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Abstract

This thesis concerns the tasks of image re-ranking and image classification. These
tasks are solved by learning statistical models given a representation of visual content
of the image and a similarity measure between images. Here we aim to improve
performance of the tasks by extending the bag-of-words image representation, while
using existing statistical models and similarity measures between images.

We adapt the image representation according to a given task. First we explore the
task of image re-ranking, whose goal is to re-order the images retrieved by a text query
such that images relevant to a query are ranked above non-relavant ones. Inspired
by text re-ranking methods we developed a query-relative image representation that
depends on the visual content of the image, but also on the query used to retrieve it.
Next, we adapt the representation for the task of image classification, which aims to
assign one or more labels to an image that is related to the content of the image. We
have adapted the representation by learning a visual vocabulary specifically for the
classification task. We have also introduced a new representation that encodes the
information about spatial layout of image parts in much more compact manner than
currently used representations that encode the spatial layout.

All developed image representations are compact, fast to construct and already per-
form very good with linear models. We show marked improvements on several stan-
dard and challenging datasets with respect to state-of-art-methods. For image classi-
fication and image re-ranking tasks we have shown that adapting the representation
to the task improves the performance.

Keywords

Image representation • Image re-ranking • Image classification • Visual vocabulary
learning • Spatial layout.





Résumé

Cette thèse se concerne avec de tâches de la recherche et la classification d’images.
Ces tâches sont résolues par l’apprentissage des modèles statistiques donnée une
représentation du contenu visuel de l’image et une mesure de ressemblance entre
les images. Ici nous visons à améliorer les performances du tâches en étendant le
sac-de-mots représentation de l’image, tout en utilisant modèles statistiques et des
mesures de similarité entre les images déjà existants.

Nous adaptons la représentation d’image en fonction d’une tâche donnée. Nous
avons d’abord explorer la tâche de reclassement d’images, en contexte de la recherche
d’images, dont le but est de trier les images récupérées par une requête textuelle
afin que les images pertinentes pour ce requête sont classés au-dessus les autres im-
ages. Inspiré par le méthodes de reclassement de documents textuelles nous avons
développé une représentation qui dépend du contenu visuel de l’image, mais egale-
ment sur la requête textuelle utilisée pour récupérer l’image. Ensuite, nous adaptons
la représentation pour la tâche de classification d’images, qui vise à attribuer une ou
plusieurs étiquettes d’une image liée à la contenu visuel de l’image. Nous avons adap-
tée de la représentation en apprenant un vocabulaire visuel, spécifiquement pour la
tâche de classification. Nous avons également introduit une nouvelle représentation
qui encode les informations sur la disposition spatiale des parties d’image, de manière
beaucoup plus compacte que les représentations actuellement utilisés pour codage de
l’agencement spatial.

Toutes les représentations développées sont compacts, rapides à construire et obtient
bons resultats en utilisent des modèles linéaires. Nous montrons des améliorations
sur plusieurs bases des images complexes en comparation avec des méthodes de l’état
de l’art. Pour les tâches de recherche et classification d’images nous avons montré que
l’adaptation de la représentation à la tâche améliore les performances.

Mots-clés

Representation d’image • Recherche d’images • Classification d’images • Appren-
tisage de vocabulaire visuel • Agencement spatial
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1
Introduction

In Section 1.1 of this chapter we explain our motivation for the work presented in
this thesis, which concerns image representations. In Section 1.2 we define our ob-
jectives, and in Section 1.3 we give an overview of image representations used for
image classification. In Section 1.4 we conclude the chapter with an overview of con-
tributions presented in this thesis. In the remaining chapters we focus on each of the
contributions, giving in each chapter an overview the related work and details of our
contribution, presenting the results of experimental evaluation along with comments
and perspectives. We conclude the thesis in Chapter 5 where we give a brief review of
each contribution and comment possible extensions and applications of the proposed
methods.

1.1 Motivation

Over the past decade digital photo cameras became ubiquitous, the network band-
width has increased, and image compression techniques improved. These advances
led to an explosion of digital images embedded in web-pages and blogs, and the ad-
vent of dedicated photo-sharing sites like Flickr and Picassa created a platform that
enabled even more images to be published online. The number of images available
online continues to grow with expansion of social networks that allow sharing of im-
ages: according to the Time magazine more than 130.000 photos are uploaded each
minute on Facebook. In order to allow humans to use this vast and ever increasing
collection of images, e.g. to search for images containing objects or persons, or to
organize them into topics, the images need to be indexed by semantically meaningful
terms. But annotating images is tedious task, and although there is a number of ways
one can provide textual description of the image1, the majority of the users still do
not annotate the images with semantically meaningful terms.

1HTML language provides a way of describing images with text, EXIF meta-data contains infor-
mation when and where the photo is taken and some photo-sharing services even provide tools to
annotate image regions

http://www.time.com/time/video/player/0,32068,711054024001_2037229,00.html
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Semantic indexing of a personal image collection can be performed manually, but in-
dexing of big, web-scale image collection is a significant challenge. One solution is to
divide the problem into the small parts that can be solved manually. For example, the
ESP Game crowd-sources the problem of semantic indexing of images by presenting
it as an on-line game, while Flickr Groups provide an administered way of organizing
images into topics. But even under an assumption that humans do a perfect job when
semantically annotating images, in the sense that they all agree on annotations for an
image, manual effort alone is not enough to index all images available online because
the number of images to be annotated increases too rapidly. Annotating a subset of
images is not an option because we do not know in advance what images will be
searched for. We would like to do the semantic indexing automatically, but there is
no simple relation between low level image content as represented in a machine and
its description by semantically meaningful terms. [Smeulders et al., 2000] call the
absence of this relation the semantic gap.

To learn statistical models that relate image content and semantic annotations we
need annotated images. Therefore, although manual indexing of images can not
provide the solution to the problem, it can help in building statistical models, by
providing the annotations for the images which are used to learn the model. Learning
the model assumes that the image content is represented in a machine. A good image
representation should encode all the relevant information about the visual content of
the image. What information in the image is considered relevant depends on the task.
We illustrate this using an example in Figure 1.1. In discriminating between images
of cities and beaches color is relevant feature, so using e.g. global color histograms
as an image representation is a good idea. However, discriminating between images
of cows and horses using the same features is a difficult, because color information
is not relevant for that task: color is not a discriminating feature of cows and horses,
and usually they share the environment in which we encounter them. Therefore using
simple features might be good enough for easy tasks, but as complexity of the problem
increases the need for more sophisticated image representations arises.

1.2 Objectives

In this thesis we explore different ways of representing image content, with special
emphasis on image representations for classification and re-ranking tasks. Next, we
define these tasks and briefly describe how to learn models for these tasks, as well as
how to perform these tasks given the image representation and the learned model.

Image classification The goal of image classification is to assign an image to one
or more sematic categories based on its content. In the binary classification
setting the goal is to learn the model of an object that, given the image, answers

http://www.espgame.org/gwap/gamesPreview/espgame
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Figure 1.1: Representation of image with a global color histogram. Color histogram
is a good image representation if we want to discriminate between images of beaches
and cities, but not if the task is to discriminate between images of cows and horses.

the question: "Is the object present in the image?". In more complex, multi-
class classification scenario the model is learned to answer the question: "Which
object is present in the image?". Image classification with multiple labels, called
also image annotation answers to the question: "Which objects are present in
the image?", by learning multiple binary classification models.

Image re-ranking Given the images retrieved by a text query, using e.g. an image
web-search engine, the goal of image re-ranking is to sort the retrieved images
so that the ones relevant to the query are ranked higher than the ones that are
not, using the visual content of the image.

Given an image representation, statistical models that relate the image features to
semantically meaningful terms can be learned. The model f is determined by param-
eters w, so to learn a model means to infer the parameters using which the model
well predicts the training labels from the training image features. Given an image
x, the learned model generates a score f (x,w) which can be used either to rank im-
ages by sorting the scores, or to classify the images by comparing their scores with
a threshold. An example of such models are the support vector machines [Vapnik,
1998], commonly used in state-of-the-art image classification methods. Admittedly,
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other models are possible (e.g. rule-based models), but since the choice of the model is
orthogonal to contributions presented here we use only statistical models recognized
to be both simple and efficient.

1.3 Image representations for classification

One of the first attempts to abstract the content of the image was to use textual meta-
data associated with images (e.g. EXIF meta-data, image file and folder names, HTML
tags within web-pages, user-provided tags etc.) to represent the images via text meta-
data. The majority of image search engines rely on such image representation to
retrieve and rank images given a text query. However, as text meta-data is generated
often without the intention of annotating the images with semantically meaningful
information it can be incorrect, ambiguous, incomplete, or simply missing, so the
assumption that text meta-data is related to image content is not always valid. There-
fore, to improve the quality of image retrieval and ranking, the visual content of the
image must be taken into account.

1.3.1 Global image representations

The first image representations were global. These representations aggregate local
appearance attributes into image-wide, global color, shape [Jain & Vailaya, 1996]
or texture [Manjunath & Ma, 1996] features. They are compact, fast to build and
invariant to layout of image parts, but their discriminative power is limited. When
aggregating simple pixel features like gradient orientation of image intensity or pixel
color, over the whole image into global image representation, like histogram of gradi-
ent orientations or color histogram, the influence of each pixel feature on the image
feature can be small. This is disadvantageous for some tasks, e.g. for detecting if ob-
jects like cars or bicycles are present in the image, because the influence of the object
features can be drowned by the background clutter. The effect is even more conspic-
uous when the object in the image is small or occluded. These representations are a
good encoding of an image content when individual pixel features are already infor-
mative for the task, like in the case of using color to discriminate between images of
beaches and cities in Figure 1.1.

1.3.2 Local image representations

To overcome the limitations of global image representations, the image is represented
by a set of regions. These representations are therefore called local. Since only a
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fraction of regions is influenced by the occlusions and background clutter, the local
image representations are more robust with respect to these effects.

Here we will concentrate on group of image representations based on bag-of-words
approach, first introduced in [Sivic & Zisserman, 2003, Csurka et al., 2004]. Although
many object representations can also be used to represent the whole image via e.g.
histograms of oriented gradients [Dalal & Triggs, 2005], shape segments [Opelt et al.,
2006, Ferrari et al., 2010], constellation models [Weber et al., 2000, Fergus et al.,
2003], latent SVM [Felzenszwalb et al., 2010], etc. we will deal only with bag-of-
words image representations as they are very efficient and have been the state-of-the-
art in image classification from their introduction. We next describe the creation of
local image representations based on the bag-of-words approach.

The local image representations can be described by a succession following stages: re-
gion selection, region appearance description, region appearance coding, and deriva-
tion of the image features from the set of region appearance codes by spatial pooling.
The schematic overview of these stages is given in Figure 1.2. We now describe each
of these stage in more detail.

Region selection Region appearance
      description

Region appearance
         coding

   Image features from 
region appearance codes

Figure 1.2: Shematic overview of stages for deriving local image representation on
example of bag-of-words image representation

Region selection The question of how to select regions from the image is impor-
tant, since the region selection influences the image representation: different sets of
regions yield different image representations. One of the first works that uses local
image representation, employs an image segmentation algorithm to select image re-
gions [Barnard et al., 2003]. That option is attractive because it allows each region
to be described with its shape [Belongie et al., 2002], in addition to color and tex-
ture. However, since few segmentation algorithms produce stable regions2, and are
computationally intensive, this option has not gained a lot of attention.

The idea of using interest points detectors to select regions was borrowed from the
field of wide-baseline stereo matching. Interest points detectors are constructed to

2In the sense that small change in image can cause big change in the number of regions, and their
shape.
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detect structures like corners [Harris & Stephens, 1988], blobs [Lindeberg, 1998]
and ridges [Steger, 1998]. The rectangular region around detected point (also called
patch) is represented by a region appearance descriptor. The main advantage when
using interest point detectors is that structures are detected at their intrinsic scale us-
ing the principle of automatic scale selection [Lindeberg, 1998]. This allows descrip-
tion of regions by the local features that are invariant to local affine transformations
[Mikolajczyk & Schmid, 2004]. The use of interest points detectors implicitly assumes
that some image regions are not important for image representation, an assumption
that seems intuitively valid. However, since they are not learned for the task at hand,
but were developed for wide-base stereo matching, there is no guarantee that the
selected regions will yield image representation that is optimal for solving a given
image classification or re-ranking task.

This drawback of interest point detectors is the main motivation behind dense region
sampling: if the image is completely covered by regions, the whole image can be re-
constructed from the set of selected regions, and therefore no information is lost. The
image representation then encodes the complete image content, and determination
of importance of each region is left to the subsequent, task-specific stages. It has been
shown that for some image classification tasks selecting regions from a regular grid,
outperforms the use of interest point detectors [Winn et al., 2005]. [Nowak et al.,
2006] sample the regions randomly from fixed spatial distribution, and in [Moos-
mann et al., 2008] this approach is extended by dynamically updating the spatial
distribution from which regions are sampled.

Region appearance description The appearance of a selected region is described
by a set of region appearance attributes, called local descriptor or local feature. These
descriptors can be similar to the global image descriptors, but they are usually hand-
crafted to have some geometric and photometric invariances, e.g. to be invariant to
non-uniform illumination changes and geometric distortions caused by varying object
pose. To achieve photometric invariance the response of filter banks which describe
local texture has been used [Leung & Malik, 1999, Ojala et al., 2002]. The invari-
ance to geometric distortions is additionally addressed using spatial binning as in
SIFT [Lowe, 2004], spatial blurring [Berg & Malik, 2001] or by projecting spatial dis-
tribution of filter responses to a subspace as in PCA-SIFT [Ke & Sukthankar, 2004].
Region color [van de Weijer et al., 2007] and grayscale values [Obdrzalek & Matas,
2002, Kadir & Brady, 2001] have also been used to describe region appearances.

Region appearance coding The region appearance descriptors are coded using a
set of prototype vectors. A prototype is called visual word, and the set of visual words
used to code the region descriptors is called visual dictionary. The visual dictionary is
used to express the content of the image, just like the text words are used to convey
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the content of text document. However, when dealing with coding of image content,
the visual words are not given, but need to be determined. Therefore, two important
questions need to be answered: how to obtain a visual dictionary, and how to code
a feature using a given visual dictionary. The methods can be divided in two groups,
based on the approaches used to answer these questions. The ones that derive visual
dictionary and code the features having in mind the reconstruction of the descriptor as
a goal, are called here reconstruction-guided coding methods. Prediction-guided coding
methods aim at prediction of the region label from the region descriptor.

Reconstruction-guided methods code the descriptor so it can be reconstructed with
minimal error using a given visual dictionary. Early approaches obtained visual dic-
tionaries by k-means clustering of training set of local features and coded the region
by the index of the closest visual word [Sivic & Zisserman, 2003, Csurka et al., 2004].
[Nistér & Stewénius, 2006] use hierarchical k-means to reduce the computational
complexity of coding each region from O(N) to O(log(N)), where N is the number of
visual words in dictionary. When using k-means to quantize the descriptor space the
quantization cells adapt to the distribution of training descriptors. This is sub-optimal
when this distribution is non-uniform, because less frequent features are have bigger
reconstruction error. To overcome this [Jurie & Triggs, 2005] use mean-shift cluster-
ing algorithm [Comaniciu et al., 2000] to obtain visual words.

As shown in [Boiman et al., 2008], the main drawback of these approaches is that
each feature is coded by a single reconstruction coefficient: an index of closest visual
words. In that case the reconstruction error is big unless a large number of visual
words is used. To reduce the reconstruction error [Philbin et al., 2008] and [van
Gemert et al., 2010a] soft-assign a feature to multiple visual words, so the appear-
ance of each region is coded by multiple reconstruction coefficients. The same idea
led [Yang et al., 2009, Wang et al., 2010] and [Boureau et al., 2010a] to code the
feature with coefficients of linear combination of visual words for which the recon-
struction error is minimized, under sparsity [Yang et al., 2009] or locality constraints
[Wang et al., 2010]. In the Fisher vector approach of [Perronnin & Dance, 2007] each
feature is coded using the gradients with respect to the parameters of underlying gen-
erative model, specifically, mixture-of-Gaussians whose parameters are learned by EM
algorithm on training set of local features.

In prediction-guided coding the visual dictionary construction is guided by minimizing
the prediction of class label associated with the feature. To that end [Moosmann et al.,
2008] learn the randomized forests to predict class labels from labeled set of region
descriptors. The label of each training region descriptor is inherited from the label
of the image the region is sampled from. The growing of the randomized tree is
guided by minimization of region mis-classification error. The leaves of the tree are
visual words that correspond to the quantization cells of descriptor space. Several
randomized trees are used, so each feature is coded by multiple coefficients, where
each corresponds to the index of the leaf in the tree. In [Perronnin, 2008] the initial
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dictionary is constructed with a goal of feature reconstruction, and then the obtained
visual words are adapted using the class labels, so the adapted visual words depend
on the class. The feature is coded using both initial, universal dictionary and the
class-specific one.

Derivation of image features from the set region appearance codes by spatial
pooling The majority of models used for image classification assume that image is
represented by a vector space equipped with a dot product. To embed the set of fea-
tures into a vector space, the set of coefficients that code region appearance features is
aggregated into a vector of fixed size that represents the visual content of the image.
The aggregation is performed per visual word, so that the coefficients corresponding
to a visual word are aggregated over all regions sampled from the image. The case
when image representation is derived as a sum of feature coefficients is called sum
aggregation. Sum aggregation is performed by bag-of-words methods of [Sivic & Zis-
serman, 2003, Csurka et al., 2004, Nistér & Stewénius, 2006, Jurie & Triggs, 2005]
and in the Fisher vector approach of [Perronnin & Dance, 2007]. In max aggrega-
tion the image features are derived as maximum of feature coefficients corresponding
a visual word. Max aggregation was introduced by [Riesenhuber & Poggio, 1999],
whose goal was to model the responses of cells in visual cortex of primates. [Boureau
et al., 2010b] showed that this kind of aggregation better separates the image fea-
tures corresponding to visual words that have low probability of being active, and
that aggregating all features is sub-optimal. Max aggregation is used also by [Yang
et al., 2009] and [Wang et al., 2010], and in [Moosmann et al., 2007] where binary
vectors are used to describe the image.

The image representations are finally normalized, such that all image vectors have
equal L1 or L2 norm. When using bag-of-words methods L1 normalization is used
so image representation can be interpreted as multinomial over visual words called
bag-of-words histogram.

1.3.3 Image layout

For some tasks the layout of the image parts is an informative feature, e.g. for scene
classification where task is to discriminate between the types of scenes like “bedroom”
or “store”. In that case the layout needs to be coded into the image representation.
The dominant approach is the Spatial Pyramid Matching (SPM) approach of [Lazeb-
nik et al., 2006]. The image plane divided into the several parts, e.g. by quad-tree,
and the feature coefficients are aggregated over these parts. The final image repre-
sentation is obtained by concatenating the representation of the image parts. The
same idea was used in [Perronnin et al., 2010b] to enrich the Fisher vector represen-
tation with spatial layout information and in [Bosch et al., 2007b] where quantized
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gradient orientations are aggregated over image parts. The relative importance of the
parts depends on the task, and [Bosch et al., 2007b] explored learning the per-task
weights for the parts.

The GIST descriptor of [Oliva & Torralba, 2001] is a global image representation that
takes into account the image layout by characterizing image properties like “natural-
ness” or “openness”, measured by spatial distribution of specifically designed image
filter responses.

1.4 Contributions

Here we briefly describe the main contributions we present in the following chapters
of this thesis.

In Chapter 2 we describe the image representation developed for the task of image
re-ranking, where the goal is to to sort image retrieved by the text query taking into
account their visual content. The developed image representation depends not only
on the visual content of the retrieved image, but also on the content of other images
retrieved along with it, using the same text query. This enables us to learn a single
relevance model that, once learned, can be used to re-rank the images according
to the relevance to queries not seen during model training. The relevance models
learned from query-relative image representation perform better than query-specific
models [Schroff et al., 2007] that are trained for each query.

The majority of the methods for image classification and ranking rely on image rep-
resentations that are learned in an unsupervised manner. In Chapter 3 we describe
an image representation that is tailored for classification of images belonging to a
specific class. We incrementally build visual dictionary and update the classification
model by alternating between growing a clustering tree whose leaves correspond to
visual words, and learning linear classification model. As opposed to [Moosmann
et al., 2008] who builds the random forest to minimize region mis-classification, we
build the tree to minimize image mis-classification. The resulting image representa-
tion is very compact, fast to create and it gives excellent performance using linear
classifiers which are fast to compute and have limited memory requirements.

State-of-the-art methods for image classification either ignore the layout of image
regions to describe the image as in e.g. bag-of-words representation, or fix layout of
parts and encode the appearance of each part, as in spatial pyramid of [Lazebnik et al.,
2006], where a quad-tree was used to fix the layout of image parts. In Chapter 4 we
propose a new method that is more flexible, by using the Fisher vector principle to
code the layout of image regions attributed to visual words. The resulting representa-
tion is much more compact, while achieving the same or better level of performance
compared to using spatial pyramids to code the fixed spatial layout.
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2.1 Introduction

In this chapter we address the problem of re-ranking images retrieved by a web search
engine, given the textual query. This work has been published in [Krapac et al., 2010]
and submitted to IEEE Transactions on PAMI.

