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Résumé

La théorie de la diffraction prévoit que les temps de trajet des ondes avec une
fréquence dominante finie sont affectés seulement par des hétérogénéités dans un
volume autour du rayon obtenu par la théorie asymptotique fréquence infinie. Ce
volume s’appelle la zone de Fresnel. A cause de la diffraction qui assure la continuité
du front d’onde au travers des hétérogénéités, les hétérogénéités de taille inférieure
a celle de la zone de Fresnel n'ont qu’un effet réduit sur le temps de trajet de
'onde arrivant & une station. Dahlen et al. (2000) montrent qu’il est possible de
corriger des effets de cette diffraction par une méthode de tomographie volumique
qui introduit de nouveau la notion de contenu fréquentiel dans l’estimation des
temps de trajet et donc dans la reconstruction du milieu.

Dans cette these, j’étudie I'influence de cette technique d’imagerie a fréquence
finie en tomographie globale sismologique des temps d’arrivée. Pour réduire les
effets di a la distribution des rayons dans la Terre, distribution qui n’est pas
uniforme, j’introduis un maillage non-structuré pour représenter les vitesses dans
la Terre.

Pour définir 'influence des phénomenes de diffraction dans les résultats to-
mographiques, j'utilise un nombre limité de données a longue période de tres
haute qualité obtenues par Guy Masters (Scripps). Je fais I'inversion en utilisant
I’approche classique de tomographie des temps se fondant sur la théorie des rayons
et 'approche nouvelle de tomographie des temps en se fondant sur 'approche a
fréquence finie. La comparaison des deux tomographies montre que les anomalies
de vitesse sont sous-estimées par la théorie des rayons d’un facteur 30-60% en
fonction de la profondeur. C’est bien le signe que la théorie des rayons est une
approximation trop grossiere pour les données a basse fréquence que 1’on utilise.

Pour augmenter la résolution de mon modele tomographique, j'inverse conjoin-
tement les données a longue période déja mentionnées avec des données haute-
fréquence retraitées par Bob Engdahl (Boulder).

L’analyse de la compatibilité des deux bases de données est nécessaire avant
de procéder a l'inversion conjointe. L’étude des temps eux-méme (en fait, des
écarts dans un modele de référence) et les inversions des deux jeux de données
independament montrent un tres bon niveau de compatibilité.

Tous les modeles obtenus montrent une tres forte corrélation entre les anoma-
lies de basse vitesse et la position d’un tres grand nombre de points chauds déja
connus. Pour estimer la validité de ces anomalies, des tests de résolution ont été
réalisés de facon a identifier la profondeur des panaches. A la suite de ces tests,
on peut conclure positivement que des panaches profonds se trouvent au-dessous
des structures suivantes: Ascension, Azores, Canaries, Easter, Hawai, Samoa et
Tahiti. Pour d’autres, 'origine profonde n’est pas confirmée et une origine plus
superficielle est probable autour de 660 km comme la zone islandaise. D’autres
n’ont jamais été vus avant comme au Seychelles et dans I’Ocean Indien. Enfin,
dans la zone de la Mer de Coral et au Sud de Java, la tomographie a détectée des
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panaches montant de la frontiere entre le noyau et le manteau mais qui n’arrivent
pas encore a la surface.



Abstract

Diffraction theory predicts that traveltimes of seismic waves with a finite dom-
inant frequency are affected by heterogeneities within a narrow region around the
ray-theoretical path, called Fresnel zone. Because of wavefront healing, hetero-
geneities whose scale-length is smaller than the size of the Fresnel zone have a
reduced effect on the traveltime of a wave. Dahlen et al. (2000) show how is pos-
sible to correct for effects of wavefront healing using a new method, referred to as
finite-frequency modeling.

In this thesis, we investigate the effects of using finite-frequency modeling in
global seismic tomography. To reduce the consequence of the heterogeneous ray
path coverage of the earth we also introduce an irregular model parameterization.

To establish the influence of diffraction phenomena on the final tomographic
image, we use a high quality long-period data set obtained from Prof Masters
(Scripps), that we invert both with standard ray theory and by using finite-
frequency modeling. The comparison of the two tomographic images shows that
the velocity anomalies are underestimated by 30 — 60% when interpreted with
classical ray theory.

In order to enhance the resolution of the tomographic image even further, we
combine the long period arrival times, with the very best high-frequency measure-
ments contained in Prof Engdahl’s NEIC data set. A comparison of both data sets,
as well as the results from separate inversions, show a high level of compatibility.

All the models show a strong correlation between low velocity anomalies and
the location of a large number of known hotspots. The reliability of these anomalies
was confirmed by extensive resolution analysis. As a result, we can confidently say
that deep mantle plumes are located beneath Ascension, Azores, Canary, Easter,
Hawaii, Samoa and Tahiti. Many others, among which is Iceland, are of more
shallow origin. Newly discovered plume-like features are clearly visible beneath
the Mid-Atlantic Ridge, the South-east Indian ridge, Seychelles and the Coral Sea.
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Chapter 1

Introduction

“Always expect the unexpected.”
Anonymous

La tomographie sismique est actuellement la seule technique qui permet d’obtenir
des images tridimensionnelles en grand détail de la structure interne de la Terre.
De maniere analogue a I'imagerie médicale qui permet de visualiser I'intérieur du
corps humain, la tomographie sismique essaie d’imaginer 'interieur de la Terre en
utilisant les informations que les ondes sismique portent a sa surface.

Differentes techniques ont été développées depuis la premiere inversion des
temps d’arrive (Aki & Lee, 1976; Dziewonski et al., 1977). Jusqu’a maintenant, la
grande majorité des études de tomographie était fondée sur la théorie des rayons.
Dans cette théorie, les ondes se propagent a fréquence infinie le long de courbes
infiniment fines qui suivent la loi de Snell/Descartes pour étre des rayons. Les
temps de trajet sont affectés seulement par des anomalies de vitesse situées sur le
rayon lui-méme. Cette simplification rend le formalisme de la tomographie plus
simple et explique la tres large utilisation de cette approximation en sismologie.

Mais ’approximation des hautes fréquences ne prend pas en compte les effets
du aux phénomenes de diffraction sur les temps de parcours: les temps d’arrivée
sont sensibles aux vitesses en dehors du rayon lui-méme, dans un volume fini défini
par la zone de Fresnel (Nolet, 1987, 1992; Woodward, 1992; Marquering et al.,
1999; Dahlen et al., 2000; Hung et al., 2000; Zhao et al., 2000). L’intégrale le long
du rayon pour calculer le temps de trajet se transforme en une intégrale de volume
avec un noyau défini par le noyau de Fresnel.

Dahlen et al. (2000) ont dérivé une expression analytique du noyau de Fréchet
pour les ondes a fréquence finie. Cette solution est obtenue en utilisant 1’appro-
ximation paraxiale ol les rayons voisins du rayon entre la source et la station ne
dépend que des dérivées des vitesses sur le rayon en addition de la théorie de Born
valable au premier ordre.

La modélisation numérique montre que la sensibilité des ondes de volume est
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exactement zéro le long du rayon. Si la taille des structures anormales est plus
petite que la longueur d’onde caractéristique des ondes propagées, elle n’affecte
pas significativement les temps d’arrivée (Nolet & Dahlen, 2000). La sensitibilité
maximale se trouve dans une région qui ressemble a une banane si on la regarde
horizontalement entre la source et le récepteur et a un beignet si on la regarde
verticalement. La forme du noyau de Fresnel est encore plus compliquée pour les
ondes qui ont une réflexion a la surface de la Terre. Dans ce cas, ’onde rencontre
une caustique qui produit un déphasage de 90 dégrée. Les changements de la région
de sensibilité fait que cette région n’est plus nulle le long du rayon. Au contraire,
pour "approximation de la théorie des rayons, 'onde a fréquence infinie se rappelle
toujours des anomalies qu’elle a rencontré lors de son trajet vers la station.

L’introduction de ces volumes d’intégration avec un noyau variant suivant les
anomalies dans la tomographie des temps d’arrivée doit induire des changements
dans la solution finale.

Tester les effets de cette imagerie ou les fréquences finies sont prises en compte
dans le cas de la tomographie en sismologie globale est le but principal de cette
these. Lors des tomographies sismologiques réalisées, differents ingrédients sont
utilisés de fagon a améliorer la résolution sur le résultat final. Ces ingrédients
sont : (1) la paramétrisation du modele de vitesse; (2) les données; (3) une relation
qui permet de lier 'espace des modeles a l'espace des données; (4) la technique
pour inverser le systeme d’équations résultant des point (1)—(3) et (5) le jugement
du sismologue. Dans cette these, on présente chacun de ces ingrédients, avant de
présenter les nouveaux modeles de la structure interne de la Terre.

La structure de la Terre n’est pas uniformément échantillonnée par les rayons
sismiques. Les stations sont pour la plupart sur terre et, en majorité, dans 1’hé-
misphere Nord. En méme temps, les tremblements de terre sont concentrés sur
les frontieres de plaque. En plus, chaque phase sismique échantillonne une partie
differente de la Terre. Le choix de la paramétrisation du modele et les données a
utiliser est trés critique car les deux permettent de réduire les effets de I’illumination
non uniforme des anomalies de vitesse et ainsi d’augmenter la résolution de I'image
finale.

Le premier chapitre est consacré a la théorie de I'inversion du probléme tomo-
graphique (les points 3 et 4 déja mentionnés). C’est une introduction aux notions
de base qui permet de comprendre les chapitrés qui suivent. Il faut préciser que
la théorie de tomographie prenant en compte les fréquences finies et la méthode
d’inversion utilisés dans cette these ne sont pas originales, mais c’est la premiere
fois qu’elles sont utilisées avec des données réelles sur la Terre entiere.

Dans le deuxieme chapitre, on décrit le probleme du choix de la paramétrisation.
Le champ de vitesse peux étre représenté par une combinaison de cellules de la
meéme taille ou par une distribution uniforme de points, techniques introduites par
Aki & Lee (1976) and Thurber (1983), respectivement. Dans les deux cas, la vitesse
peut changer sans affecter la convergence du systeme linéaire.



Dernierement, des distributions irrégulieres des points ont été proposées dans
le contexte de la tomographie sismologique. Ces grilles permettent de prendre
en considération la distribution irréguliére des rayons (comme dans les références
suivantes Chiao & Kuo (2001) et Spakman & Bijwaard (2001)). Ces maillages
permettent d’adapter librement les points en fonction de la résolution déduite des
données utilisées. Les régions qui ne sont pas bien illuminées par les rayons pour-
ront étre échantillonnées par des cellules plus larges. Par contre, si la région est
tres bien résolue, on utilisera une grille plus fine localement. Pour construire ce
maillage, on utilise une distribution de points connectés de maniere a former un
maillage de Delaunay (Watson, 1981, 1992; Sambridge et al., 1995). En géométrie
3D, une grille de Delaunay est constituée de tétraedres. Dans ce chapitre, on
expliquera comment on construit notre maillage Delaunay.

Dans le chapitre 4, on compare une tomographie obtenue avec cette nouvelle
méthode de tomographie a fréquences finies et une tomographie obtenue avec la
méthode plus standard a haute fréquence pour des observables temps déduites des
donnés a longue période. Nos données sont constituées des temps d’arrivée des on-
des P et PP-P a longue période, mesurés par cross-corrélation (Bolton & Masters,
2001). Dans cette méthode, les temps d’arrivée sont obtenus par comparaison de
la forme d’onde avec la forme d’onde de référence. On améliore ainsi la précision
sur le pointé des temps. On ne pointe pas le temps par détection du début du sig-
nal dans le sismogramme. Ces données, qui seront utilisées dans les chapitrés 5 et
6, ont été re-analysées et corrigées pour des erreurs d’instrumentation (seulement
dernierement découvertes) par Prof Guy Masters au Institute of Geophysics and
Planetary Physics (IGPP) - University of California, San Diego.

Un grand nombre de temps d’arrivée est nécessaire pour obtenir un bon modéle
global de la Terre. Le nombre de données a longue période disponible est relative-
ment petit avec seulement 86400 temps d’arrivé. Pour obtenir une bonne image
tomographique, on essaie d’utiliser le plus grand nombre des données possibles
pour pouvoir avoir une distribution la plus uniforme possible. Les phases directes
des ondes de volume ont une couverture limitée du champ de vitesse de la Terre,
spécialement dans le manteau supérieur et dans le manteau moyen. En ajoutant
des ondes qui se réfléchissent a la surface libre, comme les ondes PP ou les ondes pP,
il est possible d’augmenter la résolution car ces ondes permettent I’échantillonnage
des régions ot il n’y a pas de stations et/ou de tremblements de terre.

Pour améliorer la résolution de notre image tomographique, dans le chapitre
5, nous combinons les données a longue période avec des données ISC a courte
période re-analysées par Bob Engdahl. Nous sélectionnons seulement les données
reconnues de haute précision en raison des la lecture sur le séismogramme. Nous
sommes confiants que ces données représentent des arrivées de plus haute fréquence
pour lesquelles la théorie des rayons est encore valable. Les données longue période
sont plus sensibles aux structures a grande échelle. Au contraire, les ondes a courte
période sont plus sensibles aux structures fines. La combinaison des deux different
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jeux de données permet une meilleure illumination de la structure de la Terre avec
les ondes courte période qui vont éclairer les régions qui ne sont pas échantillonnées
par les données a longue période.

Les deux familles de données sont compléetement differentes en nature. Il est
donc nécessaire d’étudier d’abord leur compatibilité. Dans le chapitre 5, nous
analysons en détail I'uniformité des données et nous décrivons la technique utilisée
pour les inverser conjointement.

Notre modelé tomographique montre, pour la premiere fois, des panaches pro-
fonds introduits par Morgan (1971, 1972) pour expliquer I'origine du volcanisme
intra-plaque connu sous le nom de “points chauds”. Les chainons volcaniques
de points chauds se trouvant dans les zones suivantes (Hawa'i‘, Louisville, Réunion,
Deccan), pourraient étre expliqués par le mouvement de la plaque passant au dessus
d’une source de magma trés profond dans le manteau. Récemment, I’hypothese
d'immobilité des points chauds était revue par plusieurs auteurs: Norton (1995)
suggére que le coude observé dans la chaine Hawai-Empereur est plutot Ienregis-
trement de la date a laquelle le panache est devenu fixe par rapport au manteau
et Tarduno & Cottrell (1997), en utilisant des données paleomagnetiques, montre
que la chain volcanique des Hawai-Emperor montre que le point chaud s’est arrété
de se déplacer par rapport a la lithosphere Pacifique plutot que le contraire.

On s’attend a ce que les panaches soient plutot étroits, de 'ordre de quelques
centaines de km de diametre, plus petit que la région de Fresnel typique d’une
onde P avec une période de 20 s qui est d’environ 1000 km pour une distance
épicentrelle de 80 dégrée. Il est trés possible que I'image des panaches soit affectée
si on ne considére pas les effecs diis aux fréquences finies (Nataf & VanDecar, 1993).
Corriger pour les effets de diffraction aide a améliorer la détection et a la résolution
de ces structures étroites.

Le chapitre 6 est une description détaillée des panaches qu’on a découvert lors
de notre reconstruction tomographique. Dans ce chapitre, on montre les résultats
d’une analyse de la résolution de cette anomalie de basse vitesse qui nous permet
de définir des limites de confiance pour la profondeur de la source et la largeur de
chacun des 32 panaches visualisés lors de notre tomographie. Notons que quatre
panaches n’ont pas été détectés auparavant car ils n’apparaissent dans aucune liste
de points chauds publiés.

Les chapitrés 4-6 sont des versions modifiées des articles en cours de soumission
(chapitre 5) ou déja soumis pour étre publier (chapitres 4 et 6). L’annexe C
décrit une methode pour 'estimation de la matrice de résolution a utiliser pour
I’adaptation des maillages. Cette technique n’a pas encore été introduit dans les
outils algorithmiques de cette theése mais qui devrait in fine permettre d’optimiser
le maillage décritant le champ de vitesse. C’est un travail que j’ai fait pendant ma
premiere année de thése en France et je crois qu’il doit apparaitre dans cette these.
Comme écrit dans les perspectives (chapitre 7), les outils de cette annexe seront
utilisés dans mes études futures.



Our understanding of the Earth’s dynamics relies strongly on the degree of
knowledge of the internal structure of the Earth. Seismic tomography is the only
tool available to map the three-dimensional structure of the Earth’s interior in
detail. In medicine the term computerized tomography (in Greek tomo = slice)
appeared in the 1970’s to denote that the 3D image of a human body was con-
structed from a combination of 2D slices (Hounsfield, 1973). In a similar manner,
in seismic tomography one seeks to image the Earth’s velocity structure by us-
ing the information brought to the surface by seismic waves traveling through the
Earth.

Different approaches have been developed in seismic tomography since the first
formal 3D traveltime inversions were performed (Aki & Lee, 1976; Dziewonski et al.,
1977). Almost all global tomographic studies that use body waves are based on ray
theory, in which waves propagate as rays that follow Snell’s law, with traveltimes
that are only influenced by anomalies located on this ray. This simplifies the
mathematics, and is therefore widely used (to cite only few: Dziewonski, 1984;
Inoue et al., 1990; Van der Hilst et al., 1997; Bijwaard et al., 1998). But ray
theory neglects the fact that, due to diffraction effects, the traveltime is sensitive
to velocity structures far away from the geometrical ray, within a volume known
as the Fresnel zone (Nolet, 1987, 1992; Woodward, 1992; Marquering et al., 1999;
Dahlen et al., 2000; Hung et al., 2000; Zhao et al., 2000).

Dahlen et al. (2000) derived an efficient expression for the Fréchet kernels of
finite-frequency waves, based on the paraxial approximation to ray theory as well
as the Born approximation. Hung et al. (2000) show a colorful collection of these
kernels for different seismic phases. The sensitivity of a direct body wave turns out
to be identically zero along the ray, and is confined to a banana-shaped volume
surrounding the geometrical ray, the Fresnel zone. Because of wavefront healing,
objects much smaller than the width of the Fresnel zone do not significantly affect
the travel time of the wave (Nolet & Dahlen, 2000). By contrast, in ray theory,
an infinite-frequency wave always “remembers” the shift accrued upon passage
through an anomaly.

Figure 1.1 shows an example of these sensitivity regions computed for a P wave
with 1 s dominant period (Figure 1.1a), with 20 s dominant period (Figure 1.1b),
and for a PP wave with 20 s dominant period (Figure 1.1¢). The sensitivity is
significantly different between the short - and long - period waves. The higher the
frequency of the wave, the thinner is the sensitivity region around the geometrical
ray, with the sensitivity still being zero on the ray. The situation is even less
intuitive for PP waves. Scattered waves may come in either earlier or later than
the main phase and may or may not be Hilbert transformed. Therefore, surface
reflected PP waves show a much more complicated shape of the sensitivity region,
with the banana-doughnutshape replaced by a saddle-shaped sensitivity region upon
passage of a caustic. It is clear that ray-theory provides a too crude approximation
to the traveltimes, at least for the lower-frequency waves.
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Figure 1.1 Sensitivity kernels for a direct P wave at an epicentral distance of 60°
with dominant period: (a) 1 s, (b) 20 s and (c) for a PP wave at an epicentral
distance of 120° with 20 s dominant period.



Therefore, the introduction of the finite-frequency modeling in seismic tomog-
raphy must have a significant effect on the final images. This idea was the seed
that brought to blossom this thesis.

Any tomographic study is based on a combination of ingredients all affecting
the final result. Such ingredients are (1) the model parameterization: a set of basis
functions used to map the velocity structure; (2) the set of data; (3) a functional
to map the data space into the model space; (4) a technique to invert the resulting
system of equations, and (5) last but not least, the subjective judgment of the
seismologist. This thesis deals with each of these important steps before presenting
a new set of images of the Earth’s interior.

Seismic tomography suffers from the fact that earthquakes are not a controllable
source of energy. They are concentrated mainly near plate boundaries and can
occur at anytime. The uncertainties related to the hypocenter location introduces
extra unknowns in the tomographic problem. Also, stations are not uniformly
deployed around the globe, with the highest concentration found in the northern
hemisphere. Finally, different seismic phases sample different parts of the Earth’s
structure. As result, the three-dimensional velocity structure of the Earth’s interior
in not uniformly illuminated with significant differences in the potential resolution
of various regions. The choice of the model parameterization, point (1) of the
above list; and the selection of the seismic data, point (2), are critical, since both
help to improve the resolution of the final image.

In chapter 2, we give a brief overview of the theoretical framework of seismic
tomography (points 3 and 4 of the above list are described in this chapter). We
provide the reader with the essentials required to understand the chapters that
follow. Though neither the “finite frequency” theory, nor the inversion technique
is original, this is the first time both are combined and applied to real data.

In chapter 3 we tackle the problem of the choice of the model parameterization.
The Earth can be represented by a combination of cells of the same size or grid
points uniformly distributed, an approach introduced by Aki & Lee (1976) and
Thurber (1983), respectively. In both cases, because of the regular character of the
grid and the uneven distribution of seismic rays, there might be cells or points of
the grid that are not illuminated at all. The velocity in these cells may freely vary
without affecting the fit of the linear system. Recently, heterogeneous distributions
of points (or cells) have been used in seismic tomography to better account for
the uneven sampling of the Earth’s velocity structure (most recent works are by
Chiao & Kuo (2001) and Spakman & Bijwaard (2001)). The flexibility of such
parameterizations allows us to adapt them to the resolving power of the data used,
such that regions poorly sampled by seismic rays can be represented by larger cells,
while densely sampled regions can be very finely discretized. Following Sambridge
et al. (1995), we sample the Earth’s velocity structure by means of a heterogeneous
distribution of points connected to form a Delaunay mesh (Watson, 1981, 1992).
In 3D a Delaunay mesh consists of a set of tetrahedrons. In this chapter we provide
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a detailed description of these kind of grids, and describe how our global grid is
generated.

Chapter 4 represents the core of this thesis. It provides a direct compari-
son of a finite-frequency tomography with the results of an inversion obtained by
using standard ray theory. Our data set consists of long-period P and PP-P trav-
eltimes measured by cross-correlation (Bolton & Masters, 2001). Measurements
obtained by cross-correlation provide an integrated arrival-time difference between
two waveforms, not simply the difference between the onset times. Therefore the
ray theoretical description for a traveltime along the ray may be no longer valid,
and finite-frequency modeling may be necessary. These data, also used in chapter
5 and 6, have been re-analyzed and corrected for several instrumental timing errors
(only recently discovered) by Prof. Guy Masters at Institute of Geophysics and
Planetary Physics (IGPP) - University of California, San Diego.

To obtain a good image one aims to use a large set of data that sample the
mantle as uniformly as possible. Direct phases have a limited ray path coverage,
especially in the upper and mid-mantle. Incorporating reflected arrivals, such as
PP or pP, can help because they sample regions of the Earth not sampled by direct
waves. However, the long period data set used in chapter 4 is still relatively small
(only a total of 86,400 arrival times). Recently, we see an increasing number of
tomographic images obtained by inversion of a combination of different seismic
phases (for instance, Van der Hilst et al. (1991, 1997), Masters et al. (1996), Su
& Dziewonski (1997), Mégnin & Romanowicz (2000) and Vasco et al. (2003)). To
enhance the resolution of our tomographic model, in chapter 5 we combine the long-
period data set with very-high quality short-period arrival times extracted from the
ISC data set and re-processed by Prof. Bob Engdahl at the University of Colorado.
By selecting only the data with two digits decimal precision from his data set we
are confident that these measurements correspond to the highest frequency wave,
for which ray theory may likely be still valid. Long-period data are only sensitive
to large-scale structure, while short-period data are also sensitive to small scale
structure. The combination of the two provides us with a good illumination of the
Earth’s velocity structure, with the short-period data filling the gap left by the long-
period data. However, the two classes of measurements are completely different
in their nature, and a study of their compatibility is required before we perform a
joint inversion. In chapter 5 we provide a detailed analysis of the consistency of
the two data sets used and a description of the technique we use to jointly invert
them.

