ( J ′ × J ′ * )] (2.19) 
with n ′ = e z ′ = (0, 0, 1) in the x ′ y ′ z ′ system of coordinates. It can be easily seen that the scalar and triple products are invariant under rotation transformations (it can be trivially demonstrated explicitly by using that fact that the rotation matrices are orthogonal). Therefore,

| J ′ | 2 = | J | 2 , Im[ n ′ • ( J ′ × J ′ * )] = Im[ n • ( J × J * )] (2.20)
Thus, after the integration over φ one can easily find the decay distribution in the K 1 reference frame

dΓ(K 1R,L → P 1 P 2 P 3 ) dsds 13 ds 23 d cos θ ∝ 1 4 | J | 2 (1 + cos 2 θ) ± 1 2 Im[ n • ( J × J * )] cos θ (2.21) where n ≡ p 1 × p 2 | p 1 × p 2 | so that: | J | 2 = |C 1 | 2 | p 1 | 2 + |C 2 | 2 | p 2 | 2 -(C 1 C * 2 + C * 1 C 2 )( p 1 • p 2 ), (2.22) n • ( J × J * ) = -(C 1 C * 2 -C * 1 C 2 )| p 1 × p 2 | (2.23)
where 4 One can notice that the same expression could also be obtained by defining the initial system of coordinates xyz by setting the decay plane in the xy-plane and defining the z-axis along the normal to the decay plane. In this case one should rotate the K 1 polarization vectors (2.4) by (θ, ψ, φ) angles.

p 1 • p 2 = 1 2 (E 1 E 2 -(s 12 -m 2 1 -m 2 2 )), (2.24) 
| p 1 × p 2 | = p 1 • p 2 tan -1 ϕ, (2.25 
)

E i = s -s j3 + m 2 i 2 √ s , (2.26 
)

ϕ = cos -1 p 1 • p 2 | p 1 || p 2 | (2.27) Computation of J -function in terms of quasi-two-body K 1 → V (→ P i P j )P k couplings
Here we compute the J function (2.15) in terms of the quasi-two-body couplings. Assuming that the decay of K 1 to three pseudoscalar mesons (P i P j P k ) proceeds via intermediate isobar V that subsequently decays to P i P j , these couplings are the two K 1 → V P k form factors and one vector-pseudoscalar V → P i P j coupling.

The decay amplitudes for these decay channels (2.13) can be written as the sum of the amplitude with different intermediate vector meson channel:

M(K 1 → P 1 P 2 P 3 ) = V c ijk M V (P i P j )P k (2.28)
where P 1,2,3 represent the final state mesons carrying the momentum p 1,2,3 as assigned in Eq. (2.13) and V represents the vector meson resonance. The Clebsch-Gordan coefficients, c ijk , for each intermediate channel are given as:

M I (K + 1 → π 0 (p 1 )π + (p 2 )K 0 (p 3 )) = √ 2 3 M K * 0 (P 1 P 3 )P 2 - √ 2 3 M K * + (P 2 P 3 )P 1 + 1 √ 3 M ρ + (P 1 P 2 )P 3 (2.29a) M II (K + 1 → π -(p 1 )π + (p 2 )K + (p 3 )) = - 2 3 M K * 0 (P 1 P 3 )P 2 - 1 √ 6 M ρ 0 (P 1 P 2 )P 3 (2.29b) M III (K 0 1 → π 0 (p 1 )π -(p 2 )K + (p 3 )) = √ 2 3 M K * + (P 1 P 3 )P 2 - √ 2 3 M K * 0 (P 2 P 3 )P 1 + 1 √ 3 M ρ - (P 1 P 2 )P 3 (2.29c) M IV (K 0 1 → π + (p 1 )π -(p 2 )K 0 (p 3 )) = - 2 3 M K * + (P 1 P 3 )P 2 - 1 √ 6 M ρ 0 (P 1 P 2 )P 3 (2.29d)
For the computation of the quasi-two-body decay amplitude M V (P i P j )P k , we take into account the vector meson resonance width effect assuming the Breit-Wigner form, thus

M V (P i P j )P k ≡ M(K 1 → V P k ) × M(V → P i P j ) × BW V (s ij ) (2.30) The B → K 1 γ → (Kππ)γ

decay and polarization measurement

The decay amplitude of the axial-vector K 1 to a vector (V ) and a pseudoscalar (P k ) meson can be expressed in the following Lorentz invariant form:

V (p V , ε V )P k (p k ))|∆H K 1 |K 1 (p K 1 , ε K 1 ) = ε µ K 1 T µν ε ν * V (2.31)
where the hadronic tensor T µν can be parametrized in terms of two form factors f V and h V ,

T µν = f V g µν + h V p V µ p K 1 ν (2.32)
The amplitude of the subsequent decay V to two pseudoscalar mesons P i and P j can be parametrized in terms of one vector-pseudoscalar coupling g V P i P j :

P i (p i )P j (p j )|∆H V |V (p V , ε (V ) ) = g V P i P j ε µ V (p i -p j ) µ (2.33)
Using these form factors, we can obtain in the K 1 reference frame

M V (P i P j )P k = ( p i • ε K 1 )a V ij + ( p j • ε K 1 )b V ij (2.34)
where

a V ij = g V P i P j BW V (s ij )[f V + h V √ s(E i -E j ) -∆ ij ] (2.35a) b V ij = g V P i P j BW V (s ij )[-f V + h V √ s(E i -E j ) -∆ ij ] (2.35b) with ∆ ij ≡ (m 2 i -m 2 j ) M 2 V [f V + h V √ s(E i + E j )].
Finally, we obtain the general K 1 → P 1 P 2 P 3 amplitude as:

M(K 1 → P 1 P 2 P 3 ) = c 132 M V (P 1 P 3 )P 2 + c 231 M V (P 2 P 3 )P 1 + c 123 M V (P 1 P 2 )P 3 ≡ C 1 ( p 1 • ε K 1 ) -C 2 ( p 2 • ε K 1 ) (2.36) 
where

C 1 = c 132 (a V 13 -b V 13 ) -c 231 b V 23 + c 123 a V 12 (2.37a) C 2 = c 132 b V 13 -c 231 (a V 23 -b V 23 ) -c 123 b V 12 (2.37b)
Thus, using Eqs. (2.36) and (2.37), the amplitudes (2.29) can be rewritten in the following form:

M(K 1L,R → Kππ) A=I∼IV = ε µ K 1L,R J A µ (2.38a) J A µ = C A 1 (s, s 13 , s 23 )p 1µ -C A 2 (s, s 13 , s 23 )p 2µ (2.38b) with C I,III 1 = √ 2 3 (a K * 13 -b K * 13 ) + √ 2 3 b K * 23 + 1 √ 3 a ρ 12 , C II,IV 1 = - 2 3 (a K * 13 -b K * 13 ) - 1 √ 6 a ρ 12 
(2.39a)

C I,III 2 = √ 2 3 b K * 13 + √ 2 3 (a K * 23 -b K * 23 ) - 1 √ 3 b ρ 12 , C II,IV 2 = - 2 3 b K * 13 + 1 √ 6 b ρ 12 
(2.39b)

Hadronic parameters

The next step is to obtain the coupling constants and the form factors determining the above functions C 1,2 , i.e. the following hadronic parameters

g ρππ , g K * Kπ , f V , h V (2.40)
Noting that there are a total of four f V and h V (V = ρ, K * ) for each K 1 (1270) and K 1 (1400), we have ten free parameters in this decay mode. One may consider the relative phases between the form factors f V and h V , which increases the number of free parameter. However, these phases could actually be determined theoretically or experimentally.

Ideally, these parameters should be extracted from the same experimental data as the B → K 1 γ decay. However, in practice, it is not realistic as it requires a huge number of data, which will not be achieved by this rare process. Therefore, it would be necessary to use other experimental data which provide information of the K 1 → Kππ decay. In this section, we first present how to relate these experimental information to our hadronic parameters. In fact, it turns out that the currently available data is not sufficient to obtain all necessary information. Thus, in this thesis, we will use a theoretical model to complement them. It should also be noted that strictly speaking, to obtain these listed parameters from other experiments is not enough for the full model independent analysis, since the formulae derived in the previous subsection are based on certain assumptions such as the quasi-two-body decay, isobar model etc.

The V P i P j coupling constant g V P i P j The g V P i P j coupling can be extracted from the partial decay width of the vector mesons. These are well measured for V = ρ, K * so that we can obtain this coupling rather precisely. The partial decay width can be written as:

Γ(V → P i P j ) = g 2 V P i P j 2πM 2 V | p| 3 1 3 (2.41)
where

| p| = (M 2 V -(m i + m j ) 2 )(M 2 V -(m i -m j ) 2 )/2M V .
Then, using the experimental values of ρ and K * widths, we find5 

g ρππ = -(5.98 ± 0.02), g K * Kπ = (5.68 ± 0.05) (2.

42)

The K 1 → V P k form factors f V and h V To describe the K 1 → V P k decay, we used two independent form factors f V and h V in (2.31). On the other hand, the K 1 → V P k can also be written in terms of the helicity amplitudes for the two possible +z spin projection of K 1 and the vector meson, (λ K 1 , λ V ) = (0, 0) and (1, 1). These two amplitudes actually can be written in terms of common partial wave amplitudes. Thus, when we expand them up to L = 2, we can equivalently write these helicity amplitudes in terms of two partial wave amplitudes [START_REF] Chung | Spin formalisms[END_REF]:

V ( p V , λ V )P (-p V )|∆H K 1 |K 1 ( 0, λ K 1 ) = (A V S + √ 5 2, 0; 1, λ V |1, λ V A V D )D 1 * λ K 1 ,λ V (Ω V ) (2.
43) where A V S,D are the partial wave amplitudes. Then, these amplitudes can be experimentally extracted through the partial wave analysis of the K 1 → V P k processes using:

Γ(K 1 → V P k ) S-wave = | p V | 8πs K 1 |A V S | 2 (2.44a) Γ(K 1 → V P k ) D-wave = | p V | 8πs K 1 |A V D | 2 (2.44b)
Comparing Eq. (2.31) and (2.43), we can immediately find the relation between the two form factors and the partial wave amplitudes (f V , h V depend in general on s K 1 and s V ):

f V = -A V S - 1 √ 2 A V D (2.45a) h V = E V √ s K 1 | p V | 2 1 - E V √ s V A V S + 1 + 2E V √ s V 1 √ 2 A V D (2.45b)
Partial wave analysis of the K 1 → V P k process has indeed been performed by the ACCMOR collaboration [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF] and very precious information related to K 1 meson has been extracted, which constitute the basis of the PDG entries. It is the currently available most extensive study of the Kππ channels, with full angular distributions analysis, determination of relative phases between all amplitudes. On the other hand, the interpretation of the ACCMOR data contains various problems in the theoretical point of view, or even empirically. We will come back to some of these issues later in the next chapter. In any case, we found that it is currently impossible to extract all the parameters from experimental data. Thus, we need the help of theoretical model inputs for this reason. In the following, we try to use the so-called 3 P 0 model, which is an intuitive model describing the decay by the creation of a quark-antiquark pair.

that the relative sign of the total amplitudes of K 1 → K * π → Kππ and K 1 → ρK → Kππ is as predicted by the model (see Appendix D). This sign can be in principle verified by analysing the Dalitz plot of the recent data of the B → ψK 1 decay [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF].

Determination of λ γ in the DDLR method

In this section, we demonstrate how to determine the polarization parameter λ γ from the experimental data using the maximum likelihood method. In particular, we introduce the DDLR method which was first applied in the τ polarization measurement at the ALEPH experiment [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF].

The previous method of Gronau et al.

It is often thought that the polarization information can be obtained only from the angular distribution analysis. Such is the case in the method of Gronau et al. [START_REF] Gronau | Photon polarization in radiative B decays[END_REF], where they proposed to measure the up-down asymmetry, defined as

A up-down = 1 0 d cos θ dΓ d cos θ - 0 -1 d cos θ dΓ d cos θ 1 -1 d cos θ dΓ d cos θ = 3 4 λ γ ds 13 ds 23 Im[ n • ( J × J * )] ds 13 ds 23 | J | 2 (2.46)
which is the asymmetry between the total number of the events with the photons emitted above and below the Kππ-plane in the K 1 reference frame, which is proportional to λ γ . The main conclusions of the two papers of Gronau et al. are:

• In Ref. [START_REF] Gronau | Measuring the photon helicity in radiative B decays[END_REF] Gronau et al. studied only the B → K 1 (1400)γ decay. In Ref. [START_REF] Gronau | Photon polarization in radiative B decays[END_REF] Gronau and Pirjol made a generalization of their method by combining the contributions from several overlapping resonances in a Kππ mass range near 1.4 GeV /c 2 , K 1 (1400), K * 2 (1430) and K * (1410). However they concluded that K * (1410) leads to no asymmetry, while the K * 2 (1430) adds a relatively small contribution. Therefore, the dominance of the K 1 (1400) mode was assumed and the K 1 (1270) contribution was left aside.

• In particular, they focused on the K 1 (1400) decay modes involving one neutral pion.

This was done in order to have two interfering K * π amplitudes related by the isospin symmetry.

• Since cos θ changes the sign under the exchange of s 13 and s 23 , the up-down asymmetry integrated over the full Dalitz region vanishes (for the decay modes I and III (Eqs. (2.13a) and (2.13c)) the Im[ n • ( J × J * )] function changes the sign under s 13 ↔ s 23 and consequently, being integrated over the Dalitz plot, gives zero). In this case, in order to solve this problem, Gronau et al. proposed to define a new angle θ in the following way: cos θ = sgn(s 13s 23 ) cos θ.

• Using the trick of the cos θ redefinition, the up-down asymmetry was found to be [START_REF] Gronau | Photon polarization in radiative B decays[END_REF] A up-down

B + → (K 0 π + π 0 ) K 1 (1400) γ B 0 → (K + π -π 0 ) K 1 (1400) γ = (0.33 ± 0.05)λ γ (2.47) The B → K 1 γ → (Kππ)γ

decay and polarization measurement

The corresponding asymmetry in the K + π -π + and K 0 π + π -channels was found to be smaller since only one K * π intermediate state contributes and the dominant contribution to the asymmetry comes from the interference of S-and D-wave amplitudes 6 [11]

A up-down B + → (K + π -π + ) K 1 (1400) γ B 0 → (K 0 π + π -) K 1 (1400) γ ≈ 0.07λ γ (2.48)
Since one of the radiative B-decay modes involving K 1 was observed by the Belle collaboration [START_REF] Yang | Observation of B + → K 1 (1270) + γ[END_REF], in this thesis we study the B → K 1 (1270)γ decay instead of B → K 1 (1400)γ as it was done by Gronau et al..

Despite the study of the averaged over the Dalitz plot cos θ-distribution in the A up-down measurement method, the use of ω-distribution (which is introduced in the next subsection) does not require the trick of the redefinition of cos θ in order to have a non-zero asymmetry. In addition, the DDLR method allows to combine all the possible Kππ charged states to be analysed together, what can significantly improve the sensitivity by increasing the event statistics.

Application of the DDLR method for the λ γ determination

Usually experiment measures the differential decay distribution of the observed number of signal events depending on kinematic variables (angles, momenta, etc.) which is fitted with a theoretical distribution in order to determine the unknown theoretical parameters. As a simple illustration, consider the τ -polarization measurement in the two-body decay τ → πν τ . In the two-body decay the angular distribution of the pion momentum direction with respect to the τ helicity axis in the τ rest frame is studied. This angular distribution is described by the probability density function (PDF) of the signal event observation at the given cos ϑ, which is defined as a properly normalized differential branching ratio distribution

W τ →πντ (ϑ) = 1 2 (1 + P τ cos ϑ) (2.49)
where P τ is the τ -polarization. In order to extract P τ from experimental data we must fit the experimental cos ϑ-distribution with our theoretical prediction using, for example, the method of least squares. The method of least squares is a standard approach to the approximate solution of overdetermined systems, i.e. sets of equations in which there are more equations than unknowns. "Least squares" means that the overall solution minimizes the sum of the squares of the errors made in solving every single equation. The best fit in the least-squares sense minimizes the sum of weighted squared residuals, a residual being the difference between the observed value and the fitted value provided by a model:

χ 2 (P τ ) = N bins i=1 (N exp i -N th i ) 2 σ 2 N exp i (2.50)
where N exp i is the observed number of signal events in the i th bin of the cos ϑ-distribution histogram, while N th i is the expected number of events predicted by a model, i.e.

N th i ≡ N th (ϑ i ) = N events × W τ →πντ (ϑ i ) (2.51)
Thus, the value of P τ that minimises the χ 2 function (2.50), gives us the best fitted τ -polarization parameter. Here one has to emphasize that the comparison of data and theoretical prediction requires the optimal binning of the histogram since an inappropriate choice of the bin width and the total number of bins can lead to a loss of sensitivity of the polarization measurement. Now, if we take another example of the τ -decay, τ → ρν τ . In this case, the PDF (i.e. the normalized decay distribution) has a much more complicated form including not only cos ϑ as a kinematical variable but also another angle e.g. β (ϑ is the angle between the momentum of ρ and the τ -direction in the τ rest frame while β is the angle between the momentum of one of the pions and the ρ-direction in the ρ rest frame) and also the ππ invariant mass m ππ . In this case χ 2 would be

χ 2 (P τ ) = N bins ϑ i=1 N bins β j=1 N bins mππ k=1 (N exp ijk -N th ijk ) 2 σ 2 N exp ijk (2.52)
with N exp/th ijk denoting the number of events that are in the {ϑ i , β j , m ππk } point of the available discrete phase space,

N th ijk ≡ N th (ϑ i , β j , m ππk ) = N events × W τ →ρντ (ϑ i , β j , m ππk ) (2.53)
One can see, that the addition of more observables (angles, invariant masses of the intermediate resonances, etc.) increases the sensitivity of the measurement due to the augmentation of the number of "equations" (i.e. number of terms in Eq. (2.52)), but, at the same time, it increases the complexity of the fit as well. However, Davier et al. pointed out in [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF] that such a complication of the multidimensional fit can be avoided in this particular case when the PDF depends on the polarization parameter P τ only linearly. A new variable ω was introduced in this article, which can represent all the kinematical variables, thus allows to extract P τ from a fit with this single variable. As we describe in the following, since our PDF also depends on the polarization parameter λ γ linearly, the ω-method can be applied. Now, we briefly introduce the basics of the DDLR method applied to determine the photon polarization parameter λ γ in the B → K 1 (1270)γ decay (for more details of the The B → K 1 γ → (Kππ)γ decay and polarization measurement general method see Appendix E). In the maximum likelihood method, knowing the λ γ dependence of the PDF of the signal event observation at the given point of the phase space {s, s 13 , s 23 , cos θ}, which is defined as the properly normalized differential branching ratio distribution

W (s, s 13 , s 23 , cos θ) = 1 Γ dΓ(B → K 1 (1270)γ → Kππγ) dsds 13 d s23 d cos θ , (2.54) 
the λ γ closest to its true value can be obtained where the likelihood function (or equivalently, log-likelihood) given by the N sample of data takes its maximum value. In our case, the PDF, W , can be given as the decay width integrand normalized to unity (after multiplication by the modulus squared of the Breit-Wigner). Let us reiterate our statement that when one remains within the bump of the K 1 -resonance, the decay amplitude weakly depends on s = p 2 K 1 , and one can set s = M 2 K 1 in Eq. (2.11), i.e. in the J 's, which we assume hereafter.

Thus, using Eq. (2.11), the PDF for B → K 1 γ → (Kππ)γ can be given as

W (s 13 , s 23 , cos θ) = f (s 13 , s 23 , cos θ) + λ γ g(s 13 , s 23 , cos θ) (2.55) 
where

f (s 13 , s 23 , cos θ) = 1 4I | J | 2 (1 + cos 2 θ) (2.56a) g(s 13 , s 23 , cos θ) = 1 2I Im[ n • ( J × J * )] cos θ (2.56b) I = 2 3 ds 13 ds 23 | J | 2 (2.56c)
where f and g are normalised relatively to the measure ds 13 ds 23 d cos θ.

Then, similarly to Eq. (E.12) the likelihood function for the N events of data can be given as

L = N i=1 f (s i 13 , s i 23 , cos θ i ) + λ γ g(s i 13 , s i 23 , cos θ i ) (2.57)
where i indicates the kinematic variable of each event. The true value of λ γ should maximize this function, namely it should be the solution of the following equation:

∂L ∂λ γ = 0 (2.58)
The next procedure to look for the value of λ γ in our problem is usually to use the known distribution of f -and g-functions and fit the value of λ γ so as to maximize the likelihood function. As has been shown in the example of τ → ρν → (ππ)ν, it should be noted that this is not a very simple task, especially since f and g in Eq. (2.56c) are very complicated functions. However, in [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF], it is pointed out that when the PDF depends on the parameter, which we are interested in, only linearly, one can reduce such a multidimensional fit to a one-dimensional one using a single variable ω which is defined as follows:

ω(s 13 , s 23 , cos θ) = g(s 13 , s 23 , cos θ) f (s 13 , s 23 , cos θ) . (2.59)
which contains all information about the photon polarization.

Considering the fact that f , g and ω have very complicated dependences on these kinematic variables, the reduction to the one-dimensional fit achieved by using the variable ω is very efficient for the data analysis as shown in the following. The polarization parameter λ γ can be determined from the difference between these two distributions (see the footnote 7 for more details). Now we explain how to extract the value of λ γ as well as its statistical error from a given ω-distribution. Since the use of the ω-variable reduces our fit to a one-dimensional one, λ γ is obtained simply as a solution to the following equation:

∂ ln L ∂λ γ = N ω 1 + λ γ ω = 0. (2.60)
where the averaged (integrated) quantity is defined in the standard way:

X ≡ 1 N N i=1 X i (2.61)
Of course, one could solve equation (2.60) by successive searches. However, we can provide an explicit expression for λ γ . Although the ω-distribution is centered around zero (see Fig. 2.3) and consequently the approximate solution for λ γ in terms of ω-moments (E.17) could be used, one sees that the normalised distribution in ω, W ′ (ω), can be written as

W ′ (ω) = ϕ(ω)(1 + λ γ ω) (2.62)
where ϕ(ω) corresponds to the image of f (s 13 , s 23 , cos θ) in the ω-space. In principle, it is a very complicated and unknown function with an analytical form that is very hard to derive. That is why we use a numerical MC method for the evaluation of ϕ(ω) in order to get the ω-distribution. However, ϕ(ω) turns out to be an even function of ω (for more details see Appendix E). Then, one can easily demonstrate by integration over the interval -1 ≤ ω ≤ 1 that λ γ can be expressed as ratios of odd over even momenta:

λ γ = ω 2n-1 ω 2n (n ≥ 1) (2.63)
Therefore, the expression (E.17) obtained by DDLR for small λ γ seems exact. We verified the relation (2.63) by numerical calculation using MC simulation and found up to statistical error that indeed

λ γ = ω ω 2 = ω 3 ω 4 = . . . (2.64) 
Using Eq. (E.15), one can also obtain the statistical error of the given value of λ γ (2.63) as:

σ 2 λγ = 1 N ω 1+λγ ω 2 .
(2.65) Thus, once the ω distribution is obtained experimentally, Eqs. (2.60) or (2.63) and (2.65) immediately provide the values of λ γ and σ λγ 7 .

7 In the real data, one must consider the systematic errors coming from detector effect etc. and perform a χ 2 -fit instead of using these simple formulae. There is one subtlety for that case. For each event, the photon should have the polarization either left-or right-handed. Thus, in MC, we produce the ω-distribution with purely left-and right-handed PDF. Then, the total ω-distribution of the experimental data is expected to be a linear combination of these two distribution with a ratio of ε:

N exp (ω) = εN MC R (ω) + (1 -ε)N MC L (ω) (2.66) with ε ≡ 1+λγ 2 .
The N is the number of events in the experimental measurement. We show an example of the ω distribution of λ γ = -1 (red) and λ γ = +1 (blue) in Fig. 2.3. As seen in this equation, the λ γ can be determined from the difference between these two distributions.

Chapter 3

Strong interaction decays of the K 1 -mesons 3.1 Overview of the previous K 1 -decay studies

Experimental overview

Here we summarise the experimental results of the axial vector K 1 -resonance study.

