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FOREWORD

In the french academic system, the habilitation thesis is usually
the occasion to stop and look back at the work done over some
extended period of time, sometimes since the PhD thesis. As this
manuscript focuses on contributions in a particular area, it will
only give a partial account of this work. This preamble fills this
gap by giving a broader overview of my research activities of
these last few years.

My main area of research is discrete and computational geometry.
Discrete geometry is an area of mathematics that studies combi-
natorial properties, such as packing, covering or incidences, of
geometric objects (points, lines, balls, polytopes, lattices...). Com-
putational geometry is an area of theoretical computer science
that focuses on algorithms for solving geometric problems; the
emphasis is usually put on provably correct algorithms and their
complexity analysis. The close interaction between the two fields
makes it difficult to draw the line between them: algorithmic
considerations inspire geometric questions, and conversely.

An important part of my research activity can be traced back
to questions in line geometry. Line geometry is a classical subject
that has been the focus of ongoing research since the 19th cen-
tury and provides the foundation for the resolution of several
algorithmic questions such as three-dimensional visibility, shape
approximation, and regression depth computation. These foun-
dations are, however, incomplete and a number of results need to
be refined. This is especially true when it comes to analyzing how
known results can be improved by taking into account the shape
of the geometric objects defining the sets of lines considered. The
results presented in this manuscript are mostly from this line of
research [1, 7, 8, 11, 12, 13, 14, 15, 26], which lies at the crossroads
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of computational geometry, discrete geometry, enumerative ge-
ometry, real algebraic geometry and non-linear computational
geometry.

Image synthesis and analysis often assumes that light travel
along straight lines, making computer graphics and computer vi-
sion two natural application areas for line geometry. I worked on
two questions originating from these areas and involving, at some
level, line geometry: shadow boundary computation [Bato8, Demo8,
22, Jan1o] (we studied a topology-based refinement of the classi-
cal notion of visual event, showing that it suffices to determine
shadow boundaries and leads to substantially smaller data struc-
tures) and geometric models for imaging systems [4] (we generalized
two existing geometric models for non-central cameras, estab-
lishing their equivalence along the way, and extended to several
non-central imaging devices techniques developed for the central
camera, e.g. simple ray-shooting and stereo-reconstruction).

The geometric aspects of a geometric problem can sometimes
be encapsulated in a few key properties so that what remains
is essentially a combinatorial question. Natural bridges there-
fore appeared between line geometry and combinatorics and
combinatorial geometry. This led me to explore questions such
as minimal approximate coverings [20, 21] (we showed that any
complete covering of a convex shape by other convex shape
of similar size contains small approximate covers, where the
meaning of “small” and “approximate” can be quantified, and
identified distinct behaviors depending on the smoothness of
the covering shapes), shatter functions of hypergraphs and families
of permutations [16] (exploring how upper bounds on the size of
“projections” of a combinatorial structure on small subsets imply
systematic asymptotic upper bounds on the size of the structure)
and projections of simplicial complexes and posets [19] (which are
developed in Chapters 8 and 9).

In computational geometry, the worst-case bounds are usu-
ally realized by pathological constructions that seldom occur in
practice due to structure in the input or finite precision in its
representation. A natural question is to provide more adequate
bounds via probabilistic geometric models. In this direction, I
worked on the expected size of 3D Delaunay triangulations [23] (we
extended to cylinders a complexity analysis that previously held
for other surfaces, requiring the development of a new set of
techniques) and started investigating the smoothed complexity of
convex hulls and other geometric structures [2] (where we explored
how quickly the expected complexity of the convex hull of a set
of points drops when the points are perturbed; we obtained near-
tight estimates for several models of perturbation and related
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these estimates to empirical observations of numerical rounding
phenomena).

I also had opportunities to work in a few other directions such
as bounded curvature path planning [25] (we reduced to convex
optimization a problem for which only constant-factor approxi-
mations were previously known) and untangling questions in graph
drawing [27, 28] (we established the hardness of minimizing the
number of vertex-moves required to turn a given, non-plane,
straight-line embedding of a planar graph into a plane graph).