To our own surprise, our tomographic images show for the first time clear, dis-
tinct low velocity anomalies rising from the deep mantle that resemble the plumes
hypothesized by Morgan (1971, 1972) as possible explanation for the origin of the
intraplate volcanism known as “hotspots”. In what is called the “plume model”,
the long linear chain of volcanoes characteristic of several hotspots such as Hawaii,
Louisville, Reunion - Deccan, could be explained by the moving plate passing over



a relatively fixed upwelling of hot material rising from great depth in the mantle.
Figure 1.2 shows the Hawaiian-Emperor volcanic chain as seen in the topogra-
phy of the sea-floor. Hawaii-Emperor is the best example of a volcanic chain on
Earth. It is characterized by a 43 my old bend, that separates the youngest west-
ward trending Hawaiian islands from the northward trending Emperor seamounts,
and which is thought to be due to an abrupt change of the Pacific plate motion
(Richards & Lithgow-Bertelloni, 1996). This hypothesis is based on the assumption
that plumes are relatively fixed with respect to the plate motion. Steinberger &
O’Connell (1998) also adopted this assumption for their time-dependent modeling
of mantle circulation; though in their model single plumes are able to swing in the
large-scale mantle flow beneath the moving plate as a consequence of convective
motion or “mantle wind”. Recently, the hypothesis of plumes’s fixity has been
challenged by several authors: Norton (1995) suggest that the bend is the record
of the time when the Hawaiian plume became fixed in the mantle and Tarduno
& Cottrell (1997) present paleomagnetic data to suggest that the track records
differences in motion of the Hawaiian hotspot relative to the Pacific lithosphere,
rather than the other way around (for a review of hotspot fixity and mantle wind
we refer to Christensen (1998)).

Plumes are expected to be rather narrow, of the order of a hundred km of
diameter or so, smaller than the typical width of the Fresnel zone of a 20 s -
period wave which extends to 1000 km for an epicentral distance of 80°. Therefore
their image may be affected by a failure to model finite-frequency effects (Nataf &
VanDecar, 1993). Finite-frequency tomography enhances the capability to detect
such narrow structures.

Chapter 6 focuses on the plume-like structures revealed by our tomographic
study. It presents the results of a detailed resolution analysis which allow us to
put constraints on the depth and width of the source region for 32 plumes, at least
four of which are newly discovered.

Note to the readers

This thesis contains papers that are about to be submitted or have already been
submitted for publication. Chapters that contain them are self-explanatory and
therefore some concepts are repeated. Appendix C contains material that has not
yet been used in the tomographic inversions described here. However, it represents
the work I have done in my first first year spent in France, and therefore I believe
it deserves a place in this thesis. As described in the “Afterwords” (chapter 7), the
content of this Appendix is going to be used in future research projects.
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Figure 1.2 Seafloor topography in the Hawaiian-Emperor region on the Pacific
plate, after Smith & Sandwell (1997)



Chapter 2

Theoretical framework

2.1 Résumé

Dans ce chapitre, je présente des notions de base de la tomographie sismique des
écarts des temps qu’on utilise dans cette these. La méthode tomographique des
écarts se base sur des temps de propagation théoriques des ondes sismiques calculés
pour un milieu terrestre a symétrie sphérique. Ce temps théorique est comparé au
temps observé. La différence est un résidu de temps de propagation représentatif
des perturbations de vitesse subies par les ondes traversant la vraie structure de la
Terre.

L’inversion de ces résidus permet d’obtenir une représentation tri-dimension-
nelle de la structure interne de la Terre. Le probleme est fortement non-lineaire,
vu que le parcours des rayons utilisé pour le calcul des temps théoriques dépend
lui aussi du champ de vitesse que 1'on essaie de reconstruire. L’hypothese que le
rayon dans la vraie Terre ne différe pas de maniere significative de la trajectoire
dans le modele initial permet de linéariser le probleme et de le réduire a une forme
matricielle Az = b ou le vecteur b contient les résidus de temps. Le vecteur z
représente les perturbations en vitesse et les écarts de position et de temps origine
de la source sismique qui est aussi inconnue. L’inversion est faite en maniere a
obtenir a la foirs les changements des vitesses mais aussi les perturbations de la
source du seisme et de son temps d’origine. Le vecteur x contient donc la solution
pour les changements de vitesse z. et les sources x,. La matrice A est constituée
par la partie relative au modele qu’on construit soit en utilisant la théorie des
rayons ou en utilisant la modélisation a fréquence finie et la partie relative aux
parametres de la source qu’on construit avec la théorie des rayons.

La solution x est trouvée en minimisant une mesure des anomalies au sens
des moindres carrés qui conduit au systeme Ax = b (Nolet, 1987). En général,
meéme si on a un nombre plus important de données que de parametres, le systeme
tomographique qu’on doit résoudre est sous-déterminé car la distribution des rayons
n’est pas uniforme. Cela va dire qu’il y a des solutions x non nulles du systeme

11



12 Theoretical framework

linéaire Ax = b qui satisfont Ax = 0. Ces solutions constituent ’espace nul
de la matrice A. Quelles combinaisons linéaires des vecteurs dans l’espace nul
peuvent étre ajoutées a une solution particuliere pour donner une nouvelle solution
qui satisfasse les données d’une maniere identique. Pour limiter ce probleme, on
applique des régularisations au systeme, méthode que I’on désigne sous ’expression
des moindres carrés pondérés. On parle alors d’amortissement qui limite la distance
entre la solution finale et la solution initiale, ce qui a pour conséquence de réduire les
amplitudes des anomalies pour les vitesses et qui réduit aussi les déplacements des
sources ainsi que les changements des temps origine. Un lissage est aussi appliqué
pour rendre les variations de vitesse plus lisses dans chaque direction (Nolet, 1987).

La statistique du x? fournit une moyenne quantitative pour I’estimation de la
solution plausible. J’utilise cette méthode pour déterminer la meilleure solution
et pour comparer les solutions obtenues avec les differentes méthodes utilisées au
cours de cette these.

2.2 Introduction

This chapter provides a brief description of the equations that are fundamental to
every tomographic study. It is not meant to be an exhaustive description, but a
rather brief overview of the essentials of the theory behind delay time tomography.
For a more detailed analysis I refer the reader to the work by Nolet (1987), Spakman
& Nolet (1988), Menke (1989) and Parker (1994).

2.3 The system of equations

In the ray approximation, the traveltime of a ray in a three-dimensional Earth is
expressed by:

T:/c(x)ldl (2.1)

where L is a ray path and ¢(x) the velocity.

We have a fairly good knowledge of the radially symmetric structure of the
Earth ¢(r). Given an Earth reference model, one can compute synthetic traveltimes
to compare to the measured one. The difference between the two values is the delay
time 67 and can be expressed as:

ST = Tobs T — /
L

e(x)~1dl — /L eo(r) Ldl (2.2)

The inverse problem is non-linear, since the ray path L depends on the unknown
velocity. Assuming that the ray in the real earth does not differ significantly from
the trajectory in the starting model (Fermat’s principle), this expression can be
linearized.
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The corresponding perturbation with respect to the predicted time for a set of
sources and receivers is given by:

5T, = —/ 5C(X)2dz, i=1,...N. (2.3)
Lo CO(r)

However, Marquering et al. (1998), Dahlen et al. (2000), Hung et al. (2000) and
Nolet & Dahlen (2000) show that the approximation of infinitely narrow rays does
not model diffraction effects. In their theory, rays have a finite thickness depending
on the frequency content of the wavefield. The 1D integral along the geometrical
ray is replaced by a 3D volume integral (Dahlen et al., 2000):

57}:/Ki(x)@d3x (2.4)
® Co

over the entire earth @. The quantity K (x) is the 3D Fréchet kernel of a finite-
frequency traveltime shift 07 that has been measured by cross-correlation of a
broadband waveform with a spherical earth synthetic.

Since the earthquake parameters influence the travel time as well, we shall
simultaneously derive the velocity perturbations dc¢(x) and the hypocenter param-
eters (origin time, longitude, latitude and depth) from a discrete number of delay
times. Each delay time can be seen as the sum of a delay 67 caused by the veloc-
ity perturbation and a delay 07}, due to source mislocation and error in the origin
time, plus a measurement error e:

0T = 6T, + 6T}, + ¢ (2.5)
For computational simplicity we describe the velocity ¢(x) by a finite number m

of parameters, i.e. cells, grid points, spherical harmonics.

m

ofr) = 3 cxhu(r), (26)

k

where hy denotes a set of basis functions spanning a subspace of the (Hilbert) space
of all possible earth models ¢(x). Similarly is done for the velocity perturbation
dc(x). After substitution of the expression 2.6 for the velocity perturbation dc¢(x)
in either equation 2.4 or 2.3, for the delay time 67, we obtain:

0T; =Y  Ajbcj, i=1...n (2.7)
j=1

where Aj; has the form:

Al = —/ hi(x) (2.8)
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in the ray approximation, and:
b
Al = / o)) g (2.9)
o Co(x)

in the finite-frequency approximation. In both formulations, the tomographic prob-
lem reduces to a similar discrete system that in matrix notation can be written
as:

Ax=[A'"Hjx=b (2.10)

with b the vector of the delay times 6T; x = [x¢,xp]T a vector of the unknown
velocity perturbations x. and source corrections x,, A the matrix mapping the
model space into the data space. H is the matrix of partial derivatives with respect
to the source parameters that we compute by using standard ray theory:

or L

dl, ’

aT . . siné

— = —sini ;

dx c

aT . . cosé

— = —sini ;

dy c

aT cos&

—_— = - 2.11
dz c ( )

with x longitude, y latitude and z depth of the hypocenter, T}, origin time and 1
and ¢ incident angle and source azimuth, respectively(Lee & Stewart, 1981).

2.3.1 Solving a tomographic inverse problem

In general we have many more data then unknowns, yet due to the sparseness of the
ray distribution, the inverse problem has a partly underdetermined nature. Also,
because of data errors, the system of equations is inconsistent and no exact solution
exists. The standard procedure is to minimize a measure of the discrepancy in the
system Ax = b in a least square sense (Nolet, 1987):

i=1  j=1
Differentiating with respect to x; yields the system:
ATAx = ATOT, (2.13)

known as normal equations. If ATA is not singular, then the normal equations have
exactly one solution:

x = (ATA)ATGT, (2.14)
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This solution minimizes the sum of squared errors. Because of the underdetermined
nature of the tomographic problem, there are solutions x of the linear system Ax = b
that satisfy Ax = 0. These solutions define the nullspace of the matrix A. In terms
of the least squares system, the existence of a non-empty nullspace of A means that
det(ATA) is zero. Any linear combination of vectors belonging to the nullspace can
be added to a particular solution to provide a new solution that fits the data
equally well. If the size of the matrix A is small enough to be stored in a computer
memory, the nullspace can be determined exactly by diagonalizing the matrix ATA,
and a solution can be found by truncating the eigenvalues spanning the nullspace,
a method called “Truncated Singular Value Decomposition”. Alternatively one
may use a damped least square approach (e.g. Tarantola & Valette, 1982). Extra
equations ex; = 0 are added to the system based on our a priori expectations:

(4}-[:]

By again solving the system in a least square sense, we obtain:
x = [ATA + EI]7'ATb (2.16)

The tunable parameter £ has the function to shift the eigenvalues A\? to A? + £2.
Clearly, the matrix [ATA + £2I]7! is not singular. However, the larger the value of
g, the more it degrades the data fit, since it biases x to a lower amplitude solution.
In simultaneous inversion for velocity perturbations and hypocentral parameters,
we apply a damping to the source corrections x, to limit changes in origin time
and hypocentral location coordinates. A Laplacian damping is usually applied to
render the velocity variations smooth in every direction as in (Nolet, 1987).

The level of the regularization is somewhat subjective. The final tomographic
image is usually the result of many inversions in which one experiments with dif-
ferent value of the tunable parameters (norm damping and smoothing). Some
criterion for selecting the final result is required. The theory of maximum likeli-
hood estimation gives us a good guideline.

2.3.2 The maximum-likelihood estimate of the model pa-
rameter

The least squares problems in seismic tomography can be rephrased in a statistical
sense. Given a set of data, with known standard deviation, we can ask which is the
most likely model from which these data could have arisen. A basic assumption
is that data errors are independent and Gaussian distributed, so that the joint
likelihood P of the data set occurring (the quantity we want to maximize) is the
product of the individual probabilities:

n
]_ 2 2
P= g~ (bi—(A)i)" /207 2.17
i1;[1 oV 2T ( )
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Maximizing the probability is equivalent to minimizing the exponent, or:

min x? = zn: <@%>2 (2.18)

=1

For very large tomographic problems, involving a large number n of degree of
freedom, the expected value of x? for the true Earth xyue approaches n. This
follows from the central limit theorem which predicts that the probability density
function for x? will itself become normally distributed with mean n and standard
deviation v/2n. The x? statistic provides a reliable quantitative assessment of the
plausibility of models which we use instead of the “variance reduction” criterion.
Variance reduction is as much a measure of the adequacy of the starting model as
it is a measure of fit of the final solution and does not take into account for “a
priori” estimates of data errors.



Chapter 3

Seismic tomography with
heterogeneous model
parameterization.

3.1 Résumé

Le choix de la paramétrisation du modele est critique. Elle permet de réduire la
taille de I’espace nul de la matrice A. On peut augmenter la taille des cellules
jusqu’au moment ou elles seront toutes illuminées par des rayons mais la grille
finale ne fournit pas une bonne représentation du champ de vitesse de la Terre.
Des grilles tres fines sont donc utilisées et des méthodes de régularisation utilisées
pour controler la non-unicité de la solution.

Mais, au lieu d’augmenter la taille de toutes les cellules, on pourrait augmenter
seulement la taille des cellules qui sont tres mal déterminées et réduire la taille de
celles qui sont sous-déterminées pour pouvoir égaliser I'illumination des points de
la grille. A cette fin, des maillages irréguliers ont été récemment introduits dans
le probleme tomographique. Ces grilles ont ’avantage de pouvoir s’adapter a la
limite de résolution des données utilisées. Elles permettent donc de controler la
densité des rayons et donc l'illumination du modele comme l'illustrent récemment
certains articles (Chiao & Kuo (2001); Spakman & Bijwaard (2001)). Les régions
qui ne sont pas bien échantillonées pourraient maintenant étre représentées par
de larges cellules et, au contraire, des régions tres bien illuminées pourraient étre
échantillonées avec des distributions de points plus denses. Dans ce cas, le nombre
des inconnues est reduite et le systéeme a inverser est plus stable. Dans cette these,
je suis I'exemple de Sambridge et al. (1995) et j’utilise un maillage de Delaunay,
introduit par Watson (1981). Dans ce chapitre je décris ce type de grille et je décris
et je construis la maille que j’ai utilisée dans mes inversions. En géométrie 3D, une
maille de Delaunay est constituée par des tétrahedres. Les points sont distribués
de maniere irréguliere avec une densité qui varie avec la profondeur. La Terre est
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divisée en quatre coquilles. La premiere correspond au manteau superieur ou la
distance entre les points de la maille est d’environ 200 km. Les points entre 660 km
et 1400 km sont distants d’environ 400 km. A la base du manteau, la distance entre
points atteint 600 km. Meéme si nous n’utilisons pas des données dans le noyau
terrestre, pour la définition de la grille, nous ajoutons des points aussi dans le
noyau a une distance d’environ 1000 km entre eux. Enfin, ce type de maillage sont
toujour convexes. Les points d’un maillage Delaunay sont toujours enveloppés par
une surface convexe appelée la coque convexe. Pour générer cette surface convexe,
j'utilise la méme stratégie utilisée dans le code TERRA pour générer les mailles
des éléments finis. Le maillage final utilisé dans les inversions décrites dans cette
these contient 19270 points. La vitesse ailleurs que sur les points de la grille est
définie par interpolation linéaire.

3.2 Introduction

Many tomography studies model the Earth with cells of the same size (Aki et
al., 1977; Evans & Achauer, 1993; Spakman, 1991), others make use of a regu-
lar distribution of grid points (Thurber, 1983; Eberhart-Phillips, 1986). In both
cases, because the regular character of the grid cannot take into account the of-
ten very heterogeneous raypath distribution, there might be no rays crossing a
particular cell. The velocity in this cell may freely vary without affecting the fit
of the linear system but may generate artifacts in the final tomographic images.
Some tomographic models expand the Earth’s velocity field into a finite number of
spherical harmonics (Dziewonski, 1984; Woodhouse & Dziewonski, 1984; Dziewon-
ski & Woodhouse, 1987; Morelli & Dziewonski, 1987; Tanimoto, 1990; Boschi &
Dziewonski, 1999). An advantage of spherical harmonics is that it provides easy
control over the smoothness of the solution by reducing the highest angular order.

If some nodes of the grid are illuminated by few raypaths or if they are not
illuminated at all, the matrix A of the linear tomographic system Ax = b is sin-
gular. One could solve the problem by increasing the size of the cells until they
all get illuminated, i.e. until the rank of the matrix A (i.e. the number of linearly
independent rows) equals the number of cells. However, such a coarse grid would
not provide a convenient representation of the earth’s velocity field. Thus, fine
grids are used and regularization (i.e. smoothing or damping) of the system of
equations introduced to deal with the non-uniqueness of the solution.

Instead of increasing the size of each cell, one could increase the size only of
the cell that are poorly determined, while reducing the size of the overdetermined
ones to equalize the illumination. With the aim to better suppress the influence of
the heterogeneous ray path coverage, and to be able to adapt the parameterization
to some measure of the resolving power of the applied data, heterogeneous grids
have been introduced recently to represent the velocity structure (Michelena &
Harris, 1991; Vesnaver, 1994; Michelini, 1995; Sambridge et al., 1995; Sambridge
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& Gudmundsson, 1998; Bohm et al., 1997; Bohm & Vesnaver, 1999; Bohm et al.,
2000; Curtis, 1999; Kissling et al., 2001; Wéber, 2001; Chiao & Kuo, 2001; Spak-
man & Bijwaard, 2001). The flexibility of these grids to adapt to the raypath
distribution, together with powerful new interpolation schemes, make them the
best choice to reduce or zeroed the size of the null-space of the tomographic sys-
tem. Regions poorly sampled by seismic rays can be now represented by larger
cells, while nicely sampled regions can be very finely discretized. This reduces the
number of unknowns and leads to a better conditioning of the inverse problem.

3.3 Definition of Delaunay meshes

In our tomographic study, the earth’s velocity structure is modeled by using a 3D
Delaunay mesh (Watson, 1981; Sambridge et al., 1995). Given a set of points irreg-
ularly distributed, a Delaunay mesh represents a set of triangles in two dimensions
or tetrahedrons in three dimensions. In two dimensions, a Delaunay triangulation
is built by following the empty circumcircle criterion. This criterion states that
the three vertices of the triangle must lie on one circle. Other points can lie on
the same circle but no other nodes of the grid can lie within that circle (Figure
3.1a). If more than three points of the grid lie on one circle, the mesh is still a
Delaunay mesh but it is a non-unique one. Circles passing through one of these
vertices establish all the natural neighbors of that vertex. The natural neighbors
about any point is the set of closest surrounding nodes of that particular point.
A pair of neighbors share a mutual interface of a triangle in a Delaunay mesh, or
share a region that is closer to those two points than to any other point of the grid
(Watson, 1981, 1992; Sambridge et al., 1995). These set of regions, one per node
and consisting of the part of the plane nearest to that node, are called Voronoi cells
and are unique in any number of dimensions. Delaunay triangles are formed by
simply connecting the nodes whose Voronoi cells have common boundaries. Point
L in Figure 3.1b has neighbors A, C, D, E, F, G, M and K. They are all in neigh-
boring Voronoi cells, or equivalently are all connected by the sides of Delaunay
triangles. The triangles defined in this way are the most equiangular possible. The
extension to three dimensions is straightforward and the Delaunay mesh becomes
an aggregation of irregular tetrahedron. We build the Delaunay connections by
using ghull, a package distributed by the Geometry Center of Minneapolis (Barber
et al., 1996).

3.4 Generating a global Delaunay mesh
We generate a distribution of points whose distance varies with depth.

The Earth is divided in four shells. The top shell corresponds to the upper
mantle and distance among points is about 200km. Points of the grid between
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a)

Figure 3.1 (a) Any 2D Delaunay mesh is constructed by satisfying the empty cir-
cumcircle property which states that any three points of the grid forming a Delau-
nay triangle lie on one circle and no other point of the grid can lies withing that
circle. (b) Voronoi tessellation (solid line) and Delaunay triangulation (dashed line)
are dual. Voronoi cells divide the plane into a set of regions, one for each node, such
that any point in that region is closer to that node than to any other node of the
grid. Voronoi cells are unique in any number of dimensions and their boundaries
consist of perpendicular bisectors between points. Delaunay triangles are formed
by simply connecting the nodes whose Voronoi cells have common boundaries. A
Delaunay triangulation is unique unless four nodes lie on the same circle, or five
on the same sphere (Figure from Watson, 1992).
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660km and 1400km depth are about 400km apart. From the mid-mantle to the
core-mantle boundary, average distance increases to about 600km. Finally, al-
though we are not inverting for the structure of the core, points within this region
are required for consistency of the Delaunay mesh. They are distributed about
1000 km apart.

Points are initially generated within each shell. Then, they are merged together.
In this process, a control on the distance is introduced to avoid that nodes on
the shell’s boundary are too close. Whenever nodes are closer than the distance
characteristic of that depth, the node is rejected. Figure 3.2 shows the distribution
of points in the grid at different depths.

Polygonal tessellation of natural neighbors are always convex. Thus in 3D, a
Delaunay mesh is wrapped by a convex surface called convex hull. We construct the
convex hull by following the approach used in the TERRA code for generating the
finite element mesh (Baumgardner, 1983). We include the earth within a regular
icosahedron defined by 20 points. We connect the points to form the triangulation.
New points are added by recursively subdividing the edges of the triangles. Each
edge is divided by finding the middle point on the great circle connecting the two
vertices. We stop when the incenter of the new triangle, i.e. the center of the
triangle’s incircle, is still above the earth’s surface. The convex hull used in this
study contains 642 points. The distance between the incenter of each triangle
forming the convex hull and the center of the earth is 6377 km. Points on the
convex hull are 885 km apart and 6340 km away from the center of the earth
(Figure 3.3).

3.5 Basis functions

The velocity at any point in the model is defined by linear interpolation (Figure
3.4) using the data values at the four vertices of the tetrahedron containing that
point. The location of a generic point x within a tetrahedron is described by
the barycentric coordinates with respect to the four vertices x;, k = 1,4 of the
tetrahedron:

X = h1X1 + h2X2 + h3X3 + h4X4 with hl + hg + h3 + h4 =1. (31)

Equation 3.1 is a linear system of four equations that we solve for the barycentric
coordinates h; as a function of x. These coordinates give the weight by which the
data values at the vertices of the tetrahedron contribute to the linear interpolation
at point x. The velocity at each vertex of a tetrahedron is known and the velocity
¢ at any point x within a tetrahedron is given by:

c(x) = hi(x)e; + ha(x)c + ha(x)cs + hy(x)ey = Z hxck (3.2)
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Figure 3.2 Distribution of points in the global grid as a function of depth.
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Figure 3.3 Convex hull of our global Delaunay mesh. Points seems located on the
earth’s surface, but they are actually 6400 km away from the center of the Earth.
Green points are the initial points of the icosahedron. Red points are the result of
the subdivision of the icosahedron.

ray

Figure 3.4 Interpolation scheme on a tetrahedron element of a Delaunay mesh.
The velocity of a point within the tetrahedron is computed by linear interpolation
of the velocity values at the vertices of the tetrahedron.
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where hy are the interpolant. These coefficients are important for the computation
of the elements A;; of the matrix A, as shown in equations 2.6-2.9.



Chapter 4

Global P and PP traveltime
tomography: rays versus waves

A modified version of this chapter has been submitted for publication in the Geo-
physical Journal International as: Montelli R., Nolet. G., Masters G., Dahlen
F.A., Hung S.-H.: Global P and PP traveltime tomography: rays versus waves

4.1 Résumé

Dans ce chapitre, je discute en detail les différentes formulations mathématiques du
probleme tomographique avec les deux méthodes envisagées: la théorie des rayons
et la modélisation aux frequences finies. La différence entre les deux méthodes est
principalement dans la matrice A du systeme a inverser. Dans la théorie des rayons,
chaque ligne de la matrice correspond a un rayon reliant une source a une station.
Les éléments A;; sont des poids d’interpolation integrant sur la section du rayon
i contenue dans tous les tétraedres qui ont le point j de la grille comme sommet
commun. Dans la modélisation aux frequences-finies, chaque ligne de la matrice
représente un noyau de Fréchet qui connecte une source a une station. Chaque
élément A;; peut étre considéré comme une somme des effets du noyau ¢ contenu
dans tous les tétraedres qui ont le point 7 de la grille comme sommet commun.
Pour tester la difference entre les deux approches tomographiques, j'utilise la
base de données de Guy Masters a longue période. Je sélectionne 66238 P et 20167
PP-P temps d’arrivée. Les mesures ont été refaites par Guy Masters pour tenir en
compte des erreurs instrumentales des stations seulement récemment decouvertes.
Ces mesures de temps sont obtenues par des techniques de cross-corrélation. Les
residus montrent un décalage en temps de 4 s pour les ondes P et d’environ 1 s pour
les PP-P. Vu qu’on peut bien assumer que les mesures des PP-P sont indépendantes
de la source, je considere I’excentrage observé dans les PP-P di a des imprécisions
dans le modele de référence. Je corrige donc légerement le modele de référence
iasp91 dans la région des discontinuités (entre 400 km et 600 km), qui est connue
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pour étre la moins bien définie afin d’éliminer le décalage d’une seconde observée
dans le temps PP-P. J'utilise le modele de référence résultant pour recalculer les
résidus des arrivées P. Cette correction est simplement technique. L’origine de ce
décalage n’est pas encore tres claire et sera recherchée lors d’études futures.

