N
N

N

HAL

open science

Robust algebraic methods for geometric computing

Angelos Mantzaflaris

» To cite this version:

Angelos Mantzaflaris. Robust algebraic methods for geometric computing. Symbolic Computation
[cs.SC]. Université Nice Sophia Antipolis, 2011. English. NNT: . tel-00651672

HAL Id: tel-00651672
https://theses.hal.science/tel-00651672

Submitted on 14 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00651672
https://hal.archives-ouvertes.fr

UNIVERSITY OF NICE - SOPHIA ANTIPOLIS
STIC DOCTORAL SCHOOL

INFORMATION AND COMMUNICATION SCIENCES &
TECHNOLOGIES

PHD THESIS

to obtain the title of

Ph.D. of Science

of the University of Nice - Sophia Antipolis

Specialty : COMPUTER SCIENCE

Presented and defended by
Angelos MANTZAFLARIS

Robust algebraic methods for
geometric computing

Prepared at INRIA Sophia-Antipolis, project GALAAD
Defended on October 3, 2011

Jury :
President of jury : Adam PARUSINSKI - University of Nice, France

Thesis adviser : Bernard MOURRAIN INRIA Méditerranée, France

Examinator : loannis EMIRIS - University of Athens, Greece
Reviewers : Chandrajit BAJAJ - University of Texas at Austin, USA
Bert JUTTLER - Johannes Kepler University, Austria

Mohab SAFEY EL DIN - U. of Pierre and Marie Curie, France

Robust algebraic methods for geometric computing

Abstract: Geometric computation in computer aided geometric design and solid
modeling calls for solving non-linear polynomial systems in an approximate-yet-
certified manner. We introduce new subdivision algorithms that tackle this fun-
damental problem. In particular, we generalize the univariate so-called continued
fraction solver to general dimension. Fast bounding functions, unicity tests, pro-
jection and preconditioning are employed to speed up convergence. Apart from
practical experiments, we provide theoretical bit complexity estimates, as well as
bounds in the real RAM model, by means of real condition numbers.

A main bottleneck for any real solving method is singular isolated points. We
employ local inverse systems and certified numerical computations to provide cer-
tification criteria to treat singular solutions. In doing so, we are able to check
existence and uniqueness of singularities of a given multiplicity structure using
verification methods, based on interval arithmetic and fixed point theorems.

Two major geometric applications are undertaken. First, the approximation of
planar semi-algebraic sets, commonly occurring in constraint geometric solving.
We present an efficient algorithm to identify connected components and, for a given
precision, to compute polygonal and isotopic approximation of the exact set.

Second, we present an algebraic framework to compute generalized Voronoi
diagrams, that is applicable to any diagram type in which the distance from a site
can be expressed by a bi-variate polynomial function (anisotropic, power diagram
etc). In cases where this is not possible (eg. Apollonius diagram, VD of ellipses
and so on), we extend the theory to implicitly given distance functions.

Keywords: root isolation, continued fractions, singular isolated point, root de-
flation, arrangement of curves, semi-algebraic set, Voronoi diagram, subdivision
algorithm

Méthodes algébriques robustes pour le calcul géométrique

Résumé: Le calcul géométrique en modélisation et en CAO nécessite la réso-
lution approchée, et néanmoins certifiée, de systemes polynomiaux. Nous intro-
duisons de nouveaux algorithmes de sous-division afin de résoudre ce probleme
fondamental, calculant des développements en fractions continues des coordonnées
des solutions. Au dela des exemples concrets, nous fournissons des estimations de
la complexité en bits et des bornes dans le modele de RAM réelle.

La difficulté principale de toute méthode de résolution consiste en les points
singuliers isolés. Nous utilisons les systemes locaux inverses et des calculs numé-
riques certifiés afin d’obtenir un critere de certification pour traiter les solutions
singulieres. Ce faisant, nous sommes en mesure de vérifier I’existence et I’unicité
des singularités d’une structure de multiplicité donnée.

Nous traitons deux principales applications géométriques. La premiere: 1’ap-
proximation des ensembles semi-algébriques plans, apparait fréquemment dans la
résolution de contraintes géométriques. Nous présentons un algorithme efficace
pour identifier les composants connexes et pour calculer des approximations polyg-
onales et isotopiques a 1I’ensemble exact.

Dans un deuxieme temps, nous présentons un cadre algébrique afin de calculer
des diagrammes de Voronoi. Celui-ci sera applicable a tout type de diagramme
dans lequel la distance a partir d’un site peut étre exprimé par une fonction poly-
nomiale a deux variables (anisotrope, diagramme de puissance etc). Si cela n’est
pas possible (par exemple diagramme de Apollonius, VD des ellipses etc), nous
étendons la théorie aux distances implicitement données.

Mots-clés: isolation des racines, fractions continues, point singulier isolé, défla-
tion de racine, arrangement des courbes, ensemble semi-algébrique, diagramme de
Voronoi , algorithme de sous-division

Preface

The present thesis is the outcome of studies conducted by the author from
November, 2008 to September, 2011 at team GALAAD, INRIA Sophia-Antipolis,
France, under the supervision of Dr. Bernard Mourrain.

Our motivation has been to combine modern algebraic tools with emerging
techniques in computer aided geometric design in order, on one hand, to bring
closer the fields of algebraic geometry and applied or algorithmic geometry and,
on the other hand, to take a step towards advancing today’s CAD/CAM industry.
This exciting idea evolved in the previous European projects GAIA and GAIA II
(2000-2005) and continued in 2008 with the launch of the SAGA project.

The text is developed in a way that chapters can be read individually, since each
one contains extended preliminary details. However, the reader is invited to follow
the natural flow of the text, in order to experience the bottom-up approach, that we
also adopted in implementing these techniques.

The work done on polynomial system solving has resulted in articles in the
field of symbolic and numeric computation, while the work on arrangements and
Voronoi diagrams has resulted in articles in geometric modeling. Furthermore, our
real solving techniques were implemented in the MATHEMAGIX C++ libraries, and
new geometric algorithms were integrated into AXEL modeler. The writing of this
thesis was funded by the European Community’s Seventh Framework Programme
[FP7/2007-2013], Marie Curie Initial Training Network SAGA (ShApes, Geome-
try and Algebra), grant agreement n° [PITN-GA-2008-214584].

I would like to express my gratitude to my supervisor, Bernard Mourrain, who
has provided tremendous insight and guidance on a variety of topics. The lessons
learned by our daily interaction, by joining him to workshops and meetings, and
by observing his style of work, sharpness in decisions, or the way he manages the
GALAAD project-team are also indispensable.

I would like to thank the reviewers of this thesis for undertaking the reporting
task, as well as for their timely work and useful comments. My best regards also
go to all the members of the jury, for accepting to participate to it and for taking
the trip to Sophia-Antipolis, in order to attend the defense.

Thanks also go to Ioannis Emiris, my master’s adviser and mentor during this
thesis, for all his support throughout these years. His courses on computer alge-
bra and computational geometry were the seeds to my involvement in scientific
research. I would also like to thank my good colleague and co-author Elias Tsi-
garidas for his support and help.

Also, thanks to all scientific partners of the SAGA consortium for their vision
and optimism regarding the future of CAD/CAGD research in Europe and beyond.

http://www.saga-network.eu
http://www.saga-network.eu

vi Preface

In particular, I would like to thank my secondary hosts, that accepted my vi-
sits to their labs during my thesis; I. Emiris, B. Jiittler and T. W. Kim for respec-
tive visits of four, two and half a month. I have had a fruitful time with them
and their team-members. [must mention Dimitris Diochnos, Vissarion Fisikopou-
los, Tatjiana Kalinka, Christos Konaxis, Christos Sirgeloudis from Athens, Martin
Aigner, Szilvia Béla, Carlotta Giannelli, Madalina Horodog, Mario Kapl, Stefan
Kleiss, Elisa Pilgerstorfer, Martha Rossgatterer, Tino Schulz, Ulrike Schwarzmair,
Birgit Strodthoff from Linz and Yeong-hwa Seo, Kittichai Suthunyatanakit, Rushan
Ziatdinov from Seoul. Thank you all for making me feel at home.

Doing this thesis was the opportunity to meet several great individuals at
GALAAD team and at INRIA in general. Greetings go to: Jerome Brachat and
Lu Baa Thang for their kindness and daily company in the office. Laurent Busé
(and Oversteam) for relaxing rock-evenings with his guitar at the brasserie, Eve-
lyne Hubert for adventurous hikes on the mountains of Cote d’Azur, Alessandra
Bernardi and Meriadeg Perrinel for establishing an afternoon-coffee culture in
the team. Christina Bertone and Nicolas Botbol for refreshing afternoons by the
beaches of Antibes. Also, Adrien Poteaux (now in Lille) for being a genuine friend,
André Galligo for his friendship and that memorable afternoon of biking in Kyoto,
Daouda N’Diatta for making the best bargain in the world for me when buying
a car. Finally, Sophie Honnorat and Catherine Djerfi for the solid administrative
support that they provided, as well as Magali Dijan for her kindness and gratitude.

Greetings also go to my colleagues from the CSSC team: George Markomano-
lis, Dimitris Simos and Zafeirakis Zafeirakopoulos. Thanks to Christos, Mil-
tos, Markos and the other guys from the greek community in Nice for carefree
Saturday-night drinks and Sunday-afternoon coffees. Also, to my good high-school
friends from my hometown Filiatra, especially Thanasis and Thodoris, for all the
nice moments that we shared during my escapes to Greece.

I would like to express my warmest feelings to my family, including on one
hand my natural parents (Alexios and Anthoula), my two grandmothers (Anasta-
sia’s) and brothers (Vasilis and Tasos) and, on the other hand, my parents-in-law
(Thodoris and Efi) and sister-in-law (Despoina). I equally give them all my grati-
tude for their love and support.

Undertaking this thesis has certainly been an exciting and greatly rewarding
experience. The only disharmony was the fact that I had to live for around three
years in distance from the love of my life, Asimina. Even though this has not
always been easy for us, she has been a constant support to me throughout this
time. The least I can do in return is to dedicate this thesis to her, and promise to
never stay away from her again for so long time.

Angelos Mantzaflaris
Antibes, October 2011

http://www.cssc.gr

Contents

Preface v
1 Introduction 1
1.1 Problems and approaches 1

1.2 Outlineand mainresults 3

2 Mutivariate continued fraction solver 5
2.1 State-of-the-arto 6
2.2 Notations and preliminaries 7
2.3 Representation: homographies 10
2.4 Subdivision and reductiono L. 12
2.4.1 Thesubdivisionstep 12

2.4.2 Complexity of subdivision step. 13

2.4.3 Reduction: Bounds on therangeof f 15

2.4.4 Preconditioning 17

2.5 Regularitytests Lo 18
2.5.1 Exclusiontest. L. 18

252 Inclusiontests 22

2.6 Complexity and continued fractions 25
2.6.1 About continued fractions 25

2.6.2 Complexityresults 27

2.6.3 Further complexity improvements 29

2.7 Complexity and condition number 30
2.8 Implementation and experimentation 34

3 On the treatment of singular isolated roots 39
3.1 Introduction 40
3.2 Preliminary considerations 43
3.2.1 Isolated points and differentials 43

3.2.2 Quotient ring and dual structure 44

3.3 Computing local ring structure 46
3.3.1 Macaulay’s dialytic matrices 47

3.3.2 Integrationmethod 47

3.3.3 Computing a primal-dual pair 49

3.3.4 Approximate dualbasis. 51

3.4 Deflation of a singularpoint 52

3.5 Verifying approximate singular points 55

vii

viii Contents
3.6 Geometry around a singularity 55
3.6.1 Topological degree computation 56

3.6.2 Branches around a singularity 56

3.7 Experimentation. 57

4 Computing planar semi-algebraic sets 63
4.1 Planar semi-algebraicsets. 64
4.2 Representation 66
4.3 SubdiviSion process e 67
4.4 ReZIONTECOVETY . . v v v v v v v e e e e e e e e e e e e 71
4.4.1 Following the boundary curves around a region Y)

4.5 The case of basic semi-algebraicsets 75
4.5.1 Regularitytest 76

4.6 Thegeneralcase 77
4.7 Implementation and demonstration 78

S Algebraic framework for generalized Voronoi diagrams 87
5.1 Introduction 88
5.1.1 Someexistingwork L. 89

5.1.2 Voronoi diagrams and distance fields 90

5.2 Thealgorithm 91
5.2.1 Subdivisionphase 92

5.2.2 Upper bounds and filtering 95

5.2.3 Cellreconstructionphase 96

5.3 Theimplicitmethod, . 97
53.1 Fieldbound L. 99

5.3.2 Bisectortracking Lo 100

5.3.3 Equations for implicit distance fields 100

5.4 Experimentation oo 101
Conclusion and outlook 103
Bibliography 105
Index 116

CHAPTER 1

Introduction

Contents
1.1 Problemsand approaches 1
1.2 Outlineand mainresults 3

Computer science emerged in the twentieth century, providing the ground for
computational and efficiency aspects to evolve in mathematical theories. Algebra
and geometry are apt examples of this fact. Indeed, applied algebra and geometry
form today broad academic fields as well as the basis of a variety of applications in
industry, through the use of computers.

Computer Aided Design (CAD) is widely applied to domains such as automo-
bile, aecronautic, architecture, and so on. As a result, it has been a driving force for
research in computational geometry, geometric computing and computer algebra.
This thesis is positioned at the intersection of these fields, and combines rigorous
algebraic tools, such as symbolic computation, duality theory and methods from
real algebraic geometry, with fast hybrid techniques, eg. subdivision methods and
approximate numerical computation. Our ultimate objective is to provide access to
robust and efficient software for critical tasks in geometric computing, since this
can lead to significant improvements in CAD applications.

After the present introductory chapter, there are two chapters dealing with poly-
nomial system solving (Chapter 2) and singular point identification (Chapter 3).
Then, two more chapters demonstrate the use of subdivision techniques, coupled
with real solving, to the geometric problems of computation of arrangements of
curves and semi-algebraic sets (Chapter 4), or general Voronoi diagrams (Chap-
ter 5).

1.1 Problems and approaches

Geometric computation often relies on semi-algebraic set representations, in-
volving polynomial equations and inequalities. A basic and important operation in
this context is the construction of specific points on these geometric objects. Typi-
cally, points of intersection of two objects, singular points, points with tangents in

2 Chapter 1. Introduction

a specific direction, and so on, are needed in many algorithms to further process
the geometric objects.

Classical algebraic tools for getting to these points include resultants and subdi-
vision solvers. Resultants provide a compact way for characterizing the solvability
of a polynomial system and lead to efficient ways for describing the common roots,
or to perform elimination. Subdivision methods have a geometric flavor and are
thus quite appealing to geometric computing, since they provide ways to localize
real roots in a given bounded domain. They have seen important progress lately
(cf. [11, 85]), and they have the advantage that they can provide fast approxima-
tions of the solutions of polynomial systems.

Algebraic geometry traditionally aims at exact solutions and hence dominantly
uses the exact arithmetic paradigm. However, CAD-systems are based on double
precision floating point numbers and allow the user to provide geometric tolerances
defining when two points should be considered to be the same. In the presence of
singularities, this task becomes cumbersome. In particular, typical numeric tech-
niques that are integrated in today’s commercial software, eg. Newton’s method,
need to be modified in non-trivial ways to achieve fast convergence, and subdi-
vision solvers may be trapped into straying or looping, thus failing to validate a
single singular point. Approximate inputs (eg. polynomials with floating point co-
efficients) are commonly encountered in CAD-systems, adding the extra problem
of treating almost singular clusters of points. Consequently, in improving quality
and performance of geometric algorithms, handling singular cases is a key issue.

Having efficient techniques to compute punctual solutions opens a range of pos-
sibilities for higher-dimension problems. Semi-algebraic sets define a wide class of
geometric objects, including curves, surfaces and volumes. They occur naturally
after performing Boolean operations between implicit models, or as the descrip-
tion of regions of validity for a physical problem, under polynomial constraints.
A related problem is the counting and treatment of their connected components.
Again, certain intersection, extremal or boundary points, defined as solutions of
the involved polynomial equations, are the keys to deduce the shape of the object.

Frequently, 2D semi-agberaic sets are encountered in CAGD, as the result of
appling elimination on parametric models, in which case one gets algebraic curves
living in the parametric domain. These curves define curved regions that need to be
approximated and used, eg. for trimming parametric surfaces. Gaps created by the
trimming process may destroy continuity of the CAD model and eventually cause
the manufacturing process to fail.

Computing with curved objects is less developed in computational geometry.
Traditionally, linear primitives are the objects of study, and any curved shape has to
be meshed into a large instance of such primitives, in order to be processed. When
looking at Voronoi diagram computation, curved objects lead to bisectors that are
given as algebraic curves, thus algebraic geometry machinery may be applied.

1.2. Outline and main results 3

1.2 Outline and main results

In Chapter 2, we derive a new algorithm for real root isolation, that we call
MCEF, that generalizes the Continued Fraction (CF) algorithm of univariate poly-
nomials. In doing so, we elaborate on a correspondence between the coefficients
of a multivariate polynomial represented in the Bernstein basis and in a tensor-
monomial basis, which leads to homography representations of polynomial func-
tions, that use only integer arithmetic (in contrast to Bernstein basis) and are feasi-
ble over unbounded regions. Then, we study a method to split this representation
and we obtain a subdivision scheme for the domain of multivariate polynomial
functions. A partial extension of Vincent’s Theorem for multivariate polynomials
is presented, which allows us to prove the termination of the algorithm. Bounding
functions, projection and preconditioning are employed to speed up the scheme.
The resulting isolation boxes have optimized rational coordinates, corresponding
to the first terms of the continued fraction expansion of the real roots. Finally,
we present new complexity bounds for a simplified version of the algorithm in the
bit complexity model, and also bounds in the real RAM model for a family of
subdivision algorithms in terms of the real condition number of the system. Exam-
ples computed with our C++ implementation illustrate the practical aspects of the
method.

The third chapter is devoted to singular solutions, i.e. solutions where the Ja-
cobian determinant is rank-deficient. As mentioned previously, a single multiple
point is typically counted as a collection of points, thus threatening the termination
of the subdivision process. We develop a new symbolic-numeric algorithm for the
certification of such singular isolated points, using their associated local ring struc-
ture and certified numerical computations. An improvement of a previous method
to compute inverse systems is presented, which avoids redundant computation and
reduces the size of the intermediate linear systems to solve. We derive a one-step
deflation technique, from the description of the multiplicity structure in terms of
differentials. The deflated system can be used in Newton-based iterative schemes
with quadratic convergence. Starting from a polynomial system and a sufficiently
small neighborhood, we obtain a criterion for the existence and uniqueness of a
singular root of a given multiplicity structure, applying a well-chosen symbolic
perturbation. Standard verification methods, based e.g. on interval arithmetic and
a fixed point theorem, are employed to certify that there exists a unique perturbed
system with an exact singular root in the domain. Applications to topological de-
gree computation and to the analysis of real branches of an implicit curve illustrate
the method.

Our first geometric application, regarding arrangements of curves and general
semi-algebraic domains is presented in Chapter 4. In our work we present an al-
gorithm to efficiently and in a certified way compute the connected components

4 Chapter 1. Introduction

of semi-algebraic sets given by intersection or union of conjunctions of bi-variate
equalities and inequalities. For any given precision, this algorithm can also provide
a polygonal and isotopic approximation of the exact set. The idea is to localize
the boundary curves by subdividing the space and then deduce their shape within
small enough cells using only boundary information. Then a systematic traversal
of the boundary curve graph yields polygonal regions isotopic to the connected
components of the semi-algebraic set. Space subdivision is supported by a kd-tree
structure and localization is done using Bernstein representation. We conclude by
demonstrating our C++ implementation in the computer algebra system MATH-
EMAGIX.

Chapter 5 deals with a new algorithm for the computation of general Voronoi
Diagrams (VD’s) constrained to a given domain. The method is applicable to any
VD type in which the distance from a site can be expressed by a bi-variate poly-
nomial function, notably the anisotropic VD or even VD’s of complex sites. We
use again the Bernstein form of polynomials and DeCasteljau’s algorithm to subdi-
vide the initial domain and isolate bisector domains or domains that may contain a
Voronoi vertex. The efficiency of our algorithm is due to a filtering process based
on bounding the distance functions over the subdivided domains. This allows to
exclude functions (thus sites) that do not contribute locally to the lower envelope
of the lifted diagram. After the filtering process the bisector curves are approxi-
mated by line segments, and vertices are computed by means of root isolation on
the underlying polynomial system, giving overall certified polygonal description of
each Voronoi cell.

We complete the presentation of the thesis with some concluding words, and
an outlook to future developments.

CHAPTER 2
Mutivariate continued fraction
solver

Contents
2.1 State-of-the-art.00 .00, 6
2.2 Notations and preliminaries. 7
2.3 Representation: homographies 10
2.4 Subdivision andreduction. 00000 12
24.1 Thesubdivisionstep 12
2.4.2 Complexity of subdivision step. 13
2.4.3 Reduction: Bounds on the rangeof f 15
244 Preconditioning 17
2.5 Regularitytests. 0t i it i i e e e 18
25.1 Exclusiontest. 18
2.5.2 Inclusiontests 22
2.6 Complexity and continued fractions 25
2.6.1 About continued fractions 25
2.6.2 Complexityresults 27
2.6.3 Further complexity improvements 29
2.7 Complexity and conditionnumber 30
2.8 Implementation and experimentation 34

We propose a new adaptive algorithm for zero-dimensional polynomial system
real solving that acts in monomial basis, and exploits the continued fraction ex-
pansion of (the coordinates of) the real roots. This yields optimal bit-size rational
approximations of the real roots. All computations are performed with integers,
thus this is a division-free algorithm. Also, we derive a partial generalization of
Vincent’s theorem to the multivariate case (Th. 2.9), and use it to prove termination
of the algorithm. We perform a (bit) complexity analysis of the algorithm, when or-
acles for lower bounds and counting the real roots are available (Proposition 2.25).

5

6 Chapter 2. Mutivariate continued fraction solver

In all cases the bounds that we derive for the multivariate case, match the best
known ones for the univariate case, if we restrict ourselves to the univariate case.
Finally, using an inclusion test based on a-theorems (Section 2.7), we provide an
output-sensitive complexity bound in the arithmetic model, which involves the real
condition number of the system.

This work is in the spirit of [80], and belongs to the more general family of
subdivision algorithms. The novelty of our approach is that the proposed method
computes with polynomials in the tensor-monomial basis algorithm, generalizes
the univariate continued fraction algorithm, and does not assume generic position.
Moreover, we apply a subdivision-based approach and exploit the sign properties
of the Bernstein representation of the polynomials, by proving a correspondence
between the latter and a specific sequence of homography transformations. A first
version of this method appeared in [72], while an extended paper was published
in [73].

2.1 State-of-the-art

The problem of computing roots of univariate polynomials is one of the most
well studied problems in mathematics and computer science and has a long history,
see [83] for an expository paper. The last years most of the efforts concentrated on
subdivision-based algorithms, where the localization of the roots is based on sim-
ple tests such as Descartes’ Rule of Signs and its variant in the Bernstein basis,
e.g. [32, 41, 81]. There were a lot of developments on the Boolean complexity of
the various approaches, in the case where the coefficients of the polynomials are
integers, that allowed us to gain a good understanding of the behavior of the algo-
rithms from a theoretical and a practical point of view. In addition, approximation
and bounding techniques have been developed [8, 45, 86, 89] to improve the local
speed of convergence to the roots.

Even more recently, new attention has been given to continued fraction algo-
rithms (CF), see e.g. [95, 103, 104] and references therein. They differ from previ-
ous subdivision-based algorithms in that instead of bisecting a given initial interval
and thus producing a binary expansion of the real roots, they compute the con-
tinued fraction expansions of them. The algorithm relies heavily on computations
of lower bounds of the positive real roots, and different ways of computing such
bounds lead to different variants of the algorithm. The best known worst-case com-
plexity of CF is (53(0[472) [76], while its average complexity is 6B(d3r) [104],
thus being the only complexity result that matches, even in the average case, the
complexity bounds of numerical algorithms [84]. Moreover, the algorithm seems
to be the most efficient in practice [50, 104].

In the multivariate case the cardinality of the solution set may be infinite, i.e.

2.2. Notations and preliminaries 7

of positive dimension. Special methods exist to deal with this problem, see [91].
On the other hand, polynomial systems coming from applications that we focus
usually describe a set of isolated points with real coordinates.

Another track of study, closely related to zero-dimensional solving is by elim-
ination via multivariate resultants [18, 37, 40, 59], in particular using special for-
mulae for structured systems [29, 39].

Subdivision methods for the approximation of isolated roots of multivariate
systems have also been investigated but their analysis is much less advanced. In
[96], the authors used tensor-product representation in Bernstein basis and domain
reduction techniques based on the convex hull property to speed up the conver-
gence and reduce the number of subdivisions. In [34], the emphasis is put on the
subdivision process, and stopping criterion based on the normal cone attached to
the surface patch. In [80, 85], this approach has been improved by introducing
pre-conditioning and univariate-solver steps. The complexity of the method is also
analyzed in terms of intrinsic differential invariants. Recently bounding techniques
based on fat arcs and fat spheres have been used as a means of approximating alge-
braic curves and surfaces as well as for approximating real solutions in two or three
dimensions [11]. For subdivision-based algorithms based on inclusion-exclusion
tests we also refer the reader to [27, 113].

2.2 Notations and preliminaries

For a polynomial f € R|xy,..,x,] = Rz, deg(f) denotes its total degree,
while deg, (f) denotes its degree with respect to ;. Let f(x) = f(z1,..,,) €
R[zy, .., z,] with deg, f = d, k = 1,..,n. If not specified, we denote d = d(f) =
max{dy, ..,d,}.

We are interested in isolating the real roots of a system of polynomials
fi(x), .., fs(x) € Z[zy,..,x,], ina box Iy = [ug,v1] X -+ X [up,v,] C R,
uk, vy € Q. We denote by Zx-(f) = {p € K"; f(p) = 0} the solution set in
K" of the equation f(x) = 0, where the ground field K is R or C.

For a homogeneous polynomial f(zo,...,zn) = >, Ca®” € Rlz] of de-
gree d, we define

= er(?)

|a|=d
For an affine polynomial f(z1,...,z,) of degree d, we define || f|| as the norm of
its homogenization in degree d. For a system f = (f1,..., f,) of polynomials f;

of degree d;, we define || f]| = (|| f]|> + --- + | fu]|?)2. An important property of
this norm is that it stays invariant under an unitary change of coordinates.

8 Chapter 2. Mutivariate continued fraction solver

For v = (v,...,00) € C Jlof = ([+ - + [, vl =
max{|v;|;i=1,...,n}.
ForK =RorK = C, x € K" and p > 0, we denote by

O Bk(z,p) = {y € K" ||y — z|| < p} the ball of center x and radius p;
O Ik(z,p) ={y € K" ||y — x|~ < p} the box of center and radius p;

If I = I x---x1, C R", wedenote by /¢ the product D¢ (I;) x---x D¢(I,) C C?
of discs D¢(1;) C C of diameter /;.

In what follows Op, resp. O, means bit, resp. arithmetic, complexity and the
Op, resp. O, notation means that we are ignoring logarithmic factors. For a € Q,
L (a) > 1 is the maximum bit size of the numerator and the denominator. For a
polynomial f € Z|xy, .., z,]|, we denote by L (f) the maximum of the bit-size of
its coefficients (including one bit for the sign). In the following, we will consider
classes of polynomials such that log(d(f)) = O(L (f)).

Also, to simplify the notation we introduce multi-indices, for the variable vector

d di dn d
x = (r1,.,2,), ° = x -+ 2!, the sum E = E E , and () =
)
i=0

i1=0 in=0
d dy,
(,1> e (,) . The tensor Bernstein basis polynomials of multidegree degree d
11
of a box I are denoted B(x;1,d; I) := By (v1;u1,up) -+ Bf{;(:vn; U, Uy,) Where
I = [u,v] = [up,] X -+ X [y, v,)].

We shall now describe the family of algorithms that we consider. The main
ingredients are

in

< a suitable representation of the equations in a given (usually rectangular)
domain, in terms of a basis of Z[x], for instance a representation in the Bern-
stein basis or in the monomial basis;

< an algorithm to split the representation into smaller sub-domains;
< areduction procedure to shrink the domain.

Different choices for each of these ingredients lead to algorithms with different
practical behavior. The general process is summarized in Algorithm 1.

The instance of this general scheme that we are gong to analyze in this chapter,
generalizes the continued fraction method for univariate polynomials; the realiza-
tion of the main steps (b-e) can be summarized as follows:

b) Perform a precondition process and compute a lower bound on the roots of
the system, in order to reduce the domain.

