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Abstract

In seismology, numerical wave propagation modelling is an essential tool to e.g., quan-
tify local seismic risk or to invert multi-source seismic data. Realistic phenomena are ac-
counted for when three-dimensional (3D) models with complex heterogeneous structures
are simulated using sophisticated techniques on irregular grids.

In this thesis, I investigate frequency domain finite difference (FDFD) modelling for
efficient space discretization optimization algorithms in order to render 3D FDFD mod-
elling feasible.

I compare FDFD acoustic wave simulations in heterogeneous media by a staggered
cross stencil analysis with a grid rotation approach. For two-dimensional (2D) modelling,
grid rotation is superior in terms of CPU-time and memory requirements. Therefore,
I propose that space discretization by grid rotation shall be investigated for 2D time
domain FD modelling. Moreover, 3D discretizations lead to 27-points rotation star, and
19-points staggered cross stencils. I suggest that both shall be examined with respect to
numerical accuracy and computer resources requirements.

I propose a multi-level direct and iterative solver combination for realistic 3D FDFD
wave simulations. Exact coarse-grid wave solutions are computed by a direct LU matrix
factorization. The coarse-grid solution is prolongated on a fine-resolution grid and subse-
quently used as preconditioner for an iterative solver scheme. I investigate two multi-level
approaches based on nested iteration, denoted by Direct-Iterative-Space Solver (DISS),
and a multi-scale wavelet expansion, called Direct-Iterative-Wavelet Solver (DIWS). DISS
and DIWS wave simulations in 2D and 3D heterogeneous media are compared with re-
spect to their CPU-time and memory performance.

The DISS approach provides fast and efficient matrix construction algorithms. The
convergence of the iterative scheme is strongly dependent on efficient suppression of phase-
shift artefacts caused by bilinear interpolation. Either large numbers of iteration steps
or V- and W-cycles need to be performed to provide dispersion-free wave simulations.

Wavelet-based DIWS preconditioning leads to optimal iterative behaviour at the cost
of wavelet projections. Matrix constructions become expensive due to convolution-type
computations. Furthermore, non-zero DIWS matrix entries increase and therefore slow
down matrix-vector product performances. Nevertheless, the multi-scale wavelet formu-
lation gives fast and stable iterative constructions simultaneously on a series of approxi-
mation grids of decreasing resolution, where difficult grid interactions are accounted for
naturally. Therefore, DIWS preconditioning is superior. Moreover, wavelet formulations
provide adaptive optimization strategies for efficient implementation schemes.

Wave simulation examples are illustrated for several homogeneous and heterogeneous
2D and 3D models. The 3D applications are limited in size by restrictions to sequen-
tial computations. Extensions to parallel algorithms on distributed memory computer
structures are discussed.






Résumé

Dans le domaine de la sismologie, la modélisation numérique de la propagation des
ondes est un outil essentiel pour, par exemple, la quantification du risque sismique ou
I'imagerie du sous-sol par inversion de données sismiques. Ces applications géophysiques
nécessitent le développement de méthodes numeériques sophistiquées de modélisation des
ondes dans des milieux de propagation 3D hétérogenes. Parmi les approches possibles,
les méthodes directes fondées sur la représentation du milieu sur des grilles numériques
permettent la prise en compte de toute la complexité du champ d’onde dans des milieux
fortement hétérogénes. Dans ce contexte, la représentation optimale du milieu de propa-
gation et du champ d’onde propagé sur des grilles numeériques irréguliéres est actuellement
un axe de recherche fortement dévelppé car elle permet d’atteindre le meilleur compromis
entre la précision et la rapidité d’exécution des simulations dans des grilles numériques
de taille considérable.

Dans cette thése, je propose une nouvelle méthode de modélisation de la propagation
des ondes acoustiques par différences finies dans le domaine des fréquences. Le prob-
léme numérique associé est la résolution d’un systéme matriciel. L’approche développée
propose une discrétisation spatiale optimisée de I’équation d’onde rendant possible des
modélisations en 3D.

Premiérement, je compare des modélisations acoustiques en milieu hétérogéne cal-
culées avec des schémas aux différences finies en quinconce et des schémas optimisés,
discrétisés suivant deux systémes d’axe tournés de 45 degrés (schémas tournés). Pour des
modélisations 2D, la seconde approche montre des performances supérieures en terme
de temps calcul et de stockage mémoire. J’en conclus que la discrétisation suivant des
grilles tournées doit étre utilisée pour des simulations 2D. Dans le cas 3D, les schémas
utilisant les deux types de discrétisation contiennent 19 coefficients dans le cas des grilles
en quinconce et 27 coefficients dans le cas des schémas tournés. Je suggeére que les per-
formances, en termes de précision numérique et de stockage mémoire, des deux types de
discrétisation doivent étre examinées dans le futur.

Deuxiémement, je propose une approche mixte multi-échelles combinant une méthode
directe et itérative de résolution du systéme matriciel qui permet d’effectuer des modéli-
sations réalistes dans des milieux 3D. Dans un premier temps, le champ d’onde exact est
calculée via la factorisation LU de la matrice sur une grille de résolution grossiére. Deux-
iemement, ce champ d’onde approché est interpolé sur une grille numeérique de résolution
fine pour étre injecté comme estimé initial dans 'algorithme de résolution itérative. J’ai
exploré deux approches multi-échelles fondées respectivement sur une "nested iteration",
appellée méthode " Direct-Iterative-Space Solver" (DISS), et une décomposition multi-
grilles en ondelettes, appellée méthode " Direct-Iterative- Wavelet Solver" (DIWS). Les
performances respectives, en termes de temps-CPU et de stockage mémoire, de ces deux
méthodes de modélisation des ondes en milieu 2D et 3D sont comparées. L’algorithme
de la méthode DISS permet la construction rapide du systéme matriciel. La conver-
gence de 'algorithme itératif dépend fortement de sa capacité a éliminer des artefacts



numériques associés a des phénomeénes déphasage. L’importance de ces artefacts dépend
fortement de la précision de la solution initiale et de la discrétisation numérique du champ
modélisé dans ’algorithme itératif. Un nombre important d’itérations ou 'utilisation de
cycles en V et W sont nécessaires pour supprimer ces phénomeénes. Dans la méthode
DIWS, une représentation multirésolution du systéme matriciel est développée par pro-
jection sur une base d’ondelettes. Malgré le cotit induit pour transformer le systéme dans
le domaine spectral, la représentation multirésolution a fourni un outil numérique de
préconditonnement permettant de stabiliser et d’accélérer significativement 1’algorithme
itératif. L’accélération de la convergence est attribuée a la représentation du systéme
sur plusieurs grilles numériques de résolution différente dont les interactions sont prise
en compte au cours des itérations. Par ailleurs, la formulation en ondelettes ouvre des
perspectives d’optimisation sous forme d’adaptation spatial du maillage en fonction des
propriétés locales du milieu et du champ propageé.

Plusieurs exemples de simulation d’ondes dans des milieux 2D et 3D de complexité
variable sont présentés pour illustrer les performances respectives des méthodes DISS
et DIWS. La taille des applications 3D présentées a été limitée par l'utilisation de pro-
grammes séquentiels. Finalement, des stratégies de parallélisation en mémoire distribuée
des codes sont proposées.
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Chapter 1

Introduction

1.1 Résumé

En recherchant la signification du mot seismology dans un dictionnaire d’anglais classique,
on trouvera typiquement une définition du type: The scientific study and recording of
earthquakes and related phenomena. L’objet de la recherche scientifique est la Terre.
La sismologie est 'outil mis en oeuvre pour déterminer sa structure interne qui fournit
de précieux indices pour la compréhension des processus géodynamiques actifs qui s’y
produisent. Les implications géodynamiques que l'on peut déduire de la connaissance de
la structure de la Terre dépendent principalement de I’échelle d’observation. En premiére
approximation, on fait généralement 'hypothése que la Terre se compose de plusieurs
enveloppes, telles que le noyau, le manteau, le crotite, etc., supposées de composition
homogene (voir le Figure 1.1). Cependant, une inspection plus détaillée de la structure
de la Terre révele que les interfaces séparant les enveloppes sont plutot complexes, que
la structure interne des enveloppes peux étre fortement hétérogéne (croute terrestre) et
subir des variations importantes au cours du temps.

Les données sismologiques sont sensibles aux différentes échelles auxquelles se pro-
duisent les phénoménes tectoniques. En d’autres termes, 1’échelle des temps de I’observation
sismologique est liée aux échelles caractéristiques des processus géodynamiques actifs.
Typiquement, nous trouvons deux échelles de temps distinctes qui sont associées d’une
part a l'excitation sismique de la source (de 'ordre de la milliseconde jusqu’a plusieurs
secondes), et d’autre part au temps nécessaire aux ondes sismiques pour se propager
jusqu’au capteur (de quelques secondes a quelques heures).

Depuis plusieurs décennies, les sismologues ont tenté d’interpréter une masse de don-
nées sismologiques de plus en plus volumineuse. L’accumulation continue des données et
les avancées des techniques de traitement et de modélisation des signaux sismologiques
ont permis d’améliorer de maniére significative la connaissance de la structure de la terre.
Les thémes de recherche en sismologie sont & caractére académiques, tel que ’étude de
la structure du noyau constituant le coeur de la Terre mais peuvent aussi avoir des
implications économiques et anthropiques fondamentales en relation avec la gestion et
Pexploitation des ressources énergétiques (recherche du pétrole et du gaz), la surveillance
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des explosions nucléaires souterraines, la compréhension de l’aléa sismique. Dans ces
derniers cas, la sismologie fournit un outil incontournable pour obtenir une reproduction
la plus exacte possible de la structure et de la composition des premiers kilomeétres de
I’écorce terrestre.

Propagation d’onde

En raison du manque d’accessibilité directe & lintérieur de la terre, les sismologues
utilisent les ondes sismiques comme outil indirect d’exploration. L’information sur la
structure de la Terre véhiculée par les ondes sismiques est particuliérement riche, la dif-
ficulté résidant dans ’extraction de cette information indirecte. Les ondes sismiques se
propagent de la position de la source (par exemple, un tremblement de terre ou une ex-
plosion artificielle) jusqu’a la surface de la terre ou elles sont enregistrées par un capteur
sismique. Par conséquence, les ondes sismiques contiennent une signature non seulement
du processus de nucléation des ondes mais aussi des propriétés physiques du milieu dans
lequel elles se sont propagées. Parmi toutes les méthodes géophysiques, les méthodes sis-
miques sont sans aucun doute celles qui disposent du pouvoir de résolution le plus élevé
en terme de taille des structures imagées et de diversité de paramétres étudiés (vitesses
de propagation, densité, atténuation). L’analyse des temps arrivés, de amplitude, de la
phase, et de 'atténuation des ondes sismiques fournit des informations importantes sur
la composition pétrologique des milieux et sur la géomeétrie et la nature des discontinuités
tectoniques traversées.

A titre d’illustration, considérons l'enregistrement d’un tremblement de terre repré-
senté sur la Figure 1.2. En fonction de la résolution choisie pour 'enregistrement et
I’analyse, nous pouvons considérer différents trains d’onde (par exemple S et R2-3), des
arrivées individualisées (P), ou 'amplitude et la phase d'une seule arrivée (R1). La ques-
tion posée par la sismologue est de comprendre comment les ondes ont été excitées et
modulées lors de leur propagation jusqu’a la surface de la terre, et quelles enseignements
géologiques peut on tirer de cette analyse.

Une séquence classique d’étude sismique commence par 'acquisition des données sis-
mologiques, suivie par la modélisation des ondes dans un modele synthétique prédéfini
de la terre. La confrontation de la simulation synthétique des ondes avec les données
enregistrées permet d’évaluer la pertinence du modéle de Terre prédéfini et de le modifier
si nécessaire par itérations successives pour améliorer la correspondance entre données
observées et calculées . L’interprétation des données sismologiques nécessite la mise au
point dSoutils numériques précis de modélisation de la propagation des ondes dans un
modeéle de Terre, afin de pouvoir explorer les différents scénarios géologiques possibles
pouvant expliquer les données géophysiques enregistrées.

Modélisation

La modélisation et la compréhension des phénomenes de propagation des ondes nécessi-
tent la mise au point d’outils numériques performants de simulation des ondes. La sim-
ulation des ondes permet la construction de sismogrammes qui seraient enregistrés pour
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une géomeétrie d’acquisition donnée, une excitation de source, et un modéle physique de
la terre. Idéalement, les outils de modélisation doivent pouvoir prendre en compte des
modeéles de Terre réalistes, fortement hétérogénes et de rhéologie complexe, et fournir des
simulations précises capables de prendre en compte toute la complexité des phénoménes
de propagation. Au cours de ces années, un grand nombre de techniques de simulation
ont été développées. Toutes ont des avantages et des domaines d’application qui leur sont
propres.

La modélisation numérique est largement utilisée pour comprendre des phénomeénes
complexes de propagation des ondes dans des structures hétérogénes complexes, supposées
de rhéologie linéaire ou non linéaire. Les photographies de la propagation des ondes a
un temps de propagation donné, appelées instantanés de propagation, fournissent un
outil nécessaire pour comprendre les interactions complexes des différents types d’ondes.
D’autres applications nécessitent des modélisations pour comparer des sismogrammes
observés et calculés dans un modéle prédéfini. Des conclusions sur la précision du modéle
testé peuvent étre tirées de ces comparaisons.

Ces derniéres années, la modélisation de la propagation des ondes a été employée
pour le controle et la surveillance des emplacements de déchets, de la recherche des
couches aquiféres proches de la surface, et de la détection des matériaux enterrés ayant
des parameétres physiques contrastés (par exemple, la densité) par rapport au sol envi-
ronnant. Beaucoup d’applications nécessitent la simulation des phénoménes des ondes
afin de trouver un modéle représentatif de la terre qui explique les données rassemblées.
Les méthodes d’inversion (tomographie sismique, imagerie sismique) nécessitent des algo-
rithmes de modélisation rapides et efficaces de sorte que des comparaisons entre données
observées et calculées puissent étre calculées de maniére répétée dans un processus itératif.
L’industrie pétroliére a besoin d’images haute résolution des réservoirs souterrains afin
d’optimiser 'extraction du pétrole. Puisque les forages sont extrémement chers et four-
nissent seulement des informations locales, 'industrie pétroliére acquiert des données
sismiques réflexion multitrace 3D. Apreés le traitement des signaux, les données sismiques
fournissent une image 3D du réservoir a partir de laquelle une stratégie de forage peut
étre élaborée.

Afin d’éviter des erreurs irrémédiables pendant ’acquisition de données sismique,
la modélisation numérique est en grande partie utilisée pour définir la géométrie opti-
male du dispositif d’acquisition & mettre en oeuvre. Les expériences sismiques répétées
a intervalles de temps réguliers, appelées "/D time-lapse seismic", combinées avec des
simulations du champ d’onde 3D permettent de suivre I’évolution du réservoir et de ce
fait d’optimiser I'extraction du pétrole.

Motivation

Comme nous ’avons mentionné, les simulations synthétiques de la propagation des ondes
sont cruciales pour de nombreuses applications sismologiques. Au cours des années,
différents algorithmes et techniques de modélisation ont été développés par les sismologues
et d’autres scientifiques (par exemple, mathématiciens, ingénieurs électriciens, etc.), qui
fournissent des approches de simulation des ondes pour des problématiques plus ou moins
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spécifiques.

Grace a augmentation de la puissance des ordinateurs, les sismologues peuvent cal-
culer de nos jours des simulations du champ d’onde dans des modéles tridimensionnels a
grande échelle de la terre en utilisant les architectures de super calculateurs. Des mod-
élisations de la propagation d’onde qui prennent en compte une rhéologie proche de la
réalité dans des modeéles de grande taille sont loin d’étre évidentes a calculer, en rai-
son des difficultés de construire des algorithmes optimisés des points de vue de ’analyse
numérique, de la précision, du temps CPU, et de la gestion de la mémoire. Typiquement,
pour les applications mentionnées ci-dessus, nous devons pouvoir traiter des modéles 3D
avec une rhéologie hétérogene complexe de dimensions spatiales d’environ 30 x 30 x 10K'm
et une excitation de source ayant une bande de fréquence de 0—10H z (voir la Figure 1.3).
Développer une approche numérique permettant de calculer ce type de simulations con-
stitue l'objectif de cette thése.

Les outils mathématiques les plus répandus pour optimiser les codes numériques de
modélisation des ondes ont pour objectif de fournir des représentations adaptées de la
propagation des ondes dans des espaces d’approximations hiérarchiques. Un des out-
ils numériques définissant de maniére naturelle une hiérarchie des espaces de résolution
est la transformée en ondelettes et les analyses multirésolution associées. Beaucoup
d’applications performantes et intéressantes de la transformée en ondelettes, par exemple,
dans les domaines du traitement d’images, de la compression d’informations numériques,
des simulations non linéaires complexes des écoulements turbulents, etc., ont été présen-
tées ces derniéres années. Bien que selon moi plusieurs des développements fondés sur
la transformée en ondelettes n’aient pas remplacé des techniques standards existantes,
le développement des applications de la transformée en ondelettes méritent d’étre pour-
suivi. La transformée en ondelettes est une extension d’autres procédures hiérarchiques
plus classiques et pourrait de ce fait fournir des informations supplémantaires qui était
non détectées ou invisibles précédemment.

Dans cette these, je présente une nouvelle méthode de modélisation des ondes sis-
miques acoustiques qui est basé sur la transformée en ondelettes. L’approche développée
dans cette thése a pour objectif de surmonter les limites des méthodes de simulation clas-
siques en rendant possibles des simulations de propagation des ondes a grande échelle dans
des modeles complexes 3D fortement hétérogénes pour un grand nombre des fréquences
et de sources. D’une part, le nouvel algorithme se fonde, sur des formulations fortes bien
connues, stables, et puissantes des équations aux dérivés partielles qui sont employées
pour des problématiques 3D de petites tailles. L’extension proposée doit permettre de
manipuler des rhéologies physiques plus complexes pour des modéles a grande échelle de
la terre en tirant profit de la décomposition hiérarchique fournie par la transformée en
ondelettes.

Les ondelettes ont été largement utilisées pour modéliser la propagation des ondes,
bien que beaucoup d’applications n’exploitent selon moi que partiellement la décomposi-
tion multirésolution fournie par les ondelettes pour, par exemple, calculer les dérivés par-
tielles numériquement, ou pour effectuer du seuillage numérique dans le but de construire
des grilles numériques non uniformes. Le nouvel algorithme de modélisation développé
dans cette these est plus ambitieux: la modélisation des ondes est completement résolue
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dans le domaine des ondelettes afin de tirer un profit optimal de la décomposition multi-
grilles fournie par la transformée en ondelettes tout en évitant les allers-retours cotteux
entre les domaines physiques et spectraux propres aux approches classiques.

Les applications envisagées de cette nouvelle approche sont le calcul de simulations
pour des expériences multi sources telles que celles mises en oeuvre dans le contexte de
I’exploration pétroliére. En outre, ’étude des effets de site pour la prévention des catas-
trophes naturelles dans des secteurs fortement peuplés comme par exemple, les marges
continentales convergentes menacés par le risque sismique élevé, devient de plus en plus
importante. Ces études sont largement fondées sur la modélisation des ondes sismique
en 3D a grande échelle afin de prévoir les scénarios possibles du mouvement du sol.

Plan de la thése

La theése est subdivisée en sept chapitres. Dans le chapitre 2, je discute et illustre la
nécessité de définir une approximation numérique de I’équation d’ondes. J’expose un bref
panorama des différentes discrétisations possibles, ainsi que les avantages et inconvénients
de ces approches pour la modélisation des ondes a grande échelle. Ce chapitre traite de
I'approximation des dérivés partielles spatiales de ’équation d’onde. Des discrétisations
en temps de I’équation d’ondes sont briévement commentées a la fin du chapitre, parce
que la dimension temporelle joue un role mineur dans le travail présenté ici, I’approche
choisie étant implémentée dans le domaine des fréquences.

Dans le Chapitre 3, je présente 'approche par différences-finies dans le domaine des
fréequences (FDFD) utilisée actuellement pour les simulations. La formulation classique
par rotation des grilles en FDFD est comparée a une discrétisation FD de 1’équation
d’ondes basée sur une géomeétrie des grilles en quinconce plus classiquement utilisée dans
les formulations temporelles. Le schéma & 13-points, qui combine des grilles en quinconce
dans le domaine de fréquence, est examiné du point de vue de la précision et de la rapidité
numériques dans des milieux 2D homogenes et hétérogénes.

Afin de surmonter les limites des stratégies de modélisation FDFD par rotations des
grilles et des grilles en quinconce, je développe dans le chapitre 4 un nouveau algorithme
de modélisation FDFD fondé sur une approche multigrille. Le chapitre 4 débute par un
état de 'art des méthodes de construction de grilles numériques qui ont été développées
pour la résolution numérique d’équations aux dérivés partielles. Je discute des avantages
et inconvénients des techniques existantes qui méneront a la conclusion qui a motivé mon
travail. La nouvelle approche de modélisation par FDFD est basée sur une combinaison
des solutions du champ d’onde calculées sur des grilles de résolutions grossiére et fine.
Une premiére solution est calculée exactement sur une grille de résolution grossiére par
une méthode directe. Deuxiémement, ce champ d’onde est utilisé pour construire une
solution initiale injectée dans une méthode de résolution itérative. Je développe deux
méthodes différentes qui sont fondées sur une combinaison spatiale de grilles numériques
de résolutions différentes (approche multigrille). Dans la premiére approche, les transferts
entre les différentes grilles sont effectués par interpolation bilinéaire et injection (approche
" Direct-Iterative-Space Solver" (DISS)). Dans la deuxiéme approche, les transferts entre
grilles sont gérés par la décomposition multigrille fournie par la transformée en ondelettes
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(approche "Direct-Iterative- Wavelet Solver" (DIWS)). Les deux approches sont dévelop-
pées pour calculer des propagations d’ondes SH dans des milieux 2D hétérogenes.

Le chapitre 5 présente plusieurs applications des outils développés au chapitre 4 pour
des milieux homogeénes et hétérogénes. Les performances respectives en termes de préci-
sion et de rapidité des approches DISS et DIWS sont comparées et interprétées dans le
contexte des méthodes multigrilles.

Dans le chapitre 6, les stratégies de DISS et de DIWS sont étendues aux cas des
milieux 3D acoustiques. Les codes 3D sont d’abord examinés pour des petits modeles
3D en utilisant une exécution en mode séquentielle. Par ailleurs, je discute en détail des
problémes associés a ’extension en mode paralléle du code séquentiel.

Le chapitre 7 récapitule le travail présenté dans la these. Finalement, je cloture la
discussion en proposant plusieurs perspectives de développements ayant pour objectifs de
poursuivre mes travaux.

1.2 Seismology

Looking up the meaning of seismology in a standard English language dictionary, one
typically finds a definition of the type: The scientific study and recording of earthquakes
and related phenomena. The object under scientific investigation is the Earth and seis-
mology is the tool applied to discover the inner Earth structure and processes, as-well-as
the understanding of how the Earth has been formed and its actual state. The descrip-
tion of the Earth’s structure and processes depends mainly on the scale we are looking
at. It is commonly known that the Earth consists of several onion-like shells, such as
core, mantle, crust, etc., where each shell is assumed to be a more or less homogeneous
body (see Figure 1.1). However, a more detailed inspection of the Earth’s structure re-
veals rather complex interfaces between shells, and spatially varying heterogeneous and
dynamic structure in the interior of the shells.

The non-uniform and scale-dependent processes in the Earth create scale-dependent
seismological data. In other words, the time-scale of seismological observation is related
to the characteristic scales of processes in the Earth. Typically, we find two distinct time
scales, that are related to the seismic source excitation (the order of milliseconds up to
seconds), and the time required for seismic waves to propagate to the receiver station
(few seconds up to hours).

For many years, seismologists tried to interpret the wide range of recorded seismolog-
ical information. The continuing accumulation of data and advances in signal processing
techniques significantly improved the knowledge of the Earth’s structure. The insights
gained are, on one hand, related to academic problematics, such as discovering the struc-
ture of the innermost core of the Earth. On the other hand, research investigations, such
as the search for oil and gas, the control and understanding of underground nuclear explo-
sions, or seismic risk analysis, use seismology as a tool to obtain an as-exact-as-possible
reproduction of the near surface Earth’s structure composition.
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Crust (7= 50 hm thok)

Figure 1.1: The standard model of the Earth’s interior (McGeary and Plummer, 1998).

1.3 Wave propagation

Due to the lack of direct accessibility of the Earth’s interior, seismologists use seismic
wave propagation as a tool to extract, interpret, and understand inherent Earth processes
and structural formation. Seismic waves are powerful for extending our knowledge of the
Earth’s interior. They propagate from the source point (earthquake or artificial explosion)
to the Earth surface, where they are recorded by a seismic station. Therefore, seismic
waves contain important information related not only to the wave nucleation process, but
also to the physical properties of the medium the waves path traveled through from the
source to the recording station.

The analysis of the recorded seismological information allows extensive interpretations
which, at the seismic resolution, could not have been obtained by other techniques. The
analysis of arrival times, amplitude, phase, and damping of seismic waves provides impor-
tant information for geological and geophysical interpretations with respect to physical
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Figure 1.2: Vertical component of a seismogram recording from the PPT station (Geo-
scope network) in Tahiti on the 5 March 1985. The epicentre of the earthquake causing
the ground motion is in Valparaiso (Chile) at a depth of approximately 40Km. The
magnitude is Mg = 7.8. I plot the seismogram up to 5h, though the complete recording
lasts about 20h. Clearly visible are different arrival times for wave-trains having different
characteristic forms and amplitude. For example, I indicate the main body-waves, such
as P- and S-waves, as well as several Raleigh wave-trains (R1, etc.).

rock-properties and dynamic processes in the Earth.