Le chapitre rend compte des résultats des inversions des données obtenues par
les deux méthodes. Les resultats montrent que la théorie des rayons sous-estime
les anomalies de vitesse par 30-60% en fonction de la profondeur par rapport a
la modélisation aux fréquences finies. L’approximation a haute fréquence est une
approximation trop brutale pour les données a longue période. Pour cela, les
phénomenes de diffraction doivent étre pris en compte. Pour analyser les effets
dis au maillage, j’ai fait une inversion en utilisant une grille tres fine. Les images
tomographiques qu’on obtient montrent qu’il n’y pas un effet tres significatif de la
densité du maillage.

Les modeles obtenus montrent une tres claire correlation entre les anomalies
de basse vitesse et les positions connues de plusieurs points chauds. Par exemple,
on retrouve Easter Island, Tahiti, Hawaii et Kerguelen comme exemple de points
chauds alimentés par des panaches profonds. Des points chauds comme Afar,
Iceland et Reunion semble plutot avoir leur origine dans la région de transition a 660
km. La tomographie jusqu’a maintenant n’était pas vraiment capable de montrer
des images capables de convaincre que les panaches profonds existaient comme
suggéré initialement par Morgan (1972). A cause de cette lacune de I'imagerie
sismologique, un autre courant de pensée s’est développé pour lequel les points
chauds sont générés simplement par des fractures de la lithosphere et n’ont donc
pas une origine profonde. Pour vérifier la fiabilité de cette détection d’anomalies
profondes, je montre les résultats d’un test de résolution. Le but est de vérifier que
les panaches profonds ne sont pas dis a un manque de résolution dans le manteau
supérieur et sont bien un signal propre pres de l'interface noyau-manteau. De
meéme, ce test montre que les panaches superficiels ne sont pas définis en raison
d’un manque de résolution a la base du manteau.

4.2 Abstract

This chapter presents the first implementation of finite-frequency global travel-
time tomography for compressional waves. Our data set consists of long-period
P and PP-P traveltimes measured by cross-correlation. We compare results of
a finite-frequency analysis with an inversion obtained using standard ray theory.
The traveltime of a finite-frequency wave is sensitive to velocity structure off the
geometrical ray. The broadband P traveltime is sensitive to anomalies in a hollow
banana-shaped region surrounding the unperturbed path, with the sensitivity being
zero on the ray. Because of the minimax nature of the surface reflected PP wave,
its sensitivity is much more complicated. We compute the 3D traveltime sensitivity
efficiently by using the paraxial approximation in conjunction with ray theory and
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the Born approximation (Dahlen et al., 2000). We compare tomographic models
with the same y? fit, for both ray theory and finite-frequency analysis. Depending
on the depth and size of the anomaly, the amplitudes of the velocity perturbations
in the finite-frequency tomographic images are 30%—60% larger than in the corre-
sponding ray-theoretical images, demonstrating a major shortcoming of ray theory,
and indicating that wavefront healing cannot be neglected when interpreting long-
period seismic waves. The images obtained provide, for the first time, unambiguous
evidence that a limited number of hotspots are fed by plumes originating in the
lower mantle.

4.3 Introduction

Global P-wave tomographic models have so far been obtained by applying the ap-
proximation of ray theory. Waves propagate as rays only in the high-frequency
limit of the elastodynamics equations of motion. All scattering interactions of the
waveform with the heterogeneities of the propagation medium are neglected under
the assumption that the velocity field varies slowly on the scale of the wavelength.
Rays might bend and be deviated by the velocity structure, but energy is conserved
along the ray and is only influenced by the earth’s properties along an infinites-
imally narrow path that follows Snell’s law. The information contained in the P
or S wave is reduced to a single number, i.e. the first break, which is assumed to
correspond to the arrival of the highest-frequency observable wave. This simplifies
the mathematics, but it is quite far from the physical reality where rays have a
given thickness depending on the frequency content of the propagated wavefield
(Kravtsov, 1988).

If the scale length of heterogeneities is comparable to the width of the Fresnel
zone, finite-frequency effects are important. In regions where shadow zones or
strong diffractors are present, scattering and diffraction phenomena may occur,
and the validity of ray theory also breaks down. In ray theory, waves preserve the
time shifts accrued upon passage through an anomaly somewhere along its path.
Because of an intrinsic diffraction phenomenon called wavefront healing, finite-
frequency wavefronts do not. Diffraction acts to fill in or heal irregularities in the
wavefront. Also, diffracted waves of significant amplitude might interfere with the
direct wave and introduce a bias in the traveltime measurements. Consequently,
the traveltime of a finite-frequency seismic wave is sensitive to velocity anomalies
off the geometrical ray. Simple diffraction theory shows that a narrow region
around the ray path affects the traveltimes, whereas structure far from the ray
paths play minor roles. Such a volume surrounding the geometrical ray path is
called the first Fresnel zone and is loosely defined as the region where significant
constructive interference of seismic energy takes place (Wielandt, 1987; Nolet, 1987,
1990; Miiller et al., 1992; Nolet & Dahlen, 2000).

The widespread availability of broadband digital data has led to the recent de-
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velopment of accurate techniques for traveltime measurements using cross-correlation
of an observed body-wave phase with the corresponding spherical-earth synthetic
phase (Bolton & Masters, 2001). Cross-correlation methods have also been used to
measure differential traveltime of two phases at the same station (Kuo et al., 1987,
VanDecar & Crosson, 1990; Woodward & Masters, 1991; Su et al., 1994). The
measurement, obtained in this way provides an integrated arrival-time difference
between two waveforms, not simply the difference between onset times. Therefore
the ray theoretical description for a traveltime along the ray may no longer be
valid, and finite-frequency waveform modeling may be required. A major aim of
this study is to investigate the necessity of finite-frequency theory for broadband
seismic data.

The idea of using a ray of non-zero width to bridge the gap between rays and
waves dates back at least to Hagendoorn (1954). He introduced the concept of
beam width defined as the region falling within the first Fresnel zone. Various
later attempts have been made to compute Fresnel zones for bandlimited seis-
mic traveltimes in two and three dimensions (Gelchinsky, 1985; Woodward, 1992;
Yomogida, 1992; Cardimora & Garmany, 1993; Stark & Nikolayev, 1993; Vasco
& Majer, 1993; Li & Tanimoto, 1993; Marquering et al., 1998, 1999; Dahlen et
al., 2000; Hung et al., 2000; Zhao et al., 2000). They use the single scattering or
first-order Born approximation, the Rytov approximation, or the Kirchhoff approx-
imation to compute Fréchet sensitivity kernels that relate traveltime perturbations
to velocity anomalies.

Because of the computational difficulties that accompany a three-dimensional
formulation of sensitivity kernels for P or S waves, little effort has been put so far
into using them for seismic tomography, at least outside the geophysical exploration
community. Yomogida (1992) uses single scattering together with the paraxial ray
approximation to model the first Fresnel zone, and implements the 2D Fréchet
kernels in a synthetic inversion for teleseismic waves. Castle et al. (2000) and Husen
& Kissling (2001) use what they call fat rays for the shear wave speed anomalies at
the base of the mantle, and a tomographic study of the Antofagasta area (Northern
Chile), respectively. However, fat rays account only approximately for wavefront
healing effects, which may lead to incorrect results. Finally, Yoshizawa (2002) uses
Fresnel-area ray tracing to compute the zone of influence about surface wave paths,
and uses such kernels to extract a new Australian upper mantle model.

Marquering et al. (1998, 1999) and Zhao et al. (2000) present exact expres-
sions for the Fréchet kernel for delay times, obtained by summing surface wave
and normal modes, respectively. Zhao et al. (2001) uses such expressions in a 3D
tomographic study of the Western Pacific region. The normal-mode theoretical
kernel is by far the most general description of the sensitivity kernel around the
unperturbed ray. However, since mode summations involve extensive computation,
the implementation of the exact kernel in a global inversion of large data sets is not
presently feasible. Dahlen et al. (2000) provide an alternative procedure to eco-
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nomically compute the Fréchet kernels of a finite-frequency traveltime measured by
cross-correlation of a broad-band waveform with a spherical-earth synthetic seis-
mogram. The Green’s function, the response to the point scatterer in Born theory,
is represented as a sum of rays rather than modes. The paraxial approximation
renders the computation of such kernels much more efficient.

In this chapter we present the first global traveltime tomography of finite-
frequency waves based upon the 3D Fréchet kernel formalism of Dahlen et al.
(2000), and compare the result with the one obtained with classical ray theory.
We refer to their paper for a complete derivation of the Fréchet kernels.

4.4 Ingredients of the inverse problem

4.4.1 Data and reference model

We use arrival times of P and PP waves with 20 s dominant period (Bolton & Mas-
ters, 2001). We invert 66238 P traveltimes and 20167 PP-P differential traveltimes.
Measurements have been corrected for data logger time errors.

Absolute times are mainly affected by noise and errors due to source misloca-
tion. They are measured by cross-correlation of an observed pulse with a synthetic
which is constructed by convolving the instrument response with a ¢* attenuation
operator (Bolton & Masters, 2001); the attenuation time t* is kept constant at 1 s
for P waves.

Differential PP—P times are obtained by cross-correlation of the Hilbert trans-
formed direct P phase with the reflected PP phase (Woodward & Masters, 1991).
Here the t* operator accounts for the different attenuation histories of the direct
and reflected phase, respectively. Differential traveltimes have the advantage of
eliminating source and receiver bias, and are sensitive to shallow structure in the
vicinity of the bounce point, thus allowing us to constrain regions of the world
where there are no sources or receivers.

Predicted absolute and differential times are computed using the iasp91 velocity
model (Kennett & Engdahl, 1991). We correct for the signal due to ellipticity and
for the effect of the crust (including topography). Crustal corrections are obtained
using the 2°x 2° global crustal model CRUST2.0 (model available through the Rem
web site: hitp://mahi.ucsd.edu/Gabi/rem.html). The remaining residuals show a
baseline shift of about —1 s for PP-P and about +4 s for P (Figure 4.1a). Although
the origin of these offsets is not very clear, major candidates to explain them are
the use of NEIC locations and imperfections in the 1D reference model. Since
differential times such as PP—P are quite insensitive to source mislocations, the —1
s offset is best explained by the inadequacy of the 1D reference velocity model used
or by the inadequacy of ¢*. We eliminated this offset by making a slight change
to the iasp91 velocity model in the transition region (Fig. 4.2). This correction is
purely technical and allows us to eliminate the PP—P offset for a range of distances.
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Figure 4.1 Top: Histograms of PP-P residuals of data used in this study. Bottom:
P residuals computed with (left) iasp91 velocity model and (right) a modified
version of the iasp91 velocity model shown in Figure 4.2 < §7 > indicates the
average value of delay times. The offset of ~ +5 sec is discussed in the text.
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Figure 4.2 Comparison of the iasp91 velocity model (solid line) with a model ob-
tained by applying a slight perturbation (0.7%) to the velocity of the iasp91 velocity
model (dotted line) between 400 and 660km. The modified iasp91 model removes

the bias in the PP-P data.



32 Global P and PP traveltime tomography: rays versus waves

After centering the PP—P times to zero, the offset in the P data increases to about
+5 s (Fig. 4.1b). The origin of this bias is not fully understood, but we suspect
it is related to the fact that we use origin times established for high frequency
waves, whereas the measurements are done at 20 s with a simple source pulse in
the cross-correlation. This shortcoming is inherent to our data set. In order to
minimize the effect, we have applied a constant correction to all P traveltimes such
that the average <d07p >= 0. This allows us to damp perturbations in origin times
during the actual inversion.

4.4.2 Model parameterization

We sample the velocity structure by using an irregular distribution of points to
form a Delaunay mesh (Watson, 1981, 1992; Sambridge et al., 1995). In 3D, a
Delaunay mesh is an aggregation of space filling, disjoint, irregular tetrahedrons
uniquely defined. We build the Delaunay connections by using ghull, a package
distributed by the Geometry Center of Minneapolis (Barber et al., 1996).

Node spacing is adapted to the expected resolving length of our data and ranges
from about 200 km in the upper mantle to about 600 km in the lower mantle. The
total number of nodes we use to model the global Earth is m = 19, 279.

The velocity ¢ at any point x in the model is defined by linear interpolation
within each tetrahedron spanned by this mesh, formally expressed as:

Se(x) =Y dophi(x), (4.1)

where h; denote the interpolation functions, £ being an index over the four nodes
of the tetrahedron that contains x.

4.4.3 Delay times tomography: rays and waves

To investigate the effects of wavefront healing, we shall compare ray-theoretical
tomography with finite-frequency wave tomography. In the following two sections
we briefly review the analytical description of both formulations, which in the end
reduce to a similar discrete system Ax=b of n traveltime shifts b; measured by
cross-correlation and m velocity perturbations x;, which we solve in both cases
in a least-squares sense (Paige & Saunders, 1982; Nolet, 1985). The inversion
technique that we use is well established and is described in detail by Nolet (1987)
and Spakman & Nolet (1988).

Rays
In the ray approximation, a measured traveltime residual is given by a 1D line
integral along the unperturbed spherical-earth ray:

5T = — / o(r)26¢(x) d, (4.2)
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where dl is the differential arclength along the ray, ¢(r) is the background wavespeed
at radius r (i.e modified iasp91), and dc(x) is the 3D heterogeneity that one is
seeking to image. Fermat’s Principle allows us to use the raypath computed for the
background velocity ¢(r) (e.g. Nolet, 1987). By virtue of the linear interpolation
on the tetrahedron structure (equation 4.1), the expression for the traveltime shift
0T becomes:

dc;
5T, = ZA”C_;’ (4.3)
i
where ¢; = ¢(r;) at node j, and the elements of the matrix A are given by:

Aij = —/ dl cfl(r)hj(x), (44)
ithpath

with ¢ the datum number, and j the node index.

In the case of a differential traveltime PP-P, the delay time 677 ~F is given by
§(TP" —T") and the elements of the matrix A are simply the difference between
the matrix elements of the two phases individually.

Finite-frequency waves

In finite-frequency tomography the 1D integral along the geometrical ray is replaced
by a 3D volume integral:

5T:/K(x)%d3x (4.5)

over the entire Earth @ in which the wave-speed perturbation is non-zero, dc/c # 0.
The quantity K(x) is the 3D Fréchet kernel of a finite-frequency traveltime shift
0T that has been measured by cross-correlation of a broadband waveform with a
spherical earth synthetic.

Following Dahlen et al. (2000) the 3D Fréchet kernel K(x) is expressed by a
double ray sum over all scattered body waves. This formula reduces to an easily
computable expression by invoking the paraxial approximation which eliminates
the need to conduct repeated two-point ray tracing. By ignoring all forward scat-
tering rays that are not of the same type as the unperturbed path, the Fréchet
kernel reduces to a compact expression given by (Dahlen et al., 2000):

/ w? [ (w)[* sin ® dw
0

/ w? [ (w)[* dw
0

K(x) = (Jdet (M + M")] , (4.6)

27

where )
@ = Jwq’ - (M +M") - q — [sig(M' +M") - 2]% . (4.7)

The matrices M’ and M” are the forward and backward 2 x 2 traveltime Hessians
along the central ray, and q is the location vector of a scatterer at x, in ray
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Figure 4.3 Perpendicular projection of a scatterer x onto the paraxial point &,
situated on the central geometrical ray from the source s to the receiver r. The
off-path difference vector is expressed in terms of two orthogonal unit vectors:
¢ = @141 + ¢2Q2- The ray centered coordinates of the scatterer are x = (q1, ¢o, 1)
where [ is the arclength along the central ray Dahlen et al. (2000).

coordinates (see Figure 4.3). The symbols det and sig denote the determinant and
the signature, or the number of positive minus the number of negative eigenvalues of
M’ + M"| respectively; w is the angular frequency, and ¢ = ¢(r) is the background
spherical-earth velocity. The kernel for a single, well-isolated seismic phase depends
only upon the sum M’ + M" of forward and backward traveltime Hessians along
the central geometrical ray. The quantity ® (eq. 4.7) represents the phase delay
of the wave scattered from x. The quantity | (w)|? is the power spectrum of the
attenuated synthetic (see section 4.4.1) and specifies the frequency content of the
cross-correlated arrivals. This is a reminder that K (x) is the Fréchet kernel of a
finite-frequency traveltime measurement 7. We have ignored a possible bias in
dominant frequency caused by the correlation operator emphasizing the early part
of the waveform rather than a full period.
Written out explicitly, the 3D integral for the traveltime shift 07" is given by:

1

L 00
0 = —— di // dqidgy(1 + q0kc)c *6c
27 0 —00

/ w? |m(w)]? sin ® dw
0

X /(|det(M’ + M")| - -
/0 2 [1in(w)|? dow

(4.8)

The limit +00 on the transverse integrals over ¢y, g2 are purely formal; in practice,
the kernel K (x) is negligible except within the first one or two Fresnel zones about
the central ray.

Again, by virtue of the linear interpolation on the tetrahedron structure (equa-
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tion 4.1) the expression for the traveltime shift §7" becomes:
5T:ZA~@ (4.9)
) - iJ ¢ ) .

where the elements of the matrix A are given by:

1 o0
Ay = —o dt // dq1dgs(1 + grdc)c hy(x)
2T ithpath —00

/w3|m(w)|25in®dw

0

/ o [rin(w) P dow
0

with ¢ = 1,2, ...,n the datum number, j = 1,2, ...,m the node index and k£ = 1,2
the ray coordinate index.

In the case of differential traveltimes 7" = §(T*Y — T"), which is related
to the difference of the individual Fréchet kernels: K*7~F(x) = KPP (x) — K¥(x).

x /(|det(M’ + M")|

, (4.10)

From a mathematical point of view the difference between the ray- theoretical
and finite-frequency approach resides in the elements of the matrix A. In the ray-
theoretical formulation, each row of the matrix A represents the geometrical ray
connecting the source s to the receiver r. The elements A;; are interpolation
weights integrated along the arclength of the ray i contained in all tetrahedrons
having node j as common vertex. In the finite-frequency modeling, each row of A
represents one Fréchet kernel connecting the source s to the receiver r. Therefore
each elements of the matrix A;; can be seen as the integrated effect of the kernel ¢
contained in all tetrahedrons having node j as common vertex.

Typical widths of the sensitivity region (i.e. the diameter of the ring around
the unperturbed geometrical ray) at the turning point of a direct P wave range
from about 1000 km to about 1300 km for a 60° and 80° epicentral distance re-
spectively. Delay times are relatively insensitive to velocity perturbations close
to the geometrical ray. This region of insensitivity is smaller near the source and
receiver but can extend to about 400 km near the turning point of a P wave at
80° epicentral distance, giving the characteristic shape of a doughnut to the ba-
nana kernel (Figure 4.4a). PP waves show a much more complicated shape of the
sensitivity region than direct P (Figure 4.4b). The PP wave from a source to a
receiver passes through a source-to-receiver caustic where it experiences a non-
geometrical 7/2 shift; the backward wave from receiver to source passes through
the corresponding receiver-to-source caustic. Upon passage through these caustics
the shape of the kernel changes drastically and does not resemble a hollow banana
any more. The on-ray PP sensitivity is still identically zero between the source and
the source-to-receiver caustic, and between the receiver and the receiver-to-source
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Figure 4.4 Ray-perpendicular cross sections of the Fréchet kernel (a) for a P wave
between the source and the turning point and (b) for a PP wave between the
source and the bounce point. The shape of the PP kernel changes drastically upon
passage of a caustic.



4.4 Ingredients of the inverse problem 37

(b) PP-P data

Figure 4.5 (a) distribution of sources (stars) and receivers (triangle) for P data;
(b) distribution of sources (stars), stations (triangles) and bounce points (dots) for
PP data.

caustic; however, it is nonzero between the two caustics (Fig. 4.4b). The char-
acteristic zero-to-maximal-to-zero sensitivity variation of the PP waves along the
geometrical ray is due to the jumps in the term sig(M'+M")7 /2 of equation (4.7)
(Dahlen et al., 2000; Hung et al., 2000). Steps of integration in the computation of
the matrix A have been dynamically adapted along the kernel to take into account
changes in the size and shape of the sensitivity region.

The introduction of volume kernels in the inversion significantly improves the
“ray path” coverage. Also, it is clear from Figure 4.4 that a 1D line integral along
a ray is an extremely crude approximation of the complex sensitivity region of a
PP wave. PP waves are particularly useful in global tomography because they
provide constraints on regions where there are no sources or receivers. Figure
4.5a shows the sources and stations distribution of the P waves contained in our
data set. Significant parts of the globe such as the southern hemisphere are badly
covered by paths. Because of the bounce points, the introduction of PP waves in
the inversion significantly enhances the path coverage in the upper mantle.

Because of the wide span of the sensitivity regions, finite-frequency waves sam-
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ple a larger volume of the model than do the rays. As result, the matrix A for
finite-frequency waves is a factor of 16 less sparse than the one constructed with
rays for our parameterization. However, the sensitivity is significant only in a
limited region around the geometrical ray and many of the matrix elements are
small.

In Figure 4.6 we show a comparison between the column density for the two
matrices. We define the density for a given node of the grid as the sum of all the
elements of the matrix in the column correspondent to that node. As expected,
the density is larger and broader for the finite-frequency matrix.

4.5 Technical aspects of the inversion

We simultaneously invert for perturbations in velocity dc/c and in hypocentral
parameters (origin time, longitude, latitude, depth). Our system of inversion be-
comes [AH|x = b where H is the matrix of partial derivatives with respect to the
source parameters and where x = [x,xp]T now contains both unknown velocity
perturbations x. and source corrections x,. The quantity b on the right side is the
vector of the delay times 07

We have 5,738 sources and the grid consists of 19,279 points giving a total
of 42,231 unknowns and n = 86,405 observations (see section 4.4.1). Changes in
origin time and source location are computed with respect to NEIC values.

We have many more data than unknowns, yet due to the sparseness of the ray
distribution, the problem has a partly underdetermined nature. Also, because of
errors, the system of equations is inconsistent. To regularize the inversion, we apply
norm damping to the velocity perturbation x., which biases to a lower amplitude
solution, and to the source corrections xp, which limits changes in origin times and
hypocentral location coordinates: the strength of this ||x.]| — 0 and ||x4|| — 0
norm damping is controlled by two tunable parameter €. and €,. To supplement
the norm damping, we also apply second derivative damping, ||Sx.|| — 0, governed
by a parameter €g; this biases the solution toward smooth velocity variations in
every direction (latitudinal, longitudinal and radial). Due to the irregular nature
of the grid, our smoothing operator is not truly a canonical second derivative
V? since it averages on the total number of node neighbors. In finite-frequency
modeling, the effect of the uneven sampling is reduced by the implementations of
kernel volumes. Because of their intrinsic averaging nature, a natural smoothing
is implicitly introduced into the inversion reducing the degree to which we have to
implement the “ad hoc” smoothing scheme in this case.

How are we going to compare two models obtained with two different tech-
niques? Assuming a Gaussian distribution of the data errors, the maximum-
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Figure 4.6 Sections at different depth of the density of the matrix A for ray theory
(left) and finite-frequency waves (right) expressed as sum of the absolute values
of the elements of each column of the matrix A. Note that the maps have been
“wrapped around” to aid in the visualization of patterns in the vicinity of the
Greenwich meridian.
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likelihood estimate of the model parameters is obtained by minimizing y?:

¥ (Za‘ Ay __b")Z — 2 (4.11)

- ag;
2
where o; are the estimated errors in the data. Each measurement b; is characterized
by a grade A, B, and C based on the confidence of the pick and how well the
waveforms match. Each grade corresponds to a different error o;. The choice of
o; in the inversion is in a sense a subjective one. A priori estimates of the o;
values given to the grading were slightly raised on the basis of the misfits obtained
in preliminary inversions for P and PP-P separately. While this introduces a
certain amount of circular reasoning, the o; adopted are close enough to the a priori
estimates to provide a reasonably objective yardstick for inversion. We assigned
an error o of 0.44, 0.53, 0.79s to A, B and C, respectively, for P and 0.75, 0.95,
1.15, respectively, for PP-P residuals.
To the extent that these errors are normally distributed, the quantity x? is
a sum of n squares of normally distributed quantities, each normalized to unit
variance (Press et al., 1992). Thus a typical value of x? for a good fit is x> = N.
More precisely, the y? statistic has a mean n and a standard deviation v/2n. In
the model space this motivates us to look for solutions which lie on the boundary
of the allowable misfit region, i.e. where x? = n. Ray theoretical and finite-
frequency tomography will have different regions of allowable misfit. We compare
models which have exactly the same x?, with x?~n. We shall not be dogmatic in
requiring x? to equal n precisely, since our a priori estimates for o; are somewhat
uncertain. In our inversion, the initial value of y? is about 7.5n and the final x? is
kept constant at 102, 500, i.e., about 1.2n.
The least-square system we are minimizing can finally be expressed as:

X2+ ec||xe||* + en||xnl|* + €s]|Sxc||* = minimum, (4.12)

where € and S are the smoothing factor and smoothing operator, respectively.