1. Two close in mass axial-vector mesons, K 1 (1270) and K 1 (1400), were disentangled in the experiments on the diffractive production of the 1 + (Kππ) system in the Kp → Kππp reaction, first by the group at SLAC [START_REF] Carnegie | Q 1 (1290) and Q 2 (1400) Decay Rates and their SU(3) Implications[END_REF] and then by the ACCMOR collaboration in WA3 experiment at CERN [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF]. They also observed separately: one K 1 (1270) in the strangeness-exchange reaction π -p → ΛKππ [START_REF] Rodeback | Q 1 production by hypercharge exchange in πp interactions at 3.95 GeV/c[END_REF] and the other K 1 (1400) in the charge-exchange reaction K -p → K 0 π + π -n [START_REF] Aston | The strange meson resonances observed in the reaction Kp → K 0 π + πn at 11 GeV/c[END_REF]. We rely mainly on the diffractive reactions which allow a more detailed study. The relative ratios of two dominant channels, K * π and Kρ, indicate that K 1 (1400) decouples from the Kρ, while the Kρ decay mode of K 1 (1270) is dominant (see Table 3.1). This decay pattern suggests that the observed mass eigenstates, K 1 (1270) and K 1 (1400), are the mixtures of two strange axial-vector SU (3) octet states K 1A ( 3 P 1 ) and K 1B ( 1 P 1 ).

• In the experiment, carried out at SLAC by Carnegie et al. [START_REF] Carnegie | Q 1 (1290) and Q 2 (1400) Decay Rates and their SU(3) Implications[END_REF], the mixing angle was determined from the SU (3) couplings to the K * π and Kρ channels to be θ K 1 = (41 ± 4) • . While the partial wave analysis of the WA3 experiment data, done by the ACCMOR collaboration (Daum et al. [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF]), gives θ K 1 = (64 ± 8) • and θ K 1 = (54 ± 4) • for the low and high momentum transfer to the recoiling proton respectively.

• In the work by Suzuki [START_REF] Suzuki | Strange axial-vector mesons[END_REF] two possible solutions for the K 1 mixing angle were found in order to explain the observed hierarchy in the K 1 -decays to K * π and Kρ: θ

K 1 ≈ 33 • or 57 • .
2. The K 1 -resonances were also observed and studied in τ -decays by TPC/Two-gamma [START_REF] Bauer | Measurement of the kaon content of three prong τ decays[END_REF], ALEPH [START_REF] Barate | Study of τ decays involving kaons, spectral functions and determination of the strange quark mass[END_REF], OPAL [START_REF] Abbiendi | A study of three-prong τ decays with charged kaons[END_REF] and CLEO [START_REF] Asner | Resonance structure of τ -→ Kπ + πν τ decays[END_REF] collaborations.

• The results of the TPC/Two-gamma experiment [START_REF] Bauer | Measurement of the kaon content of three prong τ decays[END_REF] suggest that the decay proceeds mostly through K 1 (1400) (the corresponding measured branching ratios are B(τ -→ K 1 (1270) -ν τ ) = (0.41 +0.41 -0.35 )% and B(τ -→ K 1 (1400) -ν τ ) = (0.76 +0. 40 -0.33 )%), although their errors are too large to make a strong statement. • The latest measurements [START_REF] Barate | Study of τ decays involving kaons, spectral functions and determination of the strange quark mass[END_REF][START_REF] Abbiendi | A study of three-prong τ decays with charged kaons[END_REF][START_REF] Asner | Resonance structure of τ -→ Kπ + πν τ decays[END_REF] show that the K 1 (1270) production is favoured over the K 1 (1400) production: [START_REF] Nakamura | Review of particle physics[END_REF]. In the analysis, done by the CLEO collaboration [START_REF] Asner | Resonance structure of τ -→ Kπ + πν τ decays[END_REF], the K 1 mixing angle was determined from the measured ratio B(τ →K 1 (1270)ντ ) B(τ →K 1 (1400)ντ ) :

B(τ -→ K 1 (1270) -ν τ ) = (4.7 ± 1.1) × 10 -3 while B(τ -→ K 1 (1400) -ν τ ) = (1.7 ± 2.6) × 10 -3
θ K 1 = (69 ± 16 ± 19) • for δ = 0.18 and θ K 1 = (49±16±19) • for δ = -0.18 where |δ| = (m s -m u )/ √ 2(m s +m u ) ≈ 0.
18 is a phenomenological SU (3) breaking parameter. This result is consistent with the calculation in [START_REF] Suzuki | Strange axial-vector mesons[END_REF].

3. Radiative B-decays involving the K 1 -mesons were also observed by the Belle collaboration [START_REF] Yang | Observation of B + → K 1 (1270) + γ[END_REF]. The data indicate that

B(B → K 1 (1270)γ) ≫ B(B → K 1 (1400)γ).
At present moment the measurement of branching ratio B(B + → K + 1 (1270)γ) = (4.3 ± 0.9(stat) ± 0.9(syst)) × 10 -5 has large experimental uncertainty while no significant signal for B + → K + 1 (1400)γ was found and only an upper limit B(B + → K + 1 (1400)γ) < 1.5 × 10 -5 at 90% CL was set. 4. Quite recently the Belle collaboration published a paper on B → J/ψ(ψ ′ )Kππ decays [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF], which will be discussed in detail later.

5. In addition, the BABAR collaboration reported the measurement of the branching ratios of neutral and charged B-meson decays to final states containing a K 1 (1270) and K 1 (1400) meson and a charged pion:

B(B 0 → K 1 (1270) + π -+B 0 → K 1 (1400) + π -) = 3.1 +0.8
-0.7 × 10 -5 and B(B + → K 1 (1270) 0 π + + B + → K 1 (1400) 0 π + ) = 2.9 +2.9 -1.7 × 10 -5 [START_REF] Aubert | Measurement of branching fractions of B decays to K 1 (1270)π and K 1 (1400)π and determination of the CKM angle α from B 0 → a 1 (1260) ± π ∓[END_REF]. In order to parametrize the signal component for the production of the K 1 -resonances in B-decays, the K-matrix formalism, used in the analysis by Daum et al. in [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF], was applied to the model description. Since only some parameters, used in the analysis of the ACCMOR collaboration, have been reported, the BABAR collaboration refitted the ACCMOR data in order to determine the parameters describing the diffractive production of the K 1 -mesons and their decays. On observes that some results are somewhat different. In particular, using the low t-data, the refitted value of the K 1 mixing angle turns out to be 72 • compared to 64 • from the ACCMOR fit.

Theoretical overview

1. A study of the strange axial-vector mesons was done in by Blundell, Godfrey and Phelps [START_REF] Blundell | Properties of the Strange Axial Mesons in the Relativized Quark Model[END_REF], who studied the properties of K 1 by combining the wave functions,

Theoretical overview

51 3.1: Fitted masses, total widths and partial branching ratios of K 1 (1 + ) decays into vector-pseudoscalar states, measured by ACCMOR collaboration in the Kp → Kππp reaction for the low momentum transfer to the recoiling proton [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF]. The total widths, defined by the ACCMOR collaboration, seem to be misleading for the calculation of partial widths as discussed later in the text.

K 1 M ACCM OR K 1 , GeV/c 2 Γ ACCM OR K 1 , MeV/c 2 B(K * π) S B(K * π) D B(Kρ) S K 1 (
inspired by the Godfrey-Isgur quark model, to describe the bound states and the flux-tube-breaking or 3 P 0 models (which are in fact non-relativistic) to describe the decays.

• Using the TPC/Two-gamma results on the ratio B(τ →K 1 (1270)ντ ) B(τ →K 1 (1400)ντ ) and the quark model calculation of the K 1 decay constants to the decays τ → K 1 ν τ , the obtained constraint is -35 • θ K 1 45 • at 68% CL, which is in agreement with [START_REF] Suzuki | Strange axial-vector mesons[END_REF]. Although the relative errors for the individual branching ratios are smaller than those of the ratio, using the branching ratios introduces additional uncertainties due to the errors associated with the poorly known K 1 wavefunctions, which makes the θ K 1 -extraction very model dependent.

• The strong decays of the K 1 mesons to the final states K * π and Kρ were studied as well in order to determine the mixing angle. A χ 2 fit of the experimental data on the partial decay widths Γ(K 1 (1270/1400) → K * π) and Γ(K 1 (1270/1400) → Kρ) was used for the θ K 1 -determination.

-Performing a χ 2 -fit with the predicted decay widths, calculated within the pseudo-scalar-meson-emission model, using simple harmonic oscillator wave functions with a single parameter β = 0.40 GeV, the fitted value of the mixing angle was obtained to be θ K 1 = (48 ± 5) • . -The strong K 1 -decays were also calculated using both the flux-tube-breaking model and the 3 P 0 model for several sets of meson wavefunctions. In all cases a second fit was performed by allowing both θ K 1 and the quarkpair-creation constant γ to vary, which reduces the χ 2 significantly. Using simple harmonic oscillator wave functions with β = 0.40 GeV, comparison of the predicted decay widths by the 3 P 0 model to experimental results gives θ K 1 = (45 ± 4) • , while the flux-tube-breaking model's prediction gives θ K 1 = (44 ± 4) • . The last result for θ K 1 is slightly changed for the case of use of different set of the meson wave functions from Ref. [START_REF] Godfrey | Mesons in a Relativized Quark Model with Chromodynamics[END_REF]:

θ K 1 = (51 ± 3) • .
2. In addition, a detailed study of the B → K 1 (1270)γ and B → K 1 (1400)γ decays in the light-cone QCD sum rules approach was presented by Hatanaka and Yang
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Strong interaction decays of the K 1 -mesons in [START_REF] Hatanaka | B → K 1 γ Decays in the Light-Cone QCD Sum Rules[END_REF].

• The sign ambiguity of the mixing angle is resolved by defining the signs of the decay constants f K 1A and f ⊥ K 1B . • From the comparison of the theoretical calculation and the data for decays B → K 1 γ and τ → K 1 ν τ , it was found that θ K 1 = -(34 ± 13) • is favoured within the conventions of Hatanaka and Yang. It is difficult to establish the relation with our own convention.

• The predicted branching ratios, B(B → K 1 (1400)γ) and B(B → K 1 (1270)γ), are in agreement with the Belle collaboration measurement within the errors.

Theoretical model

The need for a theoretical model In principle, all the hadronic parameters (i.e. K 1 masses and partial decay widths, form factors and relative phases) can be determined from the fits of the experimental data. However, at present moment we are far from being able to perform this with the accuracy, required to determine the photon polarization λ γ . We found that the up-down asymmetry and the ω-moments are sensitive to certain hadronic parameters which are hard to determine, e.g. to the relative phases of couplings or to the D-waves.

Up to now the most complete and accurate experimental analysis is the one by Daum et al.. However, as it is explained later in the next section, one discovers many difficulties in understanding and using the results of the ACCMOR analysis. Among them there are problems with conventions of the coupling signs, there is an incomplete report of the parameters of the fit and intrinsic difficulties with physical treatment. Other experiments, which have been mentioned above, give precious complementary information but they are not able to solve all the problems, all the more since they are less accurate. Due to the insufficient knowledge of hadronic parameters it becomes necessary to use the help of a theoretical model. Of course, there is no fundamental theoretical treatment of such processes. We have only at our disposal the phenomenological approach of the quark models. Indeed, in the case of decays, which is our concern, they include an essential approximation: they are non-relativistic. There is an inherent sizable uncertainty. Therefore, the quark model can not provide accurate predictions which are ultimately needed for the precise determination of λ γ . It is a provisory step in the expectation of new systematic experimental studies which could provide a precise measurement of a whole set of hadronic parameters.

However, approximate as it is, the quark model can be very precious to check the consistency of the present data and to orient the future studies of K 1 -decays. Moreover, it allows to make an estimation of the sensitivity of λ γ potential measurement methods. 

The mixing of the kaon resonances

In the quark model there are two possible states for the orbitally excited axial-vector mesons: J P C = 1 ++ and J P C = 1 +-, depending on different spin couplings of two constituent quarks. In the SU (3)-limit these states can not mix, but since the s-quark is actually heavier than the u-and d-quarks, the observed K 1 (1270) and K 1 (1400) mesons are not pure 1 3 P 1 or 1 1 P 1 states. They are considered to be mixtures of non mass eigenstates K 1A and K 1B . Introducing a K 1A -K 1B mixing angle θ K 1 , mass eigenstates can be defined in the following way [START_REF] Suzuki | Strange axial-vector mesons[END_REF]:

1 |K 1 (1270) = |K 1A sin θ K 1 + |K 1B cos θ K 1 |K 1 (1400) = |K 1A cos θ K 1 -|K 1B sin θ K 1 (3.1)
Since all of SU (3) operators can be expressed as combinations of isospin, U -and V -spin operators, if an operator describing the interaction is invariant under the SU (3)-group transformations, it is also invariant under the isospin, U -spin and V -spin transformations [START_REF] Lipkin | Lie groups for pedestrians[END_REF]. However, it is sufficient to require the invariance only under the isospin and U -spin (or V -spin) transformations, since V -spin is dependent on the isospin and U -spin and the V -spin operators can be obtained from the U -spin operators by an isospin transformation (U -spin can be turned into V -spin via rotation by 120 • ).

Analogously to G-parity, one can define U -and V -parities: G U = C(-1) U and G V = C(-1) V respectively, where C is the charge-conjugation parity of the neutral non-strange members of the multiplet. The neutral and charged kaons in the octets are the eigenstates of U -and V -parities and always have U or V = 1 respectively.

In the SU (3)-limit two kaons that belong to the octets of the same spin but opposite C-parity can not mix. To illustrate it, one can consider a matrix element of some arbitrary operator O between two neutral kaons from different octets [START_REF] Kane | Some Consequences of SU (3) and Charge-Conjugation Invariance for K-Meson Resonances[END_REF][START_REF] Kane | Interference of Kaon Resonances[END_REF]:

K A |O|K B = K A |G -1 U G U OG -1 U G U |K B = C A C B K A |G U OG -1 U |K B (3.2) If the O operator is SU (3)-invariant, i.e. G U OG -1 U = O, the matrix element of the transition K A |O|K B = 0 unless C A = C B .
Strong interactions can break the SU (3)-symmetry and produce the mass splittings. It is experimentally confirmed that isospin is conserved in strong interactions. Hence, 1 To be able to compare with other mixing angle estimations, one has to be careful due to the different parametrizations that are used in the literature. For instance, in the analysis by Carnegie et al. [START_REF] Carnegie | Q 1 (1290) and Q 2 (1400) Decay Rates and their SU(3) Implications[END_REF] the parametrization is

|K 1 (1270) = |K 1A cos θ (SLAC) K1 + |K 1B sin θ (SLAC) K1 , |K 1 (1400) = -|K 1A sin θ (SLAC) K1 + |K 1B cos θ (SLAC) K1
. To compare with the results made by Daum et al. [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF], parametrization is written as follows:

|K 1 (1270) = -|K 1A sin θ (ACCM OR) K1 + |K 1B cos θ (ACCM OR) K1 , |K 1 (1400) = |K 1A cos θ (ACCM OR) K1 + |K 1B sin θ (ACCM OR) K1
. Comparing the fitted effective couplings one can see that the coupling to K 1B has a different sign in these two definitions. Since one can measure only the absolute value of the amplitude, this sign changes nothing and hence it is possible to redefine the sign of this coupling in the paper by Daum et al.. After that one can easily establish the correspondence between these two forms of parametrization and the one we use in this paper:

θ K1 = θ (ACCM OR) K1 = 90 • -θ (SLAC) K1 .
if the strong interaction operator breaks the SU (3)-symmetry, U -and V -parities are not conserved anymore, even if G-parity is conserved. In this case G U OG -1 U = O and consequently K A |O|K B = 0 and the mixing takes place.

3 P 0 Quark-Pair-Creation Model

There are several additive quark models of strong vertices. All these models relate to the recoupling coefficients of unitary spin, quark spin and the quark orbital angular momenta, but differ in the dynamical description. One of the simplest additive quark model describing three-meson vertices is the naive quark-pair-creation model (QPCM) of Micu and of Carlitz and Kislinger [START_REF] Micu | Decay rates of meson resonances in a quark model[END_REF][START_REF] Carlitz | Regge amplitude arising from SU (6) W vertices[END_REF] and developed by Le Yaouanc et al. [START_REF] Le Yaouanc | Naive quark pair creation model of strong interaction vertices[END_REF] and then extensively discussed by the group of N. Isgur in Canada [START_REF] Godfrey | Mesons in a Relativized Quark Model with Chromodynamics[END_REF][START_REF] Kokoski | Meson Decays by Flux Tube Breaking[END_REF][START_REF] Blundell | Properties of the Strange Axial Mesons in the Relativized Quark Model[END_REF][START_REF] Blundell | The ξ(2220) revisited: Strong decays of the 1 3 F 2 1 3 F 4 ss mesons[END_REF]. As in the usual additive quark models with spectator quarks, the quark-antiquark pair is "naively" created not from the ingoing quark lines but within the hadronic vacuum. The strong interactions vertices in the QPCM are expressed in terms of the explicit harmonic oscillator spacial SU (6) wave functions (compared to the work by Micu [START_REF] Micu | Decay rates of meson resonances in a quark model[END_REF], who just fitted the various spacial integrals using the measured decay widths, what does not allow to study the polarization effects) and a nonlocal vacuum quark-antiquark pair production matrix element, depending on the internal quark momenta (while Carlitz and Kislinger [START_REF] Carlitz | Regge amplitude arising from SU (6) W vertices[END_REF] neglected the internal momentum distributions). Contrary to the QPCM by Colglazier and Rosner [START_REF] Colglazier | Quark graphs and angular distributions in positive parity meson decays[END_REF], the 3 P 0 structure of the created pair describes any decay process of any hadron, using one universal parameter. The model parameters are of the hadron itself and not the decay process as in [START_REF] Colglazier | Quark graphs and angular distributions in positive parity meson decays[END_REF], where the various extra couplings between the pair and the incoming meson depend on the nature of the hadron states and may be weighted by different arbitrary coefficients for different hadrons.

The naive QPCM has the advantage of making definite predictions for all hadronic vertices and moreover, contrary to the other works, it predicts the relative signs of the couplings. Another appealing feature of the model is that it consists only one phenomenological parameter (the quark-pair-creation constant), what allows a much more general description and relates the amplitudes of different processes. The main weakness of the QPCM is that it cannot take into account the symmetry breaking effecting on the hadron wave functions and that the emitted hadrons are considered to be non-relativistic. Thus one has to look for the decays that are not significantly sensitive to these effects.

Formalism

In the QPCM, instead of being produced from the gluon emission, the quark-antiquark pair q q (see Fig. 3.1) is created anywhere within the hadronic vacuum by an operator proportional to (uū+d d+ss)S•p where S refers to spin 1 and p is the relative momentum of the pair. It is combined with the initial quark-antiquark system q2 q 1 and produces the final state B(q 1 q)C(q q2 ). The initial spectator quarks are supposed not to change their SU (3) quantum numbers, nor their momentum and spin. In order to conserve the vacuum quantum numbers the pair must be created in the 3 P 0 state due to P = -(-1) L 3.2.2 3 P 0 Quark-Pair-Creation Model 55 and C = (-1) L+S parity conservation with 0-total momentum ( k 3 + k 4 = 0) and to be a SU (3)-singlet. Thus the matrix element of the quark-antiquark pair production from the vacuum is unambiguously constructed with the help of the spins and momenta of the quark and antiquark only [START_REF] Le Yaouanc | Naive quark pair creation model of strong interaction vertices[END_REF]:

qq| Tvac |0 = δ( k 3 + k 4 )γ m (1, m; 1, -m|0, 0)Y m 1 ( k 3 -k 4 )χ -m 1 φ 0 (3.3)
where γ is a phenomenological dimensionless pair-creation constant (which is determined from the measured partial decay widths and taken to be of the order of 3-5), χ -m Taking the matrix element of the pair-creation operator between the SU (6) harmonicoscillator wave functions of hadrons, the matrix element for the decay A → B + C can be written as:

BC| T |A = γ m (1, m; 1, -m|0, 0)Φ B Φ C Φ m A Φ -m vac I (ABC) m (3.4) 
where Φ = χ m 1 φ are the SU (6) spin-flavour wave functions and

I (ABC) m
are the spacial integrals dependent on the momentum of the final states, which are computed in Appendix D. Assuming A, B and C to be an axial vector, pseudoscalar and vector mesons respectively, the spin part of the matrix element can be written as

q 1 ( k 1 ) q2 ( k 2 ) γ q( k 3 ) q( k 4 ) A B C *
χ C χ B χ A χ pair = m i ( 1 2 , m 1 ; 1 2 , m 3 |0, 0)( 1 2 , m 4 ; 1 2 , m 2 |1, λ C ) × ( 1 2 , m 1 ; 1 2 , m 2 |S A , m S A )(1, m L A ; S A , m S A |1, λ A )( 1 2 , m 4 ; 1 2 , m 3 |1, -m) (3.5)
Consider for instance K * 0 π + decay mode of K 1 -meson. After the summation over the spin projections the calculated helicity amplitudes for the K 1A (1 3 P 1 ) and K 1B (1

1 P 1 )
Strong interaction decays of the K 1 -mesons will be (the definition of the helicity amplitudes and their relation with the partial wave amplitudes can be found in Appendix D):

M 10(A) 00 = -γ I (K 1 K * π) 1 3 √ 2 , M 11(A) 10 = -γ I (K 1 K * π) 1 -I (K 1 K * π) 0 6 √ 2 M 10(B) 00 = -γ I (K 1 K * π) 0 6 , M 11(B) 10 
= γ I (K 1 K * π) 1 6 (3.6) 
The corresponding amplitudes for the K + ρ 0 mode are obtained by multiplying the K * 0 π + amplitudes by 1/ √ 2 and changing the sign of K 1A -part. Taking into account the isospin factors for different charge states 2 , the generalized amplitudes are summarized in Table 3.2. The functions S and D are defined as

S (ABC) = γ 3 2 2I (ABC) 1 -I (ABC) 0 18 , D (ABC) = γ 3 2 
I (ABC) 1 + I (ABC) 0 18 (3.7) 
Decay mode

A S A D K 1B → K * π -S (K 1 K * π) - √ 2D (K 1 K * π) K 1A → K * π √ 2S (K 1 K * π) -D (K 1 K * π) K 1B → Kρ S (K 1 Kρ) √ 2D (K 1 Kρ) K 1A → Kρ √ 2S (K 1 Kρ) -D (K 1 Kρ)
Table 3.2: Partial wave amplitudes of K 1A (1 3 P 1 ) and K 1B (1 1 P 1 ) decays into vectorpseudoscalar states, calculated within QPCM.

One has to point out that our treatment obeys the SU (3)-symmetry. SU (3) breaking effects are present only in two places: 1) we use the physical observed masses of hadrons; 2) we introduce mixing between the K 1A and K 1B states. This is indeed the effect of the symmetry breaking. It is induced, for instance, by spin-orbit forces with different s and u, d quark masses. And also the mixing is generated by the loops as depicted in Fig. 3.2. The K * π and Kρ loop contributions cancel each other only if one sets M K * = M ρ and m π = m K , i.e. in the case of the exact SU (3)-symmetry.

Then the decay amplitudes of K 1 into K * π or Kρ final states can be expressed as functions of the pseudoscalar meson momentum in the K 1 reference frame and the mixing 2 The amplitudes were calculated for K + 1 → K * 0 π + and K + 1 → K + ρ 0 . The amplitude of Kρ must be divided over √ 2 due to isospin wave function of ρ 0 . To obtain the general amplitude which doesn't depend on the charge combination one has to divide over the isopin factor: -2/3 for K * and 1/3 for ρ since for the matching with the relativistic form factors the charge combination is not relevant. Finally one obtains the factor 3/2 in Eq. (3.7).
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K 1A K 1B K * π K 1A K 1B ρ K Figure 3.2: K 1A -K 1B mixing via loop effects.
angle θ K 1 :

A S (K 1 (1270) → K * π/Kρ) = S (K 1 K * π/K 1 Kρ) ( √ 2 sin θ K 1 ∓ cos θ K 1 ) A D (K 1 (1270) → K * π/Kρ) = D (K 1 K * π/K 1 Kρ) (-sin θ K 1 ∓ √ 2 cos θ K 1 ) A S (K 1 (1400) → K * π/Kρ) = S (K 1 K * π/K 1 Kρ) ( √ 2 cos θ K 1 ± sin θ K 1 ) A D (K 1 (1400) → K * π/Kρ) = D (K 1 K * π/K 1 Kρ) (-cos θ K 1 ± √ 2 sin θ K 1 ) (3.8)
Correspondingly, the partial decay widths can be determined by using amplitudes squared from the Eqs. (3.8) multiplied by the phase space factors:

Γ QP CM S/D (K 1 → V P ) = 8π 2 E V E P k P M K 1 |A S/D (K 1 → V P )| 2 .
(3.9)

The choice of the wave functions

The unknown parameters of the model are the quark-pair-creation constant γ and the K 1 mixing angle, which we determine by fitting the experimental data on the K 1 -decays (see the next section). However, before proceeding to this determination, the model must be specified by the choice of the set of meson wave functions. In accordance with a fact that the 3 P 0 model is a simple model, we will remain within the traditional SU (6) approximation which describes rather well ordinary radiative decays (e.g. ω → πγ). This includes the SU (3)-symmetry approximation which anyway is also present in the 3 P 0 model through the fact that the quark-pair-creation constant is the same for all reactions.