As an example, consider the earthquake recording plotted in Figure 1.2. Depending
on the resolution chosen for the recording and analysis, we may distinguish between
groups of wave-trains (for example S and R2-3), separate distinct arrivals (P), or even
the characteristics of amplitude and phase of an arrival (R1). The question arises how
the waves have been excited and modulated during the passage to the Earth surface, and
what insights might be gained from that knowledge.

A typical processing sequence starts with recording the seismological data, then per-
forming synthetic wave modelling in a pre-defined synthetic Earth model. The combined
comparison of the synthetic wave simulation and the actual recorded data provides the
basis of a geological study. The interpretation of seismological data requires trustworthy
synthetic wave propagation modelling, in order to distinguish between different possible
complex geological scenarios that may all fit the recorded data.

1.4 Forward modelling

One strategy to understand wave propagation phenomena is the numerical simulation
of seismic wave propagation. The objective of wave propagation modelling is the study
of wave phenomena in a synthetic Earth model under certain, more or less realistic
conditions. In other words, wave modelling permits the construction of a seismogram that
would be recorded for a given specific acquisition geometry, wave generation (source), and
physical Earth model.

The interest in synthetic wave modelling arises from the fact that numerical wave
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simulation is the main tool to provide accurate and trustworthy synthetic seismograms
for strongly heterogeneous, i.e., close to realistic, Earth models. Over the years, very
many different simulation techniques have been developed. All have specific advantages
and areas of application, depending on the problem at hand.

Numerical forward modelling is widely used to understand complex wave propaga-
tion phenomena in complex heterogeneous structures, assuming linear or even non-linear
physical rheology. Time-photographs of the wave propagation at a certain time, called
snapshots, provide an imperative tool to understand the physics of the rather complex
interaction of the waves. Other applications use forward modelling to compare synthetic
and recorded seismograms. Then, precise conclusions on the accuracy of the pre-assumed
synthetic Earth model, with respect to the unknown real model, can be drawn.

In recent years, wave propagation modelling has been used for the control and mon-
itoring of waste sites, search for near-surface water aquifers, and the detection of buried
materials having significantly contrasted physical parameters (e.g., density) with respect
to the surrounding soil. Many applications include forward modelling of wave phenomena
in order to find a representative Earth model that fits the collected data. The inversion
process requires fast and efficient modelling algorithms so that synthetic and real data
comparisons become feasible in a reasonable amount of time. Oil industry needs high
resolution reproductions of the underground reservoirs in order to accurately control the
extraction of the oil. Since boreholes are extremely expensive and only provide punc-
tual information, oil industry acquires artificial multi-source seismic data. After signal
processing, the seismic data provides a reservoir image, that helps devising reservoir
exploitation strategies.

In order to avoid unrecoverable errors during seismic data acquisition, numerical for-
ward modelling is largely applied to test acquisition parameters and different geometry
setups. Then, the best adapted geometry and precise judgement of the expected out-
comings of the survey can be determined before action is taken. Moreover, repeated
seismic multi-source experiments, called 4D time-lapse seismic, combined with 3D for-
ward wave-field simulations allow the tracking of changes in the reservoir and optimise
oil extraction.

1.5 Motivation

As we have seen, synthetic wave propagation simulations are crucial for numerous seis-
mological applications. Over the years, many different forward modelling algorithms and
techniques have been developed by seismologists and other scientists (e.g., mathemati-
cians, electrical engineers, etc.), that provide wave simulation approaches for more or less
specific problematics.

With the extensive development of computational power, these days seismologists
perform wave-field simulations in large-scale three-dimensional Earth models using fast
supercomputer structures. Still, wave modelling that incorporates close-to-real rheol-
ogy in large models is by-far not evident to perform, because of difficulties to construct
optimised algorithms with respect to resolution, precision, CPU speed, and memory re-
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Figure 1.3: Typical 3D model with complex heterogeneous rheology for wave propagation
simulations. The model dimensions are 30Km x 30Km x 10K'm and ideally we would
like to model accurately frequencies in a band from 0 — 10H z.

quirements. A typical 3D model with complex heterogeneous rheology may have spatial
dimensions of about 30Km x 30Km x 10Km and a frequency band of 0 — 10Hz (see
Figure 1.3). This is the kind of scenario I am targeting in this thesis.

Popular mathematical tools to obtain the desired optimisations of the numerical code
are adapted representations of the wave propagation in hierarchical approximations. One
of the numerical tools that naturally defines a hierarchy of resolution spaces is the wavelet
transform. Many powerful and interesting applications of the wavelet transform, e.g., in
the field of image processing, complex non-linear simulations of turbulent flows, etc.,
have been presented in recent years. Even though many of these developments did not
replace existing standard techniques, in my opinion, it is still necessary to further inves-
tigate the application of the wavelet transform. Since it is an extension to other more
standard hierarchical procedures it might provide additional, previously undetected or
unseen informations.

In this thesis, I present a new wavelet-based forward modelling scheme for acoustic
seismic wave simulations. The new scheme aims to overcome limits of current modelling
approaches by rendering feasible large-scale simulations of complex 3D wave propagation
phenomena in strongly heterogeneous media, for large frequency bandwidth data and
numerous external source functions. On one hand, the new algorithm relies, on well-
known, stable, and powerful strong formulations of the partial differential equations that
are used for small and simple 3D problematics. On the other hand, the extension to handle
more complex physical rheologies for large-scale Earth models is obtained through the
coupling with a wavelet-based hierarchical decomposition.

Wavelets have been widely used for wave propagation modelling, though many ap-
plications only use the provided wavelet decomposition e.g., for defining the numerical
grid, numerically computing derivatives, or numerical thresholding. The new modelling
algorithm developed in this thesis is more ambitious: the desirable properties of standard
space algorithms combined with the complete wavelet structure provide a powerful tool
for wave propagation simulations.
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Typical applications of this new approach are wave simulations for extensive multi-
source experiments, such as carried out in oil exploration. Also, site-effect studies for
natural disaster prevention in highly populated areas situated in e.g., large sedimentary
basins with high seismic risk, become more and more important. These studies rely
extensively on large-scale 3D seismic wave modelling in order to simulate possible ground
motion scenarios.

1.6 Outline of the thesis

The thesis is subdivided into seven chapters. In Chapter 2, I discuss and illustrate the
necessity to define a numerical approximation to the partial differential wave equation,
that allows the desired wave propagation simulations. I give a brief review of existing
discretization possibilities, together with handicaps and advantages of these methods with
respect to large-scale wave simulations. This chapter deals with the spatial approximation
of equations. Time discretizations of the wave equation are briefly commented at the end,
since time dependencies play a minor role for the work presented here.

In Chapter 3, I present the state-of-the-art frequency domain finite-difference (FDFD)
modelling approach. The standard FDFD grid-rotation formulation is compared to a
FD discretization of the wave equation based on a staggered-grid geometry rather than
grid-rotation. The 13-points cross stencil, that combines spatially staggered grids in the
frequency domain, is examined with respect to numerical accuracy and computational
efficiency in 2D homogeneous and heterogeneous media.

In order to overcome computational limits of the grid-rotation and staggered grid-
combination strategies for FDFD wave simulations in 3D Earth models, in Chapter 4
I develop a new FDFD modelling algorithm that relies on a combination of multi-grid
wave modelling techniques. Chapter 4 starts with a general review of grid optimisa-
tion techniques that have been developed for numerical simulations of partial differential
equations. I discuss shortcomings and benefits of existing techniques that will lead to
the conclusion that initially motivated my work. The new FDFD modelling scheme is
based on a combination of coarse-grid and fine-grid wave-field solutions. I develop two
different methods that rely on either a spatial or a wavelet-based grid combination, called
Direct-Iterative-Space Solver (DISS) and Direct-Iterative-Wavelet Solver (DIWS). Both
approaches are introduced for SH-wave propagation in 2D media and tested with respect
to computational efficiency and accuracy in structurally complex heterogeneous model
scenarios.

Chapter 5 provides further benchmark tests of the modelling scheme developed in
Chapter 4 for homogeneous and heterogeneous media, as well as performance tests related
to external software used in the implementation to guarantee trustworthy computational
results.

In Chapter 6, the DISS and DIWS strategies are extended for wave simulations in
acoustic 3D media. The 3D code is first tested for small 3D model scenarios using a
sequential implementation. Moreover, I discuss in detail problems related to a parallel
extension of the sequential code.
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Chapter 7 summarises the work presented in the thesis and gives some concluding
remarks concerning the results I have obtained. Finally, I close the discussion with my
ideas about future developments and continuation of my work.



Chapter 2

From Continuum to Discretization

2.1 Résumé

Dans ce chapitre, je présente et discute plusieurs stratégies de discrétisation numérique
d’une équation aux dérivés partielles (PDE) telle que I’équation d’onde. Idéalement, nous
voudrions obtenir des solutions analytiques des PDEs. Malheureusement, méme pour
des modeles simples telles que des corps isotropes homogénes, le calcul de la solution
de I’équation d’onde nécessite une analyse soignée des formulations fondamentales et
est loin d’étre trivial. Puisqu’il est difficile d’obtenir les solutions analytiques pour des
milieux généralement non homogeénes, les sismologues discrétisent les PDE; et calculent
des solutions approchées du champ d’onde en résolvant les équations numériquement.

Beaucoup de techniques ont été développées pour représenter des PDEs sur des grilles
numériques, telles que les méthodes des différences finis, des éléments finis, des volume
finis, et des éléments spectraux. Toutes ces méthodes peuvent étre replacées dans le
contexte d'une formulation spécifique de la méthode des résidus pondérés ("weighted
residuals" (WR)). En général, la méthode WR utilise des fonctions de base, égale-
ment appelées fonctions d’interpolation, pour développer la solution de la PDE en série.
L’approximation de la solution vient de la troncation de la série. Afin de garantir la
précision de la solution, des fonctions d’essai sont utilisées pour réduire au minimum
l’erreur résiduelle qui est obtenue quand la solution approchée est injectée dans la PDE.
Les différents choix possibles des fonctions d’interpolation et des fonctions d’essai perme-
ttent de distinguer les différentes approches numériques mentionnées ci-dessus. Toutes les
approches mentionnées ci-dessus permettent la simulation numérique des ondes dans des
modeles bidimensionnels (2D) sur une simple station de travail. Quand les modéles de-
viennent structurellement complexes et/ou tridimensionnels (3D), les modélisations des
ondes ne deviennent envisageables que sur des super calculateurs ou sur des architec-
tures paralléles, ces derniéres nécessitant I'implémentation de stratégies de parallélisation
pouvant se révéler fort complexes (par exemple, décomposition de domaines).

Alors qu’il reste difficile de calculer des simulations tri-dimensionnelles dans des mod-
éles de taille réaliste, ’acquisition de données sismiques 3D et les techniques de visuali-
sation et d’interprétation de volumes 3D sont devenus des outils standard de I'industrie
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pétroliére et de certains groupes de recherche sismologiques aux universités. Afin de
venir autour de ’anomalie entre les données enregistrées et les outils de modeler, deux
possibilités existent.

D’une part, on estime que des propriétés physiques du matériel d’ordinateur réel,
mémoire disque c.-a-d., de noyau et vitesse informatique d’unité centrale de traitement
doublent chaque 18 mois. D’autre part, la différence entre les besoins informatiques et
les possibilités réelles est susceptible de rester ou méme augmenter a ’avenir, puisque
I’acquisition de données deviendra de plus en plus précise et spatialement dense. Alors
des phénomeénes de propagation des ondes devront étre étudiés pour des données & bande
haute fréquence (par exemple, 0 — 50H z pour des études des effets de site détaillés), et
Iincorporation des effets non linéaires de propagation des ondes aura un impact signi-
ficatif pour résoudre complétement toute l'information actuelle dans les données. Afin
d’effectuer ces simulations des ondes a grande échelle dans des milieux 3D, nous avons
la possibilité d’attendre les ordinateurs pour devenir rapides et assez grands pour traiter
le problématiques réel avec des techniques standard existantes. A mon avis c’est falla-
cieux, parce que, donné un niveau d’ordinateur et performance des logiciels, l'outil ayant
la meilleure performance adaptée & les problémes réels actuels seront employées par les
sismologues.

Par conséquence, l'autre possibilité doit optimiser les codes existants de logiciel pour
améliorer 1'ajustement les problémes actuels et/ou pour développer des nouveaux codes,
celui, en général, ou pour des problémes spécifiques seulement, fournissent les maniéres qui
permettent la simulation exigée de propagation des ondes avec les ressources d’informatique
courantes disponibles. C’est ce point de vue qui justifie I’effort entrepris durant ma these.

2.2 Introduction

Imagine a town where there are no streets. In order to go from one place to another you
would have to pass through spaces left over between buildings and houses. In this case,
finding the right way would probably be a difficult matter.

Therefore, towns are run through by numerous streets that allow easy and fast navi-
gation to almost any desired place. Then, it is rather a question of how well or easy you
find your way through, which again is controlled by the complexity of the streets and
buildings in the town. In effect, the how well you find your way will probably depend,
simplifying, on the town being built in America or Europe. American towns, in gen-
eral, have a clear and simple structure since streets are lined up in a quadratic manner,
which allows a rather easy navigation. In FEurope, streets are not constructed following
an obvious geometrical structure, and therefore navigation is more difficult.

However, imagine that you would just want to find the way to the cultural centre of
the town. Although asking for the right way is probably the best choice, there is another
characteristic in the town structure that may guide us in the right direction: the street
size and density. When approaching the town centre, in general in both types of towns,
American or European, the number of streets will increase while their size decreases.

Although most of us can relate to the significance of streets in towns, where is the
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connection to numerical modelling in Geoscience? Well, the numerical grid designed on a
computer lets the geophysicists find wave-field solutions to partial differential equations
(PDE), just as the streets permit the navigation in a town.

In numerical modelling the desired exact analytic solution is computed without the
help of a numerical grid. As for the town-without-streets example where navigation is
manageable only when the town is simple and easily comprehensible, finding an analytic
solution of a PDE is only possible for very simple model structures. When it comes
to more complex models where physical parameters are distributed heterogeneously, the
continuous PDEs can be projected in the discrete world with the help of a numerical
grid. However, since we expand the PDE on a computer architecture, it is the computer
basis (the numerical grid) that controls the accuracy and performance of the expansion.
Therefore, the numerical grid is of great importance.

Many different types of grids and grid constructions exist, and it is a matter of debate
which grid or grid structure is the best adapted for a given problem at hand. Coming
back to the town-street example, I mentioned that common points of interest, such as
the cultural town centre, are run through by an increased number of streets having
smaller and smaller size. We also find this kind of refined-grid-structures in numerical
modelling. Though the general need to refine the grid in regions having complex rheology
is unquestionable, the way how the refinement from one grid to another is performed, is
far from being obvious.

In this Chapter, I will discuss different techniques to form a numerical grid for seis-
mic wave propagation simulations, where the aim is the best exploitation of the model
structure using the least computational possible resources.

2.3 Computation on a grid

Seismic wave propagation is mathematically described by the wave equation:

e
T
2.1)

where u is the scalar wave potential and ¢ the wave velocity.

Ideally, we would like to obtain analytical solutions to Equation 2.1 in the presence of
external sources. Unfortunately, even for simple model structures such as homogeneous
isotropic bodies, computation of the solution of the wave equation requires careful analysis
of the underlying formulations and is by far not trivial (Morse and Feshbach, 1953). Since
analytic solutions are difficult or impossible to obtain for general inhomogeneous media,
seismologists discretize the PDE in Equation 2.1, and compute approximate wave-field
solutions by solving the equations numerically.

Many different techniques have been developed to approximate PDEs on numerical
grids, such as finite-differences, finite-elements, finite-volume, and spectral element tech-
niques. All these methods may be viewed as specific formulations of the weighted residuals
method. In general, the weighted residuals method employs basis expansion functions,
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also called interpolating functions, for a truncated series expansion of the PDE solution.
The approximation of the solution comes from the truncation of the series expansion. In
order to guarantee accurate PDE solutions, in general, testing functions are used to min-
imise a residual error that is obtained when the approximate solution is substituted in the
PDE. It is the combination of series expansions and testing functions that distinguishes
between the above mentioned numerical approaches.

To illustrate the underlying framework of the residuals method, I consider the wave
equation in the one-dimensional domain 2 C R with boundary I':

{Eu—szinQ

_ (2.2)
U = up

where £ is a differential operator. [ now define a set a of interpolating and testing
functions, denoted by U and W, respectively, to fulfil:

U = {u|ueH*(),u=ur on T}
W = {w|weL?(Q),w =0onT} (2.3)

Then, I write the corresponding strong formulation of Equation 2.2:

Find ueU such that :
(Lu — f,w)y =0 YweW (2.4)

Moreover, I introduce a finite-dimensional subspace of the interpolating functions U”"
with the corresponding basis functions ¢;, which gives the discrete strong formulation:

Find u"eU" such that :
(LM — fh)y =0 Yuw'eWw" (2.5)
In point collocation methods the testing functions, denoted by QﬁjeWh (where Wh c W

is a finite-dimensional subspace of W), are Dirac delta functions defined on discrete
collocation points in 2:

Pj(z) = d(x — ;) (2.6)

Popular point collocation methods are finite difference (FD) methods. FD methods only
define the discrete differential operator £" around the collocation points, which gives:

Find u(x;) such that :
L' |yeg,= f(z;)  §=0,..,N (2.7)

Since FD methods use Dirac delta testing functions, they verify the wave equation exactly
on discrete collocation grid points.

Finite-volume methods (FV) subdivide the initial domain €2 into a set of sub-domains
(2. The testing functions are then chosen with respect to the sub-domain:

oy )1 tor weQdy,
Vil@) = {0 for z ¢ Q;. (28)
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and the residual formulation verifies surface integrals, where the sum of in- and outcoming
flow has to be zero. This gives a surface integral formulation:

Find u" such that :
/ (LMl — fydr; =0 j=0,..,N (2.9)
1",

J

In my point of view, FV and FD methods are somehow similar in that both approaches
rely on collocation points. While FD methods use Dirac interpolating functions, FV
methods determine ‘averages’ over each sub-domain €2; (see Integral in Equation 2.9).
The testing functions are chosen such that the flux over the surface I'; becomes zero.
Therefore, FV discretizations are sub-domain collocation methods, and I denote them as
average formulations.

The weak formulation of a PDE can be constructed through an integration by parts
of the residual formulation given in Equation 2.4. In many cases, an equivalent bilinear
form can be derived, such that the equation to be solved becomes:

Find ueU such that :
a(u, w)y = (f,w)y YweW (2.10)

The problem in Equation 2.10 has a unique solution when certain constraints of the
bilinear form are verified. Often, the inner product a(u,w), weakens the restriction on
the solution of the PDE, which is why this approach is called the weak formulation.
Another possibility to derive the weak formulation is via a variational formulation of the
problem.

As for FV methods, the computational domain is divided into sub-domains and in-
terpolating functions are defined in each element locally. Appearing volume or surface
integrals in the formulation can be computed by different numerical integration techniques
of varying accuracy, that rely on polynomial basis expansions of the solutions.

Numerical codes using the weak formulation are distinguished by the method used
for numerical integration. Typical methods include finite-elements (FE) and spectral
elements (SE) methods. The weak formulation is less ambitious compared to the strong
formulation since equations are verified over elements, rather than discrete collocation
points as in FD methods.

All the above mentioned approaches permit numerical wave simulation modelling in
limited two-dimensional (2D) models on single desktop work stations. When it comes to
structurally complex and/or three-dimensional (3D) models that require fine mesh dis-
cretizations, wave simulations can, if at all possible, only be performed using standard
schemes when large computer resources are available.

In contrast to the actual limitations of wave simulation software, 3D seismic data
acquisition and interpretation have become standard tools for the petroleum industry and
seismological research groups at universities. In order to come around the discrepancy
between recorded data and modelling tools, two possibilities exist.
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On one hand, physical properties of actual computer hardware i.e., core- and disk
memory and CPU speed are estimated to double each 18 months (Moore, 1965). On
the other hand, the difference between computational needs and actual capabilities is
likely to remain or even increase in the future, since data acquisition will become more
and more accurate and spatially dense. Then wave propagation phenomena will have
to be investigated for high frequency bandwidths data (e.g., 0 — 50H z for detailed site
effects studies), and the incorporation of non-linear wave propagation effects will have a
significant impact to completely resolve all information present in the data. In order to
run these large-scale wave simulations in 3D media, we have the possibility to wait for
the computers to become fast and big enough to treat actual problematics with existing
standard techniques. In my opinion this is misleading, because, given a level of computer
hard- and software capabilities, the tool having the best adapted performance for the
actual problems at hand will be used by the seismologists.

Therefore, the other possibility is to optimise the existing software codes to better fit
the problems at hand and/or develop new codes, that, in general, or for specific problems
only, provide ways that permit the required wave propagation simulation within the
current computer resources available. It is this point of view that has given rise to the
motivation of my work.

2.4 Strong formulations

Continuous PDEs can be approximated on a numerical grid using the FD approach. FD
methods discretize the wave equation on a numerically equidistant grid where physical
model parameters, such as density and velocity, and partial derivatives are defined and
verified on discrete grid points, while between grid points no control of the wave-field-
solution is provided. Since the PDEs are projected on the numerical grid, it is the
grid parameters (e.g., number of grid points per shortest wavelength, grid spacing, etc.)
and the order of numerical approximation of spatial derivative operators that define the
accuracy and performance of the modelling code. Therefore, the definition or construction
of the numerical grid is crucial for the accuracy of the modelling scheme.

Historically, standard FD methods have been projected on Cartesian grids (Kelly
et al., 1976). They have been widely used for 2D wave simulations, since the FD ap-
proximation provides the complete wave-field response within predefined numerical pre-
cision limits. Moreover, the stability of the numerical scheme is easily controlled and the
implementation stays rather simple. Various FD approximation techniques have been
developed, where the interpolation based estimation of partial derivatives plays a crucial
role. The classic FD scheme by Kelly et al. (1976) uses Taylor series expansions in the
physical domain.

In order to obtain more accurate derivative estimations, other developments transform
the derivative approximation from the physical space to the spectral space while the
main differential equations are still verified in the physical domain. The above mentioned
interpolating functions ¢; are used as basis functions for a truncated series expansion of
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the solution u(z), such that:

N

u = cigs (2.11)

1=0

The coefficients ¢; in the physical space depend on all values of u(z) and are computed
by numerical integration. Since this is not always possible for arbitrary functions u(x),
the set of coefficients ¢; in the spectral space are derived using interpolating orthogonal
polynomials. These methods, denoted by pseudo-spectral methods, replace the classic
Taylor expansion by e.g., Fourier (Kosloff and Baysal, 1982), Laguerre (Mikhailenko,
2000), Chebyshev (Tessmer and Kosloff, 1994; Igel, 1999), or Wavelets (Operto et al.,
2002; Hong and Kennett, 2002) formulations.

In contrast to pseudo-spectral methods, that profit from increased accuracy in the
spectral domain to approximate spatial derivatives while equations are verified in the
space domain, spectral methods perform a complete transformation of the underlying
equations in the spectral domain. A classical example is the Fourier spectral method
(Fuchs and Muller, 1971), that uses the set of functions

¢i(z) = e (2.12)

The transformation in the spectral domain is performed because the complete wave sim-
ulation problem is thought to be easier to solve in the new space. Computations that
are simple in the physical space, such as the product of spatial derivatives with medium
parameters appearing in time domain finite differences (TDFD), become convolution type
procedures in the spectral domain that, in general, are costly to compute:

0 0
o(a,y,2)- LELED gy, ) TEL2D gy pwi(e) >

(2.13)

where ¥ denotes basis functions of the transformed spectral space.

In order to avoid convolution type computations, locally smooth model parameters
have to be assumed. Then, the model parameter function g(z,y, z) of the spectral ex-
pansion in Equation 2.13 is a constant and can be left outside the inner product, which
greatly simplifies computations. Such an approach was developed by Wu and McMechan
(1998) for a wavelet-based FD seismic wave-field simulation strategy.

For strongly heterogenous media the homogeneity assumption breaks down and con-
volution type computations are unavoidable when the strictly spectral approach is used
(Operto et al., 2002). However, computing the spatial derivatives-medium parameters
product in the physical domain, while performing the simulations in the spectral domain,
leads to a pseudo-spectral type formulation (Operto et al., 2002), where the performance
is strongly dependent on forward and inverse transformation algorithms between the
physical and the spectral domain.

When it comes to 3D models or complex 2D models, computer resources required for
the modelling on an equidistant Cartesian grid forbid the wide-spread usage of standard
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FD and pseudo-spectral methods. The most complex part in the model controls the
spatial discretization for stable wave propagation modelling. Since only a unique spatial
discretization step is defined, the obligatory fine stepping has to be applied to the whole
model which in effect renders standard FD and pseudo-spectral methods inefficient, if not
impossible to use.

Along with the optimisation of the derivative approximation, other techniques have
been developed that enhance the computational performance by optimising implemen-
tations for single desktop work stations (Graves, 1996; Moczo et al., 1999). However,
different constraints, such as the restriction to equidistant Cartesian FD-grids or expen-
sive forward and inverse transformations necessary for pseudo-spectral methods, did not
sufficiently enough improve the limits of standard simulation techniques. Therefore their
usage is prohibited for larger and more complex heterogeneous Earth model simulations
in a broader sense.

2.5 Space mesh optimisation

In order to overcome the computational limits caused by the restriction to use a unique
Cartesian grid, FD schemes have been extended to allow computations on different grids
of different resolution. The underlying idea is the distribution of corresponding com-
putational power to the complexity and the physical significance of the regions in the
model.

For example, the ground motion simulation for a sedimentary basin including shallow
low-velocity layers, typically requires a fine discretization for the low-velocity zones while
the deeper layers with faster velocities can be modelled with larger discretizations. How-
ever, standard FD schemes would require the fine discretization of the low-velocity zones
for the whole model, therefore spending large computer resources for unnecessary detailed
wave simulations in the fast-velocity regions. Another example would be a sedimentary
model with a salt dome. While the undisturbed sedimentary layers are horizontally
aligned and rather simple in structure, they are assigned a coarse spatial discretization
step. The flanks of the salt dome are structurally complex and thus require a much finer
discretization than the surrounding parts.

