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Résumé

Dans cette thèse, nous proposons de nouvelles representations pour
les poses du mouvement humain, apprises sur des données réelles, en
vue d’une synthèse de nouveaux mouvements en temps-réel. Dans une
première partie, nous exploitons une méthode statistique adaptée aux
groupes de Lie (Analyse en Géodésiques Principales, AGP) pour ap-
proximer la variété des poses d’un sujet en mouvement, à partir de don-
nées de capture de mouvement. Nous proposons un algorithme de ci-
nématique inverse exploitant cette paramétrisation réduite, permettant
par construction de synthétiser des poses proches des données initiales.
Nous validons ce modèle cinématique par une application à la compres-
sion de données de mouvements, dans laquelle seules quelques trajec-
toires des extrémités des membres du squelettes permettent de recons-
truire une bonne approximation de l’ensemble des données initiales.

Dans une deuxième partie, nous étendons cette approche à l’ani-
mation physique de personnages virtuels. La paramétrisation réduite
par AGP fournit les coordonnées généralisées de la formulation La-
grangienne de la mécanique. Nous dérivons un intégrateur temporel
explicite basé sur les intégrateurs variationnels. Afin d’en améliorer la
stabilité, nous proposons un modèle d’amortissement inspiré de l’algo-
rithme de Levenberg-Marquardt. Nous présentons également une mé-
thode géométrique d’apprentissage des limites angulaires sur des don-
nées de capture de mouvement, ainsi que leur application comme contraintes
cinématiques.

Dans une troisième partie, nous abordons le problème du contrôle
du mouvement. En formulant les étapes de la simulation physique d’une
part, et de la cinématique inverse d’autre part comme deux programmes
quadratiques, nous proposons un algorithme de pseudo-contrôle par
interpolation des métriques, permettant un compromis intuitif entre si-
mulation physique non-contrôlée, et cinématique inverse. Cette approche
faisant intervenir des forces externes, nous proposons une formulation
alternative, utilisant uniquement les forces associées à la paramétrisa-
tion réduite des poses. Cette formulation est obtenue par relaxation
du problème théorique de contrôle sous contraintes unilatérales, non-
convexe, en un programme quadratique convexe. Ces algorithmes sont
évalués sur des contrôleurs d’équilibre et de suivi.
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Abstract

In this thesis, we propose novel, data-driven representations for hu-
man poses, suitable for real-time synthesis of novel character motion. In
the first part, we exploit Lie group statistical analysis techniques (Prin-
cipal Geodesic Analysis, PGA) to approximate the pose manifold of a
motion capture sequence by a reduced set of pose geodesics. We pro-
pose an inverse kinematics algorithm using this reduced parametriza-
tion to automatically produce poses that are close to the learning set. We
demonstrate the efficiency of the resulting pose model by an application
to motion capture data compression, where only a few end-effector tra-
jectories are used to recover a good approximation of the initial data.

In the second part, we extend this approach to the physically-based
animation of virtual characters. The PGA-reduced parametrization pro-
vides generalized coordinates in a Lagrangian formulation of mechan-
ics. We derive an explicit time integrator by approximating existing
variational integrators, and propose a damping model based on the
Levenberg-Marquardt algorithm. We also describe a geometric, data-
driven, angular limit learning algorithm, and the associated kinematic
constraints.

In the third part, we reach the problem of task-space motion con-
trol. By formulating both physical simulation and inverse kinematics
time stepping schemes as two quadratic programs, we propose a sim-
ple pseudo-control algorithm that interpolates between the two metrics.
This allows for an intuitive trade-off between uncontrolled simulation
and kinematic manipulation. Since this approach makes use of exter-
nal forces, we propose an alternate formulation using only the general-
ized forces associated to the pose parametrization. A control algorithm
is obtained by the relaxation of the exact, non-convex control problem
under unilateral constraints, into a convex quadratic program. These
algorithms are evaluated on simple balance and tracking controllers.





Preface

The study of human motion is a broad topic. To begin with, there are sev-
eral levels of understanding: from pure mechanics to cognitive science, not to
forget biological aspects, this problem spans a whole range of sub-problems
in several scientific areas. In order to properly reason on these problems,
several models for human motions have been proposed in the past, describ-
ing its geometry, temporal behavior or statistical variability, among many
others. Eventually, each of these models has to confront real motion data
for validation. Luckily, advanced motion capture techniques have been de-
veloped in the last decades, enabling the creation of several computational
tools to record, analyze and synthesize motion data. With the advent of these
techniques, our knowledge of human motion grew substantially, and is still
growing today.

But why would one want to know about human motion in the first place?
As the last decades showed, applications are numerous, ranging from med-
ical domain to artistic creation: prosthesis improvements, sports gear de-
sign, robotic manipulation, virtual characters in movies, and more generally
whenever there is a need to (re)create motion. One of the most striking suc-
cesses of this knowledge is the case of South African Paralympic runner Os-
car Pistorius. The leg prosthesis he uses1 are the result of decades of research
and development in bio-mechanics. This prosthesis raised controversy (see
[WB10] and subsequent articles) as to whether the mechanics involved with
it gave Pistorius an advantage even over normal-legged athletes. While he is
not able to use his calves to push the ground when accelerating, the prosthe-
sis could allow for a much better restitution of elastic energy when running.
The very possibility of such a controversy highlights the progresses made by
our understanding of how humans move.

The process of understanding an aspect of human motion goes through
the design of a motion model, that accounts for the features one seeks to ex-
plain while abstracting out the unneeded complexity. By modeling a particu-
lar phenomenon, one assume some underlying structure in the motion, which
is what a motion model should capture. In this thesis, an important part of

1 Cheetah, by Össur (http://www.ossur.com/)
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(CC BY Elvar Freyr)

Figure: Athlete Oscar Pistorius, wearing controversial leg prosthesis, 2007

our contributions consists in capturing geometric aspects of human motion,
through dedicated dimension reduction techniques. While our bodies ex-
hibit numerous degrees of freedom for producing motion, bio-mechanical
studies showed they tend to be actuated in a highly-correlated way, resulting
in similarly coordinated body motion.

This redundancy offers an opportunity to reduce the total complexity of
animating a virtual character, by capturing this structure in a simple geomet-
ric model. It allows to generate better-looking animations at a lower compu-
tational cost.

Since human motion results from a physical process, we were naturally
led to use our geometric model in a physically-based animation context, in
which dynamic effects are described by the equations of motion, another type
of structure in the motion.

Finally, as recent biomechanic studies show, the muscle activations in the
human body seem to be performed in a highly-coordinated way. Having de-
rived a data-driven, geometric description of motion correlations, it seemed
natural to investigate whether this reduced pose coordinates could provide a
working actuation basis for motor control.
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Organization of the Manuscript

The introduction (part I) presents historical and practical aspects on motion
capture techniques, for the reader to become familiar with the vocabulary
and concepts used throughout the manuscript.

Part II provides background on the mathematical modeling of a human
skeleton, along with relevant geometric and theoretical tools, most notably
concerning the Lie groups theory. Without going too much into details, we try
to expose important results and concepts by favoring intuition over proofs.
In particular, we illustrate how Lie groups connect intuitive geometric rea-
soning to matrix computations.

Part III (kinematics) proposes an algorithm for learning and approximat-
ing the pose manifold of a motion capture, and the associated Inverse Kine-
matics procedure. A validation of this algorithm is proposed as a motion
compression algorithm.

Part IV (dynamics) extends these ideas in the context of physically-based
animation of characters. The reduced pose parametrization derived in the
first part serves as the basis for deriving discrete equations of motion for the
animated character. A data-driven angular limits learning algorithm, and a
dedicated damping model are derived.

Part V (control) further extends the physical modeling to the motion con-
trol problem. Two algorithms are proposed, with or without external forces.
In the latter, the reduced coordinates are used as whole-body actuators in
a task-space control framework. Balance and tracking controllers are pre-
sented.

We conclude in part VI, with perspectives on future works.
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Chapter 1

History of Motion Study

The study of human motion has a long history, therefore we will only sketch
it quickly here, with an emphasis on the different data sources available. The
first known book on biomechanics is On the Motion of Animals, written by
Aristotle (384-322 B.C.). For the first time, animals were viewed as a mechan-
ical system (similar to puppets) and their motion studied as such, in terms of
joints and levers. He notably performed a geometric description of walking.

Figure 1.1: Drawings by Leonardo Da Vinci (left) and Borelli (right), among
the first known works in biomechanics.

Leonardo Da Vinci (1452-1519) identified muscles and nerves of the hu-
man body, and the mechanics involved in various human activities. Inter-
estingly, he tried to inspire from animal body structures to design better ma-
chines, or to better adapt machines to animal bodies. Analysis on the forces
exerted in the human body went further with works of Giovanni Alfonso
Borelli (1608-1679), when he applied mechanic principles to the study of the

13



14 CHAPTER 1. HISTORY OF MOTION STUDY

human body. However precise were these hand-drawn studies, it’s only with
the invention of photography in the 19th century that visual data on the hu-
man body became reliable.

1.1 Chronophotography

Quickly after the first photography processes were created (between 1826
and 1840 and through the works of Joseph Nicéphore Niépce and Fox Tal-
bot, among many others) and the photography technique was setting up,
photographers began studying motion by decomposing it into a series of
shortly time-spaced snapshots of a moving subject. The first known work
in chronophotography, as it is called today, was produced by Eadweard Muy-
bridge in 1878 and depicted a galloping horse (Sallie Gardner at a Gallop).

Figure 1.2: Muybridge works: Sallie Gardner at a Gallop (1878, left), Man
ascending stairs (1884-1885, right).

This work is interesting because it was used as a scientific proof to settle
a popular question by horsing fans at that time: is there a moment during
which all four of a horse’s hooves leave the ground during a gallop? As it
can be seen on the picture (1.2), there is indeed one such moment. Muy-
bridge also studied human motion, as it can be seen on Man ascending stairs
( 1.2 ). Background shows white lines, used to indicate proportions and dis-
tances for subsequent measures. While Muybridge used several cameras to
capture a subject, Étienne Jules de Marey, around the same years, set up a
way of capturing several pictures with only one camera. He used the device
for his research on biomechanics, and produced detailed studies of animal
motion (figure 1.3), as well as the human motion.

After the invention of the cinematograph device by the Lumière brothers in
the 1890s, film techniques developed quickly but the quality was somewhat
lacking. The rotoscope device, by Max Fleicher in 1915, allowed animators to
draw directly over captured performance to improve character animation in
cartoons. Meanwhile, photography techniques were enhanced and Harold
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Eugene Edgerton proposed to use stroboscopic equipment to achieve the un-
precedented speed of 120 flashes per second, allowing for a much more de-
tailed capture of motion. He used this technique to record high speed phe-
nomena such as bursting balloons, or water flows.

Figure 1.3: Étienne Jules de Marey, and his famous Falling Cat (1890).

1.2 Motion Capture

The first motion capture experiments in the modern sense were made by Lee
Harrison and his team, in the early 1960s. For the first time, the real motion
of a human character was recorded using a mechanical capture suit, to be fur-
ther processed by a computer to finally generate an animation. This process,
called digital puppetry, developed further with Waldo C. Graphic, a charac-
ter created in 1988 that was captured and rendered to screen in real time,
allowing for live performances. The same year, Brad DeGraf and his partner
Michael Wahrman presented Mike the talking head to the SIGGRAPH confer-
ence. It featured detailed facial motion capture as well as a set of high-level
parameters for controlling character expressions on run-time.

Figure 1.4: Mike the talking head [Rob88] featured speech recognition sys-
tem that translated phonemes into facial expression of a digital puppet.
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First computer-vision based approaches to performance capture devel-
oped quickly after, in the 90’s. The principle is to equip an actor with a set of
reflective markers, that are filmed by multiple calibrated cameras, allowing
to reconstruct the three-dimensional trajectories of these markers (see section
2.1). The ease of capture they provided for actors was somewhat mitigated
by the technical difficulties raised by occluded markers, and these occlusions
often had to be taken care of by hand, resulting in lots of tedious work by
expert animators.

The motion picture industry started relying more and more on motion
capture techniques, as it made mixing real performance with computer gen-
erated backgrounds a lot easier. Notable examples include Final Fantasy -
The Spirits Within as being the first full-length movie to exploit motion cap-
ture techniques to animate all virtual humans, whereas previous computer
graphic movies relied on talented animators for adjusting every animation
parameters in dedicated software. More recently, the movie Avatar set up
new standard in performance capture techniques, allowing its director James
Cameron to visualize a live (though simplified) version of a complete virtual
world, including background scenery, virtual actors and their facial expres-
sion, when filming an action.

Figure 1.5: Lord of the Rings actor Andy Serkis (left), and Avatar actress Zoe
Saldana (right), in capture suit.

Nowadays, motion capture data is used virtually everywhere high qual-
ity human motion data is needed: biomechanics, motion pictures, user inter-
faces, video games . . . This ubiquity comes at a cost: it is becoming more and
more difficult to store, transmit and index large motion capture databases.
Even if the spectrum of uses is large, the high dimensionality of these data is
a recurrent problem, having multiple implications as we will see in the next
chapter.



Chapter 2

Motion Analysis

As we have seen, motion capture data is used in a wide range of contexts,
with motion data coming from different kinds of devices. In this chapter,
we present various motion capture related concepts: device classes, capture
principle and algorithms, and the challenges arising when dealing with these
data. Through different applications in motion analysis and synthesis, we
stress the importance of a good pose model for producing better results at a
lower computational cost, at each stage from capture to synthesis.

2.1 Motion Capture

2.1.1 Device Classes

Mechanical Devices

Mechanical motion capture devices are amongst the oldest and most precise
capture devices available. Not only do they directly measure position or joint
angles with precision, but they are sometimes also able to provide force mea-
sures as well.

Figure 2.1: Gypsy 5, by Animazoo, an example of a mechanical motion capture
device.

17



18 CHAPTER 2. MOTION ANALYSIS

Such devices usually come in the form of an exoskeleton that is put on
an actor during the capture, which restricts the allowed range of motions to
that of the exoskeleton. Most of these devices are now wireless, allowing
for a virtually unlimited capture volume. By their design, these devices can
only record relative positions and angles of a skeleton, therefore they need an
additional global positioning system, for correctly placing the subject in the
surrounding space. Such information can also be integrated from a known
initial position without additional global information, but this often lead to a
drift in skeleton placement due to numerical errors during the integration.

Magnetic Devices

Magnetic devices work by measuring the magnetic flux at the markers, pro-
ducing in orientation/position data for all markers. These devices are highly
subject to magnetic and electric field disturbances, therefore are not suitable
in an environment containing metal objects, or computers. Most of the time
the markers are wired, preventing an actor from performing extreme actions.
Finally, they can only function reliably in a relatively small capture volume,
where the field distortion is kept low.

Optical Devices

Optical systems are the most widespread device class, and come in several
variants: passive markers, active markers, and markerless. The basic princi-
ple is the following (cf. figure 2.2):

1. The captured subject is filmed by multiple, calibrated cameras

2. Relevant features (usually, markers) are detected in camera views, then
tracked over time

3. Feature trajectories are reconstructed in 3D using vision algorithms and
epipolar1 geometry

4. Optionally, an additional post-processing pass is applied to correct re-
maining artifacts

Passive systems work by placing reflective markers on an actor, whose
performance is captured by multiple calibrated cameras (often up to 24). The
more camera available, the less likely marker occlusions will happen, at the
expense of computational cost. Each marker is tracked in time on camera
views, and its three-dimensional position is recovered using computer vision

1The epipolar geometry describes the relations between scene points and their projections
on multiple camera images. These relations serve as constraints to reconstruct 3D points from
multiple 2D views.
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algorithms. The tracking part is difficult due to potential marker occlusions
or collisions. Passive markers are usually lit by an external (usually infrared)
light source, therefore they can not be captured unless they are sufficiently
close to both the light source and the cameras.

Figure 2.2: An optical motion capture system (left), with the reconstructed
scene in the background showing cameras. The epipolar geometry of cali-
brated cameras (right) allows to reconstruct the three-dimensional position
of point x through camera views.

Active markers, on the contrary, emit their own light, allowing for more
capture space. Furthermore, they can emit light in a way that is synchronized
with the cameras, so that only one marker will be lit at a time. This highly
reduces the problems related to marker tracking, at the expense of the capture
rate.

Recent advances in computer vision algorithms allowed the development
of markerless capture devices, in which the actor is simply filmed by multi-
ple calibrated cameras. The actor silhouette is usually separated from the
background on each camera, then the multiple silhouettes are merged into
a three-dimensional description of the character (polygonal mesh, skeleton
pose. . . ) as seen on figure 2.3.

Even though this kind of equipment can be less expensive than other so-
lutions (one only needs multiple cameras), they tend to suffer from changing
light conditions and are subject to the camera frame rate and resolution limi-
tations.

2.1.2 Challenges

Optical devices are by far the most widespread technology for capturing mo-
tion, and this popularity is ever increasing as low-cost solutions hit the video
games market (see figure 2.4). The tendency seems to be in favor of lower-end
capture devices, backed-up by both better capture algorithms and increasing
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Figure 2.3: A commercial markerless capture system by 4DViews, based on
work by [AMR+07]. The subject is isolated from the background (right) in
camera view. A 3D reconstruction is computed on the fly, with textures pro-
jected from camera views.

computing power (notably multi-core CPUs, by affecting a core to a specific
task). Therefore, there is an increasing demand for vision algorithms allow-
ing robust motion capture even on modest capture hardware.

Figure 2.4: Major 3 video game systems all have a more-or-less evolved ver-
sion of a motion-based controller. From left to right: Nintendo Wii, Sony
Playstation Move, Microsoft Kinect.

Achieving robustness in motion capture algorithms is usually possible
using some kind of prior over the captured situation: is there any known
structure in the captured motion that could be exploited to recover a loss of
information? Obviously, the knowledge of tracking an almost rigid skeleton
can (and was) used as such a prior. But recent years showed growing interest
for learned motion models (see [MG01] for a good overview), using machine
learning algorithms on motion capture data. For instance, if we acquire a
golf swing motion, there is only a few subset of all the possible skeleton
poses that is relevant during the capture. With such a prior over the mo-
tion model, known marker positions can be used to recover occluded ones.
Another example of prior is to consider that the captured motion satisfies a
sufficient degree of smoothness, preventing too large displacements between
two frames. This can be exploited in tracking tasks.
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2.1.3 Motion Capture Data

Once the motion data have been captured, they are made available under an
agreed-upon file format for further treatment. Most common formats are tar-
geted at skeleton animation (e.g. Acclaim ASF, Biovision BVH), therefore pro-
vide a geometric description of a skeleton alongside motion data. In essence,
motion data represent the pose taken by a character, sampled across time.
The storage needed for such data scales asO(m.n), wherem is the number of
frames, and n is the number of degrees of freedom of the character skeleton.

Databases In order to cover a wide range of human behaviors, it is often
necessary to manage motion captures in a motion database, that associates se-
mantic or descriptive information to a large collection of captures, and allows
easy indexing and retrieval. Such databases are in wide use in motion pic-
tures studios, or by video games developers. However, labeling and organiz-
ing such large collections by hand is a tedious task, hence ongoing research
try to exploit motion data structure in order to automatically cluster similar
motions, as for example [KPZ+04]. Here, pose models are used for indexing
motion collections.

Compression As these databases grow large, there have been a recent inter-
est in compressing them, again exploiting motion structure to detect sparsity
or correlations appearing in motion data (see chapter 9). For instance, tem-
poral coherence can be exploited to interpolate between relevant key-frames,
cyclic motions can be treated in the frequency domain, or similar motions can
be regrouped together under a same pose model. Such analysis can be used
to reduce the storage problems of such databases, while potentially increas-
ing their indexing power.

Pose Space Letting large databases and redundancies between similar mo-
tions aside, we can observe that poses taken by a character for a single cap-
ture tend to lie in a relatively well-defined subspace of all the possible poses,
especially when performing a specific action. This suggests that there may
exist a more compact parametrization of the poses space, depending on the
action performed by the character, that exhibit fewer degrees of freedom
while still spanning the pose space for the task.

In other words, with a good motion model one should be able to compress
one motion sequence efficiently, because it accounts for most of the structure
present in the data. We argue that the compression problem actually provides
a relevant framework for evaluating motion models, by directly measuring
how compactly they can encode a motion. This subject will be developed in
more details in part III.



22 CHAPTER 2. MOTION ANALYSIS

Models We see that just like motion models allow to ease the motion capture
process by resolving ambiguities, they can also be used for the storage of the
resulting data, by enabling motion compression.

2.2 Motion Data Processing

Since acquiring and storing motion data is a costly and a generally com-
plicated process, several authoring tools have been developed to permit its
modification without having to re-capture a full sequence (cf. figure 2.5).

Figure 2.5: A state-of-the-art motion editing interface proposed by [MCC09].

Two main approaches can be distinguished:

1. Motion editing, the process of adjusting an existing motion capture to
satisfy given constraints

2. Motion synthesis, where original motion data is synthesized without
previous reference capture

As one can expect, motion processing tools are subject to the following
competing challenges:

• Result quality

• Control over final result

• Computational-cost

Let us now briefly describe the two classes of motion processing methods,
and motivate the need for a fast and compact motion model.
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2.2.1 Motion Editing

Due to the burden and cost of acquiring motion capture data, it is often desir-
able to edit existing captures in case the capture is not satisfactory. It might be
the case for a virtual character whose feet are badly placed in a virtual terrain,
or when hitting a ball at different location. Rather than solving for the full
motion that satisfies edition constraints, which is computationally-expensive,
it is often easier to simply adjust existing captures to the situation. A wide
range of algorithms tackle this problem (reviewed in part III) but most of the
time, these techniques are limited to small edits around given motion. Here
again, a suitable pose model could effectively restrict possible edits to match
the reference motion structure, therefore enabling motion edition to extrapo-
late outside reference motion.

2.2.2 Motion Synthesis

At the broadest level, the process of sythesizing motion data can (and is in
practice, see part III) be cast as a constrained optimization problem: find
the best motion frames, in the sense of a given metric, satisfying given con-
straints. Typical choices of constraint terms include smoothness, bound-
ary conditions, keyframe interpolation, laws of dynamics, or geometric con-
straints. The error metric usually penalizes the energy consumption, or the
distance to a reference motion/pose.

Such formulations primarly suffer from the huge dimension of the search
space, not even mentioning the convexity of the objective function. Every de-
gree of freedom plays a role in the optimization, which can result in severely
ill-posed problems.

In this context, it seems that a reduced pose model could efficiently im-
prove the computational cost of these approaches, by both reducing the di-
mension of the search space and the possible candidate solutions to the opti-
mization problem.

2.2.3 Muscle Synergies

In fact, recent research works in biomechanics formulate the hypothesis of
highly correlated muscle activation pattern, known as muscle synergies, that
could explain a wide variety of human activities (see [TJ09] for an excellent
introduction). Proponents of the theory argue that muscles activations are
a prioriclustered in so-called synergies that effectively reduce the number of
degrees of freedom for solving the task. On the other hand, opponents con-
sider the observed correlations to be task-dependent, as they only reflect the
best activation subspace for accomplishing the task. One possibility does not
completely rule out the other, as individual Degree of Freedom (DOF) con-
trol can always be cast in terms of highly specialized synergies. On the other
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hand, muscles synergies could be a kind of low-level muscle activation prior,
with more advanced control strategies taking relay when needed.

While biomechanic interpretations may vary, both sides agree that mus-
cle actuation is perfomed in a highly correlated way, thus producing highly-
correlated angular motion at the joints. This plays in favor of the construction
of a task-specific, reduced pose model for character animation.

2.3 Dimensionality

In both of these approaches, the dimensionality of the human skeleton raises
the following problems:

• Motion synthesis algorithms provide control, but work on high-dimensional,
often ill-posed problems.

• Editing a motion is fast but often limited to small changes for quality
results

• Biomechanics studies suggest that a reduced pose parametrization can
be found

In the last decades, several works have been proposed to apply machine
learning algorithms to automatically build motion models from motion cap-
ture data (see part III). However, such models are often very computationally-
expensive themselves, both when learning and synthesizing motion data,
due to the high non-linearity of joint orientation data.

In this work, we propose to derive a data-driven character pose model
that is adapted to the geometry of rotations, while at the same time retain-
ing good computational cost. The following chapter summarizes the above
issues, and presents our contributions in the construction of new representa-
tions for human poses.



Chapter 3

Motivations - Contributions

After this rapid overview of the challenges associated with motion capture
and synthesis, let us now summarize the aforementioned issues, and present
the motivations and goals of this work in a more systematic way.

3.1 Pose Model

We have seen that motion data is used a wide variety of contexts, all of which
could benefit from an adapted pose model for improving the overall quality of
the results.

3.1.1 Capture

The most common motion capture systems are optical systems, which in-
herently suffer from marker occlusion related problems. These problems are
even more pronounced in the case of lower-end capture system, whose mar-
ket is in rapid growth. In the absence, or incompleteness, of visual clues, the
only way to allow motion to be captured is to rely on a pose prior that can
compensate for the loss of information.

3.1.2 Processing

In order to edit a motion capture sequence without altering its stylistic prop-
erties, a pose model can guarantee that edited motion lies in the same task-
specific subspace as the original motion, preventing undesired edits.

Many motion synthesis tools use optimization problem formulation. Since
many possible solutions may exist, a pose model provides a natural way of
disambiguating between candidates, potentially improving optimization be-
havior.

25
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3.1.3 Control

As recent biomechanics studies suggest, the human body is actuated in a
highly-coordinated, task-specific way, reflected in the final motion. Physically-
based motion controllers could thus benefit from a data-driven actuation ba-
sis in order to produce more convincing results.

3.2 Dimension Reduction

The dimensionality involved in processing human motion capture data often
raises performance issues. By providing a more compact description of pose
spaces, pose models enable dimension reduction that can lower the impact
of dimensionality.

3.2.1 Compression

Motion data can be made more compact by encoding correlations existing in
motion. Motion databases can be clustered by motion types, thus factoring
common behaviors. Ideally, a good pose model could encode such correla-
tions in a compact way as well.

3.2.2 Optimization

The search space dimension in several motion synthesis problems can be pro-
hibitively high. Reducing the number of degrees of freedom, and thus the
search space dimension can provide significant speed gains.

3.2.3 Real-time Simulations

By restricting the number of degrees of freedom, dimension reduction tech-
niques enable real-time simulation of complex mechanical structures. This
strategy could be applied to character animation as well.

3.3 Goals

From the preceding section, it appears that many stages of the character ani-
mation pipeline could benefit from a data-driven pose-model, with the follow-
ing features:

• Ability to perform dimension reduction, to improve both computa-
tional time and result quality

• Compactness of the learning data, allowing its use in compression ap-
plications
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• Possible integration with other existing motion synthesis tools, ideally
through a smooth forward kinematics pose parametrization with rea-
sonable computational cost

3.4 Contributions

3.4.1 Kinematics

The research for such a pose model is the subject of part III. We review previ-
ous work in structure-preserving statistic analysis, and propose a character
pose model based on Principal Geodesic Analysis (PGA). This model is eval-
uated on a motion compression application. Our contributions in this part
are the following:

• A PGA based skeleton pose model, with the associated forward kine-
matics and pose Jacobian computations (8.2).

• A data-driven, real-time, full-body Inverse Kinematics (IK) algorithm
using our reduced pose model (8.2.2)

• A motion compression algorithm exploiting the PGA-based IK algo-
rithm (9), for evaluating the pose model performances

3.4.2 Dynamics

Since character animation derives from a physical process, better animations
can be obtained by incorporating dynamics into the character model. There-
fore, we develop the use of our pose model in a physically-based simulation
in part IV. This also provides a benchmark on real-time performances of our
model.

Our contribution in this part are the following:

• A velocity/impulse explicit time integrator for our pose model (11.1),
based on variational geometric integrators

• An ad hoc damping model based on the Levenberg-Marquardt algo-
rithm, and an extension using kinetic energy to prevent instabilities
(11.2)

• A geometric, data-driven algorithm for learning angular limits, and
their associated kinematic constraints (12)
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3.4.3 Control

Lastly, since biomechanics studies suggest that human actuation is performed
in a highly coordinated way, we investigate the use of our pose model in
physically-based motion controllers in part V. Our contributions are the fol-
lowing:

• A simple quadratic programming pseudo-control framework, provid-
ing trade-off between physical-simulation and inverse kinematics by
metric interpolation (14.1)

• A more advanced, feature-based motion control framework using the
reduced coordinates as actuators. A convex relaxation of the complete
control problem under unilateral constraints is proposed (14.2)

We conclude this manuscript in part VI with a synthesis of our approach,
and propose possible future work directions.



Part II

Geometry for Character
Animation: Background
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Chapter 4

Character Modeling

In this part, we give a quick introduction to the notations and concepts that
will be used throughout this thesis.

A reader with experience in skeleton kinematics and Lie group theory may skip
directly to part III, as the present part only recalls background information on the
subject. Nonetheless, a quick glance at the notations used for left and right trivial-
ized tangent maps, described in 5.2.5, will be helpful for the remaining of this work.

We begin with a review of the mathematical representations for modeling
an animated articulated character. This will mainly be a pretext to introduce
non-linear configuration spaces, and more specifically Lie groups, as several
parts of this work rely on their use. We conclude this part by reviewing
classical articulated skeleton kinematics algorithms.

Under their most basic form, motion data are simply a time series of mo-
tion capture frames, i.e. the output of the motion sensors presented in a more-
or-less evolved form. Capture software usually process these data in order
to provide a more user-friendly version of them, for instance as the absolute
marker trajectories in the case of an optical capture system. These marker
trajectories can serve as the basis for more evolved representations, which
we review in this chapter.

4.1 Articulated Body

Depending on the level of details needed for a given application, it might not
be necessary to model the entire human body (including muscles, skin . . . ) to
obtain satisfying character motion models. Indeed, the overwhelming major-
ity of existing works in the field only model the human body as a collection of
connected, perfectly rigid bodies approximating the character bones, which
simplifies computations considerably.