In this approach the effect of the SU (3) breaking is taken into account only through the dependence of the decay momentum of the physical hadronic masses. For practical reasons, we choose a set of harmonic oscillator wave functions, which are known to give a reasonable approximation.

Here one has to stress that the harmonic oscillator radius of the meson wave function (ψ(r) ∝ exp(-r 2 /2R 2 ), for details see Appendix D) is not a free phenomenological parameter. In principle, it can be predicted by the quark-potential model describing the bound states of two quarks. To get a first and rough estimate we can use the following relation, obtained in the non-relativistic harmonic oscillator model for the energy shift between the ground state and the first radial excitation:

∆E 1 = 2 m q R 2 (3.10)
with m q being the quark mass, which can be standardly estimated from the magnetic moment of the proton: µ p = e 2mq = 2.79 2m N . Whence m q ≃ 0.34 GeV3 . ∆E 1 can be estimated from the energy of the L = 1 state of the order of (1.2-1.3) GeV and the weighted average energy of the ground state (3m ρ + m π )/4 ≃ 0.6 GeV. Then the estimated radius is given by

R = 2 ∆E 1 m q ∼ 2 (1.25 -0.6) 0.34 ≃ 3 GeV -1 (3.11)
On the other hand, it is obvious that this approximation of the Schroedinger equation with the harmonic oscillator potential is rather naive: the realistic potential is known to be of the form of linear (that describes confinement) plus Coulomb potential. One has also to notice that the application of the use of the non-relativistic character of the Schroedinger equation to the heavy-light systems is dubious. Therefore, one could take a value inspired by the well known model of Godfrey and Isgur. Of course, in the latter model the solutions are no longer the harmonic oscillator wave functions. However, such harmonic oscillator wave functions can represent a good approximation if the radius R is adjusted. For most L = 0, 1 states one finds in this model the typical value R ∼ 2.5 GeV -1 [START_REF] Kokoski | Meson Decays by Flux Tube Breaking[END_REF]. For our predictions we therefore adopt a set of wave functions with a common harmonic oscillator radius having precisely this value,

R = 2.5 GeV -1 (3.12)
This is also one of the choices made by Blundell et al. [START_REF] Blundell | Properties of the Strange Axial Mesons in the Relativized Quark Model[END_REF]. We must warn that in this model pion and kaon have actually quite smaller radius (∼ 1.4 GeV -1 [START_REF] Kokoski | Meson Decays by Flux Tube Breaking[END_REF]) due to the strong spin-spin interaction force. We disregard this fact in the spirit of the SU (6) approach. If we were adopting the low values for the Goldstone boson we would obtain unsatisfactory results. For example, using R π ≃ 1.4 GeV -1 , we can not reproduce correctly the D/S ratio in the b 1 → ωπ decay which is precisely measured.

The issue of the damping factor

In the end of the introduction of the theoretical model, we discuss the necessity of introducing an additional cut-off (or damping factor) in the coupling vertices, in addition to the natural one provided by the 3 P 0 model. Generally speaking, there is need in the cut-off for calculations involving far off-shell particles. This appears in various circumstances: 3.3 How to compare the theoretical model computation with the experimental data? 59

• In the calculation of λ γ . Indeed, the interference of several channels needed to obtain a non-zero imaginary part of n • ( J × J * ) (see Eq. (2.11) requires a large off-shellness of the intermediate isobars.

• In the branching ratios, obtained by the integration over the large phase space for the production of Kππ (e.g. B → Kππγ). This is especially important for the higher partial waves like D-waves.

• Another effect appears in the decay to one isobar and one stable particle: integrating over the mass of the isobar, the calculated partial width depends on the presence of the damping factor. The low end of the isobar mass spectrum corresponds indeed to large off-shell momenta.

The later effect is especially crucial for the transition rate of K 1 (1270) → Kρ, which is large, although it would be kinematically almost forbidden at the nominal values of the masses. A well-known and simple way to take the widths into account is by integrating over the off-shell "masses", p 2 , with the weight of the Breit-Wigner's. However, it is then found that the integrals will diverge for P -or D-waves, due to the k 2l factors, where k is the decay momentum, if the coefficients are taken to remain constant. Of course, the reactions will in general provide natural limits of integration: for instance, the spectrum studied by the ACCMOR collaboration stops at M Kππ = 1.6 GeV/c 2 , but even that cut would give exceedingly large P -or D-wave contributions. In fact, it seems that various indications hint at the necessity of a strong dynamical cut-off, or "damping factor", affecting for instance the Breit-Wigner shape (e.g. accurate studies of ∆(1236) [START_REF] Barbaro-Galtieri | Proceedings of the Erice Summer School[END_REF] or K * (890), see Ref. [START_REF] Aston | The strange meson resonances observed in the reaction Kp → K 0 π + πn at 11 GeV/c[END_REF]), the prototype of which are the Blatt-Weisskopf factors. The need for it is also shown by calculations of hadronic loops in the 3 P 0 model [START_REF] Silvestre-Brac | Unitary effects in spin orbit splitting of P wave baryons[END_REF]. One obtains a natural damping factor through the Gaussian factors e -βk 2 :

A S ∝ (3 -αk 2 )e -βk 2 , A D ∝ αk 2 e -βk 2 (3.13)
but one finds β ∼ 0.3 GeV -2 which is too small. Following Ref. [START_REF] Silvestre-Brac | Unitary effects in spin orbit splitting of P wave baryons[END_REF], we introduce the empirical Gaussian cutoff exp[-

β ′ (k 2 -k 2 0 )] with β ′ ≈ 3 GeV -2
, where k 0 is the decay momentum when all the particles are put on-shell:

A S ∝ (3 -αk 2 )e -βk 2 × e -β ′ (k 2 -k 2 0 ) , A D ∝ αk 2 e -βk 2 × e -β ′ (k 2 -k 2 0 ) (3.14) 
With this additional damping factor one finds that the integrated D/S-ratio becomes stable. The isobar (K * /ρ) decay does not depend much on the damping factor.

How to compare the theoretical model computation with the experimental data?

Let us emphasize that the very extensive work of Daum et al. consists of two distinct steps:

• The first one is the partial wave analysis (PWA) where the Kππ three-body final state is decomposed into a sum of quasi-two-body "partial waves" (K * π, Kρ, etc.) with various quantum numbers of the total spin and orbital momentum. In this first step there is no reference to any parent resonance like K 1 . This step corresponds to the fitted values of the quasi-two-body partial wave amplitudes plotted with the corresponding error bars in [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF].

• The second step is the fit of the partial wave amplitudes, extracted on the previous step, within the K-matrix formalism in order to study the structure of the initial parent resonance and its properties (pole masses, couplings to various decay channels, etc.).

Let us stress that this two-step procedure is different from the modern Dalitz plot analyses where the isobar and parent resonances are included together in one unique formula of the total amplitude. In that case the total amplitude is written as a product of the parent resonance decay amplitude and the amplitude of the subsequent decay of the isobar taking into account the width effects of the unstable resonances by the Breit-Wigner forms.

In the following we do not question the first step; we rather indicate various difficulties which we have encountered in trying to use the K-matrix parameters from the analysis of Daum et al.. In the following subsection, we first recall the general K-matrix formalism.

The K-matrix formalism

In order to extract our theoretical parameters, γ and θ K 1 , we need the experimental partial widths. We also need them to verify our prediction of the model. And the question is: how to define a partial width? Resonances are often parametrized in terms of the Breit-Wigner form

BW (N R) r (m) ∝ 1 m r -m -i Γr 2 , or BW (R) r (m) ∝ 1 m 2 r -m 2 -im r Γ r (3.15)
in the non-relativistic and relativistic cases respectively. Resonance width, in principle, depends on energy, Γ r (m). This approximation assumes an isolated resonance with a single measured decay. If there is more than one resonance in the same partial wave which strongly overlap, an elegant way that provides the unitarity of the S-matrix4 is to use the K-matrix formalism for the two-body decays of the resonance states (for more details see Appendix C).

From the unitarity of the S-matrix

S ≡ 1 + 2iρ 1 2 T ρ 1 2 (3.16) one gets T -T † = 2iT † ρT = 2iT ρT † (3.17)
where the diagonal matrix ρ ij (m) is the phase space factor which is discussed in detail later in this section. In terms of the inverse operators Eq. (3.17) can be rewritten as

(T † ) -1 -T -1 = 2iρ (3.18)
One can further transform this expression into

(T -1 + iρ) † = T -1 + iρ (3.19)
Using the definition of the K-matrix

K -1 ≡ T -1 + iρ (3.20) 
one can easily find from Eq. (3.19), (3.20) that the K-operator is Hermitian, i.e.

K = K † (3.21)
From the time reversal invariance of S and T it follows that K must be symmetric, i.e. the K-matrix can be chosen to be real and symmetric. Resonances should appear as a sum of poles in the K-matrix. In the approximation of resonance dominance one gets therefore

K ij = a ′ f a ′ i f a ′ j m a ′ -m (3.22)
where the sum on a ′ goes over the number of poles with masses m a ′ . In the common approximation in the resonance theory, the couplings f a ′ i are taken to be real. The partial and total K-matrix widths can be defined as

Γ a ′ i (m) = 2f 2 a ′ i ρ ii (m) (3.23a) Γ a ′ (m) = i Γ a ′ i (m) (3.23b)
Note that the K-matrix width does not need to be identical with the width which is observed in experiment nor with the width of the T -matrix pole in the complex energy plane.

For the illustration, we give two simple examples.

• One resonance decaying to one channel

Consider a resonance a ′ that couples to one channel i:

1 2 Π a ′ a ′ 1 2 i i
Using the definition (3.22), the K-matrix for the elastic scattering is given by

K = f 2 a ′ 1 m a ′ -m (3.24)
One can easily obtain the transition amplitude

T = f 2 a ′ i m a ′ -m -if a ′ i ρ ii (m) = f 2 a ′ i m a ′ -m -i Γ a ′ (m) 2 (3.25) 
which is equivalent to the non-relativistic Breit-Wigner parametrization of Eq. (3.15).

• Two resonances decaying to one channel

Consider again an elastic scattering at mass m, but suppose that there exist two resonances with masses m a ′ and m b ′ coupling to channel i:

1 2 Π a ′ a ′ 1 2 i i + 1 2 Π b ′ b ′ 1 2 i i
In this case the K-matrix is

K = f 2 a ′ i m a ′ -m + f 2 b ′ i m b ′ -m (3.26)
Thus, the transition amplitude is given by

T = f 2 a ′ i m a ′ -m -i Γ a ′ (m) 2 -i Γ b ′ (m) 2 m a ′ -m m b ′ -m + f 2 b ′ i m b ′ -m -i Γ b ′ (m) 2 -i Γ a ′ (m) 2 m b ′ -m m a ′ -m (3.27)
If m a ′ and m b ′ are quite far away from each other relative to the widths, then the dominating contribution is either from the first or the second resonance depending 3.3.2 Observed problems in the K-matrix analysis 63 on whether m is near m a ′ or m b ′ . If it is so, then the amplitude is given merely by the sum of two Breit-Wigner forms:

T ≃ f 2 a ′ i m a ′ -m -i Γ a ′ (m) 2 + f 2 b ′ i m b ′ -m -i Γ b ′ (m) 2
(3.28)

In the other case, when two resonances are sufficiently close to each other or if they have rather large widths, the approximation (3.28) is no longer valid, however one can still write T as a sum of two Breit-Wigners (see Appendix C) but using different masses and couplings.

Then, as we show in the Appendix C, one should identify the K-matrix couplings with the ones predicted by the 3 P 0 model taking into account the mixing effect. To establish the relation between the definitions in these two formalisms, we identify the 3 P 0 partial widths Γ QP CM

K 1 i (M peak ) with Γ K 1 i = 2f 2 K 1 i Re[ρ ii (M peak )] (3.29) 
where ρ ij and f K 1 i are the phase space (we use the real part of the phase space since ρ ij is defined as a complex quantity as will be explained later) and the K-matrix couplings in the formalism of Daum et al. (see Appendix C where it is explained in detail how to embed the quark model into the K-matrix formalism). Indeed, the main experiments on the K 1 -decays [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF][START_REF] Carnegie | Q 1 (1290) and Q 2 (1400) Decay Rates and their SU(3) Implications[END_REF] were analysed with the same K-matrix formalism developed by Bowler et al. [START_REF] Bowler | A Two Resonance Analysis of the Q(Kππ) Enhancement[END_REF] and obtained very similar results. We use in our analysis the parameters of the analysis done by Daum et al.(ACCMOR experiment) which seems to be the most detailed. On the other hand, there are certain physical parameters of the fit which are not tabulated in the this paper. Then we also use, where necessary, the results of the K-matrix re-analysis of the ACCMOR data by the BABAR collaboration [START_REF] Aubert | Measurement of branching fractions of B decays to K 1 (1270)π and K 1 (1400)π and determination of the CKM angle α from B 0 → a 1 (1260) ± π ∓[END_REF]. Now, Eq. (3.9) is valid only for the narrow isobar. If we have to take into account the effect of the finite width of the isobar, we have to integrate the quasi-two-body phase space over the Breit-Wigner of the isobar. One has to underline, that in this approach we do not have to integrate over the Breit-Wigner of the K 1 -resonance unlike what is done, for instance, in Ref. [START_REF] Kokoski | Meson Decays by Flux Tube Breaking[END_REF]. We indeed calculate the width at the peak. On the contrary, if we would like to compare with the results of the Belle collaboration analysis [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF], this approach must be changed and we would have to integrate over the whole three-boby phase space of Kππ.

Observed problems in the K-matrix analysis

We found several problems in using the experimental analysis:

• Absence of the Kππ non-resonant contribution in the K-matrix.

We note that the K-matrix of Daum et al. is composed only of two resonance poles. There is no non-resonant contribution which is usually parametrized as polynomial in terms of m in the K-matrix parametrization. This implies the strong assumption that the quasi-two-body scattering of vector-scalar mesons (K * π and Kρ) passes only through the K 1 resonant intermediate states.

• D-wave amplitudes issue.

The results of the ACCMOR analysis show that the D-wave in K 1 (1270) → K * π depends strongly on the production transfer t in the Kp → Kππp reaction. This fact may escape the attention of PDG reader, because it averages between two sets of data (low t, high t). As for the D-wave amplitude in the Kρ channel, there is no information; only branching ratios are quoted in the paper but not the K-matrix couplings and their phases which are crucial for our study.

• The problem of correct definition of the total width

When the mass of the resonance at the peak is close to a decay threshold, different definitions of the resonance width are no longer equivalent. Such possible definitions are the width at the peak Γ(M peak ), the width at the S-matrix pole, and finally the full width if measured at one-half the maximum height (FWHH) of the Breit-Wigner distribution defined as

Γ F W HH K 1 ≡ m 2 -m 1 , (3.30) 
where m 1 and m 2 are defined as two solutions in m of the equation

f 2 a ′ (b ′ )1 ρ 11 (m) m a ′ (b ′ ) -m -iΓ a ′ (b ′ ) (m) = 1 2 f 2 a ′ (b ′ )1 ρ 11 (M peak ) m a ′ (b ′ ) -M peak -iΓ a ′ (b ′ ) (M peak ) (3.31)
using the K * π channel (labelled as channel 1).

The last two widths are found to be smaller than the first one. That is why the K 1 (1270) width, Γ K 1 (1270) = (90 ± 8) MeV/c 2 [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF], which is assumed to be defined as the full width if measured at one-half the maximum height of the Breit-Wigner distribution of K 1 , is less by a factor 1.5-2 than the total width at the peak (see Table 3.3) which is computed using the K-matrix couplings and summing over all possible intermediate channels, i.e.

Γ peak K 1 ≡ 2 i f 2 K 1 i Re[ρ ii (M peak )] (3.32)
We find, indeed, for the later to be of the order of 200 MeV/c 2 with the inclusion of the κπ channel (see Table 3.3). As a consequence, one observes a large discrepancy between the two possible definitions of the partial width that can be extracted from data of the ACCMOR collaboration: the partial width, defined in a "standard" way as Γ(K 1 (1270

) → Kρ) = Γ K 1 × B(K 1 (1270) → Kρ)
, is less by a factor 2-3 3.3.2 Observed problems in the K-matrix analysis 65 compared to the partial width at the peak, defined from the K-matrix couplings (see Table 3.4). The total width, defined by ACCMOR collaboration, seems therefore to be misleading. And, indeed, previous theoretical analyses (for instance, in Ref. [START_REF] Blundell | Properties of the Strange Axial Mesons in the Relativized Quark Model[END_REF]) unduely used for experimental partial widths the product of branching ratios with this total width.

K 1 Γ ACCM OR K 1 , MeV/c 2 Γ peak K 1 , MeV/c 2 Γ F W HH K 1 , MeV/c 2 K 1 (1270) 90±8 ∼190 ∼80 K 1 (1400) 165±35 ∼230 ∼230
Table 3.3: Experimental total decay widths, calculated using the fitted parameters from Ref. [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF]. In our opinion, only the widths calculated at the peak must be used to compute partial widths from the branching ratios. Note that the D-waves are not included in the Γ peak K 1 estimation.

Decay channel i Γ K 1 i = B K 1 i × Γ ACCM OR K 1 , MeV/c 2 Γ peak K 1 i = 2f 2 K 1 i Reρ ii , MeV/c 2 K 1 (1270) → (K * π) S 12±3 28±26 K 1 (1270) → (Kρ) S 41±10 122±28 K 1 (1400) → (K * π) S 162±13 211±59 K 1 (1400) → (Kρ) S 2±2 20±25
Table 3.4: Experimental partial decay widths, calculated using the fitted parameters from Ref. [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF]. As is is underlined before, only the values from the last column must be used.

• The problem of the phase space, ρ ij

In the expression of the T -matrix in the K-matrix formalism the phase space factor ρ ij is defined as

ρ ij (m) = 2k i (m) m δ ij (3.33)
Naively, k i , is the break-up momentum for the two-body decay channel i. But, in fact, Bowler et al. used for k i a particular formulation, proposed by Nauenberg and Pais [START_REF] Nauenberg | Woolly Cusps[END_REF], which tries to take into account two important effects:

-The requirement of the analiticity of the amplitude. The simplest way to satisfy it is the analytic continuation of the phase space through the threshold:

ρ ij (m) = 2k i (m) m δ ij , above threshold 2i|k i (m)| m δ ij , below threshold (3.34)
It is the basic idea of the so called "Flatte model" which has been used to analyse the a 0 (980) decay into ηπ and KK states, the resonance being very Strong interaction decays of the K 1 -mesons close to the KK decay threshold. Similarly, this effect is also present in the K 1 (1270) decays into Kρ and K * π channels with the resonance being at the threshold of Kρ. This is not so relevant for the K 1 (1400) decays where the resonance is far above the thresholds.

-The effect of the isobar width. The peculiarity of the K 1 (1270) with respect to a 0 (980) case is that the two-body final state includes one unstable particle, the isobar V (V = ρ or K * ). In order to take into account the width of the isobar, it is logical to integrate the three-body phase space over the Breit-Wigner of the isobar:

k i (m) = ∞ m min V k i (m, m V ) Γ V /2π (M V -m V ) 2 + Γ 2 V 4 dm V (3.35)
where k i (m, m V ) has its non-relativistic expression

5 k i (m, m V ) = 2m V m P m V + m P (m -m V -m P ) (3.36) 
The infinite upper limit in Eq. (3.35) corresponds to the analytical continuation of k i below the threshold for m V > mm P .

As an approximation to this integral, Nauenberg and Pais proposed to use the complex mass of the isobar, M V → M V -iΓ V /2, in the expression of the momentum k i (m, m V ). These two prescriptions lead to a complex phase space, defined as

ρ ij (m) = 2k i (m) m δ ij = 2 m 2M V m P M V + m P m -M V -m P + i Γ V 2 i δ ij (3.37) 
where P (P = K or π) is the final state pseudoscalar meson in the quasi-two-body decay. According to us this prescription of using a complex mass is not satisfactory for the ρ and K * , especially for K 1 (1270) → Kρ. Indeed, we found by direct integration of Eq. (3.35) that the results are quite different from the ones obtained using Eq. (3.37), especially the real part of ρ ij (m) which corresponds to the real phase space in the K 1 (1270) → Kρ case (see Fig. 3.3). The same observation was formulated by Frazer and Hendry [START_REF] Frazer | S-Matrix Poles Close to Threshold[END_REF] when the paper of Nauenberg and Pais was published. They pointed out that this approximation is valid only for the very narrow resonances. The failure of this approach is very worrying since it is basic for the whole analysis.

• The problem of the P -and D-waves 5 For the relativistic phase space Eq. (3.20) no longer defines a real K-matrix in the physical region. The reason is that the relativistic momentum does not remain imaginary below the threshold due to an additional complex branch point ∝ m 2 -(m Vm P ) 2 . Therefore Nauenberg and Pais Ref. [START_REF] Nauenberg | Woolly Cusps[END_REF] restricted to non-relativistic case. In addition, the prescription of Nauenberg and Pais has not been established for the P -and D-waves. We do not know what has been done exactly by Daum et al. to treat these waves. On the other hand, such waves are to be included in the analysis, especially the κπ in the P -wave is very important. Since we are not able to redo the analysis by Daum et al. we use the couplings to K * 0 (1430)π channel refitted by BABAR collaboration [START_REF] Aubert | Measurement of branching fractions of B decays to K 1 (1270)π and K 1 (1400)π and determination of the CKM angle α from B 0 → a 1 (1260) ± π ∓[END_REF]. They include a centrifugal barrier factor depending on the complex momentum which is defined by Eq. (3.37)6 . However, there is a new following problem here. The approximation of BABAR for the centrifugal barrier factor is not an approximation to the integral

∞ m min V k i (m, m V ) k 2 i (m, m V ) R2 1 + k 2 i (m, m V ) R2 Γ V /2π (M V -m V ) 2 + Γ 2 V 4 dm V (3.38)
which gives a positive real part while the approximation gives a negative one. This contradiction can be masked by the normalization of the centrifugal barrier factor 68

Strong interaction decays of the K 1 -mesons at the peak. Although, this is obviously not a satisfactory solution.

• The diagonalization of the mass matrix and corresponding rotation of the K-matrix couplings

In several cases we have to deal not with the K-matrix couplings but with Breit-Wigner parametrization of the intermediate resonances. This is the case, for example, in our calculation of the J -function (2.15). This is also the case of the Dalitz plot analyses such as the one of the Belle collaboration [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF]. Then the relevant couplings are slightly different from those of the K-matrix. They are obtained from the latter by a complex rotation. Indeed, to pass to the physical states we have to diagonalize the mass matrix of the states in the K-matrix formalism (see Appendix C). This diagonalization can be performed by a complex orthogonal matrix. This rotation is complex because of the non-diagonal elements of the imaginary part of the mass matrix. The complex rotation angle (which depends on the energy) has both real and imaginary parts which are found to be of the order 10 • (this result was obtained by explicit diagonalization of the mass matrix). As a consequence, this rotation affects the couplings: the rotation makes the couplings of the Breit-Wigner somewhat different from the ones of the real K-matrix. The magnitudes of the new couplings are different and phases appear. We found that the largest couplings (i.e. considering the dominant decay channels, K 1 (1270) → Kρ and K 1 (1400) → K * π) are slightly affected and acquire small phases. On the other hand for the smallest couplings (K 1 (1270) → K * π and K 1 (1400) → Kρ) the rotation effects are more important. In practical calculations of λ γ for the present moment we have neglected these effects so that we use directly the couplings obtained from the 3 P 0 model.

• Relative signs and phases

It appears that the phases of the amplitudes, deduced from the K-matrix are not exactly what is observed: this is a phenomenon of so-called "off-set" phases. The Kρ channel was found to have an additional unexplained phase of 30 • [45] relative to the (K * π) S which was set as a reference one. For the κπ channel the discrepancy reaches 90 • .

Numerical results

Let us summarize our final prescriptions we use for the calculation of the partial widths and for the further extraction of our theoretical model parameters from the experimental measurements. Our basic approach is to use partial widths at the peak on both, theoretical and experimental, sides. We abandon the idea of using the branching fractions and the total K 1 -widths for the comparison with our predictions.