It is desirable, from a computational point of view, that structurally complex zones in
the model are treated with a fine discretized grid, while large spatial discretization steps
are applied to model regions where physical parameters change smoothly .

One popular approach to combine numerical grids of varying spatial resolution is the
multi-grid technique (Hackbusch, 1978; Briggs, 1987). The procedure to refine or coarsen
the numerical approximation grid and subsequent iterative computations of wave-field
solutions is obtained through a series of approximation, correction, and interpolation
steps, called V- and W-cycles (Hackbusch, 1978).

A typical full multi-grid method (FMG) starts the simulation procedure by com-
puting approximative wave-field solution on the finest discretized grid by an iterative
solver. Since iterative solvers, such as Gauss-Seidel or GMRES, easily suppress high
frequency components while leaving low frequency components almost untouched, the
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Figure 2.1: V- and W-cycles applied in a multi-grid approach. In (a) I show the two-grid
situation, where iterative solutions are computed, projected and corrected on two grids
having different spatial resolution. (b) shows a V- and W-cycle for a three-grid situation.

FMG methods projects the solution on a sequence of coarser discretized grids. This re-
striction procedure is called Coarse Grid Correction (CGC). On these grids, initially low
frequency components at some coarse grid become local high frequency components, and
can therefore easily be adapted by the iterative solver. Once a good coarse-grid solution
is obtained, the standard FMG methods prolongates the coarse-grid solution on grids
having finer discretizations until the desired fine-grid is reached. The solution prolonga-
tion may be effectively performed by simple bilinear interpolation and is called Nested
Iteration (NI). On each fine grid, the interpolated solution needs to be corrected due to
interpolating phase-shift errors. The procedure of going forth and back between different
resolution grids is meant to eliminate the existing artefacts. An illustration of a typical
two-grid and three-grid FMG setup is shown in Figure 2.1.

The multi-grid technique has been applied and further developed for numerous prob-
lems in physical sciences to solve PDEs (see Debicki, 1999; Pessel, 2000, for FD multi-grid
modelling of Maxwell’s equations). Its usage is supported by the fact that the definition
of several Cartesian grids of varying resolution is straight-forward, easy to implement,
and modelling accuracy is controlled just as for the single-grid approach.

Although multi-grids provide a nice and convenient way to couple numerical grids,
the main drawback is that convergence to an approximately accurate solution can not
be guaranteed, since local error estimates during the V- and W-cycles always depend on
tolerance levels of underlying iterative solvers. It is the grid connections that should be
investigated in more detail, in order to eliminate the ambiguity introduced by the difficult
error estimates in multi-grid approaches.

2.5.1 Variable staggered grid sizes

Despite of the numerical method applied, the physical model dimensions need to be
discretized on a numerical grid. The staggered-grid TDFD scheme, as introduced to
seismology by Madariaga (1976); Virieux (1984), uses two spatially staggered grids that
have a unique spatial discretization for each spatial dimension. Spatial staggering of grids
reduces the computational cost (though it is small compared to what we are aiming) and
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enhances the stability of the FD simulation since derivative approximations are always
spatially centred with respect to the information used from neighbouring grid points
(Virieux, 1984).

Pitarka (1999) extended the staggered grid geometry to allow the variation of the
spatial grid size in the model. The order of the derivative discretization (and therefore
its numerical accuracy) depends entirely on the number of grid points used in the FD
approximations, but not on their spatial location. Therefore, the derivative operator
coefficients were shifted to the corresponding grid nodes after discretization. Other ap-
proaches combined FD grids of different spatial resolution corresponding to the major
complexities in the model (Moczo, 1980; Jastram and Behle, 1992). The approaches de-
veloped, either continuously varied the spatial grid size (Moczo, 1980), or changed the
grid-node distance at a certain depth (grid size x2 or x3) corresponding to wave speed
changes in the model (Jastram and Behle, 1992). However, these approaches require
manual discretization changes from one grid step size to another by a passage through
a transition zone where parameters are mapped between the different grids. Although,
these grid changing techniques do enhance the computational performance of FD sim-
ulations, they are not sufficiently adequate, in terms of variability, for strongly complex
heterogeneous model structures.

2.5.2 Curved discretization

One of the main difficulties of FD methods is the correct simulation of a free surface
including topography i.e., the contact between the solid earth and air (Kristek et al.,
2002). Standard FD schemes refine the numerical grid in the vicinity of the free surface
and discretize the topography by fine sampled staircases (Robertsson, 1999). Even though
this approach gives acceptable results, another possibility to adapt the computational grid
to a complex model structure, such as the free surface with topography, is the expansion
of the PDE on Curvilinear grids rather than Cartesian grids. Then, the numerical grid
can be designed such that it perfectly fits the geometry of the surface model, and therefore
eliminates artefacts due to artifical staircase approximations.

Hestholm and Ruud (1998) in seismology and Xie et al. (2002) for electric circuits
formulated staggered FD methods on Curvilinear grids for arbitrary topographies with-
out any grid refinement involved, though the surface variations are limited to smooth
variations only. The exact verification of the free surface boundary conditions are ob-
tained through a transformation of the standard rectangular grid to a curved grid, such
that the vertical coordinate axis is locally normal to the surface. Then, the grid perfectly
matches the topography of the free surface and no further grid refinement or staircases
are needed to guarantee correct differencing near and on the surface. The results shown
so far are promising, but still require a detailed verification and/or comparisons with
already established analytic solutions.
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2.5.3 Discussion

Although FD methods defined on several spatial grids significantly enhance the compu-
tational efficiency of a wave propagation simulation, the manual wave-field transfer from
one grid to another is critical and rather complicated. Moreover, the user has to deter-
mine the regions where to refine the spatial stepping before the modelling starts. Ideally,
we would desire a simple and accurate strong formulation, like the FD scheme, to verify
the PDE on discrete grid points. The numerical scheme should automatically refine the
spatial grid-stepping during wave propagation through the model, with respect to local
model properties as well as the wave-field behaviour.

2.6 Weak formulations

The weak formulation of a PDE is often constructed using a variational argument of a
minimisation problem, and is referred to as the variational formulation of the differential
equation. I consider solutions to the linear hyperbolic wave problem:

p(x) - up(z,t) — V- [pu(z)Vu(z,t)] = f(z,t) in Qx(0,T) (2.14)
and the following first-order absorbing boundary conditions:
plx)p(z) - u(z,t) + pVu(z,t) - n=0 on I'x(0,7T) (2.15)
and initial conditions on displacements and velocities:
u(z,0) = up(z), u(z,0)=ui(z) (2.16)

where € is the model domain with the boundary I', (0,7") a time interval, p the medium
density, pu the Shear modulus, f the source function, and u(z,t) the unknown wave-field.
Time derivatives are denoted by underscore u;.

If I now assume V' to be a space of functions over €, then I can multiply both sides of
Equation 2.14 by a testing function veV, and integrate over the domain €2 using Green’s
theorem to transform integrals. The variational formulation is then

/p(:v)utt(:v,t)v(:v)div—i-/u(:v)Vu(:v,t)Vv(:v)d:v-i—
Q Q

/ our(€, H)o(€)de = / f (@, (@) de
N Q
(2.17)

where I simplified o = y/p(z)p(x). Equation 2.17 is similar to Equation 2.14 in taking
for ¢ > 0 the variation with respect to all testing functions v of a given space. The wave
equation is solved approximately by determining integrals over inspected sub-domains,
which is less ambitious compared to strong formulations that exactly verify the equation
on discrete grid nodes.
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Typical weak formulations of PDEs are finite-elements (Zienkiewicz and Morgan,
1982) and spectral-elements (Patera, 1984) techniques. One of the main advantages
over strong formulations is that the PDE is discretized over the inspected volume of
interest through a sub-division in a number of elements of irregular size and location,
such that the volume is sampled in an optimal way. Although the distribution and size of
elements is free up to certain limits, the elements are based on one geometrical form (e.g.,
triangulars). Still, the possibility to perform computations on geometrically optimised
numerical grids that perfectly match e.g., the free-surface with topography in seismology,
is very powerful. Moreover, the weak formulation allows numerical errors to be restricted
to local sub-domains, which in effect gives almost dispersion-free wave-field propagation
simulations.

In an ideal wave-field simulation, the elements are constructed to perfectly match
the complex structure of the model volume. The accuracy of the PDE expansion on the
discrete FE-grid depends on constraints of the testing functions used in the variational
formulation. In other words, a FE discretization is constructed for a specific accuracy
requirement. Then, the numerical grid has to be constructed to guarantee that the
numerical error stays in the pre-defined accuracy-bands during wave propagation. When
the grid has been constructed correctly, the FE simulation gives exact modelling results
up to a desired grid-accuracy.

Although FE modelling schemes have been used for a long time, it was only recently
that Faccioli et al. (1996) and later Komatitsch and Vilotte (1998) and Komatitsch and
Tromp (1999) developed a FE scheme for seismic wave propagation simulations. Their
schemes allow exact propagation of surface waves with topography, fluid-solid interfaces,
and anisotropy. Moreover, the spectral element approach presented, easily adapts to fast
implementation schemes using domain decomposition on parallel computer structures.
Komatitsch and Tromp (2001) recently even extended the SE approach to perform seismic
wave propagation modellings in a complete Earth model up to a frequency of f = 1Hz.

Finite-element methods require the numerical grid to be constructed before the mod-
elling starts. In general, this is not a simple task. The generation of an adequate mesh
controls the accuracy of the weak formulation (Sambridge et al., 1995), and therefore
becomes a key step of the modelling procedure. In case the mesh is not constructed
correctly or includes small errors, it can not be resolved by the user during the modelling
nor by analysing the results after the simulation has terminated. The problematic of
constructing the best adapted grid for a wave propagation simulation is discussed further
in the following.

2.7 Average formulations

The third group of possible PDE discretization schemes is denoted by average formu-
lations or more popular finite-volume methods, because they incorporate well-known
developments of both, strong- and weak-formulations of PDEs. In general, the model
domain is sub-divided into finite volumes of sufficiently small size, such that wave-field
and physical model parameter variations stay small in the local volume. Then, wave-field
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solutions may be obtained by expressing volume integrals over sub-domains €2; as surface
integrals, again using Green’s theorem. The accuracy of the chosen average formulation
depends then on the number of sub-domains and the accuracy of the numerical integra-
tion scheme applied. An elastic wave-field propagation simulation using a FV methods
has been shown by Dormy and Tarantola (1995) and more recently using the, so called
grid-method for 2D and 3D media by Jianfeng and Tielin (1999, 2002).

2.8 Time discretization

All of the above mentioned PDE formulations require, in addition to the spatial dis-
cretization step, a discrete time stepping in order to propagate the wave-field solution
with respect to time. The exception are spectral methods where time-dependencies are
eliminated by the transformation in the spectral domain.

Despite of the actual time evolution scheme applied, the time step is uniquely defined
before the modelling starts, such that stable wave propagation is guaranteed. Clearly, a
unique time stepping is the simplest approach. Ideally, we would like discrete time evo-
lution steps to vary with respect to the local complexity in the model and the behaviour
of the wave-field solution. For example, the unique temporal discretization of a TDFD
wave propagation simulation in a model having a high-velocity contrast structure is gov-
erned by the high velocities in order to allow a stable simulation. This creates significant
temporal oversampling in lower-velocity zones, which means CPU-time is wasted.

Following spatial connections of numerical grids, Falk et al. (1998) and later Tessmer
(2000) introduced a FD time adaptive scheme that allows different time steps for different
regions in the model. The change from one time step to another is performed by a passage
through a transition zone that adapts the numerical scheme to the new time stepping. As
for manual spatial grid combinations, the temporal adaption is static in that the user has
to determine the regions of the model where to refine or coarse the time step, before the
modelling starts. Moreover, this kind of time adaptivity can only be applied reasonably
for nicely separated regions in the model, since the passage from one set of spatial and
temporal grid parameters to another is costly and may alter the computed wave-field
solution. Although manually changing the grid stepping is a clear step forward compared
to a unique temporal step, strongly heterogeneous model structures still require more
dynamic time stepping adaption.
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3.1 Résumé

Dans ce chapitre, nous comparons une nouvelle approche de modélisation des ondes dans
le domaine fréquence-espace 2D acoustique utilisant des schémas aux différences finies
en quinconce avec une approche fréquentielle plus communément utilisée fondée sur la
combinaison de schémas discrétisés suivant deux systemes d’axe tournés de 45 degrés
(schémas tournés). La comparaison des deux approches est fondée sur une analyse an-
alytique de dispersion classique et sur des simulations numériques dans des milieux 2D
homogenes et hétérogenes.

Pour des approximations des dérivées spatiales du quatriéme ordre, les schémas en
quinconce contiennent 13 coefficients non nuls. Ces schémas seront dénommés croiz
13-points en raison de leur architecture en forme de croix dans l’espace spatial bi-
dimensionnel. Le schéma obtenu par combinaison de deux systémes d’axe tournés ne
contient que 9 coefficients. Ces schémas sont dénommés étoile 9-points en raison de leur
forme en étoile résultant de la discrétisation suivant un repére tourné de 45 degrés.

Le probléme numérique associé a une modélisation dans le domaine fréquence-espace
est la résolution d’un systeme matriciel de type Ax=Db, ou A est la matrice d’impédance
dont les coefficients dépendent de la fréquence et des paramétres physiques du milieu,
x le champ d’onde pour une fréquence donnée, b et la source externe. La matrice A
a coefficients complexes est bande diagonale avec 2 franges. Le champ d’onde exact
est calculé sur une grille numérique donnée en appliquant une factorisation LU de la
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matrice d’'impédance. On utilise une approche de factorisation basée sur une méthode
multi-frontale optimisée.

En terme de précision numeérique, les deux schémas conduisent & des résultats équiv-
alents. En terme de temps calcul et de stockage mémoire, l'approche sur des grilles en
quinconce se révéle moins performante en raison du nombre plus élevé de coefficients non
nuls dans le schéma et de la répartition moins compacte de ces coefficients dans la matrice
d’impédance (distance entre la bande diagonale et une frange de la matrice).

J’en conclus que la discrétisation suivant des grilles tournées doit étre utilisée pour
des simulations 2D. Par ailleurs, cette analyse suggére que "approche utilisant des grilles
tournées devrait étre explorée pour des modélisations par différences finies dans le do-
maine temps-espace.

Dauns le cas 3D, le schéma tourné conduit a une étoile constituée de 27 coefficients. Par
contre, le schéma utilisant une structure en quinconce contient seulement 19 coefficients.
Néanmoins, la distance entre franges reste supérieure par rapport au cas du repére tourné.
Par conséquence, je suggere que les performances, en termes de précision numérique et de
stockage mémoire, des deux types de discrétisation doivent étre examinées dans le futur.

3.2 Abstract

We compare a new finite-difference scheme for 2D acoustic frequency domain forward
modelling based on a staggered grid geometry with the standard finite-difference fre-
quency domain grid rotation approach. The deduced staggered cross stencil is examined
for both the wavelength content and azimuthal variation. For fourth-order derivative
approximations, the staggered grid geometry leads to a 13-points cross stencil. Compar-
isons to the 9-points star stencil that results from the grid rotation approach are shown
for 2D homogeneous and heterogeneous media. Wave-field solutions are computed using
a direct matrix solver based on an optimized multi-frontal method. Both stencils give
similarly accurate results, though the 13-points stencil is less efficient in terms of memory-
and CPU-time requirements, because of its enlarged spatial size and increased number
of coefficients. Therefore, the grid rotation approach is superior for 2D modelling and its
usage for time domain finite-difference modelling should be investigated. For 3D mod-
elling the staggered grid geometry leads to a 19-points cross stencil while grid rotation
gives a star incorporating 27-points. Therefore, the conclusions for 2D frequency domain
finite-difference modelling might not be valid for 3D modelling.

3.3 Introduction

Modelling seismic wave propagation is essential to understand complex wave phenomena
in realistic heterogeneous medium. Numerical results from finite-difference (FD) mod-
elling are particularly useful since they provide the complete wave-field response.
Frequency domain forward modelling is of special interest for multi-source experiments
because of its computational efficiency (Stekl and Pratt, 1998). Moreover, a realistic rhe-
ology is easily incorporated in the modelling scheme by introducing complex, frequency
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dependent velocities. The key step in frequency domain finite-difference (FDFD) mod-
elling that controls computational efficiency is the numerical inversion of a massive matrix
equation.

In recent years, computational efficiency has been increased by enhancing the numeri-
cal accuracy of the modelling scheme. Pratt and Worthington (1990) applied second-order
spatial derivative approximations in two dimensions using the so called ‘5-points’ stencil.
This scheme required 10 grid points per shortest wavelength in order to perform accurate
FD modelling. Jo et al. (1996) reduced the number of grid points per shortest wavelength
to about 4, by including additional surrounding grid points for the derivative approxima-
tions. They combined the 2"¢-order wave equation discretized on a Cartesian grid and
a 45% degree rotated grid. The two combined grids lead to a computational stencil that
will be called the ‘9-points star stencil’ in the following, because of its star geometry.
The optimal coupling of the two grids is the crucial step in this approach and leads to
significant improvements of matrix inversions and accurate wave-field constructions.

Following time domain finite-difference (TDFD) developments (Madariaga (1976),
Virieux (1984)), we investigate effects of FD staggered grid stencils in the frequency
domain instead of directly constructing star stencils through grid rotations. We con-
sider a frequency-space FD scheme (1%!-order hyperbolic system) where derivatives are
discretized using either second-order or fourth-order spatially staggered difference sten-
cils. As for the grid rotation approach, staggered stencils combine neighboring points
for derivative approximations, though now the combination of surrounding points comes
automatically with the staggered stencil interpolation. No further ad-hoc optimization
procedure is required in order to combine neighboring points in Cartesian and rotated
grids, as is necessary in the star stencil strategy to reduce anisotropy of the numerical
dispersion. Still, one may perform a differential operator optimization as suggested by
Holberg (1987). The staggered stencil construction is the first point we want to analyze
in this paper.

The complex matrix that appears in two-dimensional frequency domain modelling
using the staggered stencil approach with PML absorbing boundary conditions (Perfectly
Matched Layer (see Berenger, 1994)) contains (nx - nz)? elements of which 13 - nz -
nz are non zero in the case of fourth-order derivative approximations. We denote the
model dimensions in number of grid points for a 2D medium by nz and nz. For second-
order derivative approximations, the grid rotation strategy and the staggered stencil
strategy, named cross stencil because of its shape, give equivalent results. That is, both
discretization scheme result in the same 5-points stencil. Note, only for the staggered cross
stencil approach, PML conditions can be implemented correctly. Wave-field solutions at
each source position for each frequency component are computed by a direct multi-frontal
solver technique developed by Davis and Duff (1997).

In this paper, we show the equivalence between the second-order FD staggered cross
stencil and the standard 5-points star stencil. Further we formulate the FD staggered
cross stencil strategy for fourth-order derivative approximations. We shall compare the
deduced fourth-order staggered cross stencil with the usual 9-points star stencil. Numer-
ical dispersion is investigated for both the wavelength content and azimuthal variation.
We illustrate results on an example of frequency domain seismic wave propagation in
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2D homogeneous and heterogeneous media. Finally, we briefly discuss implications of
the staggered- and rotated-grid formulations for FDFD modelling in 3D heterogeneous
media.

3.4 9-points star strategy

We give a brief summary of the 9-points star strategy for the two-dimensional, 2"-order
acoustic wave equation (Equation (3.1)). Details can be found in Jo et al. (1996). We
write the 2"?-order acoustic wave equation as

0 1 0 0 1 0
w2
AT P(z,z,w) = S(z,z,w) (3.1)

where p is the density, K the Bulk modulus, w the angular frequency, P the pressure
wave-field, and S the external source.

Partial derivatives are discretized using the 5-points stencil strategy. That is, conven-
tional second-order, centered, finite-differences are used throughout (Kelly et al., 1976).
Numerical dispersion, quite important along bissectrices, is further suppressed by adding
four additional points to the 5-points stencil (see Figure 3.1). The combination of deriva-
tive approximations on the 5-points stencil (Cartesian grid) and the four additional corner
points (45° degree rotated grid) leads to the 9-points star stencil. Averaging coefficients
(a, b, ¢, and d) account for the coupling between the Cartesian (black dots) and the four
additional points on the rotated grid (white dots). Moreover, the mass acceleration term
w?/K (x,z) is approximated using a weighted average over the 9-points star stencil sim-
ilar to the lumped mass approach in finite-element modelling (Zienkiewicz and Morgan,
1982). Numerical accurate results up to 4 points per shortest wavelength are guaranteed
by an optimization technique that determines the averaging coefficients such that the
velocity dispersion is minimized, as has also been done for the TDFD approach (Holberg,
1987). The Cartesian and rotated equations are numerically combined to

a-A+ (1—-a)-B+C=S8 (3.2)

where A represents the derivative approximations on the 5-points stencil, B equivalent of
A but on the rotated grid, C' the mass acceleration term that depends on the averaging
coefficients b, ¢, and d, and S the external source.

We discretize the 9-points star on the Cartesian and the rotated grid including artifical
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Figure 3.1: The 9-points star stencil consists of the standard FD 5-points stencil (black
dots) and four corner points (grey dots on rotated grid). Derivatives are discretized on
both the 5-points stencil and the additional points using second-order centered differences
throughout. Optimal combination of the 5-points stencil and the additional surrounding
points together with the a lumped mass procedure leads to the 9-points-star-stencil that
assures nuinerical accuracy up to a minimum of 4 points per shortest wavelength.

Figure 3.2: The 5-points cross stencil that results from second-order staggered differences
discretization of the wave equation written as first-order hyperbolic system of equations.

PML absorbing boundary conditions in the medium.
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where § = 1+ 4y;/w and & = 1 + ivj/w denote the PML contributions that depend
on one spatial dimension only. PML functions at intermediate grid node positions are
computed by averaging over the neighboring points vz, ,,, =1 /2 (Va; + Vaipr ). Within
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the PML layers only the 5-points stencil is used (see Figure 3.2):
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1 1 . 1
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Az fj §j+1/2 " Pij41/2
1 1 1
D= - _
Az & &i1/2 - Piv1)2,
1 1 1

A12E & 12 pii1y2
(3.4)

Equation (3.2) is recast into a matrix-type equation of the form M - P = S, where M is
the so called Impedance Matrix, P the pressure wave-field (desired solution), and S the
source. The matrix M is complex valued and depends on the physical model parameters:
the density p, the bulk modulus K, and the angular frequency w. The full matrix contains
(nz -nz)? elements of which 9-nx -nz are different from zero. The non-zero elements are
distributed on the diagonal and two adjacent bands. The bandwidth (which is more or
less full of zeros) is approximately 2 - nz + 1.

In standard FDFD modelling, the optimization coefficients a, b, ¢, and d are de-
termined through fitting dispersion curves for a homogenous model before the forward
modelling is started. Then the complex matrix can be constructed and is factorized into
its LU-factors. Pressure wave-field solution for each source position and frequency com-
ponent are computed separately. Clearly, the LU decomposition needs to be computed
only once for each frequency component, making this approach very appealing especially
for multi-source experiments (Pratt and Worthington, 1990). For example, the com-
plex impedance matrix construction and subsequent LU-factorization for one frequency
component f; requires 98% CPU-time (10% matrix construction + 88% matrix factor-
ization) while the solve phase ((LUy,) - zy, = bjfj) for one source position b’ only needs
2% CPU-time.

3.5 Staggered stencil strategy

3.5.1 Staggered versus star stencils

The grid rotation approach (we also call it the star-stencil-strategy) is the state-of-the-
art tool applied in FDFD modelling to numerically represent derivative approximations
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(Stekl and Pratt, 1998). In contrast to this approach, we investigate a staggered-cross-
stencil strategy which has been developed up to the present mainly in the time domain.
The leap-frog structure of the grid maintains accurate derivative estimations and good
performance for numerical dispersion. The staggered grid formulation leads to simple FD
discretizations of 1%¢-order hyperbolic systems of equations. Moreover, this formulation
provides guidelines for constructing FD discretizations of 2"?-order hyperbolic systems
when one requires high computer memory performance (Luo and Schuster, 1990).

We assume that first derivatives are discretized using conventional second-order, cen-
tered first difference stencils (—0.5,0,0.5) on a non-staggered grid. Then, impulsive point
source excitation automatically leads to two un-coupled staggered grids. One grid is as-
sociated with the source node point, while the other one is left unexcited by the stencil
(see Figure 3.3a). This intrinsic feature of centered, second-order derivative approxima-
tions was the reason to cancel out the unexcited grid, which has led to the staggered grid
geometry formulation in seismology (Madariaga (1976), Virieux (1984)).

In Figure 3.3b and 3.3¢ we show two frequency maps (f = 10Hz) computed in a
homogeneous two-dimensional media with PML absorbing boundary conditions on all
edges of the model. Figure 3.3b approximates spatial derivatives using the stencil rep-
resented in Figure 3.3a on a non-staggered grid. Clearly visible are the grey spaces
that correspond to the non-excited second grid. Figure 3.3c is the same wave propa-
gation example but now using the staggered derivative operator. The unexcited grid
is cancelled out. When considering fourth-order derivative approximations, the cen-
tered FD-stencil (1/12,-2/3,0,2/3,—1/12) on a non-staggered grid does not automat-
ically lead to un-coupled staggered grids (see Figure 3.3d). The extension from second-
order to fourth-order approximations, namely the additional coefficient £1/12 in the
stencil, weakly couples the two existing grids and creates expected numerical disper-
sion. This weak coupling is cancelled out when considering the star stencil approach.
One may counsider only centered stencils, such as the fourth-order staggered grid stencil
(1/24,0,-9/8,0,9/8,0,—1/24). If this stencil is applied to a full non-staggered grid, only
the ad-hoc staggered grid is correctly excited (see Figure 3.3e). The second sub-grid is
left untouched, giving the desired staggered grid feature in this FD approximation. The
complete staggered stencil in two dimensions for the velocity-stress FD scheme is shown
in Figure 3.3f.