31



32 CHAPTER 4. CHARACTER MODELING

From a perceptive point of view, [Joh73] showed that only a few bright
spots (around 10-12) placed at the skeleton principal joints are needed for
conveying the impression of human motion for activities such as walking,
dancing or running. This suggests that the skeletal approximation of a char-
acter is usually sufficient to recreate a convincing motion.

In fact, even the body surface motion can be considered approximately
rigid around the closest bone. This observation has led to the classical skin-
ning algorithm (see [LCF00] for an introduction), in which surface element
positions are obtained by weighting perfectly rigid approximations. When
the skeleton is animated, the skin automatically follows the skeleton motion
and is therefore animated too. More faithful modelings have been proposed
to account for the physical interactions between bones, muscles and skin, but
they usually require a lot of processing power and are therefore restricted
to movie production, or medical simulations. Here again, the animation is
usually achieved by animating the skeleton first (cf. figure 4.1).

Figure 4.1: Skinning of a virtual character using dual quaternions [KCZO08]
(left), and an example of physically-based skinning in the movie Narnia by
Disney (right).

4.2 Joints, Topology

The human skeleton bones are connected through joints, most of which are
traditionally approximated by ideal revolute or ball-and-socket mechanical
joints. While more advanced strategies have been proposed to better model
knee or shoulder joints (e.g. spline joints [LT08]), the vast majority of anima-
tion models use idealized joints between rigid bones.

Depending on the application and the level of detail needed, we may
consider a more-or-less simplified version of the skeleton: the configuration
of each hand phalanx is probably not relevant when performing a running
motion. In the same spirit, the approximate modeling of the shoulder range
of motion, using only ball-and-socket joints, can be achieved by adding a fake
joint near the clavicle.
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The connections between bones give the skeleton a tree topology, and we
will consider that such a tree structure is always implicitly given. In practice,
it is usually desirable to choose the root of the skeleton such as the height of
the resulting tree is minimal, in order to accumulate as few numerical errors
as possible in hierarchical computations.

4.3 Configuration Space

Modeling a tree-like articulated skeleton is traditionally achieved using dif-
ferent approaches:

• Using motion capture marker positions in the world frame, with addi-
tional constraints to enforce rigidity between markers belonging to the
same bone (marker positions)

• Considering the configuration of each bone with respect to the world
reference frame (absolute configurations)

• Absolute configuration of the root together with configurations of other
bones relative to their respective parents (relative configurations)

Each of these modelings has an associated configuration space, i.e. a mathe-
matical space uniquely representing each possible configuration of the model.
Such configurations describe the DOFs of the model. Different modelings
correspond to different configuration spaces, with different mathematical
structures, which we describe now.

4.3.1 Marker Positions

The most straightforward approach is to model the skeleton directly using
motion capture marker positions (cf. figure 4.2). Such markers are usually
placed where the skin deformation is minimal, so that these markers can be
considered as being placed directly on the underlying bone. Mathematically,
this corresponds to representing a skeleton configuration as an element of
the usual n-dimensional Euclidean space R

n, where n ∈ N is the number of
markers.

It is quite obvious that such a description of a skeleton does not account
for the rigidity of the bones, that is the fact that the Euclidean distance be-
tween points of a same bone are constant. Therefore, some additional kine-
matic constraints will have to be enforced to maintain rigidity between mark-
ers on the same bone, otherwise one may end up with inconsistent skeleton
representations. A better approach would be to directly encode this con-
straint in the configuration space structure.

Another, less obvious, drawback of this modeling is that it does not pro-
vide an easy way of comparing body poses: if the same character is standing
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Figure 4.2: Motion capture marker positions for a simple skeleton model,
with the tree topology in gray.

in two different places, facing different directions but with the very same at-
titude, or pose, it is not trivial to compute this similarity using this modeling.
Said differently, this approach lacks a simple way of comparing configura-
tions up to (or modulo) a global rigid transformation of the whole skeleton.

4.3.2 Absolute Configurations

The non-rigidity problem of the marker position approach can easily be cor-
rected by only allowing each bone to transform in a way that preserves dis-
tances between any pair of its points. Such isometries are called rigid, or Eu-
clidean, transformations, and their space is noted SE(3). We may model a
skeleton configuration by giving the rigid transformation of each of its bones
with respect to some absolute reference frame (cf. figure 4.3). In other words,
we view a skeleton configuration as an element of SE(3)n, where n ∈ N is
the number of bones.

We see that restricting the admissible transformations to the ones preserv-
ing the rigidity invariant allows to get rid of the additional constraint found
in the previous modeling. The counterpart is that a transformation space
such as SE(3)n has a more complicated mathematical structure than the Eu-
clidean structure of Rn, as we will see. However, this approach has a new
drawback, namely it does not prevent joints from disconnecting.

Furthermore, this representation is still not very convenient to compare
poses up to an absolute rigid transform. However we can already see that
if we apply the same rigid transformation to each skeleton bone, the relative
rigid transformation between two bones does not change. This suggests that
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Figure 4.3: Each bone of this character has its own rigid frame, and associated
configuration. The visual envelope does not represent all the bones in the
skeleton.

such a relative skeleton representation allows to compare poses more easily,
since it is invariant to global rigid transformation.

4.3.3 Joint Configurations

The tree topology allows us to represent a skeleton using the world configu-
ration of the root bone (∈ SE(3)), together with the transformation of each
other bone relative to its parent. By restricting the set of allowed relative
transformations, it is possible to keep the joints from disconnecting, for ex-
ample by only considering transformations of the form:

gp,c = jp.r.jc
−1 ∈ SE(3)

where jp ∈ SE(3) is the transformation from the parent bone frame to
the parent joint frame, jc ∈ SE(3) is the transformation from the child bone
frame to the child joint frame, and r ∈ SO(3) is the joint configuration, here
restricted to be a pure rotation to model a ball-and-socket joint. Since all joint
frames jp, jc with respect to their bone are constant, the relevant variables
needed to describe a skeleton pose will be the set of joint configurations. We
will only consider ball-and-socket joints for the human skeleton, hence each
of the corresponding joint configurations will be a rotation. The complete
configuration space for this modeling is thus:

G = SE(3)︸ ︷︷ ︸
root

×SO(3)n︸ ︷︷ ︸
pose
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where n ∈ N is the number of joints in the skeleton (see figure 4.4).

Figure 4.4: The configuration of the root bone (red) is a rigid transformation,
whereas the internal joint configurations (blue) are rotations. The total con-
figuration space is thus SE(3)× SO(3)n.

We see that using this approach, it is much easier to compare skeleton
configuration up to a rigid transform since we only need to compare the pose
part of the configuration. Compared to the marker positions approach, we
see that we progressively encoded the initial constraints directly into the con-
figuration space structure. Instead of describing points of the skeleton and to
restrict their possible motions, we tried to represent the set of allowed trans-
formations for the skeleton bones. Like other transformations, these can be
chained together by applying one then another, or reversed, leading to the
concept of a transformation group. As in the previous modeling, the mathe-
matical structure of the configuration space is no longer Euclidean, as it were
for the marker positions, but something more complicated called a Lie group.
Fortunately, the geometry of such objects is well-understood and remarkably
rich.



Chapter 5

Lie Groups

This chapter is intended to be an as-concise as possible introduction to the ba-
sics of Lie groups, their related concepts and notations. We feel that despite
their wide use in robotics, Lie groups are not as widespread as they ought
to be in the computer graphics community. Therefore, we will only give an
introduction to the theory by mentioning key ideas and intuitions. Our goal
here is to introduce basic Lie group calculus, left and right trivialized tangent
maps, and the exponential mapping. We also mention basic Riemannian geom-
etry concepts (metric, geodesics) as they will be required in the remaining of
this thesis. The interested reader can find a much more solid introduction to
these subjects in the excellent (robotics) book by [MSZ94], or a more in-depth
treatment in [DK00].

5.1 Definition, Examples

Informally, a Lie group is a group that is also a smooth manifold, and for
which the algebraic operations are smooth. The relations between algebraic
and differentiable structures gives these objects a particularly rich geometry.
In this subsection, we quickly review the basics of groups and of smooth
manifolds. Let us begin with the group definition:

Definition 1 (Group). A group is a set G, together with a binary operation ◦ such
as:

1. G is closed under ◦

2. ◦ is associative

3. ∃e ∈ G such as ∀g ∈ G, e ◦ g = g ◦ e = g (identity element)

4. ∀g ∈ G, ∃g−1 ∈ G such as g ◦ g−1 = g−1 ◦ g = e (inverse)

37
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A group can be thought of as the abstraction of a set of transformations:
the transformation that does nothing is the identity, transformations can be
composed to produce another transformation, or reversed, and so on. For
multiplicative groups, the group operation will be denoted by a dot (.). Let
us now recall the definition of a manifold :

Definition 2 (Manifold). A (real) manifold M of dimension n ∈ N is a topological
space that is locally homeomorphic1 to the Euclidean space Rn.

This definition means that a manifold is an object we can locally map to
R
n using bi-continuous charts. A collection of charts that covers the manifold

is called an atlas. Figure 5.1 shows a visual representation of an atlas for the
circle S1.

(CC BY-SA KSmrq)

Figure 5.1: The circle S1 is a one-dimensional differentiable manifold. A cov-
ering atlas of charts is represented in colors, as 4 overlapping mappings from
different parts of the circle to a line segment.

Let φ, ψ be two charts around a point p ∈ M and U ⊂ M be an open
set containing p in the intersection of their domains. Let now V = φ(U) and
W = ψ(U) be the images of U by the two charts, i.e. open subsets of Rn. Since
both φ and ψ are invertible, let us consider the following transition maps:

φ−1 ◦ ψ : V →W

ψ−1 ◦ φ :W → V

These transition maps are usual functions from and to open subsets of Rn,
and are the basis for the smooth manifold definition:

1 An homeomorphism is an invertible, continuous application, with its inverse being also
continuous.
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Definition 3 (Smooth manifold). A smooth manifold M of dimension n ∈ N is
a manifold for which all transition maps are smooth (i.e. of class C∞)

Informally, charts are used to locally extend traditional Euclidean, differ-
ential calculus to the smooth manifold case: a function f : M → R will be
differentiable at a point if it is in coordinates around this point (i.e. if f ◦ φ−1

is differentiable in the Euclidean sense). In the same spirit, a function between
two smooth manifolds f :M → N will be differentiable if it is in coordinates
(consider ψ ◦ f ◦ φ−1). The definition of a smooth manifold guarantees that
each of these definitions is chart-invariant.

5.1.1 Lie groups

Now that we defined both groups and smooth manifolds, we are ready to
define Lie group:

Definition 4 (Lie group). A Lie group is a group and a smooth manifold, such as
the group operations are smooth.

A wide range of examples can be given, most of which are widespread in
computer graphics applications:

• R
n with vector addition,

• Complex numbers C, unit complex numbers S1 with complex multipli-
cation,

• The quaternions H and unit quaternions S3 with quaternion multipli-
cation,

• Any subgroup ofGL(n) with the matrix multiplication, which includes
rotations, affine, rigid and projective transformations,

• Positive, symmetric definite matrices S+(n) with log-product [PFA06],

• Any direct product of these.

Most of the above examples can be seen as subgroups of the general linear
group of n× n invertible, real matrices GL(n). Such subgroups of GL(n) are
called matrix groups and are probably the most frequently encountered Lie
groups in practice. For example, the additive group (Rn,+) can be seen as a
multiplicative subgroup of GL(n+ 1) using the classical homogeneous coor-
dinates representation for translations. For this reason, we will only consider
matrix groups in the remaining of this work.

One particular advantage of Lie groups is that once an algorithm is ex-
pressed in the framework of Lie groups, it is automatically available to a
wide range of spaces. Examples of this include interpolation [Sho85], aver-
aging [Moa02], splines [KKS95], multi-resolution analysis [LS01, RDS+05] or
statistical analysis [Pen06, FLJ03].
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5.2 Tangent Space

When animating virtual characters, we will encounter tangent vectors to Lie
groups, since they are used to represent velocities. Let us now quickly intro-
duce these objects.

5.2.1 Tangent Vectors

Intuitively, a tangent vector to a manifold M at some point p ∈ M of the
manifold is the derivative of some curve ofM at p, as illustrated on figure 5.2:

Figure 5.2: The tangent space to the sphere S2 at x = f(0) (blue), as the set of
all possible curve derivatives (red) at this point of the sphere. f is an example
of such curve.

Formally, it is slightly more complicated, mainly due to the fact that we
did not assume manifolds to be surrounded by a Euclidean space. Let φ :
U → R

n be a chart around p, we now consider the following curve:

γ : R→M

γ(0) = p

Since φ ◦ γ : R→ R
n, it is possible to compute the usual differential of the

curve in coordinates:

d(φ ◦ γ)(0) ∈ R
n

Now, if we identify all the curves sharing the same differential at 0 in co-
ordinates, we obtain an equivalence class2 that is classically defined as a tangent
vector at p:

2 Using equivalence classes is a practical way to make the definition chart-invariant.
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Definition 5 (Tangent vector). A tangent vector to an n-dimensional smooth
manifold M , at a point p ∈ M , is an equivalence class for the equivalence relation:
“having the same tangent in coordinates at 0”, defined on curves of M passing
through p at 0.

The quotient space for this equivalence relation is called the tangent space, de-
noted by TpM , and has a vector space structure of the same dimension as the mani-
fold.

Notation

In practice, a tangent vector at p implicitly defines a smooth curve γ, pass-
ing through p at 0, whose equivalence class (i.e. tangent vector at 0) is the
considered tangent vector. This tangent vector will be noted dγ(0). Most of
the time, the derivation at 0 will be implied, unless stated otherwise, so that
dγ := dγ(0).

Under this notation, writing dγ ∈ TpM both defines the tangent vector
and the curve γ. When the context is clear, we will sometimes abusively write
dp ∈ TpM to make the base point p more obvious in computations.

Lie Algebra For a Lie group G, the tangent space at the identity element
TeG plays a special role and will be noted g. Together with an additional
natural operator (the Lie bracket, which we will not discuss here), it is called
the Lie algebra of the group.

Tangent Bundle The disjoint union of all the tangent spaces to an n-dimensional
manifold M is called the tangent bundle of M , denoted by TM . It is also a
smooth manifold, of dimension 2n.

5.2.2 Differential

The tangent vector definition might seem overly formal, but it allows to see
how smooth functions act on tangent vectors. Let f : M → N be a smooth
function between smooth manifoldsM andN , and let dp ∈ TpM be a tangent
vector to M , using the above notation conventions. Consider the following
curve on N :

f ◦ p : R→ N

The associated tangent vector at 0 is thus: d(f ◦ p) ∈ Tf(p)N . Compu-
tations in coordinates show that f induces a linear map between tangent
spaces, called the differential of f at p and noted df(p), satisfying:

df(p) : TpM → Tf(p)N

dp 7→ df(p).dp = d(f ◦ p)
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Said differently, smooth functions between smooth manifolds induce lin-
ear tangent maps between tangent spaces. It is immediate to verify that the
chain rule still applies to smooth functions between smooth manifolds.

Jacobian Matrix As a linear mapping between real vector spaces, the dif-
ferential can be written in terms of the coordinates in the respective basis as
a matrix, called the Jacobian matrix. For a mapping f : M → N , we will de-
note the Jacobian matrix of f at p as Jf (p) ∈ Mn,m(R), for m = dim(M) and
n = dim(N).

5.2.3 Pullback

The way the differential of a function f acts on tangent vectors is sometimes
referred to as the pushforward of tangent vectors by f : the function pushes
vectors from the source tangent space to the destination tangent space. A
dual notion can be defined, the pullback of linear forms by the function f ,
from the destination cotangent space to the source cotangent space. Let us first
define the cotangent space:

Definition 6 (Cotangent space). The cotangent space to a manifold M at a point
p ∈M is the linear dual of the tangent space TpM , i.e. the space of linear forms over
TpM . It is denoted by T ∗

pM .

Let us now consider a smooth function f : M → N , a point p ∈ M and
its image by f : q = f(p) ∈ N . A cotangent vector (also called a covector)
d∗q ∈ T ∗

qN can be pulled back by f as a covector d∗p ∈ T ∗
pM , defined by:

∀dp ∈ TpM, d∗p.dp = d∗q. df(p).dp︸ ︷︷ ︸
∈TqN

∈ R

In order to better see what is happening, one may consider matrix no-
tation instead, by replacing dual signs ∗ with transpose operators T . The
pulled-back covector dT p (row-vector) is simply obtained by left multiplying
the function Jacobian matrix Jf (p) by the original covector dT q (row-vector):

dT p = dT q.Jf (p)

The pullback of a covector by f at p defines a linear operator between
cotangent spaces, noted d∗f(p) : T ∗

f(p)N → T ∗
pM . Its application to the cov-

ector d∗q ∈ T ∗
f(p)N is given by:

∀dp ∈ TpM, (d∗f(p).d∗q)︸ ︷︷ ︸
∈T ∗

pM

.dp = d∗q. (df(p).dp)︸ ︷︷ ︸
∈Tf(p)N

∈ R

The matrix associated with this operator is simply the transpose of the
Jacobian matrix of f at p. The pullback of covectors will be used to compute
generalized forces in the Lagrangian formulation of mechanics.
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Lie Coalgebra The cotangent space to a Lie groupG at the identity is called
its Lie coalgebra, denoted by g∗.

5.2.4 Group Translations

While the preceding definitions were given for general smooth manifolds,
we now focus on the differential geometry of Lie groups. Let us first define
two important maps that are the left and right translations:

Definition 7 (Translations). The left and right translations by an element h ∈ G
are defined by:

Lh : G→ G, g 7→ h.g (left)

Rh : G→ G, g 7→ g.h (right)

From the definition of a Lie group, these operations are smooth and in-
vertible (i.e. diffeomorphisms). Let us consider their differentials at the iden-
tity element:

dLh(e) : g→ ThG

dRh(e) : g→ ThG

These differentials provide two invertible linear maps (i.e. isomorphisms)
between the tangent space at the identity g, and the tangent space at any
point ThG. For matrix groups, these isomorphisms are trivial: let de ∈ g be a
tangent vector at the identity, we have:

dLh(e).de = d(h.e).de = h.de

dRh(e).de = d(e.h).de = de.h

This means that for any tangent vector dh ∈ ThG, there are two canonical
ways of representing dh by an element of g, using the inverse mappings:

dLh(e)
−1.dh = dLh−1(e).dh = h−1.dh ∈ g

dRh(e)
−1.dh = dRh−1(e).dh = dh.h−1 ∈ g

These two representations of a tangent vector on the Lie algebra are known
respectively as the body and spatial velocities.
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5.2.5 Body and Spatial Velocities

Given a tangent vector dg ∈ TgG, we define the corresponding body velocity
dbg ∈ g and spatial velocity dsg ∈ g by the following relation:

dg = dLg(e).d
bg = dRg(e).d

sg

For matrix groups, this simply reduces to:

dg = g.dbg = dsg.g

In practice, these expressions are interesting since they allow to obtain a
compact description of tangent vectors. If we store the coordinate derivatives
of a rotation matrix g ∈ SO(3), we need 3× 3 = 9 coefficients. If we store the
corresponding body or spatial velocity coordinates instead, we only need 3
coefficients since the Lie algebra so(3) is 3-dimensional.

Adjoint

From the above relation, we see that it is possible to convert between body
and spatial velocities. This mapping is an isomorphism of the Lie algebra to
itself (i.e. an automorphism), and is known as the adjoint representation of g
over its Lie algebra.

Adg = d(Lg ◦Rg−1)(e) : g→ g

Again, for matrix Lie groups, the expression is simpler:

Adg(d
bg) = g.dbg.g−1

= dsg

We will also need the coadjoint automorphism, defined as:

Ad∗g = d∗(Lg ◦Rg−1)(e) : g∗ → g∗

In practice, the coadjoint matrix is given by the transpose matrix of the
adjoint operator.

Body and Spatial Differentials

Let us consider a smooth function between two Lie groups G and H :

f : G→ H

This function has a differential at g ∈ G, as seen previously:

df(g) : TgG→ Tf(g)H
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If we express the input and output tangent vectors in their respective Lie
algebras g and h through body velocities, we obtain the body-fixed differential,
also called the left-trivialized tangent, noted dbf(g) and defined by:

dbf(g) : g→ h

dbg 7→ f(g)−1.df(g).g.dbg

This definition is perhaps more explicit using this diagram:

g→ TgG −→ Tf(g)H → h

dbg 7→ g.dbg︸ ︷︷ ︸
dg

7→ df(g).dg︸ ︷︷ ︸
dh

7→ dbh = dbf(g).dbg

The idea is simply to compose the body-velocity representations at both
ends of the differential, in order to obtain a mapping between Lie algebras.
In the same spirit, one can define the right-trivialized tangent:

g→ TgG −→ Tf(g)H → h

dsg 7→ dsg.g︸ ︷︷ ︸
dg

7→ df(g).dg︸ ︷︷ ︸
dh

7→ dsh = dsf(g).dsg

Again, in practice, using left or right trivialized tangents usually simpli-
fies computations considerably as they can be expressed in the canonical ba-
sis of the respective Lie algebras. Left and right trivialized tangents are re-
lated using the corresponding adjoints.

Notation In all this work, a .b superscript will indicate a body quantity,
while a .s superscript will indicate a spatial quantity. This convention will
be used for all tangent vectors/covectors and differential/pullbacks, but also
for Jacobian matrices.

5.3 Exponential, Logarithm

As a smooth manifold, a Lie group can be described using an atlas of charts.
However, certain charts have particularly interesting properties, as it is the
case for the exponential map.

5.3.1 Vector Fields, Integral Curves

A vector field is simply a function that assigns a tangent vector at the point it
is evaluated, in a smooth way:
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Definition 8 (Vector field). Let M be a smooth manifold. A vector field on M is
a smooth function X such as:

X :M → TM

p 7→ X(p) ∈ TpM

Said differently, a vector field is an Ordinary Differential Equation (ODE)
on a smooth manifold. An integral curve for X passing through p ∈ M is a
solution of this ODE for the initial value y(0) = p, that is a curve γ satisfying:

γ : U ⊂ R→M

dγ(t) = X(γ(t))

γ(0) = m

for some real open set U containing 0. Intuitively, an integral curve can
be pictured as the trajectory of a particle flowing under the velocity field
described by X , starting at p ∈M for a given amount of time.

5.3.2 Left-Invariant Vector Fields

Among all possible vector fields of a Lie group G, let us consider the ones for
which all the tangent vector have the same body velocity: such vector fields
are called left-invariant:

Definition 9 (Left-invariant vector field). A left-invariant vector fieldX on a Lie
group G satisfies:

X(g) = dLg(e).X(e)

where e ∈ G is the identity element. In terms of the body velocity Xb(g), this
simply means that:

Xb(g) = X(e)

Similarly, one can define right-invariant vector fields. We see that invariant
vector fields are entirely described by their value at the identity. For this
reason, invariant vector fields are very compact and easy to manipulate.

5.3.3 Exponential

It turns out that both left and right-invariant vector fields of a Lie group share
the same integral curves3. If we let v ∈ g be velocity at the identity, and γv

3 Left and right-invariant vector fields can be identified using the inverse mapping.
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be the integral curve for the associated left- (or right-) invariant vector field,
starting at the identity, we are now ready to define the exponential map:

exp : g→ G

exp(v) = γv(1)

exp(0) = e

Intuitively, the exponential is obtained by flowing from the identity along
a left- (or right-) invariant velocity field, for a unit of time. Fortunately, for
matrix groups, this mapping has more familiar expression:

Definition 10 (Exponential map). For matrix groups, the exponential map is
given by the usual power series:

∀v ∈ g, exp(v) =
∞∑

i=0

vi

i!

For most matrix groups, this series has a much more compact expres-
sion. Note that the exponential is not injective in general: for example, the
exponential for the unit complex circle is the usual complex exponential ei.θ,
which is 2π-periodic. However, it does cover all of the connected component
of the identity4. Its differential at 0 ∈ g is the identity mapping:

d exp(0) = Idg

It is also worth noting that even if the group is not commutative, elements
along an exponentiated vector line still commute 5:

∀(s, t) ∈ R
2, exp ((s+ t) .v) = exp(s.v) exp(t.v)

A useful consequence of this fact is that: exp(−v) = exp(v)−1. Even if the
power series formula is all that is needed in practice, the geometric intuition
conveyed by invariant vector fields is much more effective at describing the
behavior of this function.

5.3.4 Logarithm

The logarithm is simply the inverse of the exponential map, when defined.
Since the exponential might be periodic, one usually defines the logarithm
using only the period neighboring the origin. Let v ∈ g and g = exp(v), we
call:

4 To see this, consider (R∗, .): one can not reach negative numbers using the exponential,
but every positive number can be reached.

5 The exponential is called a one-parameter subgroup.
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t⋆ = argmin
exp(t.v)=g

|t|

the smallest absolute value of time for which the exponential flow reaches
g for the initial velocity v (including negative values). The logarithm is then
defined by:

log(g) = t⋆v ∈ g

Intuitively, the logarithm is used to obtain the tangent direction of a group
element, as seen from the identity, whereas the exponential follows this di-
rection to reach the corresponding element.

5.3.5 Practical Interest

In practice, the exponential provides a natural chart around the identity of
a Lie group. This chart can in fact be used anywhere by left (resp. right)
translation: Lg ◦ exp will be a chart around g. Compact, closed-form formula
are available for the groups we use in this work (see [BM95]).

The exponential can be seen as a mean of moving inside a Lie group
given tangent vectors. For example, the classical Spherical Linear Interpo-
lation (SLERP) algorithm [Sho85] for rotation interpolation can be expressed
in terms of the exponential map. Let p, q ∈ SO(3) and α ∈ R:

SLERP (p, q, α) = p. exp
(
α log

(
p−1q

))

The algorithm first obtains the tangent direction of q as seen from p, by
computing log

(
p−1q

)
, then performs linear interpolation in the tangent space,

and finally maps the result back to SO(3) using the exponential.

5.3.6 Riemannian Geometry

Compact Lie groups such as SO(3) can be given the additional structure of
a Riemannian manifold, which is needed to perform consistent measures of
angles, lengths or curvatures in a smooth manifold.

Definition 11 (Riemannian manifold). A Riemannian manifold is a smooth
manifold M equipped with a Riemannian metric: a smoothly varying collection of
inner products over the tangent spaces of M . The Riemannian metric at p ∈ M is
thus a symmetric, definite, positive, bilinear form on TpM :

〈., .〉p : TpM × TpM → R

The Riemannian metric is also known as the metric tensor.
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Using this metric, it is possible to measure the length of a curve γ on the
interval [a, b] by summing the norms of tangent vectors along γ:

Lb
a(γ) =

∫ b

a

||dγ(t)||γ(t) .dt

Note that at each point γ(t), the metric 〈., .〉γ(t) is used to compute the
tangent vector norm ||dγ(t)||γ(t).

Geodesics

On a Riemannian manifold, curves of minimal length are of special inter-
est since they provide a metric generalization of straight lines in the vec-
tor case. Formally, geodesics are defined by locally length-minimizing curves,
parametrized with constant velocity6. For a given starting point p ∈ M and
initial velocity v ∈ TpM , there is a unique geodesic curve starting at p with
initial velocity v. Moreover, this geodesic has constant velocity:

||dγv(t)|| = ||v||

The geodesics of a connected Riemannian manifold turn it into a metric
space, with a distance function:

d :M ×M → R

returning the smallest length of geodesic curves between two points.

Riemannian Exponential

The Riemannian geometry also has an exponential map, but this one is re-
lated to geodesics: if γv is the geodesic curve starting at p ∈ M with initial
tangent vector v ∈ TpM , the Riemannian exponential at p is defined as:

expp(v) = γv(1)

Intuitively, this means that we start from the point p and flow along the
geodesic γv for a unit of time. Since the velocity has constant norm, the fol-
lowing is true for small enough v ∈ TpM :

d
(
p, expp(v)

)
=

∫ 1

0
||dγv(t)|| .dt

= ||v||

The inverse function (when defined) is known as the Riemannian loga-
rithm, and can be used to compute the Riemannian distance:

6 i.e. such as the length between γ(a) and γ(b) is proportional to |b− a|
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d(x, y) = ||logx(y)|| = ||logy(x)||

The Riemannian logarithm is illustrated on figure 5.3.

Figure 5.3: The Riemannian logarithm of b at a (red), and the corresponding
geodesic curve (blue): b = expa (loga (b)).

Relation to Lie Groups

As mentioned above, compact Lie groups have a bi-invariant Riemannian
metric, that is a Riemannian metric that is both left- and right- invariant. In
this case, the two exponential functions coincide, meaning it is possible to
compute geodesics using the Lie exponential, i.e. without performing costly
minimization procedures but directly using a closed-form expression.

This fact will be of great help when performing statistical analysis of
skeleton poses. Indeed, as a compact Lie group, the pose manifold SO(3)n

possesses a natural Riemannian metric that enables the use of several non-
linear statistical tools. The compatible Lie group structure has the added
benefit of allowing simple closed-form expressions for computing geodesics.



Chapter 6

Skeleton Kinematics

In this chapter, we recall basic skeleton kinematics that will be used through-
out the remaining chapters. We quickly review the Lie groups SO(3) and
SE(3), forward kinematics and classical Inverse Kinematics (IK) algorithms.

6.1 Euclidean Transformations

This section quickly reviews the two Lie groups SO(3) and SE(3) and pro-
vides visual interpretation of related concepts. Most of this section has been
adapted from [MSZ94].

6.1.1 Definitions

Special Orthogonal Group

The rotation group, or special orthogonal group is the space of linear maps of
R
3 to itself that preserve the euclidean norm and orientation:

Definition 12 (Rotation group). The rotation group is the set of 3 × 3 real, or-
thogonal matrices with determinant +1, together with the matrix multiplication:

SO(3) =
{
g ∈ GL(3)/ gT .g = g.gT = I, det(g) = 1

}

Its Lie algebra is given by the set of antisymmetric matrices:

so(3) = ω ∈M3,3(R)/ ωT = −ω

If we consider the coordinates of so(3) elements in the canonical basis
through the following mapping:

51



52 CHAPTER 6. SKELETON KINEMATICS

̂: R3 → so(3)


x
y
z


 7→




0 −z y
z 0 −x
−y x 0




we obtain the usual notion of angular velocity vector. The adjoint mapping
verifies:

Adg(ω̂) = ĝ.ω

Thus, the conversion between body and spatial velocities corresponds
converting angular velocity vector coordinates from the body frame to the
spatial frame (hence the name).