1. For the theoretical prediction, in order to take into account the isobar width effects in our theoretical prediction of the partial widths Γ QP CM

K 1 i
, the amplitudes (3.8) 3.4.1 Fit of parameters γ and θ K 1 69 squared are integrated over the invariant mass of the isobar:

Γ QP CM K 1 i = 8π 2 M K 1 -m P m min V E V E P k P M K 1 |A i (K 1 → V P )| 2 Γ V /2π (M V -m V ) 2 + Γ 2 V 4 dm V (3.39)
Note that since we consider the widths at the peak there is no integration over the K 1 invariant mass unlike what is done in several theoretical papers (e.g. see Ref. [START_REF] Kokoski | Meson Decays by Flux Tube Breaking[END_REF]). Moreover, one can notice that the integration over the mass of the isobar is one within the correct physical region restricted by the corresponding physical bound of the two-body decay (i.e. we use the real phase space).

2. For the experimental input, we make the simple assumption that the partial widths, calculated from the K-matrix couplings at the peak according to Eq. (3.40), are correct, although the complex phase space à la Nauenberg and Pais (3.37) might be not correct (i.e. what we measure by fitting data, is always the combination like

f 2 a ′ (b ′ )i × ρ ij (m)
which are assumed to be extracted correctly). Therefore, we use the K-matrix couplings and the real part of the complex phase space à la Nauenberg and Pais in order to extract the experimental values of the partial widths

Γ peak K 1 i = 2f 2 a ′ (b ′ )i Re[ρ ij (M peak )] (3.40) 
3. We calculate this partial width according to Eq. (3.23) also for the P (L = 1) and D-waves (L = 2), assuming that the K-matrix couplings f contain the barrier factors B L i (m) that are properly normalized at the peak:

f a(b)i (m) P,D-waves = f a(b)i B L i (m) B L i (M peak ) B L i (m) = k 2 i (m) R2 1 + k 2 i (m) R2 L/2 (3.41) 
where R2 = 25 GeV -2 [START_REF] Aubert | Measurement of branching fractions of B decays to K 1 (1270)π and K 1 (1400)π and determination of the CKM angle α from B 0 → a 1 (1260) ± π ∓[END_REF]. This assumption seems to be correct since it leads to the calculated branching ratios that are very close to the ones announced in the paper by Daum et al.. In any case we avoid as much as possible to rely on the experimental data on K 1 (1270) → Kρ and the D-wave of K 1 (1270) → K * π and we trust our theoretical prediction.

Fit of parameters γ and θ K 1

In order to extract our phenomenological parameters, the quark-pair-creation constant γ and K 1 mixing angle, we do a fit using the method of least squares. As an experimental input we use the partial widths (namely, Γ peak K 1 i from Table 3.4) only of the following processes: K 1 (1270) → (K * π) S , K 1 (1400) → (K * π) S , K 1 (1400) → (Kρ) S , which are assumed to be Gaussian distributed with mean Γ QP CM K 1 i (γ, θ K 1 ) and known variance σ Γ peak K 1 i . The D-waves are not taken into account in our fit. Moreover, the dominant channel K 1 (1270) → Kρ due to the dangerous threshold and phase space effects is avoided since the narrow width approximation can be incorrect for the decays near the threshold and here the width effects can play a significant role.

Then, the likelihood function is constructed as a sum of squares

χ 2 (γ, θ K 1 ) = -2 ln L(γ, θ K 1 ) = 3 i=1 (Γ peak K 1 i -Γ QP CM K 1 i (γ, θ K 1 )) 2 σ 2 Γ peak K 1 i (3.42)
In order to find the unknown parameter θ K 1 the function χ 2 is minimized, or equivalently the likelihood function L(θ K 1 ) is maximized. The minimization of the χ 2 gives the minimal value χ 2 min = 0.61 and the estimators γ = 4.0 and θK 1 = 59 • . The covariance matrix for the estimators V ij = cov[ ξi , ξj ] can be found from

(V -1 ) ij = 1 2 ∂ 2 χ 2 ∂ξ i ∂ξ j ξ= ξ (3.43) Thus one obtains cov[γ, θK 1 ] = σ 2 γ C γθ K 1 C γθ K 1 σ 2 θ K 1 =
0.29 0.99 0.99 107.0 (3.44) where the diagonal elements give the variances σ 2 γ and σ 2 θK 1

. Finally, one finds the fitted values of the quark-pair-creation constant and K 1 mixing angle:

γ ≃ 4.0 ± 0.5, θ K 1 ≃ (59 ± 10) • (3.45)
Taking for granted that our theory is correct, one is now interested in the quality of the agreement between data and various realizations of the theory, determined by the set of parameters, namely {γ, θ K 1 }. For metrological purposes one should attempt to estimate as best as possible the complete set of parameters {γ, θ K 1 }. In this case we use the offset-corrected χ 2 [71]:

∆χ 2 (γ, θ K 1 ) = χ 2 (γ, θ K 1 ) -χ 2 min (3.46)
where χ 2 min is the absolute minimum value of the χ 2 function of Eq. (3.42) which is obtained when letting our model parameters free to vary. The minimum value of ∆χ 2 is zero by construction. Here one has to notice, that this absolute minimum does not correspond to a unique choice of the model parameters. This is due to the fact that the theoretical predictions used in the analysis are affected by important theoretical systematical errors. Since these systematics are restricted in the allowed regions there is always a multidimensional degeneracy for any value of χ 2 . However, since in our analysis there are 3.4.2 Model predictions for partial widths 71 only two model parameters, our predictions for {γ, θ K 1 } are not affected by any other theoretical predictions.

A necessary condition is that the confidence level (CL) constructed from ∆χ 2 (γ, θ K 1 ) provides correct coverage is that the CL interval7 for {γ, θ K 1 } covers the true parameter value with a frequency 1-CL if the measurements were repeated many times. The corresponding CL intervals for the confidence level of CL=68% are shown in Fig. 3.4.

Model predictions for partial widths

Now, we can make systematic predictions for various processes. First, it is very useful to check our result for the quark-pair-creation constant γ prediction with the much better studied b 1 → (ωπ) S and b 1 → (ωπ) D decays8 which depend only on γ. One can see from Fig. 3.5 that our estimation for γ, determined from the K 1 -decays (3.45), is in a good agreement with the one extracted from the b 1 → ωπ decay. Moreover, the extracted D/S ratio of the partial amplitudes is very well predicted and coincides with the measured value including the sign: (A D /A S ) QP CM ≃ 0.28 while the experiment gives (A D /A S ) exp = 0.277±0.027 [START_REF] Nakamura | Review of particle physics[END_REF]. Note that the Belle collaboration omits the D-waves in the B → J/ψK 1 analysis.

To summarize, we give in Table 3.5 our predictions for the S-wave partial widths of the strong interaction decays of the K 1 -mesons, using the fitted values of γ and θ K 1 . One can see that the agreement is satisfactory except for the K 1 (1270) → Kρ channel. This is not unexpected in view of the difficulties of the experimental treatment as explained in the previous section.

Decay channel i Γ QP CM K 1 i , MeV/c 2 Γ peak K 1 i , MeV/c 2 K 1 (1270) → (K * π) S 31 28±26 K 1 (1270) → (Kρ) S 61 122±28 K 1 (1400) → (K * π) S 209 211±59 K 1 (1400) → (Kρ) S 1 20±25
Table 3.5: Theoretical predictions for the partial decay widths, calculated using the fitted parameters γ = 4.0 and θ K 1 = 59 • and compared to the experimental partial values of widths at the peak (see Table 3.4).

As for the D-waves in the K 1 -decays, our impression is that they are poorly determined experimentally. Our prediction (Γ(K 1 (1270) → (K * π) D ) ≃ 3 MeV/c 2 ) lies below the experimental numbers: the couplings for the D-waves are not given in the paper by Daum QPCM constraints for the quark-pair-creation constant γ and the K 1 mixing angle θ K 1 obtained from the fitted partial decay widths at the peak, calculated using the K-matrix couplings (Table 3.4). The cross indicates the optimal values of γ and θ K 1 extracted from the fit. et al.. Tentatively they were re-fitted by the BABAR collaboration [START_REF] Aubert | Measurement of branching fractions of B decays to K 1 (1270)π and K 1 (1400)π and determination of the CKM angle α from B 0 → a 1 (1260) ± π ∓[END_REF] from which we deduce the partial width Γ(K 1 (1270) → (K * π) D ) = (34 ± 3) MeV/c 2 . Here one has to notice that the errors of the re-fitted parameters are surprisingly small as the ones obtained by Daum et al..

Prediction of signs of decay amplitudes and the "off-set" phase issue

Let us recall that our goal is to calculate the J -function (2.15) which describes the threebody K 1 → Kππ decay. Let us stress that the ω n moments, used for the determination of the photon polarization parameter λ γ , include the expression Im[ n • ( J × J * )] which depends crucially on the relative phases of the couplings (2.42) and form factors (2.45). These quantities are directly related to the two-body decay amplitudes, calculated by using the quark model. The phases of these amplitudes do not make sense by themselves but only in the product of two amplitudes of the subsequent processes which describe the final three-body decay K 1 → Kππ. We define the relative phases for two K 1 → Kππ amplitudes of various partial waves via different intermediate isobar states (i.e. (K * π) S , (K * π) D , (Kρ) S ). Standardly, the reference partial wave is chosen to be the S-wave of K * π. For instance, the relative phase of the K 1 → Kρ → Kππ channel is defined as

δ ρ ≡ arg A S (K 1 → Kρ) × A P (ρ → ππ) A S (K 1 → K * π) × A P (K * → Kπ) (3.47)
One has to note, that the total relative phase which is contained in the J -function contains of course complex the phase of the denominator of Breit-Wigner of the isobar. For the conventions necessary to define δ ρ we refer to Appendix D. δ ρ is independent of the conventional phase factors of the meson states (e.g. meson wave functions). In the 3 P 0 model each decay amplitude is real with suitable conventions of the wave functions and by factorization of spherical harmonics. Then in the quark model δ ρ is real. This is due to specific properties of the transition operator.

Sign of the D/S ratio

The simplest prediction is the one concerning the D/S ratio in the b 1 → ωπ and a 1 → ρπ decays. Indeed, this sign depends only on the well known standard conventions. It is then striking that all the signs are correctly predicted by the model. In the case of b 1 and a 1 these signs are well measured and given in PDG. For the K 1 → K * π channel the signs are not given by Daum et al. in [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF]. However, we can read the relative phase for K 1 (1270) from Fig. [START_REF] Yang | Observation of B + → K 1 (1270) + γ[END_REF] in Ref. [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF] which is positive (f b5 /f b1 > 0), while for K 1 (1400) we have to rely on the analysis of BABAR because it is not possible to fix it from the figure since the D-wave is too weak overwhelmed compared to the D-wave of K 1 (1270) (f a5 /f a1 < 0).

In the paper of Gronau et al. [START_REF] Gronau | Photon polarization in radiative B decays[END_REF][START_REF] Gronau | Measuring the photon helicity in radiative B decays[END_REF] the D/S phase for K * π is given as δ D/S = (260±20) • . We believe that the authors were misled by incorrect interpretation of Fig. [START_REF] Yang | Observation of B + → K 1 (1270) + γ[END_REF] (bottom-right) in [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF]: the plotted phase indeed peaks at 260 • at M Kππ ≈ 1.4 GeV/c 2 . But this is not the phase we are looking for since it contains the phase from the Breit-Wigner of K 1 (1270) which is dominating over the K 1 (1400) contribution and gives an additional phase of approximately 90 • . Hence, the phase we are interested in must be read as δ D/S ≈ (260 -90) • ∼ 180 • . We must stress the following subtle point: the plotted phase is the difference of the phases of the D-wave strongly dominated by K 1 (1270) and the one of the S-wave which includes large contributions of both resonances. As a consequence, paradoxically, there appears a bump in the D-wave phase diagram, peaked at M Kππ ∼ (1.3 -1.4) GeV/c 2 which is essentially determined by the tail of the Breit-Wigner of K 1 (1270). We checked this conclusion by explicit calculation of the amplitudes using the K-matrix couplings (see Fig. 3

.6).

Relative sign of the Kρ/K * π couplings.

We study the real phase (i.e. the relative sign) of the K 1 (1270) → K * π and K 1 (1270) → Kρ amplitudes, which plays important role in the λ γ determination using the ω-method (due to the strong dependence on the phase of the interference term Im[ n • ( J × J * )]). Indeed, the odd moments of ω change their sign if one changes the relative sign between the

K + 1 → K + ρ 0 → K + π -π + and K + 1 → K 0 * π + → K + π -π + amplitudes.
One has to notice that in this case this phase can be hardly extracted from the K-matrix analysis by Daum et al. due to some unknown conventions (in particular, the order of particles that is significant for the determination of the couplings signs). We then rely on the recent analysis by the Belle collaboration of the B → J/ψ(ψ ′ )Kππ decay which gives more explicit explanation of the conventions. Here we summarise what is new in the Belle B → J/ψ(ψ ′ )Kππ paper [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF]. First we will list up the general conclusions of this paper and then, discuss some details of the Dalitz plot shown in this paper, which provides important information to our work.

General conclusions of the study of B → J/ψKππ by the Belle collaboration

This paper, in principle, focuses on the measurement of the branching ratios of B + → J/ψK + π + π -and B + → ψ ′ K + π + π -. Since the Kππ final state comes from various resonances, K res , this analysis provides information of the K res → Kππ strong decays. Since the K res = K 1 (1270) turned out to be a prominent component (for both J/ψ and ψ ′ ), some detailed study of K 1 (1270) → Kππ has been done:

• The Dalitz plot for the three-body decays is shown. We discuss more details on this later.

• The intermediated two-body decay branching ratios have been re-determined (see Table 3.6). The branching ratios for the dominant decay modes, K 1 (1270) → Kρ and K 1 (1270) → K * π, are found to be slightly different from the previous measurements (PDG), although they are still in accordance within several standard deviations. On the other hand, the K 1 (1270) → K * 0 (1430)π channel, which was supposed to have a large branching fraction (B(K 1 (1270) → K * 0 (1430)π) = (28±4)%) according to the previous measurements [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF][START_REF] Nakamura | Review of particle physics[END_REF], was found to have a significantly smaller contribution of the order of 2% (see Table 3.6).

• In addition, by floating the mass and width of the K 1 (1270) in an additional fit of the B + → J/ψK + π + π -data, a smaller mass of (1248.1 ± 3.3(stat) ± 1.4(syst)) MeV/c 2 and larger width (119.5 ± 5.2(stat) ± 6.7(syst)) MeV/c 2 were measured for the K 1 (1270). Of course, there is a correlation between the fact that the "scalar+π" component becomes much smaller and the fact that the K * π and Kρ contributions become larger (see Table 3 The fitted branching ratios of the K 1 -decays measured by the Belle collaboration in the analysis of B → J/ψKππ decay [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF].

Here we want to draw attention of the reader to the conceptual difficulties raised by the definition of the K 1 (1270)-width. In the Fit 1 the K 1 width is the one given by PDG while in the Fit 2 the width was treated as a free parameter. Due to the threshold effect one should not expect that the width measured by the Belle collaboration from the Breit-Wigner denominator at the peak should coincide with the one defined by PDG, although it should be much larger. One observes that the floated width is larger than the PDG value but it is still much smaller than 200 MeV/c 2 as we would expect from the calculation using the K-matrix formalism (see Table 3.3).

One has to point out that the D-waves are not taken into account in the master formula of Belle. On the other hand, we found from the theoretical study that the D-wave of K * π can have a small but non-negligible effect. In principle, there are two bumps due the presence of the D-wave, but it is found that the one located in the intersection region of the M Kπ ∼ M K * and M ππ ∼ M ρ on the Dalitz plot is masked by the dominating peak of ρ. Using a Monte-Carlo simulation, we observed a second small but non-negligible bump at low M ππ (see Fig. 3.7 in the center).

Dalitz analysis

In [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF], the Dalitz plots for K 1 (1270) → Kππ is shown in the three variable planes, M 2 (K + π + π -), M 2 (K + π -) and M 2 (π + π -). On the Dalitz plot in the M 2 (Kπ) -M 2 (ππ) plane, a strong interference effect between K 1 → K * π and K 1 (1270) → Kρ is observed (see Fig. 3.7). In particular, it is pointed out that the weakening of the Kρ in the region of M (Kπ) > M K * (892) is originated from the interference of the Kρ and K * π amplitudes. Here we will attempt to study the real phase (in another word, the relative sign) of the K 1 → K * π and K 1 (1270) → Kρ amplitudes using this Dalitz plot. Indeed, as we will see later-on, this information of the phase has an important consequence on our λ γ determination.

Determining the relative sign of the Kρ/K * π amplitudes In this section, we demonstrate how the relative phase between the Kρ/K * π amplitudes can be determined from the Dalitz plot.

In [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF], the full amplitude of K 1 three-body decays is defined as

|M(s K 1 , s K * , s ρ )| 2 = |a K * A K * (s K 1 , s K * ) + a ρ A ρ (s K 1 , s ρ )| 2 (3.48)
Figure 3.7: Dalitz plots of B + → K + 1 (1270)γ → K + π -π + γ, measured by the Belle collaboration [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF] (left) and MC simulated for the "off-set" phase equal to 0 (center) and π (right) of the Kρ channel relative to (K * π) S . The "correct" phase δ ρ = 0 corresponds to our quark model prediction.

where the coefficients a K * , ρ represent the strong decay of K 1 → Kππ through K * , ρ intermediate states. The amplitudes A K * , ρ are defined as9 

A V (s K 1 , s V ) = M K 1 Γ K 1 M 2 K 1 -s -iM K 1 Γ K 1 × √ M V Γ V M 2 V -s V -iM V Γ V × 1 + p 2 i s K 1 cos 2 θ ik (3.49)
where p i is the breakup momentum of P i or V in the K 1 reference frame and θ ik is the angle between the momenta of P i and P k in the V reference frame, which can be expressed in terms of s K 1 , s ij , s ik . Compared to the obtained Dalitz plot, we can determine the coefficients a K * , ρ including the relative phase between them. The obtained result by the Belle collaboration yields [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF]:

|a K * | = 0.962 ± 0.058 ± 0.176, |a ρ | = 1.813 ± 0.090 ± 0.243 δ ρ ≡ arg(a ρ /a K * ) = -(43.8 ± 4.0 ± 7.3) • (3.50)
Formula (3.48) can be written in the following general form factorizing out the phase:

|M(s K 1 , s K * , s ρ )| 2 = c 0 (s K 1 , s K * , s ρ )+c 1 (s K 1 , s K * , s ρ ) cos δ ρ +c 2 (s K 1 , s K * , s ρ ) sin δ ρ (3.51)
where c i (s, s Kπ , s ππ ) are the known functions, expressed in terms of various combinations of the real and imaginary parts of |a The issue of the complex phase

K * |A K * (s K 1 , s K * ) and |a ρ |A ρ (s K 1 , s ρ ).
In principle, the QPCM predicts real K 1 → V P amplitudes, without any complex phases. This should correspond to the K-matrix couplings. The complex rotation of the K-matrix states to the physical states should introduce complex phases but we found by explicit calculation (see Appendix C) that the imaginary part of the rotation angle is small:

ϕ a ′ →a ph ≃ 10 • (3.53)
However, the Belle collaboration measured a sizebly larger imaginary relative phase (i.e. Eq. (3.50)) of δ ρ ≃ -44 • . We recall also that Daum et al. measured a non-zero phase of the order of 30 • . Similar value was found in the reanalysis of the ACCMOR data by the BABAR collaboration:

δ ρ = -31 • [54].
There is no explanation of this complex phase in a definite theoretical model: neither in the 3 P 0 quark model nor in the most general quasi-two-body K-matrix approach. Indeed, the "off-set" phase which is introduced in the analysis by Daum et al. depends only on the decay channel and is the same for the lower and upper resonances. The general production amplitude for each channel in the reaction K -p → (K -π + π -)p is written as [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF][START_REF] Aubert | Measurement of branching fractions of B decays to K 1 (1270)π and K 1 (1400)π and determination of the CKM angle α from B 0 → a 1 (1260) ± π ∓[END_REF] 

F i = e iδ i j (1 -iKρ) -1 ij P j (3.54)
where the factor (1-iK) -1 represents the propagation and the decay of the K 1 -resonance. The last factor P j describes the resonance production which can be in principle complex (indeed, one finds in [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF] that there is a non-zero relative phase between the production couplings of two K 1 -resonances). From Eq. (3.54) it is obvious the "off-set" phase δ i can not be ascribed to either the resonance decay or production amplitude. This puzzling situation must not be ignored and has to be studied more carefully. In the present, we use the model prediction for the J -function as it is with pure real couplings. On the other hand, to adopt pragmatic attitude we explore the effect of introducing this additional "off-set" phase δ ρ = -δ Belle ρ in the calculation of the J -function and the estimation of the theoretical uncertainty of λ γ .

The issue of the κπ channel

The PDG assigns a large branching ratio B(K 1 (1270) → K * 0 (1430)π) = (28 ± 4)%. It is extracted as all the branching ratios, from the ACCMOR data and analysis. However, this interpretation is dubious. The original ACCMOR measurement shows indeed a clear, strongly coupled peak in the "scalar + π" channel around the mass M Kππ ∼ 1270 MeV/c 2 .

3.4.4

The issue of the κπ channel 79 However, it is not at all claimed that the scalar is K * 0 (1430); it is treated as a lower and much broader scalar meson (M ≃ 1.25 GeV/c 2 , Γ ≃ 600 MeV/c 2 ); or could be a continuum (Kπ) S-wave according to [72].

The K * 0 (1430) meson is the scalar orbitally excited state of kaon which has the mass M K * 0 (1430) = (1425±50) MeV/c 2 and width Γ K * 0 (1430) = (270±80) MeV/c 2 [START_REF] Nakamura | Review of particle physics[END_REF]. According to quark models, the constituent quarks are in the 3 P 0 state. In order to estimate the K * 0 (1430)π contribution we use QPCM to calculate the P -wave amplitude for the decays K 1 (1270) → K * 0 (1430)π. One can see from Fig. 3.8 that A P (K 1 (1270) → K * 0 (1430)π) is strongly suppressed compared to A S (K 1 (1270) → K * π). Moreover, there is also a suppression due to the phase space. Finally, after the integration over the phase space for √ s Kπ within the allowed physical range [m K + m π ; M K 1 (1270)m π ], we predict that

B(K 1 (1270) → K * 0 (1430)π) B(K 1 (1270) → K * (892)π) < 0.01% (3.55)
in blatant contradiction with the PDG entry.

What is most striking is that indeed, the Belle collaboration finds B(K 1 (1270) → K * 0 (1430)π) ≃ 2% (see Table 3.6); it is very small as we predict. They did not find any other "lower scalar+π" component in the K 1 -decay: the B missing with respect to ACCMOR seems to be filled by an enlargement of Kρ. Therefore, in our analysis, we do not include the K 1 (1270) → K * 0 (1430)π channel. Neither do we include any other possible scalar in the presented results. However, to take into account the contrary conclusions of ACCMOR, we keep in mind the possibility that there is some significant portion of the branching ratio carried by a very wide scalar meson, different from the K * 0 (1430), such as the low lying state K * 0 (800) (also called κ) [START_REF] Descotes-Genon | The K * 0 (800) scalar resonance from Roy-Steiner representations of πK scattering[END_REF]. Note that such state is most probably not a qq state and therefore the decay into κπ can not be estimated within our theoretical model. Such contribution has not been tested explicitly in the analysis by the Belle collaboration.

Let us mention two other relevant facts: on the one hand the non-strange counter part of κ(800), σ, is found with sizable branching ratio in the decay of a 1 (1260) in the σπ state. On the other hand it is surprising, as noticed by Daum et al., that there is no κπ channel in the K 1 (1400) decay. 1270) . The K 1 mixing angle θ K 1 is taken to be 60 • .

|A S (K 1 (1270) → K * π)| 2 (red) and |A P (K 1 (1270) → K * 0 (1430)π)| 2 (blue) for s K 1 = M 2 K 1 (

Chapter 4

Sensitivity studies of the polarization measurement with B → K 1 (1270)γ in the DDLR method

In this chapter, we perform a Monte Carlo simulation in order to estimate the sensitivity of the future experiments to the polarization parameter λ γ using the DDLR method.

