
HAL Id: tel-00653623
https://theses.hal.science/tel-00653623v1
Submitted on 19 Dec 2011 (v1), last revised 10 May 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BlobSeer as a Data-Storage Facility for Clouds:
Self-adaptation, Integration, Evaluation

Alexandra Carpen-Amarie

To cite this version:
Alexandra Carpen-Amarie. BlobSeer as a Data-Storage Facility for Clouds: Self-adaptation, Integra-
tion, Evaluation. Distributed, Parallel, and Cluster Computing [cs.DC]. École normale supérieure de
Cachan - ENS Cachan, 2011. English. �NNT : �. �tel-00653623v1�

https://theses.hal.science/tel-00653623v1
https://hal.archives-ouvertes.fr

THÈSE / ENS CACHAN - BRETAGNE
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Mention : Informatique
École doctorale MATISSE

présentée par

Alexandra Carpen-Amarie
Préparée à l’Unité Mixte de Recherche 6074
Institut de recherche en informatique
et systèmes aléatoires

BlobSeer as a data-storage
facility for Clouds:

self-adaptation,
integration, evaluation

Thèse soutenue le 15 décembre 2011
devant le jury composé de :

Christian PEREZ ,
Directeur de recherche - INRIA Grenoble Rhône-Alpes / rapporteur
María S. PÉREZ-HERNÁNDEZ
Professeur des universités - Université Polytechnique de Madrid / rapporteur

Adrien LÈBRE
Chargé de recherche - École des Mines de Nantes / examinateur
Nicolae TAPUS
Professeur des universités - Université Polytechnique de Bucarest /examinateur

Luc BOUGÉ
Professeur des universités - ENS Cachan-Bretagne / directeur de thèse
Gabriel ANTONIU
Chargé de recherche - INRIA Rennes Bretagne-Atlantique / directeur de thèse

i

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Publications . 3
1.3 Organization of the manuscript . 4

Part I – Context: data storage for Cloud environments 7

2 Cloud computing 9
2.1 Defining Cloud computing . 10
2.2 The Cloud computing landscape . 11

2.2.1 Deployment models . 11
2.2.2 Cloud services stack . 11

2.3 Infrastructure-as-a-Service Clouds . 12
2.4 Research challenges . 14
2.5 Summary . 15

3 Scalable distributed storage systems 17
3.1 Parallel file systems . 17
3.2 Distributed file systems for data-intensive workloads 18
3.3 Cloud storage services . 19

3.3.1 IaaS-level services . 19
3.3.2 PaaS-level services . 21
3.3.3 Internal Cloud services . 21

3.4 Features and research challenges . 22

4 Self-* aspects in Clouds 23
4.1 Self-awareness . 24
4.2 Self-protection . 25
4.3 Self-configuration . 26
4.4 Summary . 27

5 Case Study: BlobSeer, a versioning-based data management system 29
5.1 Design principles . 29

ii Contents

5.2 Architecture . 31
5.3 Zoom on data access operations . 32
5.4 Summary . 35

Part II – Enabling BlobSeer with self-management 37

6 Self-management for distributed data-storage systems 39
6.1 Self-awareness: Introspection mechanisms . 40

6.1.1 Relevant data for storage systems . 40
6.1.2 Global architecture . 41

6.2 Self-protection: A generic security framework 42
6.2.1 Motivating scenarios . 43
6.2.2 Global Architecture . 43
6.2.3 Security policies . 44
6.2.4 The policy breach detection algorithm 46

6.3 Self-configuration: Dynamic dimensioning . 50
6.3.1 Motivating scenarios . 50
6.3.2 Global Architecture . 50
6.3.3 Dynamic scaling algorithms . 52

6.4 Summary . 54

7 Validation: Introducing self-management in BlobSeer 57
7.1 Introspection mechanisms in BlobSeer . 58

7.1.1 Collecting BlobSeer-specific data . 58
7.1.2 Implementation details . 59

7.2 The security framework . 63
7.2.1 Security attacks in BlobSeer . 64
7.2.2 Case study: DoS attacks in BlobSeer . 66
7.2.3 Implementation details . 68

7.3 Self-configuration in BlobSeer . 72
7.3.1 Dynamic configuration in BlobSeer . 72
7.3.2 Zoom on replica management . 74

7.4 Summary . 76

8 Evaluation and results 77
8.1 Experimental testbed: the Grid’5000 platform 78

8.1.1 Infrastructure details . 78
8.1.2 Grid’5000 experimental tools . 79

8.2 Automatic deployment tools . 79
8.3 The introspection architecture . 81

8.3.1 Impact on the Blobseer data-access performance 81
8.3.2 Visualization tool for BlobSeer-specific data 82

8.4 The security framework . 84
8.4.1 Experimental setup . 84
8.4.2 Impact of malicious users on data-access performance 85

Contents iii

8.4.3 Performance evaluation of the Security Management Framework . . . 86

Part III – Integrating and evaluating BlobSeer in Cloud environments 87

9 The Nimbus cloud environment 89
9.1 The Nimbus Cloud infrastructure . 89

9.1.1 Architecture details . 90
9.1.2 Infrastructure-level services . 90
9.1.3 Platform-level services . 91
9.1.4 Virtual Machine lifecycle . 91

9.2 The Cumulus storage system . 92
9.2.1 The architecture of Cumulus . 92
9.2.2 Main features . 93

9.3 Summary . 94

10 A BlobSeer-based backend for Cumulus 95
10.1 Towards a file-system interface for BlobSeer . 96

10.1.1 Requirements for the storage backend 96
10.1.2 The BlobSeer Namespace Manager . 97
10.1.3 The file system API . 97
10.1.4 Introducing a 2-phase write operation 98

10.2 Implementation . 99
10.2.1 Designing the BlobSeer file system . 99
10.2.2 BlobSeer-based Cumulus backend . 101

10.3 Microbenchmarks . 102
10.3.1 Environmental setup . 102
10.3.2 Upload/download performance . 103
10.3.3 Scalability evaluation . 104

10.4 Summary . 106

Part IV – Evaluation with large-scale applications in Clouds 107

11 MapReduce applications: impact on cost and performance 109
11.1 The MapReduce paradigm . 110
11.2 Motivation . 111
11.3 Computational and Cost Model . 111
11.4 Evaluation . 112

11.4.1 Execution environment . 112
11.4.2 Virtualization overhead . 113
11.4.3 Cost analysis . 114

11.5 Related Work . 116
11.6 Summary . 117

12 Tightly-coupled HPC applications 119

iv Contents

12.1 Case study: the Cloud Model 1 (CM1) application 120
12.1.1 Application model . 120
12.1.2 Zoom on CM1 . 120

12.2 Cloud data storage for CM1 . 121
12.2.1 Motivation . 121
12.2.2 Designing an S3-backed file system . 122

12.3 Evaluation . 123
12.3.1 Experimental setup . 123
12.3.2 Completion time when increasing the pressure on the storage system . 124
12.3.3 Application speedup . 125

12.4 Summary . 126

Part V – Conclusions and perspectives 129

13 Conclusions 131

14 Perspectives 135
14.1 Self-management in Clouds . 135
14.2 Optimizing Cloud data storage . 136
14.3 BlobSeer-based Cloud data storage in more applicative contexts 137

1

Chapter 1
Introduction

Contents
1.1 Contributions . 2

1.2 Publications . 3

1.3 Organization of the manuscript . 4

Cloud computing emerged as a promising paradigm for hosting and delivering on-
demand services on a pay-per-use basis. This model builds on widely popular technologies,
such as Grid computing, Utility computing or Internet services computing, aiming at making bet-
ter use of distributed resources and providing high-performance, scalable and cost- effective
services. The Cloud computing model has drawn the interest of both the academic commu-
nity and large companies, such as Amazon, Google or Microsoft, which strive to address the
new challenges that surfaced as Cloud computing became an attractive solution for a broad
spectrum of applications.

One of the main challenges in this context is data management, as a result of the expo-
nential growth of the volume of data processed by distributed applications nowadays. The
need for data-management solutions is particularly critical in the area of scientific appli-
cations. For instance, in the area of high- energy physics, CERN’s Large Hadron Collider
experiments involving the CMS detector are expected to generate over 15 petabytes of data
per year.

Several storage systems have been proposed to address the increasing demands for scal-
able and efficient data management, some of them emerging from the data-intensive dis-
tributed computing community, while others have been specifically designed for Cloud en-
vironments. Nevertheless, some requirements for massive data management at global scales
have still to be dealt with.

An essential concern in this case is the complexity of building advanced systems at such
scales. Thus, as more evolved systems are being designed, the high degree of complex-

2 Chapter 1 – Introduction

ity related to their configuration and tuning is becoming a limiting factor that threatens to
overwhelm the current management capabilities and render the systems unmanageable and
insecure. To overcome such challenges, a system can be outfitted with a set of self- manage-
ment mechanisms that enable an autonomic behavior, which can shift the burden of under-
standing and managing the system’s state from the human administrator to an automatic
decision-making engine.

Cloud-oriented systems also face a different type of issues, arising from the multitude
of service providers that have entered the Cloud computing market. To process massive
amounts of data, interoperability between various Cloud providers and services turns up to
be a major challenge that restricts the resources to which a user has access to the data centers
of a specific provider. To overcome such boundaries, Cloud providers need to converge
towards compatible standards.

1.1 Contributions

The goal of this thesis is to enhance a distributed data-management system with self-
management capabilities, so that it can meet the requirements of the Cloud storage services
in terms of scalability, data availability, reliability and security.

Furthermore, we investigate the requirements of Cloud data services in terms of data-
transfer performance and access patterns and we explore the ways to leverage and adapt
existing data-management solutions for Cloud workloads. We aim at building a Cloud
data service both compatible with state-of-the-art Cloud interfaces and able to deliver high-
throughput data storage.

The contributions of this thesis can be summarized as follows:

Introspection mechanisms for data-management systems. Introspection is the prerequi-
site of an autonomic behavior, the first step towards performance improvement and
resource-usage optimization for data-management systems distributed at large scales.
In order to enable a data storage platform with introspection capabilities we have de-
signed a three-layered architecture aiming at identifying and generating relevant infor-
mation related to the state and the behavior of the system. The work further focused on
enhancing BlobSeer, a distributed storage system designed for highly-efficient concur-
rent data accesses, with self-awareness capabilities based on the previously introduced
introspection architecture.

Additionally, we designed a visualization tool to provide graphical representations
of the data collected and processed by the BlobSeer introspection component. This
work was carried out in collaboration with Jing Cai, a Master student from the City
University in Hong Kong.

A generic framework for enforcing security policies in storage systems. We proposed a
generic security management framework to enable self-protection for data-
management systems. We consider several security challenges that can impact on
Cloud data services and we provide a flexible framework for security policies defini-
tion and enforcement to address them. As a case study, the proposed framework was
applied to BlobSeer and was evaluated in the context of Denial of Service attacks. The

1.2 – Publications 3

obtained results showed that our self-protection architecture meets the requirements
of a data storage system in a large-scale deployment: it was able to deal with a large
number of simultaneous attacks and to restore and preserve the performance of the tar-
get system. This work was carried out in collaboration with Cristina Basescu, Catalin
Leordeanu and Alexandru Costan from the Politehnica University of Bucharest, Ro-
mania, within the framework of the “DataCloud@work” INRIA Associate Team.

Self-configuration in data-management systems through dynamic dimensioning. We ad-
dressed the problem of accurately estimating the most advantageous deployment con-
figuration of a data management system in terms of number of storage nodes. In this
context, we proposed a dynamic configuration framework designed to work in con-
junction with the introspection mechanisms to automatically adjust the number of de-
ployed storage nodes. We validated the proposed framework within a integration with
BlobSeer, for which we implemented a self-configuration component able to contract
and expand the pool of storage nodes based on configurable monitoring parameters,
such as the rate of data accesses or the load of the storage nodes. This work was carried
out in collaboration with Lucian Cancescu, Alexandru Palade and Alexandru Costan
from the Politehnica University of Bucharest, Romania, within the framework of the
“DataCloud@work” INRIA Associate Team.

A BlobSeer-based file system as a storage backend for Cloud services. We investigated
the challenges of providing high-throughput data storage in Cloud environments.
We targeted two directions: data management for virtual machine images and for
Cloud application data. Our contribution lies in the design and implementation of
a BlobSeer-based file system optimized to efficiently serve as a storage backend for
Cloud services. We validated our proposed file system by integrating it within a real-
world Cloud environment, the Nimbus platform. Large-scale synthetic experiments
have been performed to assess the performance of our customized distributed Cloud
storage service. The benefits and drawbacks of using Cloud storage for real-life appli-
cations have been emphasized in evaluations that involved data-intensive MapReduce
applications and tightly-coupled, high-performance computing applications. This
work was carried out under the supervision of Kate Keahey and John Bresnahan
during a 2-month internship at Argonne National Laboratory, Chicago, Illinois, USA.

All experiments performed in the context of the aforementioned contributions were car-
ried out using the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several Universities
as well as other funding bodies (see https://www.grid5000.fr).

1.2 Publications

Journals:

• Carpen-Amarie Alexandra, Costan Alexandru, Leordeanu Catalin, Basescu Cristina,
Antoniu Gabriel, Towards a Generic Security Framework for Cloud Data Manage-
ment Environments. To appear in International Journal of Distributed Systems and Tech-
nologies, 2012.

4 Chapter 1 – Introduction

• Carpen-Amarie Alexandra, Costan Alexandru, Cai Jing, Antoniu Gabriel, Bougé Luc,
Bringing Introspection into BlobSeer: Towards a Self-Adaptive Distributed Data
Management System. In International Journal of Applied Mathematics and Computer Sci-
ence, Vol. 21, No. 2, pages 229-242, 2011.

• Nicolae Bogdan, Antoniu Gabriel, Bougé Luc, Moise Diana, Carpen-Amarie Alexan-
dra, BlobSeer: Next Generation Data Management for Large Scale Infrastructures.
In Journal of Parallel and Distributed Computing, Vol. 71, No. 2, pages 168-184, 2011.

Conferences and workshops:

• Carpen-Amarie Alexandra, Towards a Self-Adaptive Data Management System for
Cloud Environments. In IPDPS 2011: 25th IEEE International Parallel and Distributed
Processing Symposium: PhD Forum, pages 2072-2075, Anchorage, USA, 2011.

• Moise Diana, Carpen-Amarie Alexandra, Antoniu Gabriel, Bougé Luc, A Cost-
Evaluation of MapReduce Applications in the Cloud. To appear in the Grid’5000
Spring School Proceedings, Reims, France, 2011.

• Basescu Cristina, Carpen-Amarie Alexandra, Leordeanu Catalin, Costan Alexandru,
Antoniu Gabriel, Managing Data Access on Clouds: A Generic Framework for En-
forcing Security Policies. In AINA 2011: 25th International Conference on Advanced In-
formation Networking and Applications, pages 459-466, Singapore, 2011.

• Carpen-Amarie Alexandra, Cai Jing, Costan Alexandru, Antoniu Gabriel, Bougé Luc,
Bringing Introspection Into the BlobSeer Data-Management System Using the Mon-
ALISA Distributed Monitoring Framework. In ADiS 2010: International Conference on
Complex, Intelligent and Software Intensive Systems, Workshop on Autonomic Distributed
Systems, pages 508-513, Krakow, Poland, 2010.

• Carpen-Amarie Alexandra, Andreica Mugurel, Cristea Valentin, An Algorithm for
File Transfer Scheduling in Grid Environments. In HiPerGrid 2008: International
Workshop on High Performance Grid Middleware, pages 33-40, Bucharest, Romania, 2008.

Research reports:

• Alexandra Carpen-Amarie, Tuan Viet Dinh, Gabriel Antoniu, Efficient VM Storage for
Clouds Based on the High-Throughput BlobSeer BLOB Management System, INRIA
Research Report No. 7434, INRIA, Rennes, France, 2010.

• Alexandra Carpen-Amarie, Jing Cai, Luc Bougé, Gabriel Antoniu, Alexandru Costan,
Monitoring the BlobSeer distributed data-management platform using the MonAL-
ISA framework, INRIA Research Report No. 7018, INRIA, Rennes, France, 2009.

1.3 Organization of the manuscript

This manuscript is organized into five parts.

1.3 – Organization of the manuscript 5

The first part discusses the context of our work. Chapter 2 introduces the Cloud com-
puting paradigm, focusing on Infrastructure-as-a-Service Clouds. The chapter closes on the
research issues that emerged as Cloud computing developed into a popular paradigm for
both the industry and the scientific community. Among these challenges, we further concen-
trate on data management. Thus, Chapter 3 provides a survey of some of the most widely
used distributed storage systems. We study parallel file systems, specialized file systems
for data-intensive applications, as well as Cloud storage systems, analyzing the properties
required for providing Cloud services that efficiently handle large amounts of data. Next,
we focus on exploiting self-management mechanisms to optimize such file systems. To this
end, Chapter 4 discusses a set of self-* properties and their existing implementations at the
level of data-management systems. Finally, this part closes with Chapter 5, which introduces
BlobSeer, a high-performance, large-scale distributed storage service we used as a case study
throughout this manuscript.

The second part presents the first contribution of this thesis, namely a set of frameworks
designed to enhance data-management systems with self-* properties. Chapter 6 intro-
duces three generic approaches for self-management, aiming at defining self-awareness,
self-protection and self-configuration components for distributed data storage systems. In
Chapter 7, we validate the aforementioned self-* frameworks by integrating them into Blob-
Seer. We discuss implementation details and the specific interfacing modules required to
enable BlobSeer with self-management components. The last chapter of this part, namely
Chapter 8, introduces our large-scale experimental testbed, the Grid’5000 platform, together
with a set of deployment tools we developed to evaluate our proposed frameworks. Then,
we present the experiments we conducted to assess the benefits of the self-* mechanisms in
BlobSeer.

The third part introduces the Nimbus Cloud framework and focuses on Cumulus, the
data storage service that accompanies the Nimbus Infrastructure-as-a-Service Cloud. Next,
Chapter 10 presents our contribution with respect to Cloud data storage. We designed a
BlobSeer-based file system to play the role of the backend storage layer for Cumulus. We
close this part with a set of benchmarks that evaluate the performance and scalability of the
Cumulus storage service and the Blobseer-based backend.

The fourth part consists of two chapters that present various evaluations of the BlobSeer-
based Cloud storage service in the context of real-life applications. Chapter 11 investigates
performance- and cost-related aspects of executing MapReduce applications in Cloud envi-
ronments. In Chapter 12, we analyze the impact of using Cloud-based storage systems for
tightly-coupled applications, such as CM1, a simulator for modeling atmospheric phenom-
ena. Both chapters include experiments conducted on hundreds of nodes in Grid’5000.

The fifth part summarizes the contributions of the thesis in Chapter 13 and discusses a
series of unexplored research challenges revealed by our work in Chapter 14.

6 Chapter 1 – Introduction

7

Part I

Context: data storage for Cloud
environments

9

Chapter 2
Cloud computing

Contents

2.1 Defining Cloud computing . 10

2.2 The Cloud computing landscape . 11

2.2.1 Deployment models . 11

2.2.2 Cloud services stack . 11

2.3 Infrastructure-as-a-Service Clouds . 12

2.4 Research challenges . 14

2.5 Summary . 15

The main concepts that drive the development of Cloud computing have emerged back
in the 1960s, when Douglas Parkhill investigated the principles of “utility computing” [86].
The idea behind “utility computing” comes from the analogy with the traditional public
utilities, such as the electricity grid, which allows consumers to obtain electric power on-
demand, while offering the illusion of infinite resources available for an unlimited number
of clients.

Initially, the idea of providing computational resources on-demand has been developed
into the Grid computing paradigm, which aimed at coordinating resources distributed over
various administrative domains to solve large computational problems. The term “grid” re-
flects the analogy with the electricity network, suggesting that Grid infrastructures should
deliver computational power to any user, regardless of the details of the underlying re-
sources or the problem complexity. As Grid technologies gained an increasing popularity
in the academic community, standard protocols, middleware and services have been pro-
posed to address the various requirements of scientific applications. In this context, many
research efforts concentrated on providing a Grid definition [34, 35], among which the most
widely accepted is the one proposed by Ian Foster in 2002: “a system that coordinates re-

10 Chapter 2 – Cloud computing

sources which are not subject to centralized control, using standard, open, general-purpose
protocols and interfaces to deliver nontrivial qualities of service” [32].

Cloud computing shares the same vision as the Grid paradigm: it aims at federating
distributed computational resources to deliver on-demand services to external customers.
However, whereas most Grid platforms were targeting resource sharing for the scientific
community, Cloud computing shifts the focus on a business model where the clients pay for
the resources acquired on demand. Clouds leverage existing technologies, such as virtual-
ization, to provide dynamic and flexible resource provisioning that addresses precise user
needs through user-transparent web-based services.

2.1 Defining Cloud computing

Numerous definitions have been proposed for Cloud computing, focusing on various as-
pects that characterize the paradigm [109, 31, 37]. We consider the definition of Cloud com-
puting proposed by The National Institute of Standard and Technology (NIST) [67], as it
illustrates the essential facets of the Cloud:

« Cloud computing is a model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, appli-
cations and services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. »

Several authors [31, 44, 116] highlight the features that make the Cloud computing
paradigm attractive to both the commercial and academic communities. We summarize the
key aspects that played an important role in the increasing popularity of Clouds.

Virtualized resources. Virtualization provides an abstraction layer hiding the complexity
and heterogeneity of the physical resources that make up the Cloud. Recent virtu-
alization technologies, such as KVM [60] or Xen [10], have reduced the performance
penalty of running applications in virtualized environments. Thus, Clouds widely
adopted virtualization, as a solution for server consolidation and resource availability.

Scalability. Cloud services aggregate large pools of physical resources belonging to the
same data center or federating resources from multiple providers. In order to provide
reliable services, Cloud frameworks have to efficiently take advantage of the lower-
level services and underlying physical machines and to transparently scale to handle
rapid increase in service demands.

Ease of access. The Cloud computing paradigm features two important properties to attract
both commercial and academic actors. First, it allows users to rent computational or
storage resources for the needs of their applications, instead of requiring them to in-
vest in the infrastructure. Furthermore, leased resources can dynamically scale up and
down on the fly, according to the real-time load. The user can access its resources from
anywhere in the world, and the Cloud provider guarantees to comply with a set of
service-level agreements (SLAs) with respect to resource availability and provided qual-
ity of service.

2.2 – The Cloud computing landscape 11

Pay-per-use model. A key aspect of Cloud computing is the model of providing resources
on demand and charging clients only for what they use. Adopting this economic
model, Cloud providers can maximize resource utilization, while offering clients af-
fordable services.

2.2 The Cloud computing landscape

Several surveys have focused on formulating a Cloud computing taxonomy. We focus on
two types of classifications, taking into account the deployment model of the Cloud frame-
works and the type of provided services.

2.2.1 Deployment models

Companies, as well as scientific organizations, have various needs with respect to the type,
availability or security of the services they employ. To address them, several types of Clouds
have been proposed, each of them presenting specific strengths and weaknesses.

Public Cloud. A public Cloud provides services to any client that has access to the internet.
Typically, the services are managed by off-site providers, which also control the net-
work and security settings, while the user can obtain on-demand resources billed on a
pay-per-use basis.

Private Cloud. In this case, the infrastructure is exclusively used by a single organization.
Its advantage is that it offers the highest degree of security and reliability. On the
downside, having access to a private Cloud implies having full access to the physical
infrastructure and also building and managing the Cloud.

Hybrid Cloud. Hybrid Clouds aim at addressing the limitations of the other deployment
models. A combination between private and public Clouds, the hybrid model preserves
the security guarantees of the first model, enhancing it with the possibility to dynam-
ically scale by renting resources from public cloud providers when the computational
needs overload the local resources. Achieving such a degree of flexibility is however a
challenging task, as many Cloud services or interfaces are incompatible and cannot be
accessed through the same client tools.

2.2.2 Cloud services stack

The Cloud services can be classified as a stack of service layers, where each layer is built
upon services provided by the lower levels of the stack:

Infrastructure-as-a-Service (IaaS). This is the lowest level of the Cloud computing stack,
supplying users with on-demand access to virtualized resources they can fully configure.
Typically, Infrastructure-as-a-Service Cloud users can rent computational, storage or net-
working resources for predefined amounts of time. They have access to infrastructure man-
agement services such as automatic resource deployment and dynamic scaling of the num-
ber of leased nodes. Commercial Clouds feature a pay-per-use pricing scheme, which im-

12 Chapter 2 – Cloud computing

plies low entry costs for clients, an important advantage in the case of customers who cannot
afford buying their own infrastructure. The main actors on the commercial IaaS Cloud mar-
ket include Amazon EC2 [8], GoGrid [39], Flexiscale [30]. The flexibility and wide range of
potential applications of this service model have drawn the attention of the scientific com-
munity, who proposed several open-source IaaS solutions, such as Nimbus [57], OpenNeb-
ula [72], Eucalyptus [79] or OpenStack [83].

Platform-as-a-Service (PaaS). Cloud providers offer an additional abstraction layer built
on top of IaaS functionalities. PaaS services consist in high-level integrated environments
that enable users to build, test and execute their own applications. The purpose of PaaS
environments is to hide the complexity of managing and deploying applications on top of
virtual machines and enable users to focus only on the application logic. This approach
comes, however, with a defining tradeoff: such services are not suitable for any type of ap-
plication, as PaaS providers typically design specific environments and APIs through which
the users can take advantage of the platform’s capabilities. As an example, Amazon’s Elastic
MapReduce (EMR) [118] offers scalable and efficient data processing for massive datasets;
nevertheless, the users are required to submit only applications complying with the MapRe-
duce paradigm. Other popular PaaS commercial offerings include Microsoft Azure [90],
Google Apps Engine [93], or Django [105], all of them being devised for hosting web ap-
plications. Not all these services provide the same degree of flexibility. Whereas platforms
such as EMR provide specific programming environments, Microsoft Azure is an example of
a platform that allows clients to employ a wider range of tools compatible with the offered
execution environment.

Software-as-a-Service (SaaS). At the highest level of the hierarchy, SaaS delivers special-
ized software hosted in the Cloud, accessible for customers only through the Internet. Such
applications are usually built on top of PaaS or IaaS Clouds. The main asset of SaaS ap-
plications is that they can rely on the powerful lower-level Cloud services to achieve better
availability and performance by leveraging features like distributed processing or automatic
scaling. Examples of SaaS applications are Google Maps [41] services, Google Docs [40] and
Microsoft’s Office Live [69].

2.3 Infrastructure-as-a-Service Clouds

In this section we focus on IaaS Clouds, as they offer the basic services on which all the other
layers are built, as well as the highest degree of flexibility and control. We provide a survey
of some state-of-the-art Cloud infrastructures, ranging from popular commercial Clouds to
emerging open-source research projects:

Amazon Elastic Compute Cloud (EC2). Amazon EC2 [8] provides a large computing in-
frastructure, where the users can rent virtualized environments. It offers the illusion of in-
finite compute capacity, allowing users to dynamically resize the leased resources, while
employing a pay-per-use business model. Typically, a user creates a virtual machine image,
called Amazon Machine Image (AMI), containing all needed applications. Amazon provides

2.3 – Infrastructure-as-a-Service Clouds 13

a broad set of tools to upload the image into the system and to launch multiple instances.
An Amazon EC2 instance is a virtual machine booted from a specific AMI, relying on the
Xen [10] virtualization engine. As it grants users full control of their instances, EC2 provides
flexible environments that can be adapted to a multitude of applications, ranging from In-
ternet services to scientific applications. Even though the architecture and implementation
of the Amazon services is proprietary, the interaction with the client is done through pub-
lic APIs that have become extremely popular and have been adopted by a large number of
open-source projects.

Nimbus. The Nimbus infrastructure Cloud [57, 88] is an open-source IaaS implementation
devised for the computational needs of the scientific community. It is interface-compatible
with Amazon EC2, to enable users to switch from one Cloud offering to another without
modifying their access tools. The Nimbus project provides as well a set of additional tools
targeted to scientific applications. Thus, it includes mechanisms to create configurable vir-
tual clusters, interoperability tools to explore Cloud federation and efficient virtual machine
management components to support simultaneous deployment for hundreds of virtual ma-
chines.

OpenNebula. OpenNebula [72, 82] provides fully open-source IaaS services designed to
address the requirements of business use cases across multiple industries, such as web host-
ing, telecommunications, eGovernment. It consists in a set of virtualization tools for manag-
ing local data centers, but also for interconnecting multiple Cloud environments. The main
design principles on which the OpenNebula project relies include a modular and extensible
architecture, scalability for large-scale infrastructures, interoperability with existing Cloud
offerings, open-source implementation. Furthermore, OpenNebula aims at providing stan-
dardized interfaces for managing virtual machines and data, such as the Open Grid Forum
(OGF) [81] OCCI [80] API or the Amazon EC2 “de-facto” industry standard.

Eucalyptus. The Eucalyptus [79, 87] project aims at addressing several important require-
ments in IaaS Clouds: extensibility, scalability, high availability, elastic virtual machine pool
reconfiguration. It is fully-compatible with Amazon’s EC2 interface and it includes robust
tools for creating hybrid Clouds based on EC2 or EC2-compatible IaaS offerings. Eucalyptus
is one of the most widely used IaaS solutions for private data centers. To meet the needs
of the enterprise environments, the Eucalyptus Cloud is equipped with secure services for
user management and resource quotas, as well as with extensive tools for controlling VMs
lifecycle.

OpenStack. OpenStack Compute [83] is an open-source toolkit designed to provision and
manage large networks of virtual machines. It can be integrated with a variety of hard-
ware configurations and hypervisor, storage and networking solutions. Targeted towards
the needs of industry projects, it provides scalable and reliable services suitable for a broad
class of data centers. Furthermore, it defines specific APIs to allow users to easily and se-
curely create, launch, and interact with their instances.

14 Chapter 2 – Cloud computing

2.4 Research challenges

Cloud computing is an active research area, which is continuously evolving towards new
types of services and new application models. Cloud technologies face different challenges
at each level of the Cloud computing stack. Some key aspects that impact a wide adoption
rate of IaaS Clouds, in particular in the context of scientific applications, are detailed below:

Efficient data management. Large-scale data-intensive applications typically rely on ded-
icated distributed file systems. Such file systems however do not expose traditional APIs
or POSIX semantics. Furthermore, they are not suitable for Cloud environments, being in-
compatible with the access and cost model employed in such contexts. On the other hand,
Cloud data services introduce compatibility challenges with respect to existing applications.
Research efforts in this area aim at finding appropriate data storage models that address the
data-intensive applications needs and comply with Cloud environments restrictions.

Elasticity. Cloud computing is based on the capability to provide on-demand resources.
Furthermore, the pool of rented resources has to scale up as the application load increases,
and to automatically shrink when the peak processing load has been overcome, to minimize
user costs. Elastic services need to provide an acceptable tradeoff, avoiding performance
penalties, as well as ineffective resource usage. In this context, the challenge lies in identi-
fying specific mechanisms to allow an automatic correlation between the state of the system
and the lease dimension.

Security. This is an essential research topic for Cloud computing. The security issues that
arise in Cloud environments are twofold. First, data security greatly impacts the applications
that want to rely on Cloud services for storing or processing sensitive data. The drawback in
this case is that the user has no control over the security policies and the protection mecha-
nisms for its data. Second, Cloud providers are also confronted with security issues, as they
need to counterbalance malicious attacks in order to sustain a constant service availability
and performance. As a consequence, Cloud providers have to implement efficient detection
mechanisms to protect and repair their systems in case of security attacks.

Interoperability. Many Cloud computing offerings have evolved as independent frame-
works that provide similar user services through specific interfaces. The inner management
techniques inside the Cloud are transparent to the user, which benefits from specific tools to
access the services. However, the users may face interoperability issues if they attempt to
switch to another Cloud provider. These challenges relate to the lack of standardized access
protocols and interfaces across Cloud providers. This also poses an additional constraint on
Cloud federation attempts, which have to consider the various access models to succeed in
interconnecting several Cloud platforms.

2.5 Summary

In this chapter, we consider the Cloud computing landscape, providing an insight on the
various definitions of the Cloud paradigm and the existing service models. Further, we
present a survey of the most widely employed Infrastructure-as-a-Service Cloud offerings.
Finally, we investigate some of the most active research topics that impact the adoption scale
of Cloud services.

16 Chapter 2 – Cloud computing

17

Chapter 3
Scalable distributed storage systems

Contents
3.1 Parallel file systems . 17

3.2 Distributed file systems for data-intensive workloads 18

3.3 Cloud storage services . 19

3.3.1 IaaS-level services . 19

3.3.2 PaaS-level services . 21

3.3.3 Internal Cloud services . 21

3.4 Features and research challenges . 22

In this chapter we survey a set of distributed data-management solutions designed to
provide storage support for various type of large-scale applications. We point out the specific
design principles implemented by each systems, summarizing their limitations and new
challenges at the end of the chapter.

3.1 Parallel file systems

The high-performance computing community proposed various distributed file systems that
target scalability and high-throughput data management. Some of the most representative
parallel file systems are presented below, together with their main features.