Special Euclidean Group

The special euclidean group is the space of orientation-preserving isometries of
R
3 i.e. that preserve the euclidean norm between any pair of points. It can be

shown that its elements (the rigid motions) are affine maps whose linear part
lies in SO(3). It is usually represented with 4×4 matrices using homogeneous
coordinates:

Definition 13 (Special Euclidean group). The Special Euclidean group SE(3) is
the space of 4× 4 matrices of the form:

g =

(
r t
0 1

)

with r ∈ SO(3), t ∈ R
3. Its Lie algebra is given by 4× 4 matrices of the form:

κ =

(
ω v
0 0

)

ω ∈ so(3) is called the angular velocity and v ∈ R
3 the linear velocity.

Elements of the Lie algebra se(3) are sometimes called twists, and ele-
ments of the coalgebra se(3)∗ called wrenches. We extend the definition of the
̂operator to se(3) as follows:

̂: R6 → se(3)
(
ω
v

)
7→

(
ω̂ v
0 0

)
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The coordinates of a body velocity twist correspond to the intuitive inter-
pretation: ω represents the coordinates of the angular velocity expressed in
the body frame, and v is the linear velocity of the frame origin, also expressed
in the body frame. However, the spatial velocity twist interpretation is a bit
counter-intuitive, since its linear part is not the linear velocity of the frame
origin, expressed in the spatial frame as one could expect. Instead, it is the
linear velocity of the world origin, as if it were part of the rigid body, expressed in
the world frame. The angular part of the spatial velocity twist is the angular
velocity expressed in the world frame. See [MSZ94] for details.

6.1.2 Torques, Wrenches

While the tangent vectors represent the notion of velocity, the notion of force is
represented by cotangent vectors. For example, conservative forces arise in the
Euler-Lagrange equations as the differential of the potential energy V : Q→
R, which is a cotangent vector:

dV (q) ∈ T ∗
qQ

The natural action of cotangent vectors on tangent vectors defines the in-
stantaneous work, sometimes called virtual work. Letting fq ∈ T ∗

qQ and vq ∈
TqQ, the instantaneous work δW is simply:

δW = fq.vq ∈ R

The term natural action emphasizes that this operation does not depend
on a metric structure defined on the tangent space, such as the kinetic energy
tensor. It is simply the application of a linear form to a vector, unlike the
inner product of two vectors.

All these definitions obviously apply to Lie groups (as smooth manifolds)
and in particular to SO(3) and SE(3), where generalized forces are respec-
tively called torques and wrenches. Just like tangent vectors can be expressed
as body and spatial velocities, cotangent vectors can be expressed as body
and spatial forces through left and right translations.

For a tangent covector to a Lie group fg ∈ T ∗
gG, the equivalent body

force is obtained by pulling fg over the Lie coalgebra, by the left translation
mapping Lg:

f bg = d∗Lg(e).fg (6.1)

To better see what is happening, one can always decompose this opera-
tion through the instantaneous work to obtain an equivalent body force. For
any tangent vector vg ∈ TgG, we have:
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δW = fg.vg

= fg.dLg(e)︸ ︷︷ ︸
fb
g

.vbg

which is precisely equation (6.1). For matrix groups such as SO(3) and
SE(3), the expression is, again, simpler:

f bg = fg.g

Using the same reasoning, we obtain that the spatial and body forces are
related through the coadjoint mapping:

δW = f bg .v
b
g

= f bg .Adg−1

︸ ︷︷ ︸
fs
g

.vsg

Thus:

f sg = Ad∗g−1 .f
b
g

We now illustrate how the adjoint and coadjoint mappings can be used to
express velocities and forces in different frames.

6.1.3 Frame Change

The adjoint transformation not only allows to convert between body and spa-
tial velocities, it is also used to express velocities in different frames. We il-
lustrate this on SE(3), but the same is true with other Lie groups.

Let us consider the situation described by figure 6.1, where rigid transfor-
mations a, b, c ∈ SE(3) are related by c = ab. If frames a and cmove together,
i.e. if b is constant, then the following hold between body velocities, with
respect to the reference frame:

dc = da.b⇒ dbc = c−1.dc

= b−1a−1.da.b = Adb−1 .dba

This formula is illustrated on figure 6.2. Notice that velocities are pushed
between frames in the opposite way, compared to the relative transform. The
previous relation on velocities can be used to transport generalized forces
from one frame to another. Let f bc ∈ g⋆ be a body force acting on c, the
equivalent body force f ba ∈ g⋆ acting on frame a is given by:
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Figure 6.1: The group identity is the reference frame (blue) relative to which
frames a and c are defined (red, green). The configuration of c relative to a is
given by b, so that c = ab.

Figure 6.2: The effect of frame change over velocity vectors. If b = c−1a is
constant, the adjoint gives the transformation between the body velocities at
frames a and c

f bc .v
b
c = f bc .Adb−1︸ ︷︷ ︸

fb
a

.vba

Thus:

f ba = Ad∗b−1 .f
b
c

This formula is illustrated on figure 6.3. Notice that the forces are pulled
between frames in the same way as the relative transform.
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Figure 6.3: The effect of frame change over cotangent vectors. If b = c−1a is
constant, then the adjoint transpose gives the transformation between cotan-
gent vectors expressed in frames c and a.

6.2 Forward Kinematics

Let us now provide a quick introduction to the problems of forward and in-
verse kinematics. Given an n-joints skeleton parametrized by its configuration
manifold Q, the forward kinematics problem aims at computing the function:

f : Q→ SE(3)n+1

where f maps skeleton DOFs to absolute bone configurations. For an ar-
ticulated skeleton consisting only of ball-and-socket joints, the configuration
manifold is a Lie group:

G = SE(3)× SO(3)n

describing the rigid configuration of the root bone and the relative orien-
tation of each joint with respect to its parent. We denote by ai ∈ N the index
of the parent bone of the bone with index i ∈ N. Additionally, we refer to
parent and child joint offsets respectively as pi ∈ SE(3) and ci ∈ SE(3), as
described on figure 6.4:
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Figure 6.4: Each bone (here, a femur) has a world configuration fi(g) ob-
tained by forward kinematics (red). pi and ci respectively describe the parent
(green) and child (blue) frame transformations with respect to the bone frame.

The forward kinematics mapping is compactly expressed using a recur-
sive formula. Let g = (q, r) ∈ G and f(g) = (fi(g))i≤n−1, assuming that the
root bone has index 0 and that the joint between bones ai and i has index
i− 1, this mapping is defined as:

f0(g) = q

fi(g) = fai(g).cai .ri−1.pi
−1

This function only involves Lie group operations, it is thus smooth. Let-
ting dg = (dq, dr) ∈ TgG, its differential is given by:

df0(g).dg = dq

dfi(g).dg = dfai(g).dg.cai .ri−1.pi
−1 + fai(g).cai .dri−1.pi

−1

The corresponding left-trivialized tangent is:

dbf0(g).d
bg = dbq

dbfi(g).d
bg = fi(g)

−1.dfi(g).g.d
bg

= Ad
(cairi−1pi−1)

−1 .dbfai(g).d
bg + Adpi−1 .dbri

= Ad(piri−1
−1cai

−1).d
bfai(g).d

bg + Adpi−1 .dbri

From the above algorithm, we see that the pushforward of a tangent vec-
tor can be computed in O(n) operations. The algorithm presented here is
fully general in the sense that any feature computed from a bone configura-
tion can be expressed as a function of the DOFs, by composition. For instance,
if we are interested in the absolute position of an end-effector belonging to
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character hand, we may chain the above kinematics mapping with the fol-
lowing:

h : SE(3)n → R
3

(xi)i≤n 7→ xk(p)

where p ∈ R
3 describes the local coordinates of the end-effector with re-

spect to the hand frame, and k ∈ N is the hand index. In most cases, the
forward kinematics problem is only concerned with the computation of the
composed mapping h ◦ f , for features defined by the function h.

6.3 Inverse Kinematics

While the forward kinematics problem is straightforward, the inverse prob-
lem of finding the skeleton configuration satisfying a given set of constraints,
if any, is much harder. This is mostly due to the fact that the IK problem
is usually ill-defined, meaning that zero, one or more configuration might
satisfy the required constraints.

We quickly review the classical IK algorithms and associated optimiza-
tion methods, as they will be used in the remaining of this work. A much
more detailed introduction to these methods can be found in [Bus04]. In
specific cases, an analytical solution can be found (such as Paden-Kahan
subproblems [MSZ94]) but in the general case, including the methods pre-
sented here, the IK problem is cast an optimization problem, possibly with
constraints.

In the remaining of this section, we will consider a given smooth feature
function h, describing an abstract set of features in function of the skeleton
degrees of freedom G = SE(3)× SO(3)n:

h : G→ H

where H is an Euclidean space for simplicity. The target features will be
denoted by h⋆ ∈ H , and the error by e(g) = h⋆ − h(g).

6.3.1 Jacobian Transpose

The most straightforward approach to IK is to apply the classical Gradient
Descent algorithm to the following optimization problem:

g⋆ = argmin
g∈G

||h⋆ − h(g)||2 =: c(g)

The cost function c : G→ R has a differential dc(g) ∈ T ∗
gG defined by:

dc(g).dg = 2〈h⋆ − h(g), dh(g).dg〉 ∈ R
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The gradient descent algorithm uses the corresponding gradient ∇c(g) ∈
TgG as the descent direction, using the exponential mapping to remain inside
the group:

gk+1 = gk. exp
(
−α.∇bc(gk)

)

where α ∈ R
+ is the step size, usually computed using a line search algo-

rithm. The name Jacobian transpose comes from the expression of the gradient.
If we assume a canonical inner product on H , then the gradient expression
is, in matrix notation:

∇bc(g) = 2.Jb
h(g)

T . (h⋆ − h(g))

where Jb
h(g) is the (body-fixed) Jacobian matrix of h at g. This method

suffers from all the classical drawbacks of the gradient descent, the principal
being its slow convergence.

6.3.2 Pseudo-Inverse

The pseudo-inverse method is the application of the classical Gauss-Newton
algorithm for non-linear least-squares, to the IK problem. The optimization
problem is, again:

g⋆ = argmin
g∈G

||h⋆ − h(g)||2

The Gauss-Newton algorithm looks for a configuration step ∆g ∈ g that
solves the approximate optimization problem:

∆g⋆ = argmin
∆g∈g

∣∣∣
∣∣∣h⋆ −

(
h(g) + dbh(g).∆g

)∣∣∣
∣∣∣
2

obtained by locally linearizing the function h using the exponential map:

h (g. exp(∆g)) ≈ h(g) + dbh(g).db exp(0).∆g = h(g) + dbh(g).∆g

The above approximate least-squares problem is a linear least squares prob-
lem, which can be solved by the mean of a pseudo-inverse matrix. If we call
J = Jb

h(g) the body Jacobian matrix of h at g, the normal equations for above
problem are:

JTJ.∆g = JT .e(g)

This means that ∆g =
(
JTJ

)−1
JT .e(g) = J+.e(g), where J+ is the Moore-

Penrose pseudo-inverse of matrix J . The damped pseudo-inverse prevents too
large values of ∆g by solving the following problem instead:
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∆g⋆ = argmin
∆g∈g

∣∣∣
∣∣∣h⋆ −

(
h(g) + dbh(g).∆g

)∣∣∣
∣∣∣
2

+ λ ||∆g||2

where λ ∈ R is a damping parameter. This is still a linear least squares
problem, whose normal equations are:

(
JTJ + λI

)
.∆g = JT .e(g)

The damped pseudo-inverse algorithm is also known as Levenberg’s al-
gorithm. When the damping parameter λ is set high, this method approaches
the gradient descent and conversely. This can be seen as a Tikhonov regular-
ization [TA77] of the Gauss-Newton system.

6.3.3 Levenberg-Marquardt

Marquardt’s insight was to selectively damp dimensions according to the cur-
vature of the above approximate cost function. The intuitive idea is that
strongly curved directions, corresponding to strong end-effector velocities,
should not rely on the linear approximation and use gradient descent instead.
Conversely, directions where the cost function is almost flat, corresponding
to small end-effector velocities, should use the tangent approximation, which
also avoids slow gradient convergence.

The Hessian matrix of the approximate cost function is given byH = JTJ ,
whose diagonal values indicate the curvature of the (approximate) cost func-
tion in the corresponding dimension. Therefore, the resulting normal equa-
tions become:

(
JTJ + λ.diag

(
JTJ

))
.∆g = JT .e(g)

The resulting method is known as the Levenberg-Marquardt algorithm.
We propose a damping model for physically-based character animation in-
spired by this algorithm in 11.2.2.
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Chapter 7

Previous Work

In this part, we derive a reduced-dimension, data-driven kinematic model for
an articulated skeleton, based on existing non-linear statistical analysis. Af-
ter reviewing previous work in character animation in general, and reduced
dimension models in particular, we present an existing statistical analysis al-
gorithm, named Principal Geodesic Analysis, and its application to character
animation in more details. Then, we evaluate the interest of this approach
with a novel motion compression algorithm based on this reduced kinematic
model.

We begin this chapter with a general review of existing character anima-
tion techniques. We then motivate the need for a simple, data-driven, re-
duced kinematic pose model. Finally, we review previous work in the field
of non-linear data analysis for suitable dimension reduction techniques.

7.1 Character Animation

In this section, we propose a general overview of the main existing character
animation techniques. These can be partitioned in three principal classes,
though some overlap may exist. We begin with kinematic methods, which
mainly use skeleton kinematics described in section 6.3 to synthesize poses
under constraints. Motion reuse techniques, on the contrary, rely on existing
motion capture data to generate new motion. Finally, machine learning tech-
niques build motion or pose models based on existing data, which are then
used to synthesize new motions.

7.1.1 Kinematic Synthesis

Kinematic motion synthesis can be seen as an extension of the problem of
the IK problem to the temporal domain: given a skeleton and its geometry,
the goal is to find a series of skeleton configurations that satisfy geometric
constraints across time.
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Inverse Kinematics

An immediate solution is to employ inverse kinematics for each frame, and to
animate end-effectors instead. This approach is available in major commer-
cial animation software such as Alias Maya1 or 3D Studio2. They generally
use some form of analytic IK solver (e.g. Kahan-Paden sub-problems, see
[MSZ94]) for optimal speed. Jacobian pseudo-inverse solvers [GM85] were
also used, or their regularized variant Levenberg-Marquardt described in 6.3.
Joint limits, or specific limb configurations can be enforced by solving a non-
linear program [ZB94].

Since the IK problem is ill-posed, several solutions may exist for given
target end-effector positions, which may lead to popping artifacts on the re-
sulting animation. This is usually corrected by a smoothness term biasing the
current solution towards the one at the previous time step.

Even if the synthesized motion is smooth, all these techniques usually
result in poor quality human animations that exhibit a “robotic” aspect as
well as physical inconsistencies, unless special care is taken, such as the large
number of end-effector key-frames used by artists during motion pictures
creation.

Constrained Optimization

The principle of continuous constrained optimization, also known as space-time
constraints is to globally optimize pose configurations for the whole motion
sequence, so that higher-level invariants (e.g. physics laws, temporal smooth-
ness of the solution), or features (e.g. having the character hand reaching a
particular object at a given time), can be enforced as constraints in an opti-
mization problem.

A pioneer work in this field is [WK88], in which Sequential Quadratic
Programming (SQP) is used to solve for the minimum actuation of a Luxo
lamp (cf. figure 7.1), under key-frame and physics laws constraints. A sim-
ilar framework was used for the simpler problem of interpolating between
existing clips [RGBC96]. [Gle97] used space-time constraints to edit exist-
ing motion, or to adapt the motion of one character to another, a technique
known as motion re-targeting [Gle98]. Continuous optimization was also used
in bio-mechanics [AP99].

While these methods provide impressive results, they tend to be compu-
tationally expensive due to the dimensionality of the problem. This usually
forces the use of simplified models to represent the character, at the expense
of quality. Furthermore, these methods are usually subject to local extrema
problems which are difficult to deal with in a robust way. In particular, these
techniques usually require a good initial guess.

1 http://www.autodesk.com/maya/
2 http://www.autodesk.com/3ds-max/
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Figure 7.1: The famous Luxo lamp used in spacetime constraints [WK88].

Addressing these issues, [PW99] propose a physically-based motion edit-
ing tool, featuring space-time constraints on a simplified character model
for editing an existing capture, which attenuates local extrema problems.
[LP02] propose to enforce simpler linear and angular momentum constraints
to avoid solving for skeleton actuation, speeding up the optimization while
still producing plausible results. [FP03] restrict the optimization to a set
of features to speed-up differential quantities computations. [SHP04] pro-
poses a dimension reduction process to bias the optimization towards a low-
dimensional subspace. Yet, the computational cost of all these methods re-
mains too high to allow their use for real-time applications.

Interestingly, [LS99] propose a multi-resolution approach to the problem
by encoding a motion as a set of level of details, using hierarchical B-splines.
A custom IK solver then enforces constraints on this representation, with de-
tails added when needed. By replacing a single large optimization problem
by many smaller, localized ones, the authors achieve interactivity in their
motion editing system. However, the performance of this approach is highly
dependent on the time length of constraints. Furthermore, spatial correla-
tions existing in input data are not taken into account.

7.1.2 Motion Reuse

A natural alternative to produce highly-detailed motion data is to reuse ex-
isting, real motion data, and modify it so that it satisfies user constraints. An
obvious, greedy method would consist in having a sufficient quantity of data
covering all the possible cases for the constraints, and then select relevant
data from this motion database, based on clustering techniques. Of course,
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much more evolved techniques have been proposed.

Motion Warping

Motion data can also be seen as a time signal that can be edited as any other
time series. A very simple way to do so consists in scaling or offsetting the
signal in the time domain. This allows simple transition, overlap or blending
of similar motions, techniques collectively known as motion warping [WP95].
More advanced signal processing techniques can also be applied, either in the
time domain [BW95] (low pass, displacement map, gains, time warps,. . . ), or
in the frequency domain where Fourier coefficients are interpolated to tran-
sition between walk and run motions [UAT95] (cf. figure 7.2).

Figure 7.2: Example animations obtained by modifying Fourier coefficients
to obtain different motion styles [UAT95].

Fourier coefficients difference between motions may also be transferred
to another motion. Unfortunately, these techniques require carefully aligned
motions in both time and space to produce convincing results.

Motion Blending, Interpolation

The blending, or interpolation, of several animations has also received atten-
tion, since it allows a high-level control at a reasonable computational cost.
[RCB98] use Radial Basis Functions (RBFs) to interpolate between both differ-
ent behaviors (verbs) and styles within the behaviors (adverbs). This method
relies on hand-chosen key events to temporally align motions before interpo-
lation. [KG04b] proposed a method to automatically parametrize variations
in similar motions for a whole motion database, featuring similar motion
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clustering and automatic time registration. Such technique allows to auto-
matically parametrize a family of reaching motion by the end-effector posi-
tion, speeding up IK computation. [SH05] proposed interpolation strategies
to enforce correctness of physical quantities such as linear or angular momen-
tum, frictional behavior. Fast linear blending strategies have been proposed
in [WB08].

The motion blending methods are generally restricted to mixing existing
motion clips. Despite their speed, they are usually limited to the problem of
transitioning between existing motion clips, and therefore lack the diversity
and control of other motion synthesis methods.

Motion Graphs

Initial version of motion graphs [KGP02] detected possible transitions frames
in motion capture data, organized transition points in a graph structure al-
lowing the continuous synthesis of an animation by traversing the graph (cf.
figure 7.3). This graph walk can be driven by external events, allowing inter-
active synthesis of character animations in a video game for example. Various
improvements have been proposed, by improving both the quality and the
number of transitions [ZS09].

Figure 7.3: Motion Graphs as originally proposed in [KGP02]. The error func-
tion (left, green) minima describe valid transition points between frames i and
j. A new motion path can then be recomputed from the corresponding graph
(right).

Motion graphs also allow for advanced off-line path selection strategies:
[SH07] used A∗ search to find an optimal solution given path constraints.
[TLP07] used a motion graph-like motion engine driven by a reinforcement
learning controller to select near-optimal transitions in real-time.

In general, motion graphs offer very little editing facilities over resulting
animations, as they only provide suitable transition points between existing
motion sequences.
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7.1.3 Machine Learning

Recent advances in the machine learning theory allowed to design systems
that capture geometric features as well as modeling time evolution on exist-
ing motion capture data, allowing to synthesize plausible motion while still
retaining good control.

Interpolation Space

The idea of using machine learning to compute a higher-level parametriza-
tion of a motion given real examples is appealing. To this end, several classes
of algorithms have been tried. [RCB98] used RBFs to learn an interpolation
space from examples. [MK05] proposed to use geo-statistics to perform bet-
ter interpolation in a control space.

Brand and Hertzmann [BH00] propose a cross-entropy optimization frame-
work to learn Hidden Markov Models (HMMs) for both structure and style
from motion capture data. Style-specific parameters are then de-correlated
using Principal Component Analysis (PCA), allowing a low-dimensional style
transfer: from a motion y in a different style, the structure S(y) and style pa-
rameters are extracted, then a new motion y′ for different style parameters v
is synthesized by calculating the maximum-likelihood path:

argmax
y′

p
(
y′|v, S(y)

)

While promising, this method requires an expansive optimization, and
the model is tied to the training set, making the generation of completely
new motions difficult.

Figure 7.4: Low-dimensional latent variables extracted using GPLVM on var-
ious animations [GMHP04].

[GMHP04] cast the IK problem as the optimization of the likelihood of a
Probability Density Function (PDF) over poses, knowing constraints. They
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propose to learn this PDF using Gaussian Process Latent Variable Model, a
generalization of PCA and RBF model that is computed on motion features
(angles, velocities . . . ). Then, the corresponding pose likelihood function is
optimized under geometric constraints (cf. figure 7.4).

All these methods exploit ever more complex non-linear statistical tech-
niques to represent a statistical distribution over poses, possibly using regres-
sion against a feature space or directly optimizing the likelihood in which
case the computational cost is high. However, simpler models have also
shown good results even in the context of performance capture.

Motion Models

[CH05] retrieve a set of frames satisfying on-line marker positions from a
motion database, then build local predictive models around these data to
reconstruct full-body poses in real-time, using only a few marker position.
However, the local models are only valid in a relatively small neighborhood
and the whole system requires a motion database.

[UFF06] showed that while complex non-linear statistic pose models have
been used in the past, the use of simpler PCA over aligned motions provides
efficient motion models, to be used in a motion tracking context. The authors
highlight the fact that such models yield a smooth parametrization, allowing
for standard optimization techniques. However, the authors indicate that a
high number of examples is required, due to the misfit of linear probabilistic
models to inherently non-linear orientation data.

[LWS02] use Linear Dynamic Systems (LDSs) to learn dynamic models
for motion segments, together with transition probabilities and key poses
(forming so-called textons). A two-level motion synthesis is then performed,
by first choosing a texton path for the task, then using textons to generate
motion between key poses. Here again, linear motion models are only valid
locally (cf. figure 7.5).

Figure 7.5: Two-level motion synthesis proposed by [LWS02]. LDS describe
local dynamic behaviors in a graph, which is traversed to generate motion
between key poses.
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In the same spirit, [LM06] detect motion segments in which marker posi-
tions are linearly dependent using clustered PCA, then use these local linear
models to compression motion data. Using several linear models requires
transitions between models to be done in a smooth way. Moreover, linear
models for marker positions inherently produce limb elongations.

Space-time

The constrained continuous optimization techniques have been extended to
exploit information on existing motions. [SHP04] used PCA on several sim-
ilar motion to build a low-dimensional linear subspace approximating the
pose manifold of the motion. This subspace is then used to regularize a
space-time optimization by biasing the results towards this subspace. How-
ever, the computational benefit of dimension reduction is not fully exploited,
since it is only enforced as a penalty term.

[LHP05] propose to learn physical parameters of a virtual human by us-
ing Non-linear Inverse Optimization. A reference motion capture sequence
is assumed optimal for energy consumption under geometric constraints, al-
lowing to optimize physical parameters giving rise to this solution. These
parameters are then used to synthesize new motion again using space-time
constraints.

[CH07] use PCA to reduce the number of degrees of freedom in a mo-
tion database, then learn a statistical dynamic model on motion data. Motion
is then synthesized by computing the maximum likelihood of a motion un-
der kinematic constraints and the motion prior. DOF reduction speeds up
the learning of the dynamic model. This work reformulates space-time con-
straints in a probabilistic framework, with the difference that the dynamic
model is inferred from existing data. However, this system generates poor
results when the set of constraints is sparse, and is computationally expen-
sive.

7.2 Observations

From what precedes, a certain number of observations are possible on the
following topics. Generally, the above classes of methods can be described as
follows:
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Figure 7.6: 3 classes of character animation techniques.

• Kinematic methods offer a high degree of control, at the expense of
expressiveness.

• Motion reuse offers very limited control, but produces high quality at a
low computational cost.

• Data-driven techniques provide an interesting trade-off, but tend to
be computationally expensive during both pre-processing and on-line
phases.

Apart from these general comments suggesting that an expressive, con-
trollable and computationally inexpensive character animation technique is
obviously desirable, more specific issues can be raised.

Inverse Kinematics

Several works are targeted at learning a mapping relating end-effectors to
skeleton pose, while retaining features from existing motion. For sufficiently
short parts of the motion, this mapping can be linearly approximated with
good results with respect to the learning set. However, more global ap-
proaches usually necessitate costly optimizations to both construct and to use
the regression model, due to the highly non-linear nature of the underlying
mapping.

Data-driven space-time methods tend to necessitate a large number of
key-frames, which suggests that simpler IK between key-frames could gen-
erate satisfying results. However, style-based IK techniques are expensive
and are not guaranteed to synthesize smooth animations.

Dimension Reduction Benefits

Most of these works use a dimension reduction technique like PCA to obtain
a pose prior, but few of them transport subsequent calculations in the re-
duced space, which could yet significantly improve computation time. This
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could be due to the prior not being of sufficient quality to enforce it as a hard
constraint, except locally around training data. On the other hand, advanced
non-linear probabilistic dimension reduction are usually very costly and dif-
ficult to integrate in a non-probabilistic framework.

So it seems that simple linear methods are of too poor quality to be trusted
globally, while complex non-linear methods are much slower and difficult to
integrate with. Surprisingly, none of the above references are concerned with
the special structure and topology of the configuration space of the articu-
lated skeleton.

Non-linearity

While problems due to the use of Euler angles for animation have been known
for years, several authors use linear models based on them to animate virtual
characters. While this may not be a problem for one-dimensional joints like
the knee, this can cause serious issues for 3-dimensional joints like the elbows
or the hips which have a reachable space, increasing the risk of the infamous
gimbal lock.

A pose reconstructed by linearly combining Euler angles can be surpris-
ingly different from expectations, for the very same reason Euler angles can
not be interpolated well. However, few researchers consider the use of re-
construction rules adapted to the special structure of rotations (e.g. by using
SLERP [Sho85]).

To summarize, using certain rotation parametrization may impose the
need for complex non-linear machine learning algorithm to perform satis-
fying dimension reduction. We argue that taking the special geometry of the
rotation group into account during the statistical analysis can improve both
the quality and the simplicity of the algorithm. Let us now review existing
works in the field of smooth manifold statistics.

7.3 Manifold Statistical Analysis

As mentioned in the previous section, the configuration space of an articu-
lated character, parametrized by its joint orientations, is not a vector space.
We also saw in 5.3.6 that the pose manifold SO(3)n possesses a natural Rie-
mannian structure, for which generalizations of Euclidean algorithms have
been proposed, including multi-resolution analysis, interpolation, and statis-
tics. We review the latter in this section.

The lack of vector-space structure prevents the use of linear statistical
quantities such as the empirical mean of samples, traditionally obtained by
linear combination. However, the metric or pseudo-metric induced by a
Riemannian metric allows to generalize relevant geometric properties of the
mean. [BF01] propose an algorithm to compute spherical means as a mini-
mization process. [Moa02] generalize these ideas to the rotation group. [PFA06,
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Pen06] give a general form for intrinsic, or Fréchet, mean computation using
the Riemannian exponential. The intrinsic mean µ ∈ M is defined only in
terms of the Riemannian metric and as such, it does not depend on the choice
of embedding. It minimizes the sum of square Riemannian distances to all m
samples (xi)i≤m:

µ = argmin
y∈M

∑

i

d(y, xi)
2

where d(x, y) is the Riemannian distance from x to y. It can be computed
using a simple gradient descent algorithm [Pen06]:

µk+1 = expµk

(
m∑

i=1

logµk
(xi)

)

In contrast, the extrinsic mean would minimize the sum of distances in
the sense of a surrounding space, such as matrix norm. The definition of the
intrinsic mean requires the manifold to be connected and geodesically com-
plete 3, a requirement met for SO(3). [Pen06] also generalize variance and
covariance definitions by developing the manifold over the tangent space
at the Fréchet mean of the data, and give a definition of a Gaussian distri-
bution. These non-linear tools are used for the statistical study of diffusion
tensors generated by Magnetic Resonance Imaging (MRI), through a Rieman-
nian structure.

[FLJ03, FLPJ04] proposed an extension of PCA to the case of Riemannian
manifolds, first in the case of Lie groups having a compatible Riemannian
structure, then on symmetric Riemannian manifolds. Known as Principal
Geodesic Analysis (PGA), it generalizes the familiar PCA by exploiting the
Riemannian structure: vector lines are replaced by geodesics (see 5.3.6) and
the Riemannian metric is used to compute (and maximize) geodesically pro-
jected data variance on principal geodesics. The authors propose a first-order
approximation that reduces to standard PCA over linearized data using the
exponential map at the intrinsic mean. The projection over a geodesic is gen-
erally obtained by a minimization algorithm, though closed form exist for
SO(3) [SCLS07]. The differences between linearized and exact PGA are dis-
cussed in detail in [SLN10, SLHN10].