Statistical error on the polarization parameter

Our target is to experimentally justify or falsify the left-handed nature of the SM, e.g. |λ γ | ≃ 1. However, since the measured value is always accompanied by the experimental errors, the test of the SM can be achieved only in terms of probability. In this section, we will investigate at which extent the polarization parameter can be determined in the future measurements by SuperB and LHCb1 . As described in Section 2.4.2, in the DDLR method, once experimental data is obtained, we compute the ω-value for each event (inputting the kinematical variables of the event into Eq. (2.59)), which immediately gives the best fitted value of λ γ through Eq. (2.64):

λ obs γ = ω ω 2 (4.1)
Then, using this λ obs γ value, Eq. (2.65) readily gives the experimental error to the λ γ :

σ -2 λ obs γ = N ω 1 + λ obs γ ω 2 (4.2)
In the following, we attempt to obtain the σ λγ value by assuming the SM, i.e. we generate "fake" data by using λ γ = 1 (N = 10 3 and N = 10 4 events as an example) and Sensitivity studies of the polarization measurement with B → K 1 (1270)γ in the DDLR method follow the procedure described above (see also the flow chart in Fig. 4.1).

In order to generate the events as well as to compute the ω distribution, we use the input hadronic parameters as given in Chapter 3, taking into account the form factor momentum transfer dependence. These parameters include the experimentally measured isobar widths, the 3 P 0 model parameters (the meson wave function radii, the quark-paircreation constant, damping factor) and the phenomenological K 1 mixing angle.

Fix λ γ = λ th γ MC generation of N events according to PDF event "i": In Table 4.1, we present our result in the case of the SM, i.e. λ γ = 1. One can see from the table, that for 10 4 events the error on λ γ is smaller than 0.1. We found that the errors do not change much for different values of λ γ . We found that the ω distributions for the K + π + π -and K 0 π + π -, and K 0 π + π 0 and K + π -π 0 are the same. Then, it should be pointed out an advantage of using the ω-variable: all the channels corresponding to the same PDF can be merged altogether. That means that one can compute ω-variable for each event and build a single histogram, which can increase the statistical significance.

{s i 13 , s i 23 , cos i } Calculation of ω i = ω(s i 13 , s i 23 , cos i )
In the above, we use the full decay distribution, not only on the information of the angular part but also the information of the invariant mass of the hadronic system. In the original DDLR paper [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF], it was pointed out that using an average decay distribution 4.1 Statistical error on the polarization parameter 83 in place of a full decay distribution for each set of invariant masses results in a decrease of the sensitivity. In order to test this, we also produce the ω ′ -distribution including only the cos θ-dependence, i.e. integrated over the Dalitz plot

ω ′ (cos θ) = Im[ n • ( J × J * )] | J | 2 2 cos θ 1 + cos 2 θ (4.3)
where 

| J | 2 = | J | 2 ds 13 ds 23 Im[ n • ( J × J * )] = Im[ n • ( J × J * )]
B + → (K + π -π + ) K 1 (1270) γ and B 0 → (K 0 π + π -) K 1 (1270)
γ depending on the λ γ determination method: the error of λ γ which is determined by using the DDLR method (red) and the error determined from the up-down asymmetry (blue). Red dashed curve corresponds to the error of λ γ determined by the DDLR method for

B + → (K 0 π + π 0 ) K 1 (1270) γ and B 0 → (K + π -π 0 ) K 1 (1270) γ decays.
Finally, let us give a rough estimate for the event numbers expected by the future experiments, namely the SuperB factories and LHCb. Taking the exclusive branching fraction B(B + → K + 1 (1270)γ) = 4.3 × 10 -5 and assuming that the decays K 1 → Kππ are by K * π (16%) and Kρ (42%) channels, we obtain the observable branching fraction of B(B + → (K + π -π + ) K 1 (1270) γ) = 4.3 × 10 -5 × (0.16 * 4/9 + 0.42 * 1/6) ≃ 0.6 × 10 -5 and B(B + → (K 0 π + π 0 ) K 1 (1270) γ) = 4.3 × 10 -5 × (2 * 0.16 * 2/9 + 0.42 * 1/3) × 1/3 ≃ 0.3 × 10 -5 Sensitivity studies of the polarization measurement with B → K 1 (1270)γ in the DDLR method σ λγ (statistical error) N events = 10 3 N events = 10 4

B + → (K + π -π + ) K 1 (1270) γ ± 0.18 ± 0.06 B + → (K 0 π + π 0 ) K 1 (1270) γ ± 0.12 ± 0.04 B 0 → (K 0 π + π -) K 1 (1270) γ ± 0.18 ± 0.06 B 0 → (K + π -π 0 ) K 1 (1270) γ
± 0.12 ± 0.04 Table 4.1: Sensitivity study of the polarization measurement with B → K 1 (1270)γ in the DDLR method. Our estimates of the statistical errors to λ γ in the case of SM (i.e. λ γ = +1) is shown in this table. The event sample, 10 3 and 10 4 , roughly corresponds to the annual expected events of SuperB and LHCb, respectively. The systematic error due to the uncertainties from these hadronic parameters is not included and has to be carefully studied.

(here the last factor 1/3 comes from the fact that K 0 is observed as π + π -from the K S -decay). In order to get a more realistic estimation of the required number of signal events at the future experiments, we take the total efficiency of the reconstruction and selection to be of the order of 0.1% as in the case of B → K * γ and B s → φγ at the LHCb experiment [START_REF] Barsuk | The road map for the radiative decays of beauty hadrons at LHCb[END_REF] and of the order of 1% at the B-factories2 [START_REF] Yang | Observation of B + → K 1 (1270) + γ[END_REF]. Then, we obtain the yield of the nominal data taking to be of the order of

N LHCb (B + → (K + π -π + ) K 1 (1270) γ) ≈ 5 × 10 3 N LHCb (B + → (K 0 π + π 0 ) K 1 (1270) γ) ≈ 2.5 × 10 3 (4.5) 
of signal events for an accumulated luminosity of 2 fb -1 at LHCb. The estimated annual yield at SuperB factories with 2 ab -1 of integrated luminosity is of the order of

N SuperB (B + → (K + π -π + ) K 1 (1270) γ) ≈ 1 × 10 3 N SuperB (B + → (K 0 π + π 0 ) K 1 (1270) γ) ≈ 0.5 × 10 3 (4.6) 
events, respectively. Thus, the event sample, 10 3 and 10 4 , studied in Table 4.1, roughly corresponds to the annual expected events of SuperB and LHCb, respectively. It should be noted that the decay modes including a neutral particle are difficult to study at LHCb, i.e. LHCb may well study the first decay channel in Table 4.1 whereas SuperB can study all of them reasonably well. We want to underline that the above considerations assume a perfect knowledge of the decay observables. In practise, in order to be realistic, the experimental effects, such as measurement errors, backgrounds, reduced acceptance, etc., must be taken into 4.2 Theoretical uncertainties of the hadronic model and error on the polarization parameter 85 account. In practice, this can be done by constructing the reduced variable ω from decay distributions convoluted with functions describing the detector effects [14]

W ′ (s 13 , s 23 , cos θ) = D(f + λ γ g) D(f + λ γ g)ds 13 ds 23 d cos θ (4.7)
where D(s 13 , s 23 , cos θ) describes the detector acceptance and efficiency. Thus, the photon polarization parameter can be extracted by comparing the experimental ω-distribution to the corrected theoretical distributions computed with the help of MC methods.

Theoretical uncertainties of the hadronic model and error on the polarization parameter

Up to now, we have not considered the systematic errors coming from the hadronic parameters. We must reiterate that our hadronic model applied in the above analysis is approximate; it depends on basic assumptions like the non-relativistic approximations inherent to the quark models. It depends also on parameters, some of them being internal to the full quark model, like the meson radii, and one being purely phenomenological, the mixing angle θ K 1 (we must note that there exists a correlation between the mixing angle, extracted from the data, and the chosen set of meson radii). It depends also on the set of experimental data which we claim to describe by such models as discussed in Chapter 3.

Let us explain how the errors in the hadronic model generate systematic errors or in another word, theoretical uncertainties, on λ γ . Starting from the experimental distribution dΓ ds 13 ds 23 d cos θ we obtain the distribution of ω by calculating ω according to Eq. (2.59). In this formula, the function J which determines ω for each event is fixed by the hadronic model (let us call it as ω model ). Thus, the λ γ can be determined by knowing the hadronic model as well as the hadronic input parameter describing the K 1 strong decay:

λ obs γ = ω model ω 2 model (4.8) 
Therefore, if we were using a "wrong" hadronic model, the extracted polarization parameter λ obs γ would be different from the "true" value λ th γ . Having the hadronic model which we have applied to explain the K 1 strong decays relatively well as shown in Chapter 3, we would believe the model itself may not be too bad. On the other hand, the input parameters contain some uncertainties. In the following, we will estimate the systematic error on λ γ caused by the uncertainties in the hadronic input parameters, namely the K 1 mixing angle θ K 1 and the "off-set" phase δ ρ .

Similar to the estimate of the statistical error in the previous section, the errors generally depend on the assumed λ th γ value. In this section, we evaluate the theoretical error in the case of λ th γ = 0.5 (4.9) Sensitivity studies of the polarization measurement with B → K 1 (1270)γ in the DDLR method

We chose this value since, as we will see in Chapter 5, our decay channel is most sensitive to the polarization parameter around this value.

Theoretical uncertainty due to the K 1 mixing angle

For the estimation of the uncertainty, related to our determination of the K 1 mixing angle (see previous chapter), we follow the procedure:

• First, we generate the MC sample of the "fake data" according to PDF (2.55) assuming λ th γ = 0.5 and fixing the mixing angle at its fitted central value θ th K 1 = 60 • . Since both ACCMOR and Belle collaborations observed a non-zero "off-set" phase of the order of 30 • , we study the δ ρ -dependence of λ γ by testing three MC data sets: generated with δ th ρ = 0 (i.e. pure quark model prediction) and δ th ρ = ±30 • .

• Then, we randomly generate θ K 1 according to the Gaussian distribution with the mean value of 60 • and the standard deviation of 10 • .

-For each generated value of θ K 1 we recalculate for each event the value of ω(s i 13 , s i 23 , cos θ i ) from Eq. (2.59) (i = 1, . . . , N events ) using the "fake data" generated on the fist step.

-Having calculated the ω's for each event at particular value of the randomly generated θ K 1 , we compute the ω-moments (i.e. the average values) and evaluate λ γ :

λ obs γ (θ K 1 ) = ω ω 2 (4.10) 
• Finally, we fill the histogram of λ obs γ (Fig. 4.4). This normalized histogram provides us the PDF of the extracted polarization parameter as a function of θ K 1 .

One can see from Fig. 4.3 that within one standard deviation region of θ K 1 the discrepancy between three analyzed MC data, which were generated using δ th ρ = 0, ±30 • , is rather small. The total deviation of λ obs γ does not exceed 0.2; the calculated values of λ obs γ lie within the interval [0.3;0.6] (note, the true value is supposed to be λ th γ = 0.5). Allowing the K 1 -mixing angle to be varied according to Gaussian distribution with the central value of 60 • and standard deviation of 10 • , one finds that the systematic effect on the λ γ measurement hardly reaches beyond 0.5 ± 0.2 region. We find from Fig. 4.4 that λ γ is restricted to the following 68% CL intervals: The mixing angle θ K 1 dependence of λ γ obtained from the "fake data" which was generated using the fixed values λ th γ = 0.5 and θ th K 1 = 60 • . Black curve corresponds to the analysis of the MC data generated by using the pure 3 P 0 quark model prediction with the "off-set" phase δ th ρ = 0, while the blue and red curves correspond to the data generated with δ th ρ = -30 • and δ th ρ = +30 • respectively.

λ obs γ ∈     

Theoretical uncertainty due to the "off-set" phase δ ρ

Estimating the theoretical uncertainties, we take into account that the ACCMOR, BABAR and Belle collaborations observed a non-zero relative phase δ ρ of the Kρ and K * π channels (see the discussion of Section 3.4.3 of Chapter 3) which is of the order of 30 • . Although our 3 P 0 quark-pair-creation model predicts no complex phase (but it fixes the relative sign of the amplitudes), we test several "hadronic models" by adding by hands an additional complex "off-set" phase δ ρ = ±30 • to our model prediction. The experimental values of the error to δ ρ , measured by Belle collaboration [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF] are of the order of 7 • and surprisingly small error of 1 • from the reanalysis of the ACCMOR data by BABAR collaboration [START_REF] Aubert | Measurement of branching fractions of B decays to K 1 (1270)π and K 1 (1400)π and determination of the CKM angle α from B 0 → a 1 (1260) ± π ∓[END_REF].

To be conservative, we put the error of 10 • in our study.

Similarly to the estimation of the uncertainty due to the K 1 mixing angle, we repeat the procedure to study the "off-set" phase δ ρ effects:

• We generate the MC sample of the "fake data" according to PDF (2.55) assuming λ th γ = 0.5 and fixing the mixing angle at its fitted central value θ th The "true" value of the polarization parameter, used for the MC simulation, is set to be λ th γ = 0.5. The K 1 mixing angle is varied randomly according to Gaussian distribution with mean value θ K 1 = 60 • and standard deviation σ θ K 1 = 10 • . The "off-set" phase δ ρ is set to zero (top-left), -30 • (top-right) and +30 • (bottom).

the previous case, we study the δ ρ dependence of λ γ by testing three MC data sets: generated with δ th ρ = 0 and δ th ρ = ±30 • .

• Then, we randomly generate δ ρ according to the Gaussian distribution with the mean values δ th ρ = 0, ±30 • respectively and the standard deviation of 10 • .

-For each generated value of δ ρ we recalculate for each event the value of ω(s i 13 , s i 23 , cos θ i ) from Eq. (2.59) (i = 1, . . . , N events ) using the "fake data" generated on the fist step.

-Having calculated the ω's for each event at particular value of the randomly generated δ ρ , we compute the ω-moments (i.e. the average values) and evaluate λ γ :

λ obs γ (δ ρ ) = ω ω 2 (4.12) 
• Finally, we fill the histogram of λ obs The "off-set" phase δ ρ dependence of λ γ obtained from the "fake data" which was generated using the fixed values λ th γ = 0.5 and θ th K 1 = 60 • . Black curve corresponds to the analysis of the MC data generated by using the pure 3 P 0 quark model prediction with the "off-set" phase δ th ρ = 0, while the blue and red curves correspond to the data generated with δ th ρ = -30 • and δ th ρ = +30 • respectively. The plots on the right and bottom represent the zoomed parts of gray, blue and red areas which correspond to δ th ρ ± 10 • region.

Allowing δ ρ to be varied according to Gaussian distribution with the central values δ th ρ = 0, ±30 • and standard deviation of 10 • , one finds that the systematic effect on the λ γ measurement hardly reaches beyond 5%. We find from Fig. 4.6 that λ γ is restricted to the following 68% CL intervals:

λ obs γ ∈      [0.46; 0.50] (δ th ρ = 0) [0.48; 0.52] (δ th ρ = -30 • ) [0.48; 0.52] (δ th ρ = 30 • ) (4.13)
One has to notice that, allowing θ K 1 and δ ρ vary within ±10 • intervals around their central values θ th K 1 and δ th ρ , there is a large gap between the largest possible value of the computed λ obs γ (∼ 0.6) and the SM prediction λ SM γ ≃ 1 (see Fig. The "true" value of polarization parameter, used for the MC simulation, is set to be λ th γ = 0.5. The K 1 mixing angle is fixed to be θ K 1 = 60 • . The "off-set" phase δ ρ is varied randomly according to Gaussian distribution with standard deviation σ δρ = 10 • and mean value equal to zero (top-left), -30 • (top-right) and +30 • (bottom). rather encouraging since our study is concentrated on the search of NP beyond the SM with theoretical value of λ γ sizebly different from |λ γ | SM ≃ 1. That implies that λ γ will never be close to 1 which will allow us to exclude the SM prediction (see Chapter 5 for more details).

Discussion on the importance of the D-waves and the cut-off

In the end of this chapter we discuss the role of the cut-off β ′ in the λ γ determination. Since there is no safe determination of this parameter it is important to emphasize its effect. For demonstration we generate two MC samples of

B + → K + 1 (1270)γ → K + π -π + γ decays setting λ th γ = 0.5 and β ′ = 3 GeV -2 .
• First, we test the case when the D-wave of the K * π channel is neglected in the MC generation (in the following we call it MC (I) -sample). Then we recalculate ω • After that, we test the case when the D-wave of the K * π channel is taken into account in the MC generation (in the following we call it MC (II) -sample). Then we recalculate ω for each event setting β ′ = 0 and compute the ω-moments. This gives us the value λ obs(I) γ

which turns out to be

λ obs(II) γ ≃ 0.35 ± 0.02(stat) (4.15) 
i.e. δλ

(II) γ /λ th γ ≃ 0.3.
Thus, as already discussed in the previous chapter, we conclude that having only the S-waves the role of the cut-off in our 3 P 0 model is not significant. On the other hand, the choice of the cut-off becomes significant for the λ γ estimation in the presence of the D-waves, which contribution to the interference terms becomes large for large momentum transfer in the quasi-two-body decay K 1 → K * π.

Chapter 5

Future prospects of the photon polarization measurement

In this chapter, we discuss the sensitivity of the future experiments, namely the SuperB factories and LHCb to λ γ , using B → K 1 (1270)γ → (Kππ)γ. We also discuss the advantages and disadvantages of our method compared to the other methods of the polarization measurement using the other processes, such as B → K * e + e -, B d → K * γ and B s → φγ.

Comparison to the other methods

Up-down asymmetry of GGPR

One of the direct methods of the photon polarization determination methods, proposed by Gronau et al. [START_REF] Gronau | Photon polarization in radiative B decays[END_REF][START_REF] Gronau | Measuring the photon helicity in radiative B decays[END_REF], is to study the angular distribution in the B → Kππγ decay and extract the polarization parameter λ γ from the angular correlations among the final hadronic decay products Kππ. An observable called up-down asymmetry is defined by Eq. (2.46) and represents the asymmetry between the measured number of signal events with the photons emitted above and below the Kππ decay plane in the K 1 reference frame. Having the theoretical prediction of J , one can determine λ γ .

Our conclusion, identical to the one for the angular fit, is that the statistical error on λ γ is about twice the one in our method (see Fig. 4.2).

The angular analysis of

B → K * ℓ + ℓ -
From the analysis of the angular distributions of the four-body final state in the B 0 → K * 0 (→ K -π + )ℓ + ℓ -decay in the low ℓ + ℓ -invariant mass region one can study various observables that involve different combinations of K * spin amplitudes [START_REF] Kruger | Probing new physics via the transverse amplitudes of B 0 → K * 0 (→ Kπ + )ℓ + ℓat large recoil[END_REF].

Working in the transversity basis

M ⊥ = M R -M L √ 2 M = M R + M L √ 2 (5.1)
Future prospects of the photon polarization measurement

z ℓ - ℓ + K - π + B 0 K * 0 φ θ K * θ ℓ Figure 5.1: Definition of kinematical variables in the B → K * (→ Kπ)ℓ + ℓ -decay.
one of the most promising observables, that has a small impact from the theoretical uncertainties, are two transverse asymmetries defined as [START_REF] Kruger | Probing new physics via the transverse amplitudes of B 0 → K * 0 (→ Kπ + )ℓ + ℓat large recoil[END_REF][START_REF] Becirevic | On transverse asymmetries in B → K * ℓ + ℓ[END_REF] A

T (q 2 ) ≡ |M ⊥ | 2 -|M | 2 |M ⊥ | 2 + |M | 2 = - 2Re[M R M * L ] |M R | 2 + |M L | 2 (2) 
A (im) T (q 2 ) ≡ 2Im[M ⊥ M * ] |M ⊥ | 2 + |M | 2 = 2Im[M R M * L ] |M R | 2 + |M L | 2 (5.2a) 
which can be experimentally extracted from the differential decay distribution as a function of the dilepton invariant mass q 2 and the angle φ between the dilepton-plane (ℓ + ℓ -) and the K * -plane (Kπ)

1 dΓ dq 2 dφ = 1 2π dΓ dq 2 1 + 1 2 F T (q 2 ) A (2) 
T (q 2 ) cos 2φ + A (im) T (q 2 ) sin 2φ (

where F T (q 2 ) is a fraction of the decay product with transversely polarized

K * F T (q 2 ) = β 2 ℓ |M ⊥ | 2 + |M | 2 dΓ/dq 2 , with β ℓ = 1 - 4m 2 ℓ q 2 (5.4)
Note that we assume that in the low ℓ + ℓ -invariant mass region the O 7γ is dominating over the semileptonic O 9 and O 10 operators defined as As a result, the K * helicity amplitudes M L,R can be identified with the decay amplitudes of b → sγ L,R and are related to our polarization parameter as

O 9 = e 2 16π 2 (s αL γ µ b αL )(ℓγ µ ℓ) (5.5a) O 10 = e 2 16π 2 (s αL γ µ b αL )(ℓγ µ γ 5 ℓ) (5.5b) b W s γ, Z ℓ ℓ u, c, t u, c, t b u, c, t s γ, Z ℓ ℓ W W b u, c, t s W W ν ℓ ℓ ℓ
λ γ = |C R | 2 -|C L | 2 |C R | 2 +|C L | 2 .
Therefore, the transverse asymmetry can be written as

A (2) T (0) = 2Re[C ef f 7γ C ′ ef f * 7γ ] |C ef f 7γ | 2 + |C ′ ef f 7γ | 2 (5.6a) 
A (im) T (0) = 2Im[C ef f 7γ C ′ ef f * 7γ ] |C ef f 7γ | 2 + |C ′ ef f 7γ | 2 (5.6b) 
Note that approximation of Eq. (5.6) is strictly valid only at q 2 = 0 and away from this point the expression for A

(2,im) T becomes much more complicated due to the non-negligible contributions from the terms proportional to C (′) ef f 9,10 . In the SM, these asymmetries vanish due to the m s /m b chiral suppression:

A (2) T (0) SM ≃ 2 C ′ ef f (SM) 7γ C ef f (SM) 7γ ≪ 1 A (im) T (0) SM = 0 (5.7)
The new analysis of the B → K * e + e -decay mode by the LHCb collaboration [START_REF] Lefrançois | Measuring the photon polarization in b → sγ using the B → K * e + edecay channel[END_REF] shows that one can expect an annual signal yield of 200 to 250 events for 2 fb -1 in this q 2 -region q 2 < 1 GeV. With this number, it is found that the LHCb can reach a precision of

σ(A (2) T ) LHCb ∼ 0.2 (5.8)
corresponding to the statistical error on [START_REF] Lefrançois | Measuring the photon polarization in b → sγ using the B → K * e + edecay channel[END_REF]. By comparison we recall the expected number of events for the reaction B → K 1 (1270)γ, namely 10 4 signal events at 2 fb -1 . A priori it seems much more than the expected number of B → K * e + e -.

|C ′ ef f 7γ /C ef f 7γ | to be σ(|C ′ ef f 7γ /C ef f 7γ |) ∼ 0.1

Future prospects of the photon polarization measurement

However, it should be noticed that method of the transverse asymmetry in the semileptonic decay allows the direct measurement of the ratio

x ≡ C ′ ef f 7γ C ef f 7γ (5.9) 
while our polarization parameter λ γ

λ γ ≡ |C R | 2 -|C L | 2 |C R | 2 + |C L | 2 = |x| 2 -1 |x| 2 +1 , for B -decays 1-|x| 2 |x| 2 +1 , for B -decays (5.10)
is sensitive only to the amplitude ratio square, x 2 . Therefore, the errors of these two methods are to be compared using the following equation:

σ x = (1 + x 2 ) 2 4x σ λγ (5.11)
which shows that the sensitivity depends on the value of x. We should immediately notice that for verifying the SM value, x ≃ 0, the method accessible to x is much more advantageous than the one to x 2 : our λ γ is in fact insensitive to the SM point (requiring an infinitesimal error). We plot Eq. (5.11) in Fig. 5.3. Let us look at the horizontal line of σ x = 0.1, expected error on x with the B → K * e + e -measurement. One can see that our method, which has an estimated statistical error of the λ γ determination σ λγ 0.1 (see Table 4.1), becomes more advantageous for the measured value of x above x ∼ 0.3 (i.e. |λ γ | 0.8). Moreover, the same sensitivity to x can be achieved even having a larger error σ λγ 0.1. | and the other one determining x 2 such as our λ γ (see Eq. (5.11)). One can see that when we assume the same errors for the both methods, a better significance can be obtained with the later method only for x 0.3. Gray region is excluded by the measurement of B(B → X s γ). λ γ can be more sensitive to x 0.3 (see Fig. 5.3). Again, it should be emphasised that although an observation A CP (t) = 0 in this method immediately indicates the existence of new physics, a quantitative determination of x is not possible unless we fix the new physics model, namely the CP violating phases in b → sγ as well as B q -mixing.

