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Remember that all models are wrong;

the practical question is how wrong do they have to be to not be useful.

George E. P. Box (statistician)
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Abstract

When measuring high-throughput data of cellular metabolism and its
evolution, it is imperative to use appropriate models. These models allow
the incorporation of these data into a coherent set. They also allow inter-
pretation of the relevant metabolic variations and the key regulatory steps.
Finally, they make contradictions apparent that question the basis on which
the model itself is constructed.

I use the experimental data of the metabolism of tumor cells in response
to an anti-cancer treatment obtained in the biological laboratory.

I focus on the modeling of a particular point: the metabolism of glyc-
erophospholipids, which are good markers of cell proliferation. Phospho-
lipids are essential parts of cell membranes and the study of their synthe-
sis (especially mammalian cells) is therefore an important issue. In this
work, our choice is to use a mathematical model by ordinary differential
equations. This model relies essentially on hyperbolic equations (Michaelis-
Menten) but also on kinetics, based on the law of mass action or on the
diffusion. The model consists of 8 differential equations thus providing 8
substrates of interest. It has naturally some parameters which are unknown
in vivo. Moreover some of them depend on the cellular conditions (cellular
differentiation, pathologies).

The model is a collection of the structure of the metabolic network,
the writing of the stoichiometry matrix, generating the rate equations and
finally differential equations.

The chosen model is the mouse model (mouse / rat), because it is it-
self a model of human. To study the relationship between the synthesis of
phospholipids and cancer, several conditions are successively considered for
the identification of parameters: - The healthy liver of the rat - The B16
melanoma and 3LL carcinoma line in mice, respectively, without treatment,
during treatment with chloroethyl-nitrosourea and after treatment - Finally,
the B16 melanoma in mice under methionine deprivation stress.

In summary, my work provides a new interpretation of experimental data
showing the essential role of PEMT enzyme and the superstable nature of
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phospholipids metabolic network in carcinogenesis and cancer treatment. It
shows the advantage of using a mathematical model in the interpretation of
complex metabolic data.
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Ŕesuḿe

A l’heure de l’acquisition de données à haut débit concernant le métabolisme
cellulaire et son évolution, il est absolument nécessaire de disposer de modèles
permettant d’intégrer ces données en un ensemble cohérent, d’en interpréter
les variations métaboliques révélatrice, les étapes clefs où peuvent s’exercer
des régulations, voire même d’en révéler des contradictions apparentes met-
tant en cause les bases sur lesquelles le modèle lui-même est construit. C’est
ce type de travail que j’ai entrepris à propos de données expérimentales
obtenues dans le laboratoire biologique sur le métabolisme de cellules tu-
morales en réponse à un traitement anti-cancéreux. Je me suis attachée
à la modélisation d’un point particulier de ce métabolisme. Il concerne le
métabolisme des glycérophospholipides qui sont de bons marqueurs de la
prolifération cellulaire. Les phospholipides constituent l’essentiel des mem-
branes d’une cellule et l’étude de leur synthèse (en particulier chez les cellules
de mammifères) est de ce fait un sujet important. Ici, nous avons pris le parti
de mettre en place un modèle mathématique par équations différentielles
ordinaires, qui est essentiellement basé sur des équations hyperboliques
(Michaelis-Menten), mais aussi sur des cinétiques type loi d’action de masse
et diffusion. Le modèle, composé de 8 équations différentielles, donc de 8
substrats d’intérêt, comporte naturellementdes paramètres inconnus in vivo,
et certains dépendents des conditions cellulaires (différentiations de cellules,
pathologies, . . .). Le modéle sépare la structure du réseau métabolique,
l’écriture de la matrice de stoechiométrie, celles des équations de vitesse
et enfin des équations différentielles. Le modèle choisi est le modèle murin
(souris/rat), parce qu’il est lui-même un modèle de l’homme. Plusieurs con-
ditions sont successivement considérées pour l’identification des paramètres,
afin d’étudier les liens entre la synthèse de phospholipides et le cancer : -
le foie sain du rat, - le mélanome B16 et le carcinome de la lignée 3LL
chez la souris, respectivement sans traitement, en cours de traitement à
la Chloroéthyl-nitrosourée et après traitement, - enfin le mélanome B16
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chez la souris sous stress de privation de méthionine. En résumé, ce tra-
vail fourni une interprétation nouvelle des données exprimentales en mon-
trant le rôle essentiel de la PEMT et la nature superstable de l’état sta-
tionnaire de fonctionnement du réseau métabolique des phospholipides lors
de la cancérogénèse et du traitement des cancers. Il montre bien l’avantage
de l’utilisation d’un modèle mathématique dans l’interprétation de données
métaboliques complexes.
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CHAPTER 1

Introduction

1.1. Computational biology

Biological systems are groups of organs that interact and work together
to perform certain functions in living organisms. The complexity of biolog-
ical systems and also the fact that biological sciences become more quanti-
tative, lead to the increasing use of computer in biology and make multi-
disciplinary involvement essential: this scientific activity can take the form
of data anallysis, molecular modeling and prediction and simulation, etc.

Computational biology is a fast growing and cutting edge field that de-
velops a blend of computer science, applied mathematics, statistic and engi-
neering to shed light on biological problems. The term computational biology
describes the development of computer-based techniques for the collection
and manipulation of biological data, and the use of these data to make bio-
logical predictions. In 1919 one of the first mathematical models of a living
system was proposed by August Krogh and Agner Erlang [1]. This model
which is still in use today had the aim to predict the oxygen distribution
around a capillary based on a system of differential equations. This exam-
ple can show the oldness of the practice of computational biology [2, 3, 4].
However now we have a computational power unimaginable to the earlier re-
searchers, and simultaneously a tremendous increase in available data. This
makes modeling and analysis of complex biological systems, our challenges.

1.2. Systems biology

Living biological systems are complex collections of interacting parts,
that cannot be understood completely by studying just individual parts:
experiments are too complex of not imposible to allow a precise understnad-
ing of the globality of the interactions and we need a computational approach
for this aim. Systems biology is a new emergent field that attempts to study
the organisms via integrated and interacting networks. These networks can
include genes, proteins, and biochemical reactions. Systems biologists are
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focussed on the behaviour of the different components of an organism and on
the interactions among them. Thus computational biology is an important
domain of systems biology which plays different roles including data anal-
yses, formulating, fixing or improving hypotheses and optimal experiments
design [4].

Computational systems biology includes two branche. The first branch
is knowledge discovery, that describes the process of automatically searching
large quantities of experimental data for patterns that can be considered as
knowledge about the data, and that are difficult to identify without com-
putational tools. The second branch is simulation based methods, that use
computational modeling methods to represent the characteristics and pre-
dict the behaviour of biological systems. Once computer models have been
validated, they can be used to make predictions about the behaviour of
biological systems.

1.3. Modeling and Simulation

In systems biology, the term model is an artificial construct that re-
produces the particularly desired behaviors and properties of a biological
system. Models can have different forms, such as physical, logical, or math-
ematical models. In this dissertation our study is focused on a mathemati-
cal model based on mathematical equations with the aim of capturing the
important properties of certain biological systems. After performing exper-
iments on the model, we then check the results of the model simulations
against equivalent experiments in the biological system.
Computer simulation as a useful part of mathematical modeling is a method

for studying the evolution of model behaviors over time. We can use com-
puter simulations to explore and find new insights into new technology, and
to estimate the performance of systems. Although simulation has a heavily
developed theory within the field of computer science, the practice of mod-
eling and simulation is still more of an art than a science.

Computer simulations vary from small computer programs that run a
few minutes, to network-based groups of computers running for hours or even
for days. The importance of mathematical modeling, and the simulation of
complex biochemical processes increased because of the advances in infor-
mation technology in combination with more comprehensive databases and
less expensive computing power [5]. Many modeling and simulation experts
have published guides based on specific past experiences. We can employ
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computer modeling and mathematical simulation to test the hypotheses of
biologists about a biochemical reaction network. However testing the ac-
tual physical system is either expensive or dangerous, the cost of building a
mathematical model and performing theoretical experiments on that model
almost always is much less than the cost of laboratory experimentations.
Since the decisions that biologists make as a result of modeling and exper-
imentation have significant consequences, it is crucial that the models are
credible and reliable, and that biologists understand the limitations of their
modeling efforts [6].

1.4. Kinetic modeling

1.4.1. Kinetic modeling and data. The field of kinetic modeling is
an important approach in systems biology that comprises the use of math-
ematical models to examine the metabolic networks. These kinetic models
represent the structure and the dynamics of a system in order to predict its
behaviour under different conditions. To make numeric simulations we need
experimental kinetic data.

1.4.1.1. The incompleteness of kinetic data: The connection between it-
erative experimental testing and mathematical modeling of the interactions
of cellular components is one definition of Systems Biology [7]. The model-
ing process comprises 3 steps; firstly developing a model using experimental
data, secondly using the developped model for a prediction of its behaviour,
and thirdly the validation of model’s predictions.

The computational modeler needs a large amount of experimental data
in order to produce models that are close to real nature. Since on the one
hand it is difficult to collect all the experimental knowledge in metabolism
field and on the other hand there are always a number of parameters which
are not experimentally measurable, we will meet the problem of incomplete-
ness of kinetic data in a biochemical network.

1.4.1.2. The importance of kinetic data: Growing knowledge about bio-
chemical reactions, pathways and networks, makes scientists capable of bet-
ter understanding biological phenomens. Although this fact is very global
and can have a significant impact on life, it is the outcome of many small
things. The bottom-up modeling approach proposes the understanding of a
biological system by finding pathways and networks. The details about path-
ways and networks are based on our knowledge of the underlying reactions.
We describe reactions by their kinetic parameters: equilibrium constants,
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rate constants, Michaelis constants, velocity constants, etc. The more we
know about these parameters, the better we can build up our knowledge
about the reactants and their corresponding interactions.

1.5. Computational systems biology in cancer

Cancer is a serious disease that results in a disruption of cellular commu-
nication, coupled with the absence of cell death, causing the development of
clusters of cancer cells (called tumors) that are beyond the rules of the body.
Carcinogenesis is a complex process at the molecular and cellular levels. Un-
derstanding different phases of cancer (origin, growth and spread), requires
an integrated or system-wide approach. Computational systems biology
studies the large pool of experimental data of different ranges (genomic,
proteomic and metabolomic) to build computer simulations. Several useful
descriptive and predictive models of different kinds of cancers have been de-
veloped in order to better understand the origin of the disease and possible
therapeutic treatments. Systems biology in cancer aims to give researchers
a knowledge of some unobvious characteristics of the simulated process of
cancer to researchers. Now a question to answer is: how computational sys-
tems biology in cancer can lead to novel insights into the understanding of
disease’s origin and determining new targets for anticancer therapy?[8]

1.6. The studied biological model

We study, in this dissertation, a model of the phospholipids which are the
core of the system of the Glycerophospholipid metabolism. The development
of methods for pathway-specific analyses of the phospholipid biosynthesis in
intact tissue can help in our understanding of numerous cellular processes,
and may be important for cancer studies. This is why the Phospholipid
metabolism has attracted the attention in cancer research. It is of interest to
biologists to be able to follow the phospholipid metabolism in circumstances
in which cell survival and cell proliferation are of concern, e.g. neurological
disorders and cancer [9, 10]. Thus there is a need to develop a model
for their biosynthesis and turnover: this is why we tried to describe this
system. Our goal is to build a model with which one could simulate the
behavior of phospholipids interactions taking into account the impact of the
environment. Due to the complexity of this system, we use mathematical
modeling and numerical simulation to enable a compact representation of the
current knowledge and to make meaningful quantitative predictions guiding
future experimental studies.
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Several formalisms have been proposed in the recent years for kinetic
modeling of biochemical processes, either qualitatively, or quantitatively
which provide a graphical user interface and a simulator [11, 12, 13]. Yet
few formal tools are available for reasoning about these processes and prov-
ing properties about them. In this dissertation, we propose a kinetic model
by directly translating the biochemical reactions of phospholipid biosyn-
thesis into ordinary differential equation (ODEs), following the Michaelis-
Menten chemical paradigm. Other authors have used probabilistic models
or computer science models based on the π-calculus; under very reasonable
assumptions all these models yield ODEs as stated by L. Cardelli in his
series on Artificial Biochemistry [14].

1.7. Manuscript Plan

The central topic of this study is the mathematical modeling of the phos-
pholipid biosynthesis. A dynamic, continuous and deterministic modeling
approach is chosen to represent the behavior of the phospholipid metabolic
pathway; the temporal changes of metabolites are formulated as a generic
set of ODEs. Next we apply this model to different experimental datasets in
healthy and tumoral cells; each of these applications consists of a parameter
estimation process, followed by the mathematical simulation of the model
and finally a set of analyses such as stability analysis or sensitivity analysis.
We end this thesis by describing introduce the basis for a new software for
biological networks modeling in Appendix F.

In Chapter 2 cell metabolism and phospholipid biosynthesis are de-
scribed. Chapter 3 presents the modeling process that we chose in order
to describe phospholipid biosynthesis and states the model as a set of ODEs.
Chapter 4 then presents the parameter estimation process and the mathe-
matical simulation of the proposed model. Next three Chapters present the
application of this model on experimental data; in Chapter 5 the model is
applied to the healthy rat’s liver and in Chapters 6 and 7 the model is ap-
plied to B16 melanoma and 3LL carcinoma, in response to CENU treatment
and methionine depriviation respectively. Chapter 8 points out essential as-
pects of this work. Moreover, Appendix A introduces basic knowledge of
chemical reactions and enzyme kinetics which are used as base of kinetic
modeling. Appendix B gives a general view of three main methods of pa-
rameter estimation. Appendix C gives an introduction to stability analysis
in dynamic models with an application of this analysis. Appendices D and
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E give details on experiments by biologists and results of CENU and MDS
treatments respectively. Finally Appendix F presents the basis for a new
software for biological networks modeling.

1.8. Main results

We study, in this dissertation, a model for the core of the system of
the Glycerophospholipid metabolism. As we describe in Chapter 2 this
model comprises 24 simple and enzymatic reactions making explicit the in-
tertwined cycles of PhosphatidylEthanolamine (PtdEth) and Phosphatidyl-
Choline (PtdCho). The model’s general structure is taken from a number
of books and articles. We translate this model (in the mathematical frame-
work) into a set of ordinary differential equations (ODEs), to propose a
quantitative explanation of the experimental experiences and the observed
results. In order to make it usable as a basis for simulations and mathemat-
ical analysis we need to make precise the various constants present in the
equations but which are usually not directly accessible in the literature.

In the first application of the model we consider experimental data of
rat’s liver cells; given the values of metabolite concentrations we find appro-
priate parameter values which allow us to describe the system with ODEs.
We have then performed several analyses using the developed model such
as stability analysis and the time necessary to reach the steady state point.
A first interesting result is the global stability of the system which was ob-
served by simulation and then proved by mathematical arguments. A second
important result is that we observe on the diagrams that the steady state
for healthy cells is precisely a very special point of equilibrium which is a
singular point of order two, whereas tumoral cells present different charac-
teristics; this fact has been proved for PhosphatidylEthanolamine N-Methyl
transferase (PEMT), an enzyme which seems to be identified for the first
time as a crucial element in the tumoral process. Our results provide that all
the evolutions of this metabolic network are stable in the Michaelis-Menten
formalism, and that the healthy cell behaviour corresponds to a ”super-
stable” steady state.

As a second application of the model, we apply our proposed ODE-based
model for phospholipids to experimental data of proton HRMAS NMR spec-
troscopy for solid B16 melanoma and Lewis lung (3LL) 3LL carcinoma cells
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treated by Chloroethyl Nitrosourea (CENU). Once the estimation of un-
known parameters is done we perform a complete comparative analysis of
parameters in order to learn the predictive statements to explain increases
and decreases which one can observe in concentrations. We checked our
model against a series of biological experiments and give evidence for the
crucial role of PhosphatidylEthanolamine N-Methyl transferase (PEMT) in
tumor cells under CENU treatment. Our results show that the model fits ”in
vivo” observations and experiments with CENU tumor inhibitor, and pro-
vide new hypotheses on the metabolic pathway activity from the metabolite
profiling of the phospholipid derivatives.

In the third application of the model, our study is devoted to the under-
standing of the Methionine deprivation stress (MDS) and of its interactions
with chemotherapy, a standard treatment of advanced stage cancers. At
present, little is known on the metabolic impact of the interaction between
MDS and chemotherapy. This study has a twofold approach to the modeling
of the phenomena happening in the treatment. Firstly the biologists use a
metabolomics approach using 1H-NMR spectroscopy to get novel insights
into the mechanism of the action of the MDS. To this aim they investi-
gated, in vitro, the growth and metabolic response of B16 melanoma cells
to MDS. They showed that MDS provoked a cell growth delay and induced
disorders of phospholipid metabolism such as a increase in Glycerophospho-
choline (GPC), Phosphocholine (PC) and Phosphoethanolamine (PE) lev-
els and an activation of the phosphatidylethanolamine-N-methyltransferase
(PEMT) involved in phosphatidylcholine synthesis. After the cessation of
MDS, tumor cells metabolism exhibited persistent alterations such as in-
creased PEMT activity. These metabolic events probably explained the
increased growth delay induced by the MDS. Secondly from the data we
are able to propose a mathematical model which fits these biological ex-
periments and ”explains” the respective roles of PEMT. This model is very
stable and is robust w.r.t. reasonable variations that can be induced by
experimental errors and individual characteristics. We have performed sev-
eral analyses using the developed model such as comparative analysis and
sensitivity analysis. These analyses designated a set of kinetic parameters
as essential parameters to give evidence for the effect of MDS on PEMT
enzyme activity. From a methodological point of view, we also demonstrate
that metabolomics may help understanding tumor response to nutritional
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therapeutics and discovering new targets for anticancer therapy. In con-
clusion, this work showed that MDS induces Phospholipids metabolite dis-
orders including Glycerophosphocholine (GPC), Phosphocholine (PC) and
Phosphoethanolamine (PE) from phospholipid metabolism and transmethy-
lation reactions. The MDS treatment allowed us to demonstrate that there is
a tumor metabolism reprogramming at the level of Met metabolism. These
findings shed new lights about the understanding of the metabolic inter-
ference of MDS. Using an ODEs-based mathematical model, we presented
comparative and sensitivity analysis, which designated a set of kinetic pa-
rameters as essential parameters to understand the effect of MDS treatment
on B16-cells. Our analyses also give evidence for the effect of MDS on
PEMT enzyme activity which has a crucial role in tumor cells and propose
the activated pathway which witnesses for a metabolomic reprogramming
of the B16-cells allowing then to escape cell death during the MDS period.
Therefore these pathways represent putative candidate targets for therapies
combined with MDS.
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CHAPTER 2

Cell metabolism and Phospholipid biosynthesis

Outline

This Chapter is mainly focused on the cell metabolism as a vital cellular
process and on the phospholipids which are the major component of biolog-
ical membranes. We next present a graph implementation for the core of
Glycerophospholipid metabolism in which the pathways are supplied from
bibliographical references and some online databases. [15, 16, 17, 18, 19,
20]

2.1. Structure and processes in a cell

The cell surrounded by a lipid membrane is the smallest functional basic
unit of life. A cell contains all the components required for its replication and
this is the reason to be distinguished from smaller biological units. There
are two types of cells: eukaryotic (with nucleus) and prokaryotic (without
nucleus). Prokaryotic cells are relatively small in size and independent,
while eukaryotic cells, which are typically larger than prokaryotic cells, are
usually found in multicellular organisms. Diverse biological processes such
as growth, metabolism and replication are carried out by prokaryotic and
eukaryotic. All cells, whether prokaryotic or eukaryotic, have a membrane
that envelops the cell, separates its interior from its environment, regulates
what moves in and out, and maintains the electric potential of the cell.