Most of the results presented in this thesis were previously
published in collaboration with various co-authors. Rather than
keeping the structure induced by these publications, I reorganized
the material and took advantage of a better hindsight to simplify
certain proofs along the way. Specifically, the publications or
preprints on which this manuscript is based are:

e Line transversals to disjoint balls [77, 8], with Ciprian Borcea
and Sylvain Petitjean (Chapter 2),

* Hadwiger and Helly-type theorems for disjoint unit spheres [11,
13], with Otfried Cheong, Andreas Holmsen and Sylvain
Petitjean (Chapters 2, 3 and 4),

* Lower bounds to Helly numbers of line transversals to disjoint
congruent balls [12] with Otfried Cheong and Andreas Holm-
sen(Chapter 3),

* Geometric permutations of disjoint unit spheres [14, 15], with
Otfried Cheong and Hyeon-Suk Na (Chapter 4),

* Lines pinning lines [1] with Boris Aronov, Otfried Cheong
and Giinter Rote (Chapters 5 and 6),

e Pinning a Line by Balls or Ovaloids in R3 [26] with Stefan
Konig and Sylvain Petitjean (Chapter 7),

e Helly numbers of acyclic families [19] with Eric Colin de
Verdiere and Grégory Ginot (Chapter 9).

This manuscript also incorporates insight from on-going works
with Otfried Cheong, Jae-Soon Ha and Jungwoo Yang (Chapter 4),
Guillaume Batog (Chapter 7) and Eric Colin de Verdiere and
Grégory Ginot (Chapters 8).






ABSTRACT

The efficient resolution of various problems in computational
geometry, for instance visibility computation or shape approx-
imation, raises new questions in line geometry, a classical area
going back to the mid-19th century. This thesis fits into this theme,
and studies Helly numbers of certain sets of lines, an index re-
lated to certain basis theorems arising in computational geometry
and combinatorial optimization.

Formally, the Helly number of a family of sets with empty inter-
section is the size of its largest inclusion-wise minimal sub-family
with empty intersection. For d > 2 let {4 denote the least integer
such that for any family {By, ..., By} of pairwise disjoint balls of
equal radius in IR¢, the Helly number of {T7(B1),...,T(Byn)} is at
most H4, where T(B;) denotes the set of lines intersecting B;. In
1957, Ludwig Danzer showed that J{,; equals 5 and conjectured
that Hq is finite for all d > 2 and increases with d. We establish
that g4 is at least 2d — 1 and at most 4d — 1 for any d > 2, prov-
ing the first conjecture and providing evidence in support of the
second one.

To study Danzer’s conjectures, we introduce the pinning number,
a local analogue of the Helly number that is related to grasping
questions studied in robotics. We further show that pinning num-
bers can be bounded for sufficiently generic families of polyhedra
or ovaloids in R3, two situations where Helly numbers can be
arbitrarily large.

A theorem of Tverberg asserts that when {B;, ..., By} are dis-
joint translates of a convex figure in the plane, the Helly number
of {T(B1),...,T(Bn)}is at most 5. Although quite different, both
our and Tverberg’s proofs use, in some way, that the intersection
of at least two T(B;i)’s has a bounded number of connected com-
ponents, each contractible. Using considerations on homology of
projection of simplicial complexes and posets, we unify the two
proofs and show that such topological condition suffice to ensure
explicit bounds on Helly numbers.
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INTRODUCTION

Isn’t it exciting?
Hazel

This habilitation thesis discusses Helly numbers, a notion that
originates in a classical theorem of Eduard Helly often referred to
as “one of the pillars of convex geometry” (the other two pillars
being Radon’s and Caratheodory’s theorems).

Theorem 1.1 (Helly’s theorem [Hel23]). If any d + 1 members of
a finite family of convex sets in R have a point in common then the
whole family has a point in common.

In the contrapositive, Helly’s theorem states that if finitely many
convex sets have empty intersection then a small number of them,
at most d + 1, must already have empty intersection. Helly’s the-
orem initiated a search for conditions that, like convexity, ensure
that empty intersection can be witnessed by small subfamilies.
Helly’s name remained attached to the notion, and the Helly
number of a family C of sets is defined as the largest integer k
such that there exist x1,...,xy in C satisfying two conditions:

(D Micickxi =0, and

(11) foranyj € {1,..., %k} Nycicrsizgg Xi # 0.

We are interested in Helly numbers of sets of lines. More precisely,
we investigate conditions on families {A1,..., A} of subsets of
RY ensuring that {T(A1),...,T(An)} has bounded Helly num-
ber, where T(A;) denotes the set of lines intersecting A;. This
leads to exploring how the geometry of Ay, ..., Ay influences the
structure of the set T(A1)N...NT(Ax) of their line transversals.
The natural setting to study these questions is line geometry, the
theory of the space of lines as studied in the second half of the
19th century by people such as Pliicker, Klein, Grassmann...

