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Notations and abbreviations

• (Z,Z, µ) : a separable, σ-�nite and non-atomic measure space. � See the
beginning of Section 1.1.

• Zµ : the class of those A ∈ Z such that µ(A) < ∞. � See Notation 1.1.1.

• (Zn,Zn) : abbreviation of (Z⊗n,Z⊗n). � See Notation 1.1.1.

• L2(µ) : the abbreviation of L2(Z,Z, µ). � See Notation 1.1.1.

• L2(µn) : the abbreviation of L2(Zn,Zn, µn) = L2(Z⊗n,Z⊗n, µ⊗n), the space
of real valued functions on Z⊗n which are square-integrable with respect to µ⊗n. � See
Notation 1.1.1.

• f̃ : the canonical symmetrization of function f ∈ L2(µn). � See Notation
1.1.1.

• L2
s(µ

n) : the closed linear subspace of L2(µn) composed of symmetric functions.
� See Notation 1.1.1.

• f(z, ·) : the function de�ned on Zn−1 given by (z1, . . . , zn−1) 7→ f(z, z1, . . . , zn−1),
for any f ∈ L2

s(µ
n), (n > 1) and z ∈ Z. � See Notation 1.1.1.

• f̃(z, ·) : the symmetrization of the (n − 1)-parameter function f(z, ·). � See
Notation 1.1.1.

• E(µn) : the subset of L2(µn) composed of elementary functions vanishing on
diagonals. � See Notation 1.1.1.

• Es(µn) : the subset of L2
s(µ

n) composed of symmetric elementary functions
vanishing on diagonals. � See Notation 1.1.1.

• N̂(A) : a compensated Poisson measure evaluated on set A. See the beginning
of Section 1.1.1.

• G(A) : a Gaussian measure evaluated on set A. � See De�nition 1.1.13.

• L2(σ(G),P) : the space of square-integrable functionals of some Gaussian mea-
sure G. � See Proposition 1.1.21.

• H : a real separable Hilbert space with inner product ⟨·, ·⟩H. � See De�nition
1.1.23.

• G(H) : abbreviation of {G(h) : h ∈ H}, an isonormal Gaussian process over H,
with E[G(h)G(h′)] = ⟨h, h′⟩H, ∀h, h′ ∈ H . � See De�nition 1.1.23.

• H⊗n : the n-th tensorial product H⊗n. � See the beginning of Section 1.2.1.

• H⊙n : the Hilbert space of n-th symmetric tensors, with the norm ∥f∥2H⊙n =
n!∥f∥2H⊗n . � See the beginning of Section 1.2.1.

• IGq (f) : the multiple stochastic Wiener-Itô integral (of order q) of f ∈ L2(µq)
with respect to Gaussian measure G. � See Section 1.1.2.
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• Iq(f) : abbreviation of IN̂q (f), the multiple stochastic Wiener-Itô integral (of

order q) of f ∈ L2(µq) with respect to compensated Poisson measure N̂ . � See Section
1.1.1.

• f ⊗r g : contraction of order r between functions f ∈ L2(µp) and g ∈ L2(µq).
� See De�nition 1.1.17.

• f ⋆lr g : star contraction of order r, l between functions f ∈ L2
s(µ

p) and g ∈
L2
s(µ

q). � See De�nition 1.1.6.

• Hq : Hermite polynomial of order q. See De�nition 1.1.19.

• ⟨·, ·⟩H.S. : the Hilbert-Schmidt inner product on the class of d×d real matrices,
de�ned by ⟨A,B⟩H.S. := Tr(ABT ) for every pair of matrices A and B. � See De�nition
1.3.1.

• ∥ · ∥H.S. : the Hilbert - Schmidt norm induced by ⟨·, ·⟩H.S.. � See De�nition
1.3.1.

• ∥A∥op : the operator norm of a d×d real matrix A given by sup∥x∥Rd=1 ∥Ax∥Rd .
� See De�nition 1.3.1.

• ∥ · ∥Rd : the usual Euclidian norm on Rd. � See De�nition 1.3.1.

• Hess g(z) : the Hessian matrix of g evaluated at a point z. � See De�nition
1.3.1.

• ∥g∥Lip : the Lipschitz norm de�ned by sup
x ̸=y

|g(x)− g(y)|
∥x− y∥Rd

for every function

g : Rd 7→ R. � See De�nition 1.3.1.

• M2(g) : the M2 norm de�ned by sup
x̸=y

∥∇g(x)−∇g(y)∥Rd

∥x− y∥Rd

for g ∈ C1(Rd). �

See De�nition 1.3.1.

• M3(g) : the M3 norm de�ned by sup
x ̸=y

∥Hess g(x)−Hess g(y)∥op
∥x− y∥Rd

for g ∈ C2(Rd).

� See De�nition 1.3.1.

• ∥g(k)∥∞ : the norm de�ned by max
1≤i1≤...≤ik≤d

sup
x∈Rd

∣∣∣∣∣ ∂k

∂xi1 . . . ∂xik
g(x)

∣∣∣∣∣ for a positive
integer k and a function g ∈ Ck(Rd). � See De�nition 1.3.1.

• dG : the distance between the laws of two Rd-valued random vectors X and Y
such that E∥X∥Rd , E∥Y ∥Rd < ∞, given by

dG(X,Y ) = sup
g∈G

|E[g(X)]− E[g(Y )]|,

where G indicates the collection of some functions. � See De�nition 1.3.3.
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• dW : the Wasserstein (or Kantorovich- Wasserstein) distance, by taking G =
{g : ∥g∥Lip ≤ 1}. � See De�nition 1.3.3.

• dTV : the total variation distance, by taking G equal to the collection of all
indicators 1B of Borel sets. � See De�nition 1.3.3.

• dKol : the Kolmogorov distance, by taking G equal to the class of all indicators
functions 1(−∞;z1], · · · ,1(−∞;zd], (z1, . . . , zd) ∈ Rd. � See De�nition 1.3.3.

• d2 : the dG distance, by taking G = {g : g ∈ C2(Rd), ∥g∥Lip ≤ 1,M2(g) ≤ 1}.
� See De�nition 1.3.3.

• d3 : the dG distance, by taking G = {g : g ∈ C3(Rd), ∥g′′∥∞ ≤ 1 , ∥g′′′∥∞ ≤ 1}.
� See De�nition 1.3.3.



viii



Remerciement

En premier lieu, je tiens à remercier mes deux directeurs de thèse: Giovanni Peccati et Marc
Yor, car ils m'ont appris comment la recherche se progresse. Ils sont toujours disponible pour
m'aider dans les passages un peu délicats que tout le monde traverse au cours de sa thèse.
Giovanni m'a présenté les domaines fascinants de la méthode de Stein et le calcul de Malliavin,
ainsi que l'approximation probabiliste. Marc est toujours une source de connaissances et de
l'inspiration, et sa façon de penser et de recherche exerce une in�uence profonde sur moi.

Ma reconnaissance va naturellement aux mes rapporteurs Josep L Solé et David Nualart
pour avoir relu attentivement mon manuscrit et pour leurs conseils visant à l'améliorer. En-
suite, je souhaite remercier autres membres de mon jury de thèse Ivan Nourdin et Laurent
Decreusefond pour le temps qu'ils m'ont consacré sur ma thèse et soutenance.

Pendant mes études à LPMA, je me sens heureux que j'ai eu la chance de participer à
WIP de Marc Yor, une séminaire de laboratoire que de nombreuses collègues ont assisté.
Merci surtout à professeurs Cathérine Donati-Martin et Frédérique Petit pour leurs présences
constantes dans le WIP et leurs remarques très utiles.

Les échanges avec les autres doctorants de laboratoire durant ces années et la possibilité
de présenter et de discuter de mes recherches et de ma progression avec eux, étaient indis-
pensables pour tout le long de mon doctorat. Plus précisément, je tiens à remercier Joseph,
Nizar, Paul, Fernando, Stavros, Joachim, David, Xinxin et Yuhao en particulier.

Par ailleurs, je dois mentionner mes collègues du bureau à l'Université de Nanterre, oú
j'ai travaillé au cours des deux dernières années en tant que ATER et l'ensemble équipe de
MODAL'X qui m'ont accueilli cordialement. Ines, Malika, Olivier, Philippe, Sébastien, Rudi-
ger, Rym, Valérie, merci pour la belle temps que nous avions là-bas.

Je dois aussi un grand merci aux membres de l'administration Corentin Lacombe, Philippe
Macé, Isabelle Mariage, Jacques Portes, Josette Saman et Jean-François Venuti pour leur aides
durant toutes ces années.

Merci à Anlan, pour son soutien inestimable au quotidien, sa gentillesse, et sa douceur.

Merci en�n aux mes parents pour leur soutien indéfectible et leur amour inconditionnel;
sans vous je n'en serais pas là aujourd'hui, merci.

ix



x REMERCIEMENT



Résumé / Abstract

0.1 Résumé (en Français)

Dans cette thèse nous nous concentrons sur l'établissement de certains théorèmes limite et
d'approximations probabilistes. Un théorème limite est un résultat indiquant que la struc-
ture à grande échelle de certains systèmes aléatoires peut être véritablement approchée par
une distribution de probabilité typique. Les exemples classiques sont le Théorème Central
Limite (TCL dans la suite), le principe d'invariance de Donsker, ainsi que les lois circulaire
et semi-circulaire de la théorie des matrices aléatoires. D'autre part, nous appelons approxi-
mation probabiliste toute formalation mathématique permettant d'évaluer des distances entre
les lois de deux éléments aléatoires. Lorsque l'une des distributions est gaussienne, on parle
d'approximation normale. Le TCL et l'approximation normale associée sont l'un des thèmes
récurrents de toute la théorie des probabilités: voir par exemple [13] pour une introduction à
ce sujet.

Au cours des cinq dernières années, I. Nourdin, G. Peccati et d'autres auteurs ont développé
une nouvelle théorie d'approximations normales et non normales pour des variables aléatoires
sur l'espace de Wiener, qui est basée sur l'utilisation d'un calcul de variations de dimension
in�nie, connu sous le nom de �calcul de Malliavin�, ainsi que la célèbre �méthode de Stein�
pour les approximations probabilistes. Leur travail généralise les résultats précédents par D.
Nualart et G. Peccati à propos de théorèmes limite portant sur les chaos de Wiener (voir [40]).
Après cela, G. Peccati, J. L. Solé, M.S. Taqqu et F. Utzet (voir [46]) ont étendu cette méthode
pour obtenir des approximations normales sur l'espace de Poisson.

L'objectif de cette thèse est d'étendre les résultats de [46], a�n d'obtenir des théorèmes
centraux limites multi-dimensionnels sur l'espace de Poisson, ainsi que plusieurs extensions,
comme on le verra dans la suite de ce résumé.

La thèse est organisée comme suit:

Dans le Chapitre 1 , nous présentons plusieurs résultats classiques préliminaires, y compris
la dé�nition d'intégrales stochastiques multiples de Wiener-Itô, les décompositions chaotiques,
les opérateurs de contraction, les formules de multiplication, à la fois sur l'espace de Poisson
et sur l'espace gaussien. Nous introduisons aussi les deux principaux outils de notre théorie:
le calcul de Malliavin et la méthode de Stein. Outre les résultats existants, nous présentons
également plusieurs nouveaux lemmes techniques, y compris: le Lemme 1.1.8, qui consiste en
une inégalité de type Cauchy-Schwarz; l'inégalité (1.74) dans le lemme 1.3.12, qui donne une
estimation de la distance M3.

xi



xii RÉSUMÉ / ABSTRACT

Dans le Chapitre 2, nous présentons la �méthode de Malliavin-Stein�, ainsi qu'une brève de-
scription des contributions principales contenues dans cette thèse. La méthode de �Malliavin-
Stein� est une méthode d'approximation probabiliste développée par I. Nourdin, G. Peccati et
d'autres auteurs, basée sur la combinaison de calcul du Malliavin et de la méthode de Stein.
Antérieurement à cette thèse, cette technique a été utilisée pour obtenir le TCL pour des
intégrales multiples, dans le cadre unidimensionnel gaussien, ainsi que d'un part dans le cadre
multi-dimensionnel gaussien, et aussi d'autre part dans le cadre unidimensionnel de Poisson.
Parmi les autres sujets obtenus dans cette thèse, la propriété �d'universalité� dans les chaos
de Wiener de type gaussien et les théorèmes centraux limites presques sûrs (TCLPSs dans la
suite) ont également été étudiés. A la �n de ce chapitre, nous présentons une introduction
aux trois contributions principales originales dans cette thèse: le TCL multi-dimensionnel sur
l'espace de Poisson; la propriété �d'universalité� dans les chaos de Wiener-Poisson; le Théorème
centrale limite presque sûr sur l'espace de Poisson. Cependant, ces trois contributions sont
contenues respectivement dans le chapitre 3 , le chapitre 4, et le chapitre 5.

Dans le Chapitre 3, nous étudions certaines approximations normales multi-dimensionnelles
sur l'espace de Poisson avec les moyens du calcul de Malliavin, de la méthode de Stein et de
l'interpolation �smart path� utilisée beaucoup par M. Talagrand. Nos résultats impliquent de
nouveaux théorèmes centraux limites multi-dimensionnels pour des intégrales multiples par
rapport aux mesures de Poisson; ainsi nous étendons signi�cativement les précédents résultats
dans [46] par G. Peccati, J.L. Solé, M.S. Taqqu et F. Utzet. Plusieurs exemples explicites,
en particulier concernant les vecteurs de fonctionnelles linéaires et non linéaires de processus
d'Ornstein-Uhlenbeck généralisé, sont discutés en détail. Le contenu principal du chapitre 3
est basé sur l'article publié [50] par G. Peccati et C. Zheng. Les résultats du chapitre 3 ont
déjà eu un certain impact dans la littérature, en particulier dans le cadre de la géométrie
stochastique (voir [59, 61]) et de la théorie générale des opérateurs de Markov (voir [24]). Voir
la section 2.3.1 pour un résumé du chapitre 3.

Dans le Chapitre 4, nous étudions la propriété �d'universalité� des sommes homogènes à
l'intérieur des chaos de Wiener-Poisson. Ce travail développe l'idée introduite dans l'article
[35] écrit par I. Nourdin, G. Peccati et G. Reinert. Par ailleurs, nous montrons aussi que,
dans le cas particulier des éléments des chaos de Wiener-Poisson qui sont aussi des sommes
homogènes, les conditions su�santes pour le TCL établies dans le chapitre 3 s'avèrent égale-
ment être nécessaires. Le contenu principal du chapitre 4 est basé sur l'article en préparation
[51] par G. Peccati et C. Zheng. Voir la section 2.3.2 pour un résumé du chapitre 4.

Dans le Chapitre 5, nous obtenons certains théorèmes centraux limites presques sûrs pour
des fonctionnelles des mesures de Poisson, à la fois dans le cas unidimensionnel et le cas multi-
dimensionnel. La source principale d'inspiration pour ce travail vient de l'article [3] par B.
Bercu, I. Nourdin et M.S. Taqqu, qui traite TCLPSs sur l'espace de Wiener gaussien. Comme
application, nous revisitons les fonctionnelles de processus d'Ornstein-Uhlenbeck généralisé
étudiées dans le chapitre 3, et nous construisons des TCLPSs pour elles. Le contenu principal
du chapitre 5 est basé sur l'article en préparation [69] par C. Zheng. Voir la section 2.3.3 pour
un résumé du chapitre 5.
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0.2 Abstract (in English)

In this dissertation we focus on limit theorems and probabilistic approximations. A �limit
theorem� is a result stating that the large-scale structure of some random system can be
meaningfully approximated by some typical probability distribution. Distinguished examples
are the Central Limit Theorem (CLT in the sequel), the Donsker invariance principle, as well
as the circular and semicircular laws in random matrix theory. On the other hand, we call a
�probabilistic approximation� any mathematical statement allowing one to assess the distance
between the laws of two random elements. When one of the distributions is Gaussian, one
refers to a �normal approximation�. CLTs and associated normal approximations are one of
the recurring themes of the whole theory of probability: see e.g. [13] for an introduction to
this topic.

In the last �ve years, I. Nourdin, G. Peccati and other authors have developed a new theory
of normal and non-normal approximations for random variables on the Wiener space, based
on the use of an in�nite-dimensional calculus of variations, known as the �Malliavin calculus�,
as well as the well-known �Stein's method� for probabilistic approximations. Their work gen-
eralizes previous �ndings by D. Nualart and G. Peccati about limit theorems on Wiener chaos
(see [40]). After that, G. Peccati, J.L. Solé, M.S. Taqqu and F. Utzet (see [46]) extended this
method to the framework of normal approximations on the Poisson space.

The aim of this dissertation is to extend the �ndings of [46] , in order to study multi-
dimensional Central Limit Theorems on the Poisson space, as well as several extensions.

The dissertation is organized as follows:

In Chapter 1, we present several classic preliminary results, including the de�nition of the
multiple Wiener-Itô stochastic integrals, chaotic decompositions, contraction operators, multi-
plication formulae, on both the Poisson and Gaussian spaces. We also introduce the two main
tools of our theory: Malliavin calculus and Stein's method. Besides the existing results, we
also present several new technical lemmas, including: Lemma 1.1.8, which contains a Cauchy-
Schwarz type inequality; inequality (1.74) in Lemma 1.3.12, which gives an estimation of the
distance M3.

In Chapter 2, we present the �Malliavin-Stein� method, as well as a short description of the
main contributions contained in the dissertation. The �Malliavin-Stein� method is a proba-
bilistic approximation method developed by I. Nourdin, G. Peccati and other authors, based
on the combination of the Malliavin calculus and Stein's method. Previously to this disserta-
tion, this technique has been used to derive CLTs for multiple integrals, in the one-dimensional
Gaussian setting, in the multi-dimensional Gaussian setting, as well as in the one-dimensional
Poisson setting. Other topics, including the �Universality� property of Gaussian Wiener chaos
and Almost Sure Central Limit Theorems (ASCLTs in the sequel) have also been studied in
this framework. At the end of this chapter, we present an introduction to the three main
original contributions in this dissertation: multi-dimensional CLTs on the Poisson space; Uni-
versality of Poisson Wiener chaos; Almost Sure Central Limit Theorem on the Poisson space.
These three contributions are contained respectively, in the subsequent Chapter 3, Chapter 4,
and Chapter 5.
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In Chapter 3, we study multi-dimensional normal approximations on the Poisson space by
means of Malliavin calculus, Stein's method and �smart path� interpolations. Our results yield
new multi-dimensional central limit theorems for multiple integrals with respect to Poisson
measures, thus signi�cantly extending the previous �ndings in [46] by G. Peccati, J.L. Solé,
M.S. Taqqu and F. Utzet. Several explicit examples (including in particular vectors of linear
and non-linear functionals of Ornstein-Uhlenbeck Lévy processes) are discussed in detail. The
main content of Chapter 3 is based on the published paper [50] by G. Peccati and C. Zheng.
Note that the results of Chapter 3 have already had some impact on the literature, in partic-
ular in the framework of stochastic geometry (see [59, 61]) and the general theory of Markov
operators (see [24]). See Section 2.3.1 for a sketch of Chapter 3.

In Chapter 4, we study the �Universality� property of homogeneous sums inside the Poisson
Wiener chaos. This work develops the idea introdued in the paper [35] written by I. Nourdin,
G. Peccati and G. Reinert. As a by-product, we also show that, in the special case of elements
of the Poisson Wiener chaos that are also homogeneous sums, the su�cient conditions for the
CLTs established in Chapter 3 turn out to be also necessary. The main content of Chapter 4
is based on the paper in preparation [51] by G. Peccati and C. Zheng. See Section 2.3.2 for a
sketch of Chapter 4.

In Chapter 5, we obtain Almost Sure Central Limit Theorems for functionals of Poisson
measures, in both the one-dimensional and the multi-dimensional cases. The main inspiration
for this work comes from the paper [3] by B. Bercu, I. Nourdin and M.S. Taqqu, dealing
with ASCLTs on the Wiener space. As an application, we revisit the functionals of Ornstein-
Uhlenbeck Lévy processes studied in Chapter 3, and build ASCLTs for them. The main
content of Chapter 5 is based on the paper in preparation [69] by C. Zheng. See Section 2.3.3
for a sketch of Chapter 5.
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Chapter 1

Preliminaries

1.1 Preliminaries

Let (Z,Z, µ) be a separable, σ-�nite and non-atomic measure space. We denote by Zµ the
class of those A ∈ Z such that µ(A) < ∞. Note that, by σ-additivity, the σ-�eld generated
by Zµ coincides with Z.

Notation 1.1.1 • For the rest of this dissertation, we shall write (Zn,Zn) = (Z⊗n,Z⊗n), n ≥
2, and also (Z1,Z1) = (Z⊗1,Z⊗1) = (Z,Z). Moreover, we set

Zn
µ = {C ∈ Zn : µn(C) < ∞}.

• We denote by L2(µ) the abbreviation of L2(Z,Z, µ). And we denote by L2(µn) the
abbreviation of L2(Zn,Zn, µn) = L2(Z⊗n,Z⊗n, µ⊗n), the space of real valued functions
on Z⊗n which are square-integrable with respect to µ⊗n.

• For every n ≥ 1 and every f, g ∈ L2(µn), we note

⟨f, g⟩L2(µn) =

∫
Zn

f(z1, . . . ., zn)g(z1, . . . , zn)µ
n(dz1, . . . , dzn), ∥f∥L2(µn) = ⟨f, f⟩1/2

L2(µn)
.

• For every f ∈ L2(µn), n ≥ 1, and every �xed z ∈ Z, we write f(z, ·) to indicate
the function de�ned on Zn−1 given by (z1, . . . , zn−1) 7→ f(z, z1, . . . , zn−1). Accordingly,

f̃(z, ·) stands for the symmetrization of the function f(z, ·) (in (n− 1) variables). Note
that, if n = 1, then f(z, ·) = f(z) is a constant.

• Given a function f ∈ L2(µn), we denote by f̃ its canonical symmetrization, that is

f̃(z1, . . . , zn) =
1

n!

∑
π

f(zπ(1), . . . , zπ(n)),

where the sum runs over all permutations π of the set {1, . . . , n}. Note that, by the
triangle inequality,

∥f̃∥L2(µn) ≤ ∥f∥L2(µn) (1.1)

1
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• We write L2
s(µ

n) to indicate the closed linear subspace of L2(µn) composed of symmetric
functions, that is, f ∈ L2

s(µ
n) if and only if: (i) f is square integrable with respect to

µn, and (ii) for dµn-almost every (z1, . . . , zn) ∈ Zn,

f(z1, . . . , zn) = f(zπ(1), . . . , zπ(n)),

for every permutation π of {1, . . . , n}.

• We write E(µn) to indicate the subset of L2(µn) composed of elementary functions van-
ishing on diagonals, that is, f ∈ E(µn) if and only if f is a �nite linear combination of
functions of the type

(z1, . . . , zn) 7→ 1A1(z1)1A2(z2) . . .1An(zn)

where the sets Ai are pairwise disjoint elements of Zµ.

• We write Es(µn) to indicate the subset of L2
s(µ

n) composed of symmetric elementary
functions vanishing on diagonals, that is, g ∈ Es(µn) if and only if g = f̃ for some
f ∈ E(µn), where the symmetrization f̃ is de�ned above.

1.1.1 Poisson space

Poisson measure

We recall the notations at the beginning of this dissertation. Let (Z,Z, µ) be a measure space
such that Z is a Borel space and µ is a σ-�nite non-atomic Borel measure, and Zµ = {B ∈
Z : µ(B) < ∞}. In what follows, we write N̂ = {N̂(B) : B ∈ Zµ} to indicate a compensated
Poisson measure on (Z,Z) with control µ. In other words, N̂ is a collection of random vari-
ables de�ned on some probability space (Ω,F ,P), indexed by the elements of Zµ and such
that: (i) for every B,C ∈ Zµ such that B∩C = ∅, the random variables N̂(B) and N̂(C) are

independent; (ii) for every B ∈ Zµ, N̂(B)
(law)
= N(B)−µ(B), where N(B) is a Poisson random

variable with paremeter µ(B). A random measure verifying property (i) is customarily called
�completely random� or, equivalently, �independently scattered� (see e.g. [67]).

Remark 1.1.2 Due to the assumptions on the space (Z,Z, µ), we can always set (Ω,F ,P)
and N̂ to be such that

Ω =

ω =

n∑
j=0

δzj , n ∈ N ∪ {∞}, zj ∈ Z


where δz denotes the Dirac mass at z, and N̂ is the compensated canonical mapping

ω 7→ N̂(B)(ω) = ω(B)− µ(B), B ∈ Zµ, ω ∈ Ω,

(see e.g. [52] for more details). For the rest of the paper, we assume that Ω and N̂ have this
form. Moreover, the σ-�eld F is supposed to be the P-completion of the σ-�eld generated by
N̂ .



1.1. PRELIMINARIES 3

Wiener-Itô integrals on the Poisson space

We introduce here the de�nition of multiple Wiener-Itô integrals on the Poisson space. The
reader is referred e.g. to Peccati and Taqqu [48, Chapter 5] or Privault [56, Chapter 6] for a
complete discussion of multiple Wiener-Itô integrals and their properties � see also [41, 67].
Single Wiener-Itô integrals: We �rst de�ne the single Wiener-Itô integrals. In what
follows, we shall use the fact that every elementary function f ∈ E(µ) can be represented as

f(z) =

M∑
i=1

ai1Ai(z), z ∈ Z, (1.2)

where M ≥ 1 is �nite, ai ∈ R, and the sets Ai are pairwise disjoint elements of Zµ. Now con-
sider a compensated Poisson measure N̂ on (Z,Z), with control µ. The next result establishes
the existence of single Wiener-Itô integrals with respect to N̂ .

Proposition 1.1.3 There exists a unique linear isomorphism f 7→ N̂(f), from L2(µ) into
L2(P), such that

N̂(f) =

M∑
i=1

aiN̂(Ai)

for every elementary function f ∈ E(µ) of the form (1.2).

The proof is standard and thus omitted. Readers may refer to [48, Chapter 5] for the detail.

The random variable N̂(f) is usually written as∫
Z
f(z)N̂(dz),

∫
Z
fdN̂, IN̂1 (f),

and it is called the Wiener-Itô stochastic integral of f with respect to compensated Poisson
measure N̂ . One can easily verify the following isometric relation

E[N̂(f)N̂(h)] =

∫
Z
f(z)h(z)µ(dz) = ⟨f, h⟩L2(µ), ∀f, h ∈ L2(µ),

and property:
N̂(f) = N̂(f̃).

Now we consider the space

C1(N̂) = {N̂(f) : f ∈ L2
s(µ)}. (1.3)

It coincides with the L2(P)-closed linear space generated by N̂ . One customarily says that
(1.3) is the �rst Wiener chaos associated with N̂ .

Multiple integrals
Based on the discussions above, we may de�ne multiple Wiener-Itô integrals. Fix n ≥ 2, it is
easily seen that every f ∈ E(µn) admits a (not necessarily unique) representation of the form

f(z1, . . . , zn) =
∑

1≤i1,...,in≤M

ai1,...,in1Ai1
(z1) . . .1Ain (zn)
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where M ≥ n, the real coe�cients ai1,...,in are equal to zero whenever two indices ik, il are
equal and A1, . . . , AM are pairwise disjoint elements of Zµ. Then we de�ne

IN̂n (f) =
∑

1≤i1,...,in≤M

ai1,...,inN̂(Ai1) . . . N̂(Ain), (1.4)

and we say that IN̂n (f) is the multiple stochastic Wiener-Itô integral (of order n) of f with

respect to compensated Poisson measure N̂ . Note that IN̂n (f) has �nite moments of all orders,

and that the de�nitions of IN̂n (f) does not depend on the chosen representation of f . The

following result, as well as the fact that E(µn) is dense in L2(µn), shows in particular that IN̂n
can be extended to a continuous linear operator from L2(µn) into L2(P).

Proposition 1.1.4 The random variables IN̂n (f), n ≥ 1, f ∈ E(µn), enjoy the following prop-
erties:

1. For every n, the application f 7→ IN̂n (f) is linear.

2. For every n, one has that E[IN̂n (f)] = 0 and IN̂n (f) = IN̂n (f̃).

3. For every n ≥ 2 and m ≥ 1, for every f ∈ E(µn) and g ∈ E(µm),

E[IN̂n (f)IN̂m (g)] = n!⟨f̃ , g̃⟩L2(µn)1(n=m), (isometric property) . (1.5)

The proof of Proposition 1.1.4 follows almost immediately from the de�nition in equation (1.4);
see e.g. [48, Chapter 5] for a complete discussion. By combining relation (1.5) with inequality

(1.1), one infers that IN̂n can be extended to a linear continuous operator, from L2(µn) into
L2(P), verifying properties 1, 2 and 3 in the statement of Proposition 1.1.4. Moreover, the
second line on the RHS of (1.5) yields that the application

IN̂n : L2
s(µ

n) → L2(P) : f 7→ IN̂n (f)

(that is, the restriction of IN̂n to L2
s(µ

n)) is an isomorphism from L2
s(µ

n), endowed with the
modi�ed scalar product n!⟨·, ·⟩L2(µn), into L2(P). For every n ≥ 2, the L2(P)-closed space

Cn(N̂) = {IN̂n (f) : f ∈ L2(µn)} (1.6)

is called the nth Wiener chaos associated with N̂ . One conventionally sets

C0(N̂) = R (1.7)

Note that the isometric relation (1.5) implies that Cn(N̂)⊥Cm(N̂) for n ̸= m, where �⊥ �
indicates orthogonality in L2(P).

Attention: In the present thesis, without ambiguity, we use In as the abbreviation of IN̂n .

The Hilbert space composed of the random variables with the form In(f), where n ≥ 1
and f ∈ L2

s(µ
n), is called the nth Wiener chaos associated with the Poisson measure N̂ . The

following well-known chaotic representation property is essential in this thesis.
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Proposition 1.1.5 (Chaotic decomposition) Every random variable F ∈ L2(F ,P) = L2(P)
admits a (unique) chaotic decomposition of the type

F = E[F ] +

∞∑
n≥1

In(fn) (1.8)

where the series converges in L2(P) and, for each n ≥ 1, the kernel fn is an element of L2
s(µ

n).

The proof of Proposition 1.1.5 will be given in Section �Charlier polynomials�.

Star contractions and multiplication formulae

In order to give a simple description of the multiplication formulae for multiple Poisson inte-
grals (see formula (1.12)), we here give a formal de�nition of star contraction operator:

De�nition 1.1.6 We de�ne a contraction kernel f ⋆lr g on Zp+q−r−l for functions f ∈ L2
s(µ

p)
and g ∈ L2

s(µ
q), where p, q ≥ 1, r = 1, . . . , p ∧ q and l = 1, . . . , r, as follows:

f ⋆lr g(γ1, . . . , γr−l, t1, . . . , tp−r, s1, . . . , sq−r)

=

∫
Zl

µl(dz1, . . . , dzl)f(z1, . . . , zl, γ1, . . . , γr−l, t1, . . . , tp−r)

×g(z1, . . . , zl, γ1, . . . , γr−l, s1, . . . , sq−r).

In other words, the star operator � ⋆lr � reduces the number of variables in the tensor product
of f and g from p+ q to p+ q− r− l: this operation is realized by �rst identifying r variables
in f and g, and then by integrating out l among them. To deal with the case l = 0 for
r = 0, . . . , p ∧ q, we set

f ⋆0r g(γ1, . . . , γr, t1, . . . , tp−r, s1, . . . , sq−r)

= f(γ1, . . . , γr, t1, . . . , tp−r)g(γ1, . . . , γr, s1, . . . , sq−r),

and

f ⋆00 g(t1, . . . , tp, s1, . . . , sq) = f ⊗ g(t1, . . . , tp, s1, . . . , sq) = f(t1, . . . , tp)g(s1, . . . , sq).

By using the Cauchy-Schwarz inequality, one sees immediately that f ⋆rr g is square-integrable
for any choice of r = 0, . . . , p ∧ q, and every f ∈ L2

s(µ
p), g ∈ L2

s(µ
q).

As e.g. in [46, Theorem 4.2], we will sometimes need to work under some speci�c regularity
assumptions for the kernels that are the object of our study.

De�nition 1.1.7 Let p ≥ 1 and let f ∈ L2
s(µ

p).

1. If p ≥ 1, the kernel f is said to satisfy Assumption A, if (f ⋆p−r
p f) ∈ L2(µr) for every

r = 1, . . . , p. Note that (f ⋆0p f) ∈ L2(µp) if and only if f ∈ L4(µp).

2. The kernel f is said to satisfy Assumption B, if: either p = 1, or p ≥ 2 and every
contraction of the type

(z1, . . . , z2p−r−l) 7→ |f | ⋆lr |f |(z1, . . . , z2p−r−l)

is well-de�ned and �nite for every r = 1, . . . , p, every l = 1, . . . , r and every (z1, . . . , z2p−r−l) ∈
Z2p−r−l.



6 CHAPTER 1. PRELIMINARIES

The following statement will be used in order to deduce the multivariate CLT stated in
Theorem 3.4.9. The proof involves the Cauchy-Schwarz inequality and the Fubini theorem (in
particular, Assumption A is needed in order to implicitly apply a Fubini argument � see step
(S4) in the proof of Theorem 4.2 in [46] for an analogous use of this assumption).

Lemma 1.1.8 Fix integers p, q ≥ 1, as well as kernels f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q) satisfying
Assumption A in De�nition 1.1.7. Then, for any integers s, t satisfying 1 ≤ s ≤ t ≤ p ∧ q,
one has that f ⋆st g ∈ L2(µp+q−t−s), and moreover

1.

∥f ⋆st g∥2L2(µp+q−t−s) = ⟨f ⋆p−t
p−s f, g ⋆

q−t
q−s g⟩L2(µt+s),

(and, in particular,

∥f ⋆st f∥L2(µ2p−s−t) = ∥f ⋆p−t
p−s f∥L2(µt+s) );

2.

∥f ⋆st g∥2L2(µp+q−t−s) ≤ ∥f ⋆p−t
p−s f∥L2(µt+s) × ∥g ⋆q−t

q−s g∥L2(µt+s) (1.9)

= ∥f ⋆st f∥L2(µ2p−s−t) × ∥g ⋆st g∥L2(µ2q−s−t). (1.10)

Remark 1.1.9 1. Writing k = p+q− t−s, the requirement that 1 ≤ s ≤ t ≤ p∧q implies
that |q − p| ≤ k ≤ p+ q − 2.

2. One should also note that, for every 1 ≤ p ≤ q and every r = 1, . . . , p,∫
Zp+q−r

(f ⋆0r g)
2dµp+q−r =

∫
Zr

(f ⋆p−r
p f)(g ⋆q−r

q g)dµr, (1.11)

for every f ∈ L2
s(µ

p) and every g ∈ L2
s(µ

q), not necessarily verifying Assumption A.
Observe that the integral on the RHS of (1.11) is well-de�ned, since f ⋆p−r

p f ≥ 0 and
g ⋆q−r

q g ≥ 0.

3. Fix p, q ≥ 1, and assume again that f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q) satisfy Assumption A in
De�nition 1.1.7. Then, a consequence of Lemma 1.1.8 is that, for every r = 0, . . . , p∧q−1
and every l = 0, . . . , r, the kernel f(z, ·) ⋆lr g(z, ·) is an element of L2(µp+q−t−s−2) for
µ(dz)-almost every z ∈ Z.

Proof. Let xn,yn, zn,wn and dxn be shorthand for (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn)
and (w1, . . . , wn) and dx1dx2 . . . dxn repectively.

We recall that the contraction operator f ⋆st g transforms two function f ∈ L2
s(µ

p) and
g ∈ L2

s(µ
q) into a function of p+ q − t− s, which is de�ned by

f ⋆st g(x
t−s,yp−t, zq−t) =

∫
Zs

dwsf(ws,xt−s,yp−t)g(ws,xt−s, zq−t).
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Since both f and g are symmetric functions, we have

∥f ⋆st g∥2L2(µk)

=

∫
Zk

dxt−sdxp−tdzq−t

∫
Zs

dws

∫
Zs

dw′sf(ws,xt−s,yp−t)g(ws,xt−s, zq−t)

f(w′s,xt−s,yp−t)g(w′s,xt−s, zq−t)

=

∫
Zt−s

dxt−s

∫
Zs

dws

∫
Zs

dw′s[

∫
Zp−t

dyp−tf(yp−t,xt−s,ws)f(yp−t,xt−s,w′s)]

[

∫
Zq−t

dzq−tg(zq−t,xt−s,ws)g(zq−t,xt−s,w′s)]

=

∫
Zt−s

dxt−s

∫
Zs

dws

∫
Zs

dw′s[f ⋆p−t
p−s f(x

t−s,ws,w′s)][g ⋆q−t
q−s g(x

t−s,ws,w′s)]

= ⟨f ⋆p−t
p−s f, g ⋆

q−t
q−s g⟩L2(µt+s) (∗)

≤ ∥f ⋆p−t
p−s f∥L2(µt+s) × ∥g ⋆q−t

q−s g∥L2(µt+s) (∗∗).

Relation (*) gives point 1 in the statement, while (**) (which is obtained by Cauchy-Schwartz
inequality) yields point 2.

To conclude the section, we present an important product formula for Poisson multiple
integrals (see [48, Proposition 6.5.1], [22], [66] for the proof).

Proposition 1.1.10 (Product formula) Let f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), p, q ≥ 1, and
suppose moreover that f ⋆lr g ∈ L2(µp+q−r−l) for every r = 1, . . . , p ∧ q and l = 1, . . . , r such
that l ̸= r. Then,

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p
r

)(
q
r

) r∑
l=0

(
r
l

)
Ip+q−r−l

(
f̃ ⋆lr g

)
, (1.12)

with the tilde ∼ indicating a symmetrization, that is,

f̃ ⋆lr g(x1, . . . , xp+q−r−l) =
1

(p+ q − r − l)!

∑
σ

f ⋆lr g(xσ(1), . . . , xσ(p+q−r−l)),

where σ runs over all (p+ q − r − l)! permutations of the set {1, . . . , p+ q − r − l}.

Charlier polynomials

In this section, we give a brief introduction of Charlier polynomials based on Chapter 10 of
Peccati and Taqqu's book [48].

There are several possible de�nitions of the Charlier polynomials. We here present the
de�nitions used by Kabanov [22] and Surgailis [66].

Charlier polynomials {Cn(x, a), n = 0, 1, 2 . . .} are de�ned through generating function:

∞∑
n=0

Cn(x, a)

n!
tn = e−ta(1 + t)x+a. (1.13)
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By simple calculation, we see that C0(x, a) = 1, C1(x, a) = x, C2(x, a) = x2 − x − a, etc. It
is not di�cult to deduce the recursion relation:

Cn+1(x, a) = (x− n)Cn(x, a)− anCn−1(x, a), n ≥ 1. (1.14)

Charlier polynomials are good companions with compensated Poisson variables. Indeed,
the following propositions illustrate the intimate relation between Charlier polynomials and
multiple integrals of compensated Poisson variables.

Proposition 1.1.11 Let N̂ be a centered Poisson measure over (Z,Z) with control measure
µ. Then, for every A ∈ Z such that µ(A) < ∞, and every n ≥ 1, one has that

Cn(N̂(A), µ(A)) = In(1
⊗n
A ). (1.15)

The proof of the proposition relies on the recursion relation (1.14), and the product formula
(1.12). We then complete the proof by induction on n.

Proposition 1.1.12 Let A1, . . . , Ak be disjoint sets of �nite measure µ. Then,

In(1
⊗i1
A1

⊗ · · · ⊗ 1⊗ik
Ak

) =

k∏
a=1

Cia(N̂(Aa), µ(Aa)) (1.16)

Proof. Notice that the functions 1Aa , a = 1, . . . , k, have mutually disjoint supports, we have,
for a ̸= b,

1⊗ia
Aa

⋆lr 1
⊗ib
Ab

=

{
1⊗ia
Aa

⊗ 1⊗ib
Ab

, if r = l = 0;

0, else.
(1.17)

We apply the multiplication formula 1.12 repeatedly and then deduce that,

k∏
a=1

Cia(N̂(Aa), µ(Aa)) =
k∏

a=1

Iia(1
⊗ia
Aa

)

= In(1
⊗i1
A1

⋆00 · · · ⋆00 1
⊗ik
Ak

)

= In(1
⊗i1
A1

⊗ · · · ⊗ 1⊗ik
Ak

),

which �nishes the proof.

To end the section, we present here the proof of �chaotic representation� Proposition 1.1.5.

Proof. By Proposition 1.1.12 and the generating function (1.13), we deduce that every random
variable of the type

F =
∏

k=1,...,N

(1 + tk)
N̂(Ck)+µ(Ck), with Ck disjoint,

can be represented as a series of multiple integrals. Notice that the linear span of random
variables of type F is dense in L2(σ(N̂),P), we may conclude the proof by using the fact that
random variables enjoying the chaotic decomposition (1.8) form a Hilbert space.
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1.1.2 Some results involving Gaussian space

As pointed out below, many of the results of this dissertation should be compared with those
available in a Gaussian framework. This section is devoted to some basic de�nitions in this
context.

Gaussian measure

De�nition 1.1.13 A Gaussian measure on (Z,Z) with control µ is a centered Gaussian
family of the type

G = {G(A) : A ∈ Zµ}

verifying the relation

E[G(A)G(B)] = µ(A ∩B), ∀A,B ∈ Zµ.

The Gaussian measure G is also called a white noise based on µ.

Example 1.1.14 Fix d ≥ 1, let Z = Rd, Z = B(Rd), and let λd be the Lebesgue measure
on Rd. If G is a Gaussian measure with control λd, then, for every A,B ∈ B(Rd) with �nite
Lebesgue measure, one has that

E[G(A)G(B)] =

∫
A∩B

λd(dx1, . . . , dxd)

It follows that the application

(t1, . . . , td) 7→ W(t1, . . . , td) , G([0, t1]× . . .× [0, td]), ti ≥ 0,

de�nes a centered Gaussian process such that

E[W(t1, . . . , td)W(s1, . . . , sd)] =
d∏

i=1

(si ∧ ti),

that is, W is a standard Brownian motion on R if d = 1, or a standard Brownian sheet on
Rd if d > 1.

Wiener-Itô integrals on the Gaussian space

The de�nition of multiple Wiener-Itô integrals on the Gaussian space is almost the same as
its Poisson counterpart. In this section we give a brief introduction on the subject, readers
are invited to consult Chapter 1 of Nualart's book [38] for a full description.

For any function f ∈ L2
s(µ), we denote I

G(f) as the standard stochastic integral on f with
respect to Gaussian measure G:

IG(f) =

∫
Z
f(z)G(dz).

Now we �x n ≥ 2, and consider a function f ∈ E(µn) with the form

f(z1, . . . , zn) =
∑

1≤i1,...,in≤M

ai1,...,in1Ai1
(z1) . . .1Ain (zn)
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where M ≥ n, and the real coe�cients ai1,...,in are equal to zero whenever two indices ik, il
are equal and A1, . . . , AM are pairwise disjoint elements of Zµ. Then we de�ne

IGn (f) =
∑

1≤i1,...,in≤M

ai1,...,inG(Ai1) . . . G(Ain), (1.18)

and we say that IGn (f) is the multiple stochastic Wiener-Itô integral (of order n) of kernel f
with respect to Gaussian measure G. Then we may extend IGn to a continuous linear operator
from L2(µn) into L2(P) with the same procedures as showed in Poisson case. The application
thus obtained

IGn : L2
s(µ

n) → L2(P) : f 7→ IGn (f)

is an isomorphism from L2
s(µ

n), endowed with the modi�ed scalar product n!⟨·, ·⟩L2(µn), into
L2(P). Indeed, we have

Proposition 1.1.15 The random variables IGn (f), n ≥ 1, f ∈ L2
s(µ

n), enjoy the following
properties:

1. For every n, the application f 7→ IGn (f) is linear.

2. For every n, one has that E[IGn (f)] = 0 and IGn (f) = IGn (f̃).

3. For every n ≥ 2 and m ≥ 1, for every f ∈ E(µn) and g ∈ E(µm),

E[IGn (f)IGm(g)] = n!⟨f̃ , g̃⟩L2(µn)1(n=m), (isometric property) . (1.19)

For every n ≥ 2, the L2(P)-closed space

Cn(G) = {IGn (f) : f ∈ L2(µn)} (1.20)

is called the nth Wiener chaos associated with Gaussian measure G. And we set

C0(N̂) = R (1.21)

We know that Cn(N̂)⊥Cm(N̂) for n ̸= m.

