
HAL Id: tel-00651396
https://theses.hal.science/tel-00651396

Submitted on 13 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic models and methods for multi-object tracking
Michele Pace

To cite this version:
Michele Pace. Stochastic models and methods for multi-object tracking. Probability [math.PR].
Université Sciences et Technologies - Bordeaux I, 2011. English. �NNT : �. �tel-00651396�

https://theses.hal.science/tel-00651396
https://hal.archives-ouvertes.fr


No d’ordre : 4291

THÈSE
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Méthodes et modèles stochastiques pour le suivi

multi-objets

Résumé:

La poursuite multi-cibles a pour objet le suivi d’un ensemble de cibles mobiles

à partir de données obtenues séquentiellement. Ce problème est particulièrement

complexe du fait du nombre inconnu et variable de cibles, de la présence de bruit

de mesure, de fausses alarmes, d’incertitude de détection et d’incertitude dans

l’association de données. Les filtres PHD (Probability Hypothesis Density) con-

stituent une nouvelle gamme de filtres adaptés à cette problématique. Ces tech-

niques se distinguent des méthodes classiques (MHT, JPDAF, particulaire) par

la modélisation de l’ensemble des cibles comme un ensemble fini aléatoire et par

l’utilisation des moments de sa densité de probabilité.

Dans la première partie, on s’intéresse principalement à la problématique de l’applica-

tion des filtres PHD pour le filtrage multi-cibles maritime et aérien dans des scénarios

réalistes et à l’étude des propriétés numériques de ces algorithmes. Dans la seconde

partie, nous nous intéressons à l’étude théorique des processus de branchement liés

aux équations du filtrage multi-cibles avec l’analyse des propriétés de stabilité et le

comportement en temps long des semi-groupes d’intensités de branchements spati-

aux. Ensuite, nous analysons les propriétés de stabilité exponentielle d’une classe

d’équations à valeurs mesures que l’on rencontre dans le filtrage non-linéaire multi-

cibles. Cette analyse s’applique notamment aux méthodes de type Monte Carlo

séquentielles et aux algorithmes particulaires dans le cadre des filtres de Bernoulli

et des filtres PHD.

Mots-clés : Processus de branchements, filtres particulaires, filtrage non-linéaire

multi-cibles, systèmes de particules de type champ moyen, semi-groupes de Feynman-

Kac, filtre PHD, propriétés de concentration exponentielle, inégalités de contraction

fonctionnelles.
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Stochastic models and methods for multi-object

tracking

Abstract:

The problem of multiple-object tracking consists in the recursive estimation of

the state of several targets by using the information coming from an observation

process. The objective of this thesis is to study the spatial branching processes and

the measure-valued systems arising in multi-object tracking. We focus on a class of

filters called Probability Hypothesis Density (PHD) filters by first analyzing their

performance on simulated scenarii and then by studying their properties of stabil-

ity and convergence. The thesis is organized in two parts: the first part overviews

the techniques proposed in the literature and introduces the Probability Hypothe-

sis Density filter as a tractable approximation to the full multi-target Bayes filter

based on the Random Finite Sets formulation. A series of contributions concerning

the numerical implementation of PHD filters are proposed as well as the analysis of

their performance on realistic scenarios.

The second part focuses on the theoretical aspects of the PHD recursion in the

context of spatial branching processes. We establish the expression of the condi-

tional distribution of a latent Poisson point process given an observation process and

propose an alternative derivation of the PHD filter based on this result. Stability

properties, long time behavior as well as the uniform convergence of a general class of

stochastic filtering algorithms are discussed. Schemes to approximate the measure-

valued equations arising in nonlinear multi-target filtering are proposed and studied.

Keywords : Measure-valued equations, non-linear multi-target filtering, Bernoulli

filter, Probability Hypothesis Density filter, interacting particle systems, particle fil-

ters, Sequential Monte Carlo methods, exponential concentration inequalities, semi-

group stability, functional contraction inequalities.

ii



Acknowledgements

First and foremost, I would like to sincerely express my deepest gratitude to my

supervisors Prof. Pierre Del Moral and Dr. François Caron for their continued

support, guidance, willingness to share their knowledge, and above all for their pa-

tience.

Prof. Del Moral with his deep mathematical intuitions and his truly scientific rea-

soning has been a constant point of reference and an inspiring guide. He is the best

supervisor I could have ever asked for.

Dr. Caron is a backbone of the research contained in this dissertation and I’m much

indebted for his valuable advice, his supervision, and for all the time he spent read-

ing the manuscript and for his constructive comments and corrections.

I’m very grateful to them and I sincerely hope to continue our collaboration in the

future.

I would also like to thank one of the most prolific researcher in the field of multi-

object filtering, Prof. Ba Ngu Vo. It has been a genuine pleasure to work and learn

from him. The discussions and feedback during the course of my studies were im-

mensely appreciated. I admire him not only as a researcher but also for the sincere

and friendly person he is.

I gratefully thank Pr. Josiane Zerubia, Pr. Emmanuel Duflos, Pr. Jean-Charles

Noyer, Pr. Sumeetpal S. Singh and Dr. François Septier for having accepted to be

members of the defense committee in the midst of all their activities and for their

constructive comments and suggestions during the finalization of the manuscript.

My gratitude also goes to Pr. Arnaud Doucet, Pr. Huilong Zhang, Dr. Dan La-

neuville; it has been a pleasure to collaborate with you.

Many special thanks to all the friends met during my years at INRIA and at

University of Bordeaux for the wonderful time we had together: Damiano, Cédric,

Peng, Frank, Adrien, Frédéric (who also pushed me to improve my chess game),
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Chapter 1

Introduction

1.1 Motivation

Many decisions we take every day are based on beliefs concerning the likelihood

of uncertain events such as the possibility of rain, the expected time required to

complete a task, or the level of traffic in the streets. Other long term decision may

involve events such as the outcome of an election, the symptoms of a disease or the

future value of a currency. These beliefs are usually expressed in statements such

as �I think that. . . �, �chances are that. . . �, and so forth. How do people assess the

probability of uncertain events or the value of an uncertain quantity is the subject

of cognitive psychology and seminal papers such as [126, 127] have contributed to

shed some light onto this difficult question.

Outside psychology, many real-world problems involve the task of estimating un-

known quantities from diverse and uncertain observations.

Because uncertainty is so pervasive, rules of choice are necessary.

One of the first estimation problems that were methodologically studied by Laplace,

Legendre and Gauss, was the determination of the parameters of planet orbits from

a series of observations which were known to be noisy and inaccurate.

Starting from philosophical considerations a series of ideas were gradually developed

into mathematical tools. More specifically it was realized that:

� a description of the model and parameters of interest is necessary,

� dealing with inaccuracies in the model and in the observations necessitate a

probabilistic reasoning,

� redundant data and observations should reduce the uncertainty and the effects

of errors,
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� in order to satisfy all the observations in the most accurate way, the residuals

(the difference between the observations and the calculated value) should be

as small as possible,

� the combination of initial knowledge and subsequent observations generates

an iterative procedure.

These observations stand at the base of estimation theory.

In engineering applications the dynamics of the parameter of interest and the

uncertainty about the measurements are modelled probabilistically and the estima-

tion problem is generally oriented toward the selection of a point from a continuous

space (the best estimate according to some criterion). When the observations arrive

sequentially, the new information is used to refine the uncertainty on the parameters

at each time step and the process of inference is performed recursively.

Estimation methods have a wide range of applications in different domains such

as surveillance systems, control systems, mapping and navigation, signal and image

processing, biomedical engineering, military applications and many others. Classical

problems concern for example the localization of moving objects (generally called

targets), the determination of messages in communication networks, the analysis of

model parameters for the prediction of the state of production plants, or again the

estimation of the volatility of financial instruments.

This thesis focuses on the problem of estimating recursively in time the state

of multiple objects given sets of observations. In this context, the terms that are

commonly used are tracking, which refers to the estimation of the state of mov-

ing objects based on observations, and filtering which is generally used to refer to

the elimination of as much noise as possible from the signal in order to obtain a

reliable estimate of the state of a dynamical system. As we will see, the problem

of multi-object tracking, requires all the tools of estimation theory as well as the

extensive use of additional statistical techniques to solve issues of data association

and measurement validation.

Single-object filtering

To give a concrete example and further introduce the subject we shall consider a

very simplified version of an air-traffic control system where a radar reports mea-

surements about the aircrafts in his field of view (FOV) at each time step. Assume

at first that only a single aircraft is in the radar’s field of view and that perfect

weather conditions allow the radar to report only one observation during each scan.

In this case the problem of localizing the aircraft is a single-target tracking prob-

lem as the objective is to characterize the uncertainty on its state by using the

measurement available at each time step. In order to make the inference at least
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two models are required: the model describing the dynamics of the aircraft and the

model relating the radar measurements to the target’s state. Under the assump-

tion that only one target is present and that it generates a single measurement, the

problem is relatively simple: the recursive filtering approach consists in using the

prior information about the object’s dynamics to predict its future state and then

updating the uncertainty on the predicted state by using the observation.

The most widely used filtering technique is the ubiquitous Kalman filter [58], a

simple and elegant algorithm formulated in 1960 as an optimal recursive Bayesian

estimator for a restricted class of linear Gaussian problems. The Kalman filter

provides an efficient recursive way to estimate the state of a process by minimizing

the variance of the estimation errors. Since the time of its introduction, it has

been the subject of extensive research and application, particularly in the area of

assisted navigation and in the aerospace industry where its cheap computational

requirements made it the de-facto standard in years where the computational power

was very expensive. However, the conditions necessary for the optimality of the

Kalman filter rarely exist in real-life situations where target dynamics are typically

nonlinear and the measurement process very complex.

In order to address these limitations without renouncing to the Kalman filter,

techniques based on model linearization and Gaussian assumptions [57] have been

proposed; when the non-linearities are severe however, these solutions performs

poorly.

The main substantial alternative to the Kalman filter consist of a set of sequential

Monte Carlo estimation tools, collectively referred to as particle filters. Since the

seminal paper [43] they have generated a wide interest and they have become a pop-

ular method for dynamic estimation problems. The key idea of particle filters is to

approximate the probability distribution of the target state by a set of weighted ran-

dom samples. As the number of samples becomes very large, the estimate obtained

approaches the optimal Bayesian estimate. Their computational cost, however, has

long been considered as the main disadvantage.

From the purely mathematical point of view, particle filters can be considered as

discrete approximation techniques for a flow of measures evolving in time described

by a rather general set of equations called Feynman-Kac models [28]. This connec-

tion allows for the study of their stability and convergence properties with advanced

mathematical techniques developed in the context of the analysis of stochastic pro-

cesses.

Multi-object filtering

To introduce the multi-object filtering problem, let’s return for a moment to our

previous example. Imagine that multiple aircrafts are now crossing the FOV of the
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radar and that weather conditions have deteriorated such that some of the targets

are not properly detected during the scan and that false observations are reported.

Can we still perform the tracking of all the targets? To which extent? How can

the filter distinguish between a false alarm and a true observation? How should

a measurement be associated to a target? When a target can be considered as

disappeared and when it is simply undetected? The answer to these questions

constitute the core of the multi-target tracking (MTT) problem which has proven

to be far more difficult than its single-object counterpart.

The basic principles of MTT were formulated in the mid ’50s in early papers by Wax

[139] and Sittler [121] but modern developments to extend techniques from single

to multiple-object tracking began only in the ’70s with papers by Bar-Shalom [3]

and Singer [119].

The last decades have witnessed an intensive research interest with an increasing

sophistication of the methods proposed, facilitated by the increasing computational

capability of modern systems. Despite these attempts however, a standard approach

still does not exist and most techniques involve modifications of single-target filtering

algorithms.

The fundamental distinction between single and multiple-target tracking is that

MTT requires a complex data association phase to discriminate if a measurement

has to be considered valid and, if yes, which target has generated it. Many efforts

have been directed towards the development of a general method to perform this

association in order to treat MTT as a set of independent single-object problems.

However, in realistic applications the exhaustive search for the correct association

between measurements and targets remains computationally daunting. In addition,

as many techniques are still based on linearized models, the effect of inaccuracies

introduced by linearization are often summed to errors caused by incorrect associ-

ations.

Particle filtering techniques capable of handling nonlinear and non-Gaussian dy-

namical models are equally problematic due to the large number of particles that

are required in realistic applications.

The effects of the combinatorial nature of the so-called measurement-to-track

approach to MTT can be experienced in one of the most widely used algorithms

for multiobject filtering: the Multiple Hypothesis Tracking filter (MHT) [10]. This

algorithm consists in exhaustively searching for all possible associations between

tracks and measurements over a number of time steps with the possibility of letting

future measurements resolve the uncertainties. Despite the fact that many strate-

gies have been developed over the years to render practical MHT implementations

feasible, the combinatorial explosion is unavoidable. Alternative approaches that

aim at eliminating the association problem have been proposed, but none of these

formulations is general and systematic enough to be adopted as the foundation.
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To complicate matters, realistic applications need to combine and exploit dif-

ferent sources of information, and an MTT approach should be general enough to

allow for the incorporation of heterogeneous data. The methodologies employed in

those cases go under different names, such as �data fusion� or �information fusion�.

Information fusion has long been more a set of heuristics and ad-hoc solutions before

its maturation into a scientifically founded discipline. The reason is obviously not

the lack of intuition of researchers, but rather the major problems that had to be

solved, such as the high disparate and ambiguous form that information can have

[80], the fact that systems are characterized by a varying number of objects of var-

ious kinds, and finally the most crucial obstacle: the the prohibitive combinatorial

complexity of multi-object, multi-sensor systems.

Random finite sets in multi-object filtering

The last decade saw a practical and theoretical revolution in multi-object filtering

thanks to the introduction of the Random Finite Set framework (RFS) [74, 75]

which offers a mean to integrate different aspects of data fusion together and seems

capable of putting under a single probabilistic umbrella different important aspects

of the multi-object problem.

The first systematic treatment of multi-object filtering based on random set

theory was proposed by Ronald Mahler with the development of Finite Set Statis-

tics (FISST) [42, 86]. Although the rigorous mathematical foundation for point

process theory has been in existence for decades, the theory was, quoting Mahler:

�...traditionally formulated with the requirements of mathematicians rather than en-

gineers in mind�; Finite Set Statistics on the contrary constitutes an �engineering

friendly� version of the theory of point processes that treats multi-target systems

as visualizable images (set of points) maintaining largely the Bayes formalism un-

derstood by signal processing engineers.

One of its main goal is to extend seamlessly the formal Bayes modeling to non-

traditional multi-object problems by generalizing probability densities and calculus

methods so that ideas from statistics and information theory can be extended to

random finite sets.

By using the tools of FISST, Mahler developed original and elegant multi-object fil-

tering algorithms; one of them is known as the Probability Hypothesis Density filter

(PHD filter) [76, 80]. One of the important aspects of the PHD filter is the fact

that it replicates to a certain extent the simplicity of the Kalman filter approach to

the multi-object, multi-sensor case. The elegance of the Kalman filter, in fact, relies

greatly in the way in which the prior and posterior distributions are characterised

by a small set of sufficient statistics that are easily propagated in time. When the

tracking is generalised to the multi-object, multi-sensor scenario however, no simple

analogous implementation seemed evident, reason that made the measurement-to-
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track association approach so ubiquitous.

The idea proposed by Mahler and Zajic with the PHD filter is to propagate the

first moment of a function that maps a set of targets into a continuous function

space: this functional mapping is essential to overcome the fact that the expec-

tation of set-valued random variables is not defined. The function they proposed

places Dirac deltas at the target positions and its first moment function is called

Probability Hypothesis Density.

Like the mean and variance of the Kalman filter, the PHD is propagated forward

via Bayesian predictions and update steps. The recursion is, of course, more com-

plicated than the Kalman filter since an entire function, not just the mean vector

and covariance matrix of a Gaussian distribution is being propagated.

Although the conditions used in its mathematical derivation are not usually met

in practice, the PHD filter has been proved to be a viable method to perform multi-

object filtering thanks to the seamless treatment of fundamental aspects such as the

appearance and disappearance of targets and the presence of false measurements

and misdetections. Moreover, even if its formulation involves integrals that have no

closed form solution in general, numerical approximations are easily implemented

and show attractive computational performance. On the other hand, the PHD filter

does not identify individual targets as it generally provides a set of points corre-

sponding to the regions of the state space where the highest concentration of objects

is expected. In this respect it can be considered as a very efficient filter that elimi-

nates false observations, while further analysis is required to obtain individual target

trajectories.

Two main implementations have been proposed: the Sequential Monte Carlo (particle-

system) [132, 143] and the Gaussian-mixture implementation [130].

Notable instances of MTT problems where PHD filters have been successfully ap-

plied concern the tracking of vehicles on different terrains [118], where reports from

human observers were integrated with information from map databases, the tracking

of targets by using passive radars that exploit FM radio transmitters [124], group-

target tracking [23] and the filtering based on sonar images for the development of

self-navigating underwater robots (AUVs) [19, 22]. Computer vision applications

include the tracking of faces and people [72], and the tracking of vehicles from video

sequences in urban areas [105]; a method for the filtering of feature points trajec-

tories in image sequences is investigated in [49]. Example of applications to radar

tracking are described in [64] where the authors use a PHD filter for the localisation

of targets in marine environments from 3D-LIDAR measurements and in [97] where

3D naval and aerial scenarios are considered.

Concerning theoretical aspects, works by Clark, Vo, Doucet and Singh in [21,

24, 53] have demonstrated the convergence of the Sequential Monte Carlo approxi-

mation and the uniform convergence of the Gaussian mixture PHD filter. Despite
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many advances in recent years though, many questions are still open.

This thesis aims at bringing contributions to the theoretical understanding and to

the practical application of PHD filtering by showing that various instances of sin-

gle and multi-object filters belong to a common class of measure-valued equations

which can be studied with advanced mathematical tools from the theory of stochas-

tic processes for what concerns convergence properties, asymptotic behaviour and

stability.

Additionally, in the more applied part of the dissertation, attempts have been made

to address known weakness of existing PHD filter implementations and to increase

their accuracy by exploiting ideas coming from the measure theoretic formulation

and from industrial problems. Two novel implementations have also been proposed

and studied.

Finally, this work aims to bring some contributions to the thesis that PHD filters

can be effectively exploited in real-world instances of multi-object filtering and not

only on academic examples.

1.2 Organization of the thesis and contributions

This thesis is organised in two parts. The division reflects the choice to present

both the numerical aspects related to multi-object tracking with PHD filters as well

as the theoretical analysis of the PHD recursion considered as a measure-valued

dynamical system. The first part is organised as follows.

Chapter 1 provides an overview of the thesis, outlines the motivation and sum-

marizes the major contributions.

Chapter 2 is intended as a reference for the reader as it introduces the main

concepts and formalisms used to define filtering problems and discusses the typo-

graphical conventions adopted in the dissertation.

Chapter 3 reviews the most common approaches to the problem of single-object

tracking and introduces the random finite set approach to multi-object tracking.

Chapter 4 presents the Probability Hypothesis Density (PHD) filter as a tractable

sub-optimal approximation to the full multi-target Bayes filter and describes the

Sequential Monte Carlo (SMC-PHD) and the Gaussian Mixture (GM-PHD) imple-

mentations as well as recent developments appeared in the literature.

Chapter 5 concludes the first part with a series of numerical studies on differ-

ent approximations of the PHD recursion and their application to realistic multi-
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tracking problems. The contributions of the chapter can be resumed as follows:

� Section 5.1 compares the performances of different implementations of the

PHD filter applied to realistic three-dimensional aerial and naval scenarios

provided by the French naval defence provider DCNS.

� Section 5.2 investigates the adoption of a dynamic pruning strategy for the

resampling step of the GM-PHD and proposed a target-tracker adapted prun-

ing strategy to mitigate the problem of the track deactivation after repeated

misdetections.

� Section 5.3 proposes a novel approach for the resolution of the PHD recursion

by using numerical grids.

� Section 5.4 proposes an approximation algorithm for the PHD recursion based

on the sampling of the associations between the terms used to approximate

the PHD intensity function and the observations at each time step.

The contributions of this chapter have been presented at the 13th International

Conference on Information Fusion [98] and 2010 IEEE Radar Conference [97] and

accepted to the 14th International Conference on Information Fusion [99].

Theoretical contributions are reported in Part 2.

Chapter 6 considers the problem of estimating a hidden point process and

establishes an expression of the conditional distribution of a latent Poisson point

process given an observation point process by using a random measure approach

combined with reversed Markov kernel techniques. This result has been accepted

and and is due to appear as a journal article in Advances in Applied Probability

(June 2011).

Chapter 7 describes a mean-field and interacting-particle interpretation of a

class of spatial branching intensity models arising in multi-object filtering and in-

vestigates their difference with respect to traditional Feynman-Kac particle models.

The stability properties and the long time behaviour of these distribution flows are

studied as well as their asymptotic behaviour. This result has been accepted as a

journal article to SIAM Journal on Control and Optimization .

Finally, in Chapter 8 we analyse the exponential stability properties of a class

of measure-valued equations arising in nonlinear multi-object filtering and illustrate

the results in the context of the Bernoulli and the Probability Hypothesis Density

filter. This result has been accepted and is due to appear as a journal article in
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Stochastic Analysis and Applications. Conclusions are reported in Chapter 9.

Figure 1.2 illustrates the relationship between the chapters. Chapter 2, dis-

cussing the conventions and the notations used in the dissertation, should be read

first. Part I and part II, can be read independently. The concluding chapter and

the annexes are not shown in the picture.

Chapter 1

Part I Part II

Chapter 2: Notations

Chapter 3 Chapter 4

Chapter 5

Chapter 6

Chapter 8

Chapter 7

Figure 1.1: Chapter organization
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Chapter 2

Notations and conventions

Applied probability, engineering, financial mathematics, biology and advanced sig-

nal processing are just an example of the domains where it is required to obtain

some kind of estimates for the values of a dynamic system, given some noisy obser-

vations.

In order to facilitate the analysis of a particular aspect of the problem each com-

munity tends to use a different set of notations to describe similar problems: in

the probabilistic interpretation, for example, the pair signal-observation is generally

modelled as a two component Markov chain, while in the engineering literature the

dynamical equations of the system and the observations are treated separately. A

third set of notations comes from the Bayesian literature. This section reviews the

main formalisms used to define filtering problems and establishes the correspon-

dence between them.

Before delving into the details, an overview of the basic notation used in the disser-

tation is in order:

� A capital letter such as X, Y is generally used to denote random variables or

random finite sets. In case of ambiguity it will be clearly specified if we are

dealing with random variables or random finite sets.

� A lowercase letter such as x, y denotes the value taken by the corresponding

random variable. However, to avoid unhelpfully redundant expressions, the

random variable and its realization will be sometimes denoted by a lowercase

letter.

� The probability of an event is denoted by the letter P as for example P(X = x)

or P(X ∈ dx).

� Probability mass functions are denoted by P(x) := P(X = x).
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� Similarly, in case of continuous distributions the notation P(dx) will be often

used instead of P(X ∈ dx). If those distributions admit density functions the

latter will be denoted by p(x).

� A note on Bayesian notation One of the often discussed and criticized

issues of Bayesian notation is the overloading of the symbol p(·) for every

probability function. For example, the usual expression of the Bayes’s rule:

p(x|y) = p(y|x)p(x)/p(y) tacitly assumes that the reader knows that each p

corresponds to a different function. To disambiguating, it is often written as:

pX|Y (x|y) = pY |X(y|x)pX(x)/pY (y). Clearly when we have dozens of param-

eters in multivariate densities, this convention gets quickly unreadable; the

distinction between discrete and continuous distributions makes things even

worse.

We chose to avoid the use of subscripts in the probability densities and to use

the conventional Bayesian notation. In case of ambiguity a note will clarify

the nature of the operation discussed. Subscripts, however, will be always

used in multi-object densities. In this context for example pX(·) denotes the

probability density of the random finite set X.

� Markov chain notations A Markov chain is a sequence of random variables

Xt defined in some measurable space Et, indexed by the parameter t ∈ N.

The Markov property dictates that the future states are independent on the

past when the present state is given. Three formulations are commonly used:

the first can be considered as a stochastic version of a control system where

the Markov chain is defined by an equation of the form:

Xt = Ft(Xt−1, Ut)

with a fixed initial condition and an additional, problem dependent, control

parameter Ut. The second, more probabilistic way, is to consider the elemen-

tary transitions of the chain:

P(Xt ∈ dxt|Xt−1 = xt−1) =Mt(xt−1, dxt)

Finally, in the Bayesian literature the elementary transitions are described in

term of a probability density function:

P(Xt ∈ dxt|Xt−1 = xt−1) = p(xt|xt−1)dxt

The term p(xt|xt−1) represents the density of the Markov transition with re-

spect to a some reference probability measure dxt.

In the probabilistic formulation the filtering model is defined by a two-component

Markov chain (X, Y ) = {(Xt, Yt); t ≥ 0} taking value in some measurable product
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spaces {(Et × Ft); t ≥ 0} where t ∈ N and with initial distribution:

ν0(d(x0, y0)) = g0(x0, y0)η0(dx0)q0(dy0)

and Markov transition:

Tt((xt−1, yt−1), d(xt, yt)) = gt(xt, yt)Mt(xt−1, dxt)qt(dyt)

where gt : Et × Ft �→ (0,∞) is a strictly positive function, qt ∈ P(Ft), η0 ∈ P(E0)

andMt is a Markov transition from the space Et−1 into Et. This rather abstract for-

mulation models the evolution of the chain by specifying the joint initial probability

ν0(d(x0, y0)) at time t = 0, which is the probability that the pair object-observation

is in the infinitesimal region d(x0, y0) ∈ (E0 × F0).

A different and common way to define the pair signal/observation is the engi-

neering formulation. In this case, Xt denotes a Markov chain whose evolution is

described by the dynamical equation:

Xt = Ft(Xt−1, Vt)

where Vt represents a sequence of independent random variables modeling the noise

(or the uncertainty) on the evolution process. The observation process is modelled

separately by a so-called sensor equation:

Yt = Ht(Xt,Wt)

where the sequence of random variables Wt, taking value in an auxiliary measurable

space St, is independent of Xt and models the noise on the measurement process.

The collection of measurable functions Ht : Et × St �→ Ft is chosen so that the

laws of Ht(Xt,Wt) and Wt are absolutely continuous with respect to the reference

measure q(dyt) with density gt(xt, ·):

P(Ht(xt,Wt) ∈ dyt) = gt(xt, yt)q(dyt) ∀xt ∈ Et (2.0.1)

In the Bayesian framework the uncertainty on the value of the hidden pro-

cess xt conditional to a series of measurements y1:t is quantified by the conditional

probability density p(x0:t|y0:t) called posterior density. The notation x0:t denotes

the sequence of hidden states of the chain from time zero to time t. Similarly y0:t
denotes the sequence of observations collected up to time t. The computation, or

more often the approximation of this density is done by using the Bayes rule:

p(x0:t|y0:t) ∝ p(y0:t|x0:t)p(x0:t) (2.0.2)

where p(x0:t) is the prior density, modeling the uncertainty on x0:t. The general

assumptions used in the Bayesian estimation is that the evolution of a target from
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time t− 1 to time t is defined by the density p(xt|xt−1) and that the measurement

process can be described by the density p(yt|xt). These assumptions imply that the

measurements are independent conditionally on the trajectory x0:t:

p(y0:t|x0:t) =
t∏

i=0

p(yi|xi) (2.0.3)

and that the target state at time t depends exclusively on the value of the state at

time t−1. The conditional distributions of the observations given the hidden states

are written as:

p(yt|xt)dyt = P(Yt ∈ dyt|Xt = xt)

= P(Ht(xt,Wt) ∈ dyt)

In connection with equation (2.0.1) dyt stands for q(dyt) and p(yt|xt) represent the
likelihood potential function p(yt|xt) = gt(xt, yt).

The elementary transitions of the chain Xt are written as:

p(xt|xt−1)dxt = P(Xt ∈ dxt|Xt−1 = xt−1) (2.0.4)

and this leads to the following equivalent expressions:

P((X0, . . . , Xt) ∈ d(x0, . . . , xt)) = p(x0)p(x1|x0) . . . p(xt|xt−1)dx0 . . . dxt

and

P((Y0, . . . , Yn) ∈ d(y0, . . . , yt)|X0:t = x0:t) = p(y0|x0) . . . p(yt|xt)dy0 . . . dyt

The conditional distributions of the signal given the observations can be ex-

pressed in yet another way in terms of Feynman-Kac formulae. These expressions

are based on a change of probability measures on path-space, according to a given

potential function and are general enough to describe a great variety of phenomena.

Feynman-Kac distributions and their particle approximation play a major role in

the theory of non-linear filtering: Monte Carlo methods, for instance, can be inter-

preted as stochastic numerical approximations of the flow of measures defined by

these formulae.

The most comprehensive treatise about the structure and the properties of Feynman-

Kac formulae is [28], while an introductory coverage with examples can be found in

[29].

As this thesis deals with both applied and theoretical aspects of multi-object filter-

ing, we have chosen to avoid the choice of a unique notation and we have adopted

the conventional Bayesian-like notation in the first part and the measure theoretic
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notation in the second part.

In order to better clarify the connection between the Bayesian formalism and the

more abstract formulation, this chapter is concluded with an overview of the Feynman-

Kac distributions in path space and discrete time. The relevant concepts will be

denoted as follows: the set of all finite positive measures on some measurable space

(E, E) are denoted by M(E), the subset of all probability measures by P(E) and

the Banach space of all bounded and measurable functions f equipped with the

uniform norm ||f || are denoted by B(E).
For conciseness, we will often use the notation:

µ(f) =

∫
f(x) µ(dx)

For measurable subsets A ∈ E , we will sometimes slightly abuse notation and write

µ(A) instead of µ(1A). The Dirac measure at a ∈ E will be denoted by δa(·); in
addition we will use:

δa(f) = f(a)

δa(A) = 1A(a)

In the context of particle filtering the notation δxi(x) denotes the Dirac delta con-

ceptualized as an idealized point mass located at xi ∈ E. This abuse of notation

is used as an abbreviation of δ(x − xi). When necessary, the state spaces will

be augmented with additional states, called cemetery states and denoted by c, c∗

or c′. The functions f ∈ B(E) are extended to the augmented state by setting

f(c) = f(c′) = f(c∗) = 0.

A bounded positive integral operator Q from a measurable space E1 into a

measurable measurable space E2 is an operator f �→ Q(f) from B(E2) into B(E1)

such that the functions:

x �→ Q(f)(x) =

∫
E2

Q(x, dy)f(y)

are measurable and bounded for some measure Q(x, .) ∈ M(E2). These operators

induce a dual operator µ → µQ from M(E1) into M(E2) defined by (µQ)(f) =

µ(Q(f)).

Let G : x ∈ E �→ G(x) ∈ (0,∞) be a bounded positive potential function, we

refer to the following change of probability measures with the term Boltzmann-Gibbs

transformation:

ΨG : η ∈ M(E) �→ ΨG(η) ∈ P(E) with ΨG(η)(dx) =
1

η(G)
G(x) η(dx) (2.0.5)
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provided η(G) > 0 and recall that ΨG(η) can be expressed in terms of a Markov

transport equation

ΨG(η) = ηSη (2.0.6)

for some selection type transition Sη(x, dy).

2.1 Feynman-Kac representation

In discrete time, Feynman-Kac path measures are traditionally defined by the fol-

lowing equation [28]:

Qt(d(x0, . . . , xt)) =
1

Zt

{
t−1∏
p=0

Gp(xp)

}
Pt(d(x0, . . . , xt)) (2.1.1)

where the measure Pt represents the probability measure of the path sequence

(X0, . . . , Xt) of a Markov chain taking values in a measurable space E and the

functions Gt are non-negative, measurable functions such that the normalizing con-

stant are well-defined. They can be seen as the “potential” of the states where the

Markov chain transitates. The normalization constant for each time step is:

Zt =

∫
Et+1

t−1∏
p=0

Gp(xp)Pt(d(x0, . . . , xt)) ∈ (0,∞) (2.1.2)

(Note: Although the subscript t in the notation of Pt and Qt is not strictly neces-

sary, we adhere to the usual notation and use it to stress the fact that the probability

measures are defined on the paths from time 0 to time t).

The time marginals ηt, t ∈ N of these path distributions are defined as:

γt(f) = E

(
f(Xt)

t−1∏
p=0

Gp(Xp)

)
(2.1.3)

ηt(f) =
γt(f)

γt(1)
(2.1.4)

for any bounded measurable function f(·) on E. The continuous-time version is

defined in [28]. In the context of non-linear filtering this abstract formulation repre-

sents the solution of the non-linear, measure-valued system governing the evolution

of the conditional distributions of the target state given the observations.

The relationship between the Feynman-Kac formulae and the problem of filtering

may not be immediately obvious, especially considering their rather abstract rep-

resentation. However, it can be intuitively understood by considering the recursive
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2.1. FEYNMAN-KAC REPRESENTATION

particles approximation of the flow of measures ηt(·) and by thinking to the like-

lihoods with respect to the observations as the potential functions of each state

where the Markov chains modeling the targets transitate. In this context particles

exploring regions with a low potential tend to disappear while particles in regions

associated to an high potential tend to reproduce; at each time step the occupation

measure of the surviving particles provides a discrete representation of the posterior

distribution density. Figure 2.1 illustrates the concept applied to the estimation of

a single, mono-dimensional trajectory.
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Figure 2.1: Branching-type evolution of a particle system used to estimate the
trajectory of a jump Markov model. The occupation measure of the genealogical tree
of the particles converges, as the population size tends to infinity, to the conditional
distribution of the states of the signal given the observations. The particles and
their ancestral lines are shown in gray and marked with (·), whereas the hidden
signal is marked with (♦) and the estimated trajectory obtained with a population
of 30 particles is marked with (×). At each time step the set of particles provides an
approximation of the conditional distribution of the target state given the sequence
of observation from time 1 to time t.

The Feynman-Kac representations for the single-target filtering equations (one-

step predictor and optimal filter) is as follow. Consider a fixed sequence of obser-

vations Y0:t = y0:t and let Gt be the non-homogeneous functions on E defined for

every xt ∈ E by:

Gt(xt) = gt(xt, yt) (2.1.5)
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With this notation the conditional distribution of the path (X0, . . . , Xt) (under the

standard assumption of independence of the observations) given the observations

y0:t is given by the path Feynman-Kac measure:

Q̂t(d(x0, . . . , xt)) = P(d(x0, . . . , xt)|Y0:t = y0:t)

=
1

Ẑt

{
t∏

p=0

Gp(xp)

}
[η0(dx0)M1(x0, dx1) . . .Mt(xt−1, dxt)]

with the normalizing constants:

Ẑt =

∫
Et+1

{
t∏

p=0

Gp(xp)

}
[η0(dx0)M1(x0, dx1) . . .Mt(xt−1, dxt)] (2.1.6)

where Mt(xt−1, dxt) is the Markov chain describing the evolution of the target and

η0 its distribution at time t = 0:

η0(dx0) = P(X0 ∈ dx0)

Mt(xt−1, dxt) = P(Xt ∈ dxt|Xt−1 = xt−1)

In other words these formulae express the conditional distributions of the path

sequence (X0, . . . , Xt) as the distribution of the signal paths weighted by the product

of the likelihood functions from the time 0 up to time t.

Due to the choice of the potential functions (2.1.5), for any bounded integrable

function f the one step predictor and optimal filter can be written as:

ηt(f) = E(f(Xt)|Y0:t−1 = y0:t−1) (2.1.7)

η̂t(f) = E(f(Xt)|Y0:t = y0:t) (2.1.8)

with the following functional representation:

ηt(f) =
γt(f)

γt(1)
and η̂t(f) =

γ̂t(f)

γ̂t(1)
(2.1.9)

with:

γt(f) = E(f(Xt)

t−1∏
p=0

Gp(Xp)) and γ̂t(f) = γt(Gtf) (2.1.10)

This functional representation shows that the filtering equations belong to the same

class of Feynman-Kac distributions models. The relationship can be clarified by

writing:

ηt = Law(Xt|Y0:t−1 = y0:t−1) (2.1.11)
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η̂t = Law(Xt|Y0:t = y0:t) (2.1.12)

The normalizing constant Ẑt coincide with the quantities γ̂t(1) = γt(Gt) and they

can be expressed as:

Ẑt = γ̂t(1) =

t∏
p=0

ηp(Gp) (2.1.13)

Chapters 7 and 8 will consider the extension of these models to the multi-object

filtering problem.

Final remarks about notations and conventions

The objective of this section was to provide an overview of the different notations

and conventions commonly used to define non-linear filtering problems.

The generality of interacting particle methods and their efficiency in solving complex

filtering problems and in approximating a large class of measure-valued processes

has made them very popular among different scientific and engineering communi-

ties, the result is a lack of a uniform terminology and notation. Of course, this is

not necessarily a negative fact, as the different conventions have been established in

order to simplify the work and the research in the respective domains. In the first

part of the thesis, for the definition of the models and the presentation of the applied

results we find more convenient to use the Bayesian notation, while the theoretical

aspects studied in the second part are better expressed with a measure-theoretic,

Feynman-Kac notation.

The definition of the mathematical objects, however, will be done progressively

throughout the thesis, especially in the second part where details and definitions

will be purposely repeated at the beginning of each chapter for the sake of clarity.

Table 2.1 resumes the correspondence between the notations used in Bayesian and

Feynman-Kac modeling.
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Bayesian modeling Feynman-Kac models
State space Likelihood Positive potential function
�quality�measure p(yt|xt) Gt(xt), gt(xt, yt)
Space exploration Markov transition density Markov kernel

p(xt|xt−1) Mt(xt−1, dxt)
Normalizing Marginal likelihood Normalizing constant

constant p(y0:t) Ẑt

Full posterior

p(x0:t|y0:t) (density) Q̂t(d(x0:t)) (prob. measure)

Full predictor
p(x0:t|y0:t−1) (density) Qt(d(x0:t)) (prob. measure)

Marginal predictive predictive density
density p(xt|y0:t−1) ηt
Marginal posterior filtering density
density p(xt|y0:t) η̂t
Predictor
over a function

∫
f(xt)p(xt|y0:t−1)dxt ηt(f)

Corrector
over a function

∫
f(xt)p(xt|y0:t)dxt η̂t(f)

Table 2.1: Correspondence between terms and notations used in Bayesian and
Feynman-Kac modeling.
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Stochastic Models and Algorithms

21





Chapter 3

Background: single object

tracking

3.1 Introduction

Object tracking deals with the recursive estimation of the state of one or more

objects by using the information coming from an observation process. The objects

are generally referred to as targets, the region of the space under observation is

generally called surveillance zone and the observation process is made up of a series

of sensors. As the terminology suggests, the problem has been originally formulated

in military terms and studied in the context of military and defence applications,

but it has rapidly found applications in many different domains such as security

systems, biology, computer vision, imagery, etc. In this thesis we will use the usual

terminology, by referring to the tracked objects mainly with the term “targets”,

without necessarily implying military targets. For example, targets may be aircrafts

or ships (as in aerial or naval monitoring systems) but they may be as well cells,

persons, animals, pixels or cell phones. The observation process may consist of data

coming from radars, sonars, cameras, satellites, microphones, etc.

In order to characterize the uncertainty on the dynamics of the target, its state is

modelled as a random variable (in single-object filtering) or as a random finite set

(in RFS multi-object filtering). In the general case the target state only includes

kinematic characteristics such as position, velocity and acceleration but it may as

well consist of a set of discrete attributes (type of target, level of danger, activity

state etc.).

The information coming from the sensors is generally imperfect: targets may be

undetected during one or more time steps, the observations are noisy and spurious

observations generated by false alarms have to be taken into account.
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CHAPTER 3. BACKGROUND: SINGLE OBJECT TRACKING

This chapter introduces the main concepts and methods for single-object filtering in

the Bayesian framework and presents the classical tracking algorithms such as the

Kalman filter, the Extended and Unscented Kalman filter and the Particle Filter.

The concepts and the approaches for multi-object tracking will be introduced and

discussed in Chapter 4.

3.2 Bayesian Estimation

The Bayes filter is at the core of the problem of recursive estimation where the

objective is to obtain a characterization of the uncertainty on the value of a hidden

parameter given the observation of an experimental outcome. Usually, the exper-

iment is a measurement of a physical phenomenon, and the parameter of interest

a physical quantity. When the parameters have dynamical properties that change

over time, or when new measurements become available, the estimation process is

performed recursively in order to incorporate the new information or to account for

the modification of the underlying parameters.

Random noises or imprecisions in the measurement process are taken into account

by modeling the conditional observations as a random vector with probability den-

sity function pY |X(y|x). The prior density pX(x) models everything known, and

unknown, about underlying stochastic process before the observation of the ex-

perimental outcome. The densities are considered w.r.t some underlying reference

measure (e.g. Lebesgue measure).

We remind that we will use the Bayesian notation described in Chapter 2 and avoid

the use of subscripts Y |X, X and Y .

The probability density of the parameter x after the observation of the experimental

outcome is obtained by means of Bayes’ law:

p(x|y) = p(y|x)p(x)
p(y)

(3.2.1)

In single-object filtering, this posterior probability density function is used to infer

the state of the hidden target.

The Bayes recursion as well as the Kalman filter and its common implementations

are introduced in the next sections. An in-depth treatise of the foundations can be

found in [37, 108].

3.2.1 Single-object tracking

The simplest and probably most studied case of object tracking is the problem of

single-target tracking with no false alarms and no misdetection. In this case the

Bayesian approach provides the framework to incorporate at each time step the in-

formation coming from the sensor into the target distribution.
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This section focuses on the discrete-time model and adopts the usual signal-processing

notation: the pair signal-observation are modelled by a Markov chain and by a sen-

sor equation respectively and the object of interest is the conditional probability of

the target’s state given the observations.

The target state at time t is modelled as a nx dimensional random vector xt taking

value in a state space Es. Its evolution is described by a stochastic model which

specifies the transition from the state xt at time t to the new state vector xt+1 at

time t+ 1. The target dynamics is modelled by:

xt = φt(xt−1, vt−1) (3.2.2)

where the nonlinear function φt(·) specifies the transformation of any given state

xt−1 at time t−1 and vt−1 denotes the system noise or the uncertainty on the target’s

dynamical model. In a similar way the observations are modeled as random vectors

yt taking value in an observation space Eo and generated by the measurement model:

yt = ht(xt, wt) (3.2.3)

where wt represents the uncertainty of the measurement process described by the

nonlinear function ht(·). The dimension of the observation vector ny is generally

lower than nx. The evolution of the target state and the measurement vector are

alternatively described by their probability densities:

ft|t−1(xt|xt−1) (3.2.4)

gt(yt|xt) (3.2.5)

called Markov transition density and likelihood function respectively.

In other terms, the likelihood function of equation (3.2.5) represents the probability

density that the target with state vector xt generates the observation yt, while the

Markov transition density of equation (3.2.4) is the probability density that a target

with state vector xt−1 at time t−1 moves to the state xt at time t. Figure 3.1 shows

a schematic representation of the model.
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xt−1

xt

ft(xt|xt−1)

target motion

observations produced by the target

observation space

target state space

gt−1(yt−1|xt−1) gt(yt|xt)

yt−1

yt

Figure 3.1: Single object tracking schematic representation.

As introduced in Chapter 2, at each time step the measurement yt is supposed

conditionally independent given the target state vector xt. The probability density

p(y0:t|x0:t) can thus be expressed as:

p(y0:t|x0:t) = gt(yt|xt)gt−1(yt−1|xt−1) · · · g1(y0|x0) (3.2.6)

As introduced in chapter 1, the entity of interest is the posterior density or filtering

density p(x0:t|y0:t) or, more often its marginal p(xt|y0:t). Beside filtering, there exists
several inference problems that involve computing the posterior distribution of a

collection of state variables conditional on a series of observations:

� fixed lag smoothing, where the entity of interest is: p(xt−l|y0:t), for 0 ≤ l ≤ t−1

� fixed interval smoothing, where the entity of interest is: p(xl:k|y0:t) for 1 ≤ l <

k ≤ t

� prediction, where the entity of interest is: p(xl:k|y0:t) for k > t and 1 ≤ l ≤ k.

The first two problems reduce to marginalisation of the full distribution p(x0:t|y0:t),
whereas the third reduces to marginalisation of:

p(x0:k|y0:t) = p(x0:t|y0:t)
k∏

i=t+1

ft|t−1(xi|xi−1) (3.2.7)

The posterior densities p(xt−l|y0:t) and p(xl:k|y0:t) are called posterior smoothing den-

sities.
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The conditional posterior pdf p(xt|y0:t) completely defines the uncertainty on the

target state, hence it can be used to infer the state of the target; two commonly

used estimators for xt are the maximum a posteriori (MAP):

x̂MAP
t = arg sup

xt

p(xt|y0:t) (3.2.8)

and the expected a posteriori (EAP):

x̂EAPt =

∫
xtp(xt|y0:t)dxt (3.2.9)

3.2.2 The Bayes Filter

The Bayes filter is a recursion consisting in two steps, commonly called prediction or

propagation and update. At each time step the model of the target dynamics is used

to propagate in time the current posterior density via the Chapman-Kolgomorov

equation:

p(xt|y0:t−1) =

∫
ft|t−1(xt|xt−1)p(xt−1|y0:t−1)dxt−1 (3.2.10)

while the update step consists in the application of the Bayes rule to incorporate

the information coming from the observation at time t into the propagated density:

p(xt|y0:t) =
gt(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)
(3.2.11)

The Bayes filter allows the construction of the exact posterior pdf recursively in

time. However, the integrations in equations (3.2.10) and (3.2.11) are intractable

in practice, except in very limited special cases. In real world applications, for

example, it is rarely possible to adopt the analytical solution, hence approximate

solutions based on space discretization techniques and numerical integrations have

been proposed. However, due to the complexity of the problem, these approaches

are useful only when the dimension of the state and observation spaces are relatively

low. The next sections outline the closed form solution (Kalman Filter) as well as

the Particle Filter approximation to equations (3.2.10) and (3.2.11).

3.2.3 The Kalman Filter

The Kalman filter [58] constitutes the closed form solution to the Bayes recursion

under a set of specific assumptions on the target dynamics and observation model.

More specifically, the Kalman filter assumes that the target dynamics and the ob-

servation process are linear transformations and that the noises are independent

zero-mean Gaussian noises:

xt =Ft−1xt−1 + Ct−1ut−1 + vt−1 (3.2.12)

yt =Htxt + wt (3.2.13)
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where the matrices Ft−1 and Ht are nx × nx and ny × nx respectively (nx and

ny being the dimension of the target state and observation vectors), vt−1, wt are

independent zero-mean Gaussian noises with covariance matrices denoted by Qt−1

and Rt respectively and Ct−1 is the control-input model which is applied to the

control vector ut−1. Under these assumptions the transition density and observation

likelihood can be written as:

ft|t−1(xt|xt−1) = N (xt;Ft−1xt−1 + Ct−1ut−1, Qt−1) (3.2.14)

gt(yt|xt) = N (yt;Htxt, Rt) (3.2.15)

where N (x;m,P ) denotes the Gaussian pdf with mean m and covariance matrix

P , evaluated at x. Under linear and Gaussian assumptions, at each time step the

posterior density is Gaussian. Assume that at time t− 1 it is:

p(xt−1|y0:t−1) = N (xt−1;mt−1, Pt−1) (3.2.16)

The predicted density at time t is Gaussian with mean mt|t−1 and covariance matrix

Pt|t−1:

p(xt|y0:t−1) = N (xt;mt|t−1, Pt|t−1) (3.2.17)

with

mt|t−1 = Ft−1xt−1 + Ct−1ut−1 (3.2.18)

Pt|t−1 = Ft−1Pt−1F
T
t−1 +Qt−1 (3.2.19)

The updated density, after the arrival of the observation yt is also a Gaussian:

p(xt|y0:t) = N (xt;mt, Pt) (3.2.20)

with

St = Rt +HtPt|t−1H
T
t (3.2.21)

Kt = Pt|t−1H
T
t S

−1
t (3.2.22)

mt = mt|t−1 +Kt(yt −Htmt|t−1) (3.2.23)

Pt = [I −KtHt]Pt|t−1 (3.2.24)

The matricesKt and St are the Kalman gain and innovation covariance respectively.

The residual yt − Htxt|t−1 is referred to as the innovation. When the assumptions

on the linearity and gaussianity of the model do not hold it is not possible to use

the Kalman filter directly. However there exists approximations based on local

linearisations of the target and observation models (Extended Kalman Filter) [52]

or based on deterministic methods to propagate the first and second moments of

the predicted and updated Gaussians (Unscented Kalman Filter)[57, 55].
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3.2.4 The Kalman Smoother

So far, only the filtering density p(xt|y0:t) taking into account the observations y0:t
has been considered. By incorporating the future observations we can obtain a

more refined state estimates. With the term future observations we refer to the

applications where the filtering is done off-line, once all the observations have been

received. In this case the posterior smoothing density p(xt|y0:T ) with T > t can be

obtained as follows [1]:

p(xt|y0:T ) =
∫
p(xt, xt+1|y0:T )dxt+1 (3.2.25)

=

∫
p(xt+1|y0:T )p(xt|xt+1, y0:T )dxt+1 (3.2.26)

= p(xt|y0:t)
∫
ft|t−1(xt|xt−1)p(xt+1|y0:T )

p(xt+1|y0:T )
dxt+1 (3.2.27)

The smoothing density p(xt|y0:T ) can be calculated by a forward-backward algo-

rithm which computes the mean and the covariance matrices of the filtering density

at each time step and then, back in time, incorporates the information of future

observations. The update steps, for t = T − 1, . . . , 1 are done with the following

equations:

p(xt+1|y0:T ) = N (xt+1;mt+1|T , Pt+1|T ) (3.2.28)

p(xt+1|y0:t) = N (xt+1;mt+1|t, Pt+1|t) (3.2.29)

p(xt|y0:t) = N (xt;mt, Pt) (3.2.30)

p(xt|y0:T ) = N (xt;mt|T , Pt|T ) (3.2.31)

and

mt|T = mt|t + Lt(mt+1|T −mt+1|t) (3.2.32)

Pt|T = Pt|t + Lt(Pt+1|T − Pt+1|t)L
T
t (3.2.33)

Lt = Pt|tF
T
t P

−1
t+1|t (3.2.34)

Further details can be found in [12, 6].

3.2.5 The Extended Kalman Filter

When the target dynamics and the observation process are not linear, the process

is modelled by the general equations (3.2.2),(3.2.3) and the Kalman filter in not

directly applicable. In this case the Extended Kalman filter, which consists in

linearising the model about the current mean and variance before applying the

Kalman filter equations, can be used. When the non-linearities in the model are
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relatively weak, in fact, it is possible to approximate the predicted and posterior

densities by Gaussian densities:

p(xt−1|y0:t−1) ≈ N (xt−1;mt−1, Pt−1) (3.2.35)

p(xt|y0:t−1) ≈ N (xt;mt|t−1, Pt|t−1) (3.2.36)

p(xt|y0:t) ≈ N (xt;mt, Pt) (3.2.37)

where:

mt|t−1 = φt(xt−1, 0) (3.2.38)

Pt|t−1 = Gt−1Qt−1G
T
t−1 + Ft−1Pt−1F

T
t−1 (3.2.39)

mt = mt|t−1 +Kt(yt − h(mt|t−1, 0)) (3.2.40)

Pt = [I −KtHt]Pt|t−1 (3.2.41)

Kt = Pt|t−1H
T
t S

−1
t (3.2.42)

St = UtRtU
T
t +HtPt|t−1H

T
t (3.2.43)

where the Ft−1, Gt−1, Ht and Ut are the local linearisations of the functions φt−1

and ht as follows:

Ft−1 =
∂φt(x, 0)

∂x

∣∣∣∣
x=mt−1

, Gt−1 =
∂φt(mt−1, ν)

∂ν

∣∣∣∣
ν=0

Ht =
∂ht(x, 0)

∂x

∣∣∣∣
x=mt|t−1

, Ut =
∂ht(mt|t−1, ε)

∂ε

∣∣∣∣
ε=0

When the system and observation models have strong non-linearities, the higher

order terms of the Taylor expansion become significant and they cannot be safely

ignored. In these cases the performance of the Extended Kalman filter becomes very

poor.

3.2.6 The Unscented Kalman Filter

The Unscented Kalman Filter has been proposed by Julier and Uhlmann [57, 54]

in order to partially mitigate the problems of the Extended Kalman filter. The

Unscented Transform is based on the intuition that it is easier to approximate a

probability distribution than it is to approximate an arbitrary nonlinear function or

transformation. The approach consists in choosing a set of points (sigma points) so

that their mean and covariance are mt and Pt. The nonlinear function is applied to

each point, yielding to a set of transformed points. The statistics of the transformed

points can then be calculated to obtain an estimate of the mean and covariance

matrix. At time t− 1, the posterior density is assumed to be Gaussian:

p(xt−1|y0:t−1) ≈ N (xt−1;mt−1, Pt−1)
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3.2. BAYESIAN ESTIMATION

the procedure starts by using an augmented mean and covariance:

µt = [mt−1 0T 0T ]T

Ct = diag(Pt−1, Qt−1, Rt)

By using the Unscented Transform a set of L = 2nU + 1 weighted points are gener-

ated. The points are commonly called sigma points and denoted by {σl
t}. Denote

by (
√
P )l the the l-th row of the matrix square root of P; the sigma points and their

weights {wl
t} are obtained by the formulas:

σ0
t = µt w0

t =
κU

nU+κU

σl
t = µt +

(√
(nU + κU)Ct

)
l
wl = 1

2(nU+κU )
l = 1, . . . , nU

σl
t = µt −

(√
(nU + κU)Ct

)
l
wl = 1

2(nU+κU )
l = nU + 1, . . . , L

nU is the dimension of the augmented state (nU = nx+nv +nw) and κU is a scaling

parameter such that nU + κU �= 0. Then the sigma points are partitioned into:

σl
t = [(xlt−1)

T , (vlt−1)
T , (wl

t)
T ]T

Figure 3.2 provides an illustration of the sigma points in a simple case.

σ1

σ2

σ3

σ4

σ5

Non-linear transformation φt

N (xt−1;mt−1, Pt−1)
N (xt|t−1;mt|t−1, Pt|t−1)

transformed sigma points

Figure 3.2: The principle of the unscented transform: a set of sigma-points are
propagated through the non-linear function (arrows) and used to build a Gaussian
term approximating the propagated distribution.

The transformation procedure is as follows: for the prediction, the sigma points are

propagated through the transition function according to xlt|t−1 = φt−1(x
l
t−1, v

l
t−1)

and the predicted density is approximated by the Gaussian:

p(xt|y0:t−1) ≈ N (xt;mt|t−1, Pt|t−1)
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where:

mt|t−1 =

L∑
i=1

wl
tx

l
t|t−1 (3.2.44)

Pt|t−1 =
L∑
i=1

wl
t(x

l
t|t−1 −mt|t−1)(x

l
t|t−1 −mt|t−1)

T (3.2.45)

In the update, the sigma points are propagated through the measurement func-

tion: ylt|t−1 = ht(x
l
t|t−1, w

l
t−1) for l = 0, . . . , L and the updated density at time t is

approximated by the Gaussian:

p(xt|y0:t) ≈ N (xt;mt, Pt)

where:

mt = mt|t−1 +Kt(yt − yt|t−1) (3.2.46)

Pt = Pt|t−1 −GtS
−1
t GT

t (3.2.47)

yt|t−1 =

L∑
l=1

wl
ty

l
t|t−1 (3.2.48)

Kt = GtS
−1
t (3.2.49)

St =

L∑
l=1

wl
t(y

l
t|t−1 − yt|t−1)(y

l
t|t−1 − yt|t−1)

T (3.2.50)

Gt =

L∑
l=1

wl
t(x

l
t|t−1 −mt|t−1)(x

l
t|t−1 −mt|t−1)

T (3.2.51)

The property of the algorithm have been studied in [55] and [56]. The UKF usually

performs better than the EKF since the UKF is accurate up to the second order of

the Taylor series expansion of the transformation, but it still perform poorly if the

non-linearities in the models are severe.

3.2.7 Particle Filters

The particle filter, also known as Sequential Monte Carlo filter, is based on the idea

of approximating the pdf p(·|y0:t) by a weighted set of particles {x(i)t , w
(i)
t }Ni=1 and

propagate them in time by using an importance distribution. A detailed discussion

on the characteristics of Sequential Monte Carlo filters can be found in the book

[37] and in numerous papers such as [108, 43, 2]. Nonetheless, as the techniques

employed in Sequential Monte Carlo filters will be used extensively in the following,

a summary is provided.
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3.2. BAYESIAN ESTIMATION

The basic idea of Monte Carlo sampling is that it is possible to approximate

complex distributions by a large set of independently and identically distributed

samples. Let for example p(·) be a probability density function; its discrete approx-

imation by using N -samples {x(i)}Ni=1 is:

p(x) ≈ 1

N

N∑
i=1

δx(i)(x) (3.2.52)

For any arbitrary p-integrable function f(·) the almost sure asymptotic convergence

is verified:
1

N

N∑
i=1

f(x(i))
a.s.−−−−→

N−→∞

∫
f(x)p(x)dx (3.2.53)

The rate of convergence does not dependent on the dimension of the integral, but

primarily on number of particles.

In many practical cases sampling directly from the desired density is impossible, as

in the Bayes filter where the normalizing constant is generally difficult to compute.

In those cases the technique of importance sampling is used: samples are drawn

from a known density called importance distribution or proposal density and then

weighted to take into account the fact that importance distribution differs from the

desired distribution.

More precisely, suppose that the target density p(x) is known up to a normalising

constant: p(x) ∝ q(x). A proposal density π(x) such that support(p) ⊆ support(π)

is chosen and N samples: {x(i)t }Ni=1 are drawn from it. The target density p(x) is

then approximated by the set of weighted particles:

p(x) ≈
N∑
i=1

w(i)δx(i)(x) (3.2.54)

where the weights are:

w̃(i) =
q(x(i))

π(x(i))
(3.2.55)

w(i) =
w̃(i)∑N
j=1 w̃

(j)
(3.2.56)

The weights w(i) are generally called importance weights or normalised importance

weights.

The technique can be straightforwardly applied in the context of filtering.

Suppose the goal is to have an estimator of the trajectory of a target at time t

conditioned to all the observations up to time t:

Ep(x0:t|y0:t)[h] =

∫
Es

t+1

h(x0:t)p(x0:t|y0:t)dx0:t (3.2.57)
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p(x)

p(x)

π(x)

π(x)

x(i) ∼ π(x)

(x(i), w(i))

Figure 3.3: Importance sampling. The density p(x) is approximated by a set of
weighted particles sampled from an importance density π(x). The quality of the
approximation obviously depends on the importance density that has been chosen.