Parallel Virtual File System. PVFS [49, 101] is an open-source, scalable parallel file system
designed to provide high performance for parallel applications. It is able to scale to
a very large number of storage servers and clients by relying on a distributed archi-
tecture to avoid single points of contention. Thus, data and metadata are distributed
across multiple servers, ensuring high throughput for large I/O and concurrent file

18 Chapter 3 – Scalable distributed storage systems

accesses. To achieve high performance for large data and multiple concurrent clients,
PVFS does not implement the POSIX semantics. It optimizes concurrent accesses to
non-overlapping blocks of the same file, but does not support concurrent updates on
the same portion of a file. PVFS also avoids inefficient distributed locking mechanisms,
defining instead a sequence of steps for each operation that maintains the file system
directory hierarchy in a consistent state at any time.

IBM General Parallel File System. GPFS [94] is one of the most popular parallel file sys-
tems employed in many important supercomputing facilities in both commercial and
scientific communities. Its design focuses on scalability and high-performance access
for petabytes of data. GPFS stripes data in equally-sized blocks typically of 256 KB in
size and distributes metadata across multiple servers to avoid bottlenecks and single
points of failure. Furthermore, it ensures data availability through replication and re-
covery mechanisms in the case of failures. It implements a fine-grained locking scheme
enabling concurrent clients to perform efficient updates to different parts of the same
file, while preventing inconsistent overlapping accesses. Its sophisticated token-based
scalable locking mechanism also allows GPFS to fully support POSIX semantics, both
at the level of data and at the level of file metadata.

Ceph. To address some of the main challenges for storage systems, such as scalability, re-
liability and performance, the Ceph [112, 99] distributed file systems relies on several
design principles. First, it distributes data across object storage devices (OSD) [68] to
achieve an efficient management of data accesses, update serialization or replication.
Second, Ceph decouples data and metadata management and employes a distributed
metadata management scheme to enhance scalability. Unlike other file systems, Ceph
also includes dynamic metadata servers, which are able to adapt to changing work-
loads by repartitioning the file system hierarchy in order to achieve load balancing. To
improve reliability, data is replicated across multiple OSDs and replicas are automat-
ically re-created on new disks upon failures. Ceph clients can access the file system
through a variety of interfaces, including a POSIX-compliant client implementation.

Lustre. Lustre [26, 62] is a POSIX-compliant object-based parallel file system designed to
scale to tens of thousands of nodes with petabytes of storage capacity. Its architecture
separates metadata management from file data storage. Lustre employs a set of dis-
tributed metadata servers for filesystem operations, each of them relying on backend
high-performance local file systems. Furthermore, file data is striped across thousands
of Object Storage Servers, which manage block allocation and data access locking. The
clients obtain the layout of each file from the metadata servers, and then they can di-
rectly access the storage servers, avoiding contention and obtaining a highly scalable
I/O performance. Currently, Lustre is the backend file system for the first two super-
computers in Top500 [108].

3.2 Distributed file systems for data-intensive workloads

MapReduce [23] was introduced by Google as a paradigm that enables large-scale computa-
tions for massive datasets. The MapReduce programming model is based on two functions

3.3 – Cloud storage services 19

specified by the user: map parses key/value pairs and passes them as input to the reduce func-
tion. MapReduce frameworks, such as Hadoop, take care of splitting the data, scheduling
the tasks and executing them in parallel on multiple machines. In this context, specialized
distributed file systems have been proposed to deal with specific access patterns that require
support for highly concurrent and fine-grained access to data.

Google File System. To meet data-intensive application storage requirements, Google in-
troduced the Google File System (GFS) [38], a large-scale distributed file system that
handles hundreds of petabytes in Google’s data centers. Its architecture relies on a
large number of storage servers that store the 64 MB data chunks into which the files
are split. A centralized master server is in charge of managing the file system hierar-
chy and the locations of the all data chunks. Client operations only include a short
interaction with the master server, all data transfers passing through the storage nodes
directly. To ensure high-performance data accesses, GFS does not implement POSIX se-
mantics. Instead it employes a weak consistency model, optimizing the file system for
access patterns corresponding to many concurrent read accesses on huge files, which
are almost never overwritten, but rather appended to. GFS runs on commodity hard-
ware, assuming that component failures are frequent. Consequently, the file system
employs chunk replication mechanisms and checksumming to maintain data integrity
and reliability.

Hadoop Distributed File System. The Hadoop Distributed File System (HDFS) [95, 100] is
a popular open-source file system developed as a part of the Hadoop [13] project.
It was designed to run on commodity hardware and to provide petabyte-scale effi-
cient storage for thousands of concurrent data accesses. The architecture of HDFS is
similar to GFS, being based on a centralized metadata manager for the file system
and a set of storage nodes among which the large files are striped into equally-sized
chunks. Furthermore, all I/O operations are performed through the storage nodes,
thus allowing the system to achieve the high performance required by data-intensive
MapReduce applications devised for the Hadoop platform. Whereas HDFS provides
high-throughput simultaneous reads, concurrent write or append operations are not
supported. HDFS provides fault tolerance by transparently replicating data at chunk
level. It does not implement POSIX semantics, exposing an access interface specifically
designed for Hadoop.

3.3 Cloud storage services

Cloud data services can be classified into several categories, according to their purpose and
usage. They typically provide users with simple interfaces for uploading and downloading
data, offering strong guarantees with respect to data availability and fault tolerance.

3.3.1 IaaS-level services

Amazon Simple Storage Service. Heavily used by various Amazon Web Services, S3 [91]
has become the “de-facto” standard for data storage systems at the level of IaaS Clouds.
It proposes a simple web interface that gives users access to a highly scalable, reliable

20 Chapter 3 – Scalable distributed storage systems

and robust storage service relying on Amazon’s infrastructure. S3 was designed with
a minimal set of features, enabling an efficient management of a flat, container-based
object namespace. It provides containers, denoted buckets, which can store an illimited
number of objects, representing unstructured data. Each object is identified by a unique
key and can have at most 5 TB in size. Amazon’s S3 implements two REST [28] and
SOAP [45] interfaces, exposing operations for creating/deleting buckets and upload-
ing/downloading/deleting objects. Additionally, S3 also includes a multipart upload
mechanism designed for uploading massive files. It consists in uploading chunks of
the file, possibly in parallel to enhance transfer throughput, and then to commit this
changes so as to create the new object. Furthermore, S3 introduced object versioning,
enabling successive updates to an object to create new versions. S3 does not employ
locking mechanisms, providing atomic updates for any specific key and ensuring that
only one update completes successfully and all the others fail in the case of concur-
rent accesses. It builds on an eventual-consistency model for data updates or deletes,
in some cases providing read-after-write consistency for the first write operation for a
specific object.

Amazon Elastic Block Storage. EBS [7] provides highly-available and reliable block storage
volumes that can be associated to Amazon EC2 instances. Once a volume is created,
it can be attached to an EC2 instance (only to one instance at a time), on which it
appears as a mounted device that can be formatted with a file system. The stored data
are preserved beyond the life of the instance. However, to preserve the data after the
volume is destroyed, Amazon enables users to create volume snapshots stored into S3.
In this way data can be persistently saved and reused by other EC2 instances. EBS
comes with a high I/O throughput that outperforms the local disk attacked to EC2
instances.

Cumulus. The Nimbus project recently introduced Cumulus [14], an open-source data stor-
age service that serves mainly as a virtual machine image repository within the Nim-
bus Cloud. Cumulus is interface-compatible with S3, but benefits from a modular
architecture that allows the system to work in conjunction with various storage back-
ends.

Walrus. Walrus [79] is the data storage system shipped with the Eucalyptus IaaS Cloud
implementation. It provides persistent storage for objects contained into buckets and
identified by unique keys. As Walrus if fully S3-compliant through its REST and SOAP
interfaces, it makes user interaction possible through standard tools developed for the
Amazon services community. Walrus is designed with the goal of providing efficient
storage for virtual machine images in a centralized repository, it can also be used to
host user data, similarly to Amazon’s S3.

OpenStack Object Storage. The storage service provided by OpenStack [98], is an open-
source data service providing object storage similar to S3. It is able to aggregate stor-
age space from multiple servers in a data center to create a persistent storage solution
for petabyte-sized data. The OpenStack Object Storage is scalable and reliable, being
designed as a completely decentralized storage solution that relies on replication for
maintaining data integrity. It provides the same consistency guarantees as Amazon S3,
namely eventual consistency for data updates. Additionaly, Swift supports versioning,

3.3 – Cloud storage services 21

high transfer throughput under concurrency and efficient storage for both small and
large file sizes. It also scales out when adding new storage nodes, which are automati-
cally configured.

3.3.2 PaaS-level services

Azure BLOB Storage. The BLOB Storage Service [12] was introduced by Microsoft to pro-
vide support for storing large unstructured data. It offers a flat storage system where
files are saved in containers and can be accessed through a REST-based protocol. Azure
provides two types of BLOBS, each of them addressing different requirements. Page
BLOBS are designed for efficient random read/write operations on fixed-size BLOBS

that cannot grow over 1 TB. Block BLOBS however are optimized for large data stor-
age, implementing a block-streaming and commit mechanism similar to the multipart
uploads in Amazon’s S3. The BLOB Storage service provides strong consistency guar-
antees for concurrent access to data.

Azure Table Storage. Microsoft Azure has also proposed a key-value REST-based service
for TB-sized structured data, called the Table Storage Service [102]. Data is stored in
the form of tables, defined by a partition key, which may contain billions of rows of
data. Each such row is structured in a set of properties. This service is highly scalable,
as data is partitioned across a large number of servers. Azure Tables also provides
ACID transactions at the level of one table and complex queries, while storing only
small amounts of data per row.

3.3.3 Internal Cloud services

Dynamo. Amazon has built Dynamo [24] as a scalable key-value store providing high avail-
ability and fault tolerance for a number of its core services. Dynamo cannot be publicly
accessed, being used only for storing internal state information for Amazon’s services.
It targets trusted environments that scale up to a few hundreds of storage nodes and
typically hosts small binary objects (less than 1 MB) identified by unique keys. Dy-
namo implements an eventual consistency model, supporting low-latency concurrent
data reads and updates through replication and versioning.

Bigtable. Bigtable [17] is a distributed storage system designed by Google for large-scale
structured data. It has been used as a building block in many Google projects, includ-
ing web indexing, Google Earth, and Google Finance, proving its scalability across
thousands of commodity servers. Bigtable exhibits a custom interface that allows users
to define dynamic data layouts based on uniquely identified rows. Each row may in-
clude a set of various records, but it cannot however be larger than 64 KB. Therefore,
even if Bigtable is designed for supporting very large tables, it can accommodate only
small records per row. Bigtable ensures high performance data access and high avail-
ability, as it relies on Google File System for storage.

3.4 Features and research challenges

In this chapter, we analyzed a series of distributed file systems, emerged to address the
needs of scientific applications and Internet services. Parallel file systems aim at providing
high-throughput data transfers. Their design targets scalability, which can be achieved by
distributing the workload of concurrent clients among a set of storage servers. Such file sys-
tems typically provide a POSIX interface, to enable applications to transparently access the
distributed entities of the file system without requiring any modification, in the same way
they would access a local file system. However, providing POSIX semantics also introduces
some important limitations, especially in the case of concurrent updates of overlapping sec-
tions of the same file.

This limitation has been addressed by several file systems devised as storage backends in
the context of data-intensive computing. Thus, data-processing platforms, such as MapRe-
duce, shifted the storage requirements towards efficient processing of massive datasets and
specialized access interfaces. Data-intensive applications came with different access pat-
terns, essentially concurrent fine-grained reads and very few updates. As a result, the file
systems that appeared in this context do not need the complex locking-based POSIX in-
terface, offering only dedicated APIs. Furthermore, the file systems specialized for data-
intensive workloads target the storage of a limited number of large datasets, in contrast to
parallel file systems, which strived to provide distributed metadata management to accom-
modate many files generated by computations.

Another class of storage systems is represented by Cloud services. The main concern in
Cloud environments is providing reliable and easily-accessible services to customers, rather
than performance. To cope with these challenges, Cloud storage systems adopt a simple
access interface and weak consistency guarantees. Typically, users can access the systems
through standard protocols, without being aware of the way data is managed. Open-source
Cloud offerings allow administrators to use a traditional file system as a backend for the
Cloud service. Thus, they can transparently take advantage of the features exhibited by the
underlying storage layer. In this context, the challenge lies in adapting the Cloud services
to efficiently support large datasets and fine-grained access to parts of the stored files. An
important aspect is interfacing the Cloud service with an appropriate file system, which
can both provide reliability and data-availability guarantees, but also high-throughput data
transfers and support for highly-concurrent applications.

23

Chapter 4
Self-* aspects in Clouds

Contents

4.1 Self-awareness . 24

4.2 Self-protection . 25

4.3 Self-configuration . 26

4.4 Summary . 27

In the previous chapters we presented the Cloud computing landscape, with a focus on
Infrastructure-as-a-Service Clouds. Furthermore, we investigated various data-management
solutions for large-scale data-intensive problems and the existing approaches for Cloud data
storage. In this chapter we target a more specific problem: we provide a survey of the pos-
sible optimization techniques emerged from the area of autonomic computing. We aim at
analyzing the self-management mechanisms present in state-of-the-art Cloud frameworks
and at identifying their limitations and research challenges.

As the scale, complexity and dynamism of distributed systems is dramatically growing,
their configuration and management needs have started to become a limiting factor of their
development. This is particularly true in the case of Cloud computing, where the task of
managing hundreds or thousands of nodes while delivering highly-reliable services entails
an intrinsic complexity. Furthermore, Cloud computing introduces another challenge that
impacts on the resource management decisions. In these contexts, self-management mecha-
nisms have to take into account the cost-effectiveness of the adopted decisions.

Autonomic computing has been introduced by IBM in 2001, as a paradigm inspired by the
human nervous system [53]. This paradigm aims at building systems that can manage them-
selves by automatically adapting to the changing environment conditions. An autonomic
system is able to continually react to external factors and update its state according to high-
level policies. To achieve self-management, a system has to encapsulate a set of self-* prop-
erties, including the main four properties defined by the initial IBM autonomic computing

24 Chapter 4 – Self-* aspects in Clouds

initiative [58, 85, 36, 89]: self-configuration, self-protection, self-optimization, self-healing. Subse-
quent research efforts enhanced this list with new properties conceived to enable or to com-
plement the initial ones, such as self-awareness, self-adjusting, self-anticipating, self-organizing,
self-recovery [97, 96].

We will focus on three of the most relevant features for Cloud storage systems, which
help addressing some critical challenges in this context, including security and elasticity:

Self-awareness is the feature that enables a system to be aware of the resource usage and the
state of its components and of the infrastructure where they are running. This is mainly
achieved through monitoring and interpreting the relevant information generated by
the usage of the system. Self-awareness is the key enabling attribute that facilitates
the development of any other self-* component, as each of them relies on information
collected from the system.

Self-protection addresses the detection of hostile or intrusive actions directed towards the
system’s components. Self-protecting systems have to identify attacks, protect against
unauthorized resource usage by enforcing flexible security policies. Moreover, such a
system has to take appropriate measures to prevent detected malicious activities from
affecting its functionality and make itself less vulnerable to subsequent similar attacks.
Self-protection also includes the capability to handle malicious user identification and
to refine user-access policies accordingly.

Self-configuration is the ability to efficiently allocate and use resources, by dynamically
adapting the system’s deployment scheme as a response to varying and unpredictable
environment conditions. The system has to be able to reconfigure on the fly, when its
state requires or allows for a change in the number of managed nodes.

4.1 Self-awareness

Large-scale monitoring is an active research area in the context of geographically-distributed
environments, ever since the emergence of Grid platforms. In the case of Grids, introspection
is often limited to low-level tools for monitoring the physical nodes and the communication
interconnect: they typically provide information such as CPU load, network traffic, job sta-
tus, file transfer status, etc. In general, such low-level monitoring tools focus on gathering
and storing monitored data in a scalable and non-intrusive manner [115].

For instance, systems such as Ganglia [65], the Globus Monitoring and Discovery Ser-
vice (MDS) [70] or the Relational Grid Monitoring Architecture [21] developed within the
Open Grid Forum (OGF) [81] are complex hierarchical frameworks designed to provide
efficient monitoring services for large clusters and Grid environments. NetLogger [48] or
Stardust [107] are systems that target distributed application profiling, with a focus on the
identification of performance bottlenecks and predicting the effects of various workloads.

Despite the broad range of existing monitoring systems that focus on generic parameters,
little has been done to develop introspection mechanisms specifically targeted at large-scale
distributed data management. This is particularly important in the context of data-intensive
applications, which require the backend storage system to handle massive amounts of data
under heavy concurrency. For such systems, self-awarness involves not only collecting

4.2 – Self-protection 25

generic monitoring information, but also analyzing specific parameters. For instance, data
distribution, storage space availability, data access patterns or application-level throughput
are relevant for data-storage systems.

Nevertheless, data-management systems typically integrate only minimal introspection
mechanisms into their design. For example, HDFS implements a heartbeat protocol used by
the datanodes to notify the centralized metadata manager about their status. The centralized
manager is then in charge of making decisions related to data placement and replication.
Similarly, other file systems, such as Lustre or PVFS include such notification mechanisms,
but they do not employ in-depth introspection techniques.

In the context of Cloud environments, IaaS Clouds provide tools for the administrator to
interrogate the central Cloud controller about the status of the managed nodes. Furthermore,
some Clouds also incorporate tools to interface with low-level monitoring systems. For in-
stance, Eucalyptus Clouds implement a set of scripts to configure monitoring systems such
as Nagios or Ganglia. At the level of the Cloud data-storage services however, introspection
has to be enforced through external monitoring systems, as no mechanisms are built into the
studied open-source systems.

4.2 Self-protection

The importance of self-protection in cloud data-management systems has been highlighted
by a number of research efforts, dealing with security [56, 1, 44]. We investigated the security
mechanisms implemented for some of the reference distributed storage systems.

Distributed file systems. Distributed file systems provide similar approaches to security,
essentially based on client access control lists (ACLs). We discuss the example of the Hadoop
Distributed File System (HDFS), as it is a file system designed for large clusters and many
clients. Furthermore, HDFS is the storage backend for the Amazon MapReduce framework,
which provides powerful data processing in Cloud environments. Thus, the file system is
exposed to potentially malicious users, as opposed to a typical deployment in local cluster,
which can be considered a trusted environment.

In HDFS, security is implemented as a rudimentary file and directory permission mech-
anism. For authorization, the permission model is similar to that of traditional Linux plat-
forms, each file and directory being associated with an owner and a group. Since both clients
and servers need to be authenticated for keeping data secure from unauthorized access,
HDFS relies on Kerberos [74] as the underlying authentication system. The main security
threats in HDFS arise from the lack of user-to-service authentication, service-to-service au-
thentication and from the lack of encryption for data transfers. Moreover, even if a typical
user does not have full access to the file system, HDFS is vulnerable to various attacks that
it cannot detect, such as Denial of Service (DoS).

Cloud storage systems. In Amazon’s S3, users can decide how, when and to whom the
information stored in Amazon Web Services is available. Amazon S3 API provides access
control lists (ACLs) for write and delete permissions on both objects and objects containers.
Regarding data transfers, data in transit is protected from being intercepted, as the access is

26 Chapter 4 – Self-* aspects in Clouds

allowed only via SSL encrypted endpoints. Although S3 does not encrypt stored data, uses
may encrypt the files before uploading so as to make sure the data are not tampered with.

In Microsoft’s Azure cloud platform, access to user data is granted as well by means
of authentication and authorization. Several security mechanisms at different layers of the
cloud storage infrastructure implement a defense-in-depth approach. The identity and ac-
cess management ensures that only properly authenticated entities are allowed access. A
service-management API provides web services via a REST protocol that runs over SSL, be-
ing authenticated with a certificate and private key generated by users.

Open-source systems provide similar mechanisms, limited to ACLs defining user and
group access rules. However, no high-level security mechanism is available to protect the
environment from complex attacks that cannot be prevented by authentication mechanisms,
such as distributed denial of service or continuous data crawling.

4.3 Self-configuration

We investigated the self-configuration mechanisms existing in Cloud environments. More
specifically, we focused on a set of data-management systems, as self-configuration is an
essential requirement for achieving scalability and elasticity in Cloud contexts.

Parallel file systems. In the case of the parallel file systems, the self-* mechanisms are
limited, as they are typically designed for clusters of dedicated machines, which do not
usually change their configuration. However, some file systems include self-management
aspects to improve their data availability and reliability.

We take GPFS as a case study, since IBM enhanced it with a set of automatic configura-
tion features. First, it provides an information lifecycle management component that allows
administrators to control data placement through high-level policies. The policy engine can
create storage pools appropriately tuned for specific applications and to transparently con-
figure and manage several storage tiers. Furthermore, a GPFS cluster supports a dynamic
addition or removal of storage servers, being also designed to rebalance data placement
upon modifying the set of storage nodes. However, this feature targets manual storage pool
extension or node removal in case of failures. For instance, it does not address an automatic
decrease of the number of used storage nodes when many servers are idle as a result of low
application load. Additionally, GPFS does not include a configuration component targeted
at estimating and updating the size of its storage pools, relying only on user defined settings.

Dedicated file systems. We consider the two distributed file systems designed for MapRe-
duce data-intensive workloads, the Google file system and HDFS. Such file systems rely on
commodity hardware for their storage servers, thus being built with the assumption that
component failures are the norm rather than the exception.

Therefore, they include mechanisms for constant monitoring of the active storage nodes
and automatic data recovery and replication. GFS implements automatic replica distribu-
tion mechanisms that takes into account the location of the data storage servers. Moreover,
replicas are examined periodically and redistributed to other storage servers to improve disk

space utilization and load balancing. In contrast, HDFS has only limited support for data re-
replication and load balancing among storage nodes. Both systems support the addition of
new storage servers, which are gradually filled with existing chunks to avoid redirecting all
writes to the new servers and thus create bottlenecks.

However, both systems lack complex self-adaptation mechanisms that require compre-
hensive information related to data distribution and access patterns to optimize the system
behavior on the fly.

Cloud storage. In the area of Cloud storage, we can identify several approaches to self-
management, which vary according to the targeted usage of the storage systems. The im-
plementation and internal architecture of commercial Cloud storage systems is usually pro-
prietary, as it is the case for Amazon or Azure storage offerings. On the other hand, the
storage system proposed by OpenStack is a storage solution very similar to S3 with respect
to the targeted workload. Thus, it is built to host large datasets in a distributed and reli-
able fashion. OpenStack Storage implements some limited self-management mechanisms,
mostly dealing with maintaining data replication upon failures. Furthermore, as it targets
commodity hardware, the system also integrates mechanisms to handle the node arrival into
or removal from the storage servers pool.

Nevertheless, most open-source Cloud storage offerings do not target heavy workloads,
being designed primarily for storinh virtual machine images. They typically lack self-
configuration mechanisms, relying on the backend storage layer to handle failures or data
replication.

4.4 Summary

In this chapter we introduced the autonomic computing paradigm and we investigated
the potential benefits of introducing self-management mechanisms at the level of data-
management services, in particular in Cloud environments. We considered three essential
self-* aspects and we analyzed the existing autonomic mechanisms already implemented
in various data-management systems. Self-awareness provides the knowledge needed by
higher-level self-management components to make decisions. Self-protection plays a crucial
role in untrusted environments like Clouds. Finally, self-configuration enables systems to dy-
namically adapt to changing external conditions.

28 Chapter 4 – Self-* aspects in Clouds

29

Chapter 5
Case Study: BlobSeer, a

versioning-based data management
system

Contents

5.1 Design principles . 29

5.2 Architecture . 31

5.3 Zoom on data access operations . 32

5.4 Summary . 35

This chapter introduces BlobSeer [77, 76], a concurrency-optimized data-management
system for data-intensive distributed applications. In the previous chapters, we discussed
the features and limitations of existing data-storage solutions for data-intensive applications,
as well as of the data-management approaches emerged at the level of IaaS Clouds. Blob-
Seer specifically targets applications that handle massive unstructured data in the context of
large-scale distributed environments. We selected BlobSeer as a case study throughout this
thesis, as it can be used to overcome some of these limitations and to provide new perspec-
tives in the context of Cloud data storage.

5.1 Design principles

To meet the specific requirements of data-intensive applications for large- scale infrastruc-
tures, the BlobSeer system was designed to comply with the following principles:

30 Chapter 5 – Case Study: BlobSeer, a versioning-based data management system

Massive unstructured data. In BlobSeer, data is organized as a set of large, unstructured
sequences of bytes, denoted BLOBS (Binary Large Objects). Each BLOB is uniquely identified
in the system by a globally shared identifier. This approach presents two advantages. First,
it ensures data-location transparency, therefore allowing users to access data only by knowing
a simple identifier, instead of being aware of the location of a specific piece of data. Further-
more, as BlobSeer addresses the management of huge datasets that can easily go beyond TB
sizes, it has to be inherently scalable to efficiently store and provide access to such data. To
this end, compacting many KB-sized files generated by distributed applications into huge
files enhances scalability by reducing the management overhead of many filenames and as-
sociated namespace hierarchies. However, to provide a useful tool for processing such data,
BlobSeer also provides fine-grained access to the stored data sequences, enabling concurrent
processes to retrieve the needed data blocks without needing to sequentially search through
the whole BLOB.

Data striping. Many distributed file systems employ data-striping techniques to improve
the performance of data accesses. In BlobSeer, each BLOB is split into equally-sized chunks
which are distributed across multiple storage nodes. The size of each BLOB is specified
by the user, so that it can be fine-tuned according to the needs of the applications. For
instance, we can consider a BLOB that is fragmented into large chunks and an application
that needs to access a specific sequence of bytes belonging to a single chunk. In this case,
concurrent processes that read the same data chunk may create bottlenecks at the level of the
storage server that hosts the chunk. In contrast, if the data chunks are too small, the overhead
of identifying and transferring multiple chunks to a single computing process may prevail
over the benefits of striping the data. Hence the need to carefully adapt the size of the data
chunks according to the requirements of the application that processes them. Data striping
is a popular technique because is also enables load balancing in the context of concurrent
reader or writer processes. BlobSeer is able to achieve high aggregate transfer rates due to
the balanced chunk distribution among storage nodes, especially when considering many
simultaneous clients that require access to non-overlapping chunks of the same BLOB.

Distributed metadata management. In order to provide scalability at very large scales,
along with a low overhead for data accesses, several file systems devised for petabyte- sized
data adopted distributed metadata management schemes. In BlobSeer metadata denotes the
information needed to map the location of each BLOB’s chunks on the storage nodes. Each
chunk is uniquely identified in the system by its BLOB identifier, offset within the BLOB and
size. Such information is stored on specifically designed nodes and is employed by the users
to discover the location of each chunk that has to be retrieved. Distributing metadata also has
an additional advantage, namely it can eliminate single points of failure when the metadata
are replicated across multiple servers.

High throughput under heavy concurrency. This prerequisite is implemented in BlobSeer
through a versioning-based concurrency control. In BlobSser, data is never overwritten. In-
stead, each new WRITE performed on a specific BLOB results in a new version. Each BLOB

version stores only the differential update with respect to the previous versions, but exposes
the whole BLOB obtained as a result of the WRITE operation. This approach enables an effi-

5.2 – Architecture 31

Figure 5.1: The architecture of the BlobSeer system.

cient implementation of concurrent updates of the same BLOB, by considering all data and
metadata immutable. Thus, concurrent writers can create write their updates into the sys-
tem, which in turn is responsible for serializing the writes and assigning a consistent version
to each of them after all data has been successfully sent to the storage nodes. Furthermore,
a versioning-based design allows for a complete decoupling between concurrent READ and
WRITE operations performed on the same BLOB. While a writer is in the process of creating
a new BLOB version, multiple concurrent readers can safely access the previous versions, as
the new updates never modify the data already stored into BlobSeer.

5.2 Architecture

The architecture of BlobSeer is based on a set of distributed entities illustrated on Figure 5.1.

Data providers. To provide a scalable and efficient storage service, BlobSeer relies on mul-
tiple data providers to host data chunks. Each data provider is implemented as a high-
performance key-value store, which supports fast upload or download of data chunks.
This in-memory cache is backed by a persistency layer built on top of BerkleyDB [114],
an efficient embedded database. Furthermore, the data providers rely on an RPC layer,
detailed in [75], which consists in an asynchronous communication layer employed by
all BlobSeer entities.

Provider manager. The provider manager is responsible for assigning data providers to the
WRITE requests issued by users. It keeps track of all the data providers in the system. To
select a data provider to store a new data chunk, the provider manager implements a con-
figurable strategy. Each data provider periodically sends informations about its state to
the provider manager, which is used to compute a store reflecting the providers capacity
to host new data. The default strategy is to select the provider that stores the smallest
number of chunks and the smallest number of pending WRITE requests. More complex

32 Chapter 5 – Case Study: BlobSeer, a versioning-based data management system

strategies can be implemented is the system has access to more detailed information
about the state of the data providers and the user requirements.

Metadata providers. To keep track of the chunks distribution across data providers, each
BLOB is associated with a set of metadata. For each BLOB, the metadata is organized as
a distributed segment tree [117], where each node corresponds to a version and to a chunk
range within that version. Each tree node stores the location of its two descendants,
each of them being responsible for half of the parent’s chunk range. Each leaf covers
just one chunk, recording the information about the data provider where the page is
physically stored. The metadata trees are stored on the metadata providers, which are
processes organized as a Distributed Hash Table [9, 22]. Their implementation is simi-
lar to that of the data providers, metadata tree nodes being stored in a key-value cache,
backed by a database for persistency.

Version manager. The version manager deals with the serialization of the concurrent WRITE

requests and with the assignment of version numbers for each new WRITE operation.
Its goal is to create the illusion of instant version generation, so that this step does
not become a bottleneck when a large number of clients concurrently update a specific
BLOB.

Client library. BlobSeer provides a client library to make available its access interface to
higher-level applications. The client supports the following operations: CREATE

BLOBS, READ, WRITE or APPEND contiguous ranges of bytes. The BlobSeer system
is designed to handle many concurrent client operations accessing the same BLOB or
different BLOBS.

BlobSeer User. We define a BlobSeer user as any higher-level application which employs
the client library to access the BlobSeer system. A user may coordinate multiple concurrent
clients on a single machine or on a distributed set of physical machines. As there are no
authentication mechanisms implemented in the current version of BlobSeer, we assume a
user only utilizes a single physical node and can be identified by its IP address.

A typical setting of the BlobSeer system involves the deployment of a few hundreds
data providers, storing BLOBS of the order of the terrabytes. The typical size for a chunk
within a BLOB can be smaller that 1 MB, whence the challenge of dealing with hundreds
of thousands of chunks belonging to just one BLOB. BlobSeer provides efficient support
for heavily-concurrent accesses to the stored data, reaching a throughput of 6.7 GB/s ag-
gregated bandwidth for a configuration with 60 metadata providers, 90 data providers and
360 concurrent writers, as shown in [76].

5.3 Zoom on data access operations

The CREATE operation.

The CREATE primitive exposed by the BlobSeer client library only involves a request for the
version manager. The user has to specify the chunk size required for the new BLOB and the
replication degree needed for each of its chunks. In BlobSeer, each data chunk is replicated on

5.3 – Zoom on data access operations 33

Figure 5.2: Sequence diagram of the WRITE operation in BlobSeer.

several data providers. The number of replicas, denoted replication degree, has to be specified
when the BLOB is created and therefore is constant for all data chunks belonging to the
same BLOB. Nevertheless, the replication degree can vary across BLOBS, according to the
application needs in terms of data reliability.

The WRITE/APPEND operation.

The WRITE operation implemented by the BlobSeer client, depicted in the diagram on Fig-
ure 5.2, consists of two main steps, sequentially executed by the client:

Data-writing step. This is the first operation executed when a user calls the WRITE primi-
tive for a specific BLOB and a contiguous range of chunks delimited by the offset of the first
chunk to be written and the size of the entire sequence. To write such chunk ranges on the
data providers, the client library performs the following steps:

• Contact the provider manager and ask for a number of data providers equal to the number
of chunks that need to be written, multiplied by the number of replicas for each chunk.

• Upload the data chunks to the received data providers, in parallel. The chunks are sent
in an asynchronous fashion, allowing all the uploads to make progress in parallel and
thus to achieve a high transfer throughput. This step is successfully completed when
at least one replica of each chunk has been correctly uploaded onto the corresponding
data provider.

Data-publication step. To make the uploaded data chunks available to the users as a new
BLOB version, the WRITE operation includes a second phase. This phase is detailed below:

• The client contacts the version manager to notify it about its WRITE operation. The
version manager assigns the client a version number and adds the WRITE into a queue
containing in-progress WRITES.

34 Chapter 5 – Case Study: BlobSeer, a versioning-based data management system

Figure 5.3: Sequence diagram of the READ operation in BlobSeer.

• The client constructs a metadata tree associated with the new version, so that the leaves
corresponding to the written chunk range store the location of the data providers. Only
the leaves for the new chunks are built. To create a complete tree that reflects the latest
version of the whole BLOB, the metadata tree is weaved against the previous versions.
Once the metadata nodes are created, the client sends them in parallel to the metadata
providers.