Again, let us mention that the full grid formulation of the fourth-order system requires
the star stencil geometry for both time and frequency approaches, although the star stencil
has been developed for the frequency domain formulation and the staggered stencil for
the time domain formulation.

3.5.2 Second-order staggered cross stencil construction

We develop the staggered cross stencil for second-order derivative approximations. We
formulate the wave equation as a 1°*-order hyperbolic system of equations. This system
is discretized using strict centering of FD derivatives throughout.

We write the 1%¢-order hyperbolic system of equations with PML absorbing boundary
conditions as:
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Figure 3.3: (a) Second-order centered difference stencil (-0.5,0,0.5) on a non staggered
grid. Impulsive punctual source excitation automatically leads to two un-coupled stag-
gered grids. One grid is associated with the source node point (dashed line), while the
other grid is left unexcited by the stencil (continuous line). (b) We show a frequency
map (f=10Hz) computed in a homogeneous two-dimensional media with PML absorbing
boundary conditions on all edges of the model where spatial derivatives are approximated
using the stencil represented in Figure 3.3a on a non-staggered grid. Clearly visible are
the grey spaces that correspond to the non-excited grid. (c) is the same wave propagation
example as (b) but now using the corresponding staggered derivative operator. (d) Stan-
dard fourth-order centered difference stencil (1/12,-2/3,0,2/3,-1/12). The stencil weakly
couples the two existing grids and therefore creates spurious noise. (e) Fourth-order stag-
gered difference stencil (1/24,0,-9/8,0,9/8,0,-1/24) which correctly excites one grid only
while leaving the second grid untouched. (f) Fourth-order staggered difference stencil for
the first-order hyperbolic acoustic wave equation.
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where we introduced two wave-fields P, and P, to account for the PML absorbing bound-
ary conditions (see Operto et al., 2002). The damping functions are denoted by 7, and
v.. We note that the new wave-fields can be combined into the physical P wave-field
through simple addition P(z, z,t) = Py(x, z,t) + P,(z, z,t). We transform the system of
equations in the Fourier domain and introduce the new variables &, (z) = 1 + iy,(z)/w
and &,(z) = 1+ 47, (2)/w.

it (2) _ 9B@zw)
mPZ(:B, Z,w) = T 0s

1 OP(z,z,w)
§al@)p(a,2) Oz

1 OP(z,z,w)
§(2)p(x,2) Oz

—in(x,z,w) =

—iwR(z,z,w) =

(3.6)

We discretize the system of equations using a second-order, spatially staggered stencil (see
Virieux, 1984) and introduce effective medium parameters for the density and the Bulk
modulus (see Graves, 1996). This and the following algebraic computations are shown in
Appendix A. After discretizing the system of equations (see Equations (A. 2) and (A. 3)),
parsimonious elimination of equations depending on ) and R (Luo and Schuster, 1990)
leads to two equations that depend on P, and P, only (see Equation (A. 4)). We then
re-combine P, and P, and get the staggered grid finite difference equation with PML

absorbing boundary conditions for the pressure field P (see Equation (3.7) and Equation
(A. 5)).
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(3.7)

We compare our new 5-points staggered cross stencil with the standard 5-points stencil
used by Pratt and Worthington (1990, pp. 306). They discretized the 2"%-order hyper-
bolic wave equation using standard centered differences given by Kelly et al. (1976). The
5-points stencil and the new 5-points staggered cross stencil give similar density weight-
ings for the points used in the stencil. Therefore, both 5-points stencils are equivalent,
though the staggered one was obtained through strict centered differencing throughout.
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3.5.3 Fourth-order staggered cross stencil construction

Exactly in the same way as we constructed the 5-points staggered cross stencil for second-
order derivative approximations, we introduce the 13-points staggered cross stencil that
propagates wave-field solutions with fourth-order accuracy (details are given in Appendix
B).

We apply the same procedure as before and obtain for the P-wave-field:
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We find that the staggered fourth-order derivative approximation requires 13 points
in the FD stencil (see Figure 3.4). The system of equations (3.6) is still the 1%¢-order
hyperbolic staggered system, while the equation (3.7) is the corresponding 2"?-order
staggered equation that can be compared to the 2"%-order star equation (see Equation
(3.3)) as noted by Luo and Schuster (1990).

3.6 Solutions for the matrix equation

We compute wave-field solutions for each source position and each frequency compo-
nent by solving the corresponding matrix equation through an optimized minimum order
scheme developed by Davis and Duff (1997). In case of fourth-order derivative approxi-
mations, the 13-points staggered cross stencil gives a matrix M that contains (nz - nz)?
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E3

Figure 3.4: The 13-points cross stencil that results from fourth-order staggered differences
discretization of the wave equation written as first-order hyperbolic system of equations.

Figure 3.5: Structure of the complex impedance matrix that results from fourth-order
staggered cross stencil discretization of the parsimonious second-order hyperbolic acoustic
wave equation. The matrix contains (nz x nz)? elements from which 13 x nz x nz are
non-zero. The elements are distributed along the diagonal, 6 bands close to the main
diagonal (z-derivatives), and 6 parallel adjacent bands further away from the diagonal
(x-derivatives). The overall bandwidth of the matrix is approximately 6 x nz.

elements from which 13 - na - nz are non-zero. The elements are distributed along the
main diagonal (7 coefficients) and 6 adjacent parallel bands. The structure of the matrix
is shown in Figure 3.5. The bandwidth of the matrix is 6 - nz, which is approximately 3
times larger than the matrix-bandwidth resulting from the grid rotation approach. The
matrix appearing in the 1*!-order PML formulation increases the number of non-zero co-
efficients for the same model configuration, since 13 points instead of 9 points are used for
derivative approximations. Therefore, increasing the matrix bandwidth and number of
noun-zero coefficients results in higher memory demands for the matrix ordering scheme.

For 3D modelling the situation is a different one. The corresponding computational
star that results from grid rotation in 3D medium incorporates 27 points (see Janod,
1999), while the staggered cross stencil is constructed using 19 points only. Neverthe-



38 Frequency Domain Modelling through a Staggered Finite Difference Analysis

less, the matrix bandwidth resulting from cross stencil discretizations exceeds the matrix
bandwidth of the star stencil formulation. Despite of 2D or 3D media, this is always
true since the staggered cross stencil is less compact than the star stencil. As was noted
before, the main features controlling the performance of a matrix factorization are the
number of non-zero coefficients and their spatial distribution in the matrix. Therefore,
we might expect different memory and computational CPU time requirements for the
matrix factorization for 3D FDFD modelling. Note, there exists a model size from which
on the star stencil formulation does not allow the construction of the impedance matrix
anymore because of limited memory resources available. In this case, the staggered cross
stencil might still be able to handle the problem since significantly less coefficients have
to be stored. This is subject to future investigations.

3.7 Grid dispersion analysis

The numerical precision of the fourth-order 13-points cross stencil was investigated for
both the wavelength content and azimuthal variation. In Figures 3.6 and 3.7, we show
dispersion curves for relative phase and group velocity for both the 9-points star strategy
and the 13-points cross strategy for plane wave propagation angles ranging from 0° to 90°
degrees. We used non-optimized fourth-order staggered grid derivative approximations
for the cross stencil (Levander, 1988). From Figures 3.6 and 3.7 we find that the 9-points
star stencil permits less dispersive wave propagation modelling for the same number of
grid nodes per shortest wavelength compared to the 13-points cross stencil. This is true
for phase and group velocity dispersion curves. In Appendix C we demonstrate that
the staggered cross stencil strategy exactly determines relative phase velocity v,y /v and
group velocity equal to 1 (vp,/v = vgr/v = 1) for an infinitely fine medium discretization
(1/G = 0). The grid rotation approach obtains similar results for numerical phase and
group velocity, though only approximately. Combining the rotated grids and subsequently
optimizing numerical dispersion shifts the dispersion curves. Indeed, dispersion curves
are better aligned to the ideal relative medium velocity for higher 1/G -ratios (coarser
discretization) while at the same time the accuracy for lower 1/G-ratios is altered. This
is observed from relative velocity values at 1/G — 0 for the standard staggered and
optimized operators (see Figure 3.7).

A partly similar optimization strategy, first introduced for TDFD modelling by Hol-
berg (1987) can be applied for the staggered cross stencil approach (Arntsen et al.,
1998). In their approach, coefficients describing classic staggered derivative operator
coefficients are replaced by optimized operator coefficients that are obtained through a
dispersion relation minimization technique. An example of the staggered cross dispersion
curve optimization is shown in Figure 3.8. As for the grid rotation approach, disper-
sion curves are shifted to better fit the desired numerical medium velocity at coarse
grid discretizations while decreasing accuracy at fine discretizations. In this example the
fourth-order staggered grid operator coefficients (a; = 9/8 and ag = 1/24) were replaced
by a; = 1.13824281853071et%0 and ay = 4.64142728435701e~? which incorporates a
final error of 2.53067¢ 6. While wave propagation accuracy of both numerical phase
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Dispersion Curves for the 9-points Star Stencil
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Figure 3.6: Relative phase vy, and group v, velocity curves for the 9-points star stencil
formulation. We used the following optimization coefficients a = 0.5461, ¢ = 0.6248,
d=0.9381e ! and e = 0.25 * (1 — 4 x d — ¢). Propagation angles from the vertical are
denoted by different types of dashed lines.

and group velocity is increased for coarse grid discretizations, compared to the 9-points
star stencil no significant improvements are observed. Note, that any dispersion curve
optimization to enhance the numerical accuracy of the modelling scheme is completely
optional for the staggered cross stencil approach. In contrast, the grid rotation approach
does always require grid coupling, i.e. some kind of optimization strategy in order to
provide superior results (Jo et al., 1996).

Altogether, we observe increased numerical distortion due to discretizations for the 13-
points cross stencil compared to the 9-points star stencil. This is understandable, since
the star stencil not only optimizes the grid coupling but also distributes the algebraic
term over the neighboring grid points. As was shown by Jo et al. (1996) the star stencil
optimization only results in enhanced dispersion curves when the grid rotation strategy
is combined with the lumped mass strategy. Only one of the two procedures decreases
numerical accuracy. This star stencil feature, which is the first step to finite-elements,
suppresses additional numerical noise and no analogous was developed for the staggered
cross stencil approach. Remarkable is the fact that the 9-points star stencil preserves the
very compact star geometry while including the maximum amount of existing information
in the surroundings of the center point - a clear advantage for numerical FD modelling.
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Dispersion Curves for the 13-points Cross Stencil
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Figure 3.7: Relative phase vy, and group vy, velocity curves for the 13-points cross
stencil formulation using standard fourth-order staggered stencils (o) = % and ap = i)
Propagation angles from the vertical are denoted by different types of dashed lines.

3.8 Comparison of the 9-points star stencil and the 13-points
cross stencil

3.8.1 The homogeneous half-space model

We first compare the 9-points star stencil with the 13-points staggered cross stencil
for a two-dimensional homogeneous media. The velocity is 4000m/sec and the den-
sity 2500kg/m3. The dimension of the model is 4000m x 4000m. The spatial sam-
pling was 40m, which corresponds to 10 points per shortest wavelength. The source
is a smoothed point source located at (5007m,1000m). We used a Gaussian derivative
S(t) = —2a(t — to)e (1) with o = 200, to = 0.31sec and a maximum frequency of
10H z.

We computed frequency domain solutions for 52 frequency components spanning a
range from OHz - 10H z. For both the 9-points star stencil and the 13-points cross stencil,
PML absorbing boundary conditions were set on all edges of the model using the same
damping conditions throughout. In Figure 3.9(a) we show seismograms for the 9-points
star stencil (continuous line) and the 13-points cross stencil (dashed line). The overall
agreement is excellent. In Figure 3.9(b),(c),(d) and (e) we extracted two traces (5 and 40)
from the seismogram shown in (a) and compared them to the analytic solution computed
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Optimized Dispersion Curves (Holberg, 1987) for the 13-points Cross Stencil
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Figure 3.8: Relative phase vy, and group vy, velocity curves for the optimized 13-
points cross stencil. The operator coefficients used for numerical differentiation are
ap = 1.13824281853071e*% and ay = 4.64142728435701e~%? which gives a final error
of 2.53067e~"0. Propagation angles from the vertical are denoted by different types of
dashed lines.

for the same model parameters. Figure 3.9(b) and (c) show the comparison for trace
number 5 for the 9-points star and the 13-points cross respectively. Figure 3.9(d) and (e)
show the results for trace number 40.

To our knowledge the star-stencil strategy does not allow a combination of the PML
conditions together with the grid rotation approach for partial derivative approximation.
The PML absorbing boundary condition requires that the partial derivatives are com-
puted with respect to the Cartesian spatial coordinate system that is parallel to the edges
of the model. Therefore the star strategy implies a reduction to second-order accuracy
inside the absorbing PML layer and we treat waves inside the PML medium with the
5-points stencil only.

3.8.2 The corner edge model

The corner edge model combines two homogeneous media separated by a horizontal and
a vertical interface making a corner (see Figure 3.10). The velocity and density in the
two spaces are 2000m/sec, 8000m/sec and 2000kg/m3, 2500kg/m3 respectively. The
dimension of the model is 6400m x 6400m and was discretized with a mesh spacing of



42

Frequency Domain Modelling through a Staggered Finite Difference Analysis

a) Trace Number b) ) d) e)
0 10 20 30 40

Time [Sec]

4 T
0 1.0 2.0 3.0 4.0
Offset [Km]

9-Star  13-Cross 9-Star  13-Cross
Trace 5 Trace 40

Figure 3.9: Comparison of the 9-points star stencil (continuous line) and 13-points cross
stencil (dashed line) for a two-dimensional homogeneous model surrounded by PML ab-
sorbing boundary conditions. The medium velocity is 4000m /sec, the density 2500kg/m?,
and the source a derivative of a Gaussian. Frequency domain solutions were computed
for 52 frequency components from 0Hz to 10Hz. (a) shows the time seismogram recorded
at 40 receivers at 200m depth. The source was localized at (500m,1000m). In (b), (c),
(d) and (e) we extracted two traces (5 and 40) from the seismogram shown in (a) and
compared them to the corresponding analytic solution. (b) and (¢) show the comparison
for trace number 5 for the 9-points star and the 13-points cross respectively while (d) and
(e) give the results for trace number 40. The analytic solution is plotted as continuous
line and the 9-points star and 13-points cross solutions as dashed lines. The dotted line
is the residual.

40m (equal to b points per shortest wavelength). All four edges of the model are treated
with PML absorbing boundary conditions where the layer size was set to 20 grid points.
The overall grid therefore has 200x200 grid points.

In Figures 3.11 and 3.12 we show time seismograms recorded at 80 receiver positions
horizontally lined up over the whole model at a depth of 150m for the 9-points star and
the 13-points cross stencil respectively. The receiver spacing was approximately 80m.
The source position is at (250m,4000m). Note, we used the same source as for the homo-
geneous model comparison. Both solutions are compared to a TDFD solution (continuous
line). The overall agreement of the three solutions is good. In Figure 3.11(b),(c),(d) we
show three traces (10,50,75) extracted from the seismogram in Figure 3.11(a), though
now we replaced the TDFD solution by an analytic solution computed for an homoge-
neous media having the physical properties of the upper medium of the Corner Edge
model (v = 2000m/sec, p = 2000kg/m?). Figure 3.12(a),(b),(c) and (d) give results ob-
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Figure 3.10: The two-dimensional corner edge model that consists of two homogeneous
media separated by a horizontal and a vertical line building a corner edge. The model
grid size is 200 x 200 grid points of which 20 grid points on each edge of the model
correspond to the PML damping layer. The medium velocity and density are 2000m/sec,
2000kg/m? in the upper and 8000m /sec, 2500kg/m? in the lower half space respectively.

tained for the 13-points cross stencil. The velocity and density distribution generates a
sharp reflection (second event) and a diffracted wave with strongly reduced amplitude
(third event), at the interface of the two media. We note excellent agreement for the
direct wave for both 9-points star and 13-points cross stencil. At the far offset trace 5
we recognize a small amount of wave dispersion that behaves slightly differently for the
two computational stencils. The reflection from the corner edge shows a small phase shift
between the 9-points star and 13-points cross stencil (see difference of second pulse in
Figures 3.11 and 3.12(b),(c),(d)). From Figure 3.11(a) we note that it is the 9-points star
solution that is shifted from the 13-points FDFD and TDFD solutions. In Figure 3.13
we extracted a time-trace window (Time window: ¢, = 2.5sec — to = 4.5sec, Traces:
40 — 80) from Figures 3.11(a) and 3.12(a) in order to evaluate the performance of the
PML absorbing boundary conditions in strongly contrasted medium. Figures 3.13(a) and
3.13(b) show the solution for the 9-points star and the 13-points cross respectively. Both
seismograms where amplified by a factor several times larger than the maximum ampli-
tude in Figures 3.11 and 3.12 in order to recognize any spurious noise. While the PML
condition for the 13-points cross (b) perfectly absorbs the incoming waves, the reduction
to second-order accuracy (5-points stencil) for the 9-points star creates very weak but
noticeable spurious reflections.
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Figure 3.11: Comparison of a TDFD solution (continuous line) and the 9-points star sten-
cil (dashed line) for the two-dimensional corner edge. The medium velocity is 2000m/sec
in the upper and 8000m/sec in the lower half space respectively. We set the density
to 2000kg/m? and 2500kg/m3. We used a spatial sampling in x- and z-direction of
Az = Az = 40m. The model is surrounded by PML absorbing boundary conditions (20
grid points). The source is similar to the one used for the homogeneous model. Frequency
domain solutions were computed for 103 frequency components from 0Hz to 10Hz. In (a)
we show a time seismogram for a source at (250m,4000m) and 80 receiver positions at
a depth of 100m. The receiver spacing is 80 m. In (b), (¢), and (d) we show extracted
traces from the time seismogram for receiver positions 5, 51, and 75 respectively. Instead
of the TDFD solution we plotted an analytic solution (continuous line) for a homogeneous
half space where the physical medium pr perties have been set equal to the upper part
of the Corner Edge model (p = 2000kg/m? and v=2000m/sec). Note, wave propagation
dispersion becomes visible on the far offset trace in (b) for the direct wave.

3.9 Perspectives and conclusion

We have presented a staggered cross stencil strategy for FDFD acoustic wave propaga-
tion modelling in 2D media. The staggered grid approach discretizes the wave equation
written as a 1¥%-order hyperbolic system of equations including PML absorbing boundary
conditions. Parsimonious elimination followed by re-injection leads to a 2™?-order hyper-
bolic equation which defines the cross stencil geometry.

We have shown that the staggered cross stencil for second-order derivative approximations
is exactly similar to the 5-points stencil strategy. Fourth-order staggered derivative ap-
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Figure 3.12: Comparison of a TDFD solution (continuous line) and the 13-points cross
stencil (dotted line) for the two-dimensional corner edge. All model and acquisition
parameters are similar to the ones described in the legend of Figure 3.11. In (b), (c), and
(d) we show extracted traces from the time seismogram for receiver positions 5, 51, and
75 respectively. Instead of the TDFD solution we plotted an analytic solution (continuous
line) for a homogeneous half space where the physical medium properties have been set
equal to the upper part of the Corner Edge model (p = 2000kg/m? and v=2000m //sec).

proximations result in the 13-points cross stencil. We have compared the 13-points stencil
with the 9-points star stencil that is obtained by grid rotation and subsequent optimized
grid combination. Since the cross stencil for fourth-order approximations incorporates
12 surrounding points instead of 8 for the 9-points star stencil, memory requirements
and CPU-floating point operations for matrix factorizations are increased. This is true
in the two-dimensional case. In case of 3D media this result might not hold since the
staggered grid strategy leads to a 19-points cross stencil while the grid rotation approach
gives a 27-points star stencil. Further investigations concerning the 3D problematic are
still under development.

Numerical dispersion was investigated for both the 9-points star and the 13-points cross.
Compared to the 13-points cross both phase and group velocity for the 9-points star show
less numerical dispersion. Since the combination of the rotated grids for the star stencil
approach requires some dispersion relation optimization technique, we applied analogous
dispersion curve optimizations to the 13-points cross stencil. Though numerical disper-
sion was decreased, compared to the standard fourth-order staggered grid approximation,
it still was not found to be competitive to the star geometry. The better performance
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Figure 3.13: Plot showing the performance of the PML absorbing boundary conditions
in a contrasted medium for the 9-points star and the 13-points cross. (a) Rectangle
extracted from Figure 3.11(a) showing the traces 40 up to 80 for the times ¢; = 2.5sec
to ty = 4.5sec for the 9-points star solution. (b) The same rectangular is extracted from
the 13-points cross solution (see Figure 3.12(a)). Both (a) and (b) show the end of the
reflection event on the top of the extracted time window. The event crossing from top left
to bottom right is the diffraction from the corner edge. In (a) we see noise generated by
the absorbing PML layers, while in (b) the PML perfectly absorbs any spurious reflection.
Note, the noise in (a) only becomes visible for strongly heterogeneous models (such as
the Corner Edge) and is recognized when the amplitude is increased by several tens of
the maximum amplitude (see amplitude of reflection event in (a) and (b) compared to
e.g. Figure 3.11(a)) We explain the spurious noise in (a) by the fact that the 9-point star
only allows the usage of the second-order approximations in the PML layers (5-points
stencil), compared to the fourth-order stencil used throughout in (b).

of the 9-points star in terms of numerical dispersion can be explained by the additional
optimization through lumped mass distribution applied to the algebraic term. The CPU-
efficiency of the two approaches is controlled by the matrix factorization scheme and
therefore by the compactness of the star geometry. Fewer surrounding points involved in
the stencil construction are therefore favorable.

Altogether, the grid rotation strategy shows clearly superior results in terms of memory
requirements and CPU efficiency for 2D FDFD modelling. In view of the performance
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of the grid rotation approach the question arises why in TDFD modelling the staggered
grid approach predominates, while in FDFD modelling the star geometry is preferred?
In TDFD modelling the compactness of the star plays a less important role since no
matrix factorization has to be computed. Nevertheless, the numerical dispersion analysis
indicates clearly superior performance of the star geometry over the staggered geometry.
The combination of grid rotation and staggered grids was already addressed by Saenger
et al. (2000), though in their approach only derivative approximations were described
on rotated axis while the wave equation was left untouched. They obtained superior
results for a crack propagation problem, but did not address a more general grid rotation
scheme in order to enhance the numerical performance of their TDFD scheme. There-
fore, we propose that the compact and optimized star geometry should be investigated
for TDFD modelling for 2D and 3D heterogeneous media.

Also, the cross stencil geometry will be extended to 3D media and then compared to the
grid rotation approach in a more formal investigation. This work is under way.
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3.11 Appendix A - Second-order discretization of the wave
equation

We show the discretization scheme of the 1°¢ order hyperbolic system of equations using
a second-order, spatially staggered stencil. The 5-points staggered cross stencil is exactly
similar to the 5-points stencil that was used by Pratt and Worthington (1990).

The 1%¢ order hyperbolic system of equations for FDFD scheme is

—iwe(2) _ OR@20)
mPZ(:B, Z,w) = T 0s
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We discretize equation (A. 1) using second-order staggered stencils (Virieux, 1984)
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were used by Graves (1996) for fourth-order staggered grid TDFD simulations in 3D
media.

We eliminate the additional equations depending on ) and R by re-injecting them into
the first two equations that depend on P, and P, only and obtain

)t ! and the PML function £ip1/2- These averaging coefﬁments
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We add the two wave-fields P, and P, and get the 2"%-order staggered cross FD equation
with PML absorbing boundary conditions for the P wave-field
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From equation (A. 5) we extract the coefficients that correspond to the 5-points cross
stencil (see Figure 3.2)
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3.12 Appendix B - Fourth-order discretization of the wave
equation

We show the discretization procedure of the 1% order hyperbolic system of equation using
the fourth-order, spatially staggered stencil. The procedure is in complete analogy to the
developments carried out for the 5-points cross stencil, which then leads to the 13-points
cross stencil that propagates pressure wave-field solutions with fourth-order accuracy.

We discretize equation (3.6) using fourth-order staggered stencils (see Equation (B. 1))
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developed by Levander (1988):
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where we used effective medium parameters and PML boundary conditions as before. We
combine the equations and obtain for the P-wave-field:
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Finally, we write grid point contributions of the new staggered cross stencil for fourth-
order derivative approximations that are valid for the whole media including PML absorb-
ing boundary conditions. We note that the staggered grid approach results in a stencil
that incorporates 12 grid nodes surrounding the center point (see Figure 3.4). Therefore
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we denote the new stencil as the 13-points staggered cross stencil.
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3.13 Appendix C - Dispersion analysis

We substitute a plane wave solution of the form P = Py - e ka2 + k= A2) intg equation

(3.8) for the fourth-order staggered cross stencil. We further assume Az = Az = A
to be the uniform grid spacing in z- and z-direction. The propagation angle from the
z-axis is denoted by 6, the spatial wave-number by k, and the operator coefficients for
the staggered derivative approximation by «; and «y. The dispersion equation may then
be formulated as
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(C. 1)

We define the numerical phase and group velocities as vy, = ¢ and vy = g—‘;;. From
equation C. 1 we get the relative numerical phase and group velocities
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where B is
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In order to illustrate the determination of accurate wave velocities by the staggered cross
stencil approach we assume sinf ~ 0 for small angles 6 and simplify the phase velocity
dispersion relations to (C. 1 and C. 3)

— = a1 — 3wy

v

Ygr = \/alal—ﬁ-alag—l-g'agag (C 5)
v

Using fourth-order staggered operator coefficients a; = § and ay = 57 (Levander (1988))
we deduce for both phase and group velocity exactly 1. Therefore, in the ideal case (no
dispersion) the numerical velocity does not diverge from the true medium velocity.