2.2. Notations and preliminaries 9

Algorithm 2.1: Subdivision scheme
Input: A set of equations fi, fs, .., fs € Z[x] with only ponctual common
solutions, represented over a domain /.
Output: A list of disjoint domains, each containing one and only one real

rootof fi =--- = f, = 0.
Initialize a stack) and add ([, fi, .., fs) on top of it;
While () is not empty do

a) Pop asystem (7, fi, .., f) and:

b) Perform a precondition process and/or a reduction process to refine the
domain.

¢) Apply an exclusion test to identify if the domain contains no root.

d) Apply an inclusion test to identify if the domain contains a single root. In
this case output (1, fi, .., fs)-

e) If both tests fail, then split the representation (I, f1, .., f5) into a number of
sub-domains and push them to Q).

c) Apply interval analysis or sign inspection to identify if some f; has constant
sign in the domain, i.e. if the domain contains no root.

d) Apply Miranda test to identify if the domain contains a single root. In this
case output (1, fi, .., fs).

e) If both tests fail, split the representation at (1, .., 1) and continue.

In the following sections, we are going to describe more precisely these specific
steps and analyze their complexity. In Section 2.3, we describe the representation
of domains via homographies and the connection with the Bernstein basis repre-
sentation. Subdivision, based on shifts of univariate polynomials, reduction and
preconditioning are analyzed in Section 2.4. Exclusion and inclusion tests as well
as a generalization of Vincent’s theorem to multivariate polynomials, are presented
in Section 2.5. In Section 2.6, we recall the main properties of Continued Fraction
expansion of real numbers and use them to analyze the complexity of a subdivision
algorithm following this generic scheme. In Section 2.7, we bound the complexity
of the subdivision method using the a-inclusion test in terms of the real condition
number of the system. We conclude the present chapter with examples produced
by our C++ implementation in Section 2.8.

10 Chapter 2. Mutivariate continued fraction solver

2.3 Representation: homographies

A widely used representation of a polynomial f over a rectangular domain is
the tensor-Bernstein representation. De Casteljau’s algorithm provides an efficient
way to split this representation to smaller domains. A disadvantage is that, con-
verting integer polynomials to Bernstein form results in rational or, if one uses
machine numbers, approximate Bernstein coefficients. We follow an alternative
approach that does not require basis conversion since it applies to monomial ba-
sis: We introduce a tensor-monomial representation, i.e. a representation in the
monomial basis over th product of projective spaces P! x - -- x P! and provide an
algorithm to subdivide this representation analogously to the Bernstein case.

In a tensor-monomial representation a polynomial is represented as a tensor
(higher dimensional matrix) of coefficients in the natural monomial basis, that is,

dlv"adn d

flx) = Z cz-lnz-nw(“""i”) = Zcia:i,

D1 yeeyin, =0

for every equation f of the system. Splitting this representation is done using
homographies. The main operation in this computation is the Taylor shift.

Definition 2.1. A homography (or Mobius transformation) is a bijective projective
transformation H = (H1, .., H,,), defined over P* x --- x P! as

o + Br

xr — Hi(zr) = ,
: () VeTr + O

with ak,ﬂk,*yk,ék € Z, ’Ykék 7é 0, k= 1,..,n.
Using simple calculations, we can see that the inverse

—0rTk + B
VeLp — O

Hy) =

is also a homography, hence the set of homographies is a group under composition.
Also, notice that if det H > 0 then, taking proper limits when needed, we can write

]R+ — Hk(R+) - [&7 %:|)

2.1
O Yk 1)

hence H(f) : R} — R,

H Yok +)™ - (f o H) ()

2.3. Representation: homographies 11

is a polynomial defined over R} that corresponds to the (possibly unbounded) box

Iy =HER") = {%%} XX {g—:%] , (2.2)

of the initial system, in the sense that the zeros of the initial system in [y are in
one-to-one correspondence with the positive zeros of H(f).

We focus on the computation of H(f). We use the basic homographies
TE(f) = flap=zy+e (translation by ¢) or simply Ti.(f) if ¢ = 1, Ci(f) = flap—cay
(contraction by ¢) and Ry (f) = 2(* f|s,-1 Jz, (reciprocal polynomial). These no-
tations are naturally extended to variable vectors; for instance 7¢ = (17*,..,T"),
¢ = (c1,..,¢n) € Z™. Complexity results for these computations appear in the
following sections. We can see that these three basic transformations suffice to

compute any homography:

Lemma 2.2. The group of homographies with coefficients in 7 is generated by
Ry, Cp T, k=1,..,n, c€ L

Proof. Tt can be verified that a Hy(f) with arbitrary coefficients oy, B, vk, O € Z
is constructed as

Hi(f) = O Re G T Ry i

where the product denotes composition. We abbreviate C,i/ “ = RyC{Ry, and
T = CeTrCY u e € Z, e.g. CF(ay) = & and T () = a2 + L,
O

Representation via homography is in an interesting correspondence to the Bern-
stein representation:

Lemma 2.3. Let [= Zfzo b; B&(x, I7) the Bernstein expansion of f in the box
Iy yielded by a homography H. If

d

H(f) = CTRC°T'RC*/=PIPTPP(f) =3 " et

i=0
d . .
then c; = (,)7’5‘1_1@.
)

Proof. Let |ug,vy] = [g—:,%} For a tensor-Bernstein polynomial

12 Chapter 2. Mutivariate continued fraction solver

CYRCOT' RCPT((Z’) L wie - @)t

= CYRC°RT*RC((d) (;xi(’v —u—x)%)

i) (v—u)?

= CYRCORT((Czl) (x —1)%7%)

— nyRC«S((jll) l,'t) — (f) ’)/i(sd_il‘i

as needed.]

Corollary 2.4. The Bernstein expansion of f in Iy is

d
Z 5d -B(x;4,d; Iy).

11

That is, the coefficients of H(f) coincide with the Bernstein coefficients up to con-
traction and binomial factors.

Thus tensor-Bernstein coefficients and tensor-monomial coefficients in a sub-
domain of R" differ only by multiplication by positive constants. In particular they
are of the same sign. Hence this corollary allows us to take advantage of sign
properties (e.g. the variation diminishing property) of the Bernstein basis that still
hold in homography representation.

The resulting representation of the system consists of the transformed polyno-
mials H(f1), .., H(f,), represented as tensors of coefficients as well as 4n integers,
gy B, Vi, O for k = 1,..,n from which we can recover the endpoints of the do-
main, using (2.2).

2.4 Subdivision and reduction

2.4.1 The subdivision step

We describe the subdivision step using the homography representation. This
is done at a point u = (uy,..,u,) € Z%,. It consists in computing up to 2" new
sub-domains (depending on the number of nonzero w;’s), each one having u as a
vertex.

Given H(f1), .., H(fs) that represent the initial system over some domain, we
consider the partition of R} defined by the hyperplanes x), = uy, k = 1,..,n. These

2.4. Subdivision and reduction 13

intersect at u hence we call this partition at w. Subdividing at u is equivalent to
subdividing the initial domain into boxes that share the common vertex #(u) and
have faces either parallel or perpendicular to those of the initial domain.

We need to compute a homography representation for every domain in this
partition. The computation is done coordinate wise; observe that for any domain
in this partition we have, for all k, either z;, € [0, ug] or x € [uy, oc]. It suffices
to apply a transformation that takes these domains to R, . In the former case, we
apply T} R,.C}* to the current polynomials and in the latter case we shift them by
ug, i.e. we apply T,*. The integers oy, [k, Yk, Ox that keep track of the current
domain can be easily updated to correspond to the new sub-domain.

We can make this process explicit in general dimension: every computed sub-
domain corresponds to a binary number of length n, where the k—th bit is 1 if
T} R, C"* is applied or 0 if T}* is applied.

In our continued fraction algorithm the subdivision is performed at u = 1.

(0,0)

Figure 2.1: Subdividing the domain of f.

Let us illustrate this process in dimension two. The system fi, fy is defined
over R?,. We subdivide this domain into [0, 1]%, [0,1] x R~y, Rsy x [0,1] and
R x R<;. Equivalently, we compute four new pairs of polynomials, as illustrated
in Fig. 2.1 (we abbreviate Sy, = T} Ry).

2.4.2 Complexity of subdivision step.

The transformation of a polynomial into two sub-domains, i.e. splitting with
respect to one direction, consists in performing d" ! univariate shifts, one for every
coefficient € Z[xy] of f € Zlxy|[z1, .., Tk, .., Tn).

If the subdivision is performed in every direction, each transformation consists
of d"~! univariate shifts for every variable, i.e. nd"~! shifts. There are 2" sub-
domains to compute, hence a total of n22"d"~! shifts have to be performed in a
single subdivision step. We must also take into account that every time a univariate
shift is performed, the coefficient bit-size increases.

14 Chapter 2. Mutivariate continued fraction solver

The operations
Tu(f) = flep=ap+1 and TpRy(f) = (zx + 1)dkf‘xk:T1H

are essentially of the same complexity, except that the second requires one to ex-
change the coefficient of ¢;, _;, ;. with ¢;; 4, before translation, i.e. an
additional O(d") cost. Hence we only need to consider the case of shifts for the
complexity.

The continued fraction algorithm subdivides a domain using unit shifts and in-
version. Successive operations of this kind increase the bit-size equivalently to a
big shift by the sum of these units. Thus it suffices to consider the general compu-
tation of f(x + wu) to estimate the complexity of the subdivision step.

Lemma 2.5 (Shift complexity). The computation of f(x + u) with L(f) = T and
L(uy) <o, k=1,..,n can be performed in Og(n*d"t + d""'n30).

Proof. We use known facts for the computation of 7,*(f) for univariate poly-
nomials. If deg,f = dj and f is univariate, this operation is performed in
6B(dia + dy7); the resulting coefficients are of bit-size 7 + djo [108]. Hence
F(a1, o 2 + U, ..,) is computed in Op(d" (20 + dy7)).

Suppose we have computed f(x; + uy, zx_1 + ug_1, Tk, .., T,) for some k. The
coefficients are of bit-size 7 + Zi:ll 0;. The computation of shift with respect to
k—th variable f(x1 + uq,..,xx + Uk, Tgy1, .., T,) results in a polynomial of bit-
size 7+ %, 0; and consists of "' Og(d*> ¥ | o, 4+ dr)) operations. That is,
we perform d"~! univariate polynomial shifts, one for every coefficient of f in
Zlxg)[x1, .y They ooy T

This gives a total cost for computing f(x + u) of

n

n k
dmt Z <d2 Z o + d7'> = nd"7 + d"** Z(n + 1 — k)oy.

k=1 i=1 k=1

The latter sum implies that it is faster to apply the shifts with increasing order,
starting with the smallest number uy. Since o, = O(0o) for all k, and we must shift
a system of O(n) polynomials we obtain the stated result. [

Remark An alternative way to compute a sub-domain using contraction, prefer-
able when the bit-size of w is big is to compute 7}!C}* instead of T}".

If we consider a contraction of factor u followed by a shift by 1 with respect to
a1, for O(n) polynomials, we obtain O (n2d™r +n3d™™* + nd™+'¢) operations for
the computation of the domain, where £(f) = 7,and L(ug) < o, k =1,..,n.

The disadvantage is that the resulting coefficients are of bit-size O(7 + do) in-
stead of O(7 + no) with the use of shifts. Also observe that this operation would

2.4. Subdivision and reduction 15

compute an expansion of the real root which differs from continued fraction ex-
pansion. As a consequence, using this transformation, a complexity analysis based
on the properties of continued fractions, like the one we present in 2.6 would not
apply.

Nevertheless in practice, this method has sometimes the effect of separating
more easily the roots and thus lead to faster computation of isolation sub-domains.
We have experimented with this solution, as one variant of our implementation.

2.4.3 Reduction: Bounds on the range of f

In this section we define univariate polynomials whose graph in R”™! bounds
the graph of f. For every direction k, we provide two polynomials bounding the
values of f in R™ from below and above respectively.

Define
d
mi(fim) = Y min ¢y, 2 (2.3)
£ ik
dy,
My (f;zp) = Z max cil”l-nxﬁf 2.4)

i, =0 Ulyeeslkseesin

Lemma 2.6. Forany x € R}, n > 1 and any k = 1,..,n, we have

< Mi(f; x). (2.5)

Proof. For x € R, we can directly write
di ds
fla) < (D] max e, | Dok
ip=0 "1 thotn sk is=0

The product of power sums is greater than 1; divide both sides by it. Analogously
for My (f; zx). O

Corollary 2.7. Given k € {1,..,n}, ifu € R, with uy, €]0, 1z}, where
min. pos. root of My (f,xr) if Mx(f;0) <0

pr = § min. pos. root of my(f,xg) if mg(f;0) >0 |
0 otherwise

16 Chapter 2. Mutivariate continued fraction solver

then f(u) # 0. Consequently, all positive roots of f liein R, x---xRs,,. Also,
for uw € R" with uy, € [My, 0],

max. pos. root of My (f,xy) if My(f;00) <0
My =< max. pos. root of my(f,xr) if mg(f;00) >0 ,
o0 otherwise

itis f(u) # 0, i.e. all positive roots are in Ropq, X -+ X Ropg, .
Combining both bounds we deduce that [jiy, M| X - - - X [, M| is a bounding
box for f~1({0}) NR7.

Proof. The denominator in (2.5) is always positive in R}. Let v € R" with
ur € [0, ug]. I Mi(f,0) < 0 then also My(f,u) < 0 and it follows f(u) < 0.
Similarly my(f,0) > 0 = mg(f,u) > 0 = f(u) > 0. The same arguments hold
for [My, 00|, Mi(f;00) = R(My(f;2x))(0), m(f;00) = R(mg(f;xx))(0), and
R(f), since lower bounds on the zeros of R(f) yield upper bounds on the zeros of
f. O

Thus lower and upper bounds on the £—th coordinates of the roots of (f1, .., fs)
are given by

Zgllaxs{uk(fz)} and ngs{/\/lk(fl)} (2.6)

respectively, i.e. the intersection of these bounding boxes.

We would like to remain in the ring of integers all along the process, thus integer
lower or upper bounds will be used. These can be the floor or ceiling of the above
roots of univariate polynomials, or even known bounds for them, e.g. Cauchy’s
bound.

If the minimum and maximum are taken with the ordering of coeffi-
cients defined as ¢; < ¢; <= ¢ (?)77 547 < ¢;(?)7%69 then different
my(f,xx), Mi(f, ;) polynomials are obtained. By Corollary 2.4 their con-
trol polygon is the lower and upper hull respectively of the projections of the
tensor-Bernstein coefficients to the £—th direction and are known to converge
quadratically to simple roots when preconditioning (described in the following
paragraph) is utilized [80, Corollary 5.3].

Complexity analysis. The analysis of the subdivision step in Section 2.4.3 applies
as well to the reduction step, since reducing the domain means to compute a new
sub-domain and ignore the remaining volume of the initial box.
If a lower bound I = (Iy, ..., 1,) is known, with £ (1) = O(0), then the reduc-
tion step is performed in O (n%d"r +d™'n3c). This is an instance of Lemma 2.5.
The projections of Lemma 2.6 are computed using O(d") comparisons. The

computation of I costs 5B(d37) in average, for solving these projections using

2.4. Subdivision and reduction 17

\ \\ “““““““VA
. INININ;
SN

W vﬁﬂﬂmﬂﬂﬂﬂﬂnﬁﬂﬂﬂﬂﬂﬂ”ﬁ. ..

Figure 2.2: The enveloping polynomials M;(x), mq(z) in domain I, for a bi-
quadratic polynomial f(x,y).

univariate CF algorithm. Another option would be to compute well known lower
bounds on their roots, for instance Cauchy’s bound in O(d).

Illustration. Consider a bi-quadratic fy € R[z,y], namely, deg,. fo = deg,, fo = 2
with coefficients ¢;;. Suppose that fy = H(f) for Iy = I;. We compute

2 2
ma(f,x1) g min , il xl and M (f,xq) E max_c;; .
]:07 7 ’2
=0 1=0

7=0,...

thus m(f,x;) < % < M;(f,x1). Fig. 2.2 shows how these univariate

quadratics bound the graph of f in I;.

2.4.4 Preconditioning

To improve the reduction step, we use preconditioning. The aim of a precondi-
tioner is to tune the system so that it can be tackled more efficiently; in our case we
aim at improving the bounds of Corollary 2.7.

A preconditioning matrix P is an invertible s x s matrix that transforms a system
(f1, .., fs)" into the equivalent one P-(f1, .., f5)'. This transformation does not alter
the roots of the system, since the computed equations generate the same ideal. The
bounds obtained on the resulting system can be used directly to reduce the domain
of the equations before preconditioning. Preconditioning can be performed to a
subset of the equations.

Since we use a reduction process using Corollary 2.7 we want to have among
our equations n of them whose zero locus f~'({0}) is orthogonal to the k—th
direction, for all k.

Assuming a square system, we precondition H (f1), .., H(f,,) to obtain a locally
orthogonal to the axis system; an ideal preconditioner would be the Jacobian of the

18 Chapter 2. Mutivariate continued fraction solver

system evaluated at a common root; instead, we evaluate Jp s at the image of
Ok +BrVk

the center w of the initial domain 5, v, = BT s Thus we must compute
the inverse of the Jacobian matrix Jy(f)(z) = [0x,H(f;)(%)]1<ij<n evaluated at

v =H(u) = (01/71, -, 6n/Vn)-

Precondition step complexity. Computing Jg (s (w) - (H(f1),.., H(f,))" is done
with cost Og(n%d") and evaluating at «’ has cost Op(n2d"~1). We also need
(53(n2) for inversion and O(n2d") for multiplying polynomials times scalar as
well as summing polynomials. This gives a precondition cost of order O(n?d").

2.5 Regularity tests

A subdivision scheme (cf. Algorithm 1) is able to work when two tests are
available: one that identifies empty domains (exclusion test) and one that identifies
domains with exactly one zero (inclusion test). If these two tests are negative,
a domain cannot be neither included nor excluded so we need to apply further
reduction/subdivision steps to it. Nevertheless, if the result of the test is affirmative,
then this should be certified to be correct, in order to get a reliable method.

2.5.1 Exclusion test

The bounding functions defined in the previous section provide a fast filter to
exclude empty domains. Define min & = oo and max @ = 0.

Corollary 2.8. Iffor some k € {1,..,n} and for somei € {1, .., s} itis u(f;) = 0o
or My(f;) = 0 then the system has no solutions. Also, if max;—; __s{ur(fi)} >
min,—y s {My(fi)} then there can be no solution to the system.

Proof. For the former statement observe that f; has no real positive roots, thus the
system has no roots. The latter statement means that the reduced domains of each
fi, 1 =1, .., s do not intersect, thus there are no solutions. L]

We can use interval arithmetic to identify additional empty domains; if the sign
of some initial f; is constant in /5 = H(RZ,) then this domain is discarded. We
can also simply inspect the coefficients of each H (f;); if there are no sign changes
then the corresponding box contains no solution.

The accuracy of these criteria greatly affects the performance of the algorithm.
In particular, the sooner an empty domain is rejected the less subdivisions will take
place and the process will terminate faster. We justify that the exclusion criteria will
eventually succeed on an empty domain by proving a generalization of Vincent’s
theorem to the tensor multivariate case.

2.5. Regularity tests 19

Theorem 2.9. Let f(x) = Z?:o c; * be a polynomial with real coefficients, such
that it has no (complex) solution with R(z) > 0 for k = 1,..,n. Then all its
coefficients c;, . ;, are of the same sign.

Proof. We prove the result by induction on n, the number of variables. For n = 1,
this is the classical Vincent’s theorem [3].
Consider now a polynomial

f(@1,22) = > Ciy iy T T

0<i1<d1,0<i2<d»

in two variables with no (complex) solution such that ®(z;) > 0 fori = 1,2. We
prove the result for n = 2, by induction on the degree d = d; + dy. The property
is obvious for polynomials of degree d = 0. Let us assume it for polynomials of
degree less than d.

By hypothesis, for any z; € C with ®(z;) > 0, the univariate polynomial
f (21, z2) has no root with R(z5) > 0. According to Lucas theorem [74], the com-
plex roots of 0., f (21, x2) are in the convex hull of the complex roots of f(z1,x2).
Thus, there is no root of 0,., f (21, 2) with %(z1) > 0 and R(z2) > 0. By induction
hypothesis, the coefficients of 0, f (21, x2) are of the same sign. We decompose P
as

(w1, 22) = f(21,0) + fi(z1, 22)

where f1(21,%2) = Y i <dy 1<ip<dy, Cirvi o't x2 with ¢, ;, of the same sign, say
positive. By Vincent theorem in one variable, as f(z1,0) has no root with $(z;) >
0, the coefficients ¢;, o of f(x1,0) are also of the same sign. If this sign is different
from the sign of ¢;, ;, for io > 1 (i.e. negative here), then f(0,z5) has one sign
variation in its coefficients list. By Descartes rule, it has one real positive root,
which contradicts the hypothesis on f. Thus, all the coefficients have the same
sign.

Assume that the property has been proved for polynomials in n — 1 variables
and let us consider a polynomial f(x) = Z?:o ¢; €' in n variables with no (com-
plex) solution such that R(z) > 0 for ¥ = 1,...,n. For any 21,..,2,-1 € C
with R(z;) > 0, for £ = 1,..,n — 1, the polynomial f(z1,..,2,1,2,) and
Op, f(21, .., Zn_1,) has no root with (x,,) > 0. By Lucas theorem and induction
hypothesis on the degree, 0, f(x) has coefficients of the same sign. We also have
f(z1,..,z,_1,0) with coefficients of the same sign, by induction hypothesis on the
number of variables. If the two signs are different, then f(0, .., 0, z,,) has one sign
variation in its coefficients and thus one real positive root, say (,, which cannot
be the case, since (0, .., 0, (,,) would yield a real root of f. We deduce that all the
coefficients of f are of the same sign.

This completes the inductive proof of the theorem. [

20 Chapter 2. Mutivariate continued fraction solver

We can reformulate this result for bounded domains, using homography trans-
formations, as follows.

Corollary 2.10. Let H(f) = Z?:o c; * be the representation of f through H in
a box Iy = [u,v]. If there is no root z € C" of f such that

U, + Vg
2

Vi — Uk
< 5 ,fork=1,..n,

Zk —

then all the coefficients c;, ;. are of the same sign.

)
That is, if ||dist|| oo (Zcn (f), m) > > where m is the center of I of size 0, then

1y is excluded by sign conditions.

Proof. The interval [uy,v;] is transformed by H~! into [0, +oo] and the disk
}zk — “k;”k ‘ < “5% s transformed into the half complex plane R(z;) > 0. We
deduce that H(f) has no root with R(z;) > 0, k = 1,...,n. By Theorem 2.9, the
coefficients of H(f) are of the same sign. O

We deduce that if a domain is far enough from the zero locus of some f; then it
will be excluded, hence redundant empty domains concentrate only in a neighbor-
hood of f = 0.

The regions which will be excluded during the subdivision algorithm can be
quantitatively related to the regions where || f(x)| is large, using the Lipschitz
constant of f:

Definition 2.11. For a system f = (f1,..., fs) of polynomials f; € Rlx] (i =
1,....,8)andabox 1 =1, x --- x I, CR", let

Ar(f) = max{—”f(ﬁ;; - zjjﬁy)!l ju #y € Ick

be the Lipschitz constant of f on I¢.

By definition, we have || f(z) — f(y)|| < Ai(f)||z — y|| forall z,y € Ic. Ttis

b 13

convenient to define a box in reference to it’s “center’’.
Definition 2.12. For x € R", € > 0, we use the symbols:

O The interior of the real hypercube centered at x: I(x,e) = {y € R" :
|yz —ZL'Z| <g 1= 1,...,7’1}, e I =11 x---x 1, withl;, = Ii<xi>5) CR

& The complex ball Be(x,e) ={y € C" : |y — x| < €}

& The complex multi-disc Ic(v,e) ={y € C" : |y; — x| <e,i=1,...,n},
ie. Ic =1 x -+ x I, with I; = Be(z;,e) C C.

2.5. Regularity tests 21

Lemma 2.13. Suppose that Ic C Bc(0, p) with p > 1 and f € Rlx] is of degree
d, then
A(f) < V2| fllp*t

Proof. Letx,y € Ic C Be(0, p). We consider g(t) := R(f(x+t (y—x)) — f(x)).
By the intermediate value theorem, there exists 7 € [0, 1] such that

(R(f(y) = f(@)] =19 (D) < | Dy-o(f) (@ + 7 (y — 7))

The same results applies if we take the imaginary part. By [97, III, Prop. 1 p. 484]
we have

[f(y) = f(@)] < V2IDy—o(f) (@ + 7 (y = 2))| < V2IDyu())]I o™
since v + 7(y — x) € Ic C Bc(0, p). By [97, 111, Lem. 2, p. 485] we deduce that
F) = f@)] < V2l flp" ly - =,

which concludes the proof of the Lemma. [

Proposition 2.14. Let H be a homography of R"™ and € > 0 is such that |I| < 2¢,
where I = Iy If || f(2)||oo > v/ A1(f) € then the coefficients of at least one of the
functions H(f;) are of constant sign.

Proof. Suppose that || f(x)||.c = | fi,(x)| and let z € C™ be the closest point to x
such that f; (z) = 0. We have

| fio(@)] = | fio (@) = fio(2)| < Ar(f) llz = 2l < Ar(f) vV [lz — 2|

and thus there is no root of f;, in I¢(x,¢) fore < \‘/Jg(;(f()}). By Corollary 2.10, we
deduce that the coefficients of H(f;,) are of constant sign. []

To analyze more precisely the subdivision process, we are going to relate the
number of boxes which are not removed with some integral geometry invariants
[115]:

Definition 2.15. The tubular neighborhood of size € of f; is the set
7.(fi) ={z e R" : 32 € C", fi(2) =0, s.t. ||z — x| < €}

‘We bound the number of boxes that are not excluded at each level of the subdi-
vision tree.

Lemma 2.16. Assume that I = I, x - - - x I, is bounded. There exists N;(I) € N*
such that the number of boxes of size € > 0 kept by the algorithm is less than N (1)
and such that

V(f,€) = volume (Ni_;7-(fi) N 1)) < N (I)e".

22 Chapter 2. Mutivariate continued fraction solver

Proof. Consider a subdivision of the domain /; into boxes of size ¢ > 0. We
will bound the number N%(I) of boxes in this subdivision that are not rejected by
the algorithm. By Corollary 2.10 if a box is not rejected, then we have for all
i=1,...,sdiste(Zcn(fi), m) < 5, where m is the center of the box. Thus all the
points of this box (at distance < 5 to m) are at distance < ¢ to Zen(f;) that is in
N2y (fi) N 1.

To bound N3(I), it suffices to estimate the n—dimensional volume V'(f,¢),
since we have:

N5(I)e" < volume (Mi_y7(fi) N I) =V (f,).

When ¢ tends to 0, this volume becomes equivalent to a constant times £". For
a square system with simple roots in /, it becomes equivalent to the sum for all
real roots (in I of the volumes of parallelotopes in n dimensions of height 2¢ and
edges proportional to the gradients of the polynomials at (; More precisely, it is

bounded by &"2" Zce 1.F(0)=0 % We deduce that there exists an integer

Ni(I) > 2 D cel f(0)=0 W such that V'(f, 5.) § N3 (I) " < oo For
overdetermined systems, the volume is bounded by a similar expression.

Since V' (f,e) €™ has a limit when ¢ tends to 0, we deduce the existence of the
finite constant N7(I) = max.~o N5(I), which concludes the proof of the lemma.

O

Notice that preconditioning operations can be used here to improve this bound.

2.5.2 Inclusion tests

We consider two types of inclusion tests (which can easily be combined) and
analyze the complexity of the corresponding subdivision process in the following
sections.

Miranda’s test

We present a first test that discovers common solutions, in a box, or equivalently
in R, through homography. To simplify the statements we assume that the system
is square, i.e. s = n.

Definition 2.17. The lower face polynomial of f with respect to direction k
is low(f,k) = fls,=0- The upper face polynomial of [with respect to k is
upp(f’ k) = f|$k:<>0 = Rk(f)|$k:0'

Lemma 2.18 (Miranda Theorem [77, 109]). If for some permutation
™ {l,...,n} — {1,...,n}, we have sign(low(H(fy),n(k))) and
sign(upp(H (fx),7(k))) are constant and opposite for all k = 1,... n, then the
equations (f1, ..., fn) have at least one root in Ip.

2.5. Regularity tests 23

The implementation of Miranda’s test can be done efficiently if we compute a
0 — 1 matrix with (¢, j)—th entry 1 iff sign(low(H (f;), 7)) and sign(upp(H (i), 7))
are opposite. Then, Miranda test is satisfied iff there is no zero row and no zero
column. To see this observe that the matrix is the sum of a permutation matrix and
a 0 — 1 matrix iff this permutation satisfies Miranda’s test.

We deduce a test that identifies boxes with a single root.