C 7 Γ eff C 7 Γ eff Σ C 7 Γ eff C 7 Γ eff

New physics constraints combining various methods of the polarization determination

In this section we present an example of potential constraints for right-handed current contribution to the photon polarization by combining several possible polarization measurement methods, descried in the previous section. In Fig. 5.4, we show constraints on C L and C R , which are currently available or will be available in the future. The x-and y-axes are the real and imaginary parts of

x = C ′ ef f 7γ C ef f 7γ = C ′ ef f (SM) 7γ + C ′ ef f (NP) 7γ C ef f (SM) 7γ + C ef f (NP) 7γ ≈ C ′ ef f (NP) 7γ C ef f (SM) 7γ + C ef f (NP) 7γ
(5.17 , has the sign opposite to the sign of the C ef f (SM) 7γ

, one could have a relative enhancement of the righthanded amplitude.

Here we put the constraints on the normalized real and imaginary parts of = -0.304). First, we use the constraint coming from the measured branching ratio of the inclusive decay [START_REF] Asner | Averages of b-hadron, c-hadron, and τ -lepton properties[END_REF] B(B → X s γ) exp = (3.55 ± 0.24) × 10 -4

C ′ ef f 7γ /C ef f
(5.18)

The current bound is represented as white circle in Fig. 5.4. We can see from this figure that there is still a large allowed range for new physics.

The constraint from the time-dependent CP -asymmetry in B 0 → K S π 0 γ is shown as black lines labeled with values of S K S π 0 γ (top-left). We show the bound including ±3σ error on the current experimental value [START_REF] Asner | Averages of b-hadron, c-hadron, and τ -lepton properties[END_REF] S exp K S π 0 γ = -0.15 ± 0.2 (5.19) Note, that the diagonal constraint results from the factor sin(2βφ R ) = (sin 2βRe[x]cos 2βIm[x])/|x| in Eq. (5.12). Similarly, the labeled red circles (top-right) denote the constraints from potential measurement of the polarization parameter λ γ in the B → K 1 γ decay. The labeled 5.2 New physics constraints combining various methods of the polarization determination 99 blue and green curves represent the possible constraints from the transverse asymmetries A

T (bottom-left) and A

(im) T

(bottom-right) respectively at low dilepton mass in the B → K * ℓ + ℓ -decay. The interval of the lines represents the uncertainty for λ γ and the transverse asymmetries which can be in principle achieved by LHCb:

σ(λ γ ) ≃ 0.2 σ(A (2) 
T ) LHCb ≃ σ(A (im) T ) LHCb ≃ 0.2 (5.20)
The Fig. 5.4 shows that combining the measurements of S K S π 0 γ , λ λ , A

T ,A

(im) T

will pin down the value of x very precisely in the future.

On Fig. 5.5 (left) we present the confidence level regions for the ratio C ′ ef f 7γ /C ef f 7γ in the SM for the case when all the polarization quantities {S K S π 0 γ , λ γ , A

T (0), A 7γ /C ef f 7γ in the mass insertion approximation can be given as Eq. (5.21). Then, inputing an example mass of gluino and squark as m g ≃ m q = 500 GeV, using Eq. (1.56) we find [ (5.21)

Recall, the large value in the coefficient of the first term in the numerator comes from the chiral-enhancement as discussed in subsection 1.4.2. We need to fix the SUSY breaking model in order to find the value of the mass insertions. Let us give a few examples (see Ref. [START_REF] Khalil | On supersymmetric contributions to the CP asymmetry of the B → φK S[END_REF] and references therein).

• SUSY SO(10) = -0.304). The white circle represents the constraint coming from the measured branching ratio B(B → X s γ). The constraint from the time-dependent CP asymmetry of B 0 → K S π 0 γ is shown as black lines labeled with values of S K S π 0 γ (top-left). Note that the current experimental bound is S exp K S π 0 γ = -0.15 ± 0.2 (we show our result in a range including ±3σ error). Similarly, the labeled red circles (top right) denote the constraints from potential measurement of the polarization parameter λ γ in the B → K 1 γ decay. The labeled blue and green curves represent the possible constraints from the transverse asymmetries A We plot the resulting x values from these models in Fig. 5.5. One can see that the Minimal Supergravity (mSUGRA) model is perfectly consistent with the SM prediction which is supposed to be centered at zero. Although the SUSY SO [START_REF] Misiak | The first estimate of B(B → X s γ) at O(α 2 s )[END_REF] model prediction is beyond the SM point, it is located within our predicted SM-like 99%CL bound 3 . The model with Hermitian Yukawa couplings is relatively far beyond of our predicted SM-like CL bounds. However, one can observe that all three considered MSSM models are still consistent with the current experimental bounds from B(B → X s γ) and S K S π 0 γ which will be improved by LHCb and SuperB experiments. 
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(im) T to be zero as predicted by the SM, while the errors are assumed to be σ(A Moreover, in view of the importance of the issue of the structure of FCNC, we feel that it is worth exploring and exploiting several complementary approaches. Having worked and discussed a good deal, we conclude that the application of the method is appreciably more complex than expected first by Gronau et al..

Nevertheless, it appears still worth to emphasize first its advantages. The advantage of the method of Gronau et al. for determining the photon polarization can be summarized as follows. The method is very simple in principle. It relies on the study of the process B → K res γ → Kππγ and allows to extract the photon polarisation by fitting one normalized angular distribution a (1 + cos 2 θ) + P γ b cos θ where P γ is the photon polarisation parameter defined as

P γ ≡ |Γ(B → Kππγ R )| 2 -|Γ(B → Kππγ L )| 2 |Γ(B → Kππγ R )| 2 + |Γ(B → Kππγ L )| 2 (6.1)
and a, b are purely hadronic quantities and functions of the Dalitz plot variables, characterising the three-body decays of the K res -resonances (note that this implies the sum over all possible K res -states, e.g. K 1 (1270/1400), K * (1410), K * 2 (1430), that decay to the common Kππ final state). A detailed knowledge of a and b allows the precise determination of P γ .

In the case when one can isolate one of the K res 's, the photon polarisation is directly equal to the parameter characterising the electroweak interaction mixture of abnormal (right-handed) helicity in the effective Hamiltonian, λ γ , due to the cancellation of the common form factor in the ratio (6.1):

P γ = λ γ (for one isolated resonance) (6.2)
Therefore, the problem of the B → K 1 transition and the further K 1 -decays description is reduced to a purely strong interaction problem of the K 1 -decays, which have already been studied in detail in the literature.

On the other hand, the method has encountered some drawbacks and difficulties:

• In particular, it must be said that the photon polarisation parameter λ γ is quadratic in the helicity amplitudes. Then, in order to observe the "abnormal" helicity (which could be an indication of physics beyond the SM), C R /C L should be large, i.e. |λ γ | must be significantly different from the SM-value, or the accuracy of the λ γmeasurement has to be good.

• Although it is quite simple in its principle, the method is revealed to be more complex in practice, because one has to know the strong decays in a rather detailed way. In particular, the relative phases of various intermediate decay channels and the relevant quantity Im[ n • ( J × J * )] are very important.

• The fact that the K 1 (1270)-resonance, not considered by Gronau et al., is produced with a rather large branching ratio, seems on the one hand quite positive, since it allows to have a relatively large statistics. But on the other hand, it complicates the analysis since the pattern of decays of this resonance is much more complex.

In this thesis, we have tried to face this situation by two main contributions :

1. Improving the accuracy of the polarization parameter determination by recourse to the DDLR method, developped by Davier et al., which is precisely well suited for the problem at hand due to the linear dependence on λ γ of the decay distribution. It amounts to determine optimally λ γ by exploiting not only the pure angular distribution, but also the additional information from the whole Dalitz plot and without having to perform a complex multidimensional fit.

2. Improving also as much as possible the treatment of the strong K 1 -decays by introducing the input of quark models into our knowledge of the K 1 -decays. We concentrate on the B → K 1 (1270)γ decay. We leave aside for the moment a possible K 1 (1400)γ-contribution, which seems to be small according to the observation of Belle collaboration and to our estimations. Yet, in the strong interaction decay analysis, we must address the full system of the two resonances because of the well known phenomenon of mixing between the two states, and since, in the main experiments (i.e. in diffractive production), they are strongly entangled.
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Then, we applied this improved knowledge of the hadronic side to estimate the errors (statistical as well as theoretical ones) on the polarisation measurement.

Improvement of statistical errors by the DDLR method

The fact that the normalised distribution of the number of events depends linearly on the polarisation parameter allows us to use the DDLR method. This has the great advantage of reducing the multidimensional problem of fitting the polarisation over the whole Dalitz plot and angle θ to a simple one-dimensional fit of one variable ω defined in our case by Eq. (2.59). We have given an explicit expression for the new ω-distribution and demonstrated that the polarisation is exactly given by ratios of two moments of the distribution:

λ γ = ω 2n-1 ω 2n (6.3) 
with arbitrary n ≥ 1.

At the present moment, there is no data available. However, we can discuss the method by generating "fake" data with an assumed value of the polarisation, and compare this one with the one deduced from the moments. The statistical error can also be evaluated either by an explicit formula (which is very complex and, in practise, is unknown) or by random sampling from the dispersion of the moments ratio using the MC simulation. Then, a strong conclusion is that the statistical error is reduced by a factor 2 with respect to the method of Gronau et al..

6.3

The treatment of the full system of the K 1 -decays 6.3.1 Critical view of the experimental analyses of the K 1 -system of strong decays

Not only the strong decay pattern of K 1 (1270) is quite complex, but, not surprisingly, it is then difficult to analyze the whole system experimentally. In spite of many efforts, we have found that much information is missing and that certain weaknesses may be suspected in various analyses (which imply many theoretical assumptions, like the prescription of Nauenberg and Pais for the quasi-two-body phase space). In addition, the interpretation of width in the presence of nearby quasi-two body thresholds (like in K 1 (1270) → Kρ) is delicate.

A semi-theoretical treatment of the K 1 -system of strong decays

In view of this, it has appeared necessary to assess the present experimental studies by a more theoretical treatment. In lack of more fundamental treatments, we have recoursed to the quark model approach, which, although approximate, is at the basis of our whole understanding of spectroscopy. The 3 P 0 quark-pair-creation model for decays presents the advantage of handling in a simple way the whole set of L = 1 decays. On the other hand, experimental inputs are still required to fix the crucial K 1 mixing angle. We have determined this angle by comparing our theoretical predictions for the partial widths and the ones deduced from the K-matrix formalism.

Theoretical errors on the polarisation measurement

It appears that the polarisation measurement through the ω-moments will be sensitive to several errors in the modelling of the hadronic K 1 -decays, which will change the value of the moments corresponding to a given λ γ . These errors include those affecting the relative phase of the Kρ/K * π-amplitudes ratio, the magnitude and phase of the D-waves, and the damping factor. After fixing the parameters from our theoretical considerations, we try to estimate some remaining uncertainties: in particular, the one coming from the uncertainty on the K 1 mixing angle, and the effect of a possible "off-set" phase in strong decay S-waves (which are not deducible from theory, but apparently present in data).

6.5

The need for improvements of our experimental knowledge and some future prospects

From our whole discussion, it appears clearly that an important improvement of our experimental knowledge on the strong K 1 -decays is required in order to obtain a better accuracy in the photon polarisation determination. Indeed, we have observed a sensitivity of λ γ to various model parameters, whose values, in our mixed approach, depend both on certain experimental data and on the theoretical model of the decays. It is important to recall that there is no fundamental theoretical treatment, and that our theoretical model is based on quark models, which being much valuable contains essential approximations, i.e. ones that can not be improved systematically. In addition, the quark model does not provide any prediction for the decays involving non-qq intermediate state like κ(800) or purely continuum Kππ-state.

Then it seems that progress should come mainly from better and more complete determination of the magnitude and phases of the various couplings by experiment. Certainly, the experiments with production of K 1 by strong interaction scattering (as the old ones of SLAC and ACCMOR) have much larger statistics for decays involving K 1 than present 6.5 The need for improvements of our experimental knowledge and some future prospects 107 at B-factories. Yet there is little prospect of them being redone, and they have also their own weakness in the fact that the production process is rather complex. There is some hope that a new detailed study could be made in B-decays. Encouraging examples have been coming from both BABAR and Belle experiments. A new study of B → K 1 ψ with angular analysis in the angle θ could yield directly the crucial quantity Im[ n • ( J × J * )] up to a multiplicative constant. The analyses could be guided by our semi-theoretical and approximate investigation, which, for instance, emphasizes the need to take into account the D-waves.

Appendix A Renormalization and running of the Wilson coefficients

In this appendix we present a brief description of general concepts of the renomalization group evolution and scale running of the Wilson coefficients following the lectures of A. Buras [START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF].

A.1 Renormalization and operator mixing

One has to note that the Wilson coefficients do not depend only on the scale µ like the usual gauge couplings but also on the renormalization scheme used for the local operators. It is not surprising that the local operators O i , as the usual vertices in the field theory, must be renormalized when the quantum QED and QCD corrections are taken into account. Hence, the matrix elements O i (µ) are renormalization scheme dependent and this dependence (as well as the scale µ dependence) must be cancelled by the one of C i (µ) since the physical amplitudes must be scheme independent.

The renormalization procedure is the process of relating the unphysical (bare) and physical (renormalized) parameters like couplings or masses and rewrite the observables as functions of the physical quantities. In the SM, which is a renormalized theory, all divergences can be absorbed into the renormalization constants Z and can be removed by introducing a finite number of counterterms in the Lagrangian. In general, one can have many different local operators O i with the same quantum numbers which can mix under renormalization. In this case the relationship between bare and renormalized operators has the form

O (bare) i = Z ij O j (A.1)
Since the bare operator is µ independent

0 = µ d dµ O (bare) i = µ d dµ Z ij O i + Z ij µ d dµ O j (A.2)
Renormalization and running of the Wilson coefficients is driven by the effective anomalous dimension matrix The initial conditions for the coefficients at a large scale µ W are obtained from a matching of the effective and the full theory. In the SM C (0) i (µ W ) read as follows:

γ (0)ef f ji =      γ (0) j7 + 6 k=1 y k γ (0) jk -y j γ (0) 77 -z j γ (0) 87 γ (0) j8 + 6 k=1 z k γ (0) jk -z j γ ( 
γ (0) ji =             -2 6 0 0 0 0 0 3 6 -2 -2 9 
C (0) 1,3,...,6 (µ W ) = 0 C (0) 2 (µ W ) = 1 C (0) 7 (µ W ) = - 1 2 D ′ 0 (x t ) C (0) 8 (µ W ) = - 1 2 E ′ 0 (x t ) (A.17)
where the one-loop functions D ′ 0 (x t ) and E ′ 0 (x t ) have the standard definition [15] Finally, the leading order results for Wilson coefficients of all operators that are present in the effective Hamiltonian can be written in analytic form [START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF] as follows: where η = αs(µ W ) αs(µ b ) . The numbers a i , k ji , h i and hi are given in Table A.1. It is useful to write α s at LO as

D ′ 0 (x t ) = - x 2 t (3x t -2) 2(x t -1) 4 ln x t + x t (8x 2 t + 5x t -7) 12(x t -1) 3 E ′ 0 (x t ) = 3x 2 t 2(x t -1) 4 ln x t + x t (x 2 t -5x t -2) 4(x t -1)
k 1i 0 0 1 2 -1 2 0 0 0 0 k 2i 0 0 1 2 1 2 0 0 0 0 k 3i 0 0 -1 14 
C (0) j (µ b ) = 8 i=1 k ji η a i (j = 1, . . . , 6 
α s (µ b ) = α s (M Z ) 1 -β 0 αs(M Z ) 2π ln M Z µ b (A.20)
Therefore, they are bound states. The factor ρ ii the diagonal element of is the phasespace factor matrix (3.33) for channel i, and f are the matrix elements between the bare states a 0 and the continuum states i. Some comments must be made concerning the phase space matrix. First, it is a diagonal matrix as can be seen from Eq. (3.33). Second, in usual calculations ρ ij is a real quantity but which vanishes below the threshold. However, in some works including the work by Daum et al. the phase space is defined below the threshold by analytic continuation in the complex plane [START_REF] Nauenberg | Woolly Cusps[END_REF].

If the potential is Hermitian f a 0 i = f * ia 0 and if the time reversal is valid one can choose the couplings f to be real and such that f a 0 i = f ia 0 .

The matrices M and Γ do not in general commute and they can not be diagonalized simultaneously by a unitary transformation. But it is possible to diagonalize one of them, in particular M , by a unitary 1 matrix U :

U -1 a ′ a 0 M a 0 b 0 U b 0 b ′ = M ′ a ′ b ′ = m a ′ δ a ′ b ′ (C.4) Thus U transforms the set of base states {a 0 , b 0 , • • • } to a new set {a ′ , b ′ , • • • }.
This set of states diagonalize M and are called the mass-mixed states. Note that they are not the physical states which diagonalize M -iΓ/2.

Defining the new rotated couplings as

f ia ′ = f ia 0 U a 0 a ′ , f b ′ j = U -1 b ′ b 0 f b 0 j (C.5)
the T -matrix has the form

T ij = f ia ′ Π ′ a ′ b ′ f b ′ j (C.6) where Π ′-1 a ′ b ′ = U -1 M U - i 2 U -1 ΓU -m a ′ b ′ = (m a ′ -m)δ a ′ b ′ - i 2 i 2ρ ii f a ′ i f ib ′ = D -1 a ′ b ′ -Σ a ′ b ′ (C.7) with D -1 a ′ b ′ = (M ′ -m) a ′ b ′ = (m a ′ -m)δ a ′ b ′ , Σ a ′ b ′ = i 2 Γ ′ a ′ b ′ = i i ρ ii f a ′ i f ib ′ (C.8)
Eq. (C.7) can be written in the matrix form

Π ′ = D + Π ′ ΣD (C.9)
which can be iterated as

Π ′ = D + DΣD + DΣDΣΠ + . . . (C.10)
1 As discussed in the next section when the M -matrix is symmetric the transformation is orthogonal which is the case of the T -invariant interactions.

C.1 General formalism for the overlapping resonances 119

Substituting the iterated form of Π ′ from Eq. (C.10) in Eq. (C.6), one obtains

T ij = f ia ′ D a ′ b ′ f b ′ j + f ia ′ D a ′ c ′ Σ c ′ d ′ D d ′ b ′ f b ′ j + . . . = f ia ′ D a ′ b ′ f b ′ j + f ia ′ D a ′ c ′ i k ρ kk f c ′ k f kd ′ D d ′ b ′ f b ′ j + • • • = K ij + i k K ik ρ kk K kj + . . . (C.11)
which is the iterated form of

T = K(1 -iρK) -1 (C.12)
Eq. (C.12) is the standard expression for the T -matrix in terms of the K-matrix, which is defined as

K ij = f ia ′ D a ′ b ′ f b ′ j = a ′ f ia ′ f a ′ j m a ′ -m (C.13)
Note that this is not the most general form of the K-matrix. Quite often in addition to the pole terms one introduces additional non-resonant terms (e.g. terms polynomial in the mass m) to Eq. (C.13). Remote wide resonances can contribute similarly to the continuum if we consider restricted range of m. One has to point out that in the experimental analyses we are discussing [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF][START_REF] Bowler | A Two Resonance Analysis of the Q(Kππ) Enhancement[END_REF] only the two K 1 resonance contributions are considered, what is a rather strong assumption. The physical states of the system which have definite mass and lifetime are neither {a 0 , b 0 , . . . } nor {a ′ , b ′ , . . . } but the eigenstates {a ph , b ph , . . . } of the full operator M -iΓ/2:

M -i Γ 2 |a ph = m a ph |a ph (C.14)
where m a ph is complex. These states have a definite mass Re(m a ph ) and lifetime τ -1 = -2Im(m a ph ). Of course, these masses m a ph are also the poles of the T -matrix in the form of (C.1) in the potential theory formalism and (C.6) in the K-matrix formalism at the eigenvalues m = m a ph . In order to relate the T -matrix elements, expressed in the physical state and K-matrix bases, one has to diagonalize the matrix m a

′ δ a ′ b ′ -Σ a ′ b ′ : V -1 a ph a ′ (m a ′ δ a ′ b ′ -Σ a ′ b ′ )V b ′ b ph = m a ph δ a ph b ph (C.15)
One has to note that since Mi Γ 2 is not Hermitian, the transformation matrix V , which relates the K-matrix and T -matrix states, is not unitary though it is (complex) orthogonal since the matrices are symmetric.

Rotating the K-matrix couplings f ia ′ to the couplings to the physical mass eigenstates

f ia ph f ia ph = f ia ′ V a ′ a ph , f b ph j = V -1 b ph a ′ f a ′ j (C.16)
the T -matrix (C.6) can be rewritten in terms of the physical states:

T ij = f ia ph Π ′ a ph b ph f b ph j = a ph f ia ph f a ph j m a ph -m (C.17) where Π ′-1 a ph b ph = (m a ph -m)δ a ph b ph (C.18)
The physical masses and widths of the overlapping resonances can be determined from Eq. (C.15):

M a ph = Re (m a ph (m)) = Re a ′ V -1 a ph a ′ m a ′ V a ′ a ph -i k ρ kk f a ph k f ka ph Γ a ph = -2Im (m a ph (m)) = -2Im a ′ V -1 a ph a ′ m a ′ V a ′ a ph -i k ρ kk f a ph k f ka ph (C.19)
Note that there is a contribution to the mass due to the complex part of ρ ij (m) below the threshold.

C.2 Relation of the couplings in the K-matrix method and the quark model

In this section we identify in a systematic approach the couplings deduced from the 3 P 0 quark model, including the mixing of K 1 resonances, with the couplings introduced in the K-matrix formalism by Bowler et al. [START_REF] Bowler | A Two Resonance Analysis of the Q(Kππ) Enhancement[END_REF]. To justify this identification, we establish the connection between the formalism, introduced in the previous section, and the quark model.

1. To make explicit the discussion in Ref. [START_REF] Aitchison | K-matrix formalism for overlapping resonances[END_REF], we distinguish two types of interactions:

• The first type of interactions is described by Hamiltonian H 0 , which describes the qq potential of the bound states of mesons, {a 0 , b 0 , . . . }. It generates the initial meson masses and wave functions which are used to calculate the matrix elements of meson decays in the quark model (see next item).

• The second type of interactions, described by Hamiltonian H ′ , represents the interaction vertices connecting these bound states to the continuum of all possible states of two interacting mesons, {i, j, . . . }:

f a 0 i = a 0 |H ′ |i (C.20)
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We commonly call these vertex interactions "couplings". These couplings can be precisely calculated within the 3 P 0 quark-pair-creation model. With adequate choice of phases of the wave functions of the bound states the couplings can be set to be real. 

a 0 i j a 0 b 0 i j k a 0 b 0 c 0 i j k l + + + . . .
T ij = a 0 T a 0 (0) ij + a 0 ,k,b 0 T a 0 (0) ik I k T b 0 (0) kj + a 0 ,k,b 0 ,l,c 0 T a 0 (0) ik I k T b 0 (0) kl I l T c 0 (0) lj + . . . = a 0 ,b 0 f ia 0 Π a 0 b 0 f b 0 j (C.22)
where I k denotes the loop integral.

The mass matrix M -iΓ/2 in Π a 0 b 0 (C.2) is in general non-diagonal. It contains

• the initial diagonal mass matrix diag(m a 0 , m b 0 , . . . ) of the bound states;

• the contribution of the loops for each possible channel, which can be nondiagonal since common two-body channels can couple to two different bound states. The loop integrals contain real and imaginary parts, which appear only when a two-body channel is open at the energy m.

3. Now the mass matrix must be diagonalized in two steps as explained in the previous section. Thus, one first diagonalises the real part, M , then one passes to a diagonalization of the full new matrix, M ′ -iΓ ′ /2.

