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Mathematical interest and connection with
applications

@ Random vibrations of mechanical structures
— stochastic system with memory
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@ Mathematical Interest: Theoretical and numerical aspects
of Stochastic Variational Inequalities (SVI)
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Outline of the presentation

Q Motivations: Elasto-plastic problems in probabilistic
engineering mechanics

O SVI for the elasto-plastic problem (characterization and
computation of the stationary distribution)

2011

E) Short cycles related to the SVI
£) Long cycles related to the SV

Q SVI with jumps for artificial elastic-plastic phasing (transition
plastic — elastic)

el-0065

0 Long time behavior of an elastic-perfeclty-plastic oscillator
excited by a filtered noise

Q Conclusion & Perspectives
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Motivations: Elasto-plastic problems in
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lllustrative example: piping system

For a class of structures: A one dimensional (1d) model
@ global behavior of the structure

Seismic excitation (left) / Mass displacement (right):
Test vs 1d model results
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Elastic behavior: start with a linear oscillator ...

Co > 0 : damping coefficient
k > 0 : stiffness
aw(t),
Cadt
x(t) : response of the oscillator

. external force white noise
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Elastic behavior: start with a linear oscillator ...

Co > 0 : damping coefficient
k > 0 : stiffness
aw(t),
Cadt
x(t) : response of the oscillator

. external force white noise

linear case: x(f) solves

(1) + cox(t) + F(t) = “d"sz(f)", F(t) = kx(t)
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Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves

(1) + cox(t) + F(t) = “dngz(Lt)"

@ |F(1)| < kY, Y : elasto-plastic bound
64 : first time going into plastic phase
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F(t)
(x(t), F'(t))
""""""""""" o | /N
6y :=1inf{t > 0,|F(t)| = kY'}
|F(t)| < kY, 0<t<b
(1)
!
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Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves
aw(t),

X(t) + CoX(t) + F(t) = “ar

F(t) = k(x(t) = A1)

@ — a plastic deformation A(f) occurs in x(t) when |F(t)| = kY.
71: first time going out of plastic phase
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= 1inf{t > 01, |F(t)| < kY'}

7 := inf{t > 61, x(t) stops increasing }

x(t)

‘F(t)’:ky (91§t<7'1
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Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves

x(t) + cox(t) + F(t) =
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aw(t),

S F() = k(D) = A(1)

A(t) stops increasing
when x(t) stops increasing.

F(t)
((t), F(t))
---------------- w [T |
| ,/ | 71 :=return to elastic phase
S F) = k) - A@)
K. 0
" A(Tl)
l"
—kY
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Balance between elastic and plastic

Denote

then

becomes
@ elastic |z(1)| < Y:

{}’/(f) = —(Coy(t) + kz(1)) + 241",
2(t) =

tel-00653121, version 1 - 19 Dec 2011

@ plastic z(t) = Y,y(t) >0or z(t) = -Y, y(t) < O:

{J/(t) = —(coy(t) £ kY) + "2,
2(t) = 0

Key idea:| Switching between elastic and plastic phases
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An example of phases transition

1% elastic phase: [0, 6") 1% plastic phase: 67, 77)
y(t) = —(coy(t) + k(1)) + "2, y(t) = —(coy(t) + kY) + "5,
2(t) = y( 20) -
2 y(t) = i (1)
O
g — N 6 =ikt > 0,]2(8)] = v}
: - Y

@> : z(t) 7 :=inf{t > 6;,y(t) = 0}
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An example of phases transition

25t elastic phase: [ry, 6?) 25! plastic phase: [6?, 72)
y(t) = —(coy(t) + kz(t) + T2, y(t) = —(coy(t) — kY) + "Zgo,
z(t) = y(t) z(t)=-Y
o y(t) = (1)
()]
2 P N g =it >0,)2(0)] = Y)
o Y Y
g 2= infif > f1.y() = 0y AN () 7= inf{t > 0y, y(t) = 0}

th :=inf{t > 7, |2(t)| =Y}
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An example of the plastic drift of the oscillator

Figure: on the top t, x(t)

bottom t, z(t) for ¢y

(red) t, A(t) (black : plastic deformation) and at the
k=1,Y =1

TORY OF (t,x(t)) and (t,d(t))

6
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Part 2: Stochastic variational inequality
for the elasto-plastic problem
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Mathematical tool to describe the right dynamic
. the stochastic variational inequality

Reformulation of the problem without the plastic deformation A(t) and without
the instants of phase transition.