Lemma 2.19. [fin the box Iy, det J;(x) is bounded away from 0 and the assump-
tions of Lemma 2.18 are true for J;(xo) ™" f where xq is the center of Iy, then there

is a unique root of f = (f1,..., fn) in Iy.

Proof. By [109] we have that the topological degree 7 := T'(J¢(xo) ' f, I, 0) of
Jr(zo)~'f at 0 is equal to 1. Suppose z,, . . ., z, are all the roots of f in [Since
by definition 7 := >_'_, sign det(.J;(w0) " J;(z;)) and det(J; (o)~ Jf(z;)) > 0,
we have t = 1. [

Miranda’s test can be decided with O(n?) (cf. [46]) sign evaluations of the
face polynomials, which is done by coefficient-sign inspection, yielding O(n?d")
operations. Then we need to evaluate J¢ on Iy and compute it’s determinant,
O(n%d"™ + n?) operations. Thus overall the inclusion test is decided in O(n2d").

Proposition 2.20. [f the real roots of the square system in the initial domain I are
simple, then Algorithm 1 stops with boxes isolating the real roots in I.

Proof. 1f the real roots of f = (fi,..., fn) in Iy are simple, in a small neighbor-
hood of them the Jacobian of f has a constant sign. By the inclusion test, any box
included in this neighborhood will be outputted if and only if it contains a single
root and has no real roots of the jacobian. Otherwise, it will be further subdivided
or rejected. Suppose that the subdivision algorithm does not terminate. Then the
size of the boxes kept at each step tends to zero. By Corollary 2.10, these boxes
are in the intersection of the tubular neighborhoods (N;_,7.(f;)) NR" for £ > 0 the
maximal size of the kept boxes. If ¢ is small enough, these boxes are in a neigh-
borhood of a root in which the Jacobian has a constant size, hence the inclusion
test will succeed. By the exclusion criteria, a box domain is not subdivided indef-
initely, but is eventually rejected when the coefficients become positive. Thus the
algorithm either outputs isolating boxes that contain a real root of the system or re-
jects empty boxes. This shows, by contradiction, the termination of the subdivision
algorithm.]

The a-inclusion test

In this section, we consider another inclusion test, based on a-theory and prop-
erties of convergence of Newton’s method. This test of existence and unicity of a
root in a neighborhood of a point involve the following constants:

24 Chapter 2. Mutivariate continued fraction solver

Definition 2.21. For a system [= (f1,. .., [n) of polynomial equations, we define
O By(x) = |[Df(x)~" f(=)

evaluated at x,

, where D f (x)_l, the inverted Jacobian matrix

O yp(x) = supgsg H%Df(x)_lef(x)Hﬁ, where D* f(z), the k—th covari-
ant derivative of f,

O ayp(z) = Br(x) ve(x).
Let§(u) := 3(1+u—+/(1 + u)? — 8u). We recall here a well-known theorem
[971, [13] which is the foundation of the theory:

Theorem 2.22. Ifozf(r) < ap < 2(13—3V17) ~ 0.1577 then f has a unique zero
C in the ball Be(z, (I) with 8y = () < f ~ 0.2929. Moreover, for each
point z € Be(z, yfé(a:)), Newton’s method startmg from z converges quadratically
to C.

This yields the following definition:

Definition 2.23. A box I(z,¢) is an og-inclusion box if af(x) < o, and € <
o 0 (CY()) .

V¢ ()

By theorem 2 22, if I(x,) is an oy-inclusion box then there is a unique root in
the ball B¢ (z, f()) where dy = 6(cy). Moreover, we have I (z,¢) C Be(x, %)

As we will see, the ag-inclusion boxes that derive from the subdivision pro-
cess (1) determine regions which isolate the roots of the system f(z) = 0. In fact,
if we are able to decompose a domain /; into a union of boxes which either contain
no roots or are «p-inclusion boxes, then

< eachroot is in a connected component of the union of the y-inclusion boxes,
and,

< each connected component of the union of the ag-inclusion boxes contains a
unique root of f(x) = 0.

More precisely, if such a connected component is U; _, [(x®) e®)) with 2 € D,
and £ > 0, then by theorem 2.22, there is a unique root (*) in B(z*) %)

vy (@k)) />
for k = 1,...,s. As the balls B(2®, %) B(zV), %) of two adjacent
ap-inclusion boxes intersect, we must have
) 4)
®) = ¢ e B(z®, —=_)N B(2V) O
(8= e B Sy N B sy

Since the connected component U5_, I (z(®), ¢(*)) is a union of boxes in which every
box has at least one adjacent, by recursive application of the above argument we
derive that it contains a unique root ¢, which moreover is in N;_, B(z*), ¢(®).

2.6. Complexity and continued fractions 25

2.6 Complexity and continued fractions

In this section we compute an upper bound on the complexity of the algorithm
that exploits the continued fraction expansion of the real roots of the system. Here-
after, we call this algorithm MCF (Multivariate Continued Fractions). Since the
inclusion test is based on an a-theorem, we assume that the system has simple real
roots. Since the complexity analysis of the reduction steps of Section 2.4 and the
Exclusion-Inclusion test of Section 2.5 would require much more developments,
we simplify further the situation and analyze a variant of this algorithm. We as-
sume that two oracles are available. The first one computes, exactly, the partial
quotients of the positive real roots of the system, that is the integer part of the co-
ordinates. The second counts exactly the number of real roots of the system inside
a hypercube in the open positive orthant, namely R”}. In fact, having this second
oracle is enough for the realization/implementation of the former, together with
bisection. In what follows, we will assume the cost of the first oracle is bounded
by C;, while the cost of the second is bounded by C,, and we shall derive the total
complexity of the algorithm with respect to these parameters. In any case the num-
ber of reduction or subdivision steps that we derive is a lower bound on the number
of steps that every variant of the algorithm will perform. The next section presents
some preliminaries on continued fractions, and then we detail the complexity anal-
ysis.

2.6.1 About continued fractions

Our presentation follows closely [104], and we refer the reader to, e.g., [17,
107, 114] for additional details. A simple (regular) continued fraction is a (possibly
infinite) expression of the form

coo+——"7—= [COaclacQa - ']7

1
c1 +
CQ+"'

where the numbers ¢; are called partial quotients, c; € 7Z and ¢; > 1 for i > 0.
Notice that ¢y may have any sign, however, in our real root isolation algorithm
co > 0, without loss of generality. By considering the recurrent relations

P_lz]., P():C(), Pn+1:Cn+1Pn+Pn_1,
Q—l =0, QO =1, Qn—l—l = Cn+1 Qn + Qn—h

it can be shown by induction that R,, = % = [co,c1,.. . cp), forn=0,1,2,....
_ _ 1 1 _ oo (=1t
. If’)/.—'[Co,Clz. .] then’y — Co + m— 002 + e =Co+ Zn:l On_10m and
since this is a series of decreasing alternating terms, it converges to some real num-
ber . A finite section R,, = £= = [cy, cy, ..., ¢, is called the n—th convergent (or

Qn

26 Chapter 2. Mutivariate continued fraction solver

approximant) of and the tails v, 11 = [¢h41, Cnya, - - -] are known as its complete
quotients. That is v = [co, ¢1, ..., Cn, Yus1) forn = 0,1,2,.... There is a one to
one correspondence between the real numbers and the continued fractions, where
evidently the finite continued fractions correspond to rational numbers.

It is known that),, > F,; and that F,,,; < ¢" < F,, o, where F}, is the n—th
Fibonacci number and ¢ = %5 is the golden ratio. Continued fractions are the
best rational approximation(for a given denominator size). This is as follows:

1 P, 1
< ‘7 — < < (2.7

Qn(Qn-i-l + Qn) Qn o QnQn—i—l

Let v = [cg,¢q,...] be the continued fraction expansion of a real number. The
Gauss-Kuzmin distribution [17] states that for almost all real numbers -, that is the
set of exceptions has Lebesgue measure zero, the probability for a positive integer
0 to appear as an element ¢; in the continued fraction expansion of -y is

(6 +1)?

PTOb[CZ‘ = (5] ha lg m,

for any fixed ¢ > 0. (2.8)
The Gauss-Kuzmin law induces that we can not bound the mean value of the partial
quotients or in other words that the expected value (arithmetic mean) of the partial
quotients is diverging, i.e.

El¢] = Z(SProb[c,- =] = o0, fori > 0.
5=1

However, the geometric, as well as the harmonic, mean is not only asymptotically
bounded, but is bounded by a constant, for almost all v € R. For the geometric
mean this is the famous Khintchine’s constant [58], i.e.

n

[[ci = K =2.685452001...

=1

lim
n—oo

It is not known if C is a transcendental number. The expected value of the bit size
of the partial quotients is a constant for almost all real numbers, when n — oo or n
sufficiently big [58]. Notice that in (2.8), 7 > 0, thus v € R is uniformly distributed
in (0,1). Let £ (¢;) = by, then

Elb] = 0(1gK) = O(1). (2.9)

Lévy loosened the assumptions of Khintchine and proved [64] that the distribution
also holds for v € R with any density function that is Lebesgue measurable.

2.6. Complexity and continued fractions 27

2.6.2 Complexity results

We denote by o the upper bound on the bit-size of the partial quotients that
appear during the execution of the algorithm.

Lemma 2.24. The number of reduction and subdivision steps that the algorithm
performs is O(2" n(d +n + 7)d*").

Proof. Let ¢ = ((i, ..., () be areal root of the system. It suffices to consider the
number of steps needed to isolate the i—th coordinate of (. We remind the reader
that we are working in the positive orthant and we can compute exactly the next
partial quotient in each coordinate; in other words a vector I = (I, ...,[,), where
each [;, 1 <14 < n, is the partial quotient of a coordinate of a positive real solution
of the system.

Let k;(¢) be the number of steps needed to isolate the i*" coordinate of the real
root (. The analysis extends the one of the univariate case. We may consider the
whole process of the subdivision algorithm as a 2" —ary tree, where at each node
we associate a, possible, open hypercube, and to the root of the tree we associate
the positive orthant. The leaves of the tree form a partition of the positive orthant,
and they contain at most one real root of the system. The number of nodes of the
tree correspond to the number of steps that the algorithm performs.

We prune some leaves of the tree to make the counting easier. We prune all the
leaves that have siblings that are not leaves. We prune all the leaves that do not
contain a real root. Notice that these leaves have at least one sibling that contains
a real root, since otherwise the subdivision process would have stopped one step
before. All the remaining leaves contain a real root. If there are siblings that are all
leaves then we keep arbitrarily one of them. The number of nodes in the original
tree is at most 2" times the number of nodes of the pruned tree.

Now every leave of the pruned tree corresponds to a hypercube that contains
exactly one real root, say (, of the system. The edges of the hypercube correspond
to successive approximations of ¢; by consecutive approximants. The k;(¢)-th ap-

Pri(©)

proximant is oy and following (2.7) should satisfy

‘Pki«;) _¢l< 1
Qri(0) T Qr(0 Qi) 41

In order to isolate (;, it suffices to have

sz‘(() — G
Qk’i(()

where A;(C) is the local separation bound of (;, that is, the smallest distance be-
tween (; and all the other i—th coordinates of the positive real solutions of the

< Ai(Q),

28 Chapter 2. Mutivariate continued fraction solver

system. The number of nodes from the hypercube that isolates (to the root of the
tree is, in the worst case, k(() = max; k;(C).

Combining the last two equations, we deduce that to achieve the desired ap-
proximation, we should have ¢~25(O+1 < A;((), or k;(¢) > 1 — L1g A;(¢). That
is, to achieve the desired approximation it suffices to compute O(—1 1g A;(¢)) ap-
proximants. In other words, from the leaf that corresponds to a hypercube that
isolates ¢ to the root of the tree there are O(—3 lg A(¢)) nodes, where A = min A;.

To compute the total number of steps, i.e. the total number of nodes of the
pruned tree, we need to sum over all the real roots that appear at the leaves of the
tree; hence

SO < 3R 53 1BAQ = 5R - s [A,
cev

cev ¢cev

where |V| < R, V is the set of positive real roots at the leaves of the pruned tree
and R and the total number of positive real roots.

To bound the logarithm of the product, we use DMM,, [42], i.e. aggregate sepa-
ration bounds for multivariate, zero-dimensional polynomial systems. It holds

ngvA(C) >
—IOgHCE‘/A(C) < (B+4lgn+4nlgd)d® +2n(1 +nlgd + 7)d* 1,

_ log ngV A(C) 6(nd2n + (nQ + n7)d2n—1>'
Taking into account that R < d" we conclude that the total number of nodes of

the pruned tree is O(nd* + n(n + 7)d*>1), and hence the number of steps of the
algorithm is O (2" nd*" + 2" n(n + 7)d*" 1), O

—(3+41gn+4nlgd)d®” o—2n(14+nlgd+r)d?"—1
2 2

Proposition 2.25. The total complexity of the algorithm is (’33(23”715(712 + d? +
) d" o + (Cy + C2)2" n(d + n + 7)d*").

Proof. At each h-th step of algorithm, if there is more than one root of the cor-
responding system in the positive orthant, (let the cost of estimating this is be
Cy), we compute the corresponding partial quotients I, = (In1,...,lnn), Where
L (hy;) < o, (let the cost of this computation be C;). Then, for each polynomial
of the system, f, we perform the shift operation f(x; + [, ..., z, + [,), and then
we split the positive orthant to 2" subdomains. Let us estimate the cost of the last
two operations.

A shift operation on a polynomial of degree < d, by a number of bit-size o,
increases the bit-size of the polynomial by an additive factor ndo. At the h step of
the algorithm, the polynomials of the corresponding system are of bit-size O(7 +
nd Z?Zl on), and we need to perform a shift operation to all the variables, with

number of bit-size 7y, 1. The cost of this operation is Oz (nd"r+n2d"** 31" 03.),

2.6. Complexity and continued fractions 29

and since we have n polynomials the costs becomes O 5(n2d"7+n3d+! S o),

The resulting polynomial has bit-size O(7 + nd 3171 o).

To compute the cost of splitting the domain, we proceed as follows. The cost
is bounded by the cost of performing n2" operations f(xz; + 1,...,z, + 1), which
in turn is Op(nd™r + n2d™ S oy 4+ n2d™*1). So the total cost becomes
Op(2mn2d"r + 2'n3d™ 3141 5. Tt remains to bound 31! ¢y, If o is a bound
on the bit-size of all the partial quotients that appear during and execution of the
algorithm, then 31"} o). = O(ho).

Moreover, h < #(T) = O(2" nd®* + 2" n(n + 7)d**~1) (lem. 2.24), and so
the cost of each step is Op(22"n*(n + d + 7)d* o).

Finally, multiplying by the number of steps (lem. 2.24) we get a bound of
Op(25m5(n? + d2 + 72)d"" o).

To derive the total complexity we have to take into account that at each step
we compute some partial quotients and and we count the number of real root of
the system in the positive orthant. Hence the total complexity of the algorithm is

Op(2°"n°(n? + d* + 72)d>" 1o + (C1 + C2)2" n(d + n + 7)d**). O

In the univariate case (n = 1), if we assume that o = O(1) holds for real alge-
braic numbers of degree greater that 2, then the cost of C; and C, is dominated by
that of the other steps, that is the splitting operations, and the (average) complexity
becomes (53(d37') and matches the one derived in [104] (without scaling). This
assumption is coherent with (2.9).

2.6.3 Further complexity improvements

We can reduce the number of steps that the algorithm performs, and thus im-
prove the total complexity bound of the algorithm, using the same trick as in [104].
The main idea is that the continued fraction expansion of a real root of a polyno-
mial does not depend on the initial computed interval that contains all the roots.
Thus, we spread away the roots by scaling the variables of the polynomials of the
system by a carefully chosen value.

If we apply the map (z1,...,2,) — (21/2%, ..., 2,/2%, to the initial polyno-
mials of the system, then the real roots are multiplied by 2¢, and thus their distance
increases. The key observation is that the continued fraction expansion of the real
roots does not depend on their integer part. Let ¢ be any root of the system, and let
7, be the same root after scaling. It holds v = 2¢ (. From [42] it holds that

—log [T Ai(¢) < (3+4lgn + 4nlgd)d™ + 2n(1 + nlgd + 7)d*" ",
cev

30 Chapter 2. Mutivariate continued fraction solver

and thus

—log [T Ai(y) = —log2™ [T Ai(¢)

cev eV
< (2n7d** ! 4 2nd™) lg(nd*") — RY.

If we choose ¢ = O(nd"~"(n+d + 7)) and assume that R < d" which is the worst
case, then —log [[.y, Ai(y) = O(1). Thus, following the proof of Lemma 2.24,
the number of steps that the algorithm performs is O N(Z" dr).

The bit-size of the scaled polynomials becomes O(n?d™*! + n2d"r). The total
complexity of algorithm is now

Op (22 n*d* (n 4 2"do + n7) 4 2"d"(Cy + C2)),

where o the maximum bit-size of the partial quotient appear during the execution
of the algorithm.
The discussion above combined with Proposition 2.25 lead us to:

Theorem 2.26. The total complexity of the algorithm is O B(22"n3d>" (n + 2"do +
717‘) + 2ndn(61 + CQ))

If we assume that o = O(1), the bound becomes O (d3) when n = 1, which
agrees with the one proved in [104].

2.7 Complexity and condition number

The complexity analysis presented previously is a worst case analysis in the bit
complexity model, which might not reflect the practical behavior of the method.
We can gain a better insight by estimating the arithmetic complexity of the algo-
rithm in the real RAM model, using qualitative information attached to a system of
polynomial equations, namely its condition number. The latter cannot be computed
directly from the system, unless we actually know the roots. However, it is nicely
related to the distance from the set of systems with degenerate real roots and thus
it has a relevant geometric interpretation that will help understand the behavior of
the algorithm.

Our analysis relates the complexity of the subdivision algorithm to this geo-
metric invariant attached to the system. It uses tools similar to the ones developed
in [24] and [25]. However, we provide a bound which is not exponential but lin-
ear in the logarithm of the condition number. This bound is also connected to the
complexity results in [80] or [20].

As in the previous section, we will assume that the real roots of the system in
the domain of interest are simple. Otherwise the condition number becomes infinite
and the bound is trivial.

2.7. Complexity and condition number 31

In the following, we consider a system f = (fi,...,f,) of polynomials
fi € Rlx| of degree d; := deg(f;). We denote by d = max{d;,...,d,}. We
assume that the system f has no multiple root in /;. We consider a subdivision
algorithm based on the exclusion test of Section 2.5.1 and the inclusion test of Sec-
tion 2.5.2. We assume moreover that there is a constant 0 < ® < 1 such that at
each subdivision the size of a box which is kept is at most ¢ times the size of its
parent box. Consequently, if we apply k subdivision steps, the boxes which are
kept are of size ®* times the size of the initial box.

We recall here the definitions that will be used in this complexity analysis.

Definition 2.27. For a system [= (f1,..., fa) of polynomials f; € R[x] with
deg(fl) - di’

up(@) = I IIDS @) AW dalls - Vdallz)]

where A(zy, ..., z,) is the diagonal matrix with entry z; for the index (i,1) and 0
for the indices (i,j) with1 < i # j < n.

For a root (€ C", pus(() is the condition number of the system f at ¢. It
measures the distance to the set of systems which are degenerated at (. See [13, p.
233]. This distance bounds the size of complex perturbation we can apply on our
system, while staying in the safe region of systems with simple roots. However in
practice, we usually consider real perturbations. To take into account the distance
to real systems which are degenerate, we use the following real condition number

[25]:
Definition 2.28. The local condition number at x € R" for the system f is

() = L/l _ 1 N
WA IPus)2+ @Z)2 (up(2) 72+ @)% 1F72)

This condition number () is related to the distance to the set Xg(z, d) of
systems of real polynomials (fi,..., f,) with d = (di,...,d,), deg(f;) = d;
which are singular at x [25]:

1
rip(w) = dist(f, Sg(x,d))

In the univariate case f € R[z], the value of x () will be large at the real roots
¢ € Rof f where f'(¢) is small and at local extrema £ where | f(£)| is small. We
extend the definition to a domain:

Definition 2.29. For I C R", define r;(f) := sup{ks(z);x € I}.

Proposition 2.30. Forall o > || f|| and € < %, we have
2ry(x)c0

32 Chapter 2. Mutivariate continued fraction solver

O | f(@)]|w > o, or
O () < ap.

Proof. Let us suppose that ay(z) > o and prove that || f(z)||« > . We con-
sider two cases.

In the case where pr(z)™" < | f(z)||||f]~", we have s(x) > 22u(x). By
[97, Proposition 2, p. 467], we have

1/ ()00
A

where ||z]|; = (14 |z1|2 + - - - + |z.|2)2. By [97, Proposition 3, p. 468],

Brla) < lwllps () ===

1
2|1+

() < py(a)d*?.

‘We deduce that

I - R [/
10) o < a0 < () = () 75(e) < 5 gt R

which implies that
2

Rl
since K p(x) > Z%Mf(:c). As o > || f||, we deduce that

< (@) loe,

eo < |If (@)oo

In the case where pp(z)~" > Il e have ki(z) > 25 M and

P o o _

TF@IE AR < 25 e <4

ds
1£(@)le > 1 5-0ed > o

since € < 1 and - > 1.]

2¢

which implies that

Let ap = 0.1 so that 6y = () ~ 0.1145. We bound the complexity of the
subdivision algorithm for the exclusion test of section 2.5.1 and the ap-inclusion
test of section 2.5.2.

2.7. Complexity and condition number 33

Theorem 2.31. The number of arithmetic operations needed to isolate the roots of
a polynomial system f with simple roots in I = I(x,¢), as in Definition 2.21, with
Ic(z,e) C Be(x,p)and p > 1lisin

O(NF(I)d™ (log(r1(f)) + d log(p) + log(n)).

Proof. By Lemma 2.16, the number of boxes of size € kept during the subdivision
is bounded by N7 (). The number of arithmetic operations is bounded by N7 ([)
times the cost of a subdivision step times the depth of the subdivision tree. The
cost of a subdivision step is in O(d"1).

We are going to bound the depth of the subdivision tree as follows. We

will show that a box of size ¢ < ———2—— either satisfies the exclusion
Bndjlﬁj(f)gde_Q
test or is an «p-inclusion box. By Proposition 2.30, for a box I(z,e) with

ag daollf1I?

Sndbnr(f)2p%2 > dhnr(N2@nd -2)2)

€ have

<O either || f(x)|| > V2 nd|| f||p* e, which implies by Lemma 2.13 and Propo-
sition 2.14 that the box I (x, €) satisfies the exclusion test;

<& or ay(r) < ap and by Theorem 2.22 there is a unique root ¢ of f(x) = 0 in
Bz, %),

? g (@)

To prove that in the latter case, the box I(z, ¢) is an ag-inclusion box, we need to

check that
do 1
> n2e.

V() ~
By [97, Proposition 2, p. 476], the following holds:

1 o
V() = 77 (¢)’

where vy = (202 — 450 + 1)(1 — §g) ~ 0.5016. By [97, Proposition 3, p. 468], we
have

1 2 2
>

> — Z
V1(Q) T dzpup(C) — dzrs(f)
since (is a root of the system and thus 1¢(() = k7(¢) < r;(f). This implies that

(50 > 2501/0
(@) T drki(f)

1

Ase < —*——and e < 1, we have —+ > 1/ 8p2Ld? ne > gﬁpdd%’ﬂg. We
87’Ld2.‘£[(f) 2d (f) o Voo

deduce that

do - 4v/2 p? Sovg
V() Voo

34 Chapter 2. Mutivariate continued fraction solver

since p > 1, d > 1 and 4@% > 1. This proves that the box I(z,¢) is an
ap-inclusion box. Therefore the subdivision step must stop before this precision,
which gives a bound of order O(log(x(f) + dlog(p)) for the depth of the subdi-
vision tree. [

2.8 Implementation and experimentation

We have implemented the algorithm in the C++ library realroot of MATH-
EMAGIX [106], which is an open source effort that provides fundamental algebraic
operations such as algebraic number manipulation tools, different types of uni-
variate and multivariate polynomial root solvers, resultant and GCD computations,
etc [106].

The polynomials are internally represented as a vector of coefficients along with
some additional data, such as a variable dictionary and the degree of the polynomial
in every variable. This allows us to map the tensor of coefficients to the one-
dimensional memory. The univariate solver that is used is the continued fraction
solver; this is essentially the same algorithm with a different inclusion criterion,
namely Descartes’ rule. The same data structures is used to store the univariate
polynomials, and the same shift/contraction routines. The univariate solver outputs
a lower bound on the smallest positive root, as a result of a depth-first strategy
during the subdivision algorithm. Our code is templated and support different types
of coefficients. It can use the integer arithmetic of GMP, since long integers appear
as the box size decreases.

The user needs to provide, together with the system to solve, a threshold pa-
rameter ¢ > 0. This is the minimum width that a box can reach. By using smaller
values for this parameter one can obtain a greater precision of the roots. In prac-
tice, the bottleneck is the isolation part: once the roots are isolated, a predefined
precision can be acquired fast by a bisection iteration on the isolation box.

The threshold parameter also serves in the event of existence of multiple roots.
In this case, the algorithm fails to certify the root in the box, thus subdivision
continues around the root up to threshold size, and any undecided boxes are marked
as potential roots. For roots of small multiplicity (i.e. double roots) the output is
still correct most of the time. The subdivision-tree depth is in this case proportional
to — log ¢, which should be ultimately chosen equal to known separation bounds of
the roots [42]. In the next chapter, we shall introduce a method that can cope with
this deficiency.

The following four examples demonstrate the output of our implementation,
which we visualize using AXEL".

*http://axel.inria.fr

2.8. Implementation and experimentation 35

First, we consider the system f; = fo = 0 (X;), where f; = 22 + 3 — 2y — 1,
and fo = 10xy — 4. We are looking for the real solutions in the domain I =
[—2, 3] x [~2, 3], which is mapped to R? , by an initial transformation. The isolating
boxes of the real roots can be seen in Fig. 2.3.

For the test-system (X5), We multiply f; and f> by quadratic components,
hence we obtain

() fi=at+ 2% — 222 +yt — 22 — 2y — P +ay + 1
2 fo = 2023y — 102%y* — 10xy> — 82% + day + 4y?

The isolating boxes of this system could be seen in Fig. 2.4. Notice, that the
size of the isolation boxes that are returned in this case is considerably smaller.

We turn now to a system with multiple roots, to demonstrate the behavior of
the algorithm in this case. The following system has 7 simple roots, a double root
at (1,0) and a root of multiplicity 12 at (0, 0).

) fi=—-(+y—v)rz—y+y?)(@*+x—y)(z? —z —y)
Y fo=at 4 2022 + yt 4 322y — P

We can see in Fig. 2.4 that the simple roots have been recognized. A box is returned
that contains the double root. This could not neither be confirmed nor excluded
by the algorithm, thus it is marked as potential root. The size of this box attains
the threshold that we gave in the input, here ¢ = 0.001. For the root of higher
multiplicity, we can see after zooming in that there is a collection of boxes around
(0,0) that are marked as potential roots. In view of this behaviour, we realize
the need for a test that can treat a multiple point. This shall be the objective of
Chapter 3.

Consider the system (3,), consisting of f; = 2* —2z* —y*+1 and f,, which is
a polynomial of bi-degree (8, 8). The output of the algorithm, that is, the isolating
boxes of the real roots can be seen in Fig. 2.4. One important observation is that the
isolating boxes are not squares, which verifies the adaptive nature of the proposed
algorithm.

We provide execution details on these experiments in Table 5.1. Several op-
timizations can be applied to our code, but the results already indicate that our
approach competes well with the Bernstein case.

We compared our implementation with the Bernstein solver of [80] on a number
of bi-variate systems, and we present the times in milliseconds in Table 2.2. The
tests were run on the same machine and the timings are rounded averages over 10
executions. When using machine integers for representing the polynomials, the
Bernstein solver is proved faster from MCEF, but the timings for both solvers are of
the same order. If we use GMP integers then our algorithm is 10-20 times slower
than the Bernstein solver; this difference is expected since GMP integers ought to
be slower than machine numbers.

36 Chapter 2. Mutivariate continued fraction solver

System ‘ Domain ‘ Iters. ‘ Subdivs. ‘ Sols. ‘ Excluded

S | [-2,32] 53 26 4 25
S, | [-2,32] 263 | 131 12 126
S5 | [<2,32] 335 | 167 8 160
S: | [-3,3]2] 1097 | 548 16 533

Table 2.1: Execution data for X1, o, >3, 24.

’ Degrees in (z,y) ‘ Domain ‘ MCF(integer) ‘ MCF(GMP) ‘ Bernstein
(2,1),(3,1) [0,2] % [0, 2] 20 110 2
(4,4), (2,1) 0,1] x [0, 1] 70 280 30
6,6),(3,2) | [-2.2] x [-2,2] 10 200 10
(4,3),(7.6) | [=5,5] x [=5, 5] 110 600 20
(8,8),(6,7) | [0,10] x [0, 10] 110 540 20
(8,8),(6,7) [—2,2] x [-2,2] 960 8820 490

(16,16), (12,15) | [0,10] x [0, 10] 460 6550 320

Table 2.2: Running times in ms for our implementation (MCF) and the Bernstein
solver [80].