By using importance sampling the integral (3.2.57) can be rewritten as:

Ep(x0:t|y0:t)[h] =

∫
Es

t+1

h(x0:t)p(x0:t|y0:t)dx0:t (3.2.58)

=

∫
Es

t+1

h(x0:t)
p(x0:t|y0:t)
π(x0:t|y0:t)

π(x0:t|y0:t)dx0:t (3.2.59)

=

∫
Es

t+1

h(x0:t)w(x0:t)π(x0:t|y0:t)dx0:t (3.2.60)

The approximation of the integral can be done by sampling the target trajectories

from π(x0:t|y0:t) and computing the weights w(x0:t). With N samples x
(i)
0:t, i =

1, . . . , N the integral is approximated by:

Ep(x0:t|y0:t)[h] ≈
N∑
i=1

w(x
(i)
0:t)h(x

(i)
0:t) (3.2.61)

where the trajectories are sampled according to π(x0:t|y0:t) and the weight of each

trajectory, denoted by w(x
(i)
0:t), is given by w(x

(i)
0:t) = p(x

(i)
0:t|y0:t)/π(x

(i)
0:t|y0:t).

The technique of importance sampling to recursively obtain an approximate rep-

resentation of the posterior density is known as sequential importance sampling (SIS)
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[2, 38, 30]. The importance of this methods derives from the fact that it becomes

possible to compute an estimate of p(x0:t|y0:t) without modifying the previously sim-

ulated trajectories, i.e. recursively in time. The posterior density at time t, in fact,

can be obtained from the density at time t− 1 by using:

p(x0:t|y0:t) = p(x0:t−1|y0:t−1)
p(xt|xt−1)p(yt|xt)

p(yt|y0:t−1)
(3.2.62)

which is used to calculate the weight of the particles recursively in time [37].

In the Particle Filter the posterior density at time t− 1 is represented by the set of

weighted particles {x(i)t−1, w
(i)
t−1}Ni=1:

p(xt−1|y0:t−1) ≈
N∑
i=1

w
(i)
t−1δx(i)

t−1
(xt−1) (3.2.63)

while at time t it is approximated by a new set of particles {x(i)t , w
(i)
t }Ni=1

p(xt|y0:t) ≈
N∑
i=1

w
(i)
t δx(i)

t
(xt) (3.2.64)

whose weights are obtained via importance sampling. More precisely, suppose that

the complete proposal density πt(x0:t|y0:t) can be written recursively in time by using

the sequential proposal densities qt(xt|xt−1, y0:t):

πt(x0:t|y0:t) = π0(x0)
t∏

j=1

qj(xj|xj−1, yj) (3.2.65)

(3.2.66)

The proposal density qt(xt|xt−1, y0:t) allows the particles to be propagated from time

t− 1 to time t and must verify support(p(xt|y0:t)) ⊆ support(qt(·|x(i)t−1, yt)).

The weights of the particles at time t are computed by:

w
(i)
t =

p(x
(i)
0:t|y0:t)

π(x
(i)
0:t|y0:t−1)

(3.2.67)

= w
(i)
t−1

p(yt|x(i)t )p(x
(i)
t |x(i)t−1)

p(yt|y0:t−1)q(x
(i)
t |x(i)t−1, yt)

(3.2.68)

∝ w
(i)
t−1

p(yt|x(i)t )p(x
(i)
t |x(i)t−1)

q(x
(i)
t |x(i)t−1, yt)

(3.2.69)

As the normalization constant p(yt|y0:t−1) is common to each particle its computa-

tion is not necessary as soon as the particle’s weights are normalised at each time

step to obtain
∑N

i=1w
(i)
t = 1.

35



CHAPTER 3. BACKGROUND: SINGLE OBJECT TRACKING

The selection of the importance density is very important for the performance of

the algorithm; a discussion about the conditionally optimal importance density as

well as practical strategies can be found in [38] and [12].

A well known problem of this approach is that the variance of the importance weights

increases over time until the complete degeneracy where only one particle has a non-

null weight. This problem is mitigated by the inclusion of a resampling step in which

the particles are resampled and duplicated according to their weights. Practically

the resampling step is done when some condition on the empirical variance of the

weights is verified. For instance, given the threshold κ [61] the resampling occurs

when:

Veff =
1∑N

i=1(w
(i)
t )2

≤ κ (3.2.70)

After the resampling the weights are set to w
(i)
t = 1/N, i = 1, . . . , N .

The basic idea of the particle filter methodology has been widely extended over the

years in order to improve the performances and to address some problems. One

way, for example, is the use of the so-called Rao-Blackwellization [15] that consists

in partitioning the state vector into a linear-Gaussian part and a non-linear non-

Gaussian component; a particle filter is then used to solve the non-linear component,

while the linear Gaussian part is solved analytically by using a Kalman filter.

An example of the sequential importance sampling filter (SIS) in the estimation

of a target trajectory is given in Figures 3.4 to 3.7 where a target moves along the

side of a rectangle and the angular measurements are reported by three sensors.

The clouds of weighted particles is used to compute the estimate of the trajectory

recursively in time.

The Sequential Importance Sampling and Resampling (SISR) filter, commonly

called particle filter, is described in algorithm 1.

Single object tracking with misdetections and clutter

When only a single-object is potentially present in the surveillance region but the

observation process may fail to detect it or may report spurious observations (clut-

ter) the standard Bayesian filtering is not directly applicable, since it is not known

which measurement should be used to update the state of the target. In this case the

early approaches proposed in the literature consist in first associating one measure-

ment to the active target and then to apply the standard single-target filter. The

Nearest Neighborhood method (NN) [4], for example, constitutes the simplest

approach and works by associating the closest observation (in a statistical sense)

to the active target at each time step. Once the hypotheses on the association is

done, the filter uses a Kalman update step to compute the sufficient statistics of the

posterior density. Due to the drastic hypotheses, however, this approach performs

very poorly in presence of a high clutter intensity or high misdetection probability.

36
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The Probabilistic Data Association (PDA) filter [4] calculates, by using the

Bayes rule, the probability that a given measurement was generated by the active

target. The update step, is performed by using the Kalman update equation with

a pseudo-measurement build by taking the average of all the observations weighted

by their association probability. This technique is commonly used for single target

tracking in clutter and shows reasonable performance [5]. The PDA filter, however,

as well as the Nearest Neighborhood method, assumes some prior knowledge on the

existence of the track as well as on its mean and covariance matrix. When there is

no evidence of the existence of the target, a method for initiating single tracks is

provided by the Integrated Probabilistic Data Association filter (IPDA). Fur-

ther generalisations and refinements of the original algorithm have been proposed

in [92, 106] and [113].
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Figure 3.4: Propagated particles (black
+), resampled particles (red ·) and esti-
mated trajectory at time t = 5.

−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

Distance X (mt)

D
is

ta
nc

e 
Y

 (
m

t)

Particle approximated posterior distribution (Time = 12 sec)

Figure 3.5: Propagated particles (black
+), resampled particles (red ·) and esti-
mated trajectory at time t = 20.

−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

Distance X (mt)

D
is

ta
nc

e 
Y

 (
m

t)

Particle approximated posterior distribution (Time = 24 sec)

Figure 3.6: Propagated particles (black
+), resampled particles (red ·) and esti-
mated trajectory at time t = 40.
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Figure 3.7: Propagated particles (black
+), resampled particles (red ·) and esti-
mated trajectory at time t = 60.
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Algorithm 1 Generic Particle Filter

Initialization
N number of particles
for i = 1 to N do
Sample N particles: x

(i)
0 ∼ π0(x0)

Compute the initial weights: w
(i)
0 = p(x

(i)
0 )/π0(x

(i)
0 )

end for
W0 =

∑N
i=1w

(i)
0

For all the particles w
(i)
0 ← w

(i)
0 /W0

for time t ≥ 1 do
for i = 1 to N do
Sample x

(i)
t ∼ qt(xt|x(i)t−1, yt)

Update the weights:

w
(i)
t ∝ w

(i)
t−1

p(yt|x(i)t )p(x
(i)
t |x(i)t−1)

q(x
(i)
t |x(i)t−1, yt)

with
∑N

i=1w
(i)
t = 1

end for
Compute Veff = [

∑N
i=1(w

(i)
t )2]−1

if Veff ≤ κ then
Sample N particles according to the normalized distribution of their weights.
Once the new particles have been sampled their weights are set to w

(i)
t = 1/N

and they are used for the next iteration.
end if

end for
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Chapter 4

Multi-object filtering in the

Random Finite Set framework

4.1 Overview of multi-target filtering

Multi-object filtering aims at estimating the states of a possibly unknown number

of targets in a given surveillance region. The sensors generally collect several mea-

surements that may correspond to clutter or to real targets and typically lack the

ability to associate each measurement to a specific target or to distinguish between

real targets and false observations. Hence, one has to solve simultaneously three

problems: the problem of data association, the estimation of the number of targets

and the estimation of their states [4, 8]. Traditional approaches treat the problem

by dividing the association from the estimation: observations are first associated

to existing tracks and then the estimation is done by using single-target filtering

techniques. Different algorithms have been proposed in the literature [5, 4, 8]. The

Global Nearest Neighbour (GNN), for example, refines the association tech-

nique of the Nearest Neighborhood method (sec. 3.2.7) by choosing the associations

between the active tracks and the observations that minimize in some statistical

sense the total distance. The approach however suffers from the same limitations of

the NN filter. The Joint Probabilistic Data Association (JPDA) filter [4] is an

extension of the PDA filter when a fixed and known number of targets is present. At

each time step the JPDA considers the set of all possible hypotheses that survive to

a gating operation and combines the associations in proportion to their likelihood by

avoiding conflicting measurement-to-track associations. However, the complexity of

the computation of joint association probabilities grows exponentially with the num-

ber of targets and measurements. As the basic formulation of the algorithm shows

exponential complexity and deals with a fixed and known number of targets, nu-
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merous enhancements have been proposed: the Joint Integrated PDA (JIPDA)

filter, for example, extends the technique to an unknown and time-varying number

of objects [91] while an extension of the JPDA using Monte Carlo techniques [51]

deals non-linear non-Gaussian models.

A widely used technique is the Multiple Hypothesis Tracking (MHT) [107]

which maintains different association hypotheses between targets and observations

and let future measurements resolve the uncertainty. More precisely the MHT filter

works by performing an exhaustive search over previous time steps for the possible

combinations of associations between active tracks and measurements. Past and

present measurements are tested against various possibilities by computing their

posterior probabilities using the Bayes rule. Then, a measurement is associated

either to clutter or to a single active target and the set of hypotheses with the high-

est posterior probability is kept and propagated by using a standard Kalman filter.

Initiation and termination of tracks are implicitly accommodated by performing the

measurement association.

Clearly, it is necessary to adopt techniques to prevent the number of hypotheses

from growing exponentially in time and for this reason the method results more

computationally demanding than the JPDA.

The biggest drawback of the MHT is indeed its combinatorial nature; practical im-

plementations [9, 10] use validation distances to limit the number of calculation and

heuristic pruning/merging strategies to eliminate hypotheses with low probability.

Variants of MHT have been proposed: the probabilistic MHT (PMHT), for example,

uses probabilistic decisions for measurement-to-target associations [123, 140] while

[93] proposes an approach to take care of target existence probabilities.

4.2 The Random Finite Set Framework

The Random Finite Set (RFS) approach to multi-object tracking provides a Bayesian

framework for the recursive update of the multi-target posterior density. The main

idea behind the RFS approach is to model the objects and the observations at each

time step as set-valued random variables and then to characterize the relative un-

certainties by using the probabilistic tools of Finite Set Statistics. The modelling of

states and observations as random finite sets (the so called multi-target state and

multi-observation) constitutes in fact the first step toward the generalization of the

Bayes filter from the single to the multi-object case.

To give an example of the difficulties arising when dealing with multi-object prob-

lems it is sufficient to note that most of the basic concepts such as standard Bayes-

optimal state estimators, expected value, least-squares optimization, are not even

defined. Finite-set statistics addresses the conceptual gaps arising when the multisensor-

multitarget problems are treated in a Bayesian perspective by providing systematic
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techniques for generalizing the concepts of derivatives and integrals to set-derivatives

and set-integrals. Similarly, probability-mass functions and likelihood functions are

generalized to multisensor-multitarget belief-mass functions and multi-target likeli-

hood functions.

More generally, FISST allows to extend seamlessly the formal Bayes modeling to

nontraditional information and to multi-sensor multi-object problems in order to

have systematic procedures to:

� construct multi-object measurement models

� construct multi-object motion models

� transform the multi-object measurement model into likelihood functions

� transform multi-object motion models into Markov densities

This section reviews the basic concepts of Random Finite Set and the main tools of

Point Process theory. More advanced FISST concepts such, belief-mass functions,

set-derivatives, set-integrals and probability generating functionals are reported in

Appendix A. The full theoretic treatment as well as most of the proofs can be found

in [88] and [128], and in monographs such as [26, 80].

Historical note

Random set theory was first systematically examined in connection with statistical

geometry by Kendall [59] and Matheron [87] in the mid-1970s and then applied to

two-dimensional image analysis by Serra [116]. Since then it has become a basic

tool in theoretical statistics and it has inspired early practical works in data fusion

by Mori, Chong, Tse, and Wisher. However, it is with the work of Mahler on FISST

[42, 74] and on the approximations for the Bayesian multi-object filter that the

random finite set approach has been consistently adopted in the filtering community.

Random Finite Sets

A random finite set can be described as a finite, set-valued random variable where

not only the elements are random but also the cardinality of the set [26]. In other

words, the realization of a RFS is an unordered and finite set of elements distributed

according to a common probability distribution. This concept is particularly useful

in the context of multi-object tracking where both the number of targets and their

state are unknown and the uncertainty on both quantities (the cardinality and the

state vectors) has to be characterized. The random finite set formulation is thus a

natural way to model multi-object tracking problems and constitutes the base from

which the Bayesian formulation for multi-object tracking can be built.
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A RFS can be completely specified by the (discrete) distribution of its cardinality

and a family of symmetric joint distributions that characterize the distributions of

the points, conditional on the cardinality of the set [26, 122]. The formal definition

of a RFS is as follows:

Definition 4.2.1. A random finite set X on E ⊆ Rd is a measurable mapping

X : Ω → F(E)

where Ω is a sample space with a probability measure P defined on a σ-algebra of

events σ(Ω), and F(E) is the space of finite subsets of E, which is equipped with

the Matheron topology [87].

The probability measure P induces a probability law for the random finite set X.

The most natural descriptor of the probability law for the RFS X is the probability

distribution P on F(E) defined for any Borel subset T of F(E) as:

P (T ) = P({X ∈ T })

where {X ∈ T } denotes the measurable subset {ω ∈ Ω : X(ω) ∈ T }.
Alternatively, the probability law for a RFS can also be given in terms of belief mass

function βX [133], (Appendix (A.1)) defined for any closed subset S ⊆ E:

βX(S) = P({ω ∈ Ω : X(ω) ⊆ S}) = P({X ⊆ S})

or by using the notion of void probability [26, 122] which is defined for any S ⊆ E

as:

ςX(S) = P({ω : |X(ω) ∩ S| = 0}) = βX(S
c)

In analogy to the random vector case, a very useful descriptor of an RFS is the

probability density. However, as the operation of sum is not defined for subsets,

the space F(E) does not inherit the usual operation of integration. Nonetheless a

mathematically consistent notion of probability density on F(E) is available from

point process theory [76, 80]. The characterization of the probability density for

random finite sets in the measure theoretic formulation and in FISST are different

but closely related. Their relationship has been clarified in [133] where it is shown

that the unitless set derivative of a belief mass function is a probability density, and

that a set-integral is closely related to the conventional (measure theoretic) integral.

In multi-object filtering applications the computation of the probability density of

a RFS from the dynamical and observation models is generally much easier with

FISST than with the measure theoretic formulation. However, since central FISST

concepts such as set-integral and set-derivative are not conventional probabilistic

concepts care has to be taken when performing operations concerning multi-object

densities.

The next section introduces the multi-object Bayes filter by using FISST and Radon-

Nikodým derivatives.
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4.3 Multi-object Bayes filter

Once the observations and the targets are modeled as a single meta-state and meta-

observation, the multi-object filtering problem can be posed as a Bayesian filtering

problem with state space F(Es) and observation space F(Eo), where Es and Eo

denote the target and observation space respectively.

For instance, for any Borel subset U ⊆ F(Es) and V ⊆ F(Eo) let the posterior

probability measure of the RFS Xt given all the observation RFSs Y1:t = (Y1, . . . , Yt)

be:

Pt|t(U|Y1:t) ≡ P (Xt ∈ U|Y1:t) (4.3.1)

the prior probability of U given the RFS Xt−1:

Pt|t−1(U|Xt−1) ≡ P (Xt ∈ U|Xt−1) (4.3.2)

and the probability measure of V:

Pt(V|Yt) ≡ P (Yt ∈ V|Yt) (4.3.3)

Let µs and µo be the dominating measures of the form (A.2.2). Then the multi-target

posterior density pt|t(·|Y1:t), the multi target transition density ft|t−1(·|Xt−1) and

the multi-target likelihood gt(·|Xt) are the Radon-Nikodým derivatives of Pt|t(·|Y1:t)
w.r.t µs, Pt|t−1(·|Xt−1) w.r.t µs and Pt(·|Xt) w.r.t µo respectively:

Pt|t(U|Y1:t) =
∫
U
pt|t(Xt|Y1:t)µs(dXt) (4.3.4)

Pt|t−1(U|Xt−1) =

∫
U
ft|t−1(Xt|Xt−1)µs(dXt) (4.3.5)

Pt(V|Yt) =
∫
V
gt(Yt|Xt)µo(dYt) (4.3.6)

The optimal multi-object Bayes recursion is given by the recursion:

pt|t−1(Xt|Y1:t−1) =

∫
ft|t−1(Xt|X)pt(Xt|Y1:t−1)µs(dX) (4.3.7)

pt(Xt|Y1:t−1) =
gt(Yt|Xt)pt|t−1(Xt|Y1:t−1)∫

gt(Yt|X)pt|t−1(X|Y1:t−1)µs(dX)
(4.3.8)

Obviously, the main difference with the standard single-target, clutter-free Bayes

recursion is that Xt and Yt are RFS that may change dimension as t changes.

In the FISST framework the Bayes recursion is formulated in a conceptually

different way by using belief mass functions. For any closed subsets S ⊆ Es and

T ⊆ Eo let the posterior belief mass function of the RFSXt given all the observation
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sets, the belief mass function of the RFS Xt, and the belief mass function of the

observation set be:

βt|t−1(S|Y1:t) ≡ P (Xt ⊆ S|Y1:t) (4.3.9)

βt(S|Yt−1) ≡ P (Xt ⊆ S|Yt−1) (4.3.10)

βt(T |Xt) ≡ P (Yt ⊆ T |Xt−1) (4.3.11)

The FISST multi-target posterior density πt(Xt|Y1:t), FISST multi-target transi-

tion density φt|t−1(·|Xt−1) and FISST multi-target likelihood ρt(·|Xt) are the set-

derivatives of βt|t−1(S|Y1:t), βt(S|Yt−1), βt(T |Xt) respectively. The FISST multi-

target Bayes filter proposed in [42] is given by the recursion:

πt|t−1(Xt|Y1:t−1) =

∫
φt|t−1(Xt|X)πt(X|Y1:t−1)δX (4.3.12)

πt(Xt|Yt) =
ρt(Yt|Xt)πt|t−1(Xt|Y1:t−1)∫
ρt(Yt|X)πt|t−1(X|Y1:t−1)δX

(4.3.13)

Although these equations look very similar to (4.3.7) and (4.3.8) the difference is that

(4.3.12) and (4.3.13) are set-integrals and the functions involved have units whereas

the former are unitless. The validity of the FISST-Bayes equations is verified by

using the result in A.2.1 as described in [133]. An insight on the issues of unit-

dependency in RFS density functions, as opposed to conventional densities is given

in appendix A.5.

4.4 Point processes

Many important results concerning RFS theory have been stated with terms from

point process theory. This section briefly reviews the terminology of point process

theory and the relationship with the RFS formulation.

� A counting measure n on a space E is a measure taking values in N∪ {∞}
such that n(B) is finite for any bounded subset B of E (see Appendix B.1.1).

It can be identified with a countable collection of points of E such that n(B)

equals the number of points that fall in B.

� A point process X on the space E is a measurable mapping from a sample

space Ω, with a probability measure P defined on a sigma algebra σ(Ω) to the

space of counting measures on E. A point process X is simple if X ({x}) ∈
{0, 1}, ∀ x ∈ E, with probability 1, finite if X (E) < ∞, with probability 1,

and simple-finite if it is simple and finite.
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� A RFS X can be identified with a simple-finite point process X in the sense

that X (B) = |X ∩ B|, for all subsets B of E, where |X| denotes the number

of elements in X.

As a consequence the terms random finite set and simple-finite point process are

used to refer to the same mathematical object. Alternative and mathematically

equivalent representations for the RFS X = {x1, . . . , xn} are shown in figure 4.1

and resumed as follows.

� Dirac sum notation (sum of Dirac delta functions located at points in X):

δX(x) = δx1(x) + . . .+ δxn(x) (4.4.1)

� Random counting measure notation NX(S): number of points in a subset S:

NX(S) =

∫
S

δX(x)dx = |X ∩ S| (4.4.2)

Figure 4.1: Three equivalent representations of a (multidimensional) simple point
process.

Poisson Point Process

An important class of random finite sets are the Poisson RFS which are uniquely

characterized by their intensity function.

We will use the notation γ(x) ∈ M(E) for the point process intensity and:

γ(f) =

∫
γ(x)f(x)dx

for the value of a bounded function f over the intensity. When f(x) = 1 the

integral of the intensity over the domain (sometimes called mass), corresponding to

the expected number of points, is denoted by γ(1) ≥ 0.

A realization of a Poisson point process consists in N points i.i.d. with distribution
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η(dx) = γ(dx)/γ(1) where N is an integer-valued Poisson random variable with

parameter γ(1).

One of the main simplifications of Poisson point process comes from the fact that

their expectation measure coincides with their intensity measure. Two important

properties of Poisson point processes are [26]:

Lemma 4.4.1. (Thinning) Let
∑

1≤i≤N δXi
be a Poisson point process with inten-

sity measure γ(x) on E. We consider a subset A ∈ E such that γ(A) > 0. Then, the

restriction
∑

1≤i≤N 1A(Xi)δXi
of the point process to the set A is a again a Poisson

point process with intensity measure γA(dx) = 1A(x)γ(dx).

Lemma 4.4.2. (Superposition) Let (Xi)i≥1 be a sequence of independent Pois-

son point processes with intensity measure (γi)i≥1 on some common measurable

state space E. For any d ≥ 1, X is a Poisson point process with intensity measure∑
1≤i≤d γi if, and only if, X is equal in law to the Poisson point process

∑
1≤i≤d Xi.

In the RFS context, a multitarget density f(X) is Poisson if:

f(X) = e−γ(1)γ(x1) · · ·γ(xn) (4.4.3)

where X = {x1, . . . , xn}. Essentially the Poisson RFS characterizes a set of points

with no spatial interaction, i.e. complete spatial randomness. In the context of

tracking this property is used to model the fact that generally the position of a

target and its dynamics is independent from the position of the other targets. Real-

world instances where this approximation is not verified are, however, very common.

It is easy to verify that a Poisson density f(X) with intensity γ(x) and parameter

γ(1) verifies: ∫
f(X)δX = 1 (4.4.4)

The PGFl of a Poisson RFS is:

G[h] = eI[h]−γ(1) (4.4.5)

where I[h] =
∫
γ(x)h(x)dx.

Other classes of point processes

Other important classes of RFSs commonly encountered in multi-object filtering are

the independent and identically distributed cluster RFS, the Bernoulli RFS and the

multi-Bernoulli RFS.

� An independent and identically distributed (i.i.d) cluster RFS X is uniquely

characterized by intensity function γ(·) and cardinality distribution ρ(n). The

cardinality must satisfy
∑∞

n=0 nρ(n) =
∫
γ(x)dx but it has not to be Poisson.
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For a given cardinality the elements of X are independent and identically

distributed according to γ(·)/
∫
γ(x)dx.

� A Bernoulli RFS X has probability 1 − q of being empty, and probability q

of containing only one element distributed according to a probability density

p(· ). It is thus completely described by the parameter pair (q, p).

� A multi-Bernoulli RFS is the union of a fixed number of independent Bernoulli

RFSs X(i):

X =

M⋃
i=1

X(i)

where q(i) is the existence probability of X(i) and p(i) the probability density

of the element.

More details about the properties of these classes of random finite sets can be found

in [135, 26] and references therein.

4.5 Random Finite Set model of multi-object fil-

tering

This section introduces the traditional formulation of the multi-object filtering

model in the random finite set framework. The model will be partially redefined

and rediscussed in Chapters 7 and 8 in the context of branching processes.

Suppose that at a given time t, Nt targets whose states take values in some measur-

able space Es are present. The state space encapsulates all the information about

the targets: their kinematic properties (position, velocity, angles) and possibly other

information such as the type of target or the dynamical model in use. The target

states at time t are denoted by (xit)1≤i≤Nt ∈ Es. At each time step the observation

process reports Mt observations in a possibly different space: (yit)1≤i≤Mt ∈ Eo. The

order in which the targets and observations are listed has no importance, as there is

no association between measurements and targets. Moreover, some target may pass

undetected during the scan and some measurements may be false alarms caused

by noise or errors in the observation process. Therefore, it is natural to model the

collections of states and observations at each time step as finite sets [42]:

Xt = {xt,1, . . . , xt,Nt} ∈ F(Es)

Yt = {yt,1, . . . , yt,Mt} ∈ F(Eo)

During the transition from time t to t+ 1 some target may disappear, new targets

may appear and the surviving targets evolve according to their dynamical model.
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From time t to time t+1, each target survives with probability ps,t(xt) or dies with

probability 1−ps,t(xt). Conditional on its existence at time t each target is assumed

to follow a Markov process modeled by ft+1|t(xt+1|xt). A new target at time t + 1

may appear either by spontaneous birth or because created by an existing target

(a phenomenon commonly called spawning). Thus, the behaviour of a single object

xt+1 ∈ Xt+1 is modeled by a Bernoulli RFS:

St+1|t(xt)

where the target dies and assumes the value {∅} with probability 1 − ps,t(xt) or it

moves to a new state with probability density ft+1|t(xt+1|xt).
The RFS of targets generated by an existing target with state xt is denoted by:

Bt+1|t(xt)

while the RFS of new targets appeared at time t + 1 are denoted by Γt+1. The

random finite set of targets at time t+ 1 is thus given by the union of the previous

RFS:

Xt+1 =
(
∪x∈XtSt+1|t(x)

)
∪ (∪x∈Xt+1Bt+1|t(x)) ∪ Γt+1 (4.5.1)

Similarly, the measurement model, which accounts for detection, uncertainty and

clutter is described by defining the set-valued observations for each time step Yt. A

given target is either detected with probability pd,t(xt) or missed with probability

(1− pd,t(xt)) and conditional on the detection, the probability density of obtaining

an observation from xt is given by the likelihood function gt(·|xt) In addition to the

target-originated measurements the sensor also receives a set of false measurements,

or clutter. The set of measurements at time t: Yt = {yt,1, . . . , yt,Mt} is given by

Yt = (∪x∈EtΘ(x)) ∪Kt (4.5.2)

where Θ(x) is the random set of measurements coming from target x ∈ Xt and Kt

is the set of measurements coming from clutter at time. It is worth stressing that,

one of the conditions for the derivation of the general PHD filter is that each target

contributes to the generation of at most one observation. Moreover, the random

finite sets Θ(x) and Kt are assumed to be mutually independent as well as St+1|t
, Bt+1|t and Γt+1. Different models for the single-target transitions ft+1|t(xt+1|xt)
are covered in the survey [65]. Figure 4.2 shows a schematic representation of the

multi-target model.
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Xt−1

Xtft(Xt|Xt−1)

multi-object motion

random finite sets of observations

observation space

objects state space

Yt−1

Yt

Figure 4.2: Random Finite Set model of multi-object tracking

As discussed in section 4.2, by modeling the states and observations as RFSs the

problem can be posed as a Bayesian filtering problem with multi-object state space

F(Es) and multi object observation space F(Eo). The posterior probability density

of the multi-object state at time t contains all the information about the cardinality

and distribution of targets, unfortunately, the multi-target Bayes recursion involves

integrals which are intractable in general and even numerical approximations are

often too computationally intensive when the number of targets is relatively large

[76], [133]. The Probability Hypothesis Density (PHD) filter instead propagates the

first moment of the multi-object posterior and constitutes a computationally viable

approach to multi-object filtering with random finite sets.

As a reference, table 4.1 provides a summary of the correspondences between the

mathematical objects of single and multiple object filtering [42].
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Random vector Finite Random Set
state vector state set

x X
observation vector observation set

y Y
sensor model observation RFS
yt = ht(xt, wt) Yt = (∪x∈EtΘ(x)) ∪Kt

motion model target RFS
xt+1 = m(xt, vt) Xt+1 =

(
∪x∈XtSt+1|t(x)

)
∪ (∪x∈Xt+1Bt+1|t(x)) ∪ Γt+1

differentiation set differentiation
dpY
dy

δβΞ

δY
(S)

functional differentiation
δGΞ

δY
[h]

integration (Lebesgue) set integration∫
S
fX(x)dλ(x) = PX(S)

∫
S
fΞ(X)δ(X) = βΞ(S)

functional set integration∫
S
hY fΞ(X)δ(X) = GΞ[h]

expected value: probability hypothesis density (PHD):∫
xfX(x)dx γΞ(x) =

∫
fΞ({x} ∪ Y )δ(Y )

probability measure belief mass function:
βΞ(S) = P(Ξ ⊆ S)

pY (S) = P(Y ∈ S) probability generating functional:
GΞ[h]

density function multi-object density function

fY (y) =
dPY

dy
fΞ(Y ) =

δGΞ

δY
[0] = δβΞ

δY
(∅)

prior density multi-object prior density
fX(x) fΞ(X)

posterior density multi-object posterior
ft|t(xt|y1:t) ft|t(Xt|Y1:t)

Markov density multi-object Markov density
ft+1|t(xt+1|xt) ft+1|t(Xt+1|Xt)

likelihood function multi-object likelihood
gt(yt|xt) gt(Yt|Xt)

Table 4.1: Correspondences between the concepts in the random vector and RFS
formulation.
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4.6 The Probability Hypothesis Density recursion

The Probability Hypothesis Density (PHD) filter is a tractable approximation to

the optimal multi-target Bayes filters proposed in [76]. It consists of a prediction

and an update step that recursively propagate the first order moment of the target

random finite set, from which estimates on the number of targets as well as their

states can be obtained.

The derivation of the PHD recursion is based on a set of assumptions:

� each target is assumed to evolve and generate measurements independently of

one another,

� the birth RFS is assumed to be a Poisson RFS independent from the current

or surviving targets,

� the clutter process is assumed to be a Poisson RFS independent from the

measurements RFSs,

� the predicted and posterior multi-target RFS are approximated by Poisson

RFSs.

These simplifications allow for an analytical expression for the posterior intensity

function, and implicitly make the assumption that the higher order moments are

negligible. Although these conditions are not usually met in practice the PHD filter

remains a useful method of approximating the posterior intensity. Proofs can be

found in [76].

Denoting by γt(x) and γt|t−1(x) the intensity functions associated to the posterior

and predicted multi-object state respectively, the predicted intensity is given by:

γt|t−1(x) =

∫
Es

[ps,t(u)ft|t−1(x|u) + bt|t−1(x|u)]γt−1|t−1(u)du+ µt(x) (4.6.1)

where ft|t−1(x|u) is the evolution density of a single target at time t, ps,t(u) is the

survival probability of a target with state u, µt(x) is the birth intensity function

of new targets at time t, and bt|t−1(x|u) is the intensity of the Point process corre-

sponding to the new objects generated from the target with state u at time t. The

posterior intensity is obtained by:

γt|t(x) = (1− pd,t(x))γt|t−1(x) +
∑
y∈Yt

pd,t(x)gt(y|x)γt|t−1(x)

ht(y) +
∫
pd,t(u)gt(y|u)γt|t−1(u)du

(4.6.2)

where gt(y|x) denotes the single target likelihood function, pd,t(x) is the probability

of detection and ht is the clutter intensity at time t.

Equations (4.6.1) and (4.6.2) show that the PHD recursion is defined on the single

target state space, which has a fixed and generally smaller number of dimensions
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than the full multiple-target posterior; nevertheless it still involves multiple integrals

that have no closed form expressions in general.

Overview of the literature and recent research

The PHD filter has been usually implemented by using sequential Monte Carlo

methods, as proposed by Zajic, Mahler, Vo et al. [109, 132, 133, 143] or by using

the closed-form Gaussian mixture implementation devised by Vo and Ma [130, 131].

This implementation, under certain simplifying assumptions, greatly improves the

computational efficiency of the filter.

Since the derivation of the filter was established in the framework of Finite Set

Statistics, its relationship to conventional probability was at first not entirely clear.

In [133] Vo, Singh and Doucet established this relationship and investigated a Se-

quential Monte Carlo multi-target filter. A review of their results is provided in

Appendix A.2.

Vo, Singh, Doucet, and Clark also established convergence results for the particle-

PHD filter [133], and Clark and Vo proved a strong L1 uniform convergence property

for the Gaussian-mixture PHD filter in [24].

Since the PHD filter does not provide label associations, much effort has been spent

on researching and developing efficient and reliable peak extraction and peak-to-

track association techniques. Panta, Vo, and Singh [104] proposed two different

schemes according to which the PHD filter can be enhanced to provide track-valued

estimates of individual targets and compared their performance with the MHT.

Clark and Bell [20] proposed two methods for the identification of targets whose

complexity is lower than the MHT and JPDA filters. Wang, Jing and Hu [142]

proposed and studied a data association technique based on MHT in analogy to

Panta et al. [103] who used the SMC-PHD filter to remove unlikely measurements

before inputting the data to a Multiple Hypothesis Tracker filter. Lin [67] described

a technique for peak-to-track association for SMC-PHD filter based on the matching

between peaks and tracks by using optimization techniques to minimize the associa-

tion cost. Panta et al. also discussed various issues regarding initiating, propagating

and terminating tracks in the GM-PHD filter and proposed a technique for resolving

identities of targets [101].

Practical applications of these methods have included tracking vehicles on different

terrains [117], tracking targets with passive radars [125] and sonars [19]. Researchers

from Walter of the Swedish Defence Research Agency have employed PHD filters for

group-target tracking [117]. Wang, et al. have employed such methods for tracking

people in digital videos [138].

More recently Houssineau and Laneuville [63] considered the problem of multi-target

tracking with passive data obtained by geographically distributed cameras. Hu and
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Wu [141] also investigated the application of the PHD filter to multi-target visual

tracking with trajectory recognition.

From the theoretical standpoint the major recent improvements have been provided

by Ronald Mahler and Ba-Ngu Vo who recently proposed approximate multi-sensor

CPHD and PHD filters [83] that generalize the PHD to the multi-sensor case. Previ-

ous approaches to the multi-sensor case where based on the iteration of the corrector

equation for each sensor, which was unpleasing because implicitly based on strong

simplifying assumptions and not invariant under sensor reordering. Although these

solutions remain computationally intractable in the general case, approximations

that are invariant under sensor reordering and based on much weaker simplifying

assumptions have been proposed [84]. Furthermore, recent research include the

derivation of a multi-object first-moment smoother for forward-backward smooth-

ing [18] and the closed form solution to the PHD density smoother [85].

Delande, Duflos et al. [36] proposed an extension of Mahler’s work on multi-sensor

PHD filtering based on the configuration of the sensors’ fields of view (FOVs) and

the joint partitioning of both the sensors and the state space. An exhaustive review

of the problem of multi-target PHD filtering as well as several important extensions

to the multi-sensor case are reported in [35].

Strength and weaknesses of the PHD filter

Potential advantages and disadvantages ([80], pag. 571) of PHD filter are:

Advantages:

� Computational complexity O(mn) where n is the number of targets and m

the number of observations.

� Seamless integration of misdetection events, false alarms, and sensor field of

view.

� Seamless integration of targets appearence, disappearence and spawning.

� Flexibility in the implementation techniques (Monte Carlo methods or Gaus-

sian approximations)

� Estimation of the number of targets at each time step.

Disadvantages:

� High variance on the estimates of the number of targets (due to the Poisson

approximation)

� A great amount of information is lost by replacing the full multi-object pos-

terior with the PHD function
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� It doesn’t perform well in cases with low signal to noise ratio (SNR).

� It is based on the assumption that targets are sufficiently far away that they

can be modeled as mathematical points or close enough that no measurement

is generated by more than one target. These assumptions are generally not

verified in real-life applications.

� It does not provide peak-to-track association, but only target estimates at

each time step.

The rest of this chapter details the two most common implementations of the PHD

filter: the Sequential Monte Carlo and the Gaussian Mixture PHD filter. Funda-

mental for the study of multi-object algorithms is the notion of OSPA distance

which is reviewed in section 4.10.

4.7 Sequential Monte Carlo PHD Filter

The generic Sequential Monte Carlo implementation of the PHD particle filter has

been proposed by Vo et al. in [132, 133]. The idea is to approximate equations

(4.6.1) and (4.6.2) by a set of weighted particles recursively in time.

More precisely, at time t = 0 the initial intensity γ0 is approximated by a set of

weighted particles
{
w

(i)
0 , x

(i)
0

}L0

i=1
such that:

γ0(x) =

L0∑
i=1

w
(i)
0 δx(i)

0
(x) (4.7.1)

where L0 is the number of particles and w0 =
N0

L0
; N0 denoting the expected number

of targets at time zero. Similarly, at a generic time step t − 1 the set of weighted

particles
{
w

(i)
t−1, x

(i)
t−1

}Lt−1

i=1
approximates the intensity function γt−1, i.e.:

γt−1(x) =

Lt−1∑
i=1

w
(i)
t−1δx(i)

t−1
(x) (4.7.2)

The prediction step consists in obtaining a particle approximation of the predicted

PHD intensity (4.6.1). Given the set of particles and their weights at time t− 1 the

predicted intensity function is given by:

γt|t−1(xt) =

Lt−1∑
i=1

w
(i)
t|t−1φt(xt, x

(i)
t−1) + µt(xt) (4.7.3)

where φt(xt, ξ) = [ps,t(ξ)ft|t−1(xt|ξ) + bt|t−1(xt|ξ)]. Importance sampling is applied

to each term of (4.7.3) to obtain a set of Lt−1 + Jt particles approximating the
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predicted intensity.

Two importance distributions qt(.|x(i)t−1, Yt) and pt(.|Yt) are used to sample the par-

ticles associated to the PHD intensity and to the spontaneous birth intensity:

x
(i)
t|t−1 ∼

{
qt(.|x(i)t−1, Yt) i = 1, ..., Lt−1

pt(.|Yt) i = Lt−1 + 1, ..., Lt−1 + Jt
(4.7.4)

Jt particles are sampled from the normalized birth intensity in order to detect po-

tential new targets entering in the scene. Each particle is weighted according to:

w
(i)
t|t−1 =

⎧⎪⎪⎨⎪⎪⎩
φt(x

(i)
t|t−1

,x
(i)
t−1)

qt(x
(i)
t|t−1

|x(i)
t−1,Yt)

w
(i)
t−1 i = 1, ..., Lt−1

1
Jt

µk(x
(i)
t|t−1

)

pt(x
(i)
t|t−1

|Yt)
i = Lt−1 + 1 . . . Lt−1 + Jt

(4.7.5)

The update step utilizes the RFS of observations to update the weights of the

particles generated by the prediction operator.

The updated intensity function is approximated by:

γt(x) =

Lt−1+Jt∑
i=1

w
(i)
t|t δx(i)

t|t−1

(x) (4.7.6)

where the weights are updated as follows:

w
(i)
t|t =

[
(1− pd,t(x

(i)
t|t−1)) +

∑
y∈Yt

pd,t(x
(i)
t|t−1)gt(y|x

(i)
t|t−1)

ht(y) + Ct(y)

]
w

(i)
t|t−1 (4.7.7)

Ct(y) =

Lt−1+Jt∑
j=1

pd,t(x
(j)
t|t−1)gt(y|x

(j)
t|t−1)w

(j)
t|t−1 (4.7.8)

In equation (4.7.7), ht(y) is the intensity function of the clutter process.

As in the standard particle filter, resampling is needed after the update step, in order

to minimise particle degeneracy. The set of updated particles
{
w

(i)
t|t , x

(i)
t|t−1

}Lt−1+Jt

i=1

are resampled to generate a new set of particles
{
w̃

(i)
t , x̃

(i)
t

}Lt

i=1
.

Generally, in order to redistribute a sufficient number of particles on the important

zones of the state space, the number of particles to resample is chosen to be propor-

tional to the expected number of targets [100], i.e. Lt = αÑt where Ñt is obtained

by summing the particle weights: Ñt =
∑Lt−1+Jt

i=1 w
(i)
t|t . However, care must be taken

when implementing the resampling step, as the new weights
{
w̃

(i)
t

}Lt

i=1
must sum

up to Ñt, not to one. Figures 4.3 and 4.4 provide an illustration of the particle

approximation of the PHD function on a simple tracking scenario. For convenience,

the pseudo-code for the SMC-PHD algorithm is reported at the end of the chapter.
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Figure 4.3: At each time step the intensity is approximated by a set of particles.
Grey particles are those rejected by the algorithm and red particles are those which
survive the resampling step. The intensity in a region of the space is obtained by
summing the weights of the particles within that region.
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Figure 4.4: The profile of the intensity function can be retrieved by summing the
weights of the particles. Peaks of the function correspond to the zone of the state
space with the highest concentration of targets.
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4.8 Gaussian Mixture PHD Filter

For a limited set of multi-target tracking problems, a closed-form solution exists

and it is given by the Gaussian Mixture Probability Hypothesis Density (GM-PHD)

filter [130, 129]. This section provides an overview of the linear Gaussian multi-

target model for which the equations (4.6.1) and (4.6.2) admit a closed-form solution

and describe the GM-PHD recursion. Convergence properties have been analyzed

in [24] while an extension of the closed form solution to Jump Markov multi-target

models by using the Unscented Transform has been proposed in [131]. A closed form

Gaussian mixture solution to the forward-backward Probability Hypothesis Density

smoothing recursion has also recently been proposed [85].

The GM-PHD closed form solution is based on the assumption that the target

dynamics is linear Gaussian:

ft|t−1(xt|xt−1) = N (xt;Ft−1xt−1, Qt−1) (4.8.1)

as well as the measurement model:

gt(yt|xt) = N (yt;Htxt, Rt) (4.8.2)

The matrices Ft and Qt represent the state transition matrix and process noise co-

variance matrix respectively, and Ht, Rt the observation matrix and the observation

noise covariance matrix, at time t. Moreover, the intensities of the birth and spawn

RFS are supposed to be Gaussian mixtures defined as:

µt(xt) =

Jµ,t∑
i=1

w
(i)
µ,tN (xt;m

(i)
µ,t, P

(i)
µ,t) (4.8.3)

bt|t−1(xt|ζ) =
JB,t∑
j=1

w
(i)
B,tN (xt;F

(j)
B,t−1ζ + d

(j)
B,t−1, Q

(j)
B,t−1) (4.8.4)

where Jµ,t, m
(i)
µ,t, P

(i)
µ,t w

(i)
µ,t as well as JB,t, F

(j)
B,t−1, d

(j)
B,t−1, Q

(j)
B,t−1, are known model

parameters which determine the birth and spawn intensities. A third assumption is

that the probabilities of target detection and target survival do not depend on the

target state:

pd,t(xt) = pd,t (4.8.5)

ps,t(xt) = ps,t (4.8.6)

Under the previous assumptions the intensity function at each time step is a Gaus-

sian mixture of the form:

γt(xt) =

Jt∑
i=1

w
(i)
t N (xt;m

(i)
t , P

(i)
t ) (4.8.7)
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The predicted intensity at time t is also a Gaussian mixture and it is given by the

GM-PHD prediction equation:

γt|t−1(xt) = γS,t|t−1(xt) + γB,t|t−1(xt) + µt(xt) (4.8.8)

where

γS,t|t−1(xt) = ps,t

Jt−1∑
j=1

w
(j)
t−1N (xt;m

(j)
S,t|t−1, P

(j)
S,t|t−1) (4.8.9)

m
(j)
S,t|t−1 = Ft−1m

(j)
t−1 (4.8.10)

Moreover:

P
(j)
S,t|t−1 = Qt−1 + Ft−1P

(j)
t−1(Ft−1)

T (4.8.11)

(4.8.10) and (4.8.11) are the Kalman filter prediction equations.

γB,t|t−1(xt) =

Jt−1∑
j=1

JB,t∑
l=1

w
(j)
t−1w

(l)
B,tN (xt;m

(j,l)
B,t|t−1, P

(j,l)
B,t|t−1) (4.8.12)

m
(j,l)
B,t|t−1 = F

(l)
t−1m

(j)
t−1 + d

(l)
B,t (4.8.13)

where

P
(j,l)
B,t|t−1 = Q

(l)
B,t−1 + F

(l)
B,t−1P

(j,l)
B,t|t−1(F

(l)
B,t−1)

T (4.8.14)

The posterior intensity is a Gaussian mixture of the form:

γt(xt) = (1− pd,t)γt|t−1(xt) +
∑
y∈Yt

γD,t(xt, yt) (4.8.15)

where

γD,t(x, y) =

Jt|t−1∑
j=1

w
(j)
t (y)N (x;m

(j)
t|t (y), P

(j)
t|t ) (4.8.16)

w
(j)
t (y) =

pd,tw
(j)
t|t−1q

(j)
t (y)

ht(y) + pd,t
∑Jt|t−1

h=1 w
(h)
t|t−1q

(h)
t (y)

(4.8.17)

q
(j)
t (y) = N (y;Htm

(j)
t|t−1, Rt +HtP

(j)
t|t−1H

T
t ) (4.8.18)

m
(j)
t|t (y) = m

(j)
t|t−1 +K

(j)
t (y −Htm

(j)
t|t−1) (4.8.19)

P
(j)
t|t = [I −K

(j)
t Ht]P

(j)
t|t−1 (4.8.20)

K
(j)
t = P

(j)
t|t−1H

T
t (HtP

(j)
t|t−1H

T
t +Rt)

−1 (4.8.21)

The equations (4.8.19), (4.8.20) and (4.8.21) are the update equations of the Kalman

filter. The expected number of targets is obtained by summing the weights of the

Gaussian terms [129, 130].
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After the update the number of Gaussians in the mixture is (Jt−1(1+JB,t)+Jγ,t)(1+

|Yt|). Pruning and merging techniques have to be used in order to prevent the

number of terms from growing exponentially; deterministic techniques and heuristics

have been discussed extensively in [100] where pruning schemes based on a tree-based

structure are proposed.

The most basic pruning scheme, however, is based on the deterministic choice of a

threshold and on the consequent elimination of the Gaussian terms whose weight

is below the threshold value. Section 5.2.1 evaluates different pruning schemes and

provides comparions.

In many real-world applications the system and the observation function are not

linear Gaussian; in this case the posterior intensity can no longer be represented by

a Gaussian Mixture, nonetheless the GM-PHD filter can be adapted to non-linear

models by replacing the Kalman filter equations (4.8.10), (4.8.11) and (4.8.19) -

(4.8.21) by their linearization as in the Extended Kalman filter (EK) or by their

approximation as in the Unscented Kalman filter (UKF) [131]. For convenience, the

pseudo-code for the GM-PHD algorithm is reported at the end of the chapter.

4.9 Extensions to the PHD recursion

One limitation of the PHD recursion is the elimination of higher order moments

which results in a loss of information on the cardinality causing an imprecise esti-

mation of the number of objects in case of high clutter intensity.

The reason is that the PHD recursion propagates cardinality information with the

intensity of a Poisson point process and since the mean and the variance of a Poisson

distribution are equal, the variance of the cardinality estimate is expected to be high

in presence on an high number of targets. In [79] Mahler introduced a generalization

of the PHD recursion, known as the Cardinalized PHD (CPHD), that jointly propa-

gates the posterior intensity function and the posterior cardinality distribution. The

closed form solution to the CPHD recursion in case of linear-Gaussian model was

published in [136]. The dissertation [135] offers an extensive and detailed study on

the CPHD recursion and its implementation.

An extensive amount of research has also been done on tractable approximations

to the multi-object Bayes recursion. The Multi-Object Multi-Bernoulli (MeMBer)

recursion proposed by Mahler in [80] propagates approximately the multi-object

posterior density via the propagation of the parameters of a multi-Bernoulli RFS.

However, as demonstrated by Vo et al. in [137], the original MeMBer recursion

is affected by a cardinality bias. The problem was addressed by the same authors

which proposed a novel unbiased multi-Bernoulli based approximation, called Car-

dinality Balanced MeMBer (CBMeMBer) filter. The same authors also provided the

analytical solution for linear Gaussian models. The Multi-Object Multi-Bernoulli is
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outside the scope of this thesis, reference to the original formulation as well as the

CBMeMBer filter can be found in [135].

Extended and Unresolved targets

The Probability Hypothesis Density (PHD) filter and the Cardinalized Probabil-

ity Hypothesis Density (CPHD) filter are single-sensor filters and their multisensor

generalizations are computationally intractable. The reason is that the standard

multi-target measurement model on which they are based makes two kinds of ap-

proximations: the small target approximation and no unresolved targets approxima-

tion respectively. The first assumes that targets are sufficiently far away that they

can be modeled as mathematical points. The second assumes that targets are close

enough that no measurement is generated by more than a single target.

These assumptions are generally not verified in real-life applications. Two examples

are as follows [81, 82]: suppose that a radar radiates a pulse at a ground target that

is relatively near the radar. If the wavelength of the pulse is sufficiently small, it will

tend to be back-reflected much more strongly by those areas on the target surface

that resemble corner reflectors. The result is an image of the target consisting of a

large number of point detections that stand out from the rest of the back-reflection

signature. Targets that generate measurement-sets of this kind are called extended

targets. On the other hand, when multiple targets are present in a scene, it is possi-

ble that a single radar-signature peak is due to a superposition of the signals of two

or more targets that are very close together (relative to the resolution of the sensor).

Such targets are said to be unresolved. In this case the PHD equations can be de-

rived but they are combinatorial in form and thus computationally intractable. One

recent contribution to the practical application of the GM-PHD filter to the tracking

of extended targets by approximating Mahler’s measurement-update equations has

been published in [44].

4.10 Multi-object miss distance

While the concept of a miss-distance is straightforward in single-object problems,

this is not the case in the multi-object case.

The concept of miss-distance as the error between the true and the estimated states

of the targets plays a fundamental role in filtering as it allows the comparison of

different algorithms and establishes an objective criterion to assess the quality of a

filter. For a relatively long time a satisfactory notion of a multi-object miss-distance

was not available despite an abundance of multi-object filtering techniques. A com-

mon practice was to use the optimal assignment paradigms such as that of Drum-

mond and al. [39, 111] but this approach was inherently flawed as the formula is not a
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metric and can only consistently measure the distance between multi-object states

of the same cardinality. The first rigorous approach to multi-object performance

evaluation was proposed by Hoffman and Mahler in [46] based on a Wasserstein

construction. However the technique did not admit a physically consistent interpre-

tation and suffered from severe limitations [135].

A key contribution was provided by Schuhmacher, Vo and Vo in [115] with the defi-

nition of the OSPA metric as the first meaningful multi-object miss-distance which

can take into account the cardinality errors as well as the localization errors in a

physically meaningful and mathematically consistent manner. Recently, one of the

OSPA original authors described an adaptation of the metric [110] to evaluate the

performance of multi-target tracking algorithms by considering the track label error;

a second variant of the original metric has been proposed in [45] under the name of

Mean OSPA (MOSPA).

As the OSPA metric is extensively used in further chapters to compare numerical

results this section provides an overview of its formula, while the discussion of the

mathematical properties can be found in [115].

Definition 4.10.1. [OSPA]

Denote by d
(c)
p (x, y) := min(c, d(x, y)) the distance between two points x and y that is

cut off at c, and by Πj the set of permutations on {1, 2, . . . , j}, j ∈ N+ = {1, 2, . . .}.
For 1 ≤ p < ∞, c > 0 and two arbitrary finite subsets of ground-truth target posi-

tions X = {x1, . . . , xm} and target estimates Y = {y1, . . . , yn}, the OSPA distance

is defined by

d
(c)

p (X, Y ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if m = n = 0(
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

)) 1
p

if m ≤ n

d̄
(c)
p (Y,X) if m > n

(4.10.1)

The order parameter p determines the sensitivity of the metric in penalizing outlier

estimates while the cut-off parameter c determines how the metric penalizes cardi-

nality errors as opposed to localisation errors.

In the context of multi-object performance evaluation, it is useful to interpret the

OSPA distance by considering separately two components which account respec-

tively for the localisation and the cardinality errors:

e
(c)
p,loc(X, Y ) :=

(
1

n
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p

) 1
p

(4.10.2)
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e
(c)
p,card(X, Y ) :=

(
cp(n−m)

n

) 1
p

(4.10.3)

if m ≤ n, and ē
(c)
p,loc(X, Y ) := ē

(c)
p,loc(Y,X), ē

(c)
p,card(X, Y ) := ē

(c)
p,card(Y,X) if m > n.

Figure 4.5 shows intuitively the distances considered during the computation of the

OSPA metric. Figures 4.6 and following and 4.9 and following show the application

of the OSPA to two simple scenarios.

c

Figure 4.5: An intuitive representation of an optimal subpattern assignment. Black
dots represents the ground-truth RFS X while a cross indicates the position of
an estimate. The optimal assignment is immediately clear from inspection and
indicated with a dotted-line. The cut-off value c is shown for the upper-right point.
Two points are not estimated. The corresponding cardinality error is calculated by
taking into account the cut-off value and the difference in cardinality between the
two RFSs.
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Figure 4.6: Test scenario I. One target evolves in a mono-dimensional region. Its
position as estimated by the GM-PHD is shown as a red (+) with an offset of 40
units for the sake of clarity. Misdetections are highlighted by a circle.
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Figure 4.7: Number of ground truth targets and number of estimates.
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Figure 4.8: Ospa components. Cut-off value c = 50, p = 1. GM-PHD pruning
threshold is set to 0.5
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Figure 4.9: Test scenario II. Two targets evolve in a mono-dimensional region.
Their positions as estimated by the GM-PHD are shown as a red (+) with an offset
of 40 units for the sake of clarity. Misdetections are highlighted by a circle.
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Figure 4.10: Number of ground truth targets and number of estimates.
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Figure 4.11: OSPA components. Cut-off value c = 50, p = 1. GM-PHD pruning
threshold is set to 0.5

65



CHAPTER 4. MULTI-OBJECT FILTERING IN THE RFS FRAMEWORK

4.11 Multi-object state estimation

As introduced in section 4.2, conventional estimators (such as EAP and MAP) fail

at providing target estimates in the multi-target case; moreover, the inconsistencies

caused by the mismatch in the units of measurements of the multi-object density

cannot be resolved in a consistent way to adapt the EAP or MAP estimators to the

multi-object case.

The problem is illustrated by the following example [135, 78]: consider a scenario

where there is at most one object located in the interval [0, 2] with units given in

metres. Let the object state X be a Bernoulli RFS with probability density:

p(X) =

⎧⎨⎩
0.5 if X = ∅
0.25 if X = {x}, 0 ≤ x ≤ 2

0 otherwise

In other words there is 0.5 probability that the object is absent and if the object is

present, it is equally likely to be found anywhere in the interval [0, 2]. In this case the

EAP estimate is not defined since the addition of sets is not defined. The MAP esti-

mate, on the contrary would provide X = ∅ as an estimate, since it is the case with

the highest relative probability. Of course this comparison is meaningless because

the estimator is considering two quantities with different units of measurement. The

inconsistency is revealed for example by changing the units of measurements, from

metres to kilometers. In this case the probability density becomes:

p(X) =

⎧⎨⎩
0.5 if X = ∅
250 if X = {x}, 0 ≤ x ≤ 0.002

0 otherwise

and the naive MAP estimator would give X = {x} as the answer.

For this reason it is necessary to rely on alternative solutions for multi-object state

estimation. The physical meaning of the intensity function, (i.e. the expected num-

ber of objects occurring in a region of the state space) is generally used, as its

peaks indicate the regions of the state space with an high concentration of targets.

A short description of the Marginal Multi-Object estimator (MaM) and Joint

Multi-Object (JoM) estimator reported here is intended as a reference; the de-

tailed discussion can be found in [135].

The Marginal Multi-Object estimator is defined as a two-step estimator where the

number of objects is first estimated using MAP on the posterior cardinality distri-

bution, and then individual object states are estimated using a MAP estimate on

the posterior density:

n̂t = arg sup
n
ρt(n|Y1:y) (4.11.1)
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X̂MaM
t = arg sup

X:|X|=n̂t

pt(X|Y1:y) (4.11.2)

where ρt denote the posterior cardinality distribution of the target RFS. Given c, a

dimensionless constant, the Joint Multi-Object estimator is defined as:

X̂JoM
c = arg sup

X
pt(X|Y1:y)

cX

|X|! (4.11.3)

The parameter c determines the accuracy for the estimator as well as its rate of

convergence. The techniques of multi-object state estimation for the GM-PHD and

SMC-PHD used in the thesis are discussed in the next sections.

Multi-object state estimation for the SMC-PHD

From the particle representation of the posterior intensity the state estimates of

the individual targets are extracted by locating peaks via clustering. Different al-

gorithms such as the expectation-maximization (EM) or the K-means have been

proposed and studied in the literature [117, 132, 22]. The EM method attempts

to find the Gaussian mixture that best fits the particles while the K-means [71]

partitions the particles of the posterior into the number of clusters given by the

integer approximation of intensity integrated over the domain. The performance of

both techniques have been studied in [17] with the result that the EM algorithm

performs poorly in comparison to the K-means clustering. In the SMC-PHD filter

presented in later chapter, K-means clustering is used.