⋆ ⋆ ⋆

We have found the PGA algorithm to be a natural, simple dimension re-
duction technique, suitable for analyzing rotational pose data. We will there-
fore describe it in more details in the next chapter, and show how it meets
most of the requirements we expressed in 3.3.

3 i.e. in which geodesic curves can be extended indefinitely, having the important conse-
quence that there exist a length-minimizing geodesic between any two points [FLPJ04]





Chapter 8

Principal Geodesic Pose Model

This chapter reviews the PGA algorithm in more details, and how it can be
applied to motion capture data for dimension reduction. We derive a smooth
PGA-based kinematic pose model, and the associated forward-kinematics.
An IK algorithm is presented, and an application to motion compression is
proposed for evaluation.

8.1 Principal Geodesic Analysis

The PGA algorithm extends the classical PCA algorithm by only considering
the metric structure of a space. Such structure is available on geodesically
complete Riemannian manifolds such as SO(3). After describing the algo-
rithm itself, we develop its practical implementation and approximations.

8.1.1 Algorithm

We begin with a quick review of PGA algorithm as described in [FLPJ04,
FLRS06], starting with the linear (PCA) case.

Principal Component Analysis

The PCA seeks to find nested linear subspaces that maximize the projected
variance of m samples xj ∈ R

n or equivalently, that minimize sample projec-
tion errors. Assuming zero mean for observations, the ith principal compo-
nent vi is defined by:

vi = argmin
||v||=1

∑

j

||xj − πi (xj)||
2

where πj is the orthogonal projection over the i ∈ N first principal com-
ponents, i− 1 of which have already been computed:

75
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πi(x) =

k=i∑

k=1

〈x, vk〉 vk = πi−1(x) + 〈x, vi〉 vi

π0(x) = 0

This definition implies that the vi form an orthogonal basis of principal
subspaces, the last of which being all of Rn. In practice, the eigen decom-
position of the covariance matrix XTX , where X is a m × n matrix whose
rows are the m samples xTi , gives principal components as the eigenvectors
sorted by decreasing eigenvalues. The corresponding eigenvalues (squared)
indicate the projected variance on each component.

PCA is commonly used as a dimension reduction technique, as it allows
to only keep the first principal components (in the sense of decreasing cor-
responding eigenvalues) to obtain a good linear approximation of the data
set.

(CC BY-SA Ben FrantzDale)

Figure 8.1: The PCA of a multivariate Gaussian distribution of samples. The
two orthogonal eigenvectors have been scaled by their corresponding eigen-
value.

Geodesics, Lie Groups

The above definition relies on one primitive: the projection over a principal
component. The idea behind PGA is to extend this primitive to Riemannian
manifolds, by the use of geodesics instead of vector lines, and the geodesic
distance instead of the Euclidean one.
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As seen briefly in 5.3.6, geodesics in a Riemannian manifold are given
by the (Riemannian) exponential map. Let γa,v(α) = expa(α v) ∈ M be the
geodesic curve starting at a ∈ M with initial tangent vector v ∈ TaM . The
projection of x ∈ M on the geodesic γa,v is obtained by the following non-
linear minimization problem:

πa,v(x) = argmin
y=expa(αv)

d(x, y)2 (8.2)

where d(x, y) is the geodesic distance given by d(x, y) = ||logx(y)||x. This
projection operation is illustrated on figure 8.2.

Figure 8.2: The geodesic projection of point x over the geodesic expa(αv)

(blue) corresponds to the point where the geodesic segment in green has min-
imal length.

In the case of a Lie group with a bi-invariant Riemannian metric such as
SO(3), the metric and group exponential coincide. Given such a Lie group
G, the geodesic starting at a ∈ G with initial (body) tangent vector v ∈ g is
given by γa,v = a. exp(α v), for α ∈ R. The geodesic distance between two
points a and b of G is given by:

d(a, b) = ||loga(b)|| = ||logb(a)|| (Riemannian)

=
∣∣∣∣log(a−1b)

∣∣∣∣ =
∣∣∣∣log(b−1a)

∣∣∣∣ (Lie)
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In terms of Lie group operations, the projection of x ∈ G on a geodesic
starting at a ∈ G with body tangent vector v ∈ g is thus:

πa,v(x) = a. exp(α⋆v) with α⋆ = argmin
α∈R

∣∣∣∣log
(
x−1.a. exp(αv)

)∣∣∣∣ (8.3)

Intrinsic Mean

As in the PCA case, the first step to compute the PGA decomposition is to
somehow center data around their mean. In the absence of a vector space
structure, one can still define the mean from a metric point of view as [Pen06]:

Definition 14 (Fréchet mean). The Fréchet, or intrinsic mean of m points xi of a
Riemannian manifold M is defined as:

µ⋆ = argmin
µ∈M

m∑

i=1

d(µ, xi)
2

This requires the points to be sufficiently localized to guarantee the uniqueness
of the solution [Pen06].

The intrinsic mean can be computed efficiently using the following fixed-
point iteration [Pen06]:

µk+1 = expµk

(
1

m

m∑

i=1

logµk
(xi)

)

Intuitively, this algorithm uses the exponential map to linearize the sam-
ples around the current mean candidate µk, performs a Euclidean mean in
the tangent space, then advances to the corresponding point of the manifold
µk+1 until the tangent mean becomes close enough to zero. In the case of a
Lie group with a bi-invariant metric, this gives:

µk+1 = µk exp

(
1

m

m∑

i=1

log
(
µk

−1xi
)
)

Principal Geodesics

Once the intrinsic mean of the data has been computed, the PGA seeks to
compute a set of k ∈ N geodesics that best represent the data, using the same
metric criterion as in the linear case. Namely, the first geodesic direction is
given by the solution of the following minimization problem:

v1 = argmin
||v||=1

∑

j

d (xj , πµ,v (xj))
2 (8.4)
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To compute the subsequent geodesic directions, several approaches have
been proposed, depending on the geometry of the manifold. For the general
Riemannian case, [FLPJ04, SLN10] propose to incrementally compute an or-
thonormal basis vk of TµM spanning k linear subspaces Vk = span (v1, . . . , vk),
which correspond to k geodesic submanifolds Hk = expµ(Vk). The projection
of a point on this geodesic submanifold is given by:

πµ,V (x) = argmin
y∈expµ(V )

d(y, x) (8.5)

Having defined the projection over a geodesic submanifold, the kth geodesic
direction is computed by maximizing projected variance:

vk = argmax
||v||=1,v∈V ⊥

k−1

∑

j

d (µ, πµ,Vk
(xj))

2 (8.6)

As pointed out by [SLN10], this is no longer equivalent to minimizing the
square reconstruction errors, as it was in the vector case. Thus the following
scheme will produce different geodesic directions:

vk = argmax
||v||=1,v∈V ⊥

k−1

∑

j

d(xj , πµ,Vk
(xj))

2 (8.7)

The differences between the two is illustrated on figure 8.3.

Figure 8.3: In a curved space, maximizing the projected variance (red) over
a geodesic (blue) is not equivalent to minimizing the reconstruction error
(green) for multiple points.

However, the authors found this latter scheme to be more stable than the
former and are currently investigating differences between them. In the case
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of a Lie group with bi-invariant metric, [FLJ03] proposed a different construc-
tion scheme, taking the simpler form of the exponential into account:

x
(0)
j = µ−1xj (8.8a)

vk = argmin
||v||=1

∑

j

d
(
x
(k−1)
j , πv

(
x
(k−1)
j

))2

xkj = πvk

(
x
(k−1)
j

)−1
x
(k−1)
k

The first step centers all samples around the intrinsic mean, so that the
base point is now the group identity. Then, the first geodesic direction is
computed by minimizing square reconstruction errors. Finally, the projec-
tions over the last geodesic are removed from the samples by left multiplica-
tion. Step 2 and 3 are then iterated until the k geodesic directions have been
computed. Letting pk = πvkx

(k), we see that this scheme decomposes the
samples in the following way:

x = µp1 . . . pkx
(k+1)

That is, the samples are reconstructed by iteratively composing geodesic
paths, one starting at the end of the previous in a different geodesic direc-
tion. In contrast, the previous schemes approximate a sample as one geodesic
starting at µ, resulting from a linear combination of k orthogonal directions
of TµM . These different schemes generate different parametrizations of the
data manifold, classically known as the canonical coordinates of first and sec-
ond kind.

Definition 15 (Canonical coordinates). Given a Lie groupG of dimension n ∈ N,
a basis (xi) of its Lie algebra g, and an element g ∈ G in the neighborhood of the iden-
tity e ∈ G, one can define the two following coordinates:

The Canonical Coordinates of the First Kind (ccfk) of g ∈ G are n scalar (λi)i
such as:

g = exp

n∑

i=1

λixi

The Canonical Coordinates of the Second Kind (ccsk) (ccsk) of g ∈ G are n scalar
(λi)i such as:

g =
n∏

i=1

exp(λixi)

These two coordinate systems are diffeomorphism in the neighborhood of the ori-
gin.
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Figure 8.4: Illustration of the differences between the canonical coordinates
of the first (left) and second (right) kind. In the case of a non-commutative
group, the order matters for ccsk.

The geometric difference between the two coordinates is illustrated on
figure 8.4. Interestingly, the differential of the exponential is not needed when
differentiating the ccsk1, contrary to the ccfk [MSZ94]. We will develop these
coordinate systems and their derivative in more details in the next section.

Coordinate-Invariance It should be noted that one of the most appealing
features of the PGA is that its results only depend on the Riemannian struc-
ture of the sample space, and not on a given coordinate system. To illus-
trate this fact, let us consider the statistical analysis of a set of rotations,
parametrized by their Euler angles. Depending on the conventions chosen
for the Euler angle sequence, and possible offsets in the parametrization (e.g.
to better reflect a rest pose), a PCA on such data will produce different results
for each coordinate choice. On the contrary, the PGA will first reconstruct the
corresponding rotations, then perform statistics in a coordinate-agnostic way,
therefore resulting in a coordinate-invariant analysis.

As an added benefit, the resulting modes for the PGA correspond to
geodesics of the manifold, whereas a PCA on Euler angles will produce modes
that suffer from the same drawbacks as the linear interpolation of Euler an-
gles (e.g. possible gimbal lock, complex interpolated path, . . . ).

8.1.2 Exact vs. Linearized PGA

The PGA algorithm seems promising in theory. In practice however, one
has to compute several nested optimization problems, and the convexity of
the objective function is not guaranteed. [SCLS07] proposed a closed-form

1 Each term of the product is a one-parameter subgroup: db exp(α v).dα = v dα
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formula for the projection operator in the case of SO(3) using unit quater-
nions, but in the general case no such formula exist. To remedy this situation,
[FLJ03, FLPJ04] proposed an approximation of the projection operator, using
a linearization of data in Lie algebra by the exponential map:

d(x, exp(α v)) ≈ || log(x)− α v||

Under this approximation, the approximate projection π̃v on a geodesic
starting at the identity is simply given by the Euclidean projection of log-
linearized samples in the Lie algebra, mapped back to the group using the
exponential. Assuming ||v|| = 1, the approximate projection is thus:

π̃v(x) = exp (〈log(x), v〉 v) (8.9)

This implies that the first geodesic direction is the same as the first prin-
cipal component for log-linearized data around the mean µ, that is the eigen
vector associated with the largest eigenvalue of the covariance matrix. If
we choose the first reconstruction scheme for geodesics, as in equation (8.5),
then the whole computation effectively reduces to standard PCA over the
log-linearized data at the mean. If we choose instead the second reconstruc-
tion scheme, as in equation (8.8), the subsequent iterations still apply, but the
projection step is replaced by the approximate, tangent-Euclidean, projection.

In practice, we found that motion data are usually sufficiently localized
around their mean for the two schemes to produce quite similar modes, but
the approximated algorithm is much faster to compute.

As for the reconstruction, using the canonical coordinates of the first and
second kind produce nearly identical results near the coordinates origin, but
start to differentiate the further the coordinates are from the origin, due to
the non-commutativity of the group. As described in 8.2.2, an interesting
aspect of the ccsk are that the exponential differential is not needed when
differentiating the coordinates.

8.1.3 Summary

Let us now recapitulate the most salient features of the PGA:

• It extends PCA to Riemannian manifolds, using geodesics instead of
vector lines.

• The use of the Riemannian structure results in a coordinate-invariant
analysis.

• It generates a smooth parametrization of geodesic submanifolds in terms
of the canonical coordinates.

• Several different algorithms have been given in the literature [FLJ03,
FLPJ04, SLN10].
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• In its most simple, approximate form, the PGA reduces to a PCA in the
tangent space at the intrinsic mean of the data.

8.2 Pose Model

In this section, we describe our use of the PGA algorithm to build a smooth
skeleton pose parametrization, learned on existing motion capture data. We
present examples of intrinsic mean and principal poses for real motion data.
Then, we propose the corresponding forward kinematics mapping, together
with an efficient computation of the associated pose Jacobian. Finally, we
present results of real-time, data-driven, full-body Inverse Kinematics using
this model.

8.2.1 Pose Parametrization

We begin with an existing motion capture sequence represented as a set of m
skeleton configurations (gi)i≤m ∈ G sampled over time. Each configuration
is a pair (c, p) ∈ G = SE(3)× SO(3)n, where n ∈ N is the number of joints, c
is the rigid transformation describing the configuration of the root bone, and
p contains the relative orientation of each joint with respect to its parent.

We will denote the pose space of relative joint orientations byP = SO(3)n.
As a compact Lie group, P has a bi-invariant Riemannian metric as described
previously. We then apply the PGA on the poses (pi)i≤m to obtain the intrin-
sic mean µ ∈ P , and a set of k ∈ N geodesic directions vj ∈ p describing the
poses. With this decomposition, the new pose DOFs are k scalars (λj)j≤k ∈ R

describing coordinates over the k principal geodesics.
We define the reduced pose parametrization as a smooth function f : Rk →

P that reconstructs a pose given k geodesic coordinates. As seen previously,
two canonical coordinate can be chosen:

f1(x) = µ exp




k∑

j=1

λj .vj


 (first kind)

f2(x) = µ

k∏

j=1

exp(λj .vj) (second kind)

We can remark that when (λj)j = (δi,j)j , that is when only the ith co-
ordinate is non-zero, the two parametrizations give the same pose. A pose
obtained along only one geodesic will be called a principal pose for the motion
data. Figure 8.5 shows examples of principal poses and intrinsic mean for
motion capture data.



84 CHAPTER 8. PRINCIPAL GEODESIC POSE MODEL

Figure 8.5: Examples of intrinsic mean (top-left) and the two first principal
geodesics for motion capture data (top, bottom). Notice how full-body joint
correlation are captured.

While the principal poses are the same for both parametrizations, they
are combined in a different way to produce a final pose:

• f1 composes principal pose directions in a linear way, then reconstructs
a pose with exp

• f2 reconstructs principal poses with exp, then composes them using
group structure

Choosing Reduced Dimension

The non-linear nature of PGA has counter-intuitive consequences: [SCLS07]
showed that when the exact principal geodesic analysis is used for SO(3), the
number of principal directions needed to reconstruct a set of samples is not
a prioribounded by the dimension of the space. [SLN10] require the geodesic
directions to be all orthogonal to each other, thus removing the problem.
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In the linear case, the cumulative projected variance over principal com-
ponents is classically used to indicate the percentage of total data variance
accounted by the reduced model. Letting σ2j ∈ R be the eigenvalues of
the sample covariance matrix (i.e. the projected variance on the correspond-
ing principal components), the cumulative variance over the first j principal
components ηj is given by:

ηj =

∑j
l=1 σ

2
l∑n

l=1 σ
2
l

∈ [0, 1] (8.11)

It is the sum of j first projected variances, normalized by the total variance
of the data. The cumulative variance gives a simple criterion for choosing the
dimension k⋆ ∈ N of the reduced dimension space, given a target variance
percentage ǫ ∈ [0, 1]:

k⋆ = inf
ηk>ǫ

k

It is simply the smallest integer for which the cumulative variance is
greater than the given threshold ǫ. A common heuristic is to choose ǫ = 0.9
[Fuk90]. For the non-linear case, the projected variance is given [FLJ03] by
the sum of squared geodesic distances of projected samples to the mean:

σ2j =
1

m

m∑

i=1

|| log πvj (µ
−1xi)||

2

A similar cumulative variance quantity can then be computed from it.
Of course, if the approximated PGA is performed as in our examples, the
(tangent) linear criterion (8.11) is used since the projection approximation is
linear. In practice, it is common to require that 99% of the variance should
be represented by the reduced model. Figure 8.6 shows cumulative variance
graphs and the dimension of the reduced space for different motion capture
sequences. Depending on the variability found in the data set, we can ob-
serve that the dimension reduction can be sometimes significant, as for ex-
ample highly coordinated motions such as walking.

As shown on figure 8.7, the number of principal geodesics needed to rep-
resent 99% of the input data variance is generally inferior to 20. For motions
with stronger correlations, such as walking motions, 10 geodesics are in most
cases enough to express 95% of the input variance.

8.2.2 Kinematics

We now describe the forward kinematics mapping for the reduced pose model.
It is obtained by composing the standard articulated forward kinematics, pre-
sented in section 6.2, with the reduced pose parametrization. The differential
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Figure 8.6: Cumulative variance diagrams for two motion capture sequences:
short walk (top, CMU:02-01), and long breakdance (bottom, CMU:85-01).

of this mapping is derived, both for the first and second canonical coordi-
nates, as well as the efficient computation of its Jacobian matrix. Then, we
present full-body IK results obtained using our model and the classical IK
algorithms presented in section 6.3. We conclude with a discussion of our
results.

Forward Kinematics

So far, we obtained a reduced pose model as a smooth function f : Rk →
P . In order to obtain the full forward kinematics, we compose this function
with the standard forward kinematics mapping for an articulated body with
configuration space G = SE(3)× SO(3)n, described in 6.2:
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Figure 8.7: Histograms showing the numbers of principal geodesics sufficient

to represent a target variance, using approximate PGA. Top: 99% of variance
for the whole CMU database. Bottom: 95% of variance for only walking
motions.
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h : G→ SE(3)n+1

We form the reduced forward kinematics mapping by:

r : Q = SE(3)× R
k → SE(3)n+1

(x, α) 7→ h(x, f(α))

The differential is given by the chain rule. With dx ∈ TxSE(3) and dα ∈
TpR

k = R
k, we have:

dr.(dx, dα) = dh.(dx, df.dα)

As this differential map is to be used intensively by pose optimization
algorithms, we need to give details on the efficient computation of its differ-
ential and Jacobian matrix.

Differential

We have seen in 6.2 that dh(g).dg can be computed in O(n) operations. We
now describe how to compute the full Jacobian matrix of r, also in O(k.n)
operations. This can be achieved by computing the Jacobian matrix of the
ccfk and ccsk in O(k.n), instead of O(k2.n) for the naive algorithm:

Jf =

(
∂f

∂αi

)

i≤k

Once Jf has been computed, we apply dh(g) to the resulting k tangent
vectors to obtain a total number of operations, for the full Jacobian matrix:

O( k.n︸︷︷︸
Jf

+ k.n︸︷︷︸
k×dh(g)

+ 6.n︸︷︷︸
root dofs

) = O(k.n)

Let us now describe how to compute the Jacobian of the coordinate maps
efficiently.

First Kind Recall that f1(α) = exp
(∑k

i=0 λi.vi

)
. The differential is obtained

by the chain rule:

df1(α)dα = d exp

(
k∑

i=0

λi.vi

)
.

(
k∑

i=0

vi.dλi

)

For a general tangent vector dλ, this expression can be computed inO(k.n):

• Forming
∑k

i=0 vi.dλi requires O(k.n) operations
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• Forming
∑k

i=0 λi.vi also requires O(k.n) operations

• Applying the final d exp is a O(n) operation (term-wise d expSO(3))

The final cost for a single tangent vector dα is O(k.n+ k.n+ n) = O(k.n)
in the general case. The full Jacobian matrix can also be computed in O(k.n)
as follows:

• Form
∑k

i=0 λi.vi in O(k.n) operations (only once)

• The Jacobian matrix of
∑k

i=0 vi.dλi is already given by (vi)i≤k

• Apply d exp to the k tangent vectors (vi)i≤k, in a total of O(k.n) opera-
tions

The final cost for the full Jacobian is thus O(k.n + k.n) = O(k.n) opera-
tions.

Second Kind Recall that f2(λ) =
∏k

i=0 expλi.vi. The body-fixed directional
derivative is given by [MSZ94]:

dbf2(λ).dλ =
k∑

i=0

Adpi−1 .vi.dλi (8.12)

where pi =
∏k

j=i exp(λi.vi) is the reconstruction using only the last k − i
geodesics. The Jacobian Jf2(λ) can thus be computed using the following
algorithm:

pk = exp(λk.vk) O(n)

pi−1 = exp(λi−1.vi−1).pi O(n)

∂f2
∂λi

= Adpi−1 .vi O(n)

In total, O(k.n + k.n) = O(k.n) operations are required for computing
Jf2(λ). However, contrary to the ccfk case, this algorithm can no longer be
parallelized due to the dependencies involved in the computation of pi.

Inverse Kinematics

Once the forward kinematics Jacobian has been derived, it can be used to im-
plement an IK algorithm as a non-linear least-squares problem, using the al-
gorithms presented in 6.3. In our experiments, we used a Levenberg-Marquardt
solver. Figure 8.8 and 8.9 show some of the resulting poses we obtained in a
real-time application.
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Figure 8.8: Our PGA-based IK solver used in real-time manipulation. The
input motion is a break dance sequence from the CMU database. There are
three IK handles in this example: one on each foot and one on the right hand.
The optimization is done using 10 geodesics.

Anticipating on part IV, we mention that using a different metric in Gauss-
Newton-like algorithms (such as Levenberg-Marquardt) can produce inter-
esting results. The linear least squares solved at each step by the damped
Gauss-Newton algorithm is (see 6.3):

∆x⋆ = argmin
∆x∈q

∣∣∣
∣∣∣y⋆ −

(
y(x) + dby(x).∆x

)∣∣∣
∣∣∣
2

︸ ︷︷ ︸
constraint error

+ λ ||∆x||2︸ ︷︷ ︸
step damping

where x ∈ Q are the DOFs and y : Q → Y are the optimized features,
with desired value y⋆ ∈ Y for some abstract, Euclidean feature space Y . If
the canonical metric on q is used in the rightmost term, this means that ev-
ery DOF receives the same amount of damping. In particular, root DOFs
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Figure 8.9: Another example of IK manipulation (10 geodesics, break-dance)
using our system. Whole-body correlations are effectively captured by the
model: the left arm automatically moves even when not constrained.

are damped exactly as any other joint DOFs, even though they induce much
more significant overall motion.

If we replace this canonical metric by the kinetic energy metric, we instead
favor low-energy displacements ∆x, meaning the optimization will tend to
displace the lower-mass character limbs before displacing the whole body. We
have found this simple strategy to result in more stable behavior and visually
more convincing poses, as illustrated on figure 8.10.

8.2.3 Discussion

Let us now discuss the pros and cons of the PGA-based IK solver.



92 CHAPTER 8. PRINCIPAL GEODESIC POSE MODEL

Figure 8.10: Comparison of the canonical (top) and kinetic (bottom) metrics
in the optimization, for a single end-effector (red). The undesired rotation
around the root bone (top) is automatically corrected by the metric change.

Benefits

While the presented IK algorithm can not compete with closed-form solvers
in terms of speed, it still exhibits several interesting features:

• Low-dimensional search space for the optimizer

• Automatic full-body correlations, keeping the synthesized poses close
to the learning set (cf. figure 8.11)

• Efficient Jacobian computation

• Interesting effects by changing metric

On a modern machine (Quad Core, 64 bits), this algorithm easily reaches
real-time performance (more than 200 FPS) since the most computationally
intensive operation at each optimization step is the inversion of a (6 + k) ×
(6 + k) matrix, with usually 5 ≤ k ≤ 15. In contrast, a complete articulated
skeleton contains between 75 and 90 degrees of freedom, which results in
much slower matrix inversions without the benefits on resulting poses.
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Figure 8.11: Tracking of motion capture end-effectors for a highly correlated
motion, walking. Only 6 geodesics are used. 3 end-effectors constraints are
present on both feet and head (orange), automatically inducing arm-swing.
An additional head orientation constraint (looking at the rightmost red spot) is
present to keep the character orientation straight.

Potential Issues

Local Extrema Since the exponential map is periodic2 on SO(3), the pro-
posed pose model is inherently subject to local extrema problems. However,
for such a situation to occur when optimizing, some skeleton joint has to
perform a complete turn. It is thus possible to eliminate this problem by
enforcing joint limits during the optimization process (cf. chapter 12).

A softer way to prevent this issue is to add an energy term to the opti-
mization based on the geodesic coordinates λ: E(λ) = ||λ||2. In practice, for a
Gauss-Newton-like solver, this amounts to adding a weighted equation λ = 0
to the least-squares problem. Such potential energy will act as a spring pre-
venting the geodesic coordinates from going too far from the origin, which
corresponds the mean pose. We have found this approach to be sufficient
when solutions are close to the poses in the training set (as in the compres-
sion application presented in chapter 9), but not in general IK manipulation
where angular limits are needed. Of course, a rest pose different from the
mean pose can also be defined this way.

In the case of an ill-posed IK problem (less constraints than DOFs), this
potential energy provides a simple and efficient regularization term, by drag-
ging the solution towards the mean pose.

2 exp ((α+ 2π).v) = exp(α.v)
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Jacobian Singularities Since the Jacobian for standard articulated body is
singular at some configurations3, the reduced pose model necessarily ex-
hibits these singularities. Near singular points, the Jacobian matrix exhibits
very small, but non-zero singular values, corresponding to directions diffi-
cultly reachable due to structural constraints. If we write the Singular Value
Decomposition (SVD) of the Jacobian matrix as J = USV T , where U, V are
orthogonal matrices and S is positive diagonal, the normal equations be-
come:

V S2V T
︸ ︷︷ ︸

K

.∆x = JT .e(g)

This writing shows the instabilities caused by small eigenvalues in S,
since the inverse matrix K−1 = V S−2V T may exhibit very large eigenvalues.
The Tikhonov regularization of the above system (damped-pseudo inverse,
see 6.3) alleviates this problem, resulting in an inverse matrix of the form:

K−1 = V
(
I + S2

)−1
V T

It is worth noting that in practice, enforcing angular joint limits can ef-
ficiently decrease instabilities, since most joints in the skeleton can not get
past singularities (think of knees or elbows). Angular limits will be treated in
more details in chapter 12. Still, in order to cope with this problem, we have
found the Levenberg-Marquardt strategy of damping to be effective in order
to prevent the character reduced state from reaching singular points.

3 e.g. when the arm and the forearm become aligned



Chapter 9

Application to Motion
Compression

We now propose an evaluation of the PGA-based IK algorithm using a novel
motion compression algorithm. The compression problem provides an in-
sightful way of measuring the expressive power of a motion model, as it both
evaluates how compactly a pose manifold can be encoded, and how well it
can reconstruct actual motions.

9.1 Previous Work

We begin this chapter with the previous works in the motion compression do-
main. We then develop existing motion metrics for evaluating motion qual-
ity. Finally, we review non-linear multi-resolution data analysis.

9.1.1 Motion Compression

Though recent works on motion capture data compression can be found,
the problem of motion compression has been mainly focused on animated
meshes compression so far: those high-dimensional data often present high
spatial and temporal coherence that can be exploited to reduce the data size.
[Len99] detects parts of the mesh with rigid motion to encode only the trans-
formation and the residuals. Correlations that may exist in parts of the mov-
ing object have also been exploited through the use of PCA [SSK05] to com-
press the mesh vertices.

Skeleton motion also exhibits such cross-limbs, or spatial correlations. These
are mainly exploited in optimization frameworks as they allow for search
space dimension reduction. [SHP04] apply PCA on a group of similar mo-
tions in order to synthesize motion close to the learning space. Unfortunately,
the computational benefits of dimension reduction are not exploited during
the IK phase, contrary to our work. [GMHP04] use a probabilistic latent vari-

95
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able space to perform inverse kinematics that preserves stylistic properties.
This method requires heavy computations, both during pre-processing and
on-line. [LM06] detect motion segments in which joints positions lie in a
reduced linear subspace and use PCA to reduce the dimensionality for com-
pression purposes. However, transitions between models might result in ar-
tifacts unless special care is taken.

Figure 9.1: Automatic wavelet basis selection for motion capture compres-
sion, by [BPP07].

Motion capture data inherently possess temporal coherence which can be
exploited to achieve compression: [LM06] use spline key-framing to com-
press the PCA projections of markers, per motion segments. [Ari06] uses
splines to represent global markers trajectories. The control points for a
whole motion database are then compressed using clustered PCA. In both
cases, working with global marker positions requires an additional pass of
optimization to keep the bone length constant across the synthesized mo-
tions. Other methods use rotational data: [BPP07] adapt standard wavelet
compression on joint angles by automatically selecting the basis elements in
a way that minimizes reconstruction error (cf. figure 9.1). However, high
compression ratios can result in undesirable reconstructed paths due to the
use of Euler angles. All these works perform an additional quantization pass
to further improve compression ratios.