(a) Diagonalisation of the real part of the denominator of Π a 0 b 0 matrix, M , leads to the introduction of the new diagonal mass matrix (see Eq. (C.4))

M ′ (m) = diag(m a ′ , m b ′ , . . . ) (C.23)
This mass diagonalization implies a simultaneous rotation of the couplings (C.5). If there exists only one resonance which couples to the initial and final states, no rotation is needed. In this case all bare couplings {f a 0 i } coincide with the ones of the K-matrix, {f a ′ i }. Thus, one can relate them with couplings calculated in the quark model. Otherwise, when there are two possible overlapping resonances, namely the two K 1 's, we have to make a rotation and introduce a mixing angle. We notice then that we have introduced an arbitrary rotation angle θ K 1 in our model computations which allows us to identify the set of the observed K-matrix couplings with the theoretical ones by the fit of data with our model predictions. This identification means that:

• the effect of the real part of the loops, i.e. Re(I k ) in Eq. (C.22), are taken into account in our model; • mixing angle θ K 1 is not predicted by the model but is simply adjusted to data; • introduction of the mixing angle θ K 1 can also take into account the uncalculated rotation of the pure spin states K 1A and K 1B into the eigenstates of Hamiltonian H 0 due to the spin-orbit forces [START_REF] Godfrey | The Properties of P Wave Mesons with One Heavy Quark[END_REF].

(b) The second step consists the diagonalization of the new mass matrix

M ′ -i Γ ′ 2 a ′ b ′ = m a ′ δ a ′ b ′ -i i ρ ii (m)f a ′ i f ib ′ (C.24)
This leads to the physical mass eigenstates and to the Breit-Wigner parametrization with energy-dependent width. This new rotation that accomplishes the last transformation into the physical states must have a complex and the angle of this rotation must have a complex phase. This would lead to the complex couplings of the mass eigenstates to set of continuum states. As we have already mentioned in the text, this rotation seems to be rather small.

4. Let us now discuss the dependence of various variables on the energy m. In principle, all the masses and couplings, produced by two previous steps are dependent on m because of the loop effects. However, as regards the mass matrix, its real and imaginary parts have rather different behaviour depending on m. In first approximation, the real part of the mass matrix, which includes the sum of the large number of loops, varies slowly with m and can be considered as constants. This is what was done in the analysis of Daum et al.. On the contrary, the imaginary part, which corresponds to the partial widths of the opened channels, is a rapidly varying function near the threshold.
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In principle, one can go beyond the approximation of the real part of the mass matrix by taking into account that there is some variation near the threshold. This is obtained by analytic continuation of the phase space through the threshold. This effect is included in the prescription of Naunberg and Pais of the complex phase space. This corresponds to having imaginary part of the widths generating a mdependent mass shift. For instance, for the K-matrix width one have

Γ a ′ b ′ (m) = i ρ ii (m)f a ′ i f ib ′ (C.25)
where the phase-space factor ρ ij (m) can be complex in general.

Finally, one obtains for the physical states that the physical masses of K 1 (1270/1400) are varying slowly as functions of m while the physical widths are rapidly changing functions; moreover the mass of K 1 (1270) has a more rapid variation around the peak due to the closeness of the 

C.3 Watson's theorem: another view

One can introduce "bubble" diagrams of rescattering as depicted on the figure below:

a 0 b 0 i j k = f ia 0 f a 0 k m a 0 -m I k f kb 0 f b 0 j m b 0 -m = T a 0 (0) ik I k T b 0 (0) kj (C.26)
where I k denote the loop integral which has a complex phase. Now, summing the series of such "bubble" diagrams with the initial production of resonance a 0 , we obtain

T a 0 ij = T a 0 (0) ij + k,b 0 T a 0 (0) ik I k T b 0 (0) kj + k,b 0 ,l,c 0 T a 0 (0) ik I k T b 0 (0) kl I l T c 0 (0) lj + . . . = T (0) (1 -IT (0) ) -1 (C.27)
For the production of the resonance one can follow the same procedure:

g a 0 a 0 b 0 j k = g a 0 f a 0 k m a 0 -m I k f kb 0 f b 0 j m b 0 -m = F a 0 (0) I k T b 0 (0) kj (C.28)
where g a 0 is the resonance production constant. The summation of the "bubble" diagrams gives

F a 0 = F a 0 (0) + k,b 0 F a 0 (0) I k T b 0 (0) kj + k,b 0 ,l,c 0 F a 0 (0) I k T b 0 (0) kl I l T c 0 (0) lj + . . . = F a 0 (0) (1 -IT (0) ) -1 (C.29)
Comparing Eqs. (C.27) and (C.29), one can notice that since the couplings f a 0 k are taken to be real, the complex phase comes from the loop integrals I k and, moreover, is the same for the rescattering and production. In the case of one resonance, the Watson's theorem formulation is the following: the production and the scattering phases are the same below the first inelastic threshold. If there are several resonances, coupled to the same decay channels, the formulation of Watson's theorem can be treated at the matrix level.

C.4 Re-interpreting the ACCMOR result

In order to determine our model parameters and the K 

|K 1 (1270) = -|K 1A sin θ K 1 + |K 1B cos θ K 1 |K 1 (1400) = |K 1A cos θ K 1 + |K 1B sin θ K 1 (C.30)
the dominant S-wave K-matrix couplings of the K 1 's to the states K * π (channel 1) and Kρ (channel 2) are given as [START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF] f

a ′ 1 = 1 2 γ + cos θ K 1 + 9 20 γ -sin θ K 1 f b ′ 1 = - 1 2 γ + sin θ K 1 + 9 20 γ -cos θ K 1 f a ′ 2 = 1 2 γ + cos θ K 1 - 9 20 γ -sin θ K 1 f b ′ 2 = - 1 2 γ + sin θ K 1 - 9 20 γ -cos θ K 1 (C.31)
where γ + and γ -are the reduced SU (3) couplings for K 1A (F -type) and K 1B (D-type) respectively. Their fitted experimental values are given in 

f a ′ 1 f b ′ 1 f a ′ 2 f b ′ 2 f a ′ 3 f b ′ 3 0.50±0.
Γ a ph i (M peak ) ≃ Γ a ′ i (M peak ) = Γ QP CM a ′ i (M peak ) (C.32)
seems to be reasonable. This means that we can use the experimental measured Kmatrix couplings in order to calculate the partial decay widths and fit our moedel parameters, namely quark-pair-creation constant γ and the mixing angle θ K 1 , which can further be used for the J function computation. 

I (ABC) m = d 3 k 1 d 3 k 2 d 3 k 3 d 3 k 4 δ( k 1 + k 2 -k A )δ( k 2 + k 3 -k B )δ( k 4 + k 1 -k C )δ( k 3 + k 4 ) × Y m 1 ( k 3 -k 4 )ψ (A) ( k 1 -k 2 )ψ (B) ( k 2 -k 3 )ψ (C) ( k 4 -k 1 ) = 1 8 d 3 kY m 1 ( k B -k)ψ (A) ( k B + k)ψ (B) (-k)ψ (C) ( k) (D.1)
where ψ's are the normalized Fourier transforms of harmonic oscillator meson wave functions. The wave functions for the ground (L = 0) and orbitally excited (L = 1) meson states are defined as

ψ (i) 0 ( k) = R 3/2 i π 3/4 exp - k 2 R 2 i 8 (L = 0) ψ m(i) 1 ( k) = 2 3 R 5/2 i π 1/4 Y m 1 ( k) exp - k 2 R 2 i 8 (L = 1, L z = m) Y m 1 ( k) = | k|Y m 1 ( ˆ k) = ( ε m k) 3 4π (D.2)
Here R i is the meson wave function radius and ε m are the A-polarization vectors, defined as

ε 0 =   0 0 1   , ε ±1 = ∓ 1 √ 2   1 ∓i 0   (D.3)
Performing the integration over k one obtains for the orbitally excited axial-vector 130 QPCM meson decay into pseudoscalar and vector mesons in the A-meson reference frame:

I (ABC) m = - 4 √ 3 π 5/4 R 5/2 A (R B R C ) 3/2 (R 2 A + R 2 B + R 2 C ) 5/2 ( ε m • ε -m ) -( ε m • k B )( ε -m • k B ) × (2R 2 A + R 2 B + R 2 C )(R 2 B + R 2 C ) 4(R 2 A + R 2 B + R 2 C ) exp -k 2 B R 2 A (R 2 B + R 2 C ) 8(R 2 A + R 2 B + R 2 C ) (D.4)
Setting k B along z-axis, the integrals become

I (ABC) 0 = - 4 √ 3 π 5/4 R 5/2 A (R B R C ) 3/2 (R 2 A + R 2 B + R 2 C ) 5/2 1 -k 2 B (2R 2 A + R 2 B + R 2 C )(R 2 B + R 2 C ) 4(R 2 A + R 2 B + R 2 C ) × exp -k 2 B R 2 A (R 2 B + R 2 C ) 8(R 2 A + R 2 B + R 2 C ) I (ABC) 1 = 4 √ 3 π 5/4 R 5/2 A (R B R C ) 3/2 (R 2 A + R 2 B + R 2 C ) 5/2 exp -k 2 B R 2 A (R 2 B + R 2 C ) 8(R 2 A + R 2 B + R 2 C ) (D.5)
For the vector meson ground state decay into two pseudoscalar mesons the spacial integral is This gives the signs of the amplitudes listed in Table 3.2 and the coefficients -2/3 for K * π and -1/ √ 6 for ρK contributions in Eq. 24 from Ref. [START_REF] Gronau | Photon polarization in radiative B decays[END_REF]. 

I (ABC) m = √ 6 π 5/4 ( ε m • k C ) (R A R B R C ) 3/2 (2R 2 A + R 2 B + R 2 C ) (R 2 A + R 2 B + R 2 C ) 5/2 × exp -k 2 C R 2 A (R 2 B + R 2 C ) 8(R 2 A + R 2 B + R 2 
M (a) = ε (K 1 ) µ T µν K * π ε (K * ) * ν g K * Kπ ε (K * ) σ (p π --p K + ) σ M (b) = ε (K 1 )
µ T µν Kρ ε (ρ) * ν g ρππ ε (ρ) σ (p π +p π -) σ (D.8)

where T µν V P is the hadronic tensor, parametrized in terms of the form factors f V , h V (or equivalently the S and D partial wave amplitudes). Now, using the same Clebsch-Gordan coefficients, defined above in Eq. (D.7), one can write the amplitude of the V → P P decay, calculated the general tensor Lorenz-invariant form in the vector meson reference frame:

M(K * 0 → K + π -) = - 2 3 g K * Kπ ( ε K * • ( p π --p K + )) = 8 3 g K * Kπ ( ε K * • p K + ) M(ρ 0 → π -π + ) = 1 2 g ρππ ( ε ρ • ( p π + -p π -)) = - √ 2g ρππ ( ε ρ • p π -) (D.9)
Taking into account all the spin and isospin couplings, the QPCM prediction is

M QPCM m (K * 0 → K + π -) = - 1 6 γI (K * Kπ) m = - 1 6 γ Ĩ(K * Kπ) ( ε m • p K + ) M QPCM m (ρ 0 → π -π + ) = - 1 3 √ 2 γI (ρππ) m = - 1 3 √ 2 γ Ĩ(ρππ) ( ε m • p π -) (D.10)
where Ĩ(V P P ) can be defined from Eq. (D.6)1 .

QPCM

Now, doing a matching between two approaches and factorizing out the common factor ε • p i , we can write the following equations: and in the SU (3) limit gρππ g K * Kπ = -8 3 . One can notice that the choice of the order in the isospin factors of the vector meson decay into two pseudoscalars in Eq. (D.7) well fixes the relative sign of the g V P P couplings. Moreover, this method makes the calculation of the quasi-two-body decay amplitude independent on the intermediate vector meson state (K * , ρ) wave function sign (which, in principle, can be arbitrary in the quasi-two-body calculation since the final state is not the same)!

D.3 Partial Wave Amplitudes

With the quark models one can directly calculate the amplitudes with definite spin or helicity states. An experiment can measure the partial wave amplitudes of particular quantum numbers of the final state. Since both canonical (orbital) and helicity approaches give complete description of the process, one can find the relation between two representations for the decay of the initial at-rest state |J, M with spin J and spin projection M on to the z-axis into two particles with spins s 1,2 , helicities λ 1,2 , total spin S and relative orbital momentum L [START_REF] Chung | Spin formalisms[END_REF]:

M JM λ 1 λ 2 (Ω 1 ) = N J f J λ 1 λ 2 D J * M,λ 1 -λ 2 (Ω 1 ) (D.12)
with the normalization factor N J = 2J+1 4π . The observed number of events is given by M,λ i ,λ

′ i M JM λ 1 λ 2 (Ω 1 )M JM * λ ′ 1 λ ′ 2
(Ω 1 )dΩ 1 = 4π

λ i ,λ ′ i λ 1 -λ 2 =λ ′ 1 -λ ′ 2 N 2 J f J λ 1 λ 2 f J * λ ′ 1 λ ′ 2 (D.13)
The recoupling from the canonical to the helicity representation is The two-body decay of the axial-vector meson into vector and pseudoscalar mesons can proceed in S and D-waves. Using J = 1, λ 1 = λ V , λ 2 = 0, the helicity amplitudes in the A reference frame can be written in terms of partial wave amplitudes:

N J f J λ 1 λ 2 =
N 1 f 1 λ V 0 = L=0,2 √ 2L + 1(L, 0; 1, λ V |1, λ V )A L (D.15)
Setting k V along z-direction (i.e. θ V = 0), the helicity amplitudes are

M 10 00 = N 1 f 1 00 = A S - √ 2A D M 1,±1 ±1,0 = N 1 f 1 ±1,0 = A S + 1 √ 2 A D (D.16)
By-turn, the partial wave amplitudes are related to the helicity amplitudes as following: For the V -decay into two pseudoscalar mesons P 1 and P 2 in the P -wave the decay amplitude will be given by M 1M 00 (Ω 1 ) = N 1 f 1 00 D 1 * M,0 (Ω 1 ) (D. [START_REF] Grinstein | The photon polarization in B → Xγ in the Standard Model[END_REF] where the helicity amplitude is N 1 f 1 00 = √ 3a P . Correspondingly, averaging over the V -spin states, the partial width is then given by Γ(V → P 1 P 2 ) = |A P | 2 P S 2 (D.20)

A S = 1 

D.4 Phase space convention

The non-relativistic partial width is given by Γ(A → BC) = 2π|M where two-body non invariant phase space can be written as

P S (N R) 2 = d 3 k B d 3 k C δ 3 ( k B + k C )δ(E B + E C -m A ) = 4π E B E C k C m A (D.22)
134 QPCM Since QPCM is in principle a non-relativistic model and we are using the relativistic Lorentz-invariant tensor formalism to describe B → K 1 γ decay, one has to make some kind of continuation. In order to do that one has to • Use relativistic kinematics (i.e. E 2 i = k i 2 + m 2 i ).

• Use relativistic Breit-Wigner forms.

• Make the non-relativistic decay amplitudes to be "relativistic" correcting the phase space:

Γ(A → BC) = 1 8π k C m 2 A |M (R) A→BC | 2 = 8π 2 E B E C k C m A |M (N R) A→BC | 2
from where one immediately obtains the relation between the amplitudes

M (R) A→BC = 8π 3/2 E B E C m A M (N R) A→BC (D.23)
Here E i , k i are the energies and momentum in the A-reference frame.

Appendix E Some notes on statistics E.1 Maximum likelihood method

Let F (x, a) be some function of a variable x and an unknown parameter a. Lets measure the value of F at some different x i : y i ± σ i . The central limit theorem (CLT) states that the mean of a sufficiently large number of independent random identically distributed variables, each with finite mean and variance, will be approximately normally distributed. So according to CLT, the measurement y i is assumed to be Gaussian distributed with mean F (x i , a) and variance σ i and the likelihood function can be written as Using the method of maximum likelihood, the "true" value or estimator â can be found from the following equation: whence it follows that the variance of the mean value is

σ a = - ∂ 2 L ∂a 2 a=ā -1/2 (E.8)
In many practical cases the situation when F (x, a) is a linear function of a takes place. In this particular case it is obvious that L(a) will have a Gaussian distribution (E.5) (since the product of Gaussians always remains a Gaussian) and Eq. (E.6)-(E.8) will be valid.

E.2 General DDLR method

We review the DDLR method [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF]. Let {ξ} be the set of experimentally observed parameters that describes the kinematics of the four-body decay (Dalitz variables, angles that determine the orientation of the four-body system, invariant masses of the resonances and intermediate isobars, etc.). Then the normalized decay distribution has the following form:

W (ξ) = f (ξ) + λ γ g(ξ) (E.9)
where the functions f and g satisfy the conditions gdξ = 0,

f dξ = 1, f ≥ 0, |g| ≤ f (E.10)
The first condition in Eq. (E.10), gdξ = 0, expresses the fact that the decay width does not depend on the polarization, while the second one is the probability normalization condition. The two last conditions, f ≥ 0 and |g| ≤ f , represent the positive character of W which is proportional to the matrix element squared. For a sample of N measured events the likelihood function L can be defined as One can see from Eq. (E.12) that the quantity

L = N i=1 (f (ξ i ) + λ γ g(ξ i )) (E.
ω i = g(ξ i ) f (ξ i ) (E.13)
contains all information to measure the polarization and depends only on the kinematic variables.

Using the method of maximum likelihood, the true polarization parameter λ γ maximizes L and consequently can be determined as the solution of the equation

∂ ln L ∂λ γ = N i=1 ω i 1 + λ γ ω i = N ω 1 + λ γ ω = 0 (E.14)
The standard error of the optimal mean value of λ γ is also determined as a function of ω-variable:

1 σ 2 λγ = - ∂ 2 ln L ∂ 2 λ γ = N i=1 ω 2 i (1 + λ γ ω i ) 2 = N ω 1 + λ γ ω 2 (E.15)
For the small values of λ γ1 the likelihood maximization is equivalent to a moment method:

ω 1 + λ γ ω ≈ ω -λ γ ω 2 = 0 (E.16)
and hence the polarization parameter can be determined as

λ γ ≈ ω ω 2 (E.17)
On the other side, one can write the new PDF of the ω-distribution as

W ′ (ω) = ϕ(ω)(1 + λ γ ω) (E.18)
where ϕ(ω) is an unknown function, which is very hard to determine analytically. This requires to perform a numerical MC simulation. However, in some particular cases ϕ(ω) turns out to be an even function of ω (one can be see from Eq. (2.56c) f (s 13 , s 23 , cos θ) is an even function of cos θ while ω(s 13 , s 23 , cos θ) is an odd one). Then, one can easily demonstrate by integration over the interval -1 ≤ ω ≤ 1 that λ γ can be expressed as ratios of odd over even momenta:

λ γ = ω 2n-1 ω 2n (n ≥ 1) (E.19)
where the moments are defined as

ω n ≡ 1 -1 ω n W ′ (ω)dω (E.20)
Therefore, the expression obtained by DDLR for small λ γ (E.17) seems exact.

Here we provide a demonstration that, indeed, ϕ(ω) is the even function of ω in the case of polarization measurement in the B → K 1 γ decay.
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  [START_REF] Davier | The Optimal method for the measurement of τ polarization[END_REF] where T ± = T 1 ± iT 2 . The photon couplings constant in Eq.(1.14) leads to relation of the electric charge e and g 1,2 couplings: e = g 2 sin θ W . SU (3) c × SU (2) L × U (1) Y gauge invariance prevents bare mass terms for the quarks and leptons from appearing in the Lagrangian density. The quarks and leptons get mass Flavour physics in the Standard Model and beyond because of their Yukawa couplings to the Higgs field (colour indices are suppressed for simplicity):
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 11 Figure 1.1: Typical diagrams in the full theory, from which the operators (1.28)-(1.30) originate: current-current (a) with QCD corrections (b, c, d); gluon penguin (e); electromagnetic photon penguin (f, g); chromomagnetic gluon penguin (h).
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 612 Figure 1.2: Leading order tree and one-loop level O(α 0 s ) contributions to b → sγ of electromagnetic operator O 7γ and four-quark O 1,...,6 operators respectively.
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 1314 Figure 1.3: Next-to-leading order two-and one-loop level O(α s ) contributions to b → sγ of the four-quark O 2 and the electromagnetic O 8g operators respectively. The crosses indicate the places where the emitted photon can be attached.

2 Figure 1 . 5 :

 215 Figure 1.5: Dominant contribution to b → sγg. A second diagram with photon and gluon exchanged is implied.

38 )

 38 Note that the O 1 contribution vanishes for the on-shell photon due to its colour structure. Hence, only the second term of Eq. (1.38) contributes. Attaching a gluon to the charm loop and expanding the correlation function in Eq. (1.36) of the rewritten operator O 2 (see the diagram in Fig.1.5) in terms of the inverse powers of the charm quark mass, one obtains the effective quark-quark-gluon operator[START_REF] Khodjamirian | QCD estimate of the long-distance effect in B → K * γ[END_REF][START_REF] Ball | Time-dependent CP asymmetry in B → K * γ as a (quasi)null test of the Standard Model[END_REF] 
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 16 Figure 1.6: Flavour and chirality change in the squark propagators.
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 17 Figure 1.7: Example of one of the diagrams with the squark-gluino loop contribution to b → sγ.
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 21 Figure 2.1: Comparison of the radiative B-decays involving two-and three-body decays of kaon resonance states.
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 23 Figure 2.3:The simulated ω-distribution for λ γ = +1 (red) and λ γ = -1 (blue). The polarization parameter λ γ can be determined from the difference between these two distributions (see the footnote 7 for more details).
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 13 wave functions, φ 0 = uū + d d + ss) is the SU (3)-singlet and Y m 1 represents the L = 1 angular momentum of the pair.
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 31 Figure 3.1: Three-meson vertex in the quark-pair-creation model.
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 2233 Figure 3.3: Dependence of the phase space factor ρ ij on the mass of the decaying resonance m for the K * π (top) and Kρ (bottom) channels. For comparison, ρ ij is calculated using the proper analytic continuation, Eq. (3.35), (blue) and the approximation of Nauenberg and Pais, Eq. (3.37), (red). The difference between two approaches for Re(ρ 22 ) turns out to be significant for the Kρ channel.
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 34 Figure 3.4: χ 2 distributions for the fitted parameters, K 1 mixing angle θ K 1 and quarkpair-creation constant γ (left), with the confidence level intervals that determine how frequently the observed interval contains the parameters (right).
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 35 Figure3.5: QPCM constraints for the quark-pair-creation constant γ and the K 1 mixing angle θ K 1 obtained from the fitted partial decay widths at the peak, calculated using the K-matrix couplings (Table3.4). The cross indicates the optimal values of γ and θ K 1 extracted from the fit.
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 4336 Figure 3.6: The D-wave phase relative to the S-wave of K * π, calculated using the Kmatrix couplings. One can see a bump at M Kππ ∼ (1.3 -1.4) GeV/c 2 .

c model 1 = sign c Belle 1 , sign c model 2 = -sign c Belle 2 ( 3

 11223 So, in order to establish the correspondence between our parametrization of |M| 2 (| J | 2 in our case) one can compare the relative signs of the cos δ ρ and sin δ ρ coefficients, c 1,2 , on the Dalitz plot. Direct numerical calculation shows that sign
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 4238 Figure 3.8:|A S (K 1 (1270) → K * π)| 2 (red) and |A P (K 1 (1270) → K * 0 (1430)π)| 2 (blue) for s K 1 = M 2 K 1 (1270) . The K 1 mixing angle θ K 1 is taken to be 60 • .

for each event Calculation of the ω and ω 2 moments: ω n ≡ 1 N 2 Figure 4 . 1 :

 1241 Figure 4.1: MC generation and λ γ error determination procedure.
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 2344 and compute σ λγ . We found that the inclusion of the full Dalitz information can indeed improve the sensitivity by typically a factor of two comparing to the angular fit. The use of the ω ′ is equivalent to the up-down asymmetry method of Gronau et al.. We confirmed this fact by comparison of the corresponding statistical errors which turn out to be practically the same. The comparison of the statistical errors of two methods, DDLR and the one by Gronau et al., depending on the annual yield of signal events is presented in Fig.4.2.
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 42 Figure 4.2: Dependence of the statistical error σ λ on the total number of signal events of the decaysB + → (K + π -π + ) K 1 (1270) γ and B 0 → (K 0 π + π -) K 1 (1270)γ depending on the λ γ determination method: the error of λ γ which is determined by using the DDLR method (red) and the error determined from the up-down asymmetry (blue). Red dashed curve corresponds to the error of λ γ determined by the DDLR method for B + → (K 0 π + π 0 ) K 1 (1270) γ and B 0 → (K + π -π 0 ) K 1 (1270) γ decays.
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 0 Figure 4.3:The mixing angle θ K 1 dependence of λ γ obtained from the "fake data" which was generated using the fixed values λ th γ = 0.5 and θ th K 1 = 60 • . Black curve corresponds to the analysis of the MC data generated by using the pure 3 P 0 quark model prediction with the "off-set" phase δ th ρ = 0, while the blue and red curves correspond to the data generated with δ th ρ = -30 • and δ th ρ = +30 • respectively.