Example 1.1.16 We consider the case where (Z,Z) = (R+,B(R+)) and µ is equal to the
Lebesgue measure. As already observed, one has that the process t 7→ Wt = G([0, t]), t ≥ 0, is
a standard Brownian motion started from zero. Also, for every f ∈ L2(µ),

IG1 (f) =

∫
R+

f(t)G(dt) =

∫ ∞

0
f(t)dWt, (1.22)

where the RHS of (1.22) indicates a standard Itô integral with respect to W . Moreover, for
every n ≥ 2 and every n ≥ 2 and every f ∈ L2(µn),

IGn (f) = n!

∫ 1

0

[∫ t1

0

∫ t2

0
· · ·
∫ tn−1

0
f̃(t1, . . . , tn)dWtn · · · dWt2

]
dWt1 , (1.23)

where the RHS of (1.23) stands for a usual Itô- type stochastic integral, with respect to W , of
the stochastic process

t 7→ ϕ(t) = n!

∫ t1

0

∫ t2

0
· · ·
∫ tn−1

0
f̃(t1, . . . , tn)dWtn · · · dWt2 , t1 ≥ 0.

Note in particular that ϕ(t) is adapted to the �ltration σ{Wu : u ≤ t}, t ≥ 0, and also

E
[∫ ∞

0
ϕ2(t)dt

]
< ∞.
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Multiplication formulae

De�nition 1.1.17 Let (Z,Z, µ) be a separable, σ-�nite and non-atomic measure space. For
every p, q ≥ 1, f ∈ L2

s(µ
p) , g ∈ L2

s(µ
q) and every r = 0, . . . , q ∧ p, the contraction of order

r of f and g is the function f⊗r g of p+q−2r variables de�ned as follows: for r = 1, . . . , q∧p
and (t1, . . . , tp−r, s1, . . . , sq−r) ∈ Zp+q−2r,

f ⊗r g(t1, . . . , tp−r, s1, . . . , sq−r)

=

∫
Zr

f(z1, . . . , zr, t1, . . . , tp−r)g(z1, . . . , zr, s1, . . . , sq−r)µ
r(dz1 . . . dzr),

and , for r = 0,

f ⊗r g(t1, . . . , tp, s1, . . . , sq) = f ⊗ g(t1, . . . , tp, s1, . . . , sq)

= f(t1, . . . , tp)g(s1, . . . , sq).

Note that, if p = q, then f ⊗p g = ⟨f, g⟩L2(µp) .

By an application of the Cauchy-Schwarz inequality, it is straightforward to prove that, for
every r = 0, . . . , qp, the function f ⊗r g is an element of L2(µp+q−2r). Note that f ⊗r g is
in general not symmetric (although f and g are): we shall denote by f⊗̃rg the canonical
symmetrization of f ⊗r g.

Theorem 1.1.18 For every p, q ≥ 1 and every f ∈ L2(µp), g ∈ L2(µq),

IGp (f)IGq (g) =

p∧q∑
r=0

r!

(
p
r

)(
q
r

)
Ip+q−2r

(
f̃ ⊗r g̃

)
. (1.24)

This theorem can be easily established by induction, and we omit its proof.

Hermite polynomials and chaotic decomposition

De�nition 1.1.19 The sequence of Hermite polynomials {Hq; q ≥ 0} on R, is de�ned via
the following relations: H0 ≡ 1 and, for q ≥ 1,

Hq(x) = (−1)qe
x2

2
dq

dxq
e−

x2

2 , x ∈ R.

For instance, H1(x) = 1, H2(x) = x2 − 1 and H3(x) = x3 − 3x.

Recall that the sequence {(q!)−1/2Hq; q ≥ 0} is an orthonormal basis of L2(R, (2π)−1/2e−x2/2dx).
Several relevant properties of Hermite polynomials can be deduced from the following formula,
valid for every t, x ∈ R,

exp

(
tx− t2

2

)
=

∞∑
n=0

tn

n!
Hn(x). (1.25)

For instance, one deduces immediately from the previous expression that

d

dx
Hn(x) = nHn−1, n ≥ 1, (1.26)

Hn+1 = xHn(x)− nHn−1(x), n ≥ 1. (1.27)

The next result establish an explicit relation between multiple stochastic integrals and Hermite
polynomials.
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Proposition 1.1.20 Let h ∈ L2(µ) be such that ∥h∥L2(µ) = 1, and, for n ≥ 2, de�ne

h⊗n(z1, . . . , zn) = h(z1)× . . . h(zn), (z1, . . . , zn) ∈ Zn.

Then,

IGn (h⊗n) = Hn(G(h)) = Hn(I1(h)). (1.28)

Proof. Evidently, H1(I1(h)) = I1(h). By the multiplication formula (1.24), one has therefore
that, for n ≥ 2,

IGn (h⊗n)I1(h) = IGn+1(h
⊗n+1) + nIGn−1(h

⊗n−1)

and the conclusion is obtained from (1.27), and by recursion on n.

Proposition 1.1.21 [Chaotic decomposition] Every random variable F ∈ L2(σ(G),P) (that
is, F is a square-integrable functional of G) admits a (unique) chaotic decomposition of the
type

F = E[F ] +

∞∑
n≥1

IGn (fn) (1.29)

where the series converges in L2(P) and, for each n ≥ 1, the kernels fn are elements of L2
s(µ

n).

Proof. Fix h ∈ L2(µ) such that ∥h∥L2(µ) = 1, as well as t ∈ R. By using (1.25) and (1.28),
one obtains that

exp

(
tG(h)− t2

2

)
=

∞∑
n=0

tn

n!
Hn(G(h)) = 1 +

∞∑
n=0

tn

n!
IGn (h⊗n). (1.30)

Since E
[
exp

(
tG(h)− t2

2

)]
= 1, one deduces that (1.29) holds for every random variable of

the form F = exp
(
tG(h)− t2

2

)
, with fn = tn

n!h
⊗n. The conclusion is obtained by observing

that the linear combinations of random variables of this type are dense in L2(σ(G),P).

Remark 1.1.22 Proposition 1.1.15, together with (1.29), implies that

E[F 2] = E[F ]2 +

∞∑
n=1

n!∥fn∥2L2(µn). (1.31)

1.1.3 Isonormal Gaussian process

Most of the results on Gaussian space appeared in this thesis can be generalized to isonormal
Gaussian process. In this section we give a brief introduction of isonormal Gaussian process,
which has been introduced by Dudley in [15]. In particular, the concept of an isonormal
Gaussian process can be very useful in the study of fractional �elds. See e.g. Pipiras and
Taqqu [53, 54, 55], or the second edition of Nualart's book [38, Chapter 1]. For a general
approach to Gaussian analysis by means of Hilbert space techniques, and for further details
on the subjects discussed in this section, the reader is referred to Janson [21].
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De�nition 1.1.23 Let H be a real separable Hilbert space with inner product ⟨·, ·⟩H. We denote
by

G(H) = {G(h) : h ∈ H}

an isonormal Gaussian process over H. This means that G(H) is a centered real-valued
Gaussian family, indexed by the elements of H and such that

E[G(h)G(h′)] = ⟨h, h′⟩H, ∀h, h′ ∈ H. (1.32)

In other words, relation (1.32) means that G(H) is a centered Gaussian Hilbert space (with
respect to the inner product canonically induced by the covariance) isomorphic to H.

We now present an important example of isonormal Gaussian process.

Example 1.1.24 Let (Z,Z, µ) be a separable, σ-�nite and non-atomic measure space. We
denote by Zµ the class of those A ∈ Z such that µ(A) < ∞. Consider a completely random
Gaussian measure G = {G(A) : A ∈ Zµ}, as de�ned in the precedent section. Set H =
L2(Z,Z, µ) with ⟨h, h′⟩H =

∫
Z h(z)h′(z)µ(dz) for every h, h′ ∈ H, and de�ne G(h) = I1(h)

to be the Wiener-Itô integral of h with respect to G for every h ∈ H. Recall that G(h) is a
centered Gaussian random variable with variance given by ∥h∥2H. Then, the collection G(H) =
{G(h) : h ∈ L2(Z,Z, µ)} is an isonormal Gaussian process over L2(Z,Z, µ).

In the present thesis, the example above is the only case of isonormal Gaussian process that
interests us, though many results also holds in the general case.

1.2 Malliavin operators

Before dealing with Gaussian and Poisson cases, we start with a description of Malliavin
operators based on the Fock space. We adopt the de�nitions in Nualart and Vives's paper
[41].

1.2.1 Fock space

Let H be a real separable Hilbert space. Consider the n-th tensorial product H⊗n. We
denote by H⊙n the Hilbert space of n-th symmetric tensors, which are invariant under any
automorphism. The norm in H⊙n is de�ned as

∥f∥2H⊙n = n!∥f∥2H⊗n .

De�nition 1.2.1 The Fock space associated to H is the Hilbert space Φ(H) =
∞⊕
n=0

H⊙n with

the inner product ⟨h, g⟩Φ(H) =
∑∞

n=0⟨hn, gn⟩H⊙n for h =
∑∞

n=0 hn and g =
∑∞

n=0 gn, where
gn, hn ∈ H⊙n . Here we take H⊙0 = R and H⊙1 = H⊗1 = H.

In the subsequent sections, we introduce two typical examples of Fock spaces: one associated
with isonormal Gaussian process, and the other with Poisson process.

In this thesis, we are in particular interested in the important case H = L2(Z,Z, µ). It is
not di�cult to show that, in this special case, H⊗n is isometric to L2(µn) = L2(Zn,Z⊗n, µ⊗n),
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while H⊙n is the space of square-integrable symmetric functions L2
s(µ

n) = L2
s(Z

n,Z⊗n, µ⊗n)
with the norm ∥ · ∥H⊙n . So, whenever we take H = L2(µ), then H⊗n and H⊙n can be identi�ed
as L2(µn) and L2

s(µ
n) respectively.

Now we give the de�nitions of several Malliavin operators on the Fock space Φ(H) for
H = L2(Z,Z, µ).

I) The derivative operator D.
Taken H = L2(Z,Z, µ). For every F ∈ Φ(H), F =

∑∞
n=0 fn, where fn may isometrically be

seen as element of L2
s(µ

n). We de�ne the derivative of F , DF as the element of Φ(H)
⊗

H ∼=
L2(µ; Φ(H)) given by

DzF =

∞∑
n=1

nfn(·, z), for a.e. z ∈ Z.

DF exists whenever the above sum converges in L2(µ; Φ(H)), which means

∥DF∥2L2(µ;Φ(H))

=

∫
Z
∥DzF∥2Φ(H) µ(dz)

=
∞∑
n=1

n2(n− 1)!

∫
Z
∥fn(·, z)∥2L2(µn−1) µ(dz)

=
∞∑
n=1

n2n!∥fn∥2L2(µn) < ∞

We will denote the domain of D by DomD, which is a dense subspace of Φ(H).

Moreover, for any h ∈ L2(µ), we can de�ne a closed and unbounded operator Dh from
Φ(H) to Φ(H), by

DhF =

∞∑
n=1

n

∫
Z
fn(·, z)h(z)µ(dz)

provided that this series converges in Φ(H).

II) The Skorohod integral δ.
Consider the Hilbert space L2(µ; Φ(H)) ∼= Φ(H)

⊗
L2(µ). It can be decomposed into the or-

thogonal sum
⊕∞

n=0

√
n! · L̂2(µn+1), where L̂2(µn+1) is the subspace of L2(µn+1) formed by

all square-integrable functions on µn+1 which are symmetric in the �rst n variables.

Let u ∈ L2(µ; Φ(H)) be given by

u =
∑
n≥0

un, un ∈ L̂2(µn+1).

We de�ne the Skorohod integral of u as the element of Φ(H) given by,

δ(u) =
∑
n≥0

ũn,
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providing that ∑
n≥0

(n+ 1)! ∥ũn∥2L2(µn+1) < ∞,

where ũn is the symmetrization of un with respect to its n+ 1 variables.

We denote by Domδ the set of elements u ∈ L2(µ; Φ(H)) verifying the above property.

The following result provide the duality relation between the operator D and δ.

Proposition 1.2.2 (Integration by parts) Let u ∈ Domδ, and F ∈ DomD, then,

⟨u,DF ⟩L2(µ;Φ(H)) = ⟨F, δ(u)⟩Φ(H)

Proof. Suppose that u =
∑

n≥0 un, and F =
∑

n≥0 fn. Then,

⟨u,DF ⟩L2(µ;Φ(H))

=

∫
Z
⟨u(·, z), DzF ⟩Φ(H)µ(dz)

=
∑
n≥0

n!

∫
Z
⟨un(·, z), (n+ 1)fn+1(·, z)⟩L2(µn)µ(dz)

=
∑
n≥0

(n+ 1)!

∫
Zn+1

un(·, z)fn+1(·, z)µ(dz1) . . . µ(dzn)µ(dz)

=
∑
n≥0

(n+ 1)!

∫
Zn+1

ũn(·, z)fn+1(·, z)µ(dz1) . . . µ(dzn)µ(dz)

= ⟨F, δ(u)⟩Φ(H)

1.2.2 Malliavin calculus on the Poisson space

In this section, we shall introduce some Malliavin-type operators associated with the random
Poisson measure N̂ . We follow again the work by Nualart and Vives [41], which is in turn
based on the classic de�nition of Malliavin operators on the Gaussian space. (See e.g. [27],[38,
Chapter 1].)

Note that, the square-integrable space L2(F ,P) = L2(P) is a realization isometric to the

Fock space Φ(H) associated with H = L2(µ). We have L2(P) =
∞⊕
n=0

Cn with Cn = {In(f), f ∈

L2
s(µ

n)}.
I) The derivative operator D.
For every F ∈ L2(P), the derivative of F , DF will be de�ned as an element of L2(P;L2(µ)),
that is, the space of the measurable random function u : Ω×Z 7→ R such that E[

∫
Z u2zµ(dz)] <

∞.

De�nition 1.2.3 1. The domain of the derivative operator D, denoted DomD, is the set
of all the random variables F ∈ L2(P) having the chaotic decomposition (1.8) such that∑

k≥1

kk!∥fk∥2L2(µk) < ∞,
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2. For any F ∈ DomD, the random function z 7→ DzF is de�ned by

DzF =

∞∑
k≥1

kIk−1(fk(z, ·)).

Since the underlying probability space Ω is assumed to be the collection of discrete measures
as described in Remark 1.1.2, we de�ne Fz by Fz(ω) = F (ω + δz), ∀ω ∈ Ω for any given
random variable F , where δz is the Dirac mass. The following lemma, which is essential to
the calculations in this paper, provides an elegant representation of D.

Lemma 1.2.4 (Lemma 2.7 in [46],Theorem 6.2 in [41]) For each F ∈ DomD,

DzF = ΨzF, a.e.-µ(dz),

with the di�erence transformation ΨzF = Fz − F .

The proof of the lemma can be found in [41, Theorem 6.2].

Remark 1.2.5 Using twice Lemma 1.2.4, combined with a standard Taylor expansion, we
have, for function f with bounded second derivative,

Dzf(F ) = f(Fz)− f(F ) (1.33)

= f ′(F )(Fz − F ) +R(Fz − F ) (1.34)

= f ′(F )(Dz(F )) +R(Dz(F )) (1.35)

where the mapping y 7→ R(y) is such that R(y) ≤ 1
2∥f∥∞y2. The equation (1.35) is the �chain

rules� on the Poisson space.

De�nition 1.2.6 (see Page 411 in [19]) Let Dk,2, k = 1, 2, . . ., denote the set of F ∈
L2(P) such that

∞∑
m=k

m!m(m− 1) · · · (m− k + 1)∥fm∥2L2(µm) < ∞. (1.36)

Dk is then de�ned as the closed linear operator from Dk,2 to L2(Ω × Z,Z ⊗ B(Zk),P ⊗ µk)
such that

Dk
t1,...,tk

F =

∞∑
m=k

m(m− 1) · · · (m− k + 1)Im−k(fm(t1, . . . , tk, ·)), a.s.

Furthermore, E∥DkF∥2
L2(µk)

equals to LHS of (1.36). In particular, D1,2 = DomD.

Lemma 1.2.7 Fix k ≥ 1. For any F ∈ Dk,2, we have that

Dk
t1,...,tk

F = Ψk
t1,...,tk

F,

a.s. for all t1, . . . , tk µ-a.e., where Ψk
t1,...,tk

is the kth iteration of the di�erence transformation
Ψt = Fz − F .
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II) The Skorohod integral δ.
Thanks to the chaotic representation property of N̂ , there exists a unique representation for
each random function u ∈ L2(P, L2(µ)):

uz =

∞∑
k≥0

Ik(fk(z, ·)), z ∈ Z (1.37)

where the kernel fk is a function of k + 1 variables, and fk(z, ·) is an element of L2
s(µ

k). The
Skorohod integral δ(u) transforms u into an element of L2(P).

De�nition 1.2.8 1. The domain of the Skorohod integral operator, denoted by Domδ, is
the collection of all u ∈ L2(P, L2(µ)) having the above chaotic expansion (1.37) satis�ed
the condition: ∑

k≥0

(k + 1)!∥fk∥2L2(µ(k+1))
< ∞

2. For u ∈ Domδ, the Skorohod integral of u is a random variable δ(u) such that

δ(u) =
∑
k≥0

Ik+1(f̃k)

where f̃k is the canonical symmetrization of k + 1 variable function fk.

The Skorohod integral δ can be seen as the adjoint operator of derivative operator D thanks
to the following elegant result.

Lemma 1.2.9 (Integration by parts, Proposition 4.2 in [41]) For every F ∈ DomD
and u ∈ Domδ, we have

E[Fδ(u)] = E[⟨DzF, uz⟩L2(µ)]

The proof of this lemma is given at page 158 in [41] Nualart and Vives's paper [41].

III) The Ornstein-Uhlenbeck generator L.

De�nition 1.2.10 1. The domain of the Ornstein-Uhlenbeck generator, denoted by DomL,
is the collection of all F ∈ L2(P) admitting the chaotic representation 1.8 veri�es the
condition: ∑

k≥1

k2k!∥fk∥2L2(µk) < ∞

2. The Ornstein-Uhlenbeck generator L acts on random variable F ∈ DomL as follows

LF = −
∑
k≥1

kIk(fk).

The following lemma is useful for our forthcoming calculations.

Lemma 1.2.11 F ∈ DomL i� F ∈ DomD and DF ∈ Domδ. In addition, we have

δDF = −LF
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The proof of the lemma comes directly from the de�nition of operators D, δ and L. The
readers can �nd a proof in [46, Lemma 2.10].

IV) The pseudo-inverse of L.

De�nition 1.2.12 1. The domain of the pseudo-inverse Ornstein-Uhlenbeck generator, de-
noted by L2

0(P), is the space of centered random variables in L2(P).

2. For F =
∑
k≥1

Ik(fk) ∈ L2
0(P), we set

L−1F = −
∑
k≥1

1

k
Ik(fk)

the pseudo-inverse Ornstein-Uhlenbeck generator of F .

Remark 1.2.13 ∀F ∈ L2
0(P), one has that L−1F ∈ DomL and

F = LL−1F = δ(−DL−1F ).

1.2.3 Malliavin calculus on the Gaussian space

Though this thesis is focused on the functionals on the Poisson space, the Malliavin calculus
on the Gaussian spaces takes part in some calculations (e.g. in the proof of multi-dimensional
Stein's lemma). We give below the de�nitions and preperties introduced in Chapter 1 of
Nualart's book [38]. Among all the properties, Mehler's formula and the �di�erential charac-
terization of L� are especially interesting and important.

Derivatives

We start by de�ning the class S(G) ⊂ L2(σ(G)) of smooth functionals of Gaussian measure
G, as the collection of random variables of the type

F = f(G(h1), . . . , G(hm)),

where hi ∈ H, and f is in the class of in�nitely di�erentiable functions on Rd such that f and
its derivatives have polynomial growth.

De�nition 1.2.14 Let F ∈ S(G) be as shown above.

1. The derivative DF of F is the H-valued random element given by

DF =
m∑
i=1

∂

∂xi
f(G(h1), . . . , G(hm))hi.

2. For k ≥ 2, the kth derivative of F , denoted by DkF , is the element of L2(σ(G);H⊗k)
given by

DkF =

m∑
i1,...,ik=1

∂k

∂xi1 · · ·xik
f(G(h1), . . . , G(hm))hi1 ⊗ · · · ⊗ hik .
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De�nition 1.2.15 For every k ≥ 1, the domain of the operator Dk in L2(σ(G)), customarily
denoted by Dk,2, is the closure of the class S(G) with respect to the seminorm

∥F∥k,2 =

E[F 2] +

k∑
j=1

∥DjF∥2H⊗j

 1
2

.

We also set

D∞,2 =
∞∩
k=1

Dk,2

Proposition 1.2.16 Fix k ≥ 1. A random variable F ∈ L2(σ(G)) with a chaotic representa-
tion 1.29 is an element of Dk,2 if and only if the kernels {fq} verify

∞∑
q=1

qkq!∥fq∥2H⊗q < ∞, (1.38)

and in this case

E∥DkF∥2H⊗k =
∞∑
q=k

(q)k × q!∥fq∥2H⊗q

where (q)k = q(q − 1) · · · (q − k + 1) is the Pochammer symbol.

Chain rules:

Proposition 1.2.17 Let φ : Rm → R be a continuously di�erentiable function with bounded
partial derivatives. Assume that F = (F1, . . . , Fm) is a vector of elements of D1,2. Then,
φ(F ) ∈ D1,2, and

Dφ(F ) =

m∑
i=1

∂

∂xi
φ(F )DFi. (1.39)

Proposition 1.2.18 Suppose that H = L2(Z,Z, µ), and assume that F ∈ D1,2 admits the
chaotic expansion (1.29). Then, a version of the derivative DF = {DzF : z ∈ Z} is given by

DzF =
∞∑
n=1

nIGn−1(fn(·, z)), z ∈ Z,

where, for each n and z, the integral IGn−1(fn(·, z)) is obtained by integrating the function on
Zn−1 given by (z1, . . . , zn−1) 7→ fn(z1, . . . , zn−1, z).

Divergences

De�nition 1.2.19 The domain of the divergence operator δ, denoted by Domδ, is the col-
lection of all random elements u ∈ L2(σ(G);H) such that, for every F ∈ D1,2,

|E[⟨u,DF ⟩H]| ≤ cE[F 2]1/2, (1.40)
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where c is a constant depending on u (and not on F ). For every u ∈ Domδ, the random
variable δ(u) is therefore de�ned as the unique element of L2(σ(G)) verifying

E[⟨u,DF ⟩H] = E[Fδ(u)], (1.41)

for every F ∈ D1,2 (note that the existence of δ(u) is ensured by (1.40) and by the Rietz
Representation Theorem). Relation (1.41) is called integration by parts formula.

Gaussian measure: We now consider the case H = (Z,Z, µ), then the space L2(σ(G);H)
can be identi�ed with the class of stochastic processes u(z, ω) that are Z ⊗ σ(G)-measurable,
and verify the integrability condition

E[
∫
Zk

u(z)2µ(dz)] < ∞. (1.42)

We thus infer that every u ∈ L2(σ(G);H) admits a representation of the type

u(z) = h0(z) +

∞∑
n=1

IGn (hn(·, z)), (1.43)

where h0 ∈ L2(µ) and, for every n ≥ 1, hn is a function on Zn+1 which is symmetric in the
�rst n variables, and moreover

E[
∫
Zk

u(z)2µ(dz)] =

∞∑
n=0

n!∥hn∥2L2(µn+1) < ∞. (1.44)

Proposition 1.2.20 Let H = (Z,Z, µ) as above, and let u ∈ L2(σ(G);H) verify (1.42), (1.47)
and (1.44). Then, u ∈ Dom(δ) if and only if

∞∑
n=0

(n+ 1)!∥h̃n∥2L2(µn+1) < ∞. (1.45)

where h̃n indicates the canonical symmetrization of hn. In this case, one has moreover that

δ(u) =

∞∑
n=0

In+1(h̃n),

where the series converges in L2(P).

Ornstein-Uhlenbeck semigroup

De�nition 1.2.21 The Ornstein-Uhlenbeck semigroup {Tt : t ≥ 0} is the set of contrac-
tion operators de�ned as

Tt(F ) = E[F ] +
∞∑
q=1

e−qtIGq (fq) =
∞∑
q=0

e−qtIGq (fq), (1.46)

for every t ≥ 0 and every F ∈ L2(σ(G)) as in (1.29).

The generator of the Ornstein-Uhlenbeck semigroup and its pseudo-inverse.
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De�nition 1.2.22 Let F ∈ L2(σ(G)) admit the representation (1.29). We de�ne the operator
L as

LF = −
∞∑
q=0

qIGq (fq), (1.47)

provided the previous series converges in L2(P). This implies that the domain of L, denoted
by DomL, is given by

DomL = {F ∈ L2(σ(G)), F =

∞∑
q=0

IGq (fq) :

∞∑
q=1

q2q!∥fq∥2L2(H⊗q) < ∞} = D2,2. (1.48)

Note that the image of L coincides with the set

L2
0(σ(G)) = {F ∈ L2(σ(G)) : E[F ] = 0},

and also that LF = L(F − E[F ]).

De�nition 1.2.23 Let L2
0(σ(G)) admit the representation (1.29), with E[F ] = IG0 (f0) = 0.

We de�ne the operator L−1 (pseudo-inverse of L) as

L−1 = −
∞∑
q=1

1

q
IGq (fq). (1.49)

Remark 1.2.24 1. There is an important relation between the operator D, δ and L: a
random variable F belongs to D2,2 if and only if F ∈ Dom(δD) and, in this case,

δDF = −LF. (1.50)

2. For any F ∈ L2(σ(G)), we have that L−1F ∈ DomL, and

LL−1F = F − E[F ]. (1.51)

i) Mehler's formula.

Let F be an element of L2(σ(G)), so that F can be represented as an application from
RH into R. Then, an alternative representation (due to Mehler) of the action of the Ornstein-
Uhlenbeck semigroup T (as de�ned in equation (1.46)) on F , is the following:

Tt(F ) = E[F (e−ta+
√

1− e−2tX)]|a=X , t ≥ 0, (1.52)

where a designs a generic element of RH. See Section 1.4.1 in Nualart [38] for more details on
this and other characterizations of T .

ii) Di�erential characterization of L.
Let F ∈ L2(σ(G)) have the form F = f(G(h1), . . . , G(hd)), where f ∈ C2(Rd) has bounded
�rst and second derivatives, and hi ∈ H, i = 1, . . . , d. Then,

LF =

d∑
i,j=1

∂2f

∂xi∂xj
(G(h1), . . . , G(hd))⟨hi, hj⟩H −

d∑
i=1

∂f

∂xi
(G(h1), . . . , G(hd))G(hi)(1.53)

= ⟨C,Hess f(XC)⟩H.S. − ⟨XC ,∇f(XC)⟩Rd , (1.54)

where XC = (G(h1), . . . , G(hd)), and C = {C(i, j) : i, j = 1, . . . , d} is the d × d covariance
matrix such that C(i, j) = E[G(hi)G(hj)] = ⟨hi, hj⟩H. Note that ⟨,̇⟩̇H.S. is the Hilbert-Schmidt
inner product. (See De�nition 1.3.1.)
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1.3 Introduction to Stein's method

1.3.1 The basic idea of Stein's method

Stein's method is a powerful probability tool developed by C. Stein [62, 63, 64, 65], L. H. Y.
Chen [12] and many other mathematicians. A wide range of researches have been made in
this topic, see e.g. the two volumes book of Barbour and Chen(2005) [1, 2] and the recent
book by Chen, Goldstein and Shao [13].

In researches in probability theory, one often needs to show a random variable W has a
distribution close to that of a target distribution of the random variable X. To this end,
one can compare the values of the expectations of the two distributions on some class of test
functions. There are several choices of test function classes. For example, one can compare
the characteristic function ϕ(u) = E[eiuW ] of W to that of X, thus encapsulating all expec-
tations of the family of functions eiuz for u ∈ R. As this family of functions is rich enough,
closeness of the characteristic functions implies closeness of the distributions. Since convolu-
tion in the space of measures become products in the realm of characteristic functions, the
characteristic function is indeed a convenient choice to treat the sum of independent random
variables. Another choice is to consider the family of power functions zk, k = 1, 2, . . ., which
leads to so-called �method of moments�. Nevertheless, all these classical methods have their
own limitations. (See, for instance, the example in Section 2 of Peccati's Lecture Notes [43].)
Stein's method, which based directly on a random variable characterization of a distribution,
allows the manipulation of the distribution through constructions involving the basic random
quantities of which W is composed, and coupling can begin to play a large role.

Consider, then, testing for the closeness of the distributions of W and X by evaluating the
di�erence between the expectations E[h(W )] and E[h(X)] over some collection of function h.
It seems clear that if the distribution of W is close to the distribution of X then the di�erence
E[h(W )] − E[h(X)] should be small for many functions h. Specializing the problem, for a
speci�c distribution, we may evaluate the di�erence by relying on a characterization of X.
For instance, we can prove that the distribution of a random variable X is N (0, 1) if and only
if

E[f ′(X)−Xf(X)] = 0 (1.55)

for all absolutely continuous functions f for which the expectation above exists. Again, if the
distribution of W is close to that of X, then evaluating the left hand side of (1.55) when X is
replaced by W should result in something small. Putting these two di�erences together, from
the Stein characterization (1.55) we arrive at the Stein equation

f ′(w)− wf(w) = h(w)− E[h(X)] (1.56)

Now given h, one solves (1.56) for f , evaluates the left hand side of (1.56) at W and takes the
expectation, obtaining E[h(W )]− E[h(X)].

To prepare the introduction of Stein's method, we de�ne below the norms and distances
between probability measures.
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1.3.2 Norms and distances between probability measures

De�nition 1.3.1 1. The Hilbert-Schmidt inner product and the Hilbert - Schmidt
norm on the class of d× d real matrices, denoted respectively by ⟨·, ·⟩H.S. and ∥ · ∥H.S.,
are de�ned as follows: for every pair of matrices A and B, ⟨A,B⟩H.S. := Tr(ABT ) and
∥A∥H.S. =

√
⟨A,A⟩H.S., where Tr(·) indicates the usual trace operator.

2. The operator norm of a d× d real matrix A is given by ∥A∥op := sup∥x∥Rd=1 ∥Ax∥Rd .

3. For every function g : Rd → R, let

∥g∥Lip := sup
x ̸=y

|g(x)− g(y)|
∥x− y∥Rd

,

where ∥ · ∥Rd is the usual Euclidian norm on Rd. If g ∈ C1(Rd), we also write

M2(g) := sup
x ̸=y

∥∇g(x)−∇g(y)∥Rd

∥x− y∥Rd

,

If g ∈ C2(Rd),

M3(g) := sup
x̸=y

∥Hess g(x)−Hess g(y)∥op
∥x− y∥Rd

,

where Hess g(z) =

(
∂2g

∂xi∂xj
(z)

)
1≤i≤d,1≤j≤d

stands for the Hessian matrix of g evaluated

at a point z.

4. For a positive integer k and a function g ∈ Ck(Rd), we set

∥g(k)∥∞ = max
1≤i1≤...≤ik≤d

sup
x∈Rd

∣∣∣∣∣ ∂k

∂xi1 . . . ∂xik
g(x)

∣∣∣∣∣ .
In particular, by specializing this de�nition to g(2) = g′′ and g(3) = g′′′, we obtain

∥g′′∥∞ = max
1≤i1≤i2≤d

sup
x∈Rd

∣∣∣∣∣ ∂2

∂xi1∂xi2
g(x)

∣∣∣∣∣ .
∥g′′′∥∞ = max

1≤i1≤i2≤i3≤d
sup
x∈Rd

∣∣∣∣∣ ∂3

∂xi1∂xi2∂xi3
g(x)

∣∣∣∣∣ .
Remark 1.3.2 1. The norm ∥g∥Lip is written M1(g) in [11].

2. If g ∈ C1(Rd), then ∥g∥Lip = sup
x∈Rd

∥∇g(x)∥Rd . If g ∈ C2(Rd), then

M2(g) = sup
x∈Rd

∥Hess g(x)∥op.
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De�nition 1.3.3 The distance between the laws of two Rd-valued random vectors X and Y
such that E∥X∥Rd , E∥Y ∥Rd < ∞, written dG, is given by

dG(X,Y ) = sup
g∈G

|E[g(X)]− E[g(Y )]|,

where G indicates some class of functions. In particular,

1. by taking G = {g : ∥g∥Lip ≤ 1}, one obtains the Wasserstein (or Kantorovich-Wasserstein)
distance, denoted by dW ;

2. by taking G equal to the collection of all indicators 1B of Borel sets, one obtains the total
variation distance, denoted by dTV ;

3. by taking G equal to the class of all indicators functions 1(−∞;z1] · · ·1(−∞;zd], (z1, . . . , zd) ∈
Rd, one has the Kolmogorov distance, denoted by dKol;

4. the distance obtained by taking G = {g : g ∈ C2(Rd), ∥g∥Lip ≤ 1,M2(g) ≤ 1}will be
denoted by d2;

5. the distance obtained by taking G = {g : g ∈ C3(Rd), ∥g′′∥∞ ≤ 1 , ∥g′′′∥∞ ≤ 1} will be
denoted by d3.

It is well acknowledged that the topologies induced by dW ,dKol, dTV are stronger than the
topology of convergence in distribution. (See e.g. chapter 11 of [16] for details). Now we show
that d2 and d3 have similar properties.

Lemma 1.3.4 Let d ≥ 1 be a positive integer. We consider the distance between two random
variables with the following form:

dG(X,Y ) = sup
g∈G

|E[g(X)]− E[g(Y )]|

where G is a suitable collection of functions f : Rd → R . Suppose that for any real vector
(λ1, . . . , λd) ∈ Rd, there exists two non-zero constants C1(λ1, . . . , λd) and C2(λ1, . . . , λd), such
that both functions

C1(λ1, . . . , λd) sin(λ1x1 + . . .+ λdxd)

and

C2(λ1, . . . , λd) cos(λ1x1 + . . .+ λdxd)

belong to G. Then, for any collection of random variables (F, F1, F2, . . .), the condition

dG(Fn, F ) → 0, as n → ∞

implies the convergence in law

Fn
law−→ F, as n → ∞.

Proof. For d-dimension real vectors λ = (λ1, . . . , λd) and x = (x1, . . . , xd), we de�ne

Aλ(x) = C1(λ) sin(λx) = C1(λ1, . . . , λd) sin(λ1x1 + . . .+ λdxd)
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Bλ(x) = C2(λ) cos(λx) = C2(λ1, . . . , λd) cos(λ1x1 + . . .+ λdxd)

where

λx = λ1x1 + . . .+ λdxd, λx = λ1x1 + . . .+ λdxd.

For any λ ∈ Rd, both Aλ and Bλ are elements of G. By the de�nition of distance dG , we have,
for all λ ∈ Rd,

lim
n→∞

E[Aλ(Fn)] = E[Aλ(F )], lim
n→∞

E[Bλ(Fn)] = E[Bλ(F )],

which leads to

lim
n→∞

E[sin(λFn)] = E[sin(λF )], lim
n→∞

E[cos(λFn)] = E[cos(λF )], ∀λ ∈ Rd

or

lim
n→∞

E[exp(iλFn)] = E[exp(iλF )].

The convergence in law is immediate.

Remark 1.3.5 Now note that the classes G over which d2 and d3 are built satisfy the as-
sumptions of Lemma 1.3.4, this immediately yields that the topology induced by d2 and d3 are
stronger than that of the convergence in distribution.

Remark 1.3.6 The distances d2 and d3 are related, respectively, to the estimates of Section
3.2 and Section 3.3. Let j = 2, 3. It is easily seen that, if dj(Fn, F ) → 0, where Fn, F are
random vectors in Rd, then necessarily Fn converges in distribution to F . It will also become
clear later on that, in the de�nition of d2 and d3, the choice of the constant 1 as a bound
for ∥g∥Lip, M2(g), ∥g′′∥∞, ∥g′′′∥∞ is arbitrary and immaterial for the derivation of our main
results (indeed, we de�ned d2 and d3 in order to obtain bounds as simple as possible). See the
two tables in Section 3.3.2 for a list of available bounds involving more general test functions.

1.3.3 The case of dimension 1

Let N ∼ N (0, 1). Consider a real-valued function h : R → R such that the expectation
E[h(N)] is well-de�ned. The Stein's equation associated with h and N is classically given by

h(x)− E[h(N)] = f ′(x)− xf(x), x ∈ R. (1.57)

A solution to (1.57) is a function f which is Lebesgue a.e.-di�erentiable, and such that there
exists a version of f ′ verifying (1.57) for every x ∈ R. The following result, which is the basis
of the whole Stein's theory, is due to Stein ([63], [65]). The proof of point (i) (which is often
referred as Stein's lemma) involves a standard use of the Fubini theorem. Point (ii) is proved
e.g. Lemma 2.1 in [14]; point (iii) can be obtained by combining the arguments in page 25 of
[65] and Lemma 5.1 in [10] ; a proof of point (iv) is provided in Lemma 3 of [65]) ; and point
(v) is proved in Lemma 4.3 of [8]. Note that, the inequality ∥f ′∥∞ ≤ ∥h′∥∞ in (v) can be
reinforced by ∥f ′∥∞ ≤

√
2/π∥h′∥∞. We shall present a short proof of some of the results in

(iv) and (v) in the next section.
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Lemma 1.3.7 (i) Let W be a random variable. Then, W
(law)
= N ∼ N (0, 1) if, and only if,

E[f ′(W )−Wf(W )] = 0, (1.58)

for every continuous and piecewise continuously di�erentiable function f verifying the relation
E|f ′(N)| < ∞.

(ii) If h(x) = 1(−∞,z](x), z ∈ R, then (1.57) admits a solution f which is bounded by
√
2π/4,

piecewise continuously di�erentiable and such that ∥f ′∥∞ ≤ 1.

(iii) If h is bounded by 1/2, then (1.57) admits a solution f which is bounded by
√

π/2,
Lebesgue a.e. di�erentiable and such that ∥f ′∥∞ ≤ 2.

(iv) If h is bounded and absolutely continuous, then (1.57) has a solution f which is bounded
and twice di�erentiable, and such that ∥f∥∞ ≤

√
π/2∥h − E[h(N)]∥∞, ∥f ′∥∞ ≤ 2∥h −

E[h(N)]∥∞.

(v) If h is absolutely continuous with bounded derivative, then (1.57) has a solution f which
is twice di�erentiable and such that ∥f ′∥∞ ≤ ∥h′∥∞ and ∥f ′′∥∞ ≤ 2∥h′∥∞.

Recall the relation:

2dTV (X,Y ) = sup{|E[u(X)]− E[u(Y )]| : ∥u∥∞ ≤ 1}, (1.59)

we have

Corollary 1.3.8 1.

dKol(X,N) ≤ sup
f∈FKol

|E[Xf(X)− f ′(X)]|, (1.60)

where FKol is the class of piecewise continuously di�erentiable functions that are bounded
by

√
2π/4 and such that their derivative is bounded by 1.

2.

dTV (X,N) ≤ sup
f∈FTV

|E[Xf(X)− f ′(X)]|, (1.61)

where FTV is the class of piecewise continuously di�erentiable functions that are bounded
by
√

π/2 and such that their derivatives are bounded by 2.

3.

dW (X,N) ≤ sup
f∈FW

|E[Xf(X)− f ′(X)]|, (1.62)

where FW is the class of twice di�erentiable functions, whose �rst derivative is bounded
by 1 and whose second derivative is bounded by 2.
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1.3.4 Proofs

Here we present some of the proof on point (iv) and (v) in Lemma 1.3.7. The simple proofs
we give below are selected from Chatterjee's Lecture Notes [7]. All proofs are based on the
two lemmas below which characterize the solution structure of Stein's equation (1.57).

Lemma 1.3.9 For any given function h : R → R such that E|h(N)| < ∞ with N ∼ N (0, 1),

f(x) = ex
2/2

∫ x

−∞
e−y2/2 (h(y)− E[h(N)]) dy (1.63)

= −ex
2/2

∫ ∞

x
e−y2/2 (h(y)− E[h(N)]) dy. (1.64)

is an absolutely continuous solution of (1.57).
Moreover, any absolutely continuous solution f̃ of (1.57) is of the form

f̃(x) = f(x) + cex
2/2 , c ∈ R.

Finally, f is the only solution that satis�es lim
|x|→∞

f(x)e−x2/2 = 0.

Proof. Equation (1.57) (with unknown function f) is a standard linear Ordinary Di�erential
Equation. We need only to apply the First Integral method:

d

dx

(
e−x2/2f(x)

)
= e−x2/2

(
f ′(x)− xf(x)

)
= e−x2/2

(
h(x)− E[h(X)]

)
,

which leads to a solution candidate (1.63). On the other hand, a simple veri�cation shows
that (1.63) indeed satis�es (1.57).

The equivalence between (1.63) and (1.64) is given by the fact∫ ∞

−∞
e−y2/2

(
h(y)− E[h(N)]

)
dy = 0.

If f̃ is any other solution of (1.57), then

d

dx

(
e−x2/2

(
f(x)− f̃(x)

))
= 0,

which means f̃(x) = f(x) + cex
2/2 for some c ∈ R.

The last assertion is justi�ed by applying Dominated Convergence Theorem on both (1.63)
and (1.64).

Now we give an alternative expression of solution of of (1.57). We shall see later that this
expression can be generalized in multi-dimensional case (Lemma 1.3.12).

Lemma 1.3.10 Let h be an absolutely continuous function with bounded derivative. Then

f(x) = −
∫ 1

0

1

2
√

t(1− t)
E
[
Nh(

√
tx+

√
1− tN)

]
dt , N ∼ N (0, 1) (1.65)

is a solution of (1.57). Moreover, it is the same as (1.63), because lim
|x|→+∞

f(x)e−x2/2 = 0.
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Proof. We shall verify that (1.65) is indeed a solution of (1.57). Thanks to Dominated
Convergence Theorem, we are able to carry the derivative inside the integral and expectation,
and we have

f ′(x) = −
∫ 1

0

1

2
√

(1− t)
E
[
Nh′(

√
tx+

√
1− tN)

]
dt. (1.66)

Thus,

f ′(x)− xf(x)

=

∫ 1

0
E
[(

− N

2
√
1− t

+
x

2
√
t

)
h′(

√
tx+

√
1− tN)

]
dt

=

∫ 1

0
E
[
d

dt
h′(

√
tx+

√
1− tN)

]
dt

= h(x)− E[h(N)],

where the �rst line of the equation comes from the following relation which is deduced from
the Stein identity (1.58):

E
[
Nh(

√
tx+

√
1− tN)

]
=

√
1− tE

[
h′(

√
tx+

√
1− tN)

]
.

Now we give simple proofs of three inequalities in (iv) and (v) of Lemma 1.3.7. The proof
of the second assertion in (v) is too lengthy to be put here.

(I) If h : R → R is bounded and absolutely continuous, then there exists a solution f of (1.57)
which is bounded and twice di�erentiable and satisfy

∥f∥∞ ≤
√

π/2∥h− E[h(N)]∥∞;

(II) the same f also satisfy

∥f ′∥∞ ≤ 2∥h− E[h(N)]∥∞;

(III) If h is absolutely continuous with bounded derivative, then (1.57) has a solution f which
is twice di�erentiable and such that

∥f ′∥∞ ≤
√

2/π∥h′∥∞.