Multi-object state estimation for the GM-PHD

In the Gaussian Mixture PHD filter the posterior intensity function at each time

step is represented by a mixture of weighted Gaussians terms. The estimates are

extracted by locating the means of all the terms with a weight above a fixed thresh-

old. For instance, given a threshold wT , the estimates X̂t are obtained by taking

the means m
(i)
t of the Gaussian terms:

X̂t = {m(i)
t : w

(i)
t ≥ wT} (4.11.4)

As a result, the GM-PHD filter does not require a computationally demanding clus-

tering technique like the SMC-PHD filter. Enhancements to this basic and widely

used strategy are discussed in [100]. Section 5.2 investigates a stochastic pruning

strategy and compares it with the standard, deterministic strategies proposed in the

literature.
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Algorithm 2 Sequential Monte Carlo PHD filter (SMC-PHD)

Initialization.
Sample L0 initial particles:
x
(i)
0 ∼ q0(.) (tipically the normalize birth intensity µ0/µ0(1))

Set the initial weights:
w

(i)
0 = N0/L0

Prediction.
At time t ≥ 1
for time t = 1, . . . do
Sample the prediction particles and compute their weights
for i = 1, . . . , Lt−1 do

x
(i)
t|t−1 ∼ qt(.|x(i)t−1, Yt)

w
(i)
t|t−1 =

φt(x
(i)
t|t−1

,x
(i)
t−1)

qt(x
(i)
t|t−1

|x(i)
t−1,Yt)

w
(i)
t−1

end for
Sample the birth intensity particles and compute their weights
for i = Lt−1 + 1, . . . , Lt−1 + Jt do

x
(i)
t|t−1 ∼ pt(.|Yt)

w
(i)
t|t−1 =

1
Jt

µk(x
(i)
t|t−1

)

pt(x
(i)
t|t−1

|Yt)

end for
Update.
For each observation y ∈ Yt
Ct(y) =

∑Lt−1+Jt
j=1 pd,t(x

(j)
t|t−1)gt(y|x

(j)
t|t−1)w

(j)
t|t−1

for i = 1, . . . , Lt−1 + Jt do

w
(i)
t|t =

[
(1− pd,t(x

(i)
t|t−1)) +

∑
y∈Yt

pd,t(x
(i)
t|t−1

)gt(y|x(i)
t|t−1

)

ht(y)+Ct(y)

]
w

(i)
t|t−1

end for
Resampling step.

Compute the total mass Ñt =
∑Lt−1+Jt

i=1 w
(i)
t|t

Resample
{
w

(i)
t|t , x

(i)
t|t−1

}Lt−1+Jt

i=1
to obtain

{
w̃

(i)
t , x̃

(i)
t

}Lt

i=1

The number of particles to resample is chosen Lt = αÑt

Continue by using
{
w̃

(i)
t , x̃

(i)
t

}Lt

i=1
end for
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Algorithm 3 Gaussian Mixture PHD filter (GM-PHD)

Given {w(i)
t−1, m

(i)
t−1, P

(i)
t−1}Jt=1

i=1 and the measurement set Yt
Prediction of birth targets
i = 0
for j = 1, . . . , Jµ,t do
i = i+ 1
w

(i)
t|t−1 = w

(j)
µ,t, m

(i)
t|t−1 = m

(j)
µ,t, P

(i)
t|t−1 = P

(j)
µ,t

end for
for j = 1, . . . , JB,t do
for l = 1, . . . , Jt−1 do
i = i+ 1
w

(i)
t|t−1 = w

(l)
t−1w

(l)
B,t−1, m

(i)
t|t−1 = d

(j)
B,t−1 + F

(j)
B,t−1m

(l)
t−1,

P
(i)
t|t−1 = Q

(j)
B,t−1 + F

(j)
B,t−1P

(l)
t−1(F

(j)
B,t−1)

T ,
end for

end for
Prediction of existing targets
for l = 1, . . . , Jt−1 do
i = i+ 1
w

(i)
t|t−1 = ps,tw

(j)
t−1, m

(i)
t|t−1 = F

(j)
t−1m

(j)
t−1,

P
(i)
t|t−1 = Qt−1 + Ft−1P

(j)
t−1(Ft−1)

T ,
end for
Jt|t−1 = i
PHD update components
for j = 1, . . . , Jt|t−1 do

η
(j)
t|t−1 = Htm

(j)
t|t−1, S

(j)
t = HtP

(j)
t|t−1H

T
t +Rt

K
(j)
t = P

(j)
t|t−1H

T
t (S

(j)
t )−1 , P

(j)
t|t = [I −K

(j)
t Ht]P

(j)
t|t−1

end for
Update
for j = 1, . . . , Jt|t−1 do

w
(j)
t = 1− pd,tw

(j)
t|t−1, m

(j)
t = m

(j)
t|t−1,P

(j)
t = P

(j)
t|t−1

end for
l = 0
for each observation y ∈ Yt do
l = l + 1
for j = 1, . . . , Jt|t−1 do

w
(lJt|t−1+j)

t = pd,tw
(j)
t|t−1N (z; η

(j)
t|t−1, S

(j)
t ),

m
(lJt|t−1+j)
t = m

(j)
t|t−1 +K

(j)
t (z − η

(j)
t|t−1), P

(lJt|t−1+j)
t = P

(j)
t

end for

w
(lJt|t−1+j)

t =
w

(lJt|t−1+j)

t

ht(y)+
∑Jt|t−1

i=1 w
(lJt|t−1+j)

t

, for j = 1, . . . , Jt|t−1

end for
Jt = lJt|t−1 + Jt|t−1

out: {w(i)
t , m

(i)
t , P

(i)
t }Jti=1
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Chapter 5

PHD Filters: numerical studies

This chapter concludes the first part of the dissertation by presenting a series of

numerical studies on different implementations of the PHD recursion and their per-

formance. Section 5.1 defines a test problem which is very similar to multi-target

tracking instances encountered in military applications. In particular, PHD filters

are applied to simulated scenarios provided by the French naval defense provider

DCNS with the goal of investigating the difficulties on complex, realistic, naval and

aerial filtering problems and to measure their performance.

Section 5.2 focuses on the pruning and merging step of the GM-PHD and investi-

gates a stochastic strategy for the automatic determination of the pruning threshold.

Section 5.3 describes a novel technique for the implementation of the PHD re-

cursion on numerical grids.

Section 5.4 presents a mean-field particle algorithm based on the sampling of the

associations between particles and obsevations (enriched with virtual states).

5.1 Aerial and Naval Tracking with PHD filters

Introduction

In this section the Probability Hypothesis Density (PHD) filter is applied to realis-

tic three-dimensional aerial and naval scenarios. The study aims at comparing the

performances of different implementations of the PHD filter in scenarios that are as

similar as possible to those encountered in real-applications.

For instance, in realistic environments the clutter distribution may depend on vari-

ous factors, such as the geometry of the surveillance area or the physical properties

of the measurent process. When this is the case, it is necessary to derive the expres-

sion of the clutter intensity in order to apply the PHD recursion. Another source of
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difficulty comes from the heterogeneity of the targets which may travel or maneuver

with different dynamics in regions with different physical properties. In such cases

the implementation of PHD filters has to be adapted and generalized in different

ways.

Section 5.1.1 and followings describe the target and clutter models and provide de-

tails on the implementation of the filters. Results are presented in section 5.1.3 and

conclusions are drawn in section 5.1.3.

5.1.1 Target and measurement model

The kinematic state vector of each target (coordinates, velocity and acceleration at

time t) is denoted by xt = [ξx,t, ξy,t, ξz,t, ξ̇x,t, ξ̇y,t, ξ̇z,t, ξ̈x,t, ξ̈y,t, ξ̈z,t]
T and its evolution is

described by an interacting multiple model (IMM) composed by a constant velocity

model [65] and a constant-turn model perturbed by random accelerations.

The constant velocity model is defined as follow:

xt = Ftxt−1 +Gtat (5.1.1)

where

Ft =

⎡⎣ I3 T · I3 1
2
T 2· I3

03 I3 T · I3
03 03 I3

⎤⎦ , Gt =

⎡⎣ 03
03
I3

⎤⎦ , at ∼ N

⎛⎝⎛⎝ 0

0

0

⎞⎠ ,

⎛⎝ σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

⎞⎠⎞⎠
(5.1.2)

and where T is the sampling period,In and 0n represent the n × n identity matrix

and zero matrix respectively.

The values of [σx, σy, σz] are set to [20, 20, 10] m/s2 for aerial targets and to [2, 2, 10−5]

m/s2 for naval targets. The constant turn model is defined as:

xt+1 = Φtxt + Γtat (5.1.3)

where Φt , Γt and the system noise covariance matrix are:

Φt =

⎡⎣ I3 T · (I3 +B) 03
03 T · (I3 + A) 03
03 03 I3

⎤⎦ ,Γt =

⎡⎣ 03
03
I3

⎤⎦ , at ∼ N

⎛⎝⎛⎝ 0

0

0

⎞⎠ ,

⎛⎝ σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

⎞⎠⎞⎠
(5.1.4)

A =

⎡⎣ c1d1 −c2ωz − c1ωxωy c2ωy − c1ωxωz

c2ωz − c1ωxωy c1d2 −c2ωx − c1ωyωz

−c2ωy − c1ωxωz c2ωx − c1ωyωz c1d3

⎤⎦

B =

⎡⎣ c3d1 −c1ωz − c3ωxωy c1ωy − c3ωxωz

−c1ωz − c3ωxωy c3d2 c1ωx − c3ωyωz

−c1ωy − c3ωxωz −c1ωx − c3ωyωz c3d3

⎤⎦
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d1 = ω2
y + ω2

z d2 = ω2
x + ω2

z d3 = ω2
x + ω2

y

c1 =
cos(ΩT )−1

Ω2 c2 =
sin(ΩT )−1

Ω
c1 =

1
Ω2 (

sin(ΩT )−1
Ω

− T )

where Ω = [ωx, ωy, ωz]
T denotes the angular velocity vector.

The radar, mounted on a ship, completes a 360-degrees scan in ∆T = 2 sec. and

collects measurements of targets whose distance is between a blind distance of 300

mt. (Dmin) and the visibility range (Dmax = 100 km) and whose elevation angle is

between a maximal and a minimal value (θmin, θmax). The measurements are affected

by zero-mean Gaussian random noises with known variance. The observation func-

tion represents the passage from Cartesian to spherical coordinates in the platform

system of reference. Each observation at time t has the form zt = [rt, φt, θt]
T , where

rt represents the radial distance, φt the azimuth angle and θt the elevation angle of

a point in the surveilled area:

zt =

⎡⎣ rt
φt

θt

⎤⎦ =

⎡⎢⎣
√
∆2

x +∆2
y +∆2

z

tan−1(∆y

∆x
)

tan−1(

√
∆2

x+∆2
y

∆z
)

⎤⎥⎦+

⎡⎣ wr,t

wφ,t

wθ,t

⎤⎦ (5.1.5)

where µt = [Px,t, Py,t, Py,t]
T denotes the radar position, Hant the vertical position of

the antenna with respect to the level of the sea, ∆x = (ξx,t−Px,t), ∆y = (ξy,t−Py,t),

∆z = [ξz,t − (Pz,t +Hant)], wr,t ∼ N (0, σ2
r), wφ,t ∼ N (0, σ2

φ) and wθ,t ∼ N (0, σ2
θ).

Figure 5.1: Schematic representation of the region observed by the radar.

5.1.2 Clutter Model

The clutter model takes into account the geometry of the surveilled region and, to

a lesser degree, its physical properties. It is modeled as the superposition of two

Poisson point processes with different intensities. The first models the false alarms
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generated by the reflection of the electromagnetic beam on the surface of the sea,

the second the spurious measurements generated by atmospheric noises.

Sea-clutter distribution

This kind of false measurements are distributed over a circular region around the

radar and have a maximal elevation of 20 meters. Their distance is comprised be-

tween a minimal and a maximal value: Dcmax and Dcmin.

The azimuth angle is uniformly distributed in [0, 2π] and the elevation follows a

chi-square distribution with parameter k = 1. The clutter RFS is modelled as a

Poisson point process with intensity: κS(z) = λSπS(r, φ, θ) = λSπ
r
S(r)π

φ
S(φ)π

θ
S(θ)

where πS(r, φ, θ) is the time-invariant clutter probability density over the surveil-

lance region and λS the average number of clutter points per scan.

Air-clutter distribution

The false alarms of this type are distributed in the whole region of the sky observed

by the radar; their azimuth, elevation and distance are sampled uniformly from the

intervals [0, 2π], [θmin, θmax] and [Dmin, Dmax]. As before, the clutter RFS is modeled

as a Poisson RFS with intensity: κA(y) = λAπA(r, φ, θ) where λA is the average

number of air-clutter points per scan. The intensity of the whole process is given

by: κ(y) = κS(y) + κA(y).

An example of the realization of the clutter process over the surveillance region is

given in Fig. 5.2.
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Figure 5.2: Superposition of the point processes modeling the air-clutter (black)
and sea-clutter (red) in a region of 100km.
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Implementation details for the SMC-PHD Filter

This section provides an overview of the SMC-PHD implementation with a special

focus on the prediction step. During the prediction a pre-defined number of parti-

cles are sampled from a proposal distribution pt(.|Yt) with the purpose of tracking

new targets appearing in the scene. As the surveillance region is very large, and

targets may appear at any point, sampling uniformly over the search space would

be impracticable. The birth intensity particles are instead created around each ob-

servations. For instance, let y
(j)
t = [r

(j)
t , φ

(j)
t , θ

(j)
t ]T , j = 1 . . . |Yt| be an observation

in the measurement RFS at time t: the birth intensity particles ζ
(i)
j,t = [r

(i)
j,t , σ

(i)
j,t , θ

(i)
j,t ]

are sampled according to r
(i)
j,t ∼ r

(j)
t + N (.; 0, σ2

r), φ
(i)
j,t ∼ φ

(j)
t + N (.; 0, σ2

φ) and

θ
(i)
j,t ∼ θ

(j)
t +N (.; 0, σ2

θ). The velocity component [ξ̇x,t, ξ̇y,t, ξ̇y,t] of each particle takes

into account the uncertainty on the initial velocity. The idea has been independently

proposed and formalised in the recent paper [47].

Implementation Details for the GM-PHD Filter

Similarly, in the GM-PHD filter when targets may appear at any point of the surveil-

lance region it is easier to model the birth intensity at time t by using the information

provided by the observation RFS at time t−1 instead of approximating an uniform

intensity with Gaussian terms. In this case, at each time step the Gaussian mixture

approximating the birth intensity is:

bt(x, Yt−1) =

|Yt−1|∑
i=1

w
(i)
B,tN (x;µ

y
(i)
t−1,t

,Σ
(i)
B,t) (5.1.6)

where w
(k)
B,t and Σ

(k)
B,t are carefully chosen to model the intensity and the uncertainty

about the evolution of new targets. Each Gaussian term is centered on a previous

observation and the velocity components reflect the expected velocity of new targets.

5.1.3 Numerical results

This section reports the results of the SMC-PHD and GM-PHD filters applied to

different scenarios. The detailed version of the SMC-PHD algorithm can be found

in [132] while the GM-PHD algorithm is discussed in detail in [130]. The tar-

get trajectories are simulated by using the parameters provided by DCNS and the

measurements are generated by perturbing the ground-truth trajectories with zero-

mean Gaussian noises with standard deviations: σφ = 0.3 deg, σθ = 0.5 deg and

σr = 15mt. The maximal elevation angle for the radar is θmax = 60 deg and the

target detection probability is 0.98. In the case of the SMC-PHD the particles are

clustered using the K-Means [71] algorithm while for the GM-PHD the estimates
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are extracted by taking the locations of the Gaussian terms having a weight above

a predefined threshold. The Optimal Sub-pattern Assignment (OSPA) Metric [115]

with cutoff parameter c = 5000 is used to determine the accuracy of the filters.

Example 1

In this scenario, 10 aircrafts of the same type travel across the surveillance zone, 20

spurious measurements are registered over the surveilled region of the sky during

each scan. The SMC-PHD filter is configured with 300 particles for each active target

and it approximates the birth intensity allocating 100 particles to each measurement

collected by the radar. The GM-PHD uses a truncation threshold of 0.4 and a

merging threshold of 500mt. The results of the GM-PHD and SMC-PHD filters are

shown in Figures 5.3 and 5.4.

Table 5.1 reports the average number of detected targets and the average OSPA

distance using different levels of clutter and different thresholds for the GM-PHD

pruning operator (P.T.). The GM-PHD provides a better estimate of the target

number as well as a lower localisation error. Higher values on the OSPA distance

reflect the bias introduced by the clustering procedure required by the SMC-PHD.

No clutter N. targets OSPA
GMPHD (P.T. = 0.4) 9.72 (0.001) 779.30 (3410.64)
GMPHD (P.T. = 0.01) 10.91 (0.001) 1236.26 (1201.90)
SMCPHD 300 part. 9.80 (0.0006) 969.66 (2093.82)

10 air-clutter N. targets OSPA
GMPHD (P.T. = 0.4) 9.23 (0.003) 1209.20 (3556.39)
SMCPHD 300 part. 9.08 (0.044) 1639.79 (26457.08)
20 air-clutter N. targets OSPA
GMPHD (P.T. = 0.4) 9.01 (0.003) 1396.24 (2105.21)
GMPHD (P.T. = 0.01) 10.85 (0.004) 1297.86 (2607.72)
SMCPHD 300 part. 8.44 (0.20) 2034.08 (71658.14)

Table 5.1: Average filtering statistics with different configuration parameters (Ex-
ample 1) (Avg. and var.)

76



5.1. AERIAL AND NAVAL TRACKING WITH PHD FILTERS

−8 −6 −4 −2 0 2 4 6 8 10

x 10
4

−6

−4

−2

0

2

4

6

8
x 10

4

x coordinate (m)

y 
co

or
di

na
te

 (
m

)

Figure 5.3: (Ex.1) GM-PHD Filter output. Target trajectories (continuous lines)
and target estimates (dots).
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Figure 5.4: (Ex.1) SMC-PHD Filter output. Target trajectories (continuous lines)
and cluster centroids corresponding to target estimates (dots).
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Figure 5.5: (Ex.1) OSPA localization error and cardinality error (averaged over 10
iterations). 300 time steps, 10 aircrafts, 20 air-clutter observations per scan on
average, OSPA parameters p = 2, c = 5000.
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Figure 5.6: (Ex.1) 3D perspective of the filtering scenario.
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Example 2

In the second example 10 naval targets are added to the previous scenario. Each one

is maneuvering around the platform mounting the radar while 10 aircrafts cross the

sky at different altitudes. During each scan 20 spurious measurements are registered

close to the surface of the sea and 10 over the observed region of the sky. Both filters

are configured with the same parameters as in example 1. The result of the filtering

is reported in Figure 5.7 and 5.8. Table 5.2 reports the statistics about the number

of targets filtered and the OSPA distance with different levels of clutter and different

thresholds for the GM-PHD pruning operator (P.T.).

No clutter N. targets OSPA
GMPHD (P.T. = 0.4) 19.38 (0.006) 869.11 (4009.46)
GMPHD (P.T. = 0.01) 21.14 (0.002) 1041.02 (1030.92)
SMCPHD 19.59 (0.0005) 1169.95 (1138.31)
20 sea-clutter, 10 air-clutter N. targets OSPA
GMPHD (P.T. = 0.4) 18.26 (0.003) 1394.68 (644.35)
GMPHD (P.T. = 0.01) 21.41 (0.015) 1227.67 (2129.91)
SMCPHD 300 particles 18.887 (0.007) 1505.78 (1154.87)

Table 5.2: Average filtering statistics with different configuration parameters (Ex-
ample 2) (Avg. and var., 10 iterations)
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Figure 5.7: (Ex.2) GM-PHD Filter output. Target trajectories (continuous lines)
and target estimates (dots).
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Figure 5.8: (Ex.2) SMC-PHD Filter output. Target trajectories (continuous lines)
and cluster centroids corresponding to target estimates (dots).
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Figure 5.9: (Ex.2) OSPA localization error and cardinality error (averaged over 10
iterations). 300 time steps, 10 aircrafts, 10 naval targets, 20 sea-clutter and 10
air-clutter observations per scan on average, OSPA parameters p = 2, c = 5000.
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Example 3

In the third example the filtering performance and the execution time is measured

on a scenario with 99 naval targets maneuvering in a region of 30km around the

platform. 50 spurious measurements are registered during each scan. Due to clutter

intensity and to the high number of active targets the filtering of this scenario

was impractical with our Matlab implementation of the SMC-PHD filter. On the

contrary the Matlab version of the GM-PHD filter had no problem in processing

it on a normal personal computer. The scenario is reported in Figure 5.10. The

clutter process is not shown to preserve the readability of the figure. A zoom of

the surveillance region in the proximity of the radar is shown in Figure 5.11; the

circular area of space around the origin without observations corresponds to the

radar’s blind distance reagion. The radar is configured with the same parameters

as in examples 1 and 2. Figure 5.12 shows the estimate of the number of targets

during each time step. Despite the high number of clutter points the filter is able

to detect, on average, 94.7 targets on the 97 detected on average. The average

assignment error was 366 m. which can be considered quite satisfactory given that

only one radar is collecting angular measurements of targets distant up to 30km. The

assignment error is computed by measuring the average distance between the mean

of the Gaussian terms in the posterior intensity and the ground truth positions. A

test machine equipped with an Intel 2.4 Ghz processor took 15 seconds on average

to process each simulated scan. The time required to run the whole simulation (650

time steps) was 161 minutes.
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Figure 5.10: (Ex.3) Filtering scenario: 99 naval targets (continuous lines) maneu-
vering in the surveillance zone.
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Figure 5.11: (Ex.3) Zoom over the surveillance region near the radar (at the origin).
The black arrow indicates the radar’s blind distance.
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Figure 5.12: The target detection probability is 0.98. The RFS of the observations
contains on average 147 measurements. The GM-PHD filter is able to maintain an
accurate estimate of the number of targets.
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SMC-PHD filter performance w.r.t. the number of particles

The number of particles used in the sequential Monte Carlo PHD filter to approxi-

mate the intensity function influences strongly the quality of the result. To evaluate

how the filtering performance depends on it, the scenario of example 1 is repeatedly

filtered by using an increasing number of particles. Ten iterations are made for

each value, starting from 50 particles per active target, up to 2000. The average

number of targets filtered and the localisation errors are reported in Figures 5.13

and 5.14. As it is natural to expect, when the number of particle increases the filter

becomes much more accurate in the identification of active targets and the overall

filtering error reduces. Nevertheless, the computational cost increases linearly on

the number of particles (Figure 5.15) and the GM-PHD is generally able to provide

good results at a fraction of the computational cost required by the SMC-PHD. The

simulation with 2000 particles per target took about 250 minutes to complete on

the test machine, and the result is only slightly better than the one obtained with

the GM-PHD which required less than 3 minutes.
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Figure 5.13: Average estimation of the number of targets estimated by the SMC-
PHD filter with an increasing number of particles. The average value provided by
the GM-PHD is shown as a dashed line.
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Figure 5.14: Quality of the filtering provided by the SMC-PHD with an increasing
number of particles, measured using the average OSPA distance. The average value
provided by the GM-PHD is shown as a dashed line.
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Figure 5.15: Processing time required with an increasing number of particles. The
SMCPHD filter is implemented in Matlab and the simulation is run on a Intel 2.4
Ghz processor. As a reference the time required by the GM-PHD filter to process
the same scenario (2.8 min) is reported.
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Conclusions

In the simulations, the GM-PHD filter outperformed the SMC-PHD in both estimate

quality and computational cost. The time required by the SMC-PHD to filter a

scenario was always substantially larger than the time required by the GM-PHD.

The reason is mainly because the GM-PHD applies pruning and merging techniques

to reduce the number of Gaussian terms in the posterior intensity and does not

require clustering to extract target estimates.

The computational cost is a fundamental aspect in practical applications, where

new measurements may be available every few seconds and filters should provide a

result as soon as possible. Even if the GM-PHD constitutes a closed form for the

PHD recursion only for linear Gaussian models, its extension using the Unscented

Transform makes it applicable to targets having a more complex and non-linear

dynamic. In the tests, when a considerable number of targets is used, the number of

particles required by the SMC-PHD to obtain an acceptable filtering quality rapidly

becomes prohibitive. It is also important to note that both filters need a very

careful choice of the parameters and it is generally easy to have one filter working

better than one other if a better choice of the parameters is done; furthermore, a

good knowledge of the clutter process and target dynamic is important to obtain

good results. Due to the high number of configuration parameters, the process of

adapting the filter may require a careful fine-tuning.
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5.2 Stochastic pruning strategy for the GM-PHD

Introduction

In the GM-PHD filter [130] discussed in section 4.8, the PHD intensity is represented

by mixture of mt Gaussian terms. The number of terms increases according to the

relation:

mt = (mt−1 +mγ,t)(1 + |Yt|) (5.2.1)

where |Yt| denotes the number of measurements at time t and mγ,t the number of

gaussians modelling the birth intensity. It is therefore necessary to make approxi-

mations.

The general approach consists in keeping the number of Gaussian terms bounded by

using two steps commonly called pruning and merging. Merging consists in fusing

the Gaussians whose Mahalanobis distance is below a given threshold, while the

pruning step eliminates the Gaussians with low weights. The error made by using

this strategy has been studied in [24]. Clearly, the pruning strategy is biased.

In the following sections we study an unbiased resampling scheme that leaves a

chance to low-weighted Gaussians to be selected; the algorithm has been proposed

by P. Clifford and P. Fearnhead and originally applied to the problem of estimating

break points in well-log data [41]. Unfortunately however, the application of this

algorithm in the pruning step of the GM-PHD does not provide satisfactory results

and generally underperforms biased pruning strategies.

A practical track-management issue related to the pruning and merging step

of the GM-PHD that has been noticed during numerical tests is the disactivation

of tracks caused by repeated misdetection. In this case repeated misdetections

cause certain Gaussian terms to be incorrectly eliminated. Section 5.2.3 proposes a

multitarget-tracker adapted pruning strategy developed to address this problem.

5.2.1 Optimal resampling GM-PHD

The algorithm studied in this section is based on the determination of a threshold

that is used to discriminate the Gaussian terms to accept during the pruning step.

We assume in the following that we want to keep the overall number of elements at

time t equal to a fixed number N .

Assume that in the updated PHD intensity we haveM Gaussian terms with weights

wt,k, k = 1, . . . ,M and we want to obtain M Gaussian terms with weights w̃t,k

such that only N among them have non-zero weights. As introduced before, the

deterministic approach consists in fusing the Gaussian terms whose Mahalanobis

distance is less than a given threshold U, and in keeping the N Gaussians with

highest weights. Assume that we rank the weights after the Gaussians are fused,
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then we have: {
w̃t,k = wt,k If rank(wt,k) ≤ N

w̃t,k = 0 Otherwise

This strategy is biased as E[w̃t,k] �= wt,k for low weights.

The Fearnhead-Clifford resampling scheme is instead unbiased since it leaves a

chance to some low-weight Gaussians to survive. Basically, it automatically sets a

threshold calculated by satisfying to the following properties [41]:

(a) E[w̃t,k] = wt,k (unbiasedness)

(b) The support of w̃t has no more than N points

(c) E
[∑M

k=1(w̃t,k − wk,t)
2
]
is minimized

Algorithm 4 describes its main steps; the running time is O(N).

Algorithm 4 Fearnhead-Clifford resampling

� Let w�
t,k be the normalized weights at time t. Calculate the unique solution c

of N =
∑M

k=1min(w�
t,k, 1)

� For k = 1, . . . ,M , if w�
t,k > 1/c then place it in set 1; otherwise place it in set

2. Assume there are L elements in set 1.

� Use the stratified sampling of Carpenter et al. [14] to resample N−L Gaussians
from set 2. The expected number of times that each particle is resampled is
proportional to its weight.

� The new set of Gaussians consists of the L elements in set 1, each given its
original weight, and the N − L elements in set 2, each assigned a weight 1/c.

5.2.2 Monodimensional multitarget model

For illustration, consider a mono-dimensional scenario with an unknown and time

varying number of targets observed in clutter over the surveillance region [-100,100].

The state of each target xt = [pt, ṗt] consists of position and velocity, while the

measurement is a noisy observation of the position component. Each target has a

survival probability pS,t = 0.995, a probability of detection pD,t = 0.95 and follows

a linear Gaussian dynamics. The process model is as follows:

xt+1 =

[
1 T

0 1

]
xt +

[
0

T

]
ut (5.2.2)
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with ut ∼ N (0, σ2
u) and σu = 0.7. Each target, if detected, generates an observation

according to:

yt =
[
1 0

]
xt + vt (5.2.3)

The sampling period T = 1 and vt ∼ N (0, σ2
v) with σv = 1. The birth intensity is

defined as γb = 0.35N (.; xb, Qb) where xb = [0, 0]T and

Qb =

[
20 0

0 1

]
The clutter is Poisson with intensity λc. If a target exits from the surveillance

region it is eliminated from the simulation. Each simulation lasts 100 time steps

and to avoid short-living targets the latest birth-time is set to the 30th time step.

While the structure of this model is simple, the clutter intensity and the number

of misdetections make the filtering of the scenarios non trivial. Figure 5.16 shows a

realization of a scenario.
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Figure 5.16: Test scenario generated with the model described in Section 5.2.2.

Reference function

In order to assess the effect of different resampling strategies we consider the L2

norm of the error function between the posterior PHD intensity γt|t provided by the

GM-PHD filter, and a reference function γref :

E(γt|t,γref ) =

(∫
S

|γt|t − γref |2dγ
) 1

2

(5.2.4)

The integral is computed numerically on a bidimensional grid where S covers a suf-

ficiently large subset of the domain. One natural choice for the reference function

would be the posterior intensity obtained without pruning and merging, but the

computational burden of this approach leads to the necessity of finding good sub-

stitutes. In order to compare possible reference functions, it is possible to consider
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the complete posterior on a limited number of time steps. Table 5.3 reports the

number of Gaussian terms and the mass of the PHD intensity on a test scenario

with two targets and clutter intensity λc = 5 when no merging and no pruning is

used. Despite their rapid explosion, most of the terms give no contribution at all, as

their weights fall under machine precision rapidly. The elimination of these terms

by using a small pruning threshold (for example 10−10 as in Table 5.4), determines

a sharp reduction in the number of modes and an error under machine precision.

When merging is used, their number decreases even more, but errors begin to be-

come noticeable. Table 5.5 reports the errors for the first 6 time steps by using the

complete intensity as reference function.

Time step N.Gaussian Terms I.
T=1 8 0.07498
T=2 36 0.45724
T=3 407 1.0614
T=4 2448 1.5245
T=5 12245 1.4247
T=6 73476 1.8215

Table 5.3: Number of Gaussian terms and integral of the intensity on a test scenario
with 2 targets and λc = 5. No pruning or merging are used.

Time PT 10−10 I. PT 10−10 I.

mer. 5
T=1 8 0.07498 4 0.07498
T=2 20 0.45724 5 0.45697
T=3 79 1.0614 14 1.3956
T=4 171 1.5245 19 1.5632
T=5 311 1.4247 19 1.3206
T=6 612 1.8215 26 1.793
T=7 1227 2.5848 28 2.3956
T=8 2333 2.9292 25 2.9556
T=9 5622 2.9972 35 3.031
T=10 8327 2.1249 36 2.1434

Table 5.4: Number of Gaussian terms (column 2 and 4) and integral of the posterior
PHD with pruning threshold (PT) and merging threshold (MT).

The computational cost of building reference functions by using only pruning is

still too high, especially for Monte Carlo validations. Results using different merging

thresholds suggest that a good compromise between the computational cost and the

error is obtained by using a pruning threshold PT = 10−10 and a merging threshold

MT = 1.
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Time err PT 10−10 err. PT 10−10, MT=5

T=1 1.1065e-038 2.2738e-008
T=2 2.456e-034 0.001125
T=3 7.9324e-021 0.0062382
T=4 1.3978e-019 0.02316
T=5 4.652e-019 0.04974
T=6 5.311e-018 0.060487

Table 5.5: Errors w.r.t the reference function of Table 5.3.

5.2.3 Comparison of pruning and merging strategies

The resampling methods which are evaluated are:

� N-Best :

After the GM-PHD update, the N terms with greater weight are kept. All

the other terms are eliminated. The resulting Gaussian mixture is used in the

next step.

� Threshold :

After the GM-PHD update, all the terms whose weight is above a pre-defined

threshold are kept.

� Fearnhead-Clifford resampling :

The Fearnhead-Clifford resampling is used to resample N terms from the up-

dated mixture. N = {5, 10, 20}. If the mixture has less than N terms, all of

them are kept.

The results are obtained by processing randomly-generated scenarii with a number

of targets T ∈ {2, . . . , 5}, and clutter intensity parameter λc ∈ {2, . . . , 5}. The

reference function is computed for each scenario by using a pruning threshold of

PT = 10−10 and a merging threshold of MT = 1. The average number of terms in

the PHD approximation and the average error for the different resampling methods

are reported in Figures 5.17 and 5.18. Results show that deterministic methods

always outperforms the stochastic resampling in terms of computational cost and

quality of the results. The use of a pruning threshold generally provides better

results, but the threshold has to be chosen carefully, by considering the clutter

level and the misdetection probability. The performance of the threshold strategy is

also influenced by the birth intensity (Figure 5.19 and 5.22). Similar conclusions has

been reported in [130] and [100] where it is observed that selecting the highest peaks

(corresponding to the N -Best resampling) may generate unreliable state estimates

due to terms with very small weights.

As we measure the error w.r.t a reference function the better result obtained by

setting a threshold is due to the contribution of all the additional terms that are
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sufficiently great to be above the pruning threshold but not enough to be selected

by the N-Best. Figures 5.17 and 5.18 report the average number of terms which are

selected by the different methods and the average errors on a Monte Carlo simula-

tion.

The Fearnhead-Clifford resampling and the N -Best strategy maintain the compu-

tational cost bounded as they produce a posterior PHD with a fixed number of

terms. As the targets may disappear and are eliminated when they exit from the

surveillance zone, their number tends to decrease over time, and so does the average

error.

The stratified resampling used in the Fearnhead-Clifford algorithm reduces the per-

formance in a way that the error introduced by using a parameter N is comparable

with the error of N-Best with parameter N/2.

A disappointing result is indeed the poor performance of the Fearnhead-Clifford

resampling compared to the simple deterministic method. The unbiasedeness of

the choice of the Gaussian terms at a greater computational cost does not provide

any advantage in terms of the approximation error. Fig. 5.20 plots the weights

of the updated Gaussian terms at different time steps and the Fearnhead-Clifford

threshold. Once again, after the update step most of the terms have very low

weights, which cause a waste of computational time if not correctly pruned.
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Figure 5.17: Number of gaussian terms in the posterior PHD with different resamplig
strategies (100 iterations, birth intensity 0.35)
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Figure 5.18: Error in the posterior PHD with different resampling strategies w.r.t
the reference function. (100 iterations, birth intensity 0.35)
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Figure 5.19: Error in the posterior PHD using different resamplig strategies w.r.t
the reference function. (100 iterations, birth intensity 0.15)
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Figure 5.20: Fearnhead-Clifford threshold and weights of the terms in the posterior
Gaussian mixture at different time steps.
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Resampling efficiency

As the error is an inverse measure of the quality of the posterior and the cost

is proportional to the number terms, we measure the resampling efficiency with

η = 1/(etNt), where et is the error w.r.t the reference function and Nt the number

of Gaussian terms in the posterior PHD. If a method produces no terms in the

posterior the efficiency is not computed. Figure 5.21 reports the efficiencies in a

logarithmic scale for the methods discussed. The deterministic acceptance of all the

terms above a threshold provides the best cost-quality ratio. The Fearnhead-Clifford

resampling has, on the contrary, a poor performance.
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Figure 5.21: Efficiency of different resamplig strategies w.r.t the reference function.
(100 iterations, birth intensity 0.35)
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Figure 5.22: Efficiency of different resamplig strategies w.r.t the reference function.
(100 iterations, birth intensity 0.15)

Multitarget-tracker adapted pruning

As the GM-PHD filter does not provide identities of individual state estimates,

techniques to construct the tracks from the posterior mixture are required.

These techniques as well as different implementations of multi-target trackers have

been investigated in [102, 48, 20].

Multi-target trackers maintain at each time step a list of confirmed targets as well

as the labels of the Gaussian terms that have generated the estimates. In order

to perform the peak-to-track association as a post processing operation the GM-

PHD recursion is modified to maintain and propagate the labels associated to the

Gaussian terms. The information about confirmed tracks can be exploited during

the GM-PHD resampling to alleviate the loss of targets in case of misdetection.

The rapid fall of the weights below the pruning threshold, however, may cause

the elimination of an active target and a delay of several time steps before its

reactivation.

These errors can be avoided by preventing the Gaussian terms to be pruned if they

correspond to confirmed tracks until they reach a more conservative deactivation

threshold. In order to evaluate this target-tracker-adapted pruning criterion we

consider the Optimal Sub-Pattern Assignment (OSPA) Metric with cutoff parameter

c = 20. Figure 5.24 reports the average OSPA distance and the average cardinality

error in a Monte Carlo evaluation of 500 scenarios. The target detection probability

has been lowered to pd,t = 0.9, the probability of target survival is ps,t = 0.995

and the birth intensity is a Gaussian mixture composed by three terms centered
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in [−50, 0]T , [0, 0]T and [50, 0]T with σp = 20 and σv = 1. The weights of birth

intensity’s terms are lowered to 0.15 to make it more difficult for the GM-PHD filter

to catch new targets or to recover from misdetection.

Each simulation contains a random number of targets N ∈ {2 . . . 5}, and a Poisson

number of false observations with mean λc ∈ {2 . . . 5} uniformly distributed over

the surveillance zone. Pruning threshold is set to 0.1; targets are extracted from

the posterior Gaussian mixture if their weights are above 0.5.

By using the information about the active targets provided by the multi-target

tracker, it is possible to avoid the pruning of Gaussian terms corresponding to

confirmed tracks until their weights reach the elimination threshold (10−3 in the

simulation).

Figure 5.23: Schematic representation of the target confirmation and elimination
events triggered by the growth of the Gaussian weight. An elimination threshold
is added in order to avoid the pruning of confirmed terms until they reach a more
conservative level.
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Figure 5.24: OSPA error and cardinality error in 500 simulated scenarios using a
target-tracker-adapted pruning criterion.

Conclusions

This section evaluated a stochastic resampling method proposed by Fearnhead and

Clifford [41] for the determination of the pruning threshold in the GM-PHD fil-

ter. Monte Carlo validations on different scenarios and with different parameters

have demonstrated that deterministic strategies always outperform the Fearnhead-

Clifford resampling in approximating the posterior PHD Gaussian mixture.

One problem of the deterministic algorithms is that when a target is undetected the

weight of the corresponding term decreases rapidly and once the target is deleted it

may take several time steps to be reactivated, especially if the clutter process is in-

tense and the detection probability relatively low. In order to mitigate the problem

we proposed a method which exploits the information on confirmed tracks in or-

der to postpone the elimination of Gaussian terms until their weights reach a value

corresponding to the almost sure target disappearance. Monte Carlo validations

confirmed an improvement of the results when this strategy is adopted.
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5.3 PHD quantization by using the Fast Fourier

Transform

This section considers a method to calculate the Probability Hypothesis Density

function over a grid by using the convolution method and the Fast Fourier Trans-

form. Unlike the Sequential Monte Carlo PHD filter and the Gaussian Mixture

PHD Filter this method provides an exact representation of the PHD function over

the discretized domain. Moreover, it doesn’t require Gaussian assumptions on the

target dynamics and on the observation model. Section 5.3.1 outlines the technique

of convolution proposed in [145] and discusses the application of the Fast Fourier

Transform to filtering problems. The algorithm is presented in section 5.3.2; com-

parisons with the GM-PHD filter are presented in section 5.3.3 and conclusions

discussed in section 5.3.3.

5.3.1 Single target filtering via convolution

We begin by describing the approach on a single target filtering problem defined by

the following system, similar to (3.2.13):

xt+1 = Ftxt + Ctut + vt (5.3.1)

yt = g(xt) + wt (5.3.2)

where t is the discrete time index, xt represents the target state-vector at time

t, yt the observation vector, ut the input vector in a controlled environment, Ft

and Ct the system and control matrices respectively and vt and wt the process and

observation noises. The densities of the noise components are denoted by φ(x)

and ψ(x) respectively and are assumed to be time-independent. Moreover, the

general assumptions required to derive the Bayes filter are considered verified: the

target dynamics is described by a Markov process p(xt+1|x0:t) = p(xt+1|xt), and

the observations are mutually independent. We also assume that the matrix Ft is

invertible.

The first step towards the construction of the numerical algorithm is to replace

the continuous domain by a discrete domain. Let Ωd
t be the uniform d-dimensional

regular grid at time t and (∆x1, . . . ,∆xd) the discretization steps along the (1, · · · , d)
dimensions. A point x̄j of the grid Ωd

t is defined by x̄j = (xj1∆x1, . . . , x
j
d∆xd), where

the coordinates (xj1, . . . , x
j
d) are integers. A function f : Rd → R can then be

discretized over the points of the grid Ωd
t by posing:

f̄ j � f(x̄j), ∀j ∈ Ωd
t

With this notation let ϕt|t(x) denote the conditional density of the random variable

xt given the observations up to time t and ϕ̄j
t|t = ϕt|t(x̄

j) its discretization over Ωd
t ,
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such that
∑

j∈Ωd
t
ϕ̄j
t|t = 1. The second step consists in calculating the distribution

of the r.v. x−t+1 � Ftxt + Ctut, obtained by equation (5.3.1) without the noise

component. Its pdf is:

ϕ−
t+1|t(dx) = P(x−t+1 ∈ dx) (5.3.3)

= P(Ftxt + Ctut ∈ dx) (5.3.4)

= P(xt ∈ F−1
t (dx− Ctut)) (5.3.5)

The computation can be done by applying the affine linear transformation Ft(x̄
j) +

Ctut to each point of the grid. The resulting grid is in the general case no longer

Cartesian, however it can be easily transformed to a Cartesian grid by interpolation.

See [145] for details. Finally, as the predicted state is given by the sum of two

independent random variables: xt+1 = x−t+1 + vt, the corresponding density ϕt+1|t(·)
is the convolution of ϕ−

t+1|t(·) and φ(·).
Practically, the convolution increases the size of the grid so care has to be taken

in order to prevent it from growing indefinitely at each time step. Most of the

time, however, the intensity is concentrated in a limited region whose size depends

on the predicted distribution and on the covariance matrix of the system noise.

For this reason, the last step of the algorithm performs a reframing by eliminating

the grid-nodes with negligible value and generating a grid that contains all the

relevant information with a generally smaller number of points. Figure 5.25 and 5.26

illustrate the convolution of a Gaussian prior density with a Gaussian centered noise

as well as the reframing operation on the resulting grid. The steps of the algorithm

are detailed in box 5. In common computer implementations the execution time for

FFT is faster for powers of two and it is generally convenient to resize the grids to

appropriate dimensions by padding zeros.

Once the grid representation of the predicted probability density has been obtained,

the full posterior can be calculated by multiplying each node of the grid by the

likelihood with respect to the current observation and normalizing.
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Figure 5.25: Prior density (a) and density after the projection (b)
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Figure 5.26: Reframing operation (c) and final density (d)
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Algorithm 5 Single target filtering via FFT

Initialization.
Let ϕ̄j

t|t be the discretization of ϕt|t(·) over the grid Ωd
t , and φ̄

j
t the discretization

of the system noise distribution.
for t = 1, 2, . . . do
Projection:

ϕ−
t+1|t(Ftx̄

j + Ctut) = ϕ̄j
t|t(x̄

j) ∀j ∈ Ωd
t

Interpolate ϕ−
t+1|t on a Cartesian grid Ωd

t+1|t.
Prediction:
Apply the convolution theorem
ϕ̄j
t+1|t = IFFT (FFT (ϕ−

t+1|t) · FFT (φ̄
j
t))

Update

ϕ̄j
t+1|t+1(x̄

j) = C−1
t gt(x̄

j|yt)ϕ̄j
t+1|t(x̄

j) ∀j ∈ Ωd
t+1

where C−1
t is the normalization constant.

Reframing
ε: error tolerance
Let ϕd′(x̄d′) be the marginal of ϕ̄j

t+1|t+1(·) along the dimension d′ and ϕ̂d′(x̄d′)

the cdf of ϕd′(x̄d′)
for each dimension do
ad′ = argminϕ̂d′(x̄d′) ≤ ε
bd′ = argmaxϕ̂d′(x̄d′) ≥ 1− ε

end for
Reframe the grid to a new grid Ωd

t+1 made by all the points x̄j of Ωd
t+1|t such

that ad′ ≤ x̄
j
d′ ≤ bd′ , ∀d′

end for
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5.3.2 PHD Filtering by convolution

The technique described in section 5.3.1 can be extended to the multitarget frame-

work by combining the convolution method to the PHD recursion. The objective

is to obtain a discretization of the propagated intensity on a Cartesian grid and

then apply the PHD update equation. However, unlike the single target case, in

order to obtain the representation of the propagated intensity it is necessary to take

into account not only the target dynamics but also the birth intensity, the survival

probability and the spawn intensity.

The algorithm initially computes the PHD intensity on a numerical grid by using

the convolution technique; the convolution of the original intensity with the Markov

kernel modeling the dynamical model of the targets does not change the intensity

mass. After the projection, every node of the grid is multiplied by the target’s

survival probability before adding the birth and spawning intensity. The update

step consists in applying the PHD update equation to each node of the grid. The

algorithm is described in box 6. To simplify the algorithm we will assume a zero

spawning intensity; the presence of spawning intensity does not pose conceptual

problems.

Figure 5.27 shows the comparison between the marginal PHD intensity as com-

puted by the FFT-PHD and GM-PHD respectively on the mono-dimensional sce-

nario described in 5.2.2. With a suitable grid size and discretization steps the

FFT-PHD produces a better approximation of the PHD posterior as it doesn’t use

pruning and merging thresholds which eliminate Gaussian components.

Extraction of target state estimates

As for the GM-PHD and for the SMC-PHD a procedure to extract target estimates

from the grid-approximated PHD intensity is required. The procedure we describe

is not as straightforward as for the GM-PHD but neither as computationally inten-

sive as the general, cluster-based strategies for the SMC-PHD. The peak extraction

for the FFTPHD begins by first finding a list of grid nodes with the highest inten-

sity value. These maxima are then validated as true peaks if the intensity in the

surrounding region (defined by a pre-determined window) is above an acceptance

threshold. Figure 5.28 illustrates intuitively the procedure. The algorithm is anal-

ogous to the peak extraction of the GM-PHD for what concerns the presence of an

acceptance threshold. The dimension of the validation window has to be chosen

by taking into account the system noise covariance matrix. The pruning threshold

by taking into account the clutter intensity. Figure 5.29 shows the target locations

estimated on a test scenario by the GM-PHD and by the FFT-PHD configured with

the same acceptance threshold.
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Algorithm 6 FFT-PHD Filter (no spawning intensity)

Initialization.
Let µj

t(·) be the discretization of the birth intensity at time t over the grid Ωd
t ,

and φ̄j
t the discretization of the system noise distribution.

Initial intensity γj0(x̄
j) = µj

0(x̄
j) ∀j ∈ Ωd

t

Denote by Yt+1 = yt,1, ..., yt,|Yt| the measurements received at time t + 1
for t = 1, 2, . . . do
Step1: Prediction.
Compute the projection of the PHD
γ′t+1|t(Ftx̄

j) = γt|t(x̄
j) ∀j ∈ Ωd

t

Interpolate γ′t+1|t on a Cartesian grid Ωd
t+1|t.

γ̄t+1|t = IFFT (FFT (γ′t+1|t)·FFT (φt))
Add the birth intensity
γjt+1|t(s̄

j) = γ̄t+1|t(s̄
j) + µt(s̄

j) ∀j ∈ Ωd
t+1|t

Step2: Update
γ̃t+1|t(s̄

j) = (1− pd,t+1)γt+1|t(s̄
j)

γt+1|t+1(s̄
j) = γ̃t+1|t(s̄

j)

+
∑

y∈Yt+1

pd,t+1γt+1|t(s̄j)gt(s̄j |yt,j)

ht(y)+

∑
Ωt+1|t

pd,t+1γt+1|t(s̄
j)gt(s̄

j |yt,j)

Reframing
ε: error tolerance
ηd′(·): marginal of

γt+1|t+1(·)∫
γt+1|t+1(·)

along the dimension d′

η̂d′(·): cdf of ηd′(·)
for each dimension d′ do
ad′ = argmin η̂d′(·) ≤ ε
bd′ = argmax η̂d′(·) ≥ 1− ε

end for
Reframe Ωd

t+1|t into a new grid Ωd
t+1 made by all the points s̄j of Ωd

t+1|t such

that ad′ ≤ s̄
j
d′ ≤ bd′ , ∀d′

end for
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Figure 5.27: Test scenario and marginal PHD intensity as computed by the FFT-
PHD and GM-PHD respectively. λc = 15, pd = 0.95, GM-PHD pruning threshold
0.1.
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Figure 5.28: Maxima over the grid and validation windows. An estimate is generated
at the coordinates of a local maxima if the integral of the intensity over the validation
window is greater than a pre-defined threshold. In the example only the points A
and C pass the test and generate the estimates X1 and X2.
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Figure 5.29: Estimated positions generated by the peak extraction algorithm of the
GM-PHD and FFT-PHD on a test scenario. The continuous lines show the ground
truth trajectories of the targets.

107



CHAPTER 5. PHD FILTERS: NUMERICAL STUDIES

5.3.3 Numerical results

We consider the monodimensional case described in section 5.2.2. The surveillance

region is set to [-500,500], the sampling period T = 1s, the survival probability

is ps,t = 0.9, and the detection probability is pd,t = 0.9. Moreover vt ∼ N (0, σ2
v)

with σv = 2 and ut ∼ N (0, σ2
u) and σu = 5. The birth intensity is defined as

γb = 0.33N (.; x1b, Qb) + 0.34N (.; x2b, Qb) + 0.33N (.; x3b , Qb) where x1b = [−300, 0]T ,

x2b = [0, 0]T , x3b = [300, 0]T .

The clutter is Poisson with intensity λc. If a target exits from the surveillance

region it is eliminated from the simulation.

A total of 1000 scenarios are generated with different clutter intensities and a varying

number of targets. Each scenario is filtered with the GM-PHD and the FFT-PHD

filter. The results are compared by using the OSPA metric and both the average

cardinality errors and the average positional error are measured. The parameters

used to generate the scenario are reported in tables below. Each scenario contains

between 4 and 10 targets. The clutter is uniform on the surveillance region. Its

intensity λ is an integer randomly chosen from three sets, simulating a moderate

λ ∈ {1, . . . , 4}, average: λ ∈ {5, . . . , 8} and high: λ ∈ {9, . . . , 12} level of clutter.

GM-PHD
Pruning threshold 0.1
Merging threshold 5
Max num. Gaussian 200
Target extraction th. 0.7

FFT-PHD
Grid size [1001× 21]

Grid dx (pos.) 2
Grid dv (vel.) 1

Target extraction th. 0.7

Monte Carlo cardinality errors and OSPA distance

On average, the FFT-PHD filter is able to provide a much more precise estimate on

the cardinality of the targets. When the number of active targets in the surveillance

zone is relatively high, a slight overestimation is registered, basically because of

clutter observations occurring close to a zone where active targets are present. When

the simulation is run with an intense level of clutter the FFT-PHD always greatly

outperforms the GM-PHD For the GM-PHD, the target estimates are extracted by

taking the mean of the Gaussian terms whose weight is above a threshold (called

target extraction threshold) and in the case of the FF-PHD filter by using the

procedure discussed in section 5.3.2. The same extraction threshold of 0.7 is used.

Intuitively, this generates an estimate if the expected value of the umber of targets

in the considered region of the space is greater than 0.7.

Three plots are reported for each clutter configuration; the OSPA distance averaged

over the 1000 iterations is in Fig: 5.30(I), 5.31(I) and 5.32 (I); the cardinality

errors Fig: 5.30(III), 5.31(III) 5.32 (III) and the localization errors in Fig: 5.30(II),
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5.31(II) and 5.32 (II). The average number of targets estimated in the three clutter

configuration is reported in Figure 5.33.

The results show that the FFT-PHD filter is much more precise in estimating the

number of ground truth targets and, on average, the OSPA distance is smaller

compared to the GM-PHD. The procedure of peak extraction, however, is less precise

compared to the GM-PHD. The greater error relies on the fact that the estimates are

extracted from the points of the grid, as opposed to the better estimates which are

directly available in the GM-PHD. This error can be clearly reduced by increasing

the discretization step of the grid, at the expense of a higher computational cost.
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Figure 5.30: GM-PHD and FFT-PHD filtering results. Moderate clutter intensity,
1000 Monte Carlo runs.
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Figure 5.31: GM-PHD and FFT-PHD filtering results. Average clutter intensity,
1000 Monte Carlo runs.
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Figure 5.32: GM-PHD and FFT-PHD filtering results. High clutter intensity, 1000
Monte Carlo runs.
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(a) Moderate clutter intensity (λ ∈ [1, . . . , 4])
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(b) Average clutter intensity (λ ∈ [5, . . . , 8])
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(c) High clutter intensity (λ ∈ [9, . . . , 12])

Figure 5.33: Average number of targets as estimated by the GM-PHD filter and by
the FFT-PHD filter on 1000 simulated scenarios with different clutter intensities.
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Monte Carlo validation

In order to better illustrate the performances of the FFT-PHD in handling critical

difficulties, such as a high number of targets in a relatively small surveillance zone

with repeated misdetections, this section reports the results obtained in filtering a

fixed scenario (Figure 5.3.3) where the probability of target detection is lowered to

0.9 and the average clutter intensity at is increased to 5. Figure 5.3.3 reports the

average number of target estimated by the GM-PHD, the FFT-PHD and the number

of ground truth targets. The overall filtering performance as well as the localization

and cardinality error are reported in Figure 5.36. Results show that the FFT-PHD

filter is able to provide a much more accurate estimate of the number of targets

than the GM-PHD. Even if the position estimates provided by the FFT-PHD are

fairly accurate, the GM-PHD is able to obtain a better result, mainly because of

the Kalman filter equations involved in the GM-PHD filter and because of the more

straightforward peak extraction procedure.
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Figure 5.34: Scenario used to compare the GM-PHD and the FFT-PHD.
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Figure 5.35: Average number of estimated targets over 1000 iterations.
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Figure 5.36: OSPA distance, cardinality error and localization error for the test
scenario.

Computational efficiency

Figure 5.37 shows the amount of time required to process a scenario in the con-

figurations of clutter previously described. In the case of the FFT-PHD the grid

covers the region of the state space comprised between [−500, 500] for the positional

coordinate and [−10, 10] for the velocity component. The grid is build by using the

discretization steps dx = 1 and dv = 1. This generates a domain approximation

with 1001 × 21 points. As a result the time required by the FFT-PHD is sensibly
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higher than the time required by the GM-PHD. The main reason is accounted to

the pruning techniques used in the Gaussian Mixture PHD filter to keep the number

of terms bounded and to the computational cost of the Discrete Fourier Transform

required in the projection step of the FFT-PHD filter. However, in the current

implementation of the filter, the computation of the likelihood functions are done

on the whole grid; a straightforward and obvious optimization would be to restrict

this computation only to the regions of the space with a non negligible value, if

this is possible. Figure 5.38 shows the results of Monte Carlo filterings of the same

scenario when the resolution of the grid is changed. In the example, because of the

characteristics of the system dynamics, only the velocity dimension is critical for

the convolution. In order to test the convolution operation which is the most time-

consuming part of the algorithm, the discretization step for the velocity coordinate

is incremented from dv = 0.1 to dv = 10 with a discretization step ∆v = 0.1. The

discretization step over the position component is kept at dx = 1.

Obviously, by decreasing the resolution of the grid, the computational cost decreases

rapidly, at the expense of the precision.
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Figure 5.37: Processing time for a complete scenario in case of moderate, medium
and high clutter. The discretization grid in the case of FFT-PHD is dx = 1, dv = 1
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Figure 5.38: Average processing time of the FFT-PHD and GM-PHD obtained when
the discretization step is widened.

Conclusions

This section proposed an approach for the computation of the PHD intensity based

on numerical grids paired with a technique to compute the predicted PHD intensity

according to Mahler’s equations by using the Fast Fourier Transform.

One point that the FFT-PHD has in common with the SMC-PHD is the necessity to

use post processing to extract target estimates from the peaks of the PHD function.

The peak extraction for the FFTPHD is less expensive and produces more accurate

estimates. Unfortunately, as the peak extraction relies on the grid-approximated

PHD it is not possible to achieve the degree of precision of the GM-PHD. Never-

theless, the overall quality of the multi-target tracking as measured by the OSPA

metric is generally good compared to existing solutions and sensibly better than the

GM-PHD when the birth intensity is weak and misdetections frequent. Although

the computational cost is greater compared to the GM-PHD, the approach is not

limited to Gaussian models. The number of calculations depends on the cardinality

of the observation sets and on the dimension of the grid, not on the number of tar-

gets as in the GM-PHD; moreover, the use of an adaptable grid and the computation

of the likelihood function only in the regions of interest may greatly improve the

basic approach. The algorithm has been initially tested on low dimensional state

space models and it has shown promising results. The FFT-PHD may be a viable

approach to the computation of the PHD recursion, especially when the surveillance

zone is fixed and when an accurate estimation is preferred to the execution speed.
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5.4 Association-sampling particle filters

The problem of characterizing a hidden Poisson point process given a realization of

an observed Poisson point process is addressed in the second part of the thesis. By

using the results presented in Chapter 6 it is possible to study the measure-valued

processes arising in multitarget tracking as a generalization of Feynman-Kac mea-

sures.

This alternative formulation leads to the particle approximation algorithm discussed

in this section. The central idea is to resample according to the association probabil-

ities between particles and observations. This section details the implementation of

the particle approximation algorithm; the derivation and the mathematical details

are discussed in Chapter 7.

Before discussing this alternative definition, let’s review some example of transport

equations for simple branching-type systems.

Consider a sequence of state spaces Et indexed by the parameter t. Assume that a

point xt ∈ Et at time t survives with probability ps,t(xt) and evolves according to a

Markov kernel Kt+1 : Et �→ Et+1. The transport kernel associated its dynamics is:

Rt+1(xt, dxt+1) = ps,t(xt)Kt+1(xt, dxt+1) (5.4.1)

Clearly, equation 5.4.1 represents the degenerate case of a branching process in

which particles may only survive/evolve or die. In case of spawning the transport

kernel must be modified to take into account the additional mass introduced at each

time step. In this case it may be written as:

Rt+1(xt, dxt+1) = Gt(xt)Kt+1(xt, dxt+1) (5.4.2)

where Gt(xt) : Et �→ (0,∞) represents a positive function governing the variation

of the mass caused by the disappearence, birth or spawning of points.