• Finally, the version manager is notified that the metadata associated with the new ver-
sion are ready. At this point, the client library has successfully completed the WRITE

operation. The version manager is in charge of serializing the possible concurrent
WRITES to the same BLOB and to publish the new version.

APPEND operations are similar to WRITES, the only difference being that the client does
not have to specify the offset where it initiates the operation. The version manager takes care
of assigning an offset according to the size of the latest version recorded for the BLOB.

The READ operation.

BlobSeer is designed to support high-throughput READ operations, in particular in the con-
text of multiple concurrent clients accessing the same BLOB. This is achieved through a set
of operations implemented at the level of the client library, which leverages the distributed
design of both data and metadata, as shown on Figure 5.3:

• In a first step, the client has to retrieve the root of the metadata tree corresponding
to the specific BLOB identifier and BLOB version requested in the READ call. To this
end, the client contacts the version manager, which stores the root information for all
the BLOBS in the system.

• Next, the client scans the metadata tree by issuing metadata read requests on the meta-
data providers. It only traverses a portion of the tree, the one that covers the needed
chunk range. By reaching the leaves, the client can retrieve the location of the data
providers that physically store the data chunks.

5.4 – Summary 35

• The client downloads the data chunks in parallel from the emphmetadata providers.
Being able to asynchronously retrieve multiple chunks in the same time, the client
completes the operation in an efficient manner. If there is at least one chunk for which
no replica can be downloaded, the client returns an error code, as the whole READ

operation is considered to have failed.

5.4 Summary

This chapter details the architecture and data-management techniques implemented in Blob-
Seer, a data-management system for data-intensive distributed applications. We target data-
storage platforms designed to manage massive unstructured data distributes across large-
scale environments. As BlobSeer inherently addresses such requirements, we rely on Blob-
Seer as a case study to validate various self-management mechanisms in the following chap-
ters. Furthermore, we investigate the possible integration of BlobSeer as a Cloud storage
service. The main prerequisites of such a system match the design principles on which Blob-
Seer was built: scalable architecture, efficient handling of massive data, high throughput for
data accesses and optimizations for concurrent data transfers.

36 Chapter 5 – Case Study: BlobSeer, a versioning-based data management system

37

Part II

Enabling BlobSeer with
self-management

39

Chapter 6
Self-management for distributed

data-storage systems

Contents
6.1 Self-awareness: Introspection mechanisms 40

6.1.1 Relevant data for storage systems . 40

6.1.2 Global architecture . 41

6.2 Self-protection: A generic security framework 42

6.2.1 Motivating scenarios . 43

6.2.2 Global Architecture . 43

6.2.3 Security policies . 44

6.2.4 The policy breach detection algorithm 46

6.3 Self-configuration: Dynamic dimensioning 50

6.3.1 Motivating scenarios . 50

6.3.2 Global Architecture . 50

6.3.3 Dynamic scaling algorithms . 52

6.4 Summary . 54

This chapter presents our contribution with respect to self-management in the context
of large-scale, distributed storage systems. In Chapter 3, we introduced several existing
data-storage approaches and we presented their specific limitations, focusing on a series of
relevant self-* research directions for improving the management of massive data. In this
chapter, we propose a set of generic components designed to overcome these limitations by
enhancing storage systems with self-* properties.

Our goal is to improve the performance and the efficiency of the resource usage in a data-
storage system by enabling an autonomic behavior tailored to its specific requirements, such

40 Chapter 6 – Self-management for distributed data-storage systems

as changing rates of concurrent users, management of huge data spread across hundreds
of nodes or malicious attempts to access or to tamper with stored data. To this end, we
designed three self-management frameworks described in the following sections.

6.1 Self-awareness: Introspection mechanisms

In the area of distributed systems, introspection mechanisms play a crucial role in assisting
the users in overcoming the challenges raised by the behavior of their systems at large scales.
Introspection typically relies on monitoring tools, which provide the users with the feedback
necessary for identifying the state of their application and the state of the infrastructure
where the application is running on, at a particular moment in time.

This section discusses the relevant monitoring information that can serve as an input for
any self-adaptation engine. It then proposes a generic architecture to enable self-awareness
capabilities for a data management system, as this is the first building block towards any
other self-* component.

6.1.1 Relevant data for storage systems

Introspection is the prerequisite of an autonomic behavior, the first step towards improving
the performance and optimizing the resource usage of data-storage systems distributed at
large scales. In such a context, we identified a set of parameters that need to be monitored
and analyzed, including general information about the running nodes, data distribution,
storage space availability, data access patterns, application-level throughput, etc. These pa-
rameters can be classified as follows:

General information. Such data is essentially concerned with the physical resources of the
nodes that act as storage providers. They include CPU usage, network traffic, disk usage,
storage space or memory.

A self-adapting system has to take into account information about the values of these
parameters across the nodes that make up the system, as well as about the state of the entire
system. For instance, the used and available storage space at each single storage node play
a crucial role in deciding whether additional nodes are needed or not. Besides the basic
information related to each node, the system also needs access to aggregated data, such as
the value of the total storage space occupied/available for the entire system.

System events. The most significant information for a single file is its access pattern, i.e.,
the way the recorded data are accessed through READ and WRITE operations. As an ex-
ample, in the case of a data-management system based on data striping, a basic monitoring
parameter is the number of READ or WRITE accesses for each data chunk. Since each WRITE

or READ operation consists in accessing a range of consecutive chunks, it is expected that
some ranges of chunks will have the same number of accesses. As a consequence, such data
facilitate the identification of chunk ranges with a high rate of accesses within the file. This
can prove to be a valuable information for the replication algorithms, which can assign more
replicas to the chunks that are highly accessed by the clients.

6.1 – Self-awareness: Introspection mechanisms 41

Figure 6.1: Global architecture of a self-awareness framework.

Finally, the yielded data may characterize the history of the user accesses to data. This
information can be used to detect users that attempt to damage the stored data or to attack
the system by misusing the access primitives provided by the interface. An example of an
attack that can be blocked by analyzing this type of information is Denial of Service, in the
form of attempts to overload the storage nodes and turn them into unresponsive ones.

Global state. Even though the self-adaptation engine has access to the details associ-
ated with each event, an efficient decision-making component may require a higher-level
overview of the state of the system and the stored data. As the system has to accommodate
huge amounts of data and a large number of concurrent clients, keeping track of each event
in the system is a time-consuming task. As a consequence, to enable a rapid evaluation of
the system state, the self-awareness component should process the collected parameters and
yield system-wide aggregated information.

An example of some key aggregated data is the total number of accesses associated with
each storage node. This is a measure of the load of each of them and can directly influence
the selection of the nodes that will be used to store new data. Another system-wide data
refers to the distribution of the recorded data among storage nodes. To take the example of
a system that employs data striping, it is important for the node allocation strategies to be
aware of the way data is managed. Taking into account such information, namely the sizes
of the data slices that are hosted on each node, can help improve load balancing among data
nodes. It can be equally useful to expose the files that have a high rate of change or growth,
as opposed to the ones that contain chunks that are seldom modified. The dynamic growth
of a file can be characterized by the number of performed WRITE operations, as well as by
the modification rate of its size.

6.1.2 Global architecture

In order to enable a data-storage platform with introspection capabilities we have designed a
three-layered architecture aiming at identifying and generating relevant information related
to the state and the behavior of the system. The global architecture, presented in Figure 6.1,
consists of independent layers that fulfill specific tasks:

Introspection Layer. Its role is to process raw monitoring parameters received from the
Monitoring Layer and to store them in a persistent fashion. Thus, the Introspection Layer

42 Chapter 6 – Self-management for distributed data-storage systems

can provide an accurate image of the state of the system and generate relevant input
data for higher-level self-adaptation engines. The data yielded by this layer include ag-
gregated information specifically structured to suit the component that further needs
it: as an example, a self-protection component will require monitoring information ori-
ented towards the client actions, such as statistics about the number and types of data
accesses per client.

Monitoring Layer. This layer is responsible for collecting the data from the lower Instru-
mentation Layer and for relaying it to the upper layers in a reliable and efficient way.
Moreover, it has to be able to handle user-defined monitoring events and to accommo-
date huge amounts of monitoring data generated when multiple users simultaneously
access the system.

Instrumentation Layer. It enables the storage system to send monitoring data to the upper
layers. It can be implemented in two ways: on the one hand, it can be represented by
blocks of instrumentation code injected into the source code of the monitored system;
this method assumes that the administrator has access to the source code of the system.
On the other hand, the instrumentation layer can access a set of logs generated by
the system and forward the information to the monitoring layer. Although simpler,
this solution may slow down the reaction of any self-* component built on top of the
introspective framework.

6.2 Self-protection: A generic security framework

In this section we propose a generic security management framework to enable self-
protection for Cloud data-management systems, by allowing service providers to define and
enforce complex security policies. We focus on a series of essential requirements:

Reactivity. To achieve self-protection, the system should enforce a reactive loop; that is,
after detecting a malicious attack and if required by the security policy in place, take
appropriate actions against the client who initiated the attack and bring the system
back into a consistent state.

Non-intrusiveness. The security mechanisms have to be designed such that they do not
impact data-access performance, allowing the clients to fully utilize the resources of
the targeted data management system.

Portability. The system should be easily interfaced with various storage systems.

Flexibility. To be effective against a wide range of attacks, the security framework must be
able to handle and enforce customized security policies.

With these challenges as a starting point, we first investigate a set of scenarios that justify
the need for security mechanisms specifically designed for data-management systems. In
contrast to other distributed platforms, such as clusters or Grids, Cloud environments are
vulnerable to malicious attacks. Thus, we focus on security issues specific to Cloud stor-
age systems. Next, we introduce our security framework and we discuss the design details
of its components. Finally, we focus on the policy definition language and the algorithms
employed to detect policy violations.

6.2 – Self-protection: A generic security framework 43

6.2.1 Motivating scenarios

The following scenarios illustrate some representative applications for a Cloud storage plat-
form and examine the inherent security threats of their usage patterns. These motivating
scenarios highlight the benefits of complementing conventional authentication and autho-
rization mechanisms for Cloud data services with a security management framework. Its
goal is to enable service providers to supervise user actions and to restrict activities that fall
outside the normal usage.

Cloud storage for video surveillance: Video surveillance cameras typically generate a con-
tinuous data flow that requires a large amount of storage space. The data will not be
written to a single file, as video surveillance cameras usually store the recordings to
different files according to their timestamps. A suitable storage system has to be able
to scale to a large number of cameras, each of them concurrently writing huge amounts
of data to different files. To address such needs for storage capacity, the data can be
hosted directly in the Cloud. In this scenario, an attacker might attempt a DoS attack
on some of the storage nodes by sending a large number of write requests. This would
lower the response time of the attacked data storage nodes, thus affecting the rate at
which the data can be stored for the entire system. In order to maintain the overall per-
formance at an acceptable level, these attacks must be quickly identified and blocked.

Storing medical records in the Cloud: In this scenario we consider a medical center which
stores all the medical records for its patients in the Cloud. The employees have access
to all the files, but each of them is supposed to access only the documents related to
his work. The main security concern in this case is that we must protect the data from
being accessed by unauthorized users. An attacker can impersonate an authorized
user by stealing its credentials, and then attempt to read all the stored files (crawling).
This kind of unexpected behavior (reading all records in a short period of time) has to
be detected as being suspect, since it can expose a compromised user. However, this
is not a clear indication of an attack since an authorized user may as well perform this
kind of actions. As a result, such behavior has to be labeled as suspicious. Yet, it will
not result in a penalty for the client until it is correlated with other detected attacks.

Such threat scenarios represent complex attacks against which typical authentication and
authorization mechanisms are vulnerable. To be able to identify such malicious intrusions,
we have designed a flexible and extensible language to describe the access patterns specific
for each type of attack. Moreover, we have developed a security management framework to
detect and possibly block any client attempting an attack described by such patterns.

6.2.2 Global Architecture

In order to provide a high-level security mechanism for Cloud storage systems, we pro-
pose a generic framework for both security policies definition and enforcement. Figure 6.2
illustrates the modular architecture of our framework and the interactions between the com-
ponents.

The Policy Management module represents the core of the framework, where security poli-
cies definition and enforcement takes place. This module is completely independent

44 Chapter 6 – Self-management for distributed data-storage systems

Figure 6.2: High-level architecture of the security management framework.

of the Cloud system, as its input only consists in user activity events monitored from
the system.

The User Activity History module is a container for monitoring information describing
users’ actions. It collects data by employing monitoring mechanisms specific to each
storage system and makes them available for the Policy Management module.

The Trust Management module incorporates data about the state of the Cloud system and
provides a trust level for each user based on his past actions. Identifying users as fair
or malicious, the Trust Management module enables the system to take custom actions
for each detected policy violation.

We focused on the Policy Management core. In order to have an adequate malicious client
detection level, we first have to define what kind of behavior is considered inappropriate
or dangerous for the system. This is done through the Policy Definition component, which
provides a generic and easily extensible framework for defining various types of security
policies. The Security Violation Detection Engine scans the User Activity History in order to
find the malicious behavior patterns defined by the security policies. When such an attack is
detected, the Policy Enforcement component is notified and a set of possible feedback actions
are forwarded to it. The Policy Enforcement component is responsible for making a decision
based on the state of the system and on the impact of the attempted attack on the typical
performance of the system. Such decisions range from preventing the user from further
accessing the system to logging the illegal usage into the User Activity History and decreasing
the trust level corresponding to that user.

6.2.3 Security policies

In this section we show how we define templates for various attacks and how we map them
into security policies. Then, we give an insight on the mechanisms we designed to detect
such attacks.

In order to detect the various types of attacks that the user actions can expose, our policy
management module has to meet a set of requirements:

6.2 – Self-protection: A generic security framework 45

(a) High-level representation of a security policy. (b) Structure of an event.

Figure 6.3: Defining security policies.

Generic format. The format of the security policies must be independent of the type of data
collected by the User Activity History module, so as to enable the Policy Management
module to dynamically interface with various systems.

Flexibility. The format used to describe the security policies has to be flexible and expressive
enough to allow the system administrator to translate any type of attack into a policy
that can be understood by the Policy Management module.

Extensibility. This is an essential feature of the security policies, as specific attacks need
an enriched policy format according to particular events collected by the user activity
history.

Simple API. Complex policies may include a wide set of elements linked together by logical
and time dependencies. Defining such policies and all the appropriate parameters for
each of their components can be a tedious and error-prone task. This process should
thus be automated by means of an API that allows an intuitive definition of security
policies compliant with our format.

We defined a hierarchical format for the security policies, so as to comply with the above
requirements. On the one hand, each policy contains a set of template user actions that
make up a pattern corresponding to a particular security attack. In addition, the policy can
specify a set of thresholds that draw the limits between normal behaviors that exhibit the
same activity pattern and malicious user actions.

In order for an attack to be detected, the policy has to be instantiated for a specific user,
that is, the activity history of that user has to include recorded actions that match the tem-
plate sequence provided by the policy. As an example, a DoS attack can be defined by a se-
ries of write operations that take place in a short period of time and are initiated by the same
client. Therefore, the corresponding policy will describe a write operation as the needed pat-
tern and will specify a duration and the maximum number of write operations considered
normal for that duration.

On the other hand, a security policy has to specify a set of actions that are forwarded to
the Policy Enforcement module when the policy is instantiated and thus a malicious user is
identified. These actions include feedback specific for the Cloud system, and recording the
policy violation into the User Activity History.

46 Chapter 6 – Self-management for distributed data-storage systems

Figure 6.3(a) illustrates the tree structure of a security policy. It consists of four elements:

The template set of user actions. The Preconditions element encloses the sequence of user
actions that describe the pattern of an attack. Each user action is modeled by an Event,
described through a set of attributes that identify a particular type of records in the
User Activity History. To take the example of the DoS attack again, the Preconditions
may contain only one event, whose Type attribute points to the list of recorded write
operations in the User Activity History.

General Parameters. They are used to differentiate the policies (e.g., Active, Priority) and to
enable the detection module to interpret the events describing the policy by specifying
the Start and the End event.

Actions suggested when the policy is instantiated. The element Enforcement contains a list
of Constraints and Actions. When the sequence of events defined by the policy is
matched, the Security Violation Detection module will select the satisfied Constraints
and propose the associated Actions to the Policy Enforcement module, which will be
in charge of executing them. This approach allows us to define flexible policies that
result in a customized feedback that depends on some given constraints.

Interaction with external modules. The element External Data allows a policy to receive
auxiliary input data from external modules, in addition to the User Activity History.
For instance, a policy may need the user’s access control list (ACL) to make a decision,
but this data has to be queried from an external ACL module and is not present in the
User Activity History. This element enhances the extensibility of the policy format, al-
lowing administrators to plug specific system building blocks to the Policy management
module.

Figure 6.3(b) shows the structure of an Event. It includes a TimeFrame element that allows
for the event’s positioning in time with respect to one or more events in the same policy.
To this end, the event also includes PrecededBy or FollowedBy elements, which enclose refer-
ences to other events ID field. In order to have a more flexible policy definition language,
the referenced events can be grouped by means of logical operations such as AND, OR or
NOT. The structure of an Event further contains an element that models a sequence of user
actions that have the same type; for instance, the Continuous element is used when modeling
DoS attacks, for which the detection module has to look for a large number of similar write
operations. Aside from these basic elements, each event can be enriched with attributes con-
taining specific information recorded in the User Activity History. Each such attribute can
have associated thresholds that allow the detection engine to filter the events that do not
match the purpose of the policy. These attributes are grouped in an additional Properties el-
ement. Taking the example of the DoS attack again, the Properties element of the write event
should include the number of write operations collected by the User Activity History and the
size of the written data.

6.2.4 The policy breach detection algorithm

The detection engine is able to handle any type of policy described using the above format,
regardless of their complexity or targeted attacks. Its main goal is to search for recorded user

6.2 – Self-protection: A generic security framework 47

Algorithm 1 Policy Matching Algorithm

1: PpartiallyMatched ← ∅

2: procedure PolicyMatch

3: for p ∈ P ∪ PpartiallyMatched do
4: startEvent ← p.getStartEvent()
5: for all c ∈ ClientIDs in parallel do
6: matchStatus ← p.getMatched(c)
7: MatchEvent(p, c, startEvent, matchStatus)
8: end for
9: end for

10: end procedure

actions that match the template events defined by the policy. The attributes are specific to
each type of event and they allow the detection engine to identify the required user actions
within the activity history.

In the previous section we discussed the structure of the template security policies that
can be defined by system administrators. We introduce the notion of partially matched policy
as a policy for which the Security Violation Detection Engine has found monitored user events
in the User Activity History, so that they match some of the template events in the policy.

The detection algorithm receives a list of policies as input, each of them having a specific
priority. The algorithm attempts to periodically detect attacks, according to the priority of
each policy. For each template or partially matched policy, it builds a query to the User Activ-
ity History, attempting to instantiate the next template event in the policy’s Preconditions. It
adds to the list of partially instantiated policies all the possibilities for continuing the match,
according to the query’s results. The detection process is complete when all the events in a
policy are instantiated, that is the history of the user actions reflects a chain of events that
are specific to the security attack described by the matched policy.

The policy-violation detection mechanism is presented in Algorithm 1. The PolicyMatch
procedure is periodically repeated for each type of policy, according to their priority. The list
of initial template policies is denoted P and the list of partially matched policies is denoted
PpartiallyMatched. Each template policy is evaluated for each client registered in the system and
each partially matched policy is evaluated for the client for which it was instantiated. The
MatchEvent procedure in Algorithm 2 is the core of the attack-detection mechanism, as it is in
charge of matching the template sequence of events in the policy against the data recorded
into the User Activity History. The detection mechanism implemented by Algorithm 2 is
detailed below:

• Initially, the algorithm is executed for the start event specified by the policy. Subse-
quently, it will recursively try to match each event in the dependency tree described
by the policy through the FollowedBy, PreceededBy and logical And, Or, Not event at-
tributes.

• For each event, the PolicyMatch procedure identifies the specific attributes in the tem-
plate Properties and the time constraints associated with the event and tries to fill them
in with real data from the User Activity History.

48 Chapter 6 – Self-management for distributed data-storage systems

Algorithm 2 Event Matching Procedure

1: procedure MatchEvent(p, clientID, event, matchStatus)
2: eventType ← event.getType()
3: eventProp ← userHistory.getPropertiesList(client, eventType)
4: constraints ← event.getConstraints(eventProp)
5: timeFrame ← event.getTimeConstraints()
6: foundMatch ← False
7: repeat
8: eventData ← userHistory.query(eventProp, constraints, timeFrame)
9: if eventData = ∅ then

10: if timeFrame.isValid() then
11: Wait event.getWaitTime()
12: else
13: return ∅

14: end if
15: else
16: foundMatch ←True
17: end if
18: until foundMatch
19: p.fillEventPropValues(event, eventData)
20: p.updateEventTimeConstraints(event, eventData)
21: nextEvents ← p.getEventDependencies(event)
22: for ev ∈ nextEvents do
23: ev.fillParentConstraints(event)
24: newMatch ← MatchEvent(p, client, ev, matchStatus)
25: matched ← newMatch.checkLogicalDep(event)
26: matchStatus ← matchStatus ∪ matched
27: end for
28: if event = p.getStartEvent() then
29: if matchStatus $= ∅ then
30: PpartiallyMatched ← PpartiallyMatched ∪ {p}
31: end if
32: end if
33: return matched
34: end procedure

6.2 – Self-protection: A generic security framework 49

Algorithm 3 Policy Enforcement Algorithm

1: procedure PolicyCheck

2: for p ∈ PpartiallyMatched do
3: completeMatch ← p.checkAllEvents()
4: if completeMatch then
5: constraints ← p.getActionConstraints()
6: for all c ∈ constraints do
7: if c.isSatisfied(p) then
8: a ← p.getAction(c)
9: invoke ExecuteAction(a) on PolicyEnforcementModule

10: end if
11: end for
12: end if
13: end for
14: end procedure

• If the template cannot be matched against the recorded data, the algorithm proceeds
into a waiting state. That is, the execution is suspended for an amount of time specified
in the policy definition and retrieved through the getWaitTime procedure. When the
waiting time expires, the algorithm moves on to the next step if the Activity History
receives relevant data. Otherwise, it repeats the current step until the event’s Time
Frame constraints can no longer be satisfied by new records in the Activity History, in
which case the policy is discarded.

• If matching data have been retrieved from the User Activity History, the event’s Prop-
erties and TimeFrame are filled in through the fillEventPropValues and updateEventTime-
Constraints procedures.

• Then, the algorithm calls the getEventDependencies procedure to identify he next tem-
plate events to be matched, that is the events that are linked to the current event
through dependency attributes. Each such event’s constraints are filled in with pre-
liminary values derived from the properties of the parent event.

• Next, the procedure is recursively called for the new events until it fills in the whole set
of template events in the policy or it cannot find any matching data in the user history.

• After the first event and its dependency tree are completely processed, the policy can
be added to the set of partially matched policies. They will in turn be fed to both
the PolicyCheck and the PolicyMatch algorithms until each policy is either successfully
completed (i.e. it detects an attack) or it cannot be filled in with real data for a specific
client and gets discarded.

Algorithm 3 scans all the partially matched policies. The attack described by such a
policy is detected for a specific client when all the template events for the policy are filled
in with real data. In this case, the PolicyCheck procedure will inspect the actions associated
with the policy and trigger the Policy Enforcement module for the action that corresponds to
the constraints defined by the policy.

50 Chapter 6 – Self-management for distributed data-storage systems

6.3 Self-configuration: Dynamic dimensioning

A means to achieve self-configuration in a data storage system is to enable the number of
storage nodes to scale up and down depending on the detected system needs. As an exam-
ple, let us consider a IaaS Cloud environment, such as the Amazon EC2, where the user is
running a distributed storage system on top of a set of Amazon instances. When the system
is overloaded, the user may need to expand the pool of used machines by renting new nodes
from the Cloud provider.

To this end, Amazon introduced the Auto Scaling [6] service that can automatically scale
up and down the number of running instances belonging to a user. However, the Auto
Scaling service makes decisions based on simple monitoring data (such as the CPU load
of the nodes) and cannot take into account more complex factors that can impact on the
performance of a specific system.

To adapt the storage system’s behavior to the changing state of the environment, we
designed a component able to contract and expand the pool of storage nodes based on con-
figurable parameters monitored from the storage system, such as the rate of data accesses.

6.3.1 Motivating scenarios

This section focuses on two scenarios that emphasize the need for self-configuration in a data
storage system, as well as the specific adaptation requirements that cannot be addressed by
generic scaling services, such as the Amazon Auto Scaling.

Elastic data-intensive applications. To run large scale applications in a IaaS Cloud, users
typically need to deploy a distributed storage system on the provisioned virtual ma-
chines. The overall performance of such applications is directly affected by the con-
figuration of the underlying storage system and by its fast data access capabilities. As
it is essential to maintain the same application performance even when the size of the
processed data sets increases, this scenario would benefit from a component able to
reconfigure the backend system, according to some specific parameters.

Cost optimization. Although moving large-scale applications to the Cloud has become an
undeniable trend, users of commercial Clouds have to take into account the new chal-
lenges introduced by these environments. Thus, optimizing the performance of appli-
cations is not enough, as an equally important concern is cost minimization. Cloud
providers have imposed the pay-per-use model, where the users pay for the number
of provisioned nodes and for the duration of their resource reservations. As a conse-
quence, a means to reduce the costs of executing a specific system in a Cloud environ-
ment is to minimize the resource consumption. To reach this goal without experiencing
any performance degradation, the system can be equipped with a component designed
to inspect its behavior and scale in or out in correlation with internal events.

6.3.2 Global Architecture

The goal of the Dynamic Configuration Framework is to automatically optimize the utilization
of resources in the system, while sustaining an optimal performance level.

6.3 – Self-configuration: Dynamic dimensioning 51

Figure 6.4: Architectural overview of the Dynamic Configuration Framework.

To this end, the system maintains two pools of storage nodes:

Active Nodes Pool (ANP): pool of currently active nodes that are used for data storage by
the system.

Backup Nodes Pool (BNP): pool of nodes that are not employed by the storage system, but
can be accessed and added to the system through specific operations.

The Dynamic Configuration Framework is designed to automatically switch storage nodes
from one pool to another when certain conditions are met, in order to optimize resource
usage. The decision to scale the node pool is based on retrieving the monitoring data and
computing a heuristic score that evaluates the status of each storage node. The architecture
of the Dynamic Configuration Framework is depicted in Figure 6.4. It consists of the following
components:

The Node Pool Manager is the component in charge of making configuration decisions for
the Data Storage System. It keeps track of the active storage nodes and automatically
increases or decreases the size of the Active Nodes Pool according to specific parameters.
It needs access to monitoring information describing the state of the system, and of the
active data storage nodes. The implementation of Node Pool Manager is independent of
the storage system it manages, as its input is only based on monitoring data retrieved
from an Introspection Module. The Dynamic Configuration Framework can be configured
through administrator-defined policies. Such policies define the parameters taken into
account when enabling or disabling storage nodes and set thresholds for each of these
parameters.

The Node Controller is responsible for enforcing the Node Pool Manager’s decisions by mov-
ing nodes from the Active Nodes Pool to the Backup Nodes Pool. This component repre-
sents the interface between the Dynamic Configuration Framework and the storage sys-
tem. As a consequence, its implementation is dependent on the used system, as it has
to enable/disable the data storage nodes and to let the system know of their state.

The Replication Manager has to fulfill two functions. First, it informs the Node Pool Man-
ager about the replication requirements of the data stored on specific storage nodes.
Each piece of data hosted by a Distributed Storage Service is replicated on a number of
storage nodes, which is denoted as its replication degree. The second role of the Repli-
cation Manager is to maintain the replication degree of data residing on nodes that are
about to be shut down by the Node Controller.

52 Chapter 6 – Self-management for distributed data-storage systems

6.3.3 Dynamic scaling algorithms

The dynamic dimensioning mechanism implemented on the Node Pool Manager is presented
in Algorithm 4. The Node Pool Manager periodically executes the DynamicScaling procedure.
It receives a scaling policy defined by the administrator as a parameter to perform a cus-
tomized tuning of the system configuration. The policy defines a set of parameters to be
taken into account when expanding or reducing the system’s node pool. It is structured as a
list of key-value properties, denoting the following configuration elements:

• the names of system-wide parameters or node properties, such as the total load of the
system, the size of the stored data or the number of accesses per storage node, which
can impact the selection of the nodes to be added or removed from the system.

• specific sets of thresholds for each parameter.

• threshold weights corresponding to each threshold, to introduce a finer control over
the significance of the parameter values.

• a weight value associated with each parameter to quantify the importance of the pa-
rameter in the decision-making process.

The decision making algorithm relies on the interaction with a set of primitives exposed
by the other components in the Dynamic Configuration Framework. To access and process
the monitoring data made available by the Introspection Framework, the Node Pool Manager
employs two procedures:

ESTIMATENEWANPSIZE. This procedure processes the scaling policy received as an input
and inspects the current values of the parameters specified by the policy. It accesses the
Introspection Framework to obtain up-to-date information and makes a decision aiming
to optimize the number of nodes into the Active Nodes Pool. This decision is based on
the set of system parameters specified by the policy and on their respective overall
significance, modeled as weight values in the policy.

GETMONITORINGDATA. This procedure contacts the Introspection Framework and returns
the collected information corresponding to a set of nodes. This information is then
processed according to the specifications of the scaling policy.

The Replication Manager has to expose a set of system-specific primitives that enable the
Node Pool Manager to be aware of, and to control the replication degree of the stored data.
The dynamic dimensioning algorithm makes use of the following procedures:

GETDATAINFO. It returns the replication information corresponding to the data stored on
a particular node, which is sent as a parameter.

RESTOREREPLDEGREE. Once a node is removed from the active storage servers, the Repli-
cation Manager is notified, as it is responsible for maintaining the replication degree of
the data previously stored on the disabled node.

Since the Node Controller is in charge of the deployment of new nodes and the removal of
unused nodes from the active servers pool, it interacts with the storage system by means of
two primitives:

6.3 – Self-configuration: Dynamic dimensioning 53

Algorithm 4 Dynamic Configuration.

1: procedure DynamicScaling(ANP, policy)
2: newSize ← EstimateNewANPSize(policy)
3: if newSize < ANP.getCurrentSize() then
4: for all nodes in ANP do
5: monInfo ←invoke GetMonitoringData(nodes) on IntrospectionFramework

6: end for
7: sortedNodes ← monInfo.sort(nodes)
8: toBeShutDown ← ANP.getCurrentSize() − newSize
9: for all node in nodes andtoBeShutDown > 0 do

10: score ← policy.computeScore(monInfo.getInfo(node))
11: if score < scoreThreshold then
12: keep node in ANP
13: else
14: toBeShutDown ← toBeShutDown − 1
15: nodeData ← invoke GetDataInfo(node) on ReplicationManager

16: disableNode ← True
17: for all dataID in nodeData do
18: if dataID.getReplDegree() < policy.getReplThreshold(dataID) then
19: disableNode ← False
20: end if
21: end for
22: if disableNode = True then
23: move node to BNP
24: invoke ShutdownNode(node) on NodeController

25: invoke RestoreReplDegree(nodeData) on ReplicationManager

26: else
27: keep node in ANP
28: end if
29: end if
30: end for
31: return ANP.getCurrentSize()
32: end if
33: if newSize > ANP.getCurrentSize() then
34: toBeStarted ← newSize − ANP.getCurrentSize()
35: nodes ← invoke GetNewResources(node) on NodeController

36: for all node in nodes do
37: move node to ANP
38: invoke DeployNode(node) on NodeController

39: end for
40: return ANP.getCurrentSize()
41: end if
42: end procedure

54 Chapter 6 – Self-management for distributed data-storage systems

SHUTDOWNNODE. This procedure removes a node (sent as an input parameter) from the
Active Nodes Pool, that is it shuts down the running storage server and cleans up the
stored data.

GETNEWRESOURCES. This procedure is used to obtain a set of new nodes by environment-
dependent means. As an example, in the case of a system running on top of a Cloud
platform, this procedure involves provisioning new virtual machines from the Cloud
provider, deploying the required processes and adding the new instances to the sys-
tem.

DEPLOYNODE. It is employed to deploy a storage server on new resources and to add it to
the Active Nodes Pool of the system.

The dynamic dimensioning process relies on the results yielded by the
EstimateNewANPSize procedure. If the estimated optimum size is less than the current
size, then the system tries to disable the unnecessary nodes. To this end, it first has to
determine which nodes are underutilized, i.e. for which of the active nodes the parameters
defined by the scaling policy exceed the specified thresholds. This is achieved in two steps.
First, monitoring data for each active node is collected from the IntrospectionFramework.
Second, a score that reflects the value and the significance of each parameter is computed
for each node. Next, the active nodes are sorted in the increasing order of their scores, where
the highest scores designate the key nodes in the system that should not be removed (e.g.
the nodes that store essential data or those that can sustain a large number of data access
operations). For each low-score node, the system retrieves replication information about
the data stored on the node from the Replication Manager. If the current replication degree
of any of the stored data chunks is lower than a predetermined threshold, the node cannot
be disabled without breaking the replication requirements for that specific piece of data. In
the opposite case, the node can be moved to the Backup nodes pool. Moreover, the Shutdown

primitive is invoked on the Node Controller and the Replication Manager is notified to restore
the replication degree for all data chunks hosted by the nodes.