Notice that this is stronger than the result in (v) of Lemma 1.3.7.

Proof. (I):We adopt a solution f in form of (1.63). Suppose x > 0. Using the representation
in (1.64), we have

|f(x)| ≤ ∥h− E[h(N)]∥∞
(
ex

2/2

∫ ∞

x
e−y2/2dy

)
.
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Since

d

dx
ex

2/2

∫ ∞

x
e−y2/2dy

= −1 + xex
2/2

∫ ∞

x
e−y2/2dy

≤ −1 + xex
2/2

∫ ∞

x

y

x
e−y2/2dy

= −1 + xex
2/2 × 1

x
e−x2/2

= 0,

we see that ex
2/2
∫∞
x e−y2/2dy is maximized at x = 0 on [0,∞) with value

√
π/2. Hence,

|f(x)| ≤
√

π

2
∥h− E[h(N)]∥∞, ∀x > 0.

For x < 0, use the form (1.65), and proceed in the same way.

(II): Again, we will only consider x > 0 case. The other case will be similar.
Note that

f ′(x) = h(x)− E[h(N)]− xex
2/2

∫ ∞

x
e−y2/2(h(y)− E[h(N)])dy.

Therefore,

|f ′(x)| ≤ ∥h(x)− E[h(N)]∥∞
(
1 + xex

2/2

∫ ∞

x
e−y2/2dy

)
≤ 2∥h(x)− E[h(N)]∥∞ (By the same way as in the proof of (I)).

(III): From (1.66), it follows that

∥f ′∥∞ ≤ (E|N |)∥h′∥∞
∫ 1

0

1

2
√
1− t

=

√
2

π
∥h′∥∞

1.3.5 An interesting example

We give here an example which is taken from Lecture 3 in Chatterjee's Lecture Notes [7] on
Stein's method. Indeed, this simple example illustrate how Stein's original �leave me out� idea
works (See Stein's 1972 paper [63]).

We let W = 1√
n

∑n
i=1Xi, where X1, X2, . . . , Xn are independent variables such that

E[Xi] = 0, Var[Xi] = 1, E|Xi|3 < ∞. It is easy to see that W is �close to� a standard
normal distributed variable N ∼ N (0, 1) and we wish to evaluate the Wasserstein distance
dW (W,N).

Theorem 1.3.11 Suppose X1, . . . , Xn are independent with mean 0, variance 1, and �nite
third moments. Then

dW

(∑n
1 Xi√
n

, N

)
≤ 3

n3/2

n∑
1

E |Xi|3 ,

where N ∼ N (0, 1).
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Proof. By inequality (1.62), we estimate

|E[Wf(W )− f ′(W )]|

by taking any f ∈ C1 with f ′ absolutely continuous, and satisfying |f ′| ≤ 1 and |f ′′| ≤ 2.
Note that

E[Wf(W )] =
1√
n

∑
E [Xif(W )] . (1.67)

From W , we single out the part that is independent of Xi, by taking

Wi = W − Xi√
n
.

Then we must have E[Xif(Wi)] = 0. Therefore,

E [Wf(W )]− E[f ′(W )]

=
1√
n

n∑
i=1

E [Xi (f(W )− f(Wi))]− E[f ′(W )]

=
1√
n

n∑
i=1

E
[
Xi

(
f(W )− f(Wi)− (W −Wi)f

′(Wi)
)]

(1.68)

+
1√
n

n∑
i=1

E
[
Xi(W −Wi)f

′(Wi)
]
− E[f ′(W )]. (1.69)

By applying Taylor's formula∣∣f(b)− f(a)− (b− a)f ′(a)
∣∣ ≤ 1

2
(b− a)2

∣∣f ′′∣∣
∞

on (1.68), we deduce that

1√
n

n∑
i=1

∣∣E [Xi

(
f(W )− f(Wi)− (W −Wi)f

′(Wi)
)]∣∣

≤ 1√
n

n∑
i=1

1

2
E
∣∣∣∣Xi

X2
i

n

∣∣∣∣ · ∣∣f ′′∣∣
∞

≤ 1

n3/2

n∑
i=1

E |Xi|3 .

On the other hand, since E[X2
i ] = 1 and Xi is independent of Wi, we may rewrite (1.69) as

1
n

∑n
i=1 E[f ′(Wi)]− E[f ′(W )], which can be bounded by

∑n
i=1 E|Xi| as shown below:∣∣∣∣∣ 1n

n∑
i=1

E[f ′(Wi)]− E[f ′(W )]

∣∣∣∣∣ ≤ |f ′′|∞
n

n∑
i=1

E |W −Wi| ≤
2

n3/2

n∑
i=1

E |Xi| .

By combining the estimations on (1.68) and (1.69) and the fact that E|Xi| ≤
(
E|Xi|3

)1/3 ≤
E|Xi|3, we obtain the desired conclusion.
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1.3.6 Multivariate case

From now on, given a d× d nonnegative de�nite matrix C, we write Nd(0, C) to indicate the
law of a centered d-dimensional Gaussian vector with covariance C. Most of the results in the
following Lemma is proved in [37], and the inequality (1.74) is newly obtained by Peccati and
Zheng [50], which will play a important role in the estimations in the next chapter.

Lemma 1.3.12 (Stein's Lemma and estimates) Fix an integer d ≥ 2 and let C = {C(i, j) :
i, j = 1, . . . , d} be a d× d nonnegative de�nite symmetric real matrix.

1. Let Y be a random variable with values in Rd. Then Y ∼ Nd(0, C) if and only if,
for every twice di�erentiable function f : Rd → R such that E|⟨C,Hess f(Y )⟩H.S.| +
E|⟨Y,∇f(Y )⟩Rd | < ∞, it holds that

E[⟨Y,∇f(Y )⟩Rd − ⟨C,Hess f(Y )⟩H.S.] = 0 (1.70)

2. Assume in addition that C is positive de�nite and consider a Gaussian random vector
XC ∼ Nd(0, C). Let g : Rd → R belong to C2(Rd) with �rst and second bounded
derivatives. Then, the function U0(g) de�ned by

U0g(x) :=

∫ 1

0

1

2t
E[g(

√
tx+

√
1− tXC)− g(XC)]dt (1.71)

is a solution to the following partial di�erential equation (with unknown function f):

g(x)− E[g(XC)] = ⟨x,∇f(x)⟩Rd − ⟨C,Hess f(x)⟩H.S., x ∈ Rd. (1.72)

3. Moreover, one has that

sup
x∈Rd

∥HessU0g(x)∥H.S. ≤ ∥C−1∥op ∥C∥1/2op ∥g∥Lip, (1.73)

and

M3(U0g) ≤
√
2π

4
∥C−1∥3/2op ∥C∥opM2(g). (1.74)

Proof. We shall prove the results in 4 steps.

Step 1: We prove that (1.71) is indeed the solution of Stein's equaiton (1.72). Notice that, we
can suppose without loss of generality that XC = (X1, . . . , Xd) := (G(h1), . . . , G(hd)), where
G is an isonormal Gaussian process over H = Rd, the kernels hi belong to H (i = 1, . . . , d),
and ⟨hi, hj⟩H = E[G(hi)G(hj)] = E[XiXj ] = C(i, j).

U0g(x) can be rewritten as follows:

U0g(x) =

∫ ∞

0

(
E[g(e−ux+

√
1− e−2uN)]− E[g(XC)]

)
du,

by using a simple change of variable 2u = − log t. This new expression of U0g(x) reminds us
the Mehler's formula (1.52) introduced before. Indeed, by de�ning g̃(XC) = g(XC)−E[g(XC)],
we see that, by Mehler's formula (1.52):

E[g(e−ux+
√

1− e−2uXC)]|x=XC
−E[g(XC)] = E[g̃(e−ux+

√
1− e−2uXC)]|x=XC

= Tu(g̃(XC)),
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where T is the Ornstein-Uhlenbeck semigroup and Jq(g̃(XC)) is the projection of g̃(XC) on
the qth Wiener chaos. Then we have

U0g(XC) =

∫ ∞

0
Tu(g̃(XC))du =

∫ ∞

0

∑
q≥1

e−quJq(g̃(XC))du =
∑
q≥1

1

q
Jq(g̃(XC)) = −L−1g̃(XC),

by using (1.46). It is easy to see that that U0g belongs to C2(Rd). By exploiting the di�erential
representation (1.54), we deduce that

⟨XC ,∇U0g(XC)⟩Rd − ⟨C,HessU0g(XC)⟩H.S. = g(x)− E[g(XC)],

for every x ∈ Rd. As a consequence, the function U0g solves the Stein's equation (1.72).

Step 2: To prove the estimate (1.73), we �rst notice that there exists a non-singular symmetric
matrix A such that A2 = C, for positive de�nite matrix C, and A−1XC ∼ Nd(0, Id). The
simple case for C = Id is provided by Lemma 3 in [11]. Now we let U0g(x) = h(A−1x), where

h(x) =

∫ 1

0

1

2t
E[gA(

√
tx+

√
1− tA−1XC)− gA(A

−1XC)]dt

and gA(x) = g(Ax). As A−1XC ∼ Nd(0, Id), the function h solves the Stein's equation

⟨x,∇h(x)⟩Rd −∆h(x) = gA(x)− E[gA(Y )],

where Y ∼ Nd(0, Id) and ∆ is the Laplacian. We may use the same arguments as in the proof
of Lemma 3 in [11] to deduce that

sup
x∈Rd

∥Hessh(x)∥H.S. ≤ ∥gA∥Lip ≤ ∥A∥op∥g∥Lip.

On the other hand, by writing hA−1(x) = h(A−1x), one obtains by standard computations
(notice that A is symmetric) that

HessU0g(x) = HesshA−1(x) = A−1Hessh(A−1x)A−1,

therefore

sup
x∈Rd

∥HessU0g(x)∥H.S. = sup
x∈Rd

∥A−1Hessh(A−1x)A−1∥H.S.

= sup
x∈Rd

∥A−1Hessh(x)A−1∥H.S.

≤ ∥A−1∥2op sup
x∈Rd

∥Hessh(x)∥H.S.

≤ ∥A−1∥2op∥A∥op∥g∥Lip
≤ ∥C−1∥op∥C∥1/2op ∥g∥Lip.

In the chain of inequalities above, we used the relations

∥A−1Hessh(x)A−1∥H.S. ≤ ∥A−1∥op∥Hessh(x)A−1∥H.S.

≤ ∥A−1∥op∥Hessh(x)∥H.S.∥A−1∥op,
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as well as the fact that

∥A−1∥op ≤
√

∥C−1∥op and ∥A∥op ≤
√

∥C∥op.

Step 3: Now we may work on Point 1. The fact that a vector Y ∼ Nd(0, C) necessarily
veri�es (1.70) can be easily proved. On the other hand, suppose that Y veri�es (1.70). Then,
according to Point 2, for every g ∈ C2(Rd) with bounded �rst and second derivatives,

E[g(Y )]− E[g(XC)] = E[⟨Y,∇U0g(Y )⟩Rd − ⟨C,HessU0g(Y )⟩H.S.] = 0,

where XC ∼ Nd(0, C). Since the collection of all such functions g generates the Borel σ-�eld

on Rd, this implies that Y
(law)
= XC , and the the Point 1 follows.

Step 4: Now we show inequality (1.74).

On the one hand, as Hess gA(x) = AHess g(Ax)A (recall that A is symmetric), we have

M2(gA) = sup
x∈Rd

∥Hess gA(x)∥op = sup
x∈Rd

∥AHess g(Ax)A∥op

= sup
x∈Rd

∥AHess g(x)A∥op ≤ ∥A∥2opM2(g)

= ∥C∥opM2(g),

where the inequality above follows from the well-known relation ∥AB∥op ≤ ∥A∥op∥B∥op. It is
easily seen that

HessU0g(x) = HesshA−1(x) = A−1Hessh(A−1x)A−1.

It follows that

M3(U0g) = M3(hA−1)

= sup
x ̸=y

∥HesshA−1(x)−HesshA−1(y)∥op
∥x− y∥

= sup
x ̸=y

∥A−1Hessh(A−1x)A−1 −A−1Hessh(A−1y)A−1∥op
∥x− y∥

≤ ∥A−1∥2op × sup
x̸=y

∥Hessh(A−1x)−Hessh(A−1y)∥op
∥x− y∥

×
∥A−1x−A−1y∥
∥A−1x−A−1y∥

≤ ∥A−1∥2op × sup
x̸=y

∥Hessh(A−1x)−Hessh(A−1y)∥op
∥A−1x−A−1y∥

× ∥A−1∥op

= ∥C−1∥3/2op M3(h).

Since M3(h) ≤
√
2π
4 M2(gA) (according to [11, Lemma 3]), relation (1.74) follows immediately.

Remark 1.3.13 In the one-dimensional Stein's Lemma, the above inequality (1.74) can be
replaced by an inequality of type M3(U0g) ≤ Const ×M1(g), and therefore distance d2 is re-
placed by Wasserstein distance dw as shown in [31] [37] [46].
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It is natural to ask whether this kind of improvement takes place on multi-dimensional
version. Unfortunately, the answer is negative. We take, for example,

g(x, y) = max{min{x, y}, 0},

U0g is then twice di�erentiable but
∂2(U0g)

∂x2
is not Lipschitz. See [11] for details.



Chapter 2

Malliavin-Stein method and the main
contributions of the dissertation

2.1 Malliavin-Stein method

The techniques developed by Stein, Chen and other authors (that are introduced in the pre-
vious section) allow us to measure the distance between the laws of a generic random variable
F and N ∼ N (0, 1), by assessing the distance from zero of the quantity E[Ff(F ) − f ′(F )],
for every f belonging to a �su�ciently large� class of smooth functions. Indeed, the bounds
of the following type hold in great generality:

d(F,N) ≤ C × sup
f∈F

|E[Ff(F )− f ′(F )]|. (2.1)

(See Corollary 1.3.8.)

However, to assess quantities having the form of RHS of (2.1) is always a challenging
task, towards which a great number of e�orts have been directed in the last 30 years. An
impressive number of approaches has been developed in this direction: the reader is referred
to the two surveys by Chen and Shao [14] and Reinert [57] for a detailed discussion of these
contributions. Among these developments, Peccati, Nourdin, Nualart and other authors have
found an creative way to e�ectively estimate a quantity such as the RHS of (2.1) by using
Malliavin calculus, whenever the random variable F can be represented as regular functional
of a generic and possibly in�nite-dimensional Gaussian or Poisson �eld.

Before the introduction of the �Malliavin-Stein method�, we list here some important works
in the development of the method. In the survey [44] by Peccati and Nourdin, the readers
may �nd an overview of the �Malliavin-Stein method� on the Gaussian space.

• The paper [40], by Nualart and Peccati, discovered and proved the striking Theorem
2.1.4 (without condition (iv)). In this paper, the equivalence of Conditions (i), (ii), (iii)
is proved by using techniques based on stochastic time-changes.

• The paper [39], by Nualart and Ortiz-Latorre, revisited Theorem 2.1.4. The authors
proved the equivalence between Condition (iv) and other conditions, by means of Malli-
avin calculus, but not with Stein's method.

35
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• The paper [49], by Peccati and Tudor, studied the CLT on vectors of multiple stochastic
Wiener-Itô integrals on the Gaussian space, and gives Theorem 2.1.7. Their calculations
rely on standard stochastic calculus.

• The paper [31], by Peccati and Nourdin, generalized and uni�ed the results and methods
in the previous papers. It is in this paper that �Malliavin-Stein method� made its �rst
appearance. The authors combined Malliavin calculus with Stein's method, to derive
explicit bounds in the Gaussian and Gamma approximation of random variables in a
�xed Gaussian Wiener chaos.

• The paper [37], by Nourdin, Peccati and Réveillac, generalized the �Malliavin-Stein
method� to the multi-dimensional normal approximation of functionals of Gaussian
�elds. The authors combined Malliavin calculus with multi-dimensional Stein's lemma,
to build explicit bounds for Gaussian approximation, and re-established Theorem 2.1.7.
It is worth noting that they provided a new proof of the multi-dimensional Stein's lemma,
by means of Malliavin calculus.

• The paper [47], by Peccati and Taqqu, studied the normal approximation of multiple
stochastic Wiener-Itô integrals of order 2 (I2(f

(n))) on the Poisson space. The authors
built an parallel of Theorem 2.1.4 for I2(f

(n)), by providing conditions on fourth moment
(as in the Gaussian case) and on star contraction operator ⋆lr (instead of ⊗r in the
Gaussian case).

• The paper [46], by Peccati, Solé, Taqqu and Utzet, generalized the �Malliavin-Stein
method� on the Poisson space. The authors combined the standard Stein's method with
a version of Malliavin calculus on the Poisson space as de�ned by Nualart and Vives in
[41]. They generalized the work of Peccati and Taqqu [47] and built a CLT (Theorem
2.1.10) for arbitrary �xed order multiple stochastic Wiener-Itô integrals on the Poisson
space. It is worth noting that the conditions in Theorem 2.1.10 are merely su�cient for
integrals of order q ≥ 3, which shows the complexity of Poisson space compared with
Gaussian space.

• The paper [36], by Nourdin, Peccati and Reinert, contains an application of Stein's
method, Malliavin calculus and the �Lindeberg invariance principle�, in order to unify
former results on normal approximation in di�erent spaces (Gausian space, Poisson
space, etc.), and study universailty for sequences of homogenous sums associated with
general collections of independent random variables.

2.1.1 One-dimensional Gaussian case

This section is based on the paper [31] by Nourdin and Peccati. We study the normal approx-
imation of functionals of a general Gaussian �eld in 3 steps:

1. For any centered functional F , we evaluate the distance d(F,N) (where N ∼ N (0, 1))
by Stein's method and Malliavin calculus, and obtain an explicit bound using Malliavin
operators.

2. In the particular case of multiple stochastic Wiener-Itô integrals: F = IGq (f), we evaluate
the bound expressed by contraction operator ⊗r.
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3. We build a CLT for sequences {IGq (f (n));n ≥ 1}.

Step 1:
Let G(H) = {G(h) : h ∈ H} be an isonormal Gaussian process over some real separable
Hilbert space H. Suppose F is a centered functional of G, such that E[F ] = 0 and F is
di�erentiable in the sense of Malliavin calculus. According to the Stein-type bound (2.1),
we need to assess the distance between the two quantities E[Ff(F )] and E[f ′(F )] in order
to evaluate the distance between the law of F and the law of a Gaussian random variable
N ∼ N (0, 1). According to the methods that introduced in [31], and then further developed
in the references [30, 34, 36, 37], is that the needed estimate can be realized by the following
calculations: Let f : R → R be a C1 function with bounded derivative, and let F, F̃ ∈ D1,2.
By using successively equation (1.51), equation (1.50), duality relationship (1.41), and �chain
rules� (1.39), one deduce that

E[F̃ f(F )] = E[LL−1F̃ × f(F )]

= E[δD(−L−1F̃ )× f(F )]

= E[⟨Df(F ),−DL−1F̃ ⟩H]
= E[f ′(F )⟨DF,−DL−1F̃ ⟩H]

We will shortly see that the fact

E[F̃ f(F )] = E[f ′(F )⟨DF,−DL−1F̃ ⟩H] (2.2)

constitutes a fundamental element in the connection between Malliavin calculus and Stein's
method. By taking F̃ = F in (2.2), we deduce that, if the derivative f ′ is bounded, then the
distance between E[Ff(F )] and E[f ′(F )] is controlled by the L1-norm of the random variable
1− ⟨DF,−DL−1F ⟩H. For instance, in the case of the Kolmogorov distance, one obtains that,
for every centered and Malliavin di�erentiable random variable F ,

dKol(F,N) ≤ E|1− ⟨DF,−DL−1F ⟩H| (2.3)

We will see later that, in the particular case where F = IGq (f) is a multiple Wiener-Itô integral
of order q ≥ 2 with unit variance, relation (2.3) yields the neat estimate

dKol(F,N) ≤
√

q − 1

3q
× |E[F 4]− 3|. (2.4)

Note that E[F 4] − 3 is just the fourth cumulant of F , and that the fourth cumulant of N
equals to zero. We will also show that the combination of (2.3) and (2.4) allows to recover
several characterizations of CLTs on a �xed Wiener chaos - as proved in [39, 40].

Theorem 2.1.1 Let F ∈ D1,2 be such that E[F ] = 0 and Var[F ] = 1. Then for N ∼ N (0, 1),

dKol(F,N) ≤ E|1−⟨DF,−DL−1F ⟩H| ≤
√

E[(1− ⟨DF,−DL−1F ⟩H)2] =
√
Var[⟨DF,−DL−1F ⟩H]

(2.5)

dW (F,N) ≤ E|1− ⟨DF,−DL−1F ⟩H| ≤
√

Var[⟨DF,−DL−1F ⟩H] (2.6)

dTV (F,N) ≤ 2E|1− ⟨DF,−DL−1F ⟩H| ≤ 2
√

Var[⟨DF,−DL−1F ⟩H] (2.7)
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Proof. We give the proof for Kolmogorov distance here, and the proofs for Total Variation
distance and the Wasserstein distance are similar. In view of (1.60), it is enough to prove
that, for every f satisfying ∥f ′∥∞ ≤ 1, one has that the quantity |E[Ff(F )− f ′(F )]| is less or
equal to the RHS of (2.5). For such a f , relation (2.2) yields

E[Ff(F )] = E[f ′(F )⟨DF,−DL−1F ⟩H],

so that

|E[f ′(F )]− E[Ff(F )]| = |E[f ′(F )(1− ⟨DF,−DL−1F ⟩H)]| ≤ E|1− ⟨DF,−DL−1F ⟩H|

Therefore, by using (1.60) and Cauchy-Schwarz inequality, we infer that

dKol(F,N) ≤ E|1− ⟨DF,−DL−1F ⟩H| ≤
√

E[(1− ⟨DF,−DL−1F ⟩H)2]

To conclude, we choose f(z) = z in (2.2), then we obtain

E[⟨DF,−DL−1F ⟩H] = E[F 2] = 1,

so that
E[(1− ⟨DF,−DL−1F ⟩H)2] = Var[⟨DF,−DL−1F ⟩H].

Step 2:
We evaluate the above bound in the particular case F = IGq (f).

Lemma 2.1.2 Fix an integer q ≥ 1, and let F = IGq (f) (with f ∈ H⊙q) be such that Var[F ] =
E[F 2] = 1. The following three identities are in order:

1

q
∥DZ∥2H − 1 = q

q−1∑
r=1

(r − 1)!

(
q − 1
r − 1

)2

I2q−2r(f⊗̃rf), (2.8)

Var

[
1

q
∥DZ∥2H

]
=

q−1∑
r=1

r2

q2
(r!)2

(
q
r

)4

(2q − 2r)!∥f⊗̃rf∥2H⊗2q−2r (2.9)

and

E[F 4]− 3 =
3

q

q−1∑
r=1

r(r!)2
(

q
r

)4

(2q − 2r)!∥f⊗̃rf∥2H⊗2q−2r (2.10)

In particular,

Var

[
1

q
∥DZ∥2H

]
≤ q − 1

3q
(E[F 4]− 3) (2.11)

As a consequence of Lemma 2.1.2, we deduce the following �fourth moment� bound on the
Kolmogorov distance (see [36]).

Theorem 2.1.3 Let F = IGq (f) for some q ≥ 2 and function f ∈ H⊙q. Suppose moreover
that Var[F ] = E[F 2] = 1. Then

dKol(F,N) ≤
√

q − 1

3q
(E[F 4]− 3) (2.12)
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Proof. Since L−1F = −1
qF , we have

⟨DF,−DL−1F ⟩H =
1

q
∥DF∥2H.

So, we only need to apply Theorem 2.1.1 and formula (2.11).
Step 3:
Now we have all the ingredients to establish a fundamental limit theorem.

Theorem 2.1.4 (see [31],[39], [40]) Let {F (n);n ≥ 1} be a sequence of random variables
belonging to the qth Gaussian Wiener-Itô chaos, for some �xed integer q ≥ 2. Assume that
Var(F (n)) = E[

(
F (n)

)2
] = 1 for all n. Then, as n → ∞, the following four assertions are

equivalent:

• i) F (n) law−→ N (0, 1), as n → ∞;

• ii) E[
(
F (n)

)4
] → 3 , as n → ∞;

• iii) ∀r = 1, . . . , q − 1, ∥f (n)⊗̃rf
(n)∥H⊗2q−2r → 0, as n → ∞;

• iv) ∥DF (n)∥2H → q in L2 , as n → ∞.

Proof. Let F (n) = IGn (f (n)), with f (n) ∈ H⊙q. The implication (iii) to (i) is a direct ap-
plication of Theorem 2.1.3 and identity (2.10), and of the fact that the Kolmogorov distance
is stronger than the topology of the convergence in law. The implication (i) to (ii) comes

from a bounded convergence argument, since
∑

n≥1 E[
(
F (n)

)4
] < ∞ by the hypercontractivity

relation
E[
∣∣∣F (n)

∣∣∣p] ≤ (p− 1)pn/2E[
(
F (n)

)2
]p/2, ∀p ≥ 2.

Now let us suppose that (ii) is in order. Then, by virtue of (2.10), we have that ∥f (n)⊗̃rf
(n)∥H⊗2q−2r →

0, as n → ∞, for all (�xed) r = 1, . . . , q − 1. Finally, the equivalence of iii) and iv) comes
from (2.8).

2.1.2 Multi-dimensional Gaussian case

The method presented in this section is introduced by Nourdin, Peccati and Réveillac in their
work [37]. They showed that a relation similar to (2.3) continues to hold when the random
variable F is replaced by a d-dimensional (d ≥ 2) Gaussian vector (F1, . . . , Fd) of smooth
functionals of a Gaussian �eld. Their results apply to Gaussian approximations by means
of Gaussian vectors with arbitrary positive de�nite covariance matrices, therefore rebuilt a
multi-dimensional CLT which was �rstly introduced by Peccati and Tudor in [49]. We repeat
the 3 steps scenario here:

1. For any vector F = (F1, · · · , Fd) such that E[Fi] = 0 and Fi ∈ D1,2 for every i = 1, · · · , d,
we evaluate the distance d(F,XC) (where XC ∼ N (0, C)) by multi-dimensional Stein's
lemma and Malliavin calculus, and obtain an explicit bound using Malliavin operators.

2. In the particular case of multiple stochastic Wiener-Itô integrals: Fi = IGqi (fi) for every
i = 1, · · · , d, we evaluate the bound expressed by contraction operator ⊗r.

3. We build a CLT for sequences of vectors of multiple stochastic integrals.
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Step 1:
The following theorem and its proof are taken from [37].

Theorem 2.1.5 Fix d ≥ 2 and let C = {C(i, j) : i, j = 1, · · · , d} be a d× d positive de�nite
matrix. Suppose that XC ∼ Nd(0, C) and that F = (F1, · · · , Fd) is a Rd-valued random vector
such that E[Fi] = 0 and Fi ∈ D1,2 for every i = 1, · · · , d. Then,

dW (F,XC) ≤ ∥C−1∥op∥C∥1/2op

√
E[∥C − Φ(DF )∥2H.S ] (2.13)

= ∥C−1∥op∥C∥1/2op

√√√√ d∑
i,j=1

E[(C(i, j)− ⟨DFi,−DL−1Fj⟩H)2], (2.14)

where we write Φ(DF ) to indicate the matrix Φ(DF ) := {⟨DFi,−DL−1Fj⟩H : 1 ≤ i, j ≤ d}.

Proof. As any globally Lipschitz function g such that ∥g∥Lip ≤ 1 can be approximated
by a family {gϵ : ϵ > 0} with bounded �rst and second derivatives, (e.g. we can choose
gϵ(x) = E[g(x +

√
ϵN)] with N ∼ Nd(0, Id)), we need only prove that, for every g ∈ C2(Rd)

with bounded �rst and second derivatives,

|E[g(F )]− E[g(XC)]| ≤ ∥C−1∥op∥C∥1/2op ∥g∥Lip
√

E[∥C − Φ(DF )∥2H.S ]

Now we may follow the similar deductions used to obtain (2.2). Observe that, according to
Point 2 in Lemma 1.3.12,

E[g(F )]− E[g(XC)] = E[⟨F,∇U0g(F )⟩Rd
− ⟨C,HessU0g(F )⟩H.S.].
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Moreover,

|E[⟨C,HessU0g(F )⟩H.S. − ⟨F,∇U0g(F )⟩Rd ]|

=

∣∣∣∣∣∣E
 d∑
i,j=1

C(i, j)∂2
ijU0g(F )−

d∑
i=1

Fi∂iU0g(F )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

i,j=1

E[C(i, j)∂2
ijU0g(F )]−

d∑
i=1

E[(LL−1Fi)∂iU0g(F )]

∣∣∣∣∣∣ (since E[Fi] = 0)

=

∣∣∣∣∣∣
d∑

i,j=1

E[C(i, j)∂2
ijU0g(F )]−

d∑
i=1

E[δ(DL−1Fi)∂iU0g(F )]

∣∣∣∣∣∣ (since δD = −L)

=

∣∣∣∣∣∣
d∑

i,j=1

E[C(i, j)∂2
ijU0g(F )]−

d∑
i=1

E[⟨D(∂iU0g(F )),−DL−1Fi⟩H]

∣∣∣∣∣∣ ( by duality (1.41))

=

∣∣∣∣∣∣
d∑

i,j=1

E[C(i, j)∂2
ijU0g(F )]−

d∑
i,j=1

E[∂2
jiU0g(F )⟨DFj ,−DL−1Fi⟩H]

∣∣∣∣∣∣ ( by �chain rules� (1.39))

=

∣∣∣∣∣∣
d∑

i,j=1

E[∂2
ijU0g(F )

(
C(i, j)− ⟨DFj ,−DL−1Fi⟩H

)
]

∣∣∣∣∣∣
= |E[⟨HessU0g(F ), C − Φ(DF )⟩H.S.]|

≤
√

E[∥HessU0g(F )∥2H.S.]
√

E[∥C − Φ(DF )∥2H.S. (by the Cauchy-Schwarz inequality)

≤ ∥C−1∥op∥C∥1/2op ∥g∥Lip
√

E[∥C − Φ(DF )∥2H.S. (by inequality (1.73))

Step 2:
The following lemma is used to evaluate the bound (2.14) for multiple stochastic Wiener-Itô
integrals.

Lemma 2.1.6 Let F = IGp (f) and G = IGq (g), with f ∈ H⊙p and g ∈ H⊙q (p, q ≥ 1). Let a
be a real constant. If p = q, one has the estimate:

E

[(
a− 1

p
⟨DF,DG⟩H

)2
]

≤ (a− p!⟨f, g⟩H⊗p)2

+

p−1∑
r=1

C(r, p)
(
∥f ⊗p−r f∥2H⊗2r + ∥g ⊗p−r g∥2H⊗2r

)
.

for some positive constants C(r, p) depending on r, p. On the other hand, if p < q, one has
that

E

[(
a− 1

q
⟨DF,DG⟩H

)2
]

≤ a2 +A(p, q)∥f∥2H⊗p∥g ⊗q−p g∥H⊗2p

+

p−1∑
r=1

D(r, p, q)
(
∥f ⊗p−r f∥2H⊗2r + ∥g ⊗q−r g∥2H⊗2r

)
.
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for a positive constant A(p, q) depending on p, q, and positive constants D(r, p, q) depending
on r, p, q.

Step 3:
The following CLT is a direct consequence of all the estimations above.

Theorem 2.1.7 (Theorem 3.9 in [37], or see [49]) Fix d ≥ 2 and let C = {C(i, j) :
i, j = 1, . . . , d} be a d × d positive de�nite matrix. Fix integers 1 ≤ q1 ≤ · · · ≤ qd. For

any n ≥ 1 and i = 1, . . . , d, let f
(n)
i belong to L2(µqi) . Assume that

F (n) = (F
(n)
1 , . . . , F

(n)
d ) := (IGq1(f

(n)
1 ), . . . , IGqd(f

(n)
d )) n ≥ 1,

is such that

lim
n→∞

E[F (n)
i F

(n)
j ] = C(i, j), 1 ≤ i, j ≤ d.

Then, as n → ∞, the following four assertions are equivalent:

• (i) The vector F (n) converges in distribution to a d-dimensional Gaussian vector Nd(0, C).

• (ii) For every 1 ≤ i ≤ d, E
[
(F

(n)
i )4

]
→ 3C(i, i)2.

• (iii) For every 1 ≤ i ≤ d and every 1 ≤ r ≤ qi − 1 , ∥f (n)
i ⊗r f

(n)
i ∥L2 → 0.

• (iv) For every 1 ≤ i ≤ d, F
(n)
i converges in distribution to a centered Gaussian random

variable with variance C(i, i).

2.1.3 One-dimensional Poisson case

This section introduces the method presented in [46]. The main idea of normal approximation
on the Poisson space is similar to that on the Gaussian space. But the �chain rules� are slightly
di�erent, so the statement has a more complicated form.

We adopt the notations introduced before. Suppose F is a centered functional of measure
G, such that E[F ] = 0 and F is di�erentiable in the sense of Malliavin calculus. Similar to
the Gaussian case, we aim at evaluating the distance between the law of F and the law of a
Gaussian random variable N ∼ N (0, 1), with the help of the Stein-type bound

d(F,N) ≤ C × sup
f∈F

|E[Ff(F )− f ′(F )]|.

We need to assess the distance between the two quantities E[Ff(F )] and E[f ′(F )] by the
following calculations: Let f : R → R belong to some class of smooth functions, and let
F ∈ DomD. By using respectively Remark 1.2.13 and duality relationship Lemma 1.2.9, one
deduce that

E[Ff(F )] = E[LL−1F × f(F )]

= E[δD(−L−1F )× f(F )]

= E[⟨Df(F ),−DL−1F ⟩L2(µ)]
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Notice that the �chain rules� (1.35) on the Poisson space di�ers from that on the Gaussian
space (1.39). We deduce, by (1.35), that

E[Ff(F )] = E[f ′(F )⟨DF,−DL−1F ⟩L2(µ)] + E[⟨R(DF ),−DL−1F ⟩L2(µ)] (2.15)

Therefore, if the derivative f ′ and f ′′ are bounded, then we may deduce that the Wasserstein
distance between E[Ff(F )] and E[f ′(F )] is controlled by the sum of E|1−⟨DF,−DL−1F ⟩L2(µ)|
and

∫
Z E[|DzF |2|DzL

−1F |]µ(dz). (See Theorem 2.1.8) We will see later that, in the particular
case where F = Iq(f) is a multiple Wiener-Itô integral of order q ≥ 2 with unit variance, the
estimate of the Wasserstein distance between E[Ff(F )] and E[f ′(F )] has an explicite bound,
by using contraction star operators ⋆st . (See Theorem 2.1.9) (It is nature to repalce operator
⊗r by operator ⋆st , if we have noticed the di�erent forms of �product formula� of multiple
integrals in Poisson case (1.12) and Gaussian case(1.24). )

Finally, a CLT (Theorem 2.1.10) for sequence of (�xed order) multiple Wiener-Itô integral
is formed, as an analogue of Theorem 2.1.4.

Theorem 2.1.8 Let F ∈ DomD be such that E[F ] = 0. Let N ∼ N (0, 1). Then,

dW (F,N) ≤ E|1− ⟨DF,−DL−1F ⟩L2(µ)|+
∫
Z
E[|DzF |2|DzL

−1F |]µ(dz) (2.16)

≤
√

E[(1− ⟨DF,−DL−1F ⟩L2(µ))
2] +

∫
Z
E[|DzF |2|DzL

−1F |]µ(dz) (2.17)

Proof. By virtue of Stein-type bound (1.62), it is su�cient to prove that, for every function
f such that ∥f ′∥∞ ≤ 1 and ∥f ′′∥∞ ≤ 2, the quantity |E[f ′(F ) − Ff(F )]| is smaller than the
right-hand side of (2.16). Following the deductions that we have made above, we have

E[Ff(F )] = E[f ′(F )⟨DF,−DL−1F ⟩L2(µ)] + E[⟨R(DF ),−DL−1F ⟩L2(µ)].

It follows that,

|E[f ′(F )− Ff(F )]| ≤ |E[f ′(F )(1− ⟨DF,−DL−1F ⟩L2(µ))]|+ |E[⟨R(DF ),−DL−1F ⟩L2(µ)]|.

By the fact that ∥f ′∥∞ ≤ 1 and by Cauchy-Schwarz inequality,

|E[f ′(F )(1− ⟨DF,−DL−1F ⟩L2(µ))]| ≤ E|1− ⟨DF,−DL−1F ⟩L2(µ)|

≤
√

E[(1− ⟨DF,−DL−1F ⟩L2(µ))
2].

On the other hand, one sees immediately that

|E[⟨R(DF ),−DL−1F ⟩L2(µ)]| ≤
∫
Z
E[|R(DzF )DzL

−1F |]µ(dz)

≤
∫
Z
E[|DzF |2|DzL

−1F |]µ(dz)

The proof is complete.
The following Theorem is served to evaluate the bound for multiple stochastic integrals in

Poisson Wiener chaos.
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Theorem 2.1.9 Fix q ≥ 2 and let N ∼ N (0, 1). Let f ∈ L2
s(µ

q) be such that:

1. whenever µ(Z) = ∞, the following technical condition (see Section 3.4 for the de�nition

of Gb,c
a ) is satis�ed for every p = 1, . . . , 2(q − 1):∫

Z

[∫
Zp

(
Gq−1,q−1

p (f(z, ·), f(z, ·))
)2√

dµp

]
µ(dz) < ∞; (2.18)

2. for dµ-almost every z ∈ Z, every r = 1, . . . , q − 1 and every l = 0, . . . , r − 1, the kernel
f(z, ·) ⋆lr f(z, ·) is an element of L2

s(µ
2(q−1)−r−l).

Denote by Iq(f) the multiple Wiener-Itô integral, of order q, of f with respect to N̂ . Then the
following bound hold:

dW (Iq(f), N) ≤ |1− q!∥f∥2L2(µq)|+
q∑

t=1

t∧(q−1)∑
s=1

C(s, t, q)∥f ⋆st f∥L2(µ2q−t−s)

+ ∥f∥L2(µq) ×
q∑

b=1

b−1∑
a=0

D(a, b, q)∥f ⋆ab f∥L2(µ2q−a−b),

where C(x, y, q) and D(x, y, q) are positive constants depending on x, y, q. The explicit form
of C(x, y, q) and D(x, y, q) can be found in Theorem 4.2 in [46].

At last, we are able to present a CLT of sequences of multiple stochastic integrals. However,
the conditions are no longer necessary and su�cient, as in Gaussian case.

Theorem 2.1.10 (Theorem 5.1 in [46]) Let N ∼ N (0, 1). Suppose that µ(Z) = ∞, �x
q ≥ 2, and let {Fk = Iq(fk); k ≥ 1}, be a sequence of multiple stochastic Wiener-Itô integrals
of order q. Suppose that, as k → ∞, the normalization condition E[F 2

k ] = q!∥∥2L2(µq) → 1 takes
place. Assume moreover that the following three conditions hold:

• (I) For every k ≥ 1, the kernel fk veri�es condition (2.18) for every p = 1, . . . , 2(q− 1).

• (II) For every r = 1, . . . , q and every l = 1, . . . , r ∧ (q − 1), one has that fk ⋆lr fk ∈
L2(µ2q−r−l) and also ∥fk ⋆lr fk∥L2(µ2q−r−l) → 0 as k → ∞.

• (III) For every k ≥ 1, one has that
∫
Zq f

4
kdµ

q < ∞ and, as k → ∞,∫
Zq

f4
kdµ

q → 0.

Then, Fk
law−→ N , as k → ∞.

2.2 Some extensions of the �Malliavin-Stein� method

2.2.1 The �smart path� technique

In the previous section, we have seen that Stein's method plays a crucial role in order to
assess the distance between the laws of two random variables (or vectors). Now we present
an alternative way for evaluating the distances. This technique is close to the �smart path�
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technique introduced by Talagrand in the context of spin glass (see[68]).

To see how it works, we revisit the one-dimensional Gaussian case discussed in Section
2.1.1.

Let G = {G(h) : h ∈ H} be an isonormal Gaussian process over a real separable Hilbert
space H, and F ∈ D1,2 be a functional of G, N ∼ N (0, 1). We shall evaluate

δ = |E[g(F )]− E[g(N)]|

for C2 test function g with bounded second derivative.

Let Ψ(t) = E[g(
√
1− tF +

√
tN)], we easily see that Ψ is di�erentiable on (0, 1), therefore

δ = |Ψ(1)−Ψ(0)| ≤ sup
t∈(0,1)

|Ψ′(t)|,

with

Ψ′(t) = E
[
∂g

∂x

(√
1− tF +

√
tN
)
×
(

1

2
√
t
N − 1

2
√
1− t

F

)]
.

By integrating by parts and Stein's characterization of normal variable (1.58) in Lemma 1.3.7
(i), we write

E
[
∂g

∂x

(√
1− tF +

√
tN
)
×N

]
= E

[
E
[
∂g

∂x

(√
1− tz +

√
tN
)
×N

] ∣∣∣
z=F

]
= E

[
E
[√

t
∂2g

∂x2

(√
1− tz +

√
tN
)] ∣∣∣

z=F

]
=

√
tE
[
∂2g

∂x2

(√
1− tF +

√
tN
)]

.

Similarly, by relation (2.2) and integrating by parts, we write

E
[
∂g

∂x

(√
1− tF +

√
tN
)
× F

]
= E

[
E
[
∂g

∂x

(√
1− tF +

√
tz
)
× F

] ∣∣∣
z=N

]
=

√
1− tE

[
E
[
∂2g

∂x2

(√
1− tF +

√
tz
)
⟨DF,−DL−1F ⟩H

] ∣∣∣
z=N

]
=

√
1− tE

[
∂2g

∂x2

(√
1− tF +

√
tN
)
⟨DF,−DL−1F ⟩H

]
.

Combining these two parts, we conclude that

δ ≤ 1

2
∥g′′∥∞E[|1− ⟨DF,−DL−1F ⟩H|],

which is of course the reminiscent of inequality (2.3).
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The �smart path� technique is simple and direct, thus adapts to a wide range of situations.
For instance, it has been adopted in some recent developments of the �Malliavin-Stein� method,
see e.g. [3, 36]. However, the �smart path� technique usually has more stringent requirements
on the smoothness and the regularity of the test function g, with respect to Stein's method. In
Chapter 3 of this dissertation, we draw two tables in order to illustrate a comparison between
these two methods.

2.2.2 Universality of Gaussian Wiener chaos

In the process of studying CLTs by means of the �Malliavin-Stein� method, one observes a
variety of similarities between the Poisson and Gaussian spaces. It is not surprising to see
that Gaussian Wiener chaos enjoys some kind of �Universality� property. In the paper [36],
written by Nourdin, Peccati and Reinert, the authors discovered a �Universality� result for
homogeneous sums. 1

Their study concentrates on �homogeneous sums� of the type:

Qq(N, f,X) =

N∑
i1,··· ,iq

f(i1, · · · , iq)Xi1 · · ·Xiq

where N , q ≥ 2 are two positive integers, X = {Xi : i ≥ 1} is a collection of centered in-
dependent random variables, and f : {1, . . . , N}q → R is a symmetric function vanishing on
diagonals.

We present here one of their main results (see Theorem 1.2 in [36]), which is about CLTs
of homogeneous sums. Let G = {Gi : i ≥ 1} be a collection of independent standard
Gaussian variables, and �x integers d ≥ 1 and q1, . . . , qd ≥ 2. For every j = 1, . . . , d, let

{(N (n)
j , f

(n)
j );n ≥ 1} be a sequence such that {N (n)

j ;n ≥ 1} is a sequence of integers going to

in�nity, and each function f
(n)
j : {1, . . . , N (n)

j }qj → R is symmetric and vanishes on diagonals.