2.2. Metabolism

Metabolism is a vital cellular process that consists of the set of chemical
reactions that happen in living organisms to maintain life. Since the mal-
function in metabolism is a major reason of human disease, it is important
to construct and study metabolic networks. That is to say, the sets of co-
herent processes that organize metabolic networks are complex and highly
interconnected, therefore there is a need to the computational approaches
(see Chapter 1 ). The reconstruction of the metabolic networks and kinetic
modeling is the core of systems biology. [21, 22]. One can use the metabolic
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network to suggest potential alternatives to drug targets or study the effects
and causes of diseases like cancer and copnsequently hints for tentative ther-
apies. Next we formulate the metabolic network into a mathematical model
based on rate laws for enzymatic or non enzymatic reactions. This kinetic
model can become quite complex with a large quantity of parameters.

Metabolism is defined as the totality of the chemical reactions catalyzed
by enzymes that are carried out in an organism. The changes in metabo-
lites are called biotransformations and a metabolic pathway is a sequence of
biotransformations [23] as illustrated in figure 2.1.

Figure 2.1. Multi-enzyme reaction: metabolic pathway
where multiple biotransformations take place. The substrate
of each reaction is the product of the previous reaction.(See
[23])

In a metabolic pathway the input metabolites are called substrates and
output metabolites are called products. Metabolites can originate from food,
but can also be products of other metabolic pathways in the cell. The
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phenotype of the cell is determined by its metabolism. One can improve the
cellular properties by changing the regulation of metabolic pathways through
changes in enzyme and metabolite concentrations. Enzymes, metabolites,
their respective interactions and the reactions involved in these pathways
have been studied by many researchers and are stored in different databases,
e.g.:

• Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway data-
base. (http://www.genome.ad.jp.kegg/pathway.html)
• BRENDA. (http://www.brenda-enzymes.info/)
• a Biochemical Genetic and Genomic knowledgebase of large scale

metabolic reconstruction (BiGG). (http://www.bigg.ucsd.edu)

KEGG is a collection of online databases dealing with genomes, enzy-
matic pathways and biological chemicals. The pathway database of KEGG
records networks of molecular interactions in the cells and variants of them
specific to particular organisms. The KEGG database can be used for mod-
eling and simulation, browsing and retrieval of data. Such data bases are
essential in the systems biology approach.

2.3. Phospholipids

Phospholipids are a major component of biological membranes.(Fig. 2.2)
They are a class of lipids formed from four components: fatty acids, a
negatively-charged phosphate group, alcoholamine and a backbone. Phos-
phatidylCholine (PtdCho) and PhosphatidylEthanolamine (PtdEth) are two
of the most abundant phospholipids. Biosynthesis and metabolism of these
and other phospholipids are important for proliferation of membrane-bound
organelles, lipoprotein synthesis, and signal transduction affecting processes
of cell proliferation, differentiation and apoptosis. Yet our understanding of
this metabolism and its regulation is far from complete.
It has long been recognized that different cell types and tissus display unique
and stable profiles of PtdCho and other phospholipid species. Perturbation
of PtdCho homeostasis in mamalian cells leads to cell death. In the early
1970s Sundler et al. [24, 25] examined the rates of synthesis for liver PtdCho
and PtdEth using radioisotope methods. Their data could not be described
by a simple precursor-product relationship and raise questions about the
compartment of metabolite pools and/or channeling of metabolic pathways
which are yet to be fully answered. Additionally, many questions about the
metabolic pathways themselves remain unanswered.
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In most eukaryotic cells, PtdCho is synthesized through two different path-
ways [26]; in the cytidine diphosphate-choline (CDP-choline) pathway (also
known as the Kennedy pathway) and via the transmethylation of PtdEth
catalysed by PE-N-methyltransferase (PEMT). Choline, supplied by food,
is principally in the form of PtdCho but also exists as free Choline [27, 28].
Choline is an essential nutrient for all cells because it plays a role in the syn-
thesis of the phospholipid components of the cell membranes, as a methyl-
group donor in methionine metabolism. Quantitatively, PtdCho is the most
important metabolite of Choline and accounts for approximately one half of
the total membrane lipid content.

Figure 2.2. Cell membrane structure: proteins and
phospholipids are major components of biological membranes.
(Image source: http://commons.wikimedia.org/wiki/File:Cell
membrane detailed diagram

The Kennedy pathway for producing PtdCho, involves the activation of
Choline (Cho) to CDP-choline through an intermediate product, Phospho-
Choline (P-Cho). The second pathway to produce PtdCho consists of three
sequential methylations of phosphatidylethanolamine. Cho derived from the
turnover of PtdCho produced by the methylation pathway is used for Ptd-
Cho synthesis through the Kennedy pathway. Therefore the activity of the
Kennedy pathway does not reduce even in the absence of Cho in the growth
medium [29].
In 1975, Sundler et al. used radioisotope methods to examine the rates of
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synthesis for PtdCho and PtdEt of liver [30, 31]. In their study, there are
still questions about compartmentation of metabolite pools and channeling
of metabolic pathways to be answered. However evidence of the two different
pathways of PtdCho synthesis and the relative activities of these pathways
was provided by Vance et al. [32, 33]. The Nuclear Magnetic Resonance
(NMR) spectroscopy method has been used to study the biosynthesis of
PtdCho and PtdEth [34, 35]. The NMR technique can also provide a de-
tailed examination of the specific metabolic pathways. Reo et al. performed
kinetic analyses of liver PtdCh and PtdEth biosynthesis using 13C NMR
spectroscopy [36].
The development of methods for pathway-specific analyses of phospholipid
biosynthesis in intact tissue can help in our understanding of numerous cel-
lular processes, and may be important for cancer studies. This is why the
Phospholipid metabolism has attracted the attention in cancer research. It
is of interest to biologists to be able to follow the phospholipid metabolism
in circumstances in which cell survival and cell proliferation are of concern,
e.g. neurological disorders and cancer [37, 38]. Thus there is a need to
develop a model for their biosynthesis and turnover. This is why we tried to
find a model for the core of GlyceroPhospholilid metabolism. Our goal is to
build a model with which one could simulate the behavior of phospholipid
interactions taking into account the impact of the environment. Due to the
complexity of this system, mathematical modeling and numerical simulation
are necessary to enable a compact representation of the current knowledge
and to make meaningful quantitative predictions guiding future experimen-
tal studies.(See section 3).

2.4. Biochemistry of the phospholipid metabolism

Figure 2.3 illustrates the model of Glycerophospholipid metabolism. The
model of phospholipid metabolism that we describe here is the core of Glyc-
erophospholipid metabolism which is supplied from bibliographical refer-
ences(e.g. M.Israel and L.Schwartz [15, 16, 17, 18, 19, 20]).

Our analysis concerns twenty-four biochemical reactions, as illustrated
in Fig.2.4. In this system there are two main sub-systems, which have al-
most the same reaction structures; the first one is the Choline (Cho) cycle
and the second one is the Ethanolamine (Eth) cycle. In order to have a
more complete model several reactions involving external reactants are also
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Figure 2.3. Glycerophospholipid metabolism ; supplied
from KEGG database.

considered and studied in the model; In figure 2.4 blue and green arrows rep-
resent Choline cycle and Ethanolamine cycle respectively and Pink arrows
correspond to reactions which connect these two sub-cycles. The chemical
structures of metabolites are shown in figure 2.5.

2.4.1. Choline cycle. Cho is phosphorylated in an enzymatic reaction
catalyzed by Choline-Kinase (CK), resulting in the formation of Phospho-
Choline (PC)[16]. PC is converted to PhosphatidyleCholine (PtdCho) in
a two step reaction, first catalyzed by regulatory enzyme PhosphoCholine-
Cytidyl-transferase (CCT), then by PC-transferase (CTP)[16, 17]. PtdCh
is converted to Glycero-PhosphoCholine (GPC) in the reaction catalyzed by
Phospholipase A2 (PlpA2)[17]. In addition, PC and Cho can be synthesized
from hydrolysis of PtdCho through the reactions catalyzed by Phospholipase
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Figure 2.4. Schematic representation of the model.
Arrows with VMi and KMi parameters refer to enzymatic
reactions while the others represent simple reactions. Blue
and green arrows represent Choline cycle and Ethanolamine
cycle repectively and Pink arrows correspond to reactions
which connect these two sub-cycles. Reactants: Cho
(Choline), PC (Phospho-Choline), PtdCho (Phosphatidyle-
Choline), GPC (Glycero-PhosphoCholine), Eth (Ethanolamine),
PE (Phospho-Ethanolamine), PtdEth (Phosphatidyle-
Ethanolamine), GPE (Glycero-PhosphoEthanolamine). En-

zymes: CK (Choline-Kinase), EK (Ethanolamine-Kinase),
CCT/CPT (PhosphoCholine-Cytidyl-Transferase), EC-
T/EPT (PhosphoEthanolamine-Cytidyl-Transferase), PEMT
(PhosphatidyleEthanolamine-N-methyl-Transferase), PlpA2
(PhosphoLipase A2), PlpC (PhosphoLipase C), PlpD (PhosphoLi-
pase D). Parameters: VM (Michaelis maximum reaction rate),
KM (Michaelis concentration constant), ki(Rate constants for
external reactions).

C (PlpC) and Phospholipase D(PlpD) respectively[17, 18]. Cho can be also
synthesized from GPC[18].
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Figure 2.5. Chemical structures of metabolites.

2.4.2. Ethanolamine cycle. Eth is phosphorylated in an enzymatic
reaction catalyzed by Ethanolamine-Kinase (EK), resulting in the forma-
tion of PhosphoEthanolamine (PE)[19]. PE is converted to Phosphatidyle-
Ethanolamine (PtdEth) in a two step reaction, first catalyzed by the regula-
tory enzyme PhosphoEthanolamine-Cytidyl-transferase (ECT), then by PE-
transferase (EPT)[19, 20]. PtdEth is converted to Glycero-PhosphoEthanolamine
(GPE) in the reaction catalyzed by Phospholipase A2 (PlpA2)[33, 17]. Eth
is synthesized from GPE[18].

The above two sub-systems are related through the reaction between Pt-
dEth and PtdCho where PhosphatidylEthanolamine N-Methyl Transferase
(PEMT) plays the role of catalyst[29, 32, 33]. This reaction seems to be
an important reaction in this system, and is the basis of the main analysis
in our study, since the homeostasis of PtdCho is essential to maintain cell
survival.

2.4.3. External reactions. In addition to the reactions described so
far, most of the reactants in phospholipid metabolism models have external
reactions. For example there is a reversible reaction in which Phosphatidyle-
Serine (PtdSer) releases CO2 and PtdEth as products [39]. In the same way
there are several external reactions in which Cho, Eth, PC, PE, PtdCho and
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PtdEth have the role of substrate or product. We present these external re-
actions by input or output arrows in the model(Fig.2.4)[34, 39, 16].
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CHAPTER 3

Mathematical modeling of phospholipid

biosynthesis

Outline

This Chapter is conserned with the construction of a mathematical
model for the reaction network of phospholipids which is illustrated in fig-
ure 2.4 with a graph implementation. For this aim, we first explain the
reason of choosing the ODE-based enzyme-kinetic modeling. Then we de-
scribe the modeling process as a means by which we formalize a natural
system to produce a mathematical system and as the means by which we
interpret this mathematical system to derive information about a natural
system. The basic biochemical definitions and the basic building blocks from
which we construct the mathematical model are intorduced in Appendix A.
This ODE-based model will be used later in the next Chapters to apply on
experimental data and to perform stability analyses.

3.1. An introduction to the mathematical modeling of metabolic
networks

Since the metabolic networks and their regulation are complex, an intu-
itive analysis of the biological systems is a difficult task. Different mathe-
matical modeling methods help to deal with this complexity. The question
thus is to determine the most useful mathematical tools and frameworks
for this aim. The biological systems are complex and this may lead to the
temptation that one should include every detail in the mathematical model.
However, it is impossible to be complete and we have to do some simplifi-
cations and approximations. Furthermore the aim of modeling is not just
finding a valid description of the given system, but also performing analysis
and simulation. Therefore, the decisions on simplifications and approxima-
tions should be based on several factors, such as the validity of the system
description, the mathematical convenience, and the goals of modeling.
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Different methods have been developed, ranging from basic stoichio-
metric models up to fine-grained kinetic models. Kinetic modeling which
constitutes an important branch in the growing field of systems biology, is
the most complex mathematical description of a metabolic network. We
consider several properties in order to decide what kind of model is suitable
for the experimental data and for the aim of modeling [40]:

(i) Dynamic or static
(ii) Discrete or continuous
(iii) Stochastic or deterministic
(iv) Spatial or homogeneous

Since in the metabolic pathway modeling, we usually study the dynamic
and continuous changes of metabolites, a dynamic and continuous model is
a better choice than static and discrete method. Furthermore, since we are
interested in average model responses rather than unlikely cases, a determin-
istic model is preferred to the stochastic methods. Another reason to choose
a deterministic model is the limit that exists for the number of molecules
in the stochastic methods such as process algebra (Pi-calculus)[14]. Finally
since all the reactions take place in the cytoplasm we ignore the spatial as-
pects, and assume the environment is homogenous.

Once a dynamic, continuous, deterministic, and homogenous model is
chosen, the changes of metabolites can be formulated as a generic set of
ordinary differential equation (ODE) of the form:

Xi = V +
i − V

−
i = V +

i (X1, ..., Xn)− V −i (X1, ..., Xn), i = 1, ..., n (1)

where Xi denotes the concentration of a metabolite or metabolite pool
and n is the number of metabolites in the system. The functions V +

i and
V −i represent the reaction rates or fluxes coming in and going out of the
metabolite pool Xi. This general framework has numerous alternatives and
applications in metabolic pathway modeling depending on the functions used
to describe V +

i and V −i .

After we choose the mathematical model framework, a symbolic model
which is described as a set of ordinary equations can be derived. The next
step is to assign numerical values to the parameters of the model. There
exist different ways for the parameter estimation. Chapter 4 will introduce
different methods which are developed for parameter estimation.
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3.2. The mathematical translation of metabolic networks

We can translate a metabolic network into mathematical terms by easy
means: The concentration of a metabolite is described by a variable Ci. The
change of concentration over time ∂Ci

∂t is given by the sum of the rates of
the enzymes synthesizing the metabolite minus the sum of the rates of the
enzymes consuming the metabolite (result of mass balances). The rate of
an enzymatic reaction is described by enzyme kinetic rate laws, such as the
Michaelis-Menten equation. This equation is a function which depends on
the concentration of metabolites and various parameters such as the maxi-
mal velocity of a reaction (Vmax), or binding constants. This process yields
a system of ordinary differential equations (ODEs) in which ∂Ci

∂t is on one
side and the metabolite-dependent rate laws are on the other side of the
equations (see evolution equations for reaction 23 in Appendix A). With
this system of differential equations, the metabolic network can be simu-
lated. Furthermore by solving the system of ODEs the steady state can be
computed.

3.3. Modeling process

The modeling process in general is summarized in 4 steps:

(i) Network structure
(ii) Stoichiometric matrix
(iii) Rate laws
(iv) Differential equations

The first step is to obtain chemical information about the network struc-
ture, in order to derive the stoichiometric relations. In some modeling ap-
proaches the inclusion of a large number of reactions and metabolites in the
model would make the processing very complex and computationally inef-
ficient. But in deterministic ODE-based models normally we do not have
a limitation on the number of reactions. The 24 reactions of our example
model for phospholipids are shown in table 1.

In table 1 we observe three type of reactions; R1-R6 show that reactants
are imported into the modeled system by these reactions, R13-R24 concern
the reactants which are converted to other products, and finally R7-R12
concern the reactants which are taken out of the system.
The stoichiometric matrix N of the reaction system is the following:
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Table 1. List of the reactions of the phospholipids system

Reactanions:

R1: → Cho

R2: → PC

R3: → Eth

R4: → PtdCho

R5: → PE

R6: → PtdEth

R7: Cho →
R8: PC →
R9: PtdCho →
R10: Eth →
R11: PE →
R12: PtdEth →
R13: Cho → PC

R14: GPE → Eth

R15: Eth → PE

R16: PtdCho → PtdEth

R17: PtdCho → Cho

R18: GPC → Cho

R19: PC → PtdCho

R20: PtdCho → PC

R21: PtdCho → GPC

R22: PtdEth → PtdCho

R23: PtdEth → GPE

R24: PE → PtdEth

N =



Cho Eth PC PE PtdCho PtdEth GPC GPE

R1 : 1 0 0 0 0 0 0 0

R2 : 0 0 1 0 0 0 0 0

R3 : 0 1 0 0 0 0 0 0

R4 : 0 0 0 0 1 0 0 0

R5 : 0 0 0 1 0 0 0 0

R6 : 0 0 0 0 0 1 0 0

R7 : −1 0 0 0 0 0 0 0

R8 : 0 0 −1 0 0 0 0 0

R9 : 0 0 0 0 −1 0 0 0

R10 : 0 −1 0 0 0 0 0 0

R11 : 0 0 0 −1 0 0 0 0

R12 : 0 0 0 0 0 −1 0 0

R13 : −1 0 1 0 0 0 0 0

R14 : 0 1 0 0 0 0 0 −1

R15 : 0 −1 0 1 0 0 0 0

R16 : 0 0 0 0 −1 0 0 0

R17 : 1 0 0 0 −1 0 0 0

R18 : 1 0 0 0 0 0 −1 0

R19 : 0 0 −1 0 1 0 0 0

R20 : 0 0 1 0 −1 0 0 0

R21 : 0 0 0 0 −1 0 1 0

R22 : 0 0 0 0 1 −1 0 0

R23 : 0 0 0 0 0 −1 0 1

R24 : 0 0 0 −1 0 1 0 0
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With the stoichiometric data and the derived stoichiometric matrix,
structural problems like inactive reactions or nonbalanced metabolites can
be identified [41]. In the system of phospholipids, we have a single elemen-
tary flux model and there are no structural problems such as deadlocks. The
next step is the detailed description of the reactions of the model based on
rate laws. There are different levels of model accuracy. In a simple model
one can keep the simple mass action law for all the rate laws. In order to
make a more realistic model, our model contains details about enzyme sat-
uration and inhibition, which is included using Michaelis-Menten kinetics.
We also propose an exponential formula for the reactions which import re-
actants to our model and follow a diffusion phenomena. Table 2 illustrates
an example of each of these three different rate laws which we use in our
modeling approach.