2.8. Implementation and experimentation 37

P
P e
i \ "
e / //:;; o 7\\\\‘. A X\
/ a) / / "\\ ”// \\
P e LT // A
/ Vi . /\ \
/S W N \
¥4 % a8 A [
A A o \ |
d # // \ /
/s 3 4
/ / i \\ /
(F/ /// \\ /
. / o \V/
A /i

| P w ;) A / /
| \\):/ 4
\\ A T Y / //

\ //>\ Y /// /

\\ /" \\ 3 //

A i ‘—\\ / /r/
\(/ e r / A
—
= e
¥ 3 \\ . . =

Figure 2.3: Isolating boxes of the real roots of Left: (¥;), Right:(%,).

38

Chapter 2. Mutivariate continued fraction solver

7 N
/ \\
s ‘\
r/ \
i [
|
‘ ‘\
|
; 1
| |
x\ "’j
\
\\\ //'J
\ §
\\ /’/
\
LI
w,
. VA
¥ =l - // \\) = ~
P /D 0
b' & \\ <
/! g % y
¥ e S %
/// e ‘
\IL:;L 3 s \\\\ J/B
\\ P . //-
W)
/ \\ // \
' 4
!
\ /
By
N /
\, ! P
\, e D /
N\ = = /
\ / I T \\\ //
\ L 4
\ J ‘ \ /
VP § A /
™ N o
Al \/
"
) \
r |
) |
/ \ i
/ N\ £
) X %
/ Y |

Figure 2.4: Isolating boxes of the real roots of the system Left: (X3), detail close
to a multiple point, Right: (3,).

CHAPTER 3
On the treatment of singular isolated
roots

Contents
31 Introduction ittt 40
3.2 Preliminary considerations 43
3.2.1 [Isolated points and differentials 43
3.2.2 Quotient ring and dual structure 44
3.3 Computing local ring structure 46
3.3.1 Macaulay’s dialytic matrices 47
3.3.2 Integrationmethod 47
3.3.3 Computing a primal-dual pair 49
3.3.4 Approximatedualbasis. 51
3.4 Deflation of asingularpoint. 52
3.5 Verifying approximate singular points 55
3.6 Geometry around asingularity 55
3.6.1 Topological degree computation 56
3.6.2 Branches around a singularity 56
3.7 Experimentationttt ittt 57

A difficulty encountered in the previous chapter was the failure of the MCF al-
gorithm to answer if a box contains one single multiple root. In this chapter we use
the concept of local bases at a multiple point in order to undertake this task. We
present a method that can compute this local basis, notably starting from approx-
imate data. Then, interval arithmetic and deflation are used to derive the missing
test for singular root certification inside a real a domain. We give some notation in
Section 3.2, dual bases in Section 3.3, a mehtod to do deflation in Section 3.4, and
the certification test in Section 3.5. In Section 3.6, we present applications to the
topology analysis of curves, and experimentation follows in the last section. The
proposed method has appeared in [71].

39

40 Chapter 3. On the treatment of singular isolated roots

3.1 Introduction

A main challenge in algebraic and geometric computing is singular point iden-
tification and treatment. Such problems naturally occur when computing the topo-
logy of implicit curves or surfaces [2], or the intersection of parametric surfaces.
Isolated singularities can also be seen from the point of view of computational in-
variant theory [78], as objects having a local structure that describes their geometric
characteristics. When algebraic representations are used, singular points appear as
solutions of polynomial systems.

In the framwork of subdivision algorithms, a numerical approximation or a box
of isolation is computed to identify every real root of the polynomial system. But
we often need to improve the numerical approximation of the roots. Numerical
methods such as Newton’s iteration can be used to improve the quality of the ap-
proximation, provided that we have a simple root. In the presence of a multiple
root, the difficulties are significantly increasing. The numerical approximation can
be of very bad quality, and the methods used to compute this approximation are
converging slowly (or not converging). The situation in practical problems, as en-
countered in CAGD for instance, is even worse, since the coefficients of the input
equations are known, with some incertitude. Computing multiple roots of approxi-
mate polynomial systems seems to be an ill-posed problem, since changing slightly
the coefficients may transform a multiple root into a cluster of simple roots (or even
make it disappear).

To tackle this problem, we adopt the following strategy. We try to find a (small)
perturbation of the input system such that the root we compute is an exact multiple
root of this perturbed system. In this way, we identify the multiplicity structure and
we are able to setup deflation techniques which restore the quadratic convergence
of the Newton system. The certification of the multiple root is also possible on the
symbolically perturbed system by applying a fixed point theorem, based e.g. on
interval arithmetic [90] or a-theorems ([47] and references therein).

In order to develop Newton-type methods that converge to multiple roots, de-
flation techniques which consist in adding new equations in order to reduce the
multiplicity have already been considered. In [82], by applying a triangulation
preprocessing step on the Jacobian matrix at the approximate root, minors of the
Jacobian matrix are added to the system to reduce the multiplicity.

In [63], a presentation of the ideal in a triangular form in a good position and
derivations with respect to the leading variables are used to iteratively reduce the
multiplicity. This process is applied for p-adic lifting with exact computation.

In [65, 66], instead of triangulating the Jacobian matrix, the number of variables
is doubled and new equations are introduced, which are linear in the new variables.
They describe the kernel of the Jacobian matrix at the multiple root.

In [26], this construction is related to the construction of the inverse system.

3.1. Introduction 41

The dialytic method of E.S. Macaulay [69] is revisited for this purpose. These
deflation methods are applied iteratively until the root becomes regular, doubling
each time the number of variables.

More recent algorithms for the construction of inverse systems are described
e.g. in [75], reducing the size of the intermediate linear systems (and exploited in
[99]), or in [79] using an integration method.

In [87], a minimization approach is used to reduce the value of the equations
and their derivatives at the approximate root, assuming a basis of the inverse system
is known.

In [110], the inverse system is constructed via Macaulay’s method; tables of
multiplications are deduced and their eigenvalues are used to improve the approxi-
mated root. They show that the convergence is quadratic at the multiple root.

Verification of multiple roots of (approximate) polynomial equations is a diffi-
cult task. The approach proposed in [90] consists of introducing perturbation pa-
rameters and to certifying the multiple root of nearby system by using a fixed point
theorem, based on interval arithmetic. It applies only to cases where the Jacobian
has corank equal to 1.

Our approach is based on certain differential invariants of the singular point,
that form a basis of functionals, first studied by [69].

In preparation for the multivariate case, we review some techniques used to
treat singular zeros of univariate polynomials, and we present our method on a
univariate instance.

Let g(z) € R[z] be a polynomial which attains at = = 0 a root of multiplicity
i > 1. The latter is defined as the positive integer p such that d*¢(0) # 0 whereas
g(0) = dg(0) = --- = d*"'g(0) = 0. Here we denote d*g(x) = %g(x)/k;! the
normalized k—th order derivative with respect to x.

We see that 9y = (1,d,...,d"* ') is the maximal space of differentials
which is stable under derivation, that vanish when applied to members of Q,, the
(x)—primary component of (g) at x = 0.

Consider now the symbolically perturbed equation
filz,€) = g(z) +e1 +egx + - + e, 12" 7 3.1

and apply every basis element of %, to arrive to the new system f(z,e) =
<f1,df1, . d“_1f1> in 1 — 1 variables. The i—th equation is f; = d'"'f; =
d=tg+ ! (5~1)a*~7ey, i.e linear in €, the last one being f, = d*~'g(z). This
system deflates the root, as we see that the determinant of its Jacobian matrix at

42 Chapter 3. On the treatment of singular isolated roots

(0,0) is
L f 1 0
det Jp(0,0)=| ° = —df,(0)
dcfumt | 0 L | = —pdrg(0) £ 0.
il |0

Now suppose that (* is an approximate zero, close to x = (. We can still compute
D, by evaluating g(x) and the derivatives up to a threshold relative to the error
in (*. Then we can form (3.1) and use verification techniques to certify the root.
Checking that the Newton operator is contracting shows the existence and unicity
of a multiple root in a neighborhood of the input data. We are going to extend this
approach, described in [90], to multi-dimensional isolated multiple roots.

The proposed algorithm, that shall be presented in detail in the sequel, consists
of the following steps:

(a) Compute a basis for the dual space and of the local quotient ring at a given
(approximate) singular point.

(b) Deflate the system by augmenting it with new equations derived from the
dual basis, introducing adequate perturbation terms.

(c) Certify the singular point and its multiplicity structure for the perturbed
system checking the contraction property of Newton iteration (e.g. via interval
arithmetic).

In step (a), a dual basis at the singular point is computed by means of linear
algebra, based on the integration approach of [79]. We describe an improvement
of this method, which yields directly a triangular dual basis with no redundant
computation. This method has the advantage to reduce significantly the size of
the linear systems to solve at each step, compared to Macaulay’s type methods
[26, 65, 66, 69]. In the case of an approximate singular point, errors are introduced
in the coefficients of the basis elements. Yet a successful computation is feasible.
In particular, the support of the basis elements is revealed by this approximate
process.

In the deflation step (b), new equations and new variables are introduced in
order to arrive to a new polynomial system where the singularity is obviated. The
new variables correspond to perturbations of the initial equations along specific
polynomials, which form a dual counterpart to the basis of the dual space. One
of the deflated systems that we compute from the dual system is a square n X
n system with a simple root. This improves the deflation techniques described
in [26, 65, 66], which require additional variables and possibly several deflation
steps. New variables are introduced only in the case where we want to certify the
multiplicity structure. The perturbation techniques that we use extend the approach
of [90] to general cases where the co-rank of the Jacobian matrix could be bigger

3.2. Preliminary considerations 43

than one. The verification step (c) is mostly a contraction condition, using e.g.
techniques as in [90]. This step acts on the (approximate) deflated system, since
verifying a simple solution of the deflated system induces a certificate of an exact
singular point of (a nearby to) the initial system.

3.2 Preliminary considerations

We denote by R = R[x| a polynomial ring over the field R of characteristic
zero. Also, the dual ring R* is the space of linear functionals A : R — R. It is
commonly identified as the space of formal series R[[8]] where 8 = (0, ...,0,)
are formal variables. Thus we view dual elements as formal series in differential
operators at a point { € R". To specify that we use the point ¢, we also denote
these differentials .. When applying A(9.) € R[[0¢]] to a polynomial g(x) € R
we will denote by A¢[g] = ASg = A(8¢)[g()] the operation

bW dlel
Mg =3 T—(0), (3:2)

loooa,! de® .. dze
e al e an! dz] dzon

for A(O¢) = >)\Q%B? € R[[@;]]. Extending this definition to an ordered set
D = (Ay,...,A,) € K[[d]]#, we shall denote D¢[g] = (A$g,...,ASg). In some
cases, it is convenient to use normalized differentials instead of 3: for any o € N,
we denote d? = 5 82". When ¢ = 0, we have d(o)‘a:'8 =1lifa = B and 0
otherwise. More generally, (d¢')aenn is the dual basis of ((z — ¢)*)aenn-

For A € R*andp € R,letp- A : q— A(pq). We check that

d
(zi — Gi) - 8? = d@'c(a?). (3.3)

This property shall be useful in the sequel.

3.2.1 Isolated points and differentials
Let Z = (fi,...,fs) be an ideal of R, { € R™ a root of f and m¢ =

(x1 — (1, ..., 2y — (,) the maximal ideal at . Suppose that { is an isolated root
of f, then a minimal primary decomposition of Z = ﬂ Q contains a pri-
Qprim.DZ

mary component Q. such that \/Q = m¢ and /Q' ¢ my for the other primary
components Q' associated to Z [5].

As /Q¢ = m¢, R/Qc is a finite dimensional vector space. The multiplicity
pe of € is defined as the dimension of R/Q,. A point of multiplicity one is called
regular point, or simple root, otherwise we say that ¢ is a singular isolated point,
or multiple root of f. In the latter case we have J¢(¢) = 0.

44 Chapter 3. On the treatment of singular isolated roots

We can now define the dual space of an ideal.

Definition 3.1. The dual space of T is the subspace of elements of R[[O]] that

vanish on all the elements of L. It is also called the orthogonal of T and denoted
by I+.

The dual space is known to be isomorphic to the quotient R/Z. Consider now
the orthogonal of Q., i.e. the subspace 7, of elements of R* that vanish on mem-
bers of O, namely

Qr =Zc={Ae R : A°[p] =0, Vp € Qc}.

The following is an essential property that allows extraction of the local structure
P, directly from the “global” ideal Z = (f), notably by matrix methods outlined
in Sect. 3.3.

Proposition 3.2 ([79, Th. 8]). For any isolated point ¢ € R of f, we have T+ N
R[O¢] = P .

In other words, we can identify &, = Qé with the space of polynomial differ-
ential operators that vanish at ¢ on every element of Z. Also note that .@Cl = Q.

The space Z; has dimension /i, the multiplicity at (. As the variables (z; —
;) act on R* as derivations (see (3.3)), Z, is a space of differential polynomials
in ., which is stable under derivation. This property will be used explicitly in
constructing Z, (Sect. 3.3).

Definition 3.3. The nilindex of Q¢ is the maximal integer N € N s.1. mév Z Q.

It is directly seen that the maximal order of elements in Z; is equal to N, also
known as the depth of the space.

3.2.2 Quotient ring and dual structure

In this section we explore the relation between the dual ring and the quotient
R/Q.; where Q is the primary component of the isolated point {. We show how
to extract a basis of this quotient ring from the support of the elements of &, and
how Z; can be used to reduce any polynomial modulo Q..

It is convenient in terms of notation to make the assumption ¢ = 0. This
saves some indices, while it poses no constraint (since it implies a linear change of
coordinates), and shall be adopted hereafter and in the next section.

Let supp%p be the set of exponents of monomials appearing in %,, with a
non-zero coefficient. These are of degree at most N, the nilindex of Qq. Since
(VA € o, N°[p] = 0) iff p € Dy = Qyp, we derive that suppZp = {a :
x® ¢ Qp}. In particular, we can find a basis of R/Qq between the monomials

3.2. Preliminary considerations 45

{x* : a € suppZ}. This is a finite set of monomials, since their degree is
bounded by the nilindex of Q.

X% ¢ Qo, j=1,...,8—u, s = #supp Yo, with Vi ¢ B, the expression (normal
form)

“w
2% =" AyzP mod Qg (3.4)
i=1
of 27 in the basis BB then the dual elements [79, Prop. 13]
s—p
Ai(d) = dP +> " \yd, (3.5)
j=1

forv = 1,..., u form a basis of Zy. We give a proof of this fact in the following
lemma.

Lemma 3.4. The set of elements D = (A\;);1,..,, is a basis of Py and the normal

.....

form of any g(x) € R with respect to the monomial basis B = (€®i),— .. u IS
o
NF(g) =) Aflgla?. (3.6)
i=1

Proof. First note that the elements of D are linearly independent, i.e. they form a
basis. Now, by construction, > %' | A?[x*]zP = NF(z*) for all z* ¢ Qo, e.g.
NF(xP) = xPi. Also, for z* € Qy, Vi, A?(x®) = 0, since o ¢ suppD. Thus
the elements of D compute NF(-) on all monomials of R, and (3.6) follows by
linearity. We deduce that D generates the dual, as in Def. 3.1.]

Computing the normal form of the border monomials of B via (3.6) also yields
the border basis relations and the operators of multiplication in the quotient R/ Qg
(see e.g. [35, 102] for more properties).

If a graded monomial ordering is fixed and B = (x”¢);_;__, is the correspond-
ing monomial basis of R/Qp, then d® is the leading term of (3.5) w.r.t. the oppo-
site ordering [66, Th. 3.1].

Conversely, if we are given a basis D of %y whose coefficient matrix in the
dual monomials basis (d*)a¢o, is D € R***, we can compute a basis of R/Qg by
choosing p independent columns of D, say those indexed by d®, i = 1,..., . If
G € R¥*# is the (invertible) matrix formed by these columns, then D' := G~ D,
is

/61 e /B/L 71 T Vs
All 1 0)\1,1 et A1,37,LL

D' = : : : , (3.7)
A;L 0 1 /\M,l e /\,u,s—u

46 Chapter 3. On the treatment of singular isolated roots

i.e. a basis of the form (3.5). Note that an arbitrary basis of & does not have the
above diagonal form, nor does it directly provide a basis for R/Qj.

Fort € N, 9, denotes the vector space of polynomials of & of degree < t. The
Hilbert function h : N — N is defined by A(t) = dim(%;), t > 0, hence h(0) = 1
and h(t) = dim 2 for t > N. The integer h(1) — 1 = corank J; is known as the
breadth of 9.

3.3 Computing local ring structure

The computation of a local basis, given a system and a point, is done essentially
by matrix-kernel computations, and consequently it can be carried out numerically,
even when the point or even the system is inexact. Throughout the section we
suppose f € R™ and ¢ € R™ with f({) = 0.

Several matrix constructions have been proposed, that use different conditions
to identify the dual space as a null-space. They are based on the stability property
of the dual basis:

d
VAE.@t, %AE.@t,l, Z:L,n (38)

We list existing algorithms that compute dual-space bases:
<& As pointed out in (3.3), an equivalent form of (3.8) is: VA € 2, A[z; f;] = 0,

Vi, 7 = 1,...,n. Macaulay’s method [69] uses it to derive the algorithm that
is outlined in Sect. 3.3.1.

< In [75] they exploit (3.8) by forming the matrix D; of the map ¥

R[0]; — R[] for all i = 1,...,n and some triangular decomposition
of the differential polynomials in terms of differential variables. This ap-
proach was used in [99] to reduce the row dimension of Macaulay’s matrix,
but not the column dimension. The closedness condition is also used in [116]
to identify a superset of supp Z;1.

<O The integration method in [79] “integrates” elements of a basis of Z;, and ob-
tains a priori knowledge of the form of elements in degree ¢ + 1 (Sect. 3.3.2).

All methods are incremental, in the sense that they start by setting Dy = (1) and
continue by computing D;, t = 1,..., N, N + 1. When #Dy = #Dy1 then Dy
is a basis of &, and N is the nilindex of O.

We shall review two of these approaches to compute a basis for &, and then
describe an improvement, that allows simultaneous computation of a monomial
basis of the quotient ring while avoiding redundant computations.

3.3. Computing local ring structure 47

3.3.1 Macaulay’s dialytic matrices

This matrix construction is presented in [69, Ch. 4], a modern introduction is
contained in [26], together with an implementation of the method in ApaTools*.

The idea behind the algorithm is the following: An element of Z is of the form
A(d) = Z Aad® under the condition: A° evaluates to 0 at any g € (f), i.e.

lo| <N

A%(g) = A°(3"gifi) =0 <= A°(2Pf;) = 0 for all monomials 2. If we apply
this condition recursively for || < N we get a vector of coefficients (A)jaj<n
in the (right) kernel of the matrix with rows indexed by constraints A°[x? f,] = 0,
1B < N —1.

Note that the only requirement is to be able to perform derivation of the input
equations and evaluation at { = 0.

Example 3.5. Let fi = 11 — 2o + 22, fo = 11 — o + 3. We also refer the reader
to [26, Ex. 2] for a detailed demonstration on this instance. The matrices in order
1 and 2 are:

1 d dy d® didy d?

fi TO 1 -1 1 0 07

L dy dy fo 101 -1 0 0 1
fifo 1 -1 rifi |00 0 1 -1 0
f [o 1 —1] " xfa |0 0 0 1 -1 0
rft [O0 0 0 1 -1

zofp LO 0O 0 0 1 -1

The kernel of the left matrix gives D1 = (1,d; + ds). Expanding up to order two,
we get the matrix on the right, and Dy = (1,dy + do, —dy + d3 + dydy + d3). If we
expand up to depth 3 we get the same null-space, thus D = D,.

3.3.2 Integration method

This method is presented in [79]. It is an evolution of Macaulay’s method,
since the matrices are not indexed by all differentials, but just by elements based
on knowledge of the previous step. This performs a computation adapted to the
given input and results in smaller matrices.

For A € R[d], we denote by [, A the element & € R[] with the property
ﬁ@(a) = A(@) and with no constant term w.r.t. J.

Theorem 3.6 ([79, Th. 15]). Let (A1, Ao, ..., As) be a basis of D, that is, the
subspace of 9 of elements of order at most t — 1. An element A € R[D] with no

*http://www.neiu.edu/~zzeng/apatools.htm

48 Chapter 3. On the treatment of singular isolated roots

constant term lies in 9, iff it is of the form:

A@) = Nk [y Mi(0r, ..., 0k,0,...,0), (3.9)

i=1 k=1

for M\, € R, and the following two conditions hold:

e d ® d

(i) ;)\ikzd_alAi(a) - ;)\ild_akAi(8> =0,
foralll1 <k<l<n.

(ii) AS[fe] =0, fork=1,...,m.

Condition (7) is equivalent to ﬁ/\ € P4, for all k. Thus the two conditions
express exactly the fact that & must be stable under derivation and its members
must vanish on (f).

This gives the following algorithm to compute the dual basis: Start with
Dy = (1). Given a basis of 2, ; we generate the ns candidate elements
S Nic1(01, ..., 0%,0,...,0). Conditions () and (i) give a linear system with un-
knowns \;;. The columns of the corresponding matrix are indexed by the candidate
elements. Then, the kernel of this matrix gives a basis of &;, which we use to gen-
erate new candidate elements. If for some ¢ we compute a kernel of the same
dimension as Z;_;, then we have a basis of Z.

Example 3.7. Consider the instance of Ex. 3.5. We have f1({) = f2(¢) = 0, thus
we set Dy = {1}. Equation (3.9) gives A = \1d; + \ody. Condition (i) induces no
constraints and (ii) yields the system

1 17 M]
HEHE a0

where the columns are indexed by di,dy. We get A\ = Ay = 1 from the kernel of
this matrix, thus D1 = {1,d; + dy}.

For the second step, we compute the elements of Ds, that must be of the form
A = M\idy + Aady + X3d? + \y(dids + d2). Condition (i) yields A3 — Ay = 0, and
together with (ii) we form the system

0 0 1 —1 A1
1 =11 0 : | =0, (3.11)
1 -1 0 1 A

with columns indexed by d, ds, d%, dydy + d%. We get two vectors in the kernel, the
first yielding again dy + ds and a second one for \y = —1, s = 0, A3 = Ay = 1,
so we deduce that —d, + d? + dydy + d3 is a new element of Ds.

3.3. Computing local ring structure 49

In the third step we have

A =X\idy + Agdy + Agd? + Ay(dydy + d2)+ (3.12)
As(di — d3) + Ao (ds + dvds + didy — didy),

condition (i) leads to A3 — Ay + A¢ + (A5 — X¢)(d1 + d2) = 0, and together with
condition (ii) we arrive to

0 0 0
0o 0 1 -1 0 1
1 -1 1

.| —o, (.13)
1 10 1 0 0 Ao

i.e. a4 X 6 matrix with two kernel elements that are already in Dy. We derive that
9 = (Dy) = (Ds) and the algorithm terminates.

Note that for this example Macaulay’s method ends with a matrix of size 12x 10,
instead of 4 X 6 in this approach.

3.3.3 Computing a primal-dual pair

In this section we provide a process that allows simultaneous computation of a
basis pair (D, B) of Z and R/ Q.

Computing a basis of & degree by degree involves duplicated computations.
The successive spaces computed are 7, C --- C Iy = Pn+1. It is more efficient
to produce only new elements A € %,, independent in %,/ %, 1, at step t.

Also, once a dual basis is computed, one has to transform it to the form (3.5),
in order to identify a basis of R/Q as well. This transformation can be done a
posteriori, by finding a sub-matrix of full rank and then performing Gauss-Jordan
elimination over this sub-matrix, to reach matrix form (3.7).

We introduce a condition (iii) extending Th. 3.6, that addresses these two is-
sues: It allows the computation of a total of ;4 independent elements throughout
execution, and returns a “triangular” basis, e.g. a basis of R/Q is identified.

Lemma 3.8. Let Dy, 1 = (A4, ..., Ay) be a basis of D,_1, whose coefficient matrix
is
181 ce ﬁk Yot YVsek
A 1 * * 0 ok .. *
: 0 . % : N (3.14)
AL | O 0 1 % .- *

form (3.9), satisfying (i-ii) of Th. 3.6.
If we impose the additional condition:

50 Chapter 3. On the treatment of singular isolated roots

(iii) ANS[xPi]=0,1<i<k,

then the kernel of the matrix implied by (i-iii) is isomorphic to Dy %;_,. Conse-
quently, it extends D;_1 to a basis of Y.

Proof. Let S be the kernel of the matrix implied by (i-iii), and let A € R[] be a
non-zero functional in S. We have A € 2, and A¢[zPi] = 0fori=1,... k.

First we show that A ¢ 2, 1. If A € &, 1, then A = Zle \; \;. Take for i
the minimal i such that \; # 0. Then A¢[z%] =);,, which contradicts condition
(iii). Therefore, S N %,_1 = {0}, and S can be naturally embedded in %;/%;_1,
ie. dimS < dim %, — dim Z;_,.

It remains to show that dim S is exactly dim %, — dim &, _;. This is true, since
with condition (iii) we added k£ = dim %,_, equations, thus we excluded from the
initial kernel (equal to &) of (i-ii) a subspace of dimension at most £ = dim %,_1,
so that dim S > dim &; — dim %;_;.

We deduce that S = %,/%, 4, thus a basis of S extends D,_; to a basis of
D. H

The above condition is easy to realize; it is equivalent to Vi, d® ¢ supp A,
which implies adding a row (linear constraint) for every <.

If we choose the elements of B with an opposite to total degree ordering, this
constraint becomes \;; = 0 for some ¢, k, thus we rather remove the column cor-
responding to \;; instead of adding a row. Hence this lemma allows to shrink the
kernel (but also the dimension) of the matrix and compute only new dual elements,
which are reduced modulo the previous basis.

Let us explore our running example, to demonstrate the essence of this im-
provement.

Example 3.9. We re-run Ex. 3.7 using Lem. 3.8.

In the initialization step Dy = (1) is already in triangular form with respect to
By = {1}. For the first step, we demand A[1] = O, thus the matrix is the same as
(3.10), yielding Dy = (1,dy +dy). We extend By = {1, x5}, so that D is triangular
with respect to B;.

In the second step we remove from (3.11) the second column, hence we are left
with a the 3 X 3 system in variables \i, A3, \4,

01 —17[\
11 0 A3 | =0,
10 1 A1

yielding a single kernel vector —dy + d? + dydy + d3. We extend B, by adding
monomial x1: By = {1, 29,11 }.

3.3. Computing local ring structure 51

For the final step, we search an element of the form (3.12) with A[x] = Alxs] =
0, and together with (i-ii) we get:

000 1 -17r,
1 -1 0 1

1 0 -1 0 :
01 0 0 Ao

We find an empty kernel, thus we recover the triangular basis D = D, which can
be diagonalized to reach the form:

1 dy dy & didy 2
AL O 0 0 0 0
AblO 1T 0 1 1 1
A O 0 1 -1 -1 -1

This diagonal basis is dual to the basis B = (1, x5, 1) of the quotient ring and
also provides a normal form algorithm (Lem. 3.4) w.r.t. B. In the final step we
generated a 4 x 4 matrix, whose size is smaller compared to all previous methods.

This technique for computing B can be applied similarly to other matrix meth-
ods, e.g. Macaulay’s dialytic method.

If h(t) — h(t — 1) > 1, i.e. there is more than one element in step ¢, then
the choice of monomials to add to B is obtained by extracting a non-zero maximal
minor from the coefficient matrix in (d*). In practice, we will look first at the
minimum monomials w.r.t. a fixed term ordering.

3.3.4 Approximate dual basis

In our deflation method, we assume that the multiple point is known approxi-
mately and we use implicitly Taylor’s expansion of the polynomials at this approxi-
mate point to deduce the dual basis, applying the algorithm of the previous section.
To handle safely the numerical problems which may occur, we utilize the following
techniques:

< At each step, the solutions of linear system (3.9, i-iii) are computed via Sin-
gular Value Decomposition. Using a given threshold, we determine the nu-
merical rank and an orthogonal basis of the solutions from the last singular
values and the last columns of the right factor of the SVD.

< For the computation of the monomials which define the equations (3.8, iii)
at the next step, we apply QR decomposition on the transpose of the basis to
extract a non-zero maximal minor. The monomials indexing this minor are
used to determine constraints (3.9, i-iii). A similar numerical technique is
employed in [116], for Macaulay’s method.

52 Chapter 3. On the treatment of singular isolated roots

3.4 Deflation of a singular point

We consider a system of equations f = (f1,..., fs), fx € R[x], which has a
multiple root at ¢ = {. Also, let B = (xP1,... xP+) be a basis of R/Q, and
D = (Ay,...,A,) its dual counterpart, with A; = 1.