In the PHD recursion the intensity of the Poisson point process associated to

the targets is propagated by the prediction equation which is similar to the trans-

port equation (5.4.2) if we exclude the additional term corresponding to the birth

intensity.

The predicted intensity is then updated according to the parameters of the obser-

vation model and to the observations RFS in order obtain the posterior intensity.

To establish the PHD recursion, let Xt and Yt on Es and Eo denote the two

randommeasures associated to the targets and to the observations at time t. Assume

that the initial measure X0 is a Poisson point process with intensity γ0(·) equal to
the birth intensity µ0(·). At each time step, µt(1) represents the number of targets

which are expected to appear in the surveillance region. For any function f ∈ B(Es)
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the posterior intensity is given by:

γ̂0(f) = E(X0(f)|Y0) = γ0((1− pd,t)f)) +

∫
Y0(dy)(1− βγ0(y))Ψpd,tg(.,y)(γ0)(f)

(5.4.3)

where g(., y) is the single-target likelihood function and the probability βγ0(y), de-

fined in (6.3.6) is related to the chances that the point y on the observation space is

generated by clutter. We remind once again that the details as well as the complete

derivation of equation (5.4.3) will be given in Chapter 6.

The recursion is obtained by defining the pair of random sequences (Xt+1,Yt+1)

such that Xt+1 is a Poisson point process with intensity γt+1 defined by:{
γ̂t = γt(1− pd,t) +

∫
Yt(dy) (1− βγt(y)) Ψpd,tgt(.,y)(γt)

γt+1 = γ̂tRt+1 + µt
(5.4.4)

The first equation of (5.4.4) is the functional representation of the updated PHD

intensity, while the second equation combines the updated PHD intensity with the

transport kernel (defined later) and with the birth intensity µt in order to obtain

the predicted intensity γt+1.

Figure 5.39 provides an intuitive representation of the PHD evolution after the

operations of propagation and update: (1) the predicted intensity γt is updated by

using the observation RFS (2). The resulting intensity γ̂t is then propagated by

the transport equation (5.4.4) (3). The resulting intensity γt+1 is then recursively

updated and propagated in time (4-6).

Figure 5.39: Schematic representation of the intensity evolution and corresponding
observation RFSs. The maxima of the intensity function correspond to the points
where the highest local concentration of targets is expected and are therefore used
to estimate the target states.

Consider the PHD recursion in (5.4.4) and assume for simplicity no branching

intensity (i.e. the intensity of the point process associated to the objects that
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are created by existing objects). By substituting (6.3.6) in (5.4.4) we obtain the

following integral expression of the updated posterior intensity on a test function

f ∈ B(Es):

γ̂t(f) = γt((1− pd,t)f) +

∫
Yt(dy)

(
1− h(y)

h(y) + γt(pd,tgt(y, .))
)

Ψpd,tgt(y,.)(γt)(f)

and since by definition Ψpd,tgt(y,.)(γt)(f) = γt(pd,tgt(y,.)f)
γt(pd,tgt(y,.)) :

γ̂t(f) = γt((1− pd,t)f) +

∫
Yt(dy)

γt(pd,tg(y, .)f)
h(y) + γt(pd,tg(y, .)) (5.4.5)

In case of no spawning, the transport kernel reduces to the single target Markov ker-

nel weighted by the survival probability: Rt+1(xt, dxt+1) = ps,t(xt)Mt+1(xt, dxt+1).

By defining the function gt,γt as

gt,γt(xt) = (1− pd,t(xt))ps,t(xt) +

∫
Yt(dyt)

gt(xt, yt)pd,t(xt)ps,t(xt)

ht(yt) + γt(pd,tgt(., yt)) (5.4.6)

the recursion can be written in a single equation as:

γt+1(f) = γt(gt,γtMt+1(f)) + µt+1(f) = γt

(
gt,γtMt+1(f) +

µt+1(f)

γt(1)

)
︸ ︷︷ ︸

Qt+1,γt

(5.4.7)

The previous manipulation shows that by combining the prediction and update

equations of system (5.4.4), the PHD recursion can be written in the form of a

general measure-valued dynamical system as follows:

γt+1(dxt+1) = (γtQt+1,γt) (dxt+1) :=

∫
γt(dxt)Qt+1,γt(xt, dxt+1) (5.4.8)

where the operator Qt+1,γt governs the evolution of the intensities. The subscript γt
is used to stress the dependence of the transport operator on the intensity at time

t.

When the branching intensity is not null, the PHD recursion is obtained from equa-

tion (5.4.8) with the following choice of operators:

Qt+1,γt(xt, dxt+1) = ĝt,γt(xt)Mt+1(xt, dxt+1) + γt(1)
−1 µt+1(dxt+1) (5.4.9)

with ĝt,γt(xt) = bt(xt)gt,γt(xt) and bt(xt) = Bt+1(1)(xt) denoting the intensity of the

spawning process at the point xt. It can be shown [32] that the Bernoulli filter also

satisfies equation (5.4.8) for a different choice of integral operators.

The evolution of the intensity measures can be equivalently described by decoupling

the process in the pair (γt(1), ηt) ∈ (R+ × P(E)) corresponding to the mass and
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normalized intensity at each time step respectively. The intensity at time t + 1 is

then described by the pair mass-distribution given by a non-linear transformation:

(γt+1(1), ηt+1) = Γt+1(γt(1), ηt) (5.4.10)

One natural way to solve the non-linear integral equation (5.4.8) is to find a judicious

probabilistic interpretation of the normalized distributions ηt(dxt) = γt(dxt)/γt(1)

and to ensure that the total mass of the process at time (t+1) can be computed in

terms of the particle approximations of ηt. In the following, the first and the second

components of the mapping Γt+1 will be respectively denoted by:

Γ1
t+1 : R+ × P(E) → R+ (5.4.11)

Γ2
t+1 : R+ × P(E) → P(E) (5.4.12)

where (5.4.11), represents the non-linear transformation of the process mass and

(5.4.12), the transformation of the normalized intensities. In the next sections we

study a mean field particle system and two interacting particle systems for the

approximation of the measures ηt. The interacting particle systems are based on

the sampling of the associations between the observations and the cluster of particles

(or Kalman filters) approximating the posterior intensity.

5.4.1 Mean field and association-based PHD filters

As previously introduced, the mean field-type interpretation of the system (5.4.4)

is based on the fact that the distribution ηt can be thought as the laws of a non

linear Markov chain whose elementary transitions depend on the distributions ηt−1

as well as on the mass process γt−1(1).

The non linear transformation Γ2
t+1 can be rewritten in the form of a Markov trans-

port:

Γ2
t+1(γt(1), ηt) = ηtKt+1,γt with γt = γt(1)ηt (5.4.13)

The subscript γt is used to stress the dependency of the Markov kernel on the inten-

sity measure at time t. The updated distribution (5.4.13) can be further decomposed

into a product of a selection operator and an update operator [28], both depending

on the measure γt:

ηtKt+1,γt = ηtSt,γtMt+1,γt (5.4.14)

and ηtSηt can be written accordingly to (2.0.6) in term of the Boltzmann-Gibbs

transformation:

ηtSηt = Ψgt,γt
(ηt) (5.4.15)

where gt,γt denotes a positive potential function governing the update process. The

problem behind the design of a mean field interacting particle system consists in

designing the right potential function and Markov transition such that:

Γ2
t+1(γt(1), ηt) = Ψgt,γt

(ηt)Mt+1,γt (5.4.16)
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and then approximate ηt by a population of particles that evolve according toMt+1,γt

and survive/reproduce according to the branching intensities dictated by the poten-

tial function gt,γt ; the design of the updating transformation Ψgt,γt
(ηt) in terms of a

Markov transport equation is not unique.

In the rest of the section a pair Markov transitions and potential functions for the

PHD recursion are discussed. Their complete derivation and convergence properties

can be found in [32]. By construction:

Γ1
t+1(γt(1), ηt) = γt(gt,γt) + µt+1(1) and Γ2

t+1(γt(1), ηt) = Ψgt,γt
(ηt)Mt+1,γt

Mt+1,γt is the collection of Markov transitions defined as:

Mt+1,γt(x, .) = αt (γt)Mt+1(x, .) + (1− αt (γt)) µt+1

with µt+1 = µt+1/µt+1(1) and

αt (γt) =
γt(gt,γt)

γt(gt,γt) + µt+1(1)

For convenience in the design of the algorithm the potential function gt,γt is rewritten

by introducing a virtual observation point c′ (corresponding to undetectable targets)

to the observation RFS and by setting: Yc′
t = Yt + δc′. Let rt(x) = ps,t(x) + bt(x)

and denote by gc
′

t,γt(x, y) the function defined below

gc
′

t,γt(x, y) =

⎧⎨⎩ rt(x)(1 − pd,t(x)) if y = c′

rt(x)
pd,t(x)gt(x, yt)

ht(y) + γt(pd,tgt(x, y))
if y �= c′

(5.4.17)

The definition of this function may look unnecessary but it will clarify the way

undetected targets are dealt in the algorithm. By using (5.4.17) the updating trans-

formations Ψgt,γt
(ηt) can be rewritten equivalently as:

Ψgt,γt
(ηt) = Ψgt,γt

(ηt) with gt,γt =

∫
Yc′

t (dy) g
c′
t,γt(·, y)

If the functions Ψgt,γt
and Ψgt,γt

(ηt)Mt+1,γt have a closed form, the evolution of the

intensity can be computed with no error, otherwise the mean field interpretation

consists in the approximation of the normalized intensity measures and process mass

by the discrete measures:

ηNt =
1

N

N∑
j=1

δ
ξ
(N,j)
t

and γNt (dx) = γNt (1) ηNt (dx)
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where N denotes the number of particles in the approximation. These particles

approximation evolve by using selection type mechanisms dictated by Ψgt,γt
(ηt) and

mutation mechanisms given by Mt+1,γt :(
γNt (1)

ηNt

) updating (Ψgt,γt
(ηNt ))

−−−−−−−−−−−−−→
(
γ̂Nt (1)

η̂Nt

) prediction (Mt+1,γt)
−−−−−−−−−−−−−→

(
γNt+1(1)

ηNt+1

)
Unfortunately, as in the Sequential Monte Carlo PHD filter, the particle approxi-

mation of the normalized intensity doesn’t provide the target estimates directly and

a post-processing operation is still required. With the explicit expression of the

potential function, the mean field version of the algorithm can be summarized with

the steps resumed by the Algorithm 7.

The mean-field interpretation of the flow of measures defined by the PHD recur-

sion and the abstract framework described in this section will be useful to develop

two sampling-based algorithms for the approximation of the PHD filter. From the

practical point of view however, this simple mean-field algorithm does not provide

competitive advantages compared to the SMC-PHD implementation.
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Algorithm 7 Mean field particle approximation of the PHD recursion. For sim-
plicity the survival and detection probabilities are assumed constant and the spawn
intensity is considered null.

Initialize parameters
N : number of particles
µt: birth intensity at time t with mass µt(1)
pd,t: probability of detection at time t
ps,t: survival probability at time t
Yt = {yt1, . . . , ytn}: observation RFS at time t
c∗: auxiliary observations corresponding to new targets event.
c′: auxiliary observations corresponding to undetected targets.
Generate the initial population: Sample N particles ξ

(N,p)
0 p = 1, . . . , N from the

birth distribution µ0(·)/µ0(1)
Normalized PHD: ηN0 = 1

N

∑N
p=1 δξ(N,p)

0

PHD mass: γN0 (1) = µ0(1)
Propagate the particles according to the dynamical model
for time t ≥ 1 do
for j = 1 to |Yt| do
Lj =

∑N
p=1 g(y

j
t |ξ

(N,p)
t );

mj =
ps,t·pd,t·Lj ·γt−1(1)

h(yjt )+pd,t·Lj ·γt−1(1)

end for
Compute the updated mass
γt(1) = γt−1(1) · (1− pd,t) · ps,t + µt(1) +

∑|Yt|
j mj

for p = 1 . . .N do
for y ∈ Yt ∪ {c∗, c′} do
if y = c∗ then
w(p,y) = µt(1)/(N · γt−1(1))

else if y = c′ then
w(p,y) = ps,t· (1− pd,t)/N

else
w(p,y) = (ps,tpd,tg(y|ξ(N,p)

t ))/(h(y) + pd,tγt−1(1)·Ly)
end if

end for
end for
Compute the weight of each particle: wp =

∑|Yt|
y w(p,y)

Resample N particles ξ̂(N,i) ∼ wp∑
wp

Propagate the resampled particles according to the dynamical model to obtain
ηNt = 1

N

∑N
p=1 δξ(N,p)

t

end for
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5.4.2 Association-sampling particle filters

This section describes an approximation technique for the PHD recursion based on

the sampling of the associations between the terms of the PHD and the observations

at each time step.

Similarly to the GM-PHD and SMC-PHD filter, the posterior PHD is approximated

by a Gaussian mixture or by using sets of particles; the main difference relies on the

fact that the terms approximating the posterior intensity are propagated in time

by using an observations sampled from the RFS according to a specific probability

measure. Usual pruning and merging or clustering algorithms are thus not required.

In the case of non-linear, non-Gaussian models, another significant difference with

respect to the SMC-PHD is that the approximation of the posterior is done by a set

of particle clusters, instead of a set of weighted particles.

The discrete probability measure on the space of all the possible associations between

measurements and Gaussians or particle clusters is built from equation (5.4.3) and

then, once an association has been sampled, the corresponding term is propagated

and updated by using the Kalman filter’s equations or Sequential Monte Carlo

methods.

With linear-Gaussian models this generates a set of interacting Kalman filters while

in non-linear models, the relevant modes of the PHD are approximated by clusters

of particles propagated and updated in time by using the observation that has been

sampled.

The idea towards the construction of the association measure is similar to the idea

discussed in Section 5.4.1: starting from equation (5.4.8) the goal is the definition

of a discrete probability measure by normalization of the transport kernel Qt+1,γt

which gives the association probabilities and the Markov transitions corresponding

to the events of existing target, misdetection or new targets.

In both cases, the usual thresholding or clustering algorithms are not necessary since

the number of Gaussian terms or particle clusters is chosen at the beginning and

doesn’t change.

In order to handle targets entering in the scene and potential misdetections, the

RFS of observations has to be enlarged with two virtual measurements, denoted by

c∗ and c′. These two auxiliary points are added to the observation space in order

to build the potential functions and the Markov transport kernels associated to the

events of misdetection and to the appearence of new targets. With the introduction

of these two auxiliary points, in fact, the full transport kernel Qt+1,γt can be written

as:

Qt+1,γt(xt, dxt+1) = Gc∗
t,γt(xt)M

c∗
t+1(xt, dxt+1) +

Gy
t,γt(xt)M

y
t+1(xt, dxt+1) +

Gc′
t,γt(xt)M

c′
t+1(xt, dxt+1) (5.4.18)
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where:

Gc′
t,γt(xt) := ps,t(xt)(1− pd,t(xt)) M c′

t+1(xt, dxt+1) :=Mt+1(xt, dxt+1)

Gy
t,γt(xt) :=

∫
Yt(dy)

(
ps,t(pd,tgt(y,xt))

h(y)+γt(pd,tgt(y,.))
)

My
t+1(xt, dxt+1) :=Mt+1(xt, dxt+1)

Gc∗
t,γt(xt) := µt+1(1)

γt(1)
M c∗

t+1(xt, dxt+1) := µ̄t+1(dxt+1)

As equation (5.4.18) shows, the full transport kernel Qt+1,γt is a combination of

different terms expressed in the form of potential functions and Markov transitions.

The terms Gc∗
t,γt(x) G

c′
t,γt(x) and G

y
t,γt(x) are the potential functions associated to the

birth intensity, misdetection and measurements respectively. The terms M c∗
t+1 M

c′
t+1

and My
t+1 are the Markov transitions corresponding to the events of new target,

misdetection, and existing target.

Let νt+1(dy) := Yt(dy) + δc∗(dy) + δc′(dy) be a discrete measure on the observation

space; by substitution we obtain the formula:

Qt+1,γt(xt, dxt+1) =

∫
(Yt(dy) + δc(dy) + δc′(dy))G

y
t,γt(xt)M

y
t+1(xt, dxt+1)

=

∫
νt+1(dy)Q

y
t+1,γt(xt, dxt+1)

where the three different dynamics are determined by the transport kernels Qy
t+1,γt

indexed by the observations of the augmented RFS.

In case of linear Gaussian models, the potential functions Gc∗
t,γt(x), G

y
t,γt(x), G

c′
t,γt(x)

the distribution ηt and the Markov transitions Mt+1,M
c∗
t+1,M

c′
t+1 are constant func-

tions or Gaussian mixtures, as well as the functions ηt(G
y
t,γt(x)M

y
t+1) which can be

computed exactly. In the general case an approximation is required.

The discrete distribution is obtained by normalization:

ηt+1(f) =
γt+1(f)

γt+1(1)
=
γtQt+1,γt(f)

γtQt+1,γt(1)

=
γt(1)ηtQt+1,γt(f)

γt(1)ηtQt+1,γt(1)

=

∫
νt+1(dy)

ηt(G
y
t,γtM

y
t+1(f))∫

νt+1(dξ)ηt(G
ξ
t,γt)

(5.4.19)

Equation (5.4.19) provides the expression of the normalized PHD at time t + 1. In

order to obtain an expression in the form of a sum of weighted functions, equa-

tion (5.4.19) is multiplied and divided by ηt(G
y
t,γt(f)) and rewritten by using the

operators:

ηtG
y
n,γt(f)

ηt(G
y
t,γt)

= ΨGy
t,γt

(ηt)(f) and ΨGy
t,γt

(ηt)M
y
t+1(f) = Φy

t+1(ηt)(f)
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where ΨGy
t,γt

(ηt) represents the change of probability given by equation (2.0.5) ac-

cording to the potential function Gy
t,γt and Φy

t+1(ηt) denotes the full update-transport

operator.

The normalized distribution of the targets at time t is a sum of weighted terms by

the integral expression:

ηt+1(f) =

∫
νt+1(dy)

ηt(G
y
t,γt(f))∫

νt+1(dξ)ηt(G
ξ
t,γt)︸ ︷︷ ︸

Θ(y)

Φy
t+1(ηt)(f) (5.4.20)

In case of linear-Gaussian models, the distributions ηt have the form of a Gaussian

mixture and the normalized posterior intensity is given by their update and propa-

gation Φy
t+1(ηt) operator, weighted by the quantity Θ(y).

Once we have the expression of the normalized posterior PHD as a sum of weighted

functions, the approximation is done by sampling a fixed number of terms according

to their weights.

The linear-Gaussian case is examined first.

While the usual implementation of the GM-PHD filter works by propagating and up-

dating all the terms of the mixture and then by pruning the Gaussians with a small

weight, the proposed algorithm works by approximating the normalized posterior

at time t as:

ηt ≈
1

N

N∑
i=1

η
{i}
t (5.4.21)

where η
{i}
t are Gaussian terms. The normalized posterior PHD is obtained by sub-

stituing (5.4.21) into (5.4.20):

ηt+1(f) ≈
∫

νt+1(dy)

∑N
i=1 η

{i}
t (Gy

t (f))∫
Yt(dξ)

∑N
j=1 η

{j}
t (Gξ

t )︸ ︷︷ ︸
Θ(i,y)

Φy
t+1(η

{i}
t )(f) (5.4.22)

Equation (5.4.22) provides a way to compute recursively in time the normalized

intensity of the process by using a set of Kalman filters which get resampled accord-

ing to the association weights Θ(i, yt). Note that the association weight Θ(i, y) is

computed for all the pairs Gaussian/measurement, including the two virtual obser-

vations c∗ and c′ discussed before. Once the terms have been resampled, the operator

Φy
t+1(η

{i}
t ) corresponds to the usual Kalman update-prediction of the Gaussian η

{i}
t

with respect to the observation y. Algorithm 8 provides a detailed description of

the implementation for the so-called Interacting Kalman PHD filter (IKF-PHD).

When linear Gaussian assumptions don’t hold it is not possible to have an analytic

solution for the integrals η
{i}
t (Gy

t ) of equation (5.4.22).
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It is however possible to rely on their particle approximation:

η
{i}
t ≈ 1

M

M∑
j=1

η
{j}
t,i (5.4.23)

In this case the terms η
{i}
t that corresponded to Gaussian distributions in the IKF-

PHD are approximated by clusters ofM particles that are resampled with the same

technique as in the linear Gaussian case.

We call this approach Interacting Group Particle PHD filter (IGP-PHD). When the

number of particles in each cluster is 1, the algorithm reduces to the mean field

particle filter.

An intuitive visualization of one step of the algorithm is given in Figure 5.40.
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Figure 5.40: The normalized intensity at time t is approximated by a set of particle
clusters η

{i}
t . The weights Θ(i, yt) form a discrete probability measure on the space

of the associations between the clusters and the observations, obtained from the
PHD recursion. The sampling according to the weights correspond to the choice of
a pair cluster-observation. Once the association has been chosen the particles are
propagated and updated to obtain a mode of the normalized PHD η

{i}
t+1

With the same reasoning used to obtain equation (5.4.20) it is possible to derive

the expression of the discrete probability measure on the association between the

terms and the observations over multiple time steps. In this case the resampling

would be done over all the possible associations between the terms of ηt and the
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observations in the RFSs received at time t+1, t+2, etc. However, the exponential

complexity of the approach would probably allow the use of no more than three or

four time steps.

5.4.3 Numerical results

To test the algorithms, we consider two-dimensional scenarios with an unknown

and time-varying number of targets observed in clutter. Two different models are

considered: in the first the target dynamics is described by a jump Markov process

and the observation model is linear Gaussian; in the latter both the target dynamics

and the observation models are non-linear.

The OSPA metric is used to measure the cardinality and estimation errors of the

IKF-PHD and IGP-PHD compared to the traditional SMC-PHD and GM-PHD fil-

ters. Different clutter rates, target survival probabilities and detection probabilities

are used.

Jump Markov multi-target model

The state of each target consists of its position and velocity xt = [px,t, ṗx,t, py,t, ṗy,t]
T .

An additional state variable r denotes the active dynamical model. The constant

velocity (CV) model (r = 1) is described by the transition and covariance matrices:

Ft−1(r = 1) =

[
A1 02

02 A1

]
, A1 =

[
1 T

0 1

]
(5.4.24)

Qt(r = 1) = σ2
1,v

[
Σ1 02

02 Σ1

]
,Σ1 =

[
T 4

4
T 3

3
T 3

3
T 2

]
(5.4.25)

where 0n denotes a n × n zero matrix, and σ1,v denotes the standard deviation of

process noise. Otherwise targets may follow a constant turn (CT) model with a

counterclockwise turn rate of 0.015◦s−1 (r = 2) or with a clockwise turn rate of

0.015◦s−1 (r = 3):

Ft−1(r = 2) =

[
A2 −Ã2

Ã2 A2

]
(5.4.26)

A2 =

[
1 1−cosωT

ω

0 cosωT

]
, Ã2 =

[
0 1−cosωT

ω

0 sinωT

]
, (5.4.27)

Qt(r = {2, 3}) = σ2
1,v

[
Σ2 02

02 Σ̃2

]

Σ2 =

[
2(ωT−sinωT )

ω3
1−cosωT

ω2

1−cosωT
ω2 T

]
, Σ̃2 =

[
0 −ωT−sinωT

ω2

ωT−sinωT
ω2 0

]
(5.4.28)
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Each target, if detected, generates a measurement according to a linear Gaussian

model with observation and noise covariance matrix:

Ht =

[
1 0 0 0

0 0 1 0

]
, Rt = σ2

ε I
2 (5.4.29)

Targets appearence is modeled by the birth intensity µt(·) which is a weighted

Gaussian mixture of the form:

µt(·) = µt(1)[N (·;m(1),Σ
(1)
b ) +N (·;m(2),Σ

(2)
b ) +N (·;m(3),Σ

(3)
b )] (5.4.30)

m(1) = [4e3, 1, 0, 10]T , m(2) = [−4e3, 1, 0, 10]T , m(3) = [0, 1, 0, 10]T ,

Σ
(1)
b = Σ

(2)
b = Σ

(3)
b =

⎡⎢⎢⎢⎢⎢⎣
2500 0 0 0

0 400 0 0

0 0 2500 0

0 0 0 400

⎤⎥⎥⎥⎥⎥⎦
The survival probability ps,t, detection probability pd,t and expected number of new

targets at each time step µt(1) are reported for each simulation. The switching

between motion models is given by the Markovian transition probability matrix:

τ(rt|rt−1) =

⎡⎢⎢⎣
0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9

⎤⎥⎥⎦
Linear Gaussian tests are performed by using targets with a fixed dynamical model

r = 1.

Non-linear multi-target model

Consider a non-linear bearings and range example with a time varying number of

objects observed in clutter: the state variable xt = [x̂Tt , ω
T
t ] consists in the posi-

tion and velocity components: x̂Tt = [px,t, ṗx,t, py,t, ṗy,t] and the turn rate ωT
t . The

dynamical model is:

x̂Tt = F (ωt−1)x̂t−1 + Gwt−1 (5.4.31)

ωt = ωt−1 +∆ut−1 (5.4.32)

where wt−1 ∼ N (·; 0, σ2
wI),ut−1 ∼ N (·; 0, σ2

uI), ∆ = 1s, σw = 5m/s2 and σu = π/180

rad/s and:

F (ω) =

⎡⎢⎢⎢⎣
1 sinω∆

ω
0 −1−cos ω∆

ω

0 cosω∆ 0 − sinω∆

0 1−cosω∆
ω

1 sinω∆
ω

0 sinω∆ 0 cosω∆

⎤⎥⎥⎥⎦G =

⎡⎢⎢⎢⎣
∆2

2
0

∆ 0

0 ∆2

2

0 ∆

⎤⎥⎥⎥⎦ (5.4.33)
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If the object is detected, the observation is a noisy bearing and range vector given

by:

yt =

[
arctan(px,t/py,t)√

p2x,t + p2y,t

]
+ εt (5.4.34)

where εt ∼ N (·; 0, Rt), with

Rt = diag([σ2
θ , σ

2
r ]

T )

and σθ = π/180 rad, σr = 5m. The birth process follows a Poisson RFS with

intensity:

µt(x) =

3∑
i=1

µt(1)N (x;m
(i)
b , Pb)

where µt(1) = 0.1 and m
(1)
b = [500, 15, 0, 15]T , m

(2)
b = [−500, 15, 0, 15]T ,m

(3)
b =

[0, 15, 0, 15]T . The covariance matrix Pb = diag([10, 10, 10, 10].

State estimation and track management

In the IKF-PHD and IGP-PHD each Gaussian term or each particle cluster is asso-

ciated at each time step to one of the observations in the augmented measurement

RFS. Table 5.6 shows an example of the association history for various clusters

during a simulation (the virtual observations associated to new targets and to mis-

detection events are denoted by the indices -1 and -2 respectively). The numbers in

each row indicate the index of the observation assigned to a cluster of particles or to

a Gaussian term. Different approaches to build tracks and estimates by exploiting

this information are possible. In the examples that follow we use Algorithm 9.

Generally it is difficult to perform a robust and correct track management in the

SMC-PHD since the errors introduced by clustering algorithms tend to interfere

with the correct association. By reducing the clustering errors the IKF-PHD and

IGP-PHD filters are able to provide much more coherent and consistent results. An

example of track reconstruction with the IGP-PHD for the test scenarios of Figures

5.41 and 5.43 is shown in Figures 5.42 and 5.44 respectively.

129



CHAPTER 5. PHD FILTERS: NUMERICAL STUDIES

ξ1 : -1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

ξ2 : -1 2 2 2 2 2 2 -1 -1 2 2 2 2 2 2 2 2 2 2

ξ3 : -1 1 1 1 1 1 1 1 -2 1 1 1 1 1 1 1 1 1 1

ξ4 : -1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

ξ5 : -1 1 1 1 1 1 1 1 -2 1 1 1 1 1 1 1 1 1 1

ξ6 : -1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

ξ7 : -1 1 1 1 1 1 1 1 -2 1 1 1 1 1 1 1 1 1 1

ξ8 : -1 1 1 1 1 1 1 1 -2 1 1 1 1 1 1 1 1 1 1

ξ9 : -1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Time step →

Table 5.6: Example of the association history. Particle clusters used to approximate
the posterior intensity are denoted by (ξi). Each column represent a time step.
At each time step the clusters are associated to a number corresponding to an
observation in the measurement RFS. A negative index indicates that the particle
cluster is associated to a birth event (-1) or to a misdetection event (-2). Tracks are
built by exploiting the associations between measurements and particle clusters.
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Figure 5.41: Track manager test scenario.
10 clutter points per scan, 100 time steps.
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Figure 5.42: Tracks built by exploiting the
association information between particle
clusters and observations.

130



5.4. ASSOCIATION-SAMPLING PARTICLE FILTERS

−1000 −500 0 500 1000
−1000

−800

−600

−400

−200

0

200

400

600

800

1000
Scenario

x coordinate (m)

y 
co

or
di

na
te

 (
m

)

Figure 5.43: Scenario used to illustrate the association-based track manager. 10
clutter points per scan, 100 time steps. Three targets following the non-linear
model described in section 5.4.3 are active during the simulation.
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Figure 5.44: Labelled tracks built by exploiting the associations between particle
clusters and observations. The targets are tracked as �T1�, �T2�and �T5�. Labels
�T3�and �T4� have been temptatively associated to tracks that have been discarded
as false tracks.
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Linear-Gaussian models

In linear-Gaussian examples a varying number of targets move in the surveillance

zone following a constant velocity model. Figure 5.45 show an instance of the

scenarios generated by this model. The Interacting Kalman PHD filter is configured

with 1000 particles, the SMC-PHD filter uses an equal number of particles and the

K-Means algorithm to extract estimates. The probability of a target detection is set

to 0.9 while 5 false observations are expected, on average, at each time step. Figure

5.46 reports the OSPA distance (with parameter 2 and cut-off value 500) as well

as the cardinality and assignment errors for the IKF-PHD filter compared to the

SMC-PHD and GM-PHD over 50 scenarios; Figure 5.47 shows the OSPA errors of

the IGP-PHD filter over 50 iterations. For the IGP-PHD 100 clusters of 50 particles

are used.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

4

x coordinate

y 
co

or
di

na
te

Figure 5.45: Test scenario for the linear model. Three targets following the lin-
ear model described in section 5.4.3 are active during the simulation. Detection
probability pd = 0.9, λc = 5, 100 time steps.

132



5.4. ASSOCIATION-SAMPLING PARTICLE FILTERS

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

O
S

P
A

 d
is

ta
n

c
e

OSPA distance.

 

 
Gm
Smc
IKF

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

A
s
s
ig

m
e

n
t 

e
rr

o
r

OSPA Assigment errors

 

 

Gm
Smc
IKF

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

Time step

O
S

P
A

 C
a

rd
in

a
lit

y
 E

rr
o

r

Cardinality error.

 

 
Gm
Smc
IKF

Figure 5.46: OSPA distance, cardinality and assignment errors for the GM-PHD,
SMC-PHD and Interacting Kalman PHD filters over 50 scenarii generated according
to the linear model described in section 5.4.3, λc = 5 pd = 0.9
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Figure 5.47: OSPA distance, cardinality and assignment errors for the GM-PHD,
SMC-PHD and Interacting Group Particle PHD filters over 50 scenarii generated
according to the linear model described in section 5.4.3, λc = 5 pd = 0.9
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Linear Gaussian Jump Markov models

More complex scenarios are generated by using the interacting jump Markov system

described in Section 5.4.3. Figure 5.48 shows a scenario generated by the model.

Figures 5.49 and 5.50 report the OSPA distance as well as the cardinality and

assignment errors over 10 simulated scenarios. The SMC-PHD filter uses the K-

Means algorithm to extract target estimates.
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Figure 5.48: Test scenario of the jump Markov model. Three targets having the
interacting jump Markov dynamics described in Section 5.4.3 are active during the
simulation. Detection probability pd = 0.9, λc = 5, 100 time steps.pd = 0.9, λc = 10
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Figure 5.49: OSPA distance, cardinality and assignment errors for the GM-PHD,
SMC-PHD and IKF-PHD filters over 50 iterations. Clutter intensity 10, misdetec-
tion probability pd = 0.9. The IKF-PHD filter is configured with 1000 particles.
The SMC-PHD has an equal number of particles and it uses the K-Means to build
estimates.
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Figure 5.50: OSPA distance, cardinality and assignment errors for the GM-PHD,
SMC-PHD and IGP-PHD filters over 50 iterations. Clutter intensity λc = 10,
misdetection probability pd = 0.9. The IGP-PHD filter is configured with 200 groups
of 50 particles. The SMC-PHD is configured with an equal number of particles and
it uses the K-Means to build estimates.

Nonlinear models

Figures 5.51 and 5.52 show an instance of the scenarios generated by the non-linear

model described in Section 5.4.3 . SMC-PHD and IGP-PHD filter estimates are
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shown in Figures 5.53 and 5.54 while the OSPA errors are shown in Figures 5.55.
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Figure 5.51: Test scenario for the non-linear model described in section 5.4.3. Five
targets are active during the simulation. Detection probability pd = 0.9, clutter
intensity λc = 10. 100 time steps.
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Figure 5.52: Position coordinates of the targets of scenario 5.51.
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Figure 5.53: SMC-PHD filtering of scenario 5.51. Target estimates in red.

0 10 20 30 40 50 60 70 80 90 100
−1000

−500

0

500

1000
IGPHD filtering

time

x 
co

or
di

na
te

0 10 20 30 40 50 60 70 80 90 100
−1000

−500

0

500

1000

time

y 
co

or
di

na
te

Figure 5.54: IGP-PHD filtering of scenario 5.51. Target estimates in red.

Monte Carlo validation

Since clustering errors are reduced by exploiting the association information, the

IKF-PHD and IGP-PHD are able to provide more reliable target estimates and

constitute a viable alternative to the SMC-PHD especially in models characterized

by strong non-linearities. Figure 5.56 reports the average OSPA errors over 50

filtering iterations on scenarios generated according to the nonlinear model discussed
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Figure 5.55: OSPA distance, cardinality and assignment errors for the SMC-PHD
and IGP-PHD filtering of scenario 5.51.

in section 5.4.3. The scenarios are generated by using a clutter level of λc = 10,

with 5 targets appearing at time t = [1, 10, 1, 15, 30] sec. respectively.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

O
S

P
A

 d
is

ta
n

c
e

 

 

Smc
IGPF

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

O
S

P
A

 A
s
s
. 

e
rr

o
r

OSPA Assigment errors

 

 

Smc
IGPF

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

Time step

O
S

P
A

 C
a

rd
. 
E

rr
o
r

 

 
Cardinality error.

Smc
IGPF

Figure 5.56: Monte Carlo simulation. OSPA distance, cardinality and assignment
errors for the SMC-PHD and IGP-PHD filters over 50 iterations. Clutter intensity
λc = 10, misdetection probability pd = 0.95
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Conclusion

Results show that the estimates built from the associations between particles and

observations are more reliable than the estimates obtained with the K-Means in

the SMC-PHD. In models where the dynamics of the targets is modelled as a jump

Markov process, the estimation obtained with the IGP-PHD is slightly worse than

the solution obtained with the Jump Markov GM-PHD (implemented via UKF)

but better than that obtained with the SMC-PHD, even when the misdetection

probability is relatively low.

In nonlinear models, Monte Carlo validations show that the estimates obtained by

the IGP-PHD are more precise than those obtained by the SMC-PHD especially in

what concern the assignment errors. Once again the reason is that clustering errors

are not present. However, as Figure 5.56 shows, the IGP-PHD needs at least 3 time

steps to validate a target. This delay appears in the peaks at time t = 1, 10, 15, 30

in the OSPA cardinality error plot.

The IKF-PHD and IGP-PHD filters are thus a viable alternative to the classical

algorithms, especially because the clustering errors are sensibly reduced and robust

trackers exploiting the association information can be built. The real advantage of

these formulations, however, is in dealing with models characterized by strong non-

linearities, where the GM-PHD cannot be used, and in models where the posterior

PHD is hardly approximated by Gaussian mixtures.



Algorithm 8 Interacting Kalman filter implementation of the PHD recursion
N number of interacting Kalman Filters, S number of gaussian birth modes with mean

and covariances {µ(1,...,S)
B , P

(1,...,S)
B }, µt birth intensity at time t with mass µt(1)

pd,t,ps,t: detection and survival probabilities at time t

Initial normalized intensity η0 =
1
N

∑N
i=0N (mi

0, P
i
0)

Observations set at time t Yt := {yt1, . . . , ytn}; c′, c∗ = auxiliary observations corre-
sponding to undetected target and to birth events.

Initialization of η0 = {m(i)
0 , P

(i)
0 }Ni=1:

for i = 1 . . . N do
j ∼ U({1, . . . , S})
m

(i)
0 = µ

(j)
B , P

(i)
0 = P

(j)
B

end for
for t = 1, 2, . . . do

for y ∈ Yt do
Ly = 0;
for i = 1 . . . N do

h̄ = H·m(i)
t ; Σ = R+HP

(i)
t H ′

Ly = Ly +N (y, h̄,Σ)
end for
m̂y = (ps,t· pd,t·Ly· γt−1(1))/(h(y) + pd,t·Ly· γt−1(1))

end for
γt(1) = γt−1(1)· (1 − pd,t)· ps,t + µt(1) +

∑
y m̂

y

for k = 1 . . . N do
for y ∈ Yt ∪ {c∗, c′} do

if y = c∗ then
w(k,y) = µt/(N · γt−1(1))

else if y = c′ then
w(k,y) = ps,t· (1− pd,t)/N

else
Hm = H·m(k)

t ; Σ = R+HP
(k)
t H ′; l = N (y,Hm,Σ)

w(k, y) = (ps,tpd,tl)/(h(y) + pd,tγt−1(1)·Ly)
end if

end for
end for
W =

∑
k

∑
y w(k, y)

ŵ(k, y) = w(k, y)/W

Sample N associations: {a(k̂,ŷ)i }Ni=1 ∼ ŵ(k, y)
for z = 1 . . . N do

if ŷ = c∗ then
v ∼ U({1, . . . , L})
ηzt = N (µv

B ,Σ
v
B)

else if ŷ = c′ then

ηzt = ηk̂t−1

else
ηzt = KFupdate(ηk̂t−1, ŷ)

end if
end for
ηt = {KFpredict(ηzt )}Nz=1

end for



5.4. ASSOCIATION-SAMPLING PARTICLE FILTERS

Algorithm 9 Estimate extraction algorithm

Denote by Yt = {y1t · · · yN1
t },Yt−1 = {y1t−1 · · · yN2

t−1},Yt−2 = {y1t−2 · · · yN3
t−2} the sets of

observations at time t, t− 1 and t− 2 respectively.
Denote by ξit the i-th particle at time t and by ξit.y and ξit.x the associated observation
and its state.
Estimates set J = ∅
for each ykt > 0 ∈ Yt do

I1 = {i : ξit.y = ykt , ξ
i
t−1.y = −2, ξit−2.y > 0}

I2 = {l : ξlt.y = ykt , ξ
l
t−1.y > 0}

J = J ∪ (1/|I1|)
∑

i∈I1(ξ
i
t.x) ∪ (1/|I2|)

∑
l∈I2”(ξ

l
t.x)

end for
Take care of the possible undetected states by adding the following estimates:
for each ykt−1 > 0 ∈ Yt−1 do

B = { r: ξrt having ξrt−1.y = ykt−1}
if ξrt .x = 2 ∀r then

J = J ∪ (1/|B|)
∑

i∈B(ξ
i
t.x)

end if
end for
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Part II

Theoretical aspects and Stochastic

Analysis
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Overview

The first part of the thesis introduced the problem of multi-object filtering in the

random finite sets framework and presented the PHD recursion and its common im-

plementations. The objective was to introduce the conceptual framework of multi-

object filtering as well as to analyze the numerical performances of PHD filters.

The second part is focused on the theoretical aspects of the PHD recursion consid-

ered as a measure-valued system.

Each chapter is introduced by a short paragraph and can be read independently.

The organization of this part is as follows:

� Chapter 6 considers the problem of the estimation of a latent point process,

given the realization of another point process on abstract measurable state

spaces. By establishing the expression of the conditional distribution of a

latent Poisson point process given an observation point process, the PHD

recursion is derived without the use of probability generating functionals or

other advanced FISST concepts.

� Chapter 7 analyzes the sequence of intensity measures associated to a class of

nonlinear branching processes and studies their stability properties and long

time behavior. A particle scheme to approximate numerically these intensity

measures is also proposed.

� Chapter 8 presents an analysis of the exponential stability properties of a

class of measure-valued equations arising in nonlinear multi-target filtering

and proves the uniform convergence properties of a general class of stochastic

filtering algorithms, including sequential Monte Carlo type models and mean

field particle interpretation models.
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Chapter 6

Conditional Distributions of

Spatial Point Processes

6.1 Chapter overview

The approach developed in this chapter consists in the characterization of a hidden

Poisson point process given a realization of an observed Poisson point process with-

out the use of probability generating functionals or symmetrization techniques.

By using the connection between the Random Finite Set formulation and the theory

of spatial branching processes, a measure theoretic formulation of the Probability

Hypothesis Density Filter is derived, complementing [120].

Moreover, the measure-valued processes arising in multi-object filtering are de-

scribed as a generalization of Feynman-Kac measures where the flow of measures

depends on the total mass of the process.

The chapter is organized as follows: section 6.2 introduces the objective, the math-

ematical point of view and the main contributions as well as the definition of the

mathematical concepts. Section 6.3 describes a static model associated to a pair of

signal-observation Poisson point processes and section 6.4 establishes the connection

between spatial filtering models and the probability hypothesis density equations

and provides an alternative, measure-theoretic derivation of the PHD recursion.

This chapter has been accepted and is due to appear as a journal article in Ad-

vances in Applied Probability (June 2011).
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CHAPTER 6. CONDITIONAL DISTRIBUTIONS OF SPATIAL POINT PROCESSES

On the Conditional Distributions of Spatial Point Processes

∗François Caron, †Pierre Del Moral, ‡Arnaud Doucet, §Michele Pace

Keywords : filtering; multitarget tracking; spatial point processes; probability

hypothesis density filter

Mathematics Subject Classification : 62M30, 93E11, 60D05

Abstract

We consider the problem of estimating a latent point process, given the

realization of another point process on abstract measurable state spaces. We

establish an expression of the conditional distribution of a latent Poisson point

process given the observation process when the transformation from the latent

process to the observed process includes displacement, thinning and augmen-

tation with extra points. Our original analysis is based on an elementary

and self-contained random measure theoretic approach. This simplifies and

complements previous derivations given in [77], [120].

6.2 Introduction

Spatial point processes occur in a wide variety of scientific disciplines including

environmetrics, epidemiology and seismology; see [26] and [122] for recent books on

the subject. In this paper, we are interested in scenarios where the spatial point

process of interest is unobserved and we only have access to another spatial point

process which is obtained from the original process through displacement, thinning

and augmentation with extra points. Such problems arise in forestry [69], [70] but

our motivation for this work stems from target tracking applications [77], [120],

[136]. In this context, we want to infer the number of targets and their locations;

this number can vary as targets enter and exit the surveillance area. We only have

access to measurements from a sensor. Some targets may not be detected by the

sensor and additionally this sensor also provides us with a random number of false

measurements.
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6.2. INTRODUCTION

From a mathematical point of view, we are interested in the computation of the

conditional distributions of a sequence of random measures with respect to a se-

quence of noisy and partial observations given by spatial point processes. Recently

a few articles have addressed this problem. In a seminal paper [77], R. Mahler

has proposed an original and elegant multi-object filtering algorithm known as the

PHD (Probability Hypothesis Density) filter which relies on a first order moment

approximation of the posterior. The mathematical techniques used by R. Mahler are

essentially based on random finite sets techniques including set derivatives and prob-

ability generating functionals. In a more recent article [120], S.S. Singh, B.N. Vo, A.

Baddeley and S. Zuyev have clarified some important technicalities concerning the

use of the derivatives of the joint probability generating functionals to characterize

conditional distributions. They have proposed a simplified derivation of the PHD

filter and have extended this algorithm to include second moment information. An

alternative way to obtain such conditional distributions appeared in [68] and, using

Janossy densities, in [66].

The main contribution of this article is to propose an original analysis based

on a self-contained random measure theoretic approach. The elementary techniques

developed in this paper complement the more traditional random finite sets analysis

involving symmetrization techniques or related to other technicalities associated

with the computation of moment generating functions derivatives.

The rest of this article is organized as follows. In section 6.3 we first present

a static model associated to a pair of signal-observation Poisson point processes.

We establish a functional representation of the conditional distribution of a Poisson

signal process w.r.t. noisy and partial observations. The proof is elementary. It is

extended in section 6.4 to dynamic models in order to establish the PHD equations

[77], [120]. We end this introductory section with some standard notations used in

the paper.

We denote respectively by M(E), P(E) and B(E), the set of all finite positive

measures on some measurable space (E, E), the set of all probability measures,

and the Banach space of all bounded and measurable real-valued functions. For

µ ∈ M(E) and f ∈ B(E), we let µ(f) =
∫
µ(dx) f(x) be the Lebesgue integral.

The Dirac measure at a ∈ E is denoted δa. We also denote by µ⊗p the product

measure of µ ∈ M(E) on the product space Ep.

Let G : x ∈ E �→ G(x) ∈ [0,∞) be a bounded non-negative potential function.

Define ΨG(η) ∈ P(E) by its density G(x)/η(G) with respect to a measure η.

In various places in this article, we shall add an auxiliary “death” state d to the

original state space E. The functions f ∈ B(E) are extended to the augmented

space E ∪ {d} by setting f(d) = 0.
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For every sequence of points x = (xi)1≤i≤k in E and every 0 ≤ p ≤ k, we denote by

mp(x) the occupation measure of the first p coordinates mp(x) =
∑

1≤i≤p δxi. For

p = 0, we use the convention m0(x) = 0, the null measure on E.

We recall that a bounded and positive integral operator f �→ L(f) from B(E2) into

B(E1) is such that the functions

x �→ L(f)(x) =

∫
E2

L(x, dy)f(y)

are E1-measurable and bounded for some measures L(x, .) ∈ M(E2). These oper-

ators also generate a dual operator µ �→ µL from M(E1) into M(E2) defined by

(µL)(f) = µ(L(f)). A Markov kernel is obtained when L(x, ·) ∈ P(E) for any x.

6.3 Conditional distributions for Poisson processes

Assume the unobserved point process is a finite Poisson point process X =
∑

1≤i≤N δXi

with intensity measure γ on some measurable state space (E1, E1). We set η(dx) =

γ(dx)/γ(1). The observed point process consists of a collection of random obser-

vations directly generated by a random number of points of X plus some random

observations unrelated to X .

To describe more precisely this observed point process, we let α be a measurable

function from E1 into [0, 1] and we consider a Markov transition L(x, dy) from E1 to

E2. Given a realization of X , every random point X i = x generates with probability

α(x) an observation Y ′i on E2 with distribution L(x, dy); otherwise it goes into a

death state d. Hence α (x) measures the “detectability” degree of x. In other words,

a given point x generates a random observation in E ′
2 = E2 ∪ {d} with distribution

Ld(x, dy) = α(x) L(x, dy) + (1− α(x)) δd(dy). (6.3.1)

The resulting point process is the random measure
∑

1≤i≤N δY ′i on the augmented

state space E ′
2.

In addition to this point process we also observe an additional, and independent of

X , Poisson point process
∑

1≤i≤Nc
δY ′i

c
with intensity measure ν on E2; this is known

as the clutter noise in multitarget tracking.

In other words, we obtain a process on E ′
2 given by the random measure

Y ′ =
∑

1≤i≤N

δY ′i +
∑

1≤i≤Nc

δY ′i
c
.

The state d being unobservable, the observed point process is the random measure

Y on E2 given by

Y =
∑

1≤i≤N

1E2(Y
′i) δY ′i +

∑
1≤i≤Nc

δY ′i
c
= Y ′ −Nd δd =

∑
1≤i≤M

δY i
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where Nd =
(∑

1≤i≤N 1d(Y
′i)
)
corresponds to the number of undetected/dead

points, and M = N −Nd +Nc is the number of observed points.

Let X ′ = X + Ncδc be defined on E ′
1 = E1 ∪ {c} where c is some cemetery

state associated with clutter observations. We present in the following proposition

an explicit integral representation of a version of the conditional distributions of Y ′

given X and X ′ given Y .

Proposition 6.3.1. A version of the conditional distribution of Y ′ given X is given

for any function F ∈ B (M(E ′
2)) by

E (F (Y ′) |X ) = e−ν(1)
∑
k≥0

1

k!

∫
(E′

2)
k+N

F (mk(y
′
c) +mN(y

′)) ν⊗k(dy′c)

N∏
i=1

Ld(X
i, dy′i)

(6.3.2)

We further assume that ν � λ and L(x, .) � λ, for any x ∈ E1, for some

reference measure λ ∈ M(E2), with Radon Nikodym derivatives given by

g(x, y) =
dL(x, .)
dλ

(y) and h(y) =
dν

dλ
(y) (6.3.3)

and such that h(y) + γ(αg(., y)) > 0, for any y ∈ E2.

In this situation, a version of the conditional distribution of X ′ given the obser-

vation point process Y is given for any function F ∈ B (M(E ′
1)) by

E (F (X ′) |Y )

= e−γ(1−α)
∑
k≥0

γ(1− α)k

k!

∫
(E′

1)
k+M

F (mk(x
′) +mM (x)) Ψ(1−α)(η)

⊗k (dx′)

M∏
i=1

Q
(
Y i, dxi

)
(6.3.4)

where Q is a Markov transition from E2 into E ′
1 defined by the following formula

Q(y, dx) = (1− β(y)) Ψαg(.,y)(η)(dx) + β(y) δc(dx) (6.3.5)

with

β(y) =
h(y)

h(y) + γ(αg(., y)) . (6.3.6)

Proof:

The proof of the first assertion in Eq. (6.3.2) is elementary, thus it is skipped. We

provide here a proof of the second result given in Eq. (6.3.4). First, we observe that

the random measure

Z =
∑

1≤i≤N

δ(Xi,Y ′i) +
∑

1≤i≤Nc

δ(c,Y ′i
c ) =

∑
1≤i≤N+Nc

δ(Zi
1,Z

i
2)

(6.3.7)
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is a Poisson point process in E ′ = E ′
1 × E ′

2. More precisely, the random variable

N+Nc is a Poisson random variable with parameter κ = γ(1)+ν(1), and (Z i
1, Z

i
2)i≥0

is a sequence of independent random variables with common distribution

Γ(d(z1, z2)) = η′(dz1)L
′(z1, dz2) with κη′ = γ(1) η + ν(1) δc ,

L′(z1, dz2) = 1E1(z1) Ld(z1, dz2) + 1c(z1) ν(dz2) with ν(dz2) = ν(dz2)/ν(1) .

From the joint distribution Γ(d(z1, z2)), we can obtain the conditional distribu-

tion L′
η′(z2, dz1) of Z1 given Z2 = z2 using the easily checked reversal formula, i.e.

Bayes’rule

η′(dz1)L
′(z1, dz2) = (η′L′) (dz2) L

′
η′(z2, dz1).

This yields

L′
η′(z2, dz1) = 1d(z2) Ψ(1−α)(η)(dz1) + 1E2(z2) Q(z2, dz1).

Hence we can conclude that for any function F ∈ B(M(E ′
1))

E (F (Z1) |Z2 ) =

∫
(E′

1)
N+Nc

F (mN+Nc(z1))
N+Nc∏
i=1

L′
η′
(
Z i

2, dz
i
1

)
where Zj stands for the j-th marginal of Z, with j ∈ {1, 2}. The end of the proof

is now a direct consequence of the fact that (Z1,Z2) = (X ′,Y ′), E (F (X ′) |Y ) =

E (E (F (X ′) |Y ′ ) |Y ) and

E (F (Y ′) | Y ) = e−γ(1−α)
∑
k≥0

γ(1− α)k

k!
F (kδd + Y)

for any function F ∈ B(M(E ′
2)) as Nd follows a Poisson distribution of parameter

γ(1− α). This ends the proof of the proposition. �
The expressions of the conditional expectations of linear functionals of the ran-

dom point processes X ′ and X given the point process Y follow straightforwardly

from the previous proposition. Recall that f (c) = 0 by convention.

Corollary 6.3.2. For any function f ∈ B(E ′
1) we have

E (X ′(f) | Y) = E (X (f) | Y)

= e−γ(1−α)
∑
k≥0

γ(1− α)k

k!

(
k Ψ(1−α)(η) (f) +

∫
Y(dy)Q (f) (y)

)
= γ((1− α)f) +

∫
Y(dy) (1− β(y)) Ψαg(.,y)(η)(f) . (6.3.8)

In particular, the conditional expectation of the number of points N in X given the

observations is given by

E (N |Y) = E (X (1) | Y) = γ(1− α) + Y (1− β) . (6.3.9)
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6.4. SPATIAL FILTERING MODELS AND PROBABILITY HYPOTHESIS
DENSITY EQUATIONS

6.4 Spatial filtering models and probability hy-

pothesis density equations

We show here how the results obtained in proposition 6.3.1 and corollary 6.3.2 allows

us to establish directly the PHD filter equations [77], [120].

In what follows the parameter n is interpreted as a discrete time index. We consider

a collection of measures µn ∈ M(E1) and a collection of positive operators Rn+1

from E1 into E1.

We then define recursively a sequence of random measures Xn and Yn on E1

and E2 as follows. The initial measure X0 is a Poisson point process with intensity

measure γ0 = µ0 on E1. Given a realization of X0, the corresponding observation

process Y0 on E2 is defined as in section 6.3 with a detection function α0 on E1, a

clutter intensity measure ν0, and some Markov transitions Ld,0 and L0 defined as in

(6.3.1) and satisfying (6.3.3) for some reference measure λ0 and some functions h0
and g0. From corollary 6.3.2, we have for any function f ∈ B(E1)

γ̂0(f) =E (X0(f) | Y0)

= γ0((1− α0)f) +

∫
Y0(dy) (1− β0(y)) Ψα0g0(.,y)(γ0)(f)

with a function β0 defined as in Eq. (6.3.6) by substituting (α0, h0, g0) to (α, h, g).

Given a realization of the pair random sequences (Xp,Yp), with 0 ≤ p ≤ n, the pair

of random measures (Xn+1,Yn+1) is defined as follows. We set Xn+1 to be a Poisson

point process with intensity measure γn+1 defined by the following recursions for

any function f ∈ B(E1)

γ̂n(f) =γn((1− αn)f) +

∫
Yn(dy) (1− βn(y)) Ψαngn(.,y)(γn)(f)

γn+1 =γ̂nRn+1 + µn+1

In the context of spatial branching processes, µn stands for the intensity measure of

a spontaneous birth model while Rn+1 represents the first moment transport kernel

associated with a spatial branching type mechanism. For example, assume that each

point X i
n = x at time n dies with probability ρ(x) or survives and evolves according

to a Markov kernel Kn+1 from E1 into E1 then Rn+1 corresponds to

Rn+1 (x, dx
′) = (1− ρ(x))Kn+1 (x, dx

′) .

It is also possible to modify Rn+1 to include some spawning points [77], [120], [136].

In addition, given a realization of Xn+1, the corresponding observation process Yn+1

is defined as in section 6.3 with a detection function αn+1 on E1, a clutter intensity

measure νn+1, and some Markov transitions Ld,(n+1) and Ln+1 defined as in (6.3.1)

and satisfying (6.3.3) for some reference measure λn+1 and some functions hn+1
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and gn+1. We let Nc,n be the number of death states c associated with clutter

observations at time n and Mn be the number of observations at time n.

The following elementary corollary proves that the PHD filter propagates the

first moment of the multi-target posterior distribution of the filtering model defined

above. This is a direct consequence of proposition 6.3.1 and corollary 6.3.2.

Corollary 6.4.1. An integral version of the conditional distribution of X ′
n = Xn +

Nc,nδc given the filtration FY
n = σ (Yp, 0 ≤ p ≤ n) generated by the observation point

processes Yp =
∑

1≤i≤Mp
δY i

p
, from the origin p = 0 up to the current time p = n, is

given for any function F ∈ B (M(E ′
1)) by the following formula

E
(
F (X ′

n)
∣∣FY

n

)
= e−γn(1−αn)

∑
k≥0

γn(1− αn)
k

k!∫
(E′

1)
k+Mn

F (mk(x
′) +mMn(x)) Ψ(1−αn)(γn)

⊗k (dx′)
Mn∏
i=1

Qn

(
Y i
n, dx

i
)

with the Markov transitions

Qn(y, dx) = (1− βn(y)) Ψαngn(.,y)(γn)(dx) + βn(y) δc(dx) .

In particular, the random measures γn and γ̂n defined below coincide with the first

moment of the random measures X n given the sigma-fields FY
n−1 and FY

n ; that is,

for any function f ∈ B(E1), we have

γn(f) = E
(
Xn(f) | FY

n−1

)
and γ̂n(f) = E

(
Xn(f) | FY

n

)
.
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Chapter 7

Particle approximations of a class

of branching distribution flows

arising in multi-target tracking

7.1 Chapter overview

In this chapter we analyze the sequence of intensity measures associated to the spa-

tial branching point processes arising in the context of multiple object filtering and

study their stability properties and long time behavior. Under appropriate regular-

ity conditions, it is possible to demonstrate uniform and non asymptotic estimates

and a functional Central Limit Theorem.

In the second part of the article we propose a technique to approximate numerically

the flow of intensity measures.

This result has been accepted and is due to appear as a journal article in SIAM

Journal on Control and Optimization.
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CHAPTER 7. PARTICLE APPROXIMATIONS OF BRANCHING DISTRIBUTION
FLOWS

Particle approximation of the intensity measures of a spatial

branching point process arising in multi-target tracking

∗François Caron, †Pierre Del Moral, ‡Arnaud Doucet, §Michele Pace

Abstract

The aim of this paper is two-fold. First we analyze the sequence of inten-

sity measures of a spatial branching point process arising in a multiple target

tracking context. We study its stability properties, characterizes its long time

behavior and provide a series of weak Lipschitz type functional contraction

inequalities. Second we design and analyze an original particle scheme to ap-

proximate numerically these intensity measures. Under appropriate regularity

conditions, we obtain uniform and non asymptotic estimates and a functional

central limit theorem. To the best of our knowledge, these are the first sharp

theoretical results available for this class of spatial branching point processes.