Table 2. An example of the different rate laws used in the
model of the phospholipids

Reactanion: followed rate law Rate law
R1: → Cho Diffusion phenomena v1 = k2.e−[Cho]

R9: PtdCho → Mass action v9 = k5.[PtdCho]
R15: Eth → PE Michaelis-Menten v15 = VM11.[Eth]

KM11+[Eth]

In table 2, vi specifies the flux throught the ith reaction, ki, KMi and
VMi are parameters indicating the velocities of the reactions, and [X]s are
the concentrations of metabolites. R1 follows diffusion phenomena, while R9
and R15 follow mass action and michaelis-menten kinetics in order. Using
the rate laws and the stoichiometric matrix, the time-dependent differential
equations for the metabolites can be established:

∂

∂t
[Cho] = k2.e

−[Cho] +
VM2.[PtdCho]
KM2 + [PtdCho]

+
VM3.[GPC]
KM3 + [GPC]

− VM1.[Cho]
KM1 + [Cho]

− k1.[Cho] (2)
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∂

∂t
[Eth] = k10.e

−[Eth] +
VM10.[GPE]
KM10 + [GPE]

− VM11.[Eth]
KM11 + [Eth]

− k11.[Eth] (3)

∂

∂t
[PC] = k4.e

−[PC] +
VM1.[Cho]
KM1 + [Cho]

+
VM5.[PtdCho]
KM5 + [PtdCho]

− VM4.[PC]
KM4 + [PC]

− k3.[PC] (4)

∂

∂t
[PE] = k9.e

−[PE] +
VM11.[Eth]
KM11 + [Eth]

− VM9.[PE]
KM9 + [PE]

− k8.[PE] (5)

∂

∂t
[PtdCho] = k12.e

−[PtdCho] +
VM4.[PC]
KM4 + [PC]

+
VM7.[PtdEth]
KM7 + [PtdEth]

− VM6.[PtdCho]
KM6 + [PtdCho]

− VM5.[PtdCho]
KM5 + [PtdCho]

− VM2.[PtdCho]
KM2 + [PtdCho]

− VM12.[PtdCho]
KM12 + [PtdCho]

− k5.[PtdCho] (6)

∂

∂t
[PtdEth] = k7.e

−[PtdEth] +
VM12.[PtdCho]
KM12 + [PtdCho]

+
VM9.[PE]
KM9 + [PE]

− VM8.[PtdEth]
KM8 + [PtdEth]

− VM7.[PtdEth]
KM7 + [PtdEth]

− k6.[PtdEth] (7)

∂

∂t
[GPC] =

VM6.[PtdCho]
KM6 + [PtdCho]

− VM3.[GPC]
KM3 + [GPC]

(8)

∂

∂t
[GPE] =

VM8.[PtdEth]
KM8 + [PtdEth]

− VM10.[GPE]
KM10 + [GPE]

(9)
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In this model, each of these differential equations expresses the rate of
change of one reactant as a sum of fractional terms for enzymatic reactions
and non-fractional terms for simple reactions. Furthermore, we proposed an
exponential formula with concentrations of studied reactants in our system
as variables, to explain the kinetics of reactions with reactants from the ex-
ternal environment. Diffusion phenomena are the reason for this exponential
form. Molecular diffusion, often called simply diffusion, is a net transport
of molecules from a region of higher concentration to one of lower concen-
tration by random molecular motion: hence this standard representaion.

In the next Chapters, we will use this mathematical model in several
applications for two aims; firstly we try to use an estimation method in
order to find the different required parameters in the system of equations,
such as the rate constants for each reaction, using the experimental values
of the concentrations in steady state points (see Chapter 4), then we try to
perform different analyses such as stability analysis and sensitivity analysis,
using the parameters obtained for each of the applications of the model. (see
Chapters 5, 6 and 7).
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CHAPTER 4

Parameter estimation, Simulation and Stability

analysis

Outline

There has been a lot of research on kinetic modeling as a major method
in systems biology. Every modeling effort depends on (a) information about
the underlying metabolic pathways and (b) the kinetic data derived by ex-
periments. The kinetic data for a model, available from web resources, is
incomplete, difficult to accumulate, or not available at all. One of the dif-
ficulties is to determine the rate of each reaction of a metabolic network
using Michaelis-Menten equations. The rate itself is not the problem but
the values of the constant parameters Km and Vmax that are present in
Michaelis-Menten equation. Only few of these values are already found and
mentioned in the literature. Therefore in order to design accurate kinetic
models, we need to guess reasonable values for each parameter. This Chap-
ter will focus on estimating the parameters Km and Vmax, that are used
in the kinetic model that we proposed in Chapter 3. This will be imple-
mented by minimizing the value of a function which represents the sum of
the squares of the right hand side equations of the ODE system, using the
KKT conditions. For this proposed optimization method, the minimization
is carried out with Matlab.

4.1. Where to get data from?

In a detailed kinetic model, there is a need to get access to different
data sources to obtain detailed information. The stoichiometry of a reaction
can be usually taken from standard biochemistry textbooks or from online
databases (e.g. KEGG or BiGG). In the case of phospholipids metabolism,
we supplied our model from bibliographical refrences (e.g. M. Israel and L.
Schwartz [15, 16, 17, 18, 19, 20]) and the KEGG online database.
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The structure of the rate law depends on the stoichiometry of the re-
action and on the enzyme’s mechanism and may be derived from enzyme
kinetics textbooks [42].

In the model of phospholopids, as explained in section 3.3, we describe
the rate of enzymatic reactions by the fractional term of Michaelis-Menten
law and the simple reaction rate by the non-fractional term of the mass
action law. Furthermore, we proposed an exponential formula with con-
centrations of reactants in our system as variables, to explain the rate of
reactions with reactants from the external environment: diffusion phenom-
ena are the reason of this exponential form. Molecular diffusion, often called
simply diffusion, is a net transport of molecules from a region of higher con-
centration to one of lower concentration by random molecular motion.

The metabolite concentrations can be measured for a system, usually at
(quasi) steady state points, but sometimes also as time course. We applied
the model of phospholipids on different data sets of concentrations which are
derived experimentally by means of 1D or 2D spectra measurements. (See
Chapters 5, 6 and 7).

The maximal velocity of the reaction (Vmax) is dependent on the con-
centration of the enzyme in the cell or the extract; Since this concentration
is rather a result of regulated gene expression, thus it has to be measured for
each situation again and again. We note here that the Vmax used in kinetic
models is not the specific activity that is measured with the purified enzyme.
Thus, Vmax is dependent on the enzymes concentrations and normally needs
to be measured in vivo or in vitro when not possible. For reversible reactions
the Vmax is different for the forward and reverse reactions, respectively.
The binding constant (or KM ) results from the structure of the enzyme, and
thus is independent of the enzymes concentration. We therefore argue that
in many cases it is a legitimate simplification to take the KM values from
the literature, even from related species if required by the lack of human
data.

In the deterministic ODE-based modeling approach, if enough values of
concentrations of the model are known, it is theoretically possible to esti-
mate the missing parameters. For this aim one has to fit the system variables
(metabolite concentrations) to data sets from measurements.
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4.2. Parameter estimation

Since now different methods are developed for parameter estimation.
The nature of suitable data for each type of estimation is different, and so
are the methods of analysis. These approaches complement each other and
maybe in the future, a combined method will be choosed as the standard.
The major methods of parameter estimation are (see Appendix B):

(1) Forward or bottom-up modeling
(2) Using steady-state data
(3) Inverse or top-down modeling

4.2.1. Parameters estimation in the phospholipids’ model ap-
plications. The described kinetic equations for phospholipids metabolism
require a number of parameters, such as the rate constants for each reaction.
The parameter values have an important effect on the precision of the model
which is representing this biological system. However these values, ki, VMi

and KMi, are difficult to estimate experimentally and many are unknown;
that is why we estimate them by means of a numerical method.

In all applications of the model of phospholipids (see Chapters 5, 6 and 7)
our experimental data associates to the local and global steady states values
of concentrations. Thus we choose the method of using steady state data
to estimate parameters. Since at steady state points the concentrations do
not change, we treat our system of ODEs as a nonlinear algebraic problem
(all the derivatives are zero). Mathematically we have a set of possible
solutions of this system. Furthermore we know that the vector of these rate
constants needs to insure the behavior of the model in such a way that the
cell is viable. Once we take into account all these biological constraints,
the possible rate constant vectors fall into a subset of the parameter space.
Characterizing this subset would be a prediction of the model, and so would
be characterizing the set of all the dynamics of the model consistent with
the parameter vectors in this subset. Although mathematically correct this
answer is not satisfactory. We need to put a better and more understandable
description of this space of solutions. We thus aim to find a representative
value of this space and which has the property of achieving a minimum for
a certain function of the rate parameters. For this purpose we:

(1) Define the sum of squares of rate equations as function ’F’. In other
words, instead of solving a system of nonlinear equations which vanish
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at steady state points, we propose to minimize the function ’F’ which is
the sum of subexpressions which are positive or equal to zero.

(2) Find a solution vector which minimizes the value of the function ’F’,
in the given range of each parameter. We perform this step by using
the ”fmincon” function which is developed in the Matlab software as
an optimization tool in order to find the minimum of a constrained
nonlinear multivariable function.

The fmincon function attempts to find a constrained minimum of a
scalar function of several variables starting at an initial estimate. This is
generally referred to as constrained nonlinear optimization or nonlinear pro-
gramming. In more details, fmincon is using an ”interior point method”
(IP) to solve nonlinear convex optimization problems. In the case of our
model, since we have inequality constraints, fmincon respects the Karuch-
Kuhn-Tucker (KKT) theorem [43, 44] (see the application of this method
in Chapter 5, 6 and 7). This theorem gives the conditions which are nec-
essary for a solution of a nonlinear programming problem to be optimal,
provided that some regularity conditions are satisfied. Allowing inequality
constraints, this approach is a generalization of the method of Lagrange
multipliers which allows only equality constraints [43].

Although we proposed to use this method in the field of kinetic model-
ing, it was already used in other fields; For example applying IP methods
to power system optimisation problems began early in 1990s. They were
applied by Clements et al. in 1991, to power systems [45]. The objective of
this research was to apply a non-linear programming IP technique to solve
the state estimation problems in power systems. As another application,
we can name the central role of constrained optimization in economics. For
example, the choice problem for a consumer is represented as one of maxi-
mizing a utility function subject to a budget constraint. The Lagrange mul-
tiplier has an economic interpretation as the shadow price associated with
the constraint, in this example the marginal utility of income [46]. KKT
conditions is also already used in a large number of optimization problems
such as Knapsack maximization, Fisher’s Exchange market, etc [47]. The
problem of resource allocation among different activities, such as allocating
a marketing budget among sales territories is analyzed by Luss and Gupta
[48]. They assume that the return function for each territory uses different
parameters, and derive single-pass algorithms for different concave payoff
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functions (based on the KKT conditions) in order to maximize total returns
for a given amount of effort.

4.2.2. Comparison of applied estimation method to the other
methods. The method explained in section 4.2.1 is a refinement of ”Using
steady state data” method. We apply parameter estimation on each exper-
imental data set which is associated to a steady state of system.

In a bottom-up modeling, the strategy consists of setting up a symbolic
model, estimating local parameters, studying the integration of all individual
rate laws into a comprehensive model, testing the model, and making re-
finements to some of the model structure and the parameter values. But we
did not choose this method because of the disadvantages of this approach:
in particular the need of a considerable amount of local kinetic informa-
tions which should in a unique experiment. The reason for which we did not
choose a top-down modeling, is that in this method one needs measurements
for all metabolites at sequential points in time (time series data), while our
experimental data is local data at the steady states.

4.3. Simulation

Once the stoichiometry, the rate laws, and all parameters are collected,
the system of equations of the kinetic model is fully specified. Using Scilab
or Matlab software, we write a code with which the model can thus be
deterministically simulated in a stepwise manner:

(i) Start from a given point.
(ii) Solve the differential equations to obtain the expected changes in metabo-

lite concentrations over a short time period.
(iii) The concentrations are then updated with these changes.
(iv) Repeat the process.

While we simulate a model, depending on the equations and their param-
eters, different behaviors may be observed; even sometimes a same model
can be characterized by different sets of parameters that result in different
behaviors. It is possible that the system converges toward a steady state,
which is the case for most biological systems if they are kept under constant
conditions. At the steady state, all fluxes in this linear pathway are the
same, so that the concentrations of the metabolites do not vary. Another
possibilty is a divergent behavior which means that the metabolite concen-
tration is constantly increasing. There is also a possibility of observing an
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oscillatory behavior of the system. It has been shown that the probability of
a model to exhibit oscillatory behavior or other instability actually increases
with its size [49]. (see Chapter 5).

4.4. Stability analysis

The stability analysis of the steady state is an important aspect for the
further interpretation of dynamic models. Only if the model has a stable
steady state can a sensitivity analysis of its variables be performed. In Ap-
pendix C we give an introduction to the stability analysis of dynamic models.
In this section we explain the application and advantage of this analysis by
considering an example of cell cycle division. Furthermore this analysis will
be used in applications of our proposed model for phospholipids in the next
Chapters.

As explained in Appendix C, the stability of the system depends only
on the eigenvalues of the Jacobian matrix. If one or more of the eigenvalues
have a positive real part the associated solutions will grow exponentially.
The stability criterion can therefore be formulated as:

Theorem 4.1 (Stability criterion). A steady state is stable if, and only
if, the eigenvalues of the associated Jacobian matrix all have negative real
parts.

Thus, the stability is evaluated by calculating the eigenvalues of the Ja-
cobian of the system of ODEs. The issue of stability of mathematical models
is common in all engineering disciplines and the theorem above is well known.

4.4.1. Application of stability analysis to the cell division cycle
model. In this section we refere to cdc2 and cyclin interactions in the model
of the cell division cycle proposed by J. Tyson in [50], to apply stability
analysis on two of the parameters of this model. A simplified model of cdc2-
cyclin interactions is summarized in figure 4.1. This model is translated into
the precise mathematical equations. The solution of the following equations
depends on the values assumed by the 10 parameters in the model(Table. 1).
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Figure 4.1. The relationship between cyclin and cdc2 in
the cell cycle (proposed by J. Tyson in [50]).

∂C2
∂t = k6[M ]− k8[∼ P ][C2] + k9[CP ]
∂CP
∂t = −k3[CP ][Y ] + k8[∼ P ][C2]− k9[CP ]
∂pM
∂t = k3[CP ][Y ]− [pM ]F ([M ]) + k5[∼ P ][M ]
∂M
∂t = [pM ]F ([M ])− k5[∼ P ][M ]− k6[M ]
∂Y
∂t = k1[aa]− k2[Y ]− k3[CP ][Y ]
∂Y P
∂t = k6[M ]− k7[Y P ]

Table 1. Parameter values used in the numerical solution
of the model equations (proposed by J. Tyson in [50]).

Parameter Value
k1[aa]/[CT] 0.015 min−1

k2 0
k3[CT ] 200 min−1

k4 10-1000 min−1 (abjustable)
k4′ 0.018 min−1

k5[∼ P ] 0
k6 0.1-10 min−1 (abjustable)
k7 0.6 min−1

k8[∼ P ] � k9

k9 � k6
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Using this system of equations and the given parameter values, we apply
the stability analysis to this model, focusing on two parameters k4 and k6.
We performed this analysis in these steps:

(i) Find a fixed point: we try to find a fixed point using the given param-
eter values, such as it would be the closest fixed point to steady state
concentrations.

(ii) System’s linearization: which refers to finding the linear approximation
of the model’s equations at this fixed point.

(iii) Jacobian matrix: Determine the matrix of coefficients of all concentra-
tions in the linearized system of equations.

(iv) Eigenvalues: Find the eigenvalues of this Jacobian matrix, for different
values of the choosen parameters. (0 < k4 < 500 and 0 < k6 < 5)

(v) Stability criterion: Verify for each set of eigenvalues, whether they all
have negative real parts.

Figure 4.2 illustrates the result of the above stability analysis. In this
figure regions which are shown by black color correspond to stable steady
state behaviour of the model (all of the eigenvalues have negative real parts).

Figure 4.2. result of stability analysis for steady state point
associated to values correspond to 0 < k4 < 500 and 0 < k6 <

5. Black color shows the stable regions.

This result is in a good agreement with the results of J. Tyson in [50]; in
which the boundaries of stable regions were determined by integrating the
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differential equations of the model, for the given parameter values, using
Gear’s algorthm for solving stiff ordinary differential equations [51].

In Chapter 5 we will show the application of stability analysis to a model
for phospholipids. We will first show the stability by numerical simulation,
and then present a proof of stability using the stability criterion theorem for
the experimental data of healthy rat’s liver.
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CHAPTER 5

Model’s application to healthy rat’s liver

Outline

In this Chapter, we apply the mathematical model described in Chapter
3 to experimental data of rat’s liver cells (obtained by NMR spectroscopy), in
two steps: firstly we try to determine the various parameters required in the
system of equations, such as the rate constants for each reaction, using the
experimental values of the concentrations in healthy rat liver metabolism.
For this aim we use the parameter estimation method that we explained in
Chapter 4. The second step is to study the phase spaces diagrams and also
to perform the different stability analyses using the parameters obtained for
healthy liver cells. A first interesting result is the global stability of the
system which was observed by simulation and then proved by mathematical
arguments. A second important result is that we observe on the diagrams
that the steady state for normal cells is precisely a singular point of order
two, whereas tumoral cells present different characteristics; this fact has been
proved, in particular, for PhosphatidylEthanolamine N-Methyl transferase
(PEMT), an enzyme which seems to be identified as a crucial element in the
tumoral process.

5.1. Concentrations and Parameter estimation

The kinetic equations of Chapter 3 are satisfied by various parameters,
such as the rate constants for each reaction. In the first application of the
mathematical model, the experimental values that we use are derived from
the concentrations of rat’s liver metabolism measured at several instants
during the perfusion with Choline and Ethanolamine [36]. The concentra-
tion of [PtdCho] and [PtdEth] were measured from the 31P NMR spectra
of the lipide extracts [36]. A description of these experimental analyses is
given in [52, 53].
The parameter values have a priori an important effect on the precision of

the model which is representing this biological system. However these val-
ues, ki, VMi and KMi, are difficult to estimate experimentally and many
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are unknown; that is why we estimate them by means of the numerical
method that we described in section 4.2

As it is explained in section 4 we know that the vector of the rate con-
stants needs to ensure the behavior of the model in such a way that the cell
is viable. For example there exist specific limited ranges of the concentra-
tions, for some metabolites, in which the cell can stay alive. These ranges
can give upper and lower bounds for the parameters.[54]. We assume that
there are no singular points in the domain of study; hence all the parame-
ters vary continuously and do not go to infinity. Once we have taken into
account all these biological constraints, the possible rate constant vectors
fall into a subset of the parameter space. Characterizing this subset would
be a prediction of the model, and so would be characterizing the set of all
the dynamics of the model consistent with the parameter vectors in this
subset. The vector of parameters which are shown in Table 2 is one of these
possible solutions. To obtain this we used the algorithm which is described
in Chapter 4.

Table 1 shows the averages of the concentrations which are measured
experimentally, for 8 reactants of our system. We first try to use the average
values presented in Table 1, to obtain a possible vector of the constants of
reactions ki, the maximum velocities and kinetic constants of the Michaelis-
Menten model VMi and KMi (Table 2). We also try to find a possible vector
of the constants, for each set of concentrations measured in each of 6 time
points [36]. Comparing the vectors obtained in each of these two cases, we
do observe only small variations in the parameters, which means that this
is a robust solution. The results and variations are shown in Table 2. We
also observe similar results for 100 other vectors in the subset of parameter
space, corresponding to different concentrations.