The three damping factors (e, for the model norm, €, for the hypocentral pa-
rameters, and eg for the smoothing) define a three-dimensional space. Each point
in this space corresponds to a particular solution, and models with the same x?
span 2D surfaces. We experimented with changing both the damping €. and the
smoothing eg while keeping the damping factor €, constant. Solutions confirm that,
because of their differential nature, PP-P data are insensitive to source parameters.
Also, because of the implicit smoothing, finite-frequency inversion requires much
smaller damping and smoothing parameters to achieve the same x?.

Figure 4.7 shows the tradeoff between the squared model velocity norm ||x.||?
and the model roughness ||Sxc||?/||xc||*> for x* = 1.2n. Finite-frequency solutions
have a larger model norm. The labels RT (Ray Theory) and FF (Finite Frequency)
in the plot indicate the two solutions we compare in the following section.
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Figure 4.7 Model norm versus roughness of the solution for finite-frequency (stars)
and ray-theoretical (dots) tomography with x> = 1.2N. Labels RT and FF indicate
locations of finite-frequency and ray theory models compared in Figures 4.8 4.10.
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4.6 Inversion results

In our inversion, the norm damping (e,) applied to the hypocentral part of the
solution is such that 95% of the changes in the origin time lie between +1.2 sec
and 95% of the hypocentral coordinates between £14 km.

Figure 4.8 shows P wave velocity perturbations with respect to our background
model for ray theory (left) and finite-frequency (right) at different depths. It is
evident that amplitudes of the velocity anomalies are larger in the finite-frequency
tomography than they are in the ray tomography. As can be seen in Figure 4.7 the
two solutions show heterogeneities of the same scale length, have similar roughness
and are characterized by very minimal norm damping.

Figure 4.9 is a quantitative measure of the ratio between velocity changes in
the wave versus ray tomography at different depths. To compute these histograms,
we consider only velocity perturbations with an absolute value greater than 0.2%.

The discrepancy visibly increases as a function of depth. In Table 4.1 (top) we
summarize the analysis of the ratios. In the following analysis, we ignore the small
fraction of uncorrelated (i.e., negative) ratios (Figure 4.9). Above the core-mantle
boundary, between 2889 km and 2408 km depth, anomalies in the finite-frequency
tomographic model are on average 1.6 times larger than in the ray-theoretical
model. Smaller anomalies are more affected than larger ones, as expected. The
amplitude ratio decreases toward the surface where it is of the order of 1.3. The
discrepancy is more evident at depth because wavefront healing effects become more
pronounced. The hole of the banana-doughnut kernel becomes wider as a function
of depth. Anomalies might partially be hidden in the doughnut hole, where the
traveltime sensitivity is zero, and the anomaly amplitudes must compensate for
that.

The plot of the model root-mean-square (rms) as a function of depth shows an
average discrepancy of about 20% or less (Figure 4.10a) between the average abso-
lute value of the velocity changes in the two models. This average includes smooth
areas with small velocity anomalies. The ray-theoretical and finite-frequency solu-
tions are strongly correlated, with correlation coefficients larger than 0.9. However,
the correlation diminishes slightly as a function of depth (Figure 4.10b).

If we believe our estimates for the error o; in our data to be correct then we can
push the system to get to x? exactly equal to n. Figure 4.11 shows the comparison
of the ray-theoretical and finite-frequency wave tomography in this x? = n case.
Numerous small-scale heterogeneities appear in the model. Many of these are of
major interest since they are perfectly correlated with known structures, such as
hotspots. Because of the presence of small-scale anomalies at all depths, finite-
frequency velocity changes are now on average about 1.7 times larger than the
corresponding ray-theoretical ones between the bottom of the mantle and 2408 km
depth and become even more pronounced near the Earth’s surface where they are
about 2 times larger (Figure 4.12 and Table 4.1 bottom). In this case the fraction
of uncorrelated velocity anomalies is more significant, ranging from about 10% near
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Figure 4.8 Comparison between velocity maps of the smooth, x? = 1.2n model
for ray theory (left) and finite-frequency theory (right) at different depths. The
quantity ¢ is the velocity in the reference model shown in Figure 4.2. Maps have
been “wrapped around” to aid in visualization of patterns both in the Atlantic and

the Pacific Oceans.
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Figure 4.9 Histograms showing the ratio between finite-frequency and ray-theore-
tical velocity changes at different depths, for the model with x? = 1.2N. Only
changes with absolute value larger than 0.2% are binned. Depth in the histograms
is representative of the depth at the bottom of the shell considered (zpo;). There
are six shells from the surface of the Earth down to the core-mantle boundary.
The number in the corner represents the bottom depth of the shell in kilometers.
Information about the mean and median for each shell are contained in Table 4.1a.
For each layer the total number of points of the grid present in that layer (#pts)
and their average distance (d,) are indicated.



4.6 Inversion results 45

Depth (km) Pos Mean Pos Median Anticorr (%) Neg Mean Neg Median

0 to 481 1.29 1.15 0.8 —2.76 —2.68
481 to 963 1.35 1.18 1.4 —2.74 —2.66
963 to 1444 1.44 1.27 2.0 —2.88 —2.91

1444 to 1926 1.49 1.28 0.9 —3.11 —2.80
1926 to 2408 1.53 1.28 3.5 —2.67 —2.78
2408 to 2889  1.57 1.33 3.3 —2.35 —2.73
Depth (km) Pos Mean Pos Median Anticorr (%) Neg Mean Neg Median

0 to 481 2.01 1.79 11 —2.19 —-1.91
481 to 963  1.77 1.53 16 —2.01 —1.62
963 to 1444 1.78 1.49 19 —2.07 —1.80

1444 to 1926 1.77 1.43 17 —2.11 —1.70
1926 to 2408 1.76 1.51 28 —2.24 —1.97
2408 to 2889 1.71 1.37 32 —2.17 —1.72

Table 4.1 Quantitative analysis of the ratio of finite-frequency versus ray-theo-
retical model parameters plotted as histograms in Figures 4.9 and 4.12 for the
smooth and rough model, respectively. “Anticorr” represents the fraction of model
parameters with significant anticorrelation. We also compute the mean and the
median. All values are computed for the positive ratios, i.e., larger than 0.2% (Pos
— on the left); and negative ratios, i.e., smaller than —0.2% (Neg — on the right).
Uppermost table contains values for the smooth, y*> = 1.2N model; lowermost
table contains values for the rough, x> = N model.
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Figure 4.10 (Left) Root-mean-square velocity perturbation dc/¢ versus depth for
the finite-frequency (FF — dashed line) and ray-theoretical tomography (RT — solid
line). (Right) Correlation coefficient between the finite-frequency and ray-theore-
tical models versus depth. The data fit criterion in both inversions is x? = 1.2n.
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Figure 4.11 Comparison between velocity maps of the rough, x? = n model for
ray theory (left) and finite-frequency theory (right) at different depths. Maps have
been “wrapped around” to aid visualization of patterns both in the Atlantic and
the Pacific Oceans.
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the Earth’s surface to 30% near the core-mantle boundary.

Finite-frequency analysis enhances the rms velocity anomaly by more than 30%
in the lower mantle (Figure 4.13a). The two models are also much less well corre-
lated. The correlation coefficient reduces to about 0.6 near the core-mantle bound-
ary (Figure 4.13b).

Unfortunately, we have no way to decide objectively between the models in
Figure 4.8 and 4.11, unless we put an unrealistic trust in our o; estimates. Some
of the extra details in Figure 4.11 make sense, such as the splitting of the Pacific
superplume into separate anomalies (see discussion in next section). On the other
hand, William of Occam’s dictum that the simplest hypothesis is the preferred one,
leads us to prefer the much simpler images in Figure 4.8, which after all have only
20% larger x? than those in Figure 4.11.

We performed one final test to investigate the influence of the model parameter-
ization on the inversion. To verify that our previous observations are independent
of the chosen grid, we performed an inversion with a much finer parameterization
of 39,048 points (i.e., approximately twice as many). The distribution of the nodes
is roughly proportional to the expected resolving length of our data. The distance
among the nodes ranges from about 100 km at the surface to about 600 km near
the core-mantle boundary. None of the conclusions reached earlier were affected
by this test. We do see small differences in the velocity anomalies, mainly at shal-
low depths where we lack resolution. The original parameterization with 19,279
nodes was evidently fine enough to capture the smaller structure that is affected
by finite-frequency effects.

We personally do not believe that the variance reduction is a particularly useful
parameter to evaluate a tomographic inversion. It is as much a measure of the
adequacy of the starting model as it is a measure of goodness of fit of the final
solution. However, since other global tomographic models are often specified in
terms of their variance reduction, we give our values here. Both inversions with
the 19, 279-point grid have a variance reduction of about 84% for x? = 1.2n, and
of about 87% for x? = n. In both cases, roughly half of the variance reduction is
due to the velocity anomalies and half to the hypocenter corrections.

4.7 Discussion

Even though this tomographic study is primarily meant to study the difference
between ray-theoretical and finite-frequency inversions, the results obtained are of
enough interest that we cannot avoid offering a few speculations. A more rigorous
analysis, including resolution and covariance calculations, will be deferred to a
future paper in which we combine the long-period data with short-period data
from the ISC.

There is an astonishing agreement between our low-velocity anomalies and the
locations of well known hotspots visible both in the maps (Figure 4.8) and in the
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Figure 4.12 Histograms showing the ratio between finite-frequency and ray-theo-
retical velocity changes at different depths, for the models with x> = n. Only
changes with absolute value larger than 0.2% are binned. There are six shells from
the surface of the Earth down to the core-mantle boundary. The number in the
corner represents the bottom depth of the shell in kilometers. Information about
the mean and median for each shell are contained in Table 4.1b.
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Figure 4.13 (Left) Root-mean-square velocity perturbation dc/¢ versus depth for
the finite-frequency (FF-dashed line) and ray theoretical tomography (RT — solid
line). (Right) Correlation coefficient between the finite-frequency and ray-theore-
tical models versus depth. The data fit criterion in both inversions is x? = n.
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Hotspot Latitude Longitude Label
Amsterdam  38.7°S 77.5°E AM
Ascension 7.9°S 14.3°W AC

Azores 37.9°N 26°W AZ
Bouvet 54.4°S 3.4°E BV
Canary 28.2°N 18°W CA
Cape Verde 14.9°N 24.3°W CV
Easter 26.8°S 107.6°W  ES
Kerguelen 49.6°S 69°E KG
Hawaii 19.1°N 155.1°W HW
Guadalupe  26.8°N 112.4°W  BC
[celand 64.4°N 17.3°W IC
Kilimanjaro 3°S 37.5°E KL
Madeira 32.7°N 17°W MA
Reunion 21.2°S 595.7°E RE
Tahiti 18.1°S 148.3°W TH
Tasmania 40.8°S 146°E TA
Tibesti 20.8°N 17.5°E TI

Yellowstone 44.5°N 110.4°W YW

Table 4.2 List of major hotspots clearly seen in our tomographic images (locations
are from W. Jason Morgan, personal communication 2003)

cross sections (Figure 4.14). A list of major hotspots with their location is given
in Table 4.2. We distinctly see Easter Island, Tahiti, Hawaii, Bouvet, Kerguelen,
Azores, Canary Island, Cape Verde, Tibesti, Kilimanjaro, Galapagos and Ascen-
sion. Only two low-velocity anomalies are not associated with suspected plumes.
There is an isolated low-velocity anomaly at (15°N,150°E) at 1200 km depth (not
visible in the figures presented here) and another in the northeastern part of Green-
land.

Fast anomalies with amplitudes above 1% are observed beneath Tonga-Kermadec,
Tasmania, Java and below Asia, the latter presumably identifiable as the Tethys
slab (Van der Hilst et al., 1997; Grand et al., 1997; Grand, 1994; Bijwaard et al.,
1998; Van der Voo et al., 1999; Gu et al., 2001). Also clear is the familiar signature
of the Farallon plate which is migrating eastward with depth (Grand, 1994; Grand
et al., 1997; Van der Hilst et al., 1997; Mégnin & Romanowicz, 2000). At 1800 km
depth the high-velocity anomalies below North and South America begin to dis-
appear while becoming more pronounced below Central America in the lowermost
mantle.

In the lowermost mantle the pattern of heterogeneity is dominated by two
large-scale slow velocity anomalies, one in the eastern Atlantic Ocean and one
under the South Pacific (Dziewonski et al., 1991, 1993; Grand, 1994; Su et al.,
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Figure 4.14 Cross sections of the finite-frequency model with y? = 1.2n. The top
figure shows the four great circle paths. Letters (a)—(d) on the paths match plots
below. (a) cross section across Greenland and Iceland (pole location 94.82°W,
11.57°N), (b) cross section through the Pacific superwell (pole location 96.50°E,
62.44°N), (c) cross section across La Reunion and the African hotspots (pole lo-
cation 125.39°W, 45.09°N), (d) cross section across the Atlantic superwell and
Hawaii (pole location 90.94°W, 41.16°N). Two-letter hotspot identifiers are listed
in Table 4.2.
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1994; Liu & Dziewonski, 1998; Masters et al., 1996; Ritsema et al., 1999; Mégnin
& Romanowicz, 2000; Romanowicz & Gung, 2002), as well as by fast velocity under
the circum-Pacific (Dziewonski, 1984; Dziewonski & Woodhouse, 1987; Tanimoto,
1990) common to many other tomographic models.

Both slow regions are loci of major hotspots. The South Pacific “superwell”,
which is considered to be an exhausted remnant of the Mid-Cretaceous upwelling
beneath the Pacific Basin (Larson, 1991; McNutt, 1998), underlies Easter Island,
Tahiti and Samoa (Figure 4.14b). The Atlantic ”superwell” contains Kerguelen, the
African superplume, the African hotspots, Cape Verde, Canary Island, and ends
in the Norwegian Sea with a clear signature of the shallow Jan Mayen seamount
connected with a deeper anomaly below Greenland (Figures 4.8 and 4.14a,c,d).

Crough & Jurdy (1980) removed subduction-related geoid highs from the ob-
served geoid and found a residual field which has a simple form of two large, ellipti-
cal highs surrounded by lows. Broad residual geoid highs are in the central Pacific
and the Africa/eastern Atlantic region, in perfect correlation with the regions of
highest hotspot concentration. Because hotspots are regions of mantle upwelling,
they can contribute significantly to geoid anomalies. The two low-velocity anoma-

lies in our velocity maps seem to be in perfect agreement with the geoid highs of
Crough & Jurdy (1980).

Many features are visible both in the ray-theoretical and finite-frequency in-
versions. However, the continuity of anomalies is generally greater for the finite-
frequency images. This is particularly true for Easter Island (not shown) and
Hawaii, which clearly shows up as a continuous feature from the surface to the
core-mantle boundary (Figure 4.14d). Also, the finite-frequency tomographic im-
ages provide compelling evidence that the hotspots named are fed from the lower
mantle (Figure 4.14). The Pacific superplume seems to feed the spreading of the
South Pacific, whereas the Atlantic megaplume feeds the spreading not only of the
North and South Atlantic but also of the Indian Ocean, through a clearly visible
conduit “leaning” toward Kerguelen (Figure 4.14d). The interaction of the African
superplume with both the Mid-Atlantic Ridge and the Mid-Indian Ridge is present
in the shear velocity models obtained previously by Ritsema et al. (1999), Mégnin
& Romanowicz (2000) and Romanowicz & Gung (2002).

Major hotspots which do not seem connected to a lower mantle plume include
Afar, Ascension, Etna, Galapagos, Iceland, Kilimanjaro, Madeira, Reunion, Tris-
tan. These all seem to originate in the mid mantle. Indications that Iceland is
not a deep-seated anomaly were already presented by Ritsema et al. (1999) and
a shallow origin was argued from indirect evidence by Foulger & Pearson (2001),
Foulger et al. (2001) and Foulger (2003). The result of our inversion confirms these
observations and clearly contradict the finding of Bijwaard & Spakman (1999), who
proposed a plume extending all the way to the core-mantle boundary.
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4.8 Resolution

To determine the reliability of our tomographic images we have performed a limited
number of resolution tests. We introduce velocity anomalies having the form of
vertical cylinders at location of known hotspots: Iceland, Ascension, Kerguelen,
Hawaii, Tahiti and Easter Island. The velocity perturbation decreases with a 3D
Gaussian shape from the axes of the hotspot where it is —1.0%. The corresponding
velocity perturbation is assigned to each point of the grid lying within the cylinder.
Because of the tetrahedral nature of our parameterization, the input velocity model
deviates slightly from a smooth cylinder, depending on the distribution of model
nodes within and near the synthetic plume.

The diameter of the input cylinders is roughly the same as the quasi-cylindrical
anomalies in the smoother tomographic model (Figure 4.8), i.e., the region with
the highest amplitude of the perturbation has a diameter of about 500 km. To
verify the vertical resolution we performed two kinds of tests. In the first test, the
synthetic hotspots reach the core-mantle boundary (Figure 4.15a); in a second test,
they stop at about 1400 km depth to simulate plumes originating in the mid-mantle
(Figure 4.15b). Synthetic delay times are computed by means of finite-frequency
theory, and inverted using both ray theory and finite-frequency theory (Figure
4.15 “exact data”). The same tests are then repeated adding normally distributed
random noises to the synthetic residuals (Figure 4.15 “noise added”). The results
show that we have adequate resolution in all directions mainly at all synthetic
hotspot locations. The fact that we recovered the shape and depth extent of the
anomaly, no matter if this was shallow or deep, indicates that we have a reasonable
resolution. However, we do not exactly resolve the width of the anomalies. We
hope to further improve the resolution with the introduction of the high-frequency
data (ISC delays).

Figure 4.16 shows the root-mean-square amplitude of dc/c for each synthetic
hotspot and the two solutions as a function of depth. The plotted quantity repre-
sents an average value of the absolute velocity variations at different depth inside
each cylinder. From the noise-free tests, we again see a discrepancy, of about
20%, between finite-frequency and ray theory, as we observed in the tomographic
models. Kerguelen and Ascension seem to be particularly poorly resolved. We
attribute this poor resolution to a lack of ray path coverage in these particular
regions, visible also from Figures 4.5 and 4.6.

Finally, to verify that our velocity anomalies in the lower mantle are not smeared
signal from the upper mantle we have performed two more tests. For reasons of
space, we do not present the figures here, but only a description of the results. In
the penultimate test, the synthetic cylinders stop at 150 km depth with maximum
velocity perturbation of —5.0%; in the final test the anomalies stop at the 660
km discontinuity with a maximum velocity perturbation of —1.0%. In both cases
we observe very little leakage into the lower mantle. Amplitudes of the recovered
anomalies falling below the 660 km discontinuity lie within the interval —0.15% to
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Figure 4.15 Resolution tests for six of the major hotspots observed in the tomo-
graphic images. (Left) Recovered velocity model (Actual) for x? = 1.2n; (Right)
Resolution tests: from left to right we present the input model (Input), the re-
covered model obtained by inverting the synthetic delay times 67" using the ray-
theoretical inverse (RT out) and the finite-frequency inverse (FF out), respectively.
The rightmost two columns show the corresponding recovered models in the case
we invert the synthetic residuals after the addition of normally distributed random
noise. Panel (a) shows the results with the synthetic hotspots reaching the core-
mantle boundary; panel (b) shows the results with the hotspots originating in the
mid mantle (around 1400 km depth). Two-letter hotspot identifiers are listed in
Table 4.2.
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Figure 4.16 Root-mean-square of dc¢/c as a function of depth for each cylindrical
anomaly introduced at known hotspot locations. Two-letter hotspot identifiers
are listed in Table 4.2. Panel (a) shows the results of the test done with the
anomalies reaching the core-mantle boundary, whereas panel (b) shows the results
in the case the anomalies stop at the mid-mantle. In each panel we show the
results of the inversion of the synthetic residuals without normally distributed error
(bottom row) and after adding normally distributed error to the synthetic residuals
(top row). Solid line indicates the rms for the input velocity anomalies. Denser
and coarser dashed line indicates solution for finite-frequency and ray-theoretical
inversion respectively.
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—0.05%, approximately ten times smaller than the highest amplitude recovered in
the upper mantle. In our x? = 1.2n tomographic images, we believe and interpret
only velocity perturbations with amplitudes larger than 40.2%.

4.9 Conclusion

We have introduced 3D finite-frequency Fréchet sensitivity kernels into global P
wave tomography. Effects on the resulting tomographic images have been inves-
tigated by comparing finite-frequency tomographic maps with velocity images ob-
tained with the more standard technique of ray theory.

We inverted P and PP-P cross-correlation traveltimes of 20 s dominant period.
We have demonstrated that finite-frequency analysis of such long-period waves sig-
nificantly affects the final images. The amplitudes of the velocity perturbations
in our finite-frequency model are 30%—60% higher than those obtained with ray
theory, depending upon depth and size of the heterogeneity. This demonstrates
a major shortcoming of ray theory. It is not possible to neglect wavefront heal-
ing effects, as ray theory does. Finally, even though we defer a more conclusive
interpretation of our images until we have a clearer idea of resolution including
short-period waves, we present the first clear evidence that at least six hotspots
originate in the lower mantle. Iceland seems of shallow depth. For other hotspots,
not mentioned here, the jury is still out.

Finite frequency analysis makes it possible to combine data of different fre-
quency. In continuing work we are combining the 20 s compressional wave used in
this study with ISC delays obtained at ~ 1 s period. We expect this will further
constrain the P wave velocity structure in the Earth.
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Chapter 5

Joint seismic tomography of short
and long period P wave
traveltimes

5.1 Résumé

La modélisation aux fréquences finies nous permet d’utiliser différents types de
données dans la méme inversion. Pour affiner encore plus notre modele tomo-
graphique, j’ajoute aux données a longue période une sélection de données a courte
période de tres haute qualité. Ce jeu de données, dérivé de la base de données de
I'International Seismological Centre (ISC), ont été re-analysé par Prof Bob Eng-
dahl et classée avec une précision de deux décimales sur les temps. Ce chapitre
est principalement dédié a ’analyse de compatibilité entre les données a courte
période et les données a longue période utilisées dans le chapitre précédent.

Pour définir leur compatibilité, je compare d’abord les données brutes. Pour
cela, je sélectionne les événements qui ont le plus de stations en commun. Pour
chaque événement, je compare les deux délais obtenus par soustraction du temps
théorique calculé dans notre nouveau modele de référence et les temps mesurés. La
comparaison montre que les deux délais sont généralement tres bien corréles. Les
temps de retard pour les données a longue période sont bien approximés par une
régression lineaire dans laquelle la pente est indicative de I'importance des effets
de diffraction, et en particulier de ce que 'on appelle le “wavefront healing”. Ce
remplissage dépend de ’échelle des anomalies et aussi de la longueur d’onde. La
largeur locale du noyau de Fresnel augmente avec la racine au carré de la distance
entre la source et le recepteur. Comme 'onde se propage, une petite anomalie
est de plus en plus capable de se cacher dans le trou qui se trouve au milieu du
noyau: elle n’affecte alors pas significativement le temps de trajet de I’onde. On
dit que le front d’onde est capable de guérir et d’oublier les effets de 'anomalie
rencontrée dans son parcours vers la station. A cause de cette diffraction, les délais

29
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des données a longue période augmentent moins vite que ceux des données courte
période. Plus significatifs sont les effets de la diffraction, moins grandes sont les
délais des arrivées a longue periode par rapport aux délais des ondes a courte
période et, en conséquence, plus petite est la pente de régression. Environ 80% des
événements analysés sont affectés par ce phénomene de diffraction (pente < 1).

La compatibilité des deux familles des donnée peut étre aussi estimée a par-
tir des résultats des inversions des données individuellement. Cette comparaison
nous permet de voir que les amplitudes des anomalies dans I'inversion de données
a courte periode sont 30-50% plus faibles que dans les images obtenues avec les
données a longue période suivant la profondeur que I'on considere. Visuellement, la
différence est plutot dans les anomalies courte longueur d’onde. La corrélation est
meilleure pour les anomalies de grande longueur d’onde. En particulier, je mon-
tre des exemples des panaches: Azores, Canaries et Cape Verde; Hawaii; Iceland
etTahiti. La description en detail du modele final est remis au prochain chapitre.
Cette comparaison permet de voir que les panaches sont déja visibles dans le modele
obtenu avec les données a courte période, mais avec des amplitudes plus faibles.
Différentes sont les hypotheses qu’on considere ici pour expliquer cette différence
non négligeable entre les amplitudes des deux tomographies. Il est probable que
les données courte période sont aussi affectées par les phénomenes de diffraction.
Pour ces données, 'estimation des noyaux de Fresnel serait donc aussi nécessaire.