Theorem (Bensoussan-Turi 2007)
=The process (y(t), z(t)) is the unique solution of the stochastic variational
oinequality (SVI) defined by the following conditions

dy(t) = —(coy(t) + kz(t))dt + dw(t),
(dz(t) —y()dt)(o — 2(1)) 2 0, V| <Y, |z(t) <Y
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@ (y(t),z(t)) reflected diffusion, A(t): reflection process
References:
SVIs: [Bensoussan-Lions1982].
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— noise effect at the transition from plastic to elastic
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@ References:
Deterministic VI for elasto-plasticity: [Duvaut-Lions1977].
— Finally, it is not surprising to see arising stochastic variational
inequalities in the framework of random vibrations.
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Characterization of the stationary state
(balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007)
(y(t), z(t)) ergodic Markov process

@ unique invariant probability distribution v for (y(t), z(t)) and
(y(1), z(t)) ti> v (independently of the initial condition).

@ elastic domain: D := (—o0,+o0) x (=Y, Y)
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Characterization of the stationary state
(balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007)
(y(t), z(t)) ergodic Markov process

@ unique invariant probability distribution v for (y(t), z(t)) and
(y(1), z(t)) ti> v (independently of the initial condition).

@ elastic domain: D := (—o0,+o0) x (=Y, Y)
@ plastic domains: D" := (—o0,0) x {—Y} and D™ := (0, +00) x {Y}

@ v~ has a density denoted by m is characterized by: V¢ smooth,
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’
/Dm(y’ ZH{yypz — (coy + kz)py + é%pyy}dydz

. m(y, Y){—(coy + kY)oy(y,Y) + %Sﬁyy(y’ Y)idy

+ N m(y,—Y){—(coy — kY)o,(y,—=Y) + %gpyy(yj ~Y)ldy = 0
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Alternative method to the Monte-Carlo
simulation (1): Start of my PhD research

From ergodic theory, we know the limiting behavior of (y(t), z(t)).

@ For all bounded function f and Y(yo, Zo) € D,

lim Ef(y*o(t), z%0(t)) = /Df(y,z)m(y,z)dydz+/ f(Y,y)m(Y,y)dy

t—oo D+

| =Y y)m(=Y.y)dy.
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Alternative method to the Monte-Carlo
simulation (1): Start of my PhD research

From ergodic theory, we know the limiting behavior of (y(t), z(t)).

@ For all bounded function f and Y(yo, Zo) € D,

lim Ef(y*o(t), z%0(t)) = /Df(y,z)m(y,z)ddeJr/ f(Y,y)m(Y,y)dy

t—oo D+

| =Y y)m(=Y.y)dy.

@ But, it is also well known that

t—oo 2—0
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lim Ef(y’(t), z%(t)) = lim A/OO e MEF(yYo(t), z0(t))dt.
0
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Alternative method to the Monte-Carlo
simulation (2)
@ Denote uy(yo, z0; f) =E | [ exp(—At)f(y¥o(t), z%(t))dt].

tel-00653121, version 1 - 19 Dec 2011
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Alternative method to the Monte-Carlo
simulation (2)

@ Denote uy(¥o, 20; f) = E [ [~ exp(—At)f(y¥o(t), z%(t))dlt].