Keywords : Spatial branching processes, multi-target tracking problems, mean

field and interacting particle systems, Feynman-Kac semigroups, uniform estimates

w.r.t. time, functional central limit theorems.

7.2 Introduction

Multi-target tracking problems deal with tracking several targets simultaneously

given noisy sensor measurements. Over recent years, point processes approaches

to address these problems have become very popular. The use of point processes

in a multiple-target tracking context was first proposed in S. Mori et al. [89] as

early as in 1986. Using a random sets formalism, a formalism essentially equivalent

to the point process formalism [37, 90], R. Malher and his co-authors proposed in

two books [86, 42] a systematic treatment of multi-sensor multi-target filtering

problems. However, as mentioned in [90], “... although the random sets formalism

(or the point process formalism) for multitarget tracking has provided a unified view
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7.2. INTRODUCTION

on the subject of multiple target tracking, it has failed to produce any significant

practical tracking algorithms...”.

This situation has recently changed following the introduction of the PHD (prob-

ability hypothesis density) filter by R. Malher [73, 76]. The PHD filter is a powerful

multi-target tracking algorithm which is essentially a Poisson type approximation

to the optimal multi-target filter [73, 86, 120]. It has found numerous applications

since its introduction. The PHD filter cannot be computed analytically but it can

be approximated by a mixture of Gaussians for linear Gaussian target models [130]

and by non-standard particle methods for nonlinear non-Gaussian target models

[133, 53].

Despite their increasing popularity, the theoretical performance of these multi-

target particle methods remain poorly understood. Indeed their mathematical struc-

ture is significantly different from standard particle filters so the detailed theoretical

results for particle filters provided in [28] are not applicable. Some convergence re-

sults have been already established in [133, 53] but remain quite limited. Reference

[133] presents a basic convergence result for the PHD filter but does not establish

any rate of convergence. In [53] the authors provide some quantitative bounds and

a central limit theorem. However these quantitative bounds are not sharp and no

stability result is provided.

The aim of this work is to initiate a thorough theoretical study of these non-

standard particle methods by first characterizing the stability properties of the “sig-

nal” process and establishing uniform w.r.t the time index convergence results for its

particle approximation. This “signal” process is a spatial branching point process

whose intensity measure always satisfies a closed recursive equation in the space of

bounded positive measures. We will not consider any observation process in this

article. The analysis of the particle approximations of PHD filters is presented in

[32]. It builds heavily upon the present work but it is even more complex as it

additionally involves at each time step a nonlinear update of the intensity measure.

The rest is organized as follows: in section 7.3, we present a spatial branching

point process which is general enough to model a wide variety of multiple target

problems. We establish the linear evolution equation associated to the intensity

measures of this process and introduces an original particle scheme to approximate

numerically these measures. Section 7.4 summarizes the main results of this paper.

In Section 7.5, we provide a detailed analysis of the stability properties and the long

time behavior of these sequence of intensity measures, including the asymptotic

behavior of the total mass process, i.e. the integral of the intensity measure over

the state space, and the convergence to equilibrium of the corresponding sequence

of normalized intensity measures. For time-homogeneous models, we exhibit three

different types of asymptotic behavior. The analysis of these stability properties

is essential in order to guarantee the robustness of the model and to obtain reli-
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able numerical approximation schemes. Section 7.6 is devoted to the theoretical

study of the non-standard particle scheme introduced to approximate the intensity

measures. Our main result in this section is an non-asymptotic convergence for this

scheme. Under some appropriate stability conditions, we additionaly obtain uniform

estimates w.r.t. the time parameter.

7.3 Spatial branching point process and its par-

ticle approximation

7.3.1 Spatial branching point process for multi-target track-

ing

Assume that at a given time n there are Nn target states (X i
n)1≤i≤Nn taking values

in some measurable state space En enlarged with an auxiliary cemetery point c.

The state space En depends on the problem at hand. It may vary with the time

parameter and can include all the characteristics of a target such as its type, its

kinetic parameters as well as its complete path from the origin. As usual, we extend

the measures γn and the bounded measurable functions fn on En by setting γn(c) = 0

and fn(c) = 0.

Each target has a survival probability en(X
i
n) ∈ [0, 1]. When a target dies, it

goes to the cemetery point c. We also use the convention en(c) = 0 so that a

dead target can only stay in the cemetery. Survival targets give birth to a random

strictly positive number of individuals hin(X
i
n) where (hin(X

i
n))1≤i≤Nn

is a collection

of independent random variables such that E (hin(xn)) = Hn(xn) for any xn ∈ En

where Hn is a given collection of bounded functions Hn. We have Hn (xn) ≥ 1 for

any xn ∈ En as hin(xn) ≥ 1. This branching transition is called spawning in the

multi-target tracking literature. We define Gn = enHn.

After this branching transition, the system consists of a random number N̂n of

individuals (X̂ i
n)1≤i≤N̂n

. Each of them evolves randomly X̂ i
n = xn � X i

n+1 according

to a Markov transition Mn+1(xn, dxn+1) from En into En+1. We use the convention

Mn+1(c, c) = 1, so that any dead target remains in the cemetery state.

At the same time, an independent collection of new targets is added to the current

configuration. This additional and spontaneous branching process is often modeled

by a spatial Poisson process with a prescribed intensity measure µn+1 on En+1. This

spontaneous branching scheme is used to model new targets entering the state space.

At the end of this transition, we obtainNn+1 = N̂n+N
′
n+1 targets (X

i
n+1)1≤i≤Nn+1,

where N ′
n+1 is a Poisson random variable with parameter given by the total mass

µn+1(1) of the positive measure µn+1, and (XN̂n+i
n+1 )1≤i≤N ′

n+1
are independent and

identically distributed random variables with common distribution µn+1 = µn+1/µn+1(1)
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7.3. SPATIAL BRANCHING POINT PROCESS

where µn+1(1) :=
∫
En+1

µn+1(dx).

Example. To illustrate the model, we present here a simple yet standard ex-

ample [130]. In this case, we set En = E = R4 corresponding to the area monitored

by a radar. All the targets are assumed to be of the same type. The state of a

target Xn = [pxn, p
y
n, v

x
n, v

y
n] consists of its position [pxn, p

y
n] and velocity [vxn, v

y
n] and is

assumed to evolve according to a linear Gaussian model

Xn = AXn−1 + Vn (7.3.1)

where Vn ∼ N (0,Σ) is a sequence of i.i.d zero-mean normal random variables of

covariance Σ; i.e. Mn(xn−1, dxn) =M(xn−1, xn)dxn with

M(xn−1, xn) =
1

(2π |Σ|)1/2
exp

(
−1

2
(xn − Axn−1)

TΣ−1 (xn − Axn−1)

)
.

We assume that µn (x) = µ (x), en(x) = s > 0 and hn(xn) = h ∈ {1, 2} with

P (h = 1) = 1 − P (h = 2) = α. Hence for this model, each target Xn−1 survives

at time n − 1 with a probability s. Each survival target has one offspring with

probability α which evolves according to (7.3.1) or two offspring with probability

1 − α which, conditional upon Xn−1, independently evolve according to (7.3.1).

Additionally, a random number of targets distributed according to a Poisson distri-

bution of parameter λ appear. These targets are independent and distributed in E

as µ (x) = µ (x) /µ (1).

7.3.2 Sequence of intensity distributions

At every time n, the intensity measure of the point process Xn :=
∑Nn

i=1 δXi
n
associ-

ated to the targets is given for any bounded measurable function f on En ∪ {c} by

the following formula:

γn(f) := E (Xn(f)) with Xn(f) :=

∫
f(x) Xn(dx)

To simplify the presentation, we suppose that the initial configuration of the targets

is a spatial Poisson process with intensity measure µ0 on the state space E0.

Given the construction defined in section 7.3.1, it follows straightforwardly that

the intensity measures γn on En satisfy the following recursive equation.

Lemma 7.3.1. For any n ≥ 0, we have

γn+1(dx
′) =

∫
γn(dx) Qn+1(x, dx

′) + µn+1(dx
′) (7.3.2)
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with the initial condition γ0 = µ0 where µn+1 is the intensity measure of the spatial

point process associated to the birth of new targets at time n + 1 while the integral

operator Qn+1 from En into En+1 is defined by

Qn+1(xn, dxn+1) := Gn(xn) Mn+1(xn, dxn+1). (7.3.3)

Proof:

For any bounded measurable function f on En+1 ∪ {c}, we have using the notation

introduced at the end of section 7.3.1

γn+1 (f) = E

⎛⎝ N̂n∑
i=1

f
(
X i

n+1

)⎞⎠+ E

⎛⎝N̂n+N ′
n+1∑

i=N̂n

f
(
X i

n+1

)⎞⎠
= E

⎛⎝ N̂n∑
i=1

f
(
X i

n+1

)⎞⎠+ µn+1 (1)µn+1 (f) .

Let Gn denote the σ-field generated by (X i
n)1≤i≤Nn

then

E

⎛⎝ N̂n∑
i=1

f
(
X i

n+1

)⎞⎠ = E

⎛⎝E

⎛⎝ N̂n∑
i=1

f
(
X i

n+1

)∣∣∣∣∣∣Gn

⎞⎠⎞⎠
= E

(
Nn∑
i=1

en
(
X i

n

)
hin(X

i
n)Mn+1 (f)

(
X i

n

))
= γn (enHnMn+1 (f))

and the result follows.

These intensity measures typically do not admit any closed-form expression. A

natural way to approximate them numerically is to use a particle interpretation of

the associated sequence of probability distributions given by

ηn(dx) := γn(dxn)/γn(1) with γn(1) :=

∫
En

γn(dx)

To avoid unnecessary technical details, we further assume that the potential func-

tions Gn are chosen so that for any x ∈ En

0 < gn,− ≤ Gn(x) ≤ gn,+ <∞ (7.3.4)

for any time parameter n ≥ 0. Note that this assumption is satisfied in most realistic

multiple target scenarios such as the example discussed at the end of section 7.3.1.

Indeed the condition gn,− ≤ Gn(x) essentially states that there exists en,− > 0 such

that en (x) ≥ en,− for any x ∈ En as Hn (x) ≥ 1. The condition Gn(x) ≤ gn,+ states
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that there exists Hn,+ < ∞ such that Hn (x) ≤ Hn,+ for any x ∈ En as en (x) ≤ 1.

In the unlikely scenario where (7.3.4) is not satisfied then the forthcoming analysis

can be extended to more general models using the techniques developed in section

4.4 in [28]; see also [16]. We denote by P(En) the set of probability measures on

the state space En.

To describe these particle approximations, it is important to observe that the pair

process (γn(1), ηn) ∈ (R+ × P(En)) satisfies an evolution equation of the following

form

(γn(1), ηn) = Γn(γn−1(1), ηn−1) (7.3.5)

We let Γ1
n and Γ2

n be the first and the second component mappings from (R+×P(En))

into R+, and from (R+×P(En)) into P(En). The mean field particle approximation

associated with the equation (7.3.5) relies on the fact that it is possible to rewrite

the mapping Γ2
n+1 in the following form

Γ2
n+1(γn(1), ηn) = ηnKn+1,(γn(1),ηn) (7.3.6)

where Kn+1,(m,η) is a Markov kernel indexed by the time parameter n, a mass pa-

rameter m ∈ R+ and a probability measure η on the space En. In the literature on

mean field particle systems, Kn,(m,η) is called a McKean transition. The choice of

such Markov transitions Kn,(m,η) is not unique and will be discussed in section 7.6.1.

Before concluding this section, we note that

γn+1(dx
′) = (γnQn+1)(dx

′) :=

∫
γn(dx) Qn+1(x, dx

′) (7.3.7)

when µn = 0. In this particular situation, the solution of the equation (7.3.2) is

given by the following Feynman-Kac path integral formulae

γn(f) = γ0(1) E

(
f(Xn)

∏
0≤p<n

Gp(Xp)

)
(7.3.8)

where Xn stands for a Markov chain taking values in the state spaces En with initial

distribution η0 = γ0/γ0(1) and Markov transitions Mn (see for instance section

1.4.4.in [28]). These measure-valued equations have been studied at length in [28].

7.3.3 Mean field particle interpretation

The transport formula presented in (7.3.6) provides a natural interpretation of the

probability distributions ηn as the laws of a nonlinear Markov chain Xn whose

elementary transitions Xn � Xn+1 depends on the distribution ηn = Law(Xn) as

well as on the current mass γn(1). In contrast to the more traditional McKean type

nonlinear Markov chains presented in [28], the dependency on the mass process
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induces a dependency of the whole sequence of measures ηp, from the origin p = 0

up to the current time p = n.

From now on, we will always assume that the mappings(
m,
(
xi
)
1≤i≤N

)
∈
(
R+ × EN

n

)
�→ Kn+1,(m, 1

N

∑N
i=1 δxi)

(x,An+1)

are measurable w.r.t the product sigma fields on (R+ ×EN
n ), for any n ≥ 0, N ≥ 1,

and 1 ≤ i ≤ N , and any measurable subset An+1 ⊂ En+1. In this situation, the

mean field particle interpretation of (7.3.6) is an EN
n -valued nonlinear Markov chain

ξ
(N)
n =

(
ξ
(N,i)
n

)
1≤i≤N

with transitions defined as

⎧⎪⎨⎪⎩
γNn+1(1) = γNn (1) ηNn (Gn) + µn+1(1)

P
(
ξ
(N)
n+1 ∈ dx

∣∣∣ F (N)
n

)
=

∏N
i=1 Kn+1,(γN

n (1),ηNn )(ξ
(N,i)
n , dxi)

(7.3.9)

with the pair of occupation measures
(
γNn , η

N
n

)
defined below

ηNn :=
1

N

N∑
i=1

δ
ξ
(N,i)
n

and γNn (dx) := γNn (1) ηNn (dx)

In the above displayed formula, FN
n stands for the σ-field generated by the random

sequence (ξ
(N)
p )0≤p≤n, and dx = dx1 × . . . × dxN stands for an infinitesimal neigh-

borhood of a point x = (x1, . . . , xN) ∈ EN
n . The initial system ξ

(N)
0 consists of N

independent and identically distributed random variables with common law η0. As

usual, to simplify the presentation, we will suppress the parameter N when there is

no possible confusion, so that we write ξn and ξin instead of ξ
(N)
n and ξ

(N,i)
n .

In the above discussion, we have implicitly assumed that the quantities µn(1)

are known and that it is easy to sample from the probability distribution µn(dx) :=

µn(dx)/µn(1). In practice, we often need to resort to an additional approximation

scheme to approximate µn(1) and µn. This situation is discussed in section 7.7. This

additional level of approximation has essentially a minimal impact on the properties

of the particle approximation scheme which can be analyzed using the same tools.

7.3.4 Notation

For the convenience of the reader, we end this introduction with some notation used

in the present article. We denote by M(E) the set of measures on some measurable

state space (E, E) and we recall that P(E) is the set of probability measures. We

also denote B(E) the Banach space of all bounded and measurable functions f

equipped with the uniform norm ‖f‖ and Osc1(E) the convex set of E-measurable

functions f with oscillations osc(f) ≤ 1 where osc(f) = sup
(x,y)∈E2

|f (x)− f (y)|.
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We let µ(f) =
∫
µ(dx) f(x) be the Lebesgue integral of a function f ∈ B(E)

with respect to a measure µ ∈ M(E). We recall that a bounded integral kernel

M(x, dy) from a measurable space (E, E) into an auxiliary measurable space (E ′, E ′)

is an operator f �→ M(f) from B(E ′) into B(E) such that the functions x �→
M(f)(x) :=

∫
E′ M(x, dy)f(y) are E-measurable and bounded for any f ∈ B(E ′).

The kernel M also generates a dual operator µ �→ µM from M(E) into M(E ′)

defined by (µM)(f) := µ(M(f)). A Markov kernel is a positive and bounded

integral operator M with M(1) (x) = 1 for any x ∈ E. Given a pair of bounded

integral operators (M1,M2), we let (M1M2) be the composition operator defined

by (M1M2)(f) = M1(M2(f)). For time-homogenous state spaces, we denote by

Mk =Mk−1M =MMk−1 the k-th composition of a given bounded integral operator

M , with k ≥ 0, with the convention M0 = Id the identity operator. We also use

the notation

M ([f1 −M(f1)] [f2 −M(f2)]) (x) :=M ([f1 −M(f1)(x)] [f2 −M(f2)(x)]) (x)

for some bounded functions f1, f2.

We also denote the total variation norm onM(E) by ‖µ‖tv = sup
f∈Osc1(E)

|µ(f)|.
When the bounded integral operator M has a constant mass, that is M(1) (x) =

M(1) (y) for any (x, y) ∈ E2, the operator µ �→ µM maps M(E) into M(E ′).

In this situation, we let β(M) be the Dobrushin coefficient of a bounded integral

operator M defined by the following formula

β(M) := sup {osc(M(f)); f ∈ Osc1(E)}

Given a positive function G on E, we let ΨG : η ∈ P(E) �→ ΨG(η) ∈ P(E) be the

Boltzmann-Gibbs transformation defined by

ΨG(η)(dx) :=
1

η(G)
G(x) η(dx)

We recall that ΨG(η) can be expressed in terms of a Markov transport equation

ηSη = ΨG(η) (7.3.10)

for some selection type transition Sη(x, dy). For instance, by noticing that, for any

ε ≥ 0 s.t. G(x) ≥ ε

Ψ(G−ε)(η) =
η(G)

η(G)− ε

(
Ψ(G)(η)−

εη

η(G)

)
we can take

Sη(x, dy) :=
ε

η(G)
δx(dy) +

(
1− ε

η(G)

)
Ψ(G−ε)(η)(dy) (7.3.11)
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for any ε ≥ 0 s.t. G(x) ≥ ε. Notice that for ε = 0, we have Sη(x, dy) = ΨG(η)(dy).

We can also choose

Sη(x, dy) := εG(x) δx(dy) + (1− εG(x)) ΨG(η)(dy) (7.3.12)

for any ε ≥ 0 that may depend on the current measure η, and s.t. εG(x) ≤ 1. For

instance, we can choose 1/ε to be the η-essential supremum of G.

7.4 Statement of the main results

At the end of section 7.3.2, we have seen the evolution equation (7.3.2) coincides

with that of a Feynman-Kac model (7.3.8) for µn = 0. In this specific situation, the

distributions γn are simply given by the recursive equation

γn = γn−1Qn =⇒ ∀0 ≤ p ≤ n γn = γpQp,n with Qp,n = Qp+1 . . . Qn−1Qn

(7.4.1)

For p = n, we use the convention Qn,n = Id. In addition, the nonlinear semigroup

associated to this sequence of distributions is given by

ηn(f) = Φp,n(ηp)(f) := ηpQp,n(f)/ηpQp,n(1) = ηp (Qp,n(1)Pp,n(f))/ηpQp,n(1)

(7.4.2)

with the Markov kernel Pp,n(xp, dxn) = Qp,n(xp, dxn)/Qp,n(xp, En). The analysis

of the mean field particle interpretations of such models have been studied in [28].

Various properties including contraction inequalities, fluctuations, large deviations

and concentration properties have been developed for this class of models. In this

context, the fluctuations properties as well as Lr-mean error estimates, including

uniform estimates w.r.t. the time parameter are often expressed in terms of two

central parameters:

qp,n = sup
x,y

Qp,n(1)(x)

Qp,n(1)(y)
and β(Pp,n) = sup

x,y∈Ep

‖Pp,n(x, .)− Pp,n(y, .)‖tv (7.4.3)

with the pair of Feynman-Kac semigroups (Pp,n, Qp,n) introduced in (7.4.1) and

(7.4.2).

We also consider the pair of parameters (g−(n), g+(n)) defined below

g−(n) = inf
0≤p<n

inf
Ep

Gp ≤ sup
0≤p<n

sup
Ep

Gp = g+(n)

The first main objective is to extend some of these properties to models where µn

is non necessarily null. We illustrate our estimates in three typical scenarios

1) G = g−/+ = 1 2) g+ < 1 and 3) g− > 1 (7.4.4)
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arising in time homogeneous models

(En, Gn,Mn, µn, g−(n), g+(n)) = (E,G,M, µ, g−, g+) (7.4.5)

These three scenarios correspond to the case where, independently from the addi-

tional spontaneous births, the existing targets die or survive and spawn in such a

way that either their number remains constant (G = g−/+ = 1), decreases (g+ < 1)

or increases (g− > 1).

Our first main result concerns three different types of long time behavior for

these three types of models. This result can basically be stated as follows.

Theorem 7.4.1. For time homogeneous models (7.4.5), the limiting behavior of

(γn(1), ηn) in the three scenarios (7.4.4) is as follows:

1. When G(x) = 1 for any x ∈ E, we have

γn(1) = γ0(1) + µ(1) n and ‖ηn − η∞‖tv = O

(
1

n

)
when M is chosen so that∑

n≥0

sup
x∈E

‖Mn(x, .)− η∞‖tv <∞ for some invariant measure η∞ = η∞M .

(7.4.6)

2. When g+ < 1, there exists a constant c <∞ such that

∀f ∈ B(E), |γn(f)− γ∞(f)| ∨ |ηn(f)− η∞(f)| ≤ c gn+ ‖f‖

with the limiting measures

γ∞(f) :=
∑
n≥0

µQn(f) and η∞(f) := γ∞(f)/γ∞(1) (7.4.7)

3. When g− > 1 and there exist k ≥ 1 and ε > 0 such that Mk(x, .) ≥ ε Mk(y, .)
for any x, y ∈ E then the mapping Φ = Φn−1,n introduced in (7.4.2) has a

unique fixed point η∞ = Φ(η∞) and

lim
n→∞

1

n
log γn(1) = log η∞(G) and ‖ηn − η∞‖tv ≤ c e−λn

for some finite constant c <∞ and some λ > 0.

A more precise statement and a detailed proof of the above theorem can be found

in section 7.5.2.

Our second main result concerns the convergence of the mean field particle ap-

proximations presented in (7.3.9). We provide rather sharp non asymptotic esti-

mates including uniform convergence results w.r.t. the time parameter. Our results

can be basically stated as follows.
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Theorem 7.4.2. For any n ≥ 0, and any N ≥ 1, we have γn(1) and γNn (1) ∈ In
with the compact interval In defined below

In := [m−(n), m+(n)] where m−/+(n) :=

n∑
p=0

µp(1)g−/+(n)
(n−p) (7.4.8)

In addition, for any r ≥ 1, f ∈ Osc1(En), and any N ≥ 1, we have

√
N E

(∣∣[ηNn − ηn
]
(f)

∣∣r) 1
r ≤ ar bn with bn ≤

n∑
p=0

bp,n (7.4.9)

where ar < ∞ stands for a constant whose value only depends on the parameter r

and bp,n is the collection of constants given by

bp,n := 2 (1 ∧mp,n) qp,n

[
qp,n β(Pp,n) +

∑
p<q≤n

cq,n∑
p<r≤n cr,n

β(Pq,n)

]
(7.4.10)

with the pair of parameters

mp,n = m+(p)‖Qp,n(1)‖/
∑

p<q≤n

cq,n and cp,n := µpQp,n(1)

Furthermore, the particle measures γNn are unbiased, and for the three scenarios

(7.4.4) with time homogenous models s.t. Mk(x, .) ≥ ε Mk(y, .), for any x, y ∈ E

and some pair of parameters k ≥ 1 and ε > 0, the constant bn in (7.4.9) can be

chosen so that supn≥0 bn < ∞; in addition, we have the non asymptotic variance

estimates for some d <∞, any n ≥ 1 and for any N > 1

E

([
γNn (1)

γn(1)
− 1

]2)
≤ d

n + 1

N − 1

(
1 +

d

N − 1

)n−1

(7.4.11)

The non asymptotic estimates stated in the above theorem extend the one pre-

sented in [16, 28] for Feynman-Kac type models (7.3.8) where µn = 0. For such

models, the Lr-mean error estimates (7.4.9) are satisfied with the collection of pa-

rameters bp,n := 2q2p,n β(Pp,n), with p ≤ n. The extra terms in (7.4.10) are intimately

related to µn whose effects in the semigroup stability depend on the nature of Gn.

We refer to theorem 7.4.1, section 7.5.2 and section 7.5.3, for a discussion on three

different behaviors in the three cases presented in (7.4.4).

A direct consequence of this theorem is that it implies the almost sure conver-

gence results:

lim
N→∞

ηNn (f) = ηn(f) and lim
N→∞

γNn (f) = γn(f)

for any bounded function f ∈ B(En).
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Our last main result, is a functional central limit theorem. We let WN
n be the

centered random fields defined by the following formulae

ηNn = ηNn−1Kn,(γN
n (1),ηNn−1)

+
1√
N

WN
n . (7.4.12)

We also consider the pair of random fields

V η,N
n :=

√
N [ηNn − ηn] and V γ,N

n :=
√
N [γNn − γn]

For n = 0, we use the convention WN
0 = V η,N

0 .

Theorem 7.4.3. The sequence of random fields (WN
n )n≥0 converges in law, as N

tends to infinity, to the sequence of n independent, Gaussian and centered random

fields (Wn)n≥0 with a covariance function given for any f, g ∈ B(En) and n ≥ 0 by

E(Wn(f)Wn(g))

= ηn−1Kn,(γn−1(1),ηn−1)

(
[f −Kn,(γn−1(1),ηn−1)(f)][g −Kn,(γn−1(1),ηn−1)(g)]

)
) .
(7.4.13)

In addition, the pair of random fields V γ,N
n and V η,N

n converge in law as N → ∞ to

a pair of centered Gaussian fields V γ
n and V η

n defined by

V γ
n (f) :=

n∑
p=0

γp(1) Wp(Qp,n(f)) and V η
n (f) := V γ

n

(
1

γn(1)
(f − ηn(f))

)
The details of the proof of theorem 7.4.2 and theorem 7.4.3 can be found in sec-

tion 7.6.2 dedicated to the convergence of the unnormalized particle measures γNn .

The proof of the non-asymptotic variance estimate (7.4.11) is given in section 7.6.2

as well as the Lr-mean error estimates (7.4.9) and the fluctuation theorem 7.4.3.

Under additional regularity conditions, we conjecture that it is possible to obtain

uniform estimates for theorem 7.4.3 but have not established it here.

The rest of the chapter is organized as follows: in section 7.5, we analyze the semi-

group properties of the total mass process γn(1) and the sequence of probability

distributions ηn. This section is mainly concerned with the proof of theorem 7.4.1.

The long time behavior of the total mass process is discussed in section 7.5.1, while

the asymptotic behavior of the probability distributions is discussed in section 7.5.2.

In section 7.5.3, we develop a series of Lipschitz type functional inequalities for

uniform estimates w.r.t. the time parameter for the particle approximation. In

section 7.6, we present the McKean models associated to the sequence (γn(1), ηn)

and their mean field particle interpretations. Section 7.6.2 is concerned with the

convergence analysis of these particle approximations. We discuss the convergence

of the approximations of γn(1), including their unbiasedness property and the non

asymptotic variance estimates presented in (7.4.11). The proof of the Lr-mean error
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estimates (7.4.9) is presented in section 7.6.3. The proof of the functional central

limit theorem 7.4.3 is a more or less direct consequence of the decomposition for-

mulae presented in section 7.6.2 and is just sketched at the end of this very section.

7.5 Semigroup analysis

The purpose of this section is to analyze the semigroup properties of the intensity

measure recursion (7.3.2). We establish a framework for the analysis of the long

time behavior of these measures and their particle approximations (7.3.9). First, we

briefly recall some estimate of the quantities (qp,n, β(Pp,n)) in terms of the potential

functions Gn and the Markov transitions Mn. Further details on this subject can

be found in [28], and in references therein.

We assume here that the following condition is satisfied for some k ≥ 1, some

collection of numbers εp ∈ (0, 1)

Mp,p+k(xp, .) ≥ εp Mp,p+k(yp, .) with Mp,p+k =Mp+1Mp+2 . . .Mp+k (7.5.1)

for any time parameter p and any pair of states (xp, yp) ∈ E2
p . It is well known

that the mixing type condition (M)k is satisfied for any aperiodic and irreducible

Markov chains on finite spaces, as well as for bi-Laplace exponential transitions

associated with a bounded drift function and for Gaussian transitions with a mean

drift function that is constant outside some compact domain. We introduce the

following quantities

δp,n := sup
∏

p≤q<n

(Gq(xq)/Gq(yq)) and δ(k)p := δp+1,p+k (7.5.2)

where the supremum is taken over all admissible pair of paths with transitions Mq

where an admissible path (xp−1, xp+1, ..., xn−1) is such that
∏

p≤q<nM q
(xq−1, dxq) >

0. Under the above conditions, we have [28, p. 140]

β(Pp,p+n) ≤

n/k�−1∏

l=0

(
1− ε2p+lk/δ

(k)
p+lk

)
and qp,p+n ≤ δp,p+k/εp (7.5.3)

For time-homogeneous Feynman-Kac models we set ε := εk and δk := δ0,k, for any

k ≥ 0. Using this notation, the above estimates reduce to [28, p. 142]

qp,p+n ≤ δk/ε and β(Pp,p+n) ≤
(
1− ε2/δk−1

)
n/k�
(7.5.4)

7.5.1 Description of the models

The next proposition gives a Markov transport formulation of Γn introduced in

(7.3.5).
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Proposition 7.5.1. For any n ≥ 0, we have the recursive formula⎧⎨⎩
γn+1(1) = γn(1) ηn(Gn) + µn+1(1)

ηn+1 = ΨGn(ηn)Mn+1,(γn(1),ηn)

(7.5.5)

with the collection of Markov transitions Mn+1,(m,η) indexed by the parameters m ∈
R+ and the probability measures η ∈ P(En) given below

Mn+1,(m,η)(x, dy) := αn (m, η)Mn+1(x, dy) + (1− αn (m, η)) µn+1(dy) (7.5.6)

with the collection of [0, 1]-parameters αn (m, η) defined below

αn (m, η) =
mη(Gn)

mη(Gn) + µn+1(1)

Proof:

Observe that for any function f ∈ B(En+1), we have that

ηn+1(f) =
γn(GnMn+1(f)) + µn+1(f)

γn(Gn) + µn+1(1)
=
γn(1) ηn(GnMn+1(f)) + µn+1(f)

γn(1) ηn(Gn) + µn+1(1)

from which we find that

ηn+1 = αn (γn(1), ηn) Φn+1(ηn) + (1− αn (γn(1), ηn)) µn+1

From these observations, we prove (7.5.5). This ends the proof of the proposition.

We let Γn+1 be the mapping from R+ ×P(En) into R+ × P(En+1) given by

Γn+1(m, η) =
(
Γ1
n+1(m, η),Γ

2
n+1(m, η)

)
(7.5.7)

with the pair of transformations:

Γ1
n+1(m, η) = m η(Gn) + µn+1(1) and Γ2

n+1(m, η) = ΨGn(η)Mn+1,(m,η)

We also denote by (Γp,n)0≤p≤n the corresponding semigroup defined by

∀0 ≤ p ≤ n Γp,n = Γp+1,nΓp+1 = ΓnΓn−1 . . .Γp+1

with the convention Γn,n = Id.

The following lemma collects some important properties of the sequence of intensity

measures γn.
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Lemma 7.5.2. For any 0 ≤ p ≤ n, we have the semigroup decomposition

γn = γpQp,n +
∑

p<q≤n

µqQq,n and γn =
∑

0≤p≤n

µpQp,n (7.5.8)

In addition, we also have the following formula

γn(1) =
n∑

p=0

µp(1)
∏

p≤q<n

ηq(Gq) (7.5.9)

Proof:

The first pair of formulae are easily proved using a simple induction, and recalling

that γ0 = µ0. To prove the last assertion, we use an induction on the parameter

n ≥ 0. The result is obvious for n = 0. We also have by (7.3.2)

γn+1(1) = γnQn+1(1) + µn+1(1) = γn(Gn) + µn+1(1)

This implies

γn+1(1) = γn(1) ηn(Gn) + µn+1(1)

= γn−1(1) ηn−1(Gn−1) ηn(Gn) + µn(1) ηn(Gn) + µn+1(1)

= . . .

= γ0(1)
n∏

p=0

ηp(Gp) +
n+1∑
p=1

µp(1)
∏

p≤q≤n

ηq(Gq)

Recalling that γ0(dx0) = µ0(dx0), we prove (7.5.9). This ends the proof of the

lemma.

Using lemma 7.5.2, one proves that the semigroup Γp,n satisfies the pair of for-

mulae described below

Proposition 7.5.3. For any 0 ≤ p ≤ n, we have

Γ1
p,n(m, η) = m ηQp,n(1) +

∑
p<q≤n

µqQq,n(1) (7.5.10)

Γ2
p,n(m, η) = αp,n (m, η) Φp,n(η) + (1− αp,n (m, η))

∑
p<q≤n

cq,n∑
p<r≤n cr,n

Φq,n(µq)

(7.5.11)

with the collection of parameters cp,n := µpQp,n(1) and the [0, 1]-valued parameters

αp,n (m, η) defined below

αp,n (m, η) =
mηQp,n(1)

mηQp,n(1) +
∑

p<q≤n cq,n
≤ α�

p,n(m) := 1 ∧
[
m

∣∣∣∣∣ Qp,n(1)∑
p<q≤n cq,n

∣∣∣∣∣
]

(7.5.12)
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One central question in the theory of spatial branching point processes is the

long time behavior of the total mass process γn(1). Notice that γn(1) = E(Xn(1))

is the expected size of the n-th generation. For time homogeneous models with

null spontaneous branching µn = µ = 0, the exponential growth of these quantities

are related to the logarithmic Lyapunov exponents of the semigroup Qp,n. The

prototype of these models is the Galton-Watson branching process. In this context

three typical situations may occur: 1) γn(1) remains constant and equals to the

initial mean number of individuals. 2) γn(1) goes exponentially fast to 0, 3) γn(1)

grows exponentially fast to infinity,

The analysis of spatial branching point processes with µn = µ �= 0 considered

here is more involved. Loosely speaking, in the first situation discussed above the

total mass process is generally strictly increasing; while in the second situation the

additional mass injected in the system stabilizes the total mass process. Before

giving further details, by lemma 7.5.2 we observe γn(1) ∈ In, for any n ≥ 0, with

the compact interval In defined in 7.4.8.

We end this section with a more precise analysis of the effect of µ in the three

scenarios (7.4.4).

In the further developments of this section, we illustrate the stability properties

of the sequence of probability distributions ηn in these three scenarios.

1. When G(x) = 1 for any x ∈ E, the total mass process γn(1) grows linearly

w.r.t. the time parameter and we have

γn(1) = m−(n) = m+(n) = γ0(1) + µ(1) n (7.5.13)

Note that the estimates in (7.5.12) take the following form

αp,n (γp(1), ηp) ≤ α�
p,n(γp(1)) := 1 ∧ γ0(1) + µ(1) p

µ(1) (n− p)
→(n−p)→∞ 0

2. When g+ < 1, the total mass process γn(1) is uniformly bounded w.r.t the

time parameter. More precisely, we have that

m−/+(n) = gn−/+ γ0(1) +
(
1− gn−/+

) µ(1)

1− g−/+

This yields the rather crude estimates

γ0(1) ∧
µ(1)

1− g−
≤ γn(1) ≤ γ0(1) ∨

µ(1)

1− g+
(7.5.14)

We end this discussion with an estimate of the parameter αp,n(m) given in

(7.5.12). When the mixing condition (M)k stated in (7.5.1) is satisfied for

some k and some fixed parameters εp = ε, using (7.5.4) we prove that∑
p<r≤n

µQr,n(1)

Qp,r(Qr,n(1))
≥ εµ(1)

δk

∑
p<r≤n

1

Qp,r(1)
≥ εµ(1)

δk

g
−(n−p)
+ − 1

1− g+
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from which we conclude that for any n > p and any m ∈ Ip

α�
p,n(m) ≤ 1 ∧

[
m g

(n−p)
+

δk (1− g+)

εµ(1)(1− g
(n−p)
+ )

]
≤ 1 ∧

[
m g

(n−p)
+ δk/(εµ(1))

]
≤ 1 ∧

[(
γ0(1) ∨

µ(1)

1− g+

)
g
(n−p)
+ δk/(εµ(1))

]
→(n−p)→∞ 0 (7.5.15)

3. When g− > 1, the total mass process γn(1) grows exponentially fast w.r.t the

time parameter and we can easily show that

g− > 1 =⇒ γn(1) ≥ m−(n) = γ0(1) g
n
− + µ(1)

gn− − 1

g− − 1
(7.5.16)

7.5.2 Asymptotic properties

This section is concerned with the long time behavior of the semigroups Γp,n in the

three scenarios discussed in (7.5.13), (7.5.14), and (7.5.16). Our results are summa-

rized in theorem 7.4.1. We consider time-homogeneous models (En, Gn,Mn, µn) =

(E,G,M, µ).

1. When G(x) = 1 for any x ∈ E, we have seen in (7.5.13) that γn(1) =

γ0(1) + µ(1) n. In this particular situation, the time-inhomogeneous Markov

transitions Mn,(γn−1(1),ηn−1) :=Mn introduced in (7.5.5) are given by

Mn(x, dy) =

(
1− µ(1)

γ0(1) + nµ(1)

)
M(x, dy) +

µ(1)

γ0(1) + nµ(1)
µ(dy)

This shows that ηn = Law(Xn) can be interpreted as the distribution of the

states Xn of a time inhomogeneous Markov chain with transitions Mn and

initial distribution η0. If we choose in (7.3.6) Kn+1,(γn(1),ηn) = Mn+1, the N -

particle model (7.3.9) reduces to a series of N independent copies of Xn. In

this situation, the mapping Γ2
0,n is given by

Γ2
0,n(γ0(1), η0) :=

γ0(1)

γ0(1) + nµ(1)
η0M

n +
nµ(1)

γ0(1) + nµ(1)

1

n

∑
0≤p<n

µMp

The above formula shows that for a large time horizon n, the normalized

distribution flow ηn is almost equal to 1
n

∑
0≤p<n µM

p. Let us assume that

the Markov kernel M is chosen so that (7.4.6) is satisfied for some invariant

measure η∞ = η∞M . In this case, for any starting measure γ0, we have

‖ηn − η∞‖tv ≤ γ0(1)

γ0(1) + nµ(1)
τn +

nµ(1)

γ0(1) + nµ(1)

1

n

∑
0≤p<n

τp = O

(
1

n

)
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with τn = supx∈E ‖Mn(x, .)− η∞‖tv. For instance, suppose the mixing condi-

tion (M)k presented in (7.5.1) is met for some k ≥ 1 and ε > 0. In this case,

the above upper bound is satisfied with τn = (1− ε)
n/k�.

2. Consider the case where g+ < 1. In this situation, the pair of measures (7.4.7)

are well defined. Furthermore, for any f ∈ B(E) with ‖f‖ ≤ 1, we have the

estimates

|γn(f)− γ∞(f)| ≤ γ0(1) η0Q
n(1) +

∑
p≥n

µQp(1)

≤ gn+ [γ0(1) + µ(1)/(1− g+)] −→n→∞ 0

In addition, using the fact that γn(1) ≥ µ(1), we find that for any f ∈ Osc1(E)

|ηn(f)− η∞(f)| ≤ 1

γn(1)
|γn[f − η∞(f)]− γ∞[f − η∞(f)]|

≤ gn+ [γ0(1)/µ(1) + 1/(1− g+)] −→n→∞ 0

3. Consider the case where g− > 1. We further assume that the mixing condition

(M)k presented in (7.5.1) is met for some k ≥ 1 and some fixed parameters

εp = ε > 0. In this situation, it is well known that the mapping Φ = Φn−1,n

introduced in (7.4.2) has a unique fixed point η∞ = Φ(η∞), and for any initial

distribution η0, we have

‖Φ0,n(η0)− η∞‖tv ≤ a e−λ n (7.5.17)

with

λ = −1

k
log

(
1− ε2/δ0,k−1

)
and a = 1/

(
1− ε2/δ0,k−1

)
as well as

sup
η∈P(E)

∣∣∣∣ 1n log ηQn(1)− log η∞(G)

∣∣∣∣ ≤ b/n (7.5.18)

for some finite constant b <∞. For a more thorough discussion on the stability

properties of the semigroup Φ0,n and the limiting measures η∞, we refer the

reader to [28]. Our next objective is to transfer these stability properties to

the one of the sequence ηn. First, using (7.5.18), we readily prove that

lim
n→∞

1

n
log γn(1) = log η∞(G)

Next, we simplify the notation and we set αn := α0,n (γ0(1), η0) and cn := c0,n.

Using (7.5.11), we find that for any n > 1

a−1 ‖ηn − η∞‖tv ≤ αn e
−λn + (1− αn)

∑
0≤p<n

cp∑
0≤q<n cq

e−λp
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Recalling that

µ(1) gp− ≤ cp = µQp(1) ≤ µ(1) gp+

we also obtain that

∑
0≤p<n

cp∑
1≤q<n cq

e−λp ≤ 1[∑
0≤q<n cq

]1/r
[ ∑
0≤p<n

cpe
−λpr

]1/r

≤ 1[∑
0≤q<n g

q
−

]1/r
[ ∑
0≤p<n

(e−λrg+)
p

]1/r
(7.5.19)

for any r ≥ 1. We conclude that

r >
1

λ
log g+ =⇒

∑
0≤p<n

cp∑
0≤q<n cq

e−λp ≤ g
−(n−1)/r
− /(1− e−λrg+)

1/r

and therefore

a−1 ‖ηn − η∞‖tv ≤ e−λn + g
−(n−1)/r
− /(1− e−λrg+)

1/r →n→∞ 0

7.5.3 Stability and Lipschitz regularity properties

We describe in this section a framework that allows to transfer the regularity prop-

erties of the Feynman-Kac semigroups Φp,n introduced in (7.4.2) to the ones of the

semigroup Γp,n of the sequence (γn(1), ηn). Before proceeding we recall a lemma that

provides some weak Lipschitz type inequalities for the Feynman-Kac semigroup Φp,n

in terms of the Dobrushin contraction coefficient associated with the Markov transi-

tions Pp,n introduced in (7.4.2). The details of the proof of this result can be found

in [28] or in [31] (see Lemma 4.4. in [31], or proposition 4.3.7 on page 146 in [28]).

Lemma 7.5.4 ([31]). For any 0 ≤ p ≤ n, any η, µ ∈ P(Ep) and any f ∈ Osc1(En),

we have

|[Φp,n(µ)− Φp,n(η)] (f)| ≤ 2 q2p,n β(Pp,n) |(µ− η)Dp,n,η(f)| (7.5.20)

for a collection of functions Dp,n,η(f) ∈ Osc1(Ep) whose values only depend on the

parameters (p, n, η).

Proposition 7.5.5. For any 0 ≤ p ≤ n, any η, η′ ∈ P(Ep) and any f ∈ Osc1(En),

there exits a collection of functions Dp,n,η′(f) ∈ Osc1(Ep) whose values only depend

on the parameters (p, n, η) and such that, for any m ∈ Ip, we have∣∣[Γ2
p,n(m, η)− Γ2

p,n(m, η
′)
]
(f)

∣∣
≤ 2 α�

p,n qp,n [qp,n β(Pp,n) |(η − η′)Dp,n,η′(f)|+ βp,n |(η − η′)hp,n,η′|]
(7.5.21)
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with the collection of functions hp,n,η′ =
1

2qp,n

Qp,n(1)

η′Qp,n(1)
∈ Osc1(Ep) and the sequence

of parameters εp,n and βp,n defined below

α�
p,n := α�

p,n(m+(p)) and βp,n :=
∑

p<q≤n

cq,n∑
p<r≤n cr,n

β(Pq,n) (7.5.22)

Before getting into the details of the proof of proposition 7.5.5, we illustrate some

consequences of these weak functional inequalities for time-homogeneous models

(En, Gn,Mn, µn) = (E,G,M, µ) in the three scenarios discussed in (7.5.13), (7.5.14),

and (7.5.16).

1. When G(x) = 1 for any x ∈ E, we have

Φp,n(η) = ηM (n−p), hp,n,η′ = 1/2 cp,n = µ(1) qp,n = 1 α�
p,n ≤ 1

Let us assume that there exist a < ∞ and 0 < λ < ∞ such that β(Mn) ≤
ae−λn for any n ≥ 0. In this situation, we prove using (7.5.21) that∣∣[Γ2

p,n(m, η)− Γ2
p,n(m, η

′)
]
(f)

∣∣ ≤ 2ae−λ(n−p) |(µ− η)Dp,n,η′(f)|

2. When g+ < 1 and when the mixing condition (M)k stated in (7.5.1) is satisfied

for some k and some fixed parameters εp = ε, we have seen in (7.5.15) that

sup
m∈Ip

α�
p,n(m) ≤ 1∧

(
d g

(n−p)
+

)
with d =

(
(γ0(1)/µ(1)) ∨ (1− g+)

−1
)
δ0,kε

−1

Furthermore, using the estimates given in (7.5.3) and (7.5.4), we also have

that

qp,n ≤ δk/ε βp,n ≤ 1 and β(Pp,n) ≤ a e−λ (n−p) with (a, λ) given in (7.5.17)

In this situation, we prove using (7.5.21) that∣∣[Γ2
p,n(m, η)− Γ2

p,n(m, η
′)
]
(f)

∣∣
≤ 2

[
1 ∧

(
d g

(n−p)
+

)]
(δk/ε)

[
(δk/ε) a e

−λ(n−p) |(µ− η)Dp,n,η′(f)|+ |(µ− η)hp,n,η′|
]

Notice that for (n− p) ≥ log (d)/ log (1/g+), this yields∣∣[Γ2
p,n(m, η)− Γ2

p,n(m, η
′)
]
(f)

∣∣
≤ a0 e

−λ0(n−p) |(µ− η)Dp,n,η′(f)|+ a1 e
−λ1(n−p) |(µ− η)hp,n,η′|

with

a0 = 2ad(δk/ε)
2 a1 = 2d(δk/ε) λ0 = λ+ log (1/g+) and λ1 = log (1/g+)
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3. When g− > 1 and when the mixing condition (M)k presented in (7.5.1) is met

for some k and some fixed parameters εp = ε > 0, then we use the fact that

α�
p,n ≤ 1 qp,n ≤ δk/ε and β(Pp,n) ≤ a e−λ(n−p) with (a, λ) given in (7.5.17)

Arguing as in (7.5.19), we prove that for any r > 1
λ

log g+

βp,n ≤ g
−(n−p−1)/r
− /(1− e−λrg+)

1/r

from which we conclude that∣∣[Γ2
p,n(m, η)− Γ2

p,n(m, η
′)
]
(f)

∣∣
≤ a0 e

−λ0(n−p) |(µ− η)Dp,n,η′(f)|+ a1 e
−λ1(n−p) |(µ− η)hp,n,η′|

with

a0 = 2a(δk/ε)
2 a1 = 2gr−(δk/ε)/(1− e−λrg+)

1/r λ0 = λ and λ1 = log (g−)

Now, we come to the proof of proposition 7.5.5.

Proof of proposition 7.5.5:

First, we observe that

Γ2
p,n(m, η)− Γ2

p,n(m
′, η′)

= αp,n (m, η)
[
Φp,n(η)−

∑
p<q≤n

cq,n∑
p<r≤n cr,n

Φq,n(µq)
]

−αp,n (m
′, η′)

[
Φp,n(η

′)−
∑

p<q≤n
cq,n∑

p<r≤n cr,n
Φq,n(µq)

]
Using the following decomposition

ab− a′b′ = a′(b− b′) + (a− a′)b′ + (a− a′)(b− b′) (7.5.23)

which is valid for any a, a′, b, b′ ∈ R, we prove that

Γ2
p,n(m, η)− Γ2

p,n(m
′, η′)

= αp,n (m
′, η′) [Φp,n(η)− Φp,n(η

′)]

+
[
Φp,n(η

′)−
∑

p<q≤n
cq,n∑

p<r≤n cr,n
Φq,n(µq)

]
[αp,n (m, η)− αp,n (m

′, η′)]

+ [αp,n (m, η)− αp,n (m
′, η′)] [Φp,n(η)− Φp,n(η

′)]
(7.5.24)
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For m = m′, using (7.5.24) we find that

Γ2
p,n(m, η)− Γ2

p,n(m, η
′)

= αp,n (m, η) [Φp,n(η)− Φp,n(η
′)]

+
[
Φp,n(η

′)−
∑

p<q≤n
cq,n∑

p<r≤n cr,n
Φq,n(µq)

]
[αp,n (m, η)− αp,n (m, η

′)]

We also notice that

αp,n (m, η) =
1

1 + µp,n/[mηQp,n(1)]

from which we easily prove that

αp,n (m, η)− αp,n (m
′, η′)

= µp,n

µp,n+mηQp,n(1)
1

µp,n+m′η′Qp,n(1)
[mηQp,n(1)−m′η′Qp,n(1)]

and therefore

αp,n (m, η)− αp,n (m, η
′) = (αp,n (m, η

′) (1− αp,n (m, η))) [η − η′]

(
Qp,n(1)

η′Qp,n(1)

)
The proof of αp,n (m, η) ≤ α�

p,n(m) is elementary. From the above decomposition,

we prove the following upper bounds

|αp,n (m, η)− αp,n (m, η
′)| ≤ α�

p,n(m)

∣∣∣∣[η − η′]

(
Qp,n(1)

η′Qp,n(1)

)∣∣∣∣
and∣∣[Γ2

p,n(m, η)− Γ2
p,n(m, η

′)
]
(f)

∣∣
≤ α�

p,n(m) [|[Φp,n(η)− Φp,n(η
′)] (f)|

+
∣∣∣[η − η′]

(
Qp,n(1)
η′Qp,n(1)

)∣∣∣ ∣∣∣∑p<q≤n
cq,n∑

p<r≤n cr,n

[
Φq,n(µq)− Φq,n (Φp,q(η

′))
]
(f)

∣∣∣]
This yields∣∣[Γ2

p,n(m, η)− Γ2
p,n(m, η

′)
]
(f)

∣∣
≤ α�

p,n(m)
[
|[Φp,n(η)− Φp,n(η

′)] (f)|+ βp,n

∣∣∣[η − η′]
(

Qp,n(1)
η′Qp,n(1)

)∣∣∣]
The last formula comes from the fact that

β(Pq,n) := sup
ν,ν′∈P(Eq)

‖Φq,n(ν)− Φq,n(ν
′)‖tv

The proof of this result can be found in [28] (proposition 4.3.1 on page 134). The

end of the proof is now a direct consequence of lemma 7.5.4. This ends the proof of

the proposition.
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7.6 Mean field particle approximations

7.6.1 McKean particle interpretations

In proposition 7.5.1, the evolution equation (7.5.5) of the sequence of probability

measures ηn � ηn+1 is a combination of an updating type transition ηn � ΨGn(ηn)

and an integral transformation w.r.t. a Markov transition Mn+1,(γn(1),ηn) that de-

pends on the current total mass γn(1) and the current probability distribution ηn.

The operator Mn+1,(γn(1),ηn) defined in (7.5.6) is a mixture of the Markov transition

Mn+1 and the spontaneous birth normalized measure µn+1. We let Sn,ηn be any

Markov transition from En into itself satisfying

ΨGn(ηn) = ηnSn,ηn

The choice of these transitions is not unique. We can choose for instance one of

the collection of transitions presented in (7.3.10), (7.3.12) and (7.3.12). Further

examples of McKean acceptance-rejection type transitions can also be found in

section 2.5.3 in [28]. By construction, we have the recursive formula

ηn+1 = ηnKn+1,(γn(1),ηn) with Kn+1,(γn(1),ηn) = Sn,ηnMn+1,(γn(1),ηn) (7.6.1)

with the auxiliary total mass evolution equation

γn+1(1) = γn(1) ηn(Gn) + µn+1(1) (7.6.2)

As already mentioned in section 7.3, the sequence of probability distributions ηn
can be interpreted as the distributions of the states Xn of a nonlinear Markov chain

defined by the elementary transitions

P
(
Xn+1 ∈ dx | Xn

)
= Kn,(γn(1),ηn)

(
Xn, dx

)
with ηn = Law(Xn)

Next, we define the mean field particle interpretations of the sequence (γn(1), ηn)

given in (7.6.1) and (7.6.2). First, mimicking formula (7.6.2) we set

γNn+1(1) := γNn (1) ηNn (Gn) + µn+1(1) and γNn (f) = γNn (1) × ηNn (f)

for any f ∈ B(En), with the initial measure γN0 = γ0. It is important to notice that

γNn (1) = γ0(1)
∏

0≤q<n

ηNq (Gq) +

n∑
p=1

µp(1)
∏

p≤q<n

ηNq (Gq) =⇒ γNn (1) ∈ In

The mean field particle interpretation of the nonlinear measure valued model (7.6.1)

is an EN
n -valued Markov chain ξn with elementary transitions defined in (7.3.9) and

(7.6.1). By construction, the particle evolution is a simple combination of a selection

and a mutation genetic type transition

ξn � ξ̂n = (ξ̂in)1≤i≤N � ξn+1
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During the selection transitions ξn � ξ̂n, each particle ξin � ξ̂in evolves according to

the selection type transition Sn,ηNn
(ξin, dx). During the mutation stage, each of the

selected particles ξ̂in � ξin+1 evolves according to the Markov transition

Mn+1,(γN
n (1),ηNn )(x, dy) := αn

(
γNn (1), ηNn

)
Mn+1(x, dy)+

(
1− αn

(
γNn (1), ηNn

))
µn+1(dy)

7.6.2 Asymptotic behavior

This section is mainly concerned with the proof of theorem 7.4.2. We discuss the

unbiasedness property of the particle measures γNn and their convergence properties

towards γn, as the number of particles N tends to infinity. We mention that the proof

of the non asymptotic variance estimates (7.4.11) is simpler than the one provided

in a recent article by the second author with F. Cerou and A. Guyader [16]. Sec-

tion 7.6.3 is concerned with the convergence and the fluctuations of the occupation

measures ηNn around their limiting measures ηn.

Intensity measures

We start this section with a simple unbiasedness property.

Proposition 7.6.1. For any 0 ≤ p ≤ n, and any f ∈ B(En), we have

E
(
γNn+1(f)

∣∣ F (N)
p

)
= γNp Qp,n+1(f) +

∑
p<q≤n+1

µqQq,n+1(f) (7.6.3)

In particular, we have the unbiasedness property: E
(
γNn (f)

)
= γn(f).

Proof:

By construction of the particle model, for any f ∈ B(En) we have

E
(
ηNn+1(f)

∣∣ F (N)
n

)
= ηNn Kn+1,(γN

n (1),ηNn )(f) = Γ2
n+1

(
γNn (1), ηNn

)
(f)

with the second component Γ2
n+1 of the transformation Γn+1 introduced in 7.5.7.

Using the fact that

Γ2
n+1

(
γNn (1), ηNn

)
(f) =

γNn (1) ηNn (Qn+1(f)) + µn+1(f)

γNn (1) ηNn (Qn+1(1)) + µn+1(1)
=
γNn (Qn+1(f)) + µn+1(f)

γNn (Qn+1(1)) + µn+1(1)

and

γNn+1(1) = γNn (1) ηNn (Gn) + µn+1(1) = γNn (Qn+1(1)) + µn+1(1)

we prove that

E
(
γNn+1(f)

∣∣ F (N)
n

)
= E

(
γNn+1(1) η

N
n+1(f)

∣∣ F (N)
n

)
= γNn+1(1) E

(
ηNn+1(f)

∣∣ F (N)
n

)
= γNn (Qn+1(f)) + µn+1(f)
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This also implies that

E
(
γNn+1(f)

∣∣∣ F (N)
n−1

)
= E

(
γNn (Qn+1(f))

∣∣∣ F (N)
n−1

)
+ µn+1(f)

= γNn−1(QnQn+1(f)) + µn(Qn+1(f)) + µn+1(f)

Iterating the argument one proves (7.6.3). The end of the proof is now clear.

The next theorem provides a key martingale decomposition and a rather crude

non asymptotic variance estimate.

Theorem 7.6.2. For any n ≥ 0 and any function f ∈ B(En), we have the decom-

position
√
N

[
γNn − γn

]
(f) =

n∑
p=0

γNp (1) WN
p (Qp,n(f)) (7.6.4)

In addition, if the mixing condition (M)k presented in (7.5.1) is met for some k ≥ 1

and some constant parameters εp = ε > 0, then we have for any N > 1 and any

n ≥ 1

E

([
γNn (1)

γn(1)
− 1

]2)
≤ n+ 1

N − 1

δ2k
ε2

(
1 +

δ2k
ε2(N − 1)

)n−1

(7.6.5)

Before presenting the proof of this theorem, we would like to make a couple of

comments. On the one hand, we observe that the unbiasedness property follows

directly from the decomposition (7.6.4). On the other hand, using Kintchine’s in-

equality, for any r ≥ 1, p ≥ 1, and any f ∈ Osc1(En) we have the almost sure

estimates √
N E

(∣∣WN
p (f)

∣∣r ∣∣∣F (N)
p−1

) 1
r ≤ ar

A detailed proof of these estimates can be found in [28], see also lemma 7.2

in [7] for a simpler proof by induction on the parameter N . From this elementary

observation, and recalling that γNn (1) ∈ In for any n ≥ 0, we find that

√
N E

(∣∣[γNn − γn
]
(f)

∣∣r) 1
r ≤ ar bn

for some finite constant bn whose values only depend on the time parameter n.

Now, we present the proof of theorem 7.6.2.

Proof of theorem 7.6.2:

We use the decomposition:

γNn+1(f)−γn+1(f) =
[
γNn+1(f)− E

(
γNn+1(f)

∣∣ F (N)
n

)]
+
[
E
(
γNn+1(f)

∣∣ F (N)
n

)
− γn+1(f)

]
By (7.6.3), we find that

γNn+1(f)− E
(
γNn+1(f)

∣∣ F (N)
n

)
= γNn+1(f)−

[
γNn (Qn+1(f)) + µn+1(f)

]
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Since we have

γNn (Qn+1(1)) + µn+1(1) = γNn (Gn) + µn+1(1)

= γNn (1) ηNn (Gn) + µn+1(1) = γNn+1(1)

this implies that

γNn+1(f)−
[
γNn (Qn+1(f)) + µn+1(f)

]
= γNn+1(1)

[
ηNn+1(f)−

[
γNn (Qn+1(f)) + µn+1(f)

]
[γNn (Qn+1(1)) + µn+1(1)]

]
= γNn+1(1)

[
ηNn+1(f)− ηNn Kn+1,(γN

n (1),ηNn )(f)
]

and therefore

γNn+1(f)− E
(
γNn+1(f)

∣∣ F (N)
n

)
= γNn+1(1)

[
ηNn+1(f)− ηNn Kn+1,(γN

n (1),ηNn )(f)
]

Finally, we observe that

E
(
γNn+1(f)

∣∣ F (N)
n

)
− γn+1(f) = γNn (Qn+1(f))− γn(Qn+1(f))

from which we find the recursive formula[
γNn+1 − γn+1

]
(f) = γNn+1(1)

[
ηNn+1 − ηNn Kn+1,(γN

n (1),ηNn )

]
(f) +

[
γNn − γn

]
(Qn+1(f))

The end of the proof of (7.6.4) is now obtained by a simple induction on the param-

eter n.