Le nombre de données a courte période est significativement plus large que le
nombre de données a longue période. Si on fait I'inversion sans aucun control, la
tomographie va étre totalement dominée par les données courte période. Mais le
but de ce travail est d’exploiter les informations contenues dans chacun des deux
familles de données. Pour cela, j’applique un facteur d’échelle aux données a courte
periode de facon que les deux jeux de données aient le méme poids dans I'inversion.
La description de la méthode utilisée pour l'inversion conjointe des deux jeux de
donnée est aussi abordée dans ce chapitre.

5.2 Introduction

Aiming to obtain a new high quality P wave velocity model of the Earth, we have
performed a global tomographic study in which we jointly invert short and long
period traveltime data. We present here an analysis of their compatibility, and we
describe the approach we use to invert them. Measures of the consistency between
the two data sets can be obtained by studying the correlation between short-
and long- period raw delays, and by comparing the velocity models obtained by
inverting each data set separately.

Short period data generally are onset times, measured by an analyst from short-
period vertical component instruments and sent to national or international agen-
cies such as the National Earthquake Information Centre (NEIC) or the Interna-
tional Seismological Centre (ISC) that distribute them. Teleseismic P arrivals are
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assumed to have been read from instrument with a dominant period around 1 s.
They represent the arrival of the highest-frequency observable wave, for which ray
theory is valid. Because of the mathematical simplicity of ray-theory, they have
been extensively used in global seismic tomography.

Broadband digital data are very high-quality measurements whose number in-
creases steadily. Arrival times are often measured by cross-correlation of an ob-
served body-wave phase with the corresponding spherical-earth synthetic phase
(Bolton & Masters, 2001). Cross-correlation methods have also been used to mea-
sure the differential traveltime of two phases at the same station (Kuo et al., 1987,
Woodward & Masters, 1991; Su et al., 1994) or of the same phase in a network
(VanDecar & Crosson, 1990). Both absolute and differential travel times have been
used in tomographic studies, most recently by Fukao et al. (2003) and Vasco et al.
(2003). Long period data are low pass filtered, which facilitates the identification
of the different phases.

The measured traveltimes of finite-frequency seismic waves are usually modeled
with ray theory. Ray theory assumes that the travel time of a P wave is only influ-
enced by the Earth’s properties along an infinitesimally narrow path that follows
Snell’s law. However, as a result of diffraction effects, the traveltimes of finite-
frequency waves are sensitive to velocity structure far away from the geometrical
ray, within a volume known as the Fresnel zone (Nolet, 1987, 1992; Woodward,
1992; Marquering et al., 1999; Dahlen et al., 2000; Hung et al., 2000; Zhao et al.,
2000). Marquering et al. (1999), Dahlen et al. (2000) and Hung et al. (2000)
show how the 3D Fréchet kernel expressing this sensitivity is identically zero along
the unperturbed ray, and is confined to a banana-shaped volume surrounding the
geometrical ray. Objects much smaller than the width of the Fresnel zone will not
significantly influence the travel time of the wave (Nolet & Dahlen, 2000); diffrac-
tion acts to heal the irregularities and the finite-frequency wavefront continues to
propagate unperturbed. Only an infinite-frequency wave always remembers the
shift accrued upon passage through an anomaly somewhere along its ray path all
the way to the receiver. We account for the diffraction healing of the broad-band
body-waves by computing 3D traveltime sensitivity kernels using the formalism of
Dahlen et al. (2000). These kernels are based on the paraxial approximation to
ray theory and the Born approximation.

Because of their different sensitivity, the two data sets implemented in our to-
mographic study provide complementary information about the velocity structure.

5.3 Data

For the long period data, we use arrival times of P and PP waves with 20 s domi-
nant period (Bolton & Masters, 2001). Although part of this data set has already
been used in an earlier inversion (Bolton, 1996), the original seismograms were
re-analyzed and a recently discovered timing error of the IRIS/IDA Global Seis-
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mographic Network (GSN) stations equipped with the IDE MK7 data logger was
corrected. We invert for 66,210 P absolute traveltimes, as well as 20,147 PP-P
and 2,382 pP—P differential traveltimes. Absolute arrival times are measured by
cross-correlation of an observed pulse with a synthetic which is constructed by con-
volving the instrument response of ANMO GSN station, located at Albuquerque
(New Mexico), with a ¢* attenuation operator. The attenuation time ¢* is kept
constant at 1 s. This assumption can lead to small but systematic depth- and
distance-dependent trends in the data set. To minimize such errors, the fitting
procedure concentrates on matching the first swing of the waveforms, which is less
affected by interference with depth phases and by effects due to the inaccurate
choice of the t* operator (Bolton & Masters, 2001). Differential PP-P and pP-P
times are also obtained by cross-correlation (Woodward & Masters, 1991). Here,
the t* operator accounts for the different attenuation histories of the direct and
reflected phase, respectively. Differential travel times are less affected by errors
in the source location, and have reduced sensitivity to structure in the vicinity of
source and receiver (at least in the ray approximation). Also, they provide useful
information about the shallow structure located near the bounce points, thus al-
lowing us to constrain upper mantle regions of the world where there are no sources
Or receivers.

For the short period data, we use 1,427,114 P and 68,911 pP arrival times ex-
tracted from the International Seismological Centre (ISC) and U.S. Geological Sur-
vey’s National Earthquake Information Center (NEIC) bulletins and re-interpreted
by Engdahl et al. (1998), extended to earthquakes measured until the year 2000.
We only selected the times listed with two decimal precision and labeled as the
highest quality data.

Predicted absolute and differential times are computed using the iasp91 velocity
model (Kennett & Engdahl, 1991). We correct for the delay due to the ellipticity
and for the effect of the crust, including topography. Crustal corrections are com-
puted by using the global crustal model CRUST2.0 (model available on the web:
http://mahi.ucsd.edu/Gabi/rem.html). The delays 6Tp of the long-period data,
i.e. the difference between the cross-correlated arrival time 775 and the theoretical
travel time 7Y™ computed in the ‘asp91 model, show a baseline shift of about -1
s for PP-P and about +4 s for P. The origin of this shift is not fully understood;
it could be due to the imperfection of the 1D reference model, or to systematic
error in the source locations and/or origin time. The assumption of a constant ¢*
operator does not explain this time shift either. Variations in the delays due to
attenuation are of the same order as the variations in the ¢*, which are of a tenth
of a second (see Stewart (1984) and equation (6) in Bolton & Masters (2001)) and
therefore far too small to explain the 4 s shift.

A purely technical remedy has been found to remove this offset, a detailed
description of which can be found in Montelli et al. (2003) (also chapter 4). Since
differential times such as PP—P are quite insensitive to source mislocations, we
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assume the -1 s offset to be mainly produced by the inadequacy of the 1D reference
velocity model used. We eliminate the offset by making a slight change to the tasp91
velocity model in the transition zone. This led to an increase of the offset in the P
data set to about 5 s, which we remove by subtracting a constant correction to all
P traveltimes such that the average is zero. We use this slightly perturbed zasp91
model, that we indicate as iasp91mod, as reference model in our tomographic study
to compute the theoretical times for both long and short period. As a result, an
offset (of 1 s) is also produced in the short-period delays 0Tsp (difference between
the picked T¢% and the theoretical travel time T%¥" computed in the iasp91imod
model), that again we correct by applying a constant correction to all data such
that they average to zero. At first sight, this may seem to introduce a discrepancy
in our data set. However, in the next section we argue that we need to correct the
origin time for short- and long- period data separately. The effect of the overall
time shifts we just discussed is to bring the average of origin time corrections close
to 0; it does not introduce discrepancies that cannot be handled by the inversion.

5.4 Technical aspects of the inversion

We simultaneously invert for velocity perturbations and hypocentral parameters
(origin time, longitude, latitude and depth). Because the onset of the short period
P waves originates from the nucleation point on the fault surface, whereas long
period waves average over the rupture process, hypocenters and origin times are
treated separately, for the two types of data. We have 5,938 events that produced
the long-period data, and the 86,499 that produced the short-period arrival times.

We sample the velocity structure by using a heterogeneous distribution of points
to form a Delaunay mesh (Watson, 1981, 1992; Sambridge et al., 1995). The node
spacing increases with the expected resolving length of our data and ranges from
about 200 km in the upper mantle to about 600 km in the lower mantle.

The system Ax = b to invert can be represented as:

Acp Hip 0 ) (0T 5.1)
Asp 0 Hgp XZLP \ Tsp '
SP

where the matrix Ay p for the long period data is built by using the finite-frequency
modeling of Dahlen et al. (2000); the matrix Agp for the short period data is
constructed by using standard ray theory; the matrix H,p and the matrix Hgp
of the partial derivatives with respect to the hypocentral coordinates of the long
and short-period data, respectively, are computed with ray-theory (equations 2.11
in Chapter 2). The vector x contains the unknown velocity perturbations x. and
source correction xp,, and x;, for the long- and short period, respectively. b is
the vector of the delay times 7 = [0TLp; 0Tsp].



64 Joint seismic tomography of short and long period P wave traveltimes

For a detailed description of the mathematical formulation for the construction
of the matrices A we refer the reader to Montelli et al. (2003) (also Chapter 4).
The difference between ray-theoretical and finite-frequency approaches resides in
the elements of the matrix A. In the finite-frequency modeling, each row of the
matrix Az p represent one Fréchet kernel connecting the source to the receiver. The
elements A;; of the matrix can be seen as the integrated effect of the kernel for
datum ¢ contained in all tetrahedrons having node j as common vertex. In the ray-
theoretical formulation each row of the matrix Agp represents the geometrical ray
connecting the source to the receiver. The elements A;; are interpolation weights
integrated along the arc-length of the ray ¢ contained in all tetrahedrons having
node j as common vertex. Figure 5.1 shows the column density for the long -,
short - period matrices and the full matrix, respectively. We define the density for
a given node of the grid as the L; norm of the column vector corresponding to that
node:

nrLp

A=A (5.2)
=1
nsp

d57 = Z | AP (5.3)

=1

Although the number of long period data is about 17 times smaller than the
number of short period data, long-period data provide similar ray path coverage.
The maximum amplitude of the matrix density for the long period data are about
a factor of 100 smaller than for the short period data. Notable is the difference
between the ray path coverage in the northern and southern hemisphere. The last
column in the figure shows the density of the joint inversion matrix, which has
been weighted to avoid that the larger number of short-period data will dominate
the inversion, as described below.

Standard deviations are assigned to the long and short period data to account
for the measurement errors. Long period times are divided in three accuracy classes
to account for the confidence of the pick. To each class corresponds an error o. A
priori estimates of the o values were slightly raised from purely subjective estimates
(Bolton & Masters, 2001), on the basis of the misfits we obtained in preliminary
inversions. Likewise, we adopt standard deviations for the short period data, which
are close to the estimates of Morelli & Dziewonski (1987). Values are summarized
in Table 5.1. Outliers with a posteriori misfits larger than 30 are rejected after a
first iteration.

To avoid that the image is completely controlled by the much larger short-period
data set, we apply a weight w to the least square system for the simultaneous fit of
the two data set. We denote by ngp the number of short-period data and nyp the
number of long-period data and by define the reduced chi-square x2,; as chi-square
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Long Period matrix

Short Period matrix
el

Z; |Ayl (log scale)

Joint inversion matrix

Figure 5.1 Section at different depth of the density of the matrix A for the long
period data (left), short period data (center) and joint inversion (right). Note that
the maps have been “wrapped around” to facilitate the visualization of patterns
both in the Atlantic and the Pacific Ocean.

LP data: SP data

Phase N.ofobs o4 o0op oc Phase N.ofobs o
P 66,210 0.44 0.53 0.79 P 1,427,114 0.88
PP-P 20,147 0.75 0.95 1.15 pP 68,911 1.14
pP-P 2,382 0.75 0.95 1.15

Table 5.1 Summary of the data sets used in our tomographic study. Number of
measurements and corresponding a priori errors for each of the phases used are
provided for the long period - (left table), and short-period (right table) data set,

respectively.
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divided by the number of data; the system to minimize can be expressed as:

1 1
Xredsp T Xredyp = n—SPX?s*P + EX%P (5.4)

the minimum can be found by computing the least square solution to :

ALp _( oTzp
( w/—\gp )XC - < CU(STSP ) (55)
with w given by:
WP = P (5.6)
nsp

From the number of data used, it follows that w = 0.24. A different approach,
in which the maximum column sum of the matrices wAgp and A p is equalized,
leads to the same scaling factor w = 0.24.

The influence of the data errors in the tomographic images is kept under control
by applying a set of regularizations. We apply norm damping to the velocity
perturbation x., and to the source corrections x;,, and X, , respectively, which
limits the rms (root mean square) of the origin time correction to 0.7 s for the
long period and to 0.4 s for the short period data, and the rms of the changes in
hypocentral coordinates to about 10 km for the long period and 5 km for the short
period in every direction (latitude, longitude and depth). To supplement the norm
damping, we also apply an approximate second derivative damping, ||esSx.|| — 0,
controlled by the parameter es; this biases the solution toward smooth velocity
variations in every direction (latitudinal, longitudinal and radial) (Nolet, 1987).
Our smoothing operator is not truly a canonical second derivative V2 since it
averages on the total number of node’s neighbors in an irregular grid. For node i
of the grid, which has N near neighbors, the smoothing operator is given by:

N
1
€s, (X, — N ;xck) =0 (5.7)

The smoothing parameter es; varies for each node of the grid to account for the
uneven illumination of the earth by seismic rays. An estimate of the illumination
of a node of the grid is given by the column norm (equation 5.2 or 5.3). €s, varies
linearly with the node density between a specified minimum and maximum value.
If the column norm is small then the node is poorly illuminated and we obtain a
strong smoothing; on the contrary, if the column norm is large, then the node is
very well resolved and the smoothing is weak.

The resulting least-square system minimized in the inversion can finally be
expressed as:

Xred%P+XT8d§P+€C||XC||2+6hLP||XhLP||2+6hSP||XhSP||2+||GSSXC||2 = minimum7 (58)



5.5 Compatibility of the two data sets 67

Long Period data: Short Period data

) observed travel times observed travel time

) subtract iasp91 time

) modify iasp91 to center PP-P

) subtract iasp9Imod time from (1)  subtract iasp91mod time from (1)
)

)

)

subtract 5 s from all P delay times subtract 1 s from all P delay times
invert for (6¢/c)rp and xi” invert for (0c/c)sp and x37

correct for xp* correct for x;”

8) compare the resulting delays 617 p with the corresponding 6Tsp
g g
(9) compare the two velocity models obtained by inverting 677, p and 0Tsp, separately.

Table 5.2 Summary of the procedure followed to analyze the compatibility of the
two different data sets.

where ¢, is the damping factor for the velocity model; €, , and €, the damping
parameter for the long- and short-period hypocenters respectively, and es and S
are the diagonal matrix of the smoothing factors and the matrix representing the
operator that applies the smoothing.

5.5 Compatibility of the two data sets

To investigate the compatibility of the two data sets we analyze the raw delays 0T p
and 0Tgp and we compare velocity models obtained by independently inverting
the two data sets. By ‘raw’ data, we denote the traveltime anomalies that remain
after offset corrections. For origin time and hypocenter we adopt the origin time
and hypocentral parameter for the relocated event. The anomaly is w.r.t. model
tasp91mod. In Table 5.2, we summarize the steps that define our raw delay times.

5.5.1 Analysis of the raw data

We take a closer look at the 58 events that have a large (> 5) number of stations in
common among the two classes of data. We compare the short period delays 67sp
with the long period delay times 677, p for each event. Scatterplots show that the
two delay times are generally well correlated. Figure 5.2 shows the scatterplots for
events with more than 10 data. The long-period delay times can be approximated
by linear regression:

(STLP = OééTSP + 5 (59)

The slope « is a measure of the importance of diffraction wavefront healing and is
controlled by the scale-length of the heterogeneities and the ray-length. The local
width of the kernel increases with the square root of the source-receiver distance,
so that as the wave propagates more, a small anomaly is increasingly able to hide
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Figure 5.2 Scatterplot comparison of the short-period delays (horizontal axis) with
the corresponding long-period residuals (vertical axis) for 24 events. A least-
squares criterion has been used to find the best-fitting line 671p = adTisc +
(red line).

within the hole of the kernel and does not significantly affect the traveltime of
the wave. The delay time is also expected to increase (in a rms sense) as the
square root of the ray length, like in the case of the random walk. Because of the
healing, the delay 677 p is still growing as the wave continue to propagate, but less
than the 6Tsp for the correspondent ray which is only affected by the rms growth.
The larger are the effects of the wavefront healing, the smaller is the long-period
residual with respect to the short-period, and as result, the smaller is the slope
«. About 80% of the events analyzed are affected by wavefront healing (o < 1).
The other 20% are larger than 1, but are also characterized by larger error (figure
5.3c¢). The plots show also a shift § in the long period time that is different for
each event.

The origin of this shift, and in particular its variability, is not yet fully under-
stood. Scatterplots of origin time shifts as a function of moment magnitude (figure
5.3a), and as a function of depth (figure 5.3b) do not show any characteristic pat-
tern that could explain this shift. The solution might be found by analyzing the
waveforms. A collaboration with Guy Masters is planned to study possible causes
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of this shift in the measurement procedure. For the present study, we note that
the shift is accommodated by the separate origin time corrections 6 T5F and 6T2F
such as not to influence the inversion result.

5.5.2 Comparison of the velocity models

A comparison of velocity models obtained by inverting the two data sets separately
also provides a measure of their consistency even though it is clear we must allow
for differences in resolving power, and we should never expect complete agreement,
even if the data are 100% compatible. Figures 5.4 to 5.7 show P wave velocity
perturbations with respect to our background model for the long-period data only
(a), short period delays only (b) and the joint inversion (c¢), as a function of depth.
All models have a reduced x? close to 1. We will focus our attention here on the
two separated inversions, postponing the description of the joint inversion model
to the next section.

The only striking difference between the long- and short-period solutions is in
the amplitudes of the velocity anomalies. Figure 5.8 (a) shows the model root-
mean-square for the three inversions; long-dashed line corresponds to the short-
period model, short-dashed line to the long-period only model, and solid line to
the final tomographic model, obtained by jointly inverting the two data sets. The
norm of the short period model is 32% smaller than the norm of the long period
model. Amplitudes of some anomalies in the long-period model are as much as
50% larger (Figure 5.8-a) than in the short-period model. This value changes as a
function of depth, and it is even larger in the upper mantle (Montelli et al., 2003).
The two models correlate rather badly (long dashed line in Figure 5.8) when a
strict numerical measure is used. The correlation coefficient is around 0.5.

Visually, the mismatches are dominated by a lack of correspondence between
the two models of several fast velocity anomalies. Two major fast anomalies cor-
relate: the Farallon slab signature and the high velocity anomaly beneath Asia,
presumably an imprint of the Tethys slab. But, the fast anomaly located north-east
of Hawaii in the long-period model, visible down to 2125 km depth, corresponds
to a slow velocity anomaly in the short period model.

Overall, low velocity anomalies tend to correlate better. However, two low
velocity anomalies mapped in the long period model are fast anomalies in the
short-period images: in the lowermost mantle the super-plume like feature beneath
Europe; and in the Indian Ocean the plume-like features traceable all the way down
to the core-mantle boundary. In the lowermost mantle, both models are dominated
by the two low velocity anomalies common to many other tomographic study and
known as “superplumes” (Dziewonski et al., 1991, 1993; Grand, 1994; Su et al.,
1994; Liu & Dziewonski, 1998; Masters et al., 1996; Ritsema et al., 1999; Mégnin
& Romanowicz, 2000; Romanowicz & Gung, 2002): one in the eastern Atlantic
Ocean and one under the South Pacific. Both models show a good agreement
between the low-velocity anomalies and the location of known hotspots; many of
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Figure 5.3 Scatterplot comparison of the LP-SP time shifts versus moment mag-
nitude (a), hypocenter depth (b) and slopes (c). Red line in plot (c¢) indicate slope
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Figure 5.8 a) Model root-mean square as a function of depth for the short-period
only inversion (long-dash line), long-period only inversion (short-dash line), and for
the joint inversion (solid line). b) correlation of short-period and long-period (long-
dashed line), of short period and joint inversion (solid line), and of long-period with
joint inversion (short-dash line).
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which originate in the “superplume” regions located at the bottom of the mantle.
The plumes, clearly visible in the low-frequency inversion, are also recognizable
(although they are much weaker) in the short period tomographic images (Figures
5.9, 5.10, 5.11 and 5.12).

Figure 5.9 to 5.12 show four example of plume-like structure detected in our
tomographic image. We compare the signature of the plume as detected in the
long-period model (left), short-period (center) and in the joint inversion right).
We observe a remarkable agreement in the structure, but a strong damping of the
amplitude in the short-period images.

Why are the amplitudes in the two individual tomographic models so different?
Amplitudes of the velocity anomalies are the most difficult to reconstruct, and are
often poorly resolved in tomographic images. They are strongly affected by the
regularization.

The comparison of the ‘raw’ delays has shown that both short and long period
seem to see the same Earth.

The ray coverage is very heterogeneous and there might be regions that are
badly illuminated (see figure 5.1). The velocity at the points of the grid within
these regions can vary without seriously affecting the fit of the linear system. The
tomographic system is unstable and the model solution is strongly dependent on
the regularization technique. But this does not seems to be our case, since our

inversions are quite insensitive to changes to the damping factor.

x? is defined by a priori estimates of the standard deviations in the measure-

ments, the choice of which is in a sense a subjective one. Underestimated o’s would
give a solution model less damped; and viceversa, overestimated o’s would lead to
overdamping. Since the long period model has larger amplitude than the short pe-
riod model, we must investigate if standard errors of the long-period arrival times
are underestimated, or alternatively, if those associated to the short period delay
times are overestimated. The long-period data have been measured from broad-
band stations by cross-correlation techniques, mainly by a single operator. Various
inversions with different values of the regularization show that at this level of chi-
square x2,, = 1.1 there are no signs that the model is dominated by noise. The
similarity of the structures among the different resulting models, like the plumes
in figures 5.9-5.12, argues against that. Therefore, it seems unlikely that we are
underestimating the error in the long period data. Are we then overestimating the
errors in the short-period data? Morelli & Dziewonski (1987) estimate the stan-
dard error in P waves to be 0.9 s. Conceivable, the re-interpretation strategy of
Engdahl et al. (1998) and our rejection of all but the highest quality measurements
in this data set could have brought this value of o down below our adopted value
of 0.88 s. The main reason we believe this not to be the case is that a test with an
undamped inversion produces a x2,, of 0.89, only slightly below 1. Since our node
spacing is of the order of the width of the Fresnel zone, inadequacy of the model
parameterization cannot be a major factor in our inability to bring x?2,, further
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Figure 5.9 Comparison of the plumes like features mapped beneath Azores, Canary
and Cape Verde as mapped in the three tomographic inversions: long-period only
(left), short-period only (center), joint inversion (right). Short-period tomographic
images are characterized by smaller amplitude anomalies, but much sharper reso-
lution.
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Figure 5.10 Same as figure 5.9 but for the plume beneath Hawaii. Hawaii is also a
deep-mantle plume.
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Figure 5.11 Same as figures 5.9 and 5.10, but for the plume beneath Iceland.
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Figure 5.12 Same as figures 5.9-5.11, but for the plume beneath Tahiti.
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down. For comparison, the model shown in figures 5.4-5.7 has x%,,=0.95. No re-
laxation of regularization allowed us to obtained a reasonable short-period model
whose amplitudes were similar to the long-period model. These results suggest
that errors adopted for the short period data are not overestimated; if anything,
they seem rather underestimated.

An alternative explanation for the lower amplitudes characteristic of the short-
period model could be found by invoking wavefront healing for this class of data
as well. In Chapter 4, we found that finite-frequency modeling tend to increase
the amplitudes of the velocity perturbations with respect to ray theory. For that
analysis we were inverting the long-period data set by using the two different
techniques and the result indicated that wavefront healing affects the amplitudes
in the tomographic image by as much as the difference observed here. Could
amplitudes in the short-period model be smaller because they, too, are affected by
wavefront healing? In figure 1.1a in chapter 1 we show the Fréchet kernel computed
for a P wave with dominant period of 1 s. Sensitivity regions are significantly
smaller then those for long-period waves, but still it has a diameter of about 400 km
at the turning point of a wave of 80° epicentral distance (Figure 1.1a). Structures
smaller than 400 km, as the plumes, will give delays that suffer from healing. Also,
because of the assorted ISC instrumentations, it could be possible that many of
the onset measurements are representative for a larger dominant period than 1
s, which would induce strong wavefront healing effects in short-period data also
for structures larger than 400 km. The solution may be found by doing a test
inversion for the short-period data with finite-frequency modeling, but that requires
a parallelization of our code which we have not yet accomplished.