@ Equivalent characterization of the asymptotic limit:

AU+ Auy = f(y,z) in D
AUy + Biuy, = f(y,Y) in Df
Auy+ B uy, = f(y,=Y) in D

Nonlocal problem : y — uy(y, Y, f) are continuous.
¥(Y0,20) € D

I|m AUN(Yo, 20; f /fy, z)dydz

+ [y my dy+ [ty =Vimly.~Ydy
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@ This result is fundamental for the numerical resolution of m : alternative
method to Monte-Carlo, that requires simulations for long durations.
Publication: [Bensoussan, Mertz, Pironneau, Turi 2009], SIAM Journal on
Numerical Analysis , Volume 47 Issue 5
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Alternative method to the Monte-Carlo
simulation (3)

Superposition of three local problems:
Q

A+ B,vy, = f. in DT,
AW+ B_vy =17 In D,

with v,(07,Y) =0,v\(0~,-Y) =0,

{ Ay +Avy, = f in D,

tel-00653121, version 1 - 19 Dec 2011
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Alternative method to the Monte-Carlo
simulation (3)

Superposition of three local problems:

Q
Avy+Av, = f in D7
A+ B,vy, = f. in DT,
AW+ B_vy =17 In D,
with v,(07,Y) =0,v\(0~,-Y) =0,
Q

Aty + Byny =0 in DT,
Aty +B_my =0 in D,

with 7H(0", Y)=1,7"(0",-Y) =0,

{ Aty +Ary = 0 in D,
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Alternative method to the Monte-Carlo
simulation (3)

Superposition of three local problems:

)
A+ Avy, = f in D,
2 Avy + B.vy, = f. in DT,
2 AVy+B_vy =f In D,
. with v,(0+, Y) = 0, v,(0~, — Y) = 0,
S @
g Aty +Ary = 0 in D,
S Aty + Byny =0 in DT,
g Aty +B_my =0 in D,
2 with 77(0%, Y) =1,7+(0~,-Y) =0,
)

Amy +Bimy, =0 in DT,
Ary +B_m, =0 in D,

with 7#(0", Y)=0,7—(0",-Y) = 1.

{ Ay +Ar, = 0 in D,
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Alternative method to the Monte-Carlo
simulation (4)

@ We look for p, and p_:

Vy+ pymy + p-m, continuousin (0,+Y)

tel-00653121, version 1 - 19 Dec 2011
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Alternative method to the Monte-Carlo
simulation (4)

@ We look for p, and p_:

Vy+ pymy + p-m, continuousin (0,+Y)

@ Finally, we solve the following linear system:
with

_( 7O Y)=77(0",Y) (07, Y)—7(0",Y)
= ( +( +7_ )_7T+(0_7_Y) 7T_(0+7_Y) _W_(O_’_Y)>

1(5) = (w6 o W)

tel-00653121, version 1 - 19 Dec 2011
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Numerical

gc 2011

+d8P

- O

[@]

» VEIIGE

tel-00653121

'
=

= 1
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@ left: plot of m with the deterministic method,

@ right: plot of m with the Monte Carlo method,
T =10, MC = 107 (number of trajectories),

result Vs Monte Carlo method :
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Numerical result Vs Monte Carlo method :

Y
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@ left: plot of m with the deterministic method,

@ right: plot of m with the Monte Carlo method,
T =10, MC = 107 (number of trajectories),
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Part 3: Short cycles related to the
stochastic variational inequality
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Short cycle behavior

Short cycle: path, solution of the SVI, starting from a point
(y,z) € D and which contains
@ only one phase evolving in D (elastic domain)

@ |and only one phase evolving in D" or D~ (plastic domains).

y(t) :== a(t)

T :zginf{t > 0, |z(t)| =Y, y(t) = 0}
-y Y

tel-00653121, version 1 - 19 Dec 2011
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Short cycle
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Short cycle behavior

@ Short cycles: a new analytic characterization to the invariant
measure of (y(t), z(t)).

tel-00653121, version 1 - 19 Dec 2011

@ Key finding:| connection between local problems and
nonlocal problems.
— interpretation of local problems in terms of trajectory of

(y(1), 2(1)).
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Definition and analysis of short cycles

@ Let f be a bounded function on D, define v(y, z; f) the
solution of

Av=finD, B,v=finD", B.v=finD"
with the local boundary conditions
v(0",Y)=0and v(0~,-Y) =0

We call v(y, z; f) a short cycle.

tel-00653121, version 1 - 19 Dec 2011
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Definition and analysis of short cycles