If the result returned by the EstimateNewANPSizeprocedure indicates the number of active
nodes is too low to sustain an adequate performance level, then the pool of active nodes
has to be extended with new resources. A request for new nodes is generated for the Node
Controller, which is in charge of obtaining them by interacting with the environment. After
the new resources are activated, the Node Controller is invoked to deploy and make them
available to the system.

6.4 Summary

In this chapter, we proposed a set of self-management mechanisms targeted towards data-
management systems. We first introduced a generic architecture for enhancing a system with
introspection capabilities, relying on monitoring and processing system-specific parameters.
Thus, a system can be considered self-aware, an essential step that opens the path to other
self-management properties.

A second contribution consists in a generic security framework for defining and enforc-
ing security policies. This framework can play the role of a self-protection component in a

data-management systems, being able to automatically react and provide customized feed-
back upon detection of security breaches. It allows administrators to define high-level poli-
cies for complex attacks and to detect and take appropriate measures to prevent harmful
users from accessing the system.

Self-configuration is an essential property in the context of Cloud storage, enabling dis-
tributed systems to scale in or out whenever their real-time workload requires it. We pro-
posed a self-configuration architecture aiming at optimizing the deployment scheme of a
data-management system by transparently expanding or contracting the pool of running
storage servers, according to various factors defined by the system administrator.

56 Chapter 6 – Self-management for distributed data-storage systems

57

Chapter 7
Validation: Introducing

self-management in BlobSeer

Contents

7.1 Introspection mechanisms in BlobSeer . 58

7.1.1 Collecting BlobSeer-specific data . 58

7.1.2 Implementation details . 59

7.2 The security framework . 63

7.2.1 Security attacks in BlobSeer . 64

7.2.2 Case study: DoS attacks in BlobSeer 66

7.2.3 Implementation details . 68

7.3 Self-configuration in BlobSeer . 72

7.3.1 Dynamic configuration in BlobSeer 72

7.3.2 Zoom on replica management . 74

7.4 Summary . 76

In the previous chapter we presented a set of self-management directions for data stor-
age systems and we introduced generic frameworks to enable the self-* properties for such
systems. This chapter focuses on enhancing BlobSeer, a distributed data-sharing system de-
signed for highly-efficient concurrent data accesses, with self-management capabilities. Our
goal is to build an autonomic, efficient and secure Cloud storage service by leveraging the
generic self-adaptation frameworks and tuning them to the specific data-management pro-
tocols of BlobSeer.

58 Chapter 7 – Validation: Introducing self-management in BlobSeer

7.1 Introspection mechanisms in BlobSeer

Adapting the generic introspection architecture to fit the design and implementation of Blob-
Seer requires careful consideration at several levels. First, it implies the identification of the
relevant events that need to be monitored and of the aggregated data that can provide more
compact information about the system entities. Second, the design of each layer of the in-
trospection architecture plays a role in its overall performance and impact on the BlobSeer
data-access operations. In this section we address these issues, by introducing the specific
monitoring events that can be gathered from BlobSeer, and detailing the implementation of
the introspection framework.

7.1.1 Collecting BlobSeer-specific data

This section investigates the relevant BlobSeer events that can effectively serve as input for
various self-adaptation engines. We first detail the simple parameters that can be collected
for each BlobSeer entity when a client requires access to data. Furthermore, we give an
insight on the aggregated data that can be extracted from the basic parameters according to
various goals.

The main monitoring data that can be gathered from the Blobseer entities can be summa-
rized as follows:

Version manager. It handles client requests that focus on BLOB creation and publication of
new versions when a WRITE operation is issued. Therefore it can generate two types
of monitoring parameters:

BLOB creation. A tuple containing the identifier of the client who initiated the opera-
tion (e.g. the IP address), the BLOB identifier, the number of needed BLOB replicas
and the chunk size.

WRITE publication. A tuple composed of the client identifier, the BLOB identifier,
WRITE operation identifier, the assigned version, the offset and size of the pub-
lished range of chunks.

Data providers. Each data provider is in charge of storing data chunks and transferring them
to and from the client. Thus, two types of events have an impact on the performance
of the data providers:

Chunk WRITE. This operation entails the creation of a monitoring event consisting in
a client identifier, BLOB id, chunk id, provider id and WRITE operation id. The
latter value is crucial for tracking down all write requests for different chunks
belonging to the same client WRITE operation, as well as for detecting the publi-
cation step of the same chunk range.

Chunk READ. The monitoring data generated for this type of operation comprise a
client identifier, BLOB id, chunk id and provider id.

With these basic parameters as a starting point, we define higher-level information that
can be supplied to various self-adaptation components:

7.1 – Introspection mechanisms in BlobSeer 59

Figure 7.1: Architecture of the Introspection Framework.

Access patterns. This type of data includes the number of accesses per time unit for each
BLOB, each BLOB version and each chunk. Such information can be generated by
counting the number of write or read events collected for the data chunks and ag-
gregating them according to the selected variable (BLOB, version, etc.).

User access history. The data yielded by the introspection layer can focus on the history
of the user accesses to data. To this end, basic monitoring data can be aggregated
into high-level illustration of each user’s actions. For instance, such data comprise the
number of written chunks for each WRITE operation or the number of read chunks in
the last hour, for each user.

Provider load. The number of accesses at the level of each data provider represents a type
of information needed by any self-adaptation component to assess the system load.
The load of each provider per time unit can be obtained by computing the number of
accesses for all data chunks stored on the provider. Furthermore, the provider load can
be analyzed for each client, as a measure of the fairness of the data-sharing among
clients.

Global state. This type of data can help self-adaptation components to make fast decisions
when the system is heading toward a dangerous state. As an example the overall
load or the total amount of free storage space play an important role in the BlobSeer
system’s capacity of providing an efficient data-access rate.

7.1.2 Implementation details

To enable the BlobSeer system to evolve towards an autonomic behavior, we adapted the
3-layered Introspection Framework proposed in Section 6.1, by designing specific interfacing
blocks and plugging them on top of the generic components. Figure 7.1 displays the archi-
tecture of the Introspection Framework adapted for BlobSeer.

The lowest layer of the framework is the Instrumentation Layer, which is responsible for
collecting data from the monitored system. Therefore, its implementation is closely linked

60 Chapter 7 – Validation: Introducing self-management in BlobSeer

with the instrumented system, as well as dependent of the type of the gathered data. The
Monitoring Layer, however, should not interfere with the targeted system and thus it can be
built on top of any generic monitoring system able to address the following requirements:

Flexibility. As our goal is to optimize the performance of a distributed system through self-
adaptation, it is essential for the monitoring system to accommodate both predefined
and customized parameters. This feature allows introspection mechanisms to be aware
of system-specific events and thus, to interpret the system state.

Scalability. BlobSeer is a storage system that deals with massive data, which is striped into
a huge number of chunks scattered across the data providers. Moreover, typical access
patterns include multiple clients simultaneously accessing various parts of the stored
BLOBS. Each such data access generates a monitoring event; as a result, the monitoring
system has to cope with a large number of storage resources and to efficiently manage
high rates of monitoring events. Scalability also implies performance with respect to
data collection, that is the response time of the monitoring layer has to be maintained
regardless of the system load.

Reliability. System-specific monitoring parameters such as data accesses for each client are
crucial events that need to be recorded by the monitoring system. Therefore, a de-
sirable feature of the monitoring system is the reliability regarding monitoring data
collection and storage.

Non-intrusiveness. A suitable monitoring layer should not degrade the performance of
the data-access operations, that is the clients should not observe significant overheads
when running data-intensive tasks on top of the monitored system.

The Monitoring Layer

To meet the aforementioned requirements, we built the monitoring layer on top of the Mon-
ALISA grid monitoring system, as it is a system designed to run in large-scale environments
and to handle large amounts of monitoring events collected from distributed entities.

MonALISA (Monitoring Agents in a Large Integrated ServicesArchitecture) [61] is an event-
based, scalable framework of distributed services, which provides the necessary tools for
collecting and processing monitoring information. The essential components of the Mon-
ALISA framework are the MonALISA services, which are responsible for performing the data
collection tasks. The typical data flow for the monitoring information within the MonALISA
system is the following:

• The monitored entities generate monitoring events and send them to the MonALISA
services.

• Each MonALISA service is equipped with a set of filters that select relevant events
among the received data. Each filter processes the collected data and then relays them
towards a local database or an external data repository.

• Monitoring data are persistently stored in repository databases and can be visualized
by means of graphical clients provided by the MonALISA system.

7.1 – Introspection mechanisms in BlobSeer 61

The Instrumentation Layer

Apart from the monitoring services, MonALISA also provides an instrumentation library
designed to monitor both a set of predefined parameters and various user-defined parame-
ters for a given application. We used this library, called ApMon, to instrument the BlobSeer
code and to send specific parameters to the MonALISA services in a distributed fashion.

The Instrumentation Layer comprises three modules that accomplish different tasks:

Generic parameters monitoring. This module uses ApMon to monitor the physical re-
sources and to collect data such as the CPU load, available memory or network traf-
fic. The MonALISA framework provides specific tools to monitor such parameters:
ApMon can be enabled to automatically collect and forward them to the monitoring
system through a background thread. The relevant event types can be defined in a
configuration file, which also specifies the target MonALISA service.

Log parsing tool. In BlobSeer, the version manager is the entity that keeps track of all the
BLOBS in the system and deals with the serialization of the concurrent requests. As it
is essential to prevent any overhead when performing these tasks, the instrumentation
module that monitors the version manager is implemented as a log parser able to send
data to MonALISA. The instrumentation module scans the log file each time it is up-
dated and reports the created BLOB or the written chunk ranges and their associated
versions to a specific MonALISA service designated by the ApMon configuration file.

Instrumentation code. We equipped the BlobSeer entities with ApMon-based instrumen-
tation code, so as to enable them to send monitoring parameters to the MonALISA
services whenever an event occurs. Typically the instrumentation code has to specify
the selected monitoring service (listed in a configuration file), the event type and the
values of each field of the event.

The Introspection Layer

The MonALISA framework provides a storage repository for persistently collecting informa-
tion from several monitored entities. The repository is backed by a relational database where
it can automatically save the received data. However, the repository is optimized for time-
series monitoring data and thus, for collecting generic parameters related to the physical re-
sources. Our goal is to design an Introspection Layer that efficiently manages specific events,
such as the ones corresponding to data accesses in a data management system, in order to
use it as a building block for various self-adaptive components.

To this end, we developed the Introspection Layer as a set of modular services that focus
on the following properties:

Efficient storage. The Introspection Layer is based on a set of Introspection Repositories, which
are designed to store monitoring data in a distributed fashion. To enhance the perfor-
mance of collecting monitoring data and load balancing within the Introspection Layer,
each MonALISA service is equipped with data filters that partition the monitoring
events and forward each subset to a particular Introspection Repository.

62 Chapter 7 – Validation: Introducing self-management in BlobSeer

(a) The enhanced MonALISA service. (b) The Introspection Repository.

Figure 7.2: Implementation of the Introspection Layer.

Data aggregation. Each BlobSeer operation may generate a substantial number of monitor-
ing events. Reading and processing all the collected data may slow down higher-level
self-adaptation engines. To allow such self-adaptation components to efficiently ana-
lyze data and make decisions, we developed a module in charge of aggregating the
gathered data. This approach generates compact data that represent specific proper-
ties, such as the access rate on data providers, the number of read operations on a BLOB

version or the amount of data written by a certain user. Such data can then be easily
fetched and interpreted by components that do not require all the details regarding a
BlobSeer operation, but rather a concise summary.

Data caching. The rate of incoming monitoring data can considerably increase when a large
number of users are concurrently accessing the system. Since each Introspection Repos-
itory is backed by a relational database, flushing the data to the persistent storage is
typically a slow operation. To cope with this issue, each Introspection Repository im-
plements a caching layer to handle the received monitoring events, while a dedicated
process dumps them into the database.

The Introspection Layer’s implementation follows the diagram on Figure 7.2. It relies on
a set of modules designed on two levels, which enable a customizable behavior of the In-
trospection Framework, according to the requirements of the upper layers. At the level of
the MonALISA monitoring services, depicted on Figure 7.2(a), we placed the modules re-
sponsible for filtering the collected data and for sending them to the appropriate monitoring
repository for persistent storage.

Data Filters Layer. The MonALISA system allows users to develop dynamically loadable
modules to fulfill particular monitoring tasks. Such modules can be used to filter the
incoming monitoring data, to process it and periodically forward it to other compo-
nents. We designed a set of filters for each BlobSeer-specific event. Their goal is to
parse the events, to identify their type and to accordingly select an appropriate Intro-
spection Repository where the data can be stored.

7.2 – The security framework 63

Target Repository Selector. To optimize load balancing between the distributed Introspec-
tion Repositories, we designed a Selector Layer that picks out the repository by means of
configurable rules. The default selection strategy we used is represented by a hashing
function that partitions the data according to the user who generated it.

Communication Layer. To provide efficient communication between the MonALISA ser-
vices and the Introspection Repositories, we implemented an asynchronous Communi-
cation Layer, which transparently handles the communication details, such as socket
management and data transfers. It is implemented on top of the NIO Java library, a
collection of Java APIs for intensive I/O operations.

The architecture of the second level of the Introspection Layer, namely the Introspection
Repository, consists of several modules backed by a relational database, as shown in Fig-
ure 7.2(b).

Data Receiver Layer. This layer can handle multiple concurrent requests to store monitor-
ing data in an asynchronous fashion. It collects the received data and forwards them
to the appropriate cache.

Caching Layer. It is in charge of temporary hosting the received data, so as to enable the
Introspection repository to deal with high rates of received monitoring events.

Data Aggregator. To meet the needs of higher-level components, this module can imple-
ment various aggregation strategies. Basically, it scans the monitoring tables in the
repository database and creates new tables that store coarser-grained data that enable
self-* mechanisms to observe global patterns and trends.

Database Writer. The implementation of the Introspection Repository includes a dedicated
process for flushing the cached monitoring events into the backend database. It is also
in charge of marking the events that have already been persistently stored, so that they
are safely removed from the cache when new data arrives. The module can be inter-
faced with various database systems, as it relies on an extendable storage interface.

Request Manager. This component is designed to increase the performance of remote re-
quests for monitored data, by caching the most recently collected events and aggre-
gated values. It serves requests by first looking into the cached events and retrieving
the results from the backend database only if they cannot be found into the cache. The
module can be customized with respect to the size of the cache and the type of cached
data.

7.2 The security framework

We validated the Security Management Framework we proposed in Section 6.2, by interfacing
it with the BlobSeer system. It serves as a self-protection component able to detect malicious
attacks in Cloud environments. This section describes the types of attacks that can impact
on data-access performance in BlobSeer. Next, we give an insight on the our framework’s
policy definition language by focusing on a critical case study scenario: Denial of Service
attacks. Finally, we present some implementation details for the main components of the
Security Framework and their interactions with BlobSeer.

64 Chapter 7 – Validation: Introducing self-management in BlobSeer

7.2.1 Security attacks in BlobSeer

To evaluate the Security Management Framework, we identified a set of security vulnerabilities
in BlobSeer and we modeled security policies to target the associated attacks. The key mali-
cious behavior scenarios that have to be prevented in order to maintain the high-throughput
client operations in BlobSeer are summarized as follows:

Protocol breaches

A malicious user can try to compromise the system by deliberately breaking the data-access
protocols. In BlobSeer, the most vulnerable operation is data writing, as it exposes several
targets for malicious users: first, it consists in inserting new data into the system, which can
be a means to overload data providers; second, writing data to BlobSeer implies generating
new BLOB versions, operation that can lead to data inconsistencies.

The WRITE operation imposes a strict protocol to the user that wants to correctly insert
data into the system, as illustrated in Chapter 5. It consists of two independent phases that
have to be executed consecutively:

The data-writing step comprises the user’s request for a list of data providers and the transfer
of the chunk range to be written to those providers.

The data-publication step comprises the creation of the metadata associated with the writ-
ten data, and the publication of the written chunk range as a new version.

A correct WRITE operation is defined as the successful completion of the aforementioned
steps, with the constraint that the published information concerning the written chunk range
is consistent with the actual data sent to the data providers. The WRITE primitive imple-
mented by the BlobSeer client library is designed to carry out a complete and correct WRITE

operation. However, as the code is open source, a malicious user may modify the library so
as to break the WRITE protocol. As a consequence, there are three types of protocol breaches
that can be detected for the WRITE operation:

Data written and not published. In this case, a malicious user obtains a list of providers from
the provider manager and then starts writing data to the providers. The second step is
never issued and thus the version manager, which keeps track of all the BLOBS and their
versions, will never be aware of the data inserted into the system.

Data published without being written. This scenario is representative for a user who at-
tempts to compromise the system by making available data that does not actually ex-
ist. Thus, other users might try to read the published data without being aware that
the metadata contain fake references.

Inconsistencies between the written and the published data. The attack that corresponds
to this situation aims to disrupt the computations that use data stored into the BLOBS.
As an example, the user might only write the data corresponding to the beginning of
the published range. Therefore, an application can start reading and processing the
data and discover only later that the current BLOB version is incomplete. Hence the
computation would be compromised and the application forced to restart the process-
ing.

7.2 – The security framework 65

<?xml version="1.0" encoding="UTF-8"?>
<securityPolicy id="1_47">

<clientID rvalue="c" value="c" />
<active value="true" />
<priority value="1" />
<start value="w1" />
<end value="c1" />
<preconditions>

<event id="w1" type="prov_write_summary">
...

</event>
<event id="p1" type="vman_write">

...
</event>
<event id="c1" type="check">

<content value="wsc > twsc" />
</event>

</preconditions>
<enforcement>

...
</enforcement>

</securityPolicy>

Figure 7.3: Security policy for Denial of Service on data providers.

Denial of Service attacks

In order to preserve the transfer throughput level and a fair bandwidth sharing among con-
current users, the BlobSeer system has to prevent Denial of Service attacks at various levels.
Since the BlobSeer entities fulfill complementary functions, a user may contact each of them
during a legitimate action. Attempts to flood the version manager or the provider manager have
to be detected and identified as Denial of Service attacks, as they may prevent other users
from accessing the system.

Multiple concurrent requests targeted at data or metadata providers are, however, more
difficult to handle, as such actions represent the first stage of any valid READ or WRITE

request. In this case, the administrators need to design more complex security policies able
to define the limits between what is considered normal behavior and malicious operations
aiming at disrupting proper system functioning.

Abnormal client activity

Whereas the first two scenarios emphasize misbehavior detection, another approach is to
analyze the user’s access patterns and to identify anomalies in its activity, even though it is
correct with respect to the data access protocols. In this case, a deviation from the previously
observed behavior can be a symptom of an unauthorized access to data or an attempt to
affect the system. As an example, an authorized user may try to read all the BLOBS it has ac-
cess to. While such an action is legitimate, it can be identified as a crawling attack, especially
if the history of the user actions does not contain similar requests. This type of attacks have
to be detected and recorded, as they may influence the trust level corresponding to the user
who initiated them. In Section 6.2, we introduced the trust level of a user as a score computed
by the Trust Management module of the security framework, which assesses the behavior of
the user based on its past actions.

66 Chapter 7 – Validation: Introducing self-management in BlobSeer

7.2.2 Case study: DoS attacks in BlobSeer

This section details the structure of Denial of Service attacks specific to BlobSeer. Further-
more, we focus on attacks targeted at data providers, providing an in-depth description of a
security policy used to identify such attacks.

Denial of Service attacks are characterized by a large number of request aiming at dis-
rupting the normal execution of a system and preventing other clients from performing le-
gitimate operations. In the case of BlobSeer, each valid data-access operation implies a series
of parallel requests and data transfers. For instance, a single WRITE operation may comprise
hundreds of chunk transfers, especially if the chunk size is small. Consequently, a Denial of
Service attack attempted by a user who simulates a regular operation can be more difficult
to detect than a simple flooding attack that generates random requests to overload a service.

We consider the former approach, as it deals with vulnerabilities inherent to BlobSeer
and it represents a typical illustration of a Denial of Service attempt. Defining a security
policy for such an attack allows us to easily derive policies for the other simpler forms of
Denial of Service targeting BlobSeer entities.

As detailed in the previous section, a typical WRITE operation in BlobSeer consists in: (1)
writing a set of data chunks to the data providers; and then (2) publishing the write as a new
version of the BLOB on the version manager. We define a Denial of Service attack based on
the WRITE primitive in BlobSeer as a valid WRITE operation where the number of written
chunks within the same operation is larger than a predefined threshold. In other words, the
amount of data written by a user before issuing a new version has to be below a specific limit
that ensures that no user is able to overload specific data providers or the whole system.

Figure 7.3 illustrates a representative security policy corresponding to a Denial of Service
attack on data providers. The policy is represented through an XML language, using tags that
follow the structure introduced on Figure 6.3. The goal of this policy is to capture all writes
on data providers that comply with the following rules: they have been performed in a specific
time interval, they belong to the same WRITE operation and they have not been published
by the end of the time interval. If such a behavior is detected in the collected activity history
for a specific user, then the user is identified as being malicious and a set of feedback actions
are injected into the BlobSeer system.

The top-level XML element of the policy lists the General Parameters. In this case study,
it states that this policy has a high priority and will be applied to a specific client, identified
at runtime. The Preconditions tag encloses a list of three event types that play a role in a
DoS attack. We identify start event w1 that models a WRITE operation and event p1 that
denotes a publication operation. The final event c1 verifies if the thresholds associated with
the matched events have been exceeded. When the template events in the policy are filled in
with real monitoring values and thus an attack is detected, the Security Framework scans the
Enforcement tag and identifies the feedback actions to be forwarded to the system.

Figure 7.4 shows the contents of start event w1, which identifies the WRITE operations
on the data providers. To select relevant data from the User Activity History, the Properties tag
defines a set of specific elements associated with a WRITE operation: they include the BLOB

id and the operation watermark (which identifies the WRITE operation in BlobSeer), but also
the number of written data chunks (i.e. NoWritesCount). The latter is the key element that
helps defining the attack. It has a corresponding threshold, denoted thresholdNoWrites.

7.2 – The security framework 67

<event id="w1" type="prov_write_summary">
<clientID rvalue="" value="c" />
<properties>

<blobId id="bId" rvalue="" value="b" />
<watermark id="wa" rvalue="" value="w" />
<NoWritesCount id="wsc" rvalue="" />
<thresholdNoWrites id="twsc" value="100" />

</ properties>
<timeFrame>

<firstTimestamp id="fts" rvalue="" />
<distance id="dist" value="7000" />

</ timeFrame>
<continuous>

<refProperties value="wsc" />
</continuous>
<neg>

<followedBy>
<refEvent value="p1"/>
<distance value="<= fts + dist"/>

</followedBy>
</neg>

</event>

Figure 7.4: The structure of an event for a DoS security policy.

<enforcement>
<rule>

<constraints>
<and>

<content value="TL < 70" />
<content value="TL > 30" />

</and>
</constraints>
<actions>

<enablePolicy value="20_9" />
</actions>

</rule>
<rule>

<constraints>
<content value="TL < 30" />

</constraints>
<actions>

<blacklist rvalue="c" value="c" />
</actions>

</rule>
</enforcement>

Figure 7.5: Enforcement rules for a DoS security policy.

The event further contains a TimeFrame tag used to position the WRITE operation in time.
This is done by recording the timestamp of the first detected chunk write into the firstTimes-
tamp element and by specifying a duration for which the policy is supposed to search for
malicious user actions. As the policy has to capture all write events, the continuous tag is em-
ployed in the event’s structure to specify which parameters may vary among the matched
writes: the number of written chunks, which increases each time a new write is found.

The event listing defines as well the correlations with other events needed to instantiate
the policy. In this scenario, the write event must not be followed by a publication operation
(modeled by event p2) by the end of the time interval delimited by the timestamp of the first
write event recorded, denoted firstTimestamp, and the duration tags.

68 Chapter 7 – Validation: Introducing self-management in BlobSeer

The final part of the security policy comprises a set of enforcement rules presented in
Figure 7.5. When the policy is matched for a specific user, the rules are sent to Policy Enforce-
ment module. Each rule comprises a set of Constraints and Actions. The Policy Enforcement
module verifies which constraints are satisfied and then it executes the corresponding ac-
tions. The constraints are typically employed to customize the feedback suggested by the
policy, according to the trust level of the user. The actions range from logging the attack in
the history database (in the case of minor attacks) to activating new security policies and
blacklisting the user (when the attack has an important impact on the system and the user
has a low trust level).

7.2.3 Implementation details

The implementation of the Security Management Framework relies on a set of modules follow-
ing the structure presented in Section 6.2.

Policy definition

A security policy can be submitted to the Security Violation Detection module as an XML file
structured in the format presented in the previous section. Each security policy comprises a
set of mandatory elements, corresponding to the structure defined in Section 6.2.3: general
parameters, preconditions, enforcement rules. The pattern of the considered attack is mod-
eled by the Preconditions element, which contains a list of template events. Each event has in
turn an extensible format that complies with the generic structure of the event.

Complex attack scenarios may require security policies that include many events inter-
connected through logical operations. To simplify the policy writing task for administrators,
the Policy definition module exposes an API that can be used to define security policies. This
module provides a set of interfaces modeling the main elements of a security policy, de-
signed to facilitate the generation of the policy XML files.

Malicious users detection

The goal of the Security Violation Detection component is to apply the policy breach detection
algorithm for all policies registered in the system and for all the users that access it. To
achieve this goal, the implementation relies on the following building blocks:

Multithreaded execution. To verify multiple security policies in parallel, the detection com-
ponent is designed as a thread pool that assigns a thread to each new policy that has
to be processed. When the policy matching can no longer proceed (e.g. when the de-
tection process has to wait for monitoring data), the changes made to the initial policy
are stored as a partially matched policy and the thread is returned to the pool. Each type
of policy is periodically checked, according to a priority mechanism. Its implementation
allows the policy breach detection algorithm to verify critical policies with a higher
rate than the policies that do not have a significant impact on the system’s response to
the user.

Dynamic policy loader. The system has to be aware of both the template policies and the
partially matched ones. To this end, the Security Violation Detection component includes

7.2 – The security framework 69

a module that scans particular locations on the file system to discover existing policies.
It is able to load any policy described as an XML file and forward it to a worker thread.
Furthermore, this module provides fault tolerance by saving the partially matched poli-
cies as XML files and reloading them in case of failures, along with the template poli-
cies. This mechanism is also important for policies describing complex attack patterns,
which take a long time to manifest themselves. In such a case, the execution thread
saves the partially matched policy as a file that will be reloaded at a later point in time,
according to its priority, and the algorithm resumes its execution. The tradeoff for
storing all partially matched policies is that some of them will never be matched (i.e.
no attack is detected for that specific client) and they have to be garbage collected to
prevent the framework to load them again.

User History Management. The Security Management Framework can be used for various
systems that comply with a unique requirement: the targeted system has to collect
relevant user-generated events into a User Activity History. The User Activity History
is typically implemented as a database recording user identification information, gen-
erated event types and specific event properties. In order to provide security mecha-
nisms specifically tuned for BlobSeer, we used the introspection component to generate
the User Activity History, as it is able to generate all the relevant data needed by the se-
curity framework, while remaining non-intrusive. The user actions are recorded into
a database that includes both the users past activity and the information monitored
from their current operations. As an example, for publishing a WRITE operation in
BlobSeer, the database may store the user IP address, and the BLOB id, version, data
size and offset.

Dependency-checking engine. Each policy is defined as a set of interconnected template
events. To detect the attack targeted by the policy, the security framework has to learn
the event dependency graph, to fill in each event with real user events and to parse
the subsequent events. We designed a Dependency-checking engine to accomplish the
two following tasks: first, to parse the policy and create the event dependency graph;
second, to evaluate the logical constructions that link two adjacent events to determine
whether the detected flow of events is a match for the malicious behavior defined by
the policy.

For instance, a simple protocol breach attack in BlobSeer can be modeled as an unde-
fined number of chunk write operations, which are not followed by a publish event for
the same range of data within a specific Timeframe (i.e., an attack for which data is writ-
ten to the data providers, but it is not published). The goal of the Dependency-checking
engine in this case is to validate the attack if the Security Violation Detection component
discovers a user that performed a series of chunk write operations, but it cannot fill in
the publish event with real data in the given Timeframe.

Query creation. The policy breach detection algorithm has to submit a query to the User
History Management module each time it tries to detect monitored events that match a
template event defined by the policy. The Query creation module handles the creation
of the database queries complying with the specific requirements of the needed events.
These requirements include: building the database table names specific for the queried
event type, selecting the required fields from the database according to the Properties

70 Chapter 7 – Validation: Introducing self-management in BlobSeer

defined within the event and adding query constraints related to the event’s Timeframe
and Properties thresholds.

Task partitioning. The security framework attempts to instantiate each template policy for
every user in the system; furthermore, partially matched policies are associated with spe-
cific users. As the detection mechanisms for different policies do not interfere at any
level, the Security Management Framework is designed to be replicated on several servers
in charge of a fraction of the total number of users. This approach enables a faster at-
tack detection in the case of a large number of clients concurrently accessing the sys-
tem.

Policy enforcement

When all the template events of a security policy have been filled in with real values from
the monitored user events, the set of enforcement Actions and Constraints specified by the
policy are forwarded to the Policy Enforcement module. It verifies the Constraints and selects
the Actions corresponding to the satisfied constraints. A key type of constraints are the ones
related to the user’s trust level. This mechanism allows the Policy Enforcement component to
customize the feedback sent to the system. It imposes more severe measures for untrusted
users and applying only mild penalties for users who do not have a history of detected
malicious actions.

In the case of BlobSeer, we consider two types of feedback actions, which are predefined
in the policy-definition API:

Record the attack in the history database. This is the default operation performed for each
detected attack, as this information can provide a compact summary of a user’s be-
havior. The history of the user’s previous malicious actions is an essential input for
the Trust Management module, as well as for complex security policies that need to
correlate user events with past attacks.

Execute custom scripts. To provide a flexible feedback mechanism, the implementation of
the Policy Enforcement component enables administrators to specify custom scripts as
reactions to detected attacks. This approach allows a generic system implementation
capable of providing a feedback response tailored to the system needs. Such scripts
include sending alerts to administrators, setting thresholds on the maximum data size
for each client or preventing the client from accessing the system.

To enable self-protection in BlobSeer, we implemented a mechanism to prevent malicious
users from writing data into BlobSeer, which consists in a modified provider manager. This
is the entity that enables a BlobSeer user to write new data into the system, by supplying it
with a list of data providers that can store the new chunks. We extended the provider manager
to store the set of users that have performed malicious attacks and have to be banned from
accessing the system. When a blacklisted user intends to perform a WRITE operation and
requires a list of data providers, it will receive an error response from the provider manager;
this mechanism prevents users from further proceeding with their actions, thus denying
them the WRITE access to data. This approach, however, cannot restrict users’ read access to
data, as this operation starts with a request targeted at the version manager. Moreover, if the

7.2 – The security framework 71

malicious users have already cached the metadata and the data providers storing data they
are interested in, they can skip the first phase of the any data access operation and avoid the
blacklisting mechanism. To fully isolate malicious clients, a similar blacklisting module can
be implemented on top of each BlobSeer entity: the provider manager keeps track of existing
providers by employing a heartbeat mechanism [75]; the same approach may be used to
disseminate the blacklist updates to the data providers.

Furthermore, we enriched the API exposed by the provider manager with two primitives
allowing administrators to blacklist malicious users, or to remove specific users from the
blacklist. Thus, the BlobSeer administrator can configure the Enforcement element of a secu-
rity policy to execute a script that contacts the provider manager and indicates a user to be
blacklisted.

Trust Management

The Trust Management module represents the link between the dynamically changing state
of the data management service and the Policy Management module. This module associates
a trust level to each user, thus enabling the system to customize the feedback of any detected
policy violation by taking into account the history of each user.

The trust level is computed as a score for each user, based on the following input: the
history of malicious actions, the system state and the type of detected attacks. The Trust
Management module tracks the system state by analyzing a set of collected monitoring data.
The system state is influenced by the density of requests, but also by the load and avail-
able memory of the different entities in BlobSeer. The User Activity History is implemented
as a database in BlobSeer, and it is accessed by the Trust Management module through the
same User History Management module employed by the attack detection components. Be-
sides user activity events, the database has to include aggregated data describing physical
parameters collected from the BlobSeer nodes.

The strategy employed to compute the trust level is configurable, and the administrator
can implement a wide range of Trust Policies, relying on the history of a specific user actions,
the consequences of the detected attacks or the state of the system. To validate our Trust
Management module, we implemented a simple calculation formula for the trust level, which
takes into account the following three parameters:

trustLevel = ∑ Ai × Age(timei) × SystemState(timei) (7.1)

Parameter Ai is a numeric coefficient associated with each type of attack described by a
security policy. Its goal is to quantify the significance of the attack and its potential impact
on the overall performance. Its value is fixed for a given policy and it is stored in a table that
lists all possible attacks. The second coefficient, Age(timei), is a time function, used to give a
higher weight to more recent events.