Automatically finding images relevant to a textual query remains a very challenging
task. To reduce the computational cost, most current commercial image web search
engines rank images based on how the text associated with the images relates to the
search query used, without taking into account the contents of the images.

Recently, significant effort has been invested in improving image search performance
by taking into account visual information as well as text [Ben-Haim et al., 2006, Berg
& Forsyth, 2006, Fergus et al., 2005, Fritz & Schiele, 2008, Morsillo et al., 2009,
Schroff et al., 2007]. Most existing methods rely on a common framework: first a
textual query is used to retrieve a noisy set of images using a text-based search engine
(in some approaches, this initial set of images is filtered by removing drawings and
other non-photographic images), and then a classifier, specific to the given query, is
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learned from this image set, and used to re-rank the images. Although some promising
results have been obtained, these methods share the disadvantage that a separate
image re-ranking model must be learned for each query, either on-line or off-line.
The computation time required, and the large number of possible queries, make this
unsuitable for web-scale image search applications.

In this chapter we present an image re-ranking method, based on textual and vi-
sual features, that does not require learning a separate model for every new query.
The model parameters are shared across all queries and learned once, as opposed to
learned per-query. Our approach is inspired by text-based image search techniques
[Frankel et al., 1997, Lin et al., 2003]. These methods compute a relevance score
for an image by weighting various meta-data fields where the query terms can ap-
pear, such as the web page title and image filename. For a particular query, each
image can be represented with a binary query-relative feature vector. Each feature
codes for absence/presence in a particular text field, and its meaning is query-relative
since the value of each feature depends on the match between the text field and the
query terms. Query-relative text features might include, e.g. a single ‘search term’
feature shared across queries, which could be used to represent the occurrence of the
word ‘elephant’ if we are searching for items relevant to the search term ‘elephant’, or
‘giraffe’ if we are searching for ‘giraffe’.

If we wish to take into account the image content, the situation is more complex than
when using text meta-data alone, because image content and textual query terms can
not be matched directly. We overcome this problem by introducing query-relative
visual features as follows. The training stage makes use of sets of images retrieved
by a text-based image search engine for a set of queries, annotated with ground-truth
information about whether each image is relevant to the query terms for which it was
retrieved. Each image’s visual content is represented by a histogram of visual word
counts. The query-relative visual features for an image are computed with respect to
the visual contents of all images retrieved by the text query. To obtain query-relative
visual features we compute the mean visual word histogram for all images retrieved
by text-based search for a given query, and group the visual words by how frequently
they occur for this query compared to their overall frequency. We can then create a
new image representation for each image retrieved by the query in terms of query-
relative visual features, where for example one feature represents the visual words
which occur most often for this query compared to other queries.

After computing the new representation for each image, it becomes possible to train
a universal classifier, common to all search queries, using feature vectors obtained
by concatenating the query-relative text and image features. The learned classifier
can be used to re-rank images for new queries without additional training, because
while the exact image or text content represented by each feature depends on the
search query for which it was computed, a feature’s meaning in relation to the query
relevance is always the same.
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Until now there has been no large public data set appropriate for evaluating image
re-ranking methods’ performance on the images found by text-based search engines.
The data sets that exist [Fergus et al., 2004, Li et al., 2007, Schroff et al., 2007] con-
tain images for only a few classes and/or lack meta-data associated with the images.
Therefore, we introduce a large public data set of 353 search queries 1 for which we
provide the top-ranked images returned by an image search-engine along with the
associated meta-data. The images retrieved by the search engine are embedded into
web-pages, so the meta-data corresponds to parts of HTML code of the web-page: the
text surrounding the image HTML tag on the web page, image filename, URLs, page
titles, etc.. Each image has a ground-truth relevance label, indicating whether or not
it is relevant to the query.

In the remainder of this chapter we give an overview of related work in Section 2.2. In
Section 2.3 we present our method for representing text and images by query-relative
features. Section 2.4 describes experiments performed on the new data set, giving an
experimental validation of our approach and comparison to query-specific classifiers,
while in Section 2.5 we summarize the contributions and comment on perspectives.

2.2 Related work

Web image search can be seen as a specific application for the more general problems
of image classification and object detection. While the best classification and detec-
tion results are obtained by training class-specific models on clean, manually curated
data (e.g. [Everingham et al., 2009]), in recent years there has been much interest
in making use of the larger quantities of noisy data available on the web. The tags
applied to images on photo-sharing websites such as Flickr [Li et al., 2009, Wnuk &
Soatto, 2008, Wang et al., 2009, Perronnin et al., 2010b] or the text associated with
images on general web pages, can be treated as noisy image annotations. Besides
providing more data for specific classes of interest, this makes it possible to deal with
classes for which no clean annotated data is available, to answer unrestricted search
queries submitted by system users. A popular approach is to use an existing text-
based search engine to gather hundreds to thousands of images which are potentially
relevant to a query, then filter the results taking into account the image contents.
The initial textual retrieval can quickly locate images whose meta-data references the
query terms using pre-computed indexes, while the additional computational cost of
taking into account visual information can be restricted to the classifier used for re-
ranking in the second stage [Fergus et al., 2004, Li et al., 2007, Fergus et al., 2005,
Berg & Forsyth, 2006, Jing & Baluja, 2008]. The main challenge in learning a clas-
sifier for re-ranking is to cope with irrelevant images in the image set used to learn

1Available at: http://lear.inrialpes.fr/~krapac/webqueries/webqueries.html

http://lear.inrialpes.fr/~krapac/webqueries/webqueries.html
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the classifier, becuase it is silently assumed that the classifier learning is sufficiently
robust to noise in annotations. Once learned, the system needs to predict, from the
distribution of the noisy set of images, which visual information corresponds to the
search query, and therefore which images should be ranked higher based on its oc-
currence. This is similar to outlier detection, but in the current setting the majority of
the retrieved images may be outliers, and the inliers can be diverse: for example, the
relevant images for a query “New York” may contain images of the Statue of Liberty
but also ones of Times Square. The filtering method must determine which images
are more likely to belong to the class of interest, based on the overall distribution of
the contents of images and their meta-data.

Several approaches have been developed using generative models to re-rank the im-
ages returned from a search engine. Constellation models are used in [Fergus et al.,
2004], where an initial model is trained on all images and RANSAC is used to it-
eratively remove outliers. In [Yanai & Barnard, 2005] Gaussian mixture models are
trained on features of image regions as well as LSI vectors coding the words surround-
ing the images. The model is refined using EM and used to determine which regions
of the images retrieved for the query are most likely to correspond to the query ob-
ject. Topic models such as PLSA [Hofmann, 2001] and LDA [Blei et al., 2003] have
also been used by several authors. In [Fergus et al., 2005], PLSA models are used as
well as variants that encode some of the spatial layout of objects. Ranking of images
is done on the basis of one of the learnt topics, selected using the topic mixing pro-
portions of the first few images returned by the search engine. Hierarchical Dirichlet
processes, an extension of LDA that does not require the number of topics to be fixed,
were used in [Li et al., 2007]. The model is learned in an incremental manner, where
at each iteration several images positively classified by the current model are added
to the training set. Topic models are also used in [Fritz & Schiele, 2008], but are
applied on a lower level by modeling gradient orientations in a spatial grid over the
image. Images are represented by the estimated topic mixing proportions. To rank the
images k-means is applied to the mixing weight representation, and images in bigger
clusters are ranked higher. A clustering approach was also proposed in [Ben-Haim
et al., 2006], where images are first segmented into coherent regions and clustered
based on HSV histograms using mean shift.The largest cluster found is assumed to
contain the object of interest, and images are ranked by their distance to the center
of this cluster.

A semi-supervised method using LDA was used in [Berg & Forsyth, 2006] to retrieve
images of animals from the web. They learned an LDA model for the 100 word
context around images found using Google, and manually selected the topics that
correspond to the query. In a second step local image features are compared between
images, and scores are determined by matches to images associated with good topics.
The final ranking of images is based on a sum of scores obtained from visual feature
matching and the LDA model. A different semi-supervised learning approach was
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taken in [Morsillo et al., 2009]. Here a hybrid generative-discriminative model is
learned based on a small set of positive images provided by a user. A discriminative
model predicts the image relevance given its visual word histogram. Given the image
relevance, a generative model is defined over binary variables that code the presence
of the query term in the image filename and URL, and in text near the image on the
web page.

Discriminative classification was used in [Schroff et al., 2011], where images are fil-
tered in a three-step process. First, a visual classifier is applied to remove drawings,
logos, etc. Next, a generative model over textual features is used to rank the images.
They use simple meta-data features defined relative to the search query – for exam-
ple, does the search query appear in the web page title? – to decide an initial image
ranking. The model used for this initial ranking can be trained from whatever anno-
tated data is available, then used on new queries without additional training. In the
last step, a support vector machine classifier is trained on the visual content of the
images, treating the images that are ranked high based on the textual metadata as
positive examples, and a random set of other images as negative examples. The final
image ranking is determined by the SVM classification scores.

The query-relative features we describe below are a way to enable transfer learning
between annotated image class data and previously unseen classes. The closest re-
lated works in that respect are the ones of [Li et al., 2006, Tommasi & Caputo, 2009],
where learning procedure takes into account the knowledge about already learned
categories when learning the model for the new category. In [Quattoni et al., 2007]
a large number of weakly-labelled images is used to derive compact semantic image
representation, which can be used to learn new concepts using very small number
of training examples. Nevertheless, all these approaches require at least one labeled
training example per class to learn the class model.

We note that all this related work is based on learning specific models for each query,
except for the text-based models used in [Frankel et al., 1997, Schroff et al., 2007]
which are trained on a set of queries and applied to others. In our work we explore
the approach of learning query-independent classifiers, but applied to visual features,
as well as to more complex textual features. w

2.3 Query-relative features

We wish to train a classifier to re-rank the images returned by a text-based search
engine. To re-rank images means to filter search engine results taking into account the
image contents as well. In this section we describe how to construct ‘query-relative’
text and image features which enable us to train a single, generic classifier which can
be used for re-ranking the images retrieved by different queries.
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Query-relative classifierQuery-specific classfiers

Figure 2.1: Query-independent image representations, e.g. bag-of-words histograms
p(w|I), require that separate, query-specific classifier wQ is learned for each query Q.
Representing image by query-relative features r(I ,Q), which take into account both
the contents of the image I and the query Q used to retrieve them, we can learn a
single, query-relative model w which does not depend on the query and therefore
generalizes to new queries.

The query-relative features for a retrieved document depend on statistical properties
of the document I , but also on the statistical properties of the query Q. In the re-
mainder of this chapter we will refer the set of images retreived by the textual query
as the query set. In Figure 2.1 we demonstrate the advantages of query-relative:
when using query-independent image representation the query-specific information
is captured by the learned relevance model wQ specific to the query, but when us-
ing a query-relative representation the query-specific information is used to modify
the query-independent image content representation, which allows learning of the
general, query-independent relevance model w. Therefore the same document, re-
trieved by three different queries has three different query-relative representations.
By their construction query-relative features characterize statistical properties which
are shared across queries. This allows learning of single classifier which captures the
relation between the query-relative features and relevance of the document for the
query terms, using data annotated with relevance labels. The classifier can then be
used to derive relevance scores for new queries, where the query-relative features
for documents retrieved by new query are decided from the noisy set of retrieved
documents.

In our experiments, all supervised learning is based on these query-relative features
which are extracted in a fast, unsupervised, manner. This allows us to learn a generic
model once, using whatever annotated data is available, and then use it to make
relevance predictions for new queries.

Next, we describe the query-relative text features and introduce query-relative text
context features which enable us to define query-relative visual features. We then show
how to construct query-relative features by establishing the correspondence between
different queries, either by sorting, or by binning the query-independent features in a
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query-dependent way. We compare these two approaches to construct query-relative
features and elaborate on several improvements of the basic approach.

2.3.1 Textual features

Our basic query-relative text features follow [Frankel et al., 1997, Schroff et al.,
2007]. Nine binary features indicate the presence or absence of the query terms
in various fields associated with the image: the text surrounding the image (10 words
before and 10 words after), the image alternative text, the web-page title, the host-
name, directory, and filename of the web-page that contains the link to the image,
and the hostname, directory, and filename of the file that contains the image.

These base features are first supplemented with nine partial match features, each of
which is active if some of the query terms, but not all, are present in the relevant field.

We further add context features which represent in more detail the text related to
the image, beyond simple presence or absence of the query terms. We divide the
image textual annotation in three parts: the text surrounding the image, the image
alternative text, and words in the web-page title. For each of the three parts of text
annotation we define contextual features by computing word histograms using all the
images in the query set. Two words are considered the same if their lower-cased
forms match, after removing punctuation. We ignore the query terms, as well as
words included in a stop word list.

To create contextual features, we first calculate the normalized word histogram for
each query Q, which we can view as a distribution P(w|Q). Next, this query-specific
set of words is used to first establish the correspondence between query-independent
features from different queries (e.g. between the words that describe image content
in different queries), and then to transform them into query-relative features. The cor-
respondence between query-independent features can be performed by sorting the
words by their frequency, which can be seen as query-specific feature selection. Ta-
ble 2.1 shows the context words with the highest P(w|Q) for some example search
queries. The other way to establish correspondence between query-independent fea-
tures is to group words by their relative frequency in the query, by binning P(w|Q).
The words that fall into the same histogram bin have the same meaning relative to
the query.

Establishing correspondence by sorting In Table 2.1 are some examples of most
frequent words, sorted by frequency. The first feature is active for an image if the
most common word in the query set context appears in that image’s context, the
second feature relates to the presence of the second most common context word, and
so on.
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Search query Ten most frequent context words

Arc de Triomphe paris, hotel, etoile, champs, elysees, france,
napoleon, carrousel, night, eiffel

avion de ligne 747, a320, boeing, airbus, 400, aircraft, 200,
flight, air, airlines

Big Ben london, parliament, westminster, tower, clock,
houses, time, england, uk, world

Musée d’Orsay orsay, musee, paris, louvre, museum, france, day,
rue, monet, seine

lincoln memorial washington, abraham, war, dc, president,
monument, korean, jefferson, world, national

Logo Manchester united club, football, kingdom, fc, uk, england,
supporters, fa, website, item

Machu Picchu peru, inca, city, trail, cuzco, travel, cusco, ruins,
day, lost

mickey disney, mouse, walt, world, minnie, price,
friends, treasures, see, magic

paul mc cartney mccartney, john, lennon, concert, creation,
beatles, dvd, george, music, chaos

piazza san marco venice, italy, st, square, basilica, venezia, mark,
campanile, di, tower

Table 2.1: Ten words with highest P(w|Q), in order of decreasing probability, for
some example search queries from [Krapac et al., 2010].

Given the histogram of textual word counts ti for each image i, we sort the words
indexed by k such that

∑

i

t i,k ≥
∑

i

t i,(k+1). (2.1)

The ordered histogram of word counts is used to define context features, where the
kth binary feature represents the presence or absence of the kth most common word
in this source of context for this query:

Ti,k =

(

1 if t i,k ≥ 1,

0 otherwise.
(2.2)

The context features which are sorted earlier are more informative for classification
than the later ones, so we can trim these features down to the first N elements without
a large loss in performance.
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Establishing correspondence by binning The sort operation is computationally
expensive for high-dimensional input features, and has to be run on the test data his-
togram when answering search queries, not only on the training data when learning
the model weights. We can reduce the computational complexity by grouping visual
words, by binning p(w|Q) instead of sorting it. We assign each word wk to one of N
bins, by comparing the word’s probability P(wk|Q) with bin thresholds b1 . . . bN−1:

Bk =















1 if P(wk|Q)<= b1

2 if b1 < P(wk|Q)<= b2

. . .

N if bN−1 < P(wk|Q)

. (2.3)

Once we have determined which bin each word that appears in the query data’s con-
text is assigned to, we calculate the bin value βi, j for each bin j for each image i’s
context, as the sum of the word counts t i,k for all words k assigned to that bin:

βi, j =
∑

k

δ j,Bk
t i,k, (2.4)

where δBk , j is one when Bk = j and zero otherwise. We can do this separately for
the image’s alternative text, the web page title, and the short context text fragment
supplied for each image, or we can merge these three sources of text.

These contextual features can be understood as a form of pseudo-relevance feedback,
used in [Lavrenko & Croft, 2001, Lin et al., 2003]. Taking the base features, partial
match features, and N contextual features for each text field, we have 9 + 9 + 3N
features.

2.3.2 Visual features

For visual data we cannot directly construct binary features for presence or absence
of the query terms, like the base text features, as there is no direct correspondence
between query terms and image appearance. However, as with the contextual text
features, we can find which visual words are strongly associated with the query set,
and define a set of visual features to represent their presence or absence in a given
image.

Our visual features follow the same query-relative design as the contextual text fea-
tures. We first create a visual word histogram representation for the visual content
of each image. Within a search engine system, the visual word histograms can be
computed once, when the image is first crawled.
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After calculating normalized visual word histograms for all images, we begin com-
puting query-relative visual features by calculating the mean visual word histogram
over the images in the query set, which we can view as the distribution P(w|Q). We
also compute the equivalent normalized visual word histogram for a large training set
of generic images; if we take a good sample of images for different possible search
queries, we can view this as the prior distribution over visual words, P(w).

Like words in text, different visual words do not have uniform prior probability. For
example, visual words which correspond to textureless image regions or to simple
image gradients appear more often, while some visual words that relate to specific
image structure are quite rare. We therefore either sort visual words or assign them
to bins not according to P(wk|Q) but according to the ratio between P(wk|Q) and
P(wk):

ρ(Q)k =
P(wk|Q)
P(wk)

∝ P(Q|wk), for fixed Q. (2.5)

We did not use the same ratio for text, because the text features in the data sets used
give only a few words of textual context, and generally very short phrases for the web
page title and image alternative text, so the word histogram of the meta-data for each
image is extremely sparse. Meanwhile, for text, ignoring the words on a stop word
list was an easy and fast way to discard uninformative features. For visual words, we
do not have a stop word list, but discounting the word frequencies by P(w) plays a
similar role.

Binning the features from (2.5) we expect to learn larger weights for bins correspond-
ing to visual words which are unusually common or unusually rare within the images
for a query. For text, the value for each bin was the sum of the word counts for all
words assigned to that bin. The count for a word in the meta-data histogram for an
image was usually zero or one, and the histograms were extremely sparse. Since we
have richer histograms for the visual content, we do not use the raw counts but ri,k:

ri,k =
P(wk|Ii)
P(wk|Q)

. (2.6)

This converts query-independent features (visual word histograms) to query-relative
features using query-specific information (query mean histogram), so that feature
values calculated for different queries have the same meaning. This can be seen as
query-specific normalization.

Sorting visual words gives us an ordered set of query-relative visual features, where
the kth feature relates to the visual word kth-most related to this query. Using this
ordering of the visual features, we compared three ways of representing each vi-
sual word’s presence or absence: the visual word’s normalized count for this image,
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P(wk|Ii), the ratio between its normalized count for this image and its mean normal-
ized count within this group of images, ri,k, as in Equation 2.6, and a binary version
of this ratio, thresholded at 1:

Vi,k =

(

1 if ri,k ≥ 1,

0 otherwise.
(2.7)

The typical counts for the most related visual words vary considerably across different
image classes, so making the features binary may give better performance when we
use the image features to learn a generic model in a query-relative manner, even
though it discards some information.

We cannot usefully perform the same kind of binary conversion for the query-relative
features created using binning: taking only binary summaries over a small number
of bins would give the features very low representational power, while making the
feature values binary before summing the bin contents would not achieve the same
purpose of making the final query-relative features’ magnitudes consistent between
queries.

2.3.3 Comparison of query-relative representations by sorting and
by binning

If we consider the textual context for different queries, we can consider the sorting
procedure as defining an alignment between the terms that appear, as shown in the
‘input’ and ‘sorting’ columns of Figure 2.2. The first-sorted feature from a test query
is aligned with the first-sorted features from the training queries, the second-sorted
feature with the second-sorted features from the training queries, and so on. A single
shared weight will be learned for all the features from different queries which are
aligned with each other. Although the weights for different queries correspond to
different words, they have similar functions relative to the different queries.

Query relative features by sorting and binning can be both represented as linear trans-
formation of input features, where parameters of linear transformation Q depend on
the query:

r(I ,Q) = Q p(w|I) (2.8)

Figure 2.3 shows that sorting and binning differ only in the linear transformation Q
used to transform input features. Since the computational complexity of sorting is
bigger than the one of binning, the binning procedure is much faster.
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input binning

1 2 3 4

sorting
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image 1

image 2

Figure 2.2: Illustration of sorting versus binning for feature alignment, to decide
which features from different classes to learn shared weights for.
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Figure 2.3: Comparison of linear transformations of input features for query-relative
features obtained by sorting and by binning. On the left hand side the permutation
matrix is displayed, obtained by sorting p(w|Q), where rows and columns correspond
to words. Linear transformation of input features in the case of sorting Qsort corre-
sponds to first N rows of permutation matrix on left hand side. Linear transformation
of input features in the case of binning Qbin corresponds to sum of rows of the per-
mutation matrix on left hand side, where the grouping of words is defined by bin
thresholds.