@ Let f be a bounded function on D, define v(y, z; f) the
solution of

Av=finD, B,v=finD", B.v=finD"
with the local boundary conditions
v(0",Y)=0and v(0~,-Y) =0

We call v(y, z; f) a short cycle.

rsion 1 - 19 Dec 2011

>Theorem (Analysis of short cycles, A. Bensoussan, L.M.)
= There exists a unique solution to (P,) of the form

tel-00653121

V(y>Z; f) = ‘70+(y; f)1{y>0} —1—90_(}/; f)1{y<0} + W(y,Z; f)

where
w IS a bounded function

Bipt=1(y,Y), y>0, ¢"(0%f)=0
B.o~=1f(y,-Y), y<0, ¢ (07;f)=0.

(Pv)
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New ergodic theorem : Statement of the result

Theorem (New ergodic theorem,A. Bensoussan, L. M.)
@ A new characterization of the invariant distribution:

o V(07 YiN) + (0t - Y )
m1) = 2v(0-, Y; 1)

tel-00653121, version 1 - 19 Dec 2011

submitted: [Bensoussan, Mertz 2011] An analytic approach to the
rgodic theory of stochastic variational inequalities
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New ergodic theorem : Statement of the result

Theorem (New ergodic theorem,A. Bensoussan, L. M.)
@ A new characterization of the invariant distribution:

- v(07,Y;f) +v(0T, =Y, 1)

v(f)

@ Expansion of u,

where

us(y,z f) = uly,z:f) +

2v(0—, Y; 1)

v(f)

o))

tel-00653121, version 1 - 19 Dec 2011

Au=f—-uv(f)inD

B.u=f—uv(f)in D"

B u=f—u(f)inD-

with the non local boundary condition given by the fact that

y — u(y, Y, f) are continuous.

submitted: [Bensoussan, Mertz 2011] An analytic approach to the
rgodic theory of stochastic variational inequalities

28 /57



Probabilistic interpretation of the new
characterization

Figure: Avy=f, B,v=f B v=fandv(0",—-Y)=0,v(0~,Y)=0
y(t) = ()
y(0), 2(0)

T ::;inf{t >0, ]z(t)] =Y, y(t) = 0}
-y

NN

Short cycle
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@ A new characterization of the invariant distribution:
o V(0. Yif) + v(0%, - Yif)
A7) = 2v(0-, Y; 1)
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Probabilistic interpretation of the new
characterization

Figure: Avy=f, B,v=f B v=fandv(0",—-Y)=0,v(0~,Y)=0
y(t) = ()
y(0), 2(0)

—' dinf{t >0, [z(t)| =|Y, y(t) = 0}
-Y :

NN

Short cycle
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@ A new characterization of the invariant distribution:
o V(0. Yif) + v(0%, - Yif)
A7) = 2v(0-, Y; 1)

@ means “formally"

() — 2B Uo fy(s). 2(s))ds) + 5Bi0- ) (Jo y(s). 2(s))ds),
%E(O—,Y)(T) + ;E(ot—Y)( )
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Part 4 : Long cycles related to the
stochastic variational inequality
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Long cycle behavior

@ Independent sequences in the trajectory.
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Long cycle behavior

@ Independent sequences in the trajectory.

@ Long cycle: path, solution of the SVI, starting and ending in
one of the two points of {(0, Y), (0, —Y)}, knowing that the
trajectory had a stop by the other point.
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Long cycle behavior

@ Independent sequences in the trajectory.

@ Long cycle: path, solution of the SVI, starting and ending in
one of the two points of {(0, Y), (0, —Y)}, knowing that the
trajectory had a stop by the other point.

@ Long cycles help to characterize the plastic behavior.

tel-00653121, version 1 - 19 Dec 2011
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Definition and analysis of long cycles
@ Define

0 = sign(z(h)),

o =inf{t >0, y(t)=0,|z(t)| =Y},
{ So = inf{t > 1o, y(t) = O,Z(t) = —5Y}.