Age(timei) =
1

currentTime − timei
(7.2)

In this formula, the currentTime is the time when we compute the trust level and timei the
time when the attack was detected. This approach guarantees two properties of the trust
level: first, it enables the trust level to increase when the user performs only valid operations;

72 Chapter 7 – Validation: Introducing self-management in BlobSeer

Figure 7.6: Architecture of the Dynamic Configuration Framework.

second, the system can quickly react to incoming attacks, as they are immediately reflected
in the decreasing value of the trust level.

The SystemState(i) is a function that returns a value describing the system state at the
moment when the user attempted the attack. We incorporated this value into the formula to
adjust the trust level according to the impact that each action has on the system. For instance,
a Denial of Service attack may be issued when the system is under a heavy load. Such an
attack will be associated with a higher penalty with respect to the trust level than if it were
attempted at a time when the system was under normal load, as it may have a major impact
on the performance of the system.

7.3 Self-configuration in BlobSeer

To provide support for self-configuration in BlobSeer, we rely on the Dynamic Configuration
Framework introduced in Section 6.3. This section shows how we integrated the auto-scaling
mechanisms into BlobSeer and it gives an insight on the implementation of the BlobSeer-
specific components.

7.3.1 Dynamic configuration in BlobSeer

In order to adapt the Dynamic Configuration Framework for the BlobSeer system, we designed
a set of interface modules depicted in the red blocks on Figure 7.6:

Configuration Estimator. This is the core of the Node Pool Manager, which is responsible for
estimating the size of the Active Nodes Pool. The decision process implements a con-
figurable dimensioning strategy, based on the monitoring information received from
BlobSeer and on the contents of the scaling policy (i.e., the policy that describes the
behavior of the Dynamic Configuration Framework, as defined in Section 6.3).

Node Score Estimator. This module computes a score associated with an active provider,
taking as an input the scaling policy, which details the parameters that make up the
score. The implemented strategy can be configured to take into account various factors
or past events monitored by the Introspection Framework.

7.3 – Self-configuration in BlobSeer 73

Information Collector. This module requires that Blobseer is equipped with the Introspec-
tion Framework, which enables it to access real-time aggregated information concern-
ing the providers load. The persistent storage of the introspective information is rep-
resented by the database that backs up the Introspection Repository. The Information
Collector needs to be aware of the structure of the database and to implement specific
queries that yield the parameters required by the Configuration Estimator.

Node Controller. The only BlobSeer entity that keeps track of the number of active providers
is the provider manager, which employs a hearbeat mechanism to discover the failed
providers; moreover, each newly deployed provider registers itself with the provider man-
ager. As a consequence, the Node Controller’s only task is to deploy and to shut down
BlobSeer data providers, as the system can take care by itself of integrating the new
providers into the data flow or of removing the inactive ones. This process mainly de-
pends on the environment where the BlobSeer system is running. As an example, on
a local cluster that hosts BlobSeer on a subset of its nodes, the Node Controller can be
implemented as a simple script that turns off processes on the unneeded nodes. On
another hand, it has to keep track of the available nodes in the cluster, in the form of a
Backup Nodes Pool, and to deploy the BlobSeer providers on some of these nodes, which
then migrate to the Active Nodes Pool.

To validate the BlobSeer Dynamic Configuration Framework, we implemented a straight-
forward strategy to compute a score for the active data providers. The data providers that
correspond to the highest scores are the ones proposed for removal from the system and the
Active Nodes Pool. Indeed, a high score reflects the low significance of a node for the over-
all system performance with respect to the configured factors. We considered two types of
factors that influence the importance of each active provider in the system:

Physical factors. The free disk space, the average bandwidth usage and the CPU load.

BlobSeer factors. The number of read/write accesses per time unit and the size of the stored
chunks.

The Configuration Estimator relies on a simple score computation formula that takes into
account the set of factors and corresponding weights and thresholds:

score =
n

∑
i=1

wfi × thwi (7.3)

In this formula, wfi represents the weight of the factor i, as defined in the scaling policy. For
each factor, the policy also specifies a set of thresholds and associated threshold weights, mod-
eled through the thwi variable. We introduced the threshold weights to handle the influence of
various factors in a more fine-grained manner.

As an example, the threshold weight of the free disk space (and therefore the score) is
higher if the monitored value of the factor is more than 50%, so as to increase the chances
that the node is selected to be shut down. However, if the free disk space is more than 90%,
the associated threshold weight is greater: thus, the score can reflect the negligible amount of
data stored on that particular node, promoting it as a more relevant candidate for the Backup
Nodes Pool.

74 Chapter 7 – Validation: Introducing self-management in BlobSeer

(a) Reducing the number of data providers. (b) Increasing the number of data providers.

Figure 7.7: Dynamic Configuration Framework: interaction with the BlobSeer entities.

With this formula as a starting point, our approach compares the scores with an overall
threshold specified by the policy. This threshold should represent the value above which
a provider is no longer useful to the system, for instance when it stores only a negligible
amount or data or it represents a bottleneck for data-access operations. This value can
be evaluated by taking into account the history of the scores computed for the running
providers under various system loads and deployment configurations. The Configuration
Estimator employs the overall threshold to estimate the new size of the Active Nodes Pool, as
being the number of data providers that obtained a score lower than the threshold. The new
size is reported to the Node Pool Manager, enabling it to proceed with the system reconfigu-
ration.

The interaction between the Dynamic Configuration Framework and the BlobSeer entities
is depicted on Figure 7.7. This sequence diagram illustrates the requests coordinated by the
Node Pool Manager for decreasing and increasing the number of the active providers used by
the BlobSeer system. The Node Pool Manager only interacts with the Introspection Framework
and the Node Controller directly manages provider removal or deployment. The operation is
transparent for the other BlobSeer entities, excepting the provider manager, which, however,
is able to automatically detect the modifications and to update its internal list of providers.

7.3.2 Zoom on replica management

The Replication Manager module is in charge of maintaining the replication degree of the
data chunks stored on the disabled providers. The reliability of the Dynamic Configuration
Framework lies in its capacity to transparently reduce the number of data providers without
affecting the stored data. We designed a Replication Manager module that takes advantage
of the efficient data management techniques in BlobSeer. The key BlobSeer features that
directly influenced the architecture of the Replication Manager are detailed as follows:

Immutable data and metadata. In BlobSeer, a data chunk is never overwritten; each over-
lapping WRITE operation generates new data chunks instead, creating a new BLOB

version. Furthermore, BlobSeer creates a new metadata tree associated with each BLOB

7.3 – Self-configuration in BlobSeer 75

Figure 7.8: Architecture of the Replication Manager.

version, whose leaves contain the addresses of the data providers that host the chunks.
As a consequence, there cannot be any concurrent write accesses on either data or
metadata. This feature is crucial for the design of the Replication Manager, as there is
no need to track or maintain replica updates, and, moreover, all replicas of a chunk of
data are consistent at any time.

Generic data and metadata providers. The implementation of the data and metadata
providers relies on generic key-value stores that can be accessed through RPC calls.
This enables the Replication Manager to contact any provider and to create new replicas
through its standard API, in a transparent manner.

The dynamic replication process relies on the following steps:

Replication request. The Replication Manager listens for replication requests from the Dy-
namic Configuration Framework, which typically include a set of chunks that need to be
replicated.

Create chunk replicas A dedicated module interacts with the Introspection Framework to dis-
cover the providers that store each chunk and a set of available providers. The chunk is
read and replicated to another data provider, through a standard write call on the data
provider.

Update metadata. The Replication Manager reads the metadata tree associated with the BLOB

version for the given chunks. It then modifies the contents of the tree leaves corre-
sponding to the chunks: for each chunk, it updates the list of chunk replicas hosted on
its corresponding leaf.

Implementation details

The architecture of the Replication Manager module presented in Figure 7.8 is based on the
following components:

Status Update Listeners. These components are in charge of collecting the replication re-
quests. Such requests can be generated by one of the following modules:

• The Dynamic Configuration Framework, when it needs to shut down some of the
running data providers.

• The Provider Manager, when it detects that a provider has failed.

• A dynamic replication engine that can analyze monitoring events from BlobSeer
and automatically tune the replication degree of the data chunks according to
their access rate.

Chunk Replicator. The first step towards the replication of a data chunk is copying it to
an available provider. The Chunk Replicator performs a set of steps similar to the ones
of a typical WRITE operation. First, it contacts the provider manager to obtain a list of
data providers that can store the new replicas. As the selected providers must not host
other replicas of the same data, the Chunk Replicator needs access to the Introspection
Framework to verify the contents of the providers. It can be configured to repeat this first
step until it obtains suitable providers or until it reaches a specified number of retries.
Second, the Chunk Replicator writes the chunks on the selected data providers using the
same RPC mechanism employed by the BlobSeer entities [75].

Metadata Updater. Once the data chunks are written on the providers, the Chunk Replicator
has finished its task. It forwards the chunk identifiers and the data providers where they
are replicated to the Metadata Updater module. It is responsible for making the replicas
available to the BlobSeer clients. To this end, it has to modify the information stored
by the metadata trees: for a specific version of a BLOB, each metadata leaf corresponds
to a data chunk and it stores a list of replicas for that chunk. The Metadata Updater
requests the metadata tree root from the version manager, it scans the tree to find the
leaf associated with a particular chunk, and finally it updates the list of existing repli-
cas, by adding the new replicas and removing the unavailable ones. This mechanism
is possible due to the design of the BlobSeer system, which avoids concurrent write
attempts on the metadata; once the BLOB version is published, no BlobSeer entity will
subsequently modify the metadata, allowing the Replication Manager to access it in an
efficient and consistent manner.

7.4 Summary

In this chapter we provide a real-life use case for the self-management frameworks proposed
in Chapter 6. We show how we enhanced BlobSeer, the versioning-based data-management
system introduced in Chapter 5, with three self-* properties: self-awareness, self-protection
and self-configuration. Additionally, we give an insight of the implementation of the self-*
mechanisms and of the required interface modules that enabled the interconnection with
BlobSeer.

77

Chapter 8
Evaluation and results

Contents

8.1 Experimental testbed: the Grid’5000 platform 78

8.1.1 Infrastructure details . 78

8.1.2 Grid’5000 experimental tools . 79

8.2 Automatic deployment tools . 79

8.3 The introspection architecture . 81

8.3.1 Impact on the Blobseer data-access performance 81

8.3.2 Visualization tool for BlobSeer-specific data 82

8.4 The security framework . 84

8.4.1 Experimental setup . 84

8.4.2 Impact of malicious users on data-access performance 85

8.4.3 Performance evaluation of the Security Management Framework . . 86

In the previous chapter, we validated the introspection framework and the generic self-
adaptation architectures by integrating them with the BlobSeer data management system.
The integration mainly focused on the implementation choices and on the design of the
interface modules that enable the interaction with BlobSeer. This chapter first introduces
Grid’5000, the experimental testbed we used. Then, it presents the deployment platform
that allowed us to perform large-scale tests involving various self-adaptation frameworks.
Furthermore, we provide a set of experimental results that assess the performance of the
introspection framework and we evaluate the self-protection BlobSeer component through
synthetic concurrent attack scenarios.

78 Chapter 8 – Evaluation and results

8.1 Experimental testbed: the Grid’5000 platform

The Grid’5000 [54, 3] project is a research effort aiming at developing a large-scale testbed
for parallel and distributed computing research. The Grid’5000 infrastructure provides re-
searchers with a highly-configurable environment, which allows users to perform repro-
ducible experiments under real-life conditions for all software layers ranging between net-
work protocols up to applications.

The platform is geographically distributed over 10 sites in France: Bordeaux, Grenoble,
Lille, Lyon, Nancy, Orsay, Reims, Rennes, Sophia-Antipolis and Toulouse. Two foreign sites
(Luxembourg and Porto Alegre in Brazil) have recently joined the Grid’5000 project, which
now features more than 7000 CPU cores.

8.1.1 Infrastructure details

Grid’5000 was developed as a hierarchical infrastructure, where the computing nodes are
grouped into clusters and several clusters form a site.

Resources

Grid’5000 is designed as a federation of independent clusters and therefore it consists of
a complex hierarchy of heterogeneous physical resources. The resource heterogeneity con-
cerns various levels of the architecture, as detailed below [3] :

Processor. The processor families include AMD Opteron (62%) and Intel Xeon EMT64
(32%), featuring mono-core (38.5%), DualCore (32%), QuadCore (27%), 12-core (2.7%)
processors.

Memory. The nodes are equipped with at least 2 GB of physical memory, which can increase
up to 48 GB for some clusters, such as parapluie on the Rennes site.

Network. The network interconnects range from Ethernet cards to high-speed Infiniband or
Myrinet links for intra-cluster communication.

Although all nodes in Grid’5000 are equipped with Unix-based operating systems, the
distributions vary across sites, as well as the set of pre-installed libraries. This issue has to
be taken into account for multi-site deployments, as user applications may require specific
libraries and tools.

Network

The various sites are interconnected through a high-performance backbone network in-
frastructure provided by RENATER, the French National Telecommunication Network for
Technology, Education and Research. The architecture is based on 10 Gbit/s dark fibers
and provides IP transit connectivity, enabling inter-site latencies in the order of 10 millisec-
onds. Within each site, the resources are typically interconnected through Gigabit Ethernet
switches. Some sites also provide high speed and low latency interconnects, such as Myrinet
or Infiniband, which feature 10 Gb/s and 20 Gb/s links, respectively.

8.2 – Automatic deployment tools 79

Data Storage

The Grid’5000 architecture provides two levels of data storage:

Local disk. Each compute node is equipped with a local hard disk accessible for user appli-
cations. It is however reserved for temporary storage, all data being deleted when the
user job is completed.

Shared storage. A network file system (NFS) [52] is deployed on each site, the shared stor-
age server being available from each compute node. It enables users to persistently
store data on Grid’5000. This feature is essential for the deployment of distributed
applications: the application code and libraries can be installed in the shared storage
space and then the user can directly access data and execute the code on multiple com-
pute nodes. Nevertheless, the NFS servers are neither replicated, nor synchronized
between Grid’5000 sites. These operations must be manually performed by the user, if
a multi-site deployment is required.

8.1.2 Grid’5000 experimental tools

Grid’5000 provides a series of tools that enable users to carry out large-scale experiments
and facilitate the deployment of customized environments:

OAR [5] is a batch scheduler that allows Grid’5000 users to issue fine-grained reservations,
ranging from one processor core to Grid-level reservations spanning over several sites
and hundreds of nodes. Users can submit batch jobs, but also create advance reserva-
tions or interactive jobs. Aside from the job scheduler, OAR also provides a set of tools
for real-time monitoring of the platform status and node availability.

Kadeploy [4] enables users to create and deploy customized operating system images on
the Grid’5000 infrastructure. Users benefit from administrator rights on their environ-
ments, being thus able to install specific software required by their applications. More-
over, Kadeploy allows users to control the entire software stack and the reproducibility
of their experiments.

The Grid’5000 API is a set of well-defined interfaces that enable secure and scalable access
to resources in Grid’5000 from any machine through standard HTTP operations.

Taktuk [18] is a tool designed for efficiently managing parallel remote executions on large
scale, heterogeneous infrastructures. It is a configurable and versatile tool that can be
used as a fast and scalable deployment solution for distributed applications.

8.2 Automatic deployment tools

To perform complex experiments involving hundreds of nodes and various interconnected
distributed systems, we developed a deployment framework for the Grid’5000 environment.
It consists of a set of configurable scripts that enable an automatic and fine-tuned deploy-
ment and execution of large-scale experiments.

80 Chapter 8 – Evaluation and results

The goal of the deployment framework is to be an automatic and reliable tool that can
assist users in performing large-scale evaluations. To achieve this goal, it has to match to
following properties:

Configurable components. The self-adaptation frameworks we developed for BlobSeer
consist of heterogeneous entities that have different requirements in terms of configu-
ration. A suitable deployment tool should deal with this prerequisite and it should en-
able users to add and configure new components to a specific deployment in a straight-
forward manner.

Automatic execution. Each experiment may involve a large number of independent evalua-
tions, such as measuring the performance of data transfers when the number of storage
nodes is increasing. To this end, it is essential to have a tool that allows users to specify
a set of parameters that can vary across the evaluation and to let the framework take
care of the repeating the test with the successive sets of parameters.

Repeatable experiments. To improve the accuracy of the obtained results, the experiments
have to be repeated several times under the same conditions. Our framework has to
re-execute each experiment automatically, relying on a number of retries fixed by the
user.

Flexible execution. The framework should allow users to develop their experiments in a
flexible manner, so that they can perform evaluations that do not depend on predefined
parameters or system settings.

We built a deployment tool to perform experiments that involve the self-adaptation com-
ponents introduced in the previous chapter. The deployment framework comprises several
key elements, designed to address the previous requirements:

Global settings. This component allows the user to define the systems that have to be in-
cluded in the deployment, along with a set of global parameters required by the em-
ployed infrastructure and middleware. For instance, to use the Grid’5000 platform,
one has to specify the type of OAR reservation used and the required identifiers, such
as the reservation id and associated key. Moreover, it includes the type of connector
used to contact the nodes (e.g. ssh), a list of the Grid’5000 sites involved in the deploy-
ment and global environment variables. The framework is in charge of propagating
the global variables on all the nodes and of synchronizing the configurations on each
Grid’5000 site.

Component specification. Each system involved in a deployment needs a specific set of
scripts describing its configuration and deployment requirements. Such scripts can
be easily integrated into the deployment framework by following a predefined for-
mat. Moreover, the description of each component comprises a configuration file that
contains specific settings and requirements. As an example, the BlobSeer description
includes parameters for the number of data and metadata providers, whereas the Intro-
spection Repository configuration file specifies the number of servers and the details of
the database.

8.3 – The introspection architecture 81

Experiment design. The framework is designed to enable flexible testing relying on config-
urable evaluation parameters. The user can define initialization scripts, to inject specific
input parameters into the deployed components, and execution scripts, to describe the
actual test. Additionally, the user can specify various parameters to be used during the
execution and a list of values for each of them. The framework will then automatically
repeat the experiments using all the possible combinations of the given input values.

Results handling. To collect all the logs generated by the deployed platforms, our frame-
work takes advantage of the shared user directory enabled by the NFS on Grid’5000.
Moreover, the executed applications can generate their own result files and logs. The
user can specify the relevant output files and the framework is in charge of gathering
and archiving them in a single file for each experiment.

8.3 The introspection architecture

We evaluated the feasibility of gathering and interpreting BlobSeer-specific data by testing
the Introspection Layer built on top of it. We employed the Introspection Framework to collect
raw data from BlobSeer, process it and extract significant information regarding the state
and the behavior of the system. To this end, we performed a series of experiments that
assess the intrusiveness of the Introspection Framework and illustrate some of the collected
data by means of a visualization tool.

8.3.1 Impact on the Blobseer data-access performance

This experiment is designed to evaluate the impact of using the BlobSeer system in conjunc-
tion with the introspection architecture. The Introspection Layer collects data from BlobSeer
without disrupting the interactions between its components, and thus no constraint is en-
forced on the user’s accesses to the BlobSeer entities. In this way, the throughput of the
BlobSeer system is not influenced by any of the self-* frameworks. The only downside of
such a system is the intrusiveness of the Instrumentation Layer that runs at the level of the
BlobSeer components and may decrease their performance.

For this experiment we used the Grid’5000 clusters located in Rennes and Orsay. The
nodes are equipped with x86_64 CPUs and at least 2 GB of RAM. We used a typical config-
uration for the BlobSeer system, consisting of 150 data providers, 20 metadata providers, one
provider manager and one version manager. Both data and metadata providers store data on their
hard disks and they are configured to store up to 64 GB and 8 GB, respectively. The MonAL-
ISA monitoring services are deployed on 20 nodes and they collect monitoring data from all
the providers, each of them being dynamically assigned to a monitoring service in the deploy-
ment phase. To persistently store all monitored parameters, we employed an Introspection
Repository, which was deployed on a dedicated physical machine within Grid’5000.

This test consists of deploying a number of concurrent clients that make a single WRITE

operation. Each client writes 1 GB of data in a separate BLOB, using a chunk size of 8 MB.
We analyze the aggregated throughput of the BlobSeer WRITE operation obtained when
deploying it standalone compared to the BlobSeer outfitted with the Introspection Layers. The
throughput is measured for a number of clients ranging from 5 to 80 and the experiment was
repeated 3 times for each value of the number of deployed clients.

82 Chapter 8 – Evaluation and results

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80

Ag
gr

eg
at

ed
 th

ro
ug

hp
ut

 (M
B/

s)

Number of clients

BSmon
BS

Figure 8.1: The aggregated throughput of the WRITE operation for BlobSeer (BS) and for
BlobSeer with the monitoring support enabled (BSMON).

Figure 8.1 shows that the performance of the BlobSeer system is not influenced by the
addition of the instrumentation code and the generation of the monitoring parameters, as in
both cases the system is able to sustain the same throughput. Moreover, the test evaluates the
performance of the BlobSeer system as the number of generated monitoring events increases:
since the Introspection Layer computes its output based on the monitored data generated for
each written chunk, the more fine-grained BLOBS we use, the more monitoring information
has to be processed. For this test, each BLOB consists of 128 chunks and therefore the data-
access performance is preserved even when the number of generated monitoring parameters
reaches 10, 000, as it is the case when testing with more than 80 clients.

8.3.2 Visualization tool for BlobSeer-specific data

To provide a graphical representation of the most important parameters yielded by the In-
trospection Layer, we implemented a visualization tool on top of a MonALISA monitoring
repository. Its goal is to allow administrators to visualize node utilization, data-access trends
or BLOB statistics by using an intuitive graphical interface.

We show the outcome of the introspection layer through an evaluation performed on
127 nodes belonging to a Grid’5000 cluster in Rennes. The nodes are equipped with
x86_64 CPUs and at least 4 GB of RAM. We deployed each BlobSeer entity on a dedicated
node, as follows: two nodes were used for the version manager and the provider manager,
10 nodes for the metadata providers, 100 nodes for the storage providers and 10 nodes acted as
BlobSeer clients, writing data to the BlobSeer system. Four nodes hosted MonALISA mon-
itoring services, which transferred the data generated by the Instrumentation Layer built on
top of the BlobSeer nodes to the MonALISA repository. The repository is the location where
the data were stored and made available to the visualization tool.

In this experiment, we used 10 BLOBS, each of them having a chunk size of 1 MB and a
total size larger than 20 GB. We created the BLOBS and we wrote 10 data blocks of 2 GB on
each BLOB. Each data block overlaps the previous one by 10%. Next, we started 10 clients
in parallel and each of them performed a number of WRITE operations on a randomly se-
lected BLOB. The blocks were written on the BLOB at random offsets and they consisted of a

8.3 – The introspection architecture 83

(a) Number of WRITE accesses on each chunk of
a BLOB, (each chunk is identified by its position
within the BLOB).

(b) The size of all the stored versions of a BLOB.

Figure 8.2: Visualization for BlobSeer-specific data.

random number of chunks, ranging between 512 MB and 2 GB in size.

We processed the raw data collected by the Monitoring Layer and extracted the higher-
level data within the Introspection Layer. Some results are presented below, along with their
graphical representations.

Access patterns. They represent a significant information that the introspection layer has
to be aware of. This information can be obtained by computing the number of
READ/WRITE accesses. The access patterns can be examined from two points of view.
The first one regards the access patterns for each BLOB. It considers the number of
READ or WRITE accesses for each chunk, for a specified version or for the whole BLOB,
and it identifies the regions of the BLOB composed of chunks with the same number of
accesses (Figure 8.2(a)). On the other hand, the access pattern visualization may focus
on the number of READ or WRITE operations performed on each provider, allowing
for a classification of the providers according to the pressure of the concurrent accesses
they have to withstand.

The size of all the stored versions of a BLOB. The differences between the successive ver-
sions of the same BLOB are presented in Figure 8.2(b), where the size of the new data
introduced by each version into the system is shown in MB. This information, corre-
lated with the number of accesses for each version, can be used to identify versions
that correspond to a small amount of data and are seldom accessed. The number of
versions and the number of accesses for each of them may as well be necessary for
a component that handles an automatic replication mechanism for intensively-used
BLOBS or versions.

84 Chapter 8 – Evaluation and results

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

Av
er

ag
e

th
ro

ug
hp

ut
 (M

B/
s)

Time (s)

30 Clients

(a) The evolution of the average throughput when
15 clients out of 30 perform malicious writes.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

Av
er

ag
e

th
ro

ug
hp

ut
 (M

B/
s)

Clients

Correct Clients
50% Malicious

Detected Malicious

(b) The average throughput under correct and ma-
licious writes.

Figure 8.3: Impact of malicious users on data-access performance.

8.4 The security framework

We evaluated the impact of enforcing security policies on top of the BlobSeer system and the
performance of the Policy Management module, through a series of large-scale experiments
performed on Grid’5000.

8.4.1 Experimental setup

We used the clusters located in Rennes and Orsay, which include compute nodes equipped
with x86_64 CPUs and at least 2 GB of RAM.

For all the experiments, we employed the same deployment settings for the BlobSeer
system. We used a typical configuration that enables the system to store massive amounts of
data that can reach the order of TB. It consists of 50 data providers, 15 metadata providers, one
provider manager and one version manager. Both data and metadata providers are configured
to store data in memory, and to persistently save it on the disk in a background thread.
In addition, we used 8 nodes for the monitoring services, which collect the user activity
information. The User Activity History is stored on a dedicated node, which also hosts the
Policy Management module. Each entity is deployed on a dedicated physical node.

Each experiment is composed of two phases. In its first phase, all BLOBS required by the
experiment are created. Its second phase consists of WRITE operations executed concurrently
by the users, each of them generating data in a separate BLOB.

We focused on the video surveillance scenario described in Section 6.2, in which a Cloud
storage service is needed to store continuous flows of data recorded by the cameras. The
video surveillance cameras are modeled as BlobSeer users that perform a sequence of WRITE

operations. All users run concurrently and each of them performs 10 writes to BlobSeer, each
written data block having a size of 256 MB. The typical chunk size employed in the BlobSeer
system is 64 MB. Therefore, a correct user always uses this chunk size for its writes, as it
guarantees a constant throughput sustained by the storage system. In this context, we define
a DoS attack as a write operation in which the number of chunks written before publishing
is much larger than the number of chunks generated by a correct user for the same size of

8.4 – The security framework 85

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50 60 70

Ti
m

e
(s

)

Malicious clients (%)

Write
First Detect
Last Detect

Figure 8.4: The write duration and the detection delay when 50 concurrent clients write to
BlobSeer.

the write. As a consequence, we simulate the DoS attacks as malicious users that write the
same amount of data, i.e. 256 MB, but use a much smaller chunk size: 2 MB.

8.4.2 Impact of malicious users on data-access performance

The first experiment shows the evolution in time of the average throughput of concurrent
users that write to BlobSeer when the system is subject to DoS attacks. For this test we used
30 concurrent users, each of them performing 10 writes. Half of the users have a malicious
behavior, performing DoS attacks. To study the impact of our security framework, we de-
fined a security policy that sets a limit on the number of chunks a user can write before
publishing the full write and we enabled the Policy Management module for the experiment.
Figure 8.3(a) shows that the initial average throughput has a sudden decrease when the ma-
licious users start attacking the system. As the Policy Management module detects the policy
violations, it feeds back this information to BlobSeer, enabling it to block the malicious users,
when they issue requests for more data providers to write chunks on. As a consequence, the
average throughput for the remaining users increases back towards its initial value.

The goal of our second experiment is to assess the impact of concurrent DoS attacks on
the performance of the storage system. Figure 8.3(b) shows the average throughput of con-
current users that write to BlobSeer, when the number of users ranges from 10 to 40. The
results correspond to three different scenarios: (1) all the users perform correct writes, (2)
50% of the users have a malicious behavior and no security mechanism is enabled to protect
the system and (3) 50% of the users have a malicious behavior and the Policy Management
module is enabled. When all the concurrent writers act as correct users, the system is able
to maintain a constant average throughput for each of them. However, when no security
mechanism is employed and half of the users attempt a DoS attack, the performance is dras-
tically lowered for every user that accesses the system. Further, the results demonstrate
that the throughput increases again, once the attackers are blocked by the Policy Management
framework.

86 Chapter 8 – Evaluation and results

8.4.3 Performance evaluation of the Security Management Framework

In order to efficiently protect BlobSeer against security threats, the Policy Management mod-
ule has to expose attacks as fast as possible, so as to limit the damage inflicted to the system
and to minimize the impact on the correct users.

We measured the detection delay when the percentage of malicious users increases
from 10% to 70% out of a total of 50 users. For each percentage of malicious users, Fig-
ure 8.4 displays the duration of the writes performed by all the users (a sequence of 10 write
operations of 256 MB each) and the delays between the beginning of the write operation
and the moments when the first and the last malicious users are detected, respectively. The
results show that the time needed to detect and block the malicious users is comparable to
the time it takes to write the data into the system. We measured an average delay of 20 sec-
onds between the total writing time and the time needed to detect all the malicious users.
It shows that the Security Framework is able to promptly react when an attack is initiated, to
enable legitimate operations to proceed by blocking malicious data transfers and to restore
data-access performance once the attackers are eliminated.

87

Part III

Integrating and evaluating BlobSeer in
Cloud environments

89

Chapter 9
The Nimbus cloud environment

Contents

9.1 The Nimbus Cloud infrastructure . 89

9.1.1 Architecture details . 90

9.1.2 Infrastructure-level services . 90

9.1.3 Platform-level services . 91

9.1.4 Virtual Machine lifecycle . 91

9.2 The Cumulus storage system . 92

9.2.1 The architecture of Cumulus . 92

9.2.2 Main features . 93

9.3 Summary . 94

This chapter focuses on the Nimbus Cloud project, giving an insight on its design and on
the features it provides to the scientific community. Furthermore, we discuss the implemen-
tation of the Nimbus IaaS Cloud and we detail the Cumulus storage service, which plays the
role of the Cloud data service in Nimbus.

9.1 The Nimbus Cloud infrastructure

Nimbus is an open-source Infrastructure-as-a-Service Cloud platform, designed to address
the needs of the scientific community in multiple contexts, ranging from high-energy
physics [50] to bioinformatics [66]. It provides on-demand virtualized computational re-
sources that the clients can fully customize and have complete control over the applications
that are executed on them.

90 Chapter 9 – The Nimbus cloud environment

9.1.1 Architecture details

The architecture of a Nimbus Cloud is based on four modular components, which deliver
the basic Infrastructure-as-a-Service functionalities to the users. The Nimbus core is devised
as an extensible framework, on top of which additional modules were built to enable easy
virtual cluster configuration, interfaces to other IaaS Clouds or optimized virtual machine
scheduling on physical resources.

The main components of a Nimbus Cloud are detailed below.

The Cloud Client. It implements a wide range of commands to facilitate user’s access to
Cloud services. The Cloud Client provides powerful tools for provisioning and manag-
ing virtual resources. Additionally, it automatically handles the creation of configura-
tion files, user authentication, and hides the calls and file transfers required to perform
complex environment deployments.

The Workspace Service. Placed at the core of the Nimbus architecture, the Workspace Service
is a standalone site VM manager that plays the role of the Cloud entry point. It coor-
dinates virtual machines life cycle and manages the compute nodes that make up the
Cloud. To interact with Cloud users, the Workspace Service implements a set of access
protocols that they can invoke to perform virtual environment management opera-
tions. Furthermore, it incorporates user authentication and authorization mechanisms
developed within the Globus [33] framework Grid Security Infrastructure (GSI) [2].

The Workspace Control. Designed as an portable agent running on each node, this com-
ponent is in charge of VM deployment, management and configuration at the level of
each Virtual Machine Manager (VMM) node. It is built to work with various hypervi-
sors, such as Xen [10] or KVM [60]. Its tasks include monitoring locally-deployed VMs
and interacting with the Workspace Service.

Cumulus. It provides Cloud data services for the Nimbus platform, playing the role of the
Nimbus storage repository for VM images. It features an open-source implementa-
tion of the S3 REST API that enables simple data management through existing tools
developed for Amazon S3. Cumulus provides users with a VM image storage repos-
itory accessible through standard interfaces, thus being integrated into Nimbus as an
essential tool in VM management and deployment.

9.1.2 Infrastructure-level services

To enhance the range of services provided by the Nimbus cloud, several additional compo-
nents have been designed to address specific problems in Infrastructure-as-a-Service Cloud
environments:

LANTorrent. This file distribution protocol provides VM image propagation services for the
Nimbus IaaS Cloud. It is built on top of a multi-cast protocol optimized for large file
transfers from a central location to a set of destination nodes. LANTorrent is embedded
into the VM management layer, being the main VM image propagation mechanism
employed by the Nimbus toolkit.

9.1 – The Nimbus Cloud infrastructure 91

Resource manager. The elastic site manager [63] is a component devised to dynamically in-
corporate physical clusters into a Nimbus Cloud. It can obtain access to new nodes by
interacting with local resource managers, such as Torque, so as to collect information
about the site usage and the available nodes. Furthermore, it can provision nodes from
other Nimbus-based Clouds or from public Clouds, like Amazon’s EC2.