Now, we come to the proof of (7.6.5). Using the fact that

E
(
γNp (1)WN

p (f (1)) γNq (1)WN
q (f (2))

)
= E

(
γNp (1)γNq (1)WN

p (f (1)) E
(
WN

q (f (2)) | FN
q−1

))
= 0

for any 0 ≤ p < q ≤ n, and any f (1) ∈ B(Ep), and f
(2) ∈ B(Eq), we prove that

N E
([
γNn (1)− γn(1)

]2)
=

n∑
p=0

E
(
γNp (1)2 E

(
WN

p (Qp,n(1))
2|FN

p−1

))
Notice that

1

γn(1)2
=

1

γp(1)2
1

ηp(Qp,n(1))2

(
γp(Qp,n(1))

γn(1)

)2

≤ α�
p,n(γp(1))

2 1

γp(1)2
1

ηp(Qp,n(1))2

(7.6.6)

The r.h.s. estimate comes from the fact that

γp(Qp,n(1))

γn(1)
=

γp(1) ηp(Qp,n(1))

γp(1) ηp(Qp,n(1)) +
∑

p<q≤n µqQq,n(1)
= αp,n (γp(1), ηp) ≤ α�

p,n(γp(1))
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Using the above decompositions, we readily prove that

N E

([
γNn (1)

γn(1)
− 1

]2)
≤

n∑
p=0

α�
p,n(γp(1))

2 E

⎛⎝(γNp (1)

γp(1)

)2

E
(
WN

p (Qp,n(1))
2|FN

p−1

)⎞⎠
with

Qp,n(1) = Qp,n(1)/ηp(Qp,n(1)) ≤ qp,n

We set

UN
n := E

([
γNn (1)

γn(1)
− 1

]2)
then we find that N UN

n ≤ an +
n∑

p=0

bp,n U
N
p

with the parameters

an :=
n∑

p=0

(
qp,nα

�
p,n(γp(1)

)2
and bp,n :=

(
qp,nα

�
p,n(γp(1)

)2
Using the fact that bn,n ≤ 1, we prove the following recursive equation

UN
n ≤ aNn +

∑
0≤p<n

bNp,n U
N
p with aNn :=

an
N − 1

and bNp,n :=
bp,n
N − 1

Using an elementary proof by induction on the time horizon n, we prove the following

inequality:

UN
n ≤

⎡⎣ n∑
p=1

aNp
∑

e∈〈p,n〉

bN(e)

⎤⎦+

⎡⎣ ∑
e∈〈0,n〉

bN(e)

⎤⎦ UN
0

In the above display, 〈p, n〉 stands for the set of all integer valued paths e =

(e(l))0≤l≤k of a given length k from p to n

e0 = p < e1 < . . . < ek−1 < ek = n and bN (e) =
∏

1≤l≤k

bNe(l−1),e(l)

We have also used the convention bN (∅) =
∏

∅ = 1 and 〈n, n〉 = {∅}, for p = n.

Recalling that γN0 = γ0, we conclude that

UN
n ≤

n∑
p=1

aNp
∑

e∈〈p,n〉

bN (e)

We further assume that the mixing condition (M)k presented in (7.5.1) is met for

some parameters k ≥ 1, and some constant parameters εp = ε > 0. In this case, we

use the fact that

α�
p,n ≤ 1 and qp,n ≤ δk/ε
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to prove that

sup
0≤p≤n

aNp ≤ (n + 1) (δk/ε)
2/(N − 1) and sup

0≤p≤n
bNp,n ≤ (δk/ε)

2/(N − 1)

Using these rather crude estimates, we find that

UN
n ≤ aNn +

∑
0<p<n

aNp

(n−p)∑
l=1

(
n− p− 1

l − 1

)(
δ2k

ε2(N − 1)

)l

and therefore

UN
n ≤ (n + 1)

(N − 1)

δ2k
ε2

(
1 +

δ2k
ε2(N − 1)

∑
0<p<n

(
1 +

(
δ2k

ε2(N − 1)

))n−p−1
)

=
(n+ 1)

(N − 1)

δ2k
ε2

(
1 +

δ2k
ε2(N − 1)

)n−1

This ends the proof of the theorem.

7.6.3 Probability distributions

This section is mainly concerned with the proof of the Lr-mean error estimates

stated in (7.4.9). We use the decomposition(
γNn (1), ηNn

)
− (γn(1), ηn) =

[
Γ0,n

(
γN0 (1), ηN0

)
− Γ0,n (γ0(1), η0)

]
+

n∑
p=1

[
Γp,n

(
γNp (1), ηNp

)
− Γp−1,n

(
γNp−1(1), η

N
p−1

)]
(7.6.7)

to prove that

ηNn − ηn

=
[
Γ2
0,n

(
γN0 (1), ηN0

)
− Γ2

0,n (γ0(1), η0)
]
+
∑n

p=1

[
Γ2
p,n

(
γNp (1), ηNp

)
− Γ2

p−1,n

(
γNp−1(1), η

N
p−1

)]
Using the fact that

Γp−1,n(m, η) = Γp,n (Γp(m, η)) ⇒ Γ2
p−1,n(m, η) = Γ2

p,n (Γp(m, η))

we readily check that

Γp

(
γNp−1(1), η

N
p−1

)
=
(
γNp−1(1)η

N
p−1(Gp−1) + µp(1),ΨGp−1

(
ηNp−1

)
Mp,(γN

p−1(1),η
N
p−1)

)
=
(
γNp (1), ηNp−1Kp,(γN

p−1(1),η
N
p−1)

)
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Since we have γN0 (1) = µ0(1) = γ0(1), one concludes that

ηNn − ηn =
[
Γ2
0,n

(
γ0(1), η

N
0

)
− Γ2

0,n (γ0(1), η0)
]

+

n∑
p=1

[
Γ2
p,n

(
γNp (1), ηNp

)
− Γ2

p,n

(
γNp (1), ηNp−1Kp,(γN

p−1(1),η
N
p−1)

)]
Using the fact that γNp (1) ∈ Ip, for any p ≥ 0, the end of the proof is a direct

consequence of lemma 7.5.5 and Kintchine inequality. The proof of the uniform

convergence estimates stated in the end of theorem 7.4.2 are a more or less direct

consequence of the functional inequalities derived at the end of section 7.5.3. The

end of the proof of the theorem 7.4.2 is now completed.

We end this section with the fluctuations properties of the N -particle approx-

imation measures γNn and ηNn around their limiting values. Using the same line

of arguments as those we use in the proof of the functional central limit theorem,

theorem 3.3 in [34], we can prove that the sequence (WN
n )n≥0 defined in (7.4.12)

converges in law, as N tends to infinity, to the sequence of n independent, Gaussian

and centered random fields (Wn)n≥0 with a covariance function given in (7.4.13).

Using the decompositions (7.6.4) and

ηNn (f)− ηn(f) =
γn(1)

γNn (1)

(
[γNn − γn]

(
1

γn(1)
(f − ηn(f))

))
by the continuous mapping theorem, we deduce the functional central limit theo-

rem 7.4.3.

7.7 Particle approximations of spontaneous birth

measures

Assume that the spontaneous birth measures µn are chosen so that µn � λn for

some reference probability measures λn and that the Radon Nikodim derivatives

Hn = dµn/dλn are bounded. For any n ≥ 0, we let λN
′

n := 1
N ′
∑N ′

i=1 δζin be the

empirical measure associated with N ′ independent and identically distributed ran-

dom variables (ζ in)1≤i≤N with common distribution λn. We also denote by µN ′
n the

particle spontaneous birth measures defined below

∀n ≥ 0 µN ′
n (dxn) := Hn(xn) λ

N ′
n (dxn)

In this notation, the initial distribution η0 and the initial mass γ0 are approximated

by the weighted occupation measure ηN
′

0 := ΨH0(λ
N ′
0 ) and γN

′
0 (1) := λN

′
0 (H0).

We let γ̃N
′

n and η̃N
′

n the random measures defined as γn and ηn by replacing in

(7.3.2) the measures µn by the random measures µN ′
n , for any n ≥ 0; that is, we

have that

γ̃N
′

n = γ̃N
′

n−1Qn + µN ′
n and η̃N

′
n (fn) = γ̃N

′
n (fn)/γ̃

N ′
n (1)
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for any fn ∈ B(En). By construction, using the same arguments as the ones we used

in the proof of (7.5.8), we have

γ̃N
′

n =
∑

0≤p≤n

µN ′
p Qp,n

This yields for any f ∈ B(En) the decomposition[
γ̃N

′
n − γn

]
(f) =

∑
0≤p≤n

[
µN ′
p − µp

]
Qp,n(f) =

∑
0≤p≤n

[
λN

′
p − λp

]
(Hp Qp,n(f))

Several estimates can be derived from these formulae, including Lp-mean error

bounds, functional central limit theorems, empirical process convergence, as well

as sharp exponential concentration inequalities. For instance, we have the unbi-

asedness property

E
(
γ̃N

′
n (f)

)
= γn(f)

and the variance estimate

N E

([
γ̃N

′
n (f)− γn(f)

]2)
=

∑
0≤p≤n

λp
[
(HpQp,n(f)− λp(HpQp,n(f))]

2)
Using the same arguments as the ones we used in (7.6.6), we prove the following

rather crude upper bound

N E

([
γ̃N

′
n (f)

γn(1)
− ηn(f)

]2)
≤

∑
0≤p≤n

α�
p,n(γp(1))

2 1

γp(1)2
µp (HpQp,n(f)

2)

ηp(Qp,n(1))2

≤
∑

0≤p≤n

α�
p,n(γp(1))

2 1

γp(1)2
‖Hp‖ µp(1) q

2
p,n

We illustrate these variance estimates for time homogeneous models (En, Gn, Hn,Mn, µn) =

(E,G,H,M, µ), in the three situations discussed in (7.5.13), (7.5.14), and (7.5.16).

We further assume that the mixing condition (M)k presented in (7.5.1) is met

for some parameters k ≥ 1, and some ε > 0. In this case, we use the fact that

qp,n ≤ δk/ε, to prove that

N E

([
γ̃N

′
n (f)

γn(1)
− ηn(f)

]2)
≤ c

∑
0≤p≤n

[
α�
p,n(γp(1))/γp(1)

]2
with some constant c := (‖H‖ µ(1) (δk/ε)2).

1. When G(x) = 1 for any x ∈ E, we have γp(1) = γ0(1)+µ(1) p. Recalling that

α�
p,n(γp(1)) ≤ 1, we prove the uniform estimates

N sup
n≥0

E

([
γ̃N

′
n (f)

γn(1)
− ηn(f)

]2)
≤ c

∑
p≥0

(γ0(1) + µ(1) p)−2

185



CHAPTER 7. PARTICLE APPROXIMATIONS OF BRANCHING DISTRIBUTION
FLOWS

2. When g+ < 1 and when the mixing condition (M)k stated in (7.5.1) is satisfied,

we have seen in (7.5.15) that

α�
p,n(γp(1)) ≤ 1 ∧

(
d1 g

(n−p)
+

)
and inf

n
γn(1) ≥ d2

for some finite constants d1 < ∞ and d2 > 0. From previous calculations, we

prove the following uniform variance estimates

N sup
n≥0

E

([
γ̃N

′
n (f)

γn(1)
− ηn(f)

]2)
≤ (c/d22)

∑
p≥0

[
1 ∧

(
d21 g

2p
+

)]
3. When g− > 1 we have seen in (7.5.16) that γn(1) ≥ d gn− for any n ≥ n0, for

some finite constant d <∞ and some n0 ≥ 1 so

N sup
n≥0

E

([
γ̃N

′
n (f)

γn(1)
− ηn(f)

]2)
≤ c

( ∑
0≤p≤n0

γp(1)
−2 + d

∑
n≥n0

g−2n
−

)
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Chapter 8

On the stability and the

approximation of branching

distribution flows, with

applications to nonlinear multiple

target filtering

8.1 Chapter overview

In this chapter we analyze the exponential stability properties of a class of measure-

valued equations arising in nonlinear multi-object filtering and prove the uniform

convergence properties of a general class of stochastic filtering algorithms. We illus-

trate these results in the context of the Bernoulli and the Probability Hypothesis

Density filter.

The results can be resumed as follows: the Bernoulli filter with a sufficiently mixing

prediction and almost equal survival and spontaneous births rates is exponentially

stable and the PHD filter is exponentially stable for small clutter intensities and suf-

ficiently high detection probability and spontaneous birth rates. In both situations,

the estimation errors of any N -approximation model satisfying certain conditions

do not accumulate over time.

In the second part we propose three different classes of stochastic particle ap-

proximation models. The first is a mean field particle interpretation of the flow of

normalized intensity measures associated to a general filtering model, the second

is an interacting particle association model while the third is a combination of the

previous two approaches. The second approximation strategy was the object of sec-
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tion 5.4.

This result has been accepted and is due to appear as a journal article in Journal

of Stochastic Analysis and Applications (2011).
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On the stability and the approximation of branching

distribution flows, with applications to nonlinear multiple

target filtering

∗François Caron, †Pierre Del Moral, ‡Michele Pace, §Ba-Ngu Vo

Abstract

We analyse the exponential stability properties of a class of measure-

valued equations arising in nonlinear multi-target filtering problems. We also

prove the uniform convergence properties of a rather general class of stochastic

filtering algorithms, including sequential Monte Carlo type models and mean

field particle interpretation models. We illustrate these results in the context

of the Bernoulli and the Probability Hypothesis Density filter, yielding what

seems to be the first results of this kind in this subject.

Keywords: Measure-valued equations, nonlinear multi-target filtering, Bernoulli

filter, Probability hypothesis density filter, interacting particle systems, par-

ticle filters, sequential Monte Carlo methods, exponential concentration in-

equalities, semigroup stability, functional contraction inequalities.
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8.2 Introduction

Let (En)n≥0 be a sequence of measurable spaces equipped with the σ-fields (En)n≥0,

and for each with n ≥ 0, denote M(En), M+(En) and P(En) the set of all fi-

nite signed measures, the subset of positive measures and the subset of probability

measures, respectively, over the space En. The aim of this work is to present a

stochastic interacting particle interpretation for numerical solutions of the general

measure-valued dynamical systems γn ∈ M+(En) defined by the following non-linear

equation

γn(dxn) =
(
γn−1Qn,γn−1

)
(dxn) :=

∫
En−1

γn−1(dxn−1)Qn,γn−1(xn−1, dxn) (8.2.1)
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with initial measure γ0 ∈ M+(E0), and positive and bounded integral operatorsQn,γ

from En−1 into En, indexed by the time parameter n ≥ 1 and the set of measures

γ ∈ M+(En).

This class of measure-valued equations arises in a natural way in the analysis

of the first moments evolution of nonlinear branching processes, as well as in signal

processing and more particularly in multiple targets tracking models. A pair of

filtering models is discussed in some details in section 8.2.1 and in section 8.2.1. In

the context of multiple targets tracking problems these measure-valued equations

represents the first-order statistical moments of the conditional distributions of the

target occupation measures given observation random measures obscured by clutter,

detection uncertainty and data association uncertainty.

As in most of the filtering problems encountered in practice, the initial distribu-

tion of the targets is usually unknown. It is therefore essential to check wether or

not the filtering equation ”forgets” any erroneous initial distribution. For a thor-

ough discussion on the stability properties of traditional nonlinear filtering problems

with a detailed overview of theoretical developments on this subject, we refer to the

book [28] and to the more recent article by M. L. Kleptsyna and A. Y. Vereten-

nikov [60]. Besides the fact that significant progress has been made in the recent

years in the rigorous derivation of multiple target tracking nonlinear equations (see

for instance Chapter 6 and [13, 76, 135, 120]), up to our knowledge the stability

and the robustness properties of these measure-valued models have never been ad-

dressed so far in the literature on the subject. One aim of this paper is to study

one such important property: the exponential stability properties of multiple target

filtering models. We present an original and general perturbation type technique

combining the continuity property and the stability analysis of nonlinear semigroups

of the form (8.2.1). A more thorough presentation of these results is provided in

section 8.2.2 dedicated to the statement of the main results of the present article.

The detailed presentation of this perturbation technique can be found in section 8.4.

On the other hand, while the integral equation (8.2.1) appears to be simple

at first glance, numerical solutions are computationally intensive, often requiring

integrations in high dimensional spaces. One natural way to solve the non-linear

integral equation (8.2.1) is to find a judicious probabilistic interpretation of the

normalized distributions flow given below

ηn(dxn) := γn(dxn)/γn(1)

To describe with some conciseness these stochastic models, it is important to observe

that the pair process (γn(1), ηn) ∈ (R+ × P(En)) satisfies an evolution equation of

the following form

(γn(1), ηn) = Γn(γn−1(1), ηn−1) (8.2.2)

Let the mappings Γ1
n : R+ × P(En) → R+ and Γ2

n : R+ × P(En) → P(En), denote

the first and the second components of Γn respectively. By construction, we notice
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that the total mass process can be computed using the recursive formula

γn+1(1) = γn(Gn,γn) = ηn(Gn,γn) γn(1) with Gn,γn := Qn+1,γn(1) (8.2.3)

Suppose that we are given an approximation
(
γNn (1), ηNn

)
of the pair (γn(1), ηn)

at some time horizon n, where N stands for some precision parameter; that is(
γNn (1), ηNn

)
converges (in some sense) to (γn(1), ηn), as N → ∞. Then, the N -

approximation of the measure γn is given by γNn = γNn (1) × ηNn . The central idea

behind any approximation model is to ensure that the total mass process at time

(n+ 1) defined by

γNn+1(1) = ηNn (Gn,γN
n
) γNn (1) (8.2.4)

can be ”easily” computed in terms of the N -approximation measures γNn . Assuming

that the initial mass γ0(1) = γN0 (1) is known, the next step is to find some strategy

to approximate the quantities Γ2
n+1(γ

N
n (1), ηNn ) by some N -approximation measures

ηNn+1, and to set γNn+1 = γNn+1(1)× ηNn+1.

The local fluctuations of ηNn around the measures Γ2
n(γ

N
n−1(1), η

N
n−1) is defined in

terms of a collection of random fields WN
n :

WN
n :=

√
N

[
ηNn − Γ2

n(γ
N
n−1(1), η

N
n−1)

]
⇐⇒ ηNn = Γ2

n

(
γNn−1(1), η

N
n−1

)
+

1√
N

WN
n

(8.2.5)

which satisfies for any r ≥ 1 and any test function f with uniform norm ‖f‖ ≤ 1,

E
(
WN

n (f) | FN
n−1

)
= 0 and E

(∣∣WN
n (f)

∣∣r | FN
n−1

) 1
r ≤ ar (8.2.6)

where FN
n−1 = σ

(
ηNp , 0 ≤ p < n

)
is the σ-field generated by the random measures

ηNp , 0 ≤ p < n, while b and ar are universal constants whose values do not depend

on the precision parameter N . The stochastic analysis of the resulting particle

approximation model relies on the analysis of the propagation of the local sampling

errors defined in (8.2.5). The main objective is to control, at any time horizon n, the

fluctuations of the random measures (γNn , η
N
n ) around their limiting values (γn, ηn)

defined by the following random fields:

V γ,N
n :=

√
N

[
γNn − γn

]
with V η,N

n :=
√
N

[
ηNn − ηn

]
. (8.2.7)

The construction of the N -approximation measures ηNn is far from being unique.

In the present article, we devise three different classes of stochastic particle approx-

imation models. These stochastic algorithms are discussed in section 8.5. The first

one is a mean field particle interpretation of the flow of probability measures ηn,

and it is presented in section 8.5.1. The second model is an interacting particle

association model while the third one is a combination of these two approxima-

tion algorithms. These pair of approximation models are respectively discussed in
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section 8.5.2 and in section 8.5.3. In the context of multi-target tracking mod-

els, the first two approximation models are closely related to the sequential Monte

Carlo technique presented in the series of articles [117, 133, 96, 94, 95, 144], and

respectively, the Gaussian mixture Probability Hypothesis Density filter discussed

in the article by B.-N. Vo, and W.-K. Ma [129, 130], and the the Rao-Blackwellized

Particle multi-target filters presented by S. Sarkka, A. Vehtari, and J. Lampinen

in [114, 112]. These modern stochastic algorithms are rather simple to implement

and computationally tractable, and they exhibit excellent performance.

Nevertheless, despite advances in recent years [53, 133], these Monte Carlo par-

ticle type multi-target filters remain poorly understood theoretically. One aim of

this article is to present a novel class of stochastic algorithms with a refined analysis

including uniform convergence results w.r.t. the time parameter. We also illustrate

these results in the context of multi-target tracking models, yielding what seems to

be the first uniform results of this type in this subject.

The rest of the article is organized as follows: In section 8.2.1 we illustrate

the abstract measure-valued equations (8.2.1) with connection to two recent multi-

target filters, namely the Bernoulli filter and the Probability Hypothesis Density

filter (abbreviate PHD filter). Section 8.2.2 is devoted to the statement of our main

results. In section 8.3, we describe the semigroups and the continuity properties of

the nonlinear equation 8.2.1. We show that this semigroup analysis can be applied

to analyse the convergence of the Bernoulli and the PHD approximation filters. Sec-

tion 8.4 is devoted to the stability properties of nonlinear measure-valued processes

of the form (8.2.2). We present a perturbation technique and a series of functional

contraction inequalities. In the next three sections, we illustrate these results in the

context of Feynman-Kac models, as well as Bernoulli and PHD models. Section 8.5

is concerned with the detailed presentation and the convergence analysis of three

different classes of particle type approximation models, including mean field type

particle approximations and particle association stochastic algorithms. Finally, the

appendix of the article contains most of technical proofs in the text.

8.2.1 Measure-valued systems in Multi-target tracking

The measure-valued process given by (8.2.1) is a generalisation of Feynman-Kac

measures. Its continuous time version naturally arise in the modeling and analysis

of the first moments of spatial branching process [28, 40].

Our major motivation for studying this class of measure-valued system stems

from advanced signal processing, more specifically, multiple target tracking. Driven

primarily in the early 1970’s by aerospace applications such as radar, sonar, guid-

ance, navigation, and air traffic control, today multi-target filtering has found ap-

plications in many diverse disciplines, see for example the texts [4], [8] [80] and

references therein. These nonlinear filtering problems deal with jointly estimating
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the number and states of several interacting targets given a sequence of partial ob-

servations corrupted by noise, false measurements as well as miss-detection. This

rapidly developing subject is, arguably, one of the most interesting contact points

between the theory of spatial branching processes, mean field particle systems and

advanced signal processing.

The first connections between stochastic branching processes and multi-target

tracking seem to go back to the article by S. Mori, et. al. [89] published in 1986.

However it was Mahler’s systematic treatment of multi-sensor multi-target filtering

using random finite sets theory [86, 42, 73, 76] that lead to the development novel

multi-target filters and sparked world wide interests. To motivate the article, we

briefly outline two recent multi-target filters that do not fit the standard Feynman-

Kac’s framework, but fall under the umbrella of the measure-valued equation (8.2.1).

The first is the Bernoulli filter for joint detection and tracking of a single target while

the second is the Probability Hypothesis Density filter.

Bernoulli filtering

A basic problem in target tracking is that the target of interest may not always

be present and exact knowledge of target existence/presence cannot be determined

from observations due to clutter and detection uncertainty [80]. The Bernoulli filter

is a generalisation of the standard Bayes filter, which accommodates presence and

absence of the target [135]. In a Bernoulli model, the birth of the target at time

n + 1 is modelled by a measure µn+1 on En+1. The target enters the scene with

a probability µn+1(1) < 1 and its state is distributed according to the normalised

measure µn+1/µn+1(1). At time n, a target Xn has a probability sn(Xn) of surviving

to the next time and evolve to a new state according to a given elementary Markov

transition Mn+1 from En into En+1. At time n+1, the target (if it exists) generates

with probability dn+1(Xn+1) an observation Yn+1 on some auxiliary state space, say

EY
n+1 with likelihood function ln+1(Xn+1, y). This so-called Bernoulli observation

point process is superimposed with an additional and independent Poisson point

process with intensity function hn > 0 to form the occupation (or counting) measure

observation process Yn+1 =
∑

1≤i≤NY
n+1

δY i
n+1

.

In its original form, the Bernoulli filter jointly propagates the probability exis-

tence of the target and the distribution of the target state [135]. Combining the

probability of existence and the state distribution into a single measure, it can be

shown that the Bernoulli filter satisfies the integral equation (8.2.1), with the prob-

ability of existence of the target given by the mass γn(1) and the distribution of the

target state given by the normalised measure ηn = γn/γn(1). The integral operator
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for the Bernoulli filter takes the following form

Qn+1,γn(xn, dxn+1) :=
sn(xn)gn(xn)Mn+1(xn, dxn+1) + (γn(1)

−1 − 1)µn+1(dxn+1)

(1− γn(1)) + γn(gn)
(8.2.8)

where gn is a likelihood function given by

gn(xn) : = (1− dn(xn)) + dn(xn)Yn (ln(xn, ·)/hn) (8.2.9)

PHD filtering

A more challenging problem arises when the number of targets varies randomly in

time, obscured by clutter, detection uncertainty and data association uncertainty.

Suppose that at a given time n there are NX
n targets (X i

n)1≤i≤NX
n

each taking val-

ues in some measurable state space En. A target X i
n, at time n, survives to the

next time step with probability sn(X
i
n) and evolves to a new state according to a

given elementary Markov transition M ′
n+1 from En into En+1. In addition X i

n can

spawn new targets at the next time, usually modelled by a spatial Poisson process

with intensity measure Bn+1(X
i
n, ·) on En+1. At the same time, an independent

collection of new targets is added to the current configuration. This additional and

spontaneous branching process is often modeled by a spatial Poisson process with a

prescribed intensity measure µn+1 on En+1. Each target X i
n+1 generates with proba-

bility dn+1(X
i
n+1) an observation Y i

n+1 on some auxiliary state space, say EY
n+1, with

probability density function gn+1(X
i
n+1, y). In addition to this partial observation

point process we also observe an additional and independent Poisson point process

with intensity function hn. Multi-target tracking concerns the estimation of the

random measures Xn+1 =
∑

1≤i≤NX
n
δXi

n
, given the observation occupation measures

Yp =
∑

1≤i≤NY
p
δY i

p
.

The multi-target tracking problem is computationally intractable in general and

the Probability Hypothesis Density PHD (filter), is an approximation that propa-

gates the first-order statistical moment, or intensity, of the multi-target state forward

in time [76]. The PHD filter satisfies the integral equation (8.2.1), with the integral

operator given below

Qn+1,γn(xn, dxn+1) = gn,γn(xn)Mn+1(xn, dxn+1) + γn(1)
−1 µn+1(dxn+1) (8.2.10)

where Mn+1 is a Markov kernel defined by

Mn+1(xn, dxn+1) :=
sn(xn)M

′
n+1(xn, dxn+1) +Bn+1(xn, dxn+1)

sn(xn) + bn(xn)
(8.2.11)

with the branching rate bn(xn) = Bn+1(1)(xn). The likelihood function gn,γn is given

by

gn,γn := rn × ĝn,γn with rn := (sn + bn) (8.2.12)
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and

ĝn,γn(xn) := (1− dn(xn)) + dn(xn)

∫
Yn(dy)

gn(xn, yn)

hn(yn) + γn(dngn(., yn)) (8.2.13)

Since its inception by Mahler [76] in 2003, the PHD filter has attracted substan-

tial interest to date. The development of numerical solutions for the PHD filter

[133], [130] have opened the door to numerous novel extensions and applications.

More details on the derivation of the PHD filter using random finite sets, Poisson

techniques or random measures theoretic approaches can be found in the series of

articles [13, 76, 120].

8.2.2 Statement of the main results

To describe with some conciseness the main result of this article, we need to in-

troduce some notation. We let Osc1(En), be the set of En-measurable functions

f on En with oscillations osc(f) = supx,x′ |f(x)− f(x′)| ≤ 1. We denote by

µ(f) =
∫
µ(dx) f(x) the Lebesgue integral of f w.r.t. some measure µ ∈ M(En),

and we let |µ−ν|tv be the total variation distance between two probability measures

ν and µ on En.

We assume that the following pair of regularity conditions are satisfied.

(H1) : There exists a series of compact sets In ⊂ (0,∞) such that the initial

mass value γ0(1) ∈ I0, and for any m ∈ In η ∈ P(En), we have

θ−,n(m) ≤ η (Gn,mη) ≤ θ+,n(m) for some pair of positive functions θ+/−,n.

The main implication of condition (H1) comes from the fact that the total mass

processes γn(1) and their N -approximation models γNn (1) are finite and they evolves

at every time n in a series of compact sets

In ⊂ [m−
n , m

+
n ] ⊂ (0,∞)

with the sequence of parameters m
+/−
n defined by the recursive equations m−

n+1 =

m−
n θ−,n(m

−
n ) and m+

n+1 = m+
n θ+,n(m

+
n ), with the initial conditions m−

0 = m+
0 =

γ0(1).

(H2) : For any n ≥ 1, f ∈ Osc1(En), and any (m, η), (m′, η′) ∈ (In×P(En)), the

one step mappings Γn = (Γ1
n,Γ

2
n) defined in (8.2.2) satisfy the following Lipschitz

type inequalities:∣∣Γ1
n(m, η)− Γ1

n(m
′, η′)

∣∣ ≤ c(n) |m−m′|+
∫

|[η − η′](ϕ)| Σ1
n,(m′,η′)(dϕ)(8.2.14)∣∣[Γ2

n(m, η)− Γ2
n(m

′, η′)
]
(f)

∣∣ ≤ c(n) |m−m′|+
∫

|[η − η′](ϕ)| Σ2
n,(m′,η′)(f, dϕ)(8.2.15)
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for some finite constants c(n) < ∞, and some collection of bounded measures

Σ1
n,(m′,η′) and Σ2

n,(m′,η′)(f, .) on B(En) such that∫
osc(ϕ) Σ1

n,(m,η)(dϕ) ≤ δ
(
Σ1

n

)
and

∫
osc(ϕ) Σ2

n,(m,η)(f, dϕ) ≤ δ
(
Σ2

n

)
for some finite constant δ (Σi

n) < ∞, i = 1, 2, whose values do not depend on the

parameters (m, η) ∈ (In ×P(En) and f ∈ Osc1(En).

Condition (H2) is a rather basic and weak continuity type property. It states that

the one step transformations of the flow of measures (8.2.2) are weakly Lipschitz,

in the sense that the mass variations and the integral differences w.r.t. some test

function f can be controlled by the different initial masses and measures w.r.t. a

collection of integrals of a possibly infinite number of test functions. It is satisfied

for a large class of one step transformations Γn. In section 8.3.3, we will verify

that it is satisfied for the general class of Bernoulli and the PHD filters discussed in

section 8.2.1 and section 8.2.1.

We are now in position to state the main results of this article. The first one

is concerned with the exponential stability properties of the semigroup Γp,n =(
Γ1
p,n,Γ

2
p,n

)
, with 0 ≤ p ≤ n associated with the one step transformations of the

flow (8.2.2). A more precise description and the complete proof of the next theorem

is provided in section 8.4.

Theorem 8.2.1. We let Φ1
p,n,ν and Φ2

p,n,m be the semigroups associated with the

one step transformations of the flow of total masses Φ1
n,νn−1

:= Γ1
n (., νn−1) and

measures Φ2
n,mn−1

:= Γ2
n (mn−1, .), with a fixed collection of measures ν := (νn)n≥0 ∈∏

n≥0P(En) and masses m := (mn)n≥0 ∈
∏

n≥0 In. When these semigroups are

exponentially stable (in the sense that they forget exponentially fast their initial

conditions) and when the pair of mappings νn−1 �→ Φ1
n,νn−1

and mn−1 �→ Φ2
n,mn−1

are

sufficiently regular then we have the following contraction inequalities∣∣Γ1
p,n(u

′, η′)− Γ1
p,n(u, η)

∣∣ ∨ ∣∣Γ2
p,n(u

′, η′)− Γ2
p,n(u, η)

∣∣
tv
≤ c e−λ(n−p)

for any p ≤ n, u, u′ ∈ Ip, η, η
′ ∈ P(Ep), and some finite constants c <∞ and λ > 0

whose values do not depend on the time parameters p ≤ n.

The second theorem is concerned with estimating the approximation error as-

sociated with a N -approximation model satisfying condition (8.2.6). The first part

of the theorem is proved in section 8.2.2. The proof of the uniform estimates is

discussed in section 8.4.1 (see for instance lemma 8.4.4).

Theorem 8.2.2. Under the assumptions (H1) and (H2), the semigroup Γp,n satisfies

the same Lipschitz type inequalities as those stated in (8.2.14) and (8.2.15) for
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some collection of measures Σ1
p,n and Σ2

p,n(f, .) on B(Ep). In addition, for any

N-approximation model satisfying condition (8.2.6) we have the estimates:

E
(∣∣V γ,N

n (1)
∣∣r) 1

r ≤ ar

n∑
p=0

δ
(
Σ1

p,n

)
and E

(∣∣V η,N
n (f)

∣∣r) 1
r ≤ ar

n∑
p=0

δ
(
Σ2

p,n

)
(8.2.16)

for any r ≥ 1, and N ≥ 1, with some constants ar < ∞ whose values only depend

on r. Furthermore, under the regularity conditions of theorem 8.2.1 the couple of

estimates stated above are uniform w.r.t. the time horizon; that is, we have that

supn≥0

∑n
p=0 δ

(
Σi

p,n

)
<∞, for any i = 1, 2.

These rather abstract theorems apply to a general class of discrete generation

measure-valued equations of the form (8.2.1). We illustrate the application of this

pair of theorems in the analysis of the stability properties and the approximation

convergence of the pair of multiple target filters presented in this introductory sec-

tion. These results can basically be stated as follows:

� The Bernoulli filter presented in section 8.2.1 with a sufficiently mixing pre-

diction and almost equal survival and spontaneous births rates sn ∼ µn(1) is

exponentially stable.

� The PHD filter presented in section 8.2.1 is exponentially stable for small

clutter intensities and sufficiently high detection probability and spontaneous

birth rates.

� In both situations, the estimation error of any N -approximation model satisfy-

ing condition (8.2.6) does not accumulate over time. Furthermore, the uniform

rates of convergence provided in theorem 8.2.2 allows to design stochastic al-

gorithms with prescribed performance index at any time horizon.

We end this section with some direct consequences of theorem 8.2.2:

Firstly, we observe that the mean error estimates stated in the above theorem

clearly implies the almost sure convergence results

lim
N→∞

ηNn (f) = ηn(f) and lim
N→∞

γNn (f) = γn(f)

for any bounded function f on En. Furthermore, with some information on the

constants ar, these Lr-mean error bounds can be turned to exponential concentration

inequalities. To be more precise, by lemma 7.3.3 in [28], the collection of constants

ar in theorem 8.2.2, can be chosen so that

a2r2r ≤ b2r (2r)! 2−r/r! and a2r+1
2r+1 ≤ b2r+1(2r + 1)! 2−r/r! (8.2.17)

197



CHAPTER 8. STABILITY AND THE APPROXIMATION MULTI-TARGET
DISTRIBUTION FLOWS

for some b <∞, whose values do not depend on r. Using the above Lr-mean error

bounds we can establish the following non asymptotic Gaussian tail estimates:

P

(∣∣[ηNn − ηn
]
(f)

∣∣ ≥ bn√
N

+ ε

)
≤ exp

(
−Nε

2

2b2n

)
with bn ≤ b

n∑
p=0

δ
(
Σ2

p,n

)
The above result is a direct consequence of the following observation

∀r ≥ 1 E (U r)
1
r ≤ ar b⇒ P (U ≥ b+ ε) ≤ exp

(
−ε2/(2b)

)
for any non negative random variable U . To check this claim, we use the following

Laplace estimate

∀t ≥ 0 E
(
etU
)

≤ exp

(
(bt)2

2
+ bt

)
⇒ P (U ≥ b+ ε) ≤ exp

(
− sup

t≥0

(
εt− (bt)2

2

))
It is worth noting that the above constructions allows us to consider with further

work branching particle models in path spaces. These path space models arise in the

analysis of the historical process associated with a branching models as well as the

analysis of a filtering problem of the whole signal path given a series of observations.

For instance, let us suppose that the Markov transitions Mn defined in (8.2.10) are

the elementary transition of a Markov chain of the following form

Xn :=
(
X ′

p

)
0≤p≤n

∈ En :=
∏

0≤p≤n

E ′
p

In other words Xn represents the paths from the origin up to the current time of an

auxiliary Markov chain X ′
n taking values in some measurable state spaces E ′

n, with

Markov transitions M ′
n. We assume that the potential functions gn,γn only depend

on the terminal state of the path, in the sense that gn,γn(Xn) = g′n,γn(X
′
n), for some

potential function g′n,γn on E ′
n. In multiple target tracking problems, these path

space models provide a way to estimate the conditional intensity of the path of a

given target in a multi-target environment related to some likelihood function that

only depends on the terminal state of the signal path.

In practice, it is essential to observe that the mean field particle interpretations of

these path space models simply consist of keeping track of the whole history of each

particle. It can be shown that the resulting particle model can be interpreted as the

genealogical tree model associated with a genetic type model (see for instance [28]).

In this situation, ηNn is the occupation measure of a random genealogical tree, each

particle represents the ancestral lines of the current individuals.

We end this section with some standard notation used in the paper:

We denote respectively by M(E), P(E), and B(E), the set of all finite positive

measures µ on some measurable space (E, E), the convex subset of all probabil-

ity measures, and the Banach space of all bounded and measurable functions f
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equipped with the uniform norm ‖f‖. We denote by f− and f+ the infimum and

the supremum of a function f . For measurable subsets A ∈ E , in various instances

we slightly abuse notation and we denote µ(A) instead of µ(1A); and we set δa the

Dirac measure at a ∈ E. We recall that a bounded and positive integral operator Q

from a measurable space (E1, E1) into an auxiliary measurable space (E2, E2) is an
operator f �→ Q(f) from B(E2) into B(E1) such that the functions

x �→ Q(f)(x) :=

∫
E2

Q(x, dy)f(y)

are E1-measurable and bounded for some measures Q(x, .) ∈ M(E2). These oper-

ators also generate a dual operator µ �→ µQ from M(E1) into M(E2) defined by

(µQ)(f) := µ(Q(f)). A Markov kernel is a positive and bounded integral operator

M with M(1) = 1. We denote by Qp,n = Qp+1Qp+2 . . . Qn, with p ≤ n the semi-

group associated with a given sequence of bounded and positive integral operator

Qn from some measurable spaces (En−1, En−1) into (En, En). For p = n, we use the

convention Qn,n = Id, the identity operator.

We associate with a bounded positive potential function G : x ∈ E �→ G(x) ∈
[0,∞), the Bayes-Boltzmann-Gibbs transformations

ΨG : η ∈ M(E) �→ ΨG(η) ∈ P(E) with ΨG(η)(dx) :=
1

η(G)
G(x) η(dx)

provided η(G) > 0. We recall that ΨG(η) can be expressed in terms of a Markov

transport equation

ηSη = ΨG(η) (8.2.18)

for some selection type transition Sη(x, dy). For instance, we can take

Sη(x, dy) :=
ε

η(G)
δx(dy) +

(
1− ε

η(G)

)
Ψ(G−ε)(η)(dy) (8.2.19)

for any ε ≥ 0 s.t. G(x) ≥ ε. Notice that for ε = 0, we have Sη(x, dy) = ΨG(η)(dy).

We can also choose

Sη(x, dy) := εG(x) δx(dy) + (1− εG(x)) ΨG(η)(dy) (8.2.20)

for any ε ≥ 0 that may depend on the current measure η, and s.t. εG(x) ≤ 1.

For instance, we can choose 1/ε to be the η-essential maximum of the potential

function G. Finally, in the context of Bernoulli and PHD filtering we set µn+1 =

µn+1/µn+1(1), for any n ≥ 0, the normalized spontaneous birth measures.
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8.3 Semigroup description

8.3.1 The Bernoulli filter semigroup

By construction, we notice that the mass process and the normalized measures are

given by the rather simple recursive formulae

γn+1(1) =
γn(1)ηn(gn)

(1− γn(1)) + γn(1)ηn(gn)
Ψgn(ηn)(sn)+

(1− γn(1))

(1− γn(1)) + γn(1)ηn(gn)
µn+1(1)

(8.3.1)

and

ηn+1 := αn(γn) Ψgnsn(ηn)Mn+1 + (1− αn(γn)) µn+1

with the mappings αn : γ ∈ M(En) �→ αn(γ) ∈ [0, 1] defined by

αn(γ) =
γ(gnsn)

γ(sngn) + (1− γ(1))µn+1(1)

By construction, if we set γ = m× η then

Γ1
n+1(m, η) =

γ(gn)

(1−m) + γ(gn)
Ψgn(η)(sn) +

(1−m)

(1−m) + γ(gn)
µn+1(1)

Γ2
n+1(m, η) = Ψgnsn(η)Mn+1,γ

with the collection of Markov transitions Mn+1,γ defined below

Mn+1,γ(x, .) := αn (γ)Mn+1(x, .) + (1− αn (γ)) µn+1 (8.3.2)

Next we provide an alternative interpretation of the mapping Γ2
n+1. Firstly, observe

that

Ψgnsn(η)Mn+1,γ(f) =
η (Qn+1,m(f))

η (Qn+1,m(1))
(8.3.3)

with the integral operator

Qn+1,m(f)(x) := mgn(x)sn(x)Mn+1(f)(x) + (1−m) µn+1(f)

This implies that

Γ2
n+1(m, η) = ΨĜn,m

(η)M̂n+1,m

with the potential function

Ĝn,m = mgnsn + (1−m) µn+1(1) (8.3.4)

and the Markov transitions

M̂n+1,m(f) :=
mgnsn

mgnsn + (1−m) µn+1(1)
Mn+1(f)+

(1−m)µn+1(1)

mgnsn + (1−m) µn+1(1)
µn+1(f)

(8.3.5)
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The condition (H1) is clearly not met for the Bernoulli filter (8.2.8) when sn = 0

and µn+1(1) = 0, since in this situation γn = 0 for any n ≥ 1. Nevertheless, this

condition is met with In ⊂ (0, 1] and mθ+,n(m) = 1, as long as sn and µn+1(1) are

uniformly bounded from below. It is also met for sn = 0, as long as 0 < µn+1(1) < 1

and the likelihood function given in (8.2.9) is uniformly bounded. The condition is

also met for µn+1(1) = 0, as long as γ0(1) > 0, and the likelihood function given in

(8.2.9) and the function sn are uniformly lower bounded.

We prove these assertions using the fact that

γn+1(1) = γ̂n(1) Ψgn(ηn)(sn) + (1− γ̂n(1)) µn+1(1) (8.3.6)

with the updated mass parameters γ̂n(1) ∈ [0, 1] given below

γ̂n(1) :=
γn(1)ηn(gn)

(1− γn(1)) + γn(1)ηn(gn)

If we set s−n := infEn sn and s+n = supEn
sn then

∀n ≥ 1 γn(1) ∈
[
m−

n , m
+
n

]
with parameters

m−
n = µn(1) ∧ s−n−1 and m+

n = µn(1) ∨ s+n−1 (≤ 1)

If sn and µn+1(1) are uniformly bounded from below then we have m−
n > 0. In

addition, for the constant mapping sn = µn+1(1), the total mass process is constant

γn+1(1) = m+
n+1 = m−

n+1 = µn+1(1)

for any n ≥ 0. Furthermore, in this situation the flow of normalized measures is

given by the updating-prediction transformation defined by

∀n ≥ 0 ηn+1 = Ψ
g
(s)
n

(ηn)M
(s)
n+1

with the likelihood function g
(s)
n and the Markov transitions M

(s)
n+1 defined by

g(s)n := sngn+(1−sn) and M
(s)
n+1(f) :=

sngnMn+1(f) + (1− sn) µn+1(f)

sngn + (1− sn)
(8.3.7)

When µn+1(1) = 0, the flow of normalized measures is again given by a simple

updating-prediction equation

ηn+1 = Ψgnsn(ηn)Mn+1 and γn+1(1) = Ψgn(ηn)(sn)× θηn(gn)(γn(1)) (8.3.8)

with the increasing mappings θa defined below

x ∈ [0, 1] �→ θa(x) := ax/[ax + (1− x)] (8.3.9)
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In addition, if s−n > 0 then

m−
n+1 ≥ s−n × g−nm

−
n

g−nm
−
n + (1−m−

n )
> 0

as long as g−n := infEn gn > 0, and γ0(1) > 0. We prove this inequality using the fact

that the mapping (a, x) ∈ [0,∞[×[0, 1] �→ θa(x) is increasing in both coordinates.

In the case where sn = 1, using the fact that and θa ◦ θb = θab, we prove that

γn+1(1) = θηn(gn) (γn(1)) = θ∏n
p=0 ηp(gp)

(γ0(1))

Conversely, when γ0(1) < 1 and 0 < µn+1(1) < 1 and sn = 0, for any n ≥ 0,

then we have a constant flow of normalized measures

∀n ≥ 1 ηn = µn

and the total mass process is such that

γn(1) ∈]0, 1[ =⇒ γn+1(1) = µn+1(1)×
[
1− θµn(gn)(γn(1))

]
∈]0, 1[

with the convention µ0 = η0, for n = 0. In addition, if µn+1(1) = 1 then we have

γ2(n+1)(1) = θ∏n
p=0(b2p/b2p+1)(γ0(1)) and γ2n+1(1) = θb−1

2n

∏n−1
p=0 (b2p+1/b2p)

(γ0(1))

for any n ≥ 0, with the parameters bn := µn(gn). We prove these formuae using

the the fact that 1 − θa(x) = θ1/a(1 − x), and θa ◦ θb = θab. This again implies

that m−
n > 0 as long as γ0(1) > 0 and the likelihood function are uniformly lower

bounded.

8.3.2 The PHD filter semigroup

By construction, if we set γ = m× η then we find that

Γ1
n+1(m, η) = γ(gn,γ) + µn+1(1) and Γ2

n+1(m, η) = Ψgn,γ(η)Mn+1,γ

In the above display, Mn+1,γ is the collection of Markov transitions defined below

Mn+1,γ(x, .) := αn (γ)Mn+1(x, .)+(1− αn (γ)) µn+1 with αn (γ) =
γ(gn,γ)

γ(gn,γ) + µn+1(1)

The interpretation of the updating transformation Ψgn,γ (η) in terms of a Markov

transport equation is non unique. For instance, using (8.2.12) this Bolzmann-Gibbs

transformation can be decomposed into two parts. The first one relates to the un-

detectable targets and the second is associated with non clutter observations. An
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alternative description is provided below. We consider a virtual auxiliary observa-

tion point c (corresponding to undetectable targets) and set Yc
n = Yn + δc. We also

denote by gcn,γ(., y) the function defined below

gγn(., y) =
⎧⎨⎩ rn(1− dn) if y = c

rn
dngn(., yn)

hn(y) + γ(dngn(., y)) if y �= c

In this notation, the updating transformation Ψgn,γ (η) can be rewritten in the fol-

lowing form

Ψgn,γ(η) = Ψgn,γ
(η) with gn,γ =

∫
Yc

n(dy) g
γ
n(., y)

The averaged potential function gn,γ allows us to measure the likelihood of signal

states w.r.t. the current observation measure Yc
n. Using (8.2.18), the Bolzmann-

Gibbs transformation Ψgn,γ
(η) can be interpreted as non linear Markov transport

equation of the following form

Ψgn,γ
(η) = ηSn,γ and Γ2(m, η) = ηKn+1,γ with Kn+1,γ = Sn,γMn+1,γ

(8.3.10)

for some Markov transitions Sn,γ from En into itself.

We also notice that condition (H1) holds as long as the functions sn, bn, and

gn(., yn) are uniformly bounded and µn(1) > 0. It is also met when µn(1) = 0, as

long as rn = (sn + bn) is uniformly lower bounded and Yn �= 0 or dn < 1.

8.3.3 Lipschitz regularity properties

Firstly, we mention that condition (H2) can be replaced by the following regularity

condition:

(H ′
2) : For any n ≥ 1, f ∈ Osc1(En), and any (m, η), (m′, η′) ∈ (In × P(En)),

the integral operators Qn,mη satisfy the following Lipschitz type inequalities:

|Qn,mη(f)−Qn,m′η′(f)| ≤ c(n) |m−m′|+
∫

|[η − η′](ϕ)| Σn,(m′,η′)(f, dϕ)

(8.3.11)

for some collection of bounded measures Σn,(m′,η′)(f, .) on B(En) such that∫
osc(ϕ) Σn,(m,η)(f, dϕ) ≤ δ (Σn)

for some finite constant δ (Σn) <∞, whose values do dot depend on the parameters

(m, η) ∈ (In × P(En)) and f ∈ Osc1(En).

We prove (H ′
2) ⇒ (8.2.14) using the decompositions

mηQn,mη −m′η′Qn,m′η′ = mη [Qn,mη −Qn,m′η′ ] + [mη −m′η′]Qn,m′η′
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and of course [mη −m′η′] = [m−m′] η +m′ [η − η′]. To prove (H ′
2) ⇒ (8.2.15), we

let γ = mη and γ′ = m′η′ and we use the decomposition

[
Γ2
n(m, η)− Γ2

n(m
′, η′)

]
(f) =

1

γQn,γ(1)
[γQn,γ − γ′Qn,γ′]

(
f − Γ2

n(m
′, η′)(f)

)
The Bernoulli filter (8.2.8) satisfies (H ′

2), as long as the likelihood functions gn
given in (8.2.9) are uniformly bounded above. In this situation, (8.3.11) is met with

|Qn,mη(f)−Qn,m′η′(f)| ≤ c(n) |m−m′|+ c′(n) |[η − η′](gn)|

for some finite constant c′(n) <∞.

The PHD equation satisfies (H ′
2), as long as the functions hn(y) + g′n,y with

g′n,y := dngn(., y) are uniformly bounded above and below. To prove this claim, we

simply use the fact that

‖ĝn,γ − ĝn,γ′‖ ≤ cn

[
|m′ −m|+

∫
Yn(dy)

∣∣[η′ − η](g′n,y)
∣∣]

This estimate is a direct consequence of the following one

ĝn,γ(x)− ĝn,γ′(x) =

∫
Yn(dy)

g′n,y(x)

hn(y) + γ(g′n,y)

[γ′ − γ] (g′n,y)

hn(y) + γ′(g′n,y)

Next, we provide a pivotal regularity property of the semigroup (Γp,n)0≤p≤n as-

sociated with the one step transformations of the flow (8.2.2).

Proposition 8.3.1. We assume that conditions (H1) and (H2) are satisfied. Then,

for any 0 ≤ p ≤ n, f ∈ Osc1(En), and any (m, η), (m′, η′) ∈ (Ip × P(Ep)), we have

the following Lipschitz type inequalities:

∣∣Γ1
p,n(m, η)− Γ1

p,n(m
′, η′)

∣∣ ≤ cp(n) |m−m′|+
∫

|[η − η′](ϕ)| Σ1
p,n,(m′,η′)(dϕ)∣∣[Γ2

p,n(m, η)− Γ2
p,n(m

′, η′)
]
(f)

∣∣ ≤ cp(n) |m−m′|+
∫

|[η − η′](ϕ)| Σ2
p,n,(m′,η′)(f, dϕ)

for some finite constants cp(n) < ∞, and some collection of bounded measures

Σ1
p,n,(m′,η′) and Σ2

p,n,(m′,η′)(f, .) on B(Ep) such that∫
osc(ϕ) Σ1

p,n,(m,η)(dϕ) ≤ δ
(
Σ1

p,n

)
and

∫
osc(ϕ) Σ2

p,n,(m,η)(f, dϕ) ≤ δ
(
Σ2

p,n

)
(8.3.12)

for some finite constant δ
(
Σi

p,n

)
< ∞, i = 1, 2, whose values do dot depend on the

parameters (m, η) ∈ (Ip × P(Ep) and f ∈ Osc1(En).
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Proof:

To prove this proposition, we use a backward induction on the parameter 1 ≤ p ≤ n.

For p = (n − 1), we have Γi
n−1,n = Γi

n, with i = 1, 2, so that the desired result is

satisfied for p = (n− 1). We further assume that the estimates hold at a given rank

p < n. To prove the estimates at rank (p− 1), we recall that

Γp−1,n(m, η) = Γp,n (Γp(m, η)) ⇒ ∀i = 1, 2 Γi
p−1,n(m, η) = Γi

p,n (Γp(m, η))

Under the induction hypothesis∣∣Γ1
p−1,n(m, η)− Γ1

p−1,n(m
′, η′)

∣∣ =
∣∣Γ1

p,n (Γp(m, η))− Γ1
p,n (Γp(m

′, η′))
∣∣

≤ cp(n) |Γ1
p(m, η)− Γ1

p(m
′, η′)|

+

∫ ∣∣[Γ2
p(m, η)− Γ2

p(m
′, η′)

]
(ϕ)

∣∣ Σ1
p,n,Γp(m′,η′)(dϕ)

On the other hand

|Γ1
p(m, η)− Γ1

p(m
′, η′)| ≤ c(p) |m−m′|+

∫
|[η − η′](ϕ)| Σ1

p,(m′,η′)(dϕ)

and∣∣[Γ2
p(m, η)− Γ2

p(m
′, η′)

]
(ϕ)

∣∣ ≤ c(p) |m−m′|+
∫

|[η − η′](ψ)| Σ2
p,(m′,η′)(ϕ, dψ)

The end of the proof is now clear. The analysis of Γ2
p−1,n follows the same line of

arguments and is omitted. This ends the proof of the proposition.

8.3.4 Proof of theorem 8.2.2

This section is mainly concerned with the proof of the couple of estimates (8.2.16)

stated in theorem 8.2.2.

We use the decomposition(
γNn (1), ηNn

)
− (γn(1), ηn) =

[
Γ0,n

(
γN0 (1), ηN0

)
− Γ0,n (γ0(1), η0)

]
+

n∑
p=1

[
Γp,n

(
γNp (1), ηNp

)
− Γp−1,n

(
γNp−1(1), η

N
p−1

)]
(8.3.13)

and the fact that

Γp−1,p

(
γNp−1(1), η

N
p−1

)
=

(
γNp (1),Γ2

p−1,p

(
γNp−1(1), η

N
p−1

))
to show that

γNn (1)− γn(1) =
[
Γ1
0,n

(
γN0 (1), ηN0

)
− Γ1

0,n (γ0(1), η0)
]

+
n∑

p=1

[
Γ1
p,n

(
γNp (1), ηNp

)
− Γ1

p,n

(
γNp (1),Γ2

p−1,p

(
γNp−1(1), η

N
p−1

))]
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Recalling that γN0 (1) = γ0(1), using proposition 8.3.1, we find that

√
N
∣∣γNn (1)− γn(1)

∣∣ ≤ n∑
p=0

cp(n)

∫ ∣∣[WN
p (ϕ)

∣∣ Σ(N,1)
p,n (dϕ)

with the predictable measure Σ
(N,1)
p,n = Σ1

p,n,(m,η) associated with the parameters

(m, η) = (γNp (1),Γ2
p−1,p

(
γNp−1(1), η

N
p−1

)
), with 0 < p ≤ n; and for p = 0, we set

Σ
(N,1)
0,n = Σ0,n,(γ0(1),η0). Combing the generalized Minkowski’s inequality with (8.2.6)

we have

E

(∣∣∣∣∫ ∣∣WN
p (ϕ)

∣∣ Σ(N,1)
p,n (dϕ)

∣∣∣∣r ∣∣∣F (N)
p−1

) 1
r

≤ ar δ
(
Σ1

p,n

)
for some constants ar whose values only depend on the time parameter. This clearly

implies that

E
(∣∣γNn (1)− γn(1)

∣∣r) 1
r ≤ ar

n∑
p=0

δ
(
Σ1

p,n

)
The normalized occupation measures can be analyzed in the same way using the

decomposition given below:

ηNn − ηn =
[
Γ2
0,n

(
γN0 (1), ηN0

)
− Γ2

0,n (γ0(1), η0)
]

+
n∑

p=1

[
Γ2
p,n

(
γNp (1), ηNp

)
− Γ2

p,n

(
γNp (1), ηNp−1Kp,(γN

p−1(1),η
N
p−1)

)]
This ends the proof of the theorem 8.2.2.

8.4 Functional contraction inequalities

8.4.1 Stability properties

This section is concerned with the long time behavior of nonlinear measure-valued

processes of the form (8.2.2). The complexity of these models depend in part on the

interaction function between the flow of masses γn(1) and the flow of probability

measures ηn = γn/γn(1). One natural way to start the analysis of these models is

to study the stability properties of the measure-valued semigroup associated with

a fixed flow of masses, and vice versa. These two mathematical objects are defined

below.

Definition 8.4.1. We associate with a flow of masses m = (mn)n≥0 ∈
∏

n≥0 In and

probability measures ν := (νn)n≥0 ∈
∏

n≥0P(En) the pair of semigroups

Φ1
p,n,ν := Φ1

n,νn−1
◦ . . . ◦ Φ1

1,ν0
and Φ2

p,n,m := Φ2
n,mn−1

◦ . . . ◦ Φ2
1,m0

(8.4.1)
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with 0 ≤ p ≤ n, and the one step transformations

Φ1
n,νn−1

: u ∈ In−1 �→ Φ1
n,νn−1

(u) := Γ1
n (u, νn−1) ∈ In

Φ2
n,mn−1

: η ∈ P(En−1) �→ Φ2
n,mn−1

(η) := Γ2
n (mn−1, η) ∈ P(En)

By construction, using a simple induction on the time parameter n, we find that

(m0, ν0) = (γ0(1), η0) and ∀n ≥ 1 mn = Φ1
n,νn−1

(mn−1) and νn = Φ2
n,mn−1

(νn−1)

�

∀n ≥ 0 (mn, νn) = (γn(1), ηn)

In the cases that are of particular interest, the semigroups Φ1
p,n,ν and Φ2

p,n,m will have

a Feynman-Kac representation. These models are rather well understood. A brief

review on their contraction properties is provided in section 8.4.2. Further details

can be found in the monograph [28]. The first basic regularity property of these

models which are needed is the following weak Lipschitz type property :

(Lip(Φ)) For any p ≤ n, u, u′ ∈ Ip, η, η
′ ∈ P(Ep) and f ∈ Osc1(En) the following

Lipschitz inequalities∣∣Φ1
p,n,ν(u)− Φ1

p,n,ν(u
′)
∣∣ ≤ a1p,n |u− u′| (8.4.2)∣∣[Φ2

p,n,m(η)− Φ2
p,n,m(η

′)
]
(f)

∣∣ ≤ a2p,n

∫
|[η − η′](ϕ)| Ω2

p,n,η′(f, dϕ) (8.4.3)

for some finite constants aip,n < ∞, with i = 1, 2, and some collection of Markov

transitions Ω2
p,n,η′ from Osc1(En) into Osc1(Ep), with p ≤ n, whose values only de-

pend on the parameters p, n, resp. p, n and η′.