.
/i

so = inf{t > to, y(t) = 0, 2(t) = 6V}
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ty = inf{t > 0,y(t) = 0, |z(t) = Y}

0 = sign(z(ty))
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Definition and analysis of long cycles

@ Define
i =inf{t > s, y(t)=0,z(t)=0Y},

e

so = inf{t > to,y(t) = 0, 2(t) = Y}
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ty = inf{t > 0, y(t) = 0,]2(t)| = v}
§ = sign(z(ty)) Long cycle
ty =inf{t > 0,y(t) =0, 2(t) = dY'}
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Definition and analysis of long cycles

@ Then in a recurrent manner, knowing t,, we can define for
n>0

thry =inK{t >s, y(t)=0 z( t)=0Y},
{ Spe1 = INH{t > thyq, y(t)=0,2(t) = —0Y}.
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@ Accordingly to these settings, we can define the n-th long
cycle as the piece of trajectory enclosed by [t,, t,.1).
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Definition and analysis of long cycles

Theorem (Long cycle behavior, A. Bensoussan, L.M.)
In this context, we have

i 00) _ U Y(5)ds)
t—|>Too t B E(t1 — to)

rsion 1 - 19 Dec 2011

Key idea: | PDEs related to long cycles and connection with short
“cycles.

gsubmitted: [Bensoussan, Mertz 2011] Behavior of the plastic
eformation of an elasto-perfectly-plastic oscillator with noise

tel-00
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PDEs related to Long cycles (type one way)

tel-00653121, version 1 - 19 Dec 2011

where

- 7{

\J \__/
y(0), 2(0 :
So = 1nf{f > 7‘0 y(t) =0,z(t) = oY}

\i))\

to = inf{t > 0,y(t) = 0, |2() = Y}
5 = sign(=(t))

Av=f, B,v=f B.v=fandv(0,Y)=0

nonlocal problem : y — v(y,—Y) is continuous

So

(0, =Y) = "Eq-v ( f(Y(S)az(S))dS> )

f
36/57



PDEs related to Long cycles (type return)

so = inf{t > to,y(t) = 0, 2(t) = 6V}

to=inf{t > 0,y(t) =0, [z()|=Y}
§ = sign(z(ty)) Long cycle

ty =inf{t > 0,y(t) =0, 2(t) = dY'}
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Av=f Byv=f Byv=fandv(0",-Y)=0
where |nonlocal problem : y — v(y, Y) is continuous

Iy

v(0,Y) = "E,v) < f(Y(S)az(S))dS> ’

So
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Numerical results in support of our result

In this section, we provide computational results which confirm
our theoretical results.

co=1,k=1

o?(x(t))

B(f,! y(s)ds)?
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Y 7, 1 =500 —g7—5— | E(ti — o) |Relative error %
0.1 0.807+9931 0.834+0069 16 g1+0.11 3.2
0.2 0.649+0026 0.624+0-047 18 74+0.13 3.8
0.3]0.493+0.020 0.464%0.034110.45%0.16 5.8
0.4 0.361+0014 0.355+0026 1 12 12+0.18 1.7
0.5]0.266=%0" 0.257+0019 113 .80+0-21 3.3
0.6 0.195+0.008 0.198+0.014116,15%0.26 1.5
0.7 0.137+0.005 0.149+0.011 118 84+0-31 8
0.8]0.103+0.004 0.112+0.008 | 22 g0+0-39 8
0.9/ 0.071+0003 0.086%0.006 | 26 79+0-47 15

Table: Monte-Carlo simulations t = 500 , 6t = 10~* and MC = 5000.
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Part 5 : Stochastic variational inequality
with jumps for artificial elastic-plastic
phasing
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Why introducing jumps? 1/2

Micro-elastic phasing — difficulties to compute plastic
deformations. (Frequency of deformations tends to be
overestimated because of the noise)

CO:1,k:1,Y:1

g 1
S << H-elastic
[3) excursions
2 0.8f n
=
. 0.6
—
5 N
()
>
. 0.2f
(q\|
—
(9p)]
m -
(o]
o
Q
o -0.2r

z(t)
<
;5

-0.4-

-0.6r
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Why introducing jumps? 2/2

@ Micro-elastic phases — negligible in deformations but they are very small
as well as numerous.
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Why introducing jumps? 2/2

@ Micro-elastic phases — negligible in deformations but they are very small
as well as numerous.