5.2. Phase spaces

In this section we compute and study the phase spaces diagrams using
the parameters obtained by our estimation method. The goal is to obtain
the behaviour of the system with respect to time. The simulation results
show that for these parameter values there exists only one steady state point
in the neighborhood of the studied initial concentration values. When we
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Figure 5.1. Changes in initial concentrations [A]
Changes of initial concentration of PhosphatidylCholine. [B]
Phase space for Choline and PhosphoCholine. [C] An Ex-
ample of different initial concentrations evoluing into steady
state. In A and B the color change from red to blue refers
to approaching the steady-state. In C each color associates
to the concentration of one of the reactants. Concentrations
values are given in µmol.g−1.
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Table 1. Concentrations of rat’s liver metabolites

Reactant Initial concentration
Choline 0.51±0.11
Ethanolamine 0.11±0.01
PhosphoCholine 0.88±0.18
PhosphoEthanolamine 1.02±0.15
PhosphatidylCholine 29.57±2.76
PhosphatidylEthanolamine 9.85±1.15
GlyceroPhosphoCholine 0.41±0.09
GlyceroPhosphoEthanolamine 0.35±0.05

Values are given in µmol.g−1 liver, measured by P-NMR.
doi:10.1016/S1388-1981(01)00202-5

Table 2. Estimated parameter values for rat’s liver metabolites

Param Value Param Value Param Value
k1 1.465±0.091 VM1 2.289±0.105 KM1 0.567±0.015
k2 1.882±0.110 VM2 0.624±0.076 KM2 29.707±0.195
k3 0.281±0.013 VM3 0.814±0.040 KM3 0.549±0.033
k4 2.981±0.118 VM4 4.898±0.122 KM4 0.950±0.010
k5 0.064±0.007 VM5 0.575±0.032 KM5 29.812±0.252
k6 0.054±0.003 VM6 0.696±0.009 KM6 29.634±0.310
k7 1.001±0.081 VM7 10.451±0.094 KM7 4.845±0.046
k8 0.786±0.041 VM8 0.505±0.008 KM8 10.060±0.096
k9 2.206±0.109 VM9 3.629±0.086 KM9 1.888±0.015
k10 1.238±0.074 VM10 0.577±0.002 KM10 0.457±0.002
k11 0.980±0.079 VM11 2.825±0.075 KM11 0.121±0.011
k12 1.000±0.042 VM12 1.657±0.009 KM12 29.844±0.155

Values are given in µmol.g−1 liver for KMi and in µmol.g−1.s−1 for VMi

and s−1 for ki.

try to change one or several initial concentrations at time t0, we see that
after passing a period of time the concentrations of all the reactants converge
finally toward the concentrations of the steady state point. Therefore one
can conclude that the change in the initial concentration of each of the
reactants does not modify the behaviour of the system at infinity (+∞).
(Fig.5.1).
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5.3. Stability analyses

5.3.1. Steady State Concentration vs. Enzyme Concentration.
As a first set of stability analyses we study the changes in steady states by
modifying the concentrations of enzymes in enzimatic reactions. To deter-
mine the maximum rate of an enzymatic reaction (like most of the reactions
in our model) we use the Michaelis-Menten model. In this model, the max-
imum initial velocity (a kinetic constant of the enzymatic reactions) reflects
the activity of an enzyme and is proportional to its concentration. Therefore,
in our simulation and in order to represent changes in enzyme concentra-
tions, we simply modified the value of the maximum initial velocities of the
reactions (VMi). For example in the case of the reaction between PtdEth
and GPE, the diagrams of changes of steady state resulting from the change
of maximum velocity are shown in figure 5.2(a). On each of these diagrams,
each point (VM, X̃i) corresponds to a concentration of the reactant Xi at
the steady state.

The simulation diagrams are as expected. When the velocity of the re-
action from PtdEth to GPE increases, the concentrations of GPE, PE and
Eth increase and the concentrations of PtdEth, Cho, PtdCho, PC and GPC
decrease.
Here it is worth recalling the special role of PtdEth N-methyltransferase

enzyme(PEMT) in phospholipid biosynthesis. The PEMT pathway is es-
pecially functional in the liver. It is a minor pathway for phosphatidyl-
choline synthesis from phosphatidylethanolamine, the major pathway being
the Kennedy pathway which involves the metabolism of Choline taken from
the blood. The PEMT pathway is implicated in the biosynthesis of lipopro-
teins in the liver. In contrast, its role is poorly known in tumors, excepted
in hepatocarcinoma [55]. It was recently shown that some tumor cell types
could compensate for the deficiency of the Kennedy pathway by upregulat-
ing the PEMT pathway, thus surviving. Therefore a complementary aim
for our modelling was to get further insight into the possible role of the
PEMT pathway in the regulation of tumoral phospholipid metabolism. To
our knowledge, the implication of PEMT in response to an anticancer agent,
in melanoma and 3LL carcinoma has never been investigated. Now we get
back to our model and take the reaction of first order, related to PtdEth
and PtdCho for which PtdEth N-methyltransferase (PEMT) plays the role
of enzyme. Figure 5.2(b) represents the changes of the steady state point as-
sociated to different reactants. On each of its diagrams, each point ([PEMT],
X̃i) corresponds to a concentration of reactant Xi at steady state. So if we
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Figure 5.2. Steady State Concentration vs. Enzyme
Concentration [A] Change of steady state point for the
reaction of PtdEth and GPE. On each of these diagrams,
each point (VM, X̃i) corresponds to a concentration of the
reactant Xi at the steady state. [B] Change of steady state
point for the reaction of PtdEth and PtdCho. The red point
in each of these diagrams is associated to the concentration
at the steady state of the experimental values. Concentration
values are given in µmol.g−1.
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change the enzyme concentration, for an arbitrary value of the initial con-
centration like Xi0 the concentration [Xi] will tend towards its steady state
concentration value. In figure 5.2(b), the red point (also shown by a circle)
in each of the diagrams is associated to the concentration of the steady state
among the experimental values.

5.3.2. Rate vs. Concentration. In the second set of stability analy-
sis, we studied the effects of the changes in reaction rates on concentrations
and their relation to the steady state. For this aim, we performed several
different simulations for each reaction. In the diagrams presented in the
example of figure 5.3(a), each colour is associated to one of the simulations.
Each of these diagrams represents the changes of concentrations of the re-
actants vs. the reaction rate for that reactant.

Let us recall that the point where the rate of reaction reaches zero, is
called the steady state point for a given reactant. To make it clearer, let
us explain the corresponding diagram for PtdEth. This is also shown in
figure 5.3(b) with a better resolution. The steady state is obtained when
the concentration is around 11 µmol.g−1. This is obtained by taking some
random concentrations and measuring the reaction rates for each of them.
Then we connect the resulting points to see when the zero rate is obtained.
For all the other points in this diagram, which are not the steady state,
concentration tends towards the steady state concentration. In other words
the normal cell behaviour corresponds to a ”superstable” steady state. As
shown in figures 5.3(a) and 5.3(b), for all the reactants, these diagrams have
proved to be linear and all the simulations coincide for all the reactants.

5.3.3. Speed analysis. In the third set of stability analyses on the
concentrations of rat liver metabolism, we tried to study the speed to reach
the steady state point. In figure 5.3(b) for the points whose concentrations
are far from the steady state point (which is shown by an arrow), the ab-
solute value of this rate is bigger than for the points whose concentrations
are close to the steady state. This means that the speed to reach the steady
state point increases when we try to change the concentration of reactants.
One of the parameters which could influence this speed is the concentration
of the enzyme. To study the effect of the change of concentration or activity
of an enzyme on this speed, as it is shown in figure 5.3(b), we consider the
slopes of the diagrams as an indicating coefficient for the reaction speed.
Let us call this slope the rate coefficient (k). If the concentration of one of
the enzymes changes, the rate coefficient does so. When the rate coefficient
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Figure 5.3. Rate vs. Concentration A: Rate vs. Concen-
tration for PhtdEth: Each experiment is shown by a different
colour in this diagram. The steady state is obtained when the
concentration of PtdEth is around 11 µmol.g−1. B: Rate vs.
Concentration: Each diagram corresponds to the change in
concentration of one reactant vs. its reaction rate. We define
the slope (k) as ’rate coefficient’ which is used as a param-
eter in analysis concerning the speed of reaching the steady
state. Values are given in µmol.g−1 for Concentrations and
in µmol.g−1.s−1 for Rates .
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Figure 5.4. Speed Analysis -k (Rate Coefficients) vs.
Concentration of enzyme PEMT(real values). The red point
on each diagram is associated to rate coefficient at the steady
state of the experimental values. Concentrations values are
given in µmol.g−1.

is small, the rate changes more slowly than when the rate coefficient is large.
The diagrams of rate coefficients vs. concentration of enzyme PEMT are
shown in figure 5.4.

In the next sections we will firstly study some interesting results obtained
from the stability analyses of section 5.3 We will also discuss the complexity
of the algorithm applied to Rate vs. Concentration stability analysis. Then
in the next step we give a mathematical proof for the stability of this model
of equations.

5.4. Stability analyses results

The analysis of reactant concentrations vs. enzyme concentrations in
section 5.3 shows that:

• The PEMT Enzyme is found to provoke a reciprocal trend between
PE and PC. This means that there is a balance between the change
of concentration of PE and the change of concentration of PC.

• One can note from figure 5.2(b) that when the concentration of
PEMT increases the concentrations of Cho and PC saturate after
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a certain value of [PEMT], while the concentration of PtdCh still
increases. This fits with the fact that the methylation of phos-
phatidylethanolamine may relay phosphatidylcholine biosynthesis
when the choline pathway is saturated or blocked[32, 33, 55].

• The interesting result about the red points (also shown by a cir-
cle) in figure 5.2(b), is that these positions are the places where
the behaviour of diagrams changes (either inflexion point in math-
ematical term which means where the second derivative is zero or
in some situations it is the third derivative which vanishes).

5.5. Complexity study

In the stability analyses of Rate vs. Concentration in 5.3, given the val-
ues of concentrations [Ci] which were observed experimentally, we managed
to find appropriate parameter values {Pi}. With these parameter values,
the ODEs system has a stable solution, and the resulting concentration val-
ues are equal to the initial ones ([Ci]). However, one could ask whether a
change in parameter values could give an unstable or oscillating solution.
For that purpose we studied the eigenvalues of the Jabobian matrix in a
number of points close to [Ci]. As we had 41 parameters we just could not
try all variations of them at the same time. For instance, even to try 10 val-
ues for each parameter would take O(1041) operations. So we used random
sampling to change all parameter values simultaneously. In each of the 10
000 experiments we made, each parameter took a value, where rand factor
was a uniformly distributed random value in a range from 0 to 20. In all
the experiments we observed the stability of the system.

5.6. Mathematical proof of stability (sketch)

We tried to find a fixed point for the proposed ODEs system using the
parameter values that we found in section 5.1, such as it would be the closest
fixed point to the steady state associated to experimental values of concen-
tration. The eigenvalues for Jacobian matrix of the system in such fixed
points are always real and negative.(See Appendix C). This indicates that
the solution is always stable and without oscillations regardless of the pa-
rameter values of the system.

More generally if we study the system of ODE where most of the equa-
tions have the general form of Michaelis-Menten, we can prove that all the
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solutions for this system are stable. The proof is that we have a diagonally
dominant Jacobian matrix. This means that, in every row of this matrix,
the magnitude of the diagonal entry in the row is larger than the sum of
the magnitudes of all the other (non-diagonal) entries in that row. More
precisely, the matrix A is diagonally dominant if

|aii| >
∑
j 6=i
|aij | for all i (10)

where aij denotes the entry in the ith row and jth column. The Jacobi
method for solving a linear system converges if the matrix is diagonally
dominant. The eigenvalues for the Jacobian matrix in such systems are
always real and negative . This indicates that the solution is always stable
and without oscillations regardless the particular parameters of the system.
In other words all the evolutions of the cell metabolism are stable in the
proposed mathematical model which is based on Michaelis-Menten kinetics
(See Appendix C).

5.7. Conclusion

Understanding cell metabolism evolution and changes is for many sci-
entists more than a challenge; it is the key to a thorough understanding
of cell dysfunction and very likely a step toward the elucidation of carcino-
genesis along the lines of Warburg’s seminal papers. In this Chapter we
presented a mathematical analysis of the metabolic pathways which con-
trol and command the production of Glycerophospholipids through the en-
zymatic reactions of PhosphatidylEthanolamine and PhosphatidylCholine.
The analysis shows that the healty cell stands at very special points of equi-
librium. We also checked our model against a series of experiments and
gave evidence for the crucial role of PhosphatidylEthanolamine N-Methyl
transferase (PEMT). About the general beaviour of such systems we show
that:

• All the evolutions of the cell metabolism are stable in the Michaelis-
Menten formula.
• The normal cell behaviour corresponds to a ”superstable” steady

state.
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CHAPTER 6

Model’s application to B16 melanoma and 3LL

carcinoma cells in response to CENU

Outline

In the recent years several studies have been carried out to perform
chloroethylnitrosourea (CENU) chemotherapy for the treatment of B16 melanoma
and Lewis lung (3LL) carcinoma tumors in vivo [56, 57, 58, 59, 60]. In
this Chapter we apply our proposed ODE-based model for phospholipids to
study the effects of such treatments in mouse. For each of these two tu-
mors we have experimental data for three different phases: Control(CTL),
Inhibition(INH) and Recovery(REC)[61]. In a first step we try to estimate
the unknown kinetic parameters, then we perform a complete comparative
analysis of parameters in order to learn the predictive statements to explain
increases and decreases which one can observe in concentrations.(See the
experimental data in Appendix D)

6.1. Model application and Parameter estimation

Our aim is to provide insight into metabolic pathways from biochemi-
cal data derived from 1H-NMR spectroscopy-based metabolite profiling of
tumors [61]. We hypothetize that, by modelling phospholipid derivative
content variations between two conditions at steady state, we can give in-
sight, through the values taken by the set of parameters, into the induced
regulations of phospholipid metabolism. We thus compare phospholipids
metabolism alterations in murine tumors between the baseline and the sta-
ble phase of their response to an anticancer agent. Based on the classical
hypothesis that pathways of phospholipids metabolism are very similar in
liver cells and tumor cells [34], we apply our mathematical model to study
the effects of such treatments. For each of these two tumors we have exper-
imental data for three different phases: Control(CTL), Inhibition(INH) and
Recovery(REC) [61](See Fig.6.1). The average concentrations measured ex-
perimentally at steady state for each of these phases are shown in Tables 1
and 2.
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Figure 6.1. Treatment Phases Growth curves of un-
treated (white circles) and CENU-treated tumors during the
growth inhibition phase to treatment (black circles) and the
growth recovery phase (gray circles). CENU was given intra-
tumorally at days 11, 14, and 18. Bars, SD.

Table 1. Average concentrations of B16 melanoma
tumor model metabolites

B16: CTL INH REC
Cho 0.395 0.636 0.518
Eth 0.1 0.102 0.101
PCho 1.091 1.847 1.842
PEth 4.001 9.337 6.304
PtdCho 15.030 25.782 21.915
PtdEth 5.010 8.594 7.305
GPC 0.367 1.561 0.131
GPE 0.703 1.401 0.665

Values are given in µmol.g−1 melanoma, measured by 1H NMR
spectroscopy.

At a first step we try to obtain a possible vector for appropriate param-
eter values for each phase of treatment, applying the proposed parameter
estimation method explained and the same methodology we used for the
liver cell metabolites in previous Chapters.(See Chapters 4 and 5). We re-
peat the parameter estimation process, up to 1000 times with different initial
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Table 2. Average concentrations of 3LL carcinoma
tumor metabolites

3LL: CTL INH REC
Cho 0.946 1.746 1.596
Eth 0.1 0.991 0.101
PCho 0.996 1.610 1.542
PEth 3.533 6.458 5.468
PtdCho 10.456 11.470 13.071
PtdEth 3.485 3.823 4.357
GPC 4.643 1.370 2.434
GPE 1.356 1.025 0.873

Values are given in µmol.g−1 3LL carcinoma, measured by 1H NMR
spectroscopy. doi:10.1002/ijc.21761

vectors of parameters values and for different intervals simultaneously. The
average results of parameter estimation for B16 melanoma and 3LL carci-
noma tumor cells are shown respectively in Tables 3 and 4.

6.2. Comparative analyses of parameters

Once parameter estimation is done for each phase of treatment; we per-
form a complete comparative analysis for the rate coefficients (ki, VMi) in
order to propose the predictive statements which explain the evolutions of
concentrations of reactants from one phase to the other (Table 1 and 2).
Tables 5 and 6 illustrate the results of the comparative analyses. (from one
phase to another, the parameter value decreases (↓), increases(↑) or does
not change (-)).

After the comparative analyses, we classify the parameters in different
groups, based on the evolution of the parameter during the treatment (CTL
→ INH) and after the treatment (INH → REC):

(a) Neutral group: The parameters which do not change neither during
the treatment nor during the early period of after treatment. These are
the parameters which are shown in tables 5 and 6, by two consecutive
”-” symbols.

(b) Temporary changed group: The parameters which are changed dur-
ing the treatment but they change again in the reverse direction during
the early period of after treatment. These are the parameters which are
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Table 3. Estimated parameter values for mouse B16
melanoma metabolites

Cell: B16-Treated

Parameter: CTL INH REC

k1 1.580±0.28 0.975±0.11 0.704±0.28
k2 1.544±0.19 1.787±0.04 2.402±0.42
k3 0.664±0.07 0.208±0.08 0.011±0.01
k4 2.469±0.12 1.907±0.01 2.254±0.14
k5 0.069±0.04 0.005±0.08 0.113±0.01
k6 0.041±0.05 0.064±0.02 0.007±0.06
k7 1.055±0.04 1.002±0.002 1.007±0.04
k8 0.009±0.04 0.029±0.01 0.082±0.03
k9 1.115±0.04 1.000±0.001 1.012±0.001
k10 0.921±0.09 0.913±0.19 1.933±0.036
k11 1.016±0.02 1.098±0.09 1.028±0.09
k12 1.000±0.01 1.000±0.001 1.000±0.001
VM1 3.253±0.08 2.894±0.51 3.148±0.29
KM1 1.396±0.15 1.345±0.23 0.633±0.11
VM2 0.290±0.02 0.460±0.10 0.402±0.036
KM2 15.19±0.03 25.88±0.01 22.04±0.02
VM3 0.818±0.07 0.871±0.14 0.752±0.151
KM3 1.559±0.03 2.113±0.31 0.544±0.06
VM4 3.158±0.35 3.038±0.05 4.570±0.29
KM4 2.398±0.20 2.900±0.09 1.920±0.31
VM5 0.317±0.07 0.669±0.15 0.959±0.05
KM5 15.12±0.02 25.85±0.003 21.97±0.006
VM6 0.313±0.06 0.742±0.17 0.293±0.05
KM6 15.15±0.01 25.87±0.01 22.01±0.31
VM7 2.426±0.01 1.597±0.26 3.623±0.82
KM7 6.539±0.50 9.419±0.06 8.042±0.45
VM8 0.410±0.06 0.262±0.01 0.452±0.08
KM8 5.295±0.01 8.755±0.001 7.482±0.03
VM9 1.863±0.12 1.159±0.15 2.756±0.27
KM9 4.130±0.16 9.550±0.17 6.551±0.14
VM10 0.490±0.01 0.335±0.03 0.703±0.25
KM10 1.027±0.07 2.208±0.29 1.427±0.09
VM11 1.980±0.05 3.284±0.26 3.676±0.69
KM11 0.112±0.04 0.287±0.05 0.096±0.02
VM12 1.072±0.18 1.754±0.09 1.299±0.04
KM12 15.13±0.10 25.82±0.005 22.10±0.11

Values (means estimate±SD estimate) are given in µmol.g−1 tumor for KMi and
in µmol.g−1.s−1 for VMi and s−1 for ki.
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Table 4. Estimated parameter values for 3LL car-
cinoma metabolites

Cell: 3LL-Treated

Parameter: CTL INH REC

k1 0.503±0.19 0.204±0.01 0.318±0.05
k2 1.322±0.05 1.380±0.03 1.420±0.08
k3 0.197±0.11 0.066±0.006 0.085±0.008
k4 1.826±0.07 1.720±0.07 1.739±0.19
k5 0.093±0.01 0.021±0.014 0.014±0.01
k6 0.059±0.01 0.139±0.04 0.096±0.05
k7 1.148±0.07 1.127±0.007 1.072±0.14
k8 0.064±0.01 0.069±0.03 0.089±0.01
k9 1.100±0.04 1.008±0.04 1.019±0.15
k10 1.013±0.11 1.291±0.14 1.266±0.21
k11 1.009±0.01 0.974±0.012 0.984±0.05
k12 1.000±0.001 1.000±0.001 1.000±0.001
VM1 1.613±0.18 0.892±0.18 0.946±0.07
KM1 1.144±0.004 1.836±0.04 1.722±0.16
VM2 0.585±0.06 0.440±0.06 0.584±0.08
KM2 10.61±0.006 11.59±0.21 13.17±0.11
VM3 0.804±0.02 0.732±0.09 0.797±0.01
KM3 4.681±0.01 1.665±0.13 2.656±0.17
VM4 3.274±0.13 2.138±0.06 2.375±0.15
KM4 1.130±0.06 1.761±0.18 1.869±0.15
VM5 0.646±0.02 0.694±0.06 0.751±0.07
KM5 10.59±0.001 11.57±0.12 13.14±0.01
VM6 0.806±0.14 0.662±0.05 0.764±0.07
KM6 10.60±0.001 11.53±0.08 13.13±0.02
VM7 2.143±0.08 1.539±0.15 1.699±0.01
KM7 3.609±0.06 4.165±0.25 4.674±0.26
VM8 0.448±0.08 0.232±0.007 0.288±0.06
KM8 3.698±0.01 4.098±0.32 4.599±0.35
VM9 1.675±0.04 1.506±0.23 1.451±0.19
KM9 3.517±0.08 6.764±0.27 5.794±0.14
VM10 0.489±0.002 0.272±0.09 0.303±0.09
KM10 1.691±0.05 1.466±0.2 1.012±0.21
VM11 2.348±0.17 2.772±0.05 2.453±0.27
KM11 0.127±0.017 0.134±0.017 0.106±0.008
VM12 1.207±0.08 1.250±0.08 1.334±0.07
KM12 10.54±0.01 11.67±0.1 13.28±0.14

Values (means estimate±SD estimate) are given in µmol.g−1 tumor for KMi and
in µmol.g−1.s−1 for VMi and s−1 for ki.
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Table 5. Comparative analysis for rate parameters of B16 melanoma.