We introduce a new set of equations starting from f, as follows: add for ev-
ery f. the polynomial g = fi + pr» pr = Yy ix(x —)P where g =
(€k1s-- -, Eky) 18 @ new vector of y variables.

Consider the system

Dg(@,e) = (A:(82)lgl. . A,(Ba)lg]).

where A*[gx] = Ai(dz)[g] is defined as in (3.2) with ¢ replaced by x, i.e. we
differentiate g, but we do not evaluate at {. This is a system of us equations,
which we shall index Dg(x,€) = (911, --,9y,s). We have

gix(®, €) = AT [fi + pr] = AT[fi] + AT [p] = A7 [fx] + pir(z, €).

Notice that p; (¢, €) = AS[pi] = ;1 because D = (A4, .., A,) is dual to B.

As the first basis element of D is 1 (the evaluation at the root), the first s equa-
tions are g(x,) = 0.

Note that this system is under-determined, since the number of variables is
1 s + n and the number of equations is ps. We shall provide a systematic way to
choose n variables and purge them (or better, set them equal to zero).

This way we arrive to a square system Dg(x, €) (we use € for the remaining
us — n variables) of size pus x pus. We shall prove that this system vanishes on
(¢,0) and that Jpy (¢, 0) # 0.

By linearity of the Jacobian matrix we have

Jpg(x,€) = Jpg(x,€) + Jpp(x, €)
= [Jpp(x) [0 |+ [Jp (T, €) | Jpp(@,€)],

where J3,(x,€) (resp. Jp,(x,€)) is the Jacobian matrix of Dp with respect to
(resp. €).

Lemma 3.10. The Jacobian J5,(x,€) of the linear system Dp = (p11, - - -, Pps)
with p; i (ex) = AF[pi](x, €;) evaluated at (x,€) = ({,0) is the identity matrix of
dimension 5.

Proof. First note that the system is block separated, i.e. every p;; depends only
on variables € and not on all € = (&1,...,€&,). This shows that J5 (x,€) is
block diagonal, J5,,(x,€) = diag(Ji,...,J,). Now we claim that these blocks

3.4. Deflation of a singular point 53

are all equal to the identity matrix. To see this, consider their entry ﬁpi,k for
2V
1,7 =1,.., u, which is
d d 1 ,i=j
dey; P ' [dgk,jpk] (=] 0 ,otherwise ’
since d;i’jpk = da‘ij (xPigy ;) = xPs. O

Lemma 3.11. The pus x n Jacobian matrix Jpg(x) of the system Df(x) =
(fi,---, fun) is of full rank n at x = (.

Proof. Suppose that the matrix is rank-deficient. Then there is a non-trivial vector
in its kernel,

pr(C) -v=0.

The entries of v are indexed by ;. This implies that a non-zero differential A =
v101 + - - - +v,0,, of order one satisfies the following relations: (AA;)$[f;] = 0,i =

1,...,u,5 =1,...,s. By the standard derivation rules, we have
d d
—(AN;) = v \; + A—A;,
a5y A) = uehi + Age

fori =1,...,pu,,k = 1,...,n. Since Z is stable under derivation, %k-Ai € 9.
We deduce that the vector space spanned by (%, AZ) is stable under derivation
and vanishes on f at (. By Proposition 3.2, we deduce that AZ C . Thisis a

contradiction, since A is of degree 1 and the elements in & are of degree < N. [

The columns of Jpy(x, €) are indexed by the variables (z, €), while the rows
are indexed by the polynomials g;;. We construct the following systems:

(a) Let Df’ be a subsystem of Df s.t. the corresponding n rows of Jp¢(¢) are
linearly independent (Lem. 3.11). We denote by I = {(i1, k1), ..., (in, kn)}
their indices.

(b) Let Dg(x,&) be the square system formed by removing the variables
€kiyits - - -+ Eknin from Dg(x,). Therefore the Jacobian Jpg(x, €) derives
from Jpg(x, €), after purging the columns indexed by &y, ;,, ..., €k, s, and
it’s (i, k;)—th row becomes [V (A? gi, x,)"| 0.

Theorem 3.12 (Deflation Theorem 1). Let f(x) be a n—variate polynomial system
with an u—fold isolated zero at * = (. Then the n X n system Dfl(a:) = 0, defined
in (a), has a simple root at x = (.

Proof. By construction, ¢ is a solution of D f! (x) = 0. Moreover, the indices /
are chosen such that det Jp ¢1(¢) # 0. This shows that ¢ is a simple (thus isolated)
root of the system D f’(x) = 0. O

54 Chapter 3. On the treatment of singular isolated roots

Example 3.13. In our running example, we expand the rectangular Jacobian ma-
trix of 6 polynomials in (xq,x2). Choosing the rows corresponding to f, and
(dy — d5 — dydy — d2)[f1], we find a non-singular minor, hence the resulting system
(f1,2x1) has a regular root at { = (0,0).

The deflated system D f’(z) = 0 is a square system in n variables. Contrar-
ily to the deflation approach in [26, 65], we do not introduce new variables and
one step of deflation is sufficient. The trade-off is that here we assume that exact
dual elements are pointed at by indices I, so as to be able to compute the original
multiple root with high accuracy.

On the other hand, when the coefficients are machine numbers, an exact multi-
ple root is unlikely to exist. In the following theorem, we introduce new variables
that will allow us later to derive an approximate deflation method.

Theorem 3.14 (Deflation Theorem 2). Let f(x) be a n—variate polynomial system
with a pu—fold isolated root at x = . The square system Dg(x, &) = 0, as defined
in (b), has a regular isolated root at (x,€) = (¢, 0).

Proof. Computing approximate dual basis at { we get

Dg(¢,0) = (AS[f],..., AS[f]) = 0.

Moreover, by construction of Dg we get, up to a row permutation, the following
structure in the Jacobian determinant:

Ji

+det JDQ(C7 0) = det Jy I ‘

= det Jl 7&0,

where .J; = Jp(C). This shows that (¢, 0) is regular and thus isolated point of
the algebraic variety defined by Dg(x, &) = 0. O

Nevertheless, this deflation does differ from the deflation strategy in [26, 65].
There, new variables are added that correspond to coefficients of differential ele-
ments, thus introducing a perturbation in the dual basis.. This is suitable for exact
equations, but, in case of perturbed data, the equations do not actually define a true
singular point. In our method, we perturb the equations, keeping a fixed structure
of a multiple root. Consequently, the certification of a root concerns a nearby sys-
tem, within controlled error bounds, that attains a true multiple point, as it shall be
described in the next section.

We mention that it would also be possible to use the equations (3.9, i-iii) to
construct a deflated system on the differentials and to perturb the approximate dual
structure.

3.5. Verifying approximate singular points 55

3.5 Verifying approximate singular points

In real-life CAD applications, it is common to work with approximate inputs.
Also, there is the need to (numerically) decide if an (approximate) system pos-
sesses a single (real) root in a given domain, notably for use in subdivision-based
algorithms, e.g. [72, 80].

In the regular case, Smale’s a—theory, extending Newton’s method, can be
used to answer this problem, also partially extended to singular cases in [47], using
zero clustering. Another option is the following theorem, also based on Newton
theory. In our implementation we use this latter approach, since it is suitable for
inexact data and suits best with the perturbation which is applied. In particular, it
coincides with the numerical scheme of [90] in the univariate case.

The certification test is based on interval analysis techniques. We refer to the
following theorem due to Krawczyk, also Rump:

Theorem 3.15 ([56, 60, 90]). Let f € R" be a polynomial system and {* € R" a
real point. Given an interval domain Z € IR" containing {* € R"™, and an interval
matrix M € TR™" whose i—th column M, satisfies V f;(Z) C M; fori=1...,n,
then the following holds:

If the interval domain

VH(Z,¢) = =Jp(C) T F(C) + (= Jp () M) Z (3.15)

is contained in the interior of Z, then there is a unique ¢ € Z with f({) = 0 and
the Jacobian J¢(C) € M is non-singular.

This theorem is applied to the system of 3.14, using an (approximate) structure
D. The resulting range of the e —parameters encloses a system that attains a single
multiple root of that structure. Hence the domain for e —variables reflects the dis-
tance of the approximate system from an exact system with local structure D, see
Ex. 3.18.

3.6 Geometry around a singularity

As a final step in analyzing isolated singularities, we show how the local basis
can be used to compute the topological degree around the singular point. If the
latter is a singular point (e.g. self-intersection point, cusp, isolated point etc), of a
real algebraic curve, one can deduce the number of curve (half-)branches that touch
the point. We will not be interested in the type of the singularity; methods exist that
can identify the type of a given singularity, eg. the symbolic-numeric method for
Puiseux expansions of [88] or the works based on genus computation [53, 54, 55].

56 Chapter 3. On the treatment of singular isolated roots

3.6.1 Topological degree computation

Let f(x) be a square n—variate system with an u—fold isolated zero at = (.

The topological degree tdegc(f) at £ = ¢ is the number of times that the
(Gauss) map G¢ : S¢(e) = S" 1, Ge(x) := f(x)/||f(x)]|, with domain on the
ball S¢(g), wraps around the sphere S*~'. This integer remains invariant if we
replace spheres by any other compact oriented manifold [33].

To a functional A € R[9], we associate the quadratic form

Qr : R/IQXR/Q—R , (2P xfi) s AjxPithi] (3.16)

for R/Q = (xP1,... xPx). The signature of this (symmetric and bi-linear) form
is the sum of signs of the diagonal entries of any diagonal matrix representation of
it.

Proposition 3.16 ([33, Th. 1.2]). If Q¢, ® € D is any bi-linear symmetric form
such that ®¢[det J¢(x)] > 0, then

tdeg,(£) = sgn(Qo). (3.17)

This signature is independent of the bi-linear form used.

We can use this result to compute the topological degree at = ¢ using the
dual structure at ¢. Since a basis D is available we set & = +A;, for some basis
element that is not zero on det J¢(x). Indeed, such an element can be retrieved
among the basis elements, since det J; ¢ (f), see [35, Ch. 0].

In practice it suffices to generate a random element of &, compute its matrix
representation [®(x?+#5)];;, and then extract the signature of Q.

3.6.2 Branches around a singularity

In the context of computing with real algebraic curves, the identification of
singular points is only the first step towards determining the local topology. As
a second step, one needs to calculate the number of half-branches attached to the
singular point ¢, hereafter denoted Br(f, {). This information is encoded in the
topological degree.

An implicit curve in n—space is given by all points satisfying f(x) = 0, f =
(fi,--+y fa1). Consider p(x) = (1 — G1)* + -+ + (zn — ()% and g(x) =
det J(# (). Then ([100] and references therein):

This implies an algorithm for Br(f, ¢). First compute the primal-dual structure of
(f,9) at ¢ and then use Prop. 3.16 to get tdeg.(f, g), see Ex. 3.19.

3.7. Experimentation 57

3.7 Experimentation

Our method is developed in MAPLE. It uses our modified integration technique
to compute (approximate) dual basis and derive the augmented system of Th. 3.14.
Then Rump’s method is used to verify the root. Macaulay’s method is also imple-
mented for testing purposes.

Example 3.17. Let, as in [63, 66], fi = 2xy + 222 + 219 + 223 + x% —1, fo =
(1 + 29 — 23 — 1)® — 23, and f3 = 223 + 223 + 1023 + 523 + 5)% — 100023.

Point (0,0, —1) occurs with multiplicity equal to 18, in depth 7. The final matrix
size with our method is 206 X 45, while Macaulay’s method ends with a 360 x 165
matrix.

If the objective is to deflate as efficiently as possible, then one can go step by
step: First compute a basis of 9, and stop the process. We get the evaluation 1 and
2 first order functionals, which we apply to fi. We arrive to (1[f1], (dy — d1)[f1],
(dy + d3)[f1]) = (f1, —4x1 + 429,2 + 421 + 223) and we check that the Jacobian
determinant is 64, thus we have a deflated system only with a partial local structure.

Example 3.18. Consider the equations ([26, DZ3]): f1 = 14x1+ 33z —3\/5(:v%+
4wy 4 423+ 2) + VT 4 28 + 6020y + 120103 + 823, fo = 41wy — 1829 — V5 +
823 — 1202wy + 62103 — 13 + 3/ T (4a 29 — 422 — 22 — 2) and take an approximate
system f with those coefficients rounded to 6 digits. A 5—fold zero of f rounded to
6 digits is ¢* = (1.50551,.365278).

Starting with the approximate system and with a tolerance of .001, we compute
the basis D = (1,d; + .33ds, d? + .33dydy + .11d3%,d3 + .33d3dy + 11d,d3 +
03d3 — 1.54dy, d} + .33d3ds + .11d3d3% + .03d,d3 + .01d5 — 1.54d,dy — 1.03d3)
having 4 correct digits, w.r.t. the initial exact system, and the primal counterpart
B=(1,z,2% 23 x7).

We form the deflated system (b), with I = {(3,1),(5,1)}, i.e. the 3rd and
Sth dual element on fi have non-null Jacobian. By adding 8 new variables, the
system is perturbed as: g11 = fi + e11 +e1a(r —) +e1a(rr — ()3 gon =
fo+ 320 eau(xy —)Y and their derivation w.rt. D.

We consider a box Z with center = ¢* and length = .004 at each side. Also,
we allow a range E = [—.004,.004]® for the variables €. Applying 3.15 we get a
verified inclusion Vy(Z x E,(¢*,0)) inside Z x E and we deduce that a unique
specialization & € E “fits” the approximate system f to the multiplicity structure
D.

Indeed, one iteration of Newton’s method on g(x,e) gives { =
(1.505535473, .365266196) and corresponding values for €q € E, such that ¢ is a
9—digit approximation of the multiple root of the perturbed system g(x, €).

58 Chapter 3. On the treatment of singular isolated roots

Example 3.19. Consider the implicit curve f(z,y) = 0, in xy—plane, with
fla,y) = ot + 222y + ' + 3%y — o,

that looks like this 5. We search for the number of half-branches touching { =
(0,0).
This point is of multiplicity 4, as the dual basis we get for

Fa) =) = 2 flay) =0

is (1,dy, d,, d* + dz), yet this provides no information for the number of branches
around the point C.

We compute

9(,Yy) = Jipa2ry2) = 18zy* — 62°,

and then the multiplicity structure of (f, g) at {, and we arrive to

3 1 3
— 2 2 3 4 2 12 4
D =(1, dy, d,, dy, dydy, d3, dy + 3 dy + gdmdy + gdw
: 9 3 9
d.dy + 3 dy, d;d, — 3 d, — 3 d2d? — 3 d*),

and the monomial basis
B= 1,y 9, zy 2* ¢ zy’, 2°y).

Among the 9 elements of the dual basis, we find

3 1 3
_ 73 4 2 12 4
¢ =d,+ édy + gdzdy + gdm
having value ®°[det J;) (x)] = 54 > 0 on the Jacobian determinant.
Now a representation of Qg (3.16) can be computed, by applying ®° to xPi+Pi
to get the ij—th entry of the matrix:

o0 0 0 0o 0 O 1 0 0]
o 0 0 1 0 0 38 0 1/8
o0 0 O O 0 0 1/8 0
O 1 0 38 0 1/8 0 0 0
Qe=|0 0 0 O0 1/8 0 0 0 0
O 0 0 1/8 0 3/8 0 0 0
138 0 0 0 0 0 0 0
o 0 1/8 0 0 0 0 0 0
01/ 0 0 0 0O 0 0 0 |

3.7. Experimentation 59

With a QR iteration, we find 6 positive and 3 negative eigenvalues of this matrix,
hence we compute

tdeg; (f,g) = sgnQs =6 — 3 =3,

i.e. there are 6 half-branches of the curve around (0, 0).

In Table 3.1 we run dual basis computation on the benchmark set of [26] in
MAPLE. Multiplicity, matrix sizes at termination step and computation time is
reported. One sees that there is at least an order of gain in the running time.

System \ w/n H primal-dual H integration H Macaulay
cmbs1 11/3 27 x 23 .18s 27 x 33 .95s 105 x 56 1.55s
cmbs2 8/3 21 x 17 .08s 21 x 24 .39s 60 x 35 A48s
mth191 4/3 10x9 .03s 10 x 12 .07s 30 x 20 14s
decker2 4/2 5 X5 .02s 5% 8 .05s 20 x 15 .10s
Ojika2 2/3 6 x5 .02s 6 X6 .03s 12 x 10 .04s
Ojika3 4/3 12x9 .07s 12 x 12 27s 60 x 35 .59s
KSS 16/5 155 x 65 | 8.59s || 155 x 80 | 40.41s || 630 x 252 | 70.03s
Capr. 4/4 22 x 13 28s 22 x 16 47s 60 x 35 2.34s
Cyclic-9 | 4/9 104 x 33 | 1.04s || 104 x 36 | 5.47s 495 x 220 | 31.40s
DZ1 131/4 || 700 x 394 | 14m || 700 x 524 | 26m || 4004 x 1365 | 220m
DZ2 16/3 43 x 33 .68s 43 x 48 4.38s 360 x 165 | 25.72s
DZ3 5/2 6 x6 .04s 6 x 10 23s 30 x 21 .79s

Table 3.1: Benchmark systems from [3].

Verification Example. Let f; = :c%azg — xlx%, fo=mx — x% The verification
method of [90] applies a linear perturbation to this system, but fails to certify the
root x = (0,0).

We consider an approximate point * = (.01, .002) and we compute the ap-
proximate multiplicity structure

D=(A,..

., Ay) = (1.0,1.0dy,1.0d; + 1.0d5, 1.0d1dy + 1.0d3).

The augmented system g(z) = (A;[fi]) = (f1, 2.0z129 — 1.023 — 1.021, 2.0z, —
2.0xq, 1.0z — 1.022, fo, —2.02, 0.,0.) has a Jacobian matrix:

Tg(¢7)"

[.00 .016
—.02

.00

-.99

.016

2.0
-2.0

1.0
—.004

0

—2.0

0 0
00

60 Chapter 3. On the treatment of singular isolated roots

with a non-zero minor at the third and forth row. Using this information, we apply
the following perturbation to the original system:

2 2
g1 = XT1T2 — T1T5 + €11 + €12T2

2
g5 = X1 — X5 + €91 + €22%0 + €23%1 + €241 T2

Thus g(x1, z2, €11, €12, €21, E22, €23, €24), computed as before, is a square system
with additional equations:

go = 1.0x% — 2.0z129 + 1.0e15
g3 = 2.0z125 — 1.022 — 1.0z,

gy = 2.0x1 — 2.02,

g = —2.0x9 + 1.099 + 1.0x1694
g7 = 1.0e93 + 1.0z9e94

gs = 1.0e94

Now take the box Z; = [—.03,.05] x [—.04,.04] x [-.01,.01]°. We apply
Th. 3.15 on g, i.e. we compute V,(Z;,¢"). For the variable €5; the interval is
[—.015,.15] € (—.01,.01), therefore we don’t get an answer.

We shrink a little Z; down to Z, = [—.03,.05] x [—.02,.02] x [—.01,.01]% and
we apply again Th. 3.15, which results in

Vg(22,(¢7,0)) = CZs,

[—.00045, .00035]
.0,.0]

thus we certify the multiple root of the original system inside [—.03,.05] X
[—.02,.02]. [

Example 3.20. We start with an approximate system: f; = 1.071x; — 1.069x5 +
1.0182z%, fo = 1.024z; — 1.01625 + 1.0582% and the domain: Z = [—.01,.03] x
[—.03,.01]. The Jacobian at x = (0,0) evaluates to .00652, hence it is close to
singular.

We set the tolerance equal to .04, i.e. the size of the domain, and we consider
the center of the box as our approximate point, * = (.01, —.01).

First we compute approximate multiplicity structure at {*, D = (1, dy +
1.00016d3 + .99542d, do +1.03023d?, dy —1.00492d3 — 1.00016d,ds — 1.03514d?)

3.7. Experimentation 61

as well as (1,9, x1), a monomial basis for the quotient. The latter indicates to
perturb up to linear terms.

Now apply the second deflation theorem 3.14 to get the 6 x 6 system g =
(1.018 22+1.071 21+ (e12 — 1.069) 29, £15—.02023, .01723+2.036 21, 1.058 x5+
(1024 + 523){23'1 + (522 — 1016)!172 + €91, 04217 4+ 2.116 X9 + €99, E93 — 03921),
which has a regular root for { € Z and parameters (€12,€91,E92,€93). Indeed,
applying Theorem 3.15 with 7' = Z x [—.04,.04]* and (¥, 0) we get a verified
inclusion Vy(Z', (¢*,0)) C interior(Z’).

Example 3.21. Consider the system [66] of 3 equations in 2 variables f, = 3 +
123, fo = ma3 + 13, f3 = riwe + x123, and the singular point (0, 0).

Suppose that the point is given. Using 3.6 and 3.8 we derive the primal-dual
pair D = (1,dy,dy, d2, dydo, d3, ds + d3 + didy — dyd3), where d3 is underlined to
show that it corresponds to in the primal monomial basis B. The biggest matrix
used, in depth 4, was of size 9 X 8, while Macaulay’s method terminates with a
matrix of size 30 x 15.

To deflate the root, we construct the augmented system D f of 21 equations. The
21 x 2 Jacobian matrix Jps(x) is of rank 2 and a full-rank minor consists of the
rows 4 and 5. Therefore, we find the system (d3]f1], dids|f1]) = (311, 2x5) which
deflates (0,0). Note that even though both equations of the deflated system derive
from f1, the functionals used on f, are computed using all initial equations.

CHAPTER 4
Computing planar semi-algebraic
sets

Contents

4.1 Planar semi-algebraicsets. 64
42 Representation 0 it it e e e e e 66
4.3 SubdiviSion process i i ettt e e e e e e e 67
44 RegIONTECOVELY . v ¢ v v v v v v v v v o o o o o o o s v o oo oo 71

4.4.1 Following the boundary curves around a region 72
4.5 The case of basic semi-algebraicsets 75

4.5.1 Regularitytest, 76
4.6 Thegeneralcaseot v vt v vt vosueeeoas 77
4.7 Implementation and demonstration 78

In the present chapter we present a new technique to handle semi-algebraic sets
in the plane. The defining equations of the set are transformed to tensor-Bernstein
form. This gives a numerically stable way to subdivide this representation into
sub-domains, until certain regularity conditions are fulfilled. During the subdivi-
sion process the cells that touch the boundary of the semi-algebraic set are iden-
tified and their adjacency structure is represented as a graph. When this process
terminates, we follow this graph to recover contours that define the geometry of
the set. A tolerance ¢ > 0, given at the input, controls the precision of the com-
puted approximation. Nevertheless, the regularity conditions (e.g. monotonicity of
the function) imply a topologically correct result. In this sense, our algorithm, also
published in [70], extends the approach in [2] on the arrangements of algebraic
curves, by providing an efficient way to deal with semi-algebraic regions and to
perform boolean operations on these regions.

In Section 4.2 we provide details on the representation of the main objects in
memory. Then in Section 4.3 we describe a subdivision process that computes a
collection of cells covering the semi-algebraic set. This representation is used to
compute its connected regions, in Section 4.4. We specialize the main functions
that appear in the algorithm first for the case of so called basic sets, in Section 4.5

63

64 Chapter 4. Computing planar semi-algebraic sets

and then discuss the general case in Section 4.6. We conclude with examples and
an overview of our implementation in Section 4.7.

4.1 Planar semi-algebraic sets

Planar semi-algebraic sets are unions of subsets S of R? that satisfy a set of
bi-variate polynomial equalities and inequalities. These sets appear naturally when
polynomial constraints are used for instance to describe regions of validity for a
physical problem. Piece-wise algebraic representation of shapes is commonly used
in CAGD, for instance in B-spline parametric representation of curves, or even
surfaces of volumes, that also belong to the class of real semi-algebraic sets. Con-
structive Solid Geometry models also used in CAGD are semi-algebraic sets if the
involved solid primitives are algebraic. In domains such as optimization, an im-
portant problem is the computation of global optimum of (polynomial) functions
under (polynomial) constraints. These constraints define a semi-algebraic set as
the solution space, in which the optimal points will be searched [62], [51]. In other
words, semi-algebraic sets provide a general framework to handle many shape rep-
resentations that are commonly used in shape modeling. For instance, computing
the topology of an algebraic curve, or even the arrangement of several overlayed al-
gebraic curves is a task that appears often in CAGD, and several effective methods
have been proposed for this task [28].

The study of real semi-algebraic sets has a long historical background [101],
with important theoretical contributions for instance on their triangulation [49],
[52]. More algorithmic questions have also been tackled, essentially using the
well-known Cylindrical Algebraic Decomposition [21]. This approach is based on
performing successive projections of semi-algebraic sets onto sub-spaces of dimen-
sion one less and then lifting back to the projected set. It yields a decomposition
of a semi-algebraic set S into (connected) components, defined by sign conditions
deduced from some ““sub-resultant” polynomial sequences [15], [23], [10], or from
computing some generalized critical values of the equations [30, 92].

Matrix representations and operations on then, for basic families of such sets,
eg. curves and surfaces, have been explored recently [68].

One of the bottlenecks for practical applications of C.A.D.-based approaches,
even in small dimension, is its double exponential complexity behavior. This is
due mainly to computations with algebraic numbers of possibly high degree. Other
obstacles include the lack of extension to approximate computation, required by
applications in CAGD and the problem of robust description of the components.
Our approach refrains from costly algebraic manipulations, hence avoids the high
complexity of exact computation. It is based on real root isolation, well suited
for approximate yet certified computations. Moreover, it gives an answer to the

4.1. Planar semi-algebraic sets 65

problem of representing the semi-algebraic set in a way that is both topologically
correct and suitable for applications. This overcomes the inflexible description by
sign conditions or other implicit descriptions, for instance the one in [9], where
each connected component is described itself as a semi-algebraic set.

We note that our method can be extended to dimension three, without theo-
retical obstacles. Indeed, the implementation is done in a generic programming
framework that allows extension to dimension three with relatively little additional
effort, since abstract types and templated data structures are heavily used.

We start by defining the family of sets that we are interested in.

Definition 4.1. The family & C oR? of semi-algebraic sets is the closure under
union and intersection of subsets of R? of the form

{(z,y) eR*: f(z,y) =0} and {(z,y) € R*: g(z,y) > 0}
where f, g € Rz, y].

We call the above sets basic semi-algebraic sets. These definitions extend nat-
urally to higher dimension.

If S € G, its complement S¢ = R?\ § is easily seen to belong to &. The family
G 1is thus stable by intersection, union and complementary. Another important
property of semi-algebraic sets is that the projection of a semi-algebraic set is a
semi-algebraic set [10].

Our algorithm has as input an initial frame Dy = [a,b] X [c,d] and a semi-
algebraic set S, given in disjunctive normal form, that is, in the form S; U --- U
S where each §; is an intersection of basic semi-algebraic sets, hence defined
as a subset {(z,y) € R* : ¢ = 0,...,9m = 0, f1 > 0,..., fn > 0}. It
outputs a boundary effective representation of the connected components of this
semi-algebraic set.

Given a precision € > 0, it can also output a polygonal approximation of the
set inside the domain D, within the precision €, which moreover is isotopic to S in
the following sense:

Definition 4.2. Two semi-algebraic sets S;, S, of R? are isotopic if there exists a
continuous application F : R? x [0,1] — R? such that F|,— is the identity map,
F(81,1) = Sy and forall t € [0,1], F|; : R* — ImF|; is a homeomorphism.

We introduce some notation. Throughout the text S will refer to an input semi-
algebraic set. By a slight abuse of notation we might denote by S both the semi-
algebraic set and the set of underlying defining polynomials. The meaning will be
clear from the context. Let f be a polynomial of the input. We refer to parts of
the real algebraic curve f = 0 that belong to S, the boundary of S, as boundary
curves. Points where boundary curves intersect (or a single boundary branch, part

66 Chapter 4. Computing planar semi-algebraic sets

of some [= 0 is self-intersecting), are called crossing points. Also, we will refer to
a branch of a curve, defined by two endpoints p, ¢, as the part of the curve between
these points, e.g. the image of a continuous parametrized curve r : [0, 1] — R? s.t.
r(0) =p,r(l) =gand for =0.

4.2 Representation

We begin by describing the main objects in the algorithm, called hereafter cells,
and how they are represented in memory.

A cell carries local information for S in a rectangular domain D = |[a, b] X
[, d]. This information includes the Bernstein representation over D of the defining
equations of S;, whenever S; N C # . It also carries the intersections of every
branch of OS that crosses the cell with the cell frame JC. The cells of interest are
exactly the cells that contain branches of boundary curves, i.e. parts of 0S. These
cells are identified during the subdivision process.