The ‘sorting’ column in Figure 2.2 reveals another potential drawback in sorting pro-
cedure: words with quite different context frequencies may aligned by sorting, un-
less the input distributions precisely mirror each other. It might be better to instead
align the features according to frequency bins, as shown in the ‘binning’ column of
Figure 2.2, as the appropriate weight for each word is likely to depend on the its
frequency rather than directly on how it sorts compared to other words.

Our experiments in Section 2.4 show that using ρ(Q)k to assign features to bins,
and summing ri,k within each bin, gives better performance than aligning features by
sorting. In the remainder of the section we focus on construction of query-relative
features by binning and propose several extensions of the described basic approach.
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2.3.4 Multi-dimensional binning

The query-relative visual word features described above work by comparing a visual
word’s frequency in the query set with its general frequency, to decide a bin, then
by comparing the visual word’s frequency in a single image with its frequency in the
query set, to decide how much to add to that bin’s value. It would be possible to
represent the same information through bins in two-dimensions, with one axis repre-
senting the ratio in Equation 2.5 and the other representing the ratio in Equation 2.6,
incrementing a bin’s value by one for each feature assigned to it. By instead separating
out the three distinct terms from Equations 2.5 and 2.6 into a three-dimensional bin-
ning, we can create features which give the potential for a richer structure of weights
to be learned. This way the counts of the features allocated to each bin are used,
rather than sums of feature values, and the model is free to learn flat weights across
different bins if some variation between feature values is not informative.

We calculate three distributions: P(w), estimated from all the training data, P(w|Q),
estimated from the images in the query set, and P(w|I), estimated from a single image
of interest. We create the query-relative representation for an image by giving each
visual word a single vote in the space (P(w|I), P(w|Q), P(w)), then counting the
number of votes within each bin of a three-dimensional grid. The sum across all the
bins will be the number of visual words.

Under the single-dimensional binning, for example, all features with the same ratio
between P(w|Q) and P(w) are assigned to the same bin, but it might be appropriate
to learn a different weight for a feature depending on the absolute frequencies in
question – if the feature is still very rare then an increase in its frequency might not
be significant.

With multi-dimensional binning, very little computation is required to classify images
for a new class. P(w) and P(w|I) can be pre-computed, then only these steps are
required when a new search query is received from a user:

• Estimate P(w|Q) from the query set.

• For each image, iterate over the visual words to create a compact query-relative
feature descriptor by incrementing the (P(w|I), P(w|Q), P(w)) bins.

• Use the obtained query-relative image representation to derive the score for the
image using a previously learned classifier.

• Sort the images according to assigned relevance scores.
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2.3.5 Non-parametric query model

One possible objection to the procedure described above is that we assume that the
mean visual word histogram over the images in the query is a good representation
of the histograms for the individual images. If there are many outliers in the images
returned for the query, or, worse, if there are multiple distinct clusters, this may not
hold. We can avoid this assumption by non-parametric modeling of P(w|Q).

Above, to represent an image I we loop over the visual words w in the vocabu-
lary and increment the 3D histogram cell corresponding to the 3D frequency tuple
(P(w|I), P(w|Q), P(w)). In the non-parametric case, we will instead increment mul-
tiple cells, for each image Ii in the query set. We use the tuple (P(w|I), P(w|Ii), P(w))
to determine the cell, and increment it by P(w|Ii)/

∑

I j∈Q P(w|I j). This way we bet-
ter model queries with multi-modal visual word distributions and also decrease the
influence of outliers on the query model.

In Section 2.4 we will examine whether the additional computational cost of using
the non-parametric query model is repaid by improvements in performance.

2.3.6 Bin thresholds

Before features can be allocated to the appropriate bins and the sum for each bin
calculated, we need to decide what will go into each bin. We set up the bins as a
rectangular grid in the appropriate input space, but with potentially unequally spaced
bin thresholds.

Specifically, for each dimension we take a sample of the values to be binned, and
choose bin thresholds which put approximately equal amounts of data into each bin.
Making the bins have approximately equal probability in this way maximizes the in-
formation encoded by a set of bin allocations. For example, to create four bins we
set bin thresholds at the lower quartile, median, and upper quartile of the sample.
Each quantity that determines a dimension of binning, such as ρ(Q)k or P(wk), has
independent bin thresholds, but for each quantity a single set of bin thresholds are
precalculated and shared across all search queries.

2.4 Experimental evaluation

In this section we evaluate our method’s performance on two data sets: a new data
set of images for 353 search queries, and the Google images data from [Schroff et al.,
2007]. We compare combinations of the query-relative features described in previous
section. In each case we train a logistic regression classifier for each query from the
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Figure 2.4: Partial hierarchy of search queries in the 353 query data set, to illustrate
the distribution of query types.

annotated data for all the other queries. Images are then ranked according to their
classification scores.

2.4.1 353 query data set

We introduced a new large public data set of 353 image search queries in [Krapac
et al., 2010]. The data set consists of the images found by the text-based Exalead
image search engine for 353 different search queries, their textual meta-data, and
manual binary annotations saying which images are relevant to the query. Previous
image re-ranking data sets [Fergus et al., 2004, Li et al., 2007, Schroff et al., 2007]
contain images for only a few classes, and in most cases provide image files without
their corresponding meta-data.

For each of the 353 search queries, the data set includes the original textual query,
the top-ranked images found by the web search engine, and an annotation file for
each image. For 80% of queries there are more than 200 images; in total there are
71478 images in the data set. The annotation files contain manual binary labels for
image relevance to the search query, and other meta-data obtained from the web: the
image URL, the URL of the web page where it was found, the page title, the image’s
alternative text, the 10 words before the image on the web page, and the 10 words
after. The images themselves have been scaled to fit within a 150× 150 pixel square
while maintaining the original aspect ratio – web search engine databases typically
only include thumbnail images, as storing the full original images is too expensive.
The fraction of relevant images for each query is 44%, comparable to the 39% found
by [Schroff et al., 2007] for Google image search.

Figure 2.4 shows a partial hierarchy for the search queries in the data set, to illustrate
the distribution of different query types. This hierarchy was obtained by manual in-

http://www.exalead.fr/search/image
http://www.exalead.fr/search/image
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spection of the queries in the data set, and is not used in our experiments. Around
70% of the queries relate to specific object or scenes, while the other 30% relate to
generic categories of objects or scenes. Almost half of the specific queries are for
images of people or fictional characters. The rest are for famous landmarks, specific
products such as games consoles and football team shirts, and two-dimensional de-
signs such as logos and flags. Almost half of the generic queries are for images of
manufactured items, such as different types of vehicle and musical instruments. The
largest other groups in the generic category queries are for different species of ani-
mals and different types of buildings. The remainder of the generic queries are for
other types of natural objects or scenes, such as various landmarks and different types
of fruit.

2.4.2 Model training

In our main experiments below we hold out each query in turn and train a binary lo-
gistic discriminant classifier from annotated data for all other queries.2 Query-relative
features of relevant images are used as positive examples, and query-relative features
of irrelevant images are used as negative examples. We use the learnt model to rank
images for the held-out query by the probability that they are relevant according to
the model. Note that in a practical application the logistic discriminant parameters
would only need to be learnt once, and could then be re-used for any new query. For
methods which take a long time to train we used 10-fold cross-validation for evalua-
tion.

We extracted local image descriptors on a dense multi-scale grid, and normalized so
that the L2 norm is equal to one. Each local region is described by a 16-dimensional
histogram of oriented gradients. Preliminary experiments showed that this performed
better than 128-dimensional SIFT.

Our image representation is based on local appearance and position histograms. Lo-
cal appearance is quantized using hierarchical k-means clustering as in [Nistér &
Stewénius, 2006], learnt from a set of patches sampled from all images in the dataset,
with 11 levels of quantisation, with the branching factor k = 2 at each level, yield-
ing 2048 visual words at the finest quantisation level. For position quantisation we
used quad-trees [Lazebnik et al., 2006], with three levels of quantisation, yielding 64
spatial cells at the finest quantisation level. For each combination of appearance and
position quantisation an image is described by an appearance-position histogram:
each bin in the joint histogram represents a patch appearance at a certain position
in the image. For appearance quantisation, only the levels with at least 128 quan-
tisation bins (levels 7–11) are used, as at lower levels the bins are not sufficiently

2We also tried support vector machines instead of logistic discriminant classifiers; the results were
almost the same but training was slower.
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Overall LP HP SEP SEG

Number of queries 353 25 25 25 25
Fraction relevant 44.3 12.1 78.0 52.5 31.5

Table 2.2: Data set properties by group.

discriminative. The image is represented by a concatenation of all 14 appearance-
position histograms with dimensionality less than 10000; the histograms with higher
dimensionality are extremely sparse. In our experiments, the binning or sorting is
performed after the appearance-position histograms from different levels of quanti-
sation have been concatenated, resulting in 42368-dimensional histogram for each
image. Therefore the query-relative image features may mix features from different
levels of appearance and position quantisation.

We also add colour features as another feature channel. We take a downsampled
32 × 32 pixel version of each image, and assign each pixel’s colour to one of 100
‘colour words’ according to a 4× 5× 5 grid over CIELAB colour space. The resulting
histograms of colour words are then normalised, and processed in the same way as
the histograms of visual words to create query-relative colour features.

2.4.3 Evaluation

We evaluate a model’s re-ranking performance by calculating the average precision
(AP) for the scores it assigns to the images for each query, and taking the mean across
all queries. These results can be compared with the precision of the queries and with
the mean average precision of the search engine’s rankings.

To allow a more detailed evaluation, we chose four groups of queries with extreme
behaviour on the search engine, which uses an approach focused on textual cues:

• Low Precision (LP): 25 queries where the search engine’s retrieval by text query
performs worst, e.g. ‘will smith’, ‘rugby pitch’, ‘bass guitar’, ‘mont blanc’, ‘jack
black’

• High Precision (HP): 25 queries where the search engine’s retrieval by text
query performs best, e.g. ‘batman’, ‘aerial photography’, ‘shrek’, ‘pantheon
rome’, ‘brazil flag’

• Search Engine Poor (SEP): 25 queries where the search engine improves least
over random ordering of the query set, e.g. ‘clipart’, ‘cloud’, ‘flag’, ‘car’

• Search Engine Good (SEG): 25 queries where the search engine improves most
over random ordering, e.g. ‘rugby pitch’, ‘tennis court’, ‘golf course’, ‘ben stiller’,
‘dustin hoffman’.
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Note that there is some overlap between these groups. In our results tables below,
as well as the overall mean average precision on all 353 queries, we show the mean
average precision for queries in each of these groups of 25 queries. The fraction of
relevant images, averaged over the queries in each group, is shown in Table 2.2; this
gives an indication of the difficulty of each group. For random ranking the AP score
is close to the fraction of relevant images, while for the perfect ranking the AP score
is 100.

2.4.4 Ranking images by textual features

In our first set of experiments we examine the image ranking performance of our
textual features. Table 2.3 shows the mean average precision achieved by the Exalead
web search engine, and by our text-only models using different feature sets. Note that
we do not have access to the ranking system used by the Exalead search engine, and
it may use additional features beyond those in the data set annotation files, such as
click-through data or PageRank-like scores.

We start with the base features, similar to those used in [Frankel et al., 1997, Schroff
et al., 2007], representing the presence or absence of the query terms themselves
in various sources of text; these words are then excluded from consideration when
creating the context features. The set of nine base features supplemented with nine
partial match features forms 18 features referred as “base features”. We then add an
increasing numbers of context features obtained using binning or sorting to create
query-relative features. Only single-dimensional binning is used for the text context
features, where we have at most 20 words of context for each image, and cannot
make a good estimate of P(w|I). The overall performance increases as more context
features are added, but with a diminishing gain per additional feature.

Our text features alone beat the performance of the search engine. The methods
perform differently for different queries, as can be seen looking at the extreme groups
in Table 2.3. We beat the search engine on the ‘high precision’ group where text
retrieval performs best, and do slightly worse on the ‘low precision’ group where we
do not expect a text-only algorithm to do well. Although we do worse on the ‘search
engine good’ group where their algorithm works best, we perform significantly better
on the ‘search engine poor’ group.

Keeping the sources of text context (the text surrounding the image, the image’s al-
ternative text, and the web page title) separate gives better performance than merg-
ing the three sources. Using 20 binned features per source we reach a better mean
average precision than achieved by the search engine or by using sorting to create
query-relative features with 100 features per source, and the performance increases
if more bins are used.
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mAP × 100 Dimensions Overall LP HP SEP SEG

Base features 18 54.8 23.5 82.4 60.3 51.2

Sorting

+ 10 × 3 = 48 56.5 22.6 83.4 61.6 53.3
+ 20 × 3 = 78 56.5 24.0 83.0 61.4 54.4
+ 50 × 3 = 168 56.8 22.7 83.6 62.2 53.2
+ 100 × 3 = 318 57.0 24.3 84.1 62.4 54.8

Binning
merged

+ 30 = 48 56.7 24.3 82.3 61.6 52.2
+ 60 = 78 57.0 25.1 82.6 61.8 52.9
+ 120 = 138 56.7 23.9 83.2 60.8 53.3
+ 180 = 198 56.6 22.7 83.2 61.6 53.0

Binning
separate

+ 10× 3 = 48 56.9 24.4 83.1 62.7 52.1
+ 20× 3 = 78 57.5 25.8 83.1 61.6 53.5
+ 40× 3 = 128 58.2 26.5 84.0 63.3 54.1
+ 60× 3 = 198 58.4 26.3 84.9 63.2 55.3

Search engine N/A 56.9 26.8 83.0 49.5 63.4

Table 2.3: Mean average precision achieved with text features, on the 353 query
data.

2.4.5 Ranking images by visual features

mAP× 100 Overall LP HP SEP SEG

re-ordered histogram bins [P(wk|Ii)] 60.5 21.2 89.0 70.3 53.5
+ query-specific normalization [ri,k] 59.7 21.0 87.6 67.7 53.1
+ binarization [Vi,k] 64.4 23.8 90.7 72.0 57.8
Search engine 56.9 26.8 83.0 49.5 63.4

Table 2.4: Performance of different feature representations, using visual features of
dimensionality 200, without text features.

In Table 2.4 we compare the performance of the different query-relative visual fea-
ture representations using sorting, described in Section 2.3.2. The first set of fea-
tures, P(wk|Ii), uses the visual word histograms reordered by relative frequency of
visual words in the query set compared to frequency of visual words in a general set
of images. The second set of features, ri,k, uses the ratio between the visual word fre-
quency in an image and its frequency in the query set. The third set of features, Vi,k,
thresholds these ratios at one to give binary indicators. The increase of the perfor-
mance when we move to binary features is probably because the relative frequencies
of visual words vary considerably between queries. In the following experiments we
always use these binary query-relative visual features when using sorting to create
query-relative features.
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mAP × 100 Dimensions Overall LP HP SEP SEG

Sorting

50 61.1 20.3 90.4 70.0 52.2
100 63.1 21.9 90.6 71.3 56.2
200 64.4 23.8 90.7 72.0 57.8
400 64.9 24.1 91.0 71.9 58.4

Binning

10 62.9 27.5 87.5 71.8 52.3
20 63.0 27.4 87.9 72.1 52.8
40 63.1 27.4 88.2 72.2 53.0
60 63.1 27.3 88.1 72.4 52.8

Multi-dimensional
binning

3 × 3 × 3 = 27 68.2 30.4 91.9 76.1 60.6
4 × 4 × 4 = 64 68.5 30.5 92.2 75.1 59.8
5 × 5 × 5 = 125 68.6 30.8 91.9 75.2 60.7
6 × 6 × 6 = 216 68.7 31.4 93.0 75.2 60.3

Multi-dimensional
binning with

non-parametric
P(w|Q)

3 × 3 × 3 = 27 68.3 28.7 93.3 75.9 59.9
4 × 4 × 4 = 64 68.9 25.3 93.7 76.1 61.3
5 × 5 × 5 = 125 68.6 25.6 93.6 75.9 60.7
6 × 6 × 6 = 216 68.3 26.2 93.8 75.9 61.0

Search engine N/A 56.9 26.8 83.0 49.5 63.4

Table 2.5: Mean average precision achieved with texture features (without text or
colour features), on the 353 query data.

Table 2.5 compares the performance of different query-relative features, without text
features. Adding more visual features increases the overall performance, but with di-
minishing gains. The overall performance is better than that achieved by text features
alone.

Looking at the extreme groups, we find that the ‘low precision’ group is also hard
to rank using visual features, and that the ‘high precision’ group gives even better
results using image features: the extremely low and comparatively high precision
of the data for the queries in these two groups also hinders and aids ranking when
visual features are used. Visual features give us a reliable advantage over the search
engine’s performance on the ‘search engine poor’ group, and also beat its results on
the ‘search engine good’ group where the search engine gave the biggest improvement
over random ordering.

The binning approach is competitive with sorting, while using a much smaller number
of features (e.g. 20 features rather than hundreds). Moving to multi-dimensional
binning, there is a significant increase in overall mean average precision, with an
increase in performance seen on all the highlighted groups.

The last group of experiments shows that using non-parametric model of P(w|Q)
gives slightly better results in the best case, but also worse results in others. The best
results are achieved using non-parametric query models, but the improvement is not
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large, or reliable across parameter choices. The results on the ‘high precision’ group
consistently improve, but the ‘low precision’ results are worse, while on the other
extreme groups there is a general but unreliable improvement. Since non-parametric
modeling is more computationally expensive, in the remainder of the chapter we will
use the query-relative features where P(w|Q) is estimated from the mean visual word
histogram of images in the query set.

mAP × 100 Dimensions Overall LP HP SEP SEG

Binning

10 55.6 18.5 86.6 65.6 43.4
20 55.8 19.1 86.5 65.8 43.5
40 55.8 19.1 86.2 66.8 43.2
60 55.9 19.1 86.3 66.3 43.1

Multi-dimensional
binning

3 × 3 × 3 = 27 56.4 22.4 86.9 68.1 46.9
4 × 4 × 4 = 64 57.1 21.2 87.8 68.9 45.5
5 × 5 × 5 = 125 57.7 21.8 87.4 67.7 47.2
6 × 6 × 6 = 216 58.2 23.6 88.2 69.3 47.7

Search engine N/A 56.9 26.8 83.0 49.5 63.4

Table 2.6: Mean average precision achieved with colour features (without text or
visual word features), on the 353 query data.

Table 2.6 shows the performance of our method using only colour features. The
mean average precision is comparable to that achieved using base and contextual text
features. As with the texture features, performance increases when multi-dimensional
binning is used. Note that the colour features used here are much less computationally
expensive than the texture features, so using colour features alone for re-ranking
might be interesting in a low resource scenario.

2.4.6 Combining textual and visual features

In Table 2.7 we look at the performance of various combinations of textual and visual
features. We combine between 50 and 400 visual features with the 18 base and partial
match text features and between 20 and 100 additional features for each text field.
Using larger numbers of features gives better performance, though the performance is
not much worse with the smaller feature sets. The single-dimensional binning results
are comparable to those achieve using sorting with many more features – better on
some subsets, worse on others. Moving to multi-dimensional binning shows superior
performance across all the subsets. Adding colour features provides relatively little
additional information, but performance increases overall and on three of the four
subsets. The larger feature sets (still of relatively low dimensionality) beat the search
engine on all four groups of extreme queries. The best overall mean average precision
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mAP × 100
Dimensions

Overall LP HP SEP SEG
Textual Visual All

Sorting
Visual = Texture

20 × 3 50 128 64.3 25.6 90.4 70.6 60.3
20 × 3 100 178 65.7 26.9 90.7 71.9 62.5
20 × 3 200 278 66.8 29.1 90.9 72.7 63.7
20 × 3 400 478 67.3 28.9 91.2 73.1 65.0

100 × 3 400 718 67.3 29.2 91.3 73.7 65.5

Multi-dimensional
binning

Visual = Texture

60× 3 4× 4× 4 262 70.3 34.0 92.7 75.6 65.8
60× 3 5× 5× 5 323 70.5 35.0 92.4 75.3 66.9
60× 3 6× 6× 6 414 70.6 36.4 93.1 75.7 67.9

Multi-dimensional
binning

Visual = Texture + Color

60× 3 2× (4× 4× 4) 326 71.2 36.6 93.2 77.3 66.8
60× 3 2× (5× 5× 5) 448 71.5 35.9 92.9 76.8 66.9
60× 3 2× (6× 6× 6) 630 71.6 37.5 93.7 77.7 67.7

Search engine N/A 56.9 26.8 83.0 49.5 63.4

Table 2.7: Mean average precision on “353 queries” dataset, achieved by combining
query-relative features from multiple channes: text, texture and color.

shown is almost 15% better than the search engine, and more than 13% better than
our best result using textual features alone.