Any lossy motion capture compression method, being orientations-based
or positions-based, introduces errors that are likely to result in various per-
ceptual artifacts, such as foot skating, which greatly penalizes the visual qual-
ity of synthesized motions. This artifacts are usually corrected using IK tech-
niques. However, doing so might alter the stylistic properties of initial mo-
tion, therefore a style-based IK algorithm [GMHP04] might be required. Un-
fortunately, these algorithms are computationally expensive and require sig-
nificant amounts of data.
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9.1.2 Non-Linear Signal Processing

As mentioned earlier, two natural ways of compressing motion data are to
exploit both temporal and spatial coherence in the motion of parts of the
skeleton. To achieve this, one typically uses multi-resolution and dimension
reduction techniques. While well-known theoretical frameworks for these
are available in the case of data lying in a linear space (such as wavelets,
PCA), their extension to non-linear spaces (for instance, the space of rota-
tions SO(3) is not trivial and is a recent field of research. Unfortunately, to
our knowledge, no motion compression method addressed the special ge-
ometry of the rotation group during data processing. Since we have already
reviewed non-linear statistic tools in 7.3, let us now turn to multi-resolution
analysis.

Early examples of structure-preserving computations in the rotation group
include the well-known unit quaternion SLERP [Sho85] used for interpo-
lating rotations, where interpolation is performed along great circles of the
quaternion unit sphere S3. [KKS95] proposes a generalization of Euclidean
splines for unit quaternions, by reformulating classical algorithms in terms
of Lie group operations.

[LCR+02] present a construction scheme for general time-domain filters,
again respecting the unit quaternion sphere structure. [LS01] derive a multi-
resolution scheme that allows editing, blending and stitching of motion clips.
A potential application to motion compression is mentioned, though not de-
veloped. [RDS+05] generalize this scheme to symmetric Riemannian mani-
folds using exponential and logarithmic maps. This scheme can be seen as a
special case of the lifting scheme [Swe98] algorithm, an alternate formulation
of classical wavelets. We will give more details on this in 9.2.2

9.1.3 Motion Evaluation Metrics

As with any lossy compression system, a central problem with motion cap-
ture data compression is the error metric used to evaluate the quality of the
results. The problem in this case is that the metric should take perceptual
features into account. While it is commonly accepted that the standard L2

norm over markers positions is a weak indicator of the perceptual similarity
of two animations, few works proposed efficient, alternative metrics. [RP03]
propose a study of user sensitivity to errors considering only ballistic mo-
tions. [RPE+05] try to evaluate the natural aspect of an animation. To do so,
3 classes of metrics are distinguished:

• Heuristic rules, that penalize the score of an animation when violated
(e.g. physical laws)

• Perceptual metrics that highlight artifacts noticed by users (e.g. foot
skating)
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• Classifiers-based metrics trained on large data sets

The first two usually fail to quantify the natural aspect, or the style of an
animation, but are good at detecting precise artifacts. The latter is based on
the assumption that a human will perceive a motion as natural if it has al-
ready been seen a lot of times. On the contrary, an unusual motion will be
perceived as unnatural. Such metrics often detect stylistic closeness success-
fully, but are highly dependent on the data set used for the training: they will
fail for a natural motion that is not in the data set. Moreover, local physical
anomalies or artifacts are often not detected. As a matter of fact, finding an
accurate and robust metric for human motion perception remains, to the best
of our knowledge, an open problem.

9.2 Proposed Method

9.2.1 Motivations - Overview

We now give an overview of our motion capture data compression method.
Most approaches to human motion compression exploit global markers posi-
tions to achieve compression. While this has some advantages, such as speed
and the use of well-known frameworks, the biggest drawback is that the con-
stant bone-length of the skeleton cannot easily be guaranteed, which can in-
troduce undesired limbs deformations. A post-processing pass is needed for
this constraint to be enforced. Yet, this additional process can itself introduce
artifacts. We want to address this problem by working on orientations rather
than positions. However, because of the hierarchical nature of the skeleton,
even slight errors in reconstructed orientations can lead to significant posi-
tions errors for end-joints. The most notable artifact of this kind is probably
foot skating, which greatly penalizes the perceptual quality of synthesized
animations.

We intend to work around this by building a PGA-based pose model from
an animation clip: this model allows us to synthesize poses that match given
end-joints constraints, while staying close to the input data, using the PGA-
based IK algorithm presented in 8.2.2. All that remains to do is to compress
the end-effector and root trajectories, using temporal coherence. Since both
the root trajectory and orientation are to be compressed, we use the multi-
scale representation by [RDS+05] for simplicity, as it applies to both vector
and rotational data.

Starting from an uncompressed motion capture composed of m ∈ N sam-
ples, we compute the PGA of the pose samples, keeping only the leading
principal geodesics. The data associated with this reduced model are the
pose intrinsic mean and the k leading principal geodesics, where k is user-
selected or automatically adjusted based on reconstruction error.
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Figure 9.2: Flow diagram for the compression pipeline

This model is then used with the IK algorithm presented in to synthesize
poses that both match end-joints constraints and are close to the input data.
Given this pose model, we only have to store the compressed end-joints tra-
jectories as well as the root joint positions and orientations, also compressed,
in order to recover the (approximate) motion using IK. The whole compres-
sion/decompression pipeline is presented on figure 9.2.

9.2.2 Multi-Resolution for Trajectory Compression

Let us now describe the multi-scale representation used for trajectory com-
pression. As a particular case of the lifting scheme [Swe98], the multi-scale
representation for manifold data introduced by [RDS+05] can be summed up
as follows. In the general case, let D be the set of data we want to represent
in multi-scale:

• D is first partitioned into two sets, A and B
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• Elements of A are used to predict the data in B, using a prediction
operator

• The differences between the predictions BA and the actual B elements
form the details

The process is then iterated over the set A until there are no data remain-
ing. By doing so, one creates a collection of decreasing-size Levels of Details
(LODs). This “pyramid” is the multi-scale representation of the original data.
For this representation to be useful in compression, one generally wishes to
partition the data so that the prediction step is as accurate as possible. In that
case, the details needed to correct the prediction are small and can hence be
omitted with few errors. For instance, in the case of data presenting temporal
coherence, the partition can be achieved by a simple sub-sampling, and the
prediction using a smooth interpolation.

Reconstruction Given a LOD pyramid, the initial data can be recovered by
successive prediction/correction steps from the coarsest to the finest LODs,
possibly omitting finest LODs in compression applications.

Rotations

In the case of time-dependent orientation data, D can be represented by a
collection of rotations q = (qi)1≤i≤m, where m is the number of samples. In
order to exploit the temporal coherence, we simply sub-sample the data by a
factor 2 to partition the data.

Instead of using the tangent spline interpolation described in [RDS+05]
for the prediction step, we use the quaternion splines proposed by [KKS95].
We have found the latter to produce more consistent results since the interpo-
lated path does dot depend on the point considered to perform the tangent
interpolation, as it its the case in [RDS+05]. [KKS95] initially transform an
Euclidean spline:

f(t) =

n∑

i=1

pi.bi(t)

where bi : R→ R are the spline basis functions, to the equivalent cumula-
tive form:

f(t) =
n∑

i=1

∆pi.b̃i(t)

where ∆pi = pi − pi−1, ∆po = p0, and the modified basis functions b̃i
are defined accordingly. This serves as the basis for the following quaternion
curves:
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f(t) =
n∏

i=1

∆q
b̃i(t)
i

where ∆qi = qi−1
−1qi, ∆q0 = q0, and qx = exp (x log(q)) for x ∈ R. It

should be noted that these quaternion splines only make use of the Lie group
structure on the unit quaternion sphere S3, therefore they can be extended to
other Lie groups such as SO(3) and R

3 in a straightforward way.
Coming back to the multi-scale representation of the root orientations, we

use such rotation splines with Catmull-Rom basis function between consec-
utive points at the lower LOD to predict the points from the upper LOD. The
prediction error (i.e. details) is stored as a 3-vector:

log
(
qpred

−1.qreal
)

In the end, the root orientations are decomposed as a pyramid of 3-vector,
with the finest LODs possibly omitted for compression.

We could also have used simple SLERP [Sho85] prediction between sam-
ples (as in [LS01]). However, this leads to a piecewise SLERP reconstructed
signal when omitting LODs, which presents discontinuities of the first deriva-
tives that strongly penalize the visual quality of the result. Instead, the use of
quaternion spline interpolation results in a smooth reconstructed signal even
in the case of missing data.

9.2.3 Putting Everything Together

After the principal geodesics have been extracted from the input motion us-
ing approximate PGA, global end-joints trajectories can be compressed us-
ing any linear compression method. The root orientation is eventually com-
pressed using the multi-scale representation presented in 9.2.2. For the sake
of consistency, our implementation uses the presented multi-scale scheme for
both orientations and positions, but any suitable temporal coherence-based
compression technique could work.

Decompression The decompression phase consists in decompressing the
global trajectories as well as the global root orientation, then expressing the
end-joints positions in the root joint frame, and eventually performing the
PGA-based IK algorithm to recover poses.

Data Size

Let us now give an estimation of the data size needed to store an animation
using our technique. Each of the k geodesics kept after the PGA is a vector
of R3n, which is roughly the size of one motion frame. The mean value of
the inner joints can also be stored as a vector of R3n using the exponential
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map. The data needed for the PGA reconstruction can hence be stored in a
sPGA = (k + 1)× 3n matrix. In most of our experiments,

The global root orientations and positions as well as the 5 end-joint po-
sitions are compressed by a factor 2p by omitting p levels of details: each
time we remove one level, we divide the data size by two. All those trajec-
tories together can be encoded in a straj = 3(2 + 5) × m

2p matrix. In most of
our experiments, due to the frequency of motion capture sampling (usually
120 Hz), using p = 3 (thus compressing trajectories by a factor 8) did not
introduce noticeable errors on end-effector trajectories, unless very quickly
changing behaviors were present in the motion. Of course, for lower sam-
pling rate, the temporal coherence is lower as well, and so is the expected
temporal compression.

Given an initial animation with size:

sorig = m× 3(n+ 1) = O(m× n)

whereas the compressed version using our algorithm, keeping k geodesics,
will have the size:

scompressed = sPGA + straj = O(m+ n)

Examples of compression ratios obtained using our technique can be found
in section 9.3. Before presenting the results obtained with our method, let us
explicit what we are the main benefits of an approximate PGA over a PCA of
the standard exponential maps for poses parametrization, since the two tech-
niques might seem similar. Even in its approximate form, using PGA leads to
a coordinate-invariant and distortion-minimized linearization of the data at
the intrinsic mean. This property improves the quality of the statistical anal-
ysis since it only depends on the input motion, and not on its parametrization
(e.g. the choice of the reference pose).

Intuitively, even if the considered data are inherently non-linear, there
exists a data-driven chart of the manifold in which the situation is much im-
proved. In this chart, using linear statistic approximation makes sense.

9.3 Results

We present here the compression rates of our algorithm on selected motions
from the Carnegie Mellon University (CMU) Graphic Lab motion capture
database available online1. We chose motions with different characteristics
of length, diversity, and dynamics as shown on table 9.1.

As stated in section 9.1.3, no really robust and efficient metric is avail-
able to assess the quality of the reconstructed animations. However, for the
sake of results comparisons, we used a distortion rate as the one defined in

1 http://mocap.cs.cmu.edu/
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ID Subject/Trial Description #Frames

1 09/06
Running,

short
141

2 17/08
Walking,

slow
6179

3 15/04
Various,

dancing, boxing
22948

4 85/12 Breakdance 4499
5 17/10 Boxing 2783

Table 9.1: Motion capture clips used in our experiments

[KG04a] and [LM06] to evaluate the quality of the reconstruction. This dis-
tortion rate is defined as:

d = 100
‖A− Ã‖

‖A− E(A)‖

where A is the m × 3n matrix containing absolute marker positions at each
frame for the original motion, Ã is the same matrix for the decompressed
animation, and each row of E(A) contains the mean marker positions with
respect to time.

Table 9.2 shows the obtained compression ratios and distortion rates for
different combinations of geodesics numbers and trajectories levels of details.
Table 9.3 shows the results obtained by [LM06], who holds the best compres-
sion rates at the time of writing. Note that we always used 5 end-joints in
our tests, but more could be used if a higher quality is required. As expected,
our method works best when the spatial and temporal coherence is high: a
rather slow walking motion can be compressed around 180 times with few re-
construction errors, whereas a highly dynamic breakdance sequence is only
compressed 118 times for about the same distortion rate. This table shows
that our technique allows substantial compression rates improvement over
existing techniques, with limited distortion.

9.3.1 Discussion

We proposed a compression algorithm that takes the special geometry of ori-
entation data into account. The compression is achieved by storing a com-
pact, reduced pose-model alongside compressed end-effector and root tra-
jectories. Poses are recovered using our reduced-dimension IK algorithm
with decompressed end-effector trajectories. This method allows to obtain
high compression ratios, without resorting to quantization as it is the case in
concurrent works.
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ID 1 2 3 4 5
#Geodesics 6 12 17 15 12
#LOD (root) 4/9 8/14 12/16 9/14 8/13

#LOD
(end-joints)

4/9 8/14 12/16 9/14 9/13

Compression
ratio

1:18 1:182 1:69 1:97 1:61

Distortion
rate (%)

0.36 0.049 1.55 0.56 0.49

Decompression
time

(msec/frame)
7.88 16.2 30.6 20.42 15.97

Table 9.2: Compression rates, distortion errors and decompression times
for the selected motions using our technique. Different combinations of
geodesics numbers and trajectories level of details are presented

Sequence
Compression

ratio
Distortion

rate

Decompr.
time

(msec/frame)

Jumping,
bending,

squats
1:55.2 5.1 0.7

Long
breakdance

sequence
1:18.4 7.1 0.7

Walk,
stretches,
punches,
drinking

1:61.7 5.1 0.7

Walk,
stretches,
punches,
kicking

1:56.0 5.4 0.7

Table 9.3: Compression rates presented in [LM06] using PCA on motion seg-
ments. We achieve substantial compression rates improvement with fewer
distortion, though our decompression pass takes longer.
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Figure 9.3: 3 animations from the CMU database compressed using our tech-
nique

Pose Model When too few geodesics are used in the IK, the reachable pose
space gets too small and the synthesized poses sometimes fail to match all
the given constraints. On the contrary, once enough geodesics have been se-
lected, further increases on that number only result in a slower optimization
time. In our experiments, 10 to 15 geodesics are sufficient in most cases to
yield a large enough pose space. For long motions in which clear distinct
motion behaviors occur, a segment-based approach similar to [LM06] may
be used. This could improve the accuracy of each different pose model, re-
sulting in more natural poses for each behaviors, and possibly better condi-
tioning the Jacobian matrix used in the optimization. The transition between
different models would have to remain smooth however, which is not an easy
task.
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End-Effectors As expected, when the compression for the end-joints tra-
jectories is set too high, artifacts start to appear as the feet contacts on the
ground are smoothed too much. In the same way, too high compression over
the root joint positions and orientations causes the skeleton to slide, as hung
in the air. The acceptable compression ratio for those trajectories highly de-
pends on the dynamics found in the animations. In any case, quantization
may be used to compress the trajectories reconstruction errors while control-
ling additional overhead.

Outliers Since we are performing a statistical analysis to represent the mo-
tion poses, strong outlier poses will be more difficult, if not impossible, to
reconstruct correctly. In practice, such a situation could arise if the character
holds a very specific pose for a very short amount of time with respect to the
duration of the motion. We did not encounter such cases in our experiments.

Computational Cost The compression time depends on the length of the
animation, as it only involves the intrinsic mean of pose data calculation,
and a PCA of the linearized rotations in the tangent space at that point. In
practice, it is very inferior to the decompression time, during which an op-
timization is performed for each frame to reconstruct poses given end-joints
constraints. Our implementation was realized in C++ on a Dell workstation,
with dual 2.6 Ghz CPU and 4 GB memory.

9.3.2 Conclusion

We presented a novel method for human motion capture data compression
exploiting both temporal and spatial coherence, to achieve high compres-
sion ratios with few perceptual distortion. Our experiments show that the
use of a compact pose model allows to successfully recover poses given only
end-joints positions. As the end-joints and root joint trajectories present high
temporal coherence, they can also be compressed in order to further improve
compression rates. A particularly appealing aspect of our technique is that
the pose model may also be used for editing compressed motions by employ-
ing the very same IK algorithm.

Though the inverse kinematics algorithm we presented is able to run in
real-time on a modern machine, the decompression times are still longer than
for other motion capture data compression techniques. However, our im-
plementation could still be improved. The compression technique used for
end-joints trajectories could also be enhanced to better reconstruct sharp fea-
tures, such as foot contacts. The use of a suitable wavelet compression could
lead to better results. We also did not exploit the linear correlations present
in the end-joint positions: applying a compression technique similar to the
one presented in [LM06] to these markers could even improve compression
performances, either allowing to further reduce data size, or to increase the
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number of constraint joints in the IK. If more quality is required, quantization
could also be employed to improve the reconstruction of joint trajectories by
compressing the errors with controllable size overhead.

⋆ ⋆ ⋆

Finally, using different metrics in the optimization, as presented in the
previous chapter, could lead to improved results by penalizing excessive ki-
netic energy, or angular momentum. In order to produce better quality an-
imations, some dynamics elements could be automatically inferred by the
animation algorithm by formulating and simulating the laws of physics for
our reduced pose model. This is the subject of the next part of this thesis.
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Chapter 10

Previous Work

Having described how to use a PGA-based reduced pose model in a kine-
matic animation context, we now move on to the physically-based animation
of a character, using this reduced model.

We begin this part with a review of existing physically-based character
animation techniques, modal reductions and contacting systems in chapter
10. In chapter 11, we use the reduced pose model as the generalized coor-
dinates in the Lagrangian formulation of mechanics, in order to obtain our
model Lagrangian. We derive a velocity-level, explicit time integrator for
this model in section 11.1, based on geometric variational integrators. Since
our time integrator is explicit, we propose a damping scheme inspired by
the Levenberg-Marquardt algorithm in 11.2, in order to improve stability. A
geometric, data-driven angular limits learning procedure, and the associated
kinematic constraints are proposed in 12.

10.1 Physical Models for Articulated Bodies

Modeling the complete physical behavior of the entire human body for ani-
mation is challenging, due to the complexity of the structures involved, and
the tight physical coupling between them. Although it has some applications
in biomechanics and motion pictures, the vast majority of character anima-
tion techniques builds on simplified robotics representations, and models the
human body as a collection of articulated rigid bodies, connected using ide-
alized joints.

The problem of animating such articulated rigid bodies has received ex-
tensive attention in the past, mostly because rigid bodies often provide a
good approximation of solid objects, and the rigid approximation allows for
fast numerical simulations, as we will see. We will not review the classi-
cal physics theory behind rigid bodies animation, as it can be found in most
physics or robotics books (see [MSZ94] for instance). Instead, we will focus

111
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on the different approaches for computing the motion of rigid objects, in the
context of animating an articulated character.

10.1.1 Problem Formulation

There are two main strategies for animating articulated rigid bodies:

• By assuming that all the articulated bodies are a prioriindependent, then
computing and applying constraint forces in order to restrict their global
degrees of freedom

• By assuming that a complete description of the degrees of freedom of
the system is available (taking mechanical constraints into account) and
expressing the laws of dynamics in this setting

The first alternative starts from the Newton-Euler equations of motion
for rigid-bodies, and seeks constraint forces through the computation of La-
grange Multiplier, giving their name to this approach. The second is known as
the reduced coordinates approach, and follows the formalism of the Lagrangian
mechanics. We quickly present these two strategies and how suitable they
are for our purposes.

10.1.2 Maximal Coordinates

The Newton-Euler equations describe the equations of motion for a single
rigid body. They are given by [MSZ94]:

(
I 0
0 m.I

)(
ω̇b

v̇b

)
+

(
ωb × Iωb

ωb ×m.vb

)
=

(
τ
f

)
(10.1)

wherem is the total mass of the rigid body, and I is the body-fixed inertia
tensor. ω and v are respectively the angular and linear part of the body-
velocity, and τ , f are respectively the angular and linear part of the body-
fixed net external force. In computer applications however, equation (10.1) is
often integrated using an explicit time stepping scheme of the form [Bar92]:

Mtv̇t+1 = ft (10.2)

where vt+1 gathers the velocity at time t+1 of each body,Mt is the (block-
diagonal) mass-inertia tensor, and ft gathers the external and inertial forces
at the previous time-step. We indicate the time step corresponding to each
quantity with subscripts, however we will sometimes omit them for clarity,
once they have been introduced.

Under this formalism, it is possible to enforce kinematic constraints Jt v̇t+1 =
bt on the acceleration, where Jt is a constraint matrix, and bt holds the cor-
responding constraint values, both computed at time t. To do so, the asso-
ciated constraint forces JT

t λt+1 are added to the system, where λt+1 are new
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unknowns called Lagrange Multipliers. This leads to the following system of
constrained equations, where v̇t+1 and λt+1 are the unknowns:

Mt v̇t+1 = ft + JT
t λt+1

Jt v̇t+1 = bt

[Bar96] showed that using this formulation and under certain hypothesis
on the constraints, this system can be solved in linear-time. More precisely,
when the constraint graph for the system is acyclic, a sparse Cholesky factor-
ization and solving of this linear system can be performed inO(m+n), where
n ∈ N is the number of degrees of freedom andm ∈ N is the number of scalar
constraints.

Working at the force/acceleration level has a number of drawbacks, the
most notables being:

• The J matrix and b vector can be difficult to compute as they usually in-
volve second-order derivatives even for simple holonomic constraints
(i.e. of the form h(q) = 0, where q are the DOFs)

• The system may fail to have a solution in the presence of frictional con-
tact constraints (cf. the Painlevé paradox, see [AH04])

A common way to work around these issues is to formulate the system
dynamics at the velocity/impulses level instead, as in [AP97, CP03, Erl07].
This is generally achieved by using forward finite differences:

vt+1 ≈ vt + v̇t+1.dt

Plugging this equation into the dynamics (10.2), and expressing constraints
at the velocity level (Jv = b) leads to a system of the following form:

Mv = f + JTλ

Jv = b

Here, f is an impulse containing the sum of the momentum and the exter-
nal/inertial impulses at the previous time step:

f =Mvt + dt.f extt

and the JTλ are now constraint impulses, with λ accounting for the dt.
Due to the fact that the constraints are not enforced directly by the system

degrees of freedom, a numerical drift can (and most probably will) happen as



114 CHAPTER 10. PREVIOUS WORK

the constraints are only maintained at the discrete time samples. Therefore, a
constraint stabilization pass usually has to be performed in order to compen-
sate for this problem, as for instance the post-stabilization method [CP03] for
holonomic constraints (cf. figure 10.1).

Figure 10.1: Unstabilized simulation of a swinging pendulum. Constraint
post-stabilization is used to correct such constraint drift (from [CP03]).

10.1.3 Generalized Coordinates

Instead of formulating the Newton-Euler equations for the individual bod-
ies, then applying constraint forces to it, the generalized coordinates approach
directly formulates the system dynamics in a coordinate system encoding the
constraints, as for instance an angular parametrization of a pendulum. In
this setting, the equations of motion are derived from a variational principle
describing how the system DOFs behave between time-steps, in relation to
energy variations. Letting Q be the configuration space of the system, the to-
tal system energy is summarized by a smooth function called the Lagrangian:

L : TQ→ R

This Lagrangian is used to obtain the equations of motion in a systematic
way, usually through the Euler-Lagrange equations. We quickly review this
process now.

Lagrangian

This approach tightly follows the Lagrangian formulation of classical mechan-
ics, which generalizes the Newton-Euler equations of motion in any coordi-
nate system. To do so, the kinetic (T) and potential (V) energies are grouped
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together forming the Lagrangian, expressed in terms of the generalized coordi-
nates q ∈ Q, and generalized velocities v ∈ TqQ by:

L(q, v) = T (q, v)− V (q, v) ∈ R (10.5)

Euler-Lagrange Equations

The Hamilton principle states that in the absence of external forces, the motion
of the system on the time interval [t1, t2] is given by the critical points of the
following action functional S:

S(q) =

∫ t2

t1

L(t, q(t), q̇(t)).dt (10.6)

Equivalently, these critical points can be expressed as a differential equa-
tion, known as the Euler-Lagrange equations:

d

dt

∂L

∂q̇
=
∂L

∂q

Several numerical schemes have been proposed to integrate this differen-
tial equations, with different orders of accuracy and computational efficiency.

For articulated rigid-bodies, one of the most widespread method for solv-
ing the associated time-discretized equations of motion is the linear-time al-
gorithm for acyclic articulated chains by [Fea87]. However, adapting this
algorithm for our purposes is far from immediate.

More generally, using the Euler-Lagrange equations automatically results
in second-order differential equations, which implies that several mappings
have to be derived twice. Instead, Hamiltonian formulations of mechanics
result in more equations, but only first-order. Recent advances in geometric
integrators provide such formulations.

Geometric Integrators

Geometric integrators for a differential equation preserve a certain property
of the exact solution, or flow. This property usually comes as some kind of
invariant, or symmetry, such as for instance energy conservation in a closed
system.

Symplecticity In the case of the Euler-Lagrange equation, symplecticity is an
important property of the exact flow that is preserved by symplectic integra-
tors. Without going into details, symplectic flows preserve the volume of any
part of the phase space, which is a coordinate change from position/velocity to
position/momentum. This volume conservation is related to the energy con-
servation in a closed system: by design, symplectic integrators almost pre-
serve the energy of such system (for a time-independent Lagrangian), while
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non-symplectic ones often exhibit so-called energy drift, as it is the case for the
explicit/implicit Euler integrator (see figure 10.2).

(CC BY-SA Maksim)

Figure 10.2: Phase space (position, momentum) trajectories for a simple pen-
dulum, using different integrators. Symplectic Euler and Implicit Midpoint are
symplectic integrators, resulting in stable, cyclic orbits for this conservative
system, unlike Explicit/Implicit Euler (i.e. energy drift).

Symplectic integrators, even explicit ones, usually allow for larger time
steps during simulation, as they better capture the structure of the underly-
ing differential equation.

Discrete Hamilton Principle While deriving a symplectic integrator for
the Euler-Lagrange equation is not an easy task in general, Marsden et al.
[BRM09, KYT+06, KCD09] showed that symplectic integrators with any or-
der of accuracy can be obtained by discretizing the Hamilton principle instead
of the Euler-Lagrange differential equations. The basic idea is to derive an ap-
proximating quadrature Ld of the action functional:

Ld(qk, vk+1) ≈

∫ tk+1

tk

L(t, q, q̇).dt

Applying the Hamilton principle to this discrete action actually defines a
symplectic integrator. So instead of a non-symplectic integrator integrating
the Euler-Lagrange equations for the exact Lagrangian, this method system-
atically obtains a symplectic integrator for an approximation of the action
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functional. The accuracy of this scheme depends on the order of accuracy of
the quadrature rule.

Hamilton-Pontryagin Principle Lagrangian and Hamiltonian formalisms
can be unified through the Hamilton-Pontryagin (HP) variational principle
[KYT+06], which treats position and velocities as a prioriindependent quan-
tities, using momentum p as Lagrange multipliers to enforce the constraint
q̇ = v:

δ

∫ T

o

L(q, v) + pT (q̇ − v) .dt = 0 (10.7)

The same methodology (approximating quadrature) can be applied to
this variational principle in order to obtain symplectic integrators. The Hamil-
tonian approach avoids second-order differential equations as it is the case
in the Lagrangian formalism, but results in (usually, twice) more first-order
equations. The Legendre transform classically needed to derive the Hamilto-
nian formulation from the Lagrangian one, is implicit in the above HP prin-
ciple.

Variational HP integrators systematically provide symplectic update rules
for q, v, p as a non-linear system, that can be cast as an optimization prob-
lem, under some assumptions on the Lagrangian [KYT+06]. In contrast, the
Euler-Lagrange equations are second-order and must be discretized using fi-
nite differences to obtain non-linear, and usually non-symplectic, q, q̇ update
rules.

Finally, this integrator family naturally generalizes to Lie group config-
uration spaces, as shown in [BRM09, KCD09], which will be useful for our
purposes.

10.1.4 Constraint Systems

Here we quickly review the general problem of solving kinematic constraints
and contacts, since these are essential feature of a physical simulation, and
will be used in the next part on character control. In all this section, we will
assume that the dynamics of our system are given by the following velocity-
level linear time-stepping scheme:

Mv = f (10.8)

assuming that M and f are given, M is a Positive Semi-Definite (PSD)
matrix, and we are solving for the velocity v.

Bilateral Constraints

As we have seen in 10.1.2, the bilateral velocity constraints Jv = b can be
enforced by solving the following linear system:
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Mv = f + JTλ (10.9)

Jv = b

When J has full rank and M is invertible, the above system can be re-
duced to the smaller, following system [Bar96]:

JM−1JTλ = b− JM−1f

One can notice that the system (10.9) describes a Lagrange point for the
following convex Quadratic Program (QP):

v⋆ = argmin
Jv=b

1

2
vTMv − fT v

This QP actually reduces to a linear-least squares problem, which has per-
haps a much more intuitive geometric interpretation when written as:

v⋆ = argmin
Jv=b

||v −M−1f ||2M

In other words, the bilateral constraint problem is equivalent to project-
ing the unconstrained velocity M−1f on the (convex) linear space Jv = b,
according to the kinetic metric ||v||2M = vTMv (cf. figure 10.3).

Figure 10.3: Bilateral constraints solving as a M -orthogonal projection of the
unconstrained velocity M−1f on the feasible set Jv = b.

Another equivalent formulation is to say that the velocity correction vc =
M−1JTλ = v −M−1f should have a minimal kinetic energy.

Unilateral Constraints

The case of unilateral constraints Jv ≥ b differs in that the system to solve
is no longer linear, but exhibits a complementarity constraint, ensuring that no
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impulse can occur when the contacting bodies are separating [Bar94, AP97].
Conversely, no relative velocity should occur when a contact is active (i.e. has
a non-zero contact impulse, given by the corresponding λ):

Mv = f + JTλ

Jv ≥ b

0 ≤ Jv − b ⊥ λ ≥ 0

The same manipulations as in the bilateral case show that λ must satisfy:

0 ≤ JM−1JTλ− b+ JM−1f ⊥ λ ≥ 0

which is known as a Linear Complementarity Problem (LCP) [Cot09].
LCPs usually arise as the Karush-Kuhn-Tucker (KKT) conditions for QPs
[BV04]. Actually, the above LCP characterizes the KKT point for the follow-
ing convex QP:

v⋆ = argmin
Jv≥b

1

2
vTMv − fT v

Again, this QP can be reformulated in a somewhat more intuitive fashion:

v⋆ = argmin
Jv≥b

∣∣∣∣v −M−1f
∣∣∣∣2
M

Here again, we look for the M -projection of the unconstrained velocity
onto the convex set of admissible velocities.