Cell: B16(in vitro)
Parameter: Std→MDS MDS→post-MDS *
k1 ↓ ↓ *
k2 ↑ ↑ *
k3 ↓ ↓ *
k4 ↓ ↑
k5 ↓ - *
k6 - -
k7 - -
k8 - -
k9 ↓ - *
k10 - ↑ *
k11 - -
k12 - -
VM1 - -
VM2 ↑ - *
VM3 - ↓ *
VM4 - ↑ *
VM5 ↑ ↑ *
VM6 ↑ ↓
VM7 ↓ ↑
VM8 ↓ ↑
VM9 ↓ ↑
VM10 ↓ ↑
VM11 ↑ ↑ *
VM12 ↑ ↓

”↓”: parameter value decreased; ”↑”: parameter value increased; ”-”: parameter
value is fixed. ”*”: Explicative parameters.

shown in tables 5 and 6, first by ↓ symbol then by ↑ symbol or vice
versa.

(c) Reprogramming group: The parameters which are definitively changed
during treatment , and that do not change anymore during the early pe-
riod of after treatment. In other words these parameters are able to keep
the effect of the treatment. These are the parameters in tables 5 and 6,
for which we observe ↓ or ↑ symbols in the first step and ”-” symbol in
the second step.
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Table 6. Comparative analysis for rate parameters of 3LL carcinoma.

Cell: 3LL(in vitro)
Parameter: Std→MDS MDS→post-MDS *
k1 ↓ ↑
k2 - -
k3 ↓ - *
k4 ↓ - *
k5 - -
k6 ↑ ↓
k7 - -
k8 - -
k9 - -
k10 ↑ - *
k11 - -
k12 - -
VM1 ↓ -
VM2 ↓ ↑
VM3 - -
VM4 ↓ - *
VM5 - -
VM6 ↓ ↑
VM7 ↓ - *
VM8 ↑ - *
VM9 ↓ ↓
VM10 ↓ - *
VM11 ↑ ↓
VM12 - -

”↓”: parameter value decreased; ”↑”: parameter value increased; ”-”: parameter
value is fixed. ”*”: Explicative parameters.

(d) Definitively changed group: The parameters which are definitively
changed during treatment, and which still change during early period of
after treatment. These are the parameters in tables 5 and 6, for which
we observe two consecutive ↑ symbols.

(e) Finally changed group: The parameters which do not change during
the treatment but which change during the early period of after the
treatment. These are the parameters in tables 5 and 6, for which we
observe first a ”-” symbol and then a ↓ or ↑ symbol.
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Figure 6.2. Schematic representation of active pathways

of the model of phospholipids of B16 melanoma under

CENU treatment. Reactants: Cho(Choline), PC(Phospho-
Choline), PtdCho(Phosphatidyle-Choline), PE(Phospho-
Ethanolamine), PtdEth(Phosphatidyle-Ethanolamine). Pa-

rameters: VM (Michaelis maximum reaction rate). The Memory
effect group’s parameters and the related pathway are shown by
blue color. The Definitively changed group’s parameters and the
related pathway are shown by red color. The Finally changed
group’s parameters and the related pathway are shown by green

color.

6.3. Results

We believe that the parameters of ”Reprogramming group”, ”Defini-
tively changed group” and ”Finally changed group” are the most essential
parameters of the system which explain the effect of the treatment. These
groups are indicated by a star (*) in tables 5 and 6. After the comparative
analysis of parameters in the three phases of treatment:

(1) We name the reactions which associate to ”Reprogramming group” and
”Definitively changed group” parameters, activated reactions. We can
determine the activated reactions during CENU treatment; Figures 6.2
and 6.3 show respectively the activated reactions in B16 melanoma and
3LL carcinoma.

(2) We observe that the effect of CENU treatment in B16 melanoma is
different from its effect in 3LL carcinoma. In other words the parameters
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Figure 6.3. Schematic representation of active pathways

of the model of phospholipids of 3LL carcinoma under

CENU treatment. Reactants: Cho(Choline), PC(Phospho-
Choline), PtdCho(Phosphatidyle-Choline), PE(Phospho-
Ethanolamine), PtdEth(Phosphatidyle-Ethanolamine). Pa-

rameters: VM (Michaelis maximum reaction rate). The Memory
effect group’s parameters and the related pathway are shown by
blue color. The Definitively changed group’s parameters and the
related pathway are shown by red color.

of ”Reprogramming group” and ”Definitively changed group” of two
tumors are not the same.

(3) We can determine the few parameters which are activated in both tumors
during CENU treatment.

(4) We can explain the evolutions of concentrations of reactants, based on
changes of parameters from one phase to the other one. Let us ex-
plain an example in more details: As it is shown in Table 1, for B16
melanoma, we observe an increase of 5.33 µmol.g−1 melanoma for Phos-
phoethanolamine(PEth). The reason is easily explained by our param-
eter analysis for the change of rates of all the reactions in which PEth
plays the role of a substrate or product. Here, PEth concentration in-
creases since VM11 is increasing rapidly and VM9 is decreasing, despite
PEMT activity is decreasing. In a similar way we can explain the de-
creases in GPC and GPE in 3LL carcinoma which is mentioned in [58].

75



6.4. Conclusion

In the previous Chapter we applied our mathematical analysis of the
metabolic pathways which control and command the production of Glyc-
erophospholipids through the enzymatic reactions of PhosphatidylEthanolamine
and PhosphatidylCholine, and our analysis showed that the normal cell
stands at very special points of equilibrium.

In this Chapter we checked our model against a series of biological ex-
periments in vitro (B16 melanoma and 3LL carcinoma tumor cells under
CENU treatment). Our comparative analyses designated a set of kinetic
parameters as essential parameters to understand the effect of treatment on
each of tumor cells; we observed that this effect is different in different organs
and so the essential parameters do. We also could explain the evolutions of
concentrations of reactants, based on changes of estimated parameters from
one phase to the other one.
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CHAPTER 7

Model’s application to B16 melanoma cells in

response to methionine deprivation

Outline

In this Chapter our goal is to understand the effects of Methionine depri-
vation stress (MDS) on tumor cells and of its interactions with chemother-
apy, a standard treatment of advanced stage cancers. We use our modeling
approach to understand the phenomena happening in the treatment. From
the experimental data we are able to apply our mathematical model which
fits to the experiments (see Appendix E )and explains the respective roles
of PEMT. We perform several analyses such as comparative analyses and
sensitivity analysis. These analyses designate a set of kinetic parameters
as essential parameters to give evidence for the effect of MDS on PEMT
enzyme activity.

7.1. Mathematical model and parameter estimation

The PEMT enzyme, a methyltransferase involved in PtdCho synthesis
is connected to Met metabolism [63]. The action of Met synthesis on phos-
pholipids’ metabolism is illustrated in figure 7.1. In this Chapter we analyse
the experimentally obtained concentrations of metabolites which are iden-
tified by spectroscopy (See Chapter E). These experimental data associates
to particular situations of the system of phospholipids; we try to propose a
global understanding of the whole system by means of mathematical simu-
lation. In order to analyse the experimental data we use the mathematical
approach proposed in Chapter 3. Previously this model has been studied
to describe the response of B16 melanoma tumors to a chemotherapy agent
such Chloroethylnitrosourea (CENU) which targets phospholipids metabo-
lism; these experimental data was modeled in [64].
We use the model of phospholipids metabolism and the ODEs-based chem-

ical kinetic model which was developed in Chapter 3. Next we apply the
proposed algorithm in Chapter 4 on experimentally measured concentrations
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to estimate the value of the kinetic parameters. For that we use the exper-
imental data which are derived from the concentrations of B16 melanoma
cells metabolism, in vitro, measured during different phases of MDS treat-
ment (Tab. 1 and Fig. 7.2.b).

Table 1. Average concentrations of B16 (in vitro).

B16(In vitro) Std MDS post-MDS
Cho 1.231 1.331 1.017
Eth 0.121 0.122 0.122
PCho 2.582 7.980 3.021
PEth 2.501 10.690 6.841
PtdCho 24.003 36.711 39.673
PtdEth 8.001 12.011 11.081
GPC 0.304 10.989 1.179
GPE 0.750 0.750 0.560

Phases; Std: untreated cells in Std medium; MDS: cell growth inhibition;
post-MDS: cell growth recovery after MDS (early period). Values are given in

µmol.g−1 Melanma.

The average results of parameter estimation are shown in table 2. Ver-
ifing how spread out are the values to the average value in this table, we
observe a low standard deviation.

7.2. Comparative analyses of parameters

In table 2 each of the three vectors (each column) represents the value of
the parameters of the model which is associated to one of the three phases
of treatment (Std, MDS, and post-MDS). We did a complete comparative
analysis for the rate coefficients (ki, VMi), in order to study the predictive
statements to explain the evolutions of the concentrations of reactants from
one phase to the other. These two-step comparisons are shown in table 3.
(from one phase to another, the parameter value decreases (↓), increases(↑)
or does not change (-)).

After the comparative analyses, we classified the parameters in 4 groups,
based on the evolution of the parameter after MDS treatment:

(a) Neutral group: The parameters which do not change neither during
MDS phase nor during early period of post-MDS phase. These are
the few parameters which are shown in table 3, by two consecutive ”-”
symbols. (k6, k7, k12).
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Figure 7.1. Schematic representation of the model

of interrelation of Methionine synthesis with Phos-

phatidylcholine synthesis. VMi and KMi parameters
refer to enzymatic reactions while the others represent sim-
ple reactions. Input and output arrows indicate external
reactions in which the reactant has the role of substrate
or product. Reactants: Cho(Choline), PC(Phospho-
Choline), PtdCho(Phosphatidyle-Choline), GPC(Glycero-
PhosphoCholine), Eth(Ethanolamine), PE(Phospho-
Ethanolamine), PtdEth(Phosphatidyle-Ethanolamine),
GPE(Glycero-PhosphoEthanolamine). Enzymes: CK(Choline-
Kinase), EK(Ethanolamine-Kinase), CCT/CTP(PhosphoCholine-
Cytidyl-Transferase), ECT/EPT(PhosphoEthanolamine-Cytidyl-
Transferase), PEMT(PhosphatidyleEthanolamine-N-methyl-
Transferase), PlpA2 (PhosphoLipase A2), PlpC(PhosphoLipase
C), PlpD(PhosphoLipase D). Parameters: VM (Michaelis
maximum reaction rate), KM (Michaelis concentration con-
stant), k1-k12 (Rate constants for external reactions). In-
terrelation in presented in four steps: 1)Reaction catalyzed
by betaine homocysteine methyltransferas; 2)Reaction cat-
alyzed by methionine adenosyltransferas; 3)Transethylations;
4)Phosphatidylethanolamine-N-methyltransferase (PEMT).

(b) Temporary changed group: The parameters which are changed dur-
ing MDS phase but that are changed again in the reverse direction during
early period of post-MDS phase. These are the parameters which are
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Figure 7.2. A: 1H-NMR metabolic profiling of the effects of
MDS. Typical 1D spectra of: Std spectrum, MDS spectrum at
day 4 and post-MDS spectrum after 6 days of reinfusion in Std
medium. Chemical shifts are given in ppm; the hyphenated num-
bers are the chemical shifts of protons to which this proton is scalar
coupled: Cho (3.20, 3.55-4.07), PC (3.23, 3.62-4.18), PtdCho (3.23,
3.68-4.39), GPC (3.23, 3.68-4.34), Eth (3.15-3.80), PE (3.22-3.99),
PtdEth (3.30-4.20), GPE (3.30-4.12). Identified metabolites were
the following: 1, PE; 2, PC; 3, GPE; 4, GPC+PC. Cell culture
and 1H-NMR spectroscopy analysis were performed as described
under Materials and Methods section. Spectra are representative
of three experiments delivering comparable results. B: Average
concentrations of B16 (in vitro). Phases; Std: untreated cells in
Std medium; MDS: cell growth inhibition in MDS group; post-
MDS: cell growth recovery after MDS. These concentrations are
derived from 1D and 2D spectra.
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shown in table 3, with a ↓ symbol followed by ↑ symbol or vice versa.
(k1−5, k7, k10−12, VM2, VM3, VM6, VM8, VM10, VM11).

(c) Reprogramming group: The parameters which are definitively changed
in MDS phase, and that do not change anymore during the early period
of post-MDS phase. These are the parameters in table 3, for which we
observe ↓ or ↑ symbols in the first step and ”-” symbol in the second
step. (VM1, VM4, VM12, k9, k8).

(d) Definitively changed group: The parameters which are definitively
changed in MDS phase, and which still change during early period of
post-MDS phase too. These are the parameters in table 3, for which we
observe two consecutive ↑ symbols. (VM5 ,VM7 , VM9).

The comparative analysis of the parameters in the three phases of MDS
and the dynamic simulations in section p2-2.2.4 show that:

(1) The velocity of the reaction of PtdEth and PtdCho (rate parameter
VM7), in which PEMT plays a key role as enzyme, increases during
both MDS and early period of post-MDS phases. On the other hand, the
velocity of the consumption of PtdCho decreases during the early period
of post-MDS phase. These two events together lead to an increased
concentration of PtdCho. These results also are in a good agreement
with the experimentally measured increment of the PEMT activity.

(2) We observed the crucial role of the parameters of Reprogramming group
in the phospholipids’ metabolism model. These parameters in which the
value changed during the 4 days of MDS treatment, are able to keep the
effect of the treatment even during the early period of post-MDS phase.
The pathway which keeps this effect is shown in blue color in figure 7.3.

(3) Since the parameters of Definitively changed group(VM5, VM7 and VM9)
were all increased during the early period of post-MDS phase but the pa-
rameters VM1 and VM4 did not change, we can note that in this phase,
PtdCho is not produced from the Choline pathway, but it is produced
from the PtdEth methylation. This result is in a good agreement with
the result which was shown theoretically in [64]; In high concentrations
of the PEMT enzyme, the Choline pathway is saturated or blocked, but
methylation of PtdEth may relay PtdCho biosynthesis. The pathway
which keeps this effect is shown in red color in figure 7.3.
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Figure 7.3. Schematic representation of active path-

ways of the model in each phase. Reactants:

Cho(Choline), PC(Phospho-Choline), PtdCho(Phosphatidyle-
Choline), PE(Phospho-Ethanolamine), PtdEth(Phosphatidyle-
Ethanolamine). Parameters: VM (Michaelis maximum reaction
rate). The Memory effect group’s parameters and the related path-
way are shown in blue color. The Definitively changed group’s
parameters and the related pathway are shown in red color.

7.3. Sensitivity analysis

Sensitivity analysis provides techniques to identify parameters which
have the largest influence on the results obtained from a model. We em-
ploy Morris’ sensitivity analysis method [65] which is a screening method
designed to rank the parameters in order of importance; it can deal with
high numbers of parameters and is global as it does not rely on particular
parameter values but accounts for their whole range of possible variations.
If a small change in a parameter leads to large changes in the results, the
model answer is said to be sensitive to this parameter. In other words,
influential parameters indicate significant functional reactions (a change in
the reaction activity will have an effect) whereas non-influential parameters
indicate poor functional reactions (The change has little effect on the model
outcome).

Here we use sensitivity analysis to find among parameters ki and VMi

those that most influence the steady state concentration values of all re-
actants in phases Std and MDS when parameters KMi are fixed to the
estimated values. As explained in Chapter 5 the maximal velocity of the
reaction (VMi) is dependent on the concentration of the enzyme in the cell
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or the extract, but rather a result of regulated gene expression, and thus
has to be measured for each phase of treatment again. We note here that
the VMi used in the kinetic models is not the specific activity that is mea-
sured with the purified enzyme. Thus, VMi is dependent on the enzymes
concentration and normally needs to be measured or estimated by means
of numerical methods in vivo or in vitro. The binding constant (or KMi)
results from the structure of the enzyme, and thus is independent of the
enzyme concentrations. We therefore argue that in many cases it is a legit-
imate simplification to take the KMi values from the literature, also from
related species if the lack of data requires it. This is the reason why in our
sensitivity analysis the parameters KMi are fixed to the estimated values.

The results of Sensitivity analysis for Std, MDS and early period of post-
MDS phases are shown in table 4. The parameters at the top of this table
are those that most influence the steady state concentration values of all
reactants in each phase. This analysis shows that:

(1) When looking only at parameters ki (the input and output arrows in
figure 7.1), results show that the most influential external reactions are
those linked to k5 , k10 and k8 in all phases.

(2) The presence of parameter VM7 which pertains to the crucial reaction
of PtdEth and PtdCho, among the most important parameters of all
phases could be still another proof of the important role of the associated
enzyme PEMT.

(3) In phase Std we observe VM3, VM6, VM4 , VM2, VM5 among the most
important VMi parameters. These are all parameters which pertain to
the Choline cycle. In other words in phase Std, the Choline pathway
has the greatest influence on the steady state value , while in MDS
and early period of post-MDS phases these are not the most important
parameters anymore. This could be explained by the fact that in MDS
phase the Choline pathway has been inhibited by the treatment and
that, as a consequence, the system switches to the other pathways to
produce PtdCho.

(4) The parameters k12 , k11 , k1 , k7 , k6 and k4 have the least influence on
the steady state concentration values, in all three phases.

In summery our mathematical modeling designates parameters VM1,
VM4, VM5 , VM7, VM9 , VM12, k9 and k7 as essential parameters to un-
derstand the effect of MDS treatment on B16-cells. The activated pathway
associated to these parameters witnesses for a metabolomic reprogramming
of the B16-cells allowing then to escape cell death during the MDS period.
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Therefore these pathways represent candidate targets for combined therapies
with MDS.

7.4. Conclusion and Discussion

Once the comparative analyses of parameters and their classification
were done, we performed dynamic simulations, using kinetic equations, to
study the evolution of the concentrations of reactants along time, for the
associated mathematical model of each phase of MDS treatment. In these
studies our aim was to compare Std and MDS phases and to see if we
are able to define a unique model for both phases in which the explicative
parameters are the ones of Reprogramming group and Definitively changed
group (in the above classification). For this aim we performed three sets of
dynamic simulations, and in order to obtain a general comparison view of
these sets of simulations we fixed all the initial concentrations to 1 µmol.g−1.
(Fig. 7.4):

(a) The simulation which is based on parameter values that we found for
Std phase (showed by blue color).

(b) The simulation which is based on parameter values that we found for
MDS phase. (showed by red color).

(c) At last, the simulation which is based on parameters that we found for
Std phase, when we change the value of parameters of Reprogramming
group and Definitively changed group to their value in MDS phase. We
denote this model M-Std which means modified Std model. (showed by
black color).

We observe that the dynamic simulation of this modified model is very
similar to the simulation of the MDS phase model. (Fig. 7.4.) This fact
could indicate that one can describe the phospholipids’ metabolism model,
by defining a unique model which has just a few explicative parameters.