@ a SVI with artificial jumps — to help phase transition.
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Why introducing jumps? 2/2

@ Micro-elastic phases — negligible in deformations but they are very small
as well as numerous.

@ a SVI with artificial jumps — to help phase transition.

@ — an empirical criterion which could be useful to calibrate the size of the
jump. submitted: [Feau, Mertz 2011] An empirical study on plastic
deformations of an elasto-plastic problem with noise
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Model definition of a model with jumps

@ For some ¢ > 0, we define the process (y(t), z¢(t)) on each
interval of time [7,, 7,. ;) Where

o= Iinf{t > 7,4 | y(t)=0and |z°(t)| = Y}

@ as follows:

{ Y(t) = —(coy (1) + kzi (1)) + w(t)
(Z(t) -~y (D)o —2(1) 20, VIg|<Y ; |z(<Y

@ with the following jump-conditions
y(rs—) =0, z(rf—) =+Y, and
y(mp) =0, Z(7p) = sign(z(7p—))(Y —e).

tel-00653121, version 1 - 19 Dec 2011
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Model definition : example of a jump
jump-conditions:

BEFORE THE JUMP : y(7{—)
AFTER THE JUMP : y(7{) =

= z(ri—) = 1Y
O Z(ry) = sign(z(m-))(Y — €).

tel-00653121, version 1 - 19 Dec 2011

. A\ s
v

U/ = inf{t > 01, y*(t) = 0}
e size of the jump

before the jump: 2°(7f—) =Y

after the jump: 2°(77) =Y — ¢ 43/57



Convergence to the continuous case as ¢ — O:
Statement of the result

Theorem (Convergence to the continuous case as ¢ — 0 A.
Bensoussan, H. Jasso-Fuentes, L.M., S. Menozzi)

~“Assume k > } ( 2+ /5+ 200) Fix T > 0 and consider the
(1), 2(t)) and (y*(t), z(t)). Then,

E [sup {|y(t)—y€(t)|2+k|z(t) —ze(t)|2}] 0 as |0

0<t<T

oprocesses (y

N | —-.

submitted: [Bensoussan, Jasso-Fuentes, Menozzi, Mertz. 2011]
sAsymptotic analysis of stochastic variational inequalities
10deling an elasto-plastic problem with vanishing jumps

tel-00653121, version 1 - 19
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Convergence to the continuous case as « — 0:
Proof 1/3

@ First, we define
o =inf{t >0, |z(t)] =Y}

where
yi(0)=0and z(0) = Y — ¢

or
y(0)=0and z(0) = —Y +¢

with probability 1/2.
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Convergence to the continuous case as « — 0:
Proof 1/3

@ First, we define
o =inf{t >0, |z(t)] =Y}

where
yi(0)=0and z(0) = Y — ¢

or
y(0)=0and z(0) = —Y +¢

with probability 1/2.
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@ We state that |if W — 0 we get the result.
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Convergence to the continuous case as ¢ — 0 :
Proof 2/3

@ Chapman-Kolmogorov equation : on p¢ and p° i.e

1
Pt — 5Py — ((coy + kZ)p)y + ypz = 0,

where p*(y,z,0) = do.y_(y,2) and p°(y, z,0) = do v (¥, 2)-

tel-00653121, version 1 - 19 Dec 2011
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Convergence to the continuous case as ¢ — 0 :
Proof 2/3

@ Chapman-Kolmogorov equation : on p¢ and p° i.e

1
Pt — 5Py — ((coy + kZ)p)y + ypz = 0,

where p(y, z,0) = do.y—(y, ) and p°(y, 2,0) = o v(y, 2).
@ Hitting boundary problem u(t, y, z) related to
IP’(%Z)(@E > T — t)
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Convergence to the continuous case as ¢ — 0 :
Proof 2/3

@ Chapman-Kolmogorov equation : on p¢ and p° i.e
1
Pt — 5Py — ((coy + kZ)p)y + ypz = 0,

where p‘(y,z,0) = do.y—(y,Z) and p°(y, z,0) = do.y(y, 2).
@ Hitting boundary problem u(t, y, z) related to
IP’(%Z)(@E > T — t)