Helly numbers come in various guise in mathematics and
computer science. Before we outline our results we illustrate this
diversity with a few examples.
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The area where Helly numbers received most attention is per-
haps discrete geometry. There are, naturally, a great many Helly
numbers following from direct geometric conditions on the family
under consideration; for instance, the Helly number of any finite
family of homothets of a planar convex curve is known to be at
most 4 [Swao3]. Many Helly numbers are also known for sets
induced by simple geometric objects. Let us give an elementary
example. Start with a family J = {py,...,pn} of points in R4
and let B; denote the set of balls of radius r containing p;. Since
the set of centers of balls in B; is simply the ball with center p;
and radius r, it follows from Helly’s theorem that {By,...,Bn}
has Helly number at most d + 1; in other words, if I cannot be
enclosed in a ball of radius r then some d + 1 points of J already
do not fit in such a ball. Examples of similar Helly numbers
include the existence of separating surfaces [Lay72], the possi-
bility of illuminating a region using few light sources [Bregz]
or the dimension of the kernel of a polygon [Bre81, Breo3]. Per-
haps more surprisingly, there also exist Helly numbers relative
to the existence of geometric structures satisfying certain con-
ditions, for instance Minkowski structures making a given set
equilateral [Pet71]. Helly numbers were extended in various
ways (e.g. via fractional or colorful analogues) and studied in trop-
ical geometry [GSo8, GM10] or more abstract settings such as
convexity spaces [Kolg1] or matroids [Edmo1]. We refer to the
classical surveys of Danzer et al. [DGK63], Eckhoff [Eckg3] and
Wenger [Weno4] for a more detailed account on the study of
Helly numbers in discrete geometry.

In algorithms, Helly numbers naturally arise in the context
of optimization problems where the goal is to maximize (or
minimize) some function ¢ under a family J of constraints. In
many situations ¢ takes its value over some geometric space
and each constraint requires that the solution belongs to some
subset of that space; for instance, in linear programming ¢ is
defined over R¢ and each constraint requires that the solution
lies in a given halfspace. In the case where all constraints cannot
be simultaneously satisfied, the maximum size of a certificate of
infeasibility is naturally given by the Helly number of J. This
was, for instance, the motivation for studying Helly numbers
in hybrid discrete-continuous settings [AW10]. Helly numbers
are also relevant when the problem is feasible. For instance, in
the LP-type problems framework [SWo92], which generalizes linear
programming and captures problems such as computing the
smallest enclosing ball or cylinder, the complexity of computing
a solution depends on the so-called combinatorial dimension which
is, essentially, the Helly number of the level sets of the function
to be optimized [Ameg4]. In the discrete realm, a similar setting
extends integer linear programming and enjoys the same connection
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to Helly numbers [Halog]. Other applications of Helly numbers
in optimization include the reduction of semi-infinite convex
programming to finite subproblems [BTRBI79] or approximation
algorithms [LSo9].

In topology, Helly numbers come in two flavors. On the one
hand, one may derive Helly numbers from topological condi-
tions. The first result in this direction is Helly’s topological theo-
rem [Hel3o], which states that a family of homology cells in R¢
such that every subfamily of at most d members intersect in a ho-
mology cell has Helly number at most d + 1. This was extended
and generalized in several directions, for instance to take into
account properties such as whether the sets separate the space
or not [Had63]. Several results generalized Helly’s topological
theorem by allowing the elements of the families to have (and
intersect into) several connected components [Matgy, KMo8]; we
will come back later to this line of research as we present a new
result of this flavour. On the other hand, Helly numbers say
something about the intersection patterns of families of sets, and
these intersection patterns are classically studied via the nerve
simplicial complex. In that setting, the Helly number bounds
the maximum dimension of an induced simplicial subcomplex
isomorphic to the boundary of a simplex. This naturally situates
Helly’s topological theorem as a particular case of more general
results such as Borsuk’s Nerve theorem [Bor48, Bjoo3] or Leray’s
acyclic cover theorem [BT82] that relate the homotopy type or ho-
mology of a nerve of a family to that of its union. It also relates
Helly number to other indicators of simplicial complexes such
as the Leray number [KMo8], the representability or the collapsibil-
ity [MTo8], or the size of blockers in sparse representations of
simplicial complexes [ALS11].