For the remaining experiments we consider only the model that uses 60× 3 binning
for text features and 6 × 6 × 6 multi-dimensional binning for visual features, that
corresponds to the best-performing experiment in Table 2.7.
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Figure 2.5: Improvement in AP using query-relative features over the search engine,
as a function of the fraction of relevant images in the query set.
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In Figure 2.5 we show per query differences in performance of our method that uses
query-relative feature obtained by binning and the search engine performance, with
respect to the precision of the query sets. These results show that for about 62%
of the queries the precision in the query set is under 50%, giving the insight into
the difficulty of the re-ranking problem. For about 88% of all queries our model
outperforms the search engine. It might seem that our method will only work when
the majority of the images in query set are relevant, but for 52% of all queries we
improve results despite a query set precision under 50%.

To understand why the method still works in such cases, note that the irrelevant
images tend to be more diverse than the relevant ones. Even if only a minority of the
images is relevant, the visual words in relevant images can still be the most frequent
ones, as compared to the database statistics.
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Figure 2.6: Average precision using query-relative features, plotted against the preci-
sion of the data provided for each query.

Figure 2.6 shows how the average precision achieved by the model varies according
to the precision of the query data used as input. We see that even for queries with
less than 20% of the input data relevant to the query, the mean average precision
is about 40%, while the mean average precision for queries with between 20% and
40% relevant input data is more than 60%. The mean average precision increases to
almost 80% for queries with between 40% and 60% relevant input data.

The results presented so far measure at how well the method performs in terms of
mean average precision. Since many web search users only look at the top-ranked
search results, it is also interesting to look at the precision achieved at small recall
levels across different queries. Figure 2.7 shows the distribution of the precision of
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Figure 2.7: Proportion of 353 queries with a given precision on the first 10 images
recalled, using the search engine, and using our method.

the first 10 images recalled for each query by the search engine and by our method.
The most common precision for the search engine is 8/10, achieved on 66 queries
(19%), while the most common precision for our method is 10/10, achieved on 150
of the 353 queries (43%). The search engine only gives a precision of 9/10 or 10/10
on the first 10 images recalled for 24% of the test queries, while our method gives a
precision of 9/10 or 10/10 for 60% of the queries.

Figure 2.8 shows the top-ranked images for some example queries from the 353 query
data set where our method performs well despite low precision input data. For each
query the images are ordered left to right. Our method does well on these queries,
down-ranking irrelevant images, except on ‘will smith’ where it fails due to extremely
low precision input data (less than 1%). In this case the model seems instead to detect
portraits.

2.4.7 Comparison with query-specific classifiers

Motivated by very good results of our method to search engine’s results, we compared
the performance of our method to a state-of-art method for image re-ranking [Schroff
et al., 2007]. We trained a support vector machine specific for each query in the
data set. Visual features are the histograms of visual word counts, the same ones
used to derive our query-relative visual features. We used a RBF kernel with χ2

distance measure, where the bandwidth of the exponential kernel is set to average
χ2 distance between training examples. Following the approach of [Schroff et al.,
2007] a query-specific classifier is learnt from noisy data. The images in the query set
were treated as noisy positive training examples, while 1000 negative examples were
sampled randomly from other queries. The regularisation parameter of SVM was set
to 1 for all queries.
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Figure 2.8: Top-ranked images, left to right, for some example search queries from
the 353 query data: (a) search engine’s ranking, (b) our ranking. The features per-
form well despite noisy input: shark (input precision 33.5%), Forbidden City (35.4%),
sky (33.6%), team (35.0%), aerial photography (72.4%), car (45.5%), although they
fail in the case of extremely low input precision: Will Smith (1%)
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Figure 2.9: Comparison of query-relative texture features with query-independent
image representation (BoW image histogram). Classifiers trained using query-
independent representation are query-specific. The results for the query-specific clas-
sifiers using BoW histograms depend on the random set of negative images used to
train the classifier. The results for query-specific classifiers are means and standard
deviations of mAP across five runs.

In Figure 2.9 the performance of query-specific classifiers using query-independent
features (BoW image histograms) is compared to performance of query-relative fea-
tures. Image histograms are obtained by concatenating 14 appearance-position his-
tograms with dimensionality less than 10000, resulting in 42368-dimensional his-
togram for each image. Perhaps suprisingly, query-specific classifiers give worse per-
formance than generic query-relative classifiers. The results could be enhanced by
reducing the dimensioanlity of image histogram, since each query-specific classifier
is learnt from only about 1300 training examples. However, it should be taken into
account that although our query-relative features are derived from the same repre-
sentation that is used directly by SVM, we do not suffer from over-fitting.

The SVM performance could also be enhanced by optimising the parameter settings
per class. [Schroff et al., 2007] use ten-fold cross validation to learn appropriate
parameter settings for each class, while in our experiments we used a single set of
parameters for all classes. The best parameters will depend, among other factors, on
the proportion of irrelevant images in the input data, which varies across queries.
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Figure 2.10: Top-ranked images, left to right, for some classes from the Google im-
ages data set using the 60× 3 text feature, 4× 4× 4 visual word and colour feature
model.

2.4.8 Google images data set

[Schroff et al., 2007] introduced a data set of images obtained from Google image
search for 18 object classes, along with textual meta-data. The images have been
manually annotated to say whether or not they contain an object of the relevant
class. We use the same filtered subset of this database as used in [Schroff et al.,
2011], containing only images which were automatically classified as ‘non-abstract’:
photographs rather than, for example, line art. As with the previous data set, we test
on each class using a classifier trained on all the other classes. Since this data set
contains fewer classes, the training data is more limited in this case.

Table 2.8 shows the performance of our method on this data using various combina-
tions of text, visual word, and colour features, as well as the best performing exper-
iment from [Schroff et al., 2011], and the best performance achieved there for each
class. The query-relative features from multi-dimensional binning achieve better pre-
cision than query-specific classifiers that use the same set of parameters for training
all query-specific models. The performance of query-specific classifiers is increased
when the parameters are tuned per class. However, with added qurey-relative colour
features our results are just 1.2% short of the best ones obtained by [Schroff et al.,
2011]. Our results on the ‘beaver’ class are poor, because the data set for this class is
dominated by images corresponding to another meaning of the search term.

Figure 2.10 shows the top-ranked images for some example classes from the Google
images data, for a model trained using 60 × 3 text feature, 4 × 4 × 4 visual word
features and 4× 4× 4 colour features.
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2.5 Conclusion

In this chapter we have introduced query-relative features that can be used to train
generic classifiers, and rank images for previously unseen search queries without ad-
ditional model training. The features combine textual information about the occur-
rence of the query terms and other words found to be related to the query, and visual
information derived from a visual histogram image representation. Previous state-of-
the-art approaches required computationally expensive model training for every new
search query, and so were unsuitable for real-world web search applications, while
the query-relative features proposed here require very little computation when a new
search query is received, making them practical to use (see Section 2.3.4). We showed
that query-relative features obtained by binning outperform ones obtained by sorting,
in addition being also cheaper to compute.

We applied our image re-ranking method to the top-ranked images returned by a
web search engine. We found that our query-relative models gave a considerable im-
provement over the raw search engine ranking, showing an increase in mean average
precision of almost 15%. Surprisingly, we also found that our model significantly out-
performs state-of-the-art approach that requires training a visual classifier per query.
In addition, we showed performance on the 18 Google images classes are compa-
rable to the best results achieved in [Schroff et al., 2011] by more computationally
expensive class-specific classifiers.

We also present a new public data set of images returned by a web search engine for
353 search queries, along with their associated meta-data, and ground-truth annota-
tions for all images. The intention of this data set is to facilitate further progress in
improving image search.
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3.1 Introduction

In this chapter we discuss the image representations for image categorization and
propose a method for learning the features for image categorization. This work has
been submitted to British Machine Vision Conference 2011.

As explained in Chapter 1, the goal of image categorization is to assign labels to
an image that relate to the image content at a semantically meaningful level. For
example, the labels can indicate the presence of object categories, such as cars, or
bicycles, or they can refer to scene types such as indoor, city, beach, etc.. Over the last
decade significant progress has been made in this area. Most of the current state-
of-the-art systems are based on the bag-of-words image representation, a processing
pipeline tracing back to [Csurka et al., 2004] which consists of the following steps.
(i) Local image regions are sampled, using interest points or from a regular grid. (ii)
The appearance of regions is described using features with some degree of photo-
metric invariance, e.g. using SIFT [Lowe, 2004]. (iii) Features are quantized into a
finite vocabulary, e.g. obtained by k-means clustering and each feature is coded by its
quantization index. (iv) The overall image content is described by aggregating the
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quantization indices of all regions into a normalized frequency histogram. (v) The
image histograms are used to train a classifier, e.g. a SVM.

The various stages of this pipeline have been intensively studied, and we refer to Sec-
tion 3.2 for pointers to representative work in this area. However, it is important to
note that generally processing steps (i)-(iv) of the pipeline are completely unsuper-
vised; only in step (v) the image labels are used to train the classifiers. Although in
some cases it might be advantageous to have a single image representation that can
be used to address different tasks, the fact that the representation is not optimized for
the task means that it is suboptimal in the sense that it less discriminatively and/or
less succinctly captures the relevant image content.

Recently, effort has been put into optimizing quantizers for categorization tasks, see
e.g. [Boureau et al., 2010a, Lazebnik & Raginsky, 2009, Lian et al., 2010, Yang et al.,
2010b, 2008, Moosmann et al., 2008, Zhang et al., 2009]. Following this line of
research, we build on the tree-structured quantizers explored earlier in [Moosmann
et al., 2008]. Despite the computational efficiency of the approach, one of big limita-
tions of [Moosmann et al., 2008] is that the trees are learned to classify local image
regions, with labels inherited from the image. Therefore the image region classifica-
tion is used as a proxy for the true objective of image categorization. In this chapter,
contrarily to this previous approach, we use decision trees to perform quantization of
local appearances, but construct them in a manner to directly optimize categorization
performance of the whole image.

In Section 3.3 we describe how we learn tree-structured quantizers using a random-
ized greedy forward-selection process: in each step we enlarge the decision-tree by
splitting one of the existing nodes in a way that maximally improves the categoriza-
tion performance. We train the model to perform ordinal regression: defined on
image pairs, the loss is more expressive than the loss defined on images, and there-
fore is more suited to the incremental manner in which we build the clusterers, as
opposed to [Lazebnik & Raginsky, 2009, Yang et al., 2008] that adapt an initial k-
means quantizer to be more discriminative by minimizing image classification loss
using gradient-based methods. Therefore these methods will always end on the local
optimum that depends on the initial quantization and may require less succint rep-
resentations to achieve similar performance, or may be less discriminative for a fixed
representation size.

In Section 3.4 we present experimental results on two challenging public image cat-
egorization benchmarks, we evaluate our approach and compare to unsupervised
quantizers and the method of [Moosmann et al., 2008]. The results show that our
approach outperforms these alternatives, while producing more compact image rep-
resentations. We also find that our approach benefits from using ensembles of trees,
or “forests”, and more so than using k-means or the method of [Moosmann et al.,
2008]. We summarize our conclusions in Section 3.5.
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3.2 Related work

As pointed out in the introduction, most current state-of-the-art systems for image
classification follow the bag-of-words framework [Csurka et al., 2004] and rely on
the processing pipeline described above. For the stages (i), (ii), and (v), a consen-
sus seems to be reached, i.e. the use of dense sampling [Nowak et al., 2006], the
representation of local features by SIFT like descriptors [Zhang et al., 2007], and the
combination of different non-linear kernels [Varma & Ray, 2007], possibly using ex-
plicit embeddings [Maji & Berg, 2009]. Two intermediate stages (iii) quantization,
and (iv) aggregation by spatial pooling – the key ingredients of a good image repre-
sentation – have been the topic of active research within the last two years.

The construction of the visual vocabulary is often considered as pure vector quantiza-
tion, done with k-means [Csurka et al., 2004, Leung & Malik, 2001, Sivic & Zisserman,
2003] or in a soft manner with Gaussian mixture models [Philbin et al., 2008, van
Gemert et al., 2010b]. Some authors have also noticed that the way the quantiza-
tion is done can influence the performance of the classification algorithm. In [Jurie
& Triggs, 2005] it was observed that the clusters are strongly unbalanced, which
makes k-means focus on clustering the most frequent descriptors, that are in general
less discriminative. An algorithm similar to mean-shift was proposed to overcome
this limitation. For similar reasons, [Leibe et al., 2006] suggests to use agglomerative
clustering which gives more compact clusters, while being more robust to outliers. Hi-
erarchical clustering is also very efficient in terms of the computational cost to assign
features to visual words [Nistér & Stewénius, 2006]. In conclusion, the results shown
in [Jurie & Triggs, 2005, Leibe et al., 2006] demonstrate that in terms of classification
performance the k-means quantizer is clearly not optimal.

More recently, methods have started to appear that design vocabularies in order to op-
timize classification performance, typically by merging visual words from an existing
visual vocabulary [Fulkerson et al., 2008, Winn et al., 2005]. The drawbacks of these
methods are that they rely on a large initial vocabulary, which itself is not optimal
with respect to the criterion to be optimized, and they still require computationally
costly assignment of features to a large number of visual words.

One of the first papers to propose optimizing the discriminative power of the dic-
tionary is [Perronnin, 2008], which combines general and class-specific dictionaries.
While [Perronnin, 2008] and [Winn et al., 2005] optimize the vocabulary to ensure
that the image representations as a whole are discriminative, other recent approaches
optimized the visual words independently [Lazebnik & Raginsky, 2009, Mairal et al.,
2008, Moosmann et al., 2008], usually by maximizing mutual information between
category labels and the visual words. A drawback of these methods is that they aim
to find visual words that can discriminate the class labels of local features (inher-
ited from the images from which they are sampled), while the true objective is to be
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able to discriminate images (as a whole) based on their distribution of visual word
assignments of the patches sampled from them.

A recent group of promising methods tries to directly optimize the visual vocabulary
to minimize the image classification loss [Boureau et al., 2010a, Lian et al., 2010,
Yang et al., 2010b, 2008, Zhang et al., 2009]. One way to do this is to use boosting-
like approaches as in [Yang et al., 2008], which unifies quantizer generation with
classifier training. Each image feature is encoded by a sequence of “visual bits” that
are optimized iteratively for each category, based on the classifiers’ performance using
previous visual bits on the training data. Similarly, [Zhang et al., 2009] proposes a
framework for learning multiple non-redundant vocabularies, each being learned in
sequence to extract the discriminative information not captured by preceding ones,
and their corresponding classifiers. In [Boureau et al., 2010a, Lian et al., 2010, Yang
et al., 2010b] the dictionary and the classification model are learned jointly. In their
formulation these problems are not jointly convex, but each sub-problem is, so they al-
ternate between updating the classification model and updating the dictionary. These
approaches differ in the way the feature is represented, quantization vs. sparse coding,
in the aggregation method, averaging vs. max-pooling, and the loss used for image
classification: (squared) hinge vs. logistic. All these methods, however, initialize their
dictionary based on the reconstruction errors of the patch descriptors, therefore they
will converge to local optima, which depend on the initialization.

Optimizing over the space of tree-structured quantizers that we employ in our work
is hard because of the non-differentiable relationship between tree parameters and
the used loss. However, our sampling strategy shows to be very effective in practice.
Like [Boureau et al., 2010a, Lian et al., 2010, Yang et al., 2010b], our approach al-
ternates between learning classifiers and updating the quantizer. However, we incre-
mentally grow trees to quantize the feature space — the leafs of the tree representing
the visual words. By optimizing the quantizer in a coarse-to-fine manner we are less
sensitive to a specific initialization of the quantizer.

3.3 Learning tree-structured quantizers

Below we present the learning algorithm for our quantizers in Section 3.3.1, the split
selection criterion in Section 3.3.2, and how to leverage ensembles of quantizers in
Section 3.3.3. We use X i = {x i j}

Ni
j=1 to denote the set of Ni local feature vectors x i j

extracted from the i-th image.
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3.3.1 Randomized greedy tree construction

To quantize or partition the feature space we use binary decision trees, in which each
non-leaf node n has an associated split criterion f (x;θn,τn) that determines for a
given feature vector x whether it will proceed to the left child if f (x;θn,τn) < 0, or
to the right child otherwise. In particular we will use axis-aligned splits that thresh-
old one element of the feature vector, i.e. we have f (x;θn,τn) = x>θn − τn, and
θn is all-zero except one entry which equals 1. Clearly, other types of split func-
tions are possible, e.g. linear functions without restrictions on θ , or generalized linear
functions. Each node of the tree corresponds to a part of feature space: the root is as-
sociated with the complete feature space, child nodes being associated with a subset
of the space associated with the parent. The set of leaf-nodes forms a partitioning of
the complete feature space into non-overlapping subsets. Given a quantization tree
with L leaf-nodes, an image X i is then represented by an l1 normalized histogram
hi ∈ [0,1]L that codes in dimension d the fraction of the Ni image regions associated
with the d-th leaf.

To learn the trees suited for image categorization task we propose to follow a ran-
domized greedy forward-selection procedure. We start with a trivial tree with just the
root-node. Then, we expand the existing tree iteratively by adding two child-nodes to
an existing leaf-node, thereby refining the current partitioning of the feature space.
At each step, we sample T candidate splits per iteration, by uniformly selecting one
of the existing leafs, and determine θn by sampling uniformly a feature dimension to
split. Given these, we sample a region descriptor from descriptor set associated with
selected leaf and and use its value on the selected dimension as the threshold τn. We
evaluate each of the tentative expansions, and accept the best one using a criterion
described below.

3.3.2 Evaluating splits for image categorization

The procedure outlined above is essentially the same as the one used in decision tree
learning, where the leafs of the tree are used to classify the feature vectors processed
by the tree. In that case, the branches of the tree can be grown independently since
the design of the tree under one node will not affect classification performance of
feature vectors that are assigned to its sibling node. Splits are typically evaluated
using the information-gain criterion [Geurts et al., 2006]. In Appendix A we show
that information-gain criterion correponds to maximum likelihood learning for patch
classification. Remember that our goal is not to use the leafs of the tree to classify
individual feature vectors x i j, but rather to classify images represented by sets of
feature vectors X i = {x i j}

Ni
j=1 using a histogram hi of leaf-assignments over the set.

Therefore, in our case the branches of the tree can not be grown independently, and
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we should use a criterion that evaluates a split directly by its impact on the image
categorization performance. We illustrate the difference between the two approaches
in Figure 3.1.

For each candidate expansion of the current tree, we update the image representa-
tions hi by replacing the entry corresponding to the parent node by the histogram
entries obtained for the two new child nodes. We then learn a score function over the
new image representation, and evaluate it based on its performance on a validation
set of images. We use linear score functions, as we have to evaluate many tentative
splits: T × L in total, where L is the desired number of leaf-nodes in the final tree,
equaling the number of expansion iterations.

Like much recent work on image categorization, we evaluate performance in terms
of average precision (AP), rather than the classification rate for a given threshold on
the score. Since we aim to optimize ranking performance, rather than classification
performance, we learn a score function for ordinal regression where the goal is to
ensure that for each pair of a positive and a negative image the score of the positive
one is larger than the score of the negative one by some margin. If the score difference
between a positive image h+i and a negative image h−j is smaller than 1 we suffer the
loss ξi j, otherwise ξi j = 0. In addition we use an `2 regularization term, which then
leads to the following optimization problem [Joachims, 2005]:

min
w,ξi j≥0

1

2
w>w+ C

∑

i, j

ξi j, (3.1)

s.t. ∀i, j : w>(h+i − h−j )≥ 1− ξi j, (3.2)

where i ranges over indices of positive examples, and j over indices of negative ex-
amples.

The number of constraints and slack variables is quadratic in number of images, but
only a small fraction of all constraints is actually active — up to 15% in our exper-
iments. The solution of the optimization problem can be obtained by cutting-plane
methods [Kelley, 1960] that minimize the cost function subject to a subset of the con-
straints, and iteratively add constraints that are violated by the current solution. In
practice, we initially minimize the cost function subject to a set of 1,000 randomly
selected constraints, and the sequentially add all violated constraints and re-solve.
Typically, all constraints are satisfied within three iterations.

Once a score function has been learned for each sampled expansion of the current
tree, the T sampled splits are evaluated by the loss obtained on a set of validation
images.
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3.3.3 Learning ensemble of quantization trees

Due to the random and greedy nature of the tree construction algorithm, there are
no guarantees that the above construction algorithm will find the optimal tree. Even
when exhaustively considering all possible splits, which would be computationally
infeasible, the split that currently improves the model most might not be optimal in
combination with subsequent refinement of the quantization.

To address this problem, we have experimented with expanding nodes by more than
two children, i.e. with a small tree, and evaluating the current split based on the
future improvement that could be obtained by incorporating this split. Similar pro-
cedures have been used in decision tree learning before [Roizman & Last, 2006].
However, we did not observe significant improvements when employing this proce-
dure.