Backfill VMs. In the context of IaaS clouds, the backfill VMs are defined as generic VMs
provisioned automatically by the IaaS framework using preemptible leases [64]. Such
VMs are suitable for High-Throughput workloads (HTC), typically consisting in jobs
that perform independent computations and do not need to synchronize. The backfill
VMs mechanism ensures such jobs submitted by local schedulers (e.g., Condor [103])
will eventually execute, although it can terminate VMs at any moment to accommo-
date standard, on-demand workloads.

WSRF/EC2 frontends. The WSRF service implements the default protocol employed by the
Workspace Client. The EC2 frontend provides support for the SOAP and Query interfaces
supplied by Amazon’s EC2. They allow users to easily import their applications from
EC2 Clouds to Nimbus, by enabling standard EC2 client implementations to work
seamlessly against Nimbus Clouds.

Workspace Pilot. This component was developed to enable site local resource managers
(LRM) to run jobs on the idle physical nodes that make up the Cloud. It can inter-
act with the Workspace service and shut down existing jobs when the Cloud manager
decides to use the nodes for hosting VMs.

9.1.3 Platform-level services

Recently, the Nimbus project has introduced a set open-source tools that extend the initial
Infrastructure-as-a-Service functionality of Nimbus to higher-level services described as fol-
lows:

Cloudinit.d. This is a tool designed to facilitate large-scale application deployment, man-
agement and configuration. It includes mechanisms for provisioning virtual machines
over a set of IaaS Cloud providers, either commercial or open source, on top of which
the applications are then installed, customized and executed. The main features of the
Cloudinit.d tool include easy and repeatable VM clusters deployment, coordination for
interdependent application launches, support for federated Cloud provider and for
application monitoring.

Context Broker. This component enables users to deploy “one-click” virtual clusters in a
fast and configurable manner. It is responsible for deploying a set of virtual machine
images specified by the user, and for customizing them according to user-defined roles.
Such roles can define authentication rules for individual or groups of VMs, as well as
runtime-generated configuration files and application launches.

9.1.4 Virtual Machine lifecycle

The lifecycle of a Nimbus virtual machine follows the typical pattern defined by many
Infrastructure-as-a-Service Clouds, as detailed below.

92 Chapter 9 – The Nimbus cloud environment

Image creation. To execute an application in a Cloud environment, a user must first register
a virtual machine image with the Cloud middleware. Many commercial Clouds pro-
vide standard images, together with a description of their features and the associated
price. Moreover, research communities have also created and made public various vir-
tual machine images specifically tuned for scientific applications [20]. Once the user
has access to such an image, it has to upload it into the Cloud system. In Nimbus, this
can be done by uploading the image into Cumulus, through the Nimbus Client tools,
or by using S3 standard tools.

Launching VMs. Nimbus provides two mechanisms for running virtual machines. The first
one implies selecting a VM image and launch it by employing the Cloud Client com-
mand line tools. More complex deployments that involve multiple VMs deployed si-
multaneously can be performed through the Context Broker. In this case, the user has to
create a configuration file describing the requirements of its virtual cluster, such as the
number of VMs or the VM images used to launch one or several VMs. More advanced
settings can be handled by the Context Broker, including network configuration or user
access policies. The Cloud Client handles the cluster creation. Upon booting, each VM
then contacts the Context Broker to perform the contextualization tasks.

Stopping VMs. A launched VM can be manually stopped by the user when its applications
have completed their execution. Additionally, the Cloud service itself may shut down
a running VM, if the lease it obtained upon launch has expired.

Saving a modified VM. A user can install specific applications on a running VM, as it has
full control over the operating system. To be able to subsequently use the modified
VM, the user can save it back into the Cloud repository. The Cloud Client provides
commands to snapshot a running VM.

9.2 The Cumulus storage system

Cumulus is an open-source Cloud storage system that combines efficient data-transfer mech-
anisms and data-management techniques, aiming at providing data Cloud services in the
context of scientific applications. It is designed to support swift data transfers using S3-
compatible interfaces. Its features include simple upload/download operations, fair-sharing
among concurrent users and quota support [14].

9.2.1 The architecture of Cumulus

Cumulus is designed as a modular system that features a set of interface layers to enable a
straightforward and efficient interaction with external modules. Its architecture is detailed
in Figure 9.1.

Service Interface Layer. This module is responsible for recording and interpreting client
commands. It implements Amazon’s S3 REST protocol, which is the most widely used
protocol for commercial Clouds. Thus, the service can process client requests initiated
through various libraries developed for S3, such as boto [104] or s3cmd [92].

9.2 – The Cumulus storage system 93

Figure 9.1: Architecture of the Cumulus service.

Redirection Module. To enable Cumulus to efficiently manage concurrent clients, a redi-
rection module provides support for replicated Cumulus servers backed by the same
storage service. It acts as a load balancer, forwarding the client connections to another
server if its workload exceeds some predefined limits.

Service Module. This module represents the core of the Cumulus system. Its role is to trans-
late client requests into calls to the storage backend and to send back the responses,
along with the eventual error messages. It includes an authentication module backed
by a database that stores the file and bucket permissions as set by the clients that cre-
ated them. Each client request is first validated by the authentication module, which
verifies the client’s rights with respect to the stored access control list (ACL) of the
requested object. Once the request obtains the necessary authorization, the service
invokes the appropriate method on the Storage API to process it.

Storage API. This module provides an interface that allows system administrators to cus-
tomize their service according to the Clouds requirements. Thus, using a Cumulus
service on top of a local disk may be enough for a Cloud repository serving small de-
ployments of only a few virtual machine images. Employing Cumulus as a storage
service for large-scale applications with many concurrent clients may require, how-
ever, a distributed or parallel file system as a storage backend. This module separates
the processing of client requests from the actual implementation of the storage back-
end, making Cumulus a versatile tool that can be adapted to various contexts.

Storage Backend. The default storage backend shipped with the Cumulus service imple-
ments the interaction with a POSIX-compliant file system. It provides support for in-
terconnecting Cumulus with either local file systems or parallel file systems that expose
a POSIX interface, such as NFS, PVFS or GPFS.

9.2.2 Main features

The essential aspects that make Cumulus a suitable framework for various Cloud storage
tasks are detailed below.

S3-compatible interface. Amazon’s S3 REST protocol is the “de facto” standard for data
services in Infrastructure-as-a-Service Clouds. As Cumulus implements this protocol,
it is thus compatible with a wide range of tools designed for Amazon S3. The potential
clients can simply switch to Nimbus, without any change in their VM management
tools.

Eventual consistency. To provide a service which is fully-compatible with Amazon’s S3 im-
plementation, Cumulus provides the same consistency guarantees as S3. More specif-
ically, it implements an eventual consistency model for overwriting PUT operations
and read-after-write for new object PUT calls.

Configurable storage backend. This is a crucial design choice that shapes Cumulus into a
flexible data-management system able to adapt to various configurations. According
to the needed level of storage reliability and performance, the system administrators
can easily implement new storage backends to match their specific requirements.

Support for replicated servers. When a large number of concurrent clients attempt to access
the stored data, the system may face significant bursts of requests, which can decrease
its performance. To efficiently handle such circumstances, which are representative in
the context of data-intensive applications, Cumulus employs a load-balancing mecha-
nism to split the load among various servers backed by the same storage layer.

Scalability. Cumulus is able to take advantage of multiple servers running in parallel, thus
offering improved performance and optimized data transfers for concurrent clients.

Fair sharing among clients. Experiments performed in [14] for a large number of simulta-
neous data accesses show that Cumulus is able to sustain a constant average transfer
throughput for each client. Fair sharing is essential for scientific applications relying
on distributed workers that concurrently generate or read data.

9.3 Summary

Nimbus is a popular open-source Infrastructure-as-a-Service Cloud toolkit specifically de-
signed to address the needs of the scientific community. Its usage focuses on scientific appli-
cations, which drive as well the development of additional Nimbus components that opti-
mize their performance, deployment and manageability in a Cloud environment. We chose
to conduct our Cloud-related evaluations on top of Nimbus, as it is a state-of-the art IaaS
Cloud providing a wide-range of features, as well as a flexible and modular architecture.

We target data-intensive workloads in Cloud environments. To investigate data man-
agement challenges under such scenarios, we focused on Cumulus to provide us with an
S3-compatible, Cloud-oriented framework. Among the existing open-source Cloud data ser-
vices, Cumulus offers an improved flexibility with respect to the capabilities of the storage
backend. It also provides an appropriate framework for assessing the needs of Cloud data
services and for evaluating existing storage solutions against Cloud scenarios.

95

Chapter 10
A BlobSeer-based backend for

Cumulus

Contents

10.1 Towards a file-system interface for BlobSeer 96

10.1.1 Requirements for the storage backend 96

10.1.2 The BlobSeer Namespace Manager . 97

10.1.3 The file system API . 97

10.1.4 Introducing a 2-phase write operation 98

10.2 Implementation . 99

10.2.1 Designing the BlobSeer file system . 99

10.2.2 BlobSeer-based Cumulus backend . 101

10.3 Microbenchmarks . 102

10.3.1 Environmental setup . 102

10.3.2 Upload/download performance . 103

10.3.3 Scalability evaluation . 104

10.4 Summary . 106

This chapter introduces our contribution with respect to Cloud data storage: we de-
signed and implemented a BlobSeer-based distributed backend for the Cumulus service. Its
goal is to provide high-throughput data transfers for Cloud environments, as well as to op-
timize Cumulus for highly-concurrent accesses to data. To this end, we enhanced BlobSeer
with a file-system layer, enabling it to meet the requirements of the interface defined by Cu-
mulus. Furthermore, we briefly discuss specific implementation details and we provide an
evaluation of the storage service through synthetic benchmarks.

96 Chapter 10 – A BlobSeer-based backend for Cumulus

10.1 Towards a file-system interface for BlobSeer

We designed a file-system layer on top of BlobSeer to enable a straightforward implementa-
tion of file-oriented interfaces backed by BlobSeer. We aim at providing an easily-accessible
file-system interface and a hierarchical file namespace, while preserving the efficient concur-
rent data operations built into BlobSeer.

The reasons for using BlobSeer in this context are detailed in the following section, which
summarizes the main requirements for data-management systems in Cloud environments.
Next, we introduce the file-system API we implemented on top of BlobSeer and we give
some insights on the design of the BlobSeer file system.

10.1.1 Requirements for the storage backend

Data-intensive paradigms, such as MapReduce, have recently gained a considerable inter-
est from the Cloud computing community. As the data processed by such applications is
increasing exponentially, data-management solutions have become a crucial aspect that im-
pacts the adoption rate of the Cloud. Consequently, data Cloud services have to comply
with several requirements specific for large-scale data-intensive applications.

Massive files. Data-intensive applications typically process huge amounts of records, which
cannot be hosted in separate, small files. To efficiently store such datasets, data services
have to collect all the records into massive files that can reach Terabytes of data in size.

Fine-grained access. Large datasets usually comprise billions of small records. Distributed
processing paradigms split such datasets among computing nodes, which in turn are
responsible for accessing and processing specific chunks of data. The performance of a
data-intensive application is thus dependent on the backend storage system, which has
to provide efficient access to small blocks of the same dataset for multiple concurrent
processes.

High-throughput concurrent data transfers. Parallel data processing is one of the crucial
features that allow data-intensive applications to accommodate large amounts of data.
To enable efficient support for such applications in the Cloud, data-management plat-
forms have to sustain high-throughput data transfers, even under heavy access con-
currency.

Fault tolerance. Reliability is a key requirement for Cloud storage, especially in public
Cloud environments. It can be achieved by employing fault-tolerant storage back-
ends. Moreover, data versioning is a desirable feature in such contexts, as it enables a
transparent support for rolling back incorrect or malicious data modifications.

The aforementioned requirements represent the design principles of BlobSeer, a data-
management system specifically designed to address the challenges of data-intensive ap-
plications. Its efficient support for massive data storage, as well as its ability to sustain
high-throughput data transfers under heavy client concurrency, account for our approach of
using BlobSeer as a Cloud data storage backend.

10.1 – Towards a file-system interface for BlobSeer 97

10.1.2 The BlobSeer Namespace Manager

To equip BlobSeer with a file-system interface, we designed a namespace manager, a central-
ized entity in charge of the following operations.

Manage the file hierarchy. We introduced a hierarchical directory structure on top of Blob-
Seer, where each file is mapped onto a BLOB and directories are only managed by the
namespace manager. The namespace manager also stores the file system metadata.

Map files to BLOBS. Each file name in the hierarchy is backed by a BLOB, while the direc-
tories only contain metadata. This approach allows the file-system layer to interact
with BlobSeer only to perform data-access operations on files. Moreover, we provide
versioning support for files, as they are equivalent with standard BLOBS.

Implement the file system API. The namespace manager introduces a file system interface
for BlobSeer. It implements the typical file-system operations, ranging from directory
management to file access.

10.1.3 The file system API

The BlobSeer file system provides a specific API that exposes standard file-system opera-
tions, such as create/list directories, create/open/read/write/close files. However, the file
system layer does not implement the POSIX semantics, preserving instead the definition of
the original Blobseer primitives. This design choice has several consequences on the file
system API:

Versioning interface. The file system exposes file versions in the same way as BlobSeer,
providing specific versioning-oriented primitives. The implementation of the names-
pace manager only manages file names, relying on BlobSeer to retrieve the information
related to the versions. Thus, the file-system layer enables clients to directly access
the underlying BlobSeer primitives and does not impact on the efficient versioning
support in BlobSeer.

Consistent concurrent writes. BlobSeer is optimized to provide support for multiple con-
current clients that write to the same BLOB. Its versioning-based design guarantees the
atomic creation of a new version each time the BLOB is modified. We preserve these
features at the file-system level, exposing the specific BlobSeer consistency semantics
for the WRITE operation. This is a key aspect allowing the BlobSeer file system to
obtain high throughput data transfers under heavy concurrency.

Support for concurrent appends. BlobSeer introduces APPEND support as an alternative
for writing to a specific location of the BLOB. Many distributed applications that pro-
cess small records, such as web pages, may create billions of KB-sized output files.
Managing the file-system metadata associated with such a huge amount of small files
can be a very time-consuming task impacting the performance of the storage system.
To avoid this namespace-management overhead, we also provide the APPEND primi-
tive at the level of the file system. to enable applications to collect the results generated
by concurrent processes into the same output file.

98 Chapter 10 – A BlobSeer-based backend for Cumulus

10.1.4 Introducing a 2-phase write operation

Apart from the basic file-system operations, we introduced two new primitives to optimize
the performance of writing data to BlobSeer through higher-level services, such as Cumu-
lus. The Cumulus transfer protocol streams KB-sized chunks of data from the user to the
underlying storage system. Uploading a file into the storage system requires the following
steps.

Open file. The backend storage service has to provide a file handle for the data-transfer
operations.

Write data chunks. As data is streamed from the client, Cumulus caches small data chunks
that are sent to the storage backend through a series of WRITE operations.

Close file. At the end of the upload primitive, the Cumulus service closes the file and dis-
cards the provided handler.

Each WRITE operation performed by the BlobSeer client library results in new metadata
and a new BLOB version, as detailed in Chapter 5. Consequently, translating a Cumulus
upload into a series of BlobSeer WRITE calls would be equivalent to creating a large number
of versions for a single uploaded file. Such an approach would incur several disadvantages.
First, generating new versions for each data chunk accounts for an increased pressure on the
metadata providers and on the version manager. As a result, an upload operation can be subject
to an important performance penalty and also impact the throughput of other concurrent
transfers, by creating contention at the level of the metadata providers and version manager.
Another drawback is that only the last version of the set generated by the upload would be
valid, the others reflecting only an incomplete view of the uploaded file. The system should
thus provide some mechanisms to label the valid version.

To avoid the aforementioned limitations, we introduced a 2-phase write operation in the
BlobSeer client library. It basically consists in splitting the regular BlobSeer WRITE into the
following primitives, which are also exposed at the level of the file-system interface:

Chunks write. This operation involves requesting a set of data providers from the provider
manager, and writing a range of chunks to those providers. The primitive returns the
list of chunk identifiers and the data providers storing them as an output, so as to enable
the client to keep track of the successfully written chunks.

Write publication. To complete a BlobSeer WRITE operation, the write publication primitive
has to be called with the write information issued by the chunks write as a parameter.
This operation is responsible for building the metadata tree associated with the written
chunks and for publishing the new version to the version manager. Note that the written
chunks must make up a continuous range in order for the write to be valid as a new
BlobSeer version.

The 2-phase write does not impact the performance of concurrent writes in BlobSeer, as it
enables chunk writes to be performed in parallel just as they were carried out in BlobSeer.
Furthermore, the write publication step does not change the Blobseer versioning mechanism,
nor the semantics of the complete WRITE.

10.2 – Implementation 99

Figure 10.1: Implementation details of the BlobSeer file system.

10.2 Implementation

This section describes the implementation of the BlobSeer file-system layer and details the
key features of the BlobSeer-based backend for Cumulus.

10.2.1 Designing the BlobSeer file system

The implementation of the BlobSeer file system relies on two main components depicted in
Figure 10.1. The namespace manager is designed as a standalone server responsible for storing
the file-system hierarchy. The other key component is the file-system client, implemented as a
library that exposes the BlobSeer file-system API. Both components are detailed as follows.

The Namespace Manager

The goal of the namespace manager is to manage and store the file system namespace and the
file metadata. It is implemented as a C++ server that can asynchronously serve concurrent
client requests. As Figure 10.1 shows, it features four main modules:

Manager. This is the key module in charge of processing client requests related to file-
system metadata operations. The namespace manager benefits from a lock-free, efficient
implementation. This is due to the underlying Communication Layer, which is designed
to serialize the incoming requests into a request queue and to forward one at a time to
the upper layers.

Communication Layer. The communication between the namespace manager and the client
relies on the RPC layer designed for BlobSeer and detailed in [75].

Storage Interface. We designed a extensible storage interface that allows for various imple-
mentations of the namespace storage backend.

100 Chapter 10 – A BlobSeer-based backend for Cumulus

Caching Storage Backend. We built an in-memory storage backend to optimize namespace
operations retrieval. It consists in a key-value pair map indexed by key. Each file or
directory in the file system is uniquely identified by an absolute path, which is stored
as a key by the namespace manager. For each key, the stored information includes the
creation date, the type (i.e., file or directory) and the corresponding BLOB identifier
for files. The namespace storage backend can be easily extended to persistently save
the contents of the cache in a distributed fashion, by leveraging the BlobSeer metadata
providers implementation. To this end, a hash function can be used to associate a meta-
data provider to a key, in the same way the BlobSeer client selects metadata providers to
store BLOB metadata (this mechanism is detailed in Chapter 5).

The namespace manager handles two main request categories. First, the main function of
the namespace manager is to maintain the file-system hierarchy and to enable the clients to
modify it. To this end, it exposes a set of RPC calls for creating, moving, copying, delet-
ing and listing directories. The requests that concern the directory structure are directly
processed by the namespace manager, as they do not require an interaction with BlobSeer. File
creation and opening, however, fall into the second type of requests. Each file create operation
entails a call to the CREATE primitive in BlobSeer. If this operation succeeds, the returned
BLOB identifier is stored by the namespace manager within the metadata information of the
file. For each subsequent open operation, the namespace manager forwards the BLOB identifier
to the client library, which then employs it to access the BlobSeer system for READ/WRITE

operations.

The File-System Client

The file-system client is implemented as a C++ library that exposes the file-oriented BlobSeer
API. To enable the BlobSeer file system to be used in a wide range of application contexts,
we also built library bindings in C, Java and Python.

The client library has to be installed on each node involved in the interaction with the
BlobSeer file system, as it is the key building block of any BlobSeer-based storage backend.
Its implementation relies on the following components, depicted in Figure 10.1.

Namespace Client. This module intermediates the communication between the application
layer and BlobSeer. It forwards the namespace-related user requests to the namespace
manager and returns the reply. This module was developed on top of the BlobSeer
RPC layer, which handles the serialization and transfer of the requests and their corre-
sponding replies.

File Handler. Each time a file is opened, the namespace client module retrieves the associated
BLOB identifier from the namespace manager. Further, it builds a File Handler object that
exposes the API for I/O operations and encapsulates a BlobSeer client to access the ob-
tained BLOB identifier. All the subsequent operations executed on the FileHandler are
directly performed on the BlobSeer entities, without any interaction with the namespace
manager, thus enabling the BlobSeer file system to sustain the same performance level
as the standard, BLOB-oriented interface. It does not provide POSIX semantics, expos-
ing only a WRITE operation that is directly mapped on the BlobSeer WRITE defined in

10.2 – Implementation 101

Figure 10.2: Implementation details of the BlobSeer file system.

Chapter 5. Additionally, the File Handler also provides the two primitives that make
up the 2-phase write, namely Chunks write and Write publication.

As an example, the diagram in Figure 10.2 illustrates the interactions between the client
library, the file system layer and the BlobSeer entities in the case of the most complex file
operation, the 2-phase write. To perform I/O operations on a particular file, the client has to
open the file and thus acquire the associated BLOB identifier. Next, the client initiates a set
of write chunks calls on the received File Handler, which are translated into chunk transfers to
the data providers. After all chunks are successfully written, the client can submit a publication
request to complete the BlobSeer WRITE procedure.

To improve the I/O performance, the BlobSeer file system implements a client-side
buffering mechanism, targeting both READ and WRITE operations. As each BlobSeer WRITE

involves only whole data chunks, we buffer the small requests and submit the chunk to Blob-
Seer when it has been completely filled or when the client decides to publish the WRITE. The
same technique is used for reading: the client library prefetches full chunks and serves the
reads from its cache.

10.2.2 BlobSeer-based Cumulus backend

We implemented a Cumulus storage backend based on the BlobSeer file system, so as to
make the essential BlobSeer features available in a Cloud environment. To this end, we
implemented the two building blocks defined by the Cumulus Storage API.

Build a namespace-management class. This class defines the behavior of namespace-
related operations, such as creating/deleting buckets, and opening or creating files. To
interact with the BlobSeer file system, this class employs the Namespace Client, translat-
ing each operation into its counterpart in the BlobSeer client library.

Implement a data-access class. It is equivalent to a file handler class, which defines the op-
erations related to the stored data. It is instantiated by the namespace management

102 Chapter 10 – A BlobSeer-based backend for Cumulus

Figure 10.3: BlobSeer as a backend for the Cumulus service.

class whenever a client requires access to data and it facilitates data streaming to and
from the storage backend. It is based on the BlobSeer File Handler, through which it
relays the Cumulus requests towards the storage backend.

As shown in Figure 10.3, the Cumulus service acts as a BlobSeer client, which interme-
diates the data transfers between the S3-compatible users and the BlobSeer backend. Each
Cumulus server is also able to perform concurrent transfers, thus starting multiple BlobSeer
clients in parallel to interact with the backend. This property plays to BlobSeer’s strenghts,
as it is devised to support high-throughput concurrent connections.

A particular care was given to the implementation of the WRITE operation. This oper-
ation is performed on the backend each time a piece of data is streamed from the client.
Typically, Cumulus streams small blocks of 4 KB. Since writing each KB-sized block to Blob-
Seer would generate an important performance overhead, we implemented the Cumulus
WRITE on top of the write chunks primitive in the BlobSeer file system. This approach has
two advantages. First, it benefits from the improved performance in terms of I/O through-
put corresponding to the 2-phase write in BlobSeer. Second, the Cumulus WRITE takes ad-
vantage of the client-side caching mechanism in the BlobSeer file system implementation,
which collects all the contiguous small WRITES before issuing a WRITE into BlobSeer. The
WRITE operation is fully completed only when the streaming process ends successfully and
the Cumulus client calls the CLOSE procedure. Closing a file implies flushing all the cached
data chunks and publishing all the written chunks as a new BLOB version.

10.3 Microbenchmarks

10.3.1 Environmental setup

We carried out a set of experiments on the Rennes cluster of the Grid’5000 platform. The used
nodes are interconnected through a 1 Gbps Ethernet network, each node being equipped
with at least 4 GB of memory. For each experiment, the BlobSeer deployment consists of one
version manager, one provider manager, one node for the namespace manager. The number of
data and metadata providers varies across experiments and it is specified for each of them. The

10.3 – Microbenchmarks 103

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

B
/s

)

File Size (MB)

BlobSeer
LocalFs

(a) Upload throughput for one client.

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

B
/s

)

File Size (MB)

BlobSeer
LocalFs

(b) Download throughput for one client.

Figure 10.4: Impact of the file size on the file-transfer throughput in Cumulus.

replicated Cumulus servers are typically co-deployed on the same nodes as the BlobSeer data
providers. We used a BlobSeer chunk size of 32 MB, as previous evaluations of BlobSeer have
shown this value enables the system to sustain a high-throughput for multiple concurrent
data transfers.

10.3.2 Upload/download performance

We compared the BlobSeer-based storage backend with the local file system, by measuring
the throughput of data transfer operations into Cumulus when the size of the transfered file
varies.

In each experiment, we used one node for the Cumulus server. The deployment configu-
ration for the BlobSeer system included 1 data provider and 1 metadata provider. We employed
standard tools developed for Amazon S3 to upload and download data to/from Cumulus,
namely the s3cmd [92] command line S3 client. The throughput was computed by dividing
the file size by the time it took the client command to complete.

Figure 10.4 displays a comparison between the default backend, namely the local file
system, and the BlobSeer storage backend when performing uploads and downloads for
increasing file sizes. We measured the throughput for files ranging from 100 MB to 2 GB
in size, as such sizes are representative for virtual machine images or datasets associated
with large-scale distributed applications. In the case of the Cumulus upload operation, the
BlobSeer backend outperforms the local file system of the Cumulus server by around 50%.
This behavior is mainly due to the BlobSeer efficient implementation of the communication
layer, which allows for a high-throughput transfer towards the data provider node and the
data provider’s configuration to cache the incoming data in memory and write on the disk
in a background thread. The results show an important difference between the throughput
of the upload and download operations for the Cumulus default storage backend. This
can be explained by the fact the two operations are implemented in different manners in
Cumulus. Whereas the download operation streams the file from the storage backend to the
requesting client, the implementation of the upload implies streaming the file from the client

104 Chapter 10 – A BlobSeer-based backend for Cumulus

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

B
/s

)

Concurrent clients

BlobSeer
LocalFs

PVFS

(a) Upload average throughput for 30 Cumulus
servers.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

B
/s

)

Concurrent clients

BlobSeer
LocalFs

PVFS

(b) Download average throughput for 30 Cumu-
lus servers.

Figure 10.5: Cumulus storage backend comparison under concurrent accesses.

to the server and then writing it to the persistent storage.

The local file system backend is however inefficient in a distributed deployment context,
as multiple Cumulus servers need to connect to the same storage system in order to provide
clients with a consistent image of the stored data. The comparison on Figure 10.4 serves two
purposes. First, it shows that BlobSeer is able to sustain a constant throughput regardless of
the file size. Additionally, the BlobSeer backend is more efficient than using the local disk in
the case of the upload operation. In the case of downloads, as in BlobSeer data is striped into
32 MB chunks, the client library has to retrieve the metadata associated with a specific file,
and only after that it proceeds with the download. This behavior accounts for the download
overhead observed when comparing to the default backend.

10.3.3 Scalability evaluation

To asses the impact of the BlobSeer-based backend on the scalability of the Cumulus service,
we performed a set of experiments involving replicated Cumulus servers backed by the
same BlobSeer instance and a large number of concurrent clients accessing the service.

Storage backend comparison under concurrent accesses. In the first experiment, we aim
at evaluating the performance of a multiple-server Cumulus deployment when increasing
the number of clients simultaneously transferring data. To this end, we perform a compar-
ison between several storage backends. First, we use the local disk of each Cumulus server
as the storage backend. While this approach does not store data in a distributed fashion
and therefore cannot be used for a real-life application, we included this evaluation as a
baseline against which to assess the performance of the other backends. The second storage
system employed is PVFS [49], the parallel file system introduced in Chapter 3. PVFS allows
multiple nodes to mount the same file system and to efficiently stripe and store data in a dis-
tributed manner. Finally, we evaluate the BlobSeer-based Cumulus storage in a distributed
deployment configuration.

10.3 – Microbenchmarks 105

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

B
/s

)

Cumulus Servers

BlobSeer
Single Server

(a) Upload average throughput.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

B
/s

)

Cumulus Servers

BlobSeer
Single Server

(b) Download average throughput.

Figure 10.6: Data transfer rate for 100 concurrent clients when increasing the number of
Cumulus Servers.

Both PVFS and BlobSeer were deployed in a similar configuration, involving 30 data
storage nodes and 10 metadata nodes. The replicated Cumulus servers were deployed on
the data storage nodes. In the case of PVFS, the data storage nodes were also used to mount
the file system clients, while each Cumulus server used its default backend implementation
to access them.

For each execution we measured the average throughput achieved when multiple con-
current clients perform the same operation on the Cumulus service. The clients are launched
simultaneously on dedicated machines. Each client performs an upload and a download for
a single file of 1 GB. We increased the number of concurrent clients from 1 to 100 and we
measured the average throughput of each operation. The results are shown on Figure 10.5.
As expected, when the Cumulus servers use their local disk for storage, the performance of
the data transfers is better than when Cumulus is backed by a distributed file system. As the
number of clients increases, the available network bandwidth is divided among the concur-
rent requests, resulting in lower average throughputs. The discrepancy between the results
for the local disk and those for the distributed file systems is significant for a small number
of clients. Nevertheless, when more than 100 clients transfer data simultaneously, this gap
is reduced as the overhead of performing concurrent writes to the same disk becomes more
important.

Despite the fact that the number of concurrent clients reaches 6 times the number of
data storage nodes (which amounts to 30 nodes) in BlobSeer, the system sustains an almost
constant transfer rate for more than 60 clients. This is a consequence of the efficient design
that enables BlobSeer to scale to a large number of concurrent clients, regardless of the large
data size involved: in this experiment, the transfer data reaches 180 GB. Moreover, BlobSeer
outperforms PVFS, maintaining a throughput approximatively 30% higher in the case of
uploads and 60% higher for downloads.

Impact of the server replication factor on the performance. The goal of this experiment is
to assess the data-transfer performance from another point of view. We compare the perfor-

106 Chapter 10 – A BlobSeer-based backend for Cumulus

mance achieved for the BlobSeer storage backend when the number of deployed Cumulus
servers varies. In this scenario, we used a fixed configuration for BlobSeer, namely 100 data
providers and 15 metadata providers. We fixed the number of concurrent Cumulus clients as
well, maintaining 100 simultaneous data transfers of 1 GB files for each test. We increased the
number of Cumulus servers from 1 to 100 and we measured the average throughput of the
client operations, for both upload and download. Figure 10.6 displays the results obtained
for the BlobSeer backend and for the case of a single Cumulus server backed by the local file
system. The single server values provide a baseline for assessing the speedup introduced
by replicating the servers and using a distributed file system as a backend. The measured
bandwidth of the 100 concurrent clients increases steadily as more Cumulus servers are in-
troduced, suggesting that the BlobSeer-based backend scales well with respect to the number
of servers connected to it.

10.4 Summary

The Cumulus service is designed to provide efficient data management for the scientific
community. Our goal was to enable Cumulus to harness BlobSeer’s efficient data storage and
retrieval mechanisms. More specifically, we implemented a BlobSeer-based storage backend
for Cumulus, so as to build a Cloud storage service that features two important properties.
First, it encompasses a state-of-the-art Cloud client interface, namely the S3 REST interface of
Cumulus. Second, we aimed at providing support for efficient distributed data storage and
high-throughput data transfers under concurrency by leveraging BlobSeer’s capabilities. We
performed a set of experimental evaluations that assess the scalability of multiple Cumulus
servers backed by a distributed storage solution. Furthermore, we showed the BlobSeer-
based Cumulus backend is a valuable candidate for providing high-throughput, reliable
Cloud data services in the context of highly-concurrent data access patterns.

Additionally, the Cumulus service also faces a set of challenges that can be overcome by
leveraging the BlobSeer system. One of them is introducing versioning support, which can
be easily enforced at the level of the storage backend, as versioning is one of the key design
choices of BlobSeer.

107

Part IV

Evaluation with large-scale
applications in Clouds

109

Chapter 11
MapReduce applications: impact on

cost and performance

Contents

11.1 The MapReduce paradigm . 110

11.2 Motivation . 111

11.3 Computational and Cost Model . 111

11.4 Evaluation . 112

11.4.1 Execution environment . 112

11.4.2 Virtualization overhead . 113

11.4.3 Cost analysis . 114

11.5 Related Work . 116

11.6 Summary . 117

MapReduce has recently emerged as a powerful paradigm that enables rapid imple-
mentation of a wide range of distributed data-intensive applications. In this chapter, we
investigate several aspects related to the execution of MapReduce applications in Cloud en-
vironments: the overhead penalty of executing MapReduce jobs in the Cloud, compared
to executing them in a Grid, a cost-evaluation of the rented Cloud resources, and finally,
the impact of the storage solutions employed for the input and output data. Our first goal is
achieved by comparing the runtime of two MapReduce applications in specific execution en-
vironments: first on clusters belonging to the Grid’5000 platform, then in a Nimbus Cloud.
Next, we consider the payment scheme used by Amazon for the rental of their Cloud re-
sources and we estimate the cost of using our Nimbus deployment for running MapReduce
applications.