Figure 10.4: Unilateral constraints as the M -projection of the unconstrained
velocity M−1f on the feasible set Jv ≥ b (a convex polytope).

Frictional Contacts

Energy dissipation is commonly expressed through a viscous damping, i.e.
a force in −αv where α ∈ R is the damping factor. However, while this
kind of damping is very easy to compute and apply, it does not model dry1

1 Dry friction models attempt to describe the two distinct sticking and sliding phases.
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frictional behavior correctly. Therefore, the well-known Coulomb’s friction
law is usually preferred, which unfortunately considerably complicates the
dynamics computation.

Coulomb’s Law Dry frictional contacts following Coulomb’s law are much
more difficult to handle than all that precedes, due to the disjunction of cases
it models. Coulomb’s law states that the reaction force F should oppose the
motion at the contact point, and be part of the so-called friction cone:

FT ≤ µFN

where FT , FN are respectively the tangential and normal component of
the contact force, and µ ∈ R

+ is the material-dependent friction coefficient
determined experimentally. There has been extensive literature on this prob-
lem for the last decades, both from the theoretical and practical points of
view.

While recent research work [BDCDA11] proposed to solve the exact Coulomb’s
law friction problem, by formulating the solution as a non-smooth root-finding
problem, the overwhelming majority of authors propose to use a linearized
approximation of Coulomb’s cone, enabling the use of Linear (LP) and Quadratic
Programming algorithms instead of the more expensive Second Order Cone
Programming (SOCP) ones.

Linearized Friction Cone When using a linearized friction cone, the fric-
tional contact problem can be modeled as a (non-symmetric) LCP [AP97].
This asymmetry can be explained by the coupling between normal and tan-
gential responses, which makes the full problem non-convex. This is a serious
theoretical issue since it suggests a potentially exponential time for solving is
needed (see [KSJP08] for details).

Figure 10.5: House of cards simulation obtained by [KSJP08]. Maintaining
initial equilibrium for the whole structure is challenging due to the nor-
mal/tangent reaction coupling induced by Coulomb friction.

Instead of solving both tangential and normal responses together in the
same optimization problem, [KSJP08] proposed to treat them separately, solv-
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ing only tangential response assuming normal response is given, and con-
versely. Each sub-problem is this time a convex QP, (i.e. a projection on a
convex polytope), and the authors showed that this alternate projection se-
quence has the full frictional problem solution as a fixed-point. Though no
convergence proof was given, it was reported experimentally even on chal-
lenging contacting situations (card house, cf. figure 10.5).

10.2 Modal Analysis

The benefits of dimension reduction have been exploited in the context of
physically-based animation, since they allow to reduce computational re-
quirements while preserving most dynamic features of the full-dimension
simulation. As an added benefit, these techniques sometimes provide a me-
chanically orthogonal description of a system which is particularly interesting
for computational purposes.

10.2.1 Modal Dynamics

[PW89] pioneered the use of modal analysis in the context of computer graph-
ics. The basic idea of this approach is to decompose a mechanical system
with numerous, coupled mechanical degrees of freedom into an equivalent
set of mechanically-independent one-dimensional degrees of freedom, usu-
ally called modes. The set of all modes forms the modal basis which can be seen
as an alternate representation of the system DOFs.

Mechanically independent modes allow to easily compute the whole sys-
tem response as the sum of each modal response, which are typically very
fast to compute since they are one-dimensional. Modes mechanical inde-
pendence also permits aggressive parallel computations, and is therefore of
significant interest for computer animation where highly parallel Graphical
Processing Units (GPUs) are widely available.

Finally, modes can be selected according to their energetic contribution
to the whole system response, usually allowing for significant dimension re-
duction with respect to the original DOFs, while still providing convincing
dynamic behavior.

In contrast to these benefits, the main bottleneck of this approach is usu-
ally the modal basis computation, which must usually be performed offline.
In [PW89], a Finite Element Model (FEM) is linearized around some rest po-
sition, providing mass tensor M and stiffness tensor K, both being PSD ma-
trices. A bi-diagonalization of M and K is performed, resulting in a modal
basis U making modes mechanically independent. Since this process is costly,
it is usually done only once around a rest position, imposing only small dis-
placements during the simulation.
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The dimension reduction is achieved by selecting modes based on the
corresponding eigenvalues, allowing to get rid of unwanted, high frequency
modes often responsible for instabilities in explicit time integration schemes.

Figure 10.6: Several vibration modes for a tree structure computed using
modal analysis [DRBR09]

Due to its numerous advantages, modal analysis has spawned a wide va-
riety of research works ([JP02, JBP06, KJP02, DRBR09], among others) build-
ing on this basic principle, and can even be seen as the basis of more recent
work on spectral mesh processing [LZ09]. Unfortunately, such decomposi-
tions are limited to small linear displacements around some rest pose.

10.2.2 Modal Locomotion

[KRFC09] proposed an interesting extension of this technique to articulated
rigid bodies: rather than performing the modal analysis on a mesh-supported,
linearized FEM, the authors applied the modal decomposition to the dynam-
ics of an articulated rigid body around a rest pose, obtaining new mechanically-
independent angular degrees of freedom around a rest pose. This was the ba-
sis for animating locomotion behaviors as combinations of natural vibration
modes.

The core assumption of this work is that animal bodies are structured
in such a way that their natural vibration modes can be easily actuated to
produce common motion patterns, such as locomotion. Exploiting the passive
dynamics (i.e. without actuation) provided by their bodies allows animals to
obtain their most common gaits at a minimal energy cost.

Even if this kind of analysis is, again, restricted to small displacement
around a rest pose, the fact that displacement are angular allows for much
larger global character motion without noticeable visual artifacts, such as fi-
nite elements elongation in [DRBR09]. As for the dynamics however, the
mass tensor can only be considered constant in a neighborhood of the rest
pose, due to the significant non-linearities found in the forward kinematics.

Furthermore, the basis resulting from the modal analysis is highly de-
pendent on the stiffness and damping parameters chosen for the articulated
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Figure 10.7: From left to right: a dog model at the rest pose, vibration modes
extracted from the modal analysis, and modes recombination to obtain a trot
animation [KRFC09]

model. These values are difficult to set up manually, even though some au-
tomatic estimation procedures were proposed by [LHP05] when motion cap-
ture data is available.

10.2.3 Conclusion

Most existing physically-based dimension reduction techniques are based on
the modal analysis, which has two major drawbacks:

• The modal decomposition is costly and must therefore be precomputed,
making the resulting model only suitable for small-displacements, e.g.
locomotion.

• In the case of articulated rigid bodies, the joint stiffness must be known
for the modal analysis to make sense.

Instead, expressing the dynamics in our reduced pose parametrization
is not restricted to small displacements. Besides, the reduced basis we ob-
tained in 8 is not dependent on hand-chosen stiffness/damping parameters,
but only on motion capture data.

10.3 Statistical Analysis of Torques

An alternate approach featuring dimension reduction for character anima-
tion is the one followed by [YL08]. The goal of this work is to construct a
data-driven basis of torques from motion capture data, then extract the co-
ordinates corresponding to the least actuated torques. This near-unactuated
basis is later used to synthesize upper-body, physically-based perturbations
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on top of existing motion capture animations. The main assumption is that
the unactuated coordinates tend to be much more compliant, in the case of
external disturbances, than the actuated ones.

Figure 10.8: Example perturbations obtained by [YL08].

While this technique seems promising, it has several drawbacks com-
pared to expressing the dynamics in the PGA-reduced pose space:

• It requires inverse dynamics, which is challenging to setup in the case
of contacts (explaining the upper-body limitation).

• It is limited to motion perturbations.

• The statistical analysis does not provide nor exploit dimension reduc-
tion.

As we have seen, all previous methods exploiting dimension reduction
in a physically-based animation context possess inherent limitations (small
displacements, need for inverse dynamics), which leads us to express the
laws of dynamics directly for our reduced kinematic pose model instead. We
describe this process in the following chapter.



Chapter 11

PGA Dynamics

In this chapter we expose how we use the PGA-reduced pose parametriza-
tion in a physical simulation in more details. We begin by deriving the dis-
crete equations of motions based on the variational integrators described in
the previous works, to obtain an explicit time integrator. We then describe
how to include kinematic constraints in this model, and propose a new for-
mulation for joint limit constraints. Finally, we draw the parallel between
our physical modeling and the classical Gauss-Newton optimization scheme
and propose an adaptive damping scheme based on Levenberg-Marquardt
algorithm to improve the stability of our explicit integrator.

11.1 Equations of Motion

In this section we motivate and describe a time-stepping scheme for physi-
cally animating a virtual character parametrized using PGA. After a discus-
sion on the use of maximal vs. reduced coordinates, we derive a geometric
integrator based on [KCD09]. Finally, we propose an approximated, explicit
time-integrator, for use in a real-time simulation.

11.1.1 Motivation

As seen in the related work section, we are faced with two main approaches
for simulating articulated rigid bodies: maximal versus reduced coordinates.
We quickly sketch the methodology behind each of these choices, in the con-
text of a reduced pose parametrization.

Maximal Coordinates

The use of maximal coordinates seems easier at first sight as it involves well-
known discrete equations of motion for rigid-bodies. As we have seen, en-
forcing bilateral constraints results in the following linear system:

125
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Mv = f + JTλ

Jv = b

where M is the block-diagonal inertia tensor, and J are kinematic con-
straints forcing the state of the system to belong to the reduced manifold
computed using PGA. The major problem here is that we do not have a holo-
nomic parametrization of the reduced manifold, i.e. as M = f−1(0) for some
smooth function f . It is thus difficult to obtain the J matrix as the differential
of f .

Even if we had a good candidate for the J matrix, it is likely to be dense
as the very purpose of PGA parametrization is to encode full-body pose cor-
relations. Thus the resulting linear system will be both high-dimensional
and dense: if n is the dimension of the unconstrained system, and k is the
(low) number of remaining degrees of freedom, we must solve the following
(n− k)× (n− k) dense linear system:

JM−1JTλ = b− JM−1f

What is more, as the number of constraints raises, the probability of hav-
ing linearly dependent constraints (J rows) increases, which usually results
in an infeasible problem. Devising an automatic relaxation strategy can be
difficult and computationally expensive.

Another issue related to not having a holonomic description of the PGA
parametrization is that it is much more difficult to correct constraint drift in
a systematic way (as for instance using post-stabilization [CP03]). The only
solution is then to project poses onto the reduced manifold in an energy-
agnostic way, which is very likely to produce noticeable visual artifacts: the
human eye is sadly very good at noticing energy-incorrect corrections.

Reduced Coordinates

The use of reduced coordinates seems natural in our context since we already
have the reduced coordinates pose mapping as the PGA pose parametriza-
tion. In this case the constraint forces are implicit, and no constraint drift
can occur by design. However, this formalism imposes to derive dedicated
equations of motion, and notably to compute the reduced mass tensor and
Coriolis forces according to the reduced coordinates mapping. The Coriolis
forces are especially challenging to compute since they involve the second
derivative of the Jacobian.

In this context, the low-dimensionality of the PGA parametrization will
be an advantage since it will keep the computational cost reasonable while
still enforcing natural poses.
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One major drawback of reduced formulations for articulated bodies is
that errors add along the skeleton hierarchy, potentially leading to stability
issues for the bottom-most nodes. This issue is especially aggravated around
singular configurations (i.e. where the articulated body loses one degree of
freedom, as for instance when an arm is fully extended), where the numerical
stability of the Jacobian (and thus of the reduced mass tensor) is usually poor
as already discussed in 8.2.3.

Discussion

We summarize the pros and cons of each approach in the following tables
11.1 and 11.2

Maximal Coordinates
Pros Cons

• Well-known, standard rigid
body integrators

• Block-diagonal, constant mass-
matrix

• Explicit link forces available

• High dimensionality, dense
constraint system

• Numerical instability for large
amounts of constraints

• Constraint drift

• No holonomic parametrization
of reduced manifold

Table 11.1: Maximal Coordinates

Reduced Coordinates
Pros Cons

• No constraint drift by design
(when applicable)

• Low dimensionality

• Fits naturally with the reduced
pose parametrization

• Requires a dedicated physical
model and integrator

• Numerical instability near sin-
gular configurations

• Inertia forces computation,
dense mass tensor

Table 11.2: Reduced Coordinates

From these tables we conclude that in our context, the maximal coordi-
nates approach is flawed with several critical issues, the most serious one
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being that it does not take advantage of the reduced dimension properly. We
therefore opt for a reduced coordinate approach, addressing the above issues.

11.1.2 Geometric Integrator Derivation

We now derive the discrete equations of motion for a PGA-parametrized vir-
tual character. For this, we use the geometric, variational integrator method-
ology presented in [KCD09] as they generalize those by [KYT+06] to the case
of Lie groups.

Unfortunately, the results in [KCD09] assume that the Lagrangian is left-
invariant, which is not the case in our context. Furthermore, the derivations
leading to this result are a bit involved, though insightful, in our opinion.
Therefore, we now derive equations for the general case in this part.

Lagrangian Definition

We suppose that we are given a skeleton parametrization in terms of the fol-
lowing reduced configuration space:

G = SO(3)× R
3 × R

k

Its elements represent the orientation and position of the root joint, and
the k geodesic coordinates for the reduced pose model described in part III.
Note that we use SO(3) × R

3 instead of SE(3) for the root configuration for
practical reasons, since the Lie group integrators involve the derivative of the
exponential map. This expression is much easier to compute on SO(3) × R

3

than it is on SE(3) [BM95].

Kinetic Energy We assume that the body-fixed inertia tensors for the n+ 1

bones composing the skeleton are given as a PSD, block-diagonal matrix M̃
of size 6(n + 1). Let f : G → SE(3)n+1 be the forward kinematics, mapping
reduced coordinates to world bone configurations (cf. 8.2.2). The kinetic en-
ergy is defined as:

T (g, v) =
1

2
vTJb

f (g)
T .M̃ .Jb

f (g).v

where g ∈ G and v ∈ g is a body velocity. The above expression defines
the generalized mass matrix, or inertia tensor as:

M(g) = Jb
f (g).M̃ .Jb

f (g)

Discrete Hamilton-Pontryagin Principle

Let us first recall the HP principle in the vector case:
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δ

∫ T

0
L(q, v) + pT (q̇ − v) .dt = 0

where p, q, v ∈ R
n. For a Lie group configuration space G, we can restate

this principle in terms of body-fixed velocities:

δ

∫ T

0
L(g, v) + pT

(
ġb − v

)
.dt = 0

where g ∈ G, ġb, v ∈ g, pT ∈ g∗, with ġb being the body-fixed velocity,
and using the notation pT v for the natural pairing between g and g∗.

[KCD09] propose a discrete approximation of this integral (a quadrature)
in terms of a group difference map τ : G→ g (usually τ = log):

∫ T

0
L(g, v)+pT

(
ġb − v

)
.dt ≈

N∑

k=0

h.L(gk, vk+1)+p
T
k+1

(
τ(gk

−1gk+1)− h.vk+1

)

where h is the time step. We see that the group difference map is used
as an approximation of the body-velocity between two consecutive configu-
rations, so the logarithm seems like a natural choice1. We end up with the
discrete Hamilton-Pontryagin principle:

δ
N∑

k=0

h.L(gk, vk+1) + pTk+1

(
τ(gk

−1gk+1)− h.vk+1

)
= 0 (11.2)

Taking variations in g, v and p with fixed endpoints for g, and expressing
the optimality criterion results in a symplectic update rule for g, v and p. This
is what we describe now.

Variations

The calculus of variations essentially deals with deriving functionals with re-
spect to functions, whereas usual calculus derives functions with respect to
variables. While conceptually similar, the terminology changes: in the very
same way that we derive functions with respect to tangent vectors, function-
als are derived with respect to variations.

Given a smooth function of time q : R → Q, a variation of q can be seen
as a smooth function δq : R → TQ such as each δq(t) ∈ Tq(t)Q describes a
point-wise tangent vector at each q(t). For some smooth function f defined
on Q, we thus have:

δ(f ◦ q)(t) = df (q(t)) .δq(t)

1 Though for some groups, the Cayley map can be used instead as it is usually simpler to
compute
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Momentum Taking variations in p in equation (11.2) gives:

N∑

k=0

δpTk+1

(
τ(gk

−1gk+1)− h.vk+1

)
= 0

The fundamental lemma of the calculus of variations [Lei81] implies that each
of the terms in the above sum is zero, thus for all k ≤ N :

δp : τ(gk
−1gk+1) = h.vk+1 ∈ g (11.3)

Velocity Taking variations in v in equation (11.2) gives:

N∑

k=0

∂L

∂v
(qk, vk+1).δvk+1 − p

T
k+1δvk+1 = 0

N∑

k=0

(
∂L

∂v
(qk, vk+1)− p

T
k+1

)
.δvk+1 = 0

The same argument implies that for all k ≤ N :

δv :
∂L

∂v
(qk, vk+1) = pTk+1 ∈ g∗ (11.4)

Position Taking spatial variations in g (see 5.2.5), with fixed end-points (i.e.
δsg0 = δsgN = 0) in equation (11.2) gives:

N∑

0

h.
∂sL

∂g
(gk, vk+1) .δ

sgk + pTk+1d
sτ

(
gk

−1gk+1

)
.δs

(
gk

−1gk+1

)
= 0

Letting dk+1 = gk
−1gk+1, we have that:

δsdk+1 = Adgk−1(δsgk+1 − δ
sgk)

Regrouping terms in δsgk and δsgk+1 gives:

N∑

k=0

(
h.
∂sL

∂g
(gk, vk+1)− p

T
k+1d

sτ(dk+1).Adgk−1

)
.δsgk

+

N∑

k=0

pTk+1d
sτ(dk+1)Adgk−1δsgk+1 = 0 (11.5)

The second sum can be reformulated as:
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N∑

k=0

pTk+1d
sτ(dk+1)Adgk−1δsgk+1 =

N+1∑

k=1

pTk d
sτ(dk)Adgk−1

−1δsgk

=

N∑

k=0

pTk d
sτ(dk)Adgk−1

−1δsgk

where we used the fact that the endpoints are fixed in the last line. Rearrang-
ing terms in (11.5) gives:

N∑

k=0

(
h.
∂sL

∂g
(gk, vk+1)− p

T
k+1d

sτ(dk+1).Adgk−1 + pTk d
sτ(dk)Adgk−1

−1

)
.δgk = 0

(11.6)
Here again, this shows that for all k ≤ N :

h.
∂sL

∂g
(gk, vk+1)− p

T
k+1d

sτ(dk+1).Adgk−1 + pTk d
sτ(dk)Adgk−1

−1 = 0 (11.7)

At this point, it is worth noticing that:

∂sL

∂g
(gk, vk+1) =

∂bL

∂g
(gk, vk+1).Adgk−1

Right-multiplying (11.7) by Adgk finally gives:

δg : h.
∂bL

∂g
(gk, vk+1)− p

T
k+1d

sτ(dk+1) + pTk d
sτ(dk).Addk = 0 ∈ g∗ (11.8)

Finally, we remark that dsτ(dk).Addk = dbτ(dk), since the adjoint Addk
converts from body to spatial velocity, and the range space of τ is a vector
space, g.

Variational Update Equations (11.3), (11.4) and (11.8) may be summarized
in the following non-linear system relating (gk+1, vk+1, p

T
k+1) to (gk, vk, p

T
k ):

∂L

∂v
(gk, vk+1)d

sτ(dk+1) = pTk d
bτ(dk) + h.

∂bL

∂g
(gk, vk+1) (11.9a)

gk+1 = gkτ
−1(h.vk+1) (11.9b)

pTk+1 =
∂L

∂v
(qk, vk+1) (11.9c)

Though this variational update has interesting theoretical properties, its
non-linearity is an issue regarding its applicability in a real-time context.
Therefore, we propose two approximations to obtain a linear update.
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Forcing

External forces can also be incorporated, through an extended variational
principle (Pontryagin-d’Alembert principle) which states [KYT+06, KCD09]:

δ

∫ T

0
L(g, v) + pT (ġb − v).dt+

∫ T

0
F (g, ġ)T .δg.dt = 0

An explicit quadrature for the forcing term is [KYT+06, KCD09]:

∫ T

0
F (g, ġ)T .δg.dt ≈ h.

N∑

k=0

fTk .δgk

where fTk ∈ T ∗
gk
G is the force applied at the kth time step. Injecting this

term in equation (11.7) gives:

h.
∂sL

∂g
(gk, vk+1) + h.f sTk − pTk+1d

sτ(dk+1).Adgk−1 + pTk d
sτ(dk)Adgk−1

−1 = 0

(11.10)
Since f sTk Adgk = f bTk , the final update is then:

∂L

∂v
(gk, vk+1)d

sτ(dk+1) = pTk d
bτ(dk) + h

(
∂bL

∂g
(gk, vk+1) + f bTk

)
(11.11a)

gk+1 = gkτ
−1(h.vk+1) (11.11b)

pk+1 =
∂L

∂v
(qk, vk+1) (11.11c)

11.1.3 Approximations for Real-Time Simulation

Two non-linear terms in vk+1 complicate the integration update in the left
hand-side of equation (11.11a). We propose two approximations to turn the
update into a linear system, at the expense of symplecticity.

Quadratic Forces

The computation of so-called quadratic forces [MSZ94] ∂bL
∂g

(gk, vk+1), con-
taining Coriolis and centrifugal forces, is problematic since this term is quadratic
in vk+1. We propose to approximate this term using the velocities from the
previous time step, thus making it completely explicit:

∂bL

∂g
(gk, vk+1) ≈

∂bL

∂g
(gk, vk)

In our simulator, we compute this term using central finite differences.
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Difference Map Derivative

The second cause of non-linearity in the above variational update is the pres-
ence of dsτ(dk+1) in the left-hand side of equation (11.11a), and this term is
non-linearly coupled with vk+1. To remedy this situation, we propose and
compare two approximations to remove this non-linearity.

Small Velocities Since dk+1 = exp(h.vk+1), we may consider that dk+1 ≈ Id
for small enough velocity/time-steps. Under this approximation, we have:

dsτ(dk+1) ≈ dsτ(IdG) = Idg

This approximation makes the left-hand side of equation (11.9a) linear in
vk+1. The smaller the time step, the better this approximation. The corre-
sponding explicit velocity update is:

∂L

∂v
(gk, vk+1) = pTk d

bτ(dk) + h

(
∂bL

∂g
(gk, vk) + f bTk

)
(11.12)

We will refer to this approximation as the identity approximation.

Constant Velocities Another plausible hypothesis is to consider that dk+1 ≈
dk, which corresponds to a constant velocity. Under this approximation, the
velocity update rule becomes:

∂L

∂v
(gk, vk+1)d

sτ(dk) = pTk d
bτ(dk) + h

(
∂bL

∂g
(gk, vk) + f bTk

)

Since dsτ(dk) = dbτ(dk).Addk−1 , we have:

∂L

∂v
(gk, vk+1)d

bτ(dk).Addk−1 = pTk d
bτ(dk) + h

(
∂bL

∂g
(gk, vk) + f bTk

)

Reorganizing terms, we obtain the following velocity update:

∂L

∂v
(gk, vk+1) =

[
pTk d

bτ(dk) + (11.13)

h

(
∂bL

∂g
(gk, vk) + f bTk

)]
.Addk .d

bτ−1(h.vk)

We will refer to this approximation as the constant approximation.
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Experimental Results

We now compare the two proposed approximations. In order to make the
Lie group integration advantages more visible, we also included another in-
tegrator into the comparison, with the following form:

∂L

∂v
(gk, vk+1) = pTk + h

(
∂bL

∂g
(gk, vk) + f bTk

)
(11.14)

It is almost identical to the one derived from the identity approximation,
except that the momentum is not pulled back in the correct frame. It can be
seen as the naive adaptation of an Euclidean geometric integrator, approxi-
mated with explicit Coriolis/centrifugal forces for the sake of comparison.

We compare the behavior of these three integrators on the following sce-
nario: the character is in a gravity-less environment, we apply a short im-
pulse on its right hand, along the positive Z axis (cf. figure 11.1). We choose
a quite large time-step for an explicit integrator: h = 0.1s. Figures 11.2 and
11.3 present the time evolution of the Linear and Angular Momentum (AM).

Figure 11.1: The experiment scenario for measuring angular and linear mo-
menta. We apply a short impulse (red) on the right hand of the character,
without gravity, then measure the linear and angular momenta.

Discussion The AM plots show that the constant approximation has in-
teresting momentum conservation properties, for a slightly higher computa-
tional cost due to the computation of Addk .d

bτ−1(h.vk). The identity approx-
imation can be seen as a special case of the constant approximation for small
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Figure 11.2: Linear momentum time evolution for the constant (red), identity
(green), and naive (blue) approximations, after the initial z-impulse (bottom).
The three integrators nearly preserve the linear momentum. Note the small
numerical scale on the top graph.

velocities since in this case, the difference between subsequent velocities will
necessarily be small. Therefore, we choose the constant approximation as our
explicit integrator for the remaining of this work.
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Figure 11.3: Angular momentum time evolution for the constant (red), iden-
tity (green), and naive (blue) approximations. The constant approximation
preserves the AM much better than the other two approximations once the
initial impulse has been applied (top). In particular, the symmetries of the
system are well captured: almost no AM along Z (bottom). Without much
surprise, the naive approximation is the worst.
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11.2 Improving Stability

Explicit integrators are inherently subject to stability problems, when the
time-step is too large. The Courant–Friedrichs–Lewy (CFL) necessary con-
dition gives an upper bound on the time step to guarantee correct results
[PTVF92] that is inversely proportional to the velocity. The stability can be
especially poor in the case of a hierarchical representation of an articulated
body, due to numerical instabilities of the Jacobian near singularities. This
produces high end-effector velocities, thus requiring smaller time steps to
ensure stability.

In our case, this problem is even aggravated by the fact that a single
geodesic coordinate spans angular velocities on every inner joint of the hier-
archy. The accumulation of all these angular velocities results in even higher
end-effector velocities.

11.2.1 Damping

A common strategy to prevent this problem is to apply damping to the sys-
tem. Let us once again write the velocity/impulse dynamics as:

Mv = f

Applying a viscous damping with parameter α ∈ R
+ is done by intro-

ducing the damping impulse −dt.α.v:

Mv = f − dt.α.v

Without loss of generality, we will assume that α already incorporates the
time step dt and consider the following damped system instead:

(αI +M)v = f

The effect of damping on the dynamics is particularly clear when one
looks at the eigen-decomposition of M = UDUT , with UUT = I and D pos-
itive diagonal. M,αI +M and (αI +M)−1 all share the same eigen-vectors
U , and their eigen-decomposition is given by:

M = UDUT

αI +M = U(αI +D)UT

(αI +M)−1 = U(αI +D)−1UT

We see that damping the mass matrix replaces the response matrix eigen-
values di−1 with (α+ di)

−1, reducing response velocities in the case of small
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di. Keeping in mind that M is a mass tensor, it has the form M = JT M̃J

for some block-diagonal rigid-body inertia tensor M̃ and some Jacobian J .
Similarly, since f is a generalized force, it can be expressed as f = JT f̃ .
Written this way, the dynamics equations now strongly resemble the pseudo-
inverse IK scheme presented in 6.3 :

JT M̃J.v = JT f

Similarly, the damped system is reminiscent of the damped pseudo-inverse
IK scheme (again, see part 6.3) :

(αI + JT M̃J).v = JT f̃

In practice this damping model can effectively correct for some instabil-
ities, but it lacks flexibility: when set too low, instabilities can still happen
and when set too high, it induces an almost rigid character behavior. Since
this is precisely the reason why the Levenberg-Marquardt algorithm was in-
troduced for non-linear least-squares, we investigate a similar strategy for
physically-based animation.

11.2.2 Levenberg-Marquardt Damping

The Levenberg-Marquardt works by successive linearization of a non-linear
least-square problem. At each step, the non-linear error function is approxi-
mated, to the first order, into a tangent metric. This metric approximates the
Hessian of the error function and describes its local curvature, which quan-
tifies the confidence in the linear approximation (see 6.3.3 for more details),
and drives the applied amount of damping in the corresponding dimension.

A similar strategy can be used for physically-based animation: instabil-
ities are usually characterized by strong end-effector velocities, particularly
concerning the leafs of the character topology. Therefore, we can use these
end-effectors as an error function to drive the amount of damping applied
to each dimension, in a Levenberg-Marquardt fashion: we will apply more
damping in the directions of strong end-effector velocities (i.e. highly-curved
error function) and conversely: this is the kinematic damping. Another, even
simpler approach, is to simply damp dimensions according to the associated
kinetic energy: this is the energetic damping. We now present these two ap-
proaches in more details. We will denote by diag the operator extracting the
diagonal elements of a matrix, except for the root indexes which are set to
zero. This operator will be used to damp internal DOFs only.

Kinematic Damping

Assuming that a set of end-effector is chosen, we denote by J the associated
Jacobian matrix. The kinematic damping strategy applies damping according
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to the magnitude of end-effector velocities. The corresponding dynamics are
described by:

(
dt diag

(
αJTJ

)
+M

)
.v = f

where α ∈ R
+ is a user-selected parameter controlling the amount of

damping.

Energetic Damping

Instead of using a kinematic metric to control the damping, it is possible to
use the kinetic energy metric for this purpose. Intuitively, this corresponds
to damping directions not only according to the associated character velocity,
but also according to the amount of mass displaced in these directions. The
resulting damping scheme is:

(
dt diag (αM) +M

)
.v = f

In practice, this simply reduces to multiplying diagonal elements ofM by
(1 + αdt), which is computationally less expensive that kinematic damping.
We now compare experimental results for both schemes.