A local description of S in a cell is achieved using the tensor-Bernstein repre-
sentation over D of every polynomial that defines S. This representation is com-
puted using DeCasteljau’s algorithm. It yields, for a polynomial f € R[z,y|, an
expansion

dz dy

fe,y) =3 iy By, (x50,b) B (y;c,d) , (4.1)

i=0 j=0

where d,, d, is the degree of f in z, y resp., and B};x (x; a,b) is the i—th Bernstein
polynomial of degree d,, over the interval [a, b], namely

B} (z;a,b) = (d;) (x —a)'(b—2)=""(b—a) ™%, 4.2)
0 <i <d,, a < b. Consequently we store a (d, + 1) x (d, + 1) matrix in memory
to represent f, i.e. a dense Bernstein representation. A number of properties of
this basis, e.g. convexity, variation diminishing, positivity etc, make it suitable for
stable approximate computations (see [44] for more information).

The first cell C that is computed as soon as the algorithm is launched is the one
corresponding to the initial frame D,. This initial cell carries all the polynomials
of the input. When a sub-cell is computed, if S; does not cross that cell, for some
1,§ = 81 U--- UGSy, then the polynomials of S; are not kept in the representation
of it.

Another object is the region, which is a linear approximation of a 2-dimensional
connected component of the semi-algebraic set. It is described as a collection of
contours, that are closed loops properly oriented to delimit the region: The outer

4.3. Subdivision process 67

contour, or shell, is oriented counter-clockwise (CCW for short) whereas any in-
ternal contours, or holes are clockwise (CW) oriented. See Fig. 4.4 for a region
defined by three contours.

Every contour is essentially a simple polygon described as a list of vertices that
lie on the boundary of the exact set.

We also employ graph structures to keep adjacency information between cells.
These are internally saved in memory using adjacency-list representation [22].

More specifically, we compute an undirected graph A, in which the points
where 0S intersects JC correspond to edges and subdivision cells C correspond
to vertices. We shall compute the restriction of the semi-algebraic set in a given
initial domain, thus the border of this domain is from a computational point of view
a limit for the regions to compute. For this reason, we also keep a directed graph
containing the cells where boundary curves touch the initial frame and the four cor-
ner cells of Dy. This forms a CCW loop and is used to complete any open contours
that touch the boundary.

The space subdivision is tracked using a kd—tree, rooted at Dy. The leaves of

this tree is a partition of Dy into cells. The inner nodes represent the sequence of
subdivisions that took place.
Example. In Fig. 4.3(left), we have a partition of the domain into 8 regular cells.
The semi-algebraic set is the grayed area, described by a single contour. Here the
graph A is the closed path of cells 2,7,6,8,3,2. The border graph is the directed
closed path 2,1,7,6,4,3,2.

4.3 Subdivision process

The subdivision of the initial domain into regular cells is a main operation of
the algorithm. It consists in splitting the initial domain into smaller cells until
certain local properties are satisfied. These properties will allow in a later step the
construction of a topologically correct approximation of the (boundary of the) set
in each cell.

During this process we construct a graph A whose vertices are the cells that
span 0S. Alg. 4.1 presents the general process. Here a cell is regarded as an
abstract object that supports the following operations:

* Regularity test(ISREGULAR). A cell is considered regular if the topology of
S inside the cell is known, i.e. it can be deduced using only discrete data stored
in the cell, namely the points in JC N S, or even the sign of some derivatives
on them. Hence interesting cases are the cells that contain branches of boundary
curves. Some characteristic examples of this are presented in Fig. 4.1. If there is
more than one crossing point in the cell, that is, branches that intersect each other,
then there is ambiguity on how the region behaves in the cell. Thus the regularity

68 Chapter 4. Computing planar semi-algebraic sets

(c)

Figure 4.1: Examples of cells that are regular and intersect S: (a) intersection of
two basic sets, (b) union of two basic sets with a crossing, (c) union of two sets.

implies that we have at most one crossing point inside the cell and that the branches
inside C have a monotone behavior. This behavior is connected to special points on
the boundary curves, namely points with vertical or horizontal tangents.

* Boundary curve intersection test(ONBOUNDARY). It is used to identify if a
cell is intersecting 9§, i.e. C N S # @. This can be done by inspecting the sign
variations of Bernstein coefficients of the polynomials that define S. Descartes’
Rule of Signs implies that if there is a branch of S in C, then there will be sign
variations on the coefficients of some boundary equation. On the other hand, by
the positivity property of the Bernstein basis, if the coefficients over a cell C of a
curve f = 0 have no sign variations, then there cannot be a branch of this curve in

C.

Algorithm 4.1: Subdivision algorithm
Input: A cell Cy corresponding to the initial domain D).
Output: A partition of Cy into regular cells and a cell graph A.
Initiate a kd—tree IC and set its root to Cy;
Initiate a graph A with a vertex Cy;
for all unvisited leaves C in K do

if ONBOUNDARY/(C) and not ISREGULAR(C) then
subdivide C into two children C;, and Cp ;

put an edge in A between C;, and Cg;
distribute the A—neighbors of C to C;,, Cg;
remove C from A;

else
mark C as visited;

end

return C, A;

end

4.3. Subdivision process 69

During the subdivision process the following information is computed:

< Space partition information in the kd-tree structure.

< Local information in the subdivided cells: the tensor-Bernstein representa-
tion over the cell, critical points contained in the cell, intersection points of
0S8 with the cell frame.

< Adjacency information between the cells, in horizontal and vertical direc-
tion. The cells in which the boundary curves touch the border 9D, are also
connected in a counter-clockwise loop, to serve the purpose of limiting the
computation inside D.

* Space Partition. The cells that derive from successive subdivisions are organized
in a kd-tree structure [12], rooted at the initial domain Dy. The nodes in this tree
have pointers to their left and right children, as well as to the parent node. The
coordinate in which the subdivision takes place at every level of the tree is not
fixed; it is implied every time by the dimensions of the current cell, thus at the
same level of the tree we may have cell subdivisions either in x or y coordinate.

This structured partition allows to perform fast point location queries. The
reason we have chosen a kd-tree rather than a quad-tree is economy wrt the overall
number of cell subdivisions as well as the modularity that it offers, for instance it’s
direct adaptation to three or more dimensions.

There are two basic tests to be defined, to guide the subdivision process. The

first identifies that a cell is regular, i.e. the topology of the semi-algebraic set in the
cell is known. In this case the subdivision stops at this branch of the kd-tree. The
second test identifies if S intersects the current cell. If not, then either C C S or
C NS = @, thus there is no need to subdivide it any further.
* Cell subdivision. Subdividing a cell C along some coordinate is essentially to
compute, starting from the Bernstein representation over C, representations over
some sub-domains of C. This operation is carried out by one call of DeCasteljau’s
algorithm [44].

Moreover, along the line where the splitting takes place, we solve a univariate

Bernstein polynomial for every boundary curve that intersects the cell, in order to
compute intersection with the new frame sides. The existing crossing points and
frame intersection points are distributed to the resulting sub-cells, Fig. 4.2.
* Adjacency graph update. At each subdivision step, a former leaf of the kd-tree
obtains two children. To update the cell graph, we disconnect this node and dis-
tribute it’s neighbors to the new children, according to the direction of splitting.
Finally, we introduce a new edge that joins the two children along the correspond-
ing direction. These steps, demonstrated in Fig. 4.2, ensure that at any point of the
subdivision, the leaves of the kd-tree, which form a partition of D, are connected
to the neighboring cells in all four sides.

70 Chapter 4. Computing planar semi-algebraic sets

Figure 4.2: Cell subdivision along x—direction. Neighbors of the parent (left) are
distributed to the children(right). An edge is added between the latter.

Figure 4.3: Left: Subdivision process, with marked subdivided cells and intersec-
tions. Right: Computed polygonal region, marked with the oriented list of contour
points.

4.4. Region recovery 71

4.4 Region recovery

In this section we explain how we pass from the cell description to a polygonal
approximation of the (connected components of the) semi-algebraic set. We will
demonstrate that as soon as the subdivision Alg. 4.1 terminates, we are able to
recover the shape of the semi-algebraic set, and guarantee the correctness of the
construction.

The output is a list of regions that correspond to connected components of the
semi-algebraic set. The set of cells that intersect a region can readily provide a
triangulation of the region, which can be outputted for use in rendering. Each
region is represented as a set of closed oriented contours. The orientation of every
contour reveals whether it is the exterior boundary, or shell of the region, or an
internal gap, or a hole. There is a unique shell for every region of S.

To compute the regions, it suffices to traverse the cell graph A in a suitable way
and recover the shell and holes of every region in the set. The algorithm for region
computation is summarized in Alg. 4.2.

Algorithm 4.2: Region computation
Input: A cell graph A covering the semi-algebraic set S.
Output: A list L of polygonal regions, one for every connected component
of S.

L+ @,
for all boundary cells C in A do

if C is not visited then
F <+ DISCOVERCONTOUR(C);

if ' ISCCW then
Initialize region R with F’;
push R to L;

else
attach hole £’ to it’s containing shell

end
end
end
return L;

The orientation check ISCCW depends only on the contour F'. Every closed
contour can be assigned an orientation; if one walks around the curve in such a
way as to keep the bounded region on one’s left at all times, the contour is said
to be positively oriented. If the contour is traversed in the opposite direction, then
it is said to be negatively oriented. Let ¢ = (p1,p2,...,p,) With p; = (z;,y;),
Pn+1 = p1 be a list of points defining a closed polygonal contour. The sign of

72 Chapter 4. Computing planar semi-algebraic sets

Figure 4.4: A region defined by it’s oriented border. All the contours are CCW-
oriented wrt the grayed region. This leaves the holes CW oriented with respect to
the bounded domain they define.

the quantity Z(xiyiﬂ — x;11Y;) determines whether c is positively or negatively
oriented. Thils_slum is twice the (signed) area of the contour.

The function DISCOVERCONTOUR, presented in Alg. 4.3, returns a contour
that crosses the cell C and is oriented CCW wrt the region it delimits. For instance,
both the holes and the shell of the region in Fig. 4.4 are CCW oriented wrt the
grayed region. It is required that the cell argument is regular, so that the global
shape of the contour can be determined by following the known local topology in
the cell. This is ensured by the subdivision process of Section 4.3.

Apart from the cells containing branches of the boundary contours, there are
special cells that are needed in order to constrain the computation in the initial
frame D. These are the boundary cells that touch the frame as well as the four cor-
ners of D. They are connected in a CCW loop during the subdivision process that
is used to complete the contours that escape D and would not be closed otherwise.

4.4.1 Following the boundary curves around a region

The main function in Alg. 4.2 is DISCOVERCONTOUR, which is in turn based
on two routines, PAIR and STARTINGPOINT.
* Pair. If a cell intersects both a region and the region’s boundary, then for every
intersection point p there is a unique point ¢ that is connected to p via a segment
of OS that lies inside the cell. If the cell in question is also regular, ¢ can be
computed using sign conditions along JC. We define this point ¢ to be the result
of PAIR(C, p). If this point ¢ is different from p, then evidently it is connected to p
via a branch of some boundary contour of the region. Alg. 4.4 presents a general
strategy to compute q.
Example. In Fig. 4.1 the result of PAIR is: (a)l — 2, (b)4 — 3, (¢)2 — 3. Note
that in case (c), the branch 1 — 4 will not occur in the computation, since it does
not belong to 0S.

4.4. Region recovery 73

* Starting Point. A contour has to be traversed with the correct orientation, oth-
erwise we would not be able to distinguish between shells and holes of a region.
For this, it suffices to provide the first two points in the point list of the contour
with the correct orientation. This is the task of the STARTINGPOINT(C) routine. It
returns a point p on dC s.t. the oriented branch with endpoints p, PAIR(p) has on its
left side the region to be computed. This is a special case of the PAIR computation
described in the next paragraph.

Example. For Fig. 4.1 the result of STARTINGPOINT is: (a)2, (b)3, (c)2. Indeed,
the respective branches (a)2 — 1, (b)3 — 4 and (¢)2 — 3, are CCW-oriented wrt
S.

Looking at the graph .A induced by Alg. 4.1, we distinguish two kinds of regular
cells:

< Cells that contain non-crossing branches of 0S.

< Cells that contain branches that intersect at one crossing point.

Recall that the outcome of PAIR(C) is the point connected to p via a branch which
lies inside C. The general algorithm is presented in Alg. 4.4. The essential tool for
this computation is an efficient way to check if a given point on OC is contained in
S. This is done using the sign of the Bernstein coefficients. For every polynomial
f of C, there are four extreme coefficients that are equal to it’s value on the four
corners of C. Now taking into account that the sign of f along OC alternates every
time we pass a boundary intersection point, we can determine the sign on any point
of JC by starting from an extreme coefficient and counting points along 9C, up to
the desired point.

If there is one crossing point in C the topology of S NC is conic (Fig. 4.1(a,b)).
To choose the correct pair of a given point on 9C N IS, we check whether a
0C —neighborhood on the left of p belongs to S or on the right of p. We output
accordingly the point on the side where the test was positive.

If there is no crossing point, (Fig. 4.1(c)) it suffices to return the other end of

the branch that starts from p. We shall see in the sequel how this information is
recovered on regular cells.
Example. In the case of Fig. 4.3(left) we execute Alg. 4.3. Starting from cell 2,
we obtain a first point of the contour, using STARTINGPOINT routine. Succesive
calls of the pair function give the sequence of points shown in Fig. 4.3(right). The
process stops when we reach the cell 2 again, thus completing the contour.

It remains to specialize these functions. We continue by doing so, first in the
case of basic algebraic sets and then in the case of intersection and union.

74 Chapter 4. Computing planar semi-algebraic sets

Algorithm 4.3: DISCOVERCONTOUR(C)
Input: A regular cell C of A.
Output: A list F' of points in the plane that define a closed contour.
p < STARTINGPOINT(C);
Initialize a contour F' and push p to it;
CO +—C;
repeat
mark C as visited;
p < PAIR(C, p);
push p to contour F7;

C + the A—neighbor of C that contains p;
until C = Cy ;

return f;

Algorithm 4.4: PAIR
Input: A regular cell C and an intersection point p on 0C.
Output: The intersection point ¢ such that {p, ¢} lie on a branch of 9S.
if there is a crossing in C then
Let [, r be the CCW previous and next point, resp., of p, in dC N {f = 0};
Based on which of the segments E or pr lies in S, return either [or r

else
return the other end of the C—branch starting from p;

end

4.5. The case of basic semi-algebraic sets 75

Figure 4.5: The 23 faces in the topology of the degree 8 curve f =2 + 70 — Ty —
1423 +72° — 27— 16y + 1413 +20y* — Ty® —8yS+5" +18 — 4222 — 701> 22 + 350y +
70223 + 42yx® — 3523y + TSy — 212%y? — 352ty + 212%y° + 35y32* — Tay®
computed by running our algorithmon § = {f > 0}, S = {f < 0} and D =
[—4,4] x [-3,3].

4.5 The case of basic semi-algebraic sets

A basic semi-algebraic set is defined by one polynomial, S = {(z,y) : f > 0},
or S = {(z,y) : f = 0}. In both cases the treatment is quite the same, and
depends on the boundary curve f = 0, hence we shall suppose S = {(z,y) : f >
0}. In the case of equality it is only the contour lines that will be outputted rather
than two-dimensional regions. After fully treating this case, we shall generalize by
extending the operations to the cases of intersection and union.

This case is closely related to the topology computation of an implicit real
algebraic curve. The latter is the partition of space into points, edges and faces
defined by the curve f = 0. See Figure 4.5 for an example. Note that recovering
the topology of the real algebraic curve f = 0 is a special case of our algorithm.
Indeed, it suffices to execute the subdivision algorithm on S = {f = 0} and then
run the region recovery twice, once with S = {f > 0} and once with S = {—f >
0}. The union of these two outputs is exactly the set of faces defined by the curve

f=o.

76 Chapter 4. Computing planar semi-algebraic sets

4.5.1 Regularity test

We describe the regularity criteria that are used for the boundary curve of the
set. We shall provide a brief overview of known techniques to arrive to regularity
conditions that assure verified determination of the topology of boundary curves.
Regular algebraic segments have been extensively studied, we refer to [2, 7, 111,
112] for details on their approximation and use in modeling.

The regularity depends on special points on the curve, that reveal the local shape
of the curve in a neighborhood around them. These are:

Definition 4.3. The set of extremal points of f € R[x,y| is the solutions of the
system O, f (x,y) = 0y f(x,y) = 0.

The set of singular points of f is the subset of extremal points that also satisfy the
equation f(z,y) = 0.

The set of x-critical (y-critical) points of f is the solution set of O,f(x,y) =

[, y) =0} (0, f(z,y) = f(x,y) = 0}).

Computing these points, approximately but also efficiently, is a vital ingredient
of the algorithm. For this task, we rely on subdivision techniques (Chapter 2),
eg. [80], which is the variant that works on Bernstein polynomials. This provides
good approximations of the points in Def. 4.3. These points are precomputed and
during the subdivision process they are isolated between the cells, i.e. we do not
allow more than one of them in a single cell. As a result, after the subdivision
process terminates, we obtain a partition of Dy into regular cells of the following

type:

O x-regular cells, those that contain no x-critical points (similarly for
y—regular).

< simply singular cells, that contain a single singular point and all branches of
0S8 N C intersect it.

* Regular cells. If a cell is x—regular, it contains a number of xz—monotone
branches. In short, the direction of the tangential gradient vector (9, f, —0,f)
evaluated at the points in JC N JS yields the connection of the branches inside
C. The Bernstein representation of the derivatives themselves are easily computed,
since they are given as differences of Bernstein coefficients of f. A sufficient con-
dition for f to be x-regular is that the Bernstein coefficients of 0, f maintains a
constant sign. By Descartes’ law, this statement implies that the sign variations in
x—direction should be at most one.

Note that in special cases where the critical point is on JC two branches may
share a starting or ending point.
 Simply singular cells. If there is a single singular point in a cell C, and no
additional extremal points, one must test whether all the branches inside C cross

4.6. The general case 77

this point. This would imply that the topology inside C is a cone starting from the
singular point. The test is based on computing the topological degree, or Gauss
map [98] of the vector field Vf = (9, f, 0, f) around the closed curve OC. This
breaks down to isolating the real roots of J, f and J, f along JC. Khimshiashvili’s
theorem [57] relates the number of branches that reach the singular point to the
topological degree deg(V f,C); it states that the number of branches is exactly
2(1 — deg(Vf,C)). If this number coincides with the cardinality of dC N 0S
then we can treat this cell, otherwise there are additional branches in C and the
subdivision will continue until they are isolated from the singular point.

4.6 The general case

To treat semi-algebraic sets with more than one defining equation/inequality, it
suffices to extend the main operations in this case. Our aim is to have a covering
of the boundary curves of S by regular cells. The main difference is that crossing
branches in a cell can correspond to two basic sets in a union, or two basic sets
in an intersection. Treating correctly these cases will extend our algorithm to the
whole family of semi-algebraic sets. Again, we assume that the basic sets are
defined by inequalities, since restricting to (in the case of intersection) or attaching
(in the case of union) a curve segment to the output is not essentially different from
treating boundary curves of two dimensional components. In particular, the cell
graph A that we obtain from the subdivision Alg. 4.1 will span any components of
lower dimensions.

Let S = &3 U --- U Sk Recall that a cell C carries the polynomials of S; if
08; N OC # . For all the other parts Sj, it is either S; NC = @ or C C S, hence
C does not interfere with the boundary curves of these components.

We define a regular cell to be a cell in which every attached polynomial is regu-
lar (in the sense of Section 4.5.1) and conforms to any of the following properties:

1. There is only one set S; in C and at most one (self-)intersection.

2. There are two sets S; and S; and one intersection between a branch of f € S;
and g € S;.

These intersection points are also computed by subdivision solving and are isolated
among the cells during the subdivision process.

Deciding if a region spans JS is done by checking whether it belongs to the
boundary of every S; that is carried by C, and consists again in checking signs on
the boundary.

To simplify the process, we rely on basic cells (cells that have branches of a
single basic set contributing to &) for determining the orientation of regions, i.e.

78 Chapter 4. Computing planar semi-algebraic sets

applying STARTINGPOINT. This is a mild assumption, since in any case, bound-
ary curves away from crossings define basic semi-algebraic sets. This assumption
also simplifies the way we deal with cells like Fig. 4.1(c), since we only need to
know the connection inside the cell in order to traverse them and choose the correct
branch (for instance, in Fig. 4.1(c), discard the locally redundant curve).

We describe how we compute PAIR in the above two cases:
* Case 1. There is a set of branches in the cell that intersect in one point only, sim-
ilar to 4.1(b). Since the corresponding basic sets are combined by intersection we
search around JC for a part that attains positive sign on all involved polynomials,
to decide the PAIR routine.
* Case 2. Two branches intersect, corresponding to basic sets combined by union,
for instance 4.1(c). We propagate the search to points around parts of JC that
satisfy any of the sign conditions implied by S; or S;. When we reach a part that is
outside S, we return the last point found.

4.7 Implementation and demonstration

Our implementation is generic, working on abstract classes of cells, that define
internally a small number of predicates. We chose to use the open-source project
MATHEMAGIX [106], for the fast data structures it provides for polynomials and
its support to certified arithmetic primitives. Our code is written in the frame of
the shape package, which is the part of MATHEMAGIX providing a variety of
geometric operations in two or three dimensions.

Solution of univariate and bi-variate systems of polynomial is performed us-
ing subdivision on the Bernstein representation, which is present in the package
realroot. This library also provides algebraic operations, Bernstein dense rep-
resentation and a variety of zero-dimensional system solvers. Hardware accelerated
rendering of output has been made possible using AXEL* platform.

A first example is given in Fig. 4.6, where we can see the cells deduced by
the subdivision process together with the defining curves (left), and the computed
regions (right) based on this cell graph. The boxes span only the actual boundary
curves of S, but we also draw the full defining curves to give an idea of the
situation.

A precision of ¢ = 0.05 is used, that is, the cells are subdivided down to this
size, to obtain a smooth visual result. Note the two branches that are almost tangent
near the bottom left corner. They cause the subdivision to continue further around
this area until the branches are properly separated.

In Fig. 4.7 we compute a set S = {(x,y) : fi1 > 0, fo > 0} defined by a de-
gree 6 and a degree 32 polynomial. The domain of computation is [—1.5,1.5)

*http://axel.inria.fr

http://axel.inria.fr

4.7. Implementation and demonstration 79

NS EEEEEERE

§
I J,H/t’l[_
——

E@g

T 1} _ﬂ‘%%xhugj\ \
ST e

7

N

Figure 4.6: S = {(x,y) : f1 >0, fo > 0} with f; = 2?4+ 22%y* +y* +32%y — 13,
fo = —105y%2* — 80y + 14023y3 — 14013z + 35y* — 105y 2? + 48y° + 42315 —
4222 +352* — 725 + 32y + 842y — 14023y +422°y + 21022y — 42> — Ty — 8y +7
over the box [—1, 1]°.

80 Chapter 4. Computing planar semi-algebraic sets

\
N\

Figure 4.7: Left: defining curves and cell graph. Right: boundary contours of the
underlying set.

Figure 4.8: Left: Two connected components of a semi-algebraic set, each contain-
ing a hole. Right: regions of the complementary set.

4.7. Implementation and demonstration 81

and precision set as before, ¢ = 0.05. The running time for this example is
less than one second. Our implementation is able to handle polynomials of quite
higher degree, up to 100 or more. Here the resulting regions contain holes,
which are correctly recognized. Finally, Fig. 4.7 presents the complementary set,
S ={(z,y): —fi>0}U{(x,y) : —fs > 0} given by 4 connected components.

The purpose of the third example is to demonstrate how our implementation
can handle degenerate cases, namely cusps. We treat a single curve of degree 28,
having several cusps. This curve is taken from a real application in non-linear com-
putational geometry, namely the computation of the Voronoi diagram of ellipses,
see recent paper [43]. We compute all regions defined by the curve, in the domain
[—7,3]* and set precision to € = 0.5. Detailed output is shown in Fig. 4.9. This
computation was done in under 3 seconds.

More examples follow in Figures 4.10, 4.11, 4.12 and 4.13. The degree goes
up to 76 for Figure 4.11, and the computation took less than five seconds.

82 Chapter 4. Computing planar semi-algebraic sets

e | L[Lo

o i e S O

Figure 4.9: Computing the topology of a degree 28 algebraic curve with cusps.

4.7. Implementation and demonstration

Figure 4.10: Semi-algebraic set defined by: f; = —105y22z* — 80y® + 14023y3 —
140132 + 35y* — 105y*a? + 48y° + 422y — 4222 + 352* — T2 + 32y + 84xy —
14023y + 422°y + 2102%y? — 420> — Ty — 8y + 7, fo = 22 + 3y — 1, f3 =
28 + 2t — yta? — 22 — 9% + 2y* + 22 — y? + 2y in domain [—3, 3]

84 Chapter 4. Computing planar semi-algebraic sets

Figure 4.11: Topology of a degree 76 curve coming from the self-intersection
locus of a 3D surface.

Figure 4.12: A (degree 12) apparent contour of 3D surface with cusps.

4.7. Implementation and demonstration 85

Figure 4.13: Regions in the arrangement of three curves, of resp. degrees
32,4,4(top), 32,4,13 (bottom) computed using our algorithm on the underlying
semi-algebraic domains.

CHAPTER 5
Algebraic framework for generalized
Voronoi diagrams

Contents
5.1 Imtroductionttt 88
5.1.1 Someexistingwork Lo 89
5.1.2 Voronoi diagrams and distance fields 90
52 Thealgorithm0.0000iiiieuenn. 91
5.2.1 Subdivisionphase 92
5.2.2 Upper bounds and filtering 95
5.2.3 Cellreconstructionphase 96
5.3 Theimplicitmethod 97
53.1 Fieldbound oL 99
5.3.2 Bisectortracking 100
5.3.3 Equations for implicit distance fields 100
54 Experimentation00ttt 101

We design and implement a new algorithm for the computation of general
Voronoi Diagrams (VD’s) constrained to a given domain. Our method is applicable
to any VD type in which the distance from a site can be expressed by a bi-variate
polynomial function, notably the anisotropic VD or even VD’s of complex sites.
We use the Bernstein form of polynomials and DeCasteljau’s algorithm to subdi-
vide the initial domain and isolate bisector domains or domains that may contain a
Voronoi vertex. The efficiency of our algorithm is due to a filtering process based
on bounding the distance functions over the subdivided domains. This allows to ex-
clude functions (thus sites) that do not contribute locally to the lower envelope of
the lifted diagram. After the filtering process the bisector curves are approximated
by line segments, and vertices are computed using a Bernstein solver, giving over-
all certified polygonal description of each Voronoi cell. Results presented in what
follows have lead to an article, which is at the time of writing submitted (cf. [36])
for publication.

87

88 Chapter 5. Algebraic framework for generalized Voronoi diagrams

We discuss some background and previous work, and then we give a list of
VD’s, as well as some details on curve representations in Section 5.1.2. We present
the core of our algorithm in Section 5.2, with details on the filtering, subdivision
and the recovery phase. Then we extend the method to implicitly given distance
fields in Section 5.3.

5.1 Introduction

Voronoi Diagrams (VD’s) have a surprising variety of applications, eg. in path
planning, computer vision and machine perception [19], meshing [6] etc. Itis a
widely studied subject, and several algorithms exist for their computation.

The VD of a given set of geometric objects (sites) in the plane is the partition
of the plane into regions (cells), where each site .S is associated to the region con-
sisting of all points for which S is the nearest site, compared to any other site of
the (so called) generating set.

If we take a set of points as generating set, and as distance between a site and an
arbitrary point the length of their connecting line segment, we have the classic VD
under the Euclidean metric. The distance induces a scalar distance fielddistance
field over the plane for every site in the generating set.

There are at least two ways to generalize the construction of VD’s, in order to
meet applications’ needs; to allow non-punctual sites, e.g. circles, under the Eu-
clidean distance field, or to attach distance fields other than the Euclidean to the
sites, for example the anisotropic diagram (see Section 5.1.2). These generaliza-
tions lead to curved VD’s, having algebraic bisectors, see [16] for an expository
paper. The Voronoi diagram can be represented as the projection of the distance
field to the domain [31].

Nearest neighbor search for a query point ¢ refers to determining which cell in
the VD contains g. It is usual in applications to seek for the VD of a bounded planar
domains, instead of considering the whole of R?. This computation is known as the
constrained VD; the method presented here is indeed a local method for constrained
VD’s.

Our method computes Voronoi diagrams using the lower envelope of the dis-
tance fields. The latter exhibit an algebraic degree which is usually quite low,
thus handling them in an algebraic fashion is computationally advantageous. The
method is inspired by, and uses tools from the field of geometric modeling and
CAGD. Polynomial curves constitute a major branch of the research in CAGD,
and flexible curve representations have been developed in this frame. Therefore,
we aim at bringing data representations and algorithmic experience from CAGD to
this fundamental problem of computational geometry.