Assume that, for every j = 1, . . . , d, the sequence E[Qqj (N
(n)
j , f

(n)
j ,G)2], n ≥ 1, is bounded.

Let V be a d × d nonnegative symmetric matrix whose diagonal elements are di�erent from
zero. Then, as n → ∞, the following two statements are equivalent:

1. The vector F
(n)
G =

(
Qqj (N

(n)
j , f

(n)
j ,G), j = 1, . . . , d

)
converges in law to ZV = N (0, V ).

2. For every sequence X = {Xi; i ≥ 1} of independent centered random variables, with
unit variance and such that supi E|Xi|3 < ∞, the law of the vector

F
(n)
X =

(
Qqj (N

(n)
j , f

(n)
j ,X), j = 1, . . . , d

)
converges to ZV = N (0, V ) under the topology induced by Kolmogorov distance.

We give a sketch of the proof of the above universality statement. The crucial point is the
triangle inequality:

dK(F
(n)
X , ZV ) ≤ dK(F

(n)
X , F

(n)
G ) + dK(F

(n)
G , ZV ).

1In general, a �Universality� result is any mathematical statement implying that the asymptotic behavior

of a large random system does not depend on the distribution of the components. Examples are the CLT, the

Donsker theorem and the semicircular law in Random Matrix Theory.
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Suppose that dK(F
(n)
G , ZV ) → 0 as n → ∞, then according to the �Malliavin-Stein� theory

(see Section 2.1), we have in particular that ∥f (n)
j ⊗qj−1 f

(n)
j ∥H⊗2 → 0. One then use the

inequality:

∥f (n)
j ⊗qj−1 f

(n)
j ∥2H⊗2 ≥

∑
1≤i≤N

(n)
j

 ∑
1≤i2,...,id≤N

(n)
j

f
(n)
j (i, i2, . . . , id)

2


2

≥

(qj − 1)! max
1≤i≤N

(n)
j

Infi(f
(n)
j )

2

,

where Infi(f) :=
1

(d− 1)!

∑
1≤i2,...,id≤N f2(i, i2, . . . , id) is called the in�uence of the variable

i. Finally, since

max
1≤i≤N

(n)
j

Infi(f
(n)
j ) → 0, ∀j = 1, . . . , d,

one deduces the conclusion by means of the results established in Mossel's paper [28] and
Mossel, O'Donnell and Oleszkiewicz's paper [29].

2.2.3 Almost Sure Central Limit Theorem (ASCLT)

The Almost Sure Central Limit Theorem is a generalization of the classic Central Limit
Theorems. For example, let {Xn;n ≥ 1} be a sequence of i.i.d. random variables such that
E[Xn] = 0 and E[X2

n] = 1. We denote Sn = 1√
n

∑n
k=1Xk. Then, the CLT tells us that Sn

converges to N ∼ N (0, 1) in law. The ASCLT shows that the sequence of random empirical
measure de�ned by

1

log n

n∑
k=1

1

k
δSk

weakly converges almost surely to N as n → ∞. In other words, one has that, the convergence

1

log n

n∑
k=1

1

k
φ(Sk) → E[φ(N)], as n → ∞,

takes place almost surely, for any bounded and continuous function φ : R → R. Generally
speaking, if {Fn} converges in law towards a random variable F∞, then we say that ASCLT
holds if for any bounded and continuous function φ : R → R,

1

log n

n∑
k=1

1

k
φ(Fk) → E[φ(F∞)], as n → ∞.

For a history of this result, see [18], or Chapter 5.

Having seen the power of the �Malliavin-Stein� method in deducing CLTs, we may ask
whether this method can be applied to ASCLTs. In the paper [3] by Bercu, Nourdin and
Taqqu, the authors give a positive answer. They prove that, under some suitable criteria
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involving the star contractions of kernels, a sequence of multiple integral functionals that sat-
is�es a CLT must also satisfy an ASCLT.

Technically, their theory is based on Ibragimov and Lifshits's criterion. (See Theorem 3.1
in [3], or Theorem 5.1 in [32]) In order to show an ASCLT for a sequence {Fn}, one needs
only to prove that

sup
|t|≤r

∑
n

E|∆n(t)|2

n log n
< ∞,

for all r > 0, where

∆n(t) =
1

log n

n∑
k=1

1

k

(
eitFk − E

[
eitF∞

])
.

On the Gaussian space, we may apply the �smart path� technique, together with Malliavin
calculus and Poincaré inequality, to obtain an upper bound for ∆n(t) that involves the cross
products of second derivatives {D2Fk, k = 1, 2, . . .}. If we restrict the problem on sequence
of multiple integrals Fk = IGq (fk), the upper bound can in turn be reduced to some sum of
contractions of the kernels {fk}. Below is one of their main results.

Proposition 2.2.1 (Corollary 3.6 in [3]) Fix q ≥ 2, and let {Fn} be a sequence of the
form Fn = IGq (fn), with fn ∈ H⊙q. Assume that E[F 2

n ] = q!∥fn∥2H⊗q = 1 for all n, and that

∀r = 1, . . . , q − 1, ∥fn ⊗r fn∥H⊗2(q−r) → 0, as n → ∞.

Then, Fn
law−→ N ∼ N (0, 1) as n → ∞. Moreover, if the two following conditions are satis�ed

(A1)
∑
n≥2

1

n log2 n

n∑
k=1

1

k
∥fn ⊗r fn∥H⊗2(q−r) < ∞, for every r = 1, . . . , q − 1;

(A2)
∑
n≥2

1

n log3 n

n∑
k,l=1

|⟨fk, fl⟩H⊗q |
kl

< ∞ ,

then {Fn} satis�es an ASCLT. In other words, almost surely, for all continuous and bounded
function φ : R → R,

1

log n

n∑
k=1

1

k
φ(Fk) → E[φ(N)], as n → ∞.

2.3 Main contributions

The principal aim of this dissertation is to generalize the �Malliavin-Stein� method on the
Poisson space, in order to study CLTs and associated convergence result. My research focus
on three di�erent but relevant directions: Central Limit Theorem(CLT) for random vectors on
the Poisson space, universality results on the Poisson space, and Almost Sure Central Limit
Theorems (ASCLTs) on the Poisson space. The Chapter 3, 4, 5 are respectively dedicated to
these three subjects.
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2.3.1 Multi-dimensional CLTs on the Poisson space

This part is based on the published paper [50] by G. Peccati and C. Zheng. See Chapter 3.

The �ndings of this part is a multi-dimensional generalization of the theory described in
Section 2.1.1, 2.1.2 and 2.1.3, which are in turn based on the results developed in [31, 37, 46].
Our main tasks will be:

I. Let F = (F1, . . . , Fd) be a random vector on the Poisson space, and XC ∼ N (0, C) be
a Gaussian vector with positive de�nite covariance matrix C. We shall develop new
techniques in order to evaluate the distance between F and C, by using Stein's method
and Malliavin operators.

II. Let F (n) = (F
(n)
1 , . . . , F

(n)
d ) = (Iq1(f

(n)
1 ), . . . , Iqd(f

(n)
d )) be a sequence of vectors of multiple

integrals with �xed orders q1, . . . , qd. We wish to build a CLT similar to Theorem 2.1.7.
In particular, the conditions of such a CLT should involve only the covariance of Fn and
thge component-wise convergence of star contractions of kernels.

To accomplish Task I, we follow the procedures shown in the previous section, and apply
the multi-dimensional Stein's Lemma 1.3.12 in order to evaluate the distance between a ran-
dom vector and a given Gaussian vector. The known distances such as Wasserstein distance,
total variation distance no longer ful�ll our needs. In view of this, we establish inequality
(1.74) and de�ne a distance d2 in order to build an analogue of inequality (2.13).

We will revisit the above inequalities by using the �smart path� technique instead of Stein's
method, in the Gaussian and the Poisson cases, both for random variables and random vector
sequences. We will draw two tables in order to analyze the speci�cities of these two methods.

Task II requires an explicit expression for the upper bound obtained by using the Malliavin
operators. The multiplication formula (1.12) plays a central role in the process of evaluation.
Though the main procedures are similar to those in Section 2.1.1, 2.1.2, 2.1.3, the calculations
turn out to be much more complicated.

It is worth highlighting that the Cauchy-Schwartz type inequality (1.9) in Lemma 1.1.8
paves the way for an upper bound composed only of component-wise star product contrac-
tions f ⋆lr f . Finally, we achieve a CLT with conditions similar to that of Theorem 2.1.7.
Nevertheless, in this new CLT the conditions are no longer su�cient and necessary as in its
Gaussian case.

2.3.2 Universality of Poisson Wiener chaos

This part is based on the paper in preparation [51] by G. Peccati and C. Zheng. See Chapter 4.

The study on this subject is based on the research of CLTs on the Poisson space and
the �Universality� of the Gaussian Wiener chaos. We focus on homogeneous sums involving
Poisson variables.

Let {λi, i ≥ 1} be a collection of positive real numbers, under the assumption inf
i
λi =

η > 0. Let P = {Pi, i ≥ 1} be a collection of independent random variables such that ∀i,
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Pi is a centered Poisson variable with parameter λi. Fix integers d ≥ 1, qd ≥ · · · q1 ≥ 1. Let

{N (n)
j , f

(n)
j : j = 1, · · · , d, n ≥ 1} be such that for every �xed j, {N (n)

j : n ≥ 1} is a sequence of
integers going to in�nity, and each f

(n)
j : [N

(n)
j ]qj → R is symmetric and vanishes on diagonals.

We consider random vectors F (n) = (F
(n)
1 , · · · , F (n)

d ), where for every 1 ≤ j ≤ d,

F
(n)
j = Qqj (N

(n)
j , f

(n)
j ,P) =

N
(n)
j∑

i1,··· ,iqj

f
(n)
j (i1, · · · , iqj )Pi1 · · ·Piqj

= Iqj (h
(n)
j )

with

h
(n)
j =

N
(n)
j∑

i1,··· ,iqj

f
(n)
j (i1, · · · , iqj )gi1 ⊗ · · · ⊗ giqj .

We are interested in the following two questions:

1. We have succeeded in building the �Malliavin-Stein� CLT theory on the Poisson space,
but conditions are no longer equivalent as they are in the Gaussian case. Can we build a
CLT for homogeneous sums inside the Poisson Wiener chaos with necessary and su�cient
conditions?

2. We know that the Gaussian Wiener chaos has some beautiful �Universality� properties.
Is Poisson Wiener chaos universal? That is, does the convergence to Gaussian of a
Poisson homogeneous sum vector F (n) imply the convergence of any homogeneous sum
vector with same parameters and kernels?

The answers of these two questions are in fact relevant. Suppose that, under certain technical
assumptions, we are able to build a CLT with necessary and su�cient conditions for Poisson
homogeneous sum vector F (n). Therefore, the convergence of F (n) to a normal vector im-

plies that, for each j = 1, · · · , d,
∫
(h

(n)
j )4 → 0 and ∀r = 1, · · · , qj , ∀l = 1, · · · , r ∧ (qj − 1),

∥h(n)j ⋆lr h
(n)
j ∥L2 → 0. Then for r = 1, · · · , qj , the convergence ∥h(n)j ⊗r h

(n)
j ∥L2 → 0 imme-

diately follows, which gives the convergence to normal vector of the Gaussian counterpart of
F (n) due to Theorem 2.1.4. Consequently, �Universality� of Poisson Wiener chaos is linked to
Gaussian �Universality�.

The key to the expected �equivalence version� CLT, is a technical proposition, which says
that: if ∥hn ⋆qq hn∥L2 → 0, then: A)

∫
h4n → 0 . B) ∀r = 1, · · · , q, ∀l = 1, · · · , r ∧ (q − 1),

∥hn ⋆lr hn∥L2 → 0. The proof of this proposition involves some technical computations on star
product contraction.

2.3.3 ASCLT on the Poisson space

This part is based on the paper in preparation [69] by C. Zheng. See Chapter 5.

Here we want to study ASCLTs on the Poisson space, in both the one-dimensional case
and the multi-dimensional case.
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The research in [3] set a roadmap for us, but the study on the Poisson space always requires
more e�orts and techniques. Based on Ibragimov and Lifshits's criterion and the �smart path�
technique, the estimation of ∆n(t) relies on the following tools:

1) Di�erentiation rule:

D⟨DF,DF ∗⟩L2(µ) = ⟨DF,D2F ∗⟩L2(µ) + ⟨D2F,DF ∗⟩L2(µ) + ⟨D2F,D2F ∗⟩L2(µ),

for regular Poisson functionals F ,F ∗.

2) Generalized chain rules:

E[Fg(F ∗)] = E[g′(F ∗)⟨DF ∗,−DL−1F ⟩L2(µ)] + E[⟨R,−DL−1F ⟩L2(µ)],

for regular Poisson functionals F ,F ∗ and function g ∈ C2(R), where R is a functional
satisfying

∣∣E[⟨R,−DL−1F ⟩L2(µ)]
∣∣ ≤ 1

2
sup
y∈R

|g′′(y)|
∫
Z
µ(dz)E

[
|DzF

∗|2|DL−1F |
]
.

3) Poincaré inequality:
Var(F ) ≤ E∥DF∥2L2(µ),

for regular Poisson functional F .

Indeed, 1) and 2) have forms that are more complex than their Gaussian counterpart.
However, the estimation remains feasible (though very technical) since we adopt the orthog-
onal decomposition technique by means of functional Gp,q

k (·, ·).

Using these results, we shall build ASCLTs on the Poisson space with criteria that parallel
to their Gaussian counterparts. We also provide simple versions of these criteria, which are
easier to verify and apply.

We further generalize our research to the multi-dimensional case, that is, the ASCLT of
random vectors on the Poisson space. Here we apply some estimations obtained in the CLT
research, as well as the Cauchy-Schwartz type inequality (1.9) in Lemma 1.1.8. We succeed
in building criteria involving only component-wise kernel star product contractions.

At the end of the chapter, we revisit all the examples concerning Ornstein-Uhlenbeck
functionals, and build the corresponding ASCLTs.
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Chapter 3

Central Limit Theorems on the
Poisson space

This chapter is based on the published paper [50] by G. Peccati and C. Zheng.

3.1 Introduction of the chapter

We �x d ≥ 2, let F = (F1, . . . , Fd) ⊂ L2(σ(N̂),P) be a vector of square-integrable functionals
of N̂ , and let X = (X1, . . . , Xd) be a centered Gaussian vector. The aim of this chapter is to
develop several techniques, allowing to assess quantities of the type

dH(F,X) = sup
g∈H

|E[g(F )]− E[g(X)]|, (3.1)

where H is a suitable class of real-valued test functions on Rd. As discussed below, our princi-
pal aim is the derivation of explicit upper bounds in multi-dimensional Central limit theorems
(CLTs) involving vectors of general functionals of N̂ . Our techniques rely on a powerful com-
bination of Malliavin calculus (in a form close to Nualart and Vives [41]), Stein's method for
multivariate normal approximations (see e.g. [11, 37, 58] and the references therein), as well
as some interpolation techniques reminiscent of Talagrand's �smart path method� (see [68],
and also [9, 36]). As such, our �ndings can be seen as substantial extensions of the results and
techniques developed e.g. in [31, 37, 46], where Stein's method for normal approximation is
successfully combined with in�nite-dimensional stochastic analytic procedures (in particular,
with in�nite-dimensional integration by parts formulae).

The main �ndings of the present chapter are the following:

(I) We shall use both Stein's method and interpolation procedures in order to obtain explicit
upper bounds for distances such as (3.1). Our bounds will involve Malliavin derivatives and
in�nite-dimensional Ornstein-Uhlenbeck operators. A careful use of interpolation techniques
also allows to consider Gaussian vectors with a non-positive de�nite covariance matrix. As
seen below, our estimates are the exact Poisson counterpart of the bounds deduced in a Gaus-
sian framework in Nourdin, Peccati and Réveillac [37] and Nourdin, Peccati and Reinert [36].

53
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(II) The results at point (I) are applied in order to derive explicit su�cient conditions for
multivariate CLTs involving vectors of multiple Wiener-Itô integrals with respect to N̂ . These
results extend to arbitrary orders of integration and arbitrary dimensions the CLTs deduced by
Peccati and Taqqu [47] in the case of single and double Poisson integrals (note that the tech-
niques developed in [47] are based on decoupling). Moreover, our �ndings partially generalize
to a Poisson framework the main result by Peccati and Tudor [49], where it is proved that, on
a Gaussian Wiener chaos (and under adequate conditions), componentwise convergence to a
Gaussian vector is always equivalent to joint convergence. (See also [37].) As demonstrated
in Section 6, this property is particularly useful for applications.

The rest of the chapter is organized as follows. In Section 3.2, we use Malliavin-Stein
techniques to deduce explicit upper bounds for the Gaussian approximation of a vector of
functionals of a Poisson measure. In Section 3.3, we use an interpolation method (close to the
one developed in [36]) to deduce some variants of the inequalities of Section 3.2. Section 3.4 is
devoted to CLTs for vectors of multiple Wiener-Itô integrals. Section 3.5 focuses on examples,
involving in particular functionals of Ornstein-Uhlenbeck Lévy processes.

The main results in the current chapter are included in the published paper [50].

3.2 Upper bounds obtained by Malliavin-Stein methods

We will now deduce one of the main �ndings of the present chapter, namely Theorem 3.2.3.
This result allows to estimate the distance between the law of a vector of Poisson functionals
and the law of a Gaussian vector, by combining the multi-dimensional Stein's Lemma 1.3.12
with the algebra of the Malliavin operators. Note that, in this section, all Gaussian vectors
are supposed to have a positive de�nite covariance matrix.

We start by proving a technical lemma, which is a crucial element in most of our proofs.

Lemma 3.2.1 Fix d ≥ 1 and consider a vector of random variables F := (F1, . . . , Fd) ⊂
L2(P). Assume that, for all 1 ≤ i ≤ d, Fi ∈ DomD, and E[Fi] = 0. For all ϕ ∈ C2(Rd) with
bounded derivatives, one has that

Dzϕ(F1, . . . , Fd) =

d∑
i=1

∂

∂xi
ϕ(F )(DzFi) +

d∑
i,j=1

Rij(DzFi, DzFj), z ∈ Z,

where the mappings Rij satisfy

|Rij(y1, y2)| ≤
1

2
sup
x∈Rd

∣∣ ∂2

∂xi∂xj
ϕ(x)

∣∣× |y1y2| ≤
1

2
∥ϕ′′∥∞|y1y2|. (3.2)
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Proof. By the multivariate Taylor theorem and Lemma 1.2.4,

Dzϕ(F1, . . . , Fd) = ϕ(F1, . . . , Fd)(ω + δz)− ϕ(F1, . . . , Fd)(ω)

= ϕ(F1(ω + δz), . . . , Fd(ω + δz))− ϕ(F1(ω), . . . , Fd(ω))

=
d∑

i=1

∂

∂xi
ϕ(F1(ω), . . . , Fd(ω))(Fi(ω + δz)− Fi(ω)) +R

=

d∑
i=1

∂

∂xi
ϕ(DzFi) +R,

where the term R represents the residue:

R = R(DzF1, . . . , DzFd) =
d∑

i,j=1

Rij(DzFi, DzFj),

and the mapping (y1, y2) 7→ Rij(y1, y2) veri�es (3.2).

Remark 3.2.2 Lemma 3.2.1 is the Poisson counterpart of the multi-dimensional �chain rules�
veri�ed by the Malliavin derivative on a Gaussian space (see [31, 37]). Notice that the term
R does not appear in the Gaussian framework.

The following result uses the two Lemmas 1.3.12 and 3.2.1, in order to compute explicit
bounds on the distance between the laws of a vector of Poisson functionals and the law of a
Gaussian vector.

Theorem 3.2.3 (Malliavin-Stein inequalities on the Poisson space) Fix d ≥ 2 and
let C = {C(i, j) : i, j = 1, . . . , d} be a d×d positive de�nite matrix. Suppose that X ∼ Nd(0, C)
and that F = (F1, . . . , Fd) is a Rd-valued random vector such that E[Fi] = 0 and Fi ∈ DomD,
i = 1, . . . , d. Then,

d2(F,X) ≤ ∥C−1∥op∥C∥1/2op

√√√√ d∑
i,j=1

E[(C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ))
2] (3.3)

+

√
2π

8
∥C−1∥3/2op ∥C∥op

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

) . (3.4)

Proof. If either one of the expectations in (3.3) and (3.4) are in�nite, there is nothing to
prove: we shall therefore work under the assumption that both expressions (3.3)�(3.4) are
�nite. By the de�nition of the distance d2, and by using an interpolation argument (identical
to the one used at the beginning of the proof of Theorem 4 in [11]), we need only show the
following inequality:

|E[g(X)]− E[g(F )]|

≤ A∥C−1∥op∥C∥1/2op

√√√√ d∑
i,j=1

E[(C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ))
2] (3.5)

+

√
2π

8
B∥C−1∥3/2op ∥C∥op

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
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for any g ∈ C∞(Rd) with �rst and second bounded derivatives, such that ∥g∥Lip ≤ A and
M2(g) ≤ B. To prove (3.5), we use Point (ii) in Lemma 1.3.12 to deduce that

|E[g(X)]− E[g(F )]|
= |E[⟨C,HessU0g(F )⟩H.S. − ⟨F,∇U0g(F )⟩Rd ]|

=

∣∣∣∣∣∣E
 d∑
i,j=1

C(i, j)
∂2

∂xi∂xj
U0g(F )−

d∑
k=1

Fk

∂

∂xk
U0g(F )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

i,j=1

E

[
C(i, j)

∂2

∂xi∂xj
U0g(F )

]
+

d∑
k=1

E

[
δ(DL−1Fk)

∂

∂xk
U0g(F )

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

i,j=1

E

[
C(i, j)

∂2

∂xi∂xj
U0g(F )

]
−

d∑
k=1

E

⟨D( ∂

∂xk
U0g(F )

)
,−DL−1Fk

⟩
L2(µ)

∣∣∣∣∣∣ .
We write

∂

∂xk
U0g(F ) := ϕk(F1, . . . , Fd) = ϕk(F ). By using Lemma 3.2.1, we infer

Dzϕk(F1, . . . , Fd) =

d∑
i=1

∂

∂xi
ϕk(F )(DzFi) +Rk,

with Rk =
d∑

i,j=1
Ri,j,k(DzFi, DzFj), and

|Ri,j,k(y1, y2)| ≤
1

2
sup
x∈Rd

∣∣∣∣∣ ∂2

∂xi∂xj
ϕk(x)

∣∣∣∣∣× |y1y2|.

It follows that

|E[g(X)]− E[g(F )]|

=

∣∣∣∣∣∣
d∑

i,j=1

E

[
C(i, j)

∂2

∂xi∂xj
U0g(F )

]
−

d∑
i,k=1

E

[
∂2

∂xi∂xk
(U0g(F ))⟨DFi,−DL−1Fk⟩L2(µ)

]

+

d∑
i,j,k=1

E
[
⟨Ri,j,k(DFi, DFj),−DL−1Fk⟩L2(µ)

]∣∣∣∣∣∣
≤

√
E[∥HessU0g(F )∥2H.S.]×

√√√√ d∑
i,j=1

E
[(
C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ)

)2]
+ |R2|,

where

R2 =
d∑

i,j,k=1

E[⟨Ri,j,k(DFi, DFj),−DL−1Fk⟩L2(µ)].
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Note that (1.73) implies that ∥HessU0g(F )∥H.S. ≤ ∥C−1∥op ∥C∥1/2op ∥g∥Lip. By using (1.74)
and the fact ∥g′′′∥∞ ≤ M3(g), we have

|Ri,j,k(y1, y2)| ≤
1

2
sup
x∈Rd

∣∣∣∣∣ ∂3

∂xi∂xj∂xk
U0(g(y))

∣∣∣∣∣× |y1y2|

≤
√
2π

8
M2(g)∥C−1∥3/2op ∥C∥op × |y1y2| ≤

√
2π

8
B∥C−1∥3/2op ∥C∥op × |y1y2|,

from which we deduce the desired conclusion.

Now recall that, for a random variable F = N̂(h) = I1(h) in the �rst Wiener chaos of N̂ ,
one has that DF = h and L−1F = −F . By virtue of Remark 1.3.6, we immediately deduce
the following consequence of Theorem 3.2.3.

Corollary 3.2.4 For a �xed d ≥ 2, let X ∼ Nd(0, C), with C positive de�nite, and let

Fn = (Fn,1, . . . , Fn,d) = (N̂(hn,1), . . . , N̂(hn,d)), n ≥ 1,

be a collection of d-dimensional random vectors living in the �rst Wiener chaos of N̂ . Call Kn

the covariance matrix of Fn, that is: Kn(i, j) = E[N̂(hn,i)N̂(hn,j)] = ⟨hn,i, hn,j⟩L2(µ). Then,

d2(Fn, X) ≤ ∥C−1∥op∥C∥1/2op ∥C −Kn∥H.S. +
d2
√
2π

8
∥C−1∥3/2op ∥C∥op

d∑
i=1

∫
Z
|hn,i(z)|3µ(dz).

In particular, if

Kn(i, j) → C(i, j) and

∫
Z
|hn,i(z)|3µ(dz) → 0 (3.6)

(as n → ∞ and for every i, j = 1, . . . , d), then d2(Fn, X) → 0 and Fn converges in distribution
to X.

Remark 3.2.5 1. The conclusion of Corollary 3.2.4 is by no means trivial. Indeed, apart
from the requirement on the asymptotic behavior of covariances, the statement of Corol-
lary 3.2.4 does not contain any assumption on the joint distribution of the components of
the random vectors Fn. We will see in Section 3.4 that analogous results can be deduced
for vectors of multiple integrals of arbitrary orders. We will also see in Corollary 3.3.3
that one can relax the assumption that C is positive de�nite.

2. The inequality appearing in the statement of Corollary 3.2.4 should also be compared
with the following result, proved in [37], yielding a bound on the Wasserstein distance
between the laws of two Gaussian vectors of dimension d ≥ 2. Let Y ∼ Nd(0,K) and
X ∼ Nd(0, C), where K and C are two positive de�nite covariance matrices. Then,
dW (Y,X) ≤ Q(C,K)× ∥C −K∥H.S., where

Q(C,K) := min{∥C−1∥op ∥C∥1/2op , ∥K−1∥op ∥K∥1/2op },

and dW denotes the Wasserstein distance between the laws of random variables with
values in Rd.
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3.3 Upper bounds obtained by interpolation methods

3.3.1 Main estimates

In this section, we deduce an alternate upper bound (similar to the ones proved in the previous
section) by adopting an approach based on interpolations. We �rst prove a result involving
Malliavin operators.

Lemma 3.3.1 Fix d ≥ 1. Consider d+ 1 random variables Fi ∈ L2(P), 0 ≤ i ≤ d, such that
Fi ∈ DomD and E[Fi] = 0. For all g ∈ C2(Rd) with bounded derivatives,

E[g(F1, . . . , Fd)F0]=E

[
d∑

i=1

∂

∂xi
g(F1, . . . , Fd)⟨DFi,−DL−1F0⟩L2(µ)

]
+E

[
⟨R,−DL−1F0⟩L2(µ)

]
,

where

|E[⟨R,−DL−1F0⟩L2(µ)]| (3.7)

≤
1

2
max
i,j

sup
x∈Rd

∣∣∣∣∣ ∂2

∂xi∂xj
g(x)

∣∣∣∣∣×
∫
Z
µ(dz)E

( d∑
k=1

|DzFk|

)2

|DzL
−1F0|

 .

Proof. By applying Lemma 3.2.1,

E[g(F1, . . . , Fd)F0]

= E[(LL−1F0)g(F1, . . . , Fd)]

= −E[δ(DL−1F0)g(F1, . . . , Fd)]

= E[⟨Dg(F1, . . . , Fd),−DL−1F0⟩L2(µ)]

= E

[
d∑

i=1

∂

∂xi
g(F1, . . . , Fd)⟨DFi,−DL−1F0⟩L2(µ)

]
+ E[⟨R,−DL−1F0⟩L2(µ)],

and E[⟨R,−DL−1F0⟩L2(µ)] veri�es the inequality (3.7).

As anticipated, we will now use an interpolation technique inspired by the so-called �smart
path method�, which is sometimes used in the framework of approximation results for spin
glasses (see [68]). Note that the computations developed below are very close to the ones used
in the proof of Theorem 7.2 in [36].

Theorem 3.3.2 Fix d ≥ 1 and let C = {C(i, j) : i, j = 1, . . . , d} be a d × d covariance
matrix (not necessarily positive de�nite). Suppose that X = (X1, . . . , Xd) ∼ Nd(0, C) and
that F = (F1, . . . , Fd) is a Rd-valued random vector such that E[Fi] = 0 and Fi ∈ DomD,
i = 1, . . . , d. Then,

d3(F,X) ≤
d

2

√√√√ d∑
i,j=1

E[(C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ))
2] (3.8)

+
1

4

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

) . (3.9)
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Proof. We will work under the assumption that both expectations in (3.8) and (3.9) are
�nite. By the de�nition of distance d3, we need only to show the following inequality:

|E[ϕ(X)]− E[ϕ(F )]| ≤
1

2
∥ϕ′′∥∞

d∑
i,j=1

E[|C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ)|]

+
1

4
∥ϕ′′′∥∞

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
for any ϕ ∈ C3(Rd) with second and third bounded derivatives. Without loss of generality, we
may assume that F and X are independent. For t ∈ [0, 1], we set

Ψ(t) = E[ϕ(
√
1− t(F1, . . . , Fd) +

√
tX)]

We have immediately

|Ψ(1)−Ψ(0)| ≤ sup
t∈(0,1)

|Ψ′(t)|.

Indeed, due to the assumptions on ϕ, the function t 7→ Ψ(t) is di�erentiable on (0, 1), and one
has also

Ψ′(t) =

d∑
i=1

E

[
∂

∂xi
ϕ
(√

1− t(F1, . . . , Fd) +
√
tX
)( 1

2
√
t
Xi −

1

2
√
1− t

Fi

)]

:=
1

2
√
t
A− 1

2
√
1− t

B.

On the one hand, we have

A =
d∑

i=1

E

[
∂

∂xi
ϕ(
√
1− t(F1, . . . , Fd) +

√
tX)Xi

]

=
d∑

i=1

E

E[ ∂

∂xi
ϕ(
√
1− ta+

√
tX)Xi

]
|a=(F1,...,Fd)


=

√
t

d∑
i,j=1

C(i, j)E

E[ ∂2

∂xi∂xj
ϕ(
√
1− ta+

√
tX)

]
|a=(F1,...,Fd)


=

√
t

d∑
i,j=1

C(i, j)E

[
∂2

∂xi∂xj
ϕ(
√
1− t(F1, . . . , Fd) +

√
tX)

]
.

On the other hand,

B =

d∑
i=1

E

[
∂

∂xi
ϕ(
√
1− t(F1, . . . , Fd) +

√
tX)Fi

]

=

d∑
i=1

E

E[ ∂

∂xi
ϕ(
√
1− t(F1, . . . , Fd) +

√
tb)Fi

]
|b=X

 .



60 CHAPTER 3. CENTRAL LIMIT THEOREMS ON THE POISSON SPACE

We now write ϕt,b
i (·) to indicate the function on Rd de�ned by

ϕt,b
i (F1, . . . , Fd) =

∂

∂xi
ϕ(
√
1− t(F1, . . . , Fd) +

√
tb)

By using Lemma 3.3.1, we deduce that

E[ϕt,b
i (F1, . . . , Fd)Fi]

= E

 d∑
j=1

∂

∂xj
ϕt,b
i (F1, . . . , Fd)⟨DFj ,−DL−1Fi⟩L2(µ)

+ E
[
⟨Ri

b,−DL−1Fi⟩L2(µ)

]
,

where Ri
b is a residue verifying

|E[⟨Ri
b,−DL−1Fi⟩L2(µ)]| (3.10)

≤
1

2

(
max
k,l

sup
x∈Rd

∣∣∣∣ ∂

∂xk∂xl
ϕt,b
i (x)

∣∣∣∣
)∫

Z
µ(dz)E

 d∑
j=1

|DzFj |

2

|DzL
−1Fi|

 .

Thus,

B =
√
1− t

d∑
i,j=1

E

E[ ∂2

∂xi∂xj
ϕ(
√
1− t(F1, . . . , Fd) +

√
tb)⟨DFi,−DL−1Fj⟩L2(µ)

]
|b=X


+

d∑
i=1

E
[
E
[
⟨Ri

b,−DL−1Fi⟩L2(µ)

]
|b=X

]
=

√
1− t

d∑
i,j=1

E

[
∂2

∂xi∂xj
ϕ(
√
1− t(F1, . . . , Fd) +

√
tX)⟨DFi,−DL−1Fj⟩L2(µ)

]

+

d∑
i=1

E
[
E
[
⟨Ri

b,−DL−1Fi⟩L2(µ)

]
|b=X

]
.

Putting the estimates on A and B together, we infer

Ψ′(t) =
1

2

d∑
i,j=1

E

[
∂2

∂xi∂xj
ϕ(
√
1− t(F1, . . . , Fd) +

√
tX)(C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ))

]

−
1

2
√
1− t

d∑
i=1

E
[
E
[
⟨Ri

b,−DL−1Fi⟩L2(µ)

]
|b=X

]
.

We notice that ∣∣∣∣∣ ∂2

∂xi∂xj
ϕ(
√
1− t(F1, . . . , Fd) +

√
tb)

∣∣∣∣∣ ≤ ∥ϕ′′∥∞,

and also∣∣∣∣∣ ∂2

∂xk∂xl
ϕt,b
i (F1, . . . , Fd)

∣∣∣∣∣ = (1− t)×

∣∣∣∣∣ ∂3

∂xi∂xk∂xl
ϕ(
√
1− t(F1, . . . , Fd) +

√
tb)

∣∣∣∣∣
≤ (1− t)∥ϕ′′′∥∞.
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To conclude, we can apply inequality (3.10) as well as Cauchy-Schwartz inequality and deduce
the estimates

|E[ϕ(X)]− E[ϕ(F )]|
≤ sup

t∈(0,1)
|Ψ′(t)|

≤
1

2
∥ϕ′′∥∞

d∑
i,j=1

E[|C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ)|]

+
1− t

4
√
1− t

∥ϕ′′′∥∞
∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
≤

d

2
∥ϕ′′∥∞

√√√√ d∑
i,j=1

E[(C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ))
2]

+
1

4
∥ϕ′′′∥∞

∫
z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

) ,

thus concluding the proof.

The following statement is a direct consequence of Theorem 3.3.2, as well as a natural
generalization of Corollary 3.2.4.

Corollary 3.3.3 For a �xed d ≥ 2, let X ∼ Nd(0, C), with C a generic covariance matrix.
Let

Fn = (Fn,1, . . . , Fn,d) = (N̂(hn,1), . . . , N̂(hn,d)), n ≥ 1,

be a collection of d-dimensional random vectors in the �rst Wiener chaos of N̂ , and denote
by Kn the covariance matrix of Fn. Then,

d3(Fn, X) ≤ d

2
∥C −Kn∥H.S. +

d2

4

d∑
i=1

∫
Z
|hn,i(z)|3µ(dz).

In particular, if relation (3.6) is veri�ed for every i, j = 1, . . . , d (as n → ∞), then d3(Fn, X) →
0 and Fn converges in distribution to X.

3.3.2 Stein's method versus smart paths: two tables

In the two tables below, we compare the estimations obtained by the Malliavin-Stein method
with those deduced by interpolation techniques, both in a Gaussian and Poisson setting. Note
that the test functions considered below have (partial) derivatives that are not necessarily
bounded by 1 (as it is indeed the case in the de�nition of the distances d2 and d3) so that the
L∞ norms of various derivatives appear in the estimates. In both tables, d ≥ 2 is a given posi-
tive integer. We write (G,G1, . . . , Gd) to indicate a vector of centered Malliavin di�erentiable
functionals of an isonormal Gaussian process over some separable real Hilbert space H (see
[38] for de�nitions). We write (F, F1, . . . , Fd) to indicate a vector of centered functionals of N̂ ,
each belonging to DomD. The symbols D and L−1 stand for the Malliavin derivative and the
inverse of the Ornstein-Uhlenbeck generator: plainly, both are to be regarded as de�ned either
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Table 3.1: Estimates proved by means of Malliavin-Stein techniques
Regularity of Upper bound

the test function h

∥h∥Lip is �nite |E[h(G)]− E[h(X)]| ≤
∥h∥Lip

√
E[(1− ⟨DG,−DL−1G⟩H)2]

∥h∥Lip is �nite |E[h(G1, . . . , Gd)]− E[h(XC)]| ≤
∥h∥Lip∥C−1∥op∥C∥1/2op

√∑d
i,j=1 E[(C(i, j)− ⟨DGi,−DL−1Gj⟩H)2]

∥h∥Lip is �nite |E[h(F )]− E[h(X)]| ≤
∥h∥Lip(

√
E[(1− ⟨DF,−DL−1F ⟩L2(µ))

2]

+
∫
Z µ(dz)E[|DzF |2|DzL

−1F |])

h ∈ C2(Rd) |E[h(F1, . . . , Fd)]− E[h(XC)]| ≤
∥h∥Lip is �nite ∥h∥Lip∥C−1∥op∥C∥1/2op

√∑d
i,j=1 E[(C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ))

2]

M2(h) is �nite +M2(h)

√
2π

8
∥C−1∥3/2op ∥C∥op

∫
Z µ(dz)E

[(
d∑

i=1
|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)]

on a Gaussian space or on a Poisson space, according to the framework. We also consider
the following Gaussian random elements: X ∼ N (0, 1), XC ∼ Nd(0, C) and XM ∼ Nd(0,M),
where C is a d×d positive de�nite covariance matrix and M is a d×d covariance matrix (not
necessarily positive de�nite).

In Table 1, we present all estimates on distances involving Malliavin di�erentiable random
variables (in both cases of an underlying Gaussian and Poisson space), that have been ob-
tained by means of Malliavin-Stein techniques. These results are taken from: [31] (Line 1),
[37] (Line 2), [46] (Line 3) and Theorem 3.2.3 and its proof (Line 4).

In Table 2, we list the parallel results obtained by interpolation methods. The bounds
involving functionals of a Gaussian process come from [36], whereas those for Poisson func-
tionals are taken from Theorem 3.3.2 and its proof.

Observe that:

• in contrast to the Malliavin-Stein method, the covariance matrix M is not required to
be positive de�nite when using the interpolation technique,

• in general, the interpolation technique requires more regularity on test functions than
the Malliavin-Stein method.
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Table 3.2: Estimates proved by means of interpolations
Regularity of Upper bound

the test function ϕ

ϕ ∈ C2(R) |E[ϕ(G)]− E[ϕ(X)]| ≤
∥ϕ′′∥∞ is �nite 1

2∥ϕ
′′∥∞

√
E[(1− ⟨DG,−DL−1G⟩H)2]

ϕ ∈ C2(Rd) |E[ϕ(G1, . . . , Gd)]− E[ϕ(XM )]| ≤
∥ϕ′′∥∞ is �nite d

2∥ϕ
′′∥∞

√∑d
i,j=1 E[(M(i, j)− ⟨DGi,−DL−1Gj⟩H)2]

ϕ ∈ C3(R) |E[ϕ(F )]− E[ϕ(X)]| ≤
∥ϕ′′∥∞ is �nite 1

2∥ϕ
′′∥∞

√
E[(1− ⟨DF,−DL−1F ⟩L2(µ))

2]

∥ϕ′′′∥∞ is �nite +1
4∥ϕ

′′′∥∞
∫
Z µ(dz)E[|DzF |2(|DzL

−1F |)]

ϕ ∈ C3(Rd) |E[ϕ(F1, . . . , Fd)]− E[ϕ(XM )]| ≤
∥ϕ′′∥∞ is �nite d

2∥ϕ
′′∥∞

√∑d
i,j=1 E[(M(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ))

2]

∥ϕ′′′∥∞ is �nite +1
4∥ϕ

′′′∥∞
∫
Z µ(dz)E

[(
d∑

i=1
|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)]

3.4 CLTs for Poisson multiple integrals

In this section, we study the Gaussian approximation of vectors of Poisson multiple stochastic
integrals by an application of Theorem 3.2.3 and Theorem 3.3.2. To this end, we shall explicitly
evaluate the quantities appearing in formulae (3.3)�(3.4) and (3.8)�(3.9).

Remark 3.4.1 (Regularity conventions) From now on, every kernel f ∈ L2
s(µ

p) is sup-
posed to verify both Assumptions A and B of De�nition 1.1.9. As before, given f ∈ L2

s(µ
p), and

for a �xed z ∈ Z, we write f(z, ·) to indicate the function de�ned on Zp−1 as (z1, . . . , zp−1) 7→
f(z, z1, . . . , zp−1). The following convention will be also in order: given a vector of kernels
(f1, . . . , fd) such that fi ∈ L2

s(µ
pi), i = 1, . . . , d, we will implicitly set

fi(z, ·) ≡ 0, i = 1, . . . , d,

for every z ∈ Z belonging to the exceptional set (of µ measure 0) such that

fi(z, ·) ⋆lr fj(z, ·) ∈/L2(µpi+pj−r−l−2)

for at least one pair (i, j) and some r = 0, . . . , pi ∧ pj − 1 and l = 0, . . . , r. See Point 3 of
Remark 1.1.9.

3.4.1 The operators Gp,q
k and Ĝp,q

k

Fix integers p, q ≥ 0 and |q − p| ≤ k ≤ p + q, consider two kernels f ∈ L2
s(µ

p) and g ∈
L2
s(µ

q), and recall the multiplication formula (1.12). We will now introduce an operator Gp,q
k ,

transforming the function f , of p variables, and the function g, of q variables, into a �hybrid�
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function Gp,q
k (f, g), of k variables. More precisely, for p, q, k as above, we de�ne the function

(z1, . . . , zk) 7→ Gp,q
k (f, g)(z1, . . . , zk), from Zk into R, as follows:

Gp,q
k (f, g)(z1, . . . , zk) =

p∧q∑
r=0

r∑
l=0

1(p+q−r−l=k)r!

(
p
r

)(
q
r

)(
r
l

)
f̃ ⋆lr g, (3.11)

where the tilde ∼ means symmetrization, and the star contractions are de�ned in formula
(1.9) and the subsequent discussion. Observe the following three special cases: (i) when
p = q = k = 0, then f and g are both real constants, and G0,0

0 (f, g) = f × g, (ii) when
p = q ≥ 1 and k = 0, then Gp,p

0 (f, g) = p!⟨f, g⟩L2(µp), (iii) when p = k = 0 and q > 0 (then, f

is a constant), G0,p
0 (f, g)(z1, . . . , zq) = f×g(z1, . . . , zq). By using this notation, (1.12) becomes

Ip(f)Iq(g) =

p+q∑
k=|q−p|

Ik(G
p,q
k (f, g)). (3.12)

The advantage of representation (3.12) (as opposed to (1.12)) is that the RHS of (3.12) is an
orthogonal sum, a feature that will greatly simplify our forthcoming computations.

For two functions f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), we de�ne the function (z1, . . . , zk) 7→
Ĝp,q

k (f, g)(z1, . . . , zk), from Zk into R, as follows:

Ĝp,q
k (f, g)(·) =

∫
Z
µ(dz)Gp−1,q−1

k (f(z, ·), g(z, ·)),

or, more precisely,

Ĝp,q
k (f, g)(z1, . . . , zk)

=

∫
Z
µ(dz)

p∧q−1∑
r=0

r∑
l=0

1(p+q−r−l−2=k)r!

×
(

p− 1
r

)(
q − 1
r

)(
r
l

)
˜f(z, ·) ⋆lr g(z, ·)(z1, . . . , zk)

=

p∧q∑
t=1

t∑
s=1

1(p+q−t−s=k)(t− 1)!