K 1 =Figure 4 . 4 :

 144 Figure 4.4: Normalized probability density function distribution of λ obs γ .The "true" value of the polarization parameter, used for the MC simulation, is set to be λ th γ = 0.5. The K 1 mixing angle is varied randomly according to Gaussian distribution with mean value θ K 1 = 60 • and standard deviation σ θ K 1 = 10 • . The "off-set" phase δ ρ is set to zero (top-left), -30 • (top-right) and +30 • (bottom).

γ(Figure 4 . 5 :

 45 Figure 4.5: The "off-set" phase δ ρ dependence of λ γ obtained from the "fake data" which was generated using the fixed values λ th γ = 0.5 and θ th K 1 = 60 • . Black curve corresponds to the analysis of the MC data generated by using the pure 3 P 0 quark model prediction with the "off-set" phase δ th ρ = 0, while the blue and red curves correspond to the data generated with δ th ρ = -30 • and δ th ρ = +30 • respectively. The plots on the right and bottom represent the zoomed parts of gray, blue and red areas which correspond to δ th ρ ± 10 • region.

  4.3 and 4.5). This fact is Sensitivity studies of the polarization measurement with B → K 1 (1270)γ in the DDLR method

Figure 4 . 6 :

 46 Figure 4.6: Normalized probability density function distribution of λ obs γ .The "true" value of polarization parameter, used for the MC simulation, is set to be λ th γ = 0.5. The K 1 mixing angle is fixed to be θ K 1 = 60 • . The "off-set" phase δ ρ is varied randomly according to Gaussian distribution with standard deviation σ δρ = 10 • and mean value equal to zero (top-left), -30 • (top-right) and +30 • (bottom).
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 3 Discussion on the importance of the D-waves and the cut-off 91 for each event setting β ′ = 0 and compute the ω-moments. This gives us the value λ obs(I) γ which turns out to be λ obs(I) γ ≈ λ th γ = 0.50 ± 0.02(stat) (4.14)

Figure 5 . 2 :

 52 Figure 5.2: Typical diagrams in the full theory, from which the operators O 9,10 (5.5) originate.

Figure 5 . 3 :

 53 Figure 5.3: Comparison of the sensitivity of the two methods: the one directly determining x ≡ |C ′ ef f 7γ /C ef f 7γ | and the other one determining x 2 such as our λ γ (see Eq. (5.11)). One can see that when we assume the same errors for the both methods, a better significance can be obtained with the later method only for x 0.3. Gray region is excluded by the measurement of B(B → X s γ).

)

  Note that the SM being left-handed photon contribution, the C ef f (SM) 7γ and C ef f (NP) 7γ contributions are coherently added in the denominator. It should be noted therefore, if the new physics contribution to the left-handed photons, i.e. C ef f (NP) 7γ

7γ

  assuming that the new physics affects only the right-handed photon emission amplitude (i.e. C ef f (NP) 7γ = 0, C ef f (SM) 7γ

  are measured in future collider experiments. We assume C ef f 7γ to be purely SM-like (i.e. C ef f (NP) 7γ = 0, C ef f (SM) 7γ = -0.304). Thus the CL represents the exclusion potential of SM points. The figure can simultaneously give an indication that the new physics models whose prediction for C ′ ef f 7γ /C ef f 7γ stays within the CL circles can not be distinguished from the SM. Let us see the SUSY example. As briefly discussed in Section 1.4.2 the SUSY contribution to C ′ ef f

45 A

 45 LL ) 23 ≃ 0.009 + 0.001i (δ d RR,LR,RL ) 23 ≃ 0 (5.23) Future prospects of the photon polarization measurement CP B 0 K S Π 0 Γ

Figure 5 . 4 :

 54 Figure 5.4: Constraints on the normalized real and imaginary parts of C ′ ef f 7γ /C ef f 7γ assuming C ef f 7γ to be purely SM-like (i.e. C ef f (NP) 7γ = 0, C ef f (SM) 7γ

( 2 )

 2 T (bottom-left) and A(im) T (bottom-right) respectively at low dilepton mass in the B → K * ℓ + ℓ -decay. 5.2 New physics constraints combining various methods of the polarization determination 101 • Hermitian Yukawa (δ d RL ) 23 ≃ (δ d LR ) 23 ≃ 0.002 + 0.005i (δ d LL,RR ) 23 ≃ 0 (5.24)

Figure 5 . 5 :

 55 Figure 5.5: Dark and light blue regions represent the CL (68% and 99% respectively) regions for the ratio C ′ ef f 7γ /C ef f 7γ in the SM assuming C ef f 7γ to be purely SM-like (i.e. C ef f (NP) 7γ = 0, C ef f (SM) 7γ= -0.304). The region bounds are obtained from the χ 2 fit of the constrains of the measured time-dependent CP -asymmetry in B 0 → K S π 0 γ (S exp K S π 0 γ = -0.15 ± 0.2), the transverse asymmetries in B → K * ℓ + ℓ -(in our study we put the central values of A
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 661 2) and from the λ γ potential measurement in B → K 1 γ (we assume λ SM γ = -1.0 ± 0.2(syst.)). Gray region is excluded by the B(B → X s γ) measurement. Yellow region represents the ±3σ region allowed by the current constraint from the time-dependent CP -asymmetry in B → K S π 0 γ. Chapter The general method of Gronau et al.: a critical view • Although we are quite aware of the very important work accumulated in the study of competing methods since its proposal in 2002, we have estimated that the method, proposed by Gronau et al. for measuring the photon polarisation in FCNC through the B → K res γ → Kππγ processes, has several interests and advantages and deserves further investigation and update. A good news has been the observation of the unexpected large rate for the transition B → K 1 (1270)γ in 2005, by Belle collaboration. Additional information has been provided in the study of B → Kργ time-dependent CP -asymmetry by the same collaboration.

  where u and d are the numbers of active up-and down-type quark flavours at a certain scale µ respectively and f = u + d.

Figure C. 2 : 2 T

 22 Figure C.2: Rescattering process.

  K 1 -mass to the Kρ threshold (see Fig. C.4).

Figure C. 3 :c 2 K 1

 321 Figure C.3: Energy dependence of the physical couplings (blue). The red lines represent the values of the real couplings for the K-matrix states, fitted by ACCMOR collaboration [45].

Figure C. 4 :

 4 Figure C.4: Energy dependence of the mass (left) and width (right) of K 1 (1270) (red, orange) and K 1 (1400) (blue, green). Red and blue curves correspond to the masses and total widths of the physical eigenstates, i.e. diagonal mass matrix elements (C.[START_REF] Grinstein | The photon polarization in B → Xγ in the Standard Model[END_REF] which are calculated in terms of the rotated physical couplings. Orange and green curves represent the leading diagonal elements of the complex mass matrix (M ′ -iΓ ′ /2) a ′ b ′ (C.7) in the K-matrix eigenstate basis. The D-wave contribution is not taken into account due to the absence of knowledge of the corresponding couplings.
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 23 Fixing the relative signs for tree-body decayD.2.1 Clebsch-Gordan coefficientsWe decided to use the convention "down→up" (see Fig. D.1). For instance, for the case of K + 1 → K + π -π + decay that implies that we take the Clebsch-Gordan coefficients as(K * 0 π + |K + 1 ) = (1/2, -1/2; 1, 1|1/2, 1/2) = -2 K + π -|K * 0 ) = (1/2, 1/2; -1, 1| -

D. 2 . 2 Figure

 22 Figure D.1: K + 1 → K + π -π + decay D.2.2 Determination of the relative sign of g K * Kπ and g ρππ Following the definition in the work of Gronau et al., the total amplitude of the two possible channels is written as

  V P P ) is a positive function, one can see that sign(g K * Kπ ) = -sign(g ρππ )

√

  2L + 1(L, 0; S, λ 1λ 2 |J, λ 1λ 2 )(s 1 , λ 1 ; s 2 , -λ 2 |S, λ 1λ 2 )A L (D.14) D.4 Phase space convention 133

  final and averaging over the initial spin states, the partial width is then given by Γ(A → V P ) = (|A S | 2 + |A D | 2 )P S 2 (D.18)

3 ) 2 ∂ 2 ln L ∂a 2 a=â

 322 To estimate the error one can expand the log likelihood around â:ln L(a) = ln L(â) + 1 (aâ) 2 + O (aâ) 3 (E.4)It is easy to see from Eq. (E.4) that if the derivatives ∂ k L/∂a k = 0 for k > 2, parameter a has the normal distribution. Assuming a is Gaussian distributed with mean value ā to show that the likelihood maximization condition (Eq. (E.3

  more convenient to use the logarithmic likelihoodln L = N i=1 ln[f (ξ i )(1 + λ γ ω i )] = N i=1ln(1 + λ γ ω i ) + other terms independent on λ γ (E.12)

W 1 - 1 W

 11 (s 13 , s 23 , cos θ)ds 13 ds 23 d cos θ = 1 (E.21a) ′ (ω)dω = 1 (E.21b)

1 - 1 dω W (s 13 , s 23 ,| J | 2 (E. 23 )cos 2 θ ± ) 2 1 -Figure E. 1 : 23 = | J | 2 2I r 2 J r 2 J 2 J -ω 2 ) 2 ( 1 + λ γ ω)ds 13 ds 23 (E. 28 ) 2 J r 2 J

 111323223112322221232822 Figure E.1: Allowed regions for the r J -ω space coming from the requirement | cos θ ± | ≤ 1.Therefore, using Eq. (E.27) and integrating Eq. (E.22) over cos θ, we obtain

  1.3.2 Possible contamination of "wrong" chirality contribution due to the O 2 term 1.3.2 Possible contamination of "wrong" chirality contribution due to the O 2 term

  It should be noticed that C R /C L obtained by Khodjamirian et al. and by Ball and Zwicky is much smaller than the one estimated by Grinstein et al. in Eq. (1.35).

	Flavour physics in the Standard Model and beyond
	can induce. It should be emphasized that there are many new physics models which can
	accommodate e.g. a large coefficient to the right-handed electro-magnetic operator O ′ 7γ
	1.4 Photon polarization with new physics
	When we consider the new physics contributions, the right-handed contribution can be
	significantly enlarged by different types of Dirac structure that those new physics models

Table 3 . 6 :

 36 .6).

	Decay mode PDG (%) Fit 1 (%)	Fit 2 (%)
	Kρ K * π 0 (1430)π K *	42 ± 6 16 ± 5 28 ± 4	57.3 ± 3.5 26.0 ± 2.1 1.90 ± 0.66 2.01 ± 0.64 58.4 ± 4.3 17.1 ± 2.3

  At LO the anomalous dimension 8 × 8 matrix for the O 1 , . . . , O 8 operator basis is given by[START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF] 

			i = 7, j = 1, . . . 6	
	γ ji (0)	0) 88	otherwise i = 8, j = 1, . . . 6	(A.15)

Table A .

 A 

	k 4i k 5i	0 0	0 0	-1 14 0	1 6 -1 6 0 -0.0397 0.0117 -0.0025 0.0304 0.0510 -0.1403 -0.0113 0.0054 0.0984 0.1214 0.0156 0.0026
	k 6i	0	0	0	0	0.0335 0.0239 -0.0462 -0.0112

1: "Magic numbers" taken from Ref.

[START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF]

.

  2. No direct interaction is assumed between two mesons. Nevertheless, there is rescattering since a meson pair can annihilate into one bound state and then be created again from the decay of this bound state. This rescattering process can be iterated arbitrary number of times, what is equivalent to a resummation of meson loops between the initial and final vertices (see Fig. C.2).

  1 mixing angle from comparison of the predicted partial decay widths of the K 1 meson decays into the dominant K * π and Kρ channels with the measured experimental values, we use the fitted K-matrix parameters extracted by Daum et al. from Ref. [45] (see Table C.2). Using the definition of the K 1 mixing by Daum et al. (which is different from (3.1) that we use)

  Table C.1. The indices a ′ and b ′ denote the upper and lower K 1 resonances.

	m a ′ , GeV/c 2 m b ′ , GeV/c 2 1.4±0.02 1.17±0.02	γ + 0.78±0.1 0.54±0.1 64 • ±8 θK 1 γ -

•

Table C.1: Fitted K-matrix pole masses, S-wave reduced SU (3) couplings and mixing angle for K 1A (F -type) and K 1B (D-type), taken from Ref.

[START_REF] Daum | Diffractive production of strange mesons at 63 GeV[END_REF] 

(low t data). The indices a ′ and b ′ denote the upper and lower K 1 resonances.

Table C .

 C 2: K-matrix couplings, calculated from Eq. (C.31) using the fitted parameters from TableC.1. The indices a ′ and b ′ denote the upper and lower K 1 resonances decaying into K * π (channel 1) and Kρ (channel 2) hadronic states respectively. The coupling to the K * 0 (1430)π channel, where K * 0 (1430) resonance is supposed to have the mass 1.25 GeV/c 2 and width 600 MeV/c 2 , f b3 is taken from Ref.[START_REF] Aubert | Measurement of branching fractions of B decays to K 1 (1270)π and K 1 (1400)π and determination of the CKM angle α from B 0 → a 1 (1260) ± π ∓[END_REF].Using the experimental values of the K-matrix couplings from TableC.2 and performing the diagonalization of the complex mass matrix (C.24), we observed that•The variation of the absolute values and phases of the new rotated physical couplings {f a ph i , f b ph i } around the masses at the peak of Breit-Wigner (i.e. m ∼1.27 GeV/c 2 and 1.4 GeV/c 2 ) turn out to be small (see Fig. C.3).

	07 -0.19±0.09 -0.15±0.10 -0.51±0.06	0	0.32

• Contribution of the complex phase space for energy below the decay threshold (which implies

ρ ij (m) → i|ρ ij (m)|) is very small for diagonalized physical mass of K 1 (1400) (see Fig. C.4

). But one observes a threshold effect for K 1 (1270) near m ∼ 1.2 GeV/c 2 . However, the mass variation of M K 1 (m) around the peak of Breit-Wigner can be considered not so significant.

• One can see from Fig. C.4 that, contrary to M K 1 (m) dependence, the width Γ K 1 (m) is a rapidly varying function of the energy m.

• Non-diagonal elements of the mass matrix (C.24) are sufficiently small compared to the diagonal ones. One can see from Fig.

C

.4 that the difference between the properly diagonalized masses and widths (C.19) (blue/red curves), which are calculated in terms of the rotated physical couplings, and the real and imaginary parts of the diagonal elements of (C.24) (green/orange curves) is insignificant. As a consequence, our assumption for the partial widths

More intuitively, the outgoing photon polarization can be determined in the following way: due to the chiral structure of the W boson coupling to quarks the first term in Eq. (1.24) describes b R → s L transition; since b → sγ is a two-body back-to-back decay in the b-quark reference frame, due to the helicity conservation the photon must be left-handed. Correspondingly, the second term in Eq. (1.24) describes the right-handed photon emission.

The term proportional to m s (the second term in Eq. (1.24)) is often neglected in this expression due to its smallness.

In the naive dimensional regularization scheme the non-zero contributions come from O

[START_REF] Aaltonen | Combined CDF and D∅ Upper Limits on Standard Model Higgs Boson Production with up to 8.2 fb -1 of Data[END_REF][START_REF] Arkani-Hamed | The hierarchy problem and new dimensions at a millimeter[END_REF] operators, while in the 't Hooft-Veltman scheme they all vanish (see Ref.[START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF] and references therein for more details).

The original work on this line was performed by Khodjamirian et al.[START_REF] Khodjamirian | QCD estimate of the long-distance effect in B → K * γ[END_REF] where the local QCD sum rule is applied.

Angle ψ is unobservable due to the rotation symmetry of the decay plane around the z-axis and is dropped out from the total squared amplitude as is demonstrated later in Eq. (2.17).

The case of the B → φKγ decay, first considered in[START_REF] Atwood | Clean Signals of CP-violating and CP-conserving New Physics in B → P V γ Decays at B Factories and Hadron Colliders[END_REF] and revisited in[START_REF] Orlovsky | On the photon polarization in radiative B → φKγ decay[END_REF], is different since there is no observed prominent φK resonance state and that the φ meson is very narrow.

Although the Belle collaboration did not claim the clear observation of the B → K 1 (1400)γ decay, one observes a non-negligible peak around 1.4 GeV/c 2 in the Kππ invariant mass spectrum[START_REF] Nishida | New results on B → V γ decays[END_REF] 

The relative sign of the couplings g ρππ and g K * Kπ is fixed by the 3 P 0 quark-pair-creation model, so

As it was pointed out in[START_REF] Gronau | Photon polarization in radiative B decays[END_REF], the following result can be changed by about 50% due to the correction of the Kρ channel depending on the relative strong phase δ ρ .

Note that this is the phenomenological mass in the quark models and not the physical constituent quark mass.

Note that in the case of two overlapping resonances the Breit-Wigner parametrization of the amplitude satisfies the unitarity condition of the S-matrix only with the complex couplings satisfying certain condition. As we demonstrate later, these complex couplings can be obtained from the real K-matrix couplings by a complex rotation.

According to private communications.

In statistics, a confidence level interval is a particular kind of interval estimate of a fitted parameter and is used to indicate the reliability of an estimate. It is an observed interval (i.e. it is calculated from the observations), in principle different from sample to sample, that frequently includes the parameter of interest, if the experiment is repeated. How frequently the observed interval contains the parameter is determined by the confidence level.

One has to point out that the branching ratio of b 1 → ωπ has not been measured precisely. However, the ωπ is considered to be the dominant decay mode[START_REF] Nakamura | Review of particle physics[END_REF], so that we assume B(b 1 → ωπ) ≃ 100%.

One has to notice that the D-wave amplitude is not taken into account in the following parametrization and that the last factor in Eq. (3.49) corresponds to the S-wave.

Throughout this section, we assume "ideal" situation, i.e. detector and background effects are not taken into account. Thus, the experimental error contains only the statistical ones.

This estimate is for the decay modes which contain only charged pion and K in the final state. For the decay modes which contain the neutral mesons, we expect lower sensitivity, in general. The realistic estimate requires more detailed simulations considering the experimental performance.

The full angular quasi-three-body decay distribution can be found in the original paper by Kruger and Matias[START_REF] Kruger | Probing new physics via the transverse amplitudes of B 0 → K * 0 (→ Kπ + )ℓ + ℓat large recoil[END_REF].

In fact, the non-negligible width difference ∆Γ s in B s -mesons leads to another measurable observable H which can be also sensitive to the right-handed currents (e.g. see Ref.[START_REF] Muheim | Exploiting the width difference in B s → φγ[END_REF]). This makes the formula (5.12) more complicated in the case of B s → φγ. However, for simplicity, for the present moment we neglect this term proportional to sinh ∆Γs 2 t but keep in mind its significance.

One has to note that this is an example and that the other set of SUSY parameters can make the point on the plot to be beyond the SM allowed region. This aspect requires a more detailed study and it has not been done in this thesis.

One has to be careful with the choice of the momentum, i.e. p C or p B =p C , since it changes the sign of the P -wave amplitude.

τ -polarization is of the order of 0.1 and the expansion in terms of λ γ is reasonable, while in our case λ γ ≃ ±1 in the SM. But one can see from Fig.

2.3 that ω is concentrated around 0, so one can assume that such expansion can be used.

Some notes on statistics
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Methods invoking CP -asymmetries

An indirect method to measure the photon polarization is to study the time-dependent CP -asymmetry in the neutral B q (q = d, s) mesons. For the generic radiative decay of the neutral B q -meson into any hadronic self-conjugate state f CP , B q (t) → f CP γ, neglecting direct CP -violation and the small width difference between two B-mesons, the CP -asymmetry is given by [START_REF] Atwood | Mixing-induced CP asymmetries in radiative B decays in and beyond the standard model[END_REF] 2 (5.12) where ξ(= ±1) is the CP -eigenvalue of f CP ; sin(2ψ) which is defined as

(5.13) parametrizes the relative amount of left-and right-polarized photons; φ M is one in the B q -B q mixing; φ L,R are the relative CP -odd weak phases in the b → sγ process, i.e.

These phases are φ L,R = 0, φ d = 2β, φ s ≃ 0 in the SM.

Note that here M L,R denote the amplitudes of the left/right-handed photon emission in B → K * γ L,R respectively. Due the smallness of the right-handed amplitude, the SM predicts

We should emphasise that A CP (t) measures the combination of x = |M R /M L | and the CP violating phases φ M,L,R but not separately. Thus, the value of x can be obtained from this measurement, only by having the value of the CP violating phases in the b → sγ as well as the B q -mixing.

The current world average for the asymmetry in the

S exp K S π 0 γ = -0.15 ± 0.20 (5.16) which is expected to be improved by the SuperB factory by reducing the error down to 2% [START_REF] Bona | SuperB: A High-Luminosity Asymmetric e + e -Super Flavor Factory[END_REF]. The LHCb experiment is going to measure the B s → φγ process. Based on the MC simulation for 2 fb -1 , it is claimed in [START_REF] Barsuk | The road map for the radiative decays of beauty hadrons at LHCb[END_REF] that LHCb will be able to measure x with the accuracy of σ x ≃ 0.1. Therefore, similar to the case of B → K * e + e -, our method using Renormalization and running of the Wilson coefficients what gives

where

Here γ ij is called the anomalous dimension matrix. It can be calculated order by order in the coupling constant from the renormalization constants Z.

Due to the renormalization group invariance, the physical amplitudes must be independent on the scales µ at which the heavy quark masses are defined or the other heavy particles are integrated out. The scale independence of the weak Hamiltonian implies that

This gives us the Renormalization Group Equation (RGE) for the Wilson coefficients:

The solution of this equation is

where the β-function that describes the running of the couplings constant is defined in the standard way:

A.2 b → sγ at Leading Logarithmic Approximation

The renormalization matrix Z and, consequently, the anomalous dimension matrix can be perturbatively expanded in powers of α s : ) and O(g 3 s ) are required. Going beyond the leading order, the two-loop mixing between O 7γ and O 7g ) plus the three-loop mixing between these two sets of operators enter matrix γ (1) in the next-to-leading order analysis.

Expanding Eq. (A.7) in terms of α s , the Wilson coefficients can be written as

Due to the mixing of the operators it is convenient to introduce the so-called "effective coefficients" for the operators O 7 and O 8 . One observes at leading order that in any regularization scheme one can write the one-loop matrix elements of the four-quark operators (O 1 , . . . , O 6 ) can be written as

with y i , z i coming from purely short-distance part of the one-loop diagrams. The vectors y and z can be considered as the effect of mixing of order α 0 s among O 1,...,6 and magnetic operators. In the naive dimensional regularization (NDR) scheme they are y = (0, 0, 0, 0, -1/3, -1) and z = (0, 0, 0, 0, 1, 0). Defining the "effective coefficients" as

the amplitude of the inclusive b → sγ process will be of the form

One has to note that the regularization scheme dependence of C i (µ) is cancelled by a corresponding regularization scheme dependence in γ (0) . Consequently, the quantity C ef f 7γ (µ) is scheme-independent.

The evolution of

Appendix B Watson's theorem

Final state interactions play an important role in the test of CP and T violation. A test for T violation is to observe a T -odd correlation of the form of triple product like

In the contrast with the partial decay rate difference which is used to test CP violation a T -odd correlation can be produced by by final state interactions even if the T invariance is not violated. Watson's theorem that relates the final state interaction phase of the decay products and the elastic scattering phase, can be illustrated on the following example.

The amplitude for the decay A → B + C induced by weak interactions Hamiltonian can be written as [START_REF] Bigi | CP violation[END_REF] BC; out|H weak |A; in = Ae iδs (B.1)

where δ s is the phase generated by strong interactions. If T is conserved A is real. Assuming that

• the weak Hamiltonian is invariant under the time-reversal:

• with the time-reversal operator T is anti-unitary, i.e. In Ref. [START_REF] Aitchison | K-matrix formalism for overlapping resonances[END_REF] the role of the K-matrix formalism is explained in detail, in a form precisely suited to match to our quark model approach.

In potential theory formalism, the T -matrix elements T ij for transition between the continuum two-body states i and j (i.e. scattering) via the overlapping resonances {a 0 , b 0 , . . . } forming the intermediate states can be written as [START_REF] Aitchison | K-matrix formalism for overlapping resonances[END_REF] T ij = f ia 0 Π a 0 b 0 f b 0 j (C.1)

where the elements of the resonance propagator matrix are parametrized as

where m is the total energy in the center of mass frame and M is a Hermitian mass matrix and Γ is a Hermitian width matrix, given by The states {a 0 , b 0 , • • • } are the "bare" resonance states as they exist before either the coupling to the continuum channels i or direct coupling between the states is turned on.