@ By testing p° and p°® with the hitting boundary problem, we
can justify the following identity:

P(o > T) /D P(y.2.T)— Py 2. T)| dydz

tel-00653121, version 1 - 19 Dec 2011

/ / yuly. Y. 1) [p°(y. Y. 1) — p(y, Y. 1)] dtdy

//yu p(y,—Y,t) = p’(y,~Y, 1) didy.
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Convergence to the continuous case as ¢ — 0 :
Proof 3/3

Lemma
@ lim_ol [, [p(v.2. T)—pP°(y.z, T)] dydz is finite,

o |im€—>0 1? fO fo yU(y, o Y7 t) [pe(y7 o Y7 t) o po(y7 o Y: t)} dtdy is ﬁnite,

@ If we assume that k > } (—% + Coy/ 5 + 200) then

liminf_o 1 [T [° yu(y, Y, t) [p°(y, Y, t) — p°(y, Y, t)] dtdy = +oo

To conclude, we have )
li .
P> T)

tel- 00653121, version 1 - 19 Dec 2011

‘that proves the theorem.
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Part 6: Long time behavior of an
elastic-plastic oscillator excited by a
filtered noise
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Why considering a filtered noise?

» Engineering point of view: a filtered noise — more realistic.
» Mathematical point of view: a generalization of the method
proposed by Bensoussan-Turi.
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Why considering a filtered noise?

» Engineering point of view: a filtered noise — more realistic.
» Mathematical point of view: a generalization of the method
proposed by Bensoussan-Turi.

Consider x(t) an Ornstein-Ulhenbeck process reflected by &;:
dx(t) = —ax(t)dt +aw(t) +1ix@=3dE
Ornstein-Ulhenbeck  reflection

We have —L < x(t) <L, L>0and a > 0, w(t) is a Wiener
process.
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Why considering a filtered noise?

» Engineering point of view: a filtered noise — more realistic.
» Mathematical point of view: a generalization of the method
proposed by Bensoussan-Turi.

Consider x(t) an Ornstein-Ulhenbeck process reflected by &;:
dx(t) = —ax(t)dt +aw(t) +1ix@=3dE
Ornstein-Ulhenbeck  reflection

We have —L < x(t) <L, L>0and a > 0, w(t) is a Wiener
process.
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We consider the external force given by

—ax(t) + dw(t)
N——
uncorrelated

noise of w(t)
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Model definition

@ The stochastic variational inequality is given by

{ ax(t) = —ax(t)dt + dw(t) + 1 - dE} — -1, dE2

dy(t) = —(ax(t)| + coy(t) + kz(t))dt + div(t),
(dz(t) — y(t)dt) (¢ — z(t)) >0, V]g| <Y, |z(1)] < Y( )

3D case
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Model definition

@ The stochastic variational inequality is given by

{ ax(t) = —ax(t)dt + dw(t) + 1 - dE} — -1, dE2

dy(t) = —(ax(t)| + coy(t) + kz(t))dt + div(t),
(dz(t) — y(t)dt) (¢ — z(t)) >0, V]g| <Y, |z(1)] < Y( )

3D case

@ Note that If « = 0, x(t) is not involved in the dynamic of y(t)
and then (y(t), z(t)) satisfy the elasto-plastic problem studied
by Bensoussan-Turi.
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Model definition

@ The stochastic variational inequality is given by

{ ax(t) = —ax(t)dt + dw(t) + 1 - dE} — -1, dE2

dy(t) = —(ax(t)| + coy(t) + kz(t))dt + div(t),
(dz(t) — y(t)dt)(¢ — z(t)) >0, Vo[ <Y, [z(B)| <Y

()

3D case

@ Note that If « = 0, x(t) is not involved in the dynamic of y(t)
and then (y(t), z(t)) satisfy the elasto-plastic problem studied
by Bensoussan-Turi.