And the list goes on. In algebra, Helly numbers relate to the
combinatorics of generators for certain (algebraic) groups [Farog].
In commutative algebra, they arise in the resolution of square-free
monomial ideals [KMo6] and, via their generalizations, multi-
graded ideals [Flo11]. We stop the enumeration here, as if the
reader hasn’t already been convinced that Helly numbers are
natural, useful objects then we fear there is little else we can do
to win him over.

Before we discuss our results some terminology is in order.
Given a subset X of R we let T7(X) denote the set of lines inter-
secting X. If = {X;j,..., Xy} is a family of subsets of R4, we
let T(F) = (Nxeg T(X) denote the set of lines intersecting every
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member of F, the so-called line transversals to F, and let ¥V denote
the family 77 = {T(X) | X € F}. We refer to the members of F as
the objects. To save breath, we call the Helly number of 7 the
transversal Helly number of I and speak of a family of disjoint sets
to designate a family whose members are pairwise disjoint.

(T}
o )
" O\
N

Figure 1: Two examples of constructions leading to arbitrary large
transversal Helly numbers for convex sets. (Left): a family
of n unit disks centered at the vertices of a regular n-gon.
(Right): a family of n disks consisting of one large disk and
n — 1 small disks arranged so that any tangent line to the
large disk misses at least one small disk.

As illustrated in Figure 1, there are families of convex sets in
the plane with arbitrary large transversal Helly number. Such
families can even consist of disjoint objects or of translates of
the same object. Yet, families of disjoint translates of a convex set
have bounded transversal Helly number. The first result in this
direction was obtained by Ludwig Danzer.

Theorem 1.2 (Danzer [Dansy]). The transversal Helly number of
any family of disjoint unit disks is at most 5.

The construction of Figure 1 (left) with n = 5 shows that this
bound is best possible. Danzer’s theorem was later extended by
Griinbaum [Grii58] to families of disjoint translates of a square;
Griinbaum then conjectured that the same bound holds for the
transversal Helly number of any family of disjoint translates of
a convex planar figure, a conjecture settled in the positive by
Tverberg [Tve89] some four decades later.

Our starting points are two conjectures on generalizations of
Danzer’s theorem, not to other shapes, but to higher dimension.
For d > 2, let H{4 denote the maximum transversal Helly number
of a family of pairwise disjoint unit balls in R¢ (if there are such
families with arbitrary large transversal Helly number we put
Hg4 = 00). After proving that J(, = 5, Danzer conjectured:

Conjecture 1.3. The number Hq is finite for any d > 2.

It is easy to see that the number H 4 are non-decreasing. Indeed,
any family F of disjoint unit balls in R¢ can be turned into a
family J of disjoint unit balls in R+ with all centers in the
hyperplane x4471 = 0; since projecting a line orthogonally on
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xgq+1 = 0 decreases its distance to all balls” centers, ¥ and F
have the same transversal Helly number. Danzer made a second
conjecture:

Conjecture 1.4. Hq41 > Hq forany d > 2.

We will refer to Conjectures 1.3 and 1.4 as, respectively, Danzer’s
upper bound conjecture and monotonicity conjecture.

The first positive result on Danzer’s upper bound conjecture
was obtained in 1957 by Hadwiger [Had] for the case of families
of “thinly distributed” balls; here, a family of balls is thinly dis-
tributed if the distance between any two balls’ centers is at least
twice the sum of their radii. This result was extended by Ambrus,
Bezdek and Fodor [ABFo6] to disjoint unit balls, in arbitrary

dimension, the centers of which are distance at least 2v/2 + /2
apart. Danzer’s conjecture for three-dimensional disjoint unit
balls, without additional assumption on their distribution, was
only settled in 2001 by Holmsen, Katchalski and Lewis [HKLo3].
Since H; =5 and the numbers H4 are non-decreasing, we have
that {4 > 5 for any d > 2; no better upper bound was known.
In Part i, we prove that

2d—1 < Hg <4d -1, (1.1)

settling the upper bound conjecture and providing evidence in
support of the monotonicity conjecture.