5.6 The joint inversion

This section provides a brief overview of the joint inversion model. For a detailed
description of the plumes we refer the reader to chapter 6.

The model we obtain satisfies the short period data with a x?_; of 1.1 and the
long period data with a x2,,; of 1.2. The small difference is not judged significant,
given the uncertainties in our a priori estimates for o.

Our model shows several features that have already been identified by earlier
investigators (van der Hilst et al., 1998; Grand et al., 1997; Grand, 1994; Bijwaard
et al., 1998; Van der Voo et al., 1999; Gu et al., 2001).

Fast anomalies are located beneath Asia, most probably identifiable as the
Tethys slab and beneath Java, Tonga Kermadec, and Tasmania. Clear is also the
signature of the Farallon plate, sinking eastward beneath North America; and of
the subduction of the Nazca plate beneath South America. Again the lowermost
mantle is dominated by the two “superplume” located in the Atlantic Ocean and
under South Pacific.

There is an astonishing agreement between the low-velocity anomalies and the
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location of known hotspots. A detailed analysis of these anomalies (see chapter
6 for a complete description) have shown that plumes do not originate all in the
deep mantle, they may as well originate at much shallower depths. Deep plumes
are located beneath Ascension, Azores, Canary, Easter Island, Hawaii, Samoa and
Tahiti. Others plumes originate at much shallower depths. For instance the Hainan
plume, first seen in a tomographic study by Lebedev (Lebedev & Nolet, 2003) is
clearly seen down to 1000 km depth. Iceland, Galapagos and Juan de Fuca also
originate at much shallower depth, most likely near 660 km. Newly discovered
plume-like features have been observed beneath the Mid-Atlantic Ridge (between
15°N and 25°N,45°W), in the Indian Ocean (35°S,100°E) and north of Reunion,
beneath Seychelles (5°S,56°W).

5.7 Conclusions

We performed a global tomographic study in which we jointly inverted very high
quality short - and long - period data. Despite the different character of the two
data sets, a statistical analysis of a subset of delays times observed at the same
location shows that the two data sets are reasonably consistent. Also, a direct
visual comparison of velocity models obtained by inverting each data set separately
shows an overall good agreement between the two inversions. However, amplitudes
are significantly different among the two models and are much weaker in the short-
period tomographic images. Objectively, we cannot conclude that one data set is
better than the other, nor we can confidently argue that the amplitudes in the long-
period are better estimated than in the short-period model. With this said, our
approach for simultaneously invert the two data sets by minimizing their respective
X2.4 seems the most appropriate. By doing this, we guarantee the equal weight of
the two data sets on the inversion. Finally, although the origin of this difference in
the amplitudes between the two tomographies seems to be encircled by a certain
halo of vagueness, we can confidently say that it not due to our assumed standard
errors in the data. The comparison of a ray-theoretical tomography with a finite-
frequency tomography of the same data set, described in chapter 4, shows that
ray theory tends to underestimate the anomalies for measurements that account
for diffraction phenomena. We could therefore speculate that wavefront healing
also affects the short period data, and explain the lower amplitudes of the short-
period anomalies as due to the lack of modeling of the finite-frequency effect by
ray theory. We cannot confidently rule this hypothesis out, because we cannot say
with certainty that short-period data are all characterized by a very low (< 1)
dominant period. More tests are required to study possible finite-frequency effects
in the very large short period data set.



Chapter 6

Finite-Frequency tomographic
reveals a variety of plumes in the
mantle

A modified version of this chapter will be submitted for publication in Science as:
Montelli R., Nolet. G., Dahlen F.A., Masters G, Engdahl R. E. and Hung S.-H.:
Finite- Frequency tomography reveals a variety of plumes in the mantle.

6.1 Résumé

Dans ce chapitre, je fournis une description tres détaillée des 32 points chauds
trouvés dans notre image du champ de vitesse. D’une maniere similaire au test
décrit dans le chapitre 4, un test de résolution est fait pour pouvoir définir les
limites pour la profondeur et la largeur des panaches qui alimentent les points
chauds. Ce test me permet de classifier les panaches découverts en trois familles: les
profonds, les superficiels et ceux commencant a profondeur moyenne. Les resultats
de cette analyse sont récapitulés dans la table 6.1. Au moins une dizaine des
points chauds a une origine profonde: Ascension, St. Helena, Azores, Canaries,
Crozet, Kerguelen, Hawai, Samoa, Cook Island et Tahiti. Une autre dizaine semble
avoir une origine dans le manteau au-dela de 1000 km. Les panaches ont besoin
d’une couche thermique de frontiere. Bien que I'existence d’un tel changement des
caractéristiques du manteau a de telles profondeurs a été deja avancée, la preuve
n’est pas faite d’une telle discontinuité thermique. Notre travail pourrait donc
aussi confirmer cette hypothese grace a ces panaches intermédiaires.

Vu I'importance de cette observation, il faut étre tr'es critique sur les images
tomographiques. J’ai augementé la limite des changements de vitesse qui permet
de considérer le panache synthétique comme résolu. Cette analyse me permet de
conclure qu’au moins une dizaine des panaches intermédiaires pourrait avoir leur
origine a la base du manteau en raison du manque de résolution a cette profondeur.

83



84 Finite-Frequency tomographic reveals a variety of plumes in the mantle

Seulement deux des panaches analysés passent I’épreuve et semble satisfaire ce test
de resolution tres sélectif. Ce sont les panaches au-dessous de Hainan, et de la
dorsale medio-Atlantique (a 22° N).

Un nombre de panaches a une origine plus superficielle, tres probablement dans
la région de discontinuité des 660 km. Le modele montre aussi des points chauds
qui n’apparaissent dans aucun liste publiée. En méme temps, des points chauds
comme Yellowstone, Macdonald, Lake Baikal et Bermuda n’apparaissent pas dans
le modele actuel. Pour finir, le modele montre aussi des structures a panache a la
base du manteau qui n’arrivent pas encore a la surface au-dessous de la Mer de
Coral et au sud de Java.

6.2 Abstract

Recent improvements in the measurement and interpretation of the small variations
in travel times of seismic P waves show that many of the Earth’s volcanic hotspots
are underlain by deeply reaching thermal plumes. New tomographic images show
at least six plumes that extend into the lowermost mantle and are well resolved
even at that depth: Ascension, Azores, Canary, Easter, Samoa and Tahiti. Several
other plumes, among which is Hawaii may also reach the lowermost mantle, but
suffer from lack of resolution in the images. Other plumes originate at much
shallower depth. The images show several hitherto unsuspected plumes: two that
feed the Atlantic Ridge and the South-east Indian ridge without creating excess in
topographic relief, one beneath the Seychelles and two in the lower mantle that do
not reach the surface.

6.3 Introduction

Several dozen ‘hotspots’, characterized by higher temperature, topographic swells,
and recent volcanism with isotopic signatures distinct from those that characterize
mid-ocean ridge or andesitic basalts are found at the surface of the Earth (Sleep,
1990; Davies, 1988; Courtillot et al., 2003). The best known example is the Hawaii-
Emperor chain in the North Pacific. Wilson (1963, 1965) suggested that these
volcanoes were formed as the Pacific plate moved over a deep mantle volcanic
source. Morgan (1971, 1972) generalized Wilson’s idea to all of the global hotspots,
and suggested that such intraplate volcanism is the surface manifestation of a deep
mantle plume (Richards et al., 1989; Courtillot et al., 1999; Norton, 2000; Courtillot
et al., 2003). Plumes are commonly observed in laboratory experiments (Davaille,
1999; Davaille et al., 2002) and numerical simulations (Bunge et al., 1997; Zhong
et al., 2000; Cserepes & Yuen, 2000). The plume hypothesis plays an important
role in explaining flood basalts, the isotopic signature of ocean island basalts and
the topographic profile across swells and plateaus that often accompany hotspots.
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While this has led to a coherent theory of much of the geology that accompanies
hotspots, though with imperfections, undisputed evidence for the existence of lower
mantle plumes in tomographic images of the mantle is so far lacking.

Low velocity anomalies have been found beneath some hotspots in the upper
mantle, and broad regions of low velocity are visible in the lowermost mantle
beneath the Pacific and Africa (Ritsema & Allen, 2003). Nataf & VanDecar (1993)
detected low seismic velocities - presumably due to higher temperatures - in the top
of the lower mantle beneath the Bowie hotspot. The upper mantle transition zone
close to Iceland is locally thinned (Shen et al., 2001), again a sign of an increase
in temperature !. Bijwaard & Spakman (1999) image a deep Iceland plume but
their finding is disputed by Ritsema et al. (1999) nor supported by the analysis
we report in this chapter.

Two ‘superplumes’, beneath Africa and beneath the South Pacific, are visible
in all recent global tomographic images, most clearly in the S-velocity 2. However,
the superplumes do not clearly extend all the way to the surface and only provide
a qualitative indication that deep upwelling takes place where the concentration of
hotspots is especially dense. Direct tomographic evidence for deep narrow plumes
feeding the volcanic activity at the surface has so far not been convincing, presum-
ably because the narrow dimension of the plume conduit makes it hard to see for
the long wavelengths of seismic waves that diffract around it.

As a result, thirty years after its formulation, Morgan’s deep plume hypothe-
sis has not yet been universally accepted. Anderson and others (Anderson, 1998,
2000; Foulger & Natland, 2003), argue that hotspots could as well be the manifes-
tation of shallow, plate-related stresses that would fracture the lithosphere causing
volcanism to occur along these cracks.

6.4 Technical aspects of the inversion

Our tomographic inversion differs in several aspects from earlier attempts to con-
struct detailed images of the P velocity structure in the Earth’s mantle: (1) we
correct for the effects of wavefront healing in travel times of low frequency P waves,
enabling us to combine long- and short-period data sets; (2) we adapt the model
parameterization to the lower resolution at depth; (3) we use a re-measured, ex-
panded set of long period data; and (4) we select only the highest quality short
period delay times.

Global tomographic models of seismic P wave velocity have so far almost ex-
clusively relied on the approximations of ray theory. Ray theory assumes that the
travel time of a P wave is only influenced by the Earth’s properties along an in-

L Global maps only give correlation with hotspot concentration over large oceanic areas (Flana-
gan & Shearer, 1998; Gu et al., 2001), but this may be due to lack of resolution in the global
images.

%see see http://mahi.ucsd.edu/Gabi/rem2.dir /shear-models.html#mods
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finitesimally narrow path — the ray — that follows Snell’s law. This simplifies the
mathematics, but it ignores that the traveltime is sensitive to velocity structure far
away from the geometrical ray, within a volume known as the Fresnel zone. The
maximum width of the Fresnel zone is VAL for a wave of wavelength A and ray
length L and easily reaches a width of a thousand km at the long periods we con-
sider. Objects much smaller than the width of the Fresnel zone will not appreciably
influence the travel time of the wave (Nolet & Dahlen, 2000). The phenomenon
is commonly known as wavefront healing. For heterogeneities in size comparable
to the Fresnel zone, Dahlen et al. (2000) and Hung et al. (2000) show how one
may correct for effects of wavefront healing using a new method of interpretation
which we shall refer to as finite-frequency tomography. A preliminary analysis of
low-frequency P wave arrival times shows indeed that the velocity anomaly of deep
small heterogeneities is underestimated by 30-60% when interpreted by classical
ray theory (Montelli et al. (2003), also chapter 4).

Mantle plumes are probably narrow and their images are potentially strongly
affected if we ignore the effects of wavefront healing (Nataf & VanDecar, 1993).
We present the result of a finite-frequency tomographic inversion of travel times
of 66,210 P, and differential times of 20,147 PP-P and 2382 pP-P of waves with a
dominant period of 20 s combined with a ray-theoretical interpretation of 1,427,114
short period P and 68,911 pP times extracted from bulletins. The travel times of
the long period phases were measured by cross-correlation (Bolton & Masters,
2001). Though part of the data set of long period travel times also served to
construct model P16B30 (Bolton, 1996), the original seismograms were re-analyzed
and several instrumental timing errors that were only recently discovered have been
corrected. Standard deviations were assigned in three accuracy classes and range
between 0.5 s and 1.15 s (Montelli et al. (2003), also chapter 4).

The short period times are onset times, picked by analysts and reported to the
International Seismological Centre (ISC). These data have been re-interpreted as
in Engdahl et al. (1998). By only selecting times listed with two decimal precision,
and labeled the highest quality, we are confident the ISC-derived travel times are
representative for high frequencies for which ray theory is acceptable. We assigned
standard deviations of 0.88 s to P and 1.14 s to pP (Morelli & Dziewonski, 1987)
and rejected outliers with deviations larger than 3o after a first iteration.

We simultaneously invert for perturbation in the compressional velocity dc/c
and in hypocentral parameters (origin time, longitude, latitude and depth). To
avoid that the image is completely dominated by the much larger short-period
data set, we weight the least-squares system such that the reduced chi-square
XZ.q (X* divided by the number of data) is approximately equal for each data set
separately. Because the short period P waves originate from the nucleation point
on the fault surface, whereas long period waves average over the rupture process,
we use independent hypocentral corrections for the 5,938 events that produced the
long-period data, and the 86,499 for the short-period times.
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The velocity structure is represented through linear interpolation between a
set of flexibly spaced nodes that form a Delaunay mesh (Watson, 1981, 1992;
Sambridge et al., 1995). The node spacing increases with the expected resolving
length of our data and ranges from about 200 km in the upper mantle to about 600
km in the lower mantle. The grid consists of 19,279 nodes. With the hypocentral
corrections we obtain a total number of 389,027 unknowns to resolve with 1,584,764
observations. The influence of data errors in the tomographic image is kept under
control by regularization: the source parameters are damped to give a posteriori
shifts comparable to their a priori error estimates, the velocity inversion is slightly
damped, but mostly regularized by adding a Laplacian smoothing as described in
Nolet (1987).

The model we obtain satisfies the short period data with a reduced 2, of 1.1,
whereas the long period data are fitted with x2,;, = 1.2. In test inversions for
the data sets separately, we noted a tendency for the long period data to produce
higher anomalies by as much as 50%, though the two models correlate well with a
correlation coefficient, which varies with depth, around 0.6. The x? values obtained
for the combined inversion show that the amplitude difference is not due to a
pronounced difference in internal consistency of the delay times. The difference
may indicate that even the ISC data are subject to wavefront healing, that we
overestimate the errors in the [SC data set, or that there are as yet unknown biases
in the data. This will be subject of a more focused study. But most importantly,
the plumes that are visible in the low frequency inversion are also recognizable
(though often weaker) in the high frequency inversion, indicating that it is the full
combination of all improvements that brings about the elucidation of deep mantle
plumes. We accumulate both data sets in one inversion to exploit the difference in
sensitivity of each data set.

6.5 The resolution of plumes

The P wave velocity model exhibits a series of deep plumes, most of which are
shown in Fig 6.2. The main characteristics for 32 plumes are listed in Table 6.1.

As in every high resolution tomographic study, the fact that we have far more
data than unknowns does not guarantee that every model parameter is well re-
solved. Much of our effort has therefore been spent on determining which plume
features are reliable.

Lack of resolution may take different forms: (1) an existing plume may not
be imaged with sufficient contrast over its full length or to its source at large
depth where resolution often decreases, (2) the regularization may spread a shallow
anomaly to larger depth in the image (‘leakage’), and (3) the regularization leads
to horizontal ‘smearing’ of an anomaly, resulting in a larger anomaly image with a
smaller amplitude than present in the Earth.

To test the resolution, we generated ‘synthetic’ data sets for Earth models
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6.6 Deep plumes (Fig 6.2) 89

with cylindrical plume anomalies of (Gaussian) radius w =100, 200, 300 and 400
km: d¢(r) = deg exp(—r?/w?), centered at a large number of observed plumes and
extending to depths of 650, 1000, ..., 2800 km (as in Fig 6.2-6.4) 3. After adding
noise, these data were inverted with the same regularization as the real data and
the images were inspected for agreement with the input image used to generate
them. We consider a plume ‘unresolved’ if the synthetic image has a contrast
|0¢/c| < 0.3%. In addition to testing the influence of ray coverage, the test also
reveals when our interpolation scheme affects the image. We show many of our
tests in the Appendix B.

The tests enable us to determine the minimum radius a real plume should have
for it to be visible in Figs 6.2-6.4. This plume radius is listed in Table 6.1. The
imaged plume radii should be seen as generous upper limits; because of the effects
of smearing the actual plume radii may be much smaller.

The depth listed in Table 6.1 is the deepest level at which the contrast exceeds
the 0.3% level. We coded these maximum depths in Table 6.1 with a > sign if we
conclude from the resolution tests that the absence of a plume at greater depth
may be due to a lack of resolution, or with a < sign if there is a possibility that
the image is generated by leakage to this depth. In case we determined that the
resolving power is sufficient, we added ~ to stress that the depths in Table 6.1
are estimates only. Even in the case of well-resolved plumes, they are uncertain to
several hundred km at large depth.

This codification of depth values in Table 6.1 is somewhat incomplete in the
sense that resolution may depend on the unknown width of the plume. Where
relevant, we discuss caveats in the last columns of Table 6.1 and in the next sections.

6.6 Deep plumes (Fig 6.2)

Much to our own surprise (since temperature anomalies such as those in plumes
affect S velocities much more than P velocities), our P velocity images show unam-
biguous evidence that some hotspots cap a plume originating near the core-mantle
boundary. In Fig 6.1 we show a vertical average of the P velocity anomaly in
the lowest part of the mantle (1800-2800 km depth). This ‘filtered’ representation
of the tomographic model emphasizes features such as plumes that are vertically
continuous over all or much of the averaging depth. The ‘African superplume’
extends high enough to survive the averaging over 1000 km and is visible as the

3Synthetics times were computed by using the finite-frequency modeling of Dahlen et al.
(2000) for long period data and by using standard ray theory for short period data. The highest
velocity perturbation dcy in the center of the cylinder is defined by following the pattern for
temperature derivatives of P-wave velocities in the mantle as a function of depth given by Karato
(Karato, 1993, Fig 1). Assuming a temperature 7' = 300° K at the center of the plume, the
maximum velocity perturbation is —1% below 1000km depth, —1.2% between 600 and 1000 km
depth, and —2.4% above 600 km depth (Fig B.1 in the Appendix).
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Figure 6.1 Vertical average over 1000 km in the lowest part of the mantle of the
relative velocity perturbation which emphasizes features that are continuous with
depth. Map has been wrapped around to have complete views of both the Atlantic
and the Pacific Oceans.

large low velocity anomaly beneath southern Africa. Inspection of the unfiltered
tomographic model shows that the superplume extends locally to depths of 1500
km in accordance with findings by Ritsema et al. (1998) and Ni et al. (2002).
This anomaly is part of a broad low velocity region that underlies the Atlantic,
the African continent and much of Europe. The broad anomaly in the lower man-
tle beneath the Pacific south of the equator is different in character: here several
maxima are enhanced by the averaging that can be identified as plumes rising
from the ‘superplume’: beneath the Coral Sea, east of the Solomon Islands, Samoa
and a broad anomaly centered beneath Tahiti. North of the equator, the Pacific
lower mantle is more neutral, with some high velocity anomalies forming a ring
that extends beneath East Asia and the eastern part of the Indian Ocean. In the
original model, fast anomalies with amplitudes above 1% are observed beneath
Tonga, Asia, the latter presumably identifiable as the Tethys slab (Van der Hilst
et al., 1997; Grand et al., 1997; Grand, 1994; Bijwaard et al., 1998; Van der Voo et
al., 1999; Gu et al., 2001) and in the northern Pacific Ocean. They form a ring of
high velocity anomalies around the Pacific that reaches the D”. Finally, the polar
regions are characterized by lower mantle of opposite velocity anomaly - while the
North Pole mantle is hot, it is cold beneath Antarctica.

In Fig 6.2, Ascension, Azores, Canary, Easter, Samoa and Tahiti hotspots all
have well resolved deep-rooted origins near the bottom of the mantle.

Hawaii, one of the longest-lived plumes, and by far the strongest in flux as
measured by the topographic swell it creates (Sleep, 1990; Davies, 1988), is visible
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Figure 6.2 Three-dimensional view of deep plumes present in our tomographic
model. Maps are 40° by 40° scaled with depth. Depth scaling changes at 1000 km
for reasons of space.
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as a deeply rooted plume. Resolution is good in the lowermost part of the mantle,
although controlled by the very large number of paths running from Tonga sub-
duction zone to North America stations which is such that amplitudes are overes-
timated especially for wide plumes (~ 400 km radius, figure B.3 in the Appendix)
and shifted to the south east, where the paths are concentrated. Lack of resolution
is present in the lower mantle down to about 2000 km, as already observed in other
tomographic studies (Nataf, 2000).

Some plumes reach the lower mantle by confluence with a nearby plume. Ker-
guelen and Crozet are seen to originate from a common broad anomaly located
north of Crozet at 2350 km depth, the width of which is affected by horizontal
smearing. St. Helena, next to Ascension, merges with Ascension at about 1000 km
depth, a confluence that is well resolved. Azores and Canary originate at the bot-
tom of the mantle. They are distinct plumes down to 1450 km depth, where they
merge together and begin to bend eastwards to reach the bottom of the mantle at
about (30°N, 10°S). Further south, the Cape Verde plume joins this complex at
1900 km depth. However, their apparent confluence may be the result of smearing
of the image. On the Pacific superwell, Tahiti, Cook Island and Samoa appear
closely spaced. The images for the Tahiti and Samoa plumes are robust and show
independent features to large depth in the mantle. Cook Island merges with Tahiti
at about 1450 km depth, but again this may be an effect of lack of resolution.

6.7 Mid-mantle plumes? (Fig 6.3)

Some plumes seems to originate in the mid-mantle, rather than at a recognized
thermal boundary layer such as the core-mantle boundary or, perhaps, the phase
transition at 660 km depth. Since this would be a finding of considerable impact to
geodynamics, we took great pains to determine if this observation is simply due to
lack of resolution. In this case, we take a more conservative point of view and only
consider a plume ‘resolved’ if the synthetic image has a contrast |dc/c| > 0.4%.

We found indeed that the mid-mantle images of Bouvet, Cape Verde (Fig 6.2)
and the newly discovered anomaly in the Indian Ocean, can be explained as the a
possible consequence of image ‘leakage’ from a plume confined to the upper mantle.
The source regions of Afar, Juan Fernandez (Fig 6.2), the two newly discovered
anomalies nearby Louisville, Cook Island (Fig 6.2), Caroline and Reunion could
on the other hand very well be in the D” layer, as our analysis shows that narrow
plumes beneath these hotspots suffer a loss of resolution at large depth, making
their deep tails invisible.

Two mid-mantle plumes almost survive scrutiny by this strict resolution test:
the newly discovered plume beneath the Atlantic Ridge originates at 1900 km
depth; the Hainan plume, first seen in a tomographic study by Lebedev (2000),
is a robust feature clearly visible in our velocity model down to 1000km. Yet we
cannot rule out that they are simply not resolved, though this requires that their
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radius is reduced to less than 200 km. We conclude therefore that none of the
mid-mantle plumes can be undoubtedly associated to a mid-mantle source region.

6.8 Shallow plumes (Fig 6.4)

A number of plumes originate at much shallower depth, most likely near 670 km:
Bowie, Eastern Australia, Eifel, Etna, Iceland, Cocos-Keeling, Galapagos and Juan
de Fuca/Cobb.

Eastern Australia and Eifel are both robust features and clearly constrained to
shallow depth.

Bowie, Juan de Fuca/Cobb are connected to form a broad low velocity anomaly
at 300 km. Bowie is not really identifiable as an isolated plume. In the model it
shows only down to 300 km depth. Juan de Fuca/Cobb reaches 1000 km depth.
However, the velocity perturbation at this depth is much weaker than in upper
mantle. It is hard to believe that the source region of Juan de Fuca/Cobb hotspot
could be at 1000 km or deeper. Similar is the case for Cocos/Keeling, Etna,
Galapagos and Iceland. The very strong upper mantle plume beneath Iceland has
almost disappeared at 1000 km depth. Vertical leakage down and below this depth,
could easily explain the anomaly left over of -0.3% beneath Iceland. We suspect
that leakage has led an earlier study (Bijwaard & Spakman, 1999), to suggest a
deep plume, but it is clear from our image that the strong anomaly observed in the
upper mantle is not generated by large flux from the lower mantle. At about 650
km, Etna is connected to a plume-like low velocity anomaly beneath the Gulf of
Suez, but lack of resolution beneath Etna suggests us that such a connection may
not be real.