Chapter 4

Mesh Generation by a wavelet
formulation

4.1 Résumé

Dans le chapitre précédent, j’ai présenté une méthode de modélisation des ondes par dif-
férences finies dans le domaine fréquence-espace (FDFD). Indépendamment de ’approche
choisie pour discrétiser le systéme d’équation (étoile 9-points ou croix 13-points), la per-
formance de l’algorithme est limitée par l'utilisation exclusive d’une méthode directe.
Par conséquent, les modélisations par FDFD ne sont appliquées qu’a des problemes 2D
et d’autres approches doivent étre envisagées pour rendre accessibles des simulations 3D
a grande échelle.

Dans ce chapitre, je présente tout d’abord différentes techniques de discrétisation
spatiale optimisée d’une PDE qui ont pour dénominateur commun l'idée d’adapter dy-
namiquement la grille numérique a la complexité du milieu et les caractéristiques des
ondes au cours de leur propagation dans le milieu.

Les approches de discrétisation d’équation d’onde par des formulations faibles et
moyennes utilisent par définition des méthodes de raffinement automatique ("MRM: Mesh
Refinement Method"). Fondées sur une telle discrétisation par MRM, les approches par
éléments finis (FE) ou éléments spectraux (SE) fournissent des algorithmes précis et, a
ma connaissance, les plus performants actuellement. L’inconvénient principal de ces ap-
proches est l'incertitude introduite par la création de la grille par MRM dont la précision
est difficile & évaluer.

Les performances des méthodes fondées sur une discrétisation par formulation forte
(méthodes par différences finies) peuvent étre optimisées en combinant les calculs sur
plusieurs grilles de résolution différente. Les approches dans le domaine espace-fréquence,
fondées sur une approche multigrille compléte " Full Multi-Grid methods" (FMG), utilisent
des méthodes itératives qui sont appliquées sur différentes grilles d’approximation suivant
un parcours entre grilles formant des cyclesen Vet W (" V- and W-cycles"). Ces transferts
de grille sont utilisés dans le but d’accélérer la convergence des méthodes itératives, le
chemin de parcours entre grilles étant défini de maniére plus ou moins empirique.
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Une alternative pour décomposer les calculs sur un ensemble des grilles numériques
est d’utiliser 'analyse multirésolution fournie par la transformée en ondelettes (WT).
Les propriétés importantes de la WT dans le contexte d’un probléme de modélisation
numérique de la propagation d’onde sont présentées en détail.

Suite a l’introduction sur la construction d’une grille adaptative, je présente une
nouvelle approche mixte multi-échelles combinant une méthode directe et itérative de
résolution du systéme matriciel associé a 'approche FDFD de modélisation de la prop-
agation d’onde. Cette nouvelle approche, qui est considérée comme une extension des
approches classiques de modélisations par FDFD (voir Chapitre 3), permet d’effectuer
des modélisations des ondes acoustiques dans des milieux 3D complexes et et de rhéologie
hétérogene.

Dans un premier temps, le champ d’onde exact est calculé par une factorisation LU
de la matrice d’impédance sur une grille de résolution grossiére, dont le pas de grille
est déterminé par la capacité maximale de mémoire disponible pour traiter le prob-
leme. Deuxiémement, ce champ d’onde exact est prolongé sur une grille numérique
de résolution fine pour fournir un estimé initial a ’algorithme de résolution itérative.
J’ai développé deux approches différentes qui sont fondées respectivement sur une pro-
longation du champ d’onde grossier sur la grille fine par une interpolation spatiale bil-
inéaire, appelée méthode " Direct-Iterative-Space Solver" (DISS), et sur une décomposi-
tion multi-échelles obtenue par projection sur une base d’ondelettes, appelée méthode
" Direct-Iterative- Wavelet Solver" (DIWS). Les performances respectives, en terme de
temps-CPU et de stockage mémoire, de ces deux méthodes de modélisation des ondes dans
des milieux 2D complexes et hétérogeénes sont comparées. L’algorithme de la méthode
DISS, qui ressemble & une approche FMG en raison de la méthode d’interpolation util-
isée, permet la construction rapide du systéme matriciel. La performance de I’algorithme
itératif dépend fortement de sa capacité a éliminer des artefacts numériques associés a
des phénomeénes de déphasage. L’importance de ces artefacts dépend de la précision de
la solution initiale et de la discrétisation numérique du champ modélisé dans ’algorithme
itératif. Un nombre important d’itérations ou l'utilisation des cycles en V et W sont
nécessaires pour supprimer ces phénomenes de déphasage. Dans la méthode DIWS, une
représentation multi résolution du systéme matriciel est développée par projection sur
une base d’ondelettes Daubechies-4. Malgré le coiit induit pour transformer le systéme
dans le domaine spectral, la représentation multi résolution fournit un outil numérique
de préconditionnement permettant de stabiliser et d’accélérer significativement la perfor-
mance de algorithme itératif. L’accélération est attribuée & la représentation du systéme
d’équation sur plusieurs grilles numériques de résolution différente dont les interactions
sont prises en compte automatiquement au cours des itérations. Par ailleurs, la formula-
tion en ondelettes ouvre des perspectives d’optimisation sous forme d’adaptation spatiale
du maillage en fonction des propriétés locales du milieu et du champ propagé.

Plusieurs exemples de simulations d’onde dans des milieux 2D de complexité variable
sont présentés pour illustrer les performances respectives des méthodes DISS et DIWS.
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4.2 Mesh generation

Meshing describes the procedure of breaking up a physical domain into a number of
sub-domains. Each sub-domain is characterised through its inherent grid, which, by def-
inition, has a different resolution than the surrounding domains. The subdivision of the
initial model aims to facilitate the computation of a numerical solution of a partial dif-
ferential equation (PDE), since local model structures, such as high-velocity intrusions in
low-velocity surroundings, can be treated using the best adapted grid for the required nu-
merical accuracy. This construction procedure is called mesh refinement method (MRM).

As was noted in Chapter 2, strong formulations of the wave equation verify the PDE
on discrete Cartesian grid points. Even though numerical schemes based on a strong
formulation have been extended to manually combinations of numerical grids, the con-
structed grids are still Cartesian and mainly vary the equidistant spatial stepping. MRM
is a different approach in that only one computational grid is constructed that dynami-
cally adapts to guarantee the desired accuracy of the simulation.

In contrast, weak and average formulations of PDEs, by definition, require the con-
struction of non-Cartesian numerical grids, based on some pre-defined geometrical form,
such as triangulars. Then, MRM may be applied to enhance the computational perfor-
mance of the numerical scheme. Exactly the same solution can be computed when the
finest spatial discretization is applied in the whole model without distinguishing between
sub-domains of different complexity in the model.

In the past years, MRM schemes have mainly been developed for FE and SE mod-
elling schemes (LeVeque, 1997; Berger and LeVeque, 1998; Komatitsch and Tromp, 1999).
Many different types of mesh forms and construction techniques exist, and it has long
been a debate which basic element shape might produce the most accurate modelling
results. For example, surfaces might be subdivided by regular sub-grids, triangles or
quadrilateral shapes, while volumes could be made up of tetrahedra or hexahedra shapes.
Which of these elementary shapes best combines with the pre-defined accuracy of a weak
formulation of a PDE problem, depends on the problem at hand and, to my knowledge,
no general unique best element shape exists.

4.2.1 Automatic mesh refinement

Automatic mesh refinement (AMR) denotes a MRM, where the numerical grid is not con-
structed before the simulation starts but during the simulation procedure, such that the
grid adapts to the complexity of the model structure and the behaviour of the numerical
solution. In general, solutions for PDEs are computed on a principal coarse grid that
incorporates patches of fine discretized grids, where the structure of the model and or
external constraints require higher accuracy. Ideally, we would like the mesh refinement
to be carried out during execution of the simulation in such a way that the meshing
identifies regions requiring more resolution with respect to:

e local structure in the model

e behaviour of the numerical solution during simulation
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Numerical solution of PDEs approximate the exact solution of a mathematically posed
problem. Especially, the error in a weak formulation decreases as the element-size of the
sub-division gets smaller or the order of the polynomial in the interpolating functions
increases. AMR is therefore controlled by error estimates that characterise the accuracy
of the wave-field solution. Two basic principles that control errors may be distinguished:

e a posteriori error estimates in a given finite element
e mesh refinement to achieve a desired accuracy economically

In general, the error control will be an adaptive mixture of the two. Typical grid refine-
ment can be obtained through the introduction of new elements of the already used type
(e.g. triangulars) but of smaller size, or keeping the element definition and increase the
order of the polynomials by adding new grid nodes placed in already existing elements.

The actual error that defines refinement requirements can be measured by various
norms, that represent integral scalar quantities. A typical measure of the error is the
energy norm or for wave propagation applications the L?-norm for displacement or stress
errors (Zienkiewicz and Morgan, 1982). The error evaluation can be applied over the
whole computational domain €2, sub-domains 2;, or even individual elements in the grid.

In order to perform the dynamic adaption, AMR techniques continuously inspect the
calculated solution on all grid nodes during propagation. In case the solution is found
to be critical, which means that the local error exceeds pre-defined error norms, the
grid position is flagged. In a second step, another procedure checks on the neighbouring
points next to the flagged grid nodes, and based on their location defines an area where
grid refinement needs to be applied. Finally, all flagged regions are refined by the next
finer level grid and the whole procedure is repeated in order to see if an even increased
precision in a certain region is required.

In exactly the same way as regions at some point (in space and time) need refinement,
they also might be judged to be sufficiently accurate on a coarser grid (for example, after
a complex zone has been passed by the wave-front) and therefore the refinement will be
cancelled. Although AMR is of great interest in many numerical simulation algorithms, it
is especially important for modellings where the solution tends to produce singular shock
behaviour, as it is the case for seismic rupture propagation, for example.

Many different AMR, techniques have been developed in the past years following dif-
ferent strategies of how grid-elements are formed and placed, where the truncation error
can be controlled by some physical parameter (see Owen, 1998, for a detailed discussion).
Since the numerical grid controls the accuracy of the modelling solution and AMR be-
comes rather difficult and computational intensive for large and more complex models,
research in this field has become extremely important. Berger and Oliger (1984); LeVeque
(1997) and Berger and LeVeque (1998) developed an AMR technique for 3D wave prop-
agation problems. Moreover, AMR has been extended to run on large parallel computer
structure environments, which makes it very appealing for large-scale wave modellings.
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4.2.2 Discussion

The (automatic) mesh design problematic is that of attempting to construct or define
a set of grid-nodes, using a basic geometrical form, in order to best describe a spatial
physical domain while guaranteeing pre-defined accuracy requirements. MRM and AMR
techniques are of great interest especially for sudden shock-like behaviours, since the
numerical mesh is adapted and refined to perfectly match the structure of the model and
the behaviour of the solution. Still, the ambiguity introduced by the automatic mesh
generation is not easily controllable. If, for example, the meshing creates errors during
the refinement, these are completely hidden from the user and the numerical pollution in
the obtained solution is undetectable.

MRM and AMR combine principal features that are important for precise and com-
putationally optimised algorithms for PDE simulations. These features are:

e sampling
e resolution

The first feature, sampling, is provided by the weak formulation of the wave equation.
The introduction of interpolating- and testing-functions up to a desired accuracy provides
stable and precise discretization schemes. Then, the necessary resolution of the wave
simulation is guaranteed by adaptive refinement performed by an AMR approach.

Even though these two principal features are illustrated here for the framework of
weak formulations and AMR, similar properties can be defined for wavelet orthonormal
bases. The wavelet notation provides a natural framework to handle efficient operator
and function approximations, with respect to their propagation (sampling) and scal-
ing (resolution) behaviour (Beylkin, 1998). Equations formulated with the help of the
multi-resolution framework of the orthogonal wavelet transform are interesting, because
contributions from numerical grids having varying spatial resolution are naturally com-
bined. Then, coarse scales can be interpreted as homogenized representations, which, in
effect, gives the desired spatial frequency decomposition of a standard Full Multi-Grid
technique and is therefore investigated in greater detail in the following.

4.3 Wavelet discretization

The refinement of a computational grid by dividing the model in sub-domains and manu-
ally combining grids of different spatial resolution, both permit wave propagation simul-
ations with increased computational efficiency compared to standard schemes. Ideally, we
would like the numerical grid to interact with respect to the behaviour of the wave-field
solution computed at a time or space location. The numerical grid should automatically
detect local grid-parameters required to perform precise wave propagation simulations
within pre-defined error bars. Clearly, we further demand the grid structure to adapt to
the detected local accuracy requirements. Then, variable grid-parameters guarantee op-
timised and efficient calculations, which in effect renders numerical modelling of complex
wave propagation phenomena feasible.
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Although many strategies for either strong or weak formulations have been developed
and applied to fulfil that aim, all methods have significant shortcomings. While methods
based on weak formulations depend on correct meshing algorithms, strong formulations
lead to numerical schemes that suffer from rather brutal grid combinations that are not
dynamic during wave propagation.

Another way to achieve a multi-grid representation of a signal is the expansion on a
wavelet basis. The wavelet basis automatically provides the desired multi-scale structure,
where grid combinations and interactions are accounted naturally by the multi-resolution
framework. Therefore, wavelets give a convenient formulation for a decomposition of a
wave-field on different grids of various resolution. The wavelet coefficients computed dur-
ing an orthogonal wavelet transformation (OWT) encode the wave-field information corre-
sponding to each resolution grid separately. The inverse OW'T allows the re-combination
of all grid contributions to form the initial wave-field solution. Both forward and in-
verse OW'T are performed through a cascaded down- and up-sampling procedure, called
multi-resolution analysis (MRA).

The MRA provides a tool with which a signal can be analysed on approximation spaces
having variable resolution. It uses a scaling function, which forms a basis functions on
each resolution scale. The decomposition algorithm typically starts from a fine-discretized
signal and then subsequently finds coarser and coarser grid-representations of the initial
fine-grid signal. The scaling function therefore acts as a low-pass filter. Although the
MRA already provides the desired multi-scale representation, it is not sufficient to build
a formal basis.

The introduction of a corresponding wavelet function and combination with the scal-
ing properties of the MRA, gives the desired wavelet transform. The discrete wavelet
transform (DWT) is computed by a step-wise decomposition algorithm. At each step
of the cascaded decomposition, the application of a convolution-type algorithm allows
the projection from a fine to a coarse discretized signal approximation. The wavelet al-
gorithm is repeated until a desired final decomposition is obtained. Since the WT is a
linear transformation, perfect reconstruction is possible by simply inverting the initial
decomposition scheme.

One of the main interests of wavelets in numerical analysis and image processing is the
fact that the user may interfere at each step of the wavelet decomposition, in order to alter
or adapt the current signal in a desired manner. For example, in signal processing images
may be compressed by eliminating at each step of the decomposition, wavelet coefficients
having an amplitude inferior to some pre-defined tolerance limit. Similar ideas have been
implemented for simulating time evolution problematics, such as turbulent flows, etc..
Many of these approaches use wavelets in a Galerkin-type method, where the wavelet
space provides interpolating and testing functions for the weak formulation of the PDEs.
A review of wavelet-based methods for acoustic and electromagnetic modelling is given
by Wells (1994). Note that in the above introduced notation, a method is called Galerkin
if the spaces U" and W of interpolating and testing functions are the same, and a weak
formulation is chosen as discretization scheme.

Strong formulations combined with a wavelet framework for wave propagation prob-
lematics have been investigated by many authors in the last years: Maday et al. (1991);
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Joly et al. (1994); Charton (1996); Jameson and Miyama (1999). The motivation in us-
ing wavelets was driven by the possibility to define local adaptivity parameters on each
sub-resolution level during a wavelet decomposition. In practice, the adaption of the so-
lution is obtained through a thresholding procedure of wavelet coefficients with respect to
the behaviour of some physical parameter that characterises the local solution. Different
strategies have been developed to define these thresholding parameters, as well as their
physical meaning and rules for their application.

Other developments use the wavelet transform in a strong formulation as a pseudo-
spectral approach. A rather classic scheme was recently illustrated by Hong and Kennett
(2002). They applied the wavelet basis as a tool to perform accurate derivative estima-
tions in the spectral wavelet space. Other wavelet-based pseudo-spectral methods are
more ambitious in that more intrinsic wavelet properties, such as adaptivity, are incor-
porated in the numerical scheme (Operto et al., 2002).

In order to avoid difficulties encountered in complete wavelet-spectral formulations,
Jameson and Miyama (1999) proposed a FD modelling scheme that applies the wavelet
transform as a meshing-tool only to construct an adaptive numerical grid. Their scheme
shows nice results for 2D problematics, even though interesting and desirable wavelet
features are not considered. Despite of numerous developments of wavelet-based formu-
lations for the solution of PDEs, significantly superior results over other modelling tech-
niques, such as weak formulations combined with AMR, have only been demonstrated
for simulations based on non-linear PDEs (Beylkin, 1998).

The expansion of a signal on a wavelet basis brings key advantages over representa-
tions in the physical domain, such as the signal decomposition with respect to scale and
spatial location. Although these characteristics are of great importance, since a wave
propagating in a complex heterogeneous media has contributions from a variety of scales
and frequencies, others such as the verification of physical boundary conditions might
become extremely complicated and by far not obvious. To my knowledge, the W'T has
been shown to be competitive for simulations of non-linear wave phenomena where com-
putations on a large number scales (e.g., J = 20 resolution scales) clearly out-performed
standard multi-grid techniques (Chiavassa, 1997).

In the case of linear PDESs, as investigated in this thesis, I do not expect a large number
of scales necessary to perform wave-field simulations (e.g. J < 5 resolution scales), and
it is questionable whether wavelets provide a powerful tool as for the non-linear case.
This is not surprising since the existing weak, average, and strong formulations have
been developed over a long period of time by many researchers, while current wavelet-
based formulations have been re-discovered only recently by Mallat (1989); Meyer (1992).
Therefore, we might find that wavelets are interesting for non-linear wave propagation
only, while the existing modelling techniques out-perform wavelets for linear PDEs in
terms of computational efficiency for a given computer resources standard. However, this
eventuality should not stop us from continuing research on interesting applications of
the wavelet transform for numerical modelling, since the wavelet transform provides a
powerful tool to obtain a multi-scale decomposition with respect to exact mathematical
basis formulations.
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Figure 4.1: Resolution approximation spaces in a wavelet decomposition. The finest reso-
lution is denoted by V. The wavelet transform finds subsequently coarser approximation
spaces Vj—o,.. s until a final coarsest resolution is reached. The coarsest resolution is
denoted by V.

4.3.1 Orthogonal wavelet transform

The orthogonal wavelet transform permits the decomposition of a signal on a hierarchy
of sub-grids of different resolution (Daubechies, 1988; Mallat, 1989). The OWT initially
projects the signal on the finest discretized grid, denoted Vj-space, which, in general, is
determined preliminarily by computer limitations. The W'T' subsequently projects the
signal on coarser discretized grids (Vj=i, .. s-spaces) until, in practice, a fixed coarsest
resolution level in practice is reached.

Each sub-grid encodes the information that is filtered out when going from a finer
to a coarser grid, in the so called wawvelet or detail coefficients. The corresponding ap-
proximation space of the filtered signal components is denoted by Wj-space. When the
coarsest grid is reached, the WT additionally stores the remaining signal components in
the scaling or average coefficients (Vj-space). The different wavelet resolution spaces are
illustrated in Figure 4.1.

As was noted before, the MRA defines a basis for each resolution approximation space.
The intuitive idea that a signal approximation on a resolution level Vj is also included in
the next finer resolution level V;_; is true for the MRA. Therefore, the scaling functions
do not form a standard basis of all approximation spaces. Only the MRA extension
by the wavelet functions provides the desired formal non-redundant (orthogonal) basis
transformation properties.

Starting from an initial fine discretized signal, on each step of the WT-cascade, the



4.3 Wavelet discretization

63

Amplitude
T

0 256 512 768
Samples

Figure 4.2: Ilustration of a Daubechies-4 wavelet basis vector.

signal is projected on a next coarser resolution grid. Then, the filtered out data is encoded
in the wavelet space, and the procedure repeated for the next resolution pair. One step
of the WT algorithm is:

signal discretized on grid Vj

compute projection on next coarser grid V; 1 (down-sampling)

store signal difference in W1 (V; = Vi1 @ Wjt1)
e store signal discretized on Vj i1 and restart

The algorithm may be inverted by restarting the procedure from the signal representa-
tion on the coarsest grid. Then, MRA re-constructs grid by grid, finer and finer signal
representations through adding wavelet coefficients, until the initial signal is obtained.

The combination of the scaling and wavelet functions led Daubechies (1992) to con-
struct an orthogonal wavelet basis, where the wavelet basis functions have compact sup-
port. The different Daubechies wavelets are labeled Daub2, Daub4,..., Daub2M where
2M indicates twice the number of vanishing moments of the specific wavelet basis. For
example, Daub4 wavelets have two wvanishing moments. In Figure 4.2, as an example, |
plot one basis vector of the Daub4 wavelet basis. The developments presented in this
thesis were performed using the Daub4 wavelet basis throughout.

In Appendix A, I give a rather limited mathematical introduction to the WT. For
a detailed review of the theory of wavelets, I refer to the works of Daubechies (1992)
and Mallat (1999). In practice, the discrete wavelet transform (DWT) is computed by
a convolution-type procedure that uses a set of quadrature mirror filters. The forward
wavelet transform operator for Daub4 wavelets is illustrated in Figure 4.3. The operator
entries represent the quadrature mirror filters coefficients. Operator coefficients cg, ..., c3
perform a low-pass filtering, while coefficients c3, —cg, ¢1, —cp are rather a high-pass fil-
tering process because of the minus sign involved.

In the case of Daubechies wavelets, the number of vanishing moments of the wavelet
basis is related to the number of quadrature mirror filter coefficients. In order to guar-
antee fast wavelet transform algorithms it is therefore interesting to keep the number of
quadrature marror filter coefficients low, since convolution-type computations can then
be computed in a fast and efficient way. On the other hand, the number of vanishing
moments of a given wavelet basis also defines the accuracy of the wavelet approximation,
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Figure 4.3: Illustration of the forward wavelet transform operator. The coefficients in the
operator perform two different convolution-type procedures. While the odd rows compute
a smoothed average (low-pass filter), the even rows can be interpreted as high-pass filters.

and a good equilibrium between efficient algorithms and accurate computations has to
be found for a given problem at hand.

The WT has proven to be of great value for different problematics in science, because
not only it gives a decomposition with respect to the frequency content of a signal, such as
the Fourier Transform (FT), but it also gives a spatial indicator where the frequency com-
ponents are located. Several key features of the W'T motivated my work and, therefore,
will be discussed in more detail here. These are:

e decomposition — Frequency and location
e scaling — Coarse- and fine-grid contributions
e uniqueness — Expansion on an orthogonal basis

In Figure 4.4(a) and Figure 4.4(b), I show the wavelet transform of an initially dense
and sparse signal, respectively. The wavelet decomposition is shown for J = 3 projection
steps separately. From the top to the bottom, I plot the projection of the signal on
the scaling and wavelet spaces for each of the three resolution levels. The dense signal
in Figure 4.4(a) has an overall smooth behaviour with a single jump in amplitude at
the sample number ns = 256. Through the decomposition procedure, we see that the
localisation of the jump (high frequency content), though smeared out because of MRA
sub-sampling, is encoded in all approximation spaces (Wj-spaces) at the right spatial
location. The smooth part, which is mainly made up of low frequency components, does
not contribute with any wavelet coefficients for the fine grids (Wj=i23). The scaling
spaces (Vj—1,2,3) hold coarse-grid versions of the initial signal discretized on the Vj_g
space. Similar observations can be made for the wavelet expansion of the initially sparse
signal in Figure 4.4(b). Wavelet spaces store the filtered-out high-frequency data, while
scaling spaces hold averaged versions of the initially Dirac-like signal.

In Table 4.1, T give the required samples necessary to store the signals in Figure 4.4(a)
and (b) on J = 6 resolution spaces. The dense signal with the shock-like jump is stored in
ns = 512 samples in the physical domain. Then, wavelet expansion on several resolution
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Figure 4.4: A dense and a sparse signal are projected on the orthogonal Daubechies-4
wavelet basis. In (a) and (b), I show the averaging and differencing steps of the MRA for
a dense and a sparse signal, respectively, that are necessary to decompose the signals on
J = 3 resolution scales. At each step the signal discretized on the Vj-space is decomposed
(filtering +sub-sampling) into a coarser discretized signal Vji; plus the the data that has
been filtered out (Wjy1) to obtain the next coarser signal. The filtered data is stored
in the wavelet transformed vector, while the average data is used for the next step of
the MRA. When the coarsest approximation space (J = 3) is reached the average space
is stored as well. Note that a former dense signal (ns = 512 samples) is suppressed to
ns = 193 samples, while the initially sparse signal (ns = 31 samples) requires ns = 35
storage samples after projection on the wavelet basis.

scales allows a data compression of up to 25% for J = 6 scales, compared to the storage
on the finest grid only. Note that the projection on only one scale already provides a
data compression of about 40%.

In contrast to the good compression results for the dense signal, the initially sparse
signal in Figure 4.4(b) is not compressed under wavelet expansion. In the physical domain,
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Resolution Nr. of Samples | Nr. of Samples

Scale Dense Function | Sparse Function
Vi=o 512 31
Wiz1+ V=1 296 30
S A W+ Vi 222 32
S Wi+ Vs 193 35
E?:l Wi+ Viz 163 37
S0 Wi+ Vs 148 A1l
S0 W+ Ve 131 43

Table 4.1: Number of non-zero coefficients necessary to store the projection of a sparse
and a dense signal (see Figure 4.4) on J = 1, ..., 6 resolution approximation spaces using
Daubechies-4 wavelets.

the signal requires ns = 31 samples to store the Dirac-like function, while on J = 6
resolution scales, ns = 43 non-zero coefficients are necessary to hold all the information.