110 Chapter 11 – MapReduce applications: impact on cost and performance

11.1 The MapReduce paradigm

MapReduce [23] was introduced by Google as a solution to the need to process datasets
up to multiple terabytes in size on a daily basis. An open-source implementation of the
MapReduce model proposed by Google is provided within the Hadoop project [113], whose
popularity rapidly increased over the past years.

The MapReduce paradigm has recently been adopted by the Cloud computing commu-
nity as a solution for data-intensive, Cloud-based applications. Cloud providers introduced
specific services to provide support for MapReduce computations, which take advantage
of the huge processing and storage capabilities the Cloud holds, but at the same time, to
provide the user with a clean and easy-to-use interface. There are several options for run-
ning MapReduce applications in Clouds: renting Cloud resources and deploying a cluster
of virtualized Hadoop instances on top of them, using the MapReduce service some Clouds
provide, or using MapReduce frameworks built on Cloud services. Amazon released Elastic
MapReduce [118], a web service based on Hadoop, which enables users to easily and cost-
effectively process large amounts of data. AzureMapReduce [46] is an implementation of the
MapReduce programming model, based on the infrastructure services the Azure Cloud [90]
offers. The framework uses the Azure Blob service as storage layer, a service that provides
scalability, high throughput and data availability.

The MapReduce programming model is based on two functions specified by the user:
map and reduce, which are executed in parallel on multiple machines. The map part parses
key/value pairs and passes them as input to the reduce function. Issues such as data splitting,
task scheduling and fault tolerance are dealt with by the MapReduce framework in a user-
transparent manner.

In general, the MapReduce model is appropriate for a large class of data-intensive ap-
plications which need to perform computations on large amounts of data. This type of ap-
plications can be expressed as computations that are executed in parallel on a large num-
ber of nodes. Many data-intensive applications belonging to various domains (from Inter-
net services and data mining to bioinformatics, astronomy etc.) can be modeled using the
MapReduce paradigm. In this chapter, we consider two representative types of MapReduce
applications as case studies.

Distributed grep. The grep application takes a huge text given as input file. It searches for
a specific pattern and outputs the occurrences of that pattern. This application is a
distributed job that is data-intensive only in the map part of the job, as the map function
is the phase that does the actual processing of the input file and pattern matching. In
contrast, the reduce phase simply aggregates the data produced by the map step, thus
processing and generating far less data than the first phase of the computation.

Distributed sort. The goal of this application is to sort key/value pairs from the input data.
The map function parses key/value pairs according to the job’s specified input format,
and emits them as intermediate pairs. On the reduce side, the computation is trivial,
as the intermediate key/value pairs are output as the final result. The sort applica-
tion generates the same amount of data as the provided input, which accounts for
an output of significant size. Distributed sort is both read-intensive, as the mappers
parse key/value pairs and sort them by key, and write-intensive, in the reduce phase

11.2 – Motivation 111

when the output is written to the distributed file system. Because of its both read- and
write-intensive nature, this application is used as the standard test for benchmarking
MapReduce frameworks.

11.2 Motivation

Our goal is to analyze the cost of moving MapReduce applications to the Cloud, in order to
assess the proper trade-off between cost and performance for this class of applications. More
specifically, we address the following aspects:

Virtualization overhead. We aim at evaluating the potential benefits of porting MapReduce
applications onto a Cloud, with respect to the performance overhead incurred when
replacing the typical MapReduce execution environment, i.e., a physical cluster, with
a virtualized one, i.e., Cloud resources. The main advantage of using virtualization
is that one can create a homogeneous environment comprising a substantial number
of machines by using a considerably smaller number of physical machines. Despite
the significant processing and storage capabilities offered by Cloud platforms, it is
also essential to understand the requirements and features of MapReduce applications
when selecting the execution environment.

Cost evaluation. Each MapReduce application entails specific requirements in terms of
computation, storage and access to data. It is therefore important to study the behavior
of various applications, as it may represent a crucial factor influencing the execution
costs in the context of the pay-per-use Cloud model. To this end, we provide a per-
formance estimation of running such applications in the Cloud and we analyze the
factors that may substantially impact the cost. In particular, we focus on storage and
data transfer costs, as they can prevail over the computational costs for data-intensive
applications.

11.3 Computational and Cost Model

Amazon’s EC2 is one of the most widely used Infrastructure-as-a-Service (IaaS) Cloud plat-
form and the S3 [91] interface has become the “de facto” standard for transferring data at
the IaaS level. Thus, in order to estimate the cost of moving MapReduce applications in the
Cloud, we take the Amazon services as the reference model. Amazon users rent compute
or storage resources, which are charged on a pay-per-use basis. An Amazon EC2 usage sce-
nario consists in first selecting a virtual machine (VM) image type and then, in deploying
multiple instances of this image. Amazon’s cost model involves 3 types of costs.

Computational cost. The CPU cost depends on the VM type, the number of required in-
stances and the duration of their use in EC2.

Data storage costs. They involve charges for persistently storing input and output data for
the executed applications. We only focus on saving data directly into S3 objects, since
existing storage alternatives, such as EBS [7] volumes, eventually rely on S3 for backup
storage and introduce additional costs.

112 Chapter 11 – MapReduce applications: impact on cost and performance

Data transfer charges include costs for moving data into and out of the Cloud. Data trans-
fers between instances are free of charge, as well as transfers between S3 and the rented
EC2 VMs. However, the transfer time for large data introduces another type of data-
transfer cost, namely the computational cost to keep alive all the VMs until data trans-
fers are completed.

To evaluate the computational cost of our experiments, we consider the c1.medium Ama-
zon image type, as it meets two requirements: first, it is equivalent to the physical nodes we
used when measuring the overhead of moving applications to the Cloud. Second, in [55],
the authors show that the c1.medium image is the most cost-effective Amazon instance. The
c1.medium instance is charged $0.19 per hour in the EU Amazon region and it features 1.7 GB
of memory, 2 virtual cores and 350 GB of instance storage.

One important parameter that influences the cost-analysis of a Cloud application is the
granularity at which the Cloud provider charges for resources. In the case of Amazon EC2,
the rented instances are charged by the hour. This assumption may conceal the differences
between storage backends or the benefits of adding resources to improve the runtime perfor-
mance, when the execution lasts less than one hour. To characterize the costs associated with
our experiments more accurately, we will assume per-second charges in our cost model, by
dividing the hourly prices in Amazon EC2 by 3600.

Regarding the storage costs, we consider Amazon S3 charges for the EU region, i.e.,
$0.140 per GB for the first TB per month. As for the transfer costs, Amazon charges only
for data transfers out of the Cloud, that is $0.12 per GB for data downloaded from the Cloud
(download is free for less than 1 GB of output data). Some applications may need to persis-
tently store all the input and output data in S3, as input data sets may be processed several
times by the application, and output results may be further refined. Besides storage costs,
Amazon S3 also charges for HTTP requests, as follows: the price for PUT, COPY, POST, or
LIST requests is $0.01 per 1,000 requests and GET requests are charged $0.01 per 10,000 re-
quests.

11.4 Evaluation

11.4.1 Execution environment

To analyze the performance and costs of MapReduce applications, we performed experi-
ments on two different platforms. To evaluate the typical performance of MapReduce access
patterns, we relied on the Grid’5000 platform, which provides the representative execution
environment for MapReduce. Next, we carried out the same evaluations in an IaaS Cloud,
namely the Nimbus Cloud, deployed on top of the Grid’5000 testbed. As a MapReduce
framework for running our computations, we chose Hadoop, the widely used open-source
implementation of Google’s MapReduce model.

11.4.1.1 HDFS

The Hadoop Distributed File System (HDFS) [95] is the default storage layer of the Hadoop
framework. It was designed for MapReduce workloads, providing storage for huge files,
fine-grained access to data, and high throughput for data transfers.

11.4 – Evaluation 113

In HDFS, data are organized into files and directories, each file being split into equally-
sized chunks (typically 64 MB in size). The architecture of HDFS follows the master-slave
model, featuring a centralized namenode in charge of managing file metadata, and a set of
datanodes that store file chunks. To achieve the high performance and reliability required for
large MapReduce jobs, HDFS also implements chunk-level replication, data-location aware
scheduling and direct I/O operations between clients and datanodes.

11.4.1.2 Hadoop

The Hadoop [113] project includes a large variety of tools for distributed applications. The
core of the Hadoop project consists of HDFS and Hadoop MapReduce, an open-source im-
plementation of the MapReduce programming paradigm. The architecture of the Hadoop
MapReduce framework is designed following the master-slave model, comprising a cen-
tralized jobtracker in charge of coordinating several tasktrackers. Usually, these entities are
deployed on the same cluster nodes as HDFS. When a user submits a MapReduce job for
execution, the framework splits the input data residing in HDFS, into equally-sized chunks.
Hadoop divides each MapReduce job into a set of tasks. Each chunk of input is processed
by a map task, executed by the tasktrackers. After all the map tasks have successfully com-
pleted, the tasktrackers execute the reduce function on the map output data. The final result
is stored into the distributed file system acting as backend storage.

11.4.2 Virtualization overhead

The first set of experiments aims at running MapReduce applications in a typical cluster en-
vironment. For this setup, we selected the Grid’5000 cluster in Orsay, i.e., 220 nodes outfitted
with dual-core x86_64 CPUs and 2 GB of RAM. Intra-cluster communication is done through
a 1 Gbps Ethernet network.

The second type of environment is Cloud-oriented: it was achieved by first deploying
the Nimbus Cloud toolkit on top of Grid’5000 physical nodes, and then by deploying VMs
inside the resulting Nimbus Cloud. For these experiments, we used 130 nodes belonging to
the Rennes site, and a VM type with features similar to the ones exhibited by the nodes from
the first setup. Thus, we deployed dual-core VMs with 2 GB of RAM each.

In both setups, we create and deployed an execution environment for Hadoop featuring
a dedicated node/VM for the jobtracker and another one for the namenode, while the rest of
the nodes/VMs served as both datanodes and tasktrackers.

In this set of experiments, we compared Hadoop’s performance in two scenarios corre-
sponding to the environmental setups previously described: when running in a Grid en-
vironment and inside a Cloud. This performance evaluation is achieved by measuring the
completion time of the grep and sort applications described in section 11.1, when Hadoop
is deployed on an increasing number of nodes/virtual machines. In both scenarios, the ap-
plication (grep or sort) takes as input a file of 12.5 GB stored in HDFS; we set the input size
and then vary the number of nodes/virtual machines from 1 to 200. At each step, we deploy
Hadoop on the respective number of machines and we measure the time it takes to run the
grep and sort applications. Using this approach, we achieve a comparison of running the
same workload in a similar setup, on the Grid and in the Cloud.

114 Chapter 11 – MapReduce applications: impact on cost and performance

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

Jo
b

co
m

ple
tio

n
tim

e
(s

)

Number of machines

Nodes
VMs

(a) Distributed Grep.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

Jo
b

co
m

ple
tio

n
tim

e
(s

)

Number of machines

Nodes
VMs

(b) Distributed Sort.

Figure 11.1: Completion time when running Hadoop in the Grid and in the Cloud.

The time needed by Hadoop to run both applications when deployed on physical and
then on virtual machines, is displayed on Figure 11.1. As expected, the job completion time
for distributed grep is smaller than for distributed sort, mainly because the latter has to generate
a much larger amount of output in the reduce phase. Also the runtime decreases when more
physical /virtual machines are added to Hadoop’s deployment, for both applications, and in
both environments. However, the performance does not improve further when using more
than a certain number of machines, around 100 in our case. This behavior can be explained
by the fact that for our input data size (i.e., 12.5 GB), the optimal number for deploying
Hadoop is 100 machines: each mapper processes a 64 MB chunk, therefore 200 mappers
are started, 2 per machine. Thus, careful consideration must be given to fine tuning the
MapReduce platform, so as to optimize the setup for a given job.

The results on Figure 11.1 also provide an assessment of the overhead of running Hadoop
in the Nimbus Cloud; this overhead is however of little significance when considering the
major benefit provided by the Cloud through virtualization. With a much smaller number
of nodes, we managed to create inside the Cloud the same setup as the testing environment
provided by a large number of physical machines in the Grid.

11.4.3 Cost analysis

In this section, we evaluate the completion time for the grep and sort applications in a Cloud
environment. We also compare it against the total time to execute the application and per-
sistently store the results in the Cloud.

We executed two large MapReduce jobs in the same Cloud environment, each of them
processing a input dataset of 100 chunks, i.e., 6.25 GB. We increased the number of VMs
comprising the virtual Hadoop cluster from 10 to 250. Figure 11.2 illustrates the completion
time for both grep and sort applications. As in the previous experiment, the runtime improves
when more VMs are added to the virtual cluster. However, the graph flattens out as the
number of VMs reaches 50 and thus the framework deploys a number of mappers equal to
the number of input data chunks.

We plotted in the same figure the total time it takes the application to download the input
data from an S3-based Cloud storage service, to complete its execution and to upload the

11.4 – Evaluation 115

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

Ti
m

e
(s

)

VMs

Completion Time
Total Time

(a) Distributed Grep.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

Ti
m

e
(s

)

VMs

Completion Time
Total Time

(b) Distributed Sort.

Figure 11.2: Completion time and total execution time (including data transfer time) when
running Hadoop in the Cloud.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250

Co
st

 ($
)

VMs

CPU
Transfer
Storage

Total

(a) Distributed Grep.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250

Co
st

 ($
)

VMs

CPU
Transfer
Storage

Total

(b) Distributed Sort.

Figure 11.3: Cost evaluation.

results back into the Cloud. We employed a Cumulus repository as the data Cloud service,
using the following configuration: 50 Cumulus servers backed by a BlobSeer-based storage
layer comprising 50 data providers and 10 metadata providers. The Cumulus servers were co-
deployed with the BlobSeer data providers, on dedicated machines. We performed a synthetic
experiment to determine the Cumulus upload and download time for 100 chunks. The input
of both applications amounts to 100 chunks of 64 MB each, whereas their respective output
is different: grep yields a negligible output and sort generates the same amount of data as its
input, i.e., 100 chunks. We consider a set of 100 parallel processes, each of them downloading
1 chunk from the S3-based service into HDFS and 100 parallel processes for performing the
upload operation from HDFS to S3. We measured the upload and download times and we
added them to the execution time of each application. We computed the download time
as the time the slowest client needed to complete its operation, as the VMs cannot start
processing input data before the full dataset is transferred. In a similar way, all nodes have
to be running while output data is uploaded; hence, the upload time is the duration of the
slowest chunk upload. The results in Figure 11.2 show the transfer time is less significant

116 Chapter 11 – MapReduce applications: impact on cost and performance

than the computation time, especially because the transfers are done in parallel, the transfer
time accounting just for uploading 1 chunk.

Next, we evaluated the cost of running the grep and sort applications in the Cloud. We
analyzed the types of costs detailed in section 11.3, namely the cost of running VM instances,
the cost of storing the data into S3 and the cost of data transfers. Since data transfers between
S3 and the Cloud environment are free, they do not impact the total cost as storage expenses.
However, data transfers have to be accounted for in terms of time, as the running VMs
cannot be stopped until all the output data has been persistently stored on a Cloud data
service.

Figure 11.3(a) shows the costs of running the grep application as a function of the number
of virtual machines that act as Hadoop nodes, for the same input size as in the previous
experiment. The computational cost is defined as the number of VMs × the execution time ×
the cost of the VM instance per second. It increases as more virtual machines are provisioned,
since the cost of deploying additional VMs outweighs the performance gain caused by the
decreasing execution time. The data transfer cost is computed as the slowest transfer time of
1 chunk × the number of VMs × the cost of one VM instance per second. As sort processes
the same amount of input data as grep, but instead it generates a large output, the transfer
costs in Figure 11.3 appear to impact more on the total cost for running the sort application.

The data storage costs do not vary with the number of deployed VMs, since the input
and output data are the same at each deployment setup. Applications that process small
amounts of data have negligible data transfer costs. In contrast, data-intensive applications
have different cost constraints: the computation time is usually less important than the time
spent in I/O operations. This is also the case for the grep application, and consequently, the
storage cost is the dominant factor in the total cost when the number of provisioned VMs is
small. The cost estimation for the sort application is presented in Figure 11.3(b). Since we
used the same input file, that is 100 chunks of text files, the results exhibit the same behaviour
as for grep. However, the data transfer costs have a more significant impact on the total cost
compared to grep. This is a consequence of the large output file generated by sort, which has
to transfer the 100 output chunks into S3 as well.

11.5 Related Work

Several studies have investigated the performance of various Cloud platforms and the costs
and benefits of running scientific applications in such environments. Most evaluations fo-
cused on the Amazon’s EC2 Cloud, as it has become the most popular Infrastructure-as-
a-Service (IaaS) platform and has imposed its specific cost model to the Cloud computing
community. The works of Walker [111], Evangelinos [27] and Hill [51] explored the tradeoffs
of running high-performance applications on EC2, showing that the Cloud environments in-
troduce a significant overhead for parallel applications compared to local clusters. The cost
of using HPC Cloud resources is discussed by Carlyle and Harrell [16], who introduced a
cost model for local resources and compared the computational cost of jobs against a Cloud
environment. However, this work includes only a benchmark-based performance evalua-
tion and no specific type of application is considered.

Several works [25, 55, 11] have focused on loosely-coupled applications, where the au-
thors conducted a cost analysis of running scientific workflows in Cloud environments.

They considered the performance penalties introduced by Cloud frameworks and evalu-
ated computational and storage costs through simulations and experiments on EC2 and a
local HPC cluster. More in-depth studies have investigated data storage in Clouds, evalu-
ating the Amazon S3 service through data-intensive benchmarks [84]. Moreover, in 2010,
Juve [55] evaluated several file systems as Cloud storage backends for workflow applica-
tions, emphasizing running times and costs for each backend. Other works [59] conducted
a comparative evaluation of Cloud platforms against Desktop Grids. They examined per-
formance and cost issues for specific volunteer computing applications and discuss hybrid
approaches designed to improve cost effectiveness. Gunarathne and Fox [47] introduced the
AzureMapReduce platform and conducted a performance comparison of several commer-
cial MapReduce implementations in Cloud environments. The analysis included scalability
tests and cost estimations on two MapReduce applications.

11.6 Summary

In this chapter, we addressed the challenges raised by executing MapReduce applications in
Cloud infrastructures instead of dedicated clusters.

We evaluated the performance delivered to the users by measuring the completion time
of two MapReduce applications, grep and sort, executed on the Hadoop framework in two
different settings: first, we deployed Hadoop on physical nodes in Grid’5000; then we re-
peated the experiments using VMs provisioned on a Nimbus Cloud. Furthermore, we eval-
uated the computation, data transfer and storage costs for running these applications in
the Cloud, by considering Amazon services’ charges as reference costs. We showed that
for one application execution, the storage costs have an essential impact on the total cost.
Nevertheless, persistently storing the input and output datasets in the Cloud allows vari-
ous processing applications to use the same data, without incurring additional storage costs.
Each application accessing an already existing dataset will only observe data transfer costs,
which, however, do not represent a significant fraction of the total costs.

We employed a BlobSeer-backed Cumulus service as a data Cloud solution for persistent
storage. The data transfer costs incurred by the applications directly depend on the perfor-
mance of the data storage service. The low transfer costs we have obtained can therefore be
correlated with the capability of a Cumulus-based service to provide high-throughput access
to data. These results are consistent with the Cumulus evaluation benchmarks we presented
in Chapter 10, indicating that BlobSeer supplies an efficient and cost-effective storage back-
end for Cloud services.

118 Chapter 11 – MapReduce applications: impact on cost and performance

119

Chapter 12
Tightly-coupled HPC applications

Contents

12.1 Case study: the Cloud Model 1 (CM1) application 120

12.1.1 Application model . 120

12.1.2 Zoom on CM1 . 120

12.2 Cloud data storage for CM1 . 121

12.2.1 Motivation . 121

12.2.2 Designing an S3-backed file system 122

12.3 Evaluation . 123

12.3.1 Experimental setup . 123

12.3.2 Completion time when increasing the pressure on the storage system 124

12.3.3 Application speedup . 125

12.4 Summary . 126

An increasing number of studies from the parallel high-performance computing com-
munity have started to focus on investigating Cloud infrastructures as alternatives to the
traditional dedicated supercomputers. In addition to the illusion of infinite computing re-
sources promoted by Cloud providers, tightly-coupled HPC applications typically require
efficient parallel storage systems and high-performance network interconnects.

This chapter discusses the means to deploy such an application in a Cloud environment
and the necessary tools to interface it with existing Cloud services. Furthermore, we evaluate
the impact of using Cloud storage solutions for a real-world application for atmospherical
simulations, Cloud Model 1 (CM1).

120 Chapter 12 – Tightly-coupled HPC applications

12.1 Case study: the Cloud Model 1 (CM1) application

12.1.1 Application model

We target tightly-coupled, high-performance computing applications specific to the scientific
community. Such applications exhibit a set of common features, discussed below.

Parallel processes. Generally, HPC applications split the initial problem into a set of sub-
problems. Then, these smaller subproblems are spread across a fixed set of processes,
which handle the data in parallel. Such applications typically rely on message-parsing
systems (e.g., MPI) for inter-process communication and synchronization.

Compute-intensive simulations. We consider applications that simulate complex phenom-
ena in various contexts, including high-energy physics, atmospheric simulations,
earthquake simulations or satellite image processing. They usually require significant
computing resources and spend more time for computing the results than for perform-
ing I/O operations.

Massive output data. Real-life simulations involve large-sized output, as they compute a
set of variables describing the evolution in time of the modeled phenomenon. They
are typically designed to store results and additional application logs in a parallel file
system, such as GPFS [94] or PVFS [49].

No concurrent access to files. Each process computes a subset of the problem output data.
Concurrently dumping results into a single shared output file may lead to I/O bot-
tlenecks prone to decrease the overall performance of the application. Therefore, we
consider applications involving independent processes, which perform write opera-
tions in separate files.

12.1.2 Zoom on CM1

Cloud Model 1 (CM1) [19] is a three-dimensional, time-dependent numerical model de-
signed for atmospheric research, in particular for modeling major phenomena such as thun-
derstorms. CM1 simulates a three-dimensional spatial domain defined by a grid of coordi-
nates specified in a configuration file. For each spatial point, the application is designed to
compute a set of problem-specific variables, including wind speed, humidity, pressure or
temperature.

A CM1 simulation involves computing the evolution in time of the parameter set asso-
ciated with each grid point. To this end, the 3D domain is split along a two-dimensional
grid and each obtained subdomain is assigned to its own process. For each time step, all
processes compute the output corresponding to their subdomain, and then they exchange
border values with the processes that handle neighboring subdomains. The computation
phases alternate with I/O phases, when each process dumps the parameters describing its
subdomain to the backend storage system.

CM1 is implemented in Fortran 95 and the communication between processes relies on
MPI [43]. The output results can be stored in various formats targeted at specific scientific

12.2 – Cloud data storage for CM1 121

communities, such as GrADS [42], netcdf [73] or HDF5 [106]. The MPI-based implemen-
tation requires each process to write data into a separate file for each time step. We em-
ployed the GrADS format in our evaluations, a binary format widely used for scientific data
sets [42].

12.2 Cloud data storage for CM1

We aim at running tightly-coupled, MPI-based applications in a Cloud environment. More
specifically, our goal is to assess the impact of relying on Cloud services to address the stor-
age needs of the application. To this end, we focused on S3-compatible storage services,
as Amazon’s S3 protocol is the standard data-transfer solution in IaaS Clouds. The reasons
behind this choice are summarized in the following section. Next, we detail our proposed
solution to enable applications to access S3-based services without requiring modifications
in the code.

12.2.1 Motivation

IaaS Clouds typically provide the user with a set of virtual machine instances which can
host applications. Such VMs are equipped with local disks the applications can use to store
generated or input data. This storage solution, however, is not persistent, as the disk is
wiped out each time a virtual machine lease ends. Amazon provides services such as the
Elastic Block Store (EBS) [7], which has been introduced in Section 3.3. Essentially, EBS
allows users to attach a virtual disk to each of their VMs, which can then be backed up
onto S3 to persistently store saved data. This solution has however a major drawback: each
EBS disk corresponds to a specific virtual machine, and therefore the various VMs cannot
share the stored data. Furthermore, as computing VMs carry out simulations and generate
pieces of the output data on local EBS disks, no application can access the whole final results
without scanning each EBS disk and possibly copying the data onto a single disk to enable
further processing. To access and further process the large amounts of data generated by
simulations, this approach is both inefficient and expensive in terms of resource usage and
costs.

Another potential solution is to deploy a parallel file system backed by the virtual ma-
chines local disks and to use it as a storage service for the application. While this approach
has the advantage of providing the application with a standard file system interface, it does
not address the persistency requirement. The computed results are either lost at the end of
the VM lease, or the user has to manually save them into a persistent repository, such as
Amazon S3, to make them available to higher-level applications. This operation increases
the time it takes for the simulation to complete, as it adds the output transferring step.

Moreover, such applications typically generate several output datasets, one for each in-
termediate time step of the simulation. These results serve as an input for higher-level tools.
For instance, data-mining and visualization tools, such as VisIt [110], may perform real-time
data analysis, debugging or data aggregation for visualizing the output at each timestep.

To address the aforementioned storage challenges, we proposed an interface module to
stream application data to S3-based services, which meets the following requirements.

122 Chapter 12 – Tightly-coupled HPC applications

Figure 12.1: The architecture of the S3-backed file system.

File-system interface. We designed a file-system interface relying on FUSE (Filesystem in
Userspace) [29]. FUSE-based file systems present the advantage of a POSIX-compatible
interface, exposing data as regular files. Additionally, a traditional interface facilitates
the execution of HPC applications in a Cloud environment, by avoiding any modifica-
tion at the level of the I/O operations.

Backup files to S3. Each WRITE operation initiated by the application is translated into an
upload to the S3 service. As a result, each simulation output file is forwarded to the
persistent Cloud storage and in the same time it is made available to higher-level tools
to process it as the simulation continues.

File prefetching. To optimize READ operations, we introduced a prefetching mechanism
which downloads the files from the S3 repository and stores them locally to improve
READ access time.

12.2.2 Designing an S3-backed file system

We designed a FUSE-based file system to enable applications that need access to standard
files to interact with S3-compliant services. Our approach implements the architecture on
Figure 12.1.

POSIX interface layer. This layer implements the FUSE API to provide applications with
a hierarchical file-system namespace. Typically, the applications we target do not per-
form namespace management operations, such as directory listing or moving. Instead,
they employ a flat directory structure to access input data or to store output files. More-
over, each node generates independent results, so that there is no need for file sharing
between processing nodes. As a consequence, we only maintain a local directory struc-
ture for each node. However, when uploading files to the S3-based service, their full
path is saved so that the namespace created by the application can be regenerated upon
download.

12.3 – Evaluation 123

Caching layer. In order to efficiently address the I/O needs of scientific applications, we
implemented a caching layer based on memory-mapped files. The main advantage
of this approach is that it improves I/O performance for both the application and the
streaming mechanism that uploads or downloads the file from S3. Moreover, memory
mapped files avoid expensive memory-copying operations and load only the accessed
regions of the files that do not fit into memory. The Interface Layer forwards the file
operations to the Caching layer, as it implements the file-management mechanism.

S3 Communication layer. It is responsible for file uploads and downloads to/from an S3-
compatible service. Each time a file is closed, the Caching Layer verifies whether it has
been locally modified. If changes are detected, the file is streamed to the S3 service.
Conversely, when an application tries to access a file that is not present on the local file
system, the file is prefetched from the S3 service and made available to the application
in the form of a local file.

Server selector. This module provides the Communication Layer with an S3 server to use for
data transfers. It requires a list of available S3 servers and it employs a hash function
to select one of them. This approach favors a uniform distribution of the VMs among
the existing S3 servers.

The S3-backed file system was implemented in Python, as it provides efficient FUSE libraries
for the file-system interface. Moreover, we employed the boto libraries [104], a set of widely
popular interfaces for accessing Amazon-compatible services.

12.3 Evaluation

To assess the performance of the various Cloud backends employed for CM1, we conducted
a set of experiments on Grid’5000. We relied on a Nimbus Cloud to provide the IaaS en-
vironment on which we deployed virtual clusters. Each virtual machine of such a cluster
is equipped with the S3-backed file system. The CM1 application is configured to execute
in parallel on the virtual cluster nodes, and to store output data into the FUSE-based file
system. The file system is backed by a large deployment of Cumulus servers, which rely on
several backends to store data in a distributed fashion.

The experiments we performed focus on analyzing the performance and scalability of
a tightly-coupled application such as CM1 in a Cloud environment, in two different con-
texts. First, we investigate the behavior of the application when the size of the deployment
increases, by maintaining the size of the processed domain constant for each process. Sec-
ond, we fix the size of the initial domain and we increase the number of processes, so as to
observe the resulting speedup as the domain is split in more subdomains.

12.3.1 Experimental setup

We used 50 nodes to deploy replicated Cumulus servers on top of three storage backends:
the local file system on each Cumulus node, BlobSeer and PVFS. Both BlobSeer and PVFS
employ 50 data providers and 10 metadata nodes, each of them being deployed on dedicated
machines. Another 64 nodes were used to deploy a Nimbus cloud that enabled us to exe-
cute the CM1 application in large virtual clusters. For each experiment we created Nimbus

124 Chapter 12 – Tightly-coupled HPC applications

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 20 40 60 80 100 120 140 160

Ru
nt

im
e

Number of processes

Cumulus-BlobSeer
Cumulus-LocalFs

Cumulus-PVFS

Figure 12.2: Application runtime for 10 minutes of simulated time with a 20 s time step.

virtual clusters of quadcore virtual machines with 4 GB of RAM. Each virtual machine is
equipped with the S3-backed file-system module, to enable CM1 to directly store its output
data in Cumulus. Each file-system module is provided with the list of running Cumulus
servers. Each virtual machine interacts with a single Cumulus server, selected through a
hash function to favor a uniform distribution of the connections.

The Cloud Model1 (CM1) application is representative for a wide class of applications
that simulate the evolution of a phenomenon in time. Each simulation is associated with a
3D domain and a time interval. A simulation consists in obtaining the values for a set of
parameters for each point of the domain and for each time step. The initial domain is split
among the processes and each of them is in charge of a particular subdomain.

We used a 3D hurricane simulation described in [15]. The application was configured
to use MPI to split the initial domain and perform the simulation in a distributed fashion.
It generates a set of output files for each MPI process and for each time step. We chose to
compute all the simulated parameters, so as to obtain the largest possible output.

12.3.2 Completion time when increasing the pressure on the storage system

For the first experiment, we executed the application for 10 minutes of simulated time, with
a time step of 20 seconds. The initial domain consists of 200 × 200 points describing a grid of
squares with an edge length of 15,000 m. We increase the number of MPI processes but we
maintain the same number of points associated with each process by increasing the precision
of the simulation (i.e. decreasing the size of the squares in the initial domain). We generate
output files each 2.5 minutes. As the total simulated time is 10 minutes, we obtain 4 output
files, each of them of 85 MB in size, amounting to 340 MB generated by each process per run.

We deployed 4 MPI processes on each virtual machine (one for each core) and increased
the number of processes from 1 to 144. The total size of the data generated for these sim-
ulation increases from 340 MB to 50 GB. Figure 12.2 shows the simulation completion time
when increasing the number of processes when output data is stored into Cumulus. The
purpose of this experiment is to assess the overhead introduced by the data storage service
when the number of concurrent clients increases. To this end, we maintained a constant size
of the simulated domain and the size of the output data per process for each point of the

12.3 – Evaluation 125

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160

Ti
m

e
(s

)

Number of processes

Cumulus-BlobSeer
Cumulus-LocalFs

Cumulus-PVFS

(a) Completion time.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 20 40 60 80 100 120 140 160

S
pe

ed
up

Number of processes

Cumulus-BlobSeer
Cumulus-LocalFs

Cumulus-PVFS

(b) Speedup.

Figure 12.3: Storage backend comparison for 30 minutes of simulated time with a 20 s time
step.

graph.

The results show that completion time increases with the number of processes, the graph
featuring a very steep increase when the number of processes is small. However, for more
than 20 processes, the curve flattens for all three storage solutions. This behavior suggests
the application is able to scale despite storing output data into an external repository such
as Cumulus.

On the one hand, the runtime increasing trend can be explained by the larger resolu-
tion of the simulation, which leads to a larger time spent in communication among MPI
processes, as there are more border values to exchange. On the other hand, the increas-
ing pressure on the storage backend of Cumulus introduces a performance penalty as well,
contributing to the increase of the execution time.

The results indicate the BlobSeer and the PVFS backends for the Cumulus servers do
not lead to a performance drop for the application that stores data into Cumulus, when
comparing against the local file system backend. Furthermore, the BlobSeer and the PVFS
backend layers provide distributed storage solutions.

Moreover, the BlobSeer-based Cumulus version slightly outperforms the PVFS Cumulus
backend. Similarly to the Cumulus benchmarks in Chapter 10, this result confirms the higher
throughput delivered by BlobSeer in this context.

12.3.3 Application speedup

This experiment aims at evaluating the speedup obtained by scaling up the number of appli-
cation processes for the same initial problem. We provide a comparison of various storage
backends prone to impact on the application performance and consequently, on the improve-
ment achieved when increasing the number of processing nodes for the same problem size.