Experimental Results

In order to compare the amount of adaptive damping produced by both
schemes, we performed an interactive manipulation of the physically-simulated
character using kinematic constraints (see next section), and recorded the
minimum and maximum damping coefficients generated by both schemes,
on a normalized scale. The results are presented on figure 11.4.

We see that while the two schemes produce generally similar results, the
maximum damping is higher with energetic damping, producing slightly
more stable results. Moreover, computing the energetic damping is simply
achieved by scaling the mass matrix diagonal elements, contrary to comput-
ing another Jacobian matrix as it is the case with kinematic damping. We
found these two damping strategies to be generally more stable than uniform
damping during interactive manipulation.

11.3 Kinematic Constraints

We now summarize how kinematic constraints are added to our physical
model, and how to compensate for constraint drift using [CP03]. The velocity
update in (11.13) can be rewritten as:

M.v = f
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Figure 11.4: Minimum and maximum damping coefficients for the two
damping schemes, normalized, during interactive manipulation. Uniform
damping corresponds to a constant value of 1.

where v is the body-fixed velocity, M is the reduced mass tensor in body
coordinates, and f is the body-fixed net impulse containing the previous
momentum with the appropriate frame change, the (now explicit) quadratic
forces, and the external forces. If we want to enforce kinematic constraints,
being bilateral or unilateral, we must solve the following QP as seen in 10.1.4:

v = argmin
v∈C

1

2
vTMv − fT v

where C is the feasible set for body-fixed velocities. For example, if we
consider a holonomic constraint c(g) = 0 defined by a smooth function c :
G → R

m, and assuming that the constraint is satisfied at the current time
step, we need to enforce that c is stationary, that is:

dbc(g).dbg = 0

Strictly speaking, the above linear equation is expressed in the Lie algebra
of G (whose elements might be matrices themselves). Using the coordinates
in the canonical basis of g, it is expressed as:
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Jb
c (g).v = 0

where Jb
c (g) is the Jacobian matrix for the left-trivialized tangent dbc(g).

We will express the fact that v represents the coordinates for dbg as:

dbg ≃ v

For practical computations, we will always work in coordinates, since
the resulting equations are much more compact. Since our integrator is ex-
plicit due to computational requirements, we will also treat the constraints as
explicit during constraint resolution, thus the constraint differential is com-
puted at the position from the previous time step (i.e. gk if we are computing
vk+1). To summarize:

• Constraints are expressed on body-fixed velocity coordinates (i.e. using
left-trivialized Jacobian matrices)

• Constraints are expressed at the position of the previous time step

We now give an example of unilateral constraint formulated in this con-
text: a coordinate-invariant joint limits constraint.





Chapter 12

Data-Driven Angular Limits

In this short chapter, we propose an automatic, coordinate-invariant method
to learn angular limits from motion capture data. This method is based
on Löwner ellipsoids, or Minimum Volume Enclosing Ellipsoids (MVEEs)
[KMY03]. We first show how a coordinate-invariant description of angular
limits can be obtained using a tangent MVEE, and how to compute this tan-
gent ellipsoid. Then, we show how to use this limit formulation to enforce
kinematic constraints in a physically-based simulation. We conclude with
some results and experimental feedback.

12.1 Related Works

Angular limits for character animation are usually enforced using Euler an-
gles parametrization, by specifying intervals for pitch, yaw and roll angles.
This has a number of disadvantages, including the traditional singularities,
as noted in [BB01]. Furthermore, it is not clear how to translate these Euler
angles limits to other parametrizations of rotation. An ellipsoid-based so-
lution was proposed by [Gra98], where the rotation vector is decomposed
along swing and twist components. [BB01] use spherical ellipses to represent
admissible regions for swing.

The main drawback of these methods is that they are not coordinate-invariant,
since they are based on a exponential maps representation of rotations and
as such, are subject to singularities unless special treatment is applied (e.g.
choose an appropriate rotation center for shoulder joints). They also require
distinct treatments for revolute/ball-and-socket joints. Finally, they do not
provide an automated procedure for obtaining the limits.

[HUH02] proposed an approach conceptually similar to ours, by fitting
sphere unions to the quaternion vector part to obtain a tight and automatic
fit of rotation subspace 12.1. Unfortunately, their method is not coordinate-
invariant since they perform the fit directly on quaternion vector part. More-
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Figure 12.1: Implicit surface fitting to the quaternion vector parts from orien-
tation data [HUH02].

over, they do not provide details regarding the corresponding kinematic con-
straints. We address all these problems in our proposed method.

12.2 Our Algorithm

Our idea is to use a Minimum Volume Enclosing Ellipsoids (MVEEs) in or-
der to tightly fit a set of orientation samples, and to do so in a coordinate-
invariant way. A primitive such as MVEE is attractive due to its compact-
ness, and as we will see in the results, it fits motion capture data quite well.
It also allows to formulate angular constraints naturally.

Instead of computing spherical ellipses based on a swing/twist decom-
position of exponential maps [BB01], we directly fit a 3-dimensional MVEE
to exponential maps. However, performing only this step would result in a
coordinate-dependent definition of the mean, since any rotational offset in
the data would produce different exponential maps, thus different MVEEs.

Coordinate-Invariance Our idea to enforce coordinate-invariance is inspired
by the Fréchet mean algorithm for SO(3) described in 7.3. The intrinsic mean
[Pen06, Moa02, FLJ03] algorithm successively linearizes rotations at the cur-
rent mean estimate, using the exponential map, then compute a linear aver-
age, and finally uses the exponential to progress to the next estimate, until
convergence. As the limit of this iterative process, the final result no longer
depends on any given initial coordinate system, but only on the repartition
of the input data. We propose a similar procedure with the use of MVEE on
linearized data.
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Definitions We define a tangent ellipsoid as a couple ε = (c, A) ∈ SO(3)×S3+,
where c ∈ SO(3) is the rotation defining the center of the tangent ellipsoid,
and A is a positive semi-definite matrix defining an ellipsoid in so(3) as the
set of vectors v ∈ so(3), such as vTAv = ||v||2A ≤ 1. Another rotation g ∈
SO(3) will be said inside the tangent ellipsoid ε if, and only if:

g ∈ ε ⇐⇒
∣∣∣∣log

(
c−1g

)∣∣∣∣2
A
≤ 1

Algorithm Starting with orientation samples (xi)≤m ∈ G, and tangent el-
lipsoid initial guess c(0) = Id, we begin by expressing the samples in the
tangent space using the exponential map:

∀i ≤ m, t
(0)
i = exp

(
c−1xi

)

We then fit a MVEE (d(0), A(0)) on the tangent data, using the Khachiyan’s
first-order algorithm, described in [KMY03]. The 3-vector d(0) ∈ so(3) ≃ R

3

is the MVEE center and A(0) ∈ S
3
+ its metric. The tangent center d(0) is then

used to move towards a new linearization point:

c(1) = c(0). exp
(
d(0)

)

We iterate this scheme until the tangent center d(k) is sufficiently close to
the origin, or after a given number of iterations. This procedure is summa-
rized in algorithm 1.

Algorithm 1 Tangent MVEE from m data samples xi ∈ G
c := IdG, A := Idg
repeat

{Exponential map of samples around c}
for i := 1 to m do
ti ← log

(
c−1xi

)

end for
{Compute tangent MVEE}
(d,A)←MVEE(t)

{Advance c}
c← c. exp(d)

until ||d|| < ǫ

return (c, A)



146 CHAPTER 12. DATA-DRIVEN ANGULAR LIMITS

12.3 Results

We tested this algorithm on several motion capture sequences from the CMU
motion capture database, as shown on figures 12.2, 12.3 and 12.4.

Figure 12.2: Resulting tangent ellipsoids for the left clavicle (CMU:85-12).
(x, y, z) axis-aligned views.

Figure 12.3: Resulting tangent ellipsoids for the right femur (CMU:91-62).
(x, y, z) axis-aligned views.

Figure 12.4: Resulting tangent ellipsoids for left radius (one-dimensional)
(CMU:49-06). The ellipsoid is displayed thicker to be visible.
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12.3.1 Discussion

Convergence

We do not have any proof of convergence of the above algorithm, but we
reported experimental convergence even for “range of motion” sequences.
We experimentally observed a linear decrease of stopping criterion. As for
the intrinsic mean algorithm, it is necessary for the data to lie in some suffi-
ciently localized area of SO(3), otherwise no convergence can be obtained for
the same reasons as for the intrinsic mean. However, we have not found this
theoretical problem to be a practical issue, as motion capture data are usually
sufficiently well localized in practice, except on motions exhibiting capture
artifacts.

Outliers

The noise found in low-quality motion capture data can be problematic for
the MVEE algorithm, as it can significantly alter the fit of the resulting el-
lipsoid to the data even if only one outlier is found. In order to tackle this
problem, we have found that a simple outlier detection based on the geodesic
distance between consecutive orientation samples produced good results. In
our tests, we used the threshold

∣∣∣∣log(qk−1qk+1)
∣∣∣∣2 ≥ 1.

A more systematic approach could be devised using the core set of the
MVEE, which is a byproduct of [KMY03] algorithm. Intuitively, the core set
is the set of samples touching the MVEE. Outliers search could be restricted
to this set, e.g. using a Malahanobis distance criterion.

Numerical Issues

In the case of perfectly one-dimensional joints, the MVEE will be degener-
ated which will lead to numerical instability problems, as for example spu-
rious active limit detections. In order to avoid this, we add a small amount
of random noise to the input data before applying the algorithm. Note that
the dimensionality of joints is already taken into account by the PGA decom-
position, so adding noise will only slightly grow the ellipsoids but will not
affect the joint degrees of freedom.

Fit Quality

In some cases, the joint orientations lie in a degenerate, bi-dimensional sub-
manifold of SO(3) (cf. figure 12.5). Should this happen, an ellipsoid fit does
not seem particularly well adapted. One should keep in mind, however, that
the PGA pose model already takes care of maintaining orientations in this 2D
sub-manifold, so that the effective limits enforced in practice are rather given
by the intersection of this ellipsoid with the 2D sub-manifold.
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Figure 12.5: An example degenerate 2D rotation sub-manifold resembling an
hyperbolic paraboloid, difficultly captured by the MVEE (CMU:85-01, right

foot).

12.3.2 Limit Constraints

After the limit computation, each joint is associated with its tangent ellipsoid,
as a pair ε = (c, A) ∈ SO(3) × S

3
+ representing the center (in the group) and

the metric of the ellipsoid.
Let us introduce the function fε(q) = log(c−1q)TA log(c−1q) ∈ R . The

joint limit will be active whenever fε(q) ≥ 1 and in this case, we should in-
troduce an unilateral velocity constraint preventing the limit to be further
violated. Doing so is achieved using the gradient of fε. A body-velocity dbq
will be admissible when:

dbfε(q).d
bq ≤ 0 (12.1)

Geometrically, this corresponds to enforcing the velocity to point inside
the limit ellipsoid, with respect to the tangent plane at the contact point (cf.
figure 12.6). The body-fixed differential for fε is given by:

dbfε(q).d
bq = 2. log(q)T .A.db log(q).dbq

Figure 12.6: The angular limit kinematic constraint enforces that dbq should
point inside the ellipsoid, to the first order: dbfε(q).dbq ≤ 0.

Should the angular limit be violated, due for instance to constraint drift,
a post-stabilization approach can be derived from this formula, by replacing
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the right-hand side of (12.1) by 1−fε(q)
dt

, where dt is the time step. This cor-
responds to ensuring that dt.dbq will lie inside the ellipsoid at the next time
step, to the first order. An example use of these angular limits on a virtual
character is presented on figure 12.7.

Figure 12.7: Comparison of the physical simulation with (left) and without
(right) enforcing the data-driven joint limits.





Conclusion

In this part, we derived a physical model for our PGA-reduced pose repre-
sentation. We used a Lagrangian formulation, and proposed an explicit in-
tegrator, obtained by approximating a geometric variational integrator. The
integrator momentum conservation was evaluated for a large time-step, with
promising results. For more stability, we proposed an adaptive, Levenberg-
Marquardt inspired damping strategy, that is easily implemented by weight-
ing diagonal matrix elements. Finally, we proposed a geometric, coordinate-
invariant, data-driven angular limits learning algorithm, that works by suc-
cessively fitting MVEE over linearized orientation data.

⋆ ⋆ ⋆

Now that a physically-based animation model has been derived, we turn
to the problem of motion control, in order to investigate the relevance of our
pose parametrization for actuation.
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Control
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Chapter 13

Previous Works

This part is focused on motion control in a physically-based simulation, for
character animation. After reviewing existing work, we describe a task-space
control framework. Two control solvers are presented in chapter 14, both
using Quadratic Programming:

• A simple motion control strategy that simply interpolates between physically-
based and kinematic animation, possibly using external forces (section
14.1)

• A more advanced motion control algorithm using only the character
actuators to perform motion, (section 14.3)

We conclude this part by presenting control objectives and associated re-
sults.

⋆ ⋆ ⋆

Let us begin this part by reviewing existing work in character control. The
literature in this field is extensive, especially since it covers both computer
animation and robotics problematics. We will organize this chapter along
the main approaches followed in computer graphics, pointing to relevant
robotics work when needed.

13.1 Proportional-Derivative

A first class of methods for controlling physically-based characters is that
of Proportional-Derivative (PD) joint controllers [RH91, HWBO95, FvdPT01,
YLvdP07]. In this setup, every joint of the character is affected a desired con-
figuration, as well as proportional (P) κp and derivative (D) κd gains, so that the
actual control torque τ applied at the joint is given by the PD feedback loop:

τ = κp.e+ κd.ė
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where e is the error between desired and actual joint configuration. When
applied to every joint of a character, this basic controller prescribes a given
desired pose and a feedback loop to achieve it. The process of controlling a
character motion is thus shifted to the control of desired poses for the given
task. To drive the sequence of desired poses, a Finite State Machine (FSM) is
usually employed, for instance to describe the succession of stances in a walk
cycle. [FvdPT01] propose an interesting modular approach on the top of this
framework, by automatically identifying correct input/output states for a
given controller, allowing higher-level transitions between controllers in a
motion-graph spirit. FSMs can serve as a basis for a more complex controller,
with the final desired pose being influenced by run-time quantities, for in-
stance to control the swing leg or torso given the walking speed [YLvdP07].

Figure 13.1: A Finite State Machine for walking, in [YLvdP07]. This FSM
drives the desired position of joint PD controllers.

Despite their apparent simplicity, these controllers are extremely efficient
and able to produce reactive, quality motion controllers. Their main draw-
back, however, is that they usually require extensive tweaking of various
gains to achieve both correctness and robustness, and are usually only adapted
to a single specific task, making transitions between them difficult. These
two drawbacks can be mitigated [SKL07] by automatically learning parame-
ters on motion capture data (or kinematic blending of animations in the case
of transitions). Still, these controllers inherently lack flexibility since they are
strongly task-specific.
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13.2 Space-Time Optimization

This lack of flexibility has led researchers to design more generic approaches
to physically-based motion synthesis. Among them, the use of space-time
constraints already reviewed in part 7.1.3, allowed to express control as a
series of kinematic goals, while allowing to enforce optimal energy criteria
to obtain smoother and more plausible results. As we have already seen, the
main drawbacks of space-time constraints are:

• Its computational cost, due to the size of the search space

• The offline-by-design nature of the algorithm

• Its sensitivity to local extrema, often requiring extensive key-framing

The main attractiveness of these methods are that control is no longer tied
to be expressed in the joint space, but any kinematic goal can be specified
either as a hard or soft constraint.

13.3 Task-Space Control

Among the most recent works in character animation, several are based on
task-space control [MZS09, JYL09, LMH10, MLH10]. In this formulation, kine-
matic goals are formulated in some abstract task-, or feature-space, and the
system solver is responsible for optimizing these goals using physics laws as
a constraint at each time-step. This approach can be seen as a synthesis of the
advantages of joint-space control and space-time optimization while mitigat-
ing their drawbacks: instead of solving an enormous, global optimization
problem preventing interactivity, a smaller, easier problem is solved at each
time-step. Besides, the burden of choosing and adapting individual control
gains is shifted from the joint space to an abstract task-space, usually bet-
ter adapted. Such approaches have been previously used in robotics (see
[NCM+08] for an overview). In essence, task-space control algorithms au-
tomatically translate task-space goals into character actuation forces, given
more-or-less detailed physical model.

[JYL09] only enforce the dynamics equations on the root of the charac-
ter, allowing real-time control of balance controllers using linear momentum
and torso orientation tasks. More complex behaviors such as side steps can
be driven using a FSM. The contact model uses previous time-step tangen-
tial velocity information to establish static/dynamic frictional behavior (thus
making static to dynamic changes impossible). Unfortunately, this method
may easily produce physically invalid motions since the Lagrange equations
are only enforced on the root joint.

[MZS09] uses linear and angular momentum control strategies to obtain
optimal joint accelerations for the task, which are then translated to joint
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Figure 13.2: Angular momentum regulation, through Center of Pressure con-
trol, produces interesting windmilling motions (source: [MZS09])

torques using Featherstone’s inverse dynamics algorithm [Fea87]. The con-
tact model is penalty-based, thus necessitates strong stiffness (and according
time-step, the integrator being explicit) in order to maintain realism. The
two-pass strategy from task to accelerations, then to torques could probably
be reduced to one by directly expressing tasks as a function of torques.

Figure 13.3: Low-dimensional planning by [MLH10]. The planning output
is fed to a task-space motion controller that is responsible for computing the
corresponding character actuation.

[LMH10, MLH10] propose an interesting framework for task-based char-
acter control. The kinematic goals are expressed on accelerations, by forming
a quadratic objective function. This objective is optimized under the dynamic
equations and approximate contact constraints (no complementarity). A fea-
ture priority solving strategy is proposed, preventing certain control objec-
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tives to compete with each others.
While this approach is the most general and well-grounded to date for

character control, it could arguably be improved especially by the use of a
velocity/impulse formulation of dynamics and features, removing the need
for second derivative which can be difficult to compute. Besides, the contact
formulation raises some issues as we show in 14.2. Last, but not least, a
reduced dimension motion model could improve the overall efficiency of this
method quite significantly. We will address these points in the remaining of
this chapter.





Chapter 14

Quadratic Programming Control

In this chapter, we describe a character control framework in the same spirit
of [LMH10], but at the velocity/impulse level instead of force/acceleration.
First, we show that changing the metric in the physics solver presented in
part IV results in a very simple control framework, allowing an easy trade-
off between physically-based and kinematic animation. However, such an
approach makes implicit use of spurious external forces to animate the char-
acter, which is somewhat unsatisfactory: it would be more interesting to only
use the character actuators to animate it. In section 14.2, we present theoret-
ical aspects of this problem, with an emphasis on unilateral constrains: the
quadratic control problem under unilateral constraints can be cast as a bi-level
quadratic program, which is unfortunately hard to solve because of its non-
convexity. In a third section, we propose different relaxations of this control
problem in a simpler quadratic program for use in practical applications.

14.1 Changing Metric

We initially tried controlling our virtual character using hard kinematic con-
straints. However, since hard constraints can not be broken by user interac-
tion, for example in response to a projectile hit, the result was not entirely
satisfying in our opinion. In this section, we show how a simple motion
controller can be obtained by changing the metric used when simulating the
physically-based character, producing easily controllable soft kinematic con-
straints. Let us recall that the dynamics of our character are given, in body
coordinates, by the following QP:

v⋆ = argmin
Jv≥b

1

2
vTMv − fT v (14.1)

where v describes the coordinates of the body velocity, f contains the
coordinates of the external/inertial body forces, M is the body-fixed mass
tensor, J and b describe unilateral constraint. We can modify the original
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quadratic form, using a control quadratic form 1
2v

TQv+cT v, in order to obtain
a different behavior:

v⋆ = argmin
Jv≥b

1

2
vTMv − fT v︸ ︷︷ ︸

dynamics

+
1

2
vTQv + cT v

︸ ︷︷ ︸
control

(14.2)

The control form may represent any soft kinematic constraint one wishes
to satisfy on velocities, expressed as a quadratic form. We will see how this
form is constructed in 14.1.1. In order to highlight the impact of this metric
change on the dynamics, we may rewrite the above quadratic form so that
the effects of the control form are more visible:

1

2
vTMv − fT v +

1

2
vTQv + cT v =

1

2
vTMv + vT

(
1

2
Qv + c− f

)

This underlines the fact that, conceptually, adding such a control form to
the dynamic form has the same effect as adding a velocity-dependent external
control force fc:

fc = −

(
1

2
Qv + c

)

A simple interpolation parameter α ∈ [0, 1] can be employed to drive the
amount of control force in the simulation:

v⋆ = argmin
Jv≥b

(1− α)

(
1

2
vTMv − fT v

)
+ α

(
1

2
vTQv + cT v

)
(14.3)

Setting α = 0 will produce a pure dynamic simulation, at the expense of
control, while α = 1 will produce a pure kinematic animation, at the expense
of physical realism. We now describe how to construct the control form in
terms of control features.

14.1.1 Control Form, Features

In practice, the control form is the aggregation of several error terms, each
one controlling a specific velocity-dependent feature. Let F ≃ R

d be an ab-
stract feature space of dimension d. We define a feature γ as an affine map γ

γ : g→ F

γ(v) = Γ.v − γ̃

We call Γ ∈ Md,n the feature matrix, and γ̃ ∈ F the feature desired value.
The squared norm of a feature is a quadratic form, and will be called the
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feature error error. Given a set of k ∈ N features (γi)i≤k, we build a quadratic
form by simply summing all the form errors:

1

2
vTQv + cT v :=

k∑

i=1

||γi(v)||
2

Features can be given more importance in the final control form by weight-
ing them accordingly. Such weight is implicit in the definition of each feature,
in the above formula.

14.1.2 Desired Values

While computing the feature matrix is usually straightforward (since we nor-
mally know what we need to control, as we did for kinematic constraints in
11.3), deciding of a relevant desired value is not so simple (i.e. how we want to
control). We illustrate this with an example feature, controlling for example
a hand position or the head orientation. Let us define a function between the
configuration Lie group G and some other, feature-related Lie group H (in
this example, H = R

3 or H = SO(3)) by a mapping φ:

φ : G→ H

This mapping expresses the hand position or the head orientation given
the current configuration g ∈ G. The associated control feature, defined on
the body velocity coordinates v ≃ dbg, is given by:

γφ(v) = Jb
φ(g).v − φ̇

b
des ∈ R

3 ≃ h

We have the feature matrix as the body Jacobian matrix of φ, let us now
look for the desired value φ̇bdes. A simple control strategy is to use the first-
order approximation of φ to express the feature matrix and desired value, in
a Gauss-Newton fashion. Suppose we want to have φ(g) = h ∈ H at the next
time-step, we obtain the corresponding condition on v as:

Jb
φ(g).dt.v = log

(
φ(g)−1h

)
(14.4)

This condition is similar to the bilateral kinematic constraints corrections
seen in part IV. Unfortunately, while enforcing this condition as a hard kine-
matic constraint would effectively result in φ(g) ≈ h at the next time step,
using this feature in the control form will only minimize its error, thus pro-
ducing a soft kinematic constraints.

As such, control features may take time before reaching the desired con-
figuration. In practice, this usually results in undesired oscillations around
the target value for φ. A common approach to tackle this issue is to use
Proportional-Derivative(PD) control on H to obtain a value for φ̇bdes. Since
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H is a Lie group, we use the PD controllers defined in [BM95], producing a
control law of the form:

φ̇bdes = −κp. log
(
h−1φ(g)

)
− κd.J

b
φ(g).vt

where κp, κd are respectively the proportional and derivative gains, and
vt is the current velocity (i.e. not the one we will be solving for in the control
problem, which is vt+1). The control law (14.4) corresponds to a PD controller
with κp = dt−1, κd = 0. In practice, the derivative term tends to damp the
aforementioned oscillations.

14.1.3 Results

We now present some control results obtained using our system. Figure 14.1
shows a simple user interaction using IK targets, and highlights the use of
external forces in our formulation. Figure 14.2 shows an example of one-foot
balance and the control of the Center of Mass. Finally, figure 14.3 shows an
external perturbation caused by a ball thrown at the character.

Figure 14.1: User interaction using IK targets. Soft control features allow to
obtain a result even when the kinematic objective is infeasible. The use of
external forces is made explicit on the last picture.

14.2 Complementarity Constraints

While the pseudo-control framework presented above can produce good vi-
sual results, it is more a physically-based puppetry approach than a true con-
trol strategy, since the character is externally actuated. A more satisfying,
but also more difficult approach, is to only use the internal actuators of the
character to achieve a given task expressed using velocity features. Unfortu-
nately, doing this is much more difficult from a theoretical point of view, as
we describe in this section.
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Figure 14.2: One foot balance. 3 control features are present here: right foot,
Center of Mass (CoM), and left hand (red). The system automatically adjusts
the left leg position to maintain the CoM above the right foot while the user
manipulates the left hand position.

Figure 14.3: One foot balance, with a ball thrown at the character’s hand. 2
control features: left foot and CoM (red). Using soft control constraints allows
to obtain more natural character responses to external perturbations, as for
instance the right leg swing to maintain balance.

14.2.1 Control Problem

Let us first state the control problem we are interested in. We have seen that
the dynamics of our virtual character, under unilateral constraints, are given
by the convex QP (14.1), which can be seen as a M -projection on the feasible
set Jv ≥ b:

v⋆ = πMJv≥b(f) =: π(f)

The control problem aims at finding the best actuation forces ATµ, given
an (internal) actuation basis AT , such as a given control form is minimized,
under the physical unilateral constraints. This can be expressed as the fol-
lowing, non-convex QP:
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µ⋆ = argmin
µ∈A

1

2
vTQv + cT v (14.5)

s.t. v = π
(
f +ATµ

)
(14.6)

where A is a convex, bounded polytope specifying the allowed actuation
forces. For a PGA-reduced pose parametrization, with configuration space
Q = SO(3) × R

3 × R
k, the actuation matrix AT describes the generalized

forces associated with the reduced pose DOFs, and has the following form:

AT =

(
0
Idk

)
∈M6+k,k

The above QP is known as a bi-level QP, since one of the constraints of
the upper QP (14.5) involves optimality for a second, lower QP (14.6). Un-
fortunately, it is easy to see that in the general case, such bi-level QPs are
non-convex. Indeed, the feasible set for the upper QP is the projection of
a convex polytope on another convex polytope, which can easily fail to be
convex (cf. figure 14.4). This unfortunately makes bi-level QP hard to solve.

Figure 14.4: The projection (green) of a convex (red) set on another (blue) is
generally not convex. In our case, the red area represents the allowed ac-
tuation forces, and the blue area represents the unilateral constraints. For
the control problem, the red and blue areas are usually intersecting (i.e. ac-
tuation forces meet the kinematic constraints), but the green area remains
non-convex.

Previous Work Bi-level QPs can be seen as QPs with Complementarity
Constraints (QPCC), themselves beeing Mathematical Programs with Com-
plementarity Constraints (MPCC). Several strategies have been proposed to
solve bi-level QPs [Eto10], QPCCs [BM05] and more generally MPCCs (see
[Ani05, FLRS06, SS00]), most of them involving Sequential Quadratic Pro-
gramming (SQP) or specific relaxations [BM05]. [BM05] recalls that such
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problems are generally hard to solve due to the combinatorial structure re-
sulting from the complementarity constraints.

14.3 Relaxation

Considering that existing algorithms for QPCC are computationally expen-
sive, we examine and experimentally compare different relaxations of the
QPCC (14.5) and (14.6) as a convex QP. While complementarity will no longer
be enforced, we show that some relaxations produce satisfying results while
still permitting the real-time simulation and control of a virtual character.

14.3.1 Removing Complementarity

Though it is based on a second-order dynamic model rather that a veloc-
ity/impulse formulation, [LMH10] propose to express the control problem
as a QP similar to the following, putting aside frictional constraints:

µ⋆ = argmin
1

2
vTQv + cT v

s.t. Mv = f + JTλ+ATµ (14.7)

Jv ≥ b, λ ≥ 0

µ ∈ A

In essence, this formulation is a relaxation of the full control QPCC by
omitting the complementarity constraint resulting from the optimality for
the lower QP:

0 ≤ Jv − b ⊥ λ ≥ 0

This complementarity condition guarantees that contact impulse are re-
action impulses: no impulse is applied when the relative normal velocity is
non-zero, and conversely. Thus, removing the complementarity constraint
produces an undesirable artifact: nothing prevents contact forces to take ab-
surdly high values in order to minimize the control form. In practice, the
result is that the ground has a tendency to push the character above when
trying to control the center of mass, as depicted in figure 14.5.

This problem also happens with angular limits, which can produce strong
impulsive motions, should an angular limit become active. Such strong im-
pulses can degrade the simulation stability. A workaround for this problem
is to add a control objective penalizing relative tangent motion, using the
following feature:

γJ(v) = Jv − b
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Figure 14.5: Spurious ground contact impulses pushing the character up,
when the complementarity condition is removed.

This corresponds to a soft kinematic constraint turning unilateral con-
straints into bilateral constraints. Unfortunately, while this method produces
good results for ground contacts, it greatly penalizes possible motions when
applied to angular limit constraints, since these limits become “sticky” once
active.

While it is possible to adjust contact stickiness according to their nature
(ground, limits) by tuning the associated weights, this approach is tedious
and context-dependent. Therefore, we investigated different complementar-
ity relaxation strategies.

14.3.2 Kinetic Energy

We have seen in (14.6) that unilateral constraints minimize the correction ki-
netic energy, assuming µ is fixed:

v⋆ = argmin
Jv≥b

∣∣∣∣v −M−1
(
f +ATµ

)∣∣∣∣2
M

Therefore, we tried to add this energy term to the control QP, as a relax-
ation of the complementarity conditions:

µ⋆ = argmin
1

2
vTQv + cT v +

1

2

∣∣∣∣v −M−1
(
f +ATµ

)∣∣∣∣2
M

s.t. Mv = f + JTλ+ATµ

Jv ≥ b, λ ≥ 0

µ ∈ A

This QP can be rewritten in the following, more compact expression:
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µ⋆ = argmin
1

2
vTQv + cT v +

1

2
λTJM−1JTλ (14.8)

s.t. Mv = f + JTλ+ATµ

Jv ≥ b, λ ≥ 0

µ ∈ A

As we can see, this amounts to penalizing contact forces according to the
inverse kinetic metric. We tried the above relaxation, but it resulted in overly
large character motions (cf. figure 14.6).