@ Denote
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1
F‘Ll — EELJXX'__ CY)(LJX - (X)(L{y

In this case, the infinitesimal generator is given by :
» Au:=Au+Ru,on(—L L) xRx(-Y,Y)
» B.u:=B,u+Ru, on(—L,L) x(0,00) x {Y}
» B_.u:=B_u+Ru, on(—L,L) x (—00,0) x {—Y}
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Ergodic Theorem: Statement of the result

Denote
@D =(—LLxRx(-Y,Y)
@ D" :=(—L L) x(0,+00) x {Y}
@ D= (-L L) x(-00,0) x {-Y}.
OAs the main result of this work we prove the following:

DTheorem (Ergodic theorem, A. Bensoussan, L.M.)
' There exists one and only one probability measure v on D U D~ U D™ satisfying

/A(bdy—l—/ B_gbdu+/ B.¢odv =0, V¢ smooth.
D - D+

Moreover, v has a probability density function m such that

tel-00653121, version 1 - 19

/ m(x,y,z)dxdydz + m(x,y, Y)dxdy + m(x,y,—Y)dxdy = 1.
D+ D-

submitted: [Bensoussan, Mertz 2011] Degenerate Dirichlet
roblems related to the ergodic theory for an elasto-plastic
scillator excited by a filtered white noise
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Part 6 : Conclusion & Perspectives
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what we have done :

@ 1: Numerical analysis of the invariant distribution related to a
stochastic variational inequality
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what we have done :

@ 1: Numerical analysis of the invariant distribution related to a
stochastic variational inequality

@ 2: New characterization of the invariant distribution by short
cycles

@ 3: Characterization of the plastic drift by long cycles

@ 4: Convergence of an approximate solution of the svi to the
original problem
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@ 5: Extension of the Bensoussan-Turi method for proving
ergodicity of an elasto-plastic problem with a filtered noise.
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Now, we wish to extend our work to the
following (coming soon):

In preparation (with A. Bensoussan, H. Jasso-Fuentes, S.
Menozzi): invariant distribution for the case with jumps (~¢) and
convergence v¢ — v,
— short cycle applied to the problem with jump.
@ A characterization of the invariant distribution for the problem
with jump:
- v(O0,Y —ef)+v(0,-Y +¢f)

V(1) 2v(0,Y — ¢ 1) |

ve(f) — v(f)
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Now, we wish to extend our work to the
following (coming soon):

In preparation (with A. Bensoussan, H. Jasso-Fuentes, S.
Menozzi): invariant distribution for the case with jumps (~¢) and
convergence v¢ — v,
— short cycle applied to the problem with jump.
@ A characterization of the invariant distribution for the problem
with jump:
v(0,Y — € )+ v(0,-Y +¢f)

VA7) = 2v(0,Y — ¢ 1) |

ve(f) — v(f)

@ means “formally"

(fO )dS) (0 Y+e) (fo S)7Z(S))ds)n
;E(O,Y— )(7) + ;E(O,—Y—i—e)( )
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v(f) =
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Now, we wish to extend our work to the
following :

@ In preparation (with C. Feau): Engineering application of
Long cycles to compute plastic deformation of an
elasto-perfectly-plastic problem with noise,
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Now, we wish to extend our work to the
following :

@ In preparation (with C. Feau): Engineering application of
Long cycles to compute plastic deformation of an
elasto-perfectly-plastic problem with noise,

@ Speed of convergence of the distribution of (y(t), z(t)) to the
iInvariant measure, and spectral analysis of A, B, B_ and
density estimates.
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Now, we wish to extend our work to the
following :

@ In preparation (with C. Feau): Engineering application of
Long cycles to compute plastic deformation of an
elasto-perfectly-plastic problem with noise,

@ Speed of convergence of the distribution of (y(t), z(t)) to the
iInvariant measure, and spectral analysis of A, B, B_ and
density estimates.

@ Short and long cycles in the case of the elastic-plastic
problem excited with a filtered noise?
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Now, we wish to extend our work to the
following :

@ Ergodicity for an elasto-plastic oscillator with bilinear force?

@ Morally, seems to be more ergodic, but much more
challenging mathematically.
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Fin de la these.

Merci de votre attention.
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