The semigroups Φ1
p,n,ν and Φ2

p,n,m may or may not be asymptotically stable de-

pending on whether aip,n tends to 0, as (n − p) → ∞. In section 8.4.3 we provide

a set of easily checked regularity conditions under which the semigroups associated

with the Bernoulli models discussed in 8.3.1 are asymptotically stable.

The second step in the study of the stability properties of the semigroups asso-

ciated with the flow (8.2.2) is the following continuity property:

(Cont(Φ)) For any n ≥ 1, u, u′ ∈ In−1, η, η
′ ∈ P(En−1) and any f ∈ Osc1(En)∣∣Φ1

n,η(u)− Φ1
n,η′(u)

∣∣ ≤ τ 1n

∫
|[η − η′](ϕ)| Ω1

n,η′(dϕ) (8.4.4)∣∣[Φ2
n,u(η)− Φ2

n,u′(η)
]
(f)

∣∣ ≤ τ 2n |u− u′| (8.4.5)

for some finite constants τ in < ∞, with i = 1, 2, and some collection probability

measures Ω1
n,ν′ on Osc1(En−1), whose values only depend on the parameters n, resp.

n and ν ′.
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This elementary continuity condition allows us to enter the contraction properties

of the semigroups Φ1
p,n,ν and Φ2

p,n,m in the stability analysis of the flow of measures

(8.2.2). The resulting functional contraction inequalities will be described in terms

of the following collection of parameters.

Definition 8.4.2. When the couple of conditions (Lip(Φ)) and (Cont(Φ)) stated

above are satisfied, for any i = 1, 2 and p ≤ n we set

aip,n = τ ip+1 a
i
p+1,n bp,n =

∑
p<q<n

a1p,q a
2
q,n and b′p,n =

∑
p≤q<n

a1p,q a
2
q,n (8.4.6)

The main result of this section is the following proposition.

Proposition 8.4.3. If conditions (Lip(Φ)) and (Cont(Φ)) are satisfied, then for any

p ≤ n, u, u′ ∈ Ip, η, η
′ ∈ P(Ep) and f ∈ Osc1(En) we have the following Lipschitz

inequalities∣∣Γ1
p,n(u

′, η′)− Γ1
p,n(u, η)

∣∣ ≤ c1,1p,n |u− u′|+ c1,2p,n

∫
|[η − η′](ϕ)| Σ1

p,n,u′,η′(dϕ)∣∣Γ2
p,n(u

′, η′)(f)− Γ2
p,n(u, η)(f)

]
≤ c2,1p,n |u− u′|+ c2,2p,n

∫
|[η − η′](ϕ)| Σ2

p,n,u′η′(f, dϕ)

for some probability measures Σ1
p,n,u′,η′(dϕ) and Markov transitions Σ2

p,n,m′η′, with

the collection of parameters

c1,1p,n = a1p,n +
∑

p≤q<n

c2,1p,q a
1
q,n and c1,2p,n =

∑
p≤q<n

c2,2p,q a
1
q,n

c2,1p,n = b′p,n +

n−p∑
l=1

∑
p≤r1<...rl<n

b′p,r1

∏
1≤k≤l

brk ,rk+1

c2,2p,n = a2p,n +

n−p∑
l=1

∑
p≤r1<...rl<n

a2p,r1

∏
1≤k≤l

brk,rk+1
, with the convention rl+1 = n.

In particular, the collection of parameters δ
(
Σi

p,n

)
i=1,2

, p ≤ n introduced in (8.2.16)

and (8.3.12) are such that

δ
(
Σ1

p,n

)
≤ c1,2p,n and δ

(
Σ2

p,n

)
≤ c2,2p,n

The proof of this proposition is rather technical and it is postponed to section 8.6

in the appendix. Now we conclude this section with a direct application of the above

estimates. The proof of the theorem 8.2.1 stated in the introduction and the uniform

estimates discussed in theorem 8.2.2 are a direct consequence of the following lemma.

Lemma 8.4.4. Suppose that τ i = supn≥1 τ
i
n < ∞, and aip,n ≤ ci e

−λi(n−p), for any

p ≤ n, and some finite parameters ci < ∞ and λi > 0, with i = 1, 2, satisfying the

following condition

λ1 �= λ2 and c1c2 τ
1τ 2 ≤

(
1− e−(λ1∧λ2)

) (
e−(λ1∧λ2) − e−(λ1∨λ2)

)

208



8.4. FUNCTIONAL CONTRACTION INEQUALITIES

Then, for any i, j ∈ {1, 2} we have

ci,jp,n ≤ ci,j e−λ(n−p) with λ = (λ1 ∧ λ2)− log

(
1 + cτ 1τ 2

e(λ1∧λ2)

e−(λ1∧λ2) − e−(λ1∨λ2)

)
> 0

and the parameters ci,j defined below

c2,2 = c2 c2,1 = c1c2τ
2/
(
e−(λ1∧λ2) − e−(λ1∨λ2)

)
c1,1 = c1

(
1 + c2,1τ 1/(e−λ − e−λ1)

)
c1,2 = c1c2τ

1/(e−λ − e−λ1)

In particular, for any N-approximation models (γNn (1), ηNn ) of the flow (γn(1), ηn)

satisfying condition (8.2.6), the Lr-mean error estimates presented in (8.2.16) are

uniform w.r.t. the time parameter

sup
n≥0

E
(∣∣V γ,N

n (1)
∣∣r) 1

r ≤ ar c
1,2/(1−e−λ) and sup

n≥0
E
(∣∣V η,N

n (f)
∣∣r) 1

r ≤ ar c
2,2/(1−e−λ)

with some constants ar <∞ whose values only depend on r.

Proof. Under the premise of the lemma

bp,n ≤ cτ
∑

p<q<n

e−λ1(q−(p+1)) e−λ2(n−(q+1)) and b′p,n ≤ cτ 2
∑

p≤q<n

e−λ1(q−p) e−λ2(n−(q+1))

with c = c1c2 and τ = τ 1τ 2. We further assume that λ1 > λ2 and we set ∆ =

|λ1 − λ2|.

bp,n ≤ cτe−λ2((n−1)−(p+1))
∑

p<q<n

e−∆(q−(p+1)) ≤ cτe−λ2((n−1)−(p+1))/(1− e−∆)

In the same way, if λ2 > λ1 we have

bp,n ≤ cτe−λ1((n−1)−(p+1))
∑

p<q<n

e−∆(n−(q+1)) ≤ cτe−λ1((n−1)−(p+1))/(1− e−∆)

This implies that

bp,n ≤ cτe−(λ1∧λ2)((n−1)−(p+1))/(1− e−∆)

In much the same way, it can be shown that

b′p,n =≤ cτ 2e−(λ1∧λ2)((n−1)−p)/(1− e−∆) (8.4.7)

We are now in a position to estimate the parameters ci,jp,n. Firstly, we observe that

c2,2p,n ≤ c2 e
−λ2(n−p) + c2

n−p∑
l=1

(
cτ 1τ 2e2(λ1∧λ2)

1− e−∆

)l ∑
p≤r1<...rl<n

e−λ2(r1−p)e−(λ1∧λ2)(n−r1)
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When λ1 > λ2, we find that

c2,2p,n ≤ c2 e
−λ2(n−p)

n−p∑
l=0

(
cτe2λ2

1− e−∆

)l(
n− p

l

)
and therefore

c2,2p,n ≤ c2 e
−λ2(n−p)

(
1 + cτ

e2λ2

1− e−∆

)n−p

⇒ c2,2p,n = c2 e
−λ(n−p)

with

λ = λ2 − log

(
1 + cτ

eλ2

e−λ2 − e−λ1

)
> 0

as long as

cτ ≤
(
1− e−λ2

) (
e−λ2 − e−λ1

)
When λ2 > λ1 we have λ2 = λ1 +∆, we find that

c2,2p,n ≤ c2 e
−λ2(n−p) + c2e

−λ1(n−p)

n−p∑
l=1

(
cτe2λ1

1− e−∆

)l ∑
p≤r1<...rl<n

e−∆(r1−p)

from which it follows that

c2,2p,n ≤ c2 e
−λ1(n−p)

(
1 + cτ

e2λ1

1− e−∆

)n−p

Using a similar line of argument as above, we have

c2,2p,n ≤ c2 e
−λ(n−p)

with

λ = λ1 − log

(
1 + cτ

eλ1

e−λ1 − e−λ2

)
> 0

as long as

cτ ≤
(
1− e−λ1

) (
e−λ1 − e−λ2

)
We conclude that

c2,2p,n ≤ c2 e
−λ(n−p)

with

λ = (λ1 ∧ λ2)− log

(
1 + cτ

e(λ1∧λ2)

e−(λ1∧λ2) − e−(λ1∨λ2)

)
> 0

as long as

cτ ≤
(
1− e−(λ1∧λ2)

) (
e−(λ1∧λ2) − e−(λ1∨λ2)

)
Using (8.4.7) we also show that

c2,1p,n ≤ c2,1 e−λ(n−p) with c2,1 = cτ 2
1

e−(λ1∧λ2) − e−(λ1∨λ2)
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Using these estimates

c1,1p,n = c1 e
−λ1(n−p) +

∑
p≤q<n

c2,1p,q c1τ
1 e−λ1(n−(q+1))

and

c1,1p,n = c1 e
−λ1(n−p) + c2,1c1τ

1
∑

p≤q<n

e−λ(q−p) e−λ1(n−(q+1))

Since λ1 > λ we find that

c1,1p,n ≤ c1 e
−λ1(n−p) + c2,1c1τ

1 e−λ((n−1)−p)/(1− e−∆′
) with ∆′ = λ1 − λ > 0

This yields

c1,1p,n ≤ c1,1 e−λ(n−p) with c1,1 := c1
(
1 + c2,1τ 1/(e−λ − e−λ1)

)
Finally, we observe that

c1,2p,n = cτ 1
∑

p≤q<n

e−λ(q−p) e−λ1(n−(q+1)) ≤ cτ 1 e−λ((n−1)−p)/(1− e−∆′
)

which implies that

c1,2p,n ≤ c1,2 e−λ(n−p) with c1,2 := cτ 1/(e−λ − e−λ1)

This ends the proof of the lemma.

8.4.2 Feynman-Kac models

We let Qp,n, with 0 ≤ p ≤ n, be the Feynman-Kac semi-group associated with a

sequence of bounded and positive integral operator Qn from some measurable spaces

(En−1, En−1) into (En, En). For any n ≥ 1, we denote by Gn−1 and Mn the potential

function on En−1 and the Markov transition from En−1 into En defined below

Gn−1(x) = Qn(1)(x) and Mn(f)(x) =
Qn(f)(x)

Qn(1)(x)

We also denote by Φp,n, 0 ≤ p ≤ n, the nonlinear semigroup from P(Ep) into P(En)

defined below

∀η ∈ P(Ep), ∀f ∈ B(En) Φp,n(η)(f) = ηQp,n(f)/ηQp,n(1) (8.4.8)

As usual we use the convention Φn,n = Id, for p = n. It is important to observe

that this semigroup is alternatively defined by the formulae

Φp,n(η)(f) =
η(Gp,n Pp,n(f))

η(Gp,n)
with Gp,n = Qp,n(1) and Pp,n(fn) = Qp,n(fn)/Qp,n(1)
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The next two parameters

rp,n = sup
x,x′∈Ep

Gp,n(x)

Gp,n(x′)
and β(Pp,n) = sup

xp,yp∈Ep

|Pp,n(xp, .)− Pp,n(yp, .)|tv (8.4.9)

measure respectively the relative oscillations of the potential functions Gp,n and

the contraction properties of the Markov transition Pp,n. Various estimates in the

forthcoming sections will be expressed in terms of these parameters. For instance

and for further use in several places in this article, we have the following Lipschitz

regularity property.

Proposition 8.4.5 ([33]). For any fn ∈ Osc1(En) we have

|[Φp,n(ηp)− Φp,n(µp)] (fn)| ≤ 2 rp,n β(Pp,n)
∣∣[ηp − µp]P

µp

p,n(fn)
∣∣ (8.4.10)

for some function P
µp

p,n(fn) ∈ Osc1(Ep) that doesn’t depends on the measure ηp.

Our next objective is to estimate the the contraction coefficients rp,n and β(Pp,n)

in terms of the mixing type properties of the semigroup

Mp,n(xp, dxn) :=Mp+1Mp+2 . . .Mn(xp, dxn)

associated with the Markov operators Mn. We introduce the following regularity

condition.

(MG)m There exists an integer m ≥ 1 and a sequence (εp(M))p≥0 ∈ (0, 1)N and

some finite constant rp such that for any p ≥ 0 and any (x, x′) ∈ E2
p we have

Mp,p+m(xp, .) ≥ εp(m) Mp,p+m(x
′
p, .) and Gp(x) ≤ rp Gn(x

′) (8.4.11)

It is well known that the above condition is satisfied for any aperiodic and

irreducible Markov chains on finite spaces. Loosely speaking, for non compact spaces

this condition is related to the tails of the transition distributions on the boundaries

of the state space. For instance, let us suppose that En = R andMn is the bi-Laplace

transition given by

Mn(x, dy) =
c(n)

2
e−c(n) |y−An(x)| dy

for some c(n) > 0 and some drift function An with bounded oscillations osc(An) <

∞. In this case, it is readily checked that condition (M)m holds true for m = 1 with

the parameter εn−1(1) = exp (−c(n) osc(An)).

Under the mixing type condition (M)m we have for any n ≥ m ≥ 1, and p ≥ 1

rp,p+n ≤ εp(m)−1
∏

0≤k<m

rp+k (8.4.12)
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and

β(Pp,p+n) ≤

n/m�−1∏

k=0

(
1− ε

(m)
p+km

)
with ε(m)

p := ε2p(m)
∏

0<k<m

r−1
p+k (8.4.13)

Notice that these estimates are also valid for any n ≥ 0. Several contraction in-

equalities can be deduced from these estimates (see for instance chapter 4 of the

book [28]). To give a flavor of these results, we further assume that (M)m is satisfied

with m = 1, and we have ε = infn εn(1) > 0. In this case, we can show that

rp,p+n ≤ rp/ε and β(Pp,p+n) ≤
(
1− ε2

)n
We end this short section with a direct consequence of proposition 8.4.5.

Corollary 8.4.6. Consider the Bernoulli semigroup presented in section 8.3.1.

For constant mappings sn = µn+1(1), the first component mapping is constant

Φ1
n+1,νn(u) = sn and the second component mapping Φ2

n+1,mn
(η) = Ψ

g
(s)
n
(η)M

(s)
n+1

induces a Feynman-Kac semigroup with the likelihood function g
(s)
n and the Markov

transitions M
(s)
n+1 defined in (8.3.7). In this situation, the condition (8.4.2) is clearly

met with a1p,n = 0, for any p < n,. We further assume that the semigroup of as-

sociated with the Markov transitions Mn satisfies the mixing property stated in the

l.h.s. of (8.4.11) for some integer m ≥ 1 and some parameter εp(m) ∈]0, 1]. In

this situation, the condition (8.4.3) is also met with the collection of parameters a2p,n
given below

a2p,n ≤ 2 ρp(m)


(n−p)/m�−1∏
k=0

(
1− ε

(m,s)
p+km

)
with

ρp(m) := ε−1
p (m)

∏
p≤k<p+m

r2k(sk)rk(1) and ε(s,m)
p = ε2p(m)rp(sp)/

∏
p≤k<p+m

rk(sk)
3rk(1)

2

and the collection of parameters rn(sn) defined below

rn(sn) :=
sng

+
n + (1− sn)

sng−n + (1− sn)
(≤ rn(1))

8.4.3 Bernoulli models

This section is concerned with the contraction properties of the semigroups Φ1
p,n,ν

and Φ2
p,n,m associated with the Bernoulli filter discussed in section 8.3.1. Before pro-

ceeding, we provide a brief discussion on the oscillations of the likelihood functions

gn given below

gn(xn) = (1− dn(xn)) + dn(xn)Yn (ln(xn, ·)/hn)
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in terms of some [0, 1]-valued detection probability functions dn, some local likeli-

hood functions ln, and some positive clutter intensity function hn. The oscillations of

these likelihood functions strongly depend on the nature of the functions (dn, hn, ln).

Assuming that h−n > 0 we have

(1− d◦,−n ) + d◦,−n

l−n
h+n

Yn (1) ≤ g−n ≤ g+n ≤ (1− d◦,+n ) + d◦,+n

l+n
h−n

Yn (1) (8.4.14)

with the parameters

d◦,+n = d+n 1l+nYn(1)≥h−
n
+ d−n 1l+nYn(1)<h−

n

d◦,−n = d−n 1l−n Yn(1)≥h+
n
+ d+n 1l−nYn(1)<h+

n

The semigroup contraction inequalities developed in this section will be expressed

in terms of the following parameters

δn(sg) :=
g+n s

+
n

g−n s
−
n

, δn(g) :=
g+n
g−n

and δ′n(g) :=
1

g−n
∧ g+n

For time homogeneous models (dn, hn, ln) = (d, h, l), with constant detection prob-

ability dn(x) = d and uniformly bounded number of observations supn Yn(1) ≤
Y+(1) <∞ we have the following estimates

(1− d) ≤ g−n ≤ g+n ≤ (1− d) + d
l+

h−
Y+ (1)

In this situation, we have

δn(g) ≤ 1 +
d

1− d

l+

h−
Y+ (1)

For small clutter intensity function with h− > 0 and l− > 0 we also have the

observation free estimates g+n
g−n

≤ l+h+

l−h− , from which we find that the upper bound

δ(g) := sup
n≥0

δn(g) ≤ inf

{
1 +

d

1− d

l+

h−
Y (1) ,

l+h+

l−h−

}
(8.4.15)

and for d < 1

δ′(g) := sup
n≥0

δ′n(g) ≤ sup

{
(1− d) + d

l+

h−
Y (1) ,

1

1− d

}
(8.4.16)

To be more precise, if we set infn Yn(1) = Y−(1) then

1 ≤ l−

h+
Y(1)− ⇒ δ′(g) ≤ (1− d) + d

l+

h−
Y+ (1)

214



8.4. FUNCTIONAL CONTRACTION INEQUALITIES

In addition, if we have d(1−d)Y(1) ≤ h−/l+ and d < 1 then we find the observation

free estimates

dY(1) l+/h− ≤ 1/(1− d) ⇒ δ′(g) ≤ (1− d) +
1

1− d

Conversely, we have the observation free estimates

l+

h−
Y(1)+ ≤ 1 ⇒ δ′(g) ≤ 1

(1− d) + d l−
h+ Y− (1)

≤ 1

1− d

We are now in position to state the main result of this section.

Theorem 8.4.7. If µn+1(1) ∈]0, 1[, 0 < s−n ≤ s+n < 1, and the semigroup Mp,n

satisfies the condition stated in the l.h.s. of (8.4.11) for some integer m ≥ 1 and

some positive constant εp(m), then the condition (Lip(Φ)) is met with

a1p,n ≤ 2 ε−1
p δ′p(g)

∏
p≤k<p+n

(
1− ε2k

)
and a2p,n ≤ 2 ρp(m)


n/m�−1∏
k=0

(
1− ε

(m)
p+km

)
with some parameters

εn ≥ inf

{
s−n

µn+1(1)
,
µn+1(1)

s+n
,

1− s+n
1− µn+1(1)

,
1− µn+1(1)

1− s−n

}
and

ρp(m) ≤ εp(m)−1
∏

0≤k<m

δp+k(sg)
3 and ε(m)

p ≥ εp(m)2 δp(sg)
−4

∏
0<k<m

δp+k(sg)
−5

In addition condition (Cont(Φ)) is met with

τ 1n+1 ≤ δn(g)
[
(s+n − s−n ) + |sn − µn+1(1)|

]
and τ 2n+1 ≤ δ′n(g) sup

{
µn+1

s−n
,

s+n
µn+1(1)

}
The proof of the theorem is postponed to section 8.6. To give a flavour of these

estimates we examine time homogeneous models

(dn, hn, ln, sn, µn) = (d, h, l, s, µ)

with constant detection and survival probabilities dn(x) = d, sn(x) = s, and uni-

formly bounded number of observations supn Yn(1) ≤ Y(1) < ∞. In this situation,

we have (εp(m), ε
(s)
p (m)) = (ε(m), ε(s)(m)) and using the estimates (8.4.15) we prove

the following bounds

τ 1n+1 ≤ δ(g) |s− µ(1)| and τ 2n+1 ≤ δ′(g)
µ(1) ∨ s
µ(1) ∧ s
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and

a10,n ≤ 2ε−1δ′(g)
(
1− ε2

)n
and a20,n ≤ 2ε(m)−1δ(g)3m

(
1− ε(m)2δ(g)−5m+1

)
n/m�

with some parameter ε such that

inf

{
s

µ(1)
,
µ(1)

s
,

1− s

1− µ(1)
,
1− µ(1)

1− s

}
≤ ε ≤ 1

It is also readily verified that the assumptions of lemma 8.4.4 are satisfied with the

parameters

τ 1 ≤ δ(g) |s− µ(1)| τ 2 ≤ δ′(g) ((µ(1) ∨ s)/(µ(1) ∧ s))
c1 = 2ε−1δ′(g) c2 = 2ε(m)−1 (1− ε(m)2δ(g)−5m+1)

−1
δ(g)3m

and the Lyapunov constants

λ1 = − log (1− ε2) and λ2 = − 1

m
log

(
1− ε(m)2δ(g)−5m+1

)
We notice that ε tends to 1 and τ 1 tends to 0, as |s− µ(1)| tends to 0. Thus, there

exists some ς ≥ 0 such that

λ1 > λ2 and c1c2τ
1τ 2 <

(
1− e−λ2

) (
e−λ2 − e−λ1

)
as long as |s−µ(1)| ≤ ς. We summarize this discussion with the following corollary.

Corollary 8.4.8. Consider the time homogeneous model discussed above. Under the

assumptions of theorem 8.4.7, for any N-approximation models (γNn (1), ηNn ) of the

Bernoulli model (γn(1), ηn) satisfying condition (8.2.6), the Lr-mean error estimates

presented in (8.2.16) are uniform w.r.t. the time parameter

sup
n≥0

E
(∣∣V γ,N

n (1)
∣∣r) 1

r ≤ ar c
1,2/(1−e−λ) and sup

n≥0
E
(∣∣V η,N

n (f)
∣∣r) 1

r ≤ ar c
2,2/(1−e−λ)

with the parameters (c1,2, c2,2, λ) defined in lemma 8.4.4, and some finite constants

ar <∞ whose values only depend on r.

Remark 8.4.9. When µn+1(1) = 0 we have seen in (8.3.8) that

Φ1
n+1,νn(u) = Ψgn(νn)(sn)× θνn(gn)(u) and Φ2

n+1,mn
(η) = Ψgnsn(η)Mn+1

with the collection of mappings θa, with a ∈ [0,∞[, defined in (8.3.9). Using the

fact that

∣∣Φ1
n+1,νn(u)− Φ1

n+1,νn(u
′)
∣∣ =

Ψgn(νn)(sn) νn(gn)

[ν(gn)u+ (1− u)] [ν(gn)u′ + (1− u′)]
|u− u′|
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one proves that (8.4.2) is met with the rather crude upper bound

a1p,n ≤
∏

p≤k<n

ak,k+1 and a1k,k+1 ≤ (s+k g
+
k )/(1 ∧ g−k )2

We also notice that the second component mapping Φ2
n+1,mn

doesn’t depends on the

parameter mn, and it induces a Feynman-Kac semigroup of the same form as the

one studied in section 8.4.2. Assuming that the mixing condition stated in the l.h.s.

of (8.4.11) is satisfied some integer m ≥ 1 and some parameter εp(m) > 0, one can

prove that (8.4.3) is met with the collection of parameters a2p,n given below

a2p,n ≤ 2 ρp(m)


(n−p)/m�−1∏
k=0

(
1− ε

(m)
p+km

)
with ρp(m) = ε−1

p (m)
∏

p≤q<p+m

δq(sg)

and the collection of parameters ε
(m)
p = ε

(m)
p = ε2p(m)/

∏
p<q<p+m δq(sg).

8.4.4 PHD Models

This section is concerned with the contraction properties of the semigroups Φ1
p,n,ν

and Φ2
p,n,m associated with the PHD filter discussed in section 8.2.1 and in sec-

tion 8.3.2.

The analysis of these nonlinear models is much more involved than the one of the

Bernoulli models. We simplify the analysis and we further assume that the clutter

intensity function, the detectability rate as well as the survival and the spawning

rates introduced in section 8.3.2 are time homogeneous and constants functions, and

we set

(bn(x), hn(x), sn(x), rn(x)) = (b, h, s, r)

To simplify the presentation, we also assume that the state spaces, the Markov

transitions of the targets, the likelihood functions and the spontaneous birth mea-

sures are time homogeneous, that is we have that En = E, EY
n = EY , Mn = M ,

gn(x, y) = g(x, y) and µn+1 = µ. Without further mention, we suppose that

r(1− d) < 1, µ(1) > 0, r > 0, and for any y ∈ EY we have

0 ≤ g−(y) := inf
x∈E

g(x, y) ≤ g+(y) := sup
x∈E

g(x, y) <∞

Given a mapping θ from EY into R, we set Y−(θ) := infn Yn(θ) and Y+(θ) :=

supn Yn(θ).

We recall from (8.2.10) that the PHD filter is defined by the measure-valued

equation

γn+1 = γnQn+1,γn

with the integral operator

Qn+1,γn(xn, dxn+1) = gn,γn(xn)Mn+1(xn, dxn+1) + γn(1)
−1 µn+1(dxn+1)
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with the function gn,γn defined below

gn,γn(x) = r(1− d) + rd

∫
Yn(dy)

g(x, y)

h+ dγn(g(., y))

We also notice that the total mass process and the normalized distribution flow are

given by the following equations

γn+1(1) = Φ1
n+1,ηn(γn(1))

= γn(1) r(1− d) +

∫
Yn(dy) wγn(1)(ηn, y) + µ(1)

ηn+1(1) = Φ2
n+1,γn(1)(ηn)

∝ γn(1) r(1− d) ηnM +

∫
Yn(dy) wγn(1)(ηn, y) Ψg(.,y)(ηn)M + µ(1) µ

with the probability measure µ and weight functions w defined below

µ(dx) = µ(dx)/µ(1) and wu(η, y) := r

(
1− h

h + duη(g(., y))
)

For null clutter parameter h = 0, we already observe that the total mass trans-

formation Φ1
n+1,ηn doesn’t depend on the flow of probability measures ηn and it is

simply given by

Φ1
n+1,ηn(γn(1)) = γn(1) r(1− d) + r Yn(1) + µ(1)

In this particular situation, we have

γNn (1) = γn(1) = (r(1− d))nγ0(1) +
∑

0≤k<n

(r(1− d))n−1−k(r Yk(1) + µ(1))

Now, we easily show that the pair of conditions (8.4.2) and (8.4.4) are satisfied with

the parameters a1p,n = (r(1 − d))n−p and τ 1n = 0. In more general situations, the

total mass process is not explicitly known. Some useful estimates are provided by

the following lemma.

Lemma 8.4.10. We assume that the number of observations is uniformly bounded;

that is, we have that Y+(1) < ∞. In this situation, the total mass process γn(1)

and any approximation model γNn (1) given by the recursion (8.2.4) (with the initial

condition γN0 (1) = γ0(1)) take values in a sequence of compact sets In ⊂ [m−, m+]

with

m− :=
µ(1)

1− r(1− d)

(
1 + rd Y−

(
g−

h+ dµ(1)g−

))
and m+ := γ0(1)+

rY+(1) + µ(1)

1− r(1− d)
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Proof. Using the fact that γn(1) ≥ µ(1) we prove that

r

(
1− h

h+ dµ(1) g−(y)

)
≤ wγn(1)(ηn, y) ≤ r

from which we conclude that

γn(1) r(1− d) + r Yh,n(1)+µ(1) ≤ Φ1
n+1,ηn(γn(1)) ≤ γn(1) r(1− d) + r Yn(1)+µ(1)

with the random measures

Yh,n(dy) := Yn(dy)
dµ(1) g−(y)

h+ dµ(1) g−(y)

For any sequence of probability measures ν := (νn)n≥0 ∈ P(E)N, and any starting

mass u ∈ [0,∞[ one conclude that

(r(1− d))n u+
rY−

h (1) + µ(1)

1− r(1− d)
≤ Φ1

0,n,ν(u) ≤ (r(1− d))n u+
rY+(1) + µ(1)

1− r(1− d)

This implies that γn(1), γ
N
n (1) ∈ In ⊂ [m−, m+] with

m− :=
rY−

h (1) + µ(1)

1− r(1− d)
=

µ(1)

1− r(1− d)

(
1 + rd Y−

(
g−

h+ dµ(1)g−

))
The end of the proof of the lemma is now completed.

We are now in position to state the main result of this section.

Theorem 8.4.11. We assume that the number of observations is uniformly bounded;

that is, we have that Y+(1) < ∞. In this situation, the condition (Lip(Φ)) is met

with the Lipschitz constants aip,n ≤
∏

p≤k<n a
i
k,k+1, with i = 1, 2, and the sequence of

parameters
(
ain,n+1

)
n≥0

, i = 1, 2, defined below

a1n,n+1 ≤ r(1− d) + rdh Yn

(
g+

[h + dm−g−]2

)
and

a2n,n+1 ≤ m+
β(M)

[
(1− d) + d Yn

(
g+

h+dm+g+
g+

g−

)]
+ hdYn

(
g+−g−

(h+dm−g−)2

)
(1− d) m− + dm−Yn

(
g−

h+dm−g−

)
+ µ(1)/r

In addition, condition (Cont(Φ)) is met with the sequence of parameters

τ 1n+1 ≤ rdhm+ Yn

(
g+ − g−

[h+ dm−g−]2

)
τ 2n+1 ≤

(1− d) + hd Yn

(
g+

(h+dm−g−)2

)
(1− d) m− + dm−Yn

(
g−

h+dm−g−

)
+ µ(1)/r
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The proof of theorem 8.4.11 is postponed to section 8.6.

Corollary 8.4.12. We assume that Y+ (g+/g−) and Y+ (g+/(g−)2) < ∞. In this

situation, there exists some parameters 0 < κ0 ≤ 1, κ1 < ∞, and κ2 > 0 such that

for any d ≥ κ0, µ(1) ≥ κ1, and h ≤ κ2, the semigroups Φ1
p,n,ν and Φ2

p,n,m satisfy the

pair of conditions (Lip(Φ)) and (Cont(Φ)) with some parameters (aip,n, τ
i
n)i=1,2,p≤n,

satisfying the assumptions of lemma 8.4.4. In particular, for any N-approximation

models (γNn (1), ηNn ) of the PHD equation (γn(1), ηn) satisfying condition (8.2.6), the

Lr-mean error estimates presented in (8.2.16) are uniform w.r.t. the time parameter

sup
n≥0

E
(∣∣V γ,N

n (1)
∣∣r) 1

r ≤ ar c
1,2/(1−e−λ) and sup

n≥0
E
(∣∣V η,N

n (f)
∣∣r) 1

r ≤ ar c
2,2/(1−e−λ)

with the parameters (c1,2, c2,2, λ) defined in lemma 8.4.4, and some finite constants

ar <∞ whose values only depend on r.

Proof. There is no loss of generality to assume that r(1− d) < 1/2 ≤ d and µ(1) ≥
1 ≥ h. Recalling that m− ≥ µ(1), one readily proves that

m+

µ(1)
=
γ0(1)

µ(1)
+

1

1− r(1− d)

(
1 +

r

µ(1)
Y+(1)

)
≤ 2 + γ0(1) + 2rY+(1) := ρ

If we set δ(g) := ρ∨Y+
(

g+

g−

)
∨Y+

(
g+

(g−)2

)
, then we find the rather crude estimates

a1n,n+1/r ≤ (1−d)+ 2h

µ(1)2
δ(g) and a2n,n+1/r ≤

[
β(M)(1− d) +

2h+ β(M)

µ(1)

]
δ(g)

as well as

τ 1n+1/r ≤
2h

µ(1)
δ(g)2 and τ 2n+1/r ≤

1

µ(1)

[
(1− d) +

2h

µ(1)2
δ(g)

]
from which we find that

τ 1τ 2 ≤ 2hr2

µ(1)2

[
(1− d) +

2h

µ(1)2
δ(g)

]
δ(g)2 (8.4.17)

Thus, there exists some 0 < κ0 ≤ 1 and some κ1 < ∞ so that for any d ≥ κ0 and

any µ(1) ≥ κ1 we have

a1n,n+1 ≤ r

[
(1− d) +

2

µ(1)2

]
δ(g) := e−λ1 < 1

a2n,n+1 ≤ r

[
(1− d) +

3

µ(1)

]
δ(g) := e−λ2 < 1 with 0 < λ2 < λ1

Finally, using (8.4.17) we find some κ2 > 0 such that for any h ≤ κ2, we have that

τ 1τ 2 ≤
(
1− e−λ2

) (
e−λ2 − e−λ1

)
. The end of the proof is now a direct consequence

of lemma 8.4.4. This ends the proof of the corollary.
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8.5 Stochastic particle approximations

8.5.1 Mean field interacting particle systems

Description of the models

The mean field type interacting particle system associated with the equation (8.2.2)

relies on the fact that the one step mappings Γ2
n+1 can be rewritten in the following

form

Γ2
n+1(γn(1), ηn) = ηnKn+1,γn with γn = γn(1)× ηn (8.5.1)

for some collection of Markov kernels Kn+1,γ indexed by the time parameter n and

the set of measures γ ∈ M+(En). We mention that the choice of the Markov

transitions Kn,γ is not unique. In the literature on mean field particle models, Kn,γ

are called a choice of McKean transitions. Some McKean interpretation models

of the Bernoulli and the PHD filter models (8.2.8 ) and (8.2.10) are discussed in

section 8.3.2 (see for instance (8.3.10)) and in section 8.3.1 (see for instance 8.3.2)

These models provide a natural interpretation of the distribution laws ηn as the

laws of a non linear Markov chain Xn whose elementary transitions Xn � Xn+1

depends on the distribution ηn = Law(Xn), as well as on the current mass process

γn(1). In contrast to traditional McKean model, the dependency on the mass process

induce a dependency of all the flow of measures ηp, for 0 ≤ p ≤ n. For a thorough

description of these discrete generation and non linear McKean type models, we

refer the reader to [28].

In further developments of the article, we always assume that the mappings(
m, xn,

(
xi
)
1≤i≤N

)
�→ Kn+1,m

∑N
j=1 δxj

(xn, An+1) and Gn+1,m
∑N

j=1 δxj
(xn)

are pointwise known, and of course measurable w.r.t. the corresponding product

sigma fields, for any n ≥ 0, N ≥ 1, An+1 ∈ En+1, and any xn ∈ En. In this situation,

the mean field particle interpretation of this nonlinear measure-valued model is an

EN
n -valued Markov chain ξ

(N)
n =

(
ξ
(N,i)
n

)
1≤i≤N

, with elementary transitions defined

as

γNn+1(1) = γNn (1) ηNn (Gn,γN
n
) (8.5.2)

P
(
ξ
(N)
n+1 ∈ dx

∣∣ F (N)
n

)
=

N∏
i=1

Kn+1,γN
n
(ξ(N,i)

n , dxi) (8.5.3)

with the pair of occupation measures
(
γNn , η

N
n

)
defined below

ηNn :=
1

N

N∑
j=1

δ
ξ
(N,j)
n

and γNn (dx) := γNn (1) ηNn (dx)
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In the above displayed formula, FN
n stands for the σ-field generated by the random

sequence (ξ
(N)
p )0≤p≤n, and dx = dx1 × . . . × dxN stands for an infinitesimal neigh-

borhood of a point x = (x1, . . . , xN) ∈ EN
n . The initial system ξ

(N)
0 consists of N

independent and identically distributed random variables with common law η0. As

usual, to simplify the presentation, when there is no possible confusion we suppress

the parameter N , so that we write ξn and ξin instead of ξ
(N)
n and ξ

(N,i)
n .

Convergence analysis

The rationale behind the mean field particle model described in (8.5.3) is that ηNn+1

is the empirical measure associated with N independent variables with distributions

Kn+1,γN
n
(ξin, dx), so as long as γNn is a good approximation of γn then ηNn+1 should be

a good approximation of ηn+1. Roughly speaking, this induction argument shows

that ηNn tends to ηn, as the population size N tends to infinity.

These stochastic particle algorithms can be thought of in various ways: From

the physical view point, they can be seen as microscopic particle interpretations of

physical nonlinear measure-valued equations. From the pure mathematical point of

view, they can also be interpreted as natural stochastic linearizations of nonlinear

evolution semigroups. From the probabilistic point of view, they can be interpreted

as a interacting recycling acceptance-rejection sampling techniques. In this case,

they can be seen as a sequential and interacting importance sampling technique.

By construction, the local fluctuation random fields (WN
n )n≥0 defined in (8.2.5)

can be rewritten as follows

ηNn = ηNn−1Kn,γN
n−1

+
1√
N

WN
n

Using Khintchine’s inequality, we can check that (8.2.6) is met for any r ≥ 1 and

any fn ∈ Osc1(En), with the collection of universal constants given below

a2r2r ≤ (2r)! 2−r/r! and a2r+1
2r+1 ≤ (2r + 1)! 2−r/r!

We end this section with a brief discussion on the PHD equation presented

in (8.2.10). This model combines in a single step the traditional updating and a

prediction filtering transition. This combination allows us to reduce the fluctuations

of the local sampling errors and their propagations w.r.t. the time parameter. Since

these updating-prediction models are often used in the literature of multiple target

tracking, we provide below a short summary. If we set

ĝcn,γ(., y) =
⎧⎨⎩ (1− dn) if y = c

dngn(., yn)
hn(y) + γ(dngn(., y)) if y �= c

then

γn+1 = γ̂nQn+1 + µn+1 with Qn+1(f) := rn Mn+1(f)
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with the updated measures defined below

γ̂n(f) := γn(g̃
c
n,γnf) with g̃cn,γn =

∫
Yc

n(dy) ĝ
c
n,γn(., y)

Notice that

γ̂n(1) = γn(g̃
c
n,γnf) and η̂n(dx) := γ̂n(dx)/γ̂n(1) = Ψg̃cγn,n

(ηn)(dx)

from which we find the recursive formulae:(
γn(1)

ηn

)
updating

−−−−−−−−−−−−−→
(
γ̂n(1)

η̂n

)
prediction

−−−−−−−−−−−−−→
(
γn+1(1)

ηn+1

)
with the prediction transition described below

γn+1(1) = γ̂n(rn) + µn+1(1) and ηn+1 = Ψrn (η̂n)M
′
n+1,γ̂n

In the above displayed formula, M ′
n+1,γ̂n

is the Markov transition defined by

M ′
n+1,γ̂n(x, .) = α′

n(γ̂n) Mn+1(x, .) + (1− α′
n(γ̂n)) µn+1

with the collection of [0, 1]-valued parameters α′
n(γ̂n) = γ̂n(rn)/(γ̂n(rn) + µn+1(1)).

It should be clear that the updating and the prediction transitions can be approxi-

mated using a genetic type selection and mutation transition. Each of these sampling

transitions introduces a separate local sampling fluctuation error. The stochastic

analysis of the corresponding mean field particle interpretations can be developed

using the same line of arguments as those used for the particle model discussed

above.

8.5.2 Interacting particle association systems

Description of the models

We let (An)n≥0 be a sequence of finite sets equipped with some finite positive mea-

sures (νn)n≥0. We further assume that the initial distribution γ0 and the integral

operators Qn+1,γn in (8.2.1) have the following form

γ0 =

∫
ν0(da) η

(a)
0 and Qn+1,γn =

∫
νn+1(da) Q

(a)
n+1,γn

In the above display η
(a)
0 stands for a collection of measures on E0, indexed by the

parameter a ∈ A0, and Q
(a)
n+1,γn is a collection of integral operators indexed by the

parameter a ∈ An+1. In this situation, we observe that

γ0(1) = ν0(1) and η0 =

∫
A0(da) η

(a)
0 with A0(da) := ν0(da)/ν0(1)
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We also assume that the following property is met

G(a)
n,γ := Q

(a)
n+1,γ(1) ∝ G(a)

n and Q
(a)
n+1,γ(f)/Q

(a)
n+1,γ(1) :=M

(a)
n+1(f) (8.5.4)

for some function G
(a)
n on En, and some Markov transitions M

(a)
n+1 from En into

En+1 whose values do not depend on the measures γ. For clarity of presentation,

sometimes we write Ψ
(a)
Gn

instead of Ψ
G

(a)
n
.

Definition 8.5.1. We consider the collection of probability measures η
(an)
n ∈ P(En),

indexed by sequences of parameters

an = (a0, . . . , an) ∈ A[0,n] := (A0 × . . .×An)

and defined by the following equations

η(an)n =
(
Φ(an)

n ◦ . . . ◦ Φ(a1)
1

)(
η
(a0)
0

)
(8.5.5)

with the mappings Φ
(a)
n : P(En−1) → P(En) indexed by a ∈ An and defined by the

updating-prediction transformation

Φ(a)
n (η) = Ψ

(a)
Gn−1

(η)M (a)
n

We illustrate these abstract conditions in the context of the multiple target

tracking equation presented in (8.2.10). In this situation, it is convenient to add

a pair of virtual observation states c, c′ to EY
n . Using this notation, the above

conditions are satisfied with the finite sets An+1 and their counting measures νn+1

defined below

An+1 =
{
Y i
n, 1 ≤ i ≤ NY

n } ∪ {c, c′
}

νn+1 = Yn + δc + δc′ ∈ M(An+1)

Using (8.2.10) and (8.2.12), we check that (8.5.4) is met with the couple of potential

functions and Markov transitions defined by

(G(yn)
n ,M

(yn)
n+1 ) =

⎧⎨⎩
(rndngn(., yn),Mn+1) for yn �∈ {c, c′}
(rn(1− dn),Mn+1) for yn = c(
1, µn+1

)
for yn = c′

In this case, we observe that

Q
(yn)
n+1,γn(xn, .) = G(yn)

n,γn(xn) M
(yn)
n+1 (xn, .)

with the potential function G
(yn)
n,γn defined below

G(yn)
n,γn/G

(yn)
n =

⎧⎨⎩
[hn(yn) + γn(dngn(., yn))]−1 for yn �∈ {c, c′}

1 for yn = c

µn+1(1)/γn(1) for yn = c′
(8.5.6)

Under our assumptions, using (8.2.2), we have the following result.

224



8.5. STOCHASTIC PARTICLE APPROXIMATIONS

Proposition 8.5.2. The solution the equation (8.2.2) has the following form

ηn =

∫
An(da) η

(a)
n

with a total mass process γn(1) and the association measures An ∈ P(A[0,n]) defined

by the following recursive equations

γn+1(1) = γn(1) ηn(Gn,γn) and An+1 = Ωn+1 (γn(1), An)

With the mapping

Ωn+1 : (m,A) ∈
(
]0,∞[×P(A[0,n])

)
�→ Ωn+1(m,A) ∈ P(A[0,n+1])

defined by the following formula

Ωn+1 (m,A) (d(a, b)) ∝ A(da) νn+1(db) η
(a)
n

(
G

(b)

n,m
∫
A(da) η

(a)
n

)
(8.5.7)

Proof:

The proof of the above assertion is simply based on the fact that

ηn+1 ∝
∫
νn+1(db) ηnQ

(b)
n+1,γn =

∫
An(da) νn+1(db) η

(a)
n Q

(b)
n+1,γn

=

∫
An(da) νn+1(db) η

(a)
n

(
G(b)

n,γn

)
η
(a,b)
n+1

This clearly implies that

Γ2
n

(
m,

∫
A(da) η

(a)
n−1)

)
=

∫
Ωn (m,A) (d(a, b)) η

(a,b)
n

This ends the proof of the proposition.

By construction, we notice that for any discrete measure A ∈ P(A[0,n−1]), and

any collection of measures η(a) ∈ P(En−1), with a ∈ A[0,n−1] we have the formula

Γ2
n

(
m,

∫
A(da) η(a))

)
=

∫
Ωn (m,A) (d(a, b)) Φ(b)

n

(
η(a)

)
Particle approximation models

To get some feasible solution, we further assume that η
(a)
n

(
G

(b)
n,γn

)
are explicitly

known for any sequence of parameters (a, b) ∈
(
A[0,n] ×An+1

)
. This rather strong

condition is satisfied for the multiple target tracking model discussed above as long

as the quantities

η(a0,y0,...,yn−1)
n (rndngn(., yn)) η(a0,y0,...,yn−1)

n (rn(1− dn)) η(a0,y0,...,yn−1)
n (dngn(., yn))
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are explicitly known. This condition is clearly met for linear gaussian target evo-

lution and observation sensors as long as the survival and detection probabilities

sn and dn are state independent, and spontaneous birth µn and spawned targets

branching rates bn are Gaussian mixtures. In this situation, the collection of mea-

sures η
(a0,y0,...,yn−1)
n are gaussian distributions and the equation (8.5.5) coincides with

the traditional updating-prediction transitions of the discrete generation Kalman-

Bucy filter.

We let AN
0 = 1

N

∑N
i=1 δai0 , be the empirical measure associated with N indepen-

dent and identically distributed random variables (ai0)1≤i≤N with common distribu-

tion A0. By construction, we have

ηN0 :=

∫
AN

0 (da) η
(a)
0 = η0 +

1√
N

WN
0

with some local sampling random fields satisfying (8.2.6). We further assume that

γ0(1) is known and we set γN0 = γ0(1) η
N
0 .

γN1 (1) = γN0 (1) ηN0 (G0,γN
0
) and ηN1 :=

∫
AN

1 (da) η
(a)
1

with the occupation measure AN
1 = 1

N

∑N
i=1 δai1 associated withN conditionally inde-

pendent and identically distributed random variables ai1 := (ai0,1, a
i
1,1) with common

law Ω1

(
γN0 (1), AN

0

)
. By construction, we also have

ηN1 :=

∫
Ω1

(
γN0 (1), AN

0

)
(da) η

(a)
1 +

1√
N

WN
1 = Γ2

1

(
γN0 (1), ηN0

)
+

1√
N

WN
1

with some local sampling random fields satisfying (8.2.6). Iterating this procedure,

we define by induction a sequence of N -particle approximation measures

γNn (1) = γNn−1(1) η
N
n−1(Gn−1,γN

n−1
) and ηNn :=

∫
AN

n (da) η
(a)
n

with the occupation measure AN
n = 1

N

∑N
i=1 δain associated with N conditionally

independent and identically distributed random variables ain := (ai0,n, a
i
1,n, . . . , a

i
n,n)

with common law Ωn

(
γNn−1(1), A

N
n−1

)
. Arguing as above, we find that

ηNn =

∫
Ωn

(
γNn−1(1), A

N
n−1

)
(da) η(a)n +

1√
N

WN
n = Γ2

n

(
γNn−1(1), η

N
n−1

)
+

1√
N

WN
n

with some local sampling random fields satisfying (8.2.6).

Convergence analysis

The main objective of this section is to show that N -particle occupation measures

AN
n converge in a sense to be given, as N tends to ∞, to the association probability
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measures An. To this end we observe that the one step mapping Ωn+1 introduced

in (8.5.7) can be rewritten in the following form

Ωn+1 (m,A) (F ) =
AQn+1,mA(F )

AQn+1,mA(1)

with the collection of integral operators Qn+1,mA from A[0,n] into A[0,n+1] defined

below

Qn+1,B(a, d(a
′, b)) := δa(da

′) νn+1(db) η
(a′)
n

(
G(b)
n,B

)
where G(b)

n,B := G
(b)

n,
∫
B(da) η

(a)
n

with B = mA. In the above display d(a′, b) = da′ × db stands for an infinitesimal

neighborhood of the point (a′, b) ∈ A[0,n+1], with a = (a′0, . . . , a
′
n) ∈ A[0,n] and

b ∈ An+1, and a = (a0, . . . , an) ∈ A[0,n]. It is important to point out that

Bn := γn(1)×An =⇒ Bn+1 = BnQn+1,Bn

Notice that the flow of measures (Bn)n≥0 satisfies the same type of equation as in

(8.2.1), with the a total mass evolution of the same form as (8.2.3):

Bn+1(1) = Bn(1) An (Gn,Bn) with Gn,mA :=

∫
νn+1(db) G(b)

n,mA

Qn+1,Bn(F )(a) =

∫
νn+1(db) η

(a)
n

(
G(b)
n,Bn

)
F (a, b)

[Qn+1,B(F )−Qn+1,B′(F )] (a) =

∫
νn+1(db)

[
η(a)n

(
G(b)
n,B

)
− η(a)n

(
G(b)
n,B′

)]
F (a, b)

If we set B = mA and B′ = m′A′ then condition (H ′
2) is met as long as∣∣∣η(a)n

(
G(b)
n,B

)
− η(a)n

(
G(b)
n,B′

)∣∣∣ ≤ c(n) |m−m′|+
∫

|[A− A′](ϕ)| Σ(b)
n,B′(dϕ)

for some collection of bounded measures Σ
(b)
n,B′ on B(An) such that

∫
osc(ϕ) Σ

(b)
n,B′ ≤

δ
(
Σ

(b)
n

)
, for some finite constant δ

(
Σ

(b)
n

)
<∞, whose values do dot depend on the

parameters (m,A) ∈ (In × P(An)). Under the assumptions (8.5.4), we have

G(b)
n,B(x) = α(b)

n (B) G(b)
n (x)

for some collection of parameters α
(b)
n (B) satisfying∣∣α(b)

n (B)− α(b)
n (B′)

∣∣ ≤ c(n) |m−m′|+
∫

|[A−A′](ϕ)| Σ(b)
n,B′(dϕ)

This condition is clearly satisfied for the PHD model discussed in (8.5.6), as long as

the functions hn(yn) + dngn(., yn) are uniformly bounded from above and below.
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For instance, for b = yn �∈ {c, c′} we have

α(b)
n (B) =

[
hn(b) +

∫
B(da) η(a)n (dngn(., b))

]−1

In this case, we can check that∣∣α(b)
n (B)− α(b)

n (B′)
∣∣ ≤ c(n)

∣∣[B − B′](ϕ(b)
n )
∣∣ with ϕ(b)

n (a) := η(a)n (dngn(., b))

In the same way, we show that the condition (H1) is also met for the PHD model.

This, by construction of AN
n we find that

AN
n = Ωn

(
γNn−1(1), A

N
n−1

)
+

1√
N

WN
n

with some local sampling random fields satisfying (8.2.6). Notice that

Ωn+1 (m,A) = ΨHn,mA
(A)Mn+1,mA(a, d(a

′, b))

with the collection of potential functions

Hn,mA(a) := Qn+1,mA(1)(a) = η(a)n (Gn,mA)

and the Markov transitions

Mn+1,mA(a, d(a
′, b)) :=

Qn+1,mA(a, d(a
′, b))

Qn+1,mA(1)(a)
= δa(da

′)
νn+1(db) η

(a′)
n

(
G(b)
n,mA

)
∫
νn+1(db′) η

(a′)
n

(
G(b′)
n,mA

)
8.5.3 Mixed particle association models

We consider the association mapping

Ωn+1 : (m,A, η) ∈
(
]0,∞[×A[0,n] × P(En)

A[0,n]
)
�→ Ωn+1(m,A, η) ∈ P(A[0,n+1])

defined for any (m,A) ∈
(
]0,∞[×A[0,n]

)
and any mapping η : a ∈ Supp(A) �→ η(a) ∈

Pa(En) by

Ωn+1 (m,A, η) (d(a, b)) ∝ A(da) νn+1(db) η
(a)
(
G

(b)

n,m
∫
A(da) η(a)

)
By construction, for any discrete measure A ∈ P(A[0,n−1]), and any mapping a ∈
Supp(A) �→ η(a) ∈ P(En−1), we have the formula

Γ2
n

(
m,

∫
A(da) η(a))

)
=

∫
Ωn

(
m,A, η(.)) (d(a, b)) Φ(b)

n

(
η(a)

)
We also mention that the updating-prediction transformation defined in (8.5.5)

Φ(a)
n (η) = Ψ

(a)
Gn−1

(η)M (a)
n = ηK(a)

n,η with K(a)
n,η = S(a)

n−1,ηM
(a)
n (8.5.8)
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In the above displayed formula S(a)
n,η stands for some updating Markov transition

from En−1 into itself satisfying the compatibility condition ηS(a)
n−1,η = Ψ

(a)
Gn−1

(η).

We let AN
0 = 1

N

∑N
i=1 δai0 , be the empirical measure associated with N indepen-

dent and identically distributed random variables (ai0)1≤i≤N with common distribu-

tion A0. For any a ∈ A0, we let

ηN0 :=

∫
AN

0 (da) η
(a,N ′)
0 and η

(a,N ′)
0 =

1

N ′

N ′∑
i=1

δ
ξ
[a,j]
0

with the empirical measure η
(a,N ′)
0 associated with N ′ random variables ξ

[a]
0 =(

ξ
[a,j]
0

)
1≤j≤N ′

with common law η
(a)
0 . We further assume that γ0(1) is known and

set

γN0 := γ0(1) η
N
0 and γN1 (1) := γN0 (1) ηN0 (G0,γN

0
)

It is readily checked that the fluctuation random fields given below

W(a,N ′)
0 =

√
N ′

(
η
(a,N ′)
0 − η

(a)
0

)
satisfies (8.2.6), with N = N ′, for any given a ∈ A0. Using the fact that∫

AN
0 (da) η

(a,N ′)
0 =

∫
AN

0 (da) η
(a)
0 +

1√
N ′

∫
AN

0 (da) W
(a,N ′)
0

we conclude that

ηN0 := η0 +
1√
N

WN
0

with some local sampling random fields WN
0 satisfying the same estimates as in

(8.2.6) by replacing 1/
√
N by the sum

(
1/
√
N + 1/

√
N ′
)
.

Using (8.5.8), for any a1 = (a0, a1) we find that

Φ
(a1)
1

(
η
(a0,N ′)
0

)
= η

(a0,N ′)
0 K(a1)

n,η
(a0,N

′)
0

We let AN
1 = 1

N

∑N
i=1 δai1 be the occupation measure associated with N condition-

ally independent and identically distributed random variables ai1 := (ai0,1, a
i
1,1) with

common law

Ω1

(
γN0 (1), AN

0 , η
(.,N ′)
0

)
In the above displayed formula η

(.,N ′)
0 stands for the mapping a0 ∈ A0 �→ η

(a0,N ′)
0 ∈

P(E0).

We consider a sequence of conditionally independent random variables ξ
[a0,a1,j]
1

with distribution K(a1)

n,η
(a0,N

′)
0

(
ξ
[a0,j]
0 , .

)
, with 1 ≤ j ≤ N ′, and we set

η
((a0,a1),N ′)
1 =

1

N ′

N ′∑
i=1

δ
ξ
[(a0,a1),j]
1

and ηN1 :=

∫
AN

1 (da) η
(a,N ′)
1
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Arguing as before, for any given a1 := (a0, a1) ∈ Supp(AN
1 ), the sequence of random

fields

W(a1N ′)
1 :=

√
N

(
η
((a0,a1),N ′)
1 − Φ

(a1)
1

(
η
(a0,N ′)
0

))
satisfies (8.2.6), with N = N ′. Thus, we conclude that

ηN1 =

∫
Ω1

(
γN0 (1), AN

0 , η
(.,N ′)
0

)
(d(a0, a1)) Φ

(a1)
1

(
η
(a0,N ′)
0

)
+

1√
N

WN
1

= Γ2
1

(
γN0 (1), ηN0

)
+

1√
N

WN
1

with some local sampling random fields WN
1 satisfying the same estimates as in

(8.2.6) by replacing 1/
√
N by the sum

(
1/
√
N + 1/

√
N ′
)
. Iterating this procedure,

we define by induction a sequence of N -particle approximation measures

γNn (1) = γNn−1(1) η
N
n−1(Gn−1,γN

n−1
) and ηNn :=

∫
AN

n (da) η
(a,N ′)
n

with the occupation measure AN
n = 1

N

∑N
i=1 δain associated with N conditionally

independent and identically distributed random variables ain := (ai0,n, a
i
1,n, . . . , a

i
n,n)

with common law Ωn

(
γNn−1(1), A

N
n−1, η

(.,N ′)
n−1

)
. Arguing as above, we find that

ηNn =

∫
Ωn

(
γNn−1(1), A

N
n−1, η

(.,N ′)
n−1

)
(d(a, b)) Φ(b)

n

(
η
(a,N ′)
n−1

)
= Γ2

n

(
γNn−1(1), η

N
n−1

)
+

1√
N
WN

n

with some local sampling random fields satisfying the same estimates as in (8.2.6)

by replacing 1/
√
N by the sum

(
1/
√
N + 1/

√
N ′
)
. As before, the N -particle oc-

cupation measures AN
n converge as N tends to ∞ to the association probability

measures An.

8.6 Appendix

Proof of corollary 8.4.6

For constant mappings sn = µn+1(1), the mappings Φ1
n+1,νn and Φ2

n+1,mn
are given

by

Φ1
n+1,νn(u) = sn and Φ2

n+1,mn
(η) = Ψ

g
(s)
n
(η)M

(s)
n+1

with the likelihood function g
(s)
n and the Markov transitionsM

(s)
n+1 defined in (8.3.7).