In section 5.6, we proved that in the proposed mathematical model which
is based on Michaelis-Menten kinetics, all the evolutions of the cell metab-
olism are stable (Proof by means of the Jacobian matrix). In this Chapter
we observed the stability for a model with diffusions.

In conclusion, this work showed that MDS induces Phospholipids metabo-
lite disorders including PC, GPC and PE form phospholipid metabolism and
transmethylation reactions. The MDS treatment allowed us to demonstrate
that there was a tumor metabolism reprogramming at the level of the Met

84



Figure 7.4. Dynamic simulations based on estimated pa-

rameters. (evolution of concentration of each of reactants of the
model in time). Models 1) Std: model of untreated cells in Std
medium (shown by bleu color); 2) post-MDS: model of cell growth
recovery after MDS. M-Std: proposed model for Std in which the
explicative parameters are modified. All the initial concentrations
are fixed to 1 µmol.g−1. in order to obtain a general comparison
view of the three sets of simulations.
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metabolism. These results shed new lights on the understanding of the meta-
bolic consequences of MDS. Our data demonstrate that the metabolomics
approach may help:

(1) understanding tumor response to nutritional therapeutics and their as-
sociation with conventional chemotherapy.

(2) determine potential new therapeutic targets such as PEMT. (We showed
the mathematical and biological evidence of the fact that PEMT is a
key target for cancer control.)

In this Chapter using an ODEs-based mathematical model, we presented
comparative and sensitivity analysis, which:

(1) designated a set of kinetic parameters as essential parameters to under-
stand the effect of MDS treatment on B16-cells.

(2) gave evidence for the effect of MDS on PEMT enzyme activity which
has a crucial role in tumor cells.

(3) proposed the activated pathway which witnesses for a metabolomic re-
programming of the B16-cells allowing then to escape cell death during
the MDS period. Therefore these pathways represent putative candidate
targets for therapies combined with MDS.
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Table 2. Estimated parameter values for B16 in vitro.

Cell: B16(in vitro)

Parameter: Std MDS post-MDS

k1 0.664±0.010 1.617±0.020 0.476±0.28
k2 4.661±0.011 7.856±0.004 5.765±0.012
k3 0.893±0.005 0.331±0.008 1.295±0.001
k4 3.357±0.012 1.043±0.014 4.082±0.014
k5 0.069±0.04 0.018±0.002 0.039±0.001
k6 0.034±0.001 0.036±0.002 0.052±0.002
k7 1.011±0.002 1.002±0.002 1.001±0.003
k8 0.470±0.004 0.140±0.011 0.120±0.013
k9 2.563±0.004 1.001±0.001 1.042±0.001
k10 5.031±0.009 6.258±0.15 6.167±0.006
k11 0.523±0.002 2.365±0.008 3.470±0.009
k12 1.001±0.01 1.002±0.001 1.001±0.001
VM1 6.838±0.018 8.421±0.051 8.896±0.029
KM1 1.232±0.003 1.341±0.003 1.015±0.001
VM2 3.411±0.032 5.188±0.010 3.522±0.036
KM2 23.455±0.010 36.008±0.001 40.016±0.002
VM3 2.312±0.007 3.341±0.004 2.143±0.007
KM3 0.335±0.002 9.855±0.003 1.180±0.002
VM4 5.306±0.035 9.578±0.059 9.288±0.029
KM4 2.391±0.002 7.073±0.004 3.025±0.031
VM5 3.437±0.021 6.431±0.015 7.808±0.055
KM5 23.908±0.010 35.776±0.053 39.971±0.013
VM6 2.312±0.016 3.341±0.017 2.143±0.015
KM6 24.240±0.010 36.005±0.010 39.015±0.018
VM7 8.382±0.021 9.804±0.020 10.472±0.022
KM7 8.005±0.004 11.071±0.006 11.089±0.004
VM8 1.067±0.003 1.827±0.003 1.489±0.002
KM8 8.660±0.001 11.011±0.001 11.010±0.003
VM9 7.950±0.012 9.371±0.015 9.958±0.017
KM9 2.566±0.006 9.68±0.006 6.551±0.002
VM10 1.067±0.011 1.827±0.030 1.489±0.027
KM10 0.755±0.001 0.750±0.001 0.566±0.001
VM11 9.050±0.052 11.338±0.056 10.637±0.049
KM11 0.112±0.002 0.119±0.002 0.125±0.002
VM12 2.041±0.018 3.075±0.044 3.173±0.042
KM12 24.004±0.018 35.505±0.025 37.905±0.021

Estimated parameter values for B16 which is used in our comparative analysis.
Values (means estimate ± SD estimate) are given in µmol.g−1. tumor for KMi

and µmol.g−1.s−1 for VMi and s-1 for ki.
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Table 3. Comparative analysis for rate parameters.

Cell: B16(in vitro)
Parameter: Std→MDS MDS→post-MDS *
k1 ↑ ↓
k2 ↑ ↓
k3 ↓ ↑
k4 ↓ ↑
k5 ↓ ↑
k6 - -
k7 - -
k8 ↓ - *
k9 ↓ - *
k10 ↑ ↓
k11 ↑ ↑
k12 - -
VM1 ↑ - *
VM2 ↑ ↓
VM3 ↑ ↓
VM4 ↑ - *
VM5 ↑ ↑ *
VM6 ↑ ↓
VM7 ↑ ↑ *
VM8 ↑ ↓
VM9 ↑ ↑ *
VM10 ↑ ↓
VM11 ↑ ↓
VM12 ↑ - *

”↓”: parameter value decreased; ”↑”: parameter value increased; ”-”: parameter
value is fixed. ”*”: Explicative parameters.
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Table 4. The results of Sensitivity analysis for Std , MDS
and post-MDS phases.

Std MDS early post-MDS
Parameter Parameter Parameter
VM3 VM10 VM10

VM6 VM7 VM8

VM7 VM9 VM9

VM4 VM8 VM7

k5 k10 VM6

k10 k8 VM3

VM2 VM11 k10

VM5 VM12 k5

VM9 VM3 VM12

VM10 VM4 VM11

VM1 k3 k8

VM8 VM6 VM4

VM11 VM2 VM1

k9 k5 k3

k3 VM5 VM2

VM4 VM1 VM5

k8 k6 k2

k2 k11 k9

k4 k1 k4

k6 k2 k6

k7 k9 k7

k1 k7 k1

k11 k4 k11

k12 k12 k12

The parameters at top of this table are those that most influence the steady state
concentration values of all reactants in each phase.
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CHAPTER 8

Conclusion

Outline

In this Chapter we will point out essential aspects of this work. A short
summary and the main results have already been addressed in the last sec-
tion of each Chapter. The main statements of this thesis are summarized in
Section 8.1 and we will respond to consequences for the ultimate goal of con-
structing models of phospholipid biosynthesis. Finally, Section 8.2 discusses
perspectives for future work, which arise from the precedent conclusions.

8.1. Summary and main results

In this dissertation, we studied a model of the phospholipid biosynthesis
biochemical reactions which are the core of the system of Glycerophospho-
lipid metabolism in murine cells, in fact in human cells as well. Still the
important role of PhosphatidylEthanolamine N-Methyl transferase (PEMT)
enzyme on phospholipid biosynthesis is not well studied. Our attempt has
been not only to bring serious attention to this issue, but also to present a
practical option of using mathematical modeling to help address this issue
in a realistic way.

The kinetic model developed for the phospholipid biosynthesis is con-
structed from acceptable quantitative descriptions of experimental data and
is based on the latest experiments of the biologists with whom we colabo-
rated. Even though the kinetic constants of this model have not been ex-
perimentally measured, the expected characteristics of the PEMT enzyme
were demonstrated in the simulation results.

To construct the mathematical model of the phospholipid biosynthesis
we have chosen a dynamic, continuous and deterministic modeling approach.
With this model one can represent the behavior of the phospholipids’ meta-
bolic pathway; the temporal changes of metabolites are formulated as a
generic set of ODEs. Next we applied this model to different experimental
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datasets in healthy and tumoral cells; each of these applications consists of
parameter estimation process, mathematical simulation of the model and a
set of analyses such as stability analysis or sensitivity analysis.

In the first application of the model we considered experimental data
of rat’s liver cells; given the values of metabolite concentrations we found
appropriate parameter values which allowed us to describe the system by
means of ODEs. Next we performed several analyses using the developed
model such as stability analysis and the time necessary to reach the steady
state point. A first interesting result was the global stability of the system
which was observed by simulation and then proved by mathematical argu-
ments. A second important result was that we observe on the diagrams
that the steady states for healthy cells were precisely the very special points
of equilibrium which happened to be a singular point of order two; this
fact has been proved for PhosphatidylEthanolamine N-Methyl transferase
(PEMT) enzyme which has a crucial role in the tumoral process. Our re-
sults provide that all the evolutions of the cell metabolism are stable in the
Michaelis-Menten formalism, and the healthy cell behaviour corresponds to
a ”superstable” steady state.

As a second application of the model, we applied our proposed model
to experimental data of proton HRMAS NMR spectroscopy for solid B16
melanoma and Lewis lung (3LL) 3LL carcinoma cells treated by Chloroethyl
Nitrosourea (CENU). After performing the estimation of unknown param-
eters, we proceeded to a complete comparative analysis of the parameters.
This analysis in concentrations helped us to find the predictive statements
to explain increases and decreases which one can observe. We checked our
model against a series of biological experiments and gave evidence for the
crucial role of PhosphatidylEthanolamine N-Methyl transferase (PEMT) in
tumor cells under CENU treatment. Our results show that the model fits
”in vivo” observations and experiments with CENU tumor inhibitor, and
provides new hypotheses on metabolic pathway activity based on metabo-
lite profiling of phospholipids derivatives.

In the last application of the model, our study was devoted to the un-
derstanding of Methionine deprivation stress (MDS) and of its interactions
with chemotherapy, a standard treatment of advanced stage cancers. This
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study had a twofold approach to the modeling of the phenomena happen-
ing in the treatment. Firstly the biologists we colaborated with, used a
metabolomics approach using 1H-NMR spectroscopy to get novel insights
into the mechanism of the action of the MDS. To this aim they investi-
gated, in vitro, the growth and metabolic response of B16 melanoma cells
to MDS. They showed that MDS provoked a cell growth delay and induced
disorders of phospholipid metabolism such as a increase in Glycerophos-
phocholine (GPC), Phosphocholine (PC) and Phosphoethanolamine (PE)
levels and activation of the phosphatidylethanolamine-N-methyltransferase
(PEMT) involved in phosphatidylcholine synthesis. After the cessation of
MDS, tumor cells metabolism exhibited persistent alterations such as in-
creased PEMT activity. These metabolic events probably explained the
increased growth delay induced by the MDS. Secondly from the data they
provided, we proposed a mathematical model which fits to these biological
experiments and ”explains” the respective roles of PEMT. This model proves
to be very stable and is very robust w.r.t. reasonable variations that can
be induced by experimental errors and individual characteristics. Again in
this application we performed several analyses such as comparative analyses
and sensitivity analysis. These analyses designated a set of kinetic param-
eters as essential parameters which give evidence for the effect of MDS on
PEMT enzyme activity which has a crucial role in tumor cells and proposed
the activated pathway which witnesses for a metabolomic reprogramming
of the B16-cells allowing then to escape cell death during the MDS period.
Therefore these pathways represent putative candidate targets for therapies
combined with MDS.

In conclusion we can mention the advantages of using the ODE-based
model that we developed and of the consequent analyses as follow:

(i) Using the model we are able to estimate the kinetic parameters which
are not experimentally measured. For different cells and under different
treatments we found different values for these kinetic parameters as
expected.

(ii) Mathematical simulations of this model help to understand the be-
haviour of different components of the model in time.

(iii) We determined the essential parameters in different cells (B16 and
3LL). This helped us to find the similar effects of a treatment on specific
pathways in these two different cells. Also we found that the effect of
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the treatment is not exactly the same in different cells and that the
essential parameters are not exactly the same in both families of cells.

(iv) We determined the essential parameters in the same cells (B16) but
under two different treatments (CENU and MDS). We observed that
the activated pathways after each treatment are different. Also we
found the commun parameters in the activated pathway of each treat-
ment where PEMT was one of the most important parameters of the
system.

8.2. Discussion and Future work

The last application of the model showed that MDS induces phospho-
lipids metabolite disorders including PC, GPC and PE form phospholipid
metabolism and transmethylation reactions. We proposed the activated
pathway which witnesses for a metabolomic reprogramming of the B16-cells
allowing then to escape cell death during the MDS period. Therefore these
pathways represent putative candidate targets for therapies combined with
MDS.

The methods applied in this thesis can help to understand tumor re-
sponse to nutritional therapeutics and their association with conventonal
chemotherapy. Also they show the evidence of the fact that PEMT enzyme
is a key target for cancer control.

At this point we suggest that interesting investigations to perform in a
next step could be:

• Comparing the parameter values in a healthy cell and a tumor cell
of the same tissues. Here one of the weeknesses of this study was
that we did not have access to experimental values for the same
cells before transforming to the tumor cells.
• In the last application of the model we found a set of essential

kinetic parameters. In a next step we performed a dynamic simu-
lation of the model in which the only parameters that we change
are the ones which we call them essential parameters. In other
words we used a model in which the number of parameters is much
smaller than in the original model. What we propose from an ex-
perimental point of view is that it could be of interest of biologists
to apply a new treatment which targets only a few number of chem-
ical reactions associated to these essential parameters.
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• During different applications of the model we observed a difference
between the values of concentrations of a same reactant. In our
model and analyses we tried to explain this changes of concentra-
tions, by finding the changes of the kinetic parameters in different
phases (such as different values of VM parameters). From the gen-
eral form of Michaelis-Menten formula we know that the changes in
maximum velocity of a reaction are proportional and could come
from the changes in the concentration of enzymes. Therefore it
could be interesting first to measure the concentration of enzymes,
and second to measure other possible important factors such as
temperature or PH in different phases. In that case as a next step
in mathematical modeling of such a system, it could be interesting
to construct a new model in a more realistic way in which we have
other sets of parameters for PH, temperature, etc.

About the simplification of the model, there exists some possibilities:

• One can propose to replace consecutive reactions of a specific path-
way by only one hypothetical reaction. In other words is it possible
to simply delete the intermediate reactions and reactants? In our
model we used experimental data in order to not loose the accuracy
of the model; this simplification we used only for two intermediate
reactions which are mentioned in literature.
• Another simplification for the mathematical model could be to as-

sume that all reactions follow just the mass action law and that
there is a need to use the Michaelis-Menten formula in equations.
After applying this simplification we found that it may help to
have a smaller number of unknown parameters in the ODE-based
mathematical model, but on the other hand it wont help us to find
precise information about the essential parameters in order to com-
pare different treatments. Therefore in our model we assumed the
Michaelis-Menten formula for enzymatic reactions.
• In most mathematical models for other similar metabolic pathways

which are already published, the modelers assumed that the system
of reactions is a closed system, which means that they assume just
the internal reaction between given reactants. This will of course
help to have a smaller number of parameters in the mathematical
system. But in our methodology we assumed that the model is
open. This means that there are also interactions between internal
reactants of our model with the external reactants, which is the
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case in the reality. We showed this fact with external or internal
fleshes on graph of reactions. On the other hand, comparative and
sensitivity analyses show that a few number of essential parameters
are associated to this external reactions. This shows the importance
of adding this reactions to the model.
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APPENDIX A

Chemical reactions and enzyme kinetics

Outline

This Appendix introduces some basic biochemical definitions about dif-
ferent types of chemical reactions, systems of chemical reactions and enzyme
kinetics. Furthermore this Appendix describes some basic building blocks
from which we constructed our mathematical model: concepts of reaction
rate and different rate laws such as mass action law and Michaelis-Menten
kinetic. (Note that most of definitions in this Appendix are taken from
Wikipedia documents and Lecture notes of D. Gonze and M. Kaufman [70])

A.1. Chemical Reactions

A chemical reaction is the process that converts a fixed collection of
metabolites, the reactants, to another fixed collection of metabolites, the
products. Chemical reactions can consist of one reactant (monomolecular
reaction), two reactants (bimolecular reaction), or a greater number of re-
actants (trimolecular reaction, etc.). Most of the chemical reactions in the
systems studied in this dissertation are monomolecular reactions. In special
cases, such as open systems, there are reactions with zero reactant.

A chemical reaction equation consists of reactants followed by an arrow
pointing to the products, as in:

CO2 + H2 → CO + H2O (11)

This particular chemical reaction is an example of an oxidation-reduction
reaction in which CO2 and H2 have the role of substrates and CO and H2O

are the products of the reaction.

A chemical reaction can require more than one instance of a reactant,
or produce more than one instance of a product. The stoichiometry is the
number of instances of a reactant or product in a single chemical reaction.
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Figure A.1. Time evolution of the concentration of
the substrate and product.

In order to declare the stoichiometry of each metabolite in the chemical re-
action we write a number before that metabolite. For example, the reaction
equation,

2Fe3+ + Zn → 2Fe2+ + Sn2+, (12)

corresponds to the chemical reaction equation with two copies of the
metabolite Fe3+ and two copies of the metabolite Fe2+.

The chemical reactions given so far are irreversible chemical reaction
equations. An irreversible chemical reaction equation only proceeds from the
chemical reactants to the chemical products. A reversible chemical reaction
equation can proceed in both directions and we represent it with a two-way
arrow, as in the following reaction which is equivalent to a pair of irreversible
chemical reaction equations.

N2 + 3H2 
 2NH3, (13)

Most reactions in the cell are reversible. However, the reversible reac-
tions generally have an equilibrium point that favors one of the reactions
over the other at any moment. Wa call the set of chemical reactions that
take place within an enclosed universe, the system of chemical reactions (or
chemical system). When modeling big chemical systems it is difficult to
represent every chemical species that exist inside the cell; we then try to
simplify the model by choosing a limited number of chemical species that
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play an important role in the problem and its simulations. Furthermore in
the model studied in this dissertation we propose to take into account two
types of reactions: ”synthesis” and ”degradation”. This comes from the fact
that sometime areaction indicates that a chemical species spontaneously ap-
pears or disappears in the chemical system. We name such a system ”open”.
Open chemical systems exchange energy and matter between the system and
its containing environment. Similarly, if there is no synthesis or degradation
in a system we name such a system ”closed”.

When no reactant takes part in ”synthesis” reactions we write an empty
space for the reactants, ” → X” in its reaction equation. Similarly, when
no products takes part in ”degradation” reactions we write an empty space
for the products, ”X → ”. These equations in a chemical system represent
the transportation of species into and out of the enclosing universe.

A.2. Reaction rate

Consider a typical elementary chemical reaction in which m molecules
of A react with p molecules of B:

mA + pB → qC + rD (14)

The rate law for this chemical reaction is given by the mass action law:

v = k[A]m[B]p (15)

Note that the sum m+p is called the order of a reaction. In such
a reaction, the variation in time of the concentration of the metabolites is
given by,

∂A

∂t
=
∂B

∂t
= −k[A]m[B]p and

∂C

∂t
=
∂D

∂t
= k[A]m[B]p (16)

The negative sign in the right-hand side of these equations stands for
the consumption of metabolites A and B and the positive sign stands for
production of metabolites C and D. The rate constant k accounts for the
probability that the molecules are well oriented and have enough energy to
react.

Consider now the following general reaction, in which for each nmolecules
(moles) of X, p molecules (moles) of X are recovered at the end:
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nX + ...→ pX + ... (17)

When we write the evolution of the concentration of X, we must take
into consideration the fact that each time this reaction occurs, only p − n
molecules of X are transformed or are created. So the evolution equation
for the concentration of X in both cases is:

∂X

∂t
= ηv with η = p− n, andvisanexpressionin[X] (18)

η is called the stoechiometric coefficient. This coefficient is positive
if, globally, the species is produced (p > n) and negative if the species is
transformed (n > p).