The cornerstone of our proof is a convexity theorem for sets of
directions of line transversals (Chapter 2). The space of directions
in RY is $4~1, envisaged as the unit sphere centered at the origin.
The standard metric on S¥ induces a notion of convexity, called
strong convexity, on subsets X C S* that do not contain any
antipodal pair: X is strongly convex if it contains the smallest
circle arc joining any two of its points. An oriented line transversal
to a family J of disjoint balls induces an order on F, namely
the order in which the line meets the balls, that we call the
order induced by the line on F. We prove that if F is a family
of disjoint balls in R¢ then the set of directions of oriented
line transversals to J that induce the same order is strongly
convex. The special case of this convexity theorem was previously
established for disjoint unit balls in R® by Holmsen, Katchalski
and Lewis [HKLo3] using analytical methods. This proof was
extended by Ambrus, Bezdek and Fodor [ABFo6] to their setting®
but has been observed to fail in the general case [GSos]. Our
proof takes a different path, and relies on a careful inspection

Hadwiger [Had] also used a particular case of this convexity property for thinly
distributed families of balls. That proof was apparently never published, and
we do not know what arguments he used.
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of the algebraic curves that compose the boundary of this set of
directions.

The convexity theorem allows us to bound a local analogue
of the Helly number (Chapter 3). Define the pinning number of
a family C of subsets of some topological space as the largest
integer k such that there exists x1,...,xx in Cand p € [ ¢y i
satisfying two conditions:

(1) p is an isolated point of (; ;< xi, and

(11) p is not an isolated point of [;¢icy;ixjXi for any j in
{1,..., kb

We call a statement bounding from above a pinning number a
pinning theorem. As usual, a point p is isolated in a set S if p
is not a limit point of S. We show that if J is a finite family of
disjoint balls in RY the pinning number? of 7 is at most 2d — 1.
We further show that this bound is best possible by studying
the stability of isolated transversal to a family of balls under
tangency-preserving perturbations of the balls.

The last ingredient needed to obtain Inequalities 1.1 is a proof
that the oriented line transversals to a family of n > 9 disjoint
unit balls in R¢ induce at most two pairs of reversed orders,
which differ by the swapping of two consecutive elements (Chap-
ter 4). From there, we obtain the upper bound by an homotopy
argument: we start from a situation where every subset of 4d — 1
balls has a line transversal, deform the configuration until one
of the (4d — 1)-tuple has an isolated line transversal, and analyze
that situation using our pinning theorem and the structure of
the orders induced by line transversals. The lower bound on H4
follows easily from the lower bound on the pinning number.

To conclude this outline of our first series of results, let us
mention that the study of transversal Helly numbers (for lines
and higher dimensional transversals) opened a broader field of
inquiry now known as geometric transversal theory. We refer the
interested reader to the classical surveys of that area [DGK63,
GPWo3, Eckgs, Wenog, GPoz].

The pinning theorem (Theorem 3.5) that we use to prove the
upper bound conjecture of Danzer holds for families of disjoint

The space of line is equipped with its natural topology, as defined e.g. through
Pliicker coordinates or via its identification with the quotient of the space of
pairs of distinct points by the equivalence relation of “defining the same line”.
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balls without restriction on the radii, a situation in which the
transversal Helly number cannot be bounded (see Figure 1 right).
In Part ii, we explore other situations where pinning numbers
of sets of line transversals can be bounded. This requires a new
approach as our proof of Theorem 3.5 relies on the convexity
structure of the sets of directions of line transversals to disjoint
balls, which is quite specific to that setting.

Let us introduce some terminology. If a line transversal { to
a family J cannot move without missing some A € J, then we
call the line { pinned by F. Here we consider small continuous
movements of { in the vicinity of its current position, obviously
excluding translations parallel to itself. In other words, { is pinned
if { is an isolated point in the space of line transversals to J; we
also call J a pinning of (. If I pins { but no proper subset of F
does then we call F a minimal pinning of {; the pinning number
of F7 is then simply the maximum size of a subset of J that is a
minimal pinning.

11

ls

Figure 2: (Left): {; passes to the right of {;. (Right): In the vicinity of
{, a line intersects the polytope if and only if it passes to the
right of (..