Firstly, we observe that rn(sn) := supx,x′∈En
g
(s)
n (x)/g

(s)
n (x′). We also notice that the

second component mapping Φ2
n+1,mn

does not depends on the parameter mn, and

it induces a Feynman-Kac semigroup of the same form as the one discussed in

section 8.4.2.
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Under the premise of the proposition, the semigroup of associated with the

Markov transitions Mn satisfies the mixing property stated in the l.h.s. of (8.4.11)

for some integer m ≥ 1 and some parameter εp(m) ∈]0, 1]. In this situation, we also

have that

M
(s)
p,p+m(x, .) ≥ ε(s)p (m) M

(s)
p,p+m(x

′, .)
with some positive parameter

ε(s)p (m) ≥ εp(m)/
∏

p≤k<p+m

rk(sk)rk(1) and rn(sn) :=
sng

+
n + (1− sn)

sng−n + (1− sn)
(≤ rn(1))

To prove this claim, firstly we observe that M
(s)
p,p+m(x, .) �M

(s)−
p,p+m(x, .) and∏

p≤k<p+m

rk(sk)
−1 ≤ dM

(s)
p,p+m(x, .)/dM (s)−

p,p+m(x, .) ≤
∏

p≤k<p+m

rk(1)

with the semigroup M
(s)−
p,n associated with the Markov transition

M
(s)−
p,p+1(x, .) = αp+1 Mp+1(x, .) + (1− αk+1) µk+1 with αp+1 :=

skg
−
k

skg
−
k + (1− sk)

Using the geometric representation

M (s)−
p,n (x, .) =

( ∏
p<k≤n

αk

)
Mp,n(x, .) +

∑
p<k≤n

(1− αk)

( ∏
k<l≤n

αl

)
µkMk,n

it can be verified that

M
(s)−
p,p+m(x, .) ≥ εp(m) M

(s)−
p,p+m(x

′, .) ≥ εp(m)

( ∏
p≤k<p+m

g−k /g
+
k

)
M

(s)
p,p+m(x

′, .)

from which we conclude that

M
(s)
p,p+m(x, .) ≥ ε(s)p (m) M

(s)
p,p+m(x

′, .) with ε(s)p (m) ≥ εp(m)/
∏

p≤k<p+m

rk(sk)rk(1)

We end the proof of the proposition combing the proposition 8.4.5 with the couple

of estimates presented in (8.4.12) and (8.4.13). This ends the proof of the corollary.

Proof of theorem 8.4.7

The formulae presented in (8.3.6) can be rewritten in terms of matrix operations as

follows

[γn+1(1) , 1− γn+1(1)] = [γ̂n(1) , 1− γ̂n(1)]

[
Ψgn(ηn)(sn) 1−Ψgn(ηn)(sn)

µn+1(1) 1− µn+1(1)

]
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and

[γ̂n(1) , 1− γ̂n(1)] =

[γn(1) , 1− γn(1)]

[
ηn(gn) 0

0 1

]
[γn(1) , 1− γn(1)]

[
ηn(gn) 0

0 1

] [
1

1

]
With a slight abuse of notation, we set

ϑn := [γn(1) , 1− γn(1)] ϑ̂n := [γ̂n(1) , 1− γ̂n(1)] and 1 =

[
1

1

]
We also denote by Mn+1,ηn and Dn,ηn the stochastic and the diagonal matrices

defined by

Mn+1,ηn :=

[
Ψgn(ηn)(sn) 1−Ψgn(ηn)(sn)

µn+1(1) 1− µn+1(1)

]
and Dn,ηn :=

[
ηn(gn) 0

0 1

]
(8.6.1)

In this notation, the above recursion can be rewritten in a more compact form

ϑn+1 = ϑ̂n Mn+1,ηn and ϑ̂n =
ϑn Dn,ηn

ϑnDn,ηn1
=⇒ ϑn+1 =

ϑn Qn+1,ηn

ϑnQn+1,ηn1

with the product of matrices Qn+1,ηn = Dn,ηnMn+1,ηn .

∀u ∈ Ip(⊂ [0, 1])
[
Φ1

p,n,ν(u), 1− Φ1
p,n,ν(u)

]
=

[u, 1− u] Qp,n,ν

[u, 1− u] Qp,n,ν(1)

with the matrix semigroup

Qp,n,ν = Qp+1,νpQp+2,νp+1 . . .Qn,νn−1

These semigroups are again of the same form as the Feynman-Kac models discussed

in section 8.4.2 with a two point state space. When µn+1(1) ∈]0, 1[ and 0 < s−n ≤
s+n < 1, we have for any n ≥ 0 and any i, i′, j ∈ {1, 2}

Mn+1,νn(i, j) ≥ εn Mn+1,νn(i
′, j) and sup

i,i′∈{1,2}

Qn+1,νn(1)(i)

Qn+1,νn(1)(i
′)
≤ δ′n(g)

The first assertion is a direct consequence of the proposition 8.4.5 with the couple

of estimates presented in (8.4.12) and (8.4.13).

Using (8.3.3), we find that Φ2
n+1,mn

induces a Feynman-Kac models of the same

form as the one discussed in section 8.4.2. More precisely, we have that

Φ2
n+1,mn

(η) = ΨĜn,mn
(η)M̂n+1,mn

with the potential functions Gn,mn and the Markov transitions M̂n+1,mn defined in

(8.3.4) and (8.3.5). Notice that

sup
x,x′∈En

Ĝn,mn(x)

Ĝn,mn(x
′)

≤ δn(sg)
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and for any x ∈ En and any n ≥ 0

δn(sg)
−1 M̂−

n+1,mn
(x, .) ≤ M̂n+1,mn(x, .) ≤ δn(sg) M̂

−
n+1,mn

(x, .)

with the Markov transitions M̂−
n+1,mn

defined as M̂−
n+1,mn

by replacing the functions

(sn, gn) by their lower bounds (s−n , g
−
n ). To prove this claim, we use the fact that for

any positive function f we have

dM̂n+1,mn(f)

dM̂−
n+1,mn

(f)
=
mng

−
n s

−
n + (1−mn)µn+1(1)

mngnsn + (1−mn)µn+1(1)
×mngnsnMn+1(f) + (1−mn)µn+1(1)µn+1(f)

mng−n s
−
n + (1−mn)µn+1(1)µn+1(f)

and the two series of inequalities

δn(sg)
−1 ≤ mng

−
n s

−
n + (1−mn)µn+1(1)

mngnsn + (1−mn)µn+1(1)
≤ 1

and

1 ≤ mngnsnMn+1(f) + (1−mn)µn+1(1)µn+1(f)

mng−n s
−
n + (1−mn)µn+1(1)µn+1(f)

≤ δn(sg)

With a slight abuse of notation, we write M̂p,n, and respectively M̂−
p,n, the semi-

group associated with the Markov transitions M̂n+1,mn , and resp. M̂−
n+1,mn

. Using

the same argument as in the proof of corollary 8.4.6 it follows that

M̂−
p,p+m(x, .) ≥ εp(m) M̂−

p,p+m(x
′, .)

from which we conclude that

M̂p,p+m(x, .) ≥ ε̂p(m) M̂p,p+m(x
′, .) with ε̂p(m) ≥ εp(m)

∏
0≤k<m

δp+k(sg)
−2

using proposition 8.4.5 with the couple of estimates presented in (8.4.12) and (8.4.13),

we check that (8.4.3) is satisfied with

a2p,n ≤ 2 ρp(m)


n/m�−1∏
k=0

(
1− ε

(m)
p+km

)
and some parameters

ε(m)
p := ε̂p(m)2

∏
0<k<m

δp+k(sg)
−1 ≥ εp(m)2 δp(sg)

−4
∏

0<k<m

δp+k(sg)
−5

and

ρp(m) := ε̂p(m)−1
∏

0≤k<m

δp+k(sg) ≤ εp(m)−1
∏

0≤k<m

δp+k(sg)
3
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This ends the proof of the first assertion of the theorem. Next, we discuss condition

(Cont(Φ)). We observe that

Φ1
n+1,ν(u) =

u ν(gnsn) + (1− u)µn+1(1)

u ν(gn) + (1− u)

After some manipulations

Φ1
n+1,ν(u)− Φ1

n+1,ν′(u)

= uν′(gn)
uν′(gn)+(1−u)

[Ψgn(ν)−Ψgn(ν
′)] (sn)

+ u
uν(gn)+(1−u)

(1−u)
uν′(gn)+(1−u)

[Ψgn(ν)(sn)− µn+1(1)] [ν − ν ′] (gn)

Recalling that the mapping θa(x) = ax/(ax + (1 − x)) in increasing on [0, 1] and

using the fact that

Ψgn(ν) = νSn,ν =⇒ Ψgn(ν)−Ψgn(ν
′) =

g+n
ν(gn)

(ν − ν ′)Sn,ν′

with the Markov transition

Sn,ν′(x, dx
′) =

gn(x)

g+n (x)
δx(dx

′) +

(
1− gn(x)

g+n (x)

)
Ψgn(ν

′)(dx′)

we prove

|Ψgn(ν)(sn)−Ψgn(ν
′)(sn)| ≤

g+n
g−n

|(ν − ν ′)Sn,ν′(sn)| (8.6.2)

and for any u ∈ In = [m−
n , m

+
n ]∣∣Φ1

n+1,ν(u)− Φ1
n+1,ν′(u)

∣∣
= m+

n g+n
m+

n g+n +(1−m+
n )

g+n
g−n

|(ν − ν ′)Sn,ν′(sn)|

+ m+
n g+n

m+
n g+n +(1−m+

n )

(1−m−
n )

m−
n g−n +(1−m−

n )
|sn − µn+1(1)| |[ν − ν ′] (gn/g

−
n )|

This implies that

τ 1n+1 ≤ m+
n g

+
n

m+
n g

+
n + (1−m+

n )

g+n
g−n

(s+n − s−n )

+
m+

n g
+
n

m+
n g

+
n + (1−m+

n )

(1−m−
n )

m−
n g

−
n + (1−m−

n )
|sn − µn+1|

(
g+n
g−n

− 1

)
≤ g+n

g−n

[
(s+n − s−n ) + |sn − µn+1(1)|

]
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Using (8.3.3) we also find that

Φ2
n+1,m(η)(f) =

mη(sngnMn+1(f)) + (1−m) µn+1(f)

mη(sngn) + (1−m)µn+1(1)

It is also readily check that

[
Φ2

n+1,m(η)− Φ2
n+1,m′(η)

]
(f) =

µn+1(1) η(gnsn)
[
Ψgnsn(η)Mn+1 − µn+1

]
(f) (m−m′)

[mη(sngn) + (1−m)µn+1(1)] [m′η(sngn) + (1−m′)µn+1(1)]

from which we conclude that

τ 2n+1 ≤ sup

{
µn+1

s−n g
−
n

,
s+n g

+
n

µn+1(1)

}
≤ δ′n(g) sup

{
µn+1

s−n
,

s+n
µn+1(1)

}
This ends the proof of the theorem.

Proof of proposition 8.4.3

The proof of proposition 8.4.3 is based on the following technical lemma.

Lemma 8.6.1. We assume that the regularity conditions (Lip(Φ)) and (Cont(Φ))

are satisfied. In this situation, for any p ≤ n, u, u′ ∈ Ip, η, η
′ ∈ P(Ep) and f ∈

Osc1(En) and any flow of masses and probability measures m = (mn)n≥0 ∈
∏

n≥0 In
and ν := (νn)n≥0 ∈

∏
n≥0P(En) we have the following estimates∣∣Φ1

p,n,ν′(u
′)− Φ1

p,n,ν(u)
∣∣ ≤ a1p,n |u− u′|+

∑
p≤q<n

a1q,n

∫ ∣∣[νq − ν ′q](ϕ)
∣∣ Ω1

q+1,ν′q(dϕ)

∣∣Φ2
p,n,m′(η′)(f)− Φ2

p,n,m(η)(f)
∣∣ ≤ a2p,n

∫
|[η − η′](ϕ)|Ω2

p,n,η′(f, dϕ) +
∑

p≤q<n

a2q,n |mq −m′
q|

with the collection of parameters aip,n, i = 1, 2, defined in (8.4.6).

Proof. We use the decomposition

Φ1
p,n,ν′(u

′)− Φ1
p,n,ν(u) = Φ1

p,n,ν(u
′)− Φ1

p,n,ν(u)

+
∑

p<q≤n

[
Φ1

q,n,ν(Φ
1
p,q,ν′(u

′))− Φ1
q−1,n,ν(Φ

1
p,q−1,ν′(u

′))
]

and the fact that

Φ1
q−1,n,ν(Φ

1
p,q−1,ν′(u

′)) = Φ1
q,n,ν

(
Φ1

q−1,q,ν

[
Φ1

p,q−1,ν′(u
′)
])

Φ1
q,n,ν(Φ

1
p,q,ν′(u

′)) = Φ1
q,n,ν

(
Φ1

q−1,q,ν′
[
Φ1

p,q−1,ν′(u
′)
])

and ∣∣Φ1
p,n,ν(u

′)− Φ1
p,n,ν(u)

∣∣ ≤ a1p,n |u− u′|
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and ∣∣Φ1
q,n,ν(Φ

1
p,q,ν′(u

′))− Φ1
q−1,n,ν(Φ

1
p,q−1,ν′(u

′))
∣∣

≤ a1q,n

∣∣∣Φ1
q,νq−1

[
Φ1

p,q−1,ν′(u
′)
]
− Φ1

q,ν′q−1

[
Φ1

p,q−1,ν′(u
′)
]∣∣∣

≤ a1q−1,n

∫ ∣∣[νq−1 − ν ′q−1](ϕ)
∣∣ Ωq,ν′q−1

(dϕ)

to show that∣∣Φ1
p,n,ν′(u

′)− Φ1
p,n,ν(u)

∣∣ ≤ a1p,n |u−u′|+
∑

p<q≤n

a1q−1,n

∫ ∣∣[νq−1 − ν ′q−1](ϕ)
∣∣ Ω1

q,ν′q−1
(dϕ)

In the same way, we use the decomposition[
Φ2

p,n,m′(η′)− Φ2
p,n,m(η)

]
=

[
Φ2

p,n,m(η
′)− Φ2

p,n,m(η)
]

+
∑

p<q≤n

[
Φ2

q,n,m(Φ
2
p,q,m′(η′))− Φ2

q−1,n,m(Φ
2
p,q−1,m′(η′))

]
and the fact that

Φ2
q−1,n,m(Φ

2
p,q−1,m′(η′)) = Φ2

q,n,m

(
Φ2

q−1,q,m

[
Φ2

p,q−1,m′(η′)
])

Φ2
q,n,m(Φ

2
p,q,m′(η′)) = Φ2

q,n,m

(
Φ2

q−1,q,m′
[
Φ2

p,q−1,m′(η′)
])

and ∣∣Φ2
p,n,m(η

′)(f)− Φ2
p,n,m(η)(f)

∣∣ ≤ a2p,n

∫
|[η − η′](ϕ)| Ω2

p,n,η′(f, dϕ)

to show that∣∣Φ2
q,n,m(Φ

2
p,q,m′(η′))− Φ2

q−1,n,m(Φ
2
p,q−1,m′(η′))

∣∣
≤ a2q,n

∫ ∣∣∣[Φ2
q,mq−1

[
Φ2

p,q−1,m′(η′)
]
− Φ2

q,m′
q−1

[
Φ2

p,q−1,m′(η′)
]
](ϕ)

∣∣∣ Ω2
q,n,Φ2

p,q,m′ (η′)
(f, dϕ)

≤ a2q−1,n |mq−1 −m′
q−1|

Using these estimates we conclude that∣∣[Φ2
p,n,m′(η′)− Φ2

p,n,m(η)
]
(f)

]
≤ a2p,n

∫
|[η − η′](ϕ)| Ω2

p,n,η(f, dϕ)+
∑

p<q≤n

a2q−1,n |mq−1−m′
q−1|

This ends the proof of the lemma.

Now we come to the proof of proposition 8.4.3.

Proof of proposition 8.4.3:

We fix a parameter p ≥ 0, and we let (mn)n≥p, (m
′
n)n≥p ∈

∏
n≥p In and (νn)n≥p,

and (ν ′n)n≥p ∈
∏

n≥pP(En) be defined by the following recursive formulae

∀q > p m′
q = Φ1

q,ν′q−1
(m′

q−1) and ν ′q = Φ2
q,m′

q−1
(ν ′q−1)
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∀q > p mq = Φ1
q,νq−1

(mq−1) and νq = Φ2
q,mq−1

(νq−1)

with the initial condition for q = p

(νp, ν
′
p) = (η, η′) and (mp, m

′
p) = (u, u′)

By construction, we have

ν ′q = Φ2
p,q,m′(η′) and νq = Φ2

p,q,m(η)

as well as

m′
q = Φ1

p,q,ν′(u
′) and mq = Φ1

p,q,ν(u)

In this case, using lemma 8.6.1 it follows that∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)

]
≤ a2p,n

∫
|[η − η′](ϕ)| Ω2

p,n,η′(f, dϕ) +
∑

p≤q<n

a2q,n |Γ1
p,q(m

′, η′)− Γ1
p,q(m, η)|

and∣∣Γ1
p,n(m

′, η′)− Γ1
p,n(m, η)

∣∣
≤ a1p,n |m−m′|+

∑
p≤q<n

a1q,n

∫ ∣∣[Γ2
p,q(m

′, η′)− Γ2
p,q(m, η)](ϕ)

∣∣ Ω
1

p,q,m′,η′(dϕ)

with the probability measure Ω
1

p,q,m′,η′ = Ω1
q+1,Γ2

p,q(m
′,η′).

Combining these two estimates, we arrive at the following inequality∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)

]
≤ a2p,n

∫
|[η − η′](ϕ)| Ω2

p,n,η′(f, dϕ) +

[ ∑
p≤q<n

a1p,q a
2
q,n

]
|m−m′|

+
∑

p≤r<q<n

a1r,q a
2
q,n

∫ ∣∣[Γ2
p,r(m

′, η′)− Γ2
p,r(m, η)](ϕ)

∣∣ Ω
1

p,r,m′,η′(dϕ)

This implies that∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)

]
≤ b′p,n |m−m′|+ a2p,n

∫
|[η − η′](ϕ)| Ω2

p,n,η′(f, dϕ)

+
∑

p≤r1<n

br1,n

∫ ∣∣[Γ2
p,r1

(m′, η′)− Γ2
p,r1

(m, η)](ϕ)
∣∣ Ω

1

p,r1,m′,η′(dϕ)
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Our next objective is to show that∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)

]
≤ αk

p,n |m−m′|+ βk
p,n

∫
|[η − η′](ϕ)| Θk

p,n,η′(f, dϕ)

+
∑

p≤r1<r2<...<rk<n

br1,r2 . . . brk ,n

∫ ∣∣[Γ2
p,r1

(m′, η′)− Γ2
p,r1

(m, η)](ϕ)
∣∣ Ω

1

p,r1,m′,η′(dϕ)

for any k ≤ (n− p) for some Markov transitions Θk
p,n,m′η′(f, dϕ) and the parameters

αk
p,n = b′p,n +

k−1∑
l=1

∑
p≤r1<...rl<n

b′p,r1 br1,r2 . . . brl,n

βk
p,n = a2p,n +

k−1∑
l=1

∑
p≤r1<...rl<n

a2p,r1 br1,r2 . . . brl,n

We proceed by induction on the parameter k. Firstly, we observe that the result is

satisfied for k = 1 with(
α1
p,n, β

1
p,n

)
=
(
b′p,n, a

2
p,n

)
and Θ1

p,n,η′ = Ω2
p,n,η′

We further assume that the result is satisfied at rank k. In this situation, using the

fact that ∣∣[Γ2
p,r1(m

′, η′)− Γ2
p,r1(m, η)

]
(ϕ)

]
≤ b′p,r1 |m−m′|+ a2p,r1

∫
|[η − η′](ϕ′)| Ω2

p,r1,η′(ϕ, dϕ
′)

+
∑

p≤r0<r1

br0,r1

∫ ∣∣[Γ2
p,r0

(m′, η′)− Γ2
p,r0

(m, η)](ϕ)
∣∣ Ω

1

p,r0,m′,η′(dϕ)

we conclude that∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)

]
≤ αk+1

p,n |m−m′|+ βk+1
p,n

∫
|[η − η′](ϕ)| Θk+1

p,n,m′η′(f, dϕ)

+
∑

p≤r0<r1<r2<...<rk<n

br0,r1 br1,r2 . . . brk ,n

∫ ∣∣[Γ2
p,r0(m

′, η′)− Γ2
p,r0(m, η)](ϕ)

∣∣ Ω
1

p,r0,m′,η′(dϕ)

with

αk+1
p,n = αk

p,n +
∑

p≤r1<r2<...<rk<n

b′p,r1 br1,r2 . . . brk,n

βk+1
p,n = βk

p,n +
∑

p≤r1<r2<...<rk<n

a2p,r1 br1,r2 . . . brk,n
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and the Markov transition

βk+1
p,n Θk+1

p,n,m′η′(f, dϕ) = βk
p,n Θk

p,n,η′(f, dϕ)

+
∑

p≤r1<r2<...<rk<n

a2p,r1 br1,r2 . . . brk ,n

(
Ω

1

p,r1,m′,η′Ω
2
p,r1,η′

)
(dϕ)

We end the proof of the proposition using the fact that

∣∣Γ1
p,n(m

′, η′)− Γ1
p,n(m, η)

∣∣ ≤
[
a1p,n +

∑
p≤q<n

c2,1p,q a
1
q,n

]
|m−m′|

+
∑

p≤q<n

a1q,n c
2,2
p,q

∫
|[η − η′](ϕ′)|

[
Ω

1

p,q,m′,η′Θp,q,η′
]
(dϕ′)

This proof of the proposition is now completed.

Proof of theorem 8.4.11

For any η ∈ P(E) and any u, u′ ∈ In, we have∣∣Φ1
n+1,η(u)− Φ1

n+1,η(u
′)
∣∣

= |u− u′|
[
r(1− d) + rdh

∫
Yn(dy)

η(g(.,y))
[h+duη(g(.,y))][h+du′η(g(.,y))]

]
≤ |u− u′|

[
r(1− d) + rdh Yn

(
g+

[h+dm−g−)]2

)]
This implies that condition (8.4.2) is satisfied with

a1n,n+1 ≤ r(1− d) + rdh Yn

(
g+

[h+ dm−g−)]2

)
In the same way, for any η, η′ ∈ P(E) and any u ∈ In, we have

Φ1
n+1,η(u)− Φ1

n+1,η′(u) = rdhu
∫
Yn(dy)

1
[h+duη(g(.,y))][h+duη′(g(.,y))] (η − η′) (g(., y))

τ 1n+1 ≤ rdhm+ Yn

(
g+ − g−

[h+ dm−g−]2

)
and the probability measure

Ω1
n,η′(dϕ) ∝

∫
Yn(dy)

g+(y)− g−(y)

[h+ dm−g−(y)]2
δ g(.,y)

g+(y)−g−(y)

(dϕ)

Now, we come to the analysis of the mappings

Φ2
n+1,u(η) ∝ r(1− d)u ηM +

∫
Yn(dy) wu(η, y) Ψg(.,y)(η)M + µ(1) µ
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with the weight functions

wu(η, y) :=
rduη(g(., y))

h+ duη(g(., y)) = r

(
1− h

h+ duη(g(., y))
)

Notice that

w−(y) :=
rdm−g−(y)

h + dm−g−(y)
≤ wu(η, y) ≤ w+(y) :=

rdm+g+(y)

h + dm+g+(y)

To have a more synthetic formula, we extend the observation state space with two

auxiliary points c1, c2 and we set

Yc
n = Yn + δc1 + δc2

we extend the likelihood and the weight functions by setting

g(x, c1) = g(x, c2) = 1

and

w−(c1) := r(1− d)m− ≤ wu(η, c1) := r(1− d)u ≤ w+(c1) := r(1− d)m+

wu(η, c2) = w+(c2) = w−(c2) := µ(1)

In this notation, we find that

Φ2
n+1,u(η) ∝

∫
Yc

n(dy) wu(η, y) Ψg(.,y)(η)My

with the collection of Markov transitions My defined below

∀y �∈ {c2} My =M and Mc2 = µ

Notice that the normalizing constants Yc
n(wu(η, .)) satisfy the following lower bounds

Yc
n(wu(η, .)) ≥ Yc

n(w
−) = r(1− d) m− + Yn

(
w−)+ µ(1)

We analyze the Lipschitz properties of the mappings Φ2
n+1,u using the following

decomposition

Φ2
n+1,u(η)− Φ2

n+1,u(η
′) = ∆n+1,u(η, η

′) + ∆′
n+1,u(η, η

′)

with the signed measures

∆n+1,u(η, η
′) =

∫
Yc

n(dy)
wu(η, y)

Yc
n(wu(η, .))

[
Ψg(.,y)(η)My −Ψg(.,y)(η′)My

]
and

∆′
n+1,u(η, η

′) =
1

Yc
n(wu(η, .))

∫
Yc

n(dy) [wu(η, y)− wu(η
′, y)]

(
Ψg(.,y)(η′)My − Φ2

n+1,u(η
′)
)
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Arguing as in the proof of theorem 8.4.7 given in the appendix (see for instance

(8.6.2)), one checks that

|∆n+1,u(η, η
′)(f)|

≤ 1
Yc
n(w

−)

(
r(1− d)m+ |(η − η′)(M(f))|+

∫
Yn(dy) w

+(y) g+(y)
g−(y)

∣∣(η − η′)(Sy
η′M(f))

∣∣)
for some collection of Markov transitions Sy

η′ from E into itself. It is also readily

checked that∣∣∆′
n+1,u(η, η

′)(f)
∣∣ ≤ hrdm+

Yc
n(w

−)

∫
Yn(dy)

1

(h+m−dg−(y))2
|(η − η′)(g(., y))|

This clearly implies that condition (8.4.3) is satisfied with

a2n,n+1 ≤
1

Yc
n(w

−)

(
β(M)

[
r(1− d)m+ + Yn

(
w+g+

g−

)]
+ hrdm+Yn

(
g+ − g−

(h +m−dg−)2

))
We analyze the continuity properties of the mappings u �→ Φ2

n+1,u(η) using the

following decomposition

Φ2
n+1,u(η)− Φ2

n+1,u′(η)

= 1
Yc
n(wu(η,.))

∫
Yc

n(dy) [wu(η, y)− wu′(η, y)]
(
Ψg(.,y)(η)My − Φ2

n+1,u′(η)
)

This implies that∣∣[Φ2
n+1,u(η)− Φ2

n+1,u′(η)
]
(f)

∣∣ ≤ 1
Yc
n(w

−)

[
r(1− d) + hrd Yn

(
g+

(h+dm−g−)2

)]
|u− u′|

This shows that condition (8.4.5) is satisfied with

τ 2n+1 ≤
1

Yc
n(w

−)

[
r(1− d) + hrd Yn

(
g+

(h+ dm−g−)2

)]
This ends the proof of the theorem.
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Chapter 9

Summary, Conclusions and Future

Works

9.1 Summary

This thesis addressed the measure-valued processes arising in multi-object filtering

and the stochastic particle models adopted to approximate their solutions.

The starting point is the random finite set approach, which has been proposed by

Ronald Mahler and considerably studied and extended during the past ten years

demonstrating theoretical soundness and practical validity.

In this context, we first focused on the performance of PHD filters with a set of

numerical studies that opened the door to a series of improvements and to alternative

implementations, then we analyzed their mathematical structure.

We started by considering three-dimensional aerial and naval scenarios provided

by the French naval defence company DCNS and compared the performance of PHD

filters in situations similar to those encountered in real-life. Results demonstrated

that PHD filters provide good estimates when applied to realistic multi-target track-

ing, in particular the GM-PHD, which outperformed the SMC-PHD in both filtering

quality and computational cost in all the scenarios we have examined.

A second contribution consists in the study of an unbiased stochastic resam-

pling algorithm for the pruning step of the GM-PHD filter. The main goal was

to assess the performance of the algorithm originally proposed by Fearnhead and

Clifford [41] for the automatic determination of a pruning threshold for the GM-

PHD, choice that is usually left to the user. Unfortunately, despite the property of

unbiasedness, Monte Carlo validations demonstrated that deterministic strategies

always outperform the Fearnhead-Clifford resampling, and thus they should be pre-

ferred.
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The analysis of the strengths and weaknesses of PHD filters led to further stud-

ies in the direction of alternative implementations of the PHD recursion. One of

the contribution in this respect is a method to calculate the Probability Hypothesis

Density function over a grid by using the convolution method and the Fast Fourier

Transform. This method provides an exact representation of the PHD function over

the discretized domain and doesn’t require Gaussian assumptions. However due to

the use of numerical grids it is computationally more expensive than the GM-PHD

filter. Despite the greater computational cost however, it shows remarkable proper-

ties and provides a very accurate representation of the intensity function.

The second part of the dissertation is focused on the analysis of a class of

measure-valued equations of which the PHD recursion is an instance. Despite the

increasing popularity of these multi-object filters, there are still open questions re-

garding their theoretical performance. One of the reasons is that their mathematical

structure is significantly different from standard particle filters and theoretical re-

sults developed for these methods are not directly applicable. For this reason we

aimed at initiating a thorough theoretical study of non-standard particle methods

by first characterizing the stability properties of signal processes and then by estab-

lishing uniform convergence results for their particle approximation. In the case of

the PHD, the signal is a spatial branching point process and particle methods are

designed to approximate its first moment.

Another contribution is an alternative derivation of the PHD recursion based

on the expression of the conditional distribution of a latent Poisson point process

given an observed Poisson point process. This result opened the door to the char-

acterization of the processes arising in multi-object filtering as a generalization of

Feynman-Kac measures. Based on this alternative derivation we proposed a novel

particle implementation of the PHD filter that avoids the computational burden

related to clustering, and improves the overall quality of the estimates.

9.2 Future directions

Given the wide range of applicability of multi-target tracking and the great number

of engineering problems related to the recursive estimation of the state of multiple

objects, many questions remain open.

The number of works and publications appeared in the literature during the past ten

years consolidate the generality and the validity of the random finite set approach

as a proper basis for the study of multi-object systems. As it is natural, however,

many pertinent questions can still be posed concerning both theoretical aspects and

algorithmic developments.

One interesting direction, for example, has been proposed in [135] and concerns the
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joint multi-object state and trajectory estimation: as the PHD filters provide only

point estimates of the targets, it would be interesting to investigate the problem of

joint multi-object state and trajectory estimation in order to obtain “connected”

estimates of objects and trajectories.

Another interesting line of research is related to the track-before-detect (TBD) prob-

lem, a direction that has been suggested in [135] and initially investigated in [134].

In filtering applications, in fact, most of the time targets are modelled as points and

this is often a quite valid assumption. However, there also exist situations in which

this assumption leads to performance degradation or divergence of the algorithms.

Theoretically, the general random set framework provides the mathematical tools to

deal with this problem, the solution however is so expensive in terms of numerical

computation that the search for principled approximations is necessary.

This line of research can be extended towards the application of the PHD, CPHD,

Multi-Bernoulli filters to the tracking of complex objects (such as cars, people, an-

imals etc.) from image sequences. In those cases the application of the techniques

discussed in this dissertation is extremely challenging because the fundamental as-

sumption of the observations as RFS is, in some way, invalidated.

In addition, even if the foundation of the PHD recursion is the general RFS frame-

work, these filters remain inherently single-sensor in their original formulation. Re-

cent works such as [83, 35] have contributed to shed some light onto multi-sensor

PHD and CPHD recursion which could be potentially computationally tractable.

Computational techniques to implement these generalizations are only marginally

investigated and could be very important to the applicability of the filters to a wider

set of problems.

From an engineering point of view, the investigation of numerical techniques to

address practical application of the PHD filters and smoothers to the tracking of

extended or unresolved targets (Sec. 4.9) would be important as well.

In terms of theoretical developments, a characterization of the performance limits for

multi-object systems would be a fundamental contribution to the field. The study

of the theoretical bounds established in this thesis as well as the generalization of

existing bounds would be an interesting line of research towards the construction of

algorithms with precise convergence rates and error bounds.

An unresolved question is whether the PHD filter can be generalized so that a

Poisson approximation is no longer necessary. In particular an interesting question

would be whether it is possible to utilize Feynman-Kac techniques to analyze general

multi-object systems where the update step does not contain Poisson assumptions,

or if it is possible to generalize some of the results presented in the second part

of this thesis in order to put under a common measure-theoretic umbrella different

multi-object filters based on the propagation of intensity measures.
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Appendix A

Finite Set Statistics

This section summarizes concepts of set-integrals and set-derivatives in the finite set

statistics (FISST) framework. Detailed discussion about the mathematical founda-

tions can be found in [133, 42]. The individual target motion in a multi-target

problem is often modelled by a transition density on the single-target state space

Es while the measurement process is modelled as a likelihood on the single-target

observation space Eo. Consequently, it is very hard to construct multi-target tran-

sition density and likelihood as Radon-Nikodým derivatives of probability measures

on the Borel subsets of F(Es) and F(Eo). For this reason FISST introduces a non-

measure theoretic notion of density defined directly on the closed subsets of Es and

Eo through set-integrals and set derivatives [42].

Let C(E) denote the collection of closed subsets of E and F : C(E) → [0,∞). A

simplified version of the set-derivative of F at the point x ∈ E is the mapping

(dF )x : C(E) → [0,∞) defined as:

(dF )x(S) ≡ lim
λK(∆x)

F (S ∪∆x)− F (S)

λK(∆x)
(A.0.1)

where λK(∆x) is the volume (Lebesgue measure) of a neighbourhood ∆x of x in

units of K (note λK = Kλ). The complete definition is in [42]. The set-derivative

at a finite set X = {x1, · · ·xn} is defined by recursion:

(dF ){x1,···xn}(S) ≡ (d(dF ){x1,···xn−1})xn(S) (A.0.2)

where, by convention (dF ){∅} ≡ F . An important point to note is that (dF )X(S) has

unit of K−|X|, hence for a fixed S ⊆ E the set-derivatives (dF )X(S) and (dF )Y (S)

have different units if |X| �= |Y |. Let f be a functional defined by f(X) = (dF )X(∅)
then the set-integral of f over a closed subset S ⊆ E is defined as follows [42]:∫

S

f(X)δX ≡
∞∑
i=0

1

i!

∫
Si

f({x1, . . . , xi})λiK(dx1, . . . , dxi) (A.0.3)
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The set-integral and set-derivative are related by the following generalised funda-

mental theorem of calculus

f(X) = (dF )X(∅) F (S) =

∫
S

f(X)δX (A.0.4)

The relationship between finite set-statistics (FISST) and conventional probability

theory has been established in [133] and allows the construction of the conditional

densities from the underlying physical model of the sensors, individual target dy-

namics, target births and deaths using the tools of FISST.

A.1 Belief functional

One of the central entities in finite set statistics (FISST) is the belief functional (or

belief-mass function) which is a useful descriptor of a RFS [80]. The belief functional

βX of an RFS X is defined by [42]:

βX(S) = P(X ⊆ S) (A.1.1)

for all closed S ⊆ E. As previously mentioned, the fact that FISST is based on

belief mass functions defined directly on the closed subsets of Es and Eo allows

descriptions of multi-target motion and measurements models to be systematically

constructed from the single-target motion and observation models respectively. The

belief function, however, is not a measure and hence the standard measure theo-

retic notion of a density is not applicable. To circumvent this difficulty, the theory

of FISST provides an alternative notion of density for belief functionals via the

constructs of set-integrals and set-derivatives.

A.2 Measure theoretic formulation

As the object of interest in Bayesian estimation is the posterior probability density,

the application of Bayesian reasoning to multitarget estimation is based on a suitable

notion of probability density for random finite sets. The probability density pX of

a RFS X is given, if it exist, by the Radon-Nikodým derivative of the probability

distribution PX with respect to an appropriate dominating measure µ, i.e.

PX(T ) =

∫
T
pX(Ξ)µ(dΞ) (A.2.1)

for any Borel subset T ⊆ F(E).

The conventional choice of reference measure in point process theory [50] is the
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dimensionless measure given by the unnormalized distribution of a Poisson point

process [133]:

µ(T ) =

∞∑
i=1

λi(χ−1(T ) ∩ Ei)

i!
(A.2.2)

where Ei is i-th Cartesian product of E with the convention E0 = {∅}, λi the is the
i-th product dimensionless Lebesgue measure and χ : �∞

i=0E
i → F(E) is a mapping

of vectors to sets defined by χ(x1, . . . , xi) = {xj : j = 1 . . . i}. Note that pΞ(X),

unlike the usual probability density on the Euclidean space which has the dimension

of probability per unit hyper-volume, is dimensionless since the reference measure

is dimensionless.

The integral of a non-negative function f : F(E) → R over a subset T of F(E)

with respect to the measure µ is given by [133]:∫
T
f(X)µ(dX) =

∞∑
i=0

1

i!

∫
1T (χ(x1, . . . , xi))f({x1, . . . , xi})λi(dx1, . . . , dxi)

(A.2.3)

where 1T is the indicator function for T .

Proposition A.2.1. Given a RFS X on E with probability distribution PX and

belief mass function βX , if PX is absolutely continuous with respect to µ, the unnor-

malised distribution of a Poisson point process with rate K−1 then:

dPX

dµ
(Ξ) = K |Ξ|(dβX)Ξ(∅) (A.2.4)

In other words the set-derivative of the belief mass function βX without its unit is

the probability density pX with respect to the dominating measure µ given in [133],

or, the unitless set-derivative of the belief mass function of a RFS is its probability

density. It is important to note that the probability density pX is unit dependent,

since the dominating measure µ depends on the choice of units.

A.3 Moments

The moments of an RFS are important characterizations of the process. The first

moment of a RFS is the analogue of the expectation of a random vector, however,

since there is no notion of addition for sets the expectation of a RFS has no meaning.

Nevertheless, it can be indirectly constructed by representing the RFS as a random

counting measure or random density function as described in 4.4. The first moment

measure M of a RFS X on E (commonly called intensity measure) is defined for

any subset of the space S ⊆ E by:

M(S) = E [N(S)] (A.3.1)
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and gives the expected number of points of X contained in S. The intensity measure

plays a central role in online filtering as it constitutes a sufficient statistics for the

posterior probability of the targets RFS. If the measure M admits a density γ(x):

M(S) =

∫
S

γ(x)dx = E [|X ∩ S|] (A.3.2)

for any S ⊆ E and γ : E → [0,+∞[, then γ is called in point process theory inten-

sity function. For convenience sometimes the intensity function is simply referred

to as the intensity.

The intesity function is more commonly known in multi-target tracking as Probabil-

ity Hypothesis Density (PHD) function. Intuitively, the value γ(x)dx is the expected

number of points in an infinitesimally small region dx of x, i.e the expected target

density at x. Just as the density of a continuous random vector represents the

zero-probability event of a particular realization of the random vector, the intensity

γ(x) represents the zero-probability event P(x ∈ X). Consequently, γ(x) is usually

multimodal and the peaks are the regions of high target intensity.

Higher order moment measures Mk of an RFS X on E are defined for any

S1×, . . . ,×, Sk ⊆ E by:

Mk(S1×, . . . ,×, Sk) = E

[ ∑
x1 �=,..., �=xk∈X

1S1×,...,×,Sk
(x1, . . . , xk)

]
(A.3.3)

In analogy to the first moment case, if Mk admits a density:

γk(S1×, . . . ,×, Sk) =

∫
S1

. . .

∫
Sk

(x1, . . . , xk)dx1, . . . , dxk (A.3.4)

for any S1×, . . . ,×, Sk ⊆ E and γk : Ek ⇒ [0,∞) then Ek is the k-order (multitar-

get) moment density. It is useful to consider also the FISST definition [77] of the

multitarget moment densities which is as follow. Let X be a RFS with probability

density fX its multitarget moment density is defined as:

DX(Ξ) =

∫
fX(Ξ ∪W )δW (A.3.5)

where DΞ(∅) = 1 and the integral is a set-integral. Note that
∫
DX(Ξ ∪W )δW has

always the same units of measurement as Ξ and so there is no incommensurability

of units.

By using this definition and δX(x) =
∑

w∈X δw(x) the first multitarget moment is

DX({x}) =
∫
fΞ({x} ∪W )δW =

∫
δX(x)fΞ(X)δX (A.3.6)

and higher order moment analogously:

DΞ({x1, . . . , xn}) =
∫
fΞ({x1, . . . , xn} ∪W )δW (A.3.7)
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It is easy to see that the first-order multitarget moment is the PHD as:∫
S

DΞ({x}) = E(|X ∩ S|) (A.3.8)

A.4 Probability Generating Functionals

The probability generating functional for a RFS is a fundamental descriptor analo-

gous to the probability generating function of a discrete random variable.

The original derivation of the PHD filter as well as many other important results

are stated by using probability generating functionals (PGFl).

The PGFl G[h] of an RFS X on E [80] is defined for any real-valued function h on

E such that 0 ≤ h(x) ≤ 1 by :

G[h] ≡ E[hX ] =

∫
hΞfX(Ξ)δΞ (A.4.1)

where

hX ≡
∏
x∈X

h(X) (A.4.2)

with h∅ = 1 by convention. It can be easily seen that:

GX [1S] = βX(S) (A.4.3)

The PGFL shares the following useful property with the belief-mass function.

Let X1, . . . , Xn be statistically independent RFS with PGFLs G1[h], . . . , , Gn[h] and

X = X1 ∪ . . . ∪Xn. Then, for all h:

GX [h] = G1[h] · · ·Gn[h] (A.4.4)

Following [62] an interpretation of the Probability Generating Functional is given

by supposing A1, . . . , Ar is a partition of the space E, and considering the function:

h(x) =
r∑

i=1

yi1Ai
(x)

where |yi| ≤ 1. It follows that:

G

[
r∑

i=1

yi1Ai
(x)

]
= E

[
r∏

i=1

y
|X∩Ai|
i

]

which results in the joint probability generating function of the number of points in

the sets of the partition. Intuitively, an arbitrary function h can be considered as a

limiting case of this form where the partition is generated by the collection of all the

infinitesimal regions dx. The PGFl captures the probability generating functions of
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all possible families of counts of point occurrences.

In the context of multi-target tracking Mahler [76] provided the following alternative

intuition of the PGFl: let Ξ be a random finite set and 0 ≤ h(x) ≤ 1 a function

representing the probability of detection or FOV of some sensor, then it can be

shown that GΞ[h] is the probability that Ξ is contained in the FOV.

A.5 Densities and units of measurement

The behavior of RFS density functions, as opposed to conventional densities is de-

pendent on the units of measurements. For example, let fZ(·) be the density of

the random vector Z ∈ Rn; then ∀ z ∈ Rn, fZ(z) has the units of a density, for

example 1
metres if the coordinates of z are in meters. Now, let Σ be an absolutely

continuous finite random set of Rn. The units of the global density fΣ(·) vary with

the cardinality of the realization σ of the RFS: for example suppose that the units

of Rn are meters and that |σ| = k. Then the units of fΣ(σ) are 1/metresk. Because

of this behaviour one should use a great care when dealing with mathematical op-

erations which may be undefined in the case of RFSs. As an example, consider the

well defined expression: ∫
fZ(z)

2dλ(z)

which has unit 1/metres. The analogous set-integral however is not well defined as:∫
fΣ(σ)

2δσ = fΣ(∅) +
∫
fΣ({σ0})2dλσ0 +

1

2

∫
fΣ({σ1, σ2})2dλσ1dλσ2 · · ·

where the first term is unitless, the second 1/metres the third 1/metres2 and so on.

As reported in [42] one example may clarify the structure of the RFS densities

and belief functions. Suppose that two targets T1 and T2 are located on the real

line and observed by a sensor with density

f(a|x) = Nσ2(a− x)

and probability measure pf(S|x). Assume that the sensor reports indipendent ob-

servation, with no false alarms but with a detection probability q lower than 1.

What the sensor sees at each time step is described by a random finite set which

may be as follows:

Z = {a1, a2}
Z = {a}
Z = {∅}
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Where a a, a1, a2 ∈ R. The statistics of this RFS can be described by the belief

measure βΣ(S|X) = P (Σ ⊆ X) where X can take the values X = {∅}, X =

{x},X = {x1, x2}. In those cases

βΣ(S|x) = 1− q + qpf(S|x)
βΣ(S|{x1, x2}) = [1− q + qpf(S|x1)][1− q + qpf(S|x2)]

From the belief measure it is possible to compute the global density: for the one

track case X = {x} it is

fΣ(∅|X) = 1− q, f({z}|X) = qf(z|x)

In the two track case X = {x1, x2} it is

fΣ(∅|X) = (1− q)2

fΣ({z}|X) = q(1− q)f(z|x1) + q(1− q)f(z|x2)

fΣ({z1, z2}|X) = q2f(z1|x1)f(z2|x1) + q2f(z2|x2)f(z1|x2)

In all other cases fΣ(Z|X) = 0.

The belief measure βΣ(S|X) can be recovered from the global density via the set

integral

βΣ(S|X) =

∫
S

fΣ(Z|X)δX

= fΣ(∅|X) +

∫
fΣ({z}|X)2dz +

1

2

∫
S×S

fΣ({z1, z2})2dz1dz2
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Additional Background Material

B.1 Probability and measure theory

The following is a summary of measure theory and measure theoretic probability

concepts. Further details can be found in [62] and [27].

B.1.1 Classes of sets

Let Ω be a nonempty set and P(Ω) ≡ {A : A ⊂ Ω} be the power set of Ω, i.e., the

class of all subsets of Ω.

Definition B.1.1. A collection of sets F ⊂ P(Ω) is called an algebra if:

� Ω ∈ F

� A ∈ F ⇒ Ac ∈ F

� A,B ∈ F ⇒ A ∪ B ∈ F

In words, an algebra is a class of sets containing Ω that is closed under complemen-

tation and pairwise (and hence finite) unions.

Definition B.1.2. A class F ⊂ P(Ω) is called a σ-algebra if it is an algebra and if

it satisfies the following condition:

� An ∈ F for n ≥ 1 ⇒
⋃

n≥1An ∈ F

Thus, a σ-algebra is a class of subsets of Ω that contains Ω and is closed under

complementation and countable unions.
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Example:

Let Ω = a, b, c, d and consider the classes:

F1 = {Ω, ∅, {a}}

F2 = {Ω, ∅, {a}, {b, c, d}}

F2 is a σ-algebra but not F1 since {a}c /∈ F1.

Definition B.1.3. A topological space is a pair (S, T ) where S is a nonempty set

and T is a collection of subsets of S such that:

� S ∈ T

� A1, A2 ∈ T ⇒ A1 ∩A2 ∈ T

� {Ai : i ∈ I} ∈ T ⇒
⋃

i∈I Ai ∈ T

Elements of T are called open sets.

A particularly useful class of σ-algebras are those generated by open sets of a topo-

logical space. These are called Borel σ-algebras

Definition B.1.4. The Borel σ-algebra on a topological space S is defined as the

σ-algebra generated by the collection of open sets in S.

B.1.2 Measures

A set function is an extended real valued function defined on a class of subsets of

a set Ω. Measures are nonnegative set functions that, intuitively speaking, assign a

measure to the content of a subset of Ω. They have to satisfy certain requirements:

Definition B.1.5. Let Ω be a nonempty set and F be an algebra on Ω. Then, a set

function µ on F is called a measure if:

� µ(A) ∈ [0,∞] for all A ∈ F

� µ(∅) = 0

� for any disjoint collection of sets A1, . . . , An ∈ F with
⋃

n≥1An ∈ F

µ

(⋃
n≥1

An

)
=

∞∑
n=1

µ(An)

Definition B.1.6. A measure µ is called finite if µ(Ω) ≤ ∞ or infinite if µ(Ω) = ∞.

A finite measure with µ(Ω) = 1 is called a probability measure. A measure µ on a σ-

algebra F is called σ-finite if there exist a countable collection of sets A1, . . . , An ∈ F
not necessarily disjoint, such that
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�

⋃
n≥1An = Ω

� µ(An) ≤ ∞ ∀ n ≥ 1

Definition B.1.7. (The counting measure) Let Ω be a nonempty set and F =

P(Ω) be the set of all subsets of Ω. Let

µ(A) = |A|, A ∈ F

where |A| denotes the number of elements in A. This measure is called counting

measure on Ω.

B.1.3 Measurable transformations

Sometimes the interest is posed only on certain functions defined on Ω rather than

on the full details of a measure space (Ω,F , µ). For example, if Ω represents the

outcomes of 100 rolls of a dice, one may only be interested in knowing the number

of “ones” in the 100 rolls. By assigning measures (probabilities) to sets (events)

involving such functions, only certain functions (called measurable functions) that

satisfy some natural restrictions, are allowed.

Definition B.1.8. Let Ω be a nonempty set and let F be a σ-algebra on Ω. The

pair (Ω,F) is called a measurable space. If µ is a measure on (Ω,F), then the triplet

(Ω,F , µ) is called a measure space. If µ is a probability measure, then (Ω,F , µ) is
called a probability space.

Definition B.1.9. Let (Ω,F) be a measurable space. Then a function f : Ω → R

is called F-measurable if for each a in R

f−1((−∞, a) =≡ {ω : f(ω) ≤ a} ∈ F

Let (Ω,F , P ) be a probability space. Then a function X : Ω → R is called random

variable if the event

X−1((−∞, a) =≡ {ω : X(ω) ≤ a} ∈ F

for each a ∈ R. In other words a random variable is a real valued F-measurable

function on a probability space (Ω,F , P ).

B.1.4 Integration

Let (Ω,F , µ) be a measure space and f : Ω → R be a measurable function. The

integral of a measurable function is defined in stages by starting from the integral

of a non-negative simple (or step) function:
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Definition B.1.10. A function f : Ω → R ≡ [−∞,∞] is a simple function if there

exist a finite set (of distinct elements) {c1, ..., ck} ∈ R and sets A1, ..., Ak ∈ F such

that f can be written as:

f =

k∑
i=1

ciIAi

Definition B.1.11. (The integral of a simple nonnegative function) Let

f : Ω → R ≡ [−∞,∞] be a simple function on (Ω,F , µ). The integral of f w.r.t.

µ, denoted by
∫
fdµ is defined as

∫
fdµ ≡

k∑
i=1

ciµAi

Definition B.1.12. (The integral of a nonnegative measurable function)

Let f : Ω → R+ be a nonnegative measurable function on (Ω,F , µ). The integral of

f w.r.t. µ, denoted by
∫
fdµ is defined as∫

fdµ ≡ lim
n→∞

∫
fndµ

where {fn}n≥1 is any sequence of nonnegative simple functions such that fn(ω) ↑
f(ω) for all ω.

Definition B.1.13. (The integral of a measurable function) Let f be a real

valued measurable function on (Ω,F , µ) and f+ = fIf≥0 and f− = fIf≤0. The

integral of f w.r.t. µ, denoted by
∫
fdµ is defined as∫

fdµ ≡
∫
f+dµ−

∫
f−dµ

provided that at least one of the integrals on the right side is finite.

Definition B.1.14. (Integrable functions) A measurable function f on a mea-

sure space (Ω,F , µ) is said to be integrable with respect a measure µ if∫
|f |dµ <∞

Remark on notation:
∫
fdµ can be equivalently written as∫

Ω

f(ω)µ(dω)

or ∫
Ω

f(ω)dµ(ω)
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B.2 Gaussian Identities

A list of important results on Gaussian functions are reported below. Gaussian iden-

tities are implicitly used extensively in the dissertation, and used in the derivation

of the Kalman recursion from a Bayesian perspective. More details can be found in

[108].

Lemma B.2.1. The product of two gaussians is another gaussian (unnormalized):

Nx(µa,Σa) · Nx(µb,Σb) = zcNx(µc,Σc)

where:

Σc = (Σ−1
a + Σ−1

b )−1 and µc = Σc(Σ
−1
a µa + Σ−1

b µb)

and the normalization factor zc is

zc = |2π(Σa + Σb)|−
1
2 exp

(
−1

2
(µa − µb)

T (Σa + Σb)
−1(µa − µb)

)
The obvious generalization to K gaussians is:

K∏
k=1

Nx(µk,Σk) = z̃cNx(µ̃, Σ̃)

where:

Σ̃ =

K∑
k=1

Σ−1
k and µ̃ =

(
K∑
k=1

Σ−1
k

)−1( K∑
k=1

Σ−1
k µk

)
The normalizing constant is given by:

z̃ =
|2πΣd|

1
2∏K

k=1 |2πΣk|
1
2

∏
i<j

exp

(
−1

2
(µi − µj)

TBij(µi − µj

)
where:

Bij = Σ−1
i

(
K∑
k=1

Σ−1
k

)−1

Σ−1
j

The fact that products of gaussian functions are again a gaussian function makes

gaussian integrals easier to calculate:

Lemma B.2.2. Given F , d, Q, m, and P of appropriate dimensions, and given

that Q and P are positive definite,∫
N (x;Fξ + d,Q) · N (ξ;m,P ) = N (x;Fm+ d,Q+ FPF T )

261



APPENDIX B. ADDITIONAL BACKGROUND MATERIAL

Lemma B.2.3. Given H, b, R, m, and P of appropriate dimensions, and given

that R and P are positive definite,∫
N (z;Hx+ b, R) · N (x;m,P ) = q(z)N (x; m̃, P̃ )

where

q(z) = N (z;Hm+ b, R +HPHT ), (B.2.1)

m̃ = m+K(z −Hm− b), (B.2.2)

P̃ = (I −KH)P, (B.2.3)

K = PHT (R +HPHT )−1 (B.2.4)

(B.2.5)

B.3 Convolution

Denote by Lp(Rd) = {f : Rd → C, Borel measurable,
∫
Rd |f |pdm <∞} where m(·)

is the Lebesgue measure and by B(Rd) the Borel σ-algebra on Rd and d ≥ 1. We

begin by reporting the definition of the convolution of measures on (Rd,B(Rd)); from

this, one can easily obtain the formula for the convolution of functions in L1(Rd)

and convolution of functions with measures [62].

Proposition B.3.1. Let µ and λ be two σ-finite measures on (Rd,B(Rd)); for any

Borel set A in B(Rd)

(µ ∗ λ)(A) :=
∫ ∫

IA(x+ y)µ(dx)λ(dy) (B.3.1)

Then (µ∗λ)(·) is a measure on (Rd,B(Rd)) and it is called the convolution of µ and

λ.

Moreover, if µ and ν are two probability measures, the following holds:

Proposition B.3.2. Let X and Y be two independent Rd random variables with

pdf φ(x) and ϕ(y) respectively. The pdf ψ(z) of the random variable Z = X + Y is

given by the convolution product of φ(x) and ϕ(y).

The convolution between two complex-valued functions f and g ∈ L1(Rd) :=

L1(Rd,B(Rd)), denoted by (f ∗ g), is defined as the integral transform:

(f ∗ g)(x) :=
∫
Rd

f(y)g(x− y)dy =

∫
Rd

f(x− y)g(y)dy (B.3.2)
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The following propositions are easy to verify: let f , g ∈ L1(Rd):

(f ∗ g) = (g ∗ f) (B.3.3)

a(f ∗ g) = (af) ∗ g = f ∗ (ag) (B.3.4)∫
(f ∗ g)(x)dx =

(∫
f(x)dx

)(∫
g(x)dx

)
(B.3.5)

B.4 Fourier Transform

For notation simplicity we briefly report here only the monodimensional discrete

formulation of the Fourier transform. Details on the multidimensional Fourier trans-

form can be found in [11].

Definition B.4.1. For f ∈ L1(R), t ∈ R

f̂(t) :=

∫
f(x)e−itxdx (B.4.1)

is called the Fourier transform of f.

One important property of the Fourier transform is the following, called Convolution

Theorem:

Proposition B.4.2. Let f and g ∈ L1(R), and (f ∗ g) their convolution,

(̂f ∗ g) = f̂ ĝ (B.4.2)

The discrete Fourier transform of a sequence of real numbers is a sequence of complex

numbers of the same length computed as follows:

Proposition B.4.3. The sequence on N complex numbers s0 . . . sn−1 is transformed

into a different sequence of N complex numbers ŝ0 . . . ŝn−1 by the discrete Fourier

transform (DFT) according to the formula:

ŝk =

N−1∑
n=0

sne
− 2πi

N
kn, k = 0, . . . , N − 1. (B.4.3)

The inverse discrete Fourier transform (IDFT) is given by

sn =
1

N

N−1∑
k=0

ŝke
2πi
N

kn, n = 0, . . . , N − 1. (B.4.4)

The connection between the operation of convolution and the Fourier transform is

given by the discrete case the Convolution theorem:
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Proposition B.4.4. Let X̂k and Ŷk 0 ≤ k ≤ N−1 the DFT of N-periodic functions

x(n) and y(n) respectively. The convolution of x and y can be obtained as the product

of the individual transforms:

F (x ∗ y)(k) = X̂(k)Ŷ (k) k = 0 . . . N − 1

(x ∗ y)(n) = F−1(X̂ · Ŷ )(n) n = 0 . . .N − 1

where F denotes the operation of Fourier transform.

Computing the DFT on N points by using the definition takes O(N2) arithmetical

operations and it is often too slow to be practical. The Fast Fourier Transform

algorithm [25] can reduce the complexity to O(NlogN) operations.

264



Bibliography

[1] B. Anderson and J. Moore. Optimal filtering. Prentice-Hall, New York, 1979.

[cited at p. 29]

[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters

for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal

Processing, 50(2):174–188, 2002. [cited at p. 32, 35]

[3] Y. Bar-Shalom. Tracking in a Cluttered Environment with Probabilistic Data As-

sociation. Automatica, pages 451–460, 1975. [cited at p. 4]

[4] Y. Bar-Shalom and T. Fortmann. Tracking and Data Association. Academic Press,

San Diego, 1988. [cited at p. 36, 37, 39, 192]

[5] Y. Bar-Shalom and X. R. Li. Multitarget-multisensor tracking: principles and tech-

niques. YBS Publishing, Storrs, CT, 1995. [cited at p. 37, 39]

[6] Y. Bar-Shalom, X. R. Li, and T. Kirubajan. Estimation with applications to tracking

and navigation. John Wiley & Sons, Inc., New York, NY, USA, 2002. [cited at p. 29]

[7] B. Bercu, P. Del Moral, and A. Doucet. A functional central limit theorem for

a class of interacting Markov Chain Monte Carlo methods. Electronic Journal of

Probability, 14:2130–2155, 2009. [cited at p. 180]

[8] S. Blackman. Multiple Target Tracking with Radar Applications. Artech House,

Norwood, 1986. [cited at p. 39, 192]

[9] S. Blackman. Design and Analysis of Modern Tracking Systems. Artech House,

Norwood, 1999. [cited at p. 40]

[10] S. Blackman. Multiple hypothesis tracking for multiple target tracking. IEEE

Aerospace and Electronic Systems Magazine, 19(1):5–18, Jan. 2009. [cited at p. 4,

40]

[11] E. O. Brigham. The Fast Fourier Transform. Prentice-Hall, New York, 1988.

[cited at p. 263]

265



BIBLIOGRAPHY
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