For example, for the following reaction:

2A + 3B → 4A + B + C (19)

the stoechiometric coefficients of the different metabolites are:

ηA = 4− 2 = 2, ηB = 1− 3 = −2, ηC = 1− 0 = 1 (20)

and the evolution in time of metabolites are:

∂A

∂t
= 2k[A][B]2,

∂B

∂t
= −2k[A][B]2,

∂C

∂t
= k[A][B]2 (21)

A.3. System of chemical reactions

We are usually interested by systems of coupled chemical reactions (also
known as chemical systems). The variation of a given metabolite Xi that is
involved in R reactions is defined by:

∂Xi

∂t
=

R∑
r=1

ηirvr = ηirvr + ηi2v2 + ...+ ηiRvR (22)

where
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vR= rate of the different reactions (r = 1, 2, ...R).
ηir = pir - nir= stoechiometric coefficient of compound Xi in reaction r.

Table 1 illustrates an example of a system of chemical reactions:

Table 1. Example: System of chemical reactions.

r reaction rate ηXr ηY r

1 A
k1→ B v1 = k1A ηX1=1 ηY 1=0

2 B +X
k2→ Y + C v2 = k2BX ηX2=-1 ηY 1=1

3 2X + Y
k3→ 3X v3 = k3X

2Y ηX3=1 ηY 3=-1

4 X
k1→ D v4 = k4X ηX4=-1 ηY 4=0

The evolution equations for X and Y are given by

{
∂X
∂t = k1A+ k2BX + k3X

2Y − k4X
∂Y
∂t = k2BX − k3X

2Y

A.4. Enzyme kinetics

A.4.1. Enzymes. Enzymes are generally proteins that catalyze chem-
ical reactions by increasing or decreasing the rates of reactions. Although
enzymes help to convert substrates into products, they themselves are not
modified by the reaction; it means that enzymes are not consumed by the
reactions they catalyze, nor do they alter the equilibrium of these reac-
tions. Enzymes are particularly efficient at speeding up biological reac-
tions. Most enzyme reaction rates are up to millions of times faster than in
un-catalyzed reactions.

Enzymes work by lowering the free activation energy for a reaction, thus
increasing the rate of the reaction. As a result, products are formed faster
and reactions reach the equilibrium state more rapidly (Fig. A.2).
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Figure A.2. Activation Energy: diagram of a catalytic
reaction showing difference in activation energy in uncatal-
ysed and catalysed reaction (taken from Wikipedia: Mecha-
nisms of catalysis)

An example of an enzymatic reaction is the conversion of sucrose to
fructose and glucose, catalysed by the enzyme sucrase which in shown in
figure A.3. The active site of enzyme has a specific shape that only a par-
ticular substrate fits into. When enzyme, sucrase (shown by purple color),
and substrate, sucrose (shown by yellow color), are joined they react and
the substrate converts into the product, glucose (shown by orange color)
and fructose (shown by pink color) . Finally the enzyme and new product
separate (Enzyme left unchanged).

A.4.2. Michaelis-Menten equation. Enzymatic reactions do not fol-
low the mass action law directly. If we apply mass action law directly to the
reaction with the enzyme, the reaction velocity has to increase linearly as the
substrate increases. While in an enzymatic reaction when the concentration
of substrate is increased, the rate of the reaction increases only to a certain
extent, reaching a maximal reaction velocity at high substrate concentration.
Based on experimental observations, Leonor Michaelis and Maud Menten
(1913) have proposed the following mechanism for the enzyme-catalysed
biochemical reactions to explain this saturation in speed [71]:
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Figure A.3. Conversion of sucrose to glucose. 1: The
substrate, sucrose, consists of glucose and fructose bonded
together. 2: The substrate binds to the enzyme, forming an
enzyme-substrate complex. 3: The binding of the substrate
and enzyme places stress on the glucose fructose bond and
the bond breaks. 4: Products are released and the enzyme
is free to bind other substrates.

Figure A.4. Michaelis-Menten mechanism for the
enzyme-catalysed reactions to explain this saturation in
speed. S(Substrate), P(Product), E(Enzyme), C(enzyme-
substrate Complex) ( see [71])

This reaction and the evolution equation for the different metabolites
(following the mass action law) can be written as:

E + S
k1,k−1↔ C

k2→ E + P (23)
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Figure A.5. Maud Menten and Leonor Michaelis,
who together pioneered the development of enzyme kinetics
by formulating the Michaelis-Menten equation to describe
the steady state action of enzymes.
∂S
∂t = −k1[E][S] + k−1[C]
∂E
∂t = −k1[E][S] + k−1[C] + k2[C]
∂C
∂t = k1[E][S]− k−1[C]− k2[C]
∂P
∂t = k2[C]

where C is the complex of enzyme E and substrate S.

Michaelis and Menten in their original analysis, assumed that the sub-
strate S is in instantaneous equilibrium with the complex C, i.e.

k1, k−1 >> k2 (24)

Therefore

k1[E][S] = k−1[C] (25)

Since ET = E + C, we find that:

C =
[ET ][S]
k−1

k1
+ [S]

(26)

Hence, the product P of the reaction is produced at a rate
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v =
∂P

∂t
= k2[C] = Vmax

[S]
KS + [S]

(27)

where

Vmax = k2[ET ] and KS =
k−1

K1
(28)

A.4.3. Briggs-Haldane equation. Based on the same reaction mech-
anism (fig. A.4), Briggs and Haldane (1925) suggested an alternative hy-
pothesis: if the enzyme is present in ”catalytic” amounts (i.e. E << S),
then, very shortly after mixing E and S, a steady state is established in
which the concentration of ES (variable C in system of equations) remains
essentially constant with time [72] (see figure A.6):

∂C

∂t
=
∂E

∂t
= 0 (29)

We define [ET ] the total concentration of enzyme: [ET ] = [E] + [C] =
constant.

Figure A.6. Evolution of the concentration in an
enzyme-catalyzed reaction. E: Enzyme, S: Substrate,
ES: enzyme-substrate complex, P: Product. ([70, 72])
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This hypothesis is the quasi-steady state approximation. This assump-
tion implies that:

k1[E][S]− k−1[C]− k2[C] = 0 (30)

From this equation, with [ET ] = [E] + [C] we can extract C:

C =
k1[ET ][S]

k1[S] + (k−1 + k2)
=

[ET ][S]

[S] + (k−1+k2)
k1

(31)

When we replace this expression for C in the rate of production of P, we
obtain:

v =
∂P

∂t
= k2[C] =

k1[ET ][S]
k1[S] + (k−1 + k2)

=
k2[ET ][S]

[S] + (k−1+k2)
k1

(32)

which is usually written as:

v = Vmax
[S]

[S] +KM
(33)

where

KM =
k−1 + k2

k1
and Vmax = k2[ET ] (34)

The rate is thus similar to the rate of the equilibrium hypothesis (Michalis-
Menten equation); only KM has a slightly different meaning. We see that
when k1, k−1 >> k2, we have KM →KS . Note that KM is usually called the
Michalis-Menten constant, although the exact meaning of this constant
is rarely specified.

If [S] << KM , we observe a first order kinetic (linear relation between
v and S):

v = k[S] (35)

where
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Figure A.7. Michalis-Menten kinetic. v: reaction
rate, VMax: maximum reaction rate, KM : inverse of enzyme
affinity, S: substrate’s concentration. (see [71])

k =
Vmax
KM

(36)

If S >> KM , we observe a zero-order kinetic (constant rate v):

v = Vmax (37)
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APPENDIX B

Parameter estimation methods

B.1. Forward or bottom-up modeling

Before the rapid development of high-throughput experimental tools,
essentially all metabolic models were developed from ”local” kinetic infor-
mation of biochemical or physiological responses in a reductionist manner.
Specifically, biologists worked on characterizing one particular enzyme or
transport step at a time in the traditional manner. They purified the en-
zyme, studied its characteristics, determined optimal temperature and pH
ranges, and quantified cofactors, modulators, and secondary substrates. Iso-
lated from these laboratory experimenters, modelers converted this informa-
tion into a mathematical rate law. One can merge all information about rate
laws into an integrative mathematical model. This forward process might
lead to a model representation of the pathway that exhibits the same fea-
tures as reality, at least qualitatively, if not quantitatively [73, 74, 75]. The
strategy consists of setting up a symbolic model, estimating local parame-
ters, studying the integration of all individual rate laws into a comprehen-
sive model, testing the model, and making refinements to some of the model
structure and the parameter values.
While theoretically straightforward, there are several disadvantages to this
approach. The main issue is that a considerable amount of local kinetic in-
formation is needed and that this information is often obtained from differ-
ent organisms, different species, and collected under different experimental
conditions. Therefore, more often than not the ”integrated result” is not
consistent with biological observations. Furthermore, this process of con-
struction and refinement is very labor intensive and requires a combination
of biological and computational expertise that is still rare [74, 75].

B.2. Using steady-state data

If a system operates preferentially at a steady state, the parameters of
the model can be estimated using steady-state data, including steady-state
concentrations and fluxes of material flows at steady state. Estimations of
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parameter values from steady-state data are generally based on observing
how a biochemical system responds to small perturbations around the steady
state.

B.3. Inverse or top-down modeling

Much of the information necessary for parameter estimation depends
not only on steady-state measurements or simple perturbations around the
steady-state, but on measurements for all metabolites at sequential points in
time that may include considerable deviations from the steady state. Mod-
ern high-throughput techniques of biology are capable of producing this type
of time series data and have begun to offer distinct alternative options for
modelling metabolic systems, namely the ”top-down” or ”inverse” approach.
The experimental tools which allow the generation of dynamic metabolite
concentration profiles presently include nuclear magnetic resonance (NMR),
mass spectrometry (MS), high performance liquid chromatography (HPLC),
and flow cytometry (see review in [73]). In contrast to the ”local” data ob-
tained from traditional experiments, the clear advantages of using ”global”
data are that the information is collected within the same organism, ob-
tained under the same experimental condition, and sometimes even in vivo.
These data contain enormous information on the structure and regulation
of the biological system they describe. However, this information is mostly
implicit, and it is very challenging to extract it from these data because the
complexity and nonlinearity of biological networks.
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APPENDIX C

Stability analysis in dynamic models

Outline

The analysis of the stability of the steady state is an important aspect
for the further interpretation of dynamic models. Only if the model has a
stable steady state can a sensitivity analysis of its variables be performed. In
this Appendix we give an introduction to the stability analysis of dynamic
models. (This Appendix is inspired by a number of books and lecture notes
[76, 77, 78])

C.1. Stability Analysis of Dynamic Models

In the following conditions for the stability of a steady state of a dy-
namic model are obtained using Lyapunov’s stability criterion ([79]) and
linear stability analysis. In order to do this the concepts of eigenvectors and
eigenvalues of a square matrix are needed so a brief introduction to these
concepts is given first.

C.1.1. Eigenvectors and eigenvalues of square matrices. Eigen-
vectors and eigenvalues are defined as follows:

Definition C.1 (Eigenvalues and eigenvectors). Let A be an n × n

matrix. A scalar λ is an eigenvalue of A if there is a nonzero column vector
v in n-space such that Av = λv. The vector v is then an eigenvector of A
corresponding to λ.

The eigenvalues and eigenvectors have the following useful property [80]:

Theorem C.2 (Matrix summary of eigenvalues of A). Let A be an n×n
matrix and let λ1, λ2, ..., λn be (possibly complex) scalars and v1, v2, ..., vn be
nonzero vectors in n-space. Let C be the n × n matrix having vj as jth
column vector, and let D be the diagonal matrix with λ1, λ2, ..., λn on its
main diagonal and zeros everywhere else
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D=


λ1 0

λ2

. . .

0 λn


Then AC = CD if and only if λ1, λ2, ..., λn are eigenvalues of A and vj

is an eigenvector of A corresponding to λj for j = 1, 2, ..., n.

The theorem above is easily proved by using the definition of eigenvalues
and eigenvectors.
Furthermore when the matrix C is invertible it can be used to diagonalise
A, i.e.:

C−1AC = D (38)

Conversely, also provided that C is invertible:

A = CDC−1 (39)

C will be invertible if and only if A has n independent eigenvectors.

C.1.2. Linear stability analysis and Lyapunov’s criterion for
stability. The balancing of the intermediates in a given pathway yields a
differential equation for each metabolite of the form:

∂xi
∂t

= fi(x1, x2, ..xm; c1, c2, ..cq; p1, p2, ..pl) (40)

Here x1 to xm are the concentrations of m balanced metabolites, i.e. the
dependent variables and c1 to cq are the q independent metabolites. p1 to
pl represent the l parameters. Note that the concentrations of independent
metabolites c are predefined functions of time. As such they represent the
part of fi directly dependent on time. They might be regarded as ”time
dependent parameters”.
When balance equations are defined for all xi the resulting system of differ-
ential equations can be written in vector notation as:

∂x
∂t

= f(x; c; p) (41)
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The function f is given by the kinetic rate equations multiplied by the ap-
propriate stoichiometric coefficients.

Consider the above system of differential equations. Suppose the system
has a steady state given by:

∂x
∂t

= f(x0; c0; p) = 0 (42)

where the superscript 0 refers to the steady state concentration values.
When analyzing the steady state the independent metabolite concentrations,
c0, are considered to stay constant so they can be included in the parameter
vector. An extended parameter vector p# = [c0 | p] is therefore defined so
that Eq. 42 can writes as

∂x
∂t

= f(x0; p#) = 0 (43)

Suppose now that the stationary state x0 is perturbed by δx = ξ. The
metabolite concentrations will then be given by:

x = x0 + ξ(t) (44)

The time evolution of metabolite xi is given by:

∂(x0
i + ξi)
∂t

= fi(x0 + ξ; p#) (45)

By doing a Taylor expansion of fi around x0
i , fi can be expressed as:

fi(x0 + ξ; p#) = fi(x0; p#) +
m∑
j

[
∂fi
∂xj

]
0

ξj + . . . (46)

The subscript 0 on the partial derivatives indicates that they are eval-
uated at the stationary state x0. The higher order terms in the Taylor
polynomial can be neglected since ξ is small and one therefore only needs
to consider the linear terms (hence linear stability analysis). By linearity

∂(x0
i + ξi)
∂t

=
∂x0

i

∂t
+
∂ξi
∂t

; (47)

Hence Eq. 45 and 46 can be combined to get
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∂x0
i

∂t
+
∂ξi
∂t

= fi(x0; p#) +
m∑
j

[
∂fi
∂xj

]
0

ξj . (48)

Since by definition

∂x0
i

∂t
= fi(x0; p#) = 0 (49)

Eq. 48 reduces to

∂ξi
∂t

=
m∑
j

[
∂fi
∂xj

]
0

ξj (50)

Thus ξi(t) can be expressed as a linear combination of partial derivatives
of f . Eq. 50 written in matrix notation for all ξi becomes:

∂ξ

∂t
= Jξ (51)

J is the matrix of partial derivatives of f often referred to as the Jaco-
bian:

J=


∂f1
∂x1

· · · ∂f1
∂xm

...
. . .

...
∂fm

∂x1
· · · ∂fm

∂xm



where the partial derivatives are evaluated at x0.

If the eigenvectors of J are independent Eq. 39 can be used to obtain
a general solution of Eq. 51. The m ×m matrix J has m eigenvalues and
eigenvectors. Let D be the diagonal matrix of the eigenvalues of J:

D=


λ1

λ2

. . .

λn
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and let C be the matrix made up of the eigenvectors v of J where vj is
the j th column in C:

C=

 | | |
v1 v2 · · · vm

| | |


According to Eq. 39 J can be expressed as:

J = CDC−1 (52)

Substituting for J in Eq. 51 the differential of ξ becomes:

∂ξ

∂t
= CDC−1ξ (53)

Define now a dummy variable

y = C−1ξ (54)

so that Eq. 53 can be written as

∂y

∂t
= Dy (55)

Since D is a diagonal matrix the system of differential equations in Eq.
55 can be readily solved. For each yi one gets:

∂yi
∂t

= λiyi (56)

which has the general solution:

yi(t) = kie
λit (57)

where ki is a scalar. In vector notation for all yi:

y=


k1e

λ1t

k2e
λ2t

...
kme

λmt

;
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ξ can now be substituted back in again using Eq. 54 to get the general
solution of Eq. 51:

ξ=C


k1e

λ1t

k2e
λ2t

...
kme

λmt

.

With the general solution for the time evolution of the perturbation ξ, a
conclusion on the stability of the steady state can now be arrived at. Accord-
ing to Lyapunov’s theory the stability depends on whether the perturbation
ξ will grow or decay with time. It is seen from the last equation that the
only time dependent terms are the exponentials. Thus the stability of the
system depends only on the eigenvalues of the Jacobian matrix. If one or
more of the eigenvalues have a positive real part the associated solutions
will grow exponentially. The stability criterion can therefore be formulated
as:

Theorem C.3 (Stability criterion). A steady state is stable if, and only
if, the eigenvalues of the associated Jacobian matrix all have negative real
parts.

Thus, the stability is evaluated by calculating the eigenvalues of the Ja-
cobian of the system of ODEs. The issue of stability of mathematical models
is common in all engineering disciplines and the theorem above is well known.

An almost complete classification of different types of fixed points based
on the type of their eigenvalues (complex or real) and the sign of their breal
parts (negative or positive) is shown in figure C.1:

A conjugate pair of complex eigenvalues signifies that the system is able
to oscillate (focus). The only problem is with systems which have one or
more eigenvalues with real part zero. If a zero eigenvalue is found, the test
gives no conclusion on the stability.
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Figure C.1. Classification of planar systems based on their eigenvalues
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APPENDIX D

Experimental data of CENU

D.1. B16 melanoma and 3LL carcinoma cells in response to
CENU

D.1.1. In vivo experiments: Treatment protocol. Six to eight
weeks old C57BL6/6J male mice were purchased from IFFA CREDO, (L’Arbresle,
France). Mice were shaved before s.c. injections into their flank of 5×105

tumor cells(B16 melanoma or 3LL cells). B16 melanoma or 3LL tumors
became palpable at days 8-10 after cell inoculation. Mice were divided into
two groups, a Control (CT) group, which received sham injections of saline
solution, and a Treated (TR) group. The TR group received intratumor
chloroethylnitrosourea (CENU) injections at a dose of 15 µg/g body weight.
CENU was injected at days 11, 14, and 18 from B16 cell inoculation.
At defined times of tumor evolution (days 10, 12, 15, 20, 24, and 29 after
B16 cell inoculation for CT and TR tumors and prolonged to days 35, 43,
and 54 for TR tumors), three mice of each group were sacrificed according
to institutional guidelines for animal welfare and experimental conduct. Tu-
mors were dissected and weighed. The dissection of the s.c. tumor took <2
min. A piece of the tumor <50 mg of the whole tumor was immediately
prepared for NMR Spectroscopy as described below or frozen at −80 ◦C in
case of delayed examination.
Tumor growth curves were fitted to the Gompertz function and modified
for the TR group to include a growth delay period. Ranges for maximum
attainable weights and other model parameters obtained in CENU-treated
melanoma models have been published previously [62].

D.1.2. Model application. The aim of this section is to provide in-
sights into metabolic pathways from biochemical data derived from 1H-
NMR spectroscopy-based metabolite profiling of tumors [61]. Proton two-
dimensional NMR spectroscopy analysis has been shown to cover very well
the subset of phospholipid derivatives [56, 58, 81], including the most con-
centrated phospholipids (phosphatidylcholine and phosphatidylethanolamine),
water-soluble precursors (choline, phosphocholine, cytidyl-diphosphocholine,
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ethanolamine, phosphoethanolamine, cytidyl-diphosphoethanolamine), phos-
pholipid hydrolysis products (glycerophosphocholine, glycerophosphoethanolamine),
and oxidization products (betaine).