This little test shows that one of the main advantages of wavelet representations
compared to the physical domain is relative. Ounly if the initial function is dense, can
wavelets significantly compress the required storage amount. In case a sparse signal is
projected, an even increased number of coefficients is required to hold all the necessary
information in a number of resolution approximation scales.

Until now, I presented two important characteristics of the projection on a wavelet ba-
sis: these are signal decomposition with respect to scale and location. However, the most
important wavelet feature has not yet been addressed explicitly. As I already mentioned,
the combination of scaling and wavelet functions constructs a formal transformation on
the wavelet basis.

The decomposition on a multi-scale representation is obtained through the MRA,
which itself provides a basis for each sub-scale, though not for the complete decompo-
sition. Briggs and Henson (1993) and later Beylkin (1998) stated that multi-resolution
wavelet decomposition is equivalent to a multi-grid method without V- and W-cycles.
The reason for the absence of V- and W-cycles derives from the fact that the OW'T
constructs orthogonal projections of the true solution simultaneously on each of the reso-
lution approximation spaces, during the decomposition. No further interpolating phase-
shift corrections are needed, since all necessary information is currently encoded in the
combination of scaling, wavelet, and scale-interaction coefficients.

For illustration, we note that the coarsest representation of the signals in Figure 4.4(a)
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and (b) are stored on ns = 64 samples, which corresponds to J = 3 decomposition
steps (see the V;_3 space). Assuming we perform one step of the inverse OWT, that
is combining W3 and V3, we obtain the next finer representation in the V5 space. In a
multi-grid method the same step would require the application of an interpolation scheme,
which might introduce phase-shifts. This is not the case for wavelets since the missing
information necessary to go to the next finer scale is stored in the wavelet sub-space.
Thus, we find the correct signal representation in V5, that again is spanned by the scaling
functions for this resolution space. This crucial advantage of wavelet-based methods over
multi-grid methods is what I am aiming for.

4.3.2 FD operator in wavelet basis

One of the principal aspects of a wavelet-based PDE solver is the representation of deriva-
tive operators in the wavelet domain. Despite that for a general wavelet transform no
direct statements may be provided, here I briefly review the remarkable close relation be-
tween the differential operator in the Daub4 wavelet basis and the centred finite-difference
approximation of the differential operator in the physical domain (Beylkin et al., 1991,
Jameson, 1993).

In general, two possibilities exist to construct the derivative operator in the wavelet
domain. The first approach relies directly on the properties of scaling and wavelet inter-
polating functions and was developed by Beylkin et al. (1991). They explicitly determined
wavelet derivative coefficients using Daubechies wavelets, where the derivative properties
are uniquely introduced via wavelet basis approximation properties.

Alternatively, one can define a discrete derivative operator in the physical space, such
as the standard centred FD operator, without considering any wavelet or scaling function
properties (Wu and McMechan, 1998). Then, standard wavelet projection procedures may
be applied to the operator, which gives the desired derivative approximation transformed
in the wavelet domain.

Note that in the latter approach the discrete operator in the wavelet domain is as-
sumed to be equivalent to the derivative operator on the finest resolution scale Vj of a
wavelet expansion. This assumption is called the wavelet crime (see Strang and Nguyen,
1996, for details). Beylkin et al. (1991) and Jameson (1993) showed that for the Daub4
wavelet basis the two procedures are equivalent, if the differential operator in the physical
space is the fourth-order centred FD derivative operator.

Jameson (1993) showed a more general connection between the FD differential oper-
ator in physical space and the wavelet space. He concluded that the expansion of the
FD differential operator in a Daubechies wavelet basis with M wvanishing moments has
approximatively similar properties as a FD Taylor series expansion of the differential op-
erator of order 2M. Moreover, Beylkin et al. (1991) and Jameson (1993) illustrated that
the wavelet transformed derivative operator defines local FD operators on each resolution
scale. I emphasise that the close relationship of the standard FD operator in the physical
space and its expansion in the Daub4 basis has been illustrated for non-staggered grids
only (see Operto et al., 2002, for a detailed discussion).
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Figure 4.5: The fourth-order FD operator is projected on an orthogonal wavelet basis
having J = 3 resolution approximation spaces. Coefficients different from zero are plotted
in black. On each sub-grid the Daub4 wavelet basis constructs scaled versions of the
initial FD operator. The FD operator is constructed in the denominated Standard Form
(Beylkin, 1992), that results from a wavelet transformation procedure similar to the one
described earlier for a one-dimensional signal. Note the finger-band structure of the
operator in the wavelet basis. Additional coefficients located in the off-diagonal blocks
encode interaction coefficients that are necessary to interchange information between
different resolution grids.

The standard form

The FD modelling scheme developed by Operto et al. (2002) constructs spatial FD opera-
tors on the orthogonal Daub4 wavelet basis using the Standard Form (STF) representation
(Beylkin et al., 1991). The STF of an operator in the wavelet domain can be computed by
applying one-dimensional (1D) WTs to each dimension of the operator (see Figure 4.4 and
Operto et al. (2002)) or through a more complicated procedure, introduced by Beylkin
et al. (1991) that relies on scaling and wavelet functions properties.

The transformation of an operator on the wavelet basis not only encodes scaled ver-
sions of the initially discretized operator (local FD operators), but also intermediate
coefficients that control the interaction between the different approximation scales. The
STFE of the fourth-order FD operator projected on J = 3 resolution scales is shown in
Figure 4.5. Just as for the 1D signal shown earlier (see Figure 4.4), the operator is first
discretized on the finest scale V) and then coarser approximations are subsequently com-
puted through the application of a step of the wavelet transformation. The procedure
stops once the pre-defined coarsest discretization is reached.

Finite difference operator coefficients in the physical domain are situated in bands
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around the main diagonal, where the bandwidth depends on the order of the differenti-
ation used. In the wavelet domain, we observe from Figure 4.5 that the projection on
the Daub4 wavelet basis creates additional coefficients situated in a finger-band structure
around the main diagonal. The diagonal blocks (th X WJ?’) represent the previously
mentioned scaled versions of the FD operator. Coefficients situated in the finger-bands
define the interaction between different approximations spaces. For example, the space
W x W{ encodes the interaction between the wavelet space W7 and the scaling space
Vi, i.e. Wi — Vi, The intuitive idea that the further approximation spaces are apart, the
less their interaction will be, can be observed from the diminution of operator coefficients
away from the diagonal (see Figure 4.5).

Sparsity of the FD operator in the wavelet domain depends, up to a certain degree,
on the wavelet basis chosen. Each non-zero coefficient of the FD stencil in the physical
domain is transformed on the wavelet basis, where the number of non-zero wavelet co-
efficients depends on the number of filter coefficients that define the wavelet basis. As I
demonstrated for a 1D signal (see Figure 4.4), a sparse function in the physical domain
is not compressed in the wavelet domain. Similar phenomena apply for the FD operator.
The number of non-zero coefficients is significantly increased because the wavelet expan-
sion holds contributions of the operator on each wavelet projection space plus additional
interaction coefficients (see Figure 4.5).

Sparsity of the derivative operator is one of the primary concerns for TDFD schemes,
since time evolution is performed through operator wave-field products at each time step
(Virieux, 1984). Despite of the problematics related to heterogeneous media properties,
from a simple sparsity point of view, the wavelet expansion of the FD operator rather
decreases the performance of the modelling algorithm. However, the great advantage of
the wavelet projection is the multi-scale representation of the FD method. On each reso-
lution scale, the Daub4 wavelet basis provides a local FD operator that perfectly matches
accuracy requirements for the corresponding scale. In that sense, the WT automatically
provides a multi-grid FD scheme.

In order to render the wavelet based FD scheme competitive, Operto et al. (2002) im-
plemented a space adaptive scheme in the wavelet domain. Two different approaches were
proposed to render the code more efficient: thresholding and a priori masks. Threshold-
ing eliminates wavelet coefficients whose amplitude is inferior to some pre-defined scale-
dependent physical parameter. The idea is that the wave propagation is performed on
several resolution grids simultaneously with the help of a wavelet representation. Then,
in model regions where physical parameters change only smoothly, fine-grid wavelet co-
efficients will be small and therefore might be suppressed by thresholding.

Although there exist powerful applications for thresholding, numerical tests performed
by Operto et al. (2002) for seismic wave propagation in strongly heterogeneous media
did not show significant compression. Therefore, they manually defined areas in the
physical model before the modelling starts, called masks, where the corresponding wavelet
coefficients are set to zero since their contribution to the wave propagation simulation
is estimated to be insignificant. A typical application of masks in a FD-wavelet method
is in the vicinity of the free surface, where high precision and fine griding is required in
order to obtain acceptable results.
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Figure 4.6: The fourth-order FD operator is projected on a NSF wavelet basis having
J = 3 resolution approximation spaces. Coefficients different from zero are plotted in
black. On each sub-grid the Daub4 wavelet basis constructs scaled versions of the initial
FD operator (diagonal blocks). The FD operator is constructed in the so called Non-
Standard Form (Beylkin, 1992), that results from an expansion of the operator in a
telescopic series. Note that coefficients distributed in parallel bands around the diagonal
encode interaction coefficients, that are necessary to interchange information between
different resolution grids.

The non-standard form

Another operator representation in a wavelet-type expansion was introduced by Beylkin
(1992). In contrast to the STF, the so called Non-Standard Form (NSF) of an operator
results from a combination of wavelet projections and the expansion in a telescopic series.
The resulting spectral domain is not the standard wavelet space, but a space that holds
contributions from both, scaling and wavelet information, on each resolution scale (see
Appendix A for further details).

An illustration of an operator projected in NSF is shown in Figure 4.6. As for the
STF, diagonal blocks hold scaled versions of the initial operator projected in the Vj-space.
Additional coefficients are aligned in parallel bands around the diagonal, that describe
interactions between a given approximation scale with all the coarser scales.

The expansion in a telescopic series results in an apparent decoupling of resolution
scales in the NSF, since, for example, a standard matrix-vector product A; X z; is applied
on each resolution scale independently from other scales (Beylkin, 1992). The resultant
vector (bj) holds scaling (s;) and wavelet (d;) contributions from each resolution scale j
(bj = (dj,s5)). In order to obtain a standard wavelet expansion (E}']:LJ dj + s;) from
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the NSF representation, additional wavelet projections are applied on each resolution
scale. These additional projections cannot be decoupled and are controlled by the finest
resolution space. Beylkin and Keiser (1995) applied the NSF to solve non-linear PDEs,
such as Burger’s or Navier-Stokes equations, and provided performance and stability
analysis.

4.3.3 Time domain FD approaches

Over the last years different strategies have been developed that try to couple the
favourable multi-resolution wavelet formulation with standard forward modelling schemes
for strong formulations of linear PDEs (Bacry et al., 1992; Lazaar et al., 1994; Joly et al.,
1994; Wu and McMechan, 1998; Jameson and Miyama, 1999; Operto et al., 2002). Joly
et al. (1994, 1995) showed seismic wave simulations using a projection on an orthogonal
wavelet bases, though their attempt was limited to rather simple model configurations.
Following a similar approach, Wu and McMechan (1998) investigated a FD-wavelet for-
mulation for more complex heterogeneous models using the first-order hyperbolic wave
equation. Unfortunately, the model complexity is significantly reduced, since they applied
a local homogeneity assumption to render computations more efficient.

A nice application of a wavelet-based PDE solver for time evolution problems was
proposed by Bacry et al. (1992). Following ideas of Liandrat and Tchamitchian (1990)
and Perrier and Basdevant (1988), they noted that each resolution approximation space
in a wavelet decomposition is related to a characteristic spatial FD discretization and
time extrapolation scheme. If the spatial resolution is refined through a space-adaptive
procedure, then the time step should also be refined in order to maintain the stability
and accuracy of the numerical scheme. They implemented space adaptivity using an
approach proposed by Perrier and Basdevant (1988), added a time-adaptive component,
and applied their scheme to linear and non-linear PDEs.

More recently, Operto et al. (2002) developed TDFD modelling schemes for seis-
mic wave propagation simulations in structurally complex models. They formulated the
2D velocity-stress FD method of Virieux (1984) in the time-space-wavelet domain using
Daub4 wavelets. The first-order hyperbolic wave equation is discretized in the physical
domain and then projected in the wavelet space using the Daub4 wavelet basis. Spatial
wave-field coordinates and spatial differential operators are decomposed on the wavelet
basis following Beylkin et al. (1991).

In contrast to Wu and McMechan (1998), they developed two TDFD schemes for arbi-
trary heterogeneous media where the local homogeneity condition is eliminated. The first
scheme is a pure spectral approach where wave-field simulations are entirely performed
in the wavelet domain. Even though computations have been optimised by the intro-
duction of two different space-adaptivity strategies, the computation of convolution-type
derivative-medium parameter products significantly limited the computational perfor-
mance of their approach. Therefore, Operto et al. (2002) developed a second strategy
that uses well-known ideas from pseudo-spectral methods. The pseudo-wavelet TDFD
approach avoids the computation of the convolution-procedure in the wavelet domain
through inverse transformation in the physical domain. At each time step, their scheme
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Figure 4.7: Cartoon showing time adaptivity for a wavelet decomposition on J = 4
resolution scales. The finest approximation space (j = 1) is assigned the finest time step,
denoted by dt. Then, subsequently coarser scales have time-steps that double when going
to the next coarser scale. In this example we assumed Daub4 wavelets that double the
spatial discretization under resolution scale changes (from finer to coarser).

requires an inverse and a forward wavelet transform in order to compute the derivative-
medium parameter product in the physical domain.

Time adaptivity, as described by Bacry et al. (1992) for the advection-diffusion equa-
tion, has not been implemented in both of their approaches. The main reason that pre-
vented an adaptive time-stepping, was the interaction between resolution scales, which
is expressed in the finger-band structure of the FD operator in the wavelet basis in
Figure 4.5. Ideally, we would like to construct a wavelet expansion were different resolu-
tion scales are sufficiently decoupled. Then, we would be able to assign an appropriate
time-step for each scale level (see Figure 4.7). As is shown in Appendix A, the wavelet
expansion algorithm is controlled by the finest discretization applied in the V{ space.
Since wavelet resolution scales are coupled through interaction coefficients, an obvious
time adaptivity implementation, as shown in Figure 4.7, is not easy to implement.

4.3.4 Frequency domain FD approaches

One possibility to eliminate problems related to the time discretization in a FD strong
formulation, is the transformation of the equations in the temporal Fourier domain. Since
in the frequency domain no temporal sampling is required, one of the main handicaps of
wavelet-based FD schemes in the time-domain is eliminated.

Frequency domain finite-difference modelling (FDFD) denotes a strong formulation
of the PDEs, where the hyperbolic wave equation is initially developed in the time do-
main and then projected on the Fourier basis. Since time evolution is eliminated, FD
wave propagation simulations are carried out for a set of discrete frequency components,
that ideally represent the Fourier spectrum of the wave simulation under inspection. In
practice, the hyperbolic wave equation in the Fourier space is recast into a matrix-type
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formulation:

1
V2u:c—2w2u+b = Axu=0b

(4.1)

where b denotes the external source function, also called right-hand side (RHS), u the
unknown wave-field solution, and A the complex impedance matrix.

While in TDFD modelling, at each time-step, matrix-vector products are computed
in order to obtain an update of the wave-field solution, in FDFD modelling the complex
impedance matrix A needs to be constructed for each frequency component f;. Then
wave-field solutions can be computed by either inverting, or estimating an effective inverse
of the matrix A, for each frequency component separately.

One important feature that allows the formal inversion of the matrix A, in order to
compute separate frequency domain solutions, is the introduction of absorbing bound-
ary conditions to simulate infinite model dimensions. The matrix A in the continuous
Equation 4.1 is formally inverted without any difficulties. The procedure becomes critical
when passing over to a discrete numerical grid, in this case a Cartesian FD grid, since
normal frequency modes corresponding to the characteristic length of the grid will cause
strong wave-reflections on the boundaries. In general, this problem can be avoided by
adding a complex frequency component to the normally real-valued discrete frequency,
that acts as a damping term in the complex space. The alteration of the solution due
to the artificial complex component is, in general, eliminated through an un-damping
procedure in the time-domain. Unfortunately, it can only be applied correctly, when a
large number, i.e. theoretically an infinitesimal number, of frequency components has
been computed in the frequency domain and inverse-transformed in the time domain.

One of the great advantages of frequency domain modelling is the possibility to com-
pute single frequency responses instead of complete wave-field time seismograms. The
single frequency response is of great interest for seismic risk analysis of e.g., engineer-
ing structures. Therefore, I added PML (Perfectly Matched Layers, see Berenger, 1994,
for details) absorbing boundary conditions to the Equation 4.1. Exact computation of
the inverse matrix A~! is not considered because of the extremely large computational
resources required to perform the inversion and to store the matrix in RAM or disk mem-
ory afterwards (Rewienski, 1999). However, an effective inverse can be computed through
factorizing the matrix A into a lower- and an upper-triangular matrix.

Matrix factorization schemes are also called direct solvers, since the LU-factors permit
the computation of an exact direct wave-field solution. With the help of the LU-factors
the initial matrix equation in Equation 4.1 becomes,

(L-U)xu=b with L-U=A
(4.2)

which easily solves the matrix equation, without computing the inverse A~!, in a two
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step procedure:

(4.3)

The performance of a matrix factorization scheme depends mainly on the number
of non-zero coefficients and their location in the matrix. In FDFD forward modelling,
the structure of the matrix is controlled by the discretization scheme applied to the
wave equation (Rewienski, 1999). In general, FD discretizations lead to an overall sparse
matrix, where matrix coefficients are more-or-less distributed in bands around the main
diagonal. During LU factorization additional numerical fill-in coefficients have to be
stored, in order to properly separate A into a lower- and an upper-triangular matrix
(Golub and van Loan, 1996).

The numerical fill-in significantly limits the application of direct matrix equation
solvers since, in addition to the large impedance matrix A, numerical fill-in needs to be
stored. Moreover, the fill-in is difficult to estimate before the modelling starts. Matrix
solvers based on a direct LU factorizations are not appropriate for frequency domain
seismic wave propagation simulations in 3D media, since available computer resources
are largely exceeded during the factorization process (Mulder and Plessix, 2002).

Another possibility to solve the matrix equation is through the application of an
iterative solver scheme. Iterative solvers require the construction of the matrix A, an
initial wave-field solution wy and the RHS vector. Then approximated wave-field solution
are computed by an iteration process, that during each loop of the iteration refines the
solution uy = w;. The iterative loop stops if either the solution approximation for a
given iteration count converges to the desired solution (u) within some pre-defined error
norm ||u — u;|| < tol, or the iteration count reached a pre-defined maximum amount of
permitted iterations n; > njy**

Ideally, the initial solution ug closely approximates the final desired solution u, such
that fast convergence of the iterative loop is guaranteed. The update of the approx-
imated solution wu; during the iterative loops is performed through matrix-vector and
dot-products, as well as left- and right-preconditioning to influence the convergence of
the scheme. Therefore, the number of non-zero coefficients has a direct influence on
the performance of an iterative scheme, even though the number of coefficients, once
constructed, are not as-far-as crucial as for direct solvers.

The main handicap of iterative solvers compared to direct solvers is that numeri-
cal convergence of the iterative scheme can not be guaranteed and, in general, depends
strongly on a good initial solution. Moreover, the obtained solution is only an approxima-
tion that resembles the exact direct solution up to a pre-defined tolerance level. Unfortu-
nately, a good initial solution that closely approximates the desired solution is not easy
to estimate. A popular approach therefore investigates how the matrix structure and the
absolute numerical values in the matrix and RHS may be modulated in order to allow
fast and stable convergence, even if the initial solution is far from close to the desired
solution. This procedure, called matriz preconditioning (Golub and van Loan, 1996), has
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become increasingly important and often the success of a numerical solver based on an
iterative scheme entirely depends on a good preconditionning.

Iterative solvers are often applied in FMG methods to either compute a preliminary
solution on a coarse discretized grid that is further refined by a multi-grid procedure, or
to correct the solutions on different resolution levels during the passage of a multi-grid
V- and W-cycle (Debicki, 1999). In order to overcome the ambiguity and computational
effort necessary to perform a sequence of multi-grid V- and W-cycles, Gines et al. (1999)
developed a wavelet-based FMG method that relies on a multi-resolution LU matrix
factorization. They profit from the multi-scale representation in the wavelet basis, where
grid interactions between different resolution approximations spaces are accounted for
automatically. Their approach defines a multi-resolution LU factorization with the help
of a NSF matrix representation on a wavelet basis. The matrix A, that corresponds
to the specific matrix-equation at hand, is first constructed in the wavelet basis and
projected in the NSF space. The multi-resolution LU factorization computes a standard
LU decomposition of the homogenized matrix A in the V x V-space of the wavelet
expansion, and then finds subsequently finer LU-factor contributions through a NSF-
wavelet projection procedure. Numerical fill-in, that can not be suppressed by the wavelet
formulation, is significantly reduced by an efficient thresholding procedure applied to the
wavelet coefficients.

Gines et al. (1999) applied the new approach to dense matrices, that result from
electro-magnetic simulations based on an integral equation method. They obtained sig-
nificantly speed-up for the factorization procedure in the wavelet space, compared to
standard LU schemes in the physical domain. Although their results look promising,
one important initial requirement that entirely controls the efficient application of the
wavelet-based LU direct solver is not fulfilled for FDFD discretizations of wave propaga-
tion problems.

Gines et al. (1999) applied the wavelet solver to matrices that are dense in the physical
space. Then, already the transformation in the wavelet space reduces the number of
non-zero coefficients in the projection and, moreover, efficient numerical thresholding is
supported by the wavelet formulation. In contrast, FDFD discretizations of the wave
equation lead to an extremely sparse impedance matrix.

As was illustrated for a 1D-signal in Table 4.1, the projection of a sparse signal in the
wavelet domain rather increases the number of non-zero coefficients as a function of the
resolution scales used. We therefore expect a similar increases of matrix coefficients after
wavelet expansion. Moreover, wavelet fill-in caused by the factorization procedure will
even increase the already larger number of non-zero coefficients. One of the main interests
of the multi-resolution LU solver is data compression through wavelet formulation. Un-
fortunately, this is not the case for the FDFD wave equation and can not be compensated
i.e., becomes even worse due to matrix fill-in during the matrix factorization.

4.3.5 Discussion

Numerical wave propagation simulations are necessary when the wave-field response for
complex heterogeneous media is required. The wave equation can be discretized by using
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a weak-, average- or strong-formulation of the PDEs, where the main difference comes
from the construction of the corresponding numerical grid and how the corresponding
equations are verified on the grid. Weak- and average-formulations provide powerful
modelling schemes, where equations are verified approximately over elements or volumes
making up the grid. Their overall performance, in terms of accuracy and computational
speed, depends mainly on the grid construction technique applied. Very popular are
mesh refinement techniques, that automatically adapt the numerical grid with respect
to local complexities in the model and the behaviour of the wave-field solution during
propagation.

In contrast, strong formulations of the wave equations obtain exact solutions on a
naturally Cartesian grid, using FD type discretization techniques in the physical domain
or spectral spaces. In order to release restrictions due to Cartesian grids, FD methods
have been extended to allow wave simulations on manually combined grids of irregular
size.

Another approach that performs computations on a set of numerical grids of different
resolution is provided by the multi-grid framework. Multi-grids are applied as precon-
ditioners for iterative solvers of matrix-type PDEs. They decompose computations with
respect to the frequency content through sequences of V- and W-cycles, in order to cal-
culate resolution adapted iterative wave-field contributions. The grid combination is
performed manually with respect to error measurements during the computations, which
may prohibit fast and efficient convergence.

Wavelets provide a natural multi-scale representation, and therefore have widely been
used for numerical modelling of wave propagation phenomena. Unfortunately, TDFD
modelling is handicapped by shortcomings in the implementation of time adaptivity and
numerous computational expensive wavelet expansions, while multi-resolution LU factor-
ization for wave simulations in the temporal Fourier space (FDFD) requires an initially
dense impedance matrix to render the approach efficient. Standard FDFD modelling is
limited because of either significant amount of computer resources required to perform
a direct matrix factorization, or by a large amount of iteration steps to converge to an
approximate iterative solution. Moreover, the convergence of the iterative scheme cannot,
in general, be guaranteed.

In view of the present shortcomings in TDFD and FDFD wave simulation schemes, it
seems reasonable to combine the direct solver with the iterative solver technique, in order
to allow FDFD wave-field simulations for strongly heterogeneous media in three spatial
dimensions. Since an automatic multi-grid formulation is provided through a wavelet
expansion, I investigate the impact of space and wavelet-based numerical preconditioning
in an iterative matrix solver scheme.

4.4 A Multi-Level Direct-Iterative Solver for seismic wave
propagation modelling: Space and wavelet approaches

Bernhard Hustedt, Stephane Operto and Jean Virieux
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4.5 Abstract

We present a new numerical modelling approach for frequency domain finite-difference
(FDFD) wave simulations. The new approach is developed as an extension to standard
FDFD modelling schemes, when wave propagation simulations are performed in large-
scale two-dimensional or three-dimensional models with complex heterogeneous rheology.
Partial differential equations are presented in matrix-type form. Wave-field solutions are
computed on different coarse- and fine-discretized numerical grids by a combination of a
direct solver with an iterative solver. Two different connection strategies are designed.
Both compute a coarse-grid wave-field solution using a direct matrix solver. The ob-
tained solution is projected on a fine-discretized grid, which is used as an initial solution
for an iterative solver to compute the desired fine-grid solution. The wave-field projec-
tion that combines coarse- and fine-grids, is either based on a space interpolation scheme,
called the Direct-Iterative-Space Solver (DISS), or on a multi-scale wavelet expansion,
called Direct-Iterative-Wavelet Solver (DIWS). The DISS scheme mimics a nested iter-
ation scheme of a Full Multi-Grid (FMG) method, since numerical grids are prolonged
by a simple bilinear interpolation scheme. The simple grid combination leads to wave-
field solutions that are affected by spatial phase-shift artefacts (aliasing), which may be
suppressed by a large amount of iteration steps or a standard V- and W-cycles sequence
between grids. The actual DIWS matrix construction implementation is computationally
more expensive, though the wavelet iteration scheme guarantees fast and stable itera-
tive convergence. Coarse-grid wave-field solutions are combined with fine-grid solutions
through the multi-resolution scaling property of a standard orthogonal wavelet expansion.
Since the wavelet transformation accounts for grid interactions, phase-shift artefacts are
greatly reduced and significantly less iteration steps are required for convergence. We
demonstrate the performance and accuracy of the DISS and DIWS strategies for two
complex two-dimensional heterogeneous wave simulation examples.