We first study the size of minimal pinnings of a line by poly-
topes in R (Chapter 5). We show that this pinning number can
be arbitrarily large in general but can be bounded under a gener-
icity condition: any minimal pinning of a line by polytopes in R3
where no polytope’s facet is coplanar with the line has size at
most eight. Given two non-parallel lines ¢; and {, with direction
vectors \/—1> and v—f, we say that {, passes to the right of £; if {; can
be translated by a positive multiple of Vi x v} to meet {;; the
genericity condition ensures that in the vicinity of the pinned line,
intersecting a polytope is equivalent to a conjunction of sidedness
constraints with respect to lines supporting that polytope’s edges
(See Figure 2). An adequate parameterization of line space as the
points of a quadratic hypersurface 9t in IR recasts each sidedness
constraint as a linear inequality. We thus have a polyhedral cone
C =(ier H{, given as an intersection of halfspaces, whose apex
a (the pinned line) is an isolated point of C N9, and we want a



INTRODUCTION

subset of at most eight of the halfspaces to define a (larger) cone
C’ such that a remains an isolated point of C’ N <M. We prove
that such a subset indeed exists using a simple characterization
of that isolation property in terms of the trace of the cone on the
hyperplane tangent to the quadratic hypersurface in the apex a.

Figure 3: The two types of minimal families of vectors surrounding the
origin in R2.

A natural follow-up question is whether the (generic) minimal
pinnings of a line by polytopes in R? can be tabulated. We give
such a tabulation in the case where the sidedness constraints de-
scribing the conditions of intersecting the polytopes are induced
by lines orthogonal to the pinned line (Chapter 6); we call such
conditions orthogonal constraints. An adequate parameterization
maps the set of lines passing to the right of an orthogonal con-
straint to a halfspace in R*. The minimal pinnings are thus recast
as minimal families of halfspaces in R* intersecting in a single
point. Since each halfspace contains that point on its boundary,
the question amounts to describing the situations where the outer
normals of these halfspaces contain the origin in the interior of
their convex hull; we thus speak of a family of normals that
surrounds the origin (see Figure 3). We first characterize minimal
families of vectors in R? surrounding the origin; this characteri-
zation is given in terms of decomposition of the family in critical
simplices, which are minimal linearly dependant subfamilies that
contain the origin in their relative convex hull. We then identify
those critical simplices that can be realized as normals to halfs-
paces defined by orthogonal constraints, and obtain a tabulation
of all minimal pinnings of a line by orthogonal constraints (into
16 cases).

Our analysis of pinnings by constraints holds the key to a full
classification of minimal stable pinnings by smooth convex sets,
which we explore in Chapter 7. By stable pinning we mean a col-
lection of objects that pins a line { and that keeps pinning ¢ after
small (independent) screws of axis £ are applied to each of the ob-
jects. We start by showing that, in an adequate representation of
the space of lines, the set 0T(C) of lines tangent to C is smooth in
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gl

Figure 4: The first-order approximation in ¢ of the set of lines intersect-
ing C is the set of lines passing to the right of {’.

any line {( that touches C in a smooth point of positive Gaussian
curvature. Furthermore, the tangent space to 07(C) in {y can be
interpreted as the set of lines intersecting some orthogonal con-
straint (see Figure 4). We can thus study the situation where the
first-order approximations of the solids J(C;) intersect in a single
point using techniques developped in Chapters 5 and 6. This
condition of “pinning at first-order” turns out to be equivalent
to the condition that the pinning be stable. The classification of
minimal stable pinnings by smooth convex sets thus follows from
the tabulation of minimal pinnings by orthogonal constraints. We
also extend some arguments of Chapters 2 and 3 and establish
a bound of 12 on the size of any minimal pinning of a line by
convex sets in R? under the condition that each set is tangent
to the line in a smooth point of positive curvature and that no
two sets are externally tangent on the pinned line. Contrary to
the pinning theorem obtained in Chapter 3, all our arguments in
Chapter 7 are local: we only need the sets to be convex, smooth,
and have non-vanishing Gauss curvature in the vicinity of their
contact points with the pinned line.

When J is a family of disjoint balls in R¢ the intersections
of members of F7 are, in general, not connected. We know of
two systematic ways to bound the Helly numbers of families of
non-connected sets, and one may wonder if our upper bound
on the transversal Helly number of families of disjoint unit balls
could be amenable to such methods.

On the one hand, one can start with a “ground” family §
whose Helly number is bounded and consider families J such
that the intersection of any subfamily § C J is a disjoint union of
at most r elements of J{. When § is closed under intersection and
non-additive in the sense that the union of disjoint elements of G is
never an element of G, the Helly number of J is at most r times the

9
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Helly number of G. This was conjectured (and proven for r = 2)
by Griinbaum and Motzkin [GM61] and a proof of the general
case was recently published by Eckhoff and Nischke [ENog],
building on ideas of Morris [Mor73]. Direct proofs were also
given by Amenta [Ameg6] in the case where G is a finite family of
compact convex sets in R¢ and by