(
p− 1
t− 1

)(
q − 1
t− 1

)(
t− 1
s− 1

)
f̃ ⋆st g(z1, . . . , zk).(3.13)

Note that the implicit use of a Fubini theorem in the relation (3.13) is justi�ed by Assumption
B � see again Point 3 of Remark 1.1.9.

The following technical lemma will be applied in the next subsection.

Lemma 3.4.2 Consider three positive integers p, q, k such that p, q ≥ 1 and |q− p| ∨ 1 ≤ k ≤
p + q − 2 (note that this excludes the case p = q = 1). For any two kernels f ∈ L2

s(µ
p) and

g ∈ L2
s(µ

q), both verifying Assumptions A and B, we have∫
Zk

dµk(Ĝp,q
k (f, g)(z1, . . . , zk))

2 ≤ C

p∧q∑
t=1

11≤s(t,k)≤t∥
˜

f ⋆
s(t,k)
t g∥2L2(µk) (3.14)
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where s(t, k) = p+ q − k − t for t = 1, . . . , p ∧ q. Also, C is the constant given by

C =

p∧q∑
t=1

[
(t− 1)!

(
p− 1
t− 1

)(
q − 1
t− 1

)(
t− 1

s(t, k)− 1

)]2
.

Proof. We rewrite the sum in (3.13) as

Ĝp,q
k (f, g)(z1, . . . , zk) =

p∧q∑
t=1

at11≤s(t,k)≤t
˜

f ⋆
s(t,k)
t g(z1, . . . , zk), (3.15)

with at = (t− 1)!

(
p− 1
t− 1

)(
q − 1
t− 1

)(
t− 1

s(t, k)− 1

)
, 1 ≤ t ≤ p ∧ q. Thus,

∫
Zk

dµk(Ĝp,q
k (f, g)(z1, . . . , zk))

2

=

∫
Zk

dµk

(
p∧q∑
t=1

at11≤s(t,k)≤t
˜

f ⋆
s(t,k)
t g(z1, . . . , zk)

)2

≤

(
p∧q∑
t=1

a2t

)∫
Zk

dµk

(
p∧q∑
t=1

(11≤s(t,k)≤t
˜

f ⋆
s(t,k)
t g(z1, . . . , zk))

2

)

= C

p∧q∑
t=1

∫
Zk

dµk11≤s(t,k)≤t(
˜

f ⋆
s(t,k)
t g(z1, . . . , zk))

2

= C

p∧q∑
t=1

11≤s(t,k)≤t∥
˜

f ⋆
s(t,k)
t g∥2L2(µk),

with

C =

p∧q∑
t=1

a2t =

p∧q∑
t=1

[
(t− 1)!

(
p− 1
t− 1

)(
q − 1
t− 1

)(
t− 1

s(t, k)− 1

)]2
Note that the Cauchy-Schwarz inequality(

n∑
i=1

aixi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

x2i

)

has been used in the above deduction.

Remark 3.4.3 The constant C(p, q, k, t) may be replaced by smaller constant. Indeed, in the
sum (3.15), the number of non-zero elements is less than p∧q. In order that s(t, k) = p+q−k−t
satis�es 1 ≤ s(t, k) ≤ t, we need

t+ 1 ≤ t+ s = p+ q − k ≤ 2t,

or
1

2
(p+ q − k) ≤ t ≤ p+ q − k − 1.

But t also satis�es 1 ≤ t ≤ p ∧ q, we have
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t ∈

{
[12(p+ q − k), p ∧ q], if |q − p| ≤ k ≤ p ∨ q − 1;

[12(p+ q − k), p+ q − k − 1], if p ∨ q ≤ k ≤ p+ q − 2.

By repeating the same deduction in the lemma, we may get the same inequality by replacing
C(p, q, k, t) by

C1(p, q, k, t) =

p∧q∑
t= 1

2
(p+q−k)

[(t− 1)!

(
p− 1
t− 1

)(
q − 1
t− 1

)(
t− 1

s(t, k)− 1

)
]2,

if |q − p| ≤ k ≤ p ∨ q − 1, or by

C2(p, q, k, t) =

p+q−k−1∑
t= 1

2
(p+q−k)

[(t− 1)!

(
p− 1
t− 1

)(
q − 1
t− 1

)(
t− 1

s(t, k)− 1

)
]2,

if p ∨ q ≤ k ≤ p+ q − 2 .

3.4.2 Some technical estimates

As anticipated, in order to prove the multivariate CLTs of the forthcoming Section 3.4.3, we
need to establish explicit bounds on the quantities appearing in (3.3)�(3.4) and (3.8)�(3.9),
in the special case of chaotic random variables.

De�nition 3.4.4 The kernels f ∈ L2
s(µ

p), g ∈ L2
s(µ

q) are said to satisfy Assumption C if
either p = q = 1, or max(p, q) > 1 and, for every k = |q − p| ∨ 1, . . . , p+ q − 2,

∫
Z

[√∫
Zk

(Gp−1,q−1
k (f(z, ·), g(z, ·)))2dµk

]
µ(dz) < ∞. (3.16)

Remark 3.4.5 By using (3.11), one sees that (3.16) is implied by the following stronger
condition: for every k = |q−p|∨1, . . . , p+q−2, and every (r, l) satisfying p+q−2−r− l = k,
one has ∫

Z

[√∫
Zk

(f(z, ·) ⋆lr g(z, ·))2dµk

]
µ(dz) < ∞. (3.17)

One can easily write down su�cient conditions, on f and g, ensuring that (3.17) is satis�ed.
For instance, in the examples of Section 3.5, we will use repeatedly the following fact: if both
f and g verify Assumption A, and if their supports are contained in some rectangle of the
type B × . . .×B, with µ(B) < ∞, then (3.17) is automatically satis�ed.

Proposition 3.4.6 Denote by L−1 the pseudo-inverse of the Ornstein-Uhlenbeck generator
, and, for p, q ≥ 1, let F = Ip(f) and G = Iq(g) be such that the kernels f ∈ L2

s(µ
p) and
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g ∈ L2
s(µ

q) verify Assumptions A, B and C. If p ̸= q, then

E[(a− ⟨DF,−DL−1G⟩L2(µ))
2]

≤ a2 + p2
p+q−2∑
k=|q−p|

k!

∫
Zk

dµk(Ĝp,q
k (f, g))2

≤ a2 + Cp2
p+q−2∑
k=|q−p|

k!

p∧q∑
t=1

11≤s(t,k)≤t∥
˜

f ⋆
s(t,k)
t g∥2L2(µk)

≤ a2 +
1

2
Cp2

p+q−2∑
k=|q−p|

k!

p∧q∑
t=1

11≤s(t,k)≤t(∥f ⋆p−t
p−s(t,k) f∥L2(µt+s(t,k)) × ∥g ⋆q−t

q−s(t,k) g∥L2(µt+s(t,k)))

If p = q ≥ 2, then

E[(a− ⟨DF,−DL−1G⟩L2(µ))
2]

≤ (p!⟨f, g⟩L2(µp) − a)2 + p2
2p−2∑
k=1

k!

∫
Zk

dµk(Ĝp,q
k (f, g))2

≤ (p!⟨f, g⟩L2(µp) − a)2 + Cp2
2p−2∑
k=1

k!

p∧q∑
t=1

11≤s(t,k)≤t∥
˜

f ⋆
s(t,k)
t g∥2L2(µk)

≤ (p!⟨f, g⟩L2(µp) − a)2

+
1

2
Cp2

2p−2∑
k=1

k!

p∧q∑
t=1

11≤s(t,k)≤t(∥f ⋆p−t
p−s(t,k) f∥L2(µt+s(t,k)) × ∥g ⋆q−t

q−s(t,k) g∥L2(µt+s(t,k)))

where s(t, k) = p+ q − k − t for t = 1, . . . , p ∧ q, and the constant C is given by

C =

p∧q∑
t=1

[
(t− 1)!

(
p− 1
t− 1

)(
q − 1
t− 1

)(
t− 1

s(t, k)− 1

)]2
.

If p = q = 1, then

(a− ⟨DF,−DL−1G⟩L2(µ))
2 = (a− ⟨f, g⟩L2(µ))

2.

Proof. The case p = q = 1 is trivial, so that we can assume that either p or q is strictly
greater than 1. We select two versions of the derivatives DzF = pIp−1(f(z, ·)) and DzG =
qIq−1(g(z, ·)), in such a way that the conventions pointed out in Remark ?? are satis�ed. By
using the de�nition of L−1 and (3.12), we have

⟨DF,−DL−1G⟩L2(µ) = ⟨DIp(f), q
−1DIq(g)⟩L2(µ)

= p

∫
Z
µ(dz)Ip−1(f(z, ·))Iq−1(g(z, ·))

= p

∫
Z
µ(dz)

p+q−2∑
k=|q−p|

Ik(G
p−1,q−1
k (f(z, ·), g(z, ·)))
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Notice that for i ̸= j, the two random variables∫
Z
µ(dz)Ii(G

p−1,q−1
i (f(z, ·), g(z, ·)) and

∫
Z
µ(dz)Ij(G

p−1,q−1
j (f(z, ·), g(z, ·)))

are orthogonal in L2(P). It follows that

E[(a− ⟨DF,−DL−1G⟩L2(µ))
2] (3.18)

= a2 + p2
p+q−2∑
k=|q−p|

E

[(∫
Z
µ(dz)Ik(G

p−1,q−1
k (f(z, ·), g(z, ·)))

)2
]

for p ̸= q, and, for p = q,

E[(a− ⟨DF,−DL−1G⟩L2(µ))
2] (3.19)

= (p!⟨f, g⟩L2(µp) − a)2 + p2
2p−2∑
k=1

E

[(∫
Z
µ(dz)Ik(G

p−1,q−1
k (f(z, ·), g(z, ·)))

)2
]
.

We shall now assess the expectations appearing on the RHS of (3.18) and (3.19). To do this,
�x an integer k and use the Cauchy-Schwartz inequality together with (3.16) to deduce that∫

Z
µ(dz)

∫
Z
µ(dz′)E

[∣∣∣Ik(Gp−1,q−1
k (f(z, ·), g(z, ·)))Ik(Gp−1,q−1

k (f(z′, ·), g(z′, ·)))
∣∣∣]

≤
∫
Z
µ(dz)

∫
Z
µ(dz′)

√
E[I2k(G

p−1,q−1
k (f(z, ·), g(z, ·)))]

√
E[I2k(G

p−1,q−1
k (f(z′, ·), g(z′, ·)))]

= k!

[∫
Z
µ(dz)

√∫
Zk

dµk(Gp−1,q−1
k (f(z, ·), g(z, ·)))2

]

×

[∫
Z
µ(dz′)

√∫
Zk

dµk(Gp−1,q−1
k (f(z′, ·), g(z′, ·)))2

]

= k!

[∫
Z
µ(dz)

√∫
Zk

dµk(Gp−1,q−1
k (f(z, ·), g(z, ·)))2

]2
< ∞. (3.20)

Relation (3.20) justi�es the use of a Fubini theorem, and we can consequently infer that

E

[(∫
Z
µ(dz)Ik(G

p−1,q−1
k (f(z, ·), g(z, ·)))

)2
]

=

∫
Z
µ(dz)

∫
Z
µ(dz′)E[Ik(Gp−1,q−1

k (f(z, ·), g(z, ·)))Ik(Gp−1,q−1
k (f(z′, ·), g(z′, ·)))]

= k!

∫
Z
µ(dz)

∫
Z
µ(dz′)

[∫
Zk

dµkGp−1,q−1
k (f(z, ·), g(z, ·))Gp−1,q−1

k (f(z′, ·), g(z′, ·))
]

= k!

∫
Zk

dµk

[∫
Z
µ(dz)Gp−1,q−1

k (f(z, ·), g(z, ·))
]2

= k!

∫
Zk

dµk(Ĝp,q
k (f, g))2.
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The remaining estimates in the statement follow (in order) from Lemma 3.4.2 and Lemma
1.1.8, as well as from the fact that ∥f̃∥L2(µn) ≤ ∥f∥L2(µn), for all n ≥ 2.

The next statement will be used in the subsequent section.

Proposition 3.4.7 Let F = (F1, . . . , Fd) := (Iq1(f1), . . . , Iqd(fd)) be a vector of Poisson func-
tionals, such that the kernels fj verify Assumptions A and B. Then, writing q∗ :=min{q1, . . . , qd},∫

Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
≤ d2

q∗

d∑
i=1

(
q3i

√
(qi − 1)!∥f∥2

L2(µqi )
×

qi∑
b=1

b−1∑
a=0

11≤a+b≤2qi−1(a+ b− 1)!1/2(qi − a− 1)!

×
(

qi − 1
qi − 1− a

)2(
qi − 1− a
qi − b

)
∥f ⋆ab f∥L2(µ2qi−a−b)

)
.

Remark 3.4.8 When q = 1, one has that

q3
√

(q − 1)!∥f∥2
L2(µq)

×
q∑

b=1

b−1∑
a=0

11≤a+b≤2q−1(a+ b− 1)!1/2(q − a− 1)!

×
(

q − 1
q − 1− a

)2(
q − 1− a
q − b

)
∥f ⋆ab f∥L2(µ2q−a−b)

= ∥f∥L2(µ) × ∥f∥2L4(µ).

Proof of Proposition 3.4.7. One has that∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
=

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

1

qi
|DzFi|

)
≤ 1

q∗

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)3


≤ d2

q∗

d∑
i=1

∫
Z
µ(dz)E[|DzFi|3].

To conclude, use the inequality∫
Z
µ(dz)E[|DzIq(f)|3]

≤ q3
√

(q − 1)!∥f∥2
L2(µq)

×
q∑

b=1

b−1∑
a=0

11≤a+b≤2q−1(a+ b− 1)!1/2(q − a− 1)!

×
(

q − 1
q − 1− a

)2(
q − 1− a
q − b

)
∥f ⋆ab f∥L2(µ2q−a−b)
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which is proved in [46, Theorem 4.2] for the case q ≥ 2 (see in particular formulae (4.13) and
(4.18) therein), and follows from the Cauchy-Schwarz inequality when q = 1.

3.4.3 Central limit theorems with contraction conditions

We will now deduce the announced CLTs for sequences of vectors of the type

F (n) = (F
(n)
1 , . . . , F

(n)
d ) := (Iq1(f

(n)
1 ), . . . , Iqd(f

(n)
d )), n ≥ 1. (3.21)

As already discussed, our results should be compared with other central limit results for
multiple stochastic integrals in a Gaussian or Poisson setting � see e.g. [31, 37, 39, ?, 47, 49].
The following statement, which is a genuine multi-dimensional generalization of Theorem 5.1
in [46], is indeed one of the main achievements of the present chapter.

Theorem 3.4.9 (CLT for chaotic vectors) Fix d ≥ 2, let X ∼ N (0, C), with

C = {C(i, j) : i, j = 1, . . . , d}

a d × d nonnegative de�nite matrix, and �x integers q1, . . . , qd ≥ 1. For any n ≥ 1 and

i = 1, . . . , d, let f
(n)
i belong to L2

s(µ
qi). De�ne the sequence {F (n);n ≥ 1}, according to (3.21)

and suppose that

lim
n→∞

E[F (n)
i F

(n)
j ] = 1(qj=qi)qj !× lim

n→∞
⟨f (n)

i , f
(n)
j ⟩L2(µqi ) = C(i, j), 1 ≤ i, j ≤ d. (3.22)

Assume moreover that the following Conditions 1�4 hold for every k = 1, . . . , d:

1. For every n, the kernel f
(n)
k satis�es Assumptions A and B.

2. For every l = 1, . . . , d and every n, the kernels f
(n)
k and f

(n)
l satisfy Assumption C.

3. For every r = 1, . . . , qk and every l = 1, . . . , r ∧ (qk − 1), one has that

∥f (n)
k ⋆lr f

(n)
k ∥L2(µ2qk−r−l) → 0,

as n → ∞.

4. As n → ∞,
∫
Zqk dµ

qk
(
f
(n)
k

)4
→ 0.

Then, F (n) converges to X in distribution as n → ∞. The speed of convergence can be assessed
by combining the estimates of Proposition 3.4.6 and Proposition 3.4.7 either with Theorem
3.2.3 (when C is positive de�nite) or with Theorem 3.3.2 (when C is merely nonnegative
de�nite).

Remark 3.4.10 1. For every f ∈ L2
s(µ

q), q ≥ 1, one has that

∥f ⋆0q f∥2L2(µq) =

∫
Zq

dµqf4.

2. When qi ̸= qj , then F
(n)
i and F

(n)
j are not in the same chaos, yielding that C(i, j) = 0 in

formula (5.20). In particular, if Conditions 1-4 of Theorem 3.4.9 are veri�ed, then F
(n)
i

and F
(n)
j are asymptotically independent.
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3. When specializing Theorem 3.4.9 to the case q1 = . . . = qd = 1, one obtains a set of
conditions that are di�erent from the ones implied by Corollary 3.3.3. First observe that,
if q1 = . . . = qd = 1, then Condition 3 in the statement of Theorem 3.4.9 is immaterial.
As a consequence, one deduces that F (n) converges in distribution to X, provided that
(5.20) is veri�ed and ∥f (n)∥L4(µ) → 0. The L4 norms of the functions f (n) appear due
to the use of Cauchy-Schwarz inequality in the proof of Proposition 3.4.7.

Proof of Theorem 3.4.9. By Theorem 3.3.2,

d3(F
(n), X) ≤ d

2

√√√√ d∑
i,j=1

E[(C(i, j)− ⟨DF
(n)
i ,−DL−1F

(n)
j ⟩L2(µ))

2] (3.23)

+
1

4

∫
Z
µ(dz)E

( d∑
i=1

|DzF
(n)
i |

)2( d∑
i=1

|DzL
−1F

(n)
i |

) , (3.24)

so that we need only show that, under the assumptions in the statement, both (3.23) and
(3.24) tend to 0 as n → ∞.

On the one hand, we take a = C(i, j) in Proposition 3.4.6. In particular, we take a = 0
when qi ̸= qj . Admitting Condition 3 , 4 and (5.20), line (3.23) tends to 0 is a direct conse-
quence of Proposition 3.4.6.

On the other hand, under Condition 3 and 4, Proposition 3.4.7 shows that (3.24) converges
to 0. This concludes the proof and the above inequality gives the speed of convergence.

If the matrix C is positive de�nite, then one can alternatively use Theorem 3.2.3 instead
of Theorem 3.3.2 while the deduction remains the same.

Remark 3.4.11 Apart from the asymptotic behavior of the covariances (5.20) and the pres-
ence of Assumption C, the statement of Theorem 3.4.9 does not contain any requirements
on the joint distribution of the components of F (n). Besides the technical requirements in
Condition 1 and Condition 2, the joint convergence of the random vectors F (n) only relies on
the `one-dimensional' Conditions 3 and 4, which are the same as condition (II) and (III) in
the statement of Theorem 5.1 in [46]. See also Remark 3.2.5.

3.5 Examples

In what follows, we provide several explicit applications of the main estimates proved in the
chapter. In particular:

• Section 3.5.1 focuses on vectors of single and double integrals.

• Section 3.5.2 deals with three examples of continuous-time functionals of Ornstein-
Uhlenbeck Lévy processes.
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3.5.1 Vectors of single and double integrals

The following statement corresponds to Theorem 3.2.3, in the special case

F = (F1, . . . , Fd) = (I1(g1), . . . , I1(gm), I2(h1), . . . , I2(hn)). (3.25)

The proof, which is based on a direct computation of the general bounds proved in Theorem
3.2.3, serves as a further illustration (in a simpler setting) of the techniques used throughout
the chapter. Some of its applications will be illustrated in Section 3.5.2.

Proposition 3.5.1 Fix integers n,m ≥ 1, let d = n +m, and let C be a d × d nonnegative
de�nite matrix. Let X ∼ Nd(0, C). Assume that the vector in (3.25) is such that

1. the function gi belongs to L2(µ) ∩ L3(µ), for every 1 ≤ i ≤ m,

2. the kernel hi ∈ L2
s(µ

2) (1 ≤ i ≤ n) is such that: (a) hi1⋆
1
2hi2 ∈ L2(µ1), for 1 ≤ i1, i2 ≤ n,

(b) hi ∈ L4(µ2) and (c) the functions |hi1 | ⋆12 |hi2 |, |hi1 | ⋆02 |hi2 | and |hi1 | ⋆01 |hi2 | are well
de�ned and �nite for every value of their arguments and for every 1 ≤ i1, i2 ≤ n, (d)
every pair (hi, hj) veri�es Assumption C, that in this case is equivalent to requiring that∫

Z

√∫
Z
µ(da)h2i (z, a)h

2
j (z, a)µ(dz) < ∞.

Then,

d3(F,X) ≤
1

2

√
S1 + S2 + S3 + S4

≤
1

2

√
S1 + S5 + S6 + S4

where

S1 =
m∑

i1,i2=1

(C(i1, i2)− ⟨gi1 , gi2⟩L2(µ))
2

S2 =
n∑

j1,j2=1

(C(m+ j1,m+ j2)− 2⟨hj1 , hj2⟩L2(µ2))
2 + 4∥hj1 ⋆12 hj2∥2L2(µ) + 8∥hj1 ⋆11 hj2∥2L2(µ2)

S3 =

m∑
i=1

n∑
j=1

2C(i,m+ j)2 + 5∥gi ⋆11 hj∥2L2(µ)

S4 = m2
m∑
i=1

∥gi∥3L3(µ) + 8n2
n∑

j=1

∥hj∥L2(µ2)(∥hj∥2L4(µ2) +
√
2∥hj1 ⋆01 hj1∥L2(µ3))

S5 =

n∑
j1,j2=1

(C(m+ j1,m+ j2)− 2⟨hj1 , hj2⟩L2(µ2))
2 + 4∥hj1 ⋆01 hj1∥L2(µ3) × ∥hj2 ⋆01 hj2∥L2(µ3)

+8∥hj1 ⋆11 hj1∥L2(µ2) × ∥hj2 ⋆11 hj2∥L2(µ2)

S6 =
m∑
i=1

n∑
j=1

2C(i,m+ j)2 + 5∥gi∥2L2(µ) × ∥hj ⋆11 hj∥L2(µ2)
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Proof. Assumptions 1 and 2 in the statement ensure that each integral appearing in the proof
is well-de�ned, and that the use of Fubini arguments is justi�ed. In view of Theorem 3.3.2,
our strategy is to study the quantities in line (3.8) and line (3.9) separately. On the one hand,
we know that: for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

DzI1(gi(·)) = gi(z), −DzL
−1I1(gi(·)) = gi(z)

DzI2(hj(·, ·)) = 2I1(hj(z, ·)), −DzL
−1I2(hj(·, ·)) = I1(hj(z, ·))

Then, for any given constant a, we have:

� for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

E[(a− ⟨DzI1(gi1),−DzL
−1I1(gi2)⟩)2] = (a− ⟨gi1 , gi2⟩L2(µ))

2;

� for 1 ≤ j1, j2 ≤ n,

E[(a− ⟨DzI2(hj1),−DzL
−1I2(hj2)⟩)2]

= (a− 2⟨hj1 , hj2⟩L2(µ2))
2 + 4∥hj1 ⋆12 hj2∥2L2(µ) + 8∥hj1 ⋆11 hj2∥2L2(µ2);

� for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

E[(a− ⟨DzI2(hj),−DzL
−1I1(gi)⟩)2] = a2 + 4∥gi ⋆11 hj∥2L2(µ)

E[(a− ⟨DzI1(gi),−DzL
−1I2(hj)⟩)2] = a2 + ∥gi ⋆11 hj∥2L2(µ).

So

(3.8) =
1

2

√
S1 + S2 + S3

where S1, S2, S3 are de�ned as in the statement of proposition.

On the other hand,

(
2∑

i=1

|DzFi|

)2

=

 m∑
i=1

|gi(z)|+ 2

n∑
j=1

|I1(hj(z, ·))|

2

,

d∑
i=1

|DzL
−1Fi| =

m∑
i=1

|gi(z)|+
n∑

j=1

|I1(hj(z, ·))|.

As the following inequality holds for all positive reals a, b:

(a+ 2b)2(a+ b) ≤ (a+ 2b)3 ≤ 4a3 + 32b3,
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we have,

E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
= E

 m∑
i=1

|gi(z)|+ 2

n∑
j=1

|I1(hj(z, ·))|

2 m∑
i=1

|gi(z)|+
n∑

j=1

|I1(hj(z, ·))|


≤ E

4( m∑
i=1

|gi(z)|

)3

+ 32

 n∑
j=1

|I1(hj(z, ·))|

3
≤ E[4m2

m∑
i=1

|gi(z)|3 + 32n2
n∑

j=1

|I1(hj(z, ·))|3].

By applying the Cauchy-Schwarz inequality, one infers that∫
Z
µ(dz)E[|I1(h(z, ·))|3] ≤

√
E
[∫

Z
µ(dz)|I1(h(z, ·))|4

]
× ∥h∥L2(µ2).

Notice that

E
[∫

Z
µ(dz)|I1(h(z, ·))|4

]
= 2∥h ⋆12 h∥2L2(µ) + ∥h∥4L4(µ2)

We have

(3.9) =
1

4
m2∥C−1∥3/2op ∥C∥op

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
≤ ∥C−1∥3/2op ∥C∥op

(
m2

m∑
i=1

∥gi∥3L3(µ)

+8n2
n∑

j=1

∥hj∥L2(µ2)(∥hj∥2L4(µ2) +
√
2∥hj ⋆12 hj∥L2(µ))

)
= ∥C−1∥3/2op ∥C∥opS4

We will now apply Lemma 1.1.8 to further assess some of the summands appearing the de�-
nition of S2,S3. Indeed,

� for 1 ≤ j1, j2 ≤ n,

∥hj1 ⋆12 hj2∥2L2(µ) ≤ ∥hj1 ⋆01 hj1∥L2(µ3) × ∥hj2 ⋆01 hj2∥L2(µ3)

∥hj1 ⋆11 hj2∥2L2(µ2) ≤ ∥hj1 ⋆11 hj1∥L2(µ2) × ∥hj2 ⋆11 hj2∥L2(µ2);

� for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

∥gi ⋆11 hj∥2L2(µ) ≤ ∥gi∥2L2(µ) × ∥hj ⋆11 hj∥L2(µ2)

by using the relation ∥g(k)i ⋆00 g
(k)
i ∥2L2(µ2) = ∥g(k)i ∥4L2(µ).
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Consequently,

S2 ≤
n∑

j1,j2=1

(C(m+ j1,m+ j2)− 2⟨hj1 , hj2⟩L2(µ2))
2 + 4∥hj1 ⋆01 hj1∥L2(µ3) × ∥hj2 ⋆01 hj2∥L2(µ3)

+8∥hj1 ⋆11 hj1∥L2(µ2) × ∥hj2 ⋆11 hj2∥L2(µ2)

= S5,

S3 ≤
m∑
i=1

n∑
j=1

2C(i,m+ j)2 + 5∥gi∥2L2(µ) × ∥hj ⋆11 hj∥L2(µ2)

= S6

Remark 3.5.2 If the matrix C is positive de�nite, then we have

d2(F,X) ≤ ∥C−1∥op∥C∥1/2op

√
S1 + S2 + S3 +

√
2π

2
∥C−1∥3/2op ∥C∥opS4

≤ ∥C−1∥op∥C∥1/2op

√
S1 + S5 + S6 +

√
2π

2
∥C−1∥3/2op ∥C∥opS4

by using Theorem 3.2.3.

The following result can be proved by means of Proposition 3.5.1.

Corollary 3.5.3 Let d = m+n, with m,n ≥ 1 two integers . Let XC ∼ Nd(0, C) be a centered
d-dimensional Gaussian vector, where C = {C(s, t) : s, t = 1, . . . , d} is a d × d nonnegative
de�nite matrix such that

C(i, j +m) = 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n.

Assume that

F (k) = (F
(k)
1 , . . . , F

(k)
d ) := (I1(g

(k)
1 ), . . . , I1(g

(k)
m ), I2(h

(k)
1 ), . . . , I2(h

(k)
n ))

where for all k, the kernels g
(k)
1 , . . . , g

(k)
m and h

(k)
1 , . . . , h

(k)
n satisfy respectively the technical

Conditions 1 and 2 in Proposition 3.5.1 . Assume moreover that the following conditions hold
for each k ≥ 1:

1.

lim
k→∞

E[F (k)
s F

(k)
t ] = C(s, t), 1 ≤ s, t ≤ d.

or equivalently

lim
k→∞

⟨g(k)i1
, g

(k)
i2

⟩L2(µ) = C(i1, i2), 1 ≤ i1, i2 ≤ m,

lim
k→∞

2⟨h(k)j1
, h

(k)
j2

⟩L2(µ2) = C(m+ j1,m+ j2), 1 ≤ j1, j2 ≤ n.
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2. For every i = 1, . . . ,m and every j = 1, . . . , n, one has the following conditions are
satis�ed as k → ∞:

(a) ∥g(k)i ∥3L3(µ) → 0; (b) ∥h(k)j ∥2L4(µ2) → 0;

(c) ∥h(k)j ⋆12 h
(k)
j ∥L2(µ) = ∥h(k)j ⋆01 h

(k)
j ∥L2(µ3) → 0;

(d) ∥h(k)j ⋆11 h
(k)
j ∥2L2(µ2) → 0.

Then F (k) → X in law, as k → ∞. An explicit bound on the speed of convergence in the
distance d3 is provided by Proposition 3.5.1.

3.5.2 Vector of functionals of Ornstein-Uhlenbeck processes

In this section, we study CLTs for some functionals of Ornstein-Uhlenbeck Lévy process. These
processes have been intensively studied in recent years, and applied to various domains such
as e.g. mathematical �nance (see [42]) and non-parametric Bayesian survival analysis (see e.g.
[5, 45]). Our results are multi-dimensional generalizations of the content of [46, Section 7] and
[47, Section 4].

We denote by N̂ a centered Poisson measure over R × R, with control measure given by
ν(du), where ν(·) is positive, non-atomic and σ-�nite. For all positive real number λ, we de�ne
the stationary Ornstein-Uhlenbeck Lévy process with parameter λ as

Y λ
t = I1(f

λ
t ) =

√
2λ

∫ t

−∞

∫
R
u exp(−λ(t− x))N̂(du, dx), t ≥ 0

where fλ
t (u, x) =

√
2λ1(−∞,t](x)u exp(−λ(t − x)). We make the following technical assump-

tions on the measure ν:
∫
R ujν(du) < ∞ for j = 2, 3, 4, 6, and

∫
R u2ν(du) = 1, to ensure

among other things that Y λ
t is well-de�ned. These assumptions yield in particular that

Var(Y λ
t ) = E[(Y λ

t )2] = 2λ

∫ t

−∞

∫
R
u2 exp(−2λ(t− x))ν(du)dx = 1

We shall obtain Central Limit Theorems for three kind of functionals of Ornstein-Uhlenbeck
Lévy processes. In particular, each of the forthcoming examples corresponds to a �realized
empirical moment� (in continuous time) associated with Y λ, namely: Example 1 corresponds
to an asymptotic study of the mean, Example 2 concerns second moments, whereas Example
3 focuses on joint second moments of shifted processes.

Observe that all kernels considered in the rest of this section automatically satisfy our
Assumptions A, B and C.

Example 1 (Empirical means)

We de�ne the functional A(T, λ) by A(T, λ) =
1

√
T

∫ T
0 Y λ

t dt. We recall the following limit

theorem for A(T, λ) , taken from Example 3.6 in [46].

Theorem 3.5.4 As T → ∞,

A(T, λ)√
2/λ

=
1√
2T/λ

∫ T

0
Y λ
t dt

(law)−→ X ∼ N (0, 1),
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and there exists a constant 0 < α(λ) < ∞, independent of T and such that

dw

(
A(T, λ)√

2/λ
,X

)
≤

α(λ)
√
T
.

Here, we present a multi-dimensional generalization of the above result.

Theorem 3.5.5 For λ1, . . . , λd > 0, as T → ∞,

Ā(T ) = (A(T, λ1), . . . , A(T, λd))
(law)−→ XB, (3.26)

where XB is a centered d-dimensional Gaussian vector with covariance matrix B = (Bij)d×d,
with Bij = 2/

√
λiλj , 1 ≤ i, j ≤ d. Moreover, there exists a constant 0 < α = α(λ̄) =

α(λ1, . . . , λd) < ∞, independent of T and such that

d3(Ā(T ), XB) ≤
α(λ̄)
√
T
.

Proof. By applying Fubini theorem on A(T, λ), we have

1
√
T

∫ T

0
Y λ
t dt = I1(gλ,T )

where

gλ,T = 1(−∞,T ](x)u

√
2λ

T

∫ T

x∨0
exp(−λ(t− x))dt

E[A(T, λi)A(T, λj)]

=

∫
R
u2ν(du)

(∫ 0

−∞
dx

2

T
√
λiλj

exp
(
(λi + λj)x

)
×
(
1− exp(−λiT )

)
×
(
1− exp(−λjT )

)
+

∫ T

0
dx

2

T
√

λiλj

exp
(
(λi + λj)x

)
×
(
exp(−λix)− exp(−λiT )

)
×
(
exp(−λjx)− exp(−λjT )

))
=

2

T
√
λiλj

( 1

λi + λj
×
(
1− exp(−λiT )

)
×
(
1− exp(−λjT )

)
+ T −

1

λi
× (1− exp(−λiT ))

−
1

λj

(
1− exp(−λjT )

)
+

1

λi + λj

(
1− exp(−(λi + λj)T )

))
=

2√
λiλj

+O

(
1

T

)
as T → ∞.

And we may verify that ∥gλ,T ∥3L3(dνdx) ∼
1

√
T
. for all λ ∈ R. (See [46] and [47] for details.)

Finally, we deduce the conclusion by using Corollary 3.3.3.

Example 2 (Empirical second moments)
We are interested in the quadratic functional Q(T, λ) given by:

Q(T, λ) :=
√
T

(
1

T

∫ T

0
(Y λ

t )2dt− 1

)
, T > 0, λ > 0
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In [46] and [47], the authors have proved the following limit theorem for Q(T, λ). (See Theorem
7.1 in [46] and Proposition 7 in [47])

Theorem 3.5.6 For every λ > 0, as T → ∞,

Q(T, λ) :=
√
T

(
1

T

∫ T

0
(Y λ

t )2dt− 1

)
(law)−→

√
2

λ
+ c2ν ×X

where X ∼ N (0, 1) is a standard Gaussian random variable and c2ν =
∫
R u4ν(du) is a constant.

And there exists a constant 0 < β(λ) < ∞, independent of T and such that

dw

 Q(T, λ)√
2
λ + c2ν

, X

 ≤
β(λ)
√
T

We introduce here a multi-dimensional generalization of the above result.

Theorem 3.5.7 Given an integer d ≥ 2. For λ1, . . . , λd > 0, as T → ∞,

Q̄(T ) = (Q(T, λ1), . . . , Q(T, λd))
(law)−→ XC , (3.27)

where XC is a centered d-dimensional Gaussian vector with covariance matrix C = (Cij)d×d,
de�ned by

Cij =
4

λi + λj
+ c2ν , 1 ≤ i, j ≤ d,

and c2ν =
∫
R u4ν(du). And there exists a constant 0 < β(λ̄) = β(λ1, . . . , λd) < ∞, independent

of T and such that

d3(Q̄(T ), XC) ≤
β(λ̄)
√
T

Proof. For every T > 0 and λ > 0, we introduce the notations

Hλ,T (u, x;u
′, x′) = (u× u′)

1(−∞,T )2(x, x
′)

T

(
exp

(
λ(x+ x′)

)
×
(
1− exp(−2λT )

)
× 1(x∨x′≤0)

+exp
(
λ(x+ x′)

)
×
(
exp(−2λ(x ∨ x′))− exp(−2λT )

)
× 1(x∨x′>0)

)

H⋆
λ,T (u, x) = u2

1(−∞,T )(x)

T

(
exp(2λx)×

(
1− exp(−2λT )

)
× 1(x≤0)

+exp(2λx)×
(
exp(−2λx)− exp(−2λT )

)
× 1(x>0)

)
By applying the multiplication formula (1.12) and a Fubini argument, we deduce that

Q(T, λ) = I1(
√
TH⋆

λ,T ) + I2(
√
THλ,T ),

which is the sum of a single and a double Wiener-Itô integral. Instead of deducing the
convergence for (Q(T, λ1), . . . , Q(T, λd)), we prove the stronger result:

(I1(
√
TH⋆

λ1,T ), . . . , I1(
√
TH⋆

λd,T
), I2(

√
THλ1,T ), . . . , I2(

√
THλd,T ))

(law)−→ XD (3.28)
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as T → ∞. Here, XD is a centered 2d-dimensional Gaussian vector with covariance matrix D
de�ned as:

D(i, j) =


c2ν , if 1 ≤ i, j ≤ d

4

λi + λj
, if d+ 1 ≤ i, j ≤ 2d

0, otherwise.

We prove (3.28) in two steps (by using Corollary 3.5.3). Firstly, we aim at verifying

lim
T→∞

E[F (T )
i F

(T )
j ] = D(i, j), 1 ≤ i, j ≤ 2d,

for

F
(T )
k =

{
I1(

√
TH⋆

λk,T
), if 1 ≤ k ≤ d

I2(
√
THλk,T ), if d+ 1 ≤ k ≤ 2d

Indeed, by standard calculations, we have

T

∫
R×R

H⋆
λi,T

(u, x)H⋆
λj ,T

(u, x)ν(du)dx

=
1

T
c2ν

( 1

2(λi + λj)
×
(
1− exp(−2λiT )

)
×
(
1− exp(−2λjT )

)
+ T −

1

2λi
×
(
1− exp(−2λiT )

)
−

1

2λj
×
(
1− exp(−2λjT )

)
+

1

2(λi + λj)
×
(
1− exp(−2(λi + λj)T )

))
= c2ν +O

(
1

T

)
, as T → ∞,

and

2T

∫
R4

Hλi,T (u, x;u
′, x′)Hλj ,T (u, x;u

′, x′)ν(du)ν(du′)dxdx′

=
2

T

((1− exp(−2λiT ))× (1− exp(−2λjT ))

(λi + λj)2
+

2

λi + λj
×
(
T −

1

2λi

(
1− exp(−2λiT )

)
−

1

2λj
×
(
1− exp(−2λjT )

)
+

1

2(λi + λj)
×
(
1− exp(−2(λi + λj)T )

)))
=

4

λi + λj
+O

(
1

T

)
, as T → ∞.

Secondly, we use the fact that for λ = λ1, . . . , λd, the following asymptotic relations holds as
T → ∞:

(a) ∥
√
TH⋆

λ,T ∥3L3(dνdx) ∼
1

√
T
;

(b) ∥
√
THλ,T ∥2L4((dνdx)2) ∼

1
√
T
;

(c) ∥(
√
THλ,T ) ⋆

1
2 (

√
THλ,T )∥L2(dνdx) = ∥(

√
THλ,T ) ⋆

0
1 (

√
THλ,T )∥L2((dνdx)3) ∼

1
√
T
;

(d) ∥(
√
THλ,T ) ⋆

1
1 (

√
THλ,T )∥L2((dνdx)2) ∼

1
√
T
;



80 CHAPTER 3. CENTRAL LIMIT THEOREMS ON THE POISSON SPACE

(e) ∥(
√
TH⋆

λ,T ) ⋆
1
1 (

√
THλ,T )∥L2(dνdx) ∼

1
√
T
.

The reader is referred to [46, Section 7] and [47, Section 4] for a proof of the above asymptotic
relations.

Example 3 (Empirical joint moments of shifted processes)
We are now able to study a generalization of Example 2. We de�ne

Qh(T, λ) :=
√
T

(
1

T

∫ T

0
Y λ
t Y λ

t+hdt− exp(−λh)

)
, h > 0, T > 0, λ > 0.

The theorem below is a multi-dimensional CLT for Qh(T, λ).

Theorem 3.5.8 For λ1, . . . , λd > 0 and h ≥ 0, as T → ∞,

Q̄h(T ) = (Qh(T, λ1), . . . , Qh(T, λd))
(law)−→ XE , (3.29)

where XE is a centered d-dimensional Gaussian vector with covariance matrix E = (Eij)d×d,
with

Eij =
4

λi + λj
+ c2ν exp

(
− (λi + λj)h

)
, 1 ≤ i, j ≤ d

and c2ν =
∫
R u4ν(du). Moreover, there exists a constant 0 < γ(h, λ̄) = γ(h, λ1, . . . , λd) < ∞,

independent of T and such that

d3(Q̄h(T ), XE) ≤
γ(h, λ̄)
√
T

Proof. We have∫ T

0
Y λ
t Y λ

t+hdt =

∫ T

0
I1(f

λ
t )I1(f

λ
t+h)dt

=

∫ T

0

(
I2(f

λ
t ⋆00 f

λ
t+h) + I1(f

λ
t ⋆01 f

λ
t+h) + fλ

t ⋆11 f
λ
t+h

)
dt

=

∫ T

0

(
I2(ĥ

λ
t,h) + I1(ĥ

∗,λ
t,h ) + exp(−λh)

)
dt

= I2(TH
h
λ,T ) + I1(TH

∗,h
λ,T ) + exp(−λh)T

and

Qh(T, λ) = I2(
√
THh

λ,T ) + I1(
√
TH∗,h

λ,T )

by using multiplication formula (1.12) and Fubini theorem. By simple calculations, we obtain
that

ĥλt,h(u, x;u
′, x′) = 2λ1(−∞,t]×(−∞,t+h](x, x

′)× uu′ exp(−λ(2t+ h− x− x′))

ĥ∗,λt,h (u, x) = 2λ1(−∞,t](x)× u2 exp(−λ(2t+ h− 2x))
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as well as

H∗,h
λ,T (u, x) =

1

T

∫ T

0
ĥ∗,λt,h (u, x)dt

= u2
1(−∞,T ](x)

T
× exp(λ(2x− h))×

(
1(x>0) × (exp(−2λx)− exp(−2λT ))

+1(x≤0) × (1− exp(−2λT ))
)

Hh
λ,T (u, x;u

′, x′) =
1

T

∫ T

0
ĥλt,h(u, x;u

′, x′)dt

= uu′
1(−∞,T ](x)1(−∞,T+h](x

′)

T
× exp(λ(x+ x′ − h))

×
(
1(x∨(x′−h)>0) ×

(
exp(−2λ(x ∨ (x′ − h)))− exp(−2λT )

)
+1(x∨(x′−h)≤0) × (1− exp(−2λT ))

)
Similar to the procedures in the precedent example, we prove the stronger result:

(I1(
√
TH⋆,h

λ1,T
), . . . , I1(

√
TH⋆,h

λd,T
), I2(

√
THh

λ1,T ), . . . , I2(
√
THh

λd,T
))

(law)−→ XDh (3.30)

as T → ∞. Here, XDh is a centered 2d-dimensional Gaussian vector with covariance matrix
Dh de�ned as:

Dh(i, j) =


c2ν exp(−(λi + λj)h), if 1 ≤ i, j ≤ d

4

λi + λj
, if d+ 1 ≤ i, j ≤ 2d

0, otherwise.