Instead, we have found that using a “forest” of several trees does give significant im-
provements, as has also been observed before for randomized decision trees [Breiman,
2001]. Here we learn each tree independently, and then concatenate the histogram
representations obtained using each tree to obtain our final image representation.
Combining K trees of L leafs each we obtain a final representation of size K × L.
In addition to improving the results, using ensembles also significantly reduces the
variance of performance.

3.4 Experimental evaluation

In this section we evaluate our approach and compare it to k-means quantization, and
the tree quantizers of [Moosmann et al., 2008]. In Section 3.4.1 we describe the data
sets we use in the experiments, feature extraction, and implementation details. We
present results for the Graz-02 data set in Section 3.4.2, and those for the 15-scenes
data set in Section 3.4.3.

3.4.1 Data sets, features, and implementation details

The Graz-02 data set [Opelt & Pinz, 2005] contains 1476 images displaying instances
of three objects classes: bicycles, cars, and people. In addition background images
which contain none of these categories but show scenes similar to the ones that dis-
play the objects are included, Strong intra-class variations due to different category
instances, e.g. different car models, are represented in the data set. Large variations
in pose and scale make recognition challenging. As in [Fulkerson et al., 2008], we use
odd numbered images from each class for learning the quantizers and classification
models, and we evaluate our model on the remaining images.
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Figure 3.2: Performance for the classes in Graz-02, using image-based trees with
K = 10 quantizers with a varying number of cells L. Square-rooting visual word
histograms significantly improves the performance.

The 15-scenes data set [Lazebnik et al., 2006] contains 4485 images of various scene
categories. Small inter-class variations between several indoor scenes are a major
challenge of this dataset, e.g. bedroom vs. livingroom. As in [Lazebnik et al., 2006]
we use 100 randomly selected images per class for training, and use the remaining
ones for evaluation. We repeat the procedure 10 times and report mean and standard
deviation of average precision.

In all experiments we use the same image features. We sample regions of 20 × 20
pixels from a regular grid, spaced by 10 pixels. This is done at the original image scale,
but also at four down-sampled versions of the image, rescaling it each time by a factor
1.2. For each patch we compute a SIFT descriptor [Lowe, 2004] of 128 dimensions.
When training the linear score functions, we use element-wise square-rooted visual
word histograms instead of the original ones. In [Perronnin et al., 2010a] it was
shown that this leads to significant performance increases for linear classifiers over
bag-of-word histograms generated by k-means, while maintaining the efficiency of



50 3. LEARNING TREE-STRUCTURED QUANTIZERS FOR IMAGE CLASSIFICATION

20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

#quantization cells

av
er

ag
e 

pr
ec

is
io

n

bicycle

image−based tree

patch−based tree

k−means

20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

#quantization cells

av
er

ag
e 

pr
ec

is
io

n

car

20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

#quantization cells

av
er

ag
e 

pr
ec

is
io

n

person

Figure 3.3: Performance for the classes in Graz-02, using one quantizer with a varying
number of cells L using our image-based trees (red), the method of [Moosmann et al.,
2008] (green), and k-means (blue).

linear classification. We found that the same holds for histograms generated by tree
structured quantizers, as shown in Figure 3.2.

When learning our quantization trees, we sample T = 100 splits at each iteration.
Since we evaluate performance in terms of average precision, we determine the regu-
larization parameter C in Equation 3.1 by 5-fold cross-validation to maximize average
precision. Recall that we also use validation to prevent overfitting when growing the
trees: for each tree we split the training data into two parts. We train the ordinal
regression models on the first part, but select the split which minimizes the loss on
the second part.

In our implementation of patch-based tree quantizers of [Moosmann et al., 2008], we
fix the desired number of leafs L in advance. When constructing the tree, we keep
a priority queue of nodes to expand, ordered by the information gain that can be
obtained by expanding them, and grow the tree in a best-first manner.
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Figure 3.4: Performance for Graz-02 using L = 100 cells, and varying the number of
quantizers K .

3.4.2 Results on the Graz-02 dataset

In our first set of experiments we consider performance as a function of the number of
quantization cells L, ranging from 10 up to 100, with K = 1. Since k-means depends
on its initialization, and the tree-based methods on the random selection of splits, we
show the average and standard deviation of performance over 10 experiments.

From results in Figure 3.3 we can see that our image-based trees give best results for
all classes and all numbers of quantization cells. The performance of k-means and
patch-based trees are comparable to each other on the classes bicycle and person. To
achieve similar performance our method needs much fewer quantization cells: on
all classes using only 30-dimensional histograms our method outperforms the others
when using up to 100-dimensional histograms.

In the second set of results in the Figure 3.4 we look at performance as a function
of the number of quantizers K that is combined in an ensemble, in each case using
L = 100 cells. We see that the performance of tree-structured quantizers is improved
on all three classes. For k-means vocabulary ensembles are less effective, in particular
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Figure 3.5: Performance for Graz-02 using ensembles of K = 10 quantizers while
varying the number of cells L.

for the class bicycle. For this class, k-means and our image-based trees perform similar
with a single quantizer, but our method outperforms k-means by 7% AP when using
K = 10 quantizers.

In the third set of results in the Figure 3.5 we again consider performance as a func-
tion of the number of quantization cells L, this time for ensembles of K = 10 quan-
tizers. The results are similar to those of Figure 3.3: our method achieves very good
performance using few quantization cells. Using only L = 10 cells our method outper-
forms k-means with L = 100 cells by a large margin. Our quantizers also significantly
outperform those of [Moosmann et al., 2008].

In Table 3.1, we compare ensembles of shallow patch-based and image-based trees
with results obtained with much larger k-means vocabularies. Only for one class and
using vocabularies of 4000 cells, the k-means results improve over the image-based
trees.

In Figure 3.6five positive images with lowest scores and five negative images with
highest scores are shown, for the best performing configuration (K = 10, L = 100)
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AP×100 K L bicycle car person

image-based tree (ours) 10 100 91.2 ± 0.6 87.5 ± 0.8 85.3 ± 0.9
patch-based tree Moosmann et al. [2008] 10 100 86.8 ± 1.0 82.7 ± 2.0 77.1 ± 2.0
k-means 1 1000 88.3 ± 1.9 81.1 ± 0.8 83.1 ± 0.7
k-means 1 2000 90.0 ± 0.3 83.1 ± 0.6 85.6 ± 0.4
k-means 1 4000 90.7 ± 0.3 84.8 ± 1.2 87.3 ± 0.4

Table 3.1: Comparison to larger k-means vocabularies on Graz-02.

using our model. The main problems in case of positive images are change in image
orientation, object occlusions and small object size. To gain more insight into nature
of top-ranked negative images we show in Figure 3.7 score maps: for each pixel the
patches that contain it are assigned to leaves of the tree and associated with the
corresponding weight of the learned model. The value for each pixel is obtained
as average of the assigned weights. Only top 10% pixels with highest scores are
displayed. This way we can identify the parts of the image that contribute the most
to positive score of the image. We see that in the case of class bicycle the presence
of wired structures or facade textures causes confusion because they locally resemble
the parts of the bicycles. It is interesting to note that the same image belonging to the
background class is among top five negative images for both class bicycle and class car.
However, from score maps we can see that in the case of class bicycle the confusion is
due to presence of the motorbike, while in case of class car it is because some cars are
actually present in the image. In Figure 3.8 we show score maps for top five images
for each class. All images are positive, and the most heavily weigted patches actually
correspond to parts of object whose model is learnt.

3.4.3 Results on the 15-scenes dataset

In Figure 3.9 we present graphs similar to those presented before, in this case showing
the mean average precision over all 15 classes. The standard deviation is measured
over the mAP values obtained using ten random training sets. Here, using a single
quantizer (left panel) our image-based trees give better performance than the other
quantizers using L < 50 cells, and slightly worse using L > 50 cells. For this data
set we also observe (middle panel) that the k-means vocabularies benefit least from
ensembles: using more than two qunatizers has a marginal impact on performance.
The tree-based quantizers, on the other hand, continue to improve with the number of
quantizers in the ensembles. Using ensembles of K = 10 quantizers, and varying the
number of cells L (right panel), we see that the k-means quantizer quickly improves
with the number of cells, but its performance clearly remains behind as compared to
that of the tree-based quantizers.

In Figure 3.10 we show a more detailed comparison of performance in terms of AP
for all 15 classes, using ensembles of K = 10 quantizers and L = 100 cells. For most
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Figure 3.6: Five positive images with lowest scores (first row) and five negative
images with highest scores (second row) for classes in Graz-02 dataset. Under each
image the rectangle displays the proportion of positive images (blue) and relative
position of image in the ranking (red).
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Figure 3.7: Five negative images with highest scores (first row) and their score maps
(second row) for classes in Graz-02 dataset. The score map displays the parts of the
image most heavily weighted for the class prediction.
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Figure 3.8: Five images with highest scores (first row) and their score maps (second
row) for classes in Graz-02 dataset. For all classes the top five images are positive. The
image parts most heavily weighted for the class prediction correspond to locations of
objects in the image.
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Figure 3.9: Performance in mAP for the 15-scenes data set: (left) using a single
quantizer, and varying the number of cells L, (middle) using L = 100, and varying
the number of quantizers K , (right) using K = 10 quantizers in the ensemble, and
varying the number of cells L.

classes image-based and tree-based quantizers perform similar, but larger improve-
ments are observed for the more difficult classes such as bedroom, livingroom, and
opencountry. On all classes k-means quantization gives the worst results.

The difference between patch-based trees of [Moosmann et al., 2008] and our image-
based trees on this dataset are smaller than on the Graz-02 dataset. This might be
explained by the fact that in Graz-02 the different object classes appear against similar
backgrounds, where in the 15-scenes data set the complete image contains discrimi-
native information. Therefore, on Graz-02 when learning patch-based decision trees
there will be many background patches, e.g. of buildings, that appear in all classes.
Hence the decision tree will spend a large part of its capacity to separate buildings
appearing as background of cars from buildings that appear as background of bicy-
cles. The image-based trees do not suffer from this problem, since they are optimized
for image classification, and it suffices to isolate a few informative features of the
object class to obtain good classification results. On the 15-scenes data set, however,
the class specific features are not hidden in a large pool of background features, and



58 3. LEARNING TREE-STRUCTURED QUANTIZERS FOR IMAGE CLASSIFICATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
av

er
ag

e 
pr

ec
is

io
n

 

 

be
dr

oo
m

liv
ing

ro
om

kit
ch

en

op
en

co
un

try
sto

re

ind
us

tri
al

hig
hw

ay

ins
ide

cit
y

co
as

t

m
ou

nt
ain

str
ee

t

ta
llb

uil
din

g
fo

re
st

of
fic

e

su
bu

rb

k−means
patch−based trees
image−based trees

Figure 3.10: Per class performance comparison on 15-scenes dataset.

the patch-based trees also learn effective quantizers, without modeling the various
backgrounds.

In order to compare our results to others that report multi-class classification accura-
cies we trained multi-class logistic regression models as follows. First, using one half
of the training data, we learn a forest of K trees for each of the C = 15 classes in a
one-versus-all manner as before. Then, we concatenate the K histograms of size L of
all classes, yielding a representation of size C × K × L. We then learn a multi-class
logistic discriminant classifier over this representation using all training data.

In Table 3.2 we report for various configurations of k-means, patch-based trees, and
our image-based trees the recognition rates, and include mAP values for reference.
Due to the quite regular spatial layout of the 15-scenes classes, the use of spatial
pyramids [Lazebnik et al., 2006]might lead to better performance. For sake of clarity,
however, we did not use them here. When using K = 10, L = 10 we obtain results
comparable to k-means with L = 1000 cells, and using K = 10 and L = 100 we
improve our accuracy by 3.6% to 83.6% ± 0.6, This is clearly better than using k-
means, and also better than the result of 81.4±0.5 reported in [Lazebnik et al., 2006]
which introduced spatial pyramids over k-means histograms. Using K = 10 and L =
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K L accuraccy mAP

k-means 10 10 59.7 ± 0.4 57.3 ± 0.6
patch-based tree 10 10 79.0 ± 0.9 70.0 ± 0.7
image-based tree 10 10 80.0 ± 0.9 78.9 ± 0.5
k-means 10 100 73.7 ± 0.8 79.2 ± 0.7
patch-based tree 10 100 83.9 ± 0.6 84.2 ± 0.8
image-based tree 10 100 83.6 ± 0.6 85.6 ± 0.5
k-means 1 1000 80.5 ± 0.7 84.0 ± 0.8
Lian et al. [Lian et al., 2010] 105 50 78.1 ± 0.7 –

Table 3.2: Summary of the results on 15-scenes dataset.

100, our results compare favorably to those reported in [Lian et al., 2010], which are
obtained by learning quantizers for multi-class classification, and combining K = 105
quantizers with L = 50 cells. Using ensembles of very shallow trees, K = 10 and
L = 10, our results are already better than theirs.

Finally, we point out that even when an equal number of histogram cells is used, the
histogram generation process requires several orders of magnitude less operations in
our method as compared to k-means. For k-means, we need to compute distances to
the K × L centers, each computed by D operations for a D dimensional descriptor;
for SIFT descriptors with D = 128, K = 1 and L = 1000 this adds up to 128,000
operations per image patch. Using our tree-structured quantizers, we only need to
compute approximately log L thresholds for each of the K trees, one threshold on
each level of the tree. For K = 10 and L = 100 this results in applying only 70
thresholds.

3.5 Conclusion

We have introduced a method to learn tree-structured quantizers using a randomized
greedy forward selection procedure, aimed at maximizing image classification perfor-
mance. We found that combining several such trees in an ensemble leads to significant
performance increases. The assignment of descriptors to histogram entries is much
faster in the tree-structured quantizers than in k-means, since each node of the tree
only applies a threshold on a single dimension of the descriptor. Our experimental
results on two data sets show that our method improves over k-means quantization,
and trees learned in a patch-based manner.

In future work we want to address the design of vocabularies that are shared across
different classification tasks, both in multi-class settings as in settings with multiple
binary labels. Secondly, we want to explore an approach where a forest of several
trees is grown concurrently, so that they are trained to be mutually complementary.
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4.1 Introduction

In this chapter we adress image representations that encode the spatial layout of
image regions. We propose a new image representation that generalizes the state-
of-the-art method for encoding the spatial layout of the regions. Our representation
is much more compact than alternatives, yielding the same performance for image
categorization task using simple linear classifiers. This work has been submitted to
International Conference on Computer Vision 2011.

As already mentioned in the previous chapter, image categorization aims to determine
the presence of objects in images, or to recognize them as particular scene types such
as city, mountain, or beach. Current state-of-the-art image categorization systems use
bag-of-word image representations, pioneered in [Csurka et al., 2004, Sivic & Zisser-
man, 2003]. Using this approach the content of the image is represented by global
statistics of the appearance of local image regions. First, image regions are sampled
from the image, either using a regular grid, in a randomized manner [Nowak et al.,
2006], or using interest point detectors [Zhang et al., 2007]. Each region is then
described using a feature vector, e.g. SIFT [Lowe, 2004] or color histograms [van de
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Figure 4.1: The spatial pyramid image representation concatenates visual word his-
tograms of the complete image and spatial cells. Our spatial Fisher vector representa-
tion models spatial layout by the mean and variance of the occurrences of each visual
word.

Weijer & Schmid, 2006]. A visual vocabulary is then learned using k-means or a mix-
ture of Gaussians (MoG), modeling patches sampled from many training images. The
visual vocabulary quantizes the feature space into different cells, and region features
are assigned to these cells. Therefore, each region feature is described by quantiza-
tion index, either by hard-assigning the feature to quatization cell, or using a soft-
assigment to a component of a MoG model. The patch assignments are then averaged
to obtain the global image representation, which is essentially a histogram with as
many bins as visual words, where each bin gives the number of patches assigned to
that visual word. This way the image represented by a set of regions is embedded
into vector space in which image classification is performed, by learning a classifier.

Several extensions to the basic bag-of-words image representation have been pro-
posed; we will discuss the most relevant ones in detail in the next section. A recent
extension to the bag-of-words model is the Fisher kernel image representation [Per-
ronnin & Dance, 2007]. Instead of only storing the average (soft-)assign of patches
to visual words, the first and second order moments of patch feature distribution for
patches assigned to each visual word are also stored. This means that, for a descriptor
of size D and K visual words, the image representation is of size K(1+ 2D). Since
much more information is stored per visual word, a much smaller number of visual
words can be used for a given level of categorization performance, which has a clear
computational advantage.
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Another extension is the spatial pyramid representation of [Lazebnik et al., 2006]
which captures the information about the spatial layout of the image by computing
bag-of-word histograms over different regions of the image, and concatenating these
to form the final representation. Using K visual words and C spatial cells results in
image representation of size KC . The same idea applied to the Fisher kernel image
representation [Perronnin et al., 2010b], leads to a representation of size KC(1+2D).
This representation has been proven to be effective, in particular when the image
categories exhibit characteristic layouts, as in the case of the scene recognition. For
object categorization this idea is also effective because even though the objects may
appear anywhere in the image, the scenes in which they appear may still have strong
layout patterns.

In this chapter we propose an alternative method to encode spatial layout informa-
tion, based on the Fisher kernel principle [Jaakkola & Haussler, 1999], that previously
was only used to encode the appearance information [Perronnin & Dance, 2007]. We
model the spatial location of the image regions assigned to each visual words using
MoG models, and compute the Fisher kernel representation from these models. Com-
pared to using spatial pyramids, we obtain representations that are smaller, while not
degrading performance. Using bag-of-word for appearance, our representations are
smaller and achieve better performance on 15-Scenes and PASCAL VOC 2007 data
sets, using linear classifiers, as compared to using the spatial pyramid representation
with the non-linear intersection kernel. When we use the Fisher kernel principle to
encode both spatial and appearance information we obtain very effective image repre-
sentations: they are efficiently computed as compared to using k-means vocabularies,
and are much more compact as compared to applying spatial pyramids to Fisher ker-
nel appearance models, while acheiving similar performance. See Figure 4.1 for a
schematic comparison of our approach to spatial pyramids.

In the next section we discuss the most relevant related work, and then present our
image representations in Section 4.3. We present extensive experimental results in
Section 4.4, comparing different variants of our image representations to alternatives
from the literature. Finally, we present our conclusions in Section 4.5.

4.2 Related work

Because of its effectiveness, the bag-of-words (BoW) model has become one of the
most popular representations for image categorization since its introduction in the
seminal papers [Csurka et al., 2004, Sivic & Zisserman, 2003]. Subsequent research
has focused on overcoming its two intrinsic limitations, namely (a) the computational
cost of the assignment of local features to visual words, and (b) the lack of information
on the spatial layout of the local features.
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Quantization issues and codebook compactness. Performance of the BoW model
has been unanimously reported to increase with the size of the dictionary [Csurka
et al., 2004, Sivic & Zisserman, 2003, van Gemert et al., 2010a] and the number of
regions sampled from images [Nowak et al., 2006]. Typically, vocabularies of several
thousands codewords are used, and thousands of regions are densely sampled from
the images. Assigning local features to their nearest visual word is computationally
very expensive, as it scales as the product of the number of visual words, the number
of regions, and the local feature dimensionality. These issues have been addressed
by different authors, e.g. [Nistér & Stewénius, 2006] proposed a hierarchical k-means
framework (scaling logarithmically with the number of codewords), while [Philbin
et al., 2007] introduced an approximate k-means algorithm better suited to the use of
large vocabularies. Random forests, because of their hierarchical structure, are also
good candidates for handling large visual vocabularies [Bosch et al., 2007a, Moos-
mann et al., 2007].

Nevertheless, the simplest way to reduce the time spent in assigning features to vi-
sual words is certainly to make the vocabulary smaller, of course without losing per-
formance. Different authors have tried to build compact discriminative vocabular-
ies [López-Sastre et al., 2011, Moosmann et al., 2007, Yang et al., 2008], i.e. vocab-
ularies that are specialized in representing the differences between categories. One
of the most convincing approaches is the one by Perronnin et al. [Perronnin et al.,
2006]. However, these vocabularies are not universal since they have to be rebuilt
each time a new category is added, which is a severe drawback.

On the other hand, when the vocabularies are more compact, the information lost
in the quantization process becomes more important, in particular when using hard
assigment [van Gemert et al., 2010a]. The amount of discriminative information is
considerably reduced due to the rough quantization of the feature space, as clearly
shown by [Boiman et al., 2008] who propose to compute direct image-to-class dis-
tances without descriptor quantization. The loss of information can be compensated
by assigning descriptors to multiple visual words, as suggested by [Philbin et al.,
2008, van Gemert et al., 2010a]. The assignment can also be guided by sparsity con-
straints [Yang et al., 2009] or locality constraints [Wang et al., 2010]. However, these
approaches again require large codebooks, e.g. 2048 visual words in [Wang et al.,
2010].