One could argue that the large drop in the temperature dependence of Vp in the
transition zone (Karato, 1993) would make plumes a much weaker velocity anomaly
in the lower mantle, and therefore more difficult to resolve, leading to apparent
source regions near 670 km. However, the fact that we do observe numerous plumes
to extend to the deep mantle contradicts such a reasoning, at least as a phenomenon
affecting the stronger upper mantle plumes.

6.9 Newly discovered plumes (Fig 6.3 and 6.4)

Several plumes are visible in our model for which the existence had not been
suggested before.

A deep plume is visible in the lower mantle south of Java (Fig 6.4), which does
not reach the surface but stops at about 1450 km depth. The situation here is
complicated: an anomaly feeding the South-east Indian ridge (Fig 6.3) is a well
defined structure down to 2350 depth where it merges with the anomaly located
south of Java. From the resolution tests it follows that all these structures are
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Figure 6.3 Three-dimensional view of the plumes that seems to originate in the
mid-mantle.
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robust. The deep plume beneath the Coral Sea extends upward to 2350 km, with
a weak connection to a newly discovered plume beneath east Solomon (5°S,165°E).
The east Solomon plume stops at around 1000 km where a weak connection is
visible with a plume beneath Caroline Islands (Fig 6.3).

Another hitherto unknown plume is located beneath the Mid-Atlantic ridge
bottoming at 1900 km depth. It may be a double plume, since two maximum
velocity anomalies are identifiable at about 12°N and 25°N (Fig 6.3).

We recover two low velocity anomalies NW and SE of the Louisville hotspot
(Fig 6.3). Depth is not well constrained. Louisville hotspot, characterized by a well
delineated narrow island chain, has waned drastically in recent geological times.
Its actual location is disputed. For Sleep (1990), Louisville corresponds to a small
volcano at 138°W. Morgan * places it at 141°W and 54°S. We do not observe a
plume directly beneath these attributed locations.

We discovered a new plume north of Reunion, approximately beneath the Sey-
chelles (5°S, 56°E) (Fig 6.3). This plume extends to 650 km and is well resolved.
We note that Seychelles is a continental fragment left behind from the break-up of
Gondwana (Wegener, 1924) and not a conventional oceanic island.

6.10 Absent plumes

Besides the ones cited earlier (Sleep, 1990; Davies, 1988; Courtillot et al., 1999),
numerous lists of as many as 100 or more hotspots have been suggested, often with
little agreement amongst each other. It is beyond the scope of this study to test our
resolution beneath every one of them. But there are a number of notable absences
among our list of plumes, and we shall discuss the most important among them.

No plume underlies Lake Baikal, though a low velocity anomaly is visible down
to 1000 km at (48°N,92°W) in western Mongolia which is resolvable for plumes
with w < 200 km.

Guadalupe is not an isolated low velocity anomaly in our tomographic image.
It is part of a broad low velocity region connecting Bowie, Juan de Fuca/Cobb and
what seems to be more likely a signature of the East Pacific Rise (15°N, 115°W),
i.e. south of Guadalupe.

Probably because of the absence of a station on MacDonald we do not resolve
a plume in the upper mantle beneath MacDonald island.

Our tests show that even an anomaly of only 100 km radius would be visible
beneath Yellowstone leading us to conclude that Yellowstone has no significant
plume.

4Jason Morgan personal communication, 2003
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6.11 Discussion

Our deep-mantle plume images represent the first direct confirmation of Morgan’s
hypothesis of a “plume model” for a large number of hotspots. Since the D”
region is an obvious thermal boundary layer, it is no surprise that this is the
source depth for a number of observed plumes. Though the phase transition at
670 km has been a candidate for a second thermal boundary layer in the Earth,
recent tomographic evidence for whole-mantle convection had made this less likely.
Yet, if the 670 discontinuity can temporarily delay penetration, upwelling material
may accumulate and give rise to an apparent source region at or just below 670
(Cserepes & Yuen, 2000).

Our tomographic images show a collection of plumes that apparently originate
from the mid-mantle though in each case attempts to obtain a firm constraint on
the depth is undermined by doubts about the resolution, certainly if the actual
plume is thinner than 200 km. From a geodynamical point of view, plumes that
would originate neither at 670 nor near D” would be a problem since no thermal
boundary layer has so far been observed in the mid-mantle. The presence of a
change in mantle chemistry has been hypothesized from changes in the pattern
of subduction (Grand et al., 1997; Van der Hilst et al., 1997; Van der Hilst &
Karason, 1999) and from the presence of an anticorrelation between P-wave and
S-wave velocity at this depth (Su & Dziewonski, 1997). The presence of a mid-
mantle transition has not been confirmed by targeted seismic investigations (Vidale
& Schubert, 2001; Vasco et al., 2003). However, Kellogg et al. (1999) developed
a geochemical model that has a thermal boundary layer in mid-mantle, which is
strongly varying in depth and remains invisible because compositional changes
compensate for the higher temperature in keeping seismic velocities approximately
the same. Laboratory experiments by Davaille (1999) show that thin plumes arise
from such a deep layer. However, this is not what we observe: the minimum
radii listed in Table 6.1 are inconsistent with Davaille’s results. Tackley’s model
(Tackley, 2000), identifies the deep layer with the location of the superplumes,
which is not where we observe the mid-mantle source regions. The most likely
explanation for the plumes originating in mid-mantle is that they are narrower
than 200 km in radius in the lowermost mantle, and/or that the velocity contrast
is less than 0.4% (which corresponds to a temperature anomaly of about 130°K
(Karato, 1993)), making them not or only weakly visible.

Another surprising observation is the lack of correlation between the depth of
the source region and the *He/*He anomaly. Of the ocean islands with typically
high 3He/*He (Courtillot et al., 2003), Easter, Hawaii, Kerguelen, Samoa and
Tahiti are identified as deep plumes in Table 6.1. Afar, Cape Verde, Caroline,
Reunion and Jean Fernandez are potential D” plumes and again have correspondent
high 3He/*He. Yet others (Galapagos, Iceland) have high He/*He while a deep
origin can be ruled out. Conversely, St Helena and Canary Islands have a low
3He/*He ratio but reach deeply into the mantle.
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The maximum anomaly of our observed plumes in the lower mantle is reduced
by a factor of about 3 w.r.t. the value found in the upper mantle (which is often
in excess of -1.5%); even though the magnitude of each plume anomaly is affected
by the resolution, the ratio is in accordance with predictions of dVp/dT (Karato,
1993).

We are planning a study similar to this one, but targeted to resolve Vs anomalies
using the same improvements, that will help us to constrain the physical charac-
teristics of mantle plumes even further.



Chapter 7

Summary and Afterwords

Le travail de cette thése a montré que les phénomenes de diffraction sont im-
portants et doivent étre bien pris en compte quand on inverse des données de
temps déduites de sismogrammes a longue période. Les améliorations apportées
par l'introduction d’un maillage irrégulier, la combinaison d’une selection de tres
haute qualité de données a courte période et aussi a longue période ont permis,
pour la premiere fois, I'identification des panaches profonds dans le manteau au-
dessous d’Ascension, Azores, Canaries, Easter, Hawai, Samoa et Tahiti. Les images
montrent plusieurs points chauds inconnus sous la dorsale medio-Atlantique ou au
milieu de ’Océan Indien et au-dessous des Seychelles. Plusieurs autres ont une
origine plus superficielle, tres probablement a une profondeur d’environ 660 km.

Les resultats obtenus dans cette these ont donc un fort impact dans notre
compréhension géodynamique. Des évidences de pétrologie, de géochimie et de
géodynamique ont soutenu l’existance des panaches profonds dans le manteau
depuis les premiers travaux de Wilson (1963, 1965) et Morgan (1971, 1972). Les
panaches sont observés dans les expériences de laboratoire (Davaille, 1999; Davaille
et al., 2002). Mais la tomographie sismique était simplement incapable de fournir
une confirmation complémentaire de la présence de ces structures relativement fines
dans le manteau. Certaines études régionales suggéraient ’existence des panaches
au-dessous de plusieurs points chauds, mais avec un tres large degré d’incertitude.
Par exemple, Bijwaard & Spakman (1999) obtient au-dessous du point chaud de
I’Islande un panache profond montant de la frontiére entre le manteau et le noyau;
cette découverte n’est pas confirmée par le travail tomographique de Ritsema et
al. (1999) ou par des évidences indirectes de Foulger & Pearson (2001),Foulger et
al. (2001), Foulger (2003). Nos résultats ne confirme pas aussi cette provenance
profonde.

A cause de ce manque d’évidences claires fournies par la tomographie sis-
mologique, trente années apres sa premiere formulation par W. J. Morgan, ’hypo-
these des panaches profonds n’est pas encore universellement acceptée. Espérons
que les résultats de cette these mettront un point final a trente années de spéculations
et d’hypotheses sur l'origine des points chauds et permettront de fournir une
meilleure compréhension de la structure thermique et chimique de la Terre et de
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la dynamique de son manteau.

Ce travail n’est pas complet mais beaucoup reste a faire. En particulier, il faut
mieux comprendre la provenance du décalage temporel systématique présent dans
les données a longue période dont nous avons tenu compte dans notre travail d’une
maniere ad-hoc mais dont 1’origine n’est pas encore comprise.

Des améliorations sont aussi possibles dans la paramétrisation du modele. Meme
si le maillage contruit s’est montré performant pour le but assigné, on peut faire
encore mieux en introduisant des maillages contruits en tenant compte de la vraie
résolution du probleme tomographique. Pour cela, il nous faut un expression an-
alytique pour I'estimation de la résolution. Nolet et al. (1999) ont dérivé une
expression pour le calcul de I'inverse approximé a utiliser pour I'estimation de la
résolution. La description de la méthode est donnée dans I'appendice C. Il faudra
utiliser cette méthode pour le calcul de la résolution. Cette résolution sera utilisée
ensuite dans une méthode d’optimisation des maillages dans les futures études de
tomographie.

Enfin, on sait tres bien que le module de cisaillement est plus sensible aux effets
de température que le module de rigidité. Il est possible ainsi de répéter 1’étude
décrite dans cette these avec les onde S. A cause de leur plus haute sensibilité a la
température et leur région de Fresnel plus petite, on s’attend a obtenir des images
des panaches encore plus détaillées.

The work described in this thesis has made clear that diffraction phenomena are
very important and must be properly accounted for when inverting lower-frequency
waves. The improvements brought about by the introduction of a heterogeneous
model parameterization, and the combination of very high quality short - and
long-period measurements have allowed, for the first time, the identification of
deep-rooted mantle plumes beneath Ascension, Azores, Canary, Easter, Hawaii,
Samoa and Tahiti. The images show several hitherto unknown plumes under the
Atlantic Ridge, in the South Indian Ridge, and beneath the Seychelles. Many
others plumes, Iceland among them, are of more shallow origin, most probably
near the 660 km discontinuity.

These results are of tremendous impact in the scientific community. Evidences
from petrology, geochemistry, geodynamics have supported, if not required, the
existence of deep mantle plumes since the seminal works of Wilson (1963, 1965)
and Morgan (1971, 1972). Plumes have been directly observed in laboratory exper-
iments (Davaille, 1999; Davaille et al., 2002). But seismic tomography was so far
unable to provide a visual confirmation of the presence of such narrow deep-rooted
features in the Earth’s mantle. Regional traveltime studies suggest the presence
of plumes in the upper mantle beneath several hotspots such as Yellowstone (see
Nataf (2000) for a review of these studies) and Iceland, but they are hampered by
incertitude. For instance, Iceland appears as a shallow-seated anomaly in the to-
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mography of Ritsema et al. (1999). A shallow origin was also argued from indirect
evidence by Foulger & Pearson (2001), Foulger et al. (2001), Foulger (2003), and
now from delay times by our own results; but Bijwaard & Spakman (1999) revealed
a plume-like structure extending from the core-mantle boundary up to the surface.

Because of the absence of undisputed tomographic evidence, thirty years after
its formulation Morgan’s deep plume hypothesis has not yet been universally ac-
cepted, and authors such as Anderson and others (Anderson, 1998, 2000; Foulger
& Natland, 2003) have argued that hotspots could as well form along a crack in
the lithosphere that allows mantle rock from a few hundred kilometers down to
rise to the surface and melt. Our results have the potential to reconciliate 30 years
of speculations and observations related to hotspots and finally bring a better un-
derstanding of the thermal and chemical structure of the Earth’s as well as of the
dynamics of its mantle.

Clearly, this work has only just begun. In particular, the analysis of the long-
period data have shown a variable offset, characteristic of each event and properly
accounted for in our tomography study, but whose origin is not fully understood.

The model parameterization we have used was designed to account for the ex-
pected resolving length of our data, with node’s spacing of about 200 km in the
upper mantle and about 600 km in the lower mantle. Although this grid has shown
to be sufficient for our purpose, we can do better by adapting the model parameter-
ization to the true resolution of the tomographic image. This requires an analytical
expression for computing the resolution, which provides us with a measure on how
our solution is close to the real Earth. For global tomographic inverse problems,
attempt at any formal estimate of the resolution is unfeasible. With the excep-
tion of Vasco et al. (1999, 2003), no assessment of the resolution of a large global
tomographic system involving singular value decomposition has been performed.
Nolet et al. (1999) derived an explicit expression for the approximate inverse ma-
trix for use in the estimation of the resolution of very large tomographic systems,
that are too large to be solved by singular value decomposition. The description
of the method with numerical tests that I performed while at Géosciences Azur
in Valbonne (France) are presented in Appendix C. We are currently developing
new techniques to re-design grids in term of a given functional characteristic of
that grid. We plan to use these techniques with the estimates for the resolution to
generate an optimized model parameterization to use in future global tomographic
studies.

Finally, it is well known that the shear modulus is more sensitive to the effects
of temperature then the bulk modulus. We plan to repeat the study described in
this thesis for the shear waves. Because of the higher sensitivity to temperature
and their narrower Fresnel zones, we expect this to provide an even better image
of the plume-like structures revealed by our P wave velocity model. Also, discrep-
ancies between P and S wave velocity are useful to infer the thermal and chemical
structure of the Earth. Shear velocity and compressional velocity are strongly cor-
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related throughout the mantle in many tomographic studies, with the exception of
the north Pacific region where the P wave anomaly tends to be positive while the
S wave anomaly tends to be negative in the lowermost mantle. Joint inversions
have been performed to isolate the relative behavior of the bulk sound speed with
respect to the shear speed and found an anticorrelation between the two in the
lowermost mantle below 1500-2000 km (Su & Dziewonski, 1997; Kennett et al.,
1998; Vasco & Johnson, 1998; Masters et al., 2000; Oganov et al., 2001; Saltzer
et al., 2001; Ritsema & van Heijst, 2002) for which they invoke the presence of
a thermal-chemical boundary layer at the base of the mantle (Lay et al., 2003).
Stacey (1998) studies the effect of mixed mineralogy on the pressure and temper-
ature dependences of the bulk modulus and also concluded that a simple thermal
interpretation of the velocity anomalies observed at the base of the mantle is not
enough and that compositional variations is required as well. These studies tend
not to agree on the depth and amplitude of the anticorrelation (Masters et al.,
2000; Saltzer et al., 2001; Ritsema & van Heijst, 2002) as well as on the ratio
between shear and compressional velocities. In chapter 4 we inverted the same
long period P data set with both ray theory and finite frequency, and found that
finite-frequency modeling increases the amplitudes of the velocity perturbations. S
waves have smaller wavelength that P waves and therefore the banana-doughnut
kernel is relatively smaller (1000 km for the S while 1400 km for a P, both of 80°)
with the region of insensitivity around the ray-theoretical path also smaller (150
km for the S wave and 300 km for the P wave). This implies that wavefront heal-
ing effects tends to be smaller for shear waves than for compressional waves. The
comparison of P and S wave anomalies obtained with finite-frequency modeling are
expected to provide a better estimate of the anticorrelation found at the bottom
of the mantle.



Appendix A

Additional color figures of the
plumes

In this appendix, we provide a collection of color figures of the plumes. The sections
at different depths are projected on a flat plane. They provide a better view of the
location and continuity of these low velocity anomalies. Plotted is the fractional P
wave velocity perturbation in % with respect to the iasp91mod model (see chapter
5).
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Figure A.1 Sections of the joint inversion velocity model at different depths (300,
650, 1000, 1450, 1900, 2350 and 2800 km) beneath Afar.
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Figure A.2 Sections of the joint inversion velocity model beneath Ascension and
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Figure A.3 Sections of the joint inversion velocity model beneath the newly dis-
covered plume along the Atlantic Ridge.
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Figure A.4 Sections of the joint inversion velocity model beneath Azores, Canary

and Cape Verde.
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Figure A.5 Sections of the joint inversion velocity model beneath Baikal.
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Figure A.6 Sections of the joint inversion velocity model beneath Bouvet.
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Bowie/Juan de Fuca/Cobb
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Figure A.7 Sections of the joint inversion velocity model beneath Bowie, Juan de
Fuca, Cobb. Yellowstone hotspot is also in the map, but does not seem to have a
plume.
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Figure A.8 Sections of the joint inversion velocity model beneath Caroline.
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Figure A.9 Sections of the joint inversion velocity model beneath Cocos and South
of Java.
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Figure A.10 Sections of the joint inversion velocity model beneath Cook and Samoa.
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Coral Sea/Solomon
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Figure A.11 Sections of the joint inversion velocity model beneath Coral Sea,
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Figure A.12 Sections of the joint inversion velocity model beneath Crozet.
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Figure A.13 Sections of the joint inversion velocity model beneath Easter and Juan
Fernandez.
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Figure A.14 Sections of the joint inversion velocity model beneath Eastern Aus-
tralia.
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Figure A.15 Sections of the joint inversion velocity model beneath Europe. Visible

in the map are Eifel and Etna.
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Figure A.16 Sections of the joint inversion velocity model beneath Galapagos.
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Figure A.17 Sections of the joint inversion velocity model beneath Hainan.
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Figure A.18 Sections of the joint inversion velocity model beneath Hawaii.
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Figure A.19 Sections of the joint inversion velocity model beneath Iceland.
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Figure A.20 Sections of the joint inversion velocity model beneath Indian Ocean.
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Figure A.21 Sections of the joint inversion velocity model beneath Kerguelen.
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Figure A.22 Sections of the joint inversion velocity model beneath Louisville.
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Figure A.23 Sections of the joint inversion velocity model beneath Reunion. A
plume like structure is also visible beneath Seychelles, north of Reunion.



127

Tahiti/Cook

1900 20

-30°

200° 210° 220° 230p°

15
14
13
12
11
10
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

-0.1
-0.2
-0.3
-0.4
-05
-0.6
-0.7
-0.8
-0.9
-1.0
-1.1
-12
-1.3
-14
-1.5

%

Figure A.24 Sections of the joint inversion velocity model beneath Cook and Tahiti.
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Appendix B

Resolution analysis of the plumes.

In this appendix, we show the result of an extensive resolution analysis aimed to
estimate the reliability of the plumes visible in our joint tomographic model. We
test : a) if the shallow and mid-mantle plumes are the result of lack of resolution
at depth; and b) if the mid-mantle and deep plume are due to leakage from the
upper mantle.

Figure B.1 to B.5 are the supporting material of the paper which is about to be
submitted to Science (Chapter 6). We show all reconstructed synthetic plumes
originating at 650 km depth with 400 km radius; and rising from the bottom of
the mantle with 200, 300 and 400 km radius respectively.
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Figure B.1 Cross-sections through the synthetic plumes used in the resolution tests.
The one shown are beneath Iceland. To estimate the width and depth reliability
of the low velocity anomalies found in the velocity model, we use different plume
widths (radii of 100, 200, 300 and 400 km, respcetively) for plumes originating at
different depths in the mantle: 650, 1000, 1450, 1900, 2350 and 2800 km. The
velocity perturbation in the synthetic plume follows a three-dimensional gaussian
centered on the axis of the plume and changes as a function of depth as predicted
by Karato (1993) for a temperature constrast of +300°K at the center.
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Figure B.2 Reconstructed synthetic plumes whose input depth was 650 km. Plumes
are listed alphabetically. Labels on the surface are listed in Table 1 and indicate
published locations of the hotspots.
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Figure B.2 continue
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Figure B.3 Reconstructed synthetic plumes whose input depth and radius

2800 km and 200 km, respectively.

were
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Figure B.3 continue
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Figure B.4 Same as Fig. B.3, but for synthetic plumes with radius of 300 km
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Figure B.5 Same as Fig. B.3 and B.4, but for synthetic plumes with 400 km radius.
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Appendix C

Resolution and a posteriori
covariance of massive
tomographic systems

This appendiz has been published as: Nolet G., Montelli R. Virieuz J., 1999: Ez-
plicit approzimate expressions for the resolution and a posteriori covariance of
massive tomographic systems, Geophysical Journal International, Vol 138, 36-44

C.1 Abstract

We present an approximate method to estimate the resolution, covariance and
correlation matrix for linear tomographic systems Ax = b that are too large to be
solved by singular value decomposition. An explicit expression for the approximate
inverse matrix A~ is found using one-step backprojections on the Penrose condi-
tion AA~ =~ I, from which we calculate the statistical properties of the solution.
The computation of A~ can easily be parallelized, each column being constructed
independently.

The method is validated on small systems for which the exact covariance can
still be computed with singular value decomposition. Though A~ is not accurate
enough to actually compute the solution z, the qualitative agreement obtained for
resolution and covariance is sufficient for many purposes, such as rough assessment
of model precision or the reparametrization of the model by grouping of correlating
parameters. We present an example for the computation of the complete covariance
matrix of a very large (69043 x 9610) system with 5.9 x 10° nonzero elements
in A. Computation time is proportional to the number of nonzero elements in
A. If the correlation matrix is computed for the purpose of reparametrization
by combining highly correlating unknowns z;, a further gain in efficiency can be
obtained by neglecting the small elements in A, but a more accurate estimation of
the correlation requires a full treatment of even the smaller A;;. We finally develop
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a formalism to compute a damped version of A~.

C.2 Introduction

Seismic tomography is playing an increasingly large role in the study of the Earth
and its dynamic behaviour. Tomographic images now assist us in understanding,
amongst others, the deep structure of continents, the details of the subduction
process, and magma upwelling under ocean ridges and volcanoes. As the relevance
of these seismological investigations grows for other Earth Science disciplines, it
becomes important to deal with a fundamental shortcoming of all tomographic
imaging: the non-uniqueness of the solution. The model resulting from an inversion
is just one member of a subspace of models that satisfy the data equally well or
better. Since the choice of the ‘preferred’ model in the subspace invariably involves
a damping of ill-resolved aspects of the model, whereas well-resolved characteristics
are more or less fixed, such damping usually reveals a strong influence of the ray
path coverage in tomographic images.

The non-uniqueness of the solution can be characterized by its resolution and
its variance, usually represented by the resolution matrix and the (a posteriori)
covariance matrix. For small scale problems, these matrices can be calculated
conveniently using a singular value decomposition of the problem (Wiggins, 1972;
Jackson, 1972). For larger problems this becomes impractical or downright impos-
sible. The resolution can still be investigated using sensitivity tests (e.g. Spakman
& Nolet (1988)). Such tests have shortcomings (Leveque et al., 1993), but an even
greater disadvantage is that such tests measure the sensitivity only with respect to
a fixed pattern of cells (e.g. a checkerboard test), and the estimation of the reso-
lution of single cells requires the repetition of many sensitivity tests. Furthermore,
no satisfactory method exists to find the a posteriori covariance of the solution,
other than adding random errors to the sensitivity tests and estimating the co-
variance matrix from the results of many such tests (Kennett & Nolet, 1978), a
practice too laborious to have found general acceptance. Techniques like ‘jacknif-
ing’ or ‘bootstrapping’ (Tichelaar & Ruff, 1989) rely on the overdetermined nature
of an inverse problem and should never be applied to an underdetermined sys-
tem of equations. Their use on large mixed over/underdetermined problems such
as found in tomography is not only highly questionable but also computationally
very expensive.

Recently, the estimation of the resolution matrix from the first few Ritz vectors
(approximate eigenvectors) resulting from a Lanczos-type iteration on the linear
system has been proposed (Zhang & McMechan, 1995, 1996). Such schemes are
seriously flawed unless the number of Ritz vectors approaches the effective rank of
the matrix, a goal which is impractical for inversions with, say, the number of data
and model parameters exceeding 10° (Deal & Nolet, 1996). We can summarize the
situation as follows:
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1. for models with many degrees of freedom, it becomes impossible to calculate
the a posteriori covariance matrix of the result;

2. resolution calculations by means of a limited number of sensitivity tests have
serious shortcomings;

3. there is no satisfactory way to suppress the influence of the uneven distribu-
tion of raypaths in the final result.

In this paper we shall develop a simple approximate algorithm to estimate the
resolution and the a posteriori covariance of a tomographic solution which avoids
the calculation of eigenvectors or Ritz vectors. Whilst we leave an investigation
of the third problem to a future paper, we believe the influence of the ray path
distribution should be reduced by an adaptive reparametrization of the model, for
which an estimation of the model covariance is a necessary prerequisite.