We have

T

∫
R×R

H∗,h
λ,T (u, x)H

∗,h
λ,T (u, x)ν(du)dx

=
1

T
c2ν

(∫ 0

−∞
dx exp

(
(λi + λj)(2x− h)

)
×
(
1− exp(−2λiT )

)
×
(
1− exp(−2λjT )

)
+

∫ T

0
dx exp

(
(λi + λj)(2x− h)

)
×
(
exp(−2λix)− exp(−2λiT )

)
×
(
exp(−2λjx)− exp(−2λjT )

))
= c2ν exp(−(λi + λj)h) +O

(
1

T

)
. as T → ∞,

We notice that
Hh

λ,T (u, x;u
′, x′) = Hλ,T (u, x;u

′, x′ − h)

Then, as shown in the proof of Theorem 3.5.7, we have

2T

∫
R×R

Hh
λ,T (u, x)H

h
λ,T (u, x)ν(du)dx =

4

λi + λj
+O

(
1

T

)
. as T → ∞.
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Just as the precedent example, we may verify that for λ = λ1, . . . , λd and h ≥ 0, the following
asymptotic relations holds as T → ∞:

(a) ∥
√
TH∗,h

λ,T ∥
3
L3(dνdx) ∼

1
√
T
;

(b) ∥
√
THh

λ,T ∥2L4((dνdx)2) ∼
1

√
T
;

(c) ∥(
√
THh

λ,T ) ⋆
1
2 (

√
THh

λ,T ∥L2(dνdx) = ∥(
√
THλ,T ) ⋆

0
1 (

√
THh

λ,T )∥L2((dνdx)3) ∼
1

√
T
;

(d) ∥(
√
THh

λ,T ) ⋆
1
1 (

√
THh

λ,T )∥L2((dνdx)2) ∼
1

√
T
;

(e) ∥(
√
TH∗,h

λ,T ) ⋆
1
1 (

√
THh

λ,T )∥L2(dνdx) ∼
1

√
T
.

We conclude the proof by analogous arguments as in the proof of (3.27).

The calculations above enable us to derive immediately the following new one-dimensional
result, which is a direct generalization of Theorem 5.1 in [46].

Corollary 3.5.9 For every λ > 0, as T → ∞,

Qh(T, λ)
(law)−→

√
2

λ
+ c2ν exp(−2λh)×X

where X ∼ N (0, 1) is a standard Gaussian random variable. Moreover, there exists a constant
0 < γ(h, λ) < ∞, independent of T and such that

dw

(
Qh(T, λ)√

2/λ+ c2ν exp(−2λh)
, X

)
≤

γ(h, λ)
√
T



Chapter 4

Universality of the Poisson Wiener
chaos

This chapter is based on the paper in preparation [51] by G. Peccati and C. Zheng.

4.1 Introduction of the chapter

In a probability space (Ω,F ,P), we shall consider the following objects.

• G = {Gi : i ≥ 1}, where Gi ∼ N (0, 1) are independent Gaussian variables;

• E = {ei : i ≥ 1} is a Rademacher sequence. By this expression we simply mean that the
random variables ei are i.i.d. and P(ei = 1) = P(ei = −1) = 1

2 for i = 1, 2, . . .;

• P = {Pi : i ≥ 1}, where Pi are independent Poisson random variables, distributed as
P (λi)− λi. Here, P (λi) indicates a Poisson variable with parameter λi > 0, i ≥ 1.

We introduce the notion of homogeneous sum.

De�nition 4.1.1 (Homogeneous sums) Fix some integers N, q ≥ 2. Let [N ] indicate
the set {1, 2, · · · , N}. Let X = {Xi : i ≥ 1} be a collection of centered independent ran-
dom variables, and let f : [N ]q → R be a symmetric function vanishing on diagonals (i.e.
f(i1, · · · , iq) = 0 if ∃k ̸= l : ik = il). The random variable

Qq(N, f,X) =
∑

1≤i1,··· ,iq≤N

f(i1, · · · , iq)Xi1 · · ·Xiq

is called the multilinear homogeneous sum, of order q, based on f and on the �rst N elements
of X.

Remark 4.1.2 If, for i = 1, 2, . . ., E[Xi] = 0 and E[X2
i ] = λi, as in the examples of G

and E (where λi = 1) and P, then we deduce immediately that the mean and variance of
Qq = Qq(N, f,X) are given by:

E[Qq] = 0, E[Q2
q ] = q!

∑
1≤i1,··· ,iq≤N

f2(i1, · · · , iq)λi1 · · ·λiq

83
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The next three examples show that homogeneous sums based on G, E, P can always
be represented as �chaotic random variables�, such as the ones that are at the core of this
dissertation.

Example 4.1.3 (Homogeneous sums based on G) Let G = {Gi : i ≥ 1} be de�ned as
above. Without loss of generality, we can always assume that Gi = IG1 (hi) = G(hi) , for some
isonormal Gaussian process G = {G(h) : h ∈ H} based on a real separable Hilbert space H,
where {hi : i ≥ 1} is an orthonormal basis of H. (See Section 1.1.3 for the notations.) With
this representation, one has that Qq(N, f,G) belongs to q-th Gaussian Wiener chaos of G.
Indeed, we may write

Qq(N, f,G) = IGq (g),

where

g =
N∑

i1,··· ,iq

f(i1, · · · , iq)hi1 ⊗ · · · ⊗ hiq .

Example 4.1.4 (Homogeneous sums based on P) Let P = {Pi : i ≥ 1} be de�ned as

above. Without loss of generality, we can always assume that for every i ≥ 1, Pi = IN̂1 (gi),
where N̂ indicates a compensated Poisson measure on (Z,Z), with control µ, and g = {gi :
i ≥ 1} is a collection of functions in L2(µ) with disjoint �nite supports, such that for each i,
∥gi∥2L2(µ) = λi. (See Section 1.1.1 for the notations.) For instance, one may take Z = R+,
µ =Lebesgue measure and gi = 1(λ1+···+λi−1,λ1+···+λi] for i ≥ 2, g1 = 1(0,λ1]. Therefore,

Qq(N, f,P) belongs to q-th Poisson Wiener chaos of N̂ since

Qq(N, f,P) = Iq(h),

where

h =

N∑
i1,··· ,iq

f(i1, · · · , iq)gi1 ⊗ · · · ⊗ giq .

Example 4.1.5 (Homogeneous sums based on E) Fix q ≥ 1, let f : Nq → R be a sym-
metric function vanishing on diagonals. We consider the Rademacher sequence E = {ei : i ≥
1} de�ned above. A random variable with the form,

Jq =
∑

i1,··· ,iq

f(i1, · · · , iq)ei1 · · · eiq ,

where the series converge in L2(P), compose the so-called q-th Walsh chaos of E. (See [25,
Chapter IV], or Remark 2.7 in [35].) In particular, let f : [N ]q → R be a symmetric function
vanishing on diagonals, then the homogeneous sums of the type

Qq(N, f,E) =
N∑

i1,··· ,iq

f(i1, · · · , iq)ei1 · · · eiq

are elements of q-th Walsh chaos of E.

Recall (see Remark 2.7 in [35]) that the Walsh chaos has the following chaotic decomposi-
tion property: for every F ∈ L2(σ(E)) (that is, the set of square integrable functional of the
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sequence E), there exists a unique sequence of symmetric functions vanishing on diagonals
fq ∈ L2

s(µ
q), q ≥ 1, such that

F = E[F ] +
∑
q≥1

q!
∑

i1<i2<...<iq

fq(i1, . . . , iq)ei1 · · · eiq ,

where the double series converges in L2.

Concerning the �Universality� of these chaotic variables, the following two results have
been proved in [36].

Theorem 4.1.6 (Theorem 1.10 in [36]) Homogeneous sums inside the Gaussian Wiener
chaos are universal with respect to normal approximations, in the following sense: �x q ≥ 2,
let {N (n) : n ≥ 1} be a sequence of integers going to in�nity, and let {f (n);n ≥ 1} be a
sequence of mappings, such that each function f (n) : [N (n)]q → R is symmetric and vanishes
on diagonals. Assume that E[Qq(N

(n), f (n),G)2] → 1 as n → ∞. Then, the following three
properties are equivalent as n → ∞.

1. The sequence {Qq(N
(n), f (n),G);n ≥ 1} converges in law to N ∼ N (0, 1);

2. E[Qq(N
(n), f (n),G)4] → 3;

3. for every sequence X = {Xi; i ≥ 1} of independent and identically distributed centered
random variables with unit variance, the sequence {Qq(N

(n), f (n),X);n ≥ 1} converge
in law to N (0, σ2).

Remark 4.1.7 We do not list the property (3) in the original version of Theorem 1.10 in [36].
Indeed, according to Proposition C.3.2 in [33], the Kolmogorov distance is exactly the distance
induced by convergence in law, under the assumptions of Theorem 1.10 in [36]. Consequently,
the original property (3) is practically the same as property (4) (or the third property in the
above statement).

We also have the following negative result.

Proposition 4.1.8 Homogeneous sums inside the Walsh chaos are not universal with re-
spect to normal approximations.

Proof. To show this assertion, we present the counter-example introduced at page 1956 in
[36]. Let G, E be de�ned above. Fix q ≥ 2. For each N ≥ q, we de�ne

fN (i1, i2, . . . , iq) =

{
1/(q!

√
N − q + 1), if {i1, i2, . . . , iq} = {1, 2, . . . , q − 1, s} for q ≤ s ≤ N ;

0, else.

The homogeneous sum thus de�ned is

Qq(N, fN ,E) = e1e2 · · · eq−1

N∑
i=q

ei√
N − q + 1

,

with E[Qq(N, fN ,E)] = 0 and Var[Qq(N, fN ,E)] = 1. Since e1e2 · · · eq−1 is a random sign

independent of {ei : i ≥ q}, we have that Qq(N, fN ,E)
law−→ N (0, 1), as N → ∞, by using the
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Central Limit Theorem. However, for every N ≥ 2, Qq(N, fN ,G)
(law)
= G1G2 · · ·Gq, which is

not Gaussian (for q ≥ 2). Consequently, Qq(N, fN ,G) does not converge to a normal variable.

In the present chapter, we are going to address the following question.

Problem 1 Are homogeneous sums inside the Poisson Wiener chaos universal with respect
to normal approximations?

We will see in section 4.2 that the answer is positive both in the one-dimensional and
multi-dimensional cases. Our techniques are based on the tools developped in [PSTU] and
[PZ], that are in turn recent developments of "Malliavin-Stein method" � the combination of
Stein's method and Malliavin calculus. (See Section 2.1)

As a by-product of our achievements, we will also prove some re�nements of the Central
Limit Theorem on the Poisson Wiener chaos. Indeed, in the forthcoming Theorem 4.2.2 and
Theorem 4.2.6, we shall show that, in the special case of elements of the Poisson Wiener
chaos that are also homogeneous sums, the su�cient conditions for the CLTs established in
the precedent chapters (in particular Theorem 2.1.10 and Theorem 3.4.9) turn out to be also
necessary.

The chapter is organized as follows. In Section 4.2 we present the main results, in both
the one-dimensional and multi-dimensional cases, and demonstrate the �Universality� of the
Poisson Wiener chaos. In Section 4.3, we introduce an important technical proposition as well
as the proofs of the main theorems.

4.2 Theorems

In the forthcoming discussion, we shall use several abbreviations:

• We write
N∑

i1,··· ,iq
for

∑
1≤i1,··· ,iq≤N

.

• For any function f in q variables, we write ∥f∥Lk for ∥f∥Lk(µq).

• For any function f in q variables, we write ∥f∥ for ∥f∥L2 = ∥f∥L2(µq).

• For any positive integer N , the symbol [N ] indicates the set {1, 2, · · · , N}.

• The operator ⊗ is used to denote a tensor product. In particular, for two functions
f, g ∈ L2(µ), f ⊗ g is the tensor product of f and g. That is, f ⊗ g(x, y) = f(x)g(y).

We recall that the de�nition of the contraction operators f ⋆lr g and f ⊗r g were given in
De�nition 1.1.6 and De�nition 1.1.17. It is worth mentioning that ⊗r is a particular case of
⋆lr, in the following sense:

f ⊗r f = f ⋆rr g(t1, , . . . , tp−r, s1, , . . . , sq−r) (4.1)

=

∫
Zr

µr(dz1, ..., dzr)f(z1, , . . . , zr, t1, . . . , tp−r)× g(z1, , . . . , zr, s1, . . . , sq−r).
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Fix integers p, q ≥ 0 and |q − p| ≤ k ≤ p + q, and consider two kernels f ∈ L2
s(µ

p) and
g ∈ L2

s(µ
q). We recall that the operator Gp,q

k is de�ned as follows (see formula (3.11)):

Gp,q
k (f, g)(z1, . . . , zk) =

p∧q∑
r=0

r∑
l=0

1(p+q−r−l=k)r!

(
p
r

)(
q
r

)(
r
l

)
f̃ ⋆lr g, (4.2)

where the tilde ∼ means symmetrization. By using this notation, the multiplication formula
(1.12) becomes the following orthogonal sum (see formula (3.12)):

Ip(f)Iq(g) =

p+q∑
k=|q−p|

Ik(G
p,q
k (f, g)). (4.3)

4.2.1 One-dimensional case: fourth moments and Universality

We recall the following theorem, which is the starting point of the �Malliavin-Stein method�.
(See Section 2.1.) This theorem states the simple fact: the convergence in law of a sequence
of Gaussian Wiener-Itô integrals towards a normal distribution can be characterized by their
variances and fourth moments.

Theorem 4.2.1 (see [39], [40], or Theorem 2.1.4 in this dissertation) Let

{Z(n) = IGq (h(n));n ≥ 1}

be a sequence of random variables belonging to the qth Gaussian Wiener-Itô chaos, for some

�xed integer q ≥ 2. Assume that Var(Z(n)) = E
[(
Z(n)

)2]
= 1 for all n. Then, as n → ∞,

the following three assertions are equivalent:

• i) Z(n) law−→ N (0, 1);

• ii) E
[(
Z(n)

)4]→ 3 ;

• iii) ∀r = 1, . . . , q − 1, ∥h(n)⊗̃rh
(n)∥L2 → 0 .

Recall that f⊗̃rg is the canonical symmetrization of f ⊗r g.

Now a natural question can be raised: on the Poisson space, can the convergence in law of
a sequence of Wiener-Itô integrals be characterized by their variances and fourth moments?
Theorem 2 in [47] gives a partial answer to this question, in the simple case of double Poisson
integrals. As a Poisson counterpart of Theorem 4.2.1, the theorem below provides a satisfac-
tory answer for homogeneous sums inside a �xed order Poisson chaos.

Theorem 4.2.2 Let {λi, i ≥ 1} be a collection of positive real numbers, under the assumption:
inf
i≥1

λi = η > 0. Let P = {Pi, i ≥ 1} be a collection of independent random variables such

that ∀i, Pi is a centered Poisson variable with parameter λi. Fix an integer q ≥ 1. Let
{N (n), f (n) : n ≥ 1} be such that {N (n);n ≥ 1} is a sequence of integers going to in�nity, and
each f (n) : [N (n)]q → R is symmetric and vanishes on diagonals. We set

F (n) = Qq(N
(n), f (n),P) =

N(n)∑
i1,··· ,iq

f (n)(i1, · · · , iq)Pi1 · · ·Piq = Iq(h
(n)),
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with

h(n) =

N(n)∑
i1,··· ,iq

f (n)(i1, · · · , iq)gi1 ⊗ · · · ⊗ giq ,

where the representation of F (n) as a multiple integral is the same as in Example 4.1.4. Suppose

that E
[(
F (n)

)2]→ σ2, for a given �xed constant σ. For the three statements:

• I) F (n) law−→ N (0, σ2), as n → ∞;

• II) E
[(
F (n)

)4]→ 3σ4 , as n → ∞;

• III)
∫ (

h(n)
)4 → 0 and ∀r = 1, · · · , q, ∀l = 1, · · · , r ∧ (q − 1), ∥h(n) ⋆lr h(n)∥L2 → 0.

One has the following implications:

• III) implies I);

• II) is equivalent to III);

• I) implies II), whenever {
(
F (n)

)4} is uniformly integrable.

The following theorem and the associated remark respond to the �Universality� question
raised in Introduction. Indeed, we show that homogeneous sums inside the Poisson Wiener
chaos possess the �Universality� property introduced in [36]

Theorem 4.2.3 (Universality of Poisson homogeneous sums) Let the notations of The-
orem 4.2.2 prevail. If either one of conditions II) and III) is veri�ed, then

Qq(N
(n), f (n), G̃) =

N(n)∑
i1,··· ,iq

f (n)(i1, · · · , iq)G̃i1 · · · G̃iq = IGq (h(n))
law−→ N (0, σ2),

with G̃ = {G̃i : i ≥ 1}, where G̃1, G̃2, · · · are independent Gaussian variables such that

G̃i ∼ N (0, λi). Here, the representation of Qq(N
(n), f (n), G̃) as a multiple integral is the same

as in Example 4.1.3.

Remark 4.2.4 As a consequence of Theorem 4.2.3 and Theorem 1.10 in [36], we deduce that,
the Poisson Wiener chaos is universal in the following sense: if

F (n) = Qq(N
(n), f (n),P)

law−→ N (0, σ2),

as n → ∞, and {
(
F (n)

)4} is uniformly integrable, then the following universal phenomenon
takes place:

• For every sequence �X = {X̃i; i ≥ 1} of independent and identically distributed centered
random variables with variance Var[X̃i] = λi, the sequence {Qq(N

(n), f (n), �X);n ≥ 1}
converges in law to N (0, σ2).
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4.2.2 Multi-dimensional case

The following theorem, which is a multi-dimensional generalization of Theorem 4.2.1, is in-
troduced in [37]. For details of this theorem and its proof, please see [37, Theorem 3.9], [39,
Theorem 7], [49, Theorem 1], as well as Theorem 2.1.7 in this dissertation.

Theorem 4.2.5 (Theorem 3.9 in [37]) Fix d ≥ 2 and let C = {C(i, j) : i, j = 1, . . . , d}
be a d × d positive de�nite matrix. Fix integers 1 ≤ q1 ≤ · · · ≤ qd. For any n ≥ 1 and

i = 1, . . . , d, let h
(n)
i belong to L2(µqi) . Assume that

F (n) = (F
(n)
1 , . . . , F

(n)
d ) := (IGq1(h

(n)
1 ), . . . , IGqd(h

(n)
d )) n ≥ 1,

is such that

lim
n→∞

E[F (n)
i F

(n)
j ] = C(i, j), 1 ≤ i, j ≤ d.

Then, as n → ∞, the following four assertions are equivalent:

• (i) The vector F (n) converges in distribution to a d-dimensional Gaussian vector Nd(0, C);

• (ii) for every 1 ≤ i ≤ d, E
[
(F

(n)
i )4

]
→ 3C(i, i)2;

• (iii) for every 1 ≤ i ≤ d and every 1 ≤ r ≤ qi − 1 , ∥h(n)i ⊗r h
(n)
i ∥L2 → 0;

• (iv) for every 1 ≤ i ≤ d, F
(n)
i converges in distribution to a centered Gaussian random

variable with variance C(i, i).

As in the one-dimensional case, we are looking for an equivalence of Theorem 4.2.5 on the
Poisson space. In a recent article together with G. Peccati [50] (see Chapter 3 in this disser-
tation), we have found a partial answer by proving a CLT for vectors of multiple Wiener-Itô
integrals. (See Theorem 5.8 in [50] or Theorem 3.4.9 in this dissertation). Now we present an
actual analogue of Theorem 4.2.5 for homogeneous sums inside the Poisson Wiener chaos.

Theorem 4.2.6 Let {λi, i ≥ 1} be a collection of positive real numbers, under the assumption
inf
i
λi = η > 0. Let P = {Pi, i ≥ 1} be a collection of independent random variables such that

∀i, Pi is a centered Poisson variable with parameter λi. Fix integers d ≥ 1, qd ≥ · · · q1 ≥ 1.

Let {N (n)
j , f

(n)
j : j = 1, · · · , d, n ≥ 1} be such that for every �xed j, {N (n)

j ;n ≥ 1} is a

sequence of integers going to in�nity, and each f
(n)
j : [N

(n)
j ]qj → R is symmetric and vanishes

on diagonals. We consider F (n) = (F
(n)
1 , · · · , F (n)

d ), where for every 1 ≤ j ≤ d,

F
(n)
j = Qqj (N

(n)
j , f

(n)
j ,P) =

N
(n)
j∑

i1,··· ,iqj

f
(n)
j (i1, · · · , iqj )Pi1 · · ·Piqj

= Iqj (h
(n)
j )

with

h
(n)
j =

N
(n)
j∑

i1,··· ,iqj

f
(n)
j (i1, · · · , iqj )gi1 ⊗ · · · ⊗ giqj ,
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and the representation of F
(n)
j as a multiple integral is the same as in Example 4.1.4. Given

a positive de�nite matrix C =
(
C(i, j)

)
d×d

, suppose that E[F (n)
i F

(n)
j ] → C(i, j), then, for the

four statements:

• I) F (n) law−→ N (0, C), as n → ∞;

• II) for each j = 1, · · · , d, E[(F (n)
j )4] → 3C(j, j)2 , as n → ∞;

• III) for each j = 1, · · · , d,
∫
(h

(n)
j )4 → 0 and ∀r = 1, · · · , qj, ∀l = 1, · · · , r ∧ (qj − 1),

∥h(n)j ⋆lr h
(n)
j ∥L2 → 0;

• IV) for each j = 1, · · · , d, F (n)
j

law−→ N (0, C(j, j)), as n → ∞.

One has the following implications:

• II) is equivalent to III);

• III) implies I);

• I) implies IV);

• and IV) implies II), whenever {
(
F

(n)
j

)4
: n = 1, 2, · · · } is uniformly integrable for each

�xed j = 1, · · · , d.

Theorem 4.2.7 (Multi-dimensional Universality of Poisson homogeneous sum) Let
all the notations in the preceeding theorem prevail. If either one of condition II) and III) is
true, then

H(n) = (H
(n)
1 , · · · ,H(n)

d )
law−→ N (0, C), n → ∞

where

H
(n)
j = Qqj (N

(n)
j , f

(n)
j , G̃) =

N
(n)
j∑

i1,··· ,iqj

f
(n)
j (i1, · · · , iqj )G̃i1 · · · G̃iqj

= IGqj (h
(n)
j ),

with G̃ = {G̃i : i ≥ 1}, with G̃1, G̃2, · · · independent Gaussian variables such that G̃i ∼
N (0, λi). Here, the representation of H

(n)
j as a multiple integral is the same as in Example

4.1.3.

Remark 4.2.8 As a consequence of Theorem 4.2.7 and Theorem 7.5 in [36], the vectors of
homogeneous sums inside the Poisson Wiener chaos are universal in the following sense: if,

for sequence of vectors F (n) = (F
(n)
1 , · · · , F (n)

d ), one has:

F (n) law−→ N (0, C),

as n → ∞, where for every 1 ≤ j ≤ d,

F
(n)
j = Qqj (N

(n)
j , f

(n)
j ,P) =

N
(n)
j∑

i1,··· ,iqj

f
(n)
j (i1, · · · , iqj )Pi1 · · ·Piqj

,

and {
(
F

(n)
j

)4
: n = 1, 2, · · · } is uniformly integrable for each �xed j = 1, · · · , d, then:
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• For every sequence �X = {X̃i; i ≥ 1} of independent centered random variables with
variance Var[X̃i] = λi and such that supi E|X̃i|3 < ∞, we have that the sequence

A(n) = (A
(n)
1 , · · · , A(n)

d ) converges in law to N (0, C), as n → ∞. Here, for each j =

1, . . . , d, A
(n)
j = Qqj (N

(n)
j , f

(n)
j , �X) .

4.3 Proofs

4.3.1 Technical results

We recall the ideas appearing in Example 4.1.4. Let P = {Pi : i ≥ 1} be de�ned as above,

without loss of generality, we set for every i ≥ 1, Pi = IN̂1 (gi), where N̂ indicates a compensated
Poisson measure on (Z,Z) with control µ, and g = {gi : i ≥ 1} is a collection of indicator
functions in L2(µ) with disjoint �nite supports. Precisely, we take gi = 1Ai with pairwise
disjoint sets Ai on Z, such that µ(Ai) = ∥gi∥2L2 = λi . Of course,for every integer p ≥ 2, we
also know that ∥gi∥pLp = λi. As in the statements of Theorem 4.2.2 and Theorem 4.2.6, we
assume that

inf
i
λi = η > 0.

We �x q ≥ 2. Now we consider a sequence {F (n);n ≥ 1} such that

F (n) = Qq(N
(n), f (n),P) =

N(n)∑
i1,··· ,iq

f (n)(i1, · · · , iq)I1(gi1) · · · I1(giq),

where {N (n)
j , f

(n)
j : j = 1, · · · , d, n ≥ 1} is such that for every �xed j, {N (n)

j ;n ≥ 1} is a

sequence of integers going to in�nity, and each f
(n)
j : [N

(n)
j ]qj → R is symmetric and vanishes

on diagonals. Thanks to the above discussion, each F (n) can be written as:

F (n) = Iq(h
(n)), h(n) =

N(n)∑
i1,··· ,iq

f (n)(i1, · · · , iq)gi1 ⊗ · · · ⊗ giq .

The following proposition is the key to the proof of our results in this chapter.

Proposition 4.3.1 We adopt the above notations and �x q ≥ 2. If ∀p = 1, 2, . . . , q − 1, one
has ∥h(n) ⋆pp h(n)∥L2 → 0, as n → ∞, then:

• A)
∫ (

h(n)
)4 → 0 , as n → ∞.

• B) ∀r = 1, · · · , q, ∀l = 1, · · · , r ∧ (q − 1), ∥h(n) ⋆lr h(n)∥L2 → 0 , as n → ∞.
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Proof. We have that, for p = 1, 2, . . . , q − 1

h(n) ⋆pp h
(n) =

∑
i1,··· ,iq

∑
j1,··· ,jq

f (n)(i1, · · · , iq)f (n)(j1, · · · , jq)

×(gi1 ⊗ · · · ⊗ giq) ⋆
p
p (gj1 ⊗ · · · ⊗ gjq)

=
∑

a1,··· ,ap

( ∑
i1,··· ,iq−p

∑
j1,··· ,jq−p

p∏
l=1

∥gal∥
2
L2f

(n)(a1, · · · , ap, i1, · · · , iq−p)

×f (n)(a1, · · · , ap, j1, · · · , jq−p) gi1 ⊗ · · · ⊗ giq−p ⊗ gj1 ⊗ · · · ⊗ gjq−p

)
=

∑
k1,··· ,k2q−2p

∑
a1,··· ,ap

f (n)(a1, · · · , ap, k1, · · · , kq−p)f
(n)(a1, · · · , ap, kq−p+1, · · · , k2q−2p)

×
p∏

l=1

∥gal∥
2
L2gk1 ⊗ · · · ⊗ gk2q−2p

=
∑

k1,··· ,k2q−2p

∑
a1,··· ,ap

f (n)(a1, · · · , ap, k1, · · · , kq−p)f
(n)(a1, · · · , ap, kq−p+1, · · · , k2q−2p)

×

(
p∏

l=1

λal

)
gk1 ⊗ · · · ⊗ gk2q−2p ,

therefore

∥h(n) ⋆pp h(n)∥2L2 =
∑

k1,··· ,k2q−2p

( ∑
a1,··· ,ap

p∏
l=1

λalf
(n)(a1, · · · , ap, k1, · · · , kq−p)

×f (n)(a1, · · · , ap, kq−p+1, · · · , k2q−2p)
)2 2q−2p∏

m=1

λkm . (4.4)

Firstly, we prove A).

(
h(n)

)4
=

∑
i1,··· ,iq

∑
j1,··· ,jq

∑
k1,··· ,kq

∑
s1,··· ,sq

f (n)(i1, · · · , iq)f (n)(j1, · · · , jq)f (n)(k1, · · · , kq)f (n)(s1, · · · , sq)

×(gi1 ⊗ · · · ⊗ giq)× (gj1 ⊗ · · · ⊗ gjq)× (gk1 ⊗ · · · ⊗ gkq)× (gs1 ⊗ · · · ⊗ gsq)

=
∑

i1,··· ,iq

(
f (n)

)4
(i1, · · · , iq)gi1 ⊗ · · · ⊗ giq ,

therefore,

∫ (
h(n)

)4
dµq =

∑
i1,··· ,iq

(
f (n)

)4
(i1, · · · , iq)

q∏
l=1

∥gil∥
2
L2

=
∑

i1,··· ,iq

(
f (n)

)4
(i1, · · · , iq)

q∏
l=1

λil .
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Formula (4.4) in the case p = q − 1 yields,

∥h(n) ⋆q−1
q−1 h

(n)∥2 =
∑
k1,k2

( ∑
a1,··· ,aq−1

q−1∏
l=1

λalf
(n)(a1, · · · , aq−1, k1)

×f (n)(a1, · · · , aq−1, k2)
)2

λk1 × λk2

≥
∑
k

( ∑
a1,··· ,aq−1

q−1∏
l=1

∥gal∥
2
L2

(
f (n)

)2
(a1, · · · , aq−1, k)

)2
λ2
k

=
∑

a1,··· ,aq−1

∑
b1,··· ,bq−1

( q−1∏
l=1

λalλbl

×
∑
k

(
f (n)

)2
(a1, · · · , aq−1, k)

(
f (n)

)2
(b1, · · · , bq−1, k)λ

2
k

)
≥

∑
a1,··· ,aq−1

(
f (n)

)4
(a1, · · · , aq)

q∏
l=1

λ2
al

≥
∫ (

h(n)
)4

dµq × ηq,

which proves statement A), since η = inf
i
{µ(Ai)} > 0.

The proof of B) consists of two steps.
B1) Let r = q, for any l ∈ {1, · · · , q − 1}, we have,

h(n) ⋆lq h
(n)

=
∑

i1,··· ,iq

∑
j1,··· ,jq

f (n)(i1, · · · , iq)f (n)(j1, · · · , jq)[gi1 ⊗ · · · ⊗ giq ] ⋆
l
r [gj1 ⊗ · · · ⊗ gjq ]

=
∑

a1,··· ,al

l∏
s=1

λas

∑
b1,··· ,bq−l

gb1 ⊗ · · · ⊗ gbq−l
× f2(a1, · · · , al, b1, · · · , bq−l)

=
∑

b1,··· ,bq−l

gb1 ⊗ · · · ⊗ gbq−l

( ∑
a1,··· ,al

l∏
s=1

λasf
2(a1, · · · , al, b1, · · · , bq−l)

)
,

which leads to

∥h(n) ⋆lq h(n)∥2

=
∑

b1,··· ,bq−l

q−l∏
t=1

λbt

( ∑
a1,··· ,al

l∏
s=1

λasf
2(a1, · · · , al, b1, · · · , bq−l)

)2
≤ 1

ηq−l
∥h(n) ⋆ll h(n)∥,

which yields the desired conclusion.
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B2) For any r = 1, · · · , q − 1, and l = 1, · · · , r, we see that

h(n) ⋆lr h
(n)

=
∑

a1,··· ,al

l∏
s=1

λas

 ∑
b1,··· ,br−l

gb1 ⊗ · · · ⊗ gbr−l

 ∑
i1,··· ,iq−r

∑
j1,··· ,jq−r

gi1 ⊗ · · · ⊗ giq−r ⊗ gj1 ⊗ · · · ⊗ gjq−r

×f(a1, · · · , al, b1, · · · , br−l, i1, · · · , iq−r)f(a1, · · · , al, b1, · · · , br−l, j1, · · · , jq−r)

=
∑

b1,··· ,br−l

∑
i1,··· ,iq−r

∑
j1,··· ,jq−r

gb1 ⊗ · · · ⊗ gbr−l
⊗ gi1 ⊗ · · · ⊗ giq−r ⊗ gj1 ⊗ · · · ⊗ gjq−r

×
∑

a1,··· ,al

l∏
s=1

λasf(a1, · · · , al, b1, · · · , br−l, i1, · · · , iq−r)f(a1, · · · , al, b1, · · · , br−l, j1, · · · , jq−r).

Consequently,

∥h(n) ⋆lr h(n)∥2 =
∑

b1,··· ,br−l

∑
i1,··· ,iq−r

∑
j1,··· ,jq−r

r−l∏
u=1

λbu

q−r∏
v=1

λivλjv

×

[ ∑
a1,··· ,al

l∏
s=1

λasf(a1, · · · , al, b1, · · · , br−l, i1, · · · , iq−r)f(a1, · · · , al, b1, · · · , br−l, j1, · · · , jq−r)

]2
≤ 1

ηr−l
∥h(n) ⋆ll h(n)∥.

which concludes the proof, as η = inf
i
{µ(Ai)} > 0.

4.3.2 Proofs of Theorems

We give below the proof of Theorem 4.2.2.

Proof of Theorem 4.2.2.
I) to II) is a consequence of U.I. of {

(
F (n)

)4}. And III) to I) is given by Theorem 5.1 in [46]
(or Theorem 2.1.10 in this dissertation). We need only to show the equivalence between II)
and III).

For any function f ∈ L2(µq), the orthogonal sum of Iq(f) in formula (4.3) implies that

Iq(f)
2 =

2q∑
k=0

Ik
(
Gq,q

k (f, f)
)
.

As a consequence, by exploiting the orthogonality of multiple integrals with di�erent orders,

E[Iq(f)4] =

2q∑
k=0

k!∥Gq,q
k (f, f)∥2

= ∥Gq,q
0 (f, f)∥2 + (2q)!∥Gq,q

2q (f, f)∥
2 +

2q−1∑
k=1

k!∥Gq,q
k (f, f)∥2, (4.5)
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where
∥Gq,q

0 (f, f)∥2 = q!∥f∥4,

and

(2q)!∥Gq,q
2q (f, f)∥

2 = (2q)!∥f̃ ⋆00 f∥
2 = 2q!∥f∥4 +

q−1∑
p=1

(q!)4

(p!(q − p)!)2
∥f ⋆pp f∥2, (4.6)

according to (11.6.30) in [48].
If condition III) holds, we know that ∥h(n) ⋆lr h(n)∥ → 0, as n → ∞, ∀r = 1, · · · , q,

∀l = 1, · · · , r ∧ (q − 1). We take f = h(n) in the above relation (4.5). In view of the de�-

nition of Ga,b
k in formula (4.2), and the fact that ∥h(n)∥2 → σ2, we deduce immediately that

E[
(
F (n)

)4
] → 3σ4. So condition III) implies condition II).

On the other hand, by relation (4.5) and (4.6), E[
(
F (n)

)4
] → 3σ4 implies ∥h(n) ⋆pp h(n)∥ →

0, ∀p = 1, · · · , q − 1. By taking f = h(n) in Proposition 4.3.1, we have immediately that∫ (
h(n)

)4 → 0 and ∀r = 1, · · · , q, ∀l = 1, · · · , r ∧ (q − 1), ∥h(n) ⋆lr h(n)∥2L2 → 0. So condition
III) is implied by condition II).

Next, we show Theorem 4.2.3.

Proof of Theorem 4.2.3.
Since

F (n) =

N(n)∑
i1,··· ,iq

f (n)(i1, · · · , iq)Pi1 · · ·Piq = IN̂q (h(n))

and

Qq(N
(n), f (n), G̃) =

N(n)∑
i1,··· ,iq

f (n)(i1, · · · , iq)G̃i1 · · · G̃iq = IGq (h(n))

share the kernel
h(n) =

∑
i1,··· ,iq

f (n)(i1, · · · , iq)gi1 ⊗ · · · ⊗ giq ,

we need only to verify condition iii) in Theorem 4.2.1 for kernel h(n), in order to obtain the
convergence of Qq(N

(n), f (n), G̃). In view of Jensen's inequality,

∥h(n)⊗̃rh
(n)∥L2 = ∥h(n)⋆̃rrh(n)∥L2 ≤ ∥h(n) ⋆rr h(n)∥L2 .

condition III) implies immediately condition iii) in Theorem 4.2.1, and we conclude the proof.

Since we have shown Theorem 4.2.2, the proof of Theorem 4.2.6 is easy.

Proof of Theorem 4.2.6.
The equivalence of II) and III) is given by Theorem 4.2.2 above. By Theorem 5.8 in [50] (or
Theorem 3.4.9 in this dissertation), III) implies I). From I) to IV) is a property of Gaussian
vectors. By using again Theorem 4.2.2, we may deduce II) from VI) under the U.I. condition.
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Finally, the proof of Theorem 4.2.7 is analogous to that of Theorem 4.2.3.

Proof of Theorem 4.2.7. By Proposition 4.3.1,

∥h(n) ⋆rr h(n)∥L2 → 0

implies
∥h(n)⊗̃rh

(n)∥L2 → 0,

as n → ∞. Since Qqj (N
(n)
j , f

(n)
j ,P) and Qqj (N

(n)
j , f

(n)
j , G̃) have the same kernel when rep-

resented as multiple integrals, if condition III) is true for Qqj (N
(n)
j , f

(n)
j ,P), condition iii) in

Theorem 4.2.5 also holds for Qqj (N
(n)
j , f

(n)
j , G̃).



Chapter 5

Almost Sure Central Limit Theorems
on the Poisson space

This chapter is based on the paper in preparation [69] by C. Zheng.

5.1 Introduction of the chapter

In a recent paper, Bercu, Nourdin and Taqqu [3] have studied Almost Sure Central Limit
Theorems (ASCLTs in the sequel) for sequences of functionals of general Gaussian �elds, by
combining Malliavin calculus and some probabilistic estimate techniques (namely Stein-type
techniques and the �smart path� technique, see Chapter 2).

The aim of the present chapter is to extend the analysis initiated in [3] to the framework
of the normal approximation of regular functionals of Poisson measures de�ned on abstract
Borel spaces. As the main result of our study, we obtain ASCLTs for functionals of Poisson
measures, in both the one-dimensional and the multi-dimensional settings. Concretely, we
prove ASCLTs for sequences of multiple Wiener-Itô stochastic integrals of arbitrary �xed or-
der with respect to a general Poisson measure, as well as ASCLTs for sequences of vectors of
Wiener -Itô integrals. We have established a set of conditions which are expressed in terms
of the �star contraction operators�, introduced in Section 2.1.3 (see also [46]) and in Chapter 3.

De�nition 5.1.1 (ASCLT) Fix an integer m ≥ 1. Let {Gn} be a sequence of Rm-valued
random elements converging in distribution towards a Rm-valued random element G∞. We
say that an ASCLT holds for {Gn}, if, almost surely, for all continuous and bounded function
φ : Rm → R, we have that

1

log n

n∑
k=1

1

k
φ(Gk) −→ E[φ(G∞)], as n → ∞.

Remark 5.1.2 Let

Sk =
1√
k

k∑
i=1

Xi, k ≥ 1,

97
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with {Xi; i ≥ 1} a sequence of real-valued independent identical distribution random variables,
with E[Xi] = 0, E[X2

i ] = 1. Then, a classic result states that the sequence Sk veri�es an
ASCLT in the sense of De�nition 5.1.1, where G∞ is a standard Gaussian variable. In other
words, the sequence of weighted random empirical measures, given by

1

log n

n∑
k=1

1

k
δSk

almost surely weakly converges to the N (0, 1) distribution as n → ∞. This ASCLT was �rst
stated by P. Lévy in [26] without proof. It was rediscovered by Brosamler [6] and Schatte [60]
half a century later. After that, Lacey and Philipp [23], and other researchers (e.g. [4, 17])
studied the ASCLT for partial sums both in the case of independent random variables and in
the case of weak dependence, for instance, in the context of strong mixing or ρ-mixing. (See
[18] for a survey of ASCLT.) Among these authors, Ibragimov and Lifshits [20] have provided
a criterion for general ASCLTs.

We present here the important result by Ibragimov and Lifshits [20], which is the basis of
our forthcoming discussion.

For x, y ∈ Rm, we write ⟨x, y⟩ = x1y1 + . . . + xmym (resp. |x| =
√

⟨x, x⟩) to indicate the
inner product of x and y (resp. the norm of x).

Theorem 5.1.3 (Ibragimov and Lifshits, [20]) Fix an integer m ≥ 1. Let {Gn} be a se-
quence of Rm-valued random elements converging in distribution towards a Rm-valued random
element G∞, and set

∆n(t) =
1

log n

n∑
k=1

1

k

(
exp(i⟨t, Gk⟩)− E[exp(i⟨t, G∞⟩)]

)
, t ∈ Rm.

If, for all r > 0,

sup
|t|≤r

∑
n

E[|∆n(t)|2]
n log n

< ∞,

then the ASCLT holds for {Gn}.

The main technique used in this chapter is the �Malliavin-Stein� method introduced in
Chapter 2 and Chapter 3. Once again, the main idea, is to assess the distance between the
law of a functional F in the Poisson space and that of a normally distributed element Z:

sup |E[ϕ(F )]− E[ϕ(Z)]|

by means of estimates involving Malliavin operators. As shown in Chapter 3, the estimation
can be done either by Stein's method or by the �smart path� interpolation technique.

In the present chapter, we shall consider the particular case where ϕ(x) = exp(itx) (or
taking ϕ(x) = exp(i⟨t, x⟩) in the multivariate case), and then derive an upper bound (see
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Proposition 5.2.5) of the type:∣∣E[exp(itF )]− exp(−t2/2)
∣∣

≤ |t|2
∣∣1− E[F 2]

∣∣+ 1

2
|t|4
∫
Z
µ(dz)E

[
|DzF |2|DzL

−1F |
]

+
√
3|t|2

(√
E∥⟨D2F,−DL−1F ⟩L2(µ)∥2L2(µ)

+
√

E∥⟨DF,−D2L−1F ⟩L2(µ)∥2L2(µ)

+
√

E∥⟨D2F,−D2L−1F ⟩L2(µ)∥2L2(µ)

)
,

with the help of the Poincaré inequality stated in Lemma 5.2.1. A multi-dimensional counter-
part of this estimates(Proposition 5.5.1) will be developed along the same route.

Based on this assessment, we may deduce an upper bound for E|∆n(t)|2 in Proposition
5.2.6. In the particular case of Wiener-Itô multiple integrals, one can obtain an explicit eval-
uation of the above upper bound, which leads to ASCLTs through Ibragimov and Lifshits's
�ndings. Consequently, for each CLT built in [46] and in Chapter 3, we establish its corre-
sponding ASCLT with practical and simple criteria.

The chapter is organized as follows. In Section 5.2, we apply the the �smart path� interpo-
lation techniques in order to deduce an upper bound for the functional E|∆n(t)|2. In Section
5.3 we develop several tools crucial for the derivation of an upper bound for E|∆n(t)|2, in the
case of Wiener-Itô multiple integrals. In Section 5.4 we �nd the ASCLT counterparts of the
one-dimensional CLTs built in Section 2.1.3 (or in [46]), and in Section 5.5 we study multi-
dimensional ASCLTs. To conclude the chapter, in Section 5.6, we revisit all the examples
concerning functionals of Ornstein-Uhlenbeck Lévy processes from Chapter 3.

5.2 Estimation

In order to study the ASCLTs on the Poisson space, we shall verify the conditions in Theorem
5.1.3. In this section, we present a series of estimate techniques in the framework of Malliavin
calculus leading to an explicit upper bound for E[|∆n(t)|2] in Proposition 5.2.6.

Lemma 5.2.1 (Poincaré inequality � Houdré, Pérez-Abreu, [19]) Let F ∈ DomD
be a Poisson functional, then

Var(F ) ≤ E∥DF∥2L2(µ).

Lemma 5.2.2 (Nualart and Vives, Lemma 6.1 and Theorem 6.2 in [41]) Let F ,F ∗ be
two Poisson functionals such that F, F ∗, FF ∗ ∈ DomD. Then we have

D(FF ∗) = DF × F ∗ + F ×DF ∗ +DF ×DF ∗.

The following lemma is a direct application of Lemma 5.2.2.

Lemma 5.2.3 Let F ,F ∗ be two Poisson functionals such that F, F ∗ ∈ D2,2. Suppose that
∀z ∈ Z, DzF ×DzF

∗ ∈ DomD , and ⟨DF,DF ∗⟩L2(µ) ∈ DomD. Then we have

Dt⟨DF,DF ∗⟩L2(µ) = ⟨DF,DDtF
∗⟩L2(µ) + ⟨DDtF,DF ∗⟩L2(µ) + ⟨DDtF,DDtF

∗⟩L2(µ),

P-a.s. , for µ-a.e. t ∈ Z.
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Proof. We shall show that, P-a.s. , for µ-a.e. t ∈ Z:

Dt⟨DF,DF ∗⟩L2(µ) = Dt

(∫
Z
µ(dz)DzF ×DzF

∗
)

(1)
= Ψt

(∫
Z
µ(dz)DzF ×DzF

∗
)

(2)
=

∫
Z
µ(dz)Ψt(DzF ×DzF

∗)

(3)
=

∫
Z
µ(dz)

(
DzF ×ΨtDzF

∗ +ΨtDzF ×DzF
∗ +ΨtDzF ×ΨtDzF

∗
)

(4)
= ⟨DF,ΨtDF ∗⟩L2(µ) + ⟨ΨtDF,DF ∗⟩L2(µ) + ⟨ΨtDF,ΨtDF ∗⟩L2(µ)

(5)
= ⟨DF,DtDF ∗⟩L2(µ) + ⟨DtDF,DF ∗⟩L2(µ) + ⟨DtDF,DtDF ∗⟩L2(µ),

where ΨtF = F (ω+ δt)−F (ω) with δt a Dirac operator on t. Now we justify relation (1)-(5).