Regarding the production of compact vocabularies, one of the most appealing ap-
proach is the one proposed in [Perronnin & Dance, 2007]. They have suggested to use
the Fisher kernel framework [Jaakkola & Haussler, 1999], whose high dimensional
gradient representation contains much more information than a histogram represen-
tation, resulting in informative and compact vocabularies.

Spatial information. The BoW representation is a histogram of vector quantized
local appearances, and the spatial layout of the appearances is completely ignored.
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Clearly, the spatial information may convey useful cues for image categorization, and
at least two different ways to encode spatial information have been explored: based
on pairwise positions of features, and using absolute positions.

Considering pairs of spatially close image regions is probably the most intuitive way
to incorporate spatial information. Visual word “bigrams” are considered in [Savarese
et al., 2006], by forming a bag-of-word representation over spatially neighboring im-
age regions. Others have proposed a more efficient feature selection method based
on boosting which progressively mines higher-order spatial features [Liu et al., 2008],
and [Morioka & Satoh, 2010] proposes joint feature space clustering to build a com-
pact local pairwise codebook. Distinctive spatial configurations of visual words can
also be discovered by data mining techniques, such as frequent itemsets [Quack et al.,
2007].

In addition to pairwise relationships, images often have spatial biases: the compo-
sition of the pictures of particular object or scene category typically share common
layout properties. Therefore, embedding the global positions of the features in the
image is effective in many cases. Spatial Pyramid Matching (SPM) [Lazebnik et al.,
2006] exploits this property by partitioning the image into increasingly finer cells and
concatenating the BoW histograms of the cells. This strategy is used in most of the
state-of-the-art approaches, see e.g. [Perronnin et al., 2010b, Yang et al., 2010a]. In
[Bosch et al., 2007b] SPM is further improved by learning a weighting of the levels
of the SPM representation on a validation set. The idea of implicitly representing
spatial information by weighting image cells based on their discriminative power was
explored earlier in the context of facial expression recognition in [Shinohara & Otsu,
2004], where linear discriminant analysis was used to find a weighting of the spatial
cells. In addition to global spatial information, they also used local auto-correlation
measurements to include local spatial information. Recently, a similar strategy was
applied to address image categorization in [Harada et al., 2010], which yielded re-
sults comparable to the state-of-the-art on the 15-Scenes data set.

More closely related to our work, [Zhou et al., 2009] models regions appearances
with a mixture of Gaussian (MoG) density, and uses the posterior over visual words
for the image regions to form so called “Gaussian maps”. Then then apply SPM to
encode the spatial occurrence of visual words in the image. Our approach is similar,
as we also use a MoG to model the region appearances and also incorporate spatial
layout based on coding the region locations of each visual word. However, different
from their approach, we use the more efficient Fisher kernel [Jaakkola & Haussler,
1999, Perronnin & Dance, 2007] approach to jointly code appearance and spatial
layout, giving efficient, compact, and discriminative image representations.
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4.3 Fisher kernels to encode spatial layout

In this section we present our models to encode both the spatial layout of local im-
age features and their visual appearance. In Section 4.3.1 we start by rephrasing the
common bag-of-word (BoW) image representation as a simple probabilistic model,
for which we derive a Fisher vector representation. We then extend this model in Sec-
tion 4.3.2 by including a simple Gaussian location model, and further extend the spa-
tial model to a mixture of Gaussians (MoG) in Section 4.3.3. We integrate our spatial
models with MoG appearance models in Section 4.3.4, essentially combining Fisher
vector representations for both appearance and spatial layout. Finally, we consider
normalization of the Fisher vectors in Section 4.3.5, and we compare the different
models we introduced to spatial pyramid image representations in Section 4.3.6.

4.3.1 A generative model view on bag-of-words

The BoW image representation uses k-means to quantize the space of patch appear-
ances, for each patch xn we use wn ∈ {1, . . . , K} to denote the index of the k-means
center that is closest to xn, among the K centers. The trivial probabilistic model over
the quantization indices is just a multinomial π, and the likelihood of observing the
k-th quantization index is given by p(wn = k) = πk. The parameters of this multi-
nomial are fitted from the data used to learn the k-means quantizer, and are simply
given by the fraction of the patches assigned to each visual word.

To apply the Fisher kernel framework [Jaakkola & Haussler, 1999], we consider the
average log-likelihood of the N patches in an image, given by

L =
1

N

∑

n

ln p(wn). (4.1)

The average is taken to achieve invariance w.r.t. number of patches N in the image.
We parameterize the multinomial using a softmax by defining πk = expαk/

∑

j expα j,
which by construction satisfies the constraints πk ≥ 0, and

∑

πk = 1 for any setting
of the αk. The gradient is then given by

∂L
∂ αk

= hk −πk, (4.2)

where hk is the frequency of the k-th visual word in the image, i.e. its count devided
by N .

We recognize this gradient of size K as the standard bag-of-word frequency minus the
multinomial parameters, which have been learned from the vocabulary training data.
By shifting BoW histograms hk by πk the average BoW histogram is centered to the
origin.
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4.3.2 A simple Gaussian spatial model

We extend the appearance-only bag-of-words model by introducing a Gaussian loca-
tion model per visual word. Each image patch is represented as the tuple f = (w, l),
where w is the quantization index and l gives the spatial location of the patch in the
image. We define a generative model over appearance-location tuples as

p( f ) = p(w)p(l|w), (4.3)

p(w = k) = πk, (4.4)

p(l|w = k) =N (l; mk,Sk), (4.5)

where N (·; mk,Sk) denotes the Gaussian location model with mean mk and covari-
ance matrix Sk associated with the k-th visual word. The location models can be
learned trivially by computing the mean and variance of the spatial coordinates of
image patches assigned to the k-th visual word in the vocabulary training data.

We assume that variables that describe the patch position are uncorrelated so we use
diagonal covariance matrices. The gradient of the log-likelihood of a patch fn is

∂ ln p( fn)
∂ αk

= qnk −πk, (4.6)

∂ ln p( fn)
∂mk

= qnkS
−1
k lnk, (4.7)

∂ ln p( fn)

∂ S−1
k

= qnk

�

Sk − l2
nk

�

/2, (4.8)

where qnk = 1 if wn = k and qnk = 0 otherwise, lnk ≡ ln −mk, and l2
nk denotes the

element-wise square. The last equation gives the gradient w.r.t. the diagonal of the
inverse covariance matrix. We slightly abuse the notation: in Equation 4.8 S−1

k and Sk

denote the vector of diagonal elements of the (inverse) covariance matrix.

By averaging the gradients over all patches in an image, this yields an image descrip-
tor of size K(1+ 2d), where d = 2 is the dimension of the location l. For each visual
word we have 1 element for the gradient w.r.t. the αk, and 4 for the gradient w.r.t. the
spatial mean mk and variance Sk.

4.3.3 A spatial mixture of Gaussian model

We extend the spatial model by using an MoG distribution over the patch locations
instead of a single Gaussian, i.e. we replace Equation 4.5 with

p(l|w = k) =
C
∑

c=1

θkcN (l; mkc,Skc), (4.9)
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using a mixture of C Gaussians to model the spatial locations of the patches per visual
word. We define the mixing weights again using the softmax as θkc = expβkc/

∑

j expβk j.
The spatial model of each visual word can be learned using the EM algorithm [Bishop,
2006] from the patch locations associated with each visual word.

The gradient w.r.t. the αk remains as in Equation 4.6, but for the location model
parameters we obtain

∂ ln p( fn)
∂ βkc

= qnk
�

rnkc − θkc
�

, (4.10)

∂ ln p( fn)
∂mkc

= qnkrnkcS
−1
kc lnkc, (4.11)

∂ ln p( fn)

∂ S−1
kc

= qnkrnkc

�

Skc − l2
nkc

�

/2, (4.12)

where lnkc = ln −mkc and rnkc = p(c|ln, wn = k) = θkcN (ln; mkc,Skc)/p(ln|wn = k).
The rnkc can be interpreted as a “spatial soft-assign” of patches of visual word k to the
spatial mixture components. The image representation has size K + KC(1+ 2d), K
dimensions for the appearance part, and KC(1+ 2d) for the spatial layout.

4.3.4 Mixture of Gaussians appearance models

We now combine the ideas from the previous section with a mixture of Gaussians
(MoG) model for the patch appearances, and use Fisher vectors to obtain the im-
age representations. The parameters of the models defined in this section can all be
learned using the EM algorithm.

Appearance-only Fisher vector image representation. First, we define the appearance-
only model as in [Perronnin & Dance, 2007]; the patch appearances x ∈ RD are
modeled as

p(x ) =
K
∑

k=1

πkp(x |w = k) (4.13)

p(x |w = k) =N (x ;µk,Σk), (4.14)

where πk denotes the mixing weight of the kth Gaussian in the mixture, defined using
the softmax as above. Similarly to the spatial models, for the appearance models we
also use diagonal covariance matrices, therefore the appearance representation has
size K(1+ 2D).
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Redefining qnk to denote the posterior p(wn = k|xn), or responsibility, and xnk to
denote xn−µk, the gradients of the log-likelihood for a single patch are

∂ ln p(xn)
∂ αk

= qnk −πk, (4.15)

∂ ln p(xn)
∂ µk

= qnkΣ
−1
k xnk, (4.16)

∂ ln p(xn)

∂Σ−1
k

= qnk

�

Σk − x 2
nk

�

/2. (4.17)

The image representation is obtained by averaging these gradients over all patches
in the image. This representation has the computational advantage that we can use
smaller number of visual words, since the appearance per visual word is coded more
precisely [Perronnin & Dance, 2007].

Gaussian spatial models with MoG for appearance. When we include a single
Gaussian spatial model, the appearance-location tuple f = (x , l) is modeled as

p( f ) =
∑

k

πkp(x |w = k)p(l|w = k), (4.18)

where p(l|w = k) is defined as in Equation 4.5, and p(x |w = k) as in Equation 4.14.

If we redefine qnk = p(wn = k|xn, ln), the gradients with respect to the αk,µk,Σk

are the same as in Equation 4.15–Equation 4.17, and those for the mk,Sk are the
same as in Equation 4.7–Equation 4.8, albeit using the current definition of qnk. The
image representation has size K(1+ 2D+ 2d) in this case. Note that since the patch
descriptor x is generally high dimensional, e.g. 128 for SIFT, the additional 2d = 4
dimensions increase the representation size only slightly as compared to the MoG
appearance-only model.

Using MoG spatial models with MoG for appearance. In this case we use the
model of Equation 4.18, with the MoG spatial model p(l|w = k) of Equation 4.9. The
model now has K(1+2D) parameters for the appearance model, and KC(1+2d) for
the spatial models. So in total we have K(1+ 2D) + KC(1+ 2d) parameters.

The gradients with respect to the appearance parameters αk,µk,Σk remain as in
(4.15)—(4.17). For spatial parameters βkc, mkc,Skc the gradients are the same as
in Equations (4.10)—(4.12) using the current definition of qnk.
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4.3.5 Normalization

The Fisher kernel framework of [Jaakkola & Haussler, 1999] requires multiplication
of the gradient vectors with F−1/2 where F = IEx

�

g (x )g (x )>
�

is the Fisher infor-
mation matrix and g (x ) denotes the gradient vector. Instead of using an analytical
approximation as in [Perronnin & Dance, 2007], we use the observation that the
multiplication with F−1/2 corresponds to a whitening of the gradient vectors [Bishop,
2006]. Based on the patches used for vocabulary construction, we compute the mean
and variance on each dimension of the gradient vectors to obtain an additive and mul-
tiplicative normalizer, so that the normalized gradient vectors are zero-mean and unit-
variance. The motivation for the assumption of diagonal F is similar as in [Perronnin
& Dance, 2007]: in some cases F may be quite large, which renders computation
of F−1/2 very costly, especially when using large K and when modeling spatial lay-
out with SPM. For example, with K = 200, C = 5, and D = 64, when using SPM and
Fisher vectors for apperance, the dimensions of matrix F would be 129.000×129.000.
It requires 66 Gb of memory to store such matrix, while the time required for inversion
of such big matrix makes diagonal approximation a necessity.

4.3.6 Discussion and comparison to SPM

We summarize the models we have presented in this section in Figure 4.2 and com-
pare the proposed models to generative model of spatial pyramids (SPM). The Fisher
vector representation for an image is given by the gradients of generative model pa-
rameters w.r.t. to the log-likelihood the image data, at the parameters that maximize
the log-likelihood of the training data. Therefore it also takes into account a large
training data set via the learned parameters of the generative model. To see how this
influences the representation consider Equation 4.2. While BoW histograms hk have
big components for visual words k which are more frequent in the image, the Fisher
vector image representation for the same generative model has big components for
the visual words which are more frequent in the image than on averge. An empty bin
for a visual word in BoW histogram means that no region descriptors are assigned
to the visual word, while in case of Fisher vectors zero value for a component corre-
sponding to a visual word k means that the visual word is equally frequent in image
as it is on average. Therefore the Fisher vector representation of the same size as
BoW histogram is richer because it takes into account more information. When using
SFV for coding spatial layout and FV for coding the appearance each patch will con-
tribute to 2D dimensions for appearance and 2d for its position, while in BoW-SPM
each patch only contributes to one spatial cell per level of a quad-tree. Therefore, the
BoW-SPM codes are sparser, and less efficiently use the representation dimensions.

In Table 4.1 we give the representation size for each of them, and compare them
to the sizes obtained using spatial pyramids (SPM) [Lazebnik et al., 2006, Perronnin
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spatial appearance k-means appearance MoG

None K K(1+ 2D)
Gauss. K + K2d K(1+ 2D) + K2d
MoG K + KC(1+ 2d) K(1+ 2D) + KC(1+ 2d)
SPM KC KC(1+ 2D)

Table 4.1: Comparison of representation size for the different models, using either
k-means or a MoG for appearance, and either no spatial model, a single Gaussian, or
a MoG.

et al., 2010b] that concatenate appearance representations obtained over C spatial
cells. We use C to denote either the number of components in our spatial MoG, or the
total number of cells in the SPM representation.

Comparing SPM to our MoG spatial model in combination with k-means for appear-
ance, we see that our representation adds 2d = 4 numbers for each visual word (K)
and spatial cell C . The size of the MoG model with C = 1 equals the SPM model with
C = 5.

Comparing SPM to our MoG spatial model with MoG appearance models, we see that
our model yields a much more compact representation. Where SPM concatenates
C appearance Fisher vectors of size K(1+ 2D), our representation uses a single ap-
pearance Fisher vector of size K(1+ 2D) and adds KC spatial Fisher vectors of size
(1+ 2d) = 5. For a typical setting of K = 200, D = 64, C = 5, the SPM representa-
tion is 129.000, while our MoG spatial-appearance model yields a descriptor of size
30.800: more than 4 times smaller. When using C = 21 the sizes would be 541.800
and 46.800 respectively, and our descriptor is more than 11 times smaller.

To compute our representation we have to compute the appearance soft-assign, and
the spatial soft-assign per visual word. So, the only additional cost is to compute a
spatial soft-assign per visual word, which costs O(KCd). Since the appearance soft
assign has cost O(KD) per patch (regardless of k-means or MoG model), and since
the descriptor dimension is typically much larger then the number of spatial cells, i.e.
D� C , we can state that in general the computational cost is less than doubled. For
example, when D = 64, C = 1 and d = 2 the spatial assign is 32 times faster than the
appearance assign.

4.4 Experimental evaluation

Feature extraction and vocabulary learning. In all experiments we follow the
same feature extraction process. We sample image patches on a regular spatial grid,
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Figure 4.2: Different models of appearance and position, either using k-means or
a MoG for appearance, for various alternatives of modeling spatial layout. From
the last two rows we see that in our case (third row) the position l is generated by
combination of spatial cell c and visual word k, while in case of SPM (last row) the
appearance descriptor x is generated by the combination of k and c. Since D� d our
representation is much smaller. Additionally, our representation performs soft-assign
of the region descriptors to the components of the learned spatial layout model, while
SPM performs hard-assign to a fixed quad-tree.
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Figure 4.3: Using 15-Scenes data set to compare Spatial Fisher Vectors (SFV, solid
curves) to Spatial Pyramids (SPM, dashed curves) for coding spatial layout, when
using bag-of-words for coding appearance (top), and when using Fisher vector for
coding appearance (bottom).
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with step-size half of the patch-size, over 8 scales separated by a factor 1.2. At the
finest scale we use a patch-size of 20 and 16 pixels for the 15-Scenes and PASCAL
VOC 2007 data sets, respectively. We compute 128 dimensional SIFT descriptors,
which we project to 64 dimensions using PCA. This is done to reduce the image rep-
resentation when using Fisher vectors to code appearance. Because of the statistics
of natural images and way the SIFT descriptor performs spatial binning, we expect
that the intrinsic dimensionality of the SIFT descriptors is lower than the original one,
because the components of SIFT descriptors are highly correlated. By using PCA we
decorrelate SIFT dimensions globally, therefore better fitting our modelling assump-
tion that the components are uncorrelated locally, which is assumed by diagonal form
of covaraince matrices for appearance model components. In [Perronnin & Dance,
2007, Zhou et al., 2009] PCA is also used to compress SIFT features from 128 to 64
dimensions. The k-means and MoG appearance models, as well as PCA subspace, are
learned using a random sample of 500.000 patches from the training images.

Construction of spatial models. Once the appearance models are learned we can
learn the spatial models, either Gaussian or MoG, using the patches assigned to
each visual word. However, in initial experiments we found that without loss of
performance we can also use a fixed spatial model shared across all visual words
(mc = mkc,Sc = Skc).

Using C = 1 spatial Gaussian we set the mean and variances to match the first and
second order moment of the uniform distribution over the unit square. Using C = 5
components we complement the global Gaussian with four Gaussians, each matching
the first and second order moments of the four quadrants of the unit square. Similarly
we add 16 Gaussians matching the uniform distribution of the 16 regular cells of the
unit square. The mixing weights are set so that they sum to the same value per level.
Note that the spatial model resembles the structure of the SPM in this case. The main
differences are that we store spatial first and second order moments of the patches
assigned to each spatial component, and that we use a spatial soft-assign.

Compared representations. In our experiments we compare the representations
summarized in Table 4.1. We test SPM representations up to three levels; at the first
level we have only C = 1 spatial cell which does not encode any spatial information.
Using the first two levels we have C = 5 spatial cells, and using all three levels we have
C = 21 spatial cells. When using Fisher vectors for appearance, we do not include
C = 21 since then the image representation becomes very large, without increasing
performance. For our Spartial Fisher Vector (SFV) representations we use C = {1, 5}
Gaussian components; using more components did not improve performance.

Classifier training and evaluation. For all image representations we learn a linear
classifier over the Fisher vector representations, and include the L2 and power nor-
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Figure 4.4: Normalized confusion matrix for 15-Scenes dataset (the rows are the true
classes), we only show figures larger than one.

malizations of [Perronnin et al., 2010b]. For a fair comparison, we use the histogram
intersection kernel [Lazebnik et al., 2006] when using BoW+SPM representations,
since these seem to be optimal for that representation. We follow standard evaluation
measures for used datasets. For the 15-Scenes data set we learn multi-class logistic
discriminant models, and report classification accuracy measured as the fraction of
correctly clasified test images. For PASCAL VOC 2007 we learn a binary SVM classi-
fier per class, and report the mean of the per-class average precision (mAP) values.

Experimental results for the 15-Scenes dataset. The 15-Scenes data set [Lazeb-
nik et al., 2006] contains 4485 images of the categories bedroom, suburb, industrial,
kitchen, living room, coast, forest, highway, inside city, mountain, open country, street,
tall building, office, and store. We use the standard setup for this data set, using 10
random splits of the data into a train set of 100 images per class, and using the rest
as test data. We then average the classification accuracy over the test/train splits.

In Figure 4.3 we show the classification accuracies as a function of the vocabulary
size K . Using k-means to encode appearance (left panel) we see that large vocab-
ularies (K ≥ 1000) yield the best performance, and that our Spatial Fisher Vector
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SPM SFV
1 5 21 1 5

B
O

W

50 29.1 37.0 41.4 35.1 37.9
100 33.8 40.4 44.1 39.8 41.7
200 38.1 44.1 47.1 43.5 45.1
500 42.7 47.7 49.9 47.5 48.9
1000 45.9 50.1 51.5 50.1 50.8
2000 48.0 51.1 52.3 52.3 52.9

Fi
sh

er
ve

ct
or 50 54.1 55.8 55.4 50.2

100 55.0 56.5 56.1 55.6
200 55.5 56.7 56.5 56.1
500 55.5 56.5 56.6 56.3

Table 4.2: PASCAL VOC 2007: comparison of spatial pyramids (SPM) with with
C = {1,5, 21} cells (left) to Spatial Fisher vectors (SFV) with C = {1,5} spatial cells
(right) for coding spatial layout. Using bag-of-words (BOW) for coding appearance
(top), and using Fisher vector for coding appearance (bottom).