Algebraic curves are also main objects of study when looking at VD’s and their

5.1. Introduction 89

bisector sets. Subdivision techniques for meshing implicit curves [67] are quite
spread in CAGD and provide fast and robust solutions in real-life applications. We
are going to employ existing results [67, 70] on treating such curves in meshing
VDs.

Our algorithm works directly on the distance field induced by the sites and does
not require a representation of the sites themselves in the input. We use the method
presented in Chapter 4 for the treatment of algebraic curves and their arrangements.
The outpus is polygonal approximations of the Voronoi cells, and the method is
applicable to all inputs where the distance field of every site can be expressed by
a polynomial. This expression may be explicit, but also implicit. Section 5.1.2
presents a list of distance fields for commonly encountered VDs’.

Our implementation is done in C++, using double precision arithmetic. The
algorithm is naturally parallelizable, since it applies locally and independently on
different domains of the plane. We did not focus on insertion of new sites, or point
queries, yet these operations can easily be added, without significant changes. On
the other hand, we focus on genericy of the framework, the correctness of the
result and the ability to treat arbitrary diagrams, if certain reasonable algorithmic
prerequisites are met (cf. Section 5.2).

5.1.1 Some existing work

The bibliography on the subject is vast, and many alternative strategies have
been proposed, but let us mention some of the latest developments.

The bibliography on VD’s is vast, and many alternative strategies have been
proposed, but let us mention some of the latest developments. Boada ef al. [14]
use a subdivision approach to compute approximate VD’s. The closest site to the
corners of a subdivided domain is computed and used to deduce the Voronoi cell
in which the box belongs to. Their output is proved to converge to the exact VD,
but the output is not always topologically correct, since corner signs alone are not
in one-to-one correspondence with the possible configurations of bisectors inside
rectangular domains.

Setter et al. [94] compute VD’s using divide-and-conquer of lower envelopes
and exact computations. They recursively build the diagram, by going down to two
sites and then merging up a full VD. They provide good treatment of degenerate
cases, and give a complexity analysis for randomized inputs. They comment that
computation speed may be limited due to extensive use of symbolic computation.

Divide-and-conquer techniques are also utilized in Aichholzer et al. [1], to pro-
pose a VD algorithm for general shapes. They exploit connections to medial axis
and use a plane-sweep technique. Their method avoids computing redundant pieces
of bisectors that will then be rejected.

In Seong et al. [93], the VD of parametric NURBS-curves is explored. They

90 Chapter 5. Algebraic framework for generalized Voronoi diagrams

approximate bisectors as algebraic curves in parameter-space and use real solving
to find their intersections globally, and then trim away the unwanted parts.

Emiris et al. [43] present an efficient, certified algorithm for VD’s, specialized
to certain families of closed planar curves, notably ellipses. They use adapted
numerical techniques to reduce the degree of predicates to be evaluated. Their
algorithm becomes exact if they choose to use a special iterated resultant for the
“InCircle” predicate.

5.1.2 Voronoi diagrams and distance fields

In this section we recall a non-exclusive list of VD-types that we are interested
in, and briefly introduce the main tools and representations that build up our algo-
rithm.

A restriction of the input of our algorithm is that the distance field must be
polynomial. Thus we must come up with transformed distance functions for a VD-
type, before being able to compute it.

In the simple case of Euclidean VD the input is a list of (squared) distance
algebraic functions (fi,..., f,). The lower envelope changes if we work with
squared fields, yet the VD (that is, its projection) remains intact under squaring, or
under any other invertible and strictly increasing transformation.

For a point ¢ = (z,y), the distance between ¢ and the Voronoi site attached to
fi» as viewed by p; is given by dist;(q) = f;(q). Now one can define the Voronoi
cell of :—th site as:

Vor(p;) = {q € R? : dist;(q) < distj(q), j=1...n}
={geR*: 12113 {dist;(q)} = dist;(q)}.
<j<n

Therefore the VD can be retrieved as the the projection of the lower envelope of
the distance fields [31], also known as a minimization diagram.

Different distance fields dist;(q), ¢ € R?, give rise to different types of VD’s,
including:

< Euclidean VD of points p; = (24, y;):
disti(z,y) = [p — pill> = (x — 2:)* + (y — v:)*.
< VD of points p; = (x;, y;) under the £,—metric, p even:

dist;(q) = (x — x;)? + (y — vi)P.

< Anisotropic diagram of points p; = (z;,y;) with weights w; € R [61]:
disti(q) = (¢ — pi)" Mi(q — ps) — wi,
with M; € R?**? symmetric positive definite matrix.

5.2. The algorithm 91

< Power (or Laguerre) diagram of points with weights:
2

disti(q) = [lp — pil|* — w}.
< Mobius diagram of points:
dist;(q) = vi|lp — pi||* — wy, with v;, w; € R.

< Apollonius (or additively weighted) diagram of disks [38] with centers p; and
radii w;: dist;(q) = ||l¢ — pi|| — w;.

< Euclidean VD of ellipses [43], or Euclidean VD of general closed parametric
curves.

An algebraic function over a bounded rectangular domain D = [a, b] X [c, d]
can be represented efficiently by its Bernstein coefficients over D. It is a local
description achieved by using tensor-product Bernstein representation over D. This
representation is computed by means of DeCasteljau’s algorithm. We refer the
reader bach to Section 4.2, for more on the subject.

We use f;|p for the restriction of f;(x,y) in D, that is, the Bernstein represen-
tation of f; over the domain D. For instance, for the anisotropic diagram, the f;’s
are conics, thus every f;|p is defined over any rectangular D by 9 coefficients.

Note that some VD types in the previous list do not have polynomial distance
fields, nor do they admit squaring to eliminate radicals. In such cases, it may be
possible to express the distance field implicitly. For instance, if we want to use our
framework to compute the Apollonius diagram, i.e. the Euclidean VD of circles
with centers p; and radii w;, we need to treat the corresponding distance function
dist;(q) = ||¢ — pi|]| — w;i, which may be transformed to the algebraic equation
(disti(q) + w;)? = ||¢ — ps||*>. Therefore, distance field values z := dist;(z,y)
are given in implicit form by the cone

gi(z,y,2) = (@ —)’ + (y— i)’ — (2 4+ w;)* =0, (5.1)

i.e., given (zo, yo), values of dist;(zo, yo) are computed by solving g;(zo, Yo, 2) =
0 for the smallest root > 0 w.r.t. z. Also note that the zero locus of ¢;(x,y,r) = 0
for r € R contains the r—offset of the site.

This tri-variate function can be represented similarly over a cuboid, by tensor-
ing 3 Bernstein bases as in (4.1). In Section 5.3, we shall adopt our algorithm to
use implicit representations.

5.2 The algorithm

Our algorithm consists of two phases: The subdivision phase (Algorithm 5.1),
followed by the reconstruction phase (Algorithm 5.3).

92 Chapter 5. Algebraic framework for generalized Voronoi diagrams

Two algorithmic ingredients must be specified in order to apply the method on
a specific VD type:

1. Field bound: A way to bound the value range of a distance field over a given
domain.

2. Bisector tracking: A way to compute an approximation of the bisector(s) or
vertices in a given domain.

These computations need to be carried out on axis-aligned boxes of the subdivision.
Note that at this level we do not emphasize on efficiency, e.g. the bounds could
be bad, or the approximation very loose. Nevertheless, it is expected that these
computations converge to the actual distance value or bisector, when the size of the
boxes becomes smaller.

The first box that is computed as soon as the algorithm is launched is the one
corresponding to the initial domain Dy. This initial box B(Dy) carries all the dis-
tance functions of the input, in Bernstein form.

In the subdivision phase we compute a graph of boxes that span the VD. To do
so, the field bound is used in a filtering process (Algorithm 5.2) in order to exclude
most boxes and reach down to boxes intersecting the VD. These boxes contain
Bernstein representations of sites that contribute to the part of the diagram inside
the box.

In the reconstruction phase the boxes of the subdivision are traversed and the
part of the VD that intersects the box is meshed locally using the second ingredient.
These bisector segments are stitched together to recover the full VD.

5.2.1 Subdivision phase

The idea of a space-subdivision scheme has benn used sever times in thepre-
sent thesis: A big domain of interest is divided into smaller ones until some (fast
computed) conditions are fulfilled. Then every small item is treated independently.

The representation (4.1) can be subdivided coordinate-wise using DeCastel-
jau’s algorithm [44], having a quadratic time w.r.t. the degree of the polynomial,
i.e. constant in our case. When a sub-cell is computed, the filter excludes sites, thus
gradually keeping only the functions that participate locally in the lower envelope.

By signature of a box sign(B(D)) we mean the site labels that are present in
that box, i.e. sign(B(D)) = {i : fi|lp € B(D)}.

The main loop in Algorithm 5.1 starts by filtering the box B(D). This allows
to remove large valued f;’s, i.e. those that correspond to sites that are “away” from
the box. Then, we check if the remaining fields are at most three. In this case the
box is not subdivided anymore. Otherwise the box is split in two sub-domains,

5.2. The algorithm 93

Figure 5.1: Up: Anisotropic diagram of 30 points over [—3,3]%2. Note the ex-
istence of “widows” (cell components without points inside) and “islands” (cells
surrounded entirely by another cell). Subdivision box span by Algorithm 5.1 is
shown. Down: Detailed view at almost-touching bisectors.

94 Chapter 5. Algebraic framework for generalized Voronoi diagrams

Algorithm 5.1: Subdivision phase
Input: A set of distance fields f1, f2, ..., fu € R[z,y], a threshold ¢ > 0 and
a rectangle domain D).
Output: A graph G of boxes that span the minimization diagram of
fiyooo, fue
Compl'ue B(D()) = {f1|Do7 R fn|D0};
Initialize stack) and add B(Dy) on top of it;
Initialize empty box graph G;
while () is not empty do
Pop a box B(D) from Q;
Apply Algorithm 5.2 (filter) on B(D);
if |B(D)| < 3 or |D| < ¢ then
Add B(D) :={(fi — f;)lp : i <je€sign(B(D))}to G;
else
Split B(D) into B(D,) and B(D,) ;
Update adjacency graph G with B(D;), B(Ds) ;
Push B(D;) and B(Ds) into Q ;
end

end
return G,

along the longest of its sides. The new boxes are pushed in the stack to the loop
continues.

If B(D) is left with only one f; then D C Vor(p;), hence this box does not span
the VD. If there are 2 active functions then the bisector locus f; — f; = 0 possibly
intersects the box. If there are 3 or more functions then there probably exists a
Voronoi vertex in D. Boxes that contain degenerate Voronoi vertices, i.e. vertices
that are equi-distant from more than 3 sites will always hold > 3 functions. Hence
they will be subdivided until reaching threshold size £ > 0.

Whenever we reach a box holding at most three distance functions f, fs, f3,
the box is mutated: This means that we form the differences fi;|p — fj|p, i < j
and we store then in the box, in the place of fi|p, fa|p, fs|p. Thus the box is
transformed into bisector box. This box will be further treated in the next phase.

All boxes are either mutated and inserted in G or excluded (meaning that they
are totally inside some Voronoi cell) after some time (depending on the size of
the initial domain we compute) and the desired threshold. The subdivision stops
when all cells are identified or if the threshold is reached. Cells that are not iden-
tified while reaching threshold size contain probably degenerate Voronoi vertices.
Figure 5.1 shows the resulting box span for a set of anisotropic sites.

Three main operations constitute every iteration of subdivision: First, an appli-

5.2. The algorithm 95

cation of the filter of Section 5.2.2 on the subdivided boxes. Then, an execution
of DeCasteljau’s algorithm to split the representation of the distance functions. Fi-
nally, an update of the adjacency graph, i.e. connection of newly created boxes with
their surrounding neighbors. These operations are O(n) for a box with |B(D)| = n.
The overall time of Algorithm 5.1 depends on the efficiency of the filter, since the
fulfillment of the stopping condition |B(D)| < 3 depends on it.

5.2.2 Upper bounds and filtering

Not all bisectors are Voronoi edges. Furthermore, only a specific piece of the
bisector curve of two sites is contained in the VD, the one connecting two adjacent
Voronoi vertices. For instance, in the classic VD of points, only a linear amount
(w.r.t. the number of sites) of line segments out of the totality of (line) bisectors
contribute to the VD. This implies that, locally, only a few sites contribute to the
VD and therefore the majority of sites should be filtered out. This idea leads to the
filtering process described in this section.

The filter is based on the following fact: If the control grids of any two
filp, fi|lp do not intersect, then the one that is superior to the other, say the i—th,
does not contribute to the lower envelope over D, or equivalently Vor(i) N D = &.
This is a direct consequence of the variation diminishing property of Bernstein
representation [44].

Doing the previous test directly for a set of n sites requires O(n?) time to check
all pairs. But we can do better: we compute an upper bound Up on the lower
envelope over D, and then compare every control grid f;|p against this bound,
excluding the functions that are found to be over it. This leads to a linear time
filter, w.r.t. the number of grids D.

Before computing Up, we need bounds on every f;|p. For this we use the
minimum (resp. maximum) Bernstein coefficient of f;|p to bound every f; from
below (resp. above). These extreme coefficients yield two supporting planes, par-
allel to xy—plane, that enclose the values f;(D). More sophisticated bounds ex-
ist, eg. [45, 86] and references therein. Computational time is proportional to the
quality of the bounds. We choose to employ constant time bounds, given by min-
imum/maximum coefficients, since they are quite efficient in practice. Indeed, the
control grid is known to converge with quadratic speed to the function it repre-
sents [89], thus a small number of refinements is needed to separate the control
grids of two non-intersecting patches.

Now, to compute Up, an upper bound on the lower envelope over D, consider
(x,y) € D and let L(z,y) be the value of the lower envelope at (z,y) € D. We
have:

L(z,y) = miin{fi(a:, y)} < miin{maxcoef(fib)}. (5.2)

96 Chapter 5. Algebraic framework for generalized Voronoi diagrams

a Dy b

Figure 5.2: Filtering process applied to domains D; and D,, in computing the VD
of tree points a, b, c € R.

This directly proposes to take Up = min{maxcoef(f;|p)}. Having Up, we can
check which distance fields are bounded over this limit, and filter them out, see
pseudo-code in Algorithm 5.2.

Figure 5.2 illustrates the filtering process (in one dimension lower for simplic-
ity). Three point-sites a, b, c yield the red distance fields, that are squared Euclidean
metrics. Domain D; holds all three f,, f;, f. (in blue), and the dotted line is the
level of Up,, equal to maxcoef(f,|p,). We see that f.|p, is over the dotted line,
thus it will be filtered out. Similarly, maxcoef(f.|p,) defines Up,. Consequently,
folp, is excluded and D, is dominated by site ¢, i.e. Dy C Vor(c).

Algorithm 5.2: Filter sub-process
Input: A box B(D) = {filp,.... fs|n}-
Output: Filtered B(D) = {fi,|p, .-, fi.|p} € B(D).
Up := min{maxcoef(f;|p) : filp € B(D)};
fori=1,...,sdo
if mincoef(f;|p) > Up then
B(D) := B(D) \ {filp}

end

end
return B(D);

5.2.3 Cell reconstruction phase

The box-graph computed by Algorithm 5.1 spans the VD, having edges be-
tween adjacent boxs. Traversing this graph, by navigating based on signature and
sign of the bisector leads to the cells of the VD. In particular, we shall traverse all

5.3. The implicit method 97

boundary-contours of the Voronoi cells in counter-clock wise (CCW) order, com-
pleting open cells with pieces of the boundary of the initial domain D,.

As soon as the process starts, there is a pre-processing of the graph G. In this
step, all the boxes of the graph G that touch the boundary of D, are connected in
a CCW-directed loop. This loop helps to constrain the reconstruction phase in Dj.
The boundary boxes are displayed in Figure 5.5 at the end of the this chapter.

First we discuss how every single box is treated, when encountered in the traver-
sal. The simplest case of a box is one with one bisector f; — f; = 0. This equations
expresses the locus of equi-distant points from sites ¢ and 7, and is typically approx-
imated inside a domain D by a line segment connecting its intersections with 0D.
But if its topology inside the box is not as simple, there may be several branches
crossing D. To include such cases, we resort to the methods of Chapter 3. that shall
identify all different branches.

If there is more than one bisector that intersects D, note that by definition of
a Voronoi vertex, a candidate cell will contain 3,6, ..., (T;L) active bisectors for a
vertex of valency 3,4, . .., m respectively. In this case we compute the arrangement
(cf. Chapter 3) of the involved bisectors, including intersection points that are
candidate Voronoi vertices. Computing Voronoi vertices is done by real solving.

The defining polynomial of a bisector f; — f; is negative over the (open) Voronoi
cell of 7 and positive over the Voronoi cell of 5. The traversal of the spanning boxes
uses this sign information: The signs of the bisector on the corners of D give us the
correct orientation for tracking the cells coreesponding to ¢ and j.

Algorithm 5.3 summarizes the reconstruction process. Starting from an arbi-
trary box, the boundary of the cell of site 7 is tracked by traversing the box-span
G. The navigation is done based on the sign of the bisector f; — f;. When a vertex
is reached, j is updated and the process continues until the recovery of the whole
partition V.

The output of this algorithm is a polygonal approximation of each Voronoi cell.

Fig. 5.3 demonstrates bisector computation. The control polygon in D; of the
equation f, — f, = 0 is shown in green. Its intersection with the domain defines
the bisector point (in 1D) of sites a, b.

5.3 The implicit method

In this section we sketch how the framework is extended to implicitly defined
distance fields.

A restriction of the method presented in Section 5.2 is that the distance function
must be polynomial. Thus we must come up with transformed distance functions
for a VD type, before being able to compute it. But there are distance fields that
cannot be made polynomial by a mere squaring, or by another suitable transforma-

98 Chapter 5. Algebraic framework for generalized Voronoi diagrams

/

a D1 }) C

Figure 5.3: Approximating the bisector of a and b.

Algorithm 5.3: Cell reconstruction phase
Input: A graph G of boxes that span the minimization diagram of fi, ..., f,.
Output: A partition V' of Dy, defined by meshing the minimization diagram
of fi,..., fn.
Join border boxes of G in a CCW loop ;
Initialize V[i] = @,i=1,...,n;
foreach node (box) B(D) of G do
foreach label i € sign(B(D)) do
foreach label j € sign(B(D)), j # i do
» Walk in G, starting from B(D), and track bisector (i, j) along
boxes with label 7 ;
* If some B'(D) contains a vertex, set j := j’, (i,5') € B'(D) and
continue, until B(D) is reached for the second time ;
* Add tracked cell component to V[i].
end

end
end
return V;

5.3. The implicit method 99

tion.

A nice polynomial formula even for Euclidean distance fields no longer exists
when the sites are not points. In such cases it is natural to represent the function
in implicit form, that is, as a polynomial ¢ € R[z,y, 2], s.t. a triple satisfying
g(x,y, z) = 0, with z > 0 and minimal among the solutions implies that (x, y) is
at distance 2 from the site.

Some diagrams that fall in this class are, as already mentioned, the Apollonius
diagram, the VD of ellipses, or the VD of closed curves given by a support func-
tion representation [48]. We show how we can extract this implicit representation
in 5.3.3.

In order to compute a representation of a tri-variate polynomial g;(z, y, z) over
the initial domain D, C R?, we must first compute an interval I, for the third
variable. This must be big enough to contain the z—values of zeros of g. Therefore,
we need initial upper bound for the roots of the univariate interval polynomial
9:(D, z). The latter is computed by interval arithmetic. After that, known univariate
bounds, e.g. Cauchy’s bound can be applied to get [,. As a result, we feed the
subdivision algorithm Algorithm 5.1 with g;|p, x1,, for every site i in the generating
set. Note that this box shall be split only w.r.t. = or y.

The same ingredients apply, i.e. the “field bound” and “bisector tracking” (Sec-
tion 5.2) are needed, in order to run the scheme. The subdivision and reconstruction
is done the same way, on 3D boxes that enclose implicit bisector branches.

5.3.1 Field bound

For g|px; = EZ’;;ZZ(‘?Z Yije By, (2) Biy(y) BY (z) we set my, = min; j{;;x } and

Mk = maxm{%jk}. Let, as in Section 2.3,

d. dz
mg(z) ==Y my B (2) : My(z) == M B} (2). (5.3)
k=0 k=0

These polynomials are defined over the z—interval / and enclose the range of
z—values, since, for (x,y,z) € D x I,

dz d:v dT/
g(w,y,2) 2 Y muiBi(2) Y By, (x) Y By (y) = my(2),
k=0 =0 =0

and similarly for M,(z). Consequently, a lower bound on z—values is given by:

first root of M, (z)inI if My <0
pr =< firstrootof my(z)inl ifmg >0
0 otherwise

100 Chapter 5. Algebraic framework for generalized Voronoi diagrams

/

1(0)] SE—

a Dy b D, C

Figure 5.4: Instance of Apollonius diagram in 1D: sites a, b, c are line segments
and distance fields are bi-variate (implicit) cones.

and similarly for the upper bound M, using the last real roots of m,(z) or M,(z)
in /. Finally, using these enclosures we get Up = min{M;(i) : ¢; € D}, and
Algorithm 5.2 applies.

5.3.2 Bisector tracking

Bisectors are defined by the (projection of the) intersection of two implicit sur-
faces, thus they are implicit spatial curves. One way to get the projection is using
resultants, but this is would be costly to do in every box, and would increase the
degree of the polynomial to handle. Isotopic meshing of 3D curves, given in Bern-
stein form, has been implemented in [67], and yields a suitable way to derive the
projection. Figure 5.4 shows a snapshot of the implicit method. Sites are segments
on the real axis and distance fields are implicit cones. The box D; x [; contains 3
bi-variate Bernstein polynomials. Based on the computed Up, and the lower bound
r, (¢), the fe|p, is filtered out.

5.3.3 Equations for implicit distance fields

The offset of a site is closely related to the distance function. The z—offset
is the set of points at distance z from the site. Therefore, we need to compute an
implicit equation of the z—offset, having z as a parameter.

For the Apollonius diagram, the z — of fset of a circle-site centered at p; and
radius wj is the circle of the same center and radius z + w; (see equation 5.1).

If the site in question is a closed curve given by support function parametriza-
tion (cf. [48]) h(t), t € S', then it’s z—offset is given by h(t) + z, in support form.

5.4. Experimentation 101

diagram / #sites | 50 | 100 [200 | 400 | 800 |

Euclideqy iMe | 085 [1.9 [48 [108 307
HeHaean | oxes | 1959 | 3136 | 5351 | 8322 | 14616

Arcotronic Me | 10 | 29 | 47 [116 | 315
MISOUOPIC ves | 2269 | 3886 | 5214 | 8552 | 14705

Table 5.1: Execution details for random inputs in [—2, 2]2.

Letn(t) : R — S! be a parametrization of the circle S'. The parametrization of the
curve is over the unit circle, and associates to every point n(¢) of the unit circle the
curve-point that has normal vector n(¢). Applying implicitization, e.g. eliminating
t from (h(t) + z) - n(t) — (z,y) = 0 we arrive to the implicit form of the z—offset.

Anton et al. [4] compute, using resultants, the offset curve of radius z of a conic,
eg. an ellipse £. This is a polynomial of degree 4 w.r.t. z and of degree 8 w.r.t.
x, y. For any specific point ¢ = (x, y) outside of the ellipse, we have an irreducible
univariate polynomial that has exactly one real positive solution, corresponding to
dist(g, £). We note that the same equation can be derived if we consider a support
function parametrization of the ellipse.

5.4 Experimentation

We run experiments on Euclidean and anisotropic VD. We used a Fedora 15
machine with an Intel Xeon CPU and 4GB of memory. For these tests, we set
e = 0.001 and Dy = [—2,2]%. Also, for the sake of a smooth result, we set a
maximum size of boxes, i.e. all boxes are subdivided until their longest side is at
most £ = 0.05. Table 5.1 reports execution time (in secs) and number of boxes
produced, for random inputs of 50 up to 800 sites in Dj.

The timings are of the same order for both VD types. This can be explained
by the fact that the process discards the linear nature of the Euclidean VD. On
the other hand, it is applied to the non-linear, anisotropic case, where bisectors are
general conics, with the same performance. This adaptability to general topologies,
without an extra computational effort, seems to be an advantage of our approach.

102 Chapter 5. Algebraic framework for generalized Voronoi diagrams

Figure 5.5: Euclidean VD of points over [—2,2%]. Up left: Subdivision span. Up
right: Bisectors and boundary boxes. Down left: Bisectors are meshed. Down
right: Voronoi cells are reconstruced.

Conclusion and outlook

CAD applications rely on fast numeric computation of real points that typi-
cally appear as solutions of polynomial systems. The use of robust subdivision
algorithms for this task seems indispensable due to their performance and practical
behavior. In this class of algorithms, we contributed the generalization of the clas-
sic continued fraction algorithm to multivariate systems. We also provided bounds
on its time complexity as well as practical efficiency results.

A standing challenge in computing approximate algebraic points is singular
point identification and treatment. We contributed an adaptive method for this prob-
lem, based on the dual structure of isolated points and on interval arithmetic. Under
certain conditions, it allows certification of a singular point in a given rectangular
domain, even for approximate input data, commonly encountered in CAGD.

We applied subdivision techniques to the treatment of the connected compo-
nents of a semi-algebraic set. We deduced and implemented a new algorithm,
based on a numerically stable scheme, to compute certified polygonal regions for
the connected components of a planar semi-algebraic set.

Finally, we formulated the problem of computing Voronoi diagrams in an al-
gebraic setting, which allows the description of a variety of different diagrams. A
symbolic-numeric bisection algorithm following this formulation was developed,
implemented and tested.

Reliable computing calls for new algorithms but also robust implementations.
Towards this long-term goal, one faces the old Pythagoras’ dilemma: Compute
symbolically or approximate? Against this question, our general conclusion is to
pursue approximate yet certified computing, exploiting the algebraic and geometric
structure of the problem at hand.

We demonstrated cases of using effective algebraic methods on critical geo-
metric operations: intersection or self-intersections of curves, topology analysis,
arrangement computation of semi-algebraic sets, Voronoi diagrams. Undoubtedly,
there is room for further investigation in the aforementioned problems:
¢ New criteria for use in subdivision solvers need to be developed, towards im-
proving even more their complexity and practical behavior. Singularity treatment
and multiple point deflation are key ingredients to gain in robustness.
¢ Methods and algorithms tipped herein for topology analysis or arrangement
computation should be extended to 3D-shapes (probably starting with the special
case of arrangements of quadrics), or to higher-dimensional manifolds.
¢ The problem of solving geometric constraints that involve inequalities, formu-
lated as a semi-algebraic system, now seems tractable from the point of view of
subdivision-based methods.

103

104 Conclusion and outlook

Les applications en CAO reposent sur le calcul rapide et numérique des points
réels, qui apparaissent généralement comme solutions de systemes polynomiaux.
L’utilisation d’algorithmes de sous-division robustes pour cette tiche semble indis-
pensable en raison de leur performance et de leur comportement pratique. Dans
cette classe d’algorithmes, nous avons généralisé€ [’algorithme de fractions contin-
ues classique aux systemes a plusieurs variables. Nous avons montré des bornes de
complexité en temps ainsi que des résultats d’efficacité pratique.

Un défi permanent dans le calcul approché de points algébriques est
I’identification et le traitement des points singuliers. Nous avons apporté une méth-
ode adaptative, basé sur la structure duale des points isolés et sur 1’arithmétique
d’intervalles. Sous certaines conditions, cela permet la certification d’un point sin-
gulier dans un domaine rectangulaire donné, méme pour des données d’entrée ap-
prochées, communément rencontrées en CAGD.

Nous avons appliqué des méthodes de sous-division au traitement des com-
posantes connexes d’un ensemble semi-algebrique. Nous avons déduit et implanté
un nouvel algorithme, basé sur une méthode numérique stable, pour calculer des
régions polygonales certifiés pour toutes les composantes connexes d’un ensemble
semi-algébrique dans le plan.

Enfin, nous avons formalisé le probleme du calcul de diagrammes de Voronoi
par enveloppes inférieures, dans un cadre algébrique, qui permet la description
d’une variété de diagrammes différents. Un algorithme symbolique-numérique de
dichotomie suivant cette formalisation a été développé, implémenté et testé.

Le calcul fiable nécessite de nouveaux algorithmes, mais aussi des implémen-
tations robustes. On est alors confronté au Dilemme de Pythagore: Calculer sym-
boliquement ou approcher? Notre conclusion générale est de proposer des calculs
approchés mais certifiées, exploitant la structure algébrique et géométrique des
problemes traités.