Figure 14.6: The effects of the kinetic energy relaxation: the motions are
overly large in compensation for the smaller contact forces

However, if we expand the relaxation term 1
2

∣∣∣∣v −M−1
(
f +ATµ

)∣∣∣∣2
M

,
we observe that it contains the following term:

−vT .ATµ

This term is equal to the negative actuator forces instantaneous work.
Minimizing it corresponds to maximizing the amount of instantaneous work
produced by actuator forces, which introduces a lot of kinetic energy into
the system. We tried to remove it from the relaxation, leaving it as (omitting
constant terms):

1

2
vTMv +

1

2
µTAM−1ATµ− fT v + fTM−1ATµ (14.9)

Note that this new relaxation term is still a convex quadratic form. Sur-
prisingly, this simple modification produced far better results, since we were
able to control the character as well as with the approach described in 14.3.1.
Furthermore, the resulting motions were much smoother, and generally looked
more natural. However, we had to increase the weight of control features or,
equivalently, decrease the weight of the relaxation term slightly, in order to
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obtain similar objectives satisfaction, since the relaxation term competes with
the control form. We used this relaxation strategy in our examples.

If more dissipation is needed, it is possible to add the following term to
the relaxation objective (14.9):

α.vTATµ

where α ∈ [0, 1] is the amount of dissipation to add. This corresponds to
minimizing the amount of instantaneous work performed by actuator forces,
hence maximizing the dissipation. Note that α needs to stay in the [0, 1] range
for the relaxation objective to remain convex. Applying dissipation results in
slower, damped motions.

14.3.3 Control and Dynamics QPs

The two preceding relaxations techniques produce actuation forces, based on
a simplification of the exact control problem. These actuation forces are then
used in a dynamics simulation, where exact contact force complementarity is
enforced. In practice, this means we must solve two consecutive QPs:

• The control QP, where actuation variables µ⋆ are computed, based on a
relaxation of the exact control problem, as described in 14.3.1 and 14.3.2

• The dynamics QP, where the computed actuation µ⋆ is used to compute
the dynamics of the character, this time with correct contact comple-
mentarity (cf. 10.1.4):

v⋆ = argmin
Jv≥b

1

2
vTMv −

(
f +ATµ⋆

)T
v

The time integration is performed using v⋆. Note that the control QP also
produces velocity variables. While using these velocities for time integration
generally results in seemingly more robust controllers, they are based on in-
exact contact forces, and as such do not reflect the real efficiency or robustness
of the controller. However, they do produce visually satisfying animations.

In all the shown examples, the animations were produced using the dy-
namics QP. Let us now describe the control features we used in our experi-
ments.



Chapter 15

Control Features

In this chapter, we describe the different features used in our simulator. We
first present simple kinematic features, for performing IK and looking at a
target. Then, features related to character balance are presented. Finally, we
describe energy-related quadratic terms controlling character actuation. In the
remaining of this chapter, we will denote the use of a Lie group PD controller
(described in 14.1.2) by a function pd, defined on the feature Lie group H :

pd : H × TH → h

(h⋆, dh) 7→ −κp. log
(
h⋆−1.h

)
− κd.d

bh

where κp, κd ∈ R are respectively the proportional and derivative gains,
dbh is the current feature state, and h⋆ the target value for the controller. In
our framework, the output of the function pd will be chosen as the corre-
sponding feature desired value.

We now describe the different control feature we used in our examples.
In the following, we assume that the character pose is parametrized using
the PGA kinematics model described in 8.2.2, with configuration space Q =
SE(3)× R

k, where k ∈ N is the number of principal geodesics. Features will
be expressed in function of the body velocity v ∈ q.

15.1 Tracking

We begin this chapter with simple tracking tasks: Inverse Kinematics and
looking at a point target.

15.1.1 Inverse Kinematics

The case of IK is the direct application of the example presented in 14.1.2. We
simply express the forward kinematics for a point belonging to the skeleton
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as a function f : Q → R
3 expressing the absolute position of this point in

the world frame. The feature geometry is simply given by Jb
f (g), hence the

complete feature is defined as:

γIK(v) = Jb
f (g).v − pd

(
p⋆, ḟcurr

)
∈ R

3

where p⋆ ∈ R
3 is the target end-effector position, and ḟcurr is the current

time-derivative of the end-effector position. An end-effector tracking exam-
ple is shown on figure 15.1.

Figure 15.1: Simple IK control feature. The desired position (red) is interac-
tively manipulated by the user while the character maintains balance.

15.1.2 Looking at Target

Due to the full-body correlations captured by the PGA pose model, we have
found the head rotational motion to be sometimes too important and thus pe-
nalizing for visual quality. We thus implemented the following target track-
ing feature in order to gain an intuitive control on the head orientation.

Yet again, we simply express the absolute head orientation (in the world
frame) as a function f : Q → SO(3). The target value for the orientation
is computed by building an orthogonal basis from the up u ∈ R

3 (pointing
upwards) and view w ∈ R

3 (pointing in the view direction) vectors of the
character, expressed in the world frame:

• The first basis vector e1 is simply the view vector w, constructed as the
difference between the view target t and the head position h:

e1 ∼ t− h = w
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• The second basis vector e2 is the projection of the up vector u on the
plane orthogonal to view, normalized:

e2 ∼ πw⊥(u)

• The third basis vector e3 is obtained by taking the cross-product of the
two first vectors, finalizing the basis:

e3 = e1 × e2

Such construction is obviously ill-defined when the view and up vectors
coincide. Should this situation happen, we simply skip this feature in the
final control form. The above construction results in a target rotation g⋆ ∈
SO(3). The head orientation control feature is thus:

γlook(v) = Jb
f (g).v − pd

(
g⋆, ḟcurr

)

Figure 15.2 shows an example use of this feature control.

Figure 15.2: An example of head orientation control: the character is looking
at the red target.

Though it is not strictly needed for controlling the head in our framework,
we now mention how to obtain the derivative of the mapping relating the
view vector y and corresponding orientation g⋆. This mapping can be used
in the case of a moving target. g⋆ satisfies the following equations:

πey ,ez
(
g−1.w

)
= 0 ∈ R

2 (15.1)

eTz
(
g−1.u

)
= 0 ∈ R (15.2)

where ex = (1, 0, 0)T , ey = (0, 1, 0)T , ez = (0, 0, 1)T are the basis vectors
expressed in the local frame, and πey ,ez = (ey, ez)

T is the orthogonal projec-
tion on ey, ez . Since g⋆ is a stationary point of the above equations, we obtain
a condition on dbg⋆ in terms of dw by differentiation of these equations:
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πey ,ez

(
−dbg.g−1.w + g−1.dw

)
= 0 ∈ R

2 (15.3)

eTz

(
−dbg.g−1.u

)
= 0 ∈ R (15.4)

Keeping in mind that dbg represents an antisymmetric matrix, and that

d̂bg.w = dbg × w (cf. 6.1.1), we may rewrite these equations using cross-
products and the coordinates of dbg in the canonical basis of so(3) as:

πey ,ez

(
−ex × d

bg + g−1.dw
)
= 0 ∈ R

2 (15.5)

−eTz

((
g−1.u

)
× dbg

)
= 0 (15.6)

In the above equations, dbg is now a 3-vector. This linear system of equa-
tions relates the body-fixed velocity of the desired orientation, to the velocity
of the view vector. We rewrite it as:

A.dbg = B.dw ∈ R
3

where A,B are 3 × 3 matrices, with A invertible unless the view and up
vectors coincide. Given the view vector velocity dw, we thus obtain the de-
sired orientation velocity by:

dbg⋆ = A−1.b(dw)

15.2 Balance

Let us now turn to balance-related feature control. As shown in [MZS09],
the linear and angular momentum are two high-level quantities of particular
interest in this context.

15.2.1 Center of Mass

The Center of Mass (CoM) is given by CoM : Q→ R
3:

CoM(q) =
n∑

i=1

mi.CoMi(q)

where n ∈ N is the number of rigid bodies, and CoMi : Q → R
3 gives

the position of the CoM for the ith body, and mi is the mass for the ith body.
Its time-derivative is called the linear momentum, noted L. The corresponding
feature for CoM control follows immediately from the above definition.
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15.2.2 Angular Momentum

Angular Momentum (AM) is related to the control of the Center of Pressure
(CoP), as shown in [MZS09]. However, the connection between them relies
on certain hypothesis (e.g. planar ground). In a feature-based control frame-
work, it is possible to directly control the AM [LMH10], which is more general
and better adapted than CoP control. The AM with respect to the CoM c ∈ R

3

of n rigid bodies is defined as:

a =

n∑

i=1

Ri.Ii.ω
b
i +

n∑

i=1

mi(ci − c)× vi ∈ R
3

where Ri ∈ SO(3) is the absolute orientation of the ith body, Ii ∈ S
3
+ is

the body-fixed inertia tensor of the ith bone, ci ∈ R
3 is the position of the ith

CoM, ωb
i is the ith body-fixed angular velocity, and vi ∈ R

3 is the absolute
linear velocity of the ith CoM in the world frame. The AM is linear in the
body velocities, thus we may rewrite it as:

a = H.v

where H is a 3 × 6n matrix depending on the current configuration, and
v is the aggregation of the n rigid body velocities coordinates. If we now
consider the forward kinematics for the PGA-reduced pose model (described
in 8.2.2) as a function:

f : Q→ SE(3)n

The AM feature matrix is given by H(f(q)).Jb
f (q). We set the desired AM

value to 0, corresponding to a motion with the least AM. The final feature is
thus simply:

γAM(v) = H(f(q)).Jb
f (q).v

Figures 15.3 and 15.4 compare the resulting behaviors when the AM con-
trol is turned off and on.

15.2.3 Support Center

Instead of fully controlling the CoM position, it is usually sufficient to keep
its projection on the ground inside the support polygon [JYL09, LMH10]. To
do so, we record the position of the character contacts with the ground at
each time step. We define the center of support c ∈ R

3 as the mean of these
contact points (cf. figure 15.5).

A control feature is added so that the CoM projections on the ground
match the center of support.
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Figure 15.3: One foot balance, without AM control: the character makes
broad moves and quickly falls down. The red marker shows the desired
CoM position.

Figure 15.4: One foot balance, with AM control: the character adjusts his
arms and moves in a balanced way. The red marker shows the desired CoM
position.

15.2.4 Balance Controller

Our balance controller used the following, previously described feature set:

• Head and CoM projections should be at the support center

• Feet should be on the ground

• Angular momentum should be minimal

• CoM height

Figure 15.6 shows an example of one-foot balance control.

15.3 Actuation

We now give two control features on the actuation, whereas previous features
were defined for velocity. These actuation objectives are used to control how
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Figure 15.5: The contact points (red) are used to define the support center
(blue) as their mean. The CoM projection (green) is controlled by setting its
desired value to the blue point.

Figure 15.6: One foot balance, while tracking an IK target.

the character should use its actuator forces to move. The dissipation term
described for the relaxation term (14.9) can also be used.

15.3.1 Strength

Though we placed convex limits on the actuation through the constraint
µ ∈ A in (14.7) and (14.8), we place an additional objective penalizing strong
actuator forces. Instead of using the canonical metric on the actuators, by
adding an optimization term

∣∣∣∣ATµ
∣∣∣∣2 to the QP, we found that the associ-

ated kinetic energy resulted in a better measure of the energy associated to
perform one motion. This metric is defined as:
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∣∣∣∣M−1ATµ
∣∣∣∣2
M

=
∣∣∣∣ATµ

∣∣∣∣2
M−1 = µTAM−1ATµ

Adding this term also prevents the character from changing actuation too
abruptly.

15.3.2 Laziness

In addition to controlling the amount of force exerted by the character, we
also propose to favor forces that produce the least instantaneous work, so
that the character exploits both its structure and the motion to minimize the
energy expenditure.

Unfortunately, the objective term
(
vT .ATµ

)2 is no longer quadratic and
can therefore not be used in this framework. However, if we use the previous
velocity instead, we obtain a quadratic form in µ:

(
vTt .A

Tµ
)2

= µTAvt.v
T
t A

Tµ

Intuitively, this amounts to considering that the current actuation plan is
based on the previous velocity to minimize actuation work. Unfortunately, as
this objective grows as the square of the actuation forces work, we have found
that it often becomes predominant in the optimization, producing large smooth
limb motions that eventually cause the character to fall.



Conclusion

In this part, we presented two Quadratic Programming control frameworks
exploiting our reduced pose parametrization:

• A simple pseudo-control approach that linearly blends the dynamics
and control forms

• A more advanced control framework making use of the character actu-
ators only

The first approach is conceptually simpler, but uses external forces to
control the character. It allows to easily add small dynamic effects to the
kinematic manipulation of a virtual character, but is somewhat limited to
physically-based puppetry.

On the contrary, the second approach only exploits the generalized forces
arising from the PGA-reduced pose model. We proposed a complementarity
relaxation strategy producing smoother motions, together with an optional
dissipation term. We presented simple balance controllers with good stability
results.

Efficiency As expected, the dimension reduction offered by the PGA al-
lows to improve efficiency, since all the examples we proposed run in full
real-time, at around 100Hz on a quad-core machine. We believe these perfor-
mances to be improvable by engineering a better optimized code.

Dimensionality Compared to the compression algorithm presented in chap-
ter 9, we found that a higher number of principal geodesics are usually needed
to obtain satisfying animations, which seems logical since the situations en-
countered are no longer strictly found in the input motion capture data. In
our experience, between 15 and 20 geodesics generally produce good results,
at least for balance control.

Actuator Bounds While setting actuator bounds for an unreduced pose
parametrization can be done based on bio-mechanic studies, setting reason-
able actuation bounds for the PGA-reduced actuators is much more diffi-
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cult. In our experiments, we simply applied box constraints using empiri-
cally chosen values, obtained by successively increasing these bounds until
the character can remain balanced. We also did not investigate the prefer-
ence of certain actuators based on the corresponding eigenvalue in the PGA
decomposition.

Robustness Though the balance controllers we presented performed gen-
erally well under user interaction, summing control terms in an un-prioritized
way will necessarily be subject to robustness problem in the case of a user in-
sisting too much.

Unfortunately, we did not implement a prioritized optimization strategy
as found in [LMH10], though it could have largely benefited from our re-
duced dimension strategy. This kind of framework produces much more
robust controllers than simply summing objective terms, as the core balance
objectives can not be perturbed by user IK requests. This could also improve
the robustness of our controllers to impulsive perturbations.

Friction We used a crude approximation of ground contacts by using only
unilateral constraints, which corresponds to an infinite Coulomb friction co-
efficient. However, even under this simplification, the complete control prob-
lem is already non-convex and thus difficult to solve. It would be interesting
to see if a relaxed, frictional control problem can be formulated, using an
alternate projection algorithm similar to [KSJP08].

Complementarity The biggest remaining issue is that incorporating non-
convex complementarity constraints in this framework is impossible. We
tried several relaxation strategies, but none of them produced entirely sat-
isfying results: adding our relaxation term attenuates the problem and pro-
duces smoother animations, but at the expense of satisfying the control objec-
tives. Without hard complementarity constraints, there is simply no way of
preventing contact forces to participate directly in the control objective mini-
mization, contrary to how true reaction forces should behave.

In practice, this results in spurious contact forces that alter the quality of
the control actuation forces. The most effective strategy to tackle this issue
is to add a control objective penalizing normal velocities. This amounts to
treating hard unilateral constraints as soft bilateral constraints, but it can lead
to “sticky” angular limits. Generally, using this technique imposes that the
contact scenarios must be known in advance.
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Conclusion
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Chapter 16

Conclusion

In this work, we presented a new representation for human pose data, en-
abling dimension reduction by learning on existing motion capture data.
When looking for a statistical analysis method suitable for rotational data,
we were led to consider the use of the Principal Geodesic Analysis algorithm
instead of other complex non-linear algorithm, as it both provides a sound
geometric foundation, and remains tractable in practice. This choice turned
out to be interesting at many levels:

• The PGA is a natural, coordinate-invariant extension of the well-known
linear PCA to certain non-linear manifolds.

• The learning data are remarkably compact compared to other non-linear
statistic analysis tools, by taking the geometry of the data manifold into
account.

• The resulting sub-manifold parametrization comes as a smooth func-
tion with simple derivatives, allowing its use within a large class of
character animation techniques.

We evaluated the relevance of this dimension reduction technique through
a motion compression algorithm, which enables high compression ratios de-
spite its simplicity. The experience acquired with the geometry of rotations
led us to propose a simple geometric method to approximate the joint angu-
lar limits for a motion capture sequence. Combined with the PGA-reduced
pose model, the resulting constraints effectively prevent unnatural poses from
being reached. Experimenting with the resulting PGA-based Inverse Kine-
matics naturally made us wonder how to incorporate dynamics into this
model, in order to improve the quality of resulting animations.

⋆ ⋆ ⋆
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Switching to the physically-based animation was not an easy change: the
depth and the complexity of the subject are sometimes frightening. Kine-
matic constraints and contacting system are an especially difficult topic, thus
we had to acquire knowledge in convex optimization and quadratic pro-
gramming.

After discovering the Lie group theory through the PGA algorithm, we
became interested in geometric integration strategies, since they provide sound
theoretic basis for physically-based animation with Lie groups. While the
first contact is a little difficult, it turned out that the resulting first-order
equations simplified matters considerably, by eliminating the need for sec-
ond derivatives computations or approximations.

Keeping the algorithms suitable for real-time use was a driving goal from
the beginning, therefore we proposed an explicit time integration scheme,
based on a reasonable approximation of a geometric integrator. Together
with our dedicated damping model, it allows one to use quite large time-
steps, while keeping the simulation stable.

At this point,we realized that despite their repulsive first impression, Lie
group formulations were actually a gain of speed regarding software devel-
opment, as they allow to factor most of the treatments under the same con-
ceptual framework. In fact, all the algorithms we programmed, from spline
interpolation to time-integration, are expressed in this framework, which fa-
vors modular software development.

⋆ ⋆ ⋆

Once the dynamics were incorporated into the model, the next step was
motion control. Task-space control seemed the most promising and flexible
approach, especially regarding the potential benefits offered by our reduced
model. Here again, the use of a velocity-level formulation for dynamics al-
lowed to greatly simplify the computations involved in control features.

By considering the analogy between classical IK optimization schemes
and kinematic constraints resolution, we proposed a simple pseudo-control
framework that interpolates between these two behaviors, allowing for much
higher-level control than hard kinematic constraints only. However, using
external forces for character control reduces to a form of virtual puppetry,
and does not provide much insight about the control strategies happening in
the real human body. Therefore, we turned ourselves to the complete control
problem, using only the character actuators to achieve motion objectives.

At this point, things became increasingly complicated, mainly due to con-
vexity issues arising in the presence of unilateral constraints, not even consid-
ering friction. While we proposed a convex relaxation for the feature-based
motion control, the solution is not entirely satisfactory since the complemen-
tarity relaxation and the motion objective are competing against each other.
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In the end, this theoretical limitation forces the user to carefully describe con-
trol objectives for contacts, which is an undesirable limitation, especially con-
cerning the applicability of these algorithms for interactive robotic motion
planning.

Future Work

Of course, a lot more remains to be done, on multiple issues. Here are the
main topics we would like to investigate in the future.

Kinetic Metric in PGA

As we have seen, the PGA depends on a Riemannian metric to compute the
principal geodesics. Instead of choosing the canonical, bi-invariant metric on
SO(3)n, it would be interesting to try the kinetic energy metric instead:

• The mean pose corresponds to the pose that is the closest, energetically-
speaking, to all the data samples

• Choosing a set of geodesic directions that are orthogonal, in the sense
of the kinetic metric, would provide mechanically independent modes
(instead of only statistically)

• The resulting model would provide a mechanically orthogonal basis (at
the mean) spanning the sub-manifold of motion samples, combining
the advantages of both statistical analysis and modal reduction.

Of course, the kinetic geodesics can no-longer be computed using the Lie
exponential. Instead, geometric integrators would have to be used, since
the kinetic geodesics correspond exactly to the time-integration of a pure
kinetic-energy Lagrangian. The good energy behavior of geometric integra-
tors would of course be helpful in this purpose.

Projective Constraints for Computer Vision

It would be interesting to test our pseudo-control framework as a pose and
dynamics prior in a marker-less motion capture system. Silhouette tracking
could be implemented as several control objectives. In the absence of track-
ing information (i.e. zero silhouette gradient/control force), the momentum
of the character together with the reduced pose space would automatically
provide a relevant pose candidate.
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Modal Proportional-Derivative Control

While the task-space control framework allows high-level control strategies,
PD motion controllers have proven very robust in the past, despite the rela-
tive lack of expressiveness of the resulting animations. Adapting these con-
trollers to our reduced pose model should not pose any major problem, and
could result in very fast, data-driven motion controllers.

Control and Bilateral Constraints

As mentioned above, the true task-space control problem under unilateral
constraints is non-convex, and thus much harder to solve. Some algorithms
have been proposed for solving such problems, as a Sequential Quadratic
Program. Since these iterative algorithms are computationally-expensive,
our reduced pose model may provide a low enough dimension reduction
to make their real-time use possible.

⋆ ⋆ ⋆

In retrospect, this thesis allowed us to discover a lot of interesting math-
ematical structures, that we feel are not as widespread as they ought to be
among the graphics community. Therefore, we put a lot of effort in present-
ing these abstract concepts in a (hopefully) more intuitive way.

Our approach stresses the importance of geometry in modeling: once this
geometry is understood, interesting approximations can be derived, allowing
to preserve relevant structures while improving computational efficiency.

To conclude, we hope that the present work will be able to serve as a
basis for improving the various stages of the character animation pipeline:
capture, storage, processing, simulation and control.



Bibliography

[AH04] Mihai Anitescu and Gary D. Hart. A fixed-point iteration ap-
proach for multibody dynamics with contact and small friction.
Mathematical Programming, 101(1):3–32, 2004. 10.1007/s10107-
004-0535-6.

[AMR+07] Jérémie Allard, Clément Menier, Bruno Raffin, Edmond Boyer,
and François Faure. Grimage: markerless 3d interactions. In
ACM SIGGRAPH 2007 emerging technologies, SIGGRAPH ’07,
New York, NY, USA, 2007. ACM.

[Ani05] Mihai Anitescu. On using the elastic mode in nonlinear pro-
gramming approaches to mathematical programs with comple-
mentarity constraints. SIAM J. on Optimization, 15(4):1203–1236,
April 2005.

[AP97] M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-
body contact problems with friction as solvable linear comple-
mentarity problems. Nonlinear Dynamics, 14(3):231–247, 1997.
10.1023/A:1008292328909.

[AP99] Franck C. Anderson and Marcus G. Pandy. A dynamic op-
timization solution for vertical jumping in three dimensions.
Comput Methods Biomech Biomed Engin, 2(3):201–231, 1999.

[Ari06] Okan Arikan. Compression of motion capture databases. ACM
Trans. Graph., 25(3):890–897, 2006.

[Bar92] David Baraff. Rigid body simulation. In SIGGRAPH 95 Course
Note 34. ACM SIGGRAPH, 1992.

[Bar94] David Baraff. Fast contact force computation for nonpenetrat-
ing rigid bodies. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’94,
pages 23–34, New York, NY, USA, 1994. ACM.

[Bar96] David Baraff. Linear-time dynamics using lagrange multipliers.
In Proceedings of the 23rd annual conference on Computer graphics

187



188 BIBLIOGRAPHY

and interactive techniques, SIGGRAPH ’96, pages 137–146, New
York, NY, USA, 1996. ACM.

[BB01] Paolo Baerlocher and Ronan Boulic. Parametrization and range
of motion of the ball-and-socket joint. In Proceedings of the IFIP
TC5/WG5.10 DEFORM’2000 Workshop and AVATARS’2000 Work-
shop on Deformable Avatars, DEFORM ’00/AVATARS ’00, pages
180–190, Deventer, The Netherlands, The Netherlands, 2001.
Kluwer, B.V.

[BDCDA11] Florence Bertails-Descoubes, Florent Cadoux, Gilles Daviet, and
Vincent Acary. A nonsmooth newton solver for capturing exact
coulomb friction in fiber assemblies. ACM Trans. Graph., 30(1):6–
1, February 2011.

[BF01] Samuel R. Buss and Jay P. Fillmore. Spherical averages and ap-
plications to spherical splines and interpolation. ACM Transac-
tions on Graphics, 20(2):95, 2001.

[BH00] Matthew Brand and Aaron Hertzmann. Style machines. In SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 183–192, New York, NY,
USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[BM95] F. Bullo and R. M. Murray. Proportional derivative (pd) control
on the euclidean group. In In European Control Conference, pages
1091–1097, 1995.

[BM05] Stephen Braun and John E. Mitchell. A semidefinite program-
ming heuristic for quadratic programming problems with com-
plementarity constraints. Comput. Optim. Appl., 31(1):5–29, May
2005.

[BPP07] Philippe Beaudoin, Pierre Poulin, and Michiel van de Panne.
Adapting wavelet compression to human motion capture clips.
In GI ’07: Proceedings of Graphics Interface 2007, pages 313–318,
New York, NY, USA, 2007. ACM.

[BRM09] Nawaf Bou-Rabee and Jerrold E. Marsden. Hamilton-
pontryagin integrators on lie groups part i: Introduction and
structure-preserving properties. Found. Comput. Math., 9(2):197–
219, March 2009.

[Bus04] Samuel R. Buss. Introduction to inverse kinematics with jaco-
bian transpose, pseudoinverse and damped least squares meth-
ods. Technical report, 2004.



BIBLIOGRAPHY 189

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, USA, 2004.

[BW95] Armin Bruderlin and Lance Williams. Motion signal processing.
In SIGGRAPH ’95: Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 97–104, New
York, NY, USA, 1995. ACM.

[CH05] Jinxiang Chai and Jessica K. Hodgins. Performance anima-
tion from low-dimensional control signals. ACM Trans. Graph.,
24(3):686–696, 2005.

[CH07] Jinxiang Chai and Jessica K. Hodgins. Constraint-based motion
optimization using a statistical dynamic model. In ACM SIG-
GRAPH 2007 papers, SIGGRAPH ’07, New York, NY, USA, 2007.
ACM.

[Cot09] Richard W. Cottle. Linear complementarity problem. In Ency-
clopedia of Optimization, pages 1873–1878. 2009.

[CP03] Michael B. Cline and Dinesh K. Pai. Post-stabilization for rigid
body simulation with contact and constraints. In Proceedings
of the 2003 IEEE International Conference on Robotics and Automa-
tion, ICRA 2003, September 14-19, 2003, Taipei, Taiwan, Proceed-
ings of the 2003 IEEE International Conference on Robotics and
Automation, ICRA 2003, September 14-19, 2003, Taipei, Taiwan,
pages 3744–3751. IEEE, 2003.

[DK00] J. J. Duistermaat and J. A. C. Kolk. Lie Groups. Universitext.
Springer-Verlag, New York, 2000.

[DRBR09] Julien Diener, Mathieu Rodriguez, Lionel Baboud, and Li-
onel Reveret. Wind projection basis for real-time animation
of trees. Computer Graphics Forum (Proceedings of Eurographics
2009), 28(2), mar 2009. to appear.

[Erl07] Kenny Erleben. Velocity-based shock propagation for multi-
body dynamics animation. ACM Trans. Graph., 26(2), June 2007.

[Eto10] Jean Bosco Etoa. Solving convex quadratic bilevel program-
ming problems using an enumeration sequential quadratic pro-
gramming algorithm. J. of Global Optimization, 47(4):615–637,
August 2010.

[Fea87] Roy Featherstone. Robot Dynamics Algorithm. Kluwer Academic
Publishers, Norwell, MA, USA, 1987.



190 BIBLIOGRAPHY

[FLJ03] P. Thomas Fletcher, Conglin Lu, and Sarang C. Joshi. Statistics
of shape via principal geodesic analysis on lie groups. In 2003
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 2003 Proceedings CVPR-03, pages –95, 2003.

[FLPJ04] P. Thomas Fletcher, Conglin Lu, Stephen M. Pizer, and Sarang C.
Joshi. Principal geodesic analysis for the study of nonlin-
ear statistics of shape. IEEE Transactions on Medical Imaging,
23(8):995, 2004.

[FLRS06] Roger Fletcher, Sven Leyffer, Danny Ralph, and Stefan Scholtes.
Local convergence of sqp methods for mathematical pro-
grams with equilibrium constraints. SIAM J. on Optimization,
17(1):259–286, January 2006.

[FP03] Anthony C. Fang and Nancy S. Pollard. Efficient synthesis of
physically valid human motion. In ACM SIGGRAPH 2003 Pa-
pers, SIGGRAPH ’03, pages 417–426, New York, NY, USA, 2003.
ACM.

[Fuk90] Keinosuke Fukunaga. Introduction to statistical pattern recogni-
tion (2nd ed.). Academic Press Professional, Inc., San Diego, CA,
USA, 1990.

[FvdPT01] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopou-
los. Composable controllers for physics-based character anima-
tion. In SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages 251–260,
New York, NY, USA, 2001. ACM.

[Gle97] Michael Gleicher. Motion editing with spacetime constraints. In
Proceedings of the 1997 symposium on Interactive 3D graphics, I3D
’97, page 139, New York, NY, USA, 1997. ACM.

[Gle98] Michael Gleicher. Retargetting motion to new characters. In
SIGGRAPH ’98: Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques, pages 33–42, New York,
NY, USA, 1998. ACM.

[GM85] Michael Girard and A. A. Maciejewski. Computational model-
ing for the computer animation of legged figures. SIGGRAPH
Comput. Graph., 19(3):263–270, 1985.

[GMHP04] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran
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