50 100 200 500

Early fusion 54.9 55.4 55.6 55.6
SFV 55.4 56.1 56.5 56.6

Table 4.3: PASCAL VOC 2007: comparison of Fisher vectors obtained from MoG
learned from concatenation of patch appearance and position descriptors (top row)
to Spatial Fisher vectors (SFV) with C = 1 spatial cells, using Fisher vector for coding
appearance (bottom row), when varying number of apperance components K . The
representations have the same sizes.

representation with C = 1 outperforms all others, achieving 85.0± 0.8 accuracy. The
size of our representation is in this case K + K2d = 10.000, which is the same as the
size of the best SPM model with C = 5 which uses a non-linear kernel an achieves
83.8 ± 0.5. Our results are remarkably good for a bag-of-word image appearance
models in combination with linear classifiers.

When using Fisher vectors for appearance (right panel) performance is generally
much higher (note difference in axis scaling). In this case our Spatial Fisher Vec-
tor representation with C = 1 and K = 100 achieves best performance at 88.2%±0.6,
which is comparable to using SPM with C = 5 cells (88.1%± 0.5). Note that our rep-
resentation is much smaller, K(1+ 2D+ 2d) = 13.300 dimensions, than using SPM:
KC(1 + 2D) = 64.500 dimensions. We also noticed that performance saturates or
drops when using vocabularies larger than 100 to 200 visual words. This consistent
with the observations made by [Perronnin & Dance, 2007].
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Figure 4.6: Per class comparison of SFV using K = 500 visual words and L = 1 spatial
cells.

Our results with only K = 200 visual words are on par with the current state-of-the-art
of 88.1% reported in [Xiao et al., 2010]. While we only use SIFT descriptors, [Xiao
et al., 2010] combines 14 different low-level image features; when using only SIFT
[Xiao et al., 2010] reports 81.2% using a BoW+SPM representation and intersection
kernels.

In Figure 4.4 we show the confusion matrix we obtain with our best model. We
see that the similar scenes are confused: the majority of classification errors are due
to confusion of indoor scenes, followed by the group of classes that depicts the ur-
ban architecture (classes insidecity,tallbuilding,street,highway) and finally the outdoor
scenes displaying countryside.

In Figure 4.5 we show the confused images with the highest scores, for six classes with
prediction accuracy less than 90%. For the majority of confused images the true class
the image displays spatial layout of image parts similar to the one of the predicted
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class. Images confused between classes bedroom and livingromm have very similar
spatial layout, with the only difference that images of bedrooms display beds, while
images of living rooms display sofas.

Experimental results for PASCAL VOC 2007. The PASCAL VOC 2007 data set con-
tains 9963 images, annotated for presence of 20 different object categories. We have
used the 5011 images in the train and validation sets to train our models, and evaluate
them on the 4952 test images.

In Table 4.2 we show the mAP scores for different vocabulary sizes. When using
bag-of-word appearance models (top), we observe that our Spatial Fisher vector rep-
resentations with C = 1 and a linear classifier yield performance comparable to using
C = 5 cells with SPM and intersection kernel. The best performance of 52.9% is ob-
tained using spatial Fisher vectors with C = 5 components, and 2000 visual words.
The best SPM results of 52.3% are obtained using C = 21 cells, and K = 2000. As
for the 15-Scenes data set, using Fisher vectors for appearance (bottom) improves the
results, to a maximum of 56.6% using SFV with a single Gaussian, and for SPM the
best results are 56.7% using C = 5 cells. Again, our representation is much smaller,
using K = 200, C = 1 the SFV has size K(1+2D+2d) = 26.600, while using SPM with
K = 200, C = 5 yields a KC(1+ 2D) = 129.000 dimensional image representation.

Our results are comparable to those in [Perronnin et al., 2010b], which reports 55.3%
using SPM with C = 1, K = 256, our results with SPM and C = 1, K = 200 are 55.5%.
They reported 58.3% using SPM with C = 8 cells, which uses the complete image, the
four quadrants, and using 3 horizontal strips, which we did not explore here.

In Table 4.3 we concatenate the appearance vectors x and the location vector l into
a single vector of dimension D + d, and compute Fisher vectors for an MoG model
learned on the concatenated vectors. Using K mixture components this yields a de-
scriptor of size K(1 + 2(D + d)), which is the same as using SFV with C = 1. For
all vocabulary sizes SFV outperforms early fusion of appearance and location vectors.
With an early fusion of appearance and position information the patches of the same
appearance that occur at different locations in the image can be assigned to differ-
ent components of the joint appearance-position generative model. Therefore, given
the fixed number of components K in order to model the position of the patches the
precision with which its appearance is coded has to be sacrificed, while SFV with the
same number of components and the same dimensionality does not suffer from this
trade-off, because the appearance and the position are generated by separate models.

In Figure 4.6 we compare per class performance of SFV when using k-means and MoG
to code appearance. Both models are using the same number of components to code
the appearance (K = 500) and layout (C = 1). The complexity of representation
creation is equal, but the dimensionality of k-means histograms with SFV coding of
spatial layout is much smaller since D � d. For each class coding appearance using
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Fisher vectors outperforms BoW histograms, the difference being bigger for classes
with low classification performance. The difference in performance is also particularly
big for classes that display complex structures, like bus, bicycle and train, probably
because the finer structures become indistinguishable due to quantization.

Discussion. We observe that the performance of our representation increases with
vocabulary size. Since less patches are assigned per visual word as the number of vi-
sual words grows, our spatial Fisher vectors —even with a single spatial component—
are able to accurately describe the positions of patches assigned to each visual word.
This effect is illustrated in Figure 4.7.

To represent spatial layout with the same accuraccy, SPM has to use many spatial
quantization cells. However, this results in very big image representations, that are
more likely lead to overfitting.

This effect could also explain results in Table 4.2 and Figure 4.3. When using small
number of visual words the gain by adding more spatial components is significant,
but this gain diminishes as we increase the number of visual words.

4.5 Discussion and conclusion

We have introduced Spatial Fisher Vectors as a new method to encode spatial informa-
tion for image categorization. In SFV, spatial “cells” are adapted to the patch positions,
unlike the rigid structure of spatial pyramid cells. Our representation has two clear
benefits. When combined with bag-of-words appearance models, our representation
used with linear classifiers gives similar or better results than SPMs with nonlinear
intersection kernel classifiers, for comparable size of the representation. When we
combine our model with Fisher vector coding of appearance, we also obtain similar
or better results compared to SPM. In this case the advantage of SFV is that the image
descriptors are roughly four times more compact, reducing requirements on disk stor-
age, memory, and classifier training time by a factor four. In future work we want to
further explore the Fisher kernel framework using more advance generative models
to encode the appearance and spatial content of images.





5
Summary and Conclusions

In this thesis we have addressed the problem of representing images in a way that
allows learning of models that capture semantic meaning of their visual content. Ex-
perimental evidence presented in this thesis, as well as in the literature shows that
for a given task the choice of image representation significantly influences the per-
formance. Therefore, the question of image representation is essential to computer
vision. We have proposed image representations that are adapted to the problem
being addressed. Specifically, we have dealt with image representations for image
re-ranking and classification.

We next review each of our contributions in the light of goals stated in introduction,
summarize the advances presented in previous chapters and comment on some in-
sights which show prospective directions for future work.

5.1 Query-relative features for image re-ranking

Summary. Motivated by query-relative representation of text accompanying images
in web-pages, used in image search engines to rank the images according to the rele-
vance to query terms, we have proposed in Chapter 2 a way how to construct query-
relative representations of visual content of an image. This representation does not
depend only on the visual content of the image but depends also on the query used
to retrieve the image, via the distribution of visual representations of a set of images
retrieved by the textual query. We used this representation for re-ranking of images re-
trieved by an image search engine given the textual query. We showed that taking into
account visual content of the images significantly improves performance compared to
text-only re-ranking. However, the main advantage of this representation is that it al-
lows learning of a single relevance model using data annotated with relevance labels.
This approach outperforms the query-specific models [Schroff et al., 2007] which are
learned from noisy training examples. Given the same bag-of-words image represen-
tation the construction of the query-relative representation using binning and ranking
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of images using the learned model is faster than learning and applying query-specific
classifier. Since the query-relative features for different modalities have the same
meaning the combination of different modalities is achieved by simple concatenation
of query-relative representations from different modalities. We have shown that the
combination of multiple modalities significantly improves the results.

Future work. The results we obtained using our query-relative features are very
encouraging. We would like to relate the insights about query-relative representation
to ideas about zero-shot learning [Palatucci et al., 2009] that would allow better
understanding and extension of the method.

Since users usually consider only top-ranked images visual diversity of relevant re-
trieved images is desired. Currently, with our method it is possible that top-ranked
images are similar. There are several options to promote the diversity of image rank-
ing. One option is to cluster the retrieved images. Then we can rank the clusters
instead of the images, where each cluster is represented by an average representation
of images in the cluster, e.g. an average BoW histogram. Another option is to rank
the images inside the cluster and interleave the rankings from different clusters, sim-
ilar to [Douze et al., 2009] where rankings from visual and textual cues are simply
interleaved with a goal of promoting diversity. Finally, we could simply collapse near
duplicates that are close to each other in the ranking.

5.2 Learning tree-structured quantizers for image clas-
sification

Summary. The majority of methods for image categorization use representations
that are produced in an unsupervised manner, without taking into account class labels
of training images. For example, BoW histograms use quantization cells obtained by
k-means clustering of local feature descriptors. To improve the discriminative power
of image representations, the class labels of training images can be used to construct
class-dependent image representation. One group of methods constructs the quan-
tizers to predict the class labels of local feature descriptors, e.g. [Moosmann et al.,
2008] which learns the tree-structured quantizer from local feature descriptors with
the labels inherited from the images they are sampled from. Since the goal is image
classification, these methods optimize the quantizer for a related, but different task.
Recently a new group of methods appeared which constructs quantizers in a way that
directly targets improving image classification performance. In Chapter 3 we have
introduced one such method. The main advantage of our method is fast image repre-
sentation creation using tree-structured quantizers. Using a forest of such quantizers
we have obtained very good results using very compact image representation and
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simple linear classifiers. Our approach outperforms image representation derived in
completely unsupervised manner, as well as image representation optimized for local
feature classification, using the same dimensionality of image representation and the
same types of classifiers.

Future work. Although our split sampling strategy is very effective it is unlikely
that the optimal quantizer parameters could be found by simple sampling, because
the space of quantizer parameters is very big. One option is to use more advanced
sampling methods or global optimization methods like genetic algorithms or simu-
lated annealing. However, these alternatives are quite slow. Another option is to
change the loss function so it becomes differentiable. In that case the sampling of
quantizer parameters could be replaced with update of parameters using the gra-
dients of quantizer parameters w.r.t. image classification loss. To obtain a function
which is differentiable w.r.t. to the used loss we could employ a soft branching (e.g.
using a sigmoidal function) instead of hard assignment of data point in parent node
to one of the children.

By growing trees independently some features could be correlated. We would like to
explore the possibility of growing the trees in such manner that the learned image
features, that correspond to the leaves of the tree, are independent. This would yield
more succinct representations. One way to achieve this is to allow inner nodes of the
tree to be splitted several times. Every split of the internal node creates a new tree
which differs from the already created ones only in the sub-tree whose root node is
the splitted inner node. Also, by splitting the inner nodes multiple times we might
avoid that tree learning procedure gets stuck in local minima.

Our current model supports only binary classification, so a quantizer is learned per
task. We would like to extend the method to handle multi-class and multi-label prob-
lems. The extension is relatively straightforward, but would allow learning a quantiz-
ers that are shared across several tasks.

5.3 Modeling spatial layout with Fisher vectors for im-
age categorization

Summary. In Chapter 4 we have shown how to interpret existing state-of-art image
representation as Fisher vectors w.r.t. generative models and proposed a more com-
pact way of representing both the appearance and spatial layout of image patches
which represent the image. Compared to use of spatial pyramid (SPM) of [Lazebnik
et al., 2006] the advantage of our method is a compact and data adaptive represen-
tation. Instead of using a fixed set of regular spatial cells, we capture the spatial
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distribution of occurrences of a visual word in the image by its first and second order
moments.

Future work. Currently we first learn a PCA subspace of local features and then
learn the MoG model for appearance model in this subspace, to maximize the likeli-
hood of projected local features. Instead of learning the PCA subspace and generative
model separately, we could couple these steps and learn jointly the PCA subspace
and the parameters of MoG model to maximize the likelihood of the original local
features.

Here we have used a simple generative model that generates only individual local
features that describe the appearance and position of a patch. We could use more
complex models that generate sets of local features, which capture the relation be-
tween patches’ appearances and their local region layouts, by e.g. modeling the pairs
of neighbouring patches.

Fisher vectors have been also used for image indexing Perronnin et al. [2010a]. Spa-
tial Fisher vectors can be also used for that task. Since they directly take into account
spatial layout, they can be helpful in reducing the burden of computationally expen-
sive geometrical verification steps in image retrieval. Since our SFV is more compact
than SPM, it lends itself better to large scale applications where the limitations on the
memory space used per image are more severe.

The extension of Spatial Fisher vectors to representation of videos is straightforward.
In this case the generative model captures the spatio-temporal layout of video shots.
The dimensionality of video representation vector that capture spatio-temporal re-
lations used currently in video categorization is quite big, since the majority of the
methods use a fixed spatio-temporal grid, similar to quad-tree used by SPM. Since
Spatial Fisher vectors use adaptive grid, this information could be coded in more
compact way using Spatial Fisher vectors.

5.4 Conclusion

As stated in the introduction, since the digital cameras became ubiquitous the number
of digital images available increases rapidly. Therefore the time required to process
them in order to bring the decisions related to their content becomes increasingly
important. To address this issue we have focused our efforts on image representations
that are fast to construct and that are compact. Additionally, all our models are linear
classifiers which are fast both in learning and application phase, and have significantly
smaller memory requirements than the non-linear classifiers usually employed for
image categorization.
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As the interest of computer vision community starts to shift towards large-scale image
classification, the use of image representations that are fast to construct and models
that are fast to learn and apply will be indispensable.

We hope that contributions that are presented in this thesis are a step towards this
goal.





A
Learning the tree to classify local
descriptors

In this appendix we show that chosing the split to maximize mutual information be-
teen the child nodes and data labels is equvivalent to learning the parameters of the
tree-structured quantized to maximize the (log-)likelihood of data labels. Therefore
chosing the split that maximizes the mutual information is equvivalent to choice of
the split that maximizes the (log-)likelihood of the data class labels.

We denote by pkc = p(c|k) multinomial for class labels c correspodiing to leaf k.

Given the tree structure we want to find the parameters of leaf multinomials pkc that
maximize the log-likelihood of labels Y = {yi}Ni=1 given the data X = {x i}Ni=1:

L (Y |X ) = log
N
∏

i=1

p(yi|x i) =
N
∑

i=1

ln p(yi|x i) (A.1)

Next, we assign data points x i to leaf nodes `k according to the tree structure. We can
then group the points assigned to same leaf `k, and expressL as sum of log-likelihood
over K leaves:

L =
K
∑

k=1

∑

i∈`k

ln p(yi|`k) (A.2)

Then, for each leaf and class we rewrite previous expression as:

L =
K
∑

k=1

C
∑

c=1

nkc ln pkc (A.3)

=
L
∑

k=1

nk

C
∑

c=1

nkc

nk
ln pkc, (A.4)
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where nkc denotes the number of data points of class c assigned to leaf k, and nk

denotes the number of patches assigned to leaf k.

We have now expressed the log-likelihood of class labels Y given data X and tree
structure, via parameters of leaf multinomials pkc. We want to find the parameters
of leaf multinomials that maximize this log-likelihood, under constraint that multino-
mial in each leaf node is a probability distribution. Therefore we have to minimize
the follwing Lagrangian:

L =L −
L
∑

k=1

λk

 

C
∑

c=1

pck − 1

!

(A.5)

Setting derivatives of Lagrangian w.r.t. multinomial parameters to zero:

∂ L

∂ pck
=

nck

nk

1

pck
−λk = 0 (A.6)

nck

nk
= pckλk (A.7)

The above holds for all c, we can obtain λk by summing right and left side of Equa-
tion A.7 over c:

λk

C
∑

c=1

pck =
1

nk

C
∑

c=1

nck (A.8)

λk = 1 (A.9)

So we find that the parameters of the optimal multinomial are given by pck =
nck

nk
.

Therefore the log-likelihood with the optimal multinomial is:

L =
L
∑

k=1

nk

C
∑

c=1

pck ln pck =−
L
∑

k=1

nkH(pk), (A.10)

where by H(pk) denotes the entropy of the multinomial pk.

Every tentative node split is evaluated by its contribution to increase of log-likelihood:

Lnew−Lold = nparentH
�

pparent

�

−
2
∑

k=1

nchildkH
�

pchildk
�

. (A.11)

From Equation A.11 we see that this split selection creterion based on maximum
likelihood of data labels is the same as the one that whose goal is maximization of
mutual information between data labels and children nodes.



B
Rapport de thèse

B.1 Motivation

Au cours des dix dernières années, les appareils photo numériques sont devenus om-
niprésents, la bande passante du réseau a augmenté, et les techniques de compression
d’image ont été améliorées. Ces avancées ont donné lieu à une explosion du nombre
d’images numériques intégrées dans des pages web et de blogs. L’avènement des sites
dédiés au partage de photos, comme Flickr et Picasa, a permis à encore plus d’images
d’être publiées en ligne. Le nombre d’images disponibles ne cesse de croître avec
l’expansion des réseaux sociaux qui permettent le partage des images: selon le “Time
magazine”, plus de 130.000 photos sont téléchargées chaque minute sur Facebook.
Afin de permettre l’utilisation de cette vaste et toujours croissante collection d’images,
par exemple pour rechercher des images contenant des objets ou des personnes, ou
de les organiser en thèmes, les images doivent être indexées par des termes liés à
leur contenu. Mais l’annotation des images est une tâche fastidieuse, et bien qu’il y
ait un certain nombre de façons pour fournir une description textuelle de l’image, la
majorité des utilisateurs n’annotent pas encore les images avec des termes liés à leur
contenu.

L’indexation sémantique d’une collection d’images personnelle peut être effectuée
manuellement, mais l’indexation de grandes collections d’images à l’échelle du Web
est un grand défi. Une solution est de diviser le problème en petites tâches qui peu-
vent être résolues manuellement. Par exemple, le jeu ESP présente le problème de
l’indexation sémantique des images comme un jeu en ligne, tandis que les groupes
Flickr permettent d’associer des tags avec les images et d’organiser les images en
groupes. Mais même dans l’hypothèse où les annotateurs font un travail parfait,
dans le sens où ils sont tous d’accord sur les annotations pour une image, l’effort
manuel ne suffit pas pour indexer toutes les images disponibles en ligne parce que
le nombre d’images sans annotations augmente trop rapidement. L’annotation d’un
sous-ensemble d’images n’est pas une option parce que nous ne savons pas à l’avance

http://www.time.com/time/video/player/0,32068,711054024001_2037229,00.html
http://www.time.com/time/video/player/0,32068,711054024001_2037229,00.html
http://www.espgame.org/gwap/gamesPreview/espgame
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quelles images seront recherchées. Nous aimerions faire de l’indexation sémantique
automatique, mais il n’y a pas de relation simple entre le niveau de l’image représen-
tée dans une machine et sa description par des termes liés à leur contenu. [Smeulders
et al., 2000] appelle l’absence de cette relation “le fossé sémantique”.

Pour apprendre des modèles statistiques qui concernent le contenu des images et des
annotations sémantiques nous avons besoin d’images annotées. Par conséquent, bien
que l’indexation manuelle des images ne peut pas fournir la solution à ce problème,
l’indexation manuelle peut aider dans la construction de modèles statistiques, en four-
nissant des annotations pour les images qui sont utilisées dans l’apprentissage de
modèle. L’apprentissage de modèle suppose que le contenu de l’image est représenté
dans une machine. Une bonne représentation d’image doit coder toutes les infor-
mations pertinentes du contenu visuel de l’image. Les informations de l’image con-
sidérées comme pertinentes dépendent de la tâche. Nous illustrons cela en utilisant
un exemple dans la Figure B.1. En discriminant entre les images des villes et des
plages, la couleur est une caractéristique pertinente, donc utiliser par exemple les his-
togrammes globaux de couleur comme une représentation de l’image est une bonne
idée. Cependant, la discrimination entre des images de vaches et de chevaux en util-
isant les même représentation est une tâche difficile, car les informations de couleur
ne sont pas pertinentes pour cette tâche: la couleur n’est pas une caractéristique dis-
criminante des vaches et des chevaux, et habituellement ils partagent l’environnement
dans lequel nous les rencontrons. Par conséquent l’utilisation des représentations sim-
ples pourraient être assez bon pour des tâches faciles, mais avec l’augmentation de la
complexité du problème on a besoin de représentations d’image plus sophistiquées.

B.2 Les objectifs

Dans cette thèse nous explorons différentes façons de représenter le contenu des im-
ages, avec un accent particulier sur les représentations d’images pour la classifica-
tion et le reclassement des images. Ensuite, nous définissons ces tâches et décrivons
brièvement la façon d’apprendre des modèles pour ces tâches, ainsi que la façon
d’exécuter ces tâches étant donné la représentation d’image et le modèle appris.