Relation (1) and (5) are implied by Lemma 1.2.4. Relation (3) is obtained by using Lemma
5.2.2 and Lemma 1.2.4. In order to justify (2) and (4), we need the following facts.

By de�nition, F, F ∗ ∈ D2,2 imply that DzF and DzF
∗ are both elements of L2(P;L2(µ)).

Without loss of generality, one can alway select versions of DF and DF ∗ such that

{z 7→ DzF (ω)} ∈ L2(µ), ∀ω ∈ Ω,

{z 7→ DzF
∗(ω′)} ∈ L2(µ), ∀ω′ ∈ Ω.

So, for any pair (ω, ω′) ∈ Ω× Ω, we have, by Cauchy-Schwarz inequality, that

{z 7→ DzF (ω)×DzF
∗(ω′)} ∈ L1(µ). (5.1)

To justify (2), we set ϕ(ω, z) = DzF (ω) × DzF
∗(ω), Since ϕ ∈ DomD,

∫
Z ϕ(ω, z)µ(dz) ∈

DomD, and {z 7→ ϕ(ω, z)} ∈ L1(µ),∀ω, we have that,

Ψt

∫
Z
ϕ(ω, z)µ(dz)

=

∫
Z
ϕ(ω + δt, z)µ(dz)−

∫
Z
ϕ(ω, z)µ(dz)

=

∫
Z
Ψtϕ(ω, z)µ(dz)

, which justi�es (2).

To justify (4), we need to show that ∀ω ∈ Ω, the following applications:

{z 7→ DzF (ω)×ΨtDzF
∗(ω)}

{z 7→ ΨtDzF (ω)×DzF
∗(ω)}

{z 7→ ΨtDzF (ω)×ΨtDzF
∗(ω)}
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are elements in L1(µ).

Indeed, since DzF
∗(ω) ∈ DomD, by Lemma 1.2.4 and relation (5.1), we have that, for any

ω ∈ Ω, the following application (with respect to z):

DzF (ω)× (ΨtDzF
∗(ω))

= DzF (ω)× (DzF
∗(ω + δt)−DzF

∗(ω))

= DzF (ω)×DzF
∗(ω + δt)−DzF (ω)×DzF

∗(ω))

belongs to L1(µ).

The proofs that the other two elements belong to L1(µ) is completely analogous.

Remark 5.2.4 Let F = Ip(f) and F ∗ = Ip(f
∗) for two kernel functions f ∈ L2

s(µ
p),

f∗ ∈ L2
s(µ

q). Suppose that f, f∗ satisfy Assumption A and B de�ned in De�nition 1.1.7. We
look for appropriate conditions on f and f∗ in order to apply Lemma 5.2.3. We need only to
verify the following two conditions: (1) ⟨DF,DF ∗⟩L2(µ) ∈ DomD ; (2) DzF ×DzF

∗ ∈ DomD
for all z ∈ Z.

Let fz(·) denote f(z, ·). By using relation (3.12), we have,

⟨DF,DF ∗⟩L2(µ) = pq

∫
Z
µ(dz)Ip−1(fz)Iq−1(f

∗
z )

= pq

∫
Z
µ(dz)

p+q−2∑
k=|q−p|

Ik(G
p−1,q−1
k (fz, f

∗
z )).

Therefore, by conducting the same deductions shown in the proof of Proposition 3.4.6, Con-
dition (1) is justi�ed under the Assumption C in De�nition 3.4.4 in this dissertation.

In practice, Assumption C can be replaced by simpler (but stronger) assumptions. Indeed,
according to Remark 3.4.5, Assumption C is implied by the following stronger condition: for
every k = |q − p| ∨ 1, . . . , p+ q − 2, and every (r, l) satisfying p+ q − 2− r − l = k, one has∫

Z

[√∫
Zk

(f(z, ·) ⋆lr f∗(z, ·))2dµk

]
µ(dz) < ∞. (5.2)

Then, by inequality (1.9), we have∫
Z

[√∫
Zk

(f(z, ·) ⋆lr f∗(z, ·))2dµk

]
µ(dz)

=

∫
Z

[√
∥fz ⋆lr f∗

z ∥2L2(µk)

]
µ(dz)

≤
∫
Z

[√
1

2
∥fz ⋆lr fz∥2L2(µ2p−r−l−2)

+
1

2
∥f∗

z ⋆lr f
∗
z ∥2L2(µ2q−r−l−2)

]
µ(dz)

≤
√
2

2

(∫
Z
∥fz ⋆lr fz∥L2(µ2p−r−l−2)µ(dz) +

∫
Z
∥f∗

z ⋆lr f
∗
z ∥L2(µ2q−r−l−2)µ(dz)

)
.
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From now on, a kernel f ∈ L2
s(µ

p) is said to satisfy Assumption D if for any integers s, t
satisfying 1 ≤ s ≤ t ≤ p− 1,∫

Z
∥fz ⋆st fz∥L2(µ2p−s−t−2)µ(dz) < ∞. (5.3)

So Assumption C is veri�ed whenever both f and f∗ satisfy Assumption D.

In order to satisfy Condition (2), we need to verify that for each z ∈ Z,

pqIp−1(fz)Iq−1(f
∗
z ) ∈ DomD.

We know from relation (3.12) that

Ip−1(fz)Iq−1(f
∗
z ) =

p+q−2∑
k=|q−p|

Ik(G
p−1,q−1
k (fz, f

∗
z )).

Therefore, Condition (2) is implied by the following
Assumption E: ∀z ∈ Z, for each k = |q − p| ∨ 1, · · · , p+ q − 2,∫

Zk

Gp−1,q−1
k (f(z, ·), f∗(z, ·))dµk < ∞. (5.4)

Consequently, multiple integrals satisfying Assumption D and E are eligible for Lemma 5.2.3.

To study the functional ∆n in Theorem 5.1.3, we need the estimate below.

Proposition 5.2.5 Let F be a Poisson functional such that E[F ] = 0, F ∈ D2,2 , DF ×
DL−1F ∈ DomD and ⟨DF,DL−1F ⟩L2(µ) ∈ DomD. Then, ∀t ∈ R,∣∣E[exp(itF )]− exp(−t2/2)

∣∣
≤ |t|2

∣∣1− E[F 2]
∣∣+ |t|2

√
Var(W ) +

1

2
|t|4
∫
Z
µ(dz)E

[
|DzF |2|DzL

−1F |
]

≤ |t|2
∣∣1− E[F 2]

∣∣+ 1

2
|t|4
∫
Z
µ(dz)E

[
|DzF |2|DzL

−1F |
]

+
√
3|t|2

(√
E∥⟨D2F,−DL−1F ⟩L2(µ)∥2L2(µ)

+
√

E∥⟨DF,−D2L−1F ⟩L2(µ)∥2L2(µ)

+
√

E∥⟨D2F,−D2L−1F ⟩L2(µ)∥2L2(µ)

)
,

where W = ⟨DF,−DL−1F ⟩L2(µ).

Proof. Let φ(t) = exp(t2/2)E[exp(itF )], then by using the generalized chain rules Lemma
3.2.1,

φ′(t) = t exp(t2/2)E[exp(itF )] + i exp(t2/2)E[F exp(itF )]

= t exp(t2/2)E[exp(itF )]− t exp(t2/2)E[exp(itF )⟨DF,−DL−1F ⟩L2(µ)]

+ it exp(t2/2)E[⟨R,−DL−1F ⟩L2(µ)],
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with

∣∣E[⟨R,−DL−1F ⟩L2(µ)]
∣∣ ≤ 1

2
∥
(
exp(itx)

)′′
xx
∥∞ ×

∫
Z
µ(dz)E

[
|DzF |2|DzL

−1F |
]
.

Then,

|φ(t)− φ(0)| ≤ sup
u∈[0,t]

|φ′(u)| × |t|

≤ |t|2 exp(t2/2)E
[
|1− ⟨DF,−DL−1F ⟩L2(µ)|

]
+

1

2
|t|2 exp(t2/2)× ∥

(
exp(itx)

)′′
xx
∥∞ ×

∫
Z
µ(dz)E

[
|DzF |2|DzL

−1F |
]

≤ |t|2 exp(t2/2)E
[
|1− ⟨DF,−DL−1F ⟩L2(µ)|

]
+

1

2
|t|4 exp(t2/2)

∫
Z
µ(dz)E

[
|DzF |2|DzL

−1F |
]
.

What remains to us is to evaluate the upper bound of the above inequality.
Since

Var(F ) = E[F 2] = E[⟨DF,−DL−1F ⟩L2(µ)],

we apply Cauchy-Schwarz inequality, and inequality

Var(W ) ≤ E[∥DW∥2L2(µ)] (by Poincaré inequality Lemma 5.2.1),

then we have

E
[
|1− ⟨DF,−DL−1F ⟩L2(µ)|

]
≤ E

[
|1− E[F 2]|

]
+
√

Var(W )

≤ E
[
|1− E[F 2]|

]
+
√

E[∥DW∥2
L2(µ)

]

By the de�nition of D and L−1, it is easy to deduce that F ∈ D2,2 implies L−1F ∈ D2,2, so
all the conditions to apply Lemma 5.2.3 on F and L−1F are satis�ed. Note that (a+b+c)2 ≤
3(a2 + b2 + c2), ∀a, b, c ∈ R, we have:

∥DW∥2L2(µ) = ∥⟨D2F,−DL−1F ⟩L2(µ) + ⟨DF,−D2L−1F ⟩L2(µ) + ⟨D2F,−D2L−1F ⟩L2(µ)∥2L2(µ)

≤ 3∥⟨D2F,−DL−1F ⟩L2(µ)∥2L2(µ) + 3∥⟨DF,−D2L−1F ⟩L2(µ)∥2L2(µ)

+ 3∥⟨D2F,−D2L−1F ⟩L2(µ)∥2L2(µ).

Finally, the conclusion is obtained by using the inequality√
a2 + b2 + c2 ≤ |a|+ |b|+ |c|, ∀a, b, c ∈ R.

To conclude the section, we present an explicit upper bound for E[|∆n(t)|2], with the help
of Malliavin calculus.

Proposition 5.2.6 Let {F (k); k = 1, . . . , n} be a sequence of Poisson functionals such that
F (k) ∈ D2,2, E[F (k)] = 0 and Var[F (k)] = 1, for all k = 1, . . . , n. We also suppose that
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DF (k) × DL−1F (l) ∈ DomD and ⟨DF (k), DL−1F (l)⟩L2(µ) ∈ DomD for all k, l = 1, . . . , n.
Then, for any �xed positive real number r and ∀t ≤ r, the functional ∆n(t) de�ned as

∆n(t) =
1

log n

n∑
k=1

1

k

(
exp(itF (k))− E[exp(itZ)]

)
, Z ∼ N (0, 1)

satis�es:

E|∆n(t)|2 ≤
1

log2 n

n∑
k,l=1

1

kl

(
2r2|E[F (k)F (l)]|+ 4

√
3r2S(F (k), F (l))

+ 2r4
∫
Z
µ(dz)E

[
|Dz(F

(k) − F (l))|2|DzL
−1(F (k) − F (l))|

] )
+

2Ln

log2 n

n∑
k=1

1

k

(
3
√
3r2S(F (k), F (k)) +

1

2
r4
∫
Z
µ(dz)E

[
|DzF

(k)|2|DzL
−1F (k)|

] )
with

S(F, F ∗) =
√

E∥⟨D2F,−DL−1F ∗⟩L2(µ)∥2L2(µ)
+
√

E∥⟨DF,−D2L−1F ∗⟩L2(µ)∥2L2(µ)

+
√

E∥⟨D2F,−D2L−1F ∗⟩L2(µ)∥2L2(µ)
(5.5)

and Ln =
n∑

k=1

1

k
.

Proof. Given a positive real number r. We note g(t) = E[exp(itZ)] = exp(−t2/2), |t| ≤ r.
Then

E|∆n(t)|2 =
1

log2 n

n∑
k,l=1

1

kl
E[
(
exp(itF (k))− g(t)

)(
exp(−itF (l))− g(t)

)
]

=
1

log2 n

n∑
k,l=1

1

kl

((
E
[
exp

(
it(F (k) − F (l))

)]
− g2(t)

)
− g(t)

(
E[exp(itF (k))]− g(t)

)
−g(t)

(
E[exp(−itF (l))]− g(t)

))
.

Now we apply Proposition 5.2.5 to Poisson functional F (k)−F (l)
√
2

, and we have∣∣∣E[ exp (it(F (k) − F (l))
)]

− g2(t)
∣∣∣

=

∣∣∣∣∣E[exp(it√2
F (k) − F (l)

√
2

)]− g(
√
2t)

∣∣∣∣∣
≤ 2r2

∣∣∣∣1− 1

2
E[(F (k) − F (l))2]

∣∣∣∣+ 2r2
√
Var

(
⟨D(F (k) − F (l)),−DL−1(F (k) − F (l))⟩L2(µ)

)
+

1

2
× 4r4

∫
Z
µ(dz)E

[
|Dz(F

(k) − F (l))|2|DzL
−1(F (k) − F (l))|

]
.

Notice that∣∣∣∣1− 1

2
E[(F (k) − F (l))2]

∣∣∣∣ = ∣∣∣∣1− 1

2
E[(F (k))2]− 1

2
E[(F (l))2] + E[F (k)F (l)]

∣∣∣∣ = |E[F (k)F (l)]|,
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and √
Var

(
⟨D(F (k) − F (l)),−DL−1(F (k) − F (l))⟩L2(µ)

)
=

√
Var

(
⟨DF (k),−DL−1F (k)⟩L2(µ) − ⟨DF (k),−DL−1F (l)⟩L2(µ) − ⟨DF (l),−DL−1F (k)⟩L2(µ)

+⟨DF (l),−DL−1F (l)⟩L2(µ)

)
≤

√
Var

(
⟨DF (k),−DL−1F (k)⟩L2(µ)

)
+
√

Var
(
⟨DF (k),−DL−1F (l)⟩L2(µ)

)
+

√
Var

(
⟨DF (l),−DL−1F (k)⟩L2(µ)

)
+
√

Var
(
⟨DF (l),−DL−1F (l)⟩L2(µ)

)
.

By similar arguments in the proof of Proposition 5.2.5, we get∣∣∣E[ exp (it(F (k) − F (l))
)]

− g2(t)
∣∣∣

≤ 2r2|E[F (k)F (l)]|+ 1

2
× 4r4

∫
Z
µ(dz)E

[
|Dz(F

(k) − F (l))|2|DzL
−1(F (k) − F (l))|

]
+ 2

√
3r2
(
S(F (k), F (k)) + S(F (k), F (l)) + S(F (l), F (k)) + S(F (l), F (l))

)
,

with S(·, ·) de�ned in (5.5).

Then, by Proposition 5.2.5 and the fact that |g(t)| ≤ 1,

E|∆n(t)|2 ≤
1

log2 n

n∑
k,l=1

1

kl

(
2r2|E[F (k)F (l)]|+ 2

√
3r2
(
S(F (k), F (l)) + S(F (l), F (k))

)
+ (2

√
3 +

√
3)r2

(
S(F (k), F (k)) + S(F (l), F (l))

)
+

1

2
r4
∫
Z

(
E
[
|DzF

(k)|2|DzL
−1F (k)|

]
+ E

[
|DzF

(l)|2|DzL
−1F (l)|

]
+ 4E

[
|Dz(F

(k) − F (l))|2|DzL
−1(F (k) − F (l))|

] )
µ(dz)

)
=

1

log2 n

n∑
k,l=1

1

kl

(
2r2|E[F (k)F (l)]|+ 4

√
3r2S(F (k), F (l))

+ 2r4
∫
Z
µ(dz)E

[
|Dz(F

(k) − F (l))|2|DzL
−1(F (k) − F (l))|

] )
+

2Ln

log2 n

n∑
k=1

1

k

(
3
√
3r2S(F (k), F (k)) +

1

2
r4
∫
Z
µ(dz)

(
E
[
|DzF

(k)|2|DzL
−1F (k)|

] )
.

5.3 The case of the Poisson Wiener chaos

In the previous section, we have obtained an explicit bound for E[|∆n(t)|2], but the explicit
assessment of Malliavin operators remains a obstacle. From now on, we study the Poisson
multiple stochastic integrals, for which we are able to evaluate these Malliavin functionals.
We shall establish ASCLTs for them.
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5.3.1 Two properties of the star contraction

We present here two properties of the star contraction. By convention, we denote by fu(·) the
function f(u, ·) with a �xed parameter u.

Lemma 5.3.1 Given integers s, t, p, q such that 0 ≤ s ≤ t ≤ p∧ q, we de�ne k = p+ q−s− t.
Let f ∈ L2

s(µ
p+1) and g ∈ L2

s(µ
q) be two symmetric functions. Then∫

Z
µ(du)∥fu ⋆st g∥2L2(µk) = ∥f ⋆st g∥2L2(µk+1).

Proof. Let xn, yn, zn, wn be shorthand for (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn) and
(w1, . . . , wn) and let dx

n, dyn, dzn, dwn be shorthand for µ(dx1)µ(dx2) . . . µ(dxn), µ(dy1)µ(dy2) . . . µ(dyn),
µ(dz1)µ(dz2) . . . µ(dzn) and µ(dw1)µ(dw2) . . . µ(dwn) respectively.

By the de�nition of the star contraction operator, we know that

fu ⋆st g(x
t−s,yp−t, zq−t) =

∫
Zs

dwsfu(w
s,xt−s,yp−t)g(ws,xt−s, zq−t).

Then we have,∫
Z
µ(du)||fu ⋆st g||2L2(µk)

=

∫
Z
µ(du)

∫
Zk

dxt−sdyp−tdzq−t

∫
Zs

dws

∫
Zs

dw′sfu(w
s,xt−s,yp−t)g(ws,xt−s, zq−t)

×fu(w
′s,xt−s,yp−t)g(w′s,xt−s, zq−t)

=

∫
Zk+1

dxt−sdȳp+1−tdzq−t

∫
Zs

dws

∫
Zs

dw′sf(ws,xt−s, ȳp+1−t)g(ws,xt−s, zq−t)

×f(w′s,xt−s, ȳp+1−t)g(w′s,xt−s, zq−t)

= ∥f ⋆st g∥2L2(µk+1).

In the preceding calculations, the notation ȳp+1−t is de�ned by

ȳp+1−t = (u,yp−t) = (u, y1, . . . , yp−t).

By the same deduction, one also proves the following statement.

Lemma 5.3.2 Given integers s, t, p, q such that 0 ≤ s ≤ t ≤ p∧ q, we de�ne k = p+ q−s− t.
Let f ∈ L2

s(µ
p+1) and g ∈ L2

s(µ
q+1) be two symmetric functions. Then∫

Z
µ(du)∥fu ⋆st gu∥2L2(µk) = ∥f ⋆st+1 g∥2L2(µk+1).
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5.3.2 Upper bounds

While studying Poisson multiple stochastic integrals, we are able to provide deterministic up-
per bounds to replace the Malliavin calculus involved in the estimation in Proposition 5.2.6.

ATTENTION: For the rest of this chapter, we suppose that all the kernel func-
tions f ∈ L2

s(µ
p) satisfy Assumption A, B, D, E.

We shall prove three technical lemmas.

Lemma 5.3.3 Fix two integers p, q ≥ 2. Let F = Ip(f), F
∗ = Iq(f

∗), with f ∈ L2
s(µ

p) and
f∗ ∈ L2

s(µ
q). Then

E∥⟨D2F,−DL−1F ∗⟩L2(µ)∥2L2(µ)

≤ p2(p− 1)2
p+q−3∑

k=|q−p+1|

(p−1)∧q∑
t=1

C(p− 1, q, k, t)11≤s(t,k)≤t∥f ⋆
s(t,k)
t f∗∥2L2(µk+1),

with s(t, k) = p+ q − 1− k − t and C(p− 1, q, k, t) given by Lemma 3.4.2 or Remark 3.4.3 in
this dissertation.

Proof.

D2
u,zF = p(p− 1)Ip−2

(
f(u, z, ·)

)
, −DzL

−1F ∗ = Iq−1

(
f∗(z, ·)

)
.

Then, by the �product formula� equation (1.12), we have

⟨D2F,−DL−1F ∗⟩L2(µ)(u)

=

∫
Z
µ(dz)p(p− 1)Ip−2

(
f(u, z, ·)

)
× Iq−1

(
f∗(z, ·)

)
= p(p− 1)

∫
Z
µ(dz)

p+q−3∑
k=|q−p+1|

Ik

(
Gp−2,q−1

k

(
fu(z, ·), f∗(z, ·)

))
. (5.6)

The above expression (5.6) is similar to that in the proof of Proposition 3.4.6, so we need the
following assumption (analogous to Assumption C): for every k = |q − p| ∨ 1, . . . , p+ q − 3,

∫
Z

[√∫
Zk

(Gp−2,q−1
k (f(z, ·), g(z, ·)))2dµk

]
µ(dz) < ∞. (5.7)

As shown in Remark 5.2.4, Assumption D is stronger than the above assumption, thus permits
us to do the forthcoming calculations.

We know that line (5.6) equals

p(p− 1)

p+q−3∑
k=|q−p+1|

Ik

(
Ĝp−1,q

k (fu, f
∗)

)
.
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Consequently, by Lemma 5.3.1,

E∥⟨D2F,−DL−1F ∗⟩L2(µ)∥2L2(µ)

= p2(p− 1)2
∫
Z
µ(dz)

p+q−3∑
k=|q−p+1|

E
[
I2k

(
Ĝp−1,q

k (fu, f
∗)
)]

= p2(p− 1)2
p+q−3∑

k=|q−p+1|

∫
Z
µ(dz)

∥∥∥∥(Ĝp−1,q
k (fu, f

∗)
)∥∥∥∥2

L2(µk)

≤ p2(p− 1)2
p+q−3∑

k=|q−p+1|

∫
Z
µ(dz)

(p−1)∧q∑
t=1

C(p− 1, q, k, t)11≤s(t,k)≤t∥fu ⋆
s(t,k)
t f∗∥2L2(µk)

≤ p2(p− 1)2
p+q−3∑

k=|q−p+1|

(p−1)∧q∑
t=1

C(p− 1, q, k, t)11≤s(t,k)≤t∥f ⋆
s(t,k)
t f∗∥2L2(µk+1),

where s(t, k) = p+ q − 1− k − t.

Remark 5.3.4 Note that, the upper bounds appeared in Lemma 5.3.3 and in Lemma 5.3.5,
Lemma 5.3.6 below can be in�nite. But in the forthcoming discussions of almost sure central
limit theorems, we will only deal with the cases with �nite bounds.

Lemma 5.3.5 Fix two integers p, q ≥ 2. Let F = Ip(f), F
∗ = Iq(f

∗), with f ∈ L2
s(µ

p) and
f∗ ∈ L2

s(µ
q). Then

E∥⟨DF,−D2L−1F ∗⟩L2(µ)∥2L2(µ)

≤ p2(q − 1)2
p+q−3∑

k=|p−q+1|

p∧(q−1)∑
t=1

C(p, q − 1, k, t)11≤s(t,k)≤t∥f ⋆
s(t,k)
t f∗∥2L2(µk+1),

with s(t, k) = p+ q − 1− k − t and C(p, q − 1, k, t) de�ned in Lemma 3.4.2 or Remark 3.4.3
in this dissertation.

Proof. Under Assumption A, B, D, E on function f and f∗, we are allowed to do the following
calculations. Since

DzF = pIp−1

(
f(z, ·)

)
, −D2

u,zL
−1F ∗ = (q − 1)Iq−2

(
f∗(u, z, ·)

)
,

then, by the �product formula� equation (1.12), we have

⟨DF,−D2L−1F ∗⟩L2(µ)(u)

=

∫
Z
µ(dz)pIp−1

(
f(z, ·)

)
× (q − 1)Iq−2

(
f∗(u, z, ·)

)
= p(q − 1)

∫
Z
µ(dz)

p+q−3∑
k=|p−q+1|

Ik

(
Gp−1,q−2

k (f(z, ·), f∗
u(z, ·))

)

= p(q − 1)

p+q−3∑
k=|p−q+1|

Ik

(
Ĝp,q−1

k (f, f∗
u)

)
.
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Similarly, by Lemma 5.3.1,

E∥⟨DF,−D2L−1F ∗⟩L2(µ)∥2L2(µ)

= p2(q − 1)2
∫
Z
µ(dz)

p+q−3∑
k=|p−q+1|

E
[
I2k

(
Ĝp,q−1

k (f, f∗
u)
)]

= p2(q − 1)2
p+q−3∑

k=|p−q+1|

∫
Z
µ(dz)

∥∥∥∥(Ĝp,q−1
k (f, f∗

u)
)∥∥∥∥2

L2(µk)

≤ p2(q − 1)2
p+q−3∑

k=|p−q+1|

∫
Z
µ(dz)

p∧(q−1)∑
t=1

C(p, q − 1, k, t)11≤s(t,k)≤t∥f ⋆
s(t,k)
t f∗

u∥2L2(µk)

≤ p2(q − 1)2
p+q−3∑

k=|p−q+1|

p∧(q−1)∑
t=1

C(p, q − 1, k, t)11≤s(t,k)≤t∥f ⋆
s(t,k)
t f∗∥2L2(µk+1),

where s(t, k) = p+ q − 1− k − t.

Lemma 5.3.6 Fix two integers p, q ≥ 2. Let F = Ip(f), F
∗ = Iq(f

∗) , with f ∈ L2
s(µ

p) and
f∗ ∈ L2

s(µ
q). Then

E∥⟨D2F,−D2L−1F ∗⟩L2(µ)∥2L2(µ)

≤ p2(p− 1)2(q − 1)2
p+q−4∑
k=|p−q|

(p−1)∧(q−1)∑
t=1

C(p− 1, q − 1, k, t)11≤s(t,k)≤t∥f ⋆
s(t,k)
t+1 f∗∥2L2(µk+1),

with s(t, k) = p + q − 2 − k − t and C(p − 1, q − 1, k, t) de�ned in Lemma 3.4.2 or Remark
3.4.3 in this dissertation.

Proof. Under Assumption A, B, D, E on function f and f∗, we are allowed to do the following
calculations. Since

D2
u,zF = p(p− 1)Ip−2

(
f(u, z, ·)

)
, −D2

u,zL
−1F ∗ = (q − 1)Iq−2

(
f∗(u, z, ·)

)
,

then, by the �product formula� equation (1.12), we have

⟨D2F,−D2L−1F ∗⟩L2(µ)(u)

=

∫
Z
µ(dz)p(p− 1)Ip−2

(
f(u, z, ·)

)
× (q − 1)Iq−2

(
f∗(u, z, ·)

)
= p(p− 1)(q − 1)

∫
Z
µ(dz)

p+q−4∑
k=|p−q|

Ik

(
Gp−2,q−2

k

(
fu(z, ·), f∗

u(z, ·)
))

= p(p− 1)(q − 1)

p+q−4∑
k=|p−q|

Ik

(
̂Gp−1,q−1
k (fu, f

∗
u)

)
.
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In consequence, by Lemma 5.3.2,

E∥⟨D2F,−D2L−1F ∗⟩L2(µ)∥2L2(µ)

= p2(p− 1)2(q − 1)2
∫
Z
µ(dz)

p+q−4∑
k=|p−q|

E
[
I2k

( ̂Gp−1,q−1
k (fu, f

∗
u)
)]

= p2(p− 1)2(q − 1)2
p+q−4∑
k=|p−q|

∫
Z
µ(dz)

∥∥∥∥ ̂Gp−1,q−1
k (fu, f

∗
u)

∥∥∥∥2
L2(µk)

≤ p2(p− 1)2(q − 1)2
p+q−4∑
k=|p−q|

∫
Z
µ(dz)

(p−1)∧(q−1)∑
t=1

C(p− 1, q − 1, k, t)11≤s(t,k)≤t∥fu ⋆
s(t,k)
t f∗

u∥2L2(µk)

≤ p2(p− 1)2(q − 1)2
p+q−4∑
k=|p−q|

(p−1)∧(q−1)∑
t=1

C(p− 1, q − 1, k, t)11≤s(t,k)≤t∥f ⋆
s(t,k)
t+1 f∗∥2L2(µk+1),

where s(t, k) = p+ q − 2− k − t.

From these three results we obtain immediately the following lemma:

Lemma 5.3.7 Fix two integers p, q ≥ 2. Let F = Ip(f), F
∗ = Iq(f

∗) , with f ∈ L2
s(µ

p) and
f∗ ∈ L2

s(µ
q). Then there exist nonnegative constants cs,t, 0 ≤ s ≤ t ≤ p ∧ q, such that

S(F, F ∗) ≤
p∧q∑
t=1

t∑
s=0

cs,t∥f ⋆st f
∗∥L2(µp+q−t−s)

≤
√
2

2

p∧q∑
t=1

t∑
s=0

cs,t(∥f ⋆st f∥L2(µ2p−t−s) + ∥f∗ ⋆st f
∗∥L2(µ2q−t−s)).

5.4 ASCLT

Using the explicit estimates of the precedent sections, we are now able to deduce ASCLTs
for sequences of random variables with the form of Poisson multiple integrals, by providing
adequate conditions.

5.4.1 Integrals of order one

We note ∥f∥L3(µ) = (
∫
Z µ(dz)|f(z)|3)1/3. We now consider a sequence of random variables

{F (k); k = 1, 2, . . .} such that F (k) = I1(f
(k)), where f (k)(·) ∈ L2

s(µ), k = 1, 2, . . . are functions
in one variable.

The following theorem gives an ASCLT for Poisson multiple stochastic integrals of �xed
order q = 1, by providing a criterion on the kernels of these integrals.

Theorem 5.4.1 Let {F (n)} be a sequence of random variables of the form F (n) = I1(f
(n)),

with f (n) ∈ L2
s(µ) ∩ L3

s(µ). Assume that

Var[F (n)] = E[(F (n))2] = ∥f (n)∥2L2(µ) = 1,
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and that

∥f (n)∥3L3(µ) → 0 as n → ∞.

Then, F (n) law−→ N ∼ N (0, 1) as n → ∞. Moreover, if the two conditions (A1) and (A2) below
are satis�ed :

• (A1)

∑
n≥2

1

n log3 n

n∑
k,l=1

|E[F (k)F (l)]|
kl

=
∑
n≥2

1

n log3 n

n∑
k,l=1

|⟨f (k), f (l)⟩L2(µ)|
kl

< ∞;

• (A2) ∑
n≥2

1

n log2 n

n∑
k=1

1

k
∥f (k)∥3L3(µ) < ∞,

then {F (n)} satis�es an ASCLT. In other words, almost surely, for all continuous and bounded
function φ : R → R, we have

1

log n

n∑
k=1

1

k
φ(F (k)) −→ E[φ(N)], as n → ∞.

Proof. The CLT part:

F (n) law−→ N

follows immediately from Corollary 3.4 in [46] . In order to apply Theorem 5.1.3, we use an
argument similar to that in the proof of Proposition 5.2.6.
We �x r > 0, for every t such that |t| ≤ r,∣∣∣E[ exp (it(F (k) − F (l))

)]
− g2(t)

∣∣∣
= 2r2|E[F (k)F (l)]|+ 2r4

∫
Z
µ(dz)|f (k)(z)− f (l)(z)|3

≤ 2r2|E[F (k)F (l)]|+ 8r4(∥f (k)∥3L3(µ) + ∥f (l)∥3L3(µ)).

On the other hand, by Proposition 5.2.5, we know that

|E[exp(F (k))]− g(t)| ≤ 1

2
r4
∫
Z
µ(dz)|f (k)(z)|3 = 1

2
r4∥f (k)(z)∥3L3(µ)

Therefore,

E[|∆n(t)|2] ≤
1

log2 n

n∑
k,l=1

1

kl

(
2r2|E[F (k)F (l)]|

+
17

2
r4(∥f (k)∥3L3(µ) + ∥f (l)∥3L3(µ))

)
.

This shows that the condition of Theorem 5.1.3 are veri�ed when conditions (A1) and (A2)
in the statement are satis�ed.
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Remark 5.4.2 The following conditions are su�cient conditions for (A1) and (A2) respec-
tively:

• (A1') ∃α > 0, C > 0, such that

|E[F (l)F (k)]| ≤ C

(
l

k

)α

for all 1 ≤ l ≤ k;

• (A2') ∃β > 0, such that

∥f (k)∥3L3(µ) = O(k−β), k → ∞.

(A2')⇒(A2):
By standard calculation, we know that there exists some constant C0, such that

n∑
k=1

1

k
∥f (k)∥3L3(µ) < C0

for all n ∈ N.
Therefore, ∑

n≥2

1

n log2 n

n∑
k=1

1

k
∥f (k)∥3L3(µ) < C0

∑
n≥2

1

n log2 n
< ∞.

(A1')⇒(A1):
For some constants C1 and C2, we have

∑
n≥2

1

n log3 n

n∑
k,l=1

|E[F (l)F (k)]|
kl

≤ C
∑
n≥2

1

n log3 n

n∑
k=1

k−α−1
k∑

l=1

lα−1

≤ C1

∑
n≥2

1

n log3 n

n∑
k=1

1

k

≤ C2

∑
n≥2

1

n log3 n
× log n

< ∞.

We point out that Condition (A1') and (A2') are easier to verify in practice.

We present here an example of application of the Theorem 5.4.1. Let N̂ be a centered
Poisson measure on R.

Proposition 5.4.3 Let {F (n), n = 1, 2, . . .} be a sequence of random variables on the Poisson
space, de�ned by

F (n) = I1(hn) =

∫
R
hn(x)dN̂(x)

where hn = n−1/21[0,n] is an element of the �rst Wiener chaos associated with a centered

Poisson measure N̂ . Then F (n) law−→ N ∼ N (0, 1), as n → ∞ . Moreover, {F (n)} satis�es an
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ASCLT. In other words, almost surely, for all continuous and bounded function φ : R → R,
we have

1

log n

n∑
k=1

1

k
φ(F (k)) −→ E[φ(N)], as n → ∞.

Proof. The fact F (n) law−→ N comes from a simple application of the standard CLT.

As an application of Theorem 5.4.1 and Remark 5.4.2, we now verify Condition (A1') and
(A2').

Firstly, we notice that, for positive integers 1 ≤ l ≤ k,

E[F (l)F (k)] =

∫ l

0

1√
kl
dx =

√
l

k
.

On the other hand, we have

∥hk∥3L3 =
1√
k
.

As shown in Remark 5.4.2, both (A1') and (A2') are satis�ed, which leads to ASCLT.

5.4.2 Multiple integrals of order q ≥ 2

For a �xed integer q ≥ 2, we consider a sequence of random variables {F (k), k = 1, 2, . . .} such
that F (k) = Iq(f

(k)), where f (k)(·) ∈ L2
s(µ

q), k = 1, 2, . . . are kernel functions with q variables.

Theorem 5.4.4 We �x an integer q ≥ 2. Let {F (k)} be a sequence of the form F (k) = Iq(f
(k)),

with f (k) ∈ L2
s(µ

q). Assume that

E[(F (k))2] = q!∥f (k)∥2L2(µ) = 1 for k = 1, 2, . . . ,

and that the following conditions hold:

• for every k ≥ 1, the kernel f (k) veri�es Assumption A, B, D, E for every p = 1, . . . , 2(q−
1);

• for every r = 1, . . . , q and every l = 1, . . . , r∧(q−1), one has that ∥f (k)⋆lrf
(k)∥L2(µ2q−r−l) →

0 as k → ∞;

•
∫
Zq(f

(k))4dµq → 0 as k → ∞,

then, F (n) law−→ N ∼ N (0, 1) as n → ∞. Moreover, if the three conditions (B1), (B2) and
(B3) below are satis�ed :

• (B1)

∑
n≥2

1

n log3 n

n∑
k,l=1

|E[F (k)F (l)]|
kl

=
∑
n≥2

1

n log3 n

n∑
k,l=1

|⟨f (k), f (l)⟩L2(µn)|
kl

< ∞;
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• (B2) ∑
n≥2

1

n log2 n

n∑
k=1

1

k
∥f (k) ⋆lr f

(k)∥L2(µ2q−r−l) < ∞

for every r = 1, . . . , q, l = 1, . . . , r ∧ (q − 1);

• (B3) ∑
n≥2

1

n log2 n

n∑
k=1

1

k

∫
Zq

(f (k))4dµq < ∞,

then {F (n)} satis�es an ASCLT. In other words, almost surely, for all continuous and bounded
function φ : R → R, we have

1

log n

n∑
k=1

1

k
φ(F (k)) −→ E[φ(N)], as n → ∞.

Remark 5.4.5 Note that

∥f ⋆0q f∥L2(µq) =

√∫
Zq

f4dµq.

Condition (A3) can be seen as a complement to Condition (A2) for r = q, l = 0.

Remark 5.4.6 We may use the following su�cient conditions to replace (B1), (B2) and (B3):

• (B1') ∃α > 0, C > 0, such that

|E[F (l)F (k)]| ≤ C

(
l

k

)α

for all 1 ≤ l ≤ k;

• (B2') ∃β > 0, such that

∥f (k) ⋆lr f
(k)∥L2(µ2q−r−l) = O(k−β), k → ∞

for every r = 1, . . . , q, l = 1, . . . , r ∧ (q − 1);

• (B3') ∃γ > 0, such that

∥f (k)∥4L4(µq) =

∫
Zq

(f (k))4dµq = O(k−γ), k → ∞.

See Remark 5.4.2 for details.
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Proof. The CLT part of Theorem 5.4.4 is an application of Theorem 2.1.10 (or Theorem 5.1
in [46]).

In order to show the ASCLT, we apply Proposition 5.2.6 and Theorem 5.1.3.

According to Proposition 5.2.6,

E|∆n(t)|2 ≤
1

log2 n

n∑
k,l=1

1

kl
× 2r2|E[F (k)F (l)]| (5.8)

+
1

log2 n

n∑
k,l=1

1

kl
× 4

√
3r2S(F (k), F (l)) +

2Ln

log2 n

n∑
k=1

1

k
× 3

√
3r2S(F (k), F (k)) (5.9)

+
1

log2 n

n∑
k,l=1

1

kl
× 2r4

∫
Z
µ(dz)E

[
|Dz(F

(k) − F (l))|2|DzL
−1(F (k) − F (l))|

]
(5.10)

+
2Ln

log2 n

n∑
k=1

1

k
×

1

2
r4
∫
Z
µ(dz)E

[
|DzF

(k)|2|DzL
−1F (k)|

]
(5.11)

with Ln =
∑n

k=1 1/k .

So, the RHS of line (5.8) is �nite whenever Condition (B1) is satis�ed.

As for line (5.9), we know that, by virtue of Lemma 5.3.7, for every k ≥ 1,

S(F (k), F (k)) ≤
q∑

t=1

t∑
s=0

cs,t∥f (k) ⋆st f
(k)∥L2(µ2q−t−s)

with cs,t nonnegative constants, 0 ≤ s ≤ t ≤ q . On the other hand, by Lemma 5.3.7, for
every k, l ≥ 1, k ̸= l, we have

S(F (k), F (l)) ≤
√
2

2

q∑
t=1

t∑
s=0

cs,t(∥f (k) ⋆st f
(k)∥L2(µ2q−t−s) + ∥f (l) ⋆st f

(l)∥L2(µ2q−t−s))

with cs,t nonnegative constants, 0 ≤ s ≤ t ≤ q . Since Ln ∼ log n, the �niteness of line (5.9)
is a consequence of Condition (B2) and (B3).

For the remaining lines, we take F (k) = Iq(f
(k)) and F (l) = Iq(f

(l)), then

E
[
|Dz(F

(k) − F (l))|2|DzL
−1(F (k) − F (l))|

]
=

1

q
E[|DzIq(f

(k))−DzIq(f
(l))|3]

≤
4

q
(E[|DzIq(f

(k))|3] + E[|DzIq(f
(l))|3]).
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By using the inequality∫
Z
µ(dz)E[|DzIq(f)|3]

≤ q3
√

(q − 1)!∥f∥2
L2(µq)

×
q∑

b=1

b−1∑
a=0

11≤a+b≤2q−1(a+ b− 1)!1/2(q − a− 1)!

×
(

q − 1
q − 1− a

)2(
q − 1− a
q − b

)
∥f ⋆ab f∥L2(µ2q−a−b)

which is proved in [46, Theorem 4.2] (see in particular formulae (4.13) and (4.18) therein), we
see immediately that line (5.9) and (5.10) are �nite whenever Condition (B2) and (B3) are
satis�ed.

5.5 Multivariate ASCLT

In this section, we introduce the multivariate ASCLTs for sequences of vectors of Poisson
multiple Wiener-Itô integrals, as a natural generalization of the results in section 5.4.

5.5.1 Estimation

We shall repeat the estimate procedures in section 5.2 and 5.3. As an analogue to Proposition
5.2.5, the following result is the starting point of our discussion in the multivariate case.

Proposition 5.5.1 Let F = (F1, . . . , Fd) be a vector of Poisson functional, such that for
each k = 1, . . . , d, E[Fk] = 0, Fk ∈ D2,2 , and for each k, l = 1, . . . , d, DFk × DL−1Fl ∈
DomD, ⟨DFk, DL−1Fl⟩L2(µ) ∈ DomD. Let XC ∼ N (0, C) be a Gaussian vector, then ∀t =
(t1, . . . , td) ∈ Rd, we have

|E[exp(i⟨t, F ⟩)]− E[exp(i⟨t,XC⟩)]|

≤ d

2
t2∗

d∑
i,j=1

(
S(Fi, Fj) + |E[FiFj ]− C(i, j)|

)

+
1

4
t3∗

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
with t∗ = max

i=1,...,d
|ti| and S(·, ·) de�ned in (5.5).

Proof. Recall that, in the proof of Theorem 3.3.2 in Chapter 3, we have shown the following
inequality:

|E[ϕ(XC)]− E[ϕ(F )]| ≤
d

2
∥ϕ′′∥∞

d∑
i,j=1

E[|C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ)|]

+
1

4
∥ϕ′′′∥∞

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
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for any ϕ ∈ C3(Rd) with second and third bounded derivatives, where F = (F1, . . . , Fd) is a
vector of Poisson functional, and XC ∼ N (0, C) is a Gaussian vector with nonnegative de�nite
covariance matrix C.

Given a �xed d-dimensional real vector t = (t1, . . . , td), we take

ϕ(F1, . . . , Fd) = exp(i⟨t, F ⟩) = exp
(
i(t1F1 + . . .+ tdFd)

)
.

And we note

gC(t) = E[exp(i⟨t,XC⟩)] = exp(−1

2
t′Ct) = exp(−1

2

d∑
i,j=1

C(i, j)titj).

Notice that ∥ϕ′′∥∞ = t2∗ and ∥ϕ′′′∥∞ = t3∗, with t∗ = max
i=1,...,d

|ti|. Therefore, the above inequality
gives

|E[exp(i⟨t, F ⟩)]− gC(t)| ≤ d

2
t2∗

d∑
i,j=1

E[|C(i, j)− ⟨DFi,−DL−1Fj⟩L2(µ)|]

+
1

4
t3∗

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

)
≤ d

2
t2∗

d∑
i,j=1

(
|E[FiFj ]− C(i, j)|+ E[|E[FiFj ]− ⟨DFi,−DL−1Fj⟩L2(µ)|]

)

+
1

4
t3∗

∫
Z
µ(dz)E

( d∑
i=1

|DzFi|

)2( d∑
i=1

|DzL
−1Fi|

) .