Nous avons démontré des cas d’utilisation effective des méthodes algébriques
sur des opérations géométriques critiques: 1’intersection ou 1’auto-intersections
de courbes, I’analyse de topologie, le calcul d’arrangements des ensembles semi-
algébriques, des diagrammes de Voronoi. Des nombreuses pistes restent a explorer:
¢ Des nouveaux criteres pour les solveurs de sous-division doivent étre dévelop-
pés, pour I’amélioration de leur complexité et leur comportement pratique. Le
traitement de cas singuliers et la déflation des points multiples sont les ingrédients
clés pour gagner en robustesse.
¢ Les algorithmes présentés ici pour 1’analyse topologique ou le calcul d’arran-
gements devraient étre étendu a la 3D (probablement en commencant par le cas par-
ticulier des arrangements de quadriques), ou méme aux dimensions supérieures.
¢ Le probleme de la résolution de contraintes géométriques qui impliquent des
inégalités, formulé comme un systeme semi-algébrique, pourrait desormais étre
traité par des méthodes de sous-division.

Bibliography

[1] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jiittler, E. Pil-
gerstorfer, and M. Rabl. Divide-and-conquer algorithms for Voronoi dia-
grams revisited. Comput. Geom. Theory Appl., 43:688-699, 2010. (cited on
page 89)

[2] L. Alberti, B. Mourrain, and J. Wintz. Topology and arrangement computa-
tion of semi-algebraic planar curves. Comput. Aided Geom. Des., 25:631—
651, November 2008. (cited on pages 40, 63 and 76)

[3] A. Alesina and M. Galuzzi. A new proof of Vincent’s theorem.
L’Enseignement Mathémathique, 44:219-256, 1998. (cited on page 19)

[4] F. Anton, I. Emiris, B. Mourrain, and M. Teillaud. The offset to an algebraic
curve and an application to conics. In O. Gervasi, M. Gavrilova, V. Kumar,
A. Lagana, H. Lee, Y. Mun, D. Taniar, and C. Tan, editors, Computational
Science and Its Applications — ICCSA 2005, volume 3480 of Lecture Notes
in Computer Science, pages 1-21. Springer Berlin / Heidelberg, 2005. (cited
on page 101)

[5] M. Atiyah and 1. MacDonald. Introduction to Commutative Algebra.
Addison-Wesley, 1969. (cited on page 43)

[6] C. Bajaj. A Laguerre voronoi based scheme for meshing particle systems.
Japan Journal of Industrial and Applied Mathematics, 22:167-177, 2005.
(cited on page 88)

[7] C. L. Bajaj and G. Xu. Regular algebraic curve segments (iii)—applications
in interactive design and data fitting. Computer Aided Geometric Design,
18(3):149 — 173, 2001. (cited on page 76)

[8] M. Bartoni and B. Jiittler. Computing roots of polynomials by quadratic
clipping. Comp. Aided Geom. Design, 24:125-141, 2007. (cited on page 6)

[9] S. Basu, R. Pollack, and M.-F. Roy. Complexity of computing semi-
algebraic descriptions of the connected components of a semi-algebraic set.
In ISSAC °98: Proceedings of the 1998 international symposium on Sym-
bolic and algebraic computation, pages 25-29, New York, NY, USA, 1998.
ACM. (cited on page 65)

105

106

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag, Berlin, 2003. ISBN 3-540-00973-6. (cited on pages 64
and 65)

S. Béla. Fat Arcs and Fat Spheres for Approximating Algebraic Curves and
for Solving Polynomial Systems. PhD thesis, Johannes Kepler University,
2011. (cited on pages 2 and 7)

J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM,
23(4):214-229, 1980. (cited on page 69)

L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real compu-
tation: a manifesto. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6(1):3-26,
1996. (cited on pages 24 and 31)

I. Boada, N. Coll, N. Madern, and J. Antoni Sellares. Approximations of 2d

and 3d generalized voronoi diagrams. Int. J. Comput. Math., 85(7):1003—
1022, 2008. (cited on page 89)

J. Bochnak, M. Coste, and M.-F. Roy. Géométrie Algébrique Réelle.
Springer-Verlag, Heidelberg, 1987. (cited on page 64)

J.-D. Boissonnat, C. Wormser, and M. Yvinec. Curved voronoi diagrams.
In J.-D. Boissonnat and M. Teillaud, editors, Effective Computational Ge-
ometry for Curves and Surfaces, pages 67—116. Springer Berlin Heidelberg,
2006. (cited on page 88)

E. Bombieri and A. van der Poorten. Continued fractions of algebraic num-
bers. In Computational algebra and number theory (Sydney, 1992), pages
137-152. Kluwer Acad. Publ., Dordrecht, 1995. (cited on pages 25 and 26)

L. Busé. Etude du résultant sur une variété algébrique. These, Université
de Nice Sophia-Antipolis, Dec. 2001. (cited on page 7)

S.-W. Cheng, H.-S. Na, A. Vigneron, and Y. Wang. Querying approximate
shortest paths in anisotropic regions. In Proceedings of the twenty-third an-
nual symposium on Computational geometry, SCG ’07, pages 84-91, New
York, NY, USA, 2007. ACM. (cited on page 88)

G. Cheze, J.-C. Yakoubsohn, A. Galligo, and B. Mourrain. Computing near-
est gcd with certification. In Symbolic-Numeric Computation (SNC’09),
pages 29-34, Japon Kyoto, 2009-08-27. ACM New York, NY, USA. (cited
on page 30)

Bibliography 107

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

G. E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Proc. 2nd GI Conf. on Automata Theory and
Formal Languages, volume 33 of Lecture Notes Comput. Sci., pages 134—
183. Springer-Verlag, 1975. (cited on page 64)

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, second edition, 2001. (cited on
page 67)

M. Coste. An introduction to semi-algebraic geometry. RAAG network
school, 2002. (cited on page 64)

F. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algo-
rithm for zero counting, I: Complexity and accuracy. J. Complex., 24(5-
6):582-605, 2008. (cited on page 30)

FE. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algo-
rithm for zero counting, II: Distance to ill-posedness and smoothed analysis.
Journal of Fixed Point Theory and Applications, 10.1007/s11784-009-0127-
4, 2009. (cited on pages 30 and 31)

B. H. Dayton and Z. Zeng. Computing the multiplicity structure in solving
polynomial systems. In ISSAC ’05: Proceedings of the 2005 international
symposium on Symbolic and algebraic computation, pages 116—123, New
York, NY, USA, 2005. ACM. (cited on pages 40, 42, 47, 54, 57 and 59)

J. Dedieu and J. Yakoubsohn. Computing the real roots of a polynomial by
the exclusion algorithm. Numerical Algorithms, 4(1):1-24, 1993. (cited on

page 7)

D. Diatta, Niang. Calcul effectif de la topologie de courbes et surfaces al-
gébriques réelles. These, Université de Limoges, Sept. 2009. (cited on
page 64)

A. Dickenstein and 1. Z. Emiris. Multihomogeneous resultant formulae by
means of complexes. J. Symb. Comput., 36:317-342, September 2003. (cited
on page 7)

M. S. E. Din and L. Zhi. Computing rational points in convex semialgebraic
sets and sum of squares decompositions. SIAM Journal on Optimization,
20(6):2876-2889, 2010. (cited on page 64)

H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Dis-
crete and Computational Geometry, 1:25-44, 1986. 10.1007/BF02187681.
(cited on pages 88 and 90)

108

Bibliography

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion tree
bounds for the Descartes method. In ISSAC 2006, pages 71-78. ACM, New
York, 2006. (cited on page 6)

D. Eisenbud and H. Levine. An algebraic formula for the degree of a ¢*>
map germ. The Annals of Mathematics, 106(1):pp. 19-44, 1977. (cited on
page 56)

G. Elber and M.-S. Kim. Geometric constraint solver using multivariate ra-
tional spline functions. In Proc. of 6th ACM Symposium on Solid Modelling
and Applications, pages 1-10. ACM Press, 2001. (cited on page 7)

M. Elkadi and B. Mourrain. [Introduction a la résolution des systemes
d’équations algébriques, volume 59 of Mathématiques et Applications.
Springer-Verlag, 2007. (cited on pages 45 and 56)

I. Emiris, A. Mantzaflaris, and B. Mourrain. Yet another algorithm for gen-
eralized voronoi diagrams. Submitted, 2011. (cited on page 87)

I. . Z. Emiris. Sparse Elimination and Applications in Kinematics. PhD
thesis, Computer Science Division, Univ. of California at Berkeley, Dec.
1994. (cited on page 7)

I. Z. Emiris and M. 1. Karavelas. The predicates of the apollonius diagram:
Algorithmic analysis and implementation. Comput. Geom. Theory Appl.,
33:18-57, January 2006. (cited on page 91)

I. Z. Emiris and A. Mantzaflaris. Multihomogeneous resultant formulae for
systems with scaled support. In ISSAC ’09: Proceedings of the 2009 Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 143—150,
New York, NY, USA, 2009. ACM. (cited on page 7)

I. Z. Emiris and B. Mourrain. Matrices in elimination theory,. Journal of
Symbolic Computation, 28(1-2):3 — 43, 1999. (cited on page 7)

I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real Algebraic Numbers:
Complexity Analysis and Experimentation. In P. Hertling, C. Hoffmann,
W. Luther, and N. Revol, editors, Reliable Implementations of Real Num-
ber Algorithms: Theory and Practice, volume 5045 of LNCS, pages 57-82.
Springer Verlag, 2008. (cited on page 6)

I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. The DMM bound: Multivari-
ate (aggregate) separation bounds. In S. Watt, editor, Proc. 35th ACM Int’l
Symp. on Symbolic & Algebraic Comp. (ISSAC), pages 243-250, Munich,
Germany, July 2010. ACM. (cited on pages 28, 29 and 34)

Bibliography 109

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

I. Z. Emiris, E. P. Tsigaridas, and G. M. Tzoumas. Exact delaunay graph
of smooth convex pseudo-circles: general predicates, and implementation
for ellipses. In SPM ’09: 2009 SIAM/ACM Joint Conference on Geometric
and Physical Modeling, pages 211-222, New York, NY, USA, 2009. ACM.
(cited on pages 81, 90 and 91)

G. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2002. (cited on pages 66,
69, 92 and 95)

J. Garloff and A. Smith. A comparison of methods for the computation of
affine lower bound functions for polynomials. In C. Jermann, A. Neumaier,
and D. Sam, editors, Global Optimization and Constraint Satisfaction, vol-
ume 3478 of Lecture Notes in Computer Science, pages 364—364. Springer
Berlin / Heidelberg, 2005. (cited on pages 6 and 95)

J. Garloff and A. P. Smith. Investigation of a subdivision based algorithm
for solving systems of polynomial equations. Journal of Nonlinear Analysis,
47(1):167-178, 2001. (cited on page 23)

M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and ap-
proximation of clusters of zeros: Case of embedding dimension one. Foun-
dations of Computational Mathematics, 7:1-58,2007. 10.1007/s10208-004-
0159-5. (cited on pages 40 and 55)

J. Gravesen, Z. Sir, and B. TJiittler. Curves and surfaces represented by
polynomial support functions. Theoretical Computer Science, 392:141-157,
2008. (cited on pages 99 and 100)

R. M. Hardt. Triangulation of subanalytic sets and proper light subanalytic
maps. Invent. Math., 38(3):207-217, 1976/77. (cited on page 64)

M. Hemmer, E. P. Tsigaridas, Z. Zafeirakopoulos, 1. Z. Emiris, M. 1. Kar-
avelas, and B. Mourrain. Experimental evaluation and cross-benchmarking
of univariate real solvers. In Proc. 3rd ACM Int’l Work. Symbolic Numeric
Computation (SNC), pages 45-54, New York, NY, USA, 2009. ACM. (cited
on page 6)

D. Henrion, J.-B. Lasserre, and J. Lofberg. GloptiPoly 3: moments, opti-
mization and semidefinite programming. Optimization Methods and Soft-
ware, 24(4-5):pp. 761-779, 08 2009. Rapport LAAS n° 07536 90C22;
47A57. (cited on page 64)

110 Bibliography

[52] H. Hironaka. Triangulations of algebraic sets. In Algebraic geometry (Proc.
Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974),
pages 165—185. Amer. Math. Soc., Providence, R.I., 1975. (cited on page 64)

[53] M. Hodorog, B. Mourrain, and J. Schicho. GENOM3CK - A Library for
Genus Computation of Plane Complex Algebraic Curves Using Knot The-
ory, December 2010. ACM SIGSAM Communications in Computer Alge-
bra, vol. 44, issue 174, pp. 198-200, ISSN:1932-2240. (cited on page 55)

[54] M. Hodorog, B. Mourrain, and J. Schicho. An Adapted Version of the
Bentley-Ottmann Algorithm for Invariants of Plane Curve Singularities. In
B. M. et al., editor, Proceedings of the 11th International Conference on
Computational Science and Its Applications, Part IIl, Session: Compu-
tational Geometry and Applications, Lecture Notes in Computer Science,
pages 121-131. Springer, Heidelberg, 2011. (cited on page 55)

[55] M. Hodorog and J. Schicho. A Regularization Method for Computing Ap-
proximate Invariants of Plane Curves Singularities. In L. Z. et al., editor,

Proceedings of the 4th International Workshop on Symbolic-Numeric Com-
putation. ACM, 2011. (cited on page 55)

[56] W. Kahan. A more complete interval arithmetic. Lecture notes for a summer
course at the University of Michigan, 1968. (cited on page 55)

[57] G. N. KhimSiaSvili. The local degree of a smooth mapping. Sakharth. SSR
Mecn. Akad. Moambe, 85(2):309-312, 1977. (cited on page 77)

[58] A. Khintchine. Continued Fractions. University of Chicago Press, Chicago,
1964. (cited on page 26)

[59] C. Konaxis. Algebraic algorithms for polynomial system solving and appli-
cations. PhD thesis, National & Kapodistrian Univ. Athens, June 2010. In
Greek. (cited on page 7)

[60] R. Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit
fehlerschranken. Computing, 4(3):187-201, 1969. (cited on page 55)

[61] F. Labelle and J. R. Shewchuk. Anisotropic voronoi diagrams and
guaranteed-quality anisotropic mesh generation. In SCG ’03: Proceed-
ings of the nineteenth annual symposium on Computational geometry, pages
191-200, New York, NY, USA, 2003. ACM. (cited on page 90)

[62] J. B. Lasserre. Moments, Positive Polynomials and their Applications, vol-
ume 1 of Optimization Series. Imperial College Press, 2009. (cited on
page 64)

Bibliography 111

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

G. Lecerf. Quadratic newton iteration for systems with multiplicity. Founda-
tions of Computational Mathematics, 2:247-293, 2002. (cited on pages 40
and 57)

P. Lévy. Sur les lois de probabilitié dont dependent les quotients complets
et incomplets d’ une fraction continue. Bull. Soc. Math., 57:178—194, 1929.
(cited on page 26)

A. Leykin, J. Verschelde, and Z. A. Newton’s method with deflation for
isolated singularities of polynomial systems. Theoretical Computer Science,
359(1-3):111 — 122, 2006. (cited on pages 40, 42 and 54)

A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for poly-
nomial systems with isolated singular solutions. In A. Dickenstein, F.-O.
Schreyer, and A. Sommese, editors, Algorithms in Algebraic Geometry, vol-
ume 146 of The IMA Volumes in Mathematics and its Applications, pages
79-97. Springer New York, 2008. (cited on pages 40, 42, 45, 57 and 61)

C. Liang, B. Mourrain, and J.-P. Pavone. Subdivision methods for the topol-
ogy of 2d and 3d implicit curves. In B. Jiittler and R. Piene, editors, Geo-
metric Modeling and Algebraic Geometry, pages 199-214. Springer Berlin
Heidelberg, 2008. (cited on pages 89 and 100)

T. Luu Ba. Représentation matricielle implicite de coubres et surface al-
gériques et applications. PhD thesis, Université de Nice Sophia-Antipolis,
July 2011. (cited on page 64)

F. Macaulay. The algebraic theory of modular systems. Cambridge Univ.
Press, 1916. (cited on pages 41, 42, 46 and 47)

A. Mantzaflaris and B. Mourrain. A subdivision approach to planar semi-
algebraic sets. In Advances in Geometric Modeling and Processing, volume
6130 of Lecture Notes in Computer Science, pages 104—123. Springer Berlin
/ Heidelberg, 2010. (cited on pages 63 and 89)

A. Mantzaflaris and B. Mourrain. Deflation and certified isolation of singu-
lar zeros of polynomial systems. In Proceedings of the 36th international
symposium on Symbolic and algebraic computation, ISSAC 11, pages 249—
256, New York, NY, USA, 2011. ACM. (cited on page 39)

A. Mantzaflaris, B. Mourrain, and E. Tsigaridas. Continued fraction ex-
pansion of real roots of polynomial systems. In SNC ’09: Proceedings of
the 2009 Conference on Symbolic Numeric Computation, pages 85-94, New
York, NY, USA, 2009. ACM. (cited on pages 6 and 55)

112

Bibliography

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

A. Mantzaflaris, B. Mourrain, and E. Tsigaridas. On continued fraction
expansion of real roots of polynomial systems, complexity and condition
numbers. Theoretical Computer Science, 412(22):2312 — 2330, 2011. (cited
on page 6)

M. Marden. Geometry of Polynomials. American Mathematical Society,
Providence, RI, 1966. (cited on page 19)

M. G. Marinari, T. Mora, and H. Moller. Grobner duality and multiplicities
in polynomial system solving. In Proceedings of the 1995 international
symposium on Symbolic and algebraic computation, ISSAC 95, pages 167—
179, New York, NY, USA, 1995. ACM. (cited on pages 41 and 46)

K. Mehlhorn and S. Ray. Faster algorithms for computing Hong’s bound
on absolute positiveness. J. Symbolic Computation, 45(6):677 — 683, 2010.
(cited on page 6)

R. Moore. A test for existence of solutions to nonlinear systems. SIAM
Journal on Numerical Analysis, pages 611-615, 1977. (cited on page 22)

B. Mourrain. Approche effective de la théorie des invariants des groupes
classiques. PhD thesis, Centre de Mathématiques de 1’Ecole Polytechnique,
Sept. 1991. (cited on page 40)

B. Mourrain. Isolated points, duality and residues. Journal of Pure and
Applied Algebra, 117-118:469 — 493, 1997. (cited on pages 41, 42, 44, 45,
46 and 47)

B. Mourrain and J. Pavone. Subdivision methods for solving polynomial
equations. Journal of Symbolic Computation, 44(3):292 — 306, 2009. Poly-
nomial System Solving in honor of Daniel Lazard. (cited on pages 6, 7, 16,
30, 35, 36, 55 and 76)

B. Mourrain, F. Rouillier, and M.-F. Roy. Bernstein’s basis and real root
isolation, pages 459—478. Mathematical Sciences Research Institute Publi-
cations. Cambridge University Press, 2005. (cited on page 6)

T. Ojika, S. Watanabe, and T. Mitsui. Deflation algorithm for the multiple
roots of a system of nonlinear equations. Journal of Mathematical Analysis
and Applications, 96(2):463 — 479, 1983. (cited on page 40)

V. Pan. Solving a polynomial equation: Some history and recent progress.
SIAM Rev., 39(2):187-220, 1997. (cited on page 6)

Bibliography 113

[84] V. Pan. Univariate polynomials: Nearly optimal algorithms for numeri-
cal factorization and rootfinding. J. Symbolic Computation, 33(5):701-733,
2002. (cited on page 6)

[85] J. Pavone. Auto-intersection de surfaces pamatrées réelles. PhD thesis,
Université de Nice Sophia-Antipolis, 2004. (cited on pages 2 and 7)

[86] J. Peters and X. Wu. Sleves for planar spline curves. Computer Aided Geo-
metric Design, 21(6):615 — 635, 2004. (cited on pages 6 and 95)

[87] S. Pope and A. Szanto. Nearest multivariate system with given root multi-
plicities. Journal of Symbolic Computation, 44(6):606 — 625, 2009. (cited
on page 41)

[88] A. Poteaux. Calcul de développements de Puiseux et application au cal-
cul du groupe de monodrmie d’une courbe algébrique plane. PhD thesis,
Université de Limoges, 2008. (cited on page 55)

[89] U. Reif. Best bounds on the approximation of polynomials and splines by
their control structure. Comput. Aided Geom. Des., 17(6):579-589, 2000.
(cited on pages 6 and 95)

[90] S. Rump and S. Graillat. Verified error bounds for multiple roots of sys-
tems of nonlinear equations. Numerical Algorithms, 54:359-377, 2010.
10.1007/s11075-009-9339-3. (cited on pages 40, 41, 42, 43, 55 and 59)

[91] M. Safey El Din. Resolution reelle des systemes polynomiaux en dimen-
sion positive. PhD thesis, Pierre et Marie Curie University, 2001. (cited on

page 7)

[92] M. Safey El Din. Testing sign conditions on a multivariate polynomial
and applications. Mathematics in Computer Science, 1:177-207, 2007.
10.1007/s11786-007-0003-9. (cited on page 64)

[93] J.-K. Seong, E. Cohen, and G. Elber. Voronoi diagram computations for
planar nurbs curves. In SPM "08: Proceedings of the 2008 ACM symposium
on Solid and physical modeling, pages 67-77, New York, NY, USA, 2008.
ACM. (cited on page 89)

[94] O. Setter, M. Sharir, and D. Halperin. Constructing two-dimensional voronoi
diagrams via divide-and-conquer of envelopes in space. In M. L. Gavrilova
and C. J. K. Tan, editors, Transactions on computational science IX, pages
1-27. Springer-Verlag, Berlin, Heidelberg, 2010. (cited on page 89)

114 Bibliography

[95] V. Sharma. Complexity of real root isolation using continued fractions.
Theor. Comput. Sci., 409(2):292-310, 2008. (cited on page 6)

[96] E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions of

nonlinear polynomial systems. Comput. Aided Geom. Design, 10(5):379—
405, 1993. (cited on page 7)

[97] M. Shub and S. Smale. Complexity of bezout’s theorem i: Geometric as-
pects. Journal of the American Mathematical Society, 6(2):459-501, 1993.
(cited on pages 21, 24, 32 and 33)

[98] F. Stenger. Computing the topological degree of a mapping in R". Numer.
Math., 25(1):23-38, 1975. (cited on page 77)

[99] H. J. Stetter. Analysis of zero clusters in multivariate polynomial systems.
In Proceedings of the 1996 international symposium on Symbolic and alge-
braic computation, ISSAC 96, pages 127-136, New York, NY, USA, 1996.
ACM. (cited on pages 41 and 46)

[100] Z. Szafraniec. Topological degree and quadratic forms. Journal of Pure and
Applied Algebra, 141(3):299 — 314, 1999. (cited on page 56)

[101] A. Tarski. A decision method for elementary algebra and geometry. Univ.
of California Press, Berkeley, CA, 1951. (cited on page 64)

[102] P. Trébuchet. Vers une résolution stable et rapide des équations algébriques.
PhD thesis, Université Pierre et Marie Curie, 2002. (cited on page 45)

[103] E. P. Tsigaridas. Algebraic algorithms and applications to geometry. PhD
thesis, National Kapodistrian University of Athens, Aug 2006. (cited on

page 6)

[104] E. P. Tsigaridas and 1. Z. Emiris. On the complexity of real root isolation
using Continued Fractions. Theoretical Computer Science, 392:158-173,
2008. (cited on pages 6, 25, 29 and 30)

[105] G.Tzoumas. Computational geometry for curved objects. Voronoi diagrams
in the plane. PhD thesis, National & Kapodistrian Univ. Athens, 2009. In
Greek. (not cited)

[106] J. van der Hoeven, G. Lecerf, B. Mourrain, P. Trebuchet, J. Berthomieu,
D. N. Diatta, and A. Mantzaflaris. Mathemagix: The quest of modularity
and efficiency for symbolic and certified numeric computation. SIGSAM

Communications in Computer Algebra, 45(3), 2011. (cited on pages 34
and 78)

Bibliography 115

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

A. van der Poorten. An introduction to continued fractions. In Diophan-
tine analysis, pages 99-138. Cambridge University Press, 1986. (cited on
page 25)

J. von zur Gathen and J. Gerhard. Fast Algorithms for Taylor Shifts and
Certain Difference Equations. In Proc. Annual ACM ISSAC, pages 4047,
1997. (cited on page 14)

M. N. Vrahatis. A short proof and a generalization of Miranda’s existence
theorem. Proceedings of the American Mathematical Society, 107(3):701—
703, 1989. (cited on pages 22 and 23)

X. Wu and L. Zhi. Determining singular solutions of polynomial systems via
symbolic-numeric reduction to geometric involutive form. J. Symb. Comput.,
27:104-122, 2008. Accepted for publication. (cited on page 41)

G. Xu, C. L. Bajaj, and C. I. Chu. Regular algebraic curve segments
(i1)—interpolation and approximation. Computer Aided Geometric Design,
17(6):503 — 519, 2000. (cited on page 76)

G. Xu, C. L. Bajaj, and W. Xue. Regular algebraic curve segments
(i)—definitions and characteristics. Computer Aided Geometric Design,
17(6):485 — 501, 2000. (cited on page 76)

J. Yakoubsohn. Approximating the zeros of analytic functions by the exclu-
sion algorithm. Numerical Algorithms, 6(1):63-88, 1994. (cited on page 7)

C. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University
Press, New York, 2000. (cited on page 25)

Y. Yomdin and G. Comte. Tame geometry with applications in smooth anal-
ysis. LNM 1834. Springer-Verlag, 2004. (cited on page 21)

Z. Zeng. The closedness subspace method for computing the multiplicity
structure of a polynomial system. In D. Bates, G. Besana, S. Di Rocco,
and C. Wampler, editors, Interactions of Classical and Numerical Algebraic
Geometry, volume 496 of Contemporaty Mathematics, pages 347-362. Am.
Math. Society, Providence, RI, 2009. (cited on pages 46 and 51)

anisotropic diagram, 90
Apollonius diagram, 91

basic semi-algebraic sets, 65
Bernstein expansion, 11

complex ball, 20

complex multi-disc, 20
continued fraction expansion, 25
covariant derivative, 24

critical point, 76

distance field, 88
dual space, 44

extremal point, 76
face polynomials, 22
generating set, 88
homography, 10

inclusion test, 22, 23
interior of hypercube, 20
isotopic sets, 65

Khintchine’s constant, 26

Laguerre diagram, 91
Lipschitz constant, 20
local condition number, 31

Mobius diagram, 91
Mobius transformation, 10
Miranda Theorem, 22

nilindex, 44

power diagram, 91

preconditioner, 17
regular cell, 76

semi-algebraic set, 65
simply singular cell, 76
singular points, 76
subdivision algorithm, 6
subdivision scheme, 8

Taylor shift, 10
tensor, 10
tubular neighborhood, 21

Vincent’s theorem, 18
Voronoi diagram, 88

116

Index

	Titlepage
	Abstract
	Résumé
	Preface
	1 Introduction
	1.1 Problems and approaches
	1.2 Outline and main results

	2 Mutivariate continued fraction solver
	2.1 State-of-the-art
	2.2 Notations and preliminaries
	2.3 Representation: homographies
	2.4 Subdivision and reduction
	2.4.1 The subdivision step
	2.4.2 Complexity of subdivision step.
	2.4.3 Reduction: Bounds on the range of f
	2.4.4 Preconditioning

	2.5 Regularity tests
	2.5.1 Exclusion test
	2.5.2 Inclusion tests

	2.6 Complexity and continued fractions
	2.6.1 About continued fractions
	2.6.2 Complexity results
	2.6.3 Further complexity improvements

	2.7 Complexity and condition number
	2.8 Implementation and experimentation

	3 On the treatment of singular isolated roots
	3.1 Introduction
	3.2 Preliminary considerations
	3.2.1 Isolated points and differentials
	3.2.2 Quotient ring and dual structure

	3.3 Computing local ring structure
	3.3.1 Macaulay's dialytic matrices
	3.3.2 Integration method
	3.3.3 Computing a primal-dual pair
	3.3.4 Approximate dual basis

	3.4 Deflation of a singular point
	3.5 Verifying approximate singular points
	3.6 Geometry around a singularity
	3.6.1 Topological degree computation
	3.6.2 Branches around a singularity

	3.7 Experimentation

	4 Computing planar semi-algebraic sets
	4.1 Planar semi-algebraic sets
	4.2 Representation
	4.3 Subdivision process
	4.4 Region recovery
	4.4.1 Following the boundary curves around a region

	4.5 The case of basic semi-algebraic sets
	4.5.1 Regularity test

	4.6 The general case
	4.7 Implementation and demonstration

	5 Algebraic framework for generalized Voronoï diagrams
	5.1 Introduction
	5.1.1 Some existing work
	5.1.2 Voronoi diagrams and distance fields

	5.2 The algorithm
	5.2.1 Subdivision phase
	5.2.2 Upper bounds and filtering
	5.2.3 Cell reconstruction phase

	5.3 The implicit method
	5.3.1 Field bound
	5.3.2 Bisector tracking
	5.3.3 Equations for implicit distance fields

	5.4 Experimentation

	Conclusion and outlook
	Bibliography
	Index