C.3 Statement of the problem

We consider the n x m linear inversion problem for a model z, given (exact) data
b with errors e:

Az =b+e=D, (C.1)
scaled such that covariance matrix of the data error € is the n X n unit matrix:
C.=1,. (C.2)

Without loss of generality, we assume that the expected value of the data errors
as well as the model parameters is zero:

Ele]=0 i=1,..,n (C.3)

Elz;]=0 i=1,...,m. (C.4)

Let A~ denote the inverse of A in a generalized sense; for example A~b might be
the minimum norm solution of the least-squares system belonging to (C.1). While
there is considerable freedom in the choice of A™, a generalized inverse must satisfy
AA~A = A, or, as paraphrased by Jackson (1972):

AA™ ~ 1, (C.5)

A"A~ I, (C.6)

which we shall refer to as the two ‘Penrose conditions’. We can express the error
of the solution # in terms of A~ (Nolet 1987):

Bt = A7 (b4 €) — gt = (A" A — I,,)z'" + A”e (C.7)
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which expresses the well-known result that the error in the solution has two causes:
the inadequacy of the generalized inverse to satisfy the second Penrose condition
(C.6) exactly, and the propagation of error terms through multiplication with A~.
Using the terminology of statistics, the first term constitutes the bias of the solu-
tions, the second term the statistical fluctuations (for different realizations of the
observational errors) around the biased solution.

Similarly, for the data misfit we find:

p=Ai—b=(AA" — I,)b+ AA~e (C.8)

from which we see that the data misfit x? = |u|? also has a bias and a variance. If
we succeed in satisfying the first Penrose condition (C.5) we reduce the bias.
Setting € = 0 in (C.7), we find an expression for the resolution matrix:

& = Ra'me, (C.9)

where

R=A A (C.10)

If, as is usually the case, (C.1) is a linear approximation to a non-linear prob-
lem, we may define € to include also the errors due to linearizations, or other
approximations in the forward problem (Tarantola, 1987). This will undoubtedly
introduce some correlations between the components of the error vector e, which
in principle could be removed through a linear transformation. To make a reason-
able a priori estimate of the covariance matrix of ¢ is, however, a task so daunting
that we are not aware of any successful efforts to do so for the seismic tomography
problem. The unscaled C is therefore generally assumed to be diagonal, so the
transformation to satisfy (C.2) reduces to a trivial multiplication. The a posteriori
covariance matrix of the solution 2 is then given by

Cp = AC (A7) = A= (A7), (C.11)

As usual, this is the covariance in the ‘minimum norm’ solution, which may be
small either because a parameter is well constrained by the data, or because it
is strongly damped toward 0. For the latter, the ‘bias’ is large but with little
uncertainty. A true indication of the model accuracy can only be obtained by
inspecting both the resolution matrix R and the covariance matrix Cj.

From (C.11) we can easily compute the elements of the correlation matrix,
defined as:

Ci;
(CiCyj)2
where we suppressed the subscript . Fully unresolved parameters (for which the
column in A is empty) require a special treatment: their variance, while infinite in
reality, is numerically zero because the nullspace of A is excluded from the solution
space, and the correlation is undefined. We set such p;; = 0.

pij = (C.12)
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Intuitively, one understands from (C.7) that the statistical error term will grow
when A~ has large components. Forcing the elements of A~ to remain small will
reduce the variance, but increase the bias, since we also reduce our ability to
satisfy (C.6). The early literature on geophysical inverse problems is exhaustive in
its analysis of this trade-off between bias and error, or variance, of the solution,
either in discrete systems such as considered here (Wiggins, 1972; Jackson, 1972),
or in systems where models are not discretized a priori Backus & Gilbert (1970);
Tarantola (1987). However, it invariably requires the inversion of large matrices,
which is generally done by the application of singular value decomposition (SVD).
While the increasing capacities of large computers now allow us to apply SVD to
matrices where m and n ~ 103, large-scale traveltime inversions commonly deal
with n = 10* to 10% or more data, and require 103-10° or more model elements.

Of course, the computation of the exact generalized inverse of A with SVD is
not feasible for such large tomographic problems. Therefore, we can only attempt
an approximate solution to our problem. We note that the computation of the
solution itself does not require the computation of the inverse A™, since we can use
iterative techniques to do so. We do need the inverse, however, to characterize the
resolution by means of R and C}.

Since we define our solution as # = A~ b, (C.1) implies the condition AA b =1,
and it is obvious that the first Penrose condition (C.5) is the equation that we
shall wish A~ to satisfy as best as we can. We shall see later that this is not an
optimum solution to (C.6) in our approximate analysis of the problem; that is, it
does not minimize the model bias.

Define ¢* as the vector equal to the k—th column of A~, and e* as the n-
dimensional unit vector in direction k. (C.5) implies the following:

AcF =¢eb (k=1,..,n). (C.13)

Naganishi & Suetsugu (1986) have proposed solving (C.13) exactly for all &, a
strategy which is only possible for small n. We derive a fast, approximate solution
using backprojection. The backprojection direction is found by taking the negative
gradient —V . at location ¢} in model space of the misfit |Ac* — e¥|?, which is equal

to —AT(Ack — €*). In our case c¢f = 0, from which we find:

vh = AT ek, (C.14)

k

where v* is a vector of dimension n. (C.14) gives simply

vf = Al = A, (i=1,..,m). (C.15)

We seek an approximate solution to (C.13) by imposing the condition that c* is

in the direction of v*: ¢® = a4v*. If we impose the condition that the misfit is

minimized, this implies orthogonality of the misfit vector: (ay, Av*—e*, apAvk) = 0.
Hence the coefficient
(e, Avt)

(Avk, Avk)’ (C.16)

o =
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or, when written out explicitly,

A2
O = —= mghlwm . (C.17)
D1 (20751 AujArky) (o051 AigArg)
Since
;k = Ci—c = Oé]c’UZlC = akAki (C18)
the generalized inverse therefore can be written as
A= =A"D (C.19)
where D is a diagonal matrix, its diagonal elements equal to ay:
AAT
Dy, = (AA )i (k=1,..,n). (C.20)

2 i (AAT)

Unfortunately, Penrose’s second condition (C.6) leads to a different approximate
solution. Following the same backprojection method, we find

A= =D'A" (C.21)
with the elements of D' defined by

(ATA)kk
2ty (AT AY

Finally, we notice a difference between the last equation and the approximate
inverse we would obtain by simply reducing AT A to its diagonal. In that case we
would have an inverse similar to (C.21): A~ = D"AT with D}, = (ATA)_!. We
investigated this third possibility briefly and abandoned it as quickly because of
its complete lack of fit to either (C.5) or (C.6).

It is well known that one iteration of a backprojection step will converge to the
correct solution in the case where all singular values of A are equal. This is not
even remotely the case for tomographic systems. However, backprojections often
give very reasonable data fits. The reason must be sought in the sparse nature
of the matrices. If there is little overlap between rays, the products involved in
AAT will involve multiplications with zeros, unless two rays sample the same model
cell. Therefore, AAT is likely to be diagonally dominant. One can easily checks
that (C.5) is satisfied as long as (AA");; (i # j) can be neglected with respect to
(AAT);. Since cells always correlate with neighbouring cells, the diagonal of A" A
is probably less dominant, which would explain the inferior performance of the
diagonal approximation D}, = (AT A),!. This approximation may work better for
systems in which E[A;;] &~ 0, such as in diffraction tomography, but is obviously bad
for systems from body wave tomography where E[A;;] > 0. Such considerations

DL, = (k=1,....m). (C.22)
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Figure C.1 Histograms showing the data misfit |[Az — b|?/|b|*> for a Monte Carlo
simulation using 1000 random data vectors b in the range of (left) A#** and (right)
AWest a: A~ defined with the first Penrose condition (C.5), b: A~ defined using
(C.6).

are , however, far from conclusive, and in the next subsection we shall rely on a
numerical test to justify our approach.

We can use (C.19) in (C.10) and (C.11) to obtain estimates of the resolution
and the covariance matrix, respectively. Note that these expressions have an added
advantage over the expressions for R and C}; as computed by SVD, apart from the
saving on computer memory and CPU: they allow us to compute only part of these
matrices, which is useful if our parameters are ‘local’ (for example, spline supports,
rather than non-local parameters such as spherical harmonic coefficients). Thus,
we can isolate velocity or slowness parameters from parameters designating source
or station corrections, or even isolate a particular geographic region of interest.
The parameter transformations inherent to SVD prohibit this with the exact com-
putations.

Another advantage is that the computation of A~ lends itself naturally to par-
allel computations, since each of the columns of A~ is computed independently
from the others.
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_—

solution variance

resolving length

Figure C.2 Schematic diagram showing the trade-off of variance versus resolving
length for the SVD solution. The approximate inverse yields estimates for these
quantities which are off this curve (black dot), and which may be compared either
with the SVD solution with similar variance (point A) or with similar resolving
power (point B), or in between.

C.4 Validation on a small linear system

The validity of our approach depends on how well (C.13) is solved with only one
backprojection step. Earlier experience with the iterative inversion of sparse ma-
trices suggests that the first backprojection step almost always provides the bulk
of the variance reduction, often reducing the data misfit by more than 50% of the
total (converged) reduction. In this subsection we investigate the validity of our
approach.

Although SVD is always to be preferred for matrices of small dimensions, since
it allows for an exact computation of the solution statistics, we use our method
on such small system to make a comparison with the exact solution possible. We
choose realistic examples. Two matrices A are taken from the Sn tomography
study of Nolet et al. (1998), and are denoted by ‘east’ and ‘west’, respectively.
AFast js a 121 x 115 system with a rather sparse coverage of ray paths (see Fig.
2 in Nolet et al. (1998)). In contrast, A"’ 839 x 429, has a dense coverage
with many, often overlapping ray paths. Both systems include source and station
corrections in addition to unknown slowness anomalies in the vector x.

In a first test we randomly generate synthetic data vectors b that satisfy (C.1)
exactly, and test how well x = A~ b satisfies the data. This is a direct test of the
first Penrose condition (C.5). Fig. C.1 shows histograms of the fits (defined as
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Figure C.3 Comparison between the estimated diagonal elements of the resolution
matrix R®! and the correct values RVP for (left) APt and (right) A™est. The
SVD results were computed with 17 and 22 eigenvectors, respectively. See text for
discussion.

| Az — b]?/|b]?) for A~ computed with (C.19) and (C.21). For both east (left) and
west (right) it is clear that (C.19) (a) yields a superior data fit, as is to be expected
since (C.19) was constructed to satisfy (C.5), but the difference with (C.21) (b) is
not large.

Although it is clear that the variance reduction is not complete, it is obvious
that A~b reduces the variance by at least 50 per cent, and often by much more than
that. Since this is not a small variance reduction for many tomographic inversions,
and since our aim is to estimate the statistics, not to construct &, we judge this
outcome highly encouraging. Since backprojections work most efficiently for non-
overlapping ray paths (and would result in the optimal fit if every cell was visited
only once), we conjecture that the differences between east and west are due to
the difference in raypath overlap, with the estimate becoming less accurate as the
ray paths overlap more. This would imply that the more accurate estimate of A~
is obtained by assembling overlapping raypaths into ‘summary rays’ (Morelli &
Dziewonski, 1987).

For the actual computation of the solution of Az = b the application of repeated
backprojections in a conjugate gradient algorithm such as LSQR is not only more
accurate but also faster (Paige & Saunders, 1982; Nolet, 1983).

When comparing estimates of C; and R with their exact counterparts we face a
problem related to the damping of the SVD solution. The situation is schematically
sketched in Fig.C.2.

In this figure, our estimated variance and resolving length (or correlation dis-
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tance) is shown by the dot. The curve represents the trade-off between variance
and resolving length for a truncated SVD solution as we vary the number of eigen-
values. Since our estimate A~ is not exact, our solution is not exactly on the curve
that describes the trade-off between variance and resolving power.

We can damp the SVD solution such that we obtain the same resolving length
as with the approximate inverse A, or the same resolving power, or make a choice
in between. We shall compare variance estimates for equally resolved models (that
is, point B in Fig. C.2). We use the effective rank of the inverse matrix as a
measure of the overall resolving power. Wiggins (1972) showed that the effective
rank of the truncated SVD inverse (the number of eigenvectors used to construct
the generalized inverse) is equal to the sum of the diagonal elements of R:

kepr = > R (C.23)
i=1

For RVes' we find k.;y = 21.4. In Fig. C.3 we compare the estimated and the
true values of R;; for 22 eigenvectors, and similarly for R for which k.;; = 16.3
we choose 17 eigenvectors. Clearly, for well-resolved parameters with R;; > 0.5
there is broad agreement; although R;; may be in error by as much as 50 per
cent, only a few ‘unresolved’ parameters are plotted as resolved. The few that
have RZYP < 0.1 but for which our estimate exceeds 0.1 are all event or station
corrections, not slowness parameters. This conclusion does not seem to depend on
the exact choice of k., since adding or subtracting an eigenvector affects only the
ill-resolved parameters.

In Fig. C.4 we compare the part of the covariance matrix relating to the
slowness parameters with their exact counterparts for east (again calculated with
17 eigenvectors) and west (calculated with 22 eigenvectors). The colour scale is
chosen to highlight parameters with a large (co)variance; that is, for which the
tomographic image might be suspect.

An eyeball comparison again shows broad agreement between the estimated
C3, denoted by ‘EST’, and the exact ones ('SVD’). Variances in the east, where
the ray density is less than the west, are generally higher than in the west. On the
diagonal, many gaps correspond to unresolved parameters for which the variance is
‘numerically’ zero due to the minimum norm character of the solution. Generally,
the order of magnitude of the variances is well reproduced by the estimations, as
are groups of covariances around the diagonal. In the off-diagonal bands corre-
sponding to nearest- neighbour cells, the estimations seem to be biased towards
somewhat larger values, but far off the diagonal (that is, for parameters located
further apart) the estimated covariance is lower than the true value. A" is an
order of magnitude larger in size than AF%** but no strong dependence of accuracy
on matrix size is evident. If anything, the estimations for C}** seem to be slightly
better than for CFe!. Since there is also no reason a priori to assume that the
accuracy degrades with the size of the matrix, we are confident that, even for very
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large systems, the order of magnitude of the variance is estimated correctly.

C.5 Application to a large system

We have also tested the algorithm on a much larger system. While we have no
ground truth to compare the results, we investigated the efficiency of the algorithm
as well as the effect of neglecting small matrix elements. For this purpose we
created a matrix A simulating a P wave tomography experiment covering central
and eastern Asia, including the subduction in the northwest Pacific, using one year
of seismicity (1993). The system - formulated without source/station correction
terms - has 69043 rows and 9610 columns, and could not be handled with SVD
even on a large computer. Using a linear spline parametrization (Thurber, 1983),
with pivots roughly 200 km apart, the matrix has 5.9 x 10% nonzero elements (0.9
per cent of the total). 44 per cent of these are smaller than 1 per cent of the largest
element, 21 per cent less than 0.1 per cent.

The inspection of several rows of Cj, plotted as correlations to facilitate the
colour scaling, gives further confidence in the results. Fig. C.5 gives these cor-
relation coefficients for three locations, plotted in cross-subsections as a function
of latitude, longitude and depth. We compare the resolution in three different
geographical locations plotted in Fig. C.6. On the left in Fig. C.5, , the solution
at point a, located near the surface is clearly well constrained horizontally, but
suffers from lack of resolution in the depth direction. In the center of Fig. C.5, the
solution in point b, located at 500 km depth just NE of lake Baikal, correlates with
points as far as 1000 km away. Finally, on the right of Fig. C.5 one sees the effect
of ray bundles for point c in the Japan slab, where the N-S cross-section evidently
samples ray paths towards Australian stations, and where the lack of crossing ray
paths at depth causes the elongated shape of the correlating structure.

On the Sun UltraSparc processor the computations of R and C}, including some
overhead to calculate matrix statistics, take about 5 hr for 10° non-zero elements.
When we neglect the smallest elements in A, computations of A~ are faster and
we find that the computation time depends linearly on the number of non-zero
elements of A (Fig. C.7). However, the accuracy is clearly affected by truncation.
We tested this by counting the number of correlation coefficients p;; larger than
a certain threshold. When we truncate A;; at a level as large as 10 per cent of
the maximum, we greatly increase the speed of computation (by a factor of 6),
but we lose about 60 per cent of the p;; > 0.8, which are now underestimated in
magnitude; this is even worse for smaller p;; (Fig.C.8). Inspection of the actual
covariances shows that it is mostly the smaller covariances that are affected. Since
these probably belong to the ill-resolved parameters (the well resolved parameters
are associated with large elements in A), the situation shown in Fig.C.7 may give
a view that is too pessimistic.

A modest truncation level of 1 per cent may be acceptable if we only use the



154

Resolution and a posteriori covariance of massive tomographic systems
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Figure C.4 Comparison between the estimated covariance matrix (EST) and the
correct covariance matrix (SVD) as computed for A¥%* (top) and A" (bottom).
Only the covariances of the slowness parameters are plotted. The scale is in 102

s?/m? for an assumed variance in delay times of 1.0 s?.
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Figure C.5 This figure shows three examples of rows of the correlation matrix for the
large (69043 x 9610) problem, plotted by way of cross subsections with fixed (from
top to bottom) latitude, longitude, and depth, respectively. a: the P velocity near
the surface below the Grand Khingan mountains in Mongolia, slowness variance
3.1x10"*s%2/km?2, b: at 500 km depth NE of Lake Baikal, variance 6.1x10~* s2/km?
c¢: at 500 km depth in the Japan subduction zone, variance 2.1 x 1073 s? /km?. The
variances quoted are for an assumed variance in the delay time observations of 1.0

s2.
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Figure C.6 Geographical locations of the cells shown in Figure C.5.
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Figure C.7 CPU time needed to compute R and C}; on a Sun UltraSparc processor
as a function of the number of nonzero elements in A.

pi; for the purpose of reparametrization; this would result in a reduction of CPU
time by a factor of about 2.

C.6 Discussion

Programming considerations The efficiency of the code depends strongly on some
elementary programming considerations. The most commonly used scheme for
storage of non-zero elements of the matrix A is row-wise. This involves storage
overhead more then double the memory required to store just the values of non-
zero A;;, since one has to store the column number for each element as well as the
number of nonzeros in each row of A. The scheme allows for fast computation of
the product of both A and AT with a vector, by looping through the elements of
A in the same order as they are stored. Whilst this strategy can still be followed
for the matrix product AAT by repeatedly multiplying A with one of its own
rows, it fails for AT A, when A7 is multiplied with columns of A. Although the
computation of D in (C.20) only requires the product AAT, reverse products occur
in the computation of R = ATDA and C; = ATD?A. We have found it most
efficient to store A twice: once in row and once in column order.

We also note that neither A”A nor AAT can be expected to be truly sparse
matrices and that one should avoid storage of these products. Fortunately, for the
computation of D with (C.20) one needs only one row of AA” at the time. For the
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Figure C.8 Test of the effect of neglecting small elements of A by measuring the
number of correlation coefficients larger than 0.6 and 0.8, respectively, as a function
of the cut-off threshold, defined in per cent of the largest matrix element.
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end-products R and C; one may use mass storage to store these, generally row-wise
in the form of 2D or 3D ‘images’, and for many applications a heavy truncation of
smaller elements is allowed. Since the correlation matrix can be computed from Cj
no separate storage of this is needed. If the correlation matrix is only computed
to construct a sensible reparametrization of the model, an advisable strategy is to
compute the diagonal elements of R first, then work from the smallest diagonal
elements to compute the correlations within that row and regroup parameters.
This will quickly eliminate the parameters with the worst resolution and avoid
unnecessary calculations.

Sensitivity tests: Our method is similar to that of sensitivity tests (Spakman &
Nolet, 1988; Leveque et al., 1993) but on n data vectors in which only one datum
is equal to 1 and all others set to zero, rather than setting one model parameter
to 1 to construct a right-hand side. We also restrict the matrix solver to just one
iteration. One could in fact try to forego an analytical treatment as given here,
and simply solve (C.13) using more iterations with a matrix solver such as LSQR.
However, for large systems this will quickly saturate the available computer time.
Since A~ will lose its sparse nature, this strategy may also invite storage problems,
whilst truncating small elements of A~ may result in a loss of the extra precision
gained by the extra iterations.

In comparison with sensitivity tests, our method gives a rough global estimate
of both covariance and resolution, whereas sensitivity tests with spikes give an
accurate image of the resolution, but for a few selected model parameters only,
and no information on the covariances. Which is preferred depends on the ap-
plication, and sometimes one may wish to use both methods, since they nicely
complement each other. The main application we have in mind for our method is
the reparametrization of the model by grouping of highly correlating parameters.

Lanczos iteration: Using the Ritz vectors (approxiamte eigenvectors) resulting
from a Lanczos or conjugate gradient iteration to compute the resolution of large
systems (Zhang & McMechan, 1995) as an alternative to explicit computation of
the full eigensystem as in SVD. However, as pointed out by Deal & Nolet (1996),
it quickly becomes infeasible to compute all the Ritz vectors needed to span the
solution space as the size of A and its effective rank grows, due to a prolific growth
of duplicate vectors in the conjugate gradient scheme. For example, the effective
rank k. sy of the large matrix used in the previous section is estimated with (C.23)
to be 574, and to compute that many eigenvectors is very costly, and for somewhat
larger problems probably even beyond the reach of iterative algorithms. We cer-
tainly do not agree with Zhang & McMechan (1996) that it is sufficient to compute
the uncertainty in Z by considering only a subset of Ritz vectors constructed from
the data vector b: for a correct estimation of model statistics one has to allow
perturbations of the model in all directions. Nor could one assume that the selec-
tion of a subspace spanned by an incomplete set of Ritz vectors constitutes a good
basis for reparametrization (smooth models for which the statistics could then be
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computed). The reason is that the set of Ritz vectors is dependent on the data
vector used to generate them and will ignore other directions in model space, even
those that are associated with quite large eigenvalues (Deal & Nolet, 1996).

This leaves the method described in this paper as the only one to estimate the
resolution and covariance matrix for large systems.

Damping: Strictly speaking, the estimated covariance and resolution is valid
only for an inversion with the same damping properties as A~. However, if the first
iteration of a backprojection method such as LSQR. defines the major character-
istics of the solution, R and C} should be useful as order of magnitude estimates.
Since the variance in the data is not precisely known to begin with, attempts to
increase the precision of R and Cj; may seem futile. In principle, one could apply
Newton iteration to obtain more precise versions of the inverse of A (the first cor-
rection would be A~ (I — R)) but the added computational effort will soon become
prohibitive for really large systems. We may, however, investigate the case that
(C.1) needs to be damped strongly to keep the propagation of data errors under
control.

Since A~ already involves a minimum degree of damping, we are limited in
controlling the damping of our approximate inverse. However, in many cases the
signal-to-noise ratio of the data vector b may be very small. For example, Morelli
& Dziewonski (1987) estimated the variance of teleseismic P-delays at 1 s?, which
implies a signal-to-noise ratio of the order of 1. For S waves, tomographic systems
are even less accurate than that. In such cases it may actually be advisable to
damp the solution even further. This can be done by means of a simple adapation
of A=. We may damp (C.1) in the same way as done in ridge regression, adding to
the system (C.1) m equations of the form Az; = 0, where A serves to weigh these
equations against the ‘true’ constraints:

<)\j.1m>xEBx:<8> (C.24)

We then define the inverse as

B~ =B"D=(A"TDM  \D®) (C.25)

where N (AAT),,
P = o aag s sy agy P bem (620
DR = ! (k=1,...m) (C.27)

Dl Al + N2
The definition of R now depends on a subtle interpretation of the damping. If
we consider the added m equations Az = 0 as true information on the model, that

is, if we have reason to assume that the true earth model z!"¢ is really 0, we would
define R as before as B~ B and find:

R=ATDWA + \*D?. (C.28)
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More probably, the damping equations are not reflecting true information, but are
introduced to bias the model towards 0 and reduce its variance. In that case we
can only say that Az = b, so that

true
z= (ATD  AD®) ( A ) _ AT D) gytrue, (C.29)
which implies
R=ATDWA (C.30)

For the covariance we find, using the same interpretation of the damping:
Cy =ATDW 24, (C.31)

For A\ = 0, this reduces to (C.11), and the variances behave asymptotically as A ™2
for A = oo, as we should expect.

C.7 Conclusions

We have developed an approximate but explicit expression for the covariance and
resolution of the solution of tomographic systems. In contrast to schemes based
on SVD or Lanczos iteration, this can be applied to very large matrices. The
CPU time required varies linearly with the number of non-zero elements in the
matrix. The accuracy has been investigated with small systems and was shown
to be sufficient for most purposes. Work on the application of these results in a
strategy for automatic reparametrization of the model is currently in progress.
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