For this evaluation, CM1 was executed for 30 minutes of simulation time, with a timestep
of 20 seconds between consecutive computations. In contrast to the previous experiment,
we increase the duration of the computation phase, so as to highlight the significance of

126 Chapter 12 – Tightly-coupled HPC applications

adding more processing nodes. Hence, each simulation consists of 90 processing steps. The
frequency of output generation is of 450 seconds, which is equivalent with 5 output files per
process and per simulation for the 30 minutes of total simulation time.

The size of the simulated spatial domain is 200 × 200 points, each of them delimiting
15,000 m of simulated surface. Figure 12.3(a) displays the completion time of the application
when increasing the number of processes. For each point on the graph, we maintain the
total size and number of points of the simulated 3D domain and we divide the domain by
the number of available processes. Therefore, Figure 12.3(a) depicts the time it takes the
application to complete when the initial problem is divided among an increasing number of
processes. Additionally, we have shown the corresponding speedup in Figure 12.3(b). The
speedup for a specific number of processes is computed as the measured execution time of
the application for a single process divided by the execution time when all the processes are
employed.

As expected, as we divide the simulated spatial domain among an increasing number
of processes, the application completes its execution much faster. The drop in the execution
time is a consequence of the smaller number of points each process is in charge of simulating,
and thus of the diminished number of border values to be exchanged between processes and
output data to be sent to storage backend. The obtained performance of the three backends
is similar, as most of the execution time accounts for computation. The computation time
is particularly important in this experiment, as we carry out 90 simulation timesteps. In
contrast, in the previous experiment we performed only 30 simulation steps and we focused
on generating large amounts of output data to assess the impact of the employed storage
system. The speedup measured for the two distributed backends is similar. We however
obtained a better speedup when using the local file system of each Cumulus server as a
storage soution. This result is mainly due to the large execution time detected for the local
file system in the case of only one process, when the all generated data had to be dumped
on a single node’s file system, whereas it was distributed among storage nodes for the two
other backends.

12.4 Summary

In this chapter we addressed the problem of employing virtual clusters provisioned from
IaaS Clouds for scientific, tightly-coupled applications. We discussed one of the most impor-
tant issues that may limit the adoption of the Cloud paradigm for this type of applications,
namely data management.

We relied on an atmospheric phenomena modeling application to conduct a set of eval-
uations in a Nimbus Cloud environment. This application is representative for a large class
of simulators that compute the evolution in time set of parameters corresponding to specific
points in a spatial domain. As a consequence, such applications generate important amounts
of output data. We evaluated an S3-compliant Cloud storage service as a storage solution
for the generated data. To this end, we employed distributed Cumulus services backed by
various storage systems. The reason for targeting this approach is that storing output data
directly into the Cloud as the application progresses can benefit higher-level applications
that further process such simulation data. As an example, visualization tools need to have
real-time access to output data for analysis and filtering purposes.

12.4 – Summary 127

We built an interfacing module to enable the application to run unmodified in a Cloud
environment and to send output data to an S3-based Cloud service. Our experiments show
that distributed Cumulus backends, such as BlobSeer or PVFS, sustain a constant throughput
even when the number of application processes that concurrently generate data becomes
3 times higher than the number of storage nodes.

128 Chapter 12 – Tightly-coupled HPC applications

129

Part V

Conclusions and perspectives

131

Chapter 13
Conclusions

Contents

Important academic and industrial actors, such as Google, Amazon or Yahoo!, have re-
cently started to investigate Cloud computing, an emerging paradigm for managing com-
puting resources. The Cloud computing model targets a broad range of applications, focus-
ing on providing cost-effective support for large-scale distributed applications, which typ-
ically require expensive dedicated data centers. As data volumes generated and processed
by such applications increase, a key requirement that directly impacts the adoption rate of
the Cloud paradigm is efficient and reliable data management.

In this manuscript we addressed the problem of building an autonomic, efficient and se-
cure storage service for Cloud environments by leveraging BlobSeer, a large-scale distributed
data-management platform.

The contributions of this manuscript can be summarized as follows:

Self-management aspects in storage systems. We proposed a set of self-management
mechanisms targeted towards data- management systems. We analyzed the requirements
of large-scale storage systems with respect to autonomic properties and we proposed global
architectures to equip such systems with several self-* capabilities. The next step was to val-
idate each self-management solution for a specific storage system. To this end, we selected
BlobSeer, a distributed storage system designed to handle massive data and to provide high-
throughput operations under heavy concurrency. The achieved results are detailed below:

Introspection mechanisms enabling self-awareness. The first step towards an autonomic
data-sharing system is to equip the system with introspection capabilities. We intro-
duced a layered architecture enabling self-awareness at the level of data-storage sys-
tems through monitoring and processing system-specific parameters. Data-gathering
tasks can be carried out by any monitoring system that exhibits a set of prerequisite

132 Chapter 13 – Conclusions

properties, such as scalability and flexibility with respect to the type of collected data.
Nevertheless, the monitored parameters, as well as the processed data yielded by the
introspection architecture depend on the needs and the applicative context of the mon-
itored storage system. To validate our architecture, we enhanced the BlobSeer system
with self-awareness, by defining relevant monitoring parameters and adapting the in-
trospection architecture accordingly. Furthermore, we built a visualization tool that
exploits the output of the self-awareness component to provide aggregated or detailed
views describing the state of the BlobSeer system and the distribution and access pat-
terns of the stored data.

Generic security framework for self-protection. We proposed a generic security frame-
work allowing administrators of data- management systems to define and automat-
ically enforce complex security policies. This security framework is designed to be
independent of the target system. Thus, it only requires access to specific monitoring
data describing the system user’s actions. The security framework includes a policy
definition component that allows administrators to define security policies for a broad
range of attacks. The employed format is flexible and extensible, supporting complex
policies that can take into account various user actions linked through temporal de-
pendencies. The proposed framework analyzes each policy and triggers a feedback
action whenever the attack scenario described by the policy matches the real user ac-
tivity monitored from the system. The feedback modules can be adapted for the target
data-storage system, as they range from blocking the detected malicious user to modi-
fying the types of services it has access to. We equipped BlobSeer with self-protection
properties by interfacing it with the security framework and we evaluated its reactiv-
ity and intrusiveness by means of Grid’5000 experiments featuring tens of concurrent
malicious clients.

Self-configuration through dynamic dimensioning. In the context of Cloud data manage-
ment, self-configuration plays a significant role in providing efficient services, while
maintaining a cost-effective deployment scheme. We developed a self-configuration
architecture aiming at automatically expanding or contracting the pool of running stor-
age servers, so as to optimize the deployment scale of a distributed storage system
with respect to the real-time workload. This self-configuration mechanism requires
access to two system-specific services: first, it needs to have access to information de-
scribing data accesses and load at the level of the storage nodes; second, it has to be
interfaced with a replication tool that continuously checks and restores the replication
degree of the stored data. We built a functional implementation of this architecture for
the Blobseer system, enabling it to automatically scale in or out the number of storage
providers, according to specific rules defined by the administrator.

Designing a BlobSeer-based file system for Cloud storage. The second part of our contri-
bution was dedicated to designing a Cloud storage service able to provide Cloud standard
interfaces, while exploiting all the advantages brought by BlobSeer in the area of large-scale
distributed storage. To achieve this goal, we developed a file system layer on top of BlobSeer,
which exposes a hierarchical file namespace enhanced with the concurrency-optimized Blob-
Seer primitives. Furthermore, we integrated the BlobSeer file system as a backend for Cu-
mulus, an efficient open-source Cloud storage service. We validated our approach through

extensive evaluations performed on Grid’5000. We devised a set of synthetic benchmarks to
measure the performance and scalability of the Cumulus system backed by BlobSeer, show-
ing it can sustain high-thorughput data transfers for up to 200 concurrent clients.

Evaluating Cloud storage solutions with real-life applications. To explore the advantages
and drawbacks of employing Cloud storage services for distributed applications that man-
age massive amounts of data, we investigated two types of applications. The experiments
were performed on top of a Nimbus Cloud deployed on physical resources supplied by
Grid’5000.

First, we carried out a series of evaluations involving typical MapReduce applications,
to assess overhead of moving MapReduce frameworks from the context for which they were
designed, i.e., cluster environments, to Cloud virtual clusters. The obtained results showed
the performance penalty of running the MapReduce applications in the Cloud is not signif-
icant compared to the efficient resource utilization achieved by using virtualization. Addi-
tionally, we performed a cost evaluation of moving such applications into the Cloud and
hosting the generated data on Cloud services, assuming a cost model similar to the pay-per-
use charges enforced by Amazon services.

The second type of application we studied is an atmospheric modeling tightly- coupled
application, built as a set of parallel processes that communicate through MPI. We evaluated
the performance of running such an application in a Cloud environment and employing a
Cloud storage service for persistently saving the output files. We relied on Cumulus for
the data storage tasks and we assessed the impact of using various storage backends on the
overall performance of the application. The obtained results show that distributed Cumulus
backends, such as BlobSeer, sustained a constant throughput as we increased the number of
concurrent processes and the amount of generated data.

134 Chapter 13 – Conclusions

135

Chapter 14
Perspectives

Contents
14.1 Self-management in Clouds . 135

14.2 Optimizing Cloud data storage . 136

14.3 BlobSeer-based Cloud data storage in more applicative contexts 137

In this manuscript we addressed several challenges emerged in the area of Cloud data
management. This chapter describes the new research directions that surfaced as this work
was carried out.

14.1 Self-management in Clouds

In this manuscript we investigated a set of key self-* properties for Cloud data-management
services. We designed generic components and we validated them by adapting them for the
BlobSeer system. This work brings forward several optimization directions and opens the
path for exploring new self-management aspects for Cloud services.

Complex self-protection techniques. We proposed a generic security framework to han-
dle complex security attacks by means of configurable security policies. One key component
of the security framework is responsible for managing the trust level of users. We plan to ex-
tend the Trust management module, so as to enable it to reflect user actions more accurately,
by taking into account more factors when computing the trust level of each user. Further-
more, we intend to introduce dynamically customizable client access rights and quality of
service based on trust values. This can be done by enhancing the security framework with
the capability to provide adaptive security policies. Thus, the administrator could define
generic security policies, which would then be automatically customized and updated for

136 Chapter 14 – Perspectives

each user, according to its trust level. In this way, specific rights can be restricted for mali-
cious users, without affecting the rest of users that access the system and without requiring
the intervention of an administrator to tune the policies.

Enhanced security in BlobSeer. To enable BlobSeer as a fully-fledged Cloud storage sys-
tem, we aim to enhance it with a set of security mechanisms. As Cloud users are typically
untrusted entities, our goal is to introduce adequate authentication and authorization mech-
anisms for BlobSeer users and to provide privacy guarantees through anonymization. To
this end, we plan to focus on certificate management, encryption capabilities, as well as cre-
dential management and access control lists.

Adaptive replication. We developed a replication manager component to complement the
self-configuration solution implemented for BlobSeer. This replication manager is in charge
of maintaining the replication degree of data chunks upon removal of a storage server from
the pool of active storage nodes. Nevertheless, this component can be enhanced with addi-
tional features, such as an adaptive modification of the replication degree of specific BLOBS,
based on the load and utilization rate of the data. Such an approach would rely on the self-
awareness component already integrated into BlobSeer, and would analyze collected access
information to make automatic decisions regarding the optimal replication degree of each
BLOB.

Self-optimization. Self-optimization addresses the improvement of a system’s perfor-
mance with respect to various parameters, such as resource utilization, workload manage-
ment or resource allocation. In the case of BlobSeer, a self-optimizing component could pri-
marily provide efficient allocation strategies for data chunks. Previous work in this area [71]
has focused on optimizing allocation based on the load of data providers. This can be ex-
tended by integrating more in-depth knowledge about the state of the system extracted from
the self-awareness component. For instance, allocation can also anticipate the usage of the
new versions of specific BLOBS by analyzing the past utilization rates of the BLOB. More-
over, self-optimization components can integrate modules in charge of identifying access
hot spots and efficiently redistributing data to achieve load balancing.

14.2 Optimizing Cloud data storage

We designed a BlobSeer-based file system and we integrated it as a Cumulus storage back-
end. This approach allowed Cumulus to exploit the efficient data management techniques
provided by the BlobSeer system. Moreover, the BlobSeer backend also plays an important
role as an enabling technology for several additional features described below.

New features for Cumulus. Cumulus aims at providing Amazon S3-compatible services
for data storage in the Cloud. Apart from the basic data upload and download mechanisms,
S3 has introduced a set of new primitives targeting large datasets: multi-part uploads and
versioning. To provide similar features in an efficient manner, Cumulus needs to be backed
by a storage solution designed with built-in support for such operations. By leveraging

14.3 – BlobSeer-based Cloud data storage in more applicative contexts 137

the BlobSeer versioning-based interface, Cumulus can introduce versions without incurring
any performance overhead. Furthermore, BlobSeer is specifically devised to exhibit a high-
throughput under concurrent accesses to the same BLOB. Thus, building a multi-part upload
service on top of BlobSeer would expose its efficient features at the level of the Cloud storage
system.

BlobSeer-based VM storage in Nimbus. Cumulus is an important building block in the
Nimbus Cloud framework, for which its fundamental role is to act as a virtual machine
image repository. By employing a BlobSeer-backed Cumulus system in this context, the
Nimbus framework can be enhanced with several interesting features. First, BlobSeer can
be integrated into Nimbus as a VM image propagation and deployment mechanism, by
leveraging the work done in [78]. This approach requires adapting the Nimbus propaga-
tion module, to enable it to support a BlobSeer-based Cumulus backend. Furthermore, the
deployment mechanisms in Nimbus have to be modified to take advantage of the efficient
image booting mechanism provided by the BlobSeer system. Second, storing VM images
into BlobSeer can leverage another BlobSeer feature, namely Nimbus can be enhanced with
the efficient multi-snapshotting capabilities described in [78].

14.3 BlobSeer-based Cloud data storage in more applicative con-
texts

We have enabled BlobSeer as a storage service for large datasets generated and processed
by scientific applications, by integrating it with the Cumulus system. We aim at further
exploring this direction and the ways to take advantage of the BlobSeer’s scalable architec-
ture and high-throughput concurrent data transfers through evaluations of various classes
of applications.

Tightly-coupled applications. We plan to perform more in-depth evaluations that employ
Cumulus as a storage service for tightly-cloupled scientific applications. More specifically,
our goal is to conduct experiments on larger-scale deployments and to assess the impact of
various types of storage, ranging from file systems deployed inside the virtual machines to
Cumulus-based approaches. Furthermore, it is also important to evaluate various workloads
and access patterns, as well as the advantages of leveraging Cumulus for online visualization
of the generated simulation results.

Workflow applications. Several studies have tried to asses the performance of workflow
applications in Cloud environments [25, 55]. Workflows are loosely-coupled parallel appli-
cations that comprise a set of tasks linked through data dependencies. In contrast to MPI-
based applications, which communicate through message passing mechanisms, workflows
typically communicate through distributed filesystems. Thus, each task writes its output
files into the shared storage, from where the next tasks can access it as input. This particular
access pattern is an interesting case study for Cumulus, as it requires a distributed storage
solution that provides efficient read and write access to data. In this scenario, we aim at eval-
uating the performance of several Cumulus backends for various workflow applications.

138 Chapter 14 – Perspectives

Cost evaluations. We have conducted a set of experiments to assess the cost of two repre-
sentative MapReduce applications executed in Cloud environments. We intend to widen the
range of evaluated MapReduce applications and to determine the most cost-effective stor-
age solution for each type of workload. Furthermore, we plan to extend our cost evaluations
at the level of other types of distributed applications, including workflows or MPI-based
applications.

139

Bibliography

[1] Cloud Security Alliance. http://cloudsecurityalliance.org/research/initiatives/
top-threats/.

[2] Globus Grid Security Infrastructure. http://www.globus.org/security/overview.html.

[3] Grid’5000. https://www.grid5000.fr/.

[4] The Kadeploy project. http://kadeploy.imag.fr/.

[5] The OAR project. http://oar.imag.fr/.

[6] Amazon Auto Scaling. http://aws.amazon.com/autoscaling/.

[7] Amazon Elastic Block Store (EBS). http://aws.amazon.com/ebs/.

[8] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.

[9] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Looking up data in P2P systems. Communications of the ACM, 46:43–48, February 2003.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
SIGOPS Operating Systems Review, 37:164–177, October 2003.

[11] G.B. Berriman, G. Juve, E. Deelman, M. Regelson, and P. Plavchan. The application of
cloud computing to astronomy: A study of cost and performance. In 2010 Sixth IEEE
International Conference on e-Science Workshops, pages 1 –7, dec. 2010.

[12] Windows Azure Blob. http://msdn.microsoft.com/en-us/library/dd179376.aspx.

[13] Dhruba Borthakur. The Hadoop Distributed File System: Architecture and Design. The
Apache Software Foundation, 2007.

[14] John Bresnahan, Kate Keahey, David LaBissoniere, and Tim Freeman. Cumulus: an
open source storage cloud for science. In Proceedings of the 2nd international workshop
on Scientific cloud computing, ScienceCloud ’11, pages 25–32, New York, NY, USA, 2011.
ACM.

140 BIBLIOGRAPHY

[15] George H. Bryan and Richard Rotunno. Evaluation of an analytical model for the
maximum intensity of tropical cyclones. Journal of the Atmospheric Sciences, 66(10):3042–
3060, 2009.

[16] A.G. Carlyle, S.L. Harrell, and P.M. Smith. Cost-effective hpc: The community or
the cloud? In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference on, pages 169 –176, 30 2010-dec. 3 2010.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a dis-
tributed storage system for structured data. In Proceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation - Volume 7, OSDI ’06, pages 15–15,
Berkeley, CA, USA, 2006. USENIX Association.

[18] B. Claudel, G. Huard, and O. Richard. Taktuk, adaptive deployment of remote execu-
tions. In HPDC ’09, pages 91–100, New York, NY, USA, 2009. ACM.

[19] Cloud Model 1. http://www.mmm.ucar.edu/people/bryan/cm1/.

[20] Science Clouds. http://www.scienceclouds.org/.

[21] Andrew W. Cooke, Alasdair J. G. Gray, Werner Nutt, James Magowan, Manfred Oev-
ers, Paul Taylor, Roney Cordenonsi, Rob Byrom, Linda Cornwall, Abdeslem Djaoui,
Laurence Field, Steve Fisher, Steve Hicks, Jason Leake, Robin Middleton, Antony J.
Wilson, Xiaomei Zhu, Norbert Podhorszki, Brian A. Coghlan, Stuart Kenny, David
O’Callaghan, and John Ryan. The relational grid monitoring architecture: Mediating
information about the grid. Journal of Grid Computing, 2(4):323–339, 2004.

[22] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, and Robert
Morris. Designing a DHT for low latency and high throughput. In Proceedings of the
1st conference on Symposium on Networked Systems Design and Implementation - Volume 1,
pages 7–7, Berkeley, CA, USA, 2004. USENIX Association.

[23] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[24] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles, SOSP ’07, pages
205–220, New York, NY, USA, 2007. ACM.

[25] E. Deelman, G. Singh, M. Livny, and al. The cost of doing science on the cloud: the
Montage example. In Supercomputing’08, SC ’08, pages 50:1–50:12, Piscataway, NJ,
USA, 2008. IEEE Press.

[26] Phillip Dickens and Jeremy Logan. Towards a high performance implementation of
MPI-IO on the Lustre file system. In OTM ’08: Proceedings of the OTM 2008 Confederated
International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part I on On the
Move to Meaningful Internet Systems, pages 870–885, Berlin, Heidelberg, 2008. Springer-
Verlag.

BIBLIOGRAPHY 141

[27] Constantinos Evangelinos and Chris N. Hill. Cloud Computing for parallel Scientific
HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate Mod-
els on Amazon’s EC2. In Cloud Computing and Its Applications, October 2008.

[28] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architec-
ture. ACM Transactions on Internet Technology, 2(2):115–150, 2002.

[29] File System in UserspacE (FUSE). http://fuse.sourceforge.net.

[30] Flexiscale. http://www.flexiscale.com/.

[31] I. Foster, Yong Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-
degree compared. In Grid Computing Environments Workshop, 2008. GCE ’08, pages 1
–10, nov. 2008.

[32] Ian Foster. What is the grid? - a three point checklist. GRIDtoday, 1(6), July 2002.

[33] Ian Foster. Globus toolkit version 4: Software for service-oriented systems. In IFIP
International Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779,
pages 2–13, 2005.

[34] Ian Foster and Carl Kesselman, editors. The Grid: blueprint for a new computing infras-
tructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[35] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of High Performance Computing Ap-
plications, 15(3):200–222, 2001.

[36] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 42:5–18, January 2003.

[37] Jeremy Geelan, Markus Klems, Reuven Cohen, Jeff Kaplan, Douglas Gourlay, Prais-
ing Gaw, Damon Edwards, Brian de Haaff, Ben Kepes, Kirill Sheynkman, Omar Sul-
tan, Kevin Hartig, Jan Pritzker, Trevor Doerksen, Thorsten von Eicken, Paul Wallis,
Michael Sheehan, Don Dodge, Aaron Ricadela, Bill Martin, Ben Kepes, and Irving W.
Berger. Twenty-One Experts Define Cloud Computing. 2009.

[38] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.
SIGOPS - Operating Systems Review, 37(5):29–43, 2003.

[39] GoGrid. http://www.gogrid.com/.

[40] Google Docs. http://docs.google.fr/.

[41] Google Maps. http://maps.google.fr/.

[42] Grid Analysis and Display System (GrADS). http://www.iges.org/grads/.

[43] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. High-performance,
portable implementation of the MPI Message Passing Interface Standard. Parallel Com-
puting, 22(6):789–828, September 1996.

[44] Robert L. Grossman. The case for cloud computing. IT Professional, 11(2):23–27, 2009.

142 BIBLIOGRAPHY

[45] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. Soap version 1.2 part 1: Mes-
saging framework (second edition). W3C Recommandation, pages 240–8491, 2007.

[46] T. Gunarathne, Tak-Lon Wu, J. Qiu, and G. Fox. Mapreduce in the clouds for science.
In 2010 IEEE Second International Conference on Cloud Computing Technology and Science
(CloudCom), pages 565 –572, 30 2010-dec. 3 2010.

[47] T. Gunarathne, Tak-Lon Wu, J. Qiu, and G. Fox. Mapreduce in the clouds for science.
In 2010 IEEE Second International Conference on Cloud Computing Technology and Science
(CloudCom), pages 565 –572, 30 2010-dec. 3 2010.

[48] Dan Gunter, Brian Tierney, Keith Jackson, Jason Lee, and Martin Stoufer. Dynamic
monitoring of high-performance distributed applications. In Applications, Proceedings
of the 11th IEEE Symposium on High Performance Distributed Computing, pages 163–170,
2002.

[49] Ibrahim F. Haddad. Pvfs: A parallel virtual file system for linux clusters. Linux Journal,
2000, November 2000.

[50] A Harutyunyan, P Buncic, T Freeman, and K Keahey. Dynamic virtual alien grid sites
on nimbus with cernvm. Journal of Physics: Conference Series, 219(7):072036, 2010.

[51] Z. Hill and M. Humphrey. A quantitative analysis of high performance computing
with amazon’s ec2 infrastructure: The death of the local cluster? In Grid Computing,
2009 10th IEEE/ACM International Conference on, pages 26 –33, oct. 2009.

[52] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS file server
appliance. In WTEC’94: Proceedings of the USENIX Winter 1994 Technical Conference
on USENIX Winter 1994 Technical Conference, pages 19–19, Berkeley, CA, USA, 1994.
USENIX Association.

[53] Paul Horn. Autonomic computing: IBM’s Perspective on the State of Information
Technology. 2001.

[54] Yvon Jégou, Stephane Lantéri, Julien Leduc, Melab Noredine, Guillaume Mornet, Ray-
mond Namyst, Pascale Primet, Benjamin Quetier, Olivier Richard, El-Ghazali Talbi,
and Touche Iréa. Grid’5000: a large scale and highly reconfigurable experimental grid
testbed. International Journal of High Performance Computing Applications, 20(4):481–494,
November 2006.

[55] G. Juve, E. Deelman, K. Vahi, and al. Data Sharing Options for Scientific Workflows on
Amazon EC2. In Supercomputing’10, SC ’10, pages 1–9, Washington, DC, USA, 2010.
IEEE Computer Society.

[56] Lori M. Kaufman. Data security in the world of cloud computing. IEEE Security and
Privacy, 7:61–64, July 2009.

[57] Kate Keahey and Tim Freeman. Science clouds: Early experiences in cloud computing
for scientific applications. In CCA ’08: Cloud Computing and Its Applications, Chicago,
IL, USA, 2008.

BIBLIOGRAPHY 143

[58] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36:41–50, January 2003.

[59] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D.P. Anderson. Cost-benefit analysis
of cloud computing versus desktop grids. In Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1 –12, may 2009.

[60] KVM Project. http://www.linux-kvm.org/page/Main_Page.

[61] I. Legrand, H. Newman, R. Voicu, et al. MonALISA: An agent based, dynamic service
system to monitor, control and optimize grid based applications. In Computing for High
Energy Physics, Interlaken, Switzerland, 2004.

[62] Lustre. http://wiki.lustre.org/.

[63] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to elastically
extend site resources. IEEE International Symposium on Cluster Computing and the Grid,
0:43–52, 2010.

[64] Paul Marshall, Kate Keahey, and Timothy Freeman. Improving utilization of infras-
tructure clouds. In IEEE International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 205–214. IEEE, 2011.

[65] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Distributed Monitoring Sys-
tem: Design, Implementation, and Experience. Parallel Computing, 30(7), July 2004.

[66] A. Matsunaga, M. Tsugawa, and J. Fortes. CloudBLAST: Combining MapReduce and
virtualization on distributed resources for bioinformatics applications. In ESCIENCE
’08: Proceedings of the 2008 Fourth IEEE International Conference on eScience, pages 222–
229, Washington, DC, USA, 2008. IEEE Computer Society.

[67] Peter Mell and Tim Grance. The NIST definition of cloud computing. National Institute
of Standards and Technology, 53(6):50, 2009.

[68] Mike Mesnier, Gregory R. Ganger, and Erik Riedel. Object-based storage. IEEE Com-
munications Magazine, 41(8):84–90, 2003.

[69] Microsoft Office Live. http://www.officelive.com/.

[70] Globus Monitoring and Discovery System. http://www.globus.org/toolkit/mds/.

[71] Jesús Montes, Bogdan Nicolae, Gabriel Antoniu, Alberto Sánchez, and Maria Pérez.
Using Global Behavior Modeling to Improve QoS in Cloud Data Storage Services. In
CloudCom ’10: Proceedings of the 2nd IEEE International Conference on Cloud Computing
Technology and Science, pages 304–311, Indianapolis, United States, October 2010.

[72] Rafael Moreno-Vozmediano, Ruben S. Montero, and Ignacio M. Llorente. Elastic man-
agement of cluster-based services in the cloud. In ACDC ’09: Proceedings of the 1st
workshop on Automated control for datacenters and clouds, pages 19–24, New York, NY,
USA, 2009. ACM.

[73] NetCDF (Network Common Data Form). http://www.unidata.ucar.edu/software/
netcdf/.

144 BIBLIOGRAPHY

[74] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service for com-
puter networks. IEEE Communications, 32(9):33–38, September 1994.

[75] Bogdan Nicolae. BlobSeer: Towards efficient data storage management for large-scale, dis-
tributed systems. PhD thesis, Université de Rennes 1, Rennes, France, 2010.

[76] Bogdan Nicolae, Gabriel Antoniu, and Luc Bougé. Enabling high data throughput in
desktop grids through decentralized data and metadata management: The BlobSeer
approach. In Proceedings of the 15th International Euro-Par Conference, pages 404–416,
Delft, Netherlands, 2009.

[77] Bogdan Nicolae, Gabriel Antoniu, Luc Bougé, Diana Moise, and Alexandra Carpen-
Amarie. BlobSeer: Next generation data management for large scale infrastructures.
Journal of Parallel and Distributed Computing, 71(2):168–184, 2011.

[78] Bogdan Nicolae, John Bresnahan, Kate Keahey, and Gabriel Antoniu. Going Back and
Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds. In The 20th
International ACM Symposium on High-Performance Parallel and Distributed Computing
(HPDC 2011), San José, CA, United States, June 2011.

[79] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman,
Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-Source Cloud-
Computing System. In Proc. 9th IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid, pages 124–131, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[80] Open Cloud Computing Interface. http://occi-wg.org/.

[81] Open Grid Forum. http://www.gridforum.org/.

[82] OpenNebula. http://opennebula.org/.

[83] OpenStack. http://www.openstack.org/projects/compute/.

[84] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. Ama-
zon S3 for science grids: a viable solution? In Proceedings of the 2008 international
workshop on Data-aware distributed computing, DADC ’08, pages 55–64, New York, NY,
USA, 2008. ACM.

[85] Manish Parashar and Salim Hariri. Autonomic computing: An overview. In Uncon-
ventional Programming Paradigms, pages 247–259. Springer Verlag, 2005.

[86] D.F. Parkhill. The challenge of the computer utility. Number p. 246 in The Challenge of
the Computer Utility. Addison-Wesley Pub. Co., 1966.

[87] The Eucalyptus Project. http://open.eucaplytus.com.

[88] The Nimbus Project. http://www.nimbusproject.org/.

[89] M. Rahman, R. Ranjan, and R. Buyya. A taxonomy of autonomic application manage-
ment in grids. In Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International
Conference on, pages 189 –196, dec. 2010.

BIBLIOGRAPHY 145

[90] Tejaswi Redkar. Windows Azure Platform. Apress, 2010.

[91] Amazon Simple Storage Service (S3). http://aws.amazon.com/s3/.

[92] S3cmd tools. http://s3tools.org/s3cmd.

[93] Dan Sanderson. Programming Google App Engine: Build and Run Scalable Web Apps on
Google’s Infrastructure. O’Reilly Media, Inc., 2009.

[94] Frank B. Schmuck and Roger L. Haskin. GPFS: A shared-disk file system for large
computing clusters. In FAST ’02: Proceedings of the Conference on File and Storage Tech-
nologies, pages 231–244. USENIX Association, 2002.

[95] K. Shvachko, H. Huang, S. Radia, and R. Chansler. The Hadoop distributed file system.
In 26th IEEE (MSST2010) Symposium on Massive Storage Systems and Technologies, May
2010.

[96] Roy Sterritt. Autonomic computing. Innovations in Systems and Software Engineering,
1(1):79–88, 2005.

[97] Roy Sterritt, Manish Parashar, Huaglory Tianfield, and Rainer Unland. A concise in-
troduction to autonomic computing. Advanced Engineering Informatics, 19:181–187, July
2005.

[98] OpenStack Storage. http://openstack.org/projects/storage/.

[99] Ceph File System. http://ceph.newdream.net/.

[100] HDFS. The Hadoop Distributed File System. http://hadoop.apache.org/common/docs/
r0.20.1/hdfs_design.html.

[101] The Parallel Virtual File System. http://www.pvfs.org/.

[102] Windows Azure Table. http://msdn.microsoft.com/en-us/library/dd179463.aspx.

[103] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in prac-
tice: the Condor experience: Research articles. Concurrency and Computation:Practice
and Experience, 17(2-4):323–356, 2005.

[104] The Boto Python interface to Amazon Web Services. http://code.google.com/p/boto/.

[105] The Django Project. https://www.djangoproject.com/.

[106] The HDF Group. http://www.hdfgroup.org/HDF5/.

[107] Eno Thereska, Brandon Salmon, On Salmon, John Strunk, Matthew Wachs,
Michael Abd el malek, Julio Lopez, and Gregory R. Ganger. Stardust: Tracking activity
in a distributed storage system. In ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (Saint-Malo), pages 3–14. ACM Press, 2006.

[108] Top500. http://www.top500.org/.

146 BIBLIOGRAPHY

[109] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: towards a Cloud definition. SIGCOMM Computer Communication Review,
39(1):50–55, 2009.

[110] VisIt. https://wci.llnl.gov/codes/visit/.

[111] Edward Walker. Benchmarking Amazon EC2 for high-performance scientific comput-
ing. LOGIN, 33(5):18–23, October 2008.

[112] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn.
Ceph: a scalable, high-performance distributed file system. In OSDI ’06: Proceedings of
the 7th symposium on Operating systems design and implementation, pages 307–320, Berke-
ley, CA, USA, 2006. USENIX Association.

[113] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.

[114] Himanshu Yadava. The Berkeley DB Book. Apress, 2007.

[115] Serafeim Zanikolas and Rizos Sakellariou. A taxonomy of grid monitoring systems.
Future Generation Computer Systems, 21(1):163–188, 2005.

[116] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of Internet Services and Applications, 1:7–18, 2010.
10.1007/s13174-010-0007-6.

[117] Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed segment
tree: Support of range query and cover query over DHT. In 5th Intl. Workshop on
Peer-to-Peer Systems (IPTPS-2006), Santa Barbara, USA, February 2006. Electronic pro-
ceedings.

[118] Amazon Elastic Map Reduce. http://aws.amazon.com/elasticmapreduce/.