4.6 Introduction

Seismic wave propagation modelling is a useful tool to study the response of complex
geological structures under excitation of earthquake waves. Moreover, synthetic seismo-
grams that result from efficient forward modelling schemes are necessary to invert e.g.,
multi-source-receiver seismic exploration data. Unfortunately, synthetic wave propaga-
tion simulations either allow fast and accurate computations but are incomplete, or they
provide the required precision for the complete wave-field solution but then traditional
schemes based on Cartesian coordinate systems are slow and dispersive, therefore de-
mand unrealistic high computer memory and CPU-time resources. Very many different
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approaches have tried to resolve this discrepancy in order to make highly accurate nu-
merical modelling feasible.

In recent years, the choice of a forward modelling method best adapted for simu-
lating large scale geological models was dominated by asymptotic methods, such as the
ray-tracing approach (Cerveny et al., 1977). Their main interest is high computational
efficiency to allow the geological interpretation of large data volumes on a standard basis.
Despite of many advantages, these methods are based on a high frequency approxima-
tion of the wave equation, and therefore provide incomplete results. In the vicinity of
complex rheology models the high frequency approximation is not valid anymore and
standard asymptotic methods do not provide desired solutions.

Nowadays 3D and 4D time-lapse data acquisition in seismic exploration and/or the
instrumentation of sedimentary basins and foothills by large seismic arrays have become
standard tools in seismology. In order to profit to a maximum of these enhanced data
acquisition techniques, geoscientists need to simulate large frequency bandwidth data
with increased numerical precision for increasingly larger complex models.

Full-waveform methods such as finite-difference (FD) techniques on regular grids pro-
vide complete solutions to the wave equation. Due to developments of massive paral-
lel computers structures their usage became feasible. As a consequence, FD modelling
schemes enjoy great popularity for 2D problems since they provide accurate waveform
results for complex rheology structures, while, at the same time, their implementation
stays rather simple (Virieux, 1984, 1986). Even though FD methods are also applied
to realistic 3D modellings (Graves, 1996; Olsen and Archuleta, 1996) with a rather low
frequency content (< 0.5H z), their widespread application is mainly limited by the huge
computer memory and CPU time requirements. Simulations for large multi-source ex-
periments stay an exception and are far from being a standard procedure (Mulder and
Plessix, 2002).

Over years, advances in numerical wave propagation modelling were mainly aimed
to either enhance the performance of standard FD modelling schemes or to investigate
new numerical approaches in order to handle the problematic related to the simulation
of large data volumes with sufficiently high accuracy. Graves (1996) and Moczo et al.
(1999) developed memory optimization techniques that permit 3D FD modellings on a
single-processor desktop workstation. Other FD optimization techniques vary the spatial
and temporal discretization of the simulation parameters. The common idea behind these
techniques is the distribution of computational power to model regions corresponding to
the local model complexity. For example, zones with complex structure need small grid
spacing and time stepping, while zones with smooth parameter variations can be modelled
with a relatively coarse spatial and temporal discretizations. Varying the spatial grid size
in the model (Pitarka, 1999), combining FD grids with different spatial (Moczo, 1980;
Jastram and Behle, 1992) and temporal (Falk et al., 1998; Tessmer, 2000) discretizations
enhance the numerical performance of the modelling. Unfortunately, the wave-field trans-
fer from one grid to the next is critical and rather complicated. Moreover, the accuracy of
proposed implementations for strongly heterogeneous complex models is questionable. In
order to prevent problematics caused by manual grid changes, Operto et al. (2002) used
the wavelet transform to introduce a time domain FD (TDFD) modelling scheme on grids
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of different resolution. In their approach, grids of different spatial resolution and their
interactions were introduced by the wavelet transform. Although space-adaptivity was
incorporated in their approach, grid coupling in the wavelet domain and convolution type
projection procedures resulted in rather heavy computational cost compared to standard
FD techniques.

Hestholm and Ruud (1998) and Xie et al. (2002) among others formulated FD mod-
elling schemes on curvilinear grids. Since free-surface boundary conditions for arbitrary
topographies are implemented exactly, no further grid-refinement as necessary for FD
modellings on regular grids is needed, which increases the efficiency of the FD scheme.

Pseudo-Spectral methods enhance computational efficiency and accuracy by comput-
ing spatial derivatives in one domain while the principal equations are solved in another
domain (see Fuchs and Muller, 1971, for example). Moreover, they address problems
related to the correct free-surface representation (Tessmer and Kosloff, 1994; Igel, 1999)
which is a main drawback of FD methods defined on rectangular Cartesian grids. Unfor-
tunately, pseudo-spectral methods are restricted to smooth surface variations only.

In recent years, other techniques that rely on mesh generation have dominated devel-
opments of forward modelling schemes. Faccioli et al. (1996) and later Komatitsch and
Vilotte (1998); Komatitsch and Tromp (1999) developed a scheme for wave propagation
modelling for seismology, called spectral elements, that is based on finite-element (FE)
discretizations (Zienkiewicz and Morgan, 1982). The main advantages are exact propaga-
tion of surface waves in the presence of topography and fast implementation schemes (Do-
main Decomposition using parallel computations). Fluid-solid interfaces and anisotropy
have been included. More recently, their approach has been extended to mixed spectral
elements (Cohen and Fauqueux, 2000), that provide even higher computational efficiency
and flexibility than the spectral elements approach.

Finite-element techniques require the computational grid to be constructed before
the modelling starts. Therefore mesh generation is a key step of FE approaches that
controls the accuracy of the scheme (Sambridge et al., 1995). Inaccuracies may occur
when the mesh is not constructed correctly. They will cause errors in the final wave-field
solution which are not detectable by the user. Therefore, LeVeque (1997) formulated a
FE modelling scheme for hyperbolic systems of equations based on standard Cartesian
grids that dynamically applies grid-refinements in both space and time. Still, if repeated
wave propagation simulations have to be performed because small model parts changed
due to new acquired information e.g., for 4D time lapse simulations, the complete mesh
generation and wave propagation simulation have to be recomputed each time the model
changes.

Another group of methods, called multi-grid approaches (Hackbusch, 1978), perform
simulations using direct and iterative matrix equation solvers on a set of numerical grids
having different spatial resolution. The elimination of low-frequency (smooth) wave-field
components on a given (fine-discretized) grid are difficult to eliminate by an iterative
solver. Therefore, multi-grid techniques introduce a sequence of grids having different
resolution, in order to treat the components of the approximative solution with respect
to their characteristic frequency content on the best adapted discrete numerical grid.

Ideally on each resolution grid, the grid spacing is chosen such that the represented
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solution component (e.g., that may be a rather low frequency component on the finest
discretized grid) becomes a high frequency one with respect to the local grid spacing.
Then iterative solvers may be applied effectively. Numerical grids are combined by nu-
merous passages through so called V- and W-cycles, where the combination of V- and
W-structures depend on the behaviour of the solution during iteration steps. A nice
introduction to the multi-grid philosophy was given by Briggs (1987).

In this article, we propose a new FD scheme that addresses the problematic of large
scale wave propagation simulations in complex media for multi-source experiments carried
out on a standard basis. A typical example would be the exploration for hydrocarbons
but also the instrumentation of a zone with high seismic risk such as e.g., Mexico City
(Sanchez-Sesma, 1983). Even though today spectral elements are superior over FD meth-
ods in terms of CPU-time requirements and accuracy of the solution (free surface), the
ambiguity caused by the mesh generation and necessary complete recalculations for small
model changes which are not required for FD modellings (Robertsson and Chapman,
2000), motivates a deeper investigation of FD methods.

To our knowledge, 3D wave propagation simulations are mainly carried out by the
TDFD rather than by frequency domain finite-differences (FDFD), because of higher
computational efficiency (Mulder and Plessix, 2002) and easy extension to distributed
memory computer structures (Olsen et al., 1995). For multi-source experiments in the
framework of waveform inversions, the method of choice has been the FDFD technique,
because solutions for multiple right-hand sides (RHS) are computed at minimal additional
cost (Pratt, 1990), and non-linear rheology, such as attenuation, is easily incorporated in
the scheme. The main step in FDFD is the inversion of a massive matrix equation, and
therefore FDFD schemes are limited by the performance of either direct matrix factor-
ization or iterative solver schemes. Despite of their advantages, both solver approaches
(direct and iterative) have only been competitive for rather limited 2D models (Mulder
and Plessix, 2002).

In order to benefit from the classic advantages of FDFD over TDFD modelling for
large 2D and 3D media and extended frequency ranges (f = 0 — 10H z), we propose the
combination of a direct and an iterative solver scheme in a multi-grid framework. The
direct solver is mainly limited by the computer memory available. Therefore, the new
Direct-Iterative Solver (DIS) will be used to compute an approximate FDFD solution for a
coarse-grid model, that results from smoothing the fine-discretized model and accordingly
adapting the spatial sampling to allow the run of the direct solver scheme. Then the
iterative scheme is used to fill the gap between the coarse-grid solution and the desired
fine-grid solution. Since the performance of an iterative solver scheme strongly depends
on a stable preconditioned matrix and the initial solution provided, we will use the exact
reduced-model solution to approximate the desired fine solution. This strategy is similar
to a nested iteration procedure in multi-grid methods (Briggs, 1987). This then permits
accelerated convergence of the iterative part with respect to a zero initial solution. The
critical point in our approach will be the combination of the two solver schemes, such
that the iterative solver takes maximum advantage of the multi-grid framework.

In this paper, we first present a new FDFD modelling scheme that is based on a first-
order hyperbolic formulation of the 2D SH-wave equation. By means of this formulation
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we discuss the general problematic of FDFD modelling. Then we introduce the general
idea of a combination of a direct and an iterative solver scheme to overcome the limits of
separate usage of one of the schemes only. Moreover, we present two different DIS multi-
level approaches; the first one, called Direct-Iterative-Space Solver (DISS), is similar
to a mested iteration scheme and is based on space linear interpolation when moving
from one grid to the other one. The second one, called Direct-Iterative-Wavelet Solver
(DIWS), uses an intrinsic feature of an orthogonal wavelet transform and can be directly
compared to a Full Multi-Grid method (FMG). Both schemes will be discussed in detail
and their performances are tested on two heterogenous 2D models. Although we show
wave-field solutions for 2D media only, the underlying aim of our developments are FDFD
modellings of realistic complex 3D media. Since developments carried out for 2D models
set important directions leading to the actual DIS approach, we present it here.

4.7 Frequency domain forward modelling

Frequency domain forward modelling in two-dimensional media for SH-wave propagation
may be formulated using a velocity-stress finite-difference scheme that automatically leads
to the staggered grid geometry developed in TDFD modelling (Virieux, 1984). We write
the SH-wave equation as a first-order system and construct the corresponding complex
impedance matrix in the frequency domain.

We introduce the elastodynamic equations combined with Hooke’s law for SH-wave
propagation in the y-direction (Virieux, 1984):

Ovy(w,2,t) aoxy(x,z,t)_i_@ozy(x,z,t)

p(:L‘,Z) ot - oz Oz —|—S(£U,Z,7f)
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p(x, z) ot B 0z

(4.4)

where vy (x,z,t) is the velocity field in the time domain, p(z,z) the density, pu(z,z)
the shear modulus, ogy(z,2,t) and o,y(x,2,t) shear stresses, and S(z,z,t) the exter-
nal source. With a slight abuse of notation we assume the shear stress and velocity
components to be normalized (e.g., 04y = 0p - O;y and v, = vg - v;/, where o*;,y and v;/
are the un-normalized wave-field components). The normalisation becomes necessary in
order to stabilise subsequent matrix computations. Following TDFD developments for
electromagnetic waves, we add PML absorbing boundary conditions (Berenger, 1994) to
simulate infinite media boundaries. We separate spatial derivatives appearing in the first
equation for the x- and z-direction and add a damping function term () for each spa-
tial component that only takes effect in the absorbing layer (see Operto et al., 2002, for
details):



82

Mesh Generation by a wavelet formulation

vy (z, 2, t 00y (x, 2,1
oo, ) O ) ezt = DD gz
p(z, z)(iavzy(;’z’t) +7:(2) - vzy(2,2,1)) = 780%(8? 1))
1 004y(x,2,t) _ Ovye(z,2,t) | Ovgy(z, 2,t)
IU(ZL',Z)( at +71‘(‘/L‘) ny(xazat)) - ax + ax
1 00 y(x,2,1) _ Ovye(z,2,t)  Ovgy(z, 2,t)
IU(ZL',Z)( at +7Z(Z) O.Zy(x’zat)) - az + az

(4.5)

The two velocity wave-fields vy, and v,, can be combined to the physical v,-wave-field
through simple addition v, = vy, + v;,. We transform the system of equations in the
Fourier domain and introduce the new variables &;(z,w) = 1 + i7;(z)/w and &,(z,w) =
1 +47.(2)/w to simplify the equations:
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(4.6)

The resulting system of Equation 4.6 is solved for each angular frequency component w;
separately.

4.7.1 Matrix construction

The system of Equation 4.6 is discretized using a staggered grid geometry (Virieux,
1984; Levander, 1988) and recast into matrix-type form (A x z = b). In the case of
the velocity-stress formulation of the first-order hyperbolic wave equation, mainly two
different matrix construction techniques are possible. We may follow standard TDFD
modelling approaches (Graves, 1996) and multiply medium parameters, such as density
p(w, z) and shear modulus 1 (z, z), angular frequency w and the PML function £, w) with
the partial derivatives of the wave-field components. We follow another strategy that
combines all model and PML contributions on the diagonal matrix entries, because it
allows the development of rather simple and computationally fast algorithms. Then the
matrix-type equation that is equivalent to the system of Equations 4.6 writes:
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The elements of the impedance matrix A are complex valued and depend on the media
properties p(z,z) and p(x,z) and on the angular frequency w. Since each point on the
FD grid is coupled to its nearest neighbours only, the matrix A is sparse. The full
matrix contains (4 -nz - nz)? elements from which, in the case of second-order staggered
grid FD derivative approximations, 6 - naz? 4+ 6 - nz? + 4 - nx - nz are different from
zero. Only diagonal matrix-blocks depend on the physical model parameters and on
the frequency. The off-diagonal blocks i.e., spatial derivative operators, are constructed
only once for all frequency components w; before the modelling starts. Moreover, the
non-zero frequency-dependent coefficients are all distributed on the diagonal. Therefore,
constructing the complex impedance matrix for several angular frequency components
can easily be performed by simply replacing diagonal matrix coefficients. In the current
implementation, the matrix is constructed in sparse CSR (Compact Sparse Row) or HB
(Harwell-Boeing) format, that allows fast matrix computations, such as matrix-vector
products.

4.7.2 The Direct-Iterative-Solver approach

The bottle neck in any frequency domain modelling scheme is the factorization of the
complex impedance matrix (gtekl and Pratt, 1998). In general, the desirable matrix
inversion is not performed, since the sparse matrix structure will result in a rather dense
inverse matrix, and therefore the number of non-zero coefficients to compute or even to
hold the inverse matrix in memory is too large to be acceptable. To avoid the computation
of the inverse matrix, typically two different solution strategies are applied.

An effective decomposition might be obtained by computing the LU factorization
of the impedance matrix. In this case, which is called the direct solver approach, the
system A -z = b is converted into two triangular systems using Gaussian elimination,
which then permits fast computations of solutions (Golub and van Loan, 1996). The
algorithm divides the matrix A into a lower triangular (L-factor) and an upper triangular
(U-factor) part of the form L -U = A. The fill-in that is created during the separation
procedure (number of non-zero coefficients exceeding the number of non-zero coefficients
of the initial matrix), is significantly reduced compared to the computation of the true
inverse, and highly optimised preconditioners and scaling techniques make this procedure
fast and convenient (gtekl and Pratt, 1998). Once the LU factors have been computed
for each frequency component separately, they can be stored and wave-field solutions for
multiple RHSs are obtained at low computational cost (Pratt, 1990). The direct solver
approach is only limited by the computational fill-in to compute and store the LU factors.

The second approach provides an approximated matrix equation solution by an iter-
ative scheme. The direct solver approach might be impractical because the LU-factors
need to be constructed and additional matrix fill-in occurs during the factorization that
may significantly increase memory requirements. In contrast, iterative methods generate
a sequence of approximate solutions z?, that are supposed to converge to the true solu-
tions for some fixed tolerance error. Update of solutions is mainly performed through
matrix-vector multiplications and dot-product computations and therefore, fast optimised
computer structures can be exploited to the maximum. Moreover, significantly larger



84

Mesh Generation by a wavelet formulation

model sizes may be treated, because numerical fill-in does not occur. The drawback is
the finding of a good initial solution that closely resembles the desired true solution and
an adapted iterative framework (e.g., multi-grids), such that fast iterative convergence
can be guaranteed. In general, this is not at all a trivial task and modelling approaches
exist that start iterations from a zero initial solution (Janod, 1999). Moreover, for each
RHS the iteration procedure has to be repeated and one of the main advantageous fea-
tures of frequency domain modelling is lost, if convergence of the iterative scheme is not
fast enough.

4.8 The Direct-Iterative-Space Solver

Suppose we want to perform FDFD simulations for huge 2D models, large number of
RHSs and frequency ranges where, for example, the corresponding real data could result
from a marine seismic experiment. Even though for one RHS (source), TDFD would
be the best adapted method for the simulation, the number of repeated computations
for the numerous RHSs renders the TDFD approach inefficient. If we further assume
that FDFD modelling using a direct solver technique is excluded because of the size to
hold or factorise the complex impedance matrix, the only possibility to perform a FDFD
simulation would be via an iterative procedure. Such a scenario, which becomes even
more true for 3D modelling, underlines the need for a FDFD modelling scheme that is
capable of treating large volume data. Nevertheless, FDFD modellings using an iterative
approach suffer from similar restrictions as encountered for TDFD modellings for multi-
source experiments, since iterations have to be computed for each RHS. The new scheme
should profit to a maximum from the performance and uniqueness of wave-field solutions
obtained by a direct solver, while at the same time it shall have the capabilities to treat
large Earth models for high frequency ranges at an acceptable computational cost for
multiple RHSs.

In view of this demand and the limits and strengths of the two existing solver tech-
niques (direct and iterative solver) we propose their combination in a multi-grid formula-
tion to form the Direct-Iterative Solver (DIS) approach. The key point in this combination
will be the connection of the two solver schemes i.e., how a good initial iterative solution
may be obtained and how the iterative convergence may be accelerated significantly.

4.8.1 Combination of two solver schemes

We combine the direct solver with the iterative solver by a nested iteration formulation.
Typically, nested iteration is applied in a V-cycle of a Full Multi-Grid (FMG) approach.
Two-dimensional (2D) SH-wave-field solutions (u?") are computed for a restricted coarse
discretized model (V?") by the direct solver (A?*u?" = b*"), where h is the fine-grid
spatial discretization step. Coarse, in the sense used here, implies that a finer model (V")
FD discretization would be desirable but is computationally too expensive to be computed
by the direct solver approach. We use a highly optimised multi-frontal technique to
compute the LU matrix factorization, called MUMPS (Amestoy et al., 2001).
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The next step involves the combination of the coarse grid solution with an iterative
solver scheme in order to obtain the desired solution for a fine model discretization (u”).
Following the nested iteration approach, we prolongate the exact coarse-grid solution
(u?") on a fine discretized grid using a simple bilinear interpolation scheme (V2! = V7).
The prolongation operator is denoted by Ig‘h. The prolongation result will then serve as
an initial solution (v") for a GMRES iterative solver scheme developed by Frayssé et al.
(1997).

1, w2t = o

(4.8)

We denote this approach the Direct-Iterative-Space Solver (DISS). The DISS approach is
similar to the nested iteration part of multi-grid V-cycle, since the prolonged coarse-grid
solution provides an acceptable initial solution for the GMRES iterative solver. Note
that a complete FMG scheme using V- and W-cycles would first require the restriction
of an approximative fine-grid solution on the coarse grid, which is called Coarse Grid
Correction (CGC). A typical FMG V-cycle sequence is (f” is the RHS vector):

Initial Iteration v® « f* — APyl
2. CGC f2h 1M (f" — Aloh)
Approximate Solution = v?"
3. Correct v < v + I8 v?h
(4.9)

We compared the convergence of the iterative scheme using the prolonged coarse-grid
wave-field solution and a zero solution as a first initial approximation for the iterative
scheme. Even though in both cases the iterative scheme converged in the given tolerance
limits, the simulation using the nested iteration formulation required 50% less CPU-time.

For both direct and iterative solver schemes, we construct the complex impedance A
directly for the corresponding grid discretization. In case the number of non-zero elements
of the matrix for the fine-grid iterative part exceeds the actual free memory available,
the construction on the fly, though costly, is possible. This is to say, that the iterative
scheme does not necessarily need the matrix available in core memory at a given iteration
step. In contrast, the matrix only contributes to the iteration through matrix-vector
multiplications, dot-products and matrix preconditionings. Therefore matrix coefficients
contributing to the actual computations may be constructed when needed (Pessel, 2000).
The complete DISS procedure is shown in Figure 4.8 and Figure 4.9.

4.9 The Direct-Iterative-Wavelet Solver

We present a second DIS strategy that instead of space grid prolongations, relies on
a rather natural multi-level formulation through orthogonal wavelet expansions. The
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Direct-Iterative-Space Solver: Part I & II
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Figure 4.8: Flowchart showing the Direct-Iterative Solver approach: Part I and II. (a) We
construct the complex impedance matrix for a coarse model discretization and compute its
LU factorization using the MUMPS direct solver. (b) We compute coarse grid solutions
for each source position and frequency component. (¢) Coarse solutions are interpolated
on a fine discretized grid using a simple bilinear interpolation procedure.

Direct-Iterative-Space Solver: Part I11
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Iteration
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Impedance Matrix Fine Grid Solution
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Figure 4.9: Flowchart showing the Direct-Iterative Solver approach: Part III. (d) We
construct the complex impedance matrix for the fine discretized grid. The interpolated
coarse solution in Figure 4.8(c) approximates the desired fine grid solution. Therefore,
we use it as initial solution in a GMRES iterative solver scheme (e) which gives the final
frequency map solution.

approach is denoted by Direct-Iterative-Wavelet Solver (DIWS). The wavelet transform
permits us the direct construction of wavelet projected fine grid wave-field solutions,
where contributions from all spatial frequency components and resolution approximation
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grids are incorporated in the desired adapted way (Briggs and Henson, 1993; Beylkin,
1998). The wavelet based DIWS approach is directly comparable to a Full Multi-Grid
(FMG) method, where iterations are performed simultaneously on a sequence of adapted
resolution grids without the necessity to perform artifical V- and W-cycles. In the fol-
lowing, we demonstrate the enhanced iterative convergence of the DIWS scheme. For
completeness, we use Daubechies wavelets with four vanishing moments throughout. The
problem how to find the best adapted wavelet basis for the DIWS scheme is not addressed
here.

4.9.1 The V, x V,-space in a wavelet expansion

Without reviewing the theory of the discrete wavelet transform (DWT) we introduce
some of its features that are especially important for our study. For a basic review of the
why and how of the wavelet transform (WT), we refer to Mallat (1989) or Daubechies
(1992) for further readings. In Appendix A, we give a short introduction to the wavelet
theory which is mainly provided to set notations right and give a little understanding of
the wavelet features used here.

The DWT decomposes a signal on a sequence of nested finite difference grids (Vp D
Vi D Va... D V; D Vjii... D V) of decreasing resolution (Vo = V). The finest resolution
grid is denoted by Vg, the coarsest by V;. The basis for each resolution approximation
space Vj is constructed through dilations and translations of the so called scaling function.
The signal decomposition on scaling spaces of varying resolution is the basis of the multi-
resolution analysis (MRA). The scaling-spaces are complemented by the wavelet spaces
W;. The wavelet spaces are constructed by the wavelet function. The wavelet space
encodes the information that is necessary to interchange between different resolution
scaling spaces (V; @ W; = Vj_1). Together, the scaling and wavelet functions build an
orthogonal non-redundant wavelet transform.

With a slight abuse of notation, we set the V x V space equal to the initial signal
discretized with the finest spatial discretization step. This assumes equality of discretized
function values and scaling function coefficients so, = fr = f(zo + k- A), where the
finest approximation is set to jo = 0 and A is the spatial sampling, which obviously is
not right. For Daubechies wavelets, the so-called wavelet crime is permitted, because
the Daubechies scaling function approximatively verifies an interpolating property of the
form sq 1, = dox - f. For details we refer to the discussions by Strang and Nguyen (1996).

For example, we suppose a signal being projected on an orthogonal Daubechies wavelet
basis consisting of J = 3 resolution scales.