Classification d’image L’objectif de la classification d’image est d’assigner une image
à une ou plusieurs catégories sémantiques en fonction de son contenu. Dans le
cas de la classification binaire, l’objectif est d’apprendre le modèle d’un objet
qui, compte tenu de l’image, répond à la question: “L’objet est-il présent dans
l’image?”. Le modèle de classification multi-classe a pour but de répondre à
la question: “Quel objet est présent dans l’image?”. Le classement d’images
avec plusieurs étiquettes, appelé également “annotation des images”, répond à
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Figure B.1: Le représentation de contenu visuel des images avec l’histogramme
global de couleur. Cette représentation est suffisante pour le tâche de discrimina-
tion entre des images des villes et des plages, mais elle n’est pas assez bonne si on
veux séparer les images des chevaux et des vaches.

la question: “Quels objets sont présents dans l’image?”, en apprenant conjoin-
tement plusieurs modèles de classification binaire.

Reclassement d’image Compte tenu des images récupérées par une requête de texte,
en utilisant par exemple un moteur de recherche d’images, l’objectif du reclasse-
ment d’image est d’utiliser le contenu visuel de l’image pour trier les images
récupérées, de telle sorte que celles qui sont pertinentes par rapport à la re-
quête sont classées avant celles qui ne le sont pas.

Les modèles statistiques qui relient le contenu visuel d’une image donnée à sa de-
scription sémantique peuvent être appris à partir d’un ensemble d’images annotées
par une étiquette de formation. Un modèle f est déterminé par des paramètres w.
Ainsi, apprendre un modèle revient à déduire les paramètres w pour lesquelles le
modèle prédit bien les étiquettes de formation à partir des caractéristiques des images
d’entraînement. Etant donné une image x, le modèle génère un score f (x,w) qui peut
être utilisé soit pour reclasser les images en les triant, soit pour classer les images en
comparant leurs scores avec une valeur prédefinie. Un exemple de ces modèles sont
les Support Vector Machines [Vapnik, 1998], couramment utilisées dans les méthodes
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de l’état de l’art de classification d’images. Certes, d’autres modèles sont possibles
(modèles à base de règles par exemple), mais puisque le choix du modèle est orthog-
onal aux contributions présentées ici, nous n’utilisons que des modèles statistiques
reconnus pour être à la fois simples et efficaces.

B.3 Les représentations d’images pour la classification

Une des premières tentatives d’abstraction du contenu visuel de l’image a été d’utiliser
des méta-données textuelles, associées aux images (par exemple les méta-données
EXIF, le nom de fichier de l’image et le nom du dossier, les tags HTML dans les pages
web, les tags fournis par l’utilisateur, etc) pour représenter les images via du texte. La
majorité des moteurs de recherche d’images s’appuient sur une telle représentation
pour récupérer et classer les images par rapport à une requête textuelle. Cependant,
comme les méta-données sont générées souvent sans l’intention d’annoter les images
avec des informations qui sont sémantiquement significatives pour le contenu des
images, elles peuvent être erronées, ambiguës, incomplètes, ou tout simplement ab-
sentes. C’est pourquoi l’hypothèse que le texte des méta-données est lié au contenu
de l’image n’est pas toujours valide. Par conséquent, afin d’améliorer la qualité de la
recherche et du classement des images, le contenu visuel de l’image doit être pris en
compte.

B.3.1 Les représentations globales d’image

Les premières représentations d’images utilisées ont été “globales” . Ces représen-
tations agrègent des attributs locaux de couleur, de forme ou de texture dans des
caractéristiques globales d’image [Jain & Vailaya, 1996, Manjunath & Ma, 1996].
Elles sont compactes, rapides à construire et invariantes à la disposition des parties
d’image, mais leur pouvoir discriminant est limité. En effet, l’influence de chaque
caractéristique de pixel sur la représentation totale de l’image peut être petite. Cette
situation est défavorable pour certaines tâches, par exemple pour déduire si des objets
comme les voitures ou les vélos sont présents dans l’image, parce que l’influence des
caractéristiques de l’objet peut être noyée par le fond d’image. L’effet est encore plus
évident lorsque l’objet dans l’image est petit ou occlus. Ces représentations sont un
bonne encodage d’un contenu d’image lorsque les caractéristiques individuelles des
pixels sont déjà informatives pour la tâche, comme dans le cas de l’utilisation de la
couleur pour discriminer entre des images de plages et de villes (c.f. Figure B.1).
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B.3.2 Les représentations locales d’image

Pour surmonter les limitations des représentations globales, l’image peut être représen-
tée par un ensemble de régions. Ces représentations sont donc appelés “locales”.
Comme seule une fraction de régions est influencée par les occultations et le fouil-
lis de fond, les représentations d’images locales sont plus robustes à l’égard de ces
effets. Ici nous allons nous concentrer sur le groupe de représentations d’images
basées sur les "sac-de-mots", d’abord introduit dans [Sivic & Zisserman, 2003, Csurka
et al., 2004]. Bien que de nombreuses représentations d’objet peuvent également être
utilisées pour représenter l’ensemble de l’image (par exemple par histogrammes de
gradients orientés [Dalal & Triggs, 2005], la forme des segments [Opelt et al., 2006,
Ferrari et al., 2010], des modèles en constellation, [Weber et al., 2000, Fergus et al.,
2003] ou avec une SVM latente [Felzenszwalb et al., 2010]), nous ne traitera que
des représentations d’images par sac-de-mots car elles sont très efficaces et ont été
l’état de l’art dans la classification d’images. Nous allons ensuite décrire la création
de représentations locales d’image basées sur les sac-de-mots.

La représentation locale d’image peut être décrite par une succession d’étapes: la
sélection des régions, la description d’apparence de région, le codage d’apparence
de région, et la dérivation des caractéristiques d’image de l’ensemble des codes des
régions par l’agrégation spatiale. L’aperçu schématique de ces étapes est donné à la
Figure B.2. Nous allons maintenant décrire chacune de ces étapes plus en détail.

Region selection Region appearance
      description

Region appearance
         coding

   Image features from 
region appearance codes

Figure B.2: Aperçu schématique des étapes de calculation la représentation locale de
l’image: l’exemple du sac-de-mots représentation de l’image.

La sélection des régions La façon dont on sélectionne des régions de l’image est
importante, puisque la sélection de la région influence la représentation de l’image
: différents ensembles de régions mènent à différentes représentations de l’image.
Une des premières oeuvres qui utilise la représentation locale de l’image utilise un
algorithme de segmentation d’image pour sélectionner des régions d’image [Barnard
et al., 2003]. Cette option est intéressante car elle permet à chaque région d’être
décrite avec sa forme [Belongie et al., 2002], en plus de la couleur et la texture.
Cependant, comme les algorithmes de segmentation ne produisent pas des régions
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stables, et qu’ils nécessitent des calculs intensifs, cette option n’a pas gagné beaucoup
d’attention.

L’idée d’utiliser des détecteurs de points d’intérêt pour sélectionner les régions a
été emprunté au domaine de la correspondance stéréoscopique. Les détecteurs de
points d’intérêt sont construits pour détecter des structures comme les coins [Harris
& Stephens, 1988], les blobs [Lindeberg, 1998] et les arêtes [Steger, 1998]. La ré-
gion rectangulaire autour du point détecté (aussi appelé “patch”) est représentée par
un descripteur de l’apparence. Utiliser des détecteurs de points d’intérêt a l’avantage
principal de détecter les structures à leur échelle intrinsèque, par le principe de sélec-
tion d’échelle automatique [Lindeberg, 1998]. Cela permet la description des régions
par des caractéristiques locales, qui sont invariantes aux transformations affines lo-
cales [Mikolajczyk & Schmid, 2004]. L’utilisation de détecteurs de points d’intérêt
suppose implicitement que certaines régions de l’image ne sont pas importantes pour
la représentation de l’image, une hypothèse qui semble intuitivement valide. Toute-
fois, étant donné qu’elles ne sont pas construites pour la tâche à accomplir, il n’y a
aucune garantie que les régions sélectionnées donneront une représentation d’image
optimale pour la classification ou le reclassement d’images.

Cet inconvénient des détecteurs de points d’intérêt est la motivation principale der-
rière l’échantillonnage dense de régions : si l’image est complètement couverte par
les régions, l’image peut être reconstruite à partir de l’ensemble des régions sélec-
tionnées, et par conséquent aucune information n’est perdue. La représentation de
l’image encode le contenu de l’image complète, et la détermination de l’importance
de chaque région est laissée à des étapes ultérieures. Il a été démontré que pour
certaines tâches de classification d’image, la sélection de régions à partir d’une grille
régulière surpasse l’utilisation de détecteurs de points d’intérêt [Winn et al., 2005].
[Nowak et al., 2006] effectuent l’échantillonnage de régions au hasard à partir d’une
distribution spatiale fixée, et dans [Moosmann et al., 2008], cette approche a été
étendue par la mise à jour de la distribution spatiale.

La description de l’apparence des régions L’apparition d’une région sélection-
née est décrite par un ensemble d’attributs d’apparence de région, appelé “descrip-
teur local” ou “caractéristique locale”. Ces descripteurs peuvent être semblables aux
représentations globales d’images, mais ils sont généralement construits manuelle-
ment pour avoir certaines invariances géométriques et photométriques, par exemple
l’invariance aux changements d’illumination non-uniforme et les distorsions géométriques
causées par différentes poses d’objets. Pour atteindre l’invariance de la réponse pho-
tométrique, des bancs de filtres décrivant la texture locale ont été utilisés [Leung
& Malik, 1999, Ojala et al., 2002]. L’invariance aux distorsions géométriques est
par ailleurs adressée à l’aide de binning spatiale comme dans SIFT [Lowe, 2004],
brouillant spatiale [Berg & Malik, 2001] ou en projetant la distribution spatiale des
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réponses de filtre à un sous-espace, comme dans PCA-SIFT [Ke & Sukthankar, 2004].
La couleur de la région [van de Weijer et al., 2007] et ses caractéristiques basées sur
l’intensité des pixels [Obdrzalek & Matas, 2002, Kadir & Brady, 2001] ont également
été utilisés pour décrire l’apparence des régions.

Le codage de l’apparence des régions Les descripteurs d’apparence de région sont
codés à l’aide d’un ensemble de vecteurs prototypes. Un prototype est appelé “mot
visuel”, et l’ensemble des mots visuels utilisés pour coder les descripteurs de région
est appelé “dictionnaire visuel”. Le dictionnaire visuel est utilisé pour exprimer le con-
tenu de l’image, tout comme les mots du texte sont utilisés pour exprimer le contenu
du document texte. Toutefois, lorsqu’il s’agit de codage de contenu de l’image, les
mots visuels ne sont pas donnés, mais doivent être déterminés. Par conséquent, deux
questions importantes doivent être posées : comment obtenir un dictionnaire visuel,
et comment coder une caractéristique locale à l’aide d’un dictionnaire visuel donné.
Les méthodes peuvent être divisées en deux groupes, basés sur les approches utilisées
pour répondre à ces questions. Celles qui apprennent le dictionnaire visuel et le code
des caractéristiques locales d’une manière non-supervisée, ayant comme but la recon-
struction des descripteurs sont appelées ici “les méthodes de codage guidées par la
reconstruction du contenu visuel d’image”. On appelle “méthodes de codage guidées
par la prédiction de l’étiquette d’image” les méthodes supervisées, qui apprennent le
dictionnaire visuel en tenant compte de l’étiquette des images d’entrainement.

Les méthodes guidées par la reconstruction ont pour but de trouver le dictionnaire
visuel qui permet de reconstruire les descripteurs avec un minimum d’erreur. Les pre-
mières approches ont obtenu le dictionnaire visuel par l’algorithme des k-moyennes et
ont codé la région par l’indice du mot visuel le plus proche[Sivic & Zisserman, 2003,
Csurka et al., 2004]. [Nistér & Stewénius, 2006] utilisent l’algorithme de k-moyennes
hiérarchique afin de réduire la complexité algorithmique de codage de chaque région
de O(n) à O(log(N)), où N est le nombre de mots dans le dictionnaire visuel. Lors de
l’utilisation des k-moyennes pour quantifier l’espace des descripteurs des cellules de
quantification s’adaptent à la distribution des descripteurs de formation. Ceci est sous-
optimal lorsque cette distribution est non uniforme, et par conséquent des caractéris-
tiques qui sont moins fréquentes ont plus d’erreur de reconstruction. Pour surmonter
ce problème, [Jurie & Triggs, 2005] utilisent l’algorithme “mean shift” [Comaniciu
et al., 2000] pour obtenir les mots visuels.

Comme montré dans [Boiman et al., 2008], le principal inconvénient de ces approches
est que chaque caractéristique locale est codée par un simple coefficient de reconstruc-
tion: l’indice du mot visuel le plus proche. Dans ce cas, l’erreur de reconstruction est
grande, sauf si un grand nombre de mots visuels sont utilisés. Pour réduire l’erreur
de reconstruction, [Philbin et al., 2008] et [van Gemert et al., 2010a] pondèrent
l’attribution d’une caractéristique à plusieurs mots visuels, de sorte que l’apparence
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de chaque région est codée par de multiples coefficients de reconstruction. La même
idée a conduit [Yang et al., 2009, Wang et al., 2010] et [Boureau et al., 2010a] à
coder les caractéristiques locales avec des coefficients de combinaison linéaire de
mots visuels, pour lesquels l’erreur de reconstruction est minimisée, sous des con-
traintes de parcimonie [Yang et al., 2009] ou des contraintes de localité [Wang et al.,
2010]. Dans l’approche vectorielle Fisher [Perronnin & Dance, 2007], chaque car-
actéristique locale est codée en utilisant les gradients par rapport aux paramètres
du modèle génératif, précisément, le mélange de gaussiennes dont les paramètres
sont appris par l’algorithme EM à partir de l’ensemble des caractéristiques locales
d’entrainement.

Les méthodes guidées par la reconstruction minimisent l’erreur de prédiction de l’étiquette
de classe associée soit à la caractéristique soit à la image. [Moosmann et al., 2008]
apprennent les forêts randomisées pour prédire les étiquettes de classe de la carac-
téristique à partir des descripteurs de la région. L’étiquette de chacun des descripteurs
de région de formation est héritée de l’étiquette de l’image de la région à partir de
laquelle elle a été échantillonnée. La croissance de l’arbre aléatoire est guidée par
la minimisation de l’erreur de classification de région. Les feuilles de l’arbre sont
des mots visuels qui correspondent aux cellules de quantification de l’espace du de-
scripteur. Plusieurs arbres sont utilisés, de sorte que chaque élément est codé par
des coefficients multiples, où chaque coefficient correspond à l’indice de la feuille
dans l’arbre. Dans [Perronnin, 2008], le dictionnaire initial est construit avec un but
de reconstruction de caractéristiques, puis les mots visuels obtenus sont adaptés en
utilisant les étiquettes de classe. La caractéristique est codée en utilisant à la fois le
dictionnaire universel et les dictionnaires adaptés spécifiquement pour chaque classe.

Dérivation des caractéristiques de l’image à partir des codes des régions par
agrégation spatiale La majorité des modèles utilisés pour la classification d’images
supposent que l’image est représentée par un espace vectoriel muni d’un produit
scalaire. Pour enchâsser l’ensemble des caractéristiques locales dans un espace vecto-
riel, l’ensemble des coefficients qui codent la région sont agrégés dans un vecteur de
taille fixe qui représente le contenu visuel de l’image. L’agrégation est effectuée par
mot visuel, de sorte que les coefficients correspondant à un mot visuel sont agrégés
sur l’ensemble de codes représentant les régions d’image. Le cas où la représentation
d’image est calculée comme la somme des coefficients de fonction est appelé “agréga-
tion par somme”. L’agrégation par somme est effectuée par sac-de-mots, comme dans
la méthode de [Sivic & Zisserman, 2003, Csurka et al., 2004, Nistér & Stewénius,
2006, Jurie & Triggs, 2005] et l’approche des vecteurs de Fisher [Perronnin & Dance,
2007]. Dans “l’agrégation par maximum”, les caractéristiques d’image sont dérivées
comme le maximum des codes correspondant au mot visuel. Cette agrégation a été
introduite par [Riesenhuber & Poggio, 1999], dont l’objectif était de modéliser les
réponses des cellules dans le cortex visuel des primates. [Boureau et al., 2010b] ont



B.4. CONTRIBUTIONS XI

montré que ce type d’agrégation sépare mieux les caractéristiques d’image correspon-
dant aux mots visuels qui ont une faible probabilité d’être actifs, et que l’agrégation de
toutes les régions est sous-optimale. L’agrégation par maximum est également utilisée
par [Yang et al., 2009, Wang et al., 2010], et [Moosmann et al., 2007] où les vecteurs
binaires sont utilisés pour décrire l’image.

Les représentations d’image sont enfin normalisées, de sorte que les normes L1 ou
L2 de tous les vecteurs de l’image sont égales. Lorsque l’on utilise l’approche sac-
de-mots, le résultat de la normalisation L1 du vecteur de l’image est un vecteur qui
peut être interprété comme une distribution multinomiale sur les mots visuels, appelé
également histogramme par “sac-de-mots”.

B.3.3 Disposition spatiale

Pour certaines tâches, l’agencement des parties d’image est une caractéristique infor-
mative, comme par exemple pour la classification de scène, qui consiste à distinguer
entre les types de scène (comme “chambre” ou “magasin”). Dans ce cas, la disposition
spatiale doit être codée dans la représentation de l’image. L’approche dominante est
l’appariement pyramide spatiale (SPM), approche de [Lazebnik et al., 2006]. L’image
divisée en plusieurs sous-images, par exemple en quad-arbre, et la fonction des coef-
ficients sont agrégées sur ces sous-images. L’image finale représentation est obtenue
par la concaténation de la représentation des sous-images. La même idée a été utilisée
dans [Perronnin et al., 2010b] pour enrichir la représentation du vecteur de Fisher
avec l’information de disposition spatiale, et dans [Bosch et al., 2007b] où les ori-
entations du gradient sont agrégées sur les sous-images. L’importance relative des
sous-images dépend de la tâche. [Bosch et al., 2007b] a exploré l’apprentissage des
poids par tâche pour les sous-images.

Le descripteur GIST [Oliva & Torralba, 2001] est une représentation de l’image glob-
ale qui caractérise les propriétés de l’image comme “naturel” ou “d’ouverture”, en
mesurant la distribution spatiale des réponses des filtres d’image spécialement conçus.

B.4 Contributions

Ici, nous décrivons brièvement les principales contributions que nous présentons dans
les chapitres de cette thèse.

Dans le Chapter 2, nous décrivons la représentation d’image développée pour la tâche
du reclassement d’image, où le but est de trier les images récupérées par la requête
texte en tenant compte de leur contenu visuel. La représentation de l’image dévelop-
pée dépend non seulement du contenu visuel de l’image récupérée, mais aussi du con-
tenu des autres images récupérées avec elle, en utilisant la même requête textuelle.
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Cela nous permet d’apprendre un modèle de pertinence unique qui, une fois acquis,
peut être utilisé pour reclasser les images par pertinence par rapport aux requêtes
ignorées lors de l’entraînement du modèle. Les modèles de pertinence appris à partir
de cette représentation relative à un requête obtiennent une meilleure performance
que les modèles spécifiquement appris pour chaque requête [Schroff et al., 2007] .

La majorité des méthodes de classification d’images se basent sur une représenta-
tion d’image apprise de manière non-supervisée. Dans le Chapter 3, nous décrivons
une représentation d’image adaptée pour la classification d’images appartenant à une
classe spécifique. On construit progressivement le dictionnaire visuel en alternant
entre la croissance d’un arbre dont les feuilles correspondent aux mots visuels, et
l’apprentissage du modèle de classification linéaire. Par opposition à [Moosmann
et al., 2008] qui construit la forêt aléatoire afin de minimiser une classification er-
ronée de région, nous construisons l’arbre afin de minimiser les erreurs de classifi-
cation d’images. La représentation de l’image résultante est très compacte, rapide à
créer, et elle donne d’excellentes performances en utilisant des classifieurs linéaires
qui sont rapides à calculer et qui ont des exigences de mémoire limitées.

Les méthodes de l’état de l’art pour la classification d’image ignorent souvent la dispo-
sition des régions d’image. Pour décrire la disposition spatiale en utilisant la représen-
tation sac-de-mots, la disposition des sous-images est fixe, comme dans la pyramide
spatiale [Lazebnik et al., 2006] où un quad-arbre détermine la disposition des sous-
images. Dans le Chapter 4, nous proposons une nouvelle méthode qui est plus souple,
en utilisant le principe du vecteur de Fisher pour coder l’aménagement des régions
d’image attribuées aux mots visuels. La représentation résultant est beaucoup plus
compacte, tout en obtenant un niveau de performance supérieur ou égal à celui des
pyramides spatiales.
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