By taking g(x) = x in Lemma 3.2.1, we have immediately

E[FiFj ] = E[⟨DFi,−DL−1Fj⟩L2(µ)],

for 1 ≤ i, j ≤ d. Then, by using Cauchy-Schwartz inequality and Poincaré inequality ( Lemma
5.2.1), we have

E[|E[FiFj ]− ⟨DFi,−DL−1Fj⟩L2(µ)|]

≤
√

Var(W i,j) , with W i,j = ⟨DFi,−DL−1Fj⟩L2(µ),

≤
√

E[∥DW i,j∥2
L2(µ)

].

Since

∥DW i,j∥2L2(µ) = ∥⟨D2Fi,−DL−1Fj⟩L2(µ) + ⟨DFi,−D2L−1Fj⟩L2(µ) + ⟨D2Fi,−D2L−1Fj⟩L2(µ)∥2L2(µ)

≤ 3∥⟨D2Fi,−DL−1Fj⟩L2(µ)∥2L2(µ) + 3∥⟨DFi,−D2L−1Fj⟩L2(µ)∥2L2(µ)

+ 3∥⟨D2Fi,−D2L−1Fj⟩L2(µ)∥2L2(µ).

Then,
E[|E[FiFj ]− ⟨DFi,−DL−1Fj⟩L2(µ)|] ≤

√
3S(Fi, Fj),
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from which the conclusion follows.

The proposition below is a generalization of Proposition 5.2.6 to the multivariate case.
Notice that we no longer make assumption on the covariances of (F (k), k = 1, 2, . . .).

Proposition 5.5.2 Fix an integer d ≥ 2. Let {F (k), k = 1, 2, . . . , n} be a sequence of d-

dimensional Poisson functional vectors, where F (k) = (F
(k)
1 , . . . , F

(k)
d ). Suppose that E[F (k)

i ] =

0, F
(k)
i ∈ D2,2, for all i = 1, 2, . . . , d, k = 1, 2, . . . , n, and DF

(k)
i × DL−1F

(l)
j ∈ DomD ,

⟨DF
(k)
i , DL−1F

(l)
j ⟩L2(µ) ∈ DomD for all i, j = 1, 2, . . . , d, k, l = 1, 2, . . . , n, then

E[|∆n(t)|2] ≤ 1

log2 n

n∑
k,l=1

1

kl

(
r2d

d∑
i,j=1

(
|E[F (k)

i F
(l)
j ]|+ 2S(F

(l)
i , F

(k)
j )

)
+

1

4
r3
∫
Z
µ(dz)E

[( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)2( d∑
i=1

|DzL
−1(F

(k)
i − F

(l)
i )|

)])
+

Ln

log2 n

n∑
k=1

1

k

(
r2d

d∑
i,j=1

(
2|C(i, j)− E[F (k)

i F
(k)
j ]|+ 4S(F

(k)
i , F

(k)
j )

)
+

1

2
r3
∫
Z
µ(dz)E

[( d∑
i=1

|DzF
(k)
i |
)2( d∑

i=1

|DzL
−1F

(k)
i |
)])

with S(·, ·) de�ned in (5.5) , and Ln =
n∑

i=1

1

i
.

Proof. Given a positive real number r. We note gC(t) = E[exp(i⟨t,XC⟩)], for t = (t1, . . . , td)
such that |ti| ≤ r, i = 1, . . . , d. Then

E|∆n(t)|2 =
1

log2 n

n∑
k,l=1

1

kl
E[
(
exp(i⟨t, F (k)⟩)− gC(t)

)(
exp(−i⟨t, F (l)⟩)− g(t)

)
]

=
1

log2 n

n∑
k,l=1

1

kl

((
E[exp(i⟨t, F (k) − F (l)⟩)]− g2C(t)

)
−gC(t)

(
E[exp(i⟨t, F (k)⟩)]− gC(t)

)
− gC(t)

(
E[exp(−i⟨t, F (l)⟩)]− gC(t)

))
.

On the one hand, we apply Proposition 5.5.1 and obtain∣∣∣E[exp(i⟨t, F (k) − F (l)⟩)]− g2C(t)
∣∣∣

=

∣∣∣∣∣E[exp(i⟨√2t,
F (k) − F (l)

√
2

⟩)]− gC(
√
2t)

∣∣∣∣∣
≤ r2d

d∑
i,j=1

(
|C(i, j)− 1

2
E[(F (k)

i − F
(l)
i )(F

(k)
j − F

(l)
j )]|+ S(

F
(k)
i − F

(l)
i√

2
,
F

(k)
j − F

(l)
j√

2
)
)

+
1

4
r3
∫
Z
µ(dz)E

[( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)2( d∑
i=1

|DzL
−1(F

(k)
i − F

(l)
i )|

)]
.



5.5. MULTIVARIATE ASCLT 119

By the de�nition of S(·, ·), we know that

S(F
(k)
i − F

(l)
i , F

(k)
j − F

(l)
j )

=

√
E∥⟨D2(F

(k)
i − F

(l)
i ),−DL−1(F

(k)
j − F

(l)
j )⟩L2(µ)∥2L2(µ)

+

√
E∥⟨D(F

(k)
i − F

(l)
i ),−D2L−1(F

(k)
j − F

(l)
j )⟩L2(µ)∥2L2(µ)

+

√
E∥⟨D2(F

(k)
i − F

(l)
i ),−D2L−1(F

(k)
j − F

(l)
j )⟩L2(µ)∥2L2(µ)

.

By writing

A = ⟨D2F
(k)
i ,−DL−1F

(k)
j ⟩L2(µ), B = ⟨D2F

(k)
i ,−DL−1F

(l)
j ⟩L2(µ),

C = ⟨D2F
(l)
i ,−DL−1F

(k)
j ⟩L2(µ), D = ⟨D2F

(l)
i ,−DL−1F

(l)
j ⟩L2(µ),

we obtain that√
E∥⟨D2(F

(k)
i − F

(l)
i ),−DL−1(F

(k)
j − F

(l)
j )⟩L2(µ)∥2L2(µ)

=
√
E∥A−B− C+D∥2

L2(µ)

≤
√
4E[∥A∥2

L2(µ)
+ ∥B∥2

L2(µ)
+ ∥C∥2

L2(µ)
+ ∥D∥2

L2(µ)
]

≤ 2
(√

E[∥A∥2
L2(µ)

] +
√
E[∥B∥2

L2(µ)
] +
√

E[∥C∥2
L2(µ)

] +
√

E[∥D∥2
L2(µ)

]
)
.

We may do similar calculations for√
E∥⟨D(F

(k)
i − F

(l)
i ),−D2L−1(F

(k)
j − F

(l)
j )⟩L2(µ)∥2L2(µ)

and √
E∥⟨D2(F

(k)
i − F

(l)
i ),−D2L−1(F

(k)
j − F

(l)
j )⟩L2(µ)∥2L2(µ)

,

then deduce that

S(
F

(k)
i − F

(l)
i√

2
,
F

(k)
j − F

(l)
j√

2
)

=
1

2
S(F

(k)
i − F

(l)
i , F

(k)
j − F

(l)
j )

≤
(
S(F

(k)
i , F

(k)
j ) + S(F

(k)
i , F

(l)
j ) + S(F

(l)
i , F

(k)
j ) + S(F

(l)
i , F

(l)
j )
)
.

Notice that,

|C(i, j)− 1

2
E[(F (k)

i − F
(l)
i )(F

(k)
j − F

(l)
j )]|

≤ 1

2
|C(i, j)− E[F (k)

i F
(k)
j ]|+ 1

2
|C(i, j)− E[F (l)

i F
(l)
j ]|+ 1

2
|E[F (k)

i F
(l)
j ]|+ 1

2
|E[F (l)

i F
(k)
j ]|,
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therefore,∣∣∣E[exp(i⟨t, F (k) − F (l)⟩)]− g2C(t)
∣∣∣

≤ r2d

d∑
i,j=1

(1
2
|C(i, j)− E[F (k)

i F
(k)
j ]|+ 1

2
|C(i, j)− E[F (l)

i F
(l)
j ]|+ 1

2
|E[F (k)

i F
(l)
j ]|+ 1

2
|E[F (l)

i F
(k)
j ]|

+ S(F
(k)
i , F

(k)
j ) + S(F

(k)
i , F

(l)
j ) + S(F

(l)
i , F

(k)
j ) + S(F

(l)
i , F

(l)
j )
)

+
1

4
r3
∫
Z
µ(dz)E

[( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)2( d∑
i=1

|DzL
−1(F

(k)
i − F

(l)
i )|

)]
.

On the other hand, we have∣∣∣E[exp(i⟨t, F (k)⟩)]− gC(t)
∣∣∣

≤ 1

2
r2d

d∑
i,j=1

(
|C(i, j)− E[F (k)

i F
(k)
j ]|+ S(F

(k)
i , F

(k)
j )

)

+
1

4
r3
∫
Z
µ(dz)E

( d∑
i=1

|DzF
(k)
i |

)2( d∑
i=1

|DzL
−1F

(k)
i |

) .

Putting these two parts together, we get

E[|∆n(t)|2] ≤ 1

log2 n

n∑
k,l=1

1

kl

(
r2d

d∑
i,j=1

(
|E[F (k)

i F
(l)
j ]|+ 2S(F

(l)
i , F

(k)
j )

)
+

1

4
r3
∫
Z
µ(dz)E

[( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)2( d∑
i=1

|DzL
−1(F

(k)
i − F

(l)
i )|

)])
+

Ln

log2 n

n∑
k=1

1

k

(
r2d

d∑
i,j=1

(
2|C(i, j)− E[F (k)

i F
(k)
j ]|+ 4S(F

(k)
i , F

(k)
j )

)
+

1

2
r3
∫
Z
µ(dz)E

[( d∑
i=1

|DzF
(k)
i |
)2( d∑

i=1

|DzL
−1F

(k)
i |
)])

.

5.5.2 ASCLT

Fix an positive integer d ≥ 2, and positive integers q1, q2, . . . , qd. We consider sequences of
vectors of the type

F (k) = (F
(k)
1 , . . . , F

(k)
d ) =

(
Iq1(f

(k)
1 ), . . . , Iqd(f

(k)
d )
)
, k = 1, 2, . . .

with f
(k)
i ∈ L2

s(µ
qi). In Chapter 3 we have studied the CLTs for these vectors of Poisson

multiple integrals, now we build ASCLTs for them.
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Integral of order 1

We �rst suppose that q1 = q2 = . . . = qd = 1.

Theorem 5.5.3 Fix d ≥ 2, let X ∼ N (0, C), with

C = {C(i, j) : i, j = 1, . . . , d}

a d× d nonnegative de�nite matrix. Let (F (k), k = 1, 2, . . .) de�ned by

F (k) = (I1(g
(k)
1 ), . . . , I1(g

(k)
d )) = (N̂(g

(k)
1 ), . . . , N̂(g

(k)
d ))

be a collection of d-dimensional random vectors living in the �rst Wiener chaos of the compen-

sated Poisson measure N̂ , where g
(k)
i ∈ L2

s(µ) ∩ L3
s(µ) for i = 1, . . . , d, k = 1, 2, . . .. Suppose

that

lim
k→∞

E[F (k)
i F

(k)
j ] = lim

k→∞
⟨g(k)i , g

(k)
j ⟩L2(µ) = C(i, j) , 1 ≤ i, j ≤ d.

If for every i, 1 ≤ i ≤ d, ∥g(k)i ∥3L3(µ) → 0 as k → ∞, then F (k) law−→ X. Moreover, if the three

conditions (C0), (C1) and (C2) below are satis�ed :

• (C0) for every pair (i, j), 1 ≤ i, j ≤ d,

∑
n≥2

1

n log2 n

n∑
k=1

1

k

∣∣∣C(i, j)− E[F (k)
i F

(k)
j ]
∣∣∣ =∑

n≥2

1

n log2 n

n∑
k=1

1

k

∣∣∣C(i, j)− ⟨g(k)i , g
(k)
j ⟩L2(µ)

∣∣∣ < ∞;

• (C1) for every pair (i, j), 1 ≤ i, j ≤ d,

∑
n≥2

1

n log3 n

n∑
k,l=1

|E[F (k)
i F

(l)
j ]|

kl
=
∑
n≥2

1

n log3 n

n∑
k,l=1

|⟨g(k)i , g
(l)
j ⟩L2(µ)|
kl

< ∞;

• (C2) for every i, 1 ≤ i ≤ d,

∑
n≥2

1

n log2 n

n∑
k=1

1

k
∥g(k)i ∥3L3(µ) < ∞,

then {F (n)} satis�es an ASCLT. In other words, almost surely, for all continuous and bounded
function φ : Rd → R, we have

1

log n

n∑
k=1

1

k
φ(F (k)) −→ E[φ(X)], as n → ∞.

Proof. The CLT part is an application of Theorem 3.4.9 and Remark 3.4.10 in Chapter 3.
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The ASCLT part is a direct consequence of Proposition 5.5.2 and Theorem 5.1.3. By
Proposition 5.5.2,

E[|∆n(t)|2] (5.12)

≤ 1

log2 n

n∑
k,l=1

1

kl
× r2d

d∑
i,j=1

(
|E[F (k)

i F
(l)
j ]| (5.13)

+
Ln

log2 n

n∑
k=1

1

k
× r2d

d∑
i,j=1

(
2|C(i, j)− E[F (k)

i F
(k)
j ]| (5.14)

+
1

log2 n

n∑
k,l=1

1

kl
× 2S(F

(l)
i , F

(k)
j ) +

Ln

log2 n

n∑
k=1

1

k
4S(F

(k)
i , F

(k)
j )

)
(5.15)

+
Ln

log2 n

n∑
k=1

1

4k
× 1

4
r3
∫
Z
µ(dz)E

[( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)2
(5.16)

×
( d∑
i=1

|DzL
−1(F

(k)
i − F

(l)
i )|

)]
(5.17)

+
1

log2 n

n∑
k,l=1

1

kl
× 1

2
r3
∫
Z
µ(dz)E

[( d∑
i=1

|DzF
(k)
i |
)2( d∑

i=1

|DzL
−1F

(k)
i |
)]

(5.18)

Indeed, we need only to focus on the parts having Malliavin operators (that is, line (5.16),
(5.17) and (5.18), while the rest may be treated by similar arguments as in the proof of
Theorem 5.4.1 and Theorem 5.4.4, with the help of Lemma 5.3.7. We have

∫
Z
µ(dz)E

( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)2( d∑
i=1

|DzL
−1(F

(k)
i − F

(l)
i )|

)
=

∫
Z
µ(dz)E

( d∑
i=1

|g(k)i − g
(l)
i |

)3


≤ d2
d∑

i=1

∫
Z
µ(dz)|g(k)i − g

(l)
i |3

≤ 4d2
d∑

i=1

(
∥g(k)i ∥3L3(µ) + ∥g(l)i ∥3L3(µ)

)
.

and

∫
Z
µ(dz)E

( d∑
i=1

|DzF
(k)
i |

)2( d∑
i=1

|DzL
−1F

(k)
i |

) =

∫
Z
µ(dz)

(
d∑

i=1

|g(k)i |

)3

≤ d2
d∑

i=1

∥g(k)i ∥3L3(µ).

So the convergence of the sum of these parts (with a weight 1
n logn) is justi�ed by Condition

(C2).
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Remark 5.5.4 Notice that Condition (C0) is new with respect to Theorem 5.4.1. Indeed, we
make the assumption that Var[F (n)] = 1 in the statement of Theorem 5.4.1, while in Theorem
5.5.3 we no longer make analogous assumptions. Consequently, Theorem 5.5.3 is a genuine
generalization of Theorem 5.4.1.

Remark 5.5.5 By the same arguments as in Remark 5.4.2, the following are su�cient con-
ditions for (C0), (C1) and (C2):

• (C0') for every pair (i, j), 1 ≤ i, j ≤ d, there exists δ > 0, such that∣∣∣C(i, j)− E[F (k)
i F

(k)
j ]
∣∣∣ = O(k−δ), k → ∞;

• (C1') for every pair (i, j), 1 ≤ i, j ≤ d, there exists α > 0, such that

|E[F (k)
i F

(l)
j ]| < C

(
l

k

)α

, ∀1 ≤ l ≤ k;

• (C2') for every i, 1 ≤ i ≤ d, there exists β > 0, such that

∥g(k)i ∥3L3(µ) = O(k−β), k → ∞.

Multiple integrals of order q ≥ 2

Now we suppose that q1, . . . , qd ≥ 2.

Theorem 5.5.6 Fix d ≥ 2, let X ∼ N (0, C), with

C = {C(i, j) : i, j = 1, . . . , d}

a d × d nonnegative de�nite matrix, and �x integers q1, . . . , qd ≥ 2. For any n ≥ 1 and

i = 1, . . . , d, let f
(n)
i belong to L2

s(µ
qi). De�ne the sequence {F (n);n ≥ 1} by

F (n) = (F
(n)
1 , . . . , F

(n)
d ) =

(
Iq1(f

(n)
1 ), . . . , Iqd(f

(n)
d )

)
, n = 1, 2, . . .

with f
(n)
i ∈ L2

s(µ
qi) and suppose that

lim
n→∞

E[F (n)
i F

(n)
j ] = 1(qj=qi)qi!× lim

n→∞
⟨f (n)

i , f
(n)
j ⟩L2(µqi ) = C(i, j), 1 ≤ i, j ≤ d. (5.19)

Assume that the following Conditions hold for every k = 1, . . . , d:

1. For every n, the kernel f
(n)
k satis�es Assumptions A , B , D , E.

2. For every r = 1, . . . , qk and every l = 1, . . . , r ∧ (qk − 1), one has that

∥f (n)
k ⋆lr f

(n)
k ∥L2(µ2qk−r−l) → 0,

as n → ∞.

3. As n → ∞,
∫
Zqk dµ

qk
(
f
(n)
k

)4
→ 0.
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Then, F (n) law−→ N ∼ N (0, 1) as n → ∞.

Moreover, if the four conditions (D0), (D1), (D2) and (D3) below are satis�ed :

• (D0) for every pair (i, j), 1 ≤ i, j ≤ d, with qi = qj,

∑
n≥2

1

n log2 n

n∑
k=1

1

k

∣∣∣C(i, j)− E[F (k)
i F

(k)
j ]
∣∣∣ < ∞;

• (D1) for every pair (i, j), 1 ≤ i, j ≤ d, with qi = qj,

∑
n≥2

1

n log3 n

n∑
k,l=1

|E[F (k)
i F

(l)
j ]|

kl
=
∑
n≥2

1

n log3 n

n∑
k,l=1

|⟨f (k)
i , f

(l)
j ⟩L2(µqi )|
kl

< ∞;

• (D2) for every pair (i, j), 1 ≤ i, j ≤ d and for every r = 1, . . . , q, l = 1, . . . , r∧ (q−1),

∑
n≥2

1

n log2 n

n∑
k=1

1

k
∥f (k)

i ⋆lr f
(k)
j ∥L2(µ2q−r−l) < ∞;

• (D3) for every i, 1 ≤ i ≤ d,

∑
n≥2

1

n log2 n

n∑
k=1

1

k

∫
Zq

(f
(k)
i )4dµq < ∞,

then {F (n)} satis�es an ASCLT. In other words, almost surely, for all continuous and bounded
function φ : Rd → R, we have

1

log n

n∑
k=1

1

k
φ(F (k)) −→ E[φ(X)], as n → ∞.

Proof. The CLT part is an application of Theorem 3.4.9 in Chapter 3.

As for the ASCLT part, we shall use the same arguments as in the proof of Theorem 5.4.1
and Theorem 5.4.4, by applying Proposition 5.5.2, Theorem 5.1.3 and Lemma 5.3.7. Now we
need only to focus on the parts having Malliavin operators.
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Denote q∗ by q∗ = min{qi, i = 1, . . . , d}. Since F
(k)
i = Iqi(f

(k)
i ), we have,

∫
Z
µ(dz)E

( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)2( d∑
i=1

|DzL
−1(F

(k)
i − F

(l)
i )|

)
=

∫
Z
µ(dz)E

( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)2( d∑
i=1

1

qi
|Dz(F

(k)
i − F

(l)
i )|

)
≤ 1

q∗

∫
Z
µ(dz)E

( d∑
i=1

|Dz(F
(k)
i − F

(l)
i )|

)3


≤ d2

q∗

∫
Z
µ(dz)E

[
d∑

i=1

|Dz(F
(k)
i − F

(l)
i )|3

]

≤ 4d2

q∗

d∑
i=1

∫
Z
µ(dz)

(
E[|DzF

(k)
i |3] + E[|DzF

(l)
i |3]

)
,

and ∫
Z
µ(dz)E

( d∑
i=1

|DzF
(k)
i |

)2( d∑
i=1

|DzL
−1F

(k)
i |

)
=

∫
Z
µ(dz)E

( d∑
i=1

|DzF
(k)
i |

)2( d∑
i=1

1

qi
|DzF

(k)
i |

)
≤ 1

q∗

∫
Z
µ(dz)E

( d∑
i=1

|DzF
(k)
i |

)3


≤ d2

q∗

d∑
i=1

∫
Z
µ(dz)E[|DzF

(k)
i |3].

Finally, by using the inequality in [46, Theorem 4.2] below:∫
Z
µ(dz)E[|DzIq(f)|3]

≤ q3
√

(q − 1)!∥f∥2
L2(µq)

×
q∑

b=1

b−1∑
a=0

11≤a+b≤2q−1(a+ b− 1)!1/2(q − a− 1)!

×
(

q − 1
q − 1− a

)2(
q − 1− a
q − b

)
∥f ⋆ab f∥L2(µ2q−a−b),

we know that Condition (D2) and (D3) are enough to let the sum of the parts containing
Malliavin operators converge, therefore, the conclusion follows immediately.

Remark 5.5.7 By the same arguments in Remark 5.4.2, the following conditions are su�cient
conditions for (D0), (D1) (D2) and (D3):
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• (D0') for every pair (i, j), 1 ≤ i, j ≤ d, if qi = qj , there exists δ > 0, such that∣∣∣C(i, j)− E[F (k)
i F

(k)
j ]
∣∣∣ = O(k−δ), k → ∞,

otherwise, C(i, j) = 0;

• (D1') for every pair (i, j), 1 ≤ i, j ≤ d, with qi = qj , there exists α > 0, such that

|E[F (k)
i F

(l)
j ]| < C

(
l

k

)α

, ∀1 ≤ l ≤ k;

• (D2') for every pair (i, j), 1 ≤ i, j ≤ d and for every r = 1, . . . , q, l = 1, . . . , r∧ (q− 1),
there exists β > 0, such that

∥f (k)
i ⋆lr f

(k)
j ∥L2(µ2q−r−l) = O(k−β), k → ∞;

• (D3') for every i, 1 ≤ i ≤ d, there exists γ > 0, such that∫
Zq

(f
(k)
i )4dµq = O(k−γ), k → ∞.

Mixed case

In this section, we study the ASCLT for vectors that have multiple integral components of
both order 1 and order q ≥ 2. The following theorem summarizes the results in the last two
sections.

Theorem 5.5.8 Let d = a+ b, with a, b two �xed positive integers. Let X ∼ N (0, C), with

C = {C(i, j) : i, j = 1, . . . , d}

a d× d nonnegative de�nite matrix, such that

C(i, j + a) = 0, ∀1 ≤ i ≤ a, 1 ≤ j ≤ b.

Given �xed integers q1, . . . , qb ≥ 2. For any k ≥ 1 and i = 1, . . . , a, j = 1, . . . , b, let g
(k)
i

belongs to L2
s(µ) and let f

(k)
j belongs to L2

s(µ
qj ). De�ne the sequence {F (k); k ≥ 1} by

F (k) = (F
(k)
1 , . . . , F

(k)
d ) =

(
I1(g

(k)
1 ), . . . , I1(g

(k)
a ), Iq1(f

(k)
1 ), . . . , Iqb(f

(k)
b )
)
, k = 1, 2, . . .

and suppose that

lim
n→∞

E[F (n)
i F

(n)
j ] = C(i, j), 1 ≤ i, j ≤ d. (5.20)

Assume that {f (k)
i , i = 1, . . . , b, k = 1, 2, . . .} satisfy Conditions 1,2,3 in the statement of The-

orem 5.5.6, and for i = 1, . . . , a, ∥g(k)i ∥3L3(µ) → 0 as k → ∞, Then, F (n) law−→ N ∼ N (0, 1) as
n → ∞.

Moreover, if the �ve conditions (E0), (E1), (E2), (E3) and (E4) below are satis�ed:
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• (E0) for every pair (i, j), 1 ≤ i, j ≤ a, or a+ 1 ≤ i, j ≤ d with qi−a = qj−a,∑
n≥2

1

n log2 n

n∑
k=1

1

k

∣∣∣C(i, j)− E[F (k)
i F

(k)
j ]
∣∣∣ < ∞;

• (E1) for every pair (i, j), 1 ≤ i, j ≤ a, or a+ 1 ≤ i, j ≤ d with qi−a = qj−a,

∑
n≥2

1

n log3 n

n∑
k,l=1

|E[F (k)
i F

(l)
j ]|

kl
< ∞;

• (E2) for every pair (i, j), 1 ≤ i, j ≤ b and for every r = 1, . . . , q, l = 1, . . . , r∧ (q− 1),

∑
n≥2

1

n log2 n

n∑
k=1

1

k
∥f (k)

i ⋆lr f
(k)
j ∥L2(µ2q−r−l) < ∞;

• (E3) for every i, 1 ≤ i ≤ b,

∑
n≥2

1

n log2 n

n∑
k=1

1

k

∫
Zq

(f
(k)
i )4dµq < ∞;

• (E4) for every i, 1 ≤ i ≤ a,

∑
n≥2

1

n log2 n

n∑
k=1

1

k
∥g(k)i ∥3L3(µ) < ∞,

then {F (n)} satis�es an ASCLT. In other words, almost surely, for all continuous and bounded
function φ : Rd → R, we have

1

log n

n∑
k=1

1

k
φ(F (k)) −→ E[φ(X)], as n → ∞.

Remark 5.5.9 The above conditions can be replaced by the following su�cient conditions.

• (E0') for every pair (i, j), 1 ≤ i, j ≤ a, or a+ 1 ≤ i, j ≤ d with qi−a = qj−a, there exists
δ > 0, such that ∣∣∣C(i, j)− E[F (k)

i F
(k)
j ]
∣∣∣ = O(k−δ), k → ∞;

• (E1') for every pair (i, j), 1 ≤ i, j ≤ a, or a+ 1 ≤ i, j ≤ d with qi−a = qj−a, there exists
α > 0, such that

|E[F (k)
i F

(l)
j ]| < C

(
l

k

)α

, ∀1 ≤ l ≤ k;

• (E2') for every pair (i, j), 1 ≤ i, j ≤ b and for every r = 1, . . . , q, l = 1, . . . , r ∧ (q− 1),
there exists β > 0, such that

∥f (k)
i ⋆lr f

(k)
j ∥L2(µ2q−r−l) = O(k−β), k → ∞;
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• (E3') for every i, 1 ≤ i ≤ b, there exists γ > 0, such that∫
Zq

(f
(k)
i )4dµq = O(k−γ), k → ∞;

• (E4') for every i, 1 ≤ i ≤ a, there exists η > 0, such that

∥g(k)i ∥3L3(µ) = O(k−η), k → ∞.

5.6 ASCLTs for functionals of Ornstein-Uhlenbeck processes

In Section 3.5 in Chapter 3 (or Section 6 in Chapter 3), we have studied CLTs for some
functionals of Ornstein-Uhlenbeck Lévy process. We may extend our investigations and study
ASCLTs to these examples.

We keep the notations in Section 3.5 in Chapter 3. Recall that N̂ is a centered Poisson
measure over R × R, with control measure ν(du). We consider the stationary Ornstein-
Uhlenbeck Lévy process with parameter λ > 0. de�ned by

Y λ
t = I1(f

λ
t ) =

√
2λ

∫ t

−∞

∫
R
u exp(−λ(t− x))N̂(du, dx), t ≥ 0

where fλ
t (u, x) =

√
2λ1(−∞,t](x)u exp(−λ(t − x)). And we make some following technical

assumptions on the measure ν in order that Var(Y λ
t ) = 1.

We are interested in the multivariate ASCLT for the vectors of the functionals of (Y λ
t ).

Example 1 (Empirical means)

We de�ne the functional A(k, λ) by A(k, λ) =
1
√
k

∫ k
0 Y λ

t dt. The �rst half part of the

following Theorem is an application of Theorem 3.5.5 in Chapter 3, while the second half part
provides a multivariate ASCLT.

Theorem 5.6.1 For λ1, . . . , λd > 0, as k → ∞,

Ā(k) = (A(k, λ1), . . . , A(k, λd))
(law)−→ XB, (5.21)

where XB is a centered d-dimensional Gaussian vector with covariance matrix B = (Bij)d×d,
with Bij = 2/

√
λiλj , 1 ≤ i, j ≤ d. Moreover, {Ā(n)} satis�es an ASCLT. In other words,

almost surely, for all continuous and bounded function φ : Rd → R, we have

1

log n

n∑
k=1

1

k
φ(Ā(k)) −→ E[φ(XB)], as n → ∞.

Proof. The CLT part is an application of Theorem 3.5.5 in Chapter 3, we now work on the
ASCLT part. By Theorem 5.5.3 and Remark 5.5.5, we need only to verify Condition (C0'),
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(C1') and (C2').

By applying Fubini theorem on A(k, λ), we have

1
√
k

∫ k

0
Y λ
t dt = I1(gλ,k),

where

gλ,k = 1(−∞,k](x)u

√
2λ

k

∫ k

x∨0
exp(−λ(t− x))dt.

Firstly, let 1 ≤ l ≤ k be two integers, then

E[A(l, λi)A(k, λj)]

=

∫
R
u2ν(du)

(∫ 0

−∞
dx

2
√
lk ×

√
λiλj

exp
(
(λi + λj)x

)
×
(
1− exp(−λil)

)
×
(
1− exp(−λjk)

)
+

∫ l

0
dx

2
√
lk ×

√
λiλj

exp
(
(λi + λj)x

)
×
(
exp(−λix)− exp(−λil)

)
×
(
exp(−λjx)− exp(−λjk)

))
=

2
√
lk ×

√
λiλj

( 1

λi + λj
×
(
1− exp(−λil)

)
×
(
1− exp(−λjk)

)
+ l −

1

λi
× (1− exp(−λil))

−
1

λj

(
exp(λjl)− 1

)
exp(−λjk) +

1

λi + λj

(
exp(λjl − λjk)− exp(−λil − λjk)

))
≤

2
√
lk ×

√
λiλj

× (
2

λi + λj
+ l)

≤
2√
λiλj

× (
2

λi + λj
+ 1)×

√
l

√
k
.

Secondly, we know from the proof of Theorem 3.5.5 in Chapter 3 that, for every k, and
1 ≤ i, j ≤ d,

|E[A(k, λi)A(k, λj)]−B(i, j)|

= |E[A(k, λi)A(k, λj)]−
2√
λiλi

|

= O(1/k),

and

∥gλ,k∥3L3(dνdx) ∼
1√
k
, ∀λ ∈ R,

as k → ∞.

In conclusion, Condition (C0'), (C1') and (C2') are successfully veri�ed, which leads to
the ASCLT.

Example 2 (Empirical second moments)
We are interested in the quadratic functional Q(k, λ) given by:

Q(k, λ) :=
√
k

(
1

k

∫ k

0
(Y λ

t )2dt− 1

)
, k > 0, λ > 0.
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Theorem 5.6.2 Given an integer d ≥ 2. For λ1, . . . , λd > 0, as k → ∞,

Q̄(k) = (Q(k, λ1), . . . , Q(k, λd))
(law)−→ XC , (5.22)

where XC is a centered d-dimensional Gaussian vector with covariance matrix C = (Cij)d×d,
de�ned by

Cij =
4

λi + λj
+ c2ν , 1 ≤ i, j ≤ d,

with c2ν =
∫
R u4ν(du). Moreover, {Q̄(n)} satis�es an ASCLT. In other words, almost surely,

for all continuous and bounded function φ : Rd → R, we have

1

logn

n∑
k=1

1

k
φ(Q̄(k)) −→ E[φ(XC)], as n → ∞.

Proof. For every k > 0 and λ > 0, we introduce the notations

Hλ,k(u, x;u
′, x′) = (u× u′)

1(−∞,k)2(x, x
′)

k

(
exp

(
λ(x+ x′)

)
×
(
1− exp(−2λk)

)
× 1(x∨x′≤0)

+exp
(
λ(x+ x′)

)
×
(
exp(−2λ(x ∨ x′))− exp(−2λk)

)
× 1(x∨x′>0)

)
,

and

H⋆
λ,k(u, x) = u2

1(−∞,k)(x)

k

(
exp(2λx)×

(
1− exp(−2λk)

)
× 1(x≤0)

+exp(2λx)×
(
exp(−2λx)− exp(−2λk)

)
× 1(x>0)

)
.

As shown in the proof of Theorem 3.5.7 in Chapter 3, we know that

Q(k, λ) = I1(
√
kH⋆

λ,k) + I2(
√
kHλ,k),

and we have proved the stronger result:

(I1(
√
kH⋆

λ1,k), . . . , I1(
√
kH⋆

λd,k
), I2(

√
kHλ1,k), . . . , I2(

√
kHλd,k))

(law)−→ XD (5.23)

as k → ∞, where XD is a centered 2d-dimensional Gaussian vector with covariance matrix D
de�ned as:

D(i, j) =


c2ν , if 1 ≤ i, j ≤ d

4

λi + λj
, if d+ 1 ≤ i, j ≤ 2d

0, otherwise.

We now verify Condition (E0') � (E4') for LHS of (5.23). Firstly, we concentrate on Condition
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(E1'). Indeed, by standard calculations, we have: For 1 ≤ l ≤ k,

√
lk

∫
R×R

H⋆
λi,l

(u, x)H⋆
λj ,k

(u, x)ν(du)dx

=
1

√
lk
c2ν

( 1

2(λi + λj)
×
(
1− exp(−2λil)

)
×
(
1− exp(−2λjk)

)
+ l −

1

2λi
× (1− exp(−2λil))

−
1

2λj

(
exp(2λjl)− 1

)
exp(−2λjk) +

1

2(λi + λj)

(
exp(2λj(l − k) )− exp(−λil − λjk)

))
≤

c2ν√
lk

× (
1

λi + λj
+ l)

≤ c2ν × (
1

λi + λj
+ 1)×

√
l

√
k
,

and

2
√
lk

∫
R4

Hλi,l(u, x;u
′, x′)Hλj ,k(u, x;u

′, x′)ν(du)ν(du′)dxdx′

=
2

√
lk
(

∫
R
u2ν(du))2

∫ l

−∞
dx

∫ l

−∞
dx′ exp

(
(λi + λj)(x+ x′)

)
×
(
1− exp(−2λil)

)
×
(
1− exp(−2λjk)

)
× 1(x∨x′≤0) + exp

(
(λi + λj)(x+ x′)

)
×
(
exp

(
− 2λi(x ∨ x′)

)
− exp(−2λil)

)
×
(
exp

(
− 2λj(x ∨ x′)

)
− exp(−2λjk)

)
× 1(x∨x′>0)

=
2

√
lk

(∫ 0

−∞
dx

∫ 0

−∞
dx′ exp

(
(λi + λj)(x+ x′)

)(
1− exp(−2λil)

)(
1− exp(−2λjk)

)
+2

∫ l

0
dx

∫ x

−∞
dx′ exp

(
(λi + λj)(x+ x′)

)(
exp(−2λix)− exp(−2λil)

)
×
(
exp(−2λjx)− exp(−2λjk)

))
=

2
√
lk

(
(1− exp(−2λil))× (1− exp(−2λjk))

(λi + λj)2
+

2

λi + λj
×
(
l −

1

2λi

(
1− exp(−2λil)

)
−

1

2λj
×
(
exp(2λj(l − k) )− exp(−2λjk)

)
+

1

2(λi + λj)
×
(
exp(2λj(l − k) )− exp(−2λj(l + k) )

) ))
≤

4
√
lk(λi + λj)

× (
1

λi + λj
+ l)

≤
4

λi + λj
× (

1

λi + λj
+ 1)×

√
l

√
k
.

Secondly, we use the fact that for λ = λ1, . . . , λd, the following asymptotic relations holds as
k → ∞:

(a) ∥
√
kH⋆

λ,k∥3L3(dνdx) ∼
1
√
k
;

(b) ∥
√
kHλ,k∥2L4((dνdx)2) ∼

1
√
k
;

(c) ∥(
√
kHλ,k) ⋆

1
2 (

√
kHλ,k)∥L2(dνdx) = ∥(

√
kHλ,k) ⋆

0
1 (

√
kHλ,k)∥L2((dνdx)3) ∼

1
√
k
;
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(d) ∥(
√
kHλ,k) ⋆

1
1 (

√
kHλ,k)∥L2((dνdx)2) ∼

1
√
k
;

(e) ∥(
√
kH⋆

λ,k) ⋆
1
1 (

√
kHλ,k)∥L2(dνdx) ∼

1
√
k
;

(f)
∣∣∣k ∫R×RH⋆

λi,k
(u, x)H⋆

λj ,k
(u, x)ν(du)dx− c2ν

∣∣∣ = O

(
1

k

)
;

(g)
∣∣∣2k ∫R4 Hλi,k(u, x;u

′, x′)Hλj ,k(u, x;u
′, x′)ν(du)ν(du′)dxdx′ − 4

λi+λj

∣∣∣ = O

(
1

k

)
.

The reader is referred to [46, Section 7] , [47, Section 4] and the proof of Theorem 3.5.7 in
Chapter 3 for a proof of the above asymptotic relations.

In summary, all the conditions are veri�ed and the conclusion follows.

Example 3 (Empirical joint moments of shifted processes)
We now study a generalization of Example 2. We de�ne

Qh(k, λ) :=
√
k

(
1

k

∫ k

0
Y λ
t Y λ

t+hdt− exp(−λh)

)
, h > 0, k > 0, λ > 0.

The theorem below is a multivariate CLT and ASCLT for Qh(k, λ).

Theorem 5.6.3 For λ1, . . . , λd > 0 and h ≥ 0, as k → ∞,

Q̄h(k) = (Qh(k, λ1), . . . , Qh(k, λd))
(law)−→ XE , (5.24)

where XE is a centered d-dimensional Gaussian vector with covariance matrix E = (Eij)d×d,
with

Eij =
4

λi + λj
+ c2ν exp

(
− (λi + λj)h

)
, 1 ≤ i, j ≤ d

and c2ν =
∫
R u4ν(du). Moreover, there exists a constant 0 < γ(h, λ̄) = γ(h, λ1, . . . , λd) < ∞,

independent of k and such that

d3(Q̄h(k), XE) ≤
γ(h, λ̄)
√
k

.

Proof. From the proof of Theorem 3.5.8 in Chapter 3, we know that

Qh(k, λ) = I2(
√
kHh

λ,k) + I1(
√
kH∗,h

λ,k),

where

H∗,h
λ,k(u, x) = u2

1(−∞,k](x)

k
× exp(λ(2x− h))×

(
1(x>0) × (exp(−2λx)− exp(−2λk))

+1(x≤0) × (1− exp(−2λk))
)
,
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and

Hh
λ,k(u, x;u

′, x′) = uu′
1(−∞,k](x)1(−∞,k+h](x

′)

k
× exp(λ(x+ x′ − h))

×
(
1(x∨(x′−h)>0) ×

(
exp(−2λ(x ∨ (x′ − h)))− exp(−2λk)

)
+1(x∨(x′−h)≤0) × (1− exp(−2λk))

)
.

And we have proved the stronger CLT result:

(I1(
√
kH⋆,h

λ1,k
), . . . , I1(

√
kH⋆,h

λd,k
), I2(

√
kHh

λ1,k), . . . , I2(
√
kHh

λd,k
))

(law)−→ XDh (5.25)

as k → ∞. Here, XDh is a centered 2d-dimensional Gaussian vector with covariance matrix
Dh de�ned as:

Dh(i, j) =


c2ν exp(−(λi + λj)h), if 1 ≤ i, j ≤ d

4

λi + λj
, if d+ 1 ≤ i, j ≤ 2d

0, otherwise.

Now we work on the ASCLT part. It su�ces to check Condition (E0) � (E4). Firstly, we look
at Condition (E1):
For 1 ≤ l ≤ k, we have

√
lk

∫
R×R

H∗,h
λ,l (u, x)H

∗,h
λ,k(u, x)ν(du)dx

=
1

√
lk
c2ν

(∫ 0

−∞
dx exp

(
(λi + λj)(2x− h)

)
×
(
1− exp(−2λil)

)
×
(
1− exp(−2λjk)

)
+

∫ l

0
dx exp

(
(λi + λj)(2x− h)

)
×
(
exp(−2λix)− exp(−2λil)

)
×
(
exp(−2λjx)− exp(−2λjk)

))
=

1
√
lk
c2ν exp(−(λi + λj)h)

( 1

2(λi + λj)
×
(
1− exp(−2λil)

)
×
(
1− exp(−2λjk)

)
+ l

−
1

2λi
× (1− exp(−2λil))−

1

2λj

(
exp(2λjl)− 1

)
exp(−2λjk)

+
1

2(λi + λj)

(
exp(2λj(l − k) )− exp(−λil − λjk)

))
≤

c2ν√
lk

exp(−(λi + λj)h)× (
4

λi + λj
+ l)

≤ c2ν exp(−(λi + λj)h)× (
1

λi + λj
+ 1)×

√
l

√
k
.

We notice that
Hh

λ,k(u, x;u
′, x′) = Hλ,k(u, x;u

′, x′ − h)

Then, as shown in the proof of Theorem 3.5.8 in Chapter 3, we have

2
√
lk

∫
R4

Hλi,l(u, x;u
′, x′)Hλj ,k(u, x;u

′, x′)ν(du)ν(du′)dxdx′

≤
4

λi + λj
× (

1

λi + λj
+ 1)×

√
l

√
k
.
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Secondly, we verify the rest of conditions.

Indeed, we know from the proof of Theorem 3.5.8 in Chapter 3 that: For λ = λ1, . . . , λd

and h ≥ 0, the following asymptotic relations holds as k → ∞:

(a) ∥
√
kH∗,h

λ,k∥
3
L3(dνdx) ∼

1
√
k
;

(b) ∥
√
kHh

λ,k∥2L4((dνdx)2) ∼
1
√
k
;

(c) ∥(
√
kHh

λ,k) ⋆
1
2 (

√
kHh

λ,k∥L2(dνdx) = ∥(
√
kHλ,k) ⋆

0
1 (

√
kHh

λ,k)∥L2((dνdx)3) ∼
1
√
k
;

(d) ∥(
√
kHh

λ,k) ⋆
1
1 (

√
kHh

λ,k)∥L2((dνdx)2) ∼
1
√
k
;

(e) ∥(
√
kH∗,h

λ,k) ⋆
1
1 (

√
k
h
Hλ,k)∥L2(dνdx) ∼

1
√
k
;

(f)

∣∣∣∣∣2k ∫R×RHh
λ,k(u, x, u

′, x′)Hh
λ,k(u, x, u

′, x′)ν(du)ν(du′)dxdx′ −
4

λi + λj

∣∣∣∣∣ = O

(
1

k

)
;

(g)
∣∣∣k ∫R×RH∗,h

λ,l (u, x)H
∗,h
λ,k(u, x)ν(du)dx− c2ν exp(−(λi + λj)h)

∣∣∣ = O

(
1

k

)
.

In conclusion, all the conditions are justi�ed and the ASCLT holds.
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