Besides these technical conveniences, phospholipid metabolism is crucial
for the build-up of cellular membranes thus for tumor cell proliferation, a
major phenotypic feature of tumors. Recently, as an anticancer treatment
strategy, it was proposed to inhibit key-enzymes of phospholipid metabolism
(choline-kinase) to slow down tumor cell proliferation [82].

We hypothetized that, by modelling phospholipid derivative content
variations between two conditions at steady state, we could give insight,
through the used set of parameters, into the induced regulations of phospho-
lipid metabolism. We thus compared phospholipids metabolism alterations
in murine tumors between baseline and the stable phase of their response
to an anticancer agent. Based on the classical hypothesis that pathways of
phospholipids metabolism are very similar in liver cells and tumor cells [34],
we applied our mathematical model to study the effects of such treatments.
For each of these two tumors we have experimental data for three differ-
ent phases: Control(CTL), Inhibition(INH) and Recovery(REC) [61](See
Fig.6.1). The average concentrations measured experimentally at steady
state for each of these phases are shown in Tables 1 and 2 of Chapter 6.
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APPENDIX E

Experimental data of MDS

E.1. B16 melanoma cells and response to methionine deprivation
(MDS)

E.1.1. Chemicals. S-Adenosyl-[14CH3]-Met (specific activity 60 mCi/m-
mol) was from Amersham Biosciences (Buckinghamshire, UK). Acetone,
acetonitrile and methanol of HPLC grade were from SDS.

E.1.2. Cell culture and treatment. B16-F10 melanoma cells were
maintained as monolayers in 75 cm2 culture flasks in medium RPMI (SIGMA)
either supplemented with 100 µM Met and completed with 10% fetal calf
serum (SIGMA) which is considered as standard (Std) condition or non-
supplemented in Met (MDS) completed with 10% dialyzed fetal calf serum
(Gibco) which is considered as MDS condition. All media were completed
with 100 µM folic acid, 1.5 µM cyanocobalamin, 1 mM sodium pyruvate, 4
µg/ml gentamicin (Gibco), 1X non-essential amino-acid solution, 2 µM glu-
tamine and 1X vitamin cocktail (Gibco). Cells were maintained in culture
with 5% CO2 and 90% humidity at 37◦C. Cells were separated in 2 groups.
The first one Std group was grown in Std medium. The second one MDS
group was grown in Met-deficient medium for 4 days. Then after 4 days
of MDS, these cells were replaced in Std medium supplemented with 100
µM Met, thus these cells were in post-MDS condition. During post-MDS
condition we define two periods: first one is early phase (2 days after MDS)
and the second one is late phase (6 days after MDS). Cells were harvested
and conserved at -80◦C until analysis.

E.1.3. 1H-NMR Spectroscopy analysis. Analysis was performed
on a small bore Bruker DRX 500 magnet, equipped with an Proton High
Resolution Magic Angle Spinning (HRMAS) probe. Samples, consisting of
a piece of intact melanoma tissue below 50 mg or of pellet of intact cells,
were inserted into 4 mm diameter zirconia rotors, and rotated at 4 kHz.
Metabolite profiling was performed based on a technique using both one-
dimensional 1H saturation recovery sequence (repetition time: 10 s, spectral
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width: 10 ppm, complex data points: 16 K, number of samples: 64, water
signal presaturation at low power) and two-dimensional 1H-1H total correla-
tion spectroscopy sequence (repetition time: 1 s, spectral width: 6 ppm × 6
ppm, complex data points: 2 K 256 points, number of samples: 16, spin lock
duration: 75 ms, water signal presaturation at low power). 2D-based NMR
spectroscopy quantification was performed using the technique reported in
previous article [83].

E.1.4. Methionine concentration measurement. The method used
derivatization of intracellular methionine by dabsyl chloride [84, 85] and
High Pressure Liquid Chromatography (HPLC). The standard used was the
non metabolisable amino acid norleucine. The HPLC separation of dabsy-
lated amino acids was performed on a Hewlett Packard Series 1100 system
using a 3 µm Supelcosil LC Dabs column (150 4.6 mm I.D.) protected with
a 5 µm Supelcosil LC 18T (20 × 4.6 mm I.D.) guard column. The injection
volume was 5 µl and detection was performed at 436 nm. Data collection
and peak integration were done with the Enhanced Integrator System of the
HP ChemStation.

E.1.5. Phosphatidylethanolamine-N-methyltransferase activity
(PEMT). Cells pellets were sonicated on ice in lysis buffer (50 mM Tris-
HCl, pH 8; 100 mM NaCl) containing protease inhibitor mixture (Roche,
Mannheim, Germany). After centrifugation (14000 x g, 15 min at 4◦C), the
supernatant was assessed for protein concentration. Intracellular protein
concentration was determined with Coomassie Blue at λ = 595 nm. PEMT
enzyme activity was assessed as reported [86]. The substrate for PEMT
activity was L-α-phosphatidylethanolamine from egg yolk (Sigma) dissolved
at the concentration of 1.7 mg/l in 5 mM Tris-HCl pH 9.2 containing
0.06% Triton X100. PEMT enzyme activity was assessed using S-Adenosyl-
[14CH3]-Met (specific activity 60 mCi/mmol) (Amersham Biosciences, Buck-
inghamshire, United Kingdom). Results are expressed in Units. One Unit
represents 1 pmole methyl residue transferred/min/mg protein.

E.1.6. Statistical analysis. NMR spectroscopy phospholipid deriva-
tives measurement were expressed as mean ± SEM and tested for statistical
significance analysis with the Mann-Whitney U-test (SEMSTAT, Interna-
tional SEMATECH, TX).
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E.2. Biological global effect of MDS

E.2.1. Cell proliferation. Std B16 melanoma cells (Std group) grew
exponentially in Std medium . In the MDS group, after 4 days of MDS, cell
proliferation was arrested. After replacing cells in Std medium (post-MDS),
cell proliferation rate returned at the level of Std cells.(Fig.E.1).
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Figure E.1. MDS inhibitory effect on B16 melanoma

cells proliferation. The first group (Std) was cultivated in Std
medium. The second group (MDS) was cultivated in MDS medium
for 4 days and replaced in Std medium. Then cells were cultivated
in Std medium. Results are the mean of three independent exper-
iments. **; p ¡ 0.01, MDS vs Std.

E.2.2. 1H-NMR spectroscopy analysis of the metabolic response
to MDS. Figure 7.2.a depicts 1H-NMR spectrum of Std cells metabolic
profile. After 4 days of MDS, cells from the UN MDS group showed a de-
crease content. PtdCho pool was not altered but there was an increase of
GPC pool, suggesting as hydrolysis of PtdCho. After replacing cells in Std
medium, during the post-MDS phase, metabolic profile returned at the level
of Std cells at day 10.

E.2.3. Methionine measurement (HPLC-based). We next evalu-
ated the effect of MDS on tumor cells methionine. Cells metabolic response
of Sdt group was compared to that of MDS group . After 4 days of MDS,
Met pool was depleted, with a drop of 75% (p < 0.01). After the cessation
of MDS, there was a return to baseline values.
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E.2.4. PEMT activity in response to MDS. During MDS, PEMT
activity was increased, and remained elevated during the early period of
post-MDS phase (p ¡ 0.05, Fig. E.2). PEMT enzyme activity was assessed by
using S-Adenosyl-[14CH3]-Met (specific activity 60 mCi/mmol, from Sigma).
Results were expressed in unit. One unit represented 1 pmole methyl residue
transferred/min/mg protein.

Figure E.2. Effect of MDS and its association

with chemotherapy on phosphatidylethanolamine-N-

methyltrasferase activity. PEMT activity was assessed in
vitro and the incorporation of [14CH3]-methyl groups in phos-
phatidylethanolamine was determined. One Unit represents 1
pmole methyl residue transferred/min/mg protein. *; p < 0.05,
when compared to UN Std; **; p < 0.01, when compared to UN
Std; Mann-Whitney test. Results are the mean of three indepen-
dent experiments

E.2.5. Biological response to MDS. We showed that untreated B16
melanoma cells express a functional PEMT enzyme and its activity was in
agreement with values found in hepatoma cell lines [87]. Here we showed
that MDS induced disorders of transmethylation reactions as attested in-
creased activity of PEMT. The latter may aim at compensating for decreased
availability of Met for transmethylation of phosphatidylethanolamine. This
suggests that the preservation of the PtdCho is mandatory. The pool of
PtdCho homeostasis is critical for cell survival, it has been shown that in
response to phospholipid overload, e.g., because of an excess in the culture
medium, cells protect themselves through phospholipases A2 (PLA2) activa-
tion and base-exchange activation [88]. The PEMT pathway is an accessory
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pathway for PtdCho biosynthesis, with the CDP-Cho pathway as the major
route [89, 90]. This pathway is unable to compensate for a severely failing
CDP-Cho pathway [88] and it was shown to remodel the PtdCho pool of
hepatocytes with more poly-unsaturated fatty acids (PUFA), thus providing
cells with bioactive lipids [90]. Thus, the rise of PEMT activity in response
to MDS suggested a downregulation of the Kennedy pathway. However the
modification of transmethylation reactions in response to MDS might be the
consequence of the decrease of the SAM/SAH ratio, or a compensation for
the low availability of substrates [91].
The activation of the PEMT in response to MDS might also reflect the
need for bioactive lipids and for maintaining PtdCho homeostasis, which is
a critical factor for cell survival [90, 88]. However further investigations are
needed to understand the critical role of the PEMT in tumor cell prolifera-
tion arrest. This enzyme might play an important role in cancer physiology
or in tumor response to therapy.

E.2.6. Metabolic insight into the combined therapy. The PEMT
pathway has not been much studied in tumor cells due to its small contribu-
tion and its role is less well understood. Increased expression of PEMT was
shown to be associated with decreased cytidine-diphosphate-choline (CDP-
Cho) pathway activation [87], decreased rate of cell proliferation [89] and
induction of apoptosis [90]. Moreover it was reported that the PEMT activ-
ity was decreased in hepatoma tumors [89]. We showed that the combination
of MDS and CENU treatment induced an up-regulation of PEMT activity
which was responsible for PtdCho hydrolysis.[63]. The excess of PtdCho
might be hydrolyzed through the activation of phospholipase A2, producing
GPC which, in turn, could give poly-unsaturated fatty acids and ceramide
[92, 93]. CENU treatment and MDS are both DNA hypomethylation in-
ducers and DNA hypomethylation would result in gene overexpression [94].
As a consequence, some genes coding for methyltransferase might have been
upregulated and among them, PEMT expression.

The inhibition of Akt phosphorylation induced by MDS alone support
this hypothesis [95]. One of the Akt regulator is the protein phosphatase 2A
(PP2A) which regulates cell proliferation, or resistance to apoptosis [96]. To
be active, PP2A needs to be methylated on its catalytic subunit by a specific
methyltransferase, leucine carboxymethyltransferase-1 (LCMT-1) [96]. The
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LCMT-1 activity might have been also upregulated in reponse to the thera-
peutic association by ceramide, through the degradation of the PtdCho pool
originating from PEMT activity, which are known PP2A activators [97, 98].
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APPENDIX F

Basis for a new software for biological networks

modeling

Outline

In this Chapter we describe the basis for a new software for biologial
networks modeling. We named this software MPAS (Metabolic Pathway
Analyser Software). First we study the reasons for such a software and
the goals we want to achieve; then we give some details about the develop-
ment tools and finally we comment in a few words about advantages of this
software.

F.1. Introduction

The techniques most frequently used in biology for the study of metab-
olism (nuclear magnetic resonance (NMR), mass spectrometry(MS), chips,
etc) only provide partial informations about networks. Then the expert has
to reconstruct the interaction networks between the metabolites for which
we have information. In addition, each of these techniques has its limits and
only provides data for a particular aspect of metabolism. By combining the
results of these different techniques, we hope to overcome these limitations
and to contribute to derive new and more comprehensive models.

F.2. Goal

Our goal is to develop a new innovative software to merge data from
exploration techniques for the large-scale cellular metabolism. This strategy
will model the evolution of cellular metabolism in the context of a pathology
or a particular physiological environment. For example, it will be possible
to identify targets to initiate the specific therapy strategies to the studied
pathology according to the results of biomarker tests.
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F.3. Data and Methods

The data that we have are of four types: Promotology (we realized a
software for the promotology analysis of the regulation of genes in a pathol-
ogy, giving a list of genes which are potentially co-regulated with the genes
of interest), Transcriptomics, Metabolomics et Proteomics. The intersection
of the results of these techniques should help to overcome some of their lim-
its and to derive the new information.

This software will give the possibility to rebuild all possible reactions be-
tween the metabolites of interest (identified by NMR spectra or MS, DNA
chips, or promotology).(Fig. F.1)

Figure F.1. A general schema of the first version of MPAS.

The software will be based on a combination of different public databases
like KEGG (Kyoto Encyclopedia of Gene and Genomes) or BiGG. KEGG
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is a collection of online databases dealing with genomes, enzymatic path-
ways and biological chemicals. The pathway database of KEGG records
networks of molecular interactions in the cells and variants of them specific
to particular organisms. The KEGG database can be used for modeling
and simulation, browsing and retrieval of data. It is a part of the so-called
systems biology approach.

In MPAS software, the database will also record the results of simula-
tions. These results can then be exported in the standard file formats used
in modeling : SBML (Public database for Biomodels) or BioPax(Online
database Biological Pathway Exchange).

SBML is a computer-readable format for the implementation of models
of biochemical systems. It is based on XML and uses MathML to encode
mathematical formulas. It is widely applicable to most biochemical systems
and readable by a multitude of software tools. An advantage as well as a
disadvantage of SBML is its wide applicability and neutrality towards soft-
ware encoding. This allows a wide variety of programs to use SBML while
each program can process the model differently. Thus, two SBML-compliant
programs need not necessarily produce the same output when performing
similar tasks (e.g. simulation of the model) on a model. For detailed infor-
mation about SBML, see [66, 67].

F.4. Development tools

We chose to develop this software in C++ because of a better fluency
and execution’s speed, in compare to many available softwares of graphs
representation in the market which are written in Java. This software is
included in an information system which is capable to handle the set of
our biological and bioinformatics data. For the reconstruction of metabolic
pathways, the software uses a MySQL database managed by a server in
Ruby on Rails. The database schema is provided by the DTD of KGML
files(XML files produced by Kegg for metabolic pathways export). The
database contains all human metabolic pathways in Kegg and BIGG. An
API service is implemented on the database management server, allowing
to query it via a REST interface. This will give the facility to connect easily
the new softwares on this database. The simulation of biological networks,
parameter estimation, mathematical analyses and also all graphics will be
done by a direct inclusion of Matlab software.
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F.5. Graph construction

It is possible to construct a graph in different ways. It is possible to build
the graph of reactions manually by introducing compounds and reactions
between these compounds graphically. We can also import the graph of
reactions of a human metabolic pathway directly. The software retrieves
the requested metabolic pathway from KEGG or BiGG, and retranscribes
it on the screen as a graph. It is also possible to provide a list of the genes of
interest. The software will find the metabolic pathways where these genes are
involved. It is also possible to edit a graph of reactions which is imported
automatically, by adding or removing compounds or reactions.(See figure
F.1)

F.6. Analyses

• From the complex metabolic network established by the software,
the system of ordinary differential equations which corresponds to
this network is automatically created.

• The user may choose the biochemical laws which will be used for
the construction of this system.

• One can enter the parameter values which are known (probably
found in biological experiments).
(See figure F.1)
• The unknown parameters are predicted by the software with the

numerical methods and will be presented in a table.

• The results of the simulation of systems and different analyses are
presented as diagrams: changes in metabolite concentrations over
time, evolution of concentration of a metabolite in relation to an-
other, phase spaces, stability curves of the system, speed of reaching
the steady state for each of the metabolites, etc.(See figure F.2)

F.7. Rate laws to construct the equations

The user can choose the type of multi-substrate reactions:

• Non-Enzymatic reaction
• Random mechanism
• Ordered mechanism

130



Figure F.2. An example of MPAS application to model
phospholipid biosynthesis.

• Ping-Pong mechanism

F.7.1. Non-enzymatic reaction. In the non-enzymatic multi-substrate
reaction , the Michaelis-Menten formula is of the form:

v = k.[A].[B].[C]... (58)

F.7.2. Random Mechanism and Ordered Mechanism. In the random-
mechanism and ordered-mechanism , with n substrates, the Michaelis-Menten
formula is of the form:

v =
Vmax.[S1].[S2]...[Sn]

K1 + ...+Ki.[Si] + ...+Ki+k.[Si].[Sj ] + ...+K2n−1.[S1]...[Sn−1] + ...+ [S1]...[Sn]
(59)
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For example if n=2 :

v =
Vmax.[S1].[S2]

K1 +K2.[S1] +K3.[S2] + [S1].[S2]
(60)

F.7.3. Ping-Pong Mechanism. In the ping-pong- mechanism , with
n substrates,the Michaelis-Menten formula is of the form:

v =
Vmax.[S1].[S2]...[Sn]

K1.[S1]...[Sn−1] + ...+Kn.[S2]...[Sn] + ...+ [S1].[S2]...[Sn]
(61)

For example if n = 3 :

v =
Vmax.[S1].[S2].[S3]

K1.[S1].[S2] +K2.[S1].[S3] +K3.[S2].[S3] + [S1].[S2].[S3]
(62)

F.8. Inhibitors

This happens sometimes in the KEGG database or at the request of
user, to add an inhibition to a reaction. The inhibitor (I) can bind to
either E (Enzyme) or ES (Enzyme-Substrate complex) with the dissocia-
tion constants Ki or KI , respectively. So there are several possibilities for
Inhibitor :

• Competitive inhibitor
• Uncompetitive inhibitor
• Noncompetitive inhibitor
• Mixed inhibition

F.8.1. Competitive inhibitor. the substrate and inhibitor cannot
bind to the enzyme at the same time. This usually results from the inhibitor
having an affinity for the active site of an enzyme where the substrate also
binds; the substrate and inhibitor compete for access to the enzyme’s active
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site.

v =
Vmax.[S]

[S] +Km.(1 + [I]
Ki

)
(63)

F.8.2. Uncompetitive inhibitor. the inhibitor binds only to the substrate-
enzyme complex, it should not be confused with non-competitive inhibitors.

v =

Vmax

(1+
[I]
KI

)
.[S]

[S] + Km

(1+
[I]
KI

)

(64)

Inhibition by the substrate is a special case of this group in which two
molecules of substrate bind to the enzyme but can not be transformed into
the product:

v =
Vmax.[S]

[S] +Km + [S]2

KI

(65)

F.8.3. Mixed inhibition. The inhibitor can bind to the enzyme at the
same time as the enzyme’s substrate. However, the binding of the inhibitor
affects the binding of the substrate, and vice versa. This type of inhibition
can be reduced, but not overcome by increasing concentrations of substrate.
Although it is possible for mixed-type inhibitors to bind in the active site,
this type of inhibition generally results from an allosteric effect where the
inhibitor binds to a different site on an enzyme. Inhibitor binding to this
allosteric site changes the conformation (i.e., tertiary structure or three-
dimensional shape) of the enzyme so that the affinity of the substrate for
the active site is reduced.( Ki 6= KI .)

v =

Vmax

(1+
[I]
KI

)
.[S]

[S] +Km.
(1+

[I]
Ki

)

(1+
[I]
KI

)

(66)
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F.8.4. Noncompetitive inhibitor. is a form of mixed inhibition where
the binding of the inhibitor to the enzyme reduces its activity but does not
affect the binding of substrate. As a result, the extent of inhibition depends
only on the concentration of the inhibitor.

v =

Vmax

(1+
[I]
Ki

)
.[S]

[S] +Km
(67)

We plan to include the other simulation methods or study of biological
networks such as calculating elementary modes to this software[68], such as
Petri nets[69].
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