J=3
Pof =) siebre+ > dixthix

keZ =1 keZ
(4.10)

where f; are discrete function samples, k the spatial position parameter, and s; and dj
the corresponding discrete scaling and wavelet functions samples.
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Figure 4.10: A two-dimensional signal is projected on an orthogonal wavelet basis with
J = 3 resolution scales. (a) Time-Snapshot of wave propagation in a homogeneous
medium after 7' = 0.76s. (b) Structure of the wavelet transform on J = 3 reso-
lution scales. The initial signal is decomposed on three subsequently coarser grids
(Vizo,...3 X Vizo,..3-spaces) while the coarsest representation of the initial signal is also
stored in the final V3 x V3-space. Arrows denote interaction between different reso-
lution scales. (c) The initial signal decomposed on J = 3 resolution scales. The
Wiz1,..3 X Wi=1,. 3-spaces store the coefficients that are needed to change from one
to the next resolution scale. The V3 x V3-space is the coarsest discretized represen-
tation of the initial signal. All other contributions in spaces Vi=i .3 x W;=1 .3 and
Wiz1,..3 x Vi=1,..3 control the interaction between different resolution grids. The
wavelet transform stores a low frequency representation in the Vi x Vs-space and sub-
sequently higher frequency contributions in the W;— 3 x W;—y . 3-spaces. When the
Viz1,...3 X Vi=1,... 3-spaces are summed up with the W;—; _ 3x W;=1 . 3-spaces and includ-
ing interactions (Wi—1 . 3 x Vi=1, .3 and Vi—1, 3 x W;—1 . 3) spaces we obtain the initial
signal projection in the Vj x Vj-space. (d) We extract the V3 x Vz-space from the wavelet
transform in (c). This signal is a low frequency (coarse discretized) version of the initial
signal shown in (a).

In Figure 4.10a we show a time snapshot of a wave-field propagating in a two-
dimensional homogeneous media and in Figure 4.10c the corresponding projection on
an orthogonal wavelet basis. In the wavelet terminology, J = 3 resolution scales means
that the signal is distributed corresponding to its frequency content on three different
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grids of decreasing resolution, where each subspace W; x W; encodes the information
that is lost when going from a fine to the next coarser scale V; = V1. The spatial dis-
cretization of the signal is doubled while changing to the next coarser grid. Additionally,
the DW'T is accompanied by the V; x V; space, which represents an average of the signal
initially discretized on the Vj x Vj space (see Figure 4.10d). The projection of the signal
on different resolution grids is shown schematically in Figure 4.10b.

The orthogonal wavelet expansion of a signal provides the following important fea-
tures.

e We find the signal being decomposed on several grids of decreasing resolution up
to a pre-defined coarsest representation of the initial signal (scaling coefficients).

e The wavelet and interaction spaces (W; x W;, W; x Vj, and V; x W;) control the
information transfer between the coarsest V; and the finest resolution V{ level grid.
Therefore, spatial aliasing that typically occurs in CGC-FMG schemes is avoided.

e As was pointed out by Briggs and Henson (1993) and Beylkin (1998), the wavelet
transform therefore provides a tool to suppress V- and W-cycles in FMG techniques,
since grids of decreasing resolution and the corresponding grid interactions are
treated simultaneously.

e The wavelet expansion provides an adapted signal decomposition where frequency
components are automatically represented in the best suited resolution grid, with
respect to the spatial discretization. Misinterpretation of spatial frequency compo-
nents may be significantly reduced.

4.9.2 The DIWS algorithm

The DIWS algorithm, in general, resembles the one from the DISS, though now the it-
erative scheme will be applied to the wavelet expansion coefficients rather than to the
prolonged coarse-grid solution in the physical space. We propose the application of the
wavelet transform to construct fine grid solutions instead of manual prolongation by bi-
linear interpolation. Then, the DIWS approach resembles a wavelet-based FMG method,
where V- and W-cycles become obsolete. Since spatial frequency components are auto-
matically decomposed on the corresponding wavelet resolution spaces optimal iteration
may be performed and therefore the computational efficiency may be increased signifi-
cantly.  We compute coarse-grid wave-field solutions for each frequency component w;
and right-hand side (RHS) using the MUMPS direct solver (see Figure 4.11a and b). The
obtained coarse-grid solutions are recast in a wavelet expansion of the desired fine-grid so-
lution, where all wavelet coefficients are initially zero: Wi x W, = Vi xW; =W xV; =0
(see Figure 4.11c). In contrast, the scaling coefficients V4 x V7, are approximated by the
coarse-grid solution (see Figure 4.11c). The impedance matrix on the coarse grid is con-
structed through a wavelet-projection procedure. Initially, we define the physical model
parameters, such as the density, on the desired fine discretized grid, e.g., the density
model p"°, where hg is the fine-grid discretization step. In order to obtain a coarse-grid
model representation p™ (J denotes the coarse grid), we transform the fine-grid models
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Direct-Iterative-Wavelet Solver: Part I
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Figure 4.11: The Direct-Iterative-Wavelet Solver (DIWS): Part I. (a) The complex
impedance matrix is constructed for a coarse-grid discretization in the physical space. The
matrix is factorized into its LU-factors by the MUMPS direct solver and a wave-field solu-
tion for one frequency component is obtained by solving the resulting system of equations
(b). In (c) the calculated coarse-grid wave-field solution is then recast into the scaling coef-
ficients of the wavelet expansion of the desired fine-grid solution (V; x Vi-space), where all
wavelet and interaction coefficients are initially zero (W x Wy = Vi x W, = Wy x V) =0).

on the same wavelet basis as the one used later for the iterative scheme. From the wavelet
expansion we extract the coarse-grid model contribution in the scaling space and use it as
a physical parameter input model for the coarse-grid matrix construction. For example,
the fine-grid density model p™ is projected on J resolution scales:

J
Polp) =D suktbak+ > > dirtik

keZ =1 keZ

where phJ =s;eV;xVy
(4.11)

The scaling-space Vj x V provides the coarse-grid density model p"/. The model con-
struction process is illustrated in Figure 4.13. The RHS-model is obtained in the same
way. Note that the amplitude of the coarse-grid solution is scaled with respect to the
wavelet projection on a scaling resolution approximation space.

In this wavelet construction, all wavelet and interaction coefficients are not known
and need to be added somehow. We apply the iterative solver scheme to construct
the missing fine-grid wavelet coefficients, while the initial coarse-scale solution may be
updated if necessary (see Figure 4.12d and e). The complex impedance matrix is directly
constructed in the wavelet domain (see Figure 4.11d).

The application of the iterative solver on the wavelet basis brings some significant
advantages compared to the application in the physical domain. As was discussed before,
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Direct-Iterative-Wavelet Solver: Part II
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Figure 4.12: The Direct-Iterative-Wavelet Solver (DIWS): Part II. (d) We construct the
complex impedance matrix for the fine-grid discretization on the orthogonal Daubechies-
4 wavelet basis. Wave-field solutions are computed by a GMRES iterative solver, where
the initial solution is the coarse-grid solution expanded in the wavelet basis (see Fig-
ure 4.11(c)). The iterative solver constructs all missing wavelet and interaction coeffi-
cients (e). No additional V- and W-cycles are necessary to correct for spatial aliasing
and interpolation phase-shifts. The wave-field in the physical space domain is obtained
by an inverse wavelet transform (f).

the missing wavelet coefficients represent the projection of the true solution on different
resolution scales incorporating all interactions between the scales. A priori, we construct
wavelet coefficients simultaneously on all wavelet resolution scales. The wavelet expan-
sion provides a natural decomposition with respect to the frequency content of the signal
on a sequence of scales of decreasing resolution. We may drive the DIWS projection
scheme, such that local wavelet coefficients on a given resolution scale become relatively
high frequency, even though they are low frequency components when discretized on the
initial fine grid. Then, the iterative solver effectively prolongates the numerical solution
on the fine grid and, as a consequence, V- and W-cycles become obsolete. The simul-
taneous iteration on all resolution scales may then significantly accelerate the iterative
convergence. Finally, the desired fine grid solution in the physical space can be obtained
by applying the inverse wavelet transform (see Figure 4.12f).

4.9.3 First-order formulation

Initially, we compute a coarse-grid wave-field solution using the direct solver scheme for
the largest possible model configuration that can be handled by the presently available
computer resources. We then construct the complex impedance matrix in the wavelet
domain. This is explained in detail in the following.
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Figure 4.13: IHlustration of the procedure to define a physical parameter model used
for the coarse-grid impedance matrix construction of the DIWS modelling scheme. The
Corner Edge model is initially defined for the fine-grid DIWS configuration. Note that
in this illustration we plotted the density model, that is p = 2000kg/m? in the upper
and p = 2500kg/m? in the lower medium. In (a) the fine-grid model consists of 200 x
200 grid-nodes. The model is projected on the Daubechies-4 wavelet basis with J = 2
resolution scales (b). From the expansion we extract the V) x Vj-scaling space. This
coarse-scale representation of the initial fine-grid Corner Edge model is used for the
coarse-grid impedance matrix construction (c). A similar coarse-grid model construction
is applied for the source function.

We formulate the SH-wave equation as a first-order hyperbolic system of equations
with PML absorbing boundary conditions in the frequency domain (see Equation 4.6).
In order to construct the complex impedance matrix in the wavelet domain, we project
the system of Equation 4.6 on a 2D orthogonal wavelet basis with respect to the spatial
coordinates x and z:

WliwEep - vy | W + W[%]WT = W[-S|WT
Wiist.p v, WT + WZLWT = g

w [z'w&% 0 |WE + W [agf]WT + W[ag;qu ~ 0

W[iw{z% oy W+ W[%]WT + W[%]WT = 0

(4.12)

where W and W7 denote direct and inverse wavelet transform operators, respectively.
In the system of Equation 4.12 three different kinds of terms need to be projected on the
wavelet basis. The first term is the product of medium parameters p and p with the wave-
field components e.g., vy, etc. The second and third terms are spatial derivative operators
0/0x and 0/0z in x- and z-direction, respectively. We will discuss the projection on the
orthogonal wavelet basis for each term separately. The complete wavelet transformation
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is provided in Appendix B. The equations in matrix-type form are:

W iwé, p)| W' 0 W[ o, W 0
0 Wiwé, p| W' 0 W[lo,, W
WZ2IW! WGWT Wiwg, LW 0
W[ 2w W[ w7 0 Wliws, L]W7
W, ]WE W[-S|WT
W, JWT | 0
Wio, |WT | = 0 (4.13)
Wio,, W' 0

The products of physical medium parameters with the wave-field components are situated
around the diagonal in the complex matrix. The wavelet projection of these products
requires the computation of a convolution-type system:

Wliwé, (2, w)p(w, 2)vye (2, 2, ,w) W =
SN <wvyelz, 2,w), 515 >< Piths, iwke (2, w)p(, 2) it > Yitha

af i
(4.14)

where 1; ; and 1), g denote wavelet and scaling basis functions in the x- and z-direction,
respectively. The combined inner products form a term-to-term product of the wavelet
expansions of medium parameters iwé;p and wave-field components vy,. The wavelet
projection of the diagonal terms (Equation 4.13) plays a key role for the CPU-time re-
quirements of the complex impedance matrix construction on an orthogonal wavelet basis.
A similar computational procedure was encountered by Operto et al. (2002), who per-
formed wavelet-based FD modelling in the time-domain. The DIWS requires convolution
projections (Equation 4.13) to be computed only once before the modelling starts.

However, computational inefficiency related to costly convolution projections are likely
to become obsolete or, simplifying, the standard situation. The incorporation of increas-
ingly complex wave phenomena in modelling schemes, in the end will lead to non-linear
wave propagation simulations. In this context, the rather simple linear PDE used here, is
replaced by a non-linear one, that by definition will require the computation of products
as encountered in Equation 4.13. While standard techniques at this point will struggle,
the wavelet-based DIWS will not require more computational power than before.

We have preferred the development of the DIWS scheme using a first-order hyper-
bolic formulation instead of the second-order standard FDFD formulation. The reason
becomes clear when estimating the computational effort necessary to construct the com-
plex impedance matrix in the wavelet domain. In case of the first-order formulation,
the construction of one coefficient c;, = Wliwé;pjo] W in the matrix (Equation 4.13)
requires the multiplication of medium parameters with the wavelet basis functions ; and
1. The term-to-term product is then computed via the matrix-vector product through
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corresponding storage of transformed terms in the matrix. We are interested in fast com-
putations of the diagonal terms in order to keep the computational cost of the DIWS
scheme as low as possible. The Daubechies-4 quadrature mirror filters that define the
wavelet expansion consist of 4 coefficients only and therefore lead to fast convolution
projection algorithms.

In order to evaluate the computational cost for one coefficient Wiw&,p - vy, |W'
we assume dense basis functions. Then the convolution computation for the first-order
hyperbolic system is proportional to N* floating point operations, where N denotes the
spatial model dimensions nx = nz = N.

We compare the first-order hyperbolic matrix to the standard second-order FDFD
formulation combined with a similar projection on an orthogonal wavelet basis (see Ap-
pendix B for details). The coupled spatial derivatives applied to the product of medium
parameters and wave-field components is projected on the wavelet basis. This gives:

WA (o, 2) e, ), 2, )W = 373 < vyl 2,00, iy >

or
a’ﬂ i’j7k’l

0 0
< %d}kad}l >< %@biad}j >< d}kd}ﬂaéw(gjaw)p(waz)d}jd}a > ¢i¢a
(4.15)

The construction of the second-order analogues of the complex impedance matrix requires
the computation of two term-to-term products plus the product of medium parameters
and wavelet basis functions. As before, we assume dense basis functions to evaluate the
computational cost, and obtain N©.

Since the second-order hyperbolic wave equation combined with the wavelet transfor-
mation is proportional to N® floating point operations compared to N* for the first-order
hyperbolic formulation, we developed the DISS and DIWS solver schemes using the lat-
ter approach. Moreover, the first-order hyperbolic velocity-stress formulation of the wave
equation allows the introduction of more complex rheological laws (non-linear elasticity)
at almost no additional cost.

4.9.4 Derivative projection on wavelet basis

To complete the wavelet expansion of terms appearing in the complex impedance matrix
we discuss the projection of spatially staggered derivative operators on an orthogonal
Daubechies wavelet basis. The entire development is shown in Appendix B.

We apply the orthogonal wavelet transform to the product of spatial derivatives in x-
and z-direction and wave-fields vy, vy, 04y and 0,,. As an example, we give the results
for the velocity wave-field components vy, and vy,:

0 0
Wotya(2,2,w)]WH = =3 > 0 < ooty ) >< 0ya(5, 2,0), Pitha > Yitha
a4,

(4.16)
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0 0
Wlo-vya(2,2,@) W = =3 > 1 < =tha, g >< vye(w,2,0), Yiths > Pitba
a1

(4.17)

In practice, the derivative operator may be constructed in the wavelet domain follow-
ing two different approaches. The first one was developed by Beylkin et al. (1991) and
Jameson (1993). They directly derived the operator coefficients for FD derivatives from
the definition of scaling and wavelet interpolating functions of several different orthogonal
Daubechies wavelet bases.

In contrast, Wu and McMechan (1998) discretized the spatial FD operator in the
physical domain (which approximately corresponds to the FD operator in the Vj-space)
and then computed its projection in the wavelet domain. Their approach is independent
of the properties of scaling and wavelet functions, as long as they form an orthogonal
basis.

In case of the Daubechies-4 wavelet basis, both approaches lead to the same oper-
ator coefficients in the wavelet basis, if the standard FD operator in the Vj-space is
the non-staggered centered difference stencil (—1/12,+2/3,0,—-2/3,+1/12). Moreover,
Jameson (1993) showed that the projection of this FD operator on a Daubechies-4 or-
thogonal wavelet basis results in a local FD operator on each resolution scale together
with interaction spaces that relate different FD approximations on different resolution
scales.

For simplicity, we follow the latter approach by Wu and McMechan (1998) and con-
struct discrete staggered derivative operators in the physical space and transform then in
the wavelet space.

4.10 Numerical Examples

We show two SH-wave propagation simulations in strongly heterogeneous media. Both
examples have been computed for the DISS and DIWS using similar physical model
parameters and source and receiver setup in order to allow relative comparisons of the
two approaches. Even though we show 2D examples only, we would like to remind that
the DISS and DIWS approaches were developed in view of large-scale wave-field simul-
ations in complex 3D media. However, at this stage we address a verification of the code
together with first insights to the convergence performance of the space bilinear interpo-
lation and wavelet-based preconditioning of the complex impedance matrix. The wave
propagation simulations are currently run on a single desktop computer in sequential
mode. This significantly limits the actual model size treated, though first wave simul-
ations and proofs of the method are not negatively influenced by the 2D simulation. The
passage from 2D to 3D necessarily includes the transformation of the sequential code to
run on large state-of-the-art super-computers (e.g., PC-Clusters) using an MPI (Message
Passing Interface Forum, 1994) based parallelization of the matrix construction and the
direct and iterative solver. Provided the outcome of the 2D numerical tests, we will de-
velop strategies for the desired real-case 3D simulations that may be compared to other
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highly optimised modelling schemes, such as a spectral-element code.
We used the same source configuration for all model simulations. The source is
spatially set on one grid-node without smoothing over neighbouring points,

S(z,z,t) = S(t)o(x —xs)0(z — 2)
(4.18)

The time signature is the derivative of a Gaussian,

2

S(t) = —2a(t —ty)e ltt)
(4.19)

with a = 200, {9 = 0.31sec and a maximum frequency of 10Hz. In order to simulate
infinite model dimensions, we added PML absorbing boundary layers on all four edges
of the model. Problems related to the free-surface implementation are not addressed
at this stage. The PML attenuating function, denoted by v in Equation 4.5 (£ = 1 +
iy/w), smoothly rises from 0 at the interior model-PML boundary up to some empirically
estimated value at the outer PML boundary (Operto et al., 2002).

4.10.1 The Corner Edge model

The first wave simulation is performed for the Corner Edge model for two different direct-
iterative grid combinations. The Corner Edge model consists of two homogeneous spaces,
that are separated by horizontal and vertical interfaces that build a corner. The medium
surrounding the corner edge has a wave velocity of v = 2000m/sec and density p =
2000kg/m?, while the medium inside the corner has a wave velocity of v = 8000m/sec
and a density of p = 2500kg/m3. The significant physical parameter contrast between
the two spaces creates a strong reflection from the interface and a diffraction from the
corner point. The physical model size is 6400m x 6400m with an additional PML layer
of 800m thickness on all four edges of the model. All wave simulations were carried out
using fourth-order derivative approximations. Frequency maps are calculated separately
for 103 frequency components that equidistantly sample a frequency band from 0Hz to
10H z. This corresponds to a time sampling of dt = 0.01sec and an overall time-length
of the seismogram of 6sec.

Simulation 1: Two-step case

The first numerical Corner Edge simulation for the DISS/DIWS schemes was set up for
a so-called two-step geometry, that is equivalent to a two-grid multi-grid scenario. The
coarse-grid wave-field solution is calculated on a numerical grid having a spatial dis-
cretization of at least 2.5 points per shortest wavelength for the slowest velocity present
in the model. We then halfed the discretization step and computed the fine-grid contri-
butions by the iterative solver part. The name two-step denotes the fact that the spatial
discretization for the direct and iterative computations of the DISS scheme changes by a
factor of two, which is similar to a DIWS-projection on two resolution scales (J = 1).



4.10 Numerical Examples

97

Offset [Km] Offset [Km]
4 6 0 2 4 6

\' OXx

Figure 4.14: Wave-field solution for a fine-grid Corner Edge simulation. Frequency maps
are computed by the DISS for the frequency f =~ 8Hz. From left to right, we plot fre-
quency maps for the three wave-field solutions vy, 0., and o for the first-order hyper-
bolic system of equations in Equation 4.7. Note that the velocity wave-field is recombined
from its PML components (vy = vy, + vy;). Clearly visible are strong reflections (R) as
well as guided (G) and transmitted (T) waves from the horizontal interface. Diffraction
phenomena from the corner point where the wave speed and model density change sig-
nificantly from one grid point to the next are indicated by (D). On all four edges of the
model we note wave-attenuation in the PML absorbing layers.

Both solver approaches compute coarse-grid wave-field solutions using the direct solver
MUMPS in sequential mode. The coarse-grid spatial sampling was set to de = dz = 80m,
which gives a numerical grid of 100 x 100 grid-nodes including 10 nodes for the PML layers
on each side of the model. The coarse-grid discretization leads to 2.5 grid-nodes per
shortest wavelength. Fine-grid solutions are calculated on a grid having double size i.e.,
200 x 200 grid-nodes including 20 nodes for the PML. The fine-grid spatial discretization
is reduced from 80m to 40m. The source is located at the position (250m,4000m).

Wave-field solutions are computed for a fixed number of iteration steps of n; = 1500.
In Figure 4.14, we show an example of a fine-grid wave-field solution computed by the
DISS for the frequency f =~ 8Hz. From left to right, we plot the frequency maps for
the wave-field solutions vy, 0gy and o, (see Equation 4.7). Note that the velocity wave-
field has been re-combined from its PML components v, = vy, + vy,. Clearly visible
are wave-field reflections (R), guided (G) and transmitted (T) waves, and diffractions
(D) from the horizontal interface and the corner point where physical model parameters
change significantly from one grid-node to the next. In Figure 4.15 and Figure 4.16, we
show DISS seismograms computed from the coarse-grid direct solutions (Figure 4.15) and
the results from the fine-grid iterative solver (Figure 4.16). Eighty receivers were lined
out over the whole physical model (without PML boundaries) with a spacing of 80m.
In addition to the complete seismograms we also include three extracted traces, namely
trace number 10, 50, and 75. The extracted traces are compared to an analytical solution
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Figure 4.15: Seismogram for the Corner Edge model computed from the coarse-grid direct
solution of the DISS. The seismogram includes arrivals from 80 receiver stations equally
separated over the whole model (receiver spacing: 80m; receiver depth: 150m). We
also plotted three extracted traces (trace-number: 10, 50, 75) together with an analytic
solution for the upper model full-space, which allows the verification of the direct wave
only. We used 2.5 grid points per shortest wavelength to fix the coarse discretization step.
Therefore, the time-seismogram shows significant amount of noise due to wave dispersion.

that was computed for a homogeneous media having the physical specifications of the
upper full-space in the Corner Edge model. The analytic solution is added to verify the
correct simulation of the direct wave, and moreover to demonstrate possible numerical
dispersion on far offset traces.

The seismogram in Figure 4.15 is affected by a significant amount of noise, because
numerical dispersion limits for FDFD modelling in strongly contrasted media are not
respected properly. Still, the direct first arrival and the reflection of the interface between
the two media are clearly visible. The interpolated coarse-grid frequency maps serve as
initial solution for the iterative scheme. From Figure 4.16, we observe that halfing the
spatial discretization step by a factor of 2 and applying an iterative solver, produces a
dispersion-free wave-field simulation. We detect direct and reflected (R) arrivals and note
the presence of a weak diffraction event (D), that is excited by the corner edge.

In general, the PML absorbing boundary conditions work well for the Corner Edge
model, though in Figure 4.16 we clearly remark a spurious reflection (N) at Trace 75 and
t = 3sec, that propagates from left to right in the seismogram. Numerical tests performed
to evaluate the performance and accuracy of wave absorption using PML worked well
for structurally simple models. For more complex models, such as the Corner Edge,
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Figure 4.16: Seismogram for the Corner Edge model computed from the fine-grid itera-
tive solution of the DISS. We clearly distinguish between wave-field reflections (R) and
diffractions (D) from the horizontal interface and the corner point, where physical model
parameters change significantly from one grid-node to the next. We observe good atten-
uation of the wave amplitude for all four PML absorbing layers surrounding the model.
Note the spurious reflection that travels from right (trace 75, ¢ = 3sec) to the left (N).
This noise is caused by improper treatment of the PML absorbing boundary conditions.
Its amplitude, though largely enhanced here, is approximately similar to the rather weak
diffraction event from the corner edge located in the middle of the seismogram.

our rather empirical PML study did not reveal a simple and sufficiently accurate PML
attenuating function and needs to be investigated in greater detail. In this article, we
are mainly interested in the comparison of the DISS and DIWS method with respect
to the performance and accuracy of the iterative scheme, and therefore leave the PML
problematic aside.

In Figure 4.17, we show the DIWS Corner Edge seismogram that is computed using
similar modelling parameters as the ones used for the DISS simulation for a two-scale
geometry. In wavelet language, two-scale geometry corresponds to a projection of the
wave-field on two resolution scales (J = 1).

The initial solution for the iterative solver in the wavelet domain consists of the coarse-
grid solution recast in the Vi x Vi-space, where fine-grid and interaction coefficients in
spaces W1 x Wy, Wy x Vi and Vi x Wy are initially zero. Then, the GMRES iterative solver
constructs the missing wavelet coefficients on all resolution scales W; x W; simultaneously
and the grid-interaction-coefficients in spaces Wi xVj and Vi xW1. More important is that
the iterative solver also modifies the coarse-grid scaling space coefficients, such that the
low-frequency components are adapted on the fine-grid automatically with respect to the
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Figure 4.17: Seismogram for the Corner Edge model computed from the fine-grid iterative
solution of the DIWS. Wave arrivals have been computed for 80 receiver stations having
a horizontal distance of 80m and depth of 150m. We plot three extracted traces (trace-
number: 10, 50, 75) together with an analytic solution for the upper model full-space,
which allows the verification of the direct wave only.

fine-grid high-frequency content. The modification of the scaling space is similar to the
Coarse-Grid Correction scheme of a Full Multi-Grid method, while the wavelet coefficient
construction corresponds to a relazation process on the fine-grid. The wavelet scale
interactions may be interpreted as the interpolation and restriction procedures in a V-
and W-cycle. DIWS-wavelet iteration performs complete multi-grid cycles simultaneously
at each iteration step, and therefore may provide superior iterative convergence rates.

In Figure 4.18, we plot a final frequency map (f ~ 8H z) in the wavelet basis iteration
(from left to right, we plot vy, 04y and o,,). Each wave-field in the wavelet domain
consists of the V; x Vi-space, the W1 x Wi-space, and two interaction spaces V7 x Wy and
Wi x V1. We note that coefficients having strong amplitude are constructed in the wavelet
and interaction spaces for the upper medium, while the corner edge medium is encoded
by coefficients with weak amplitude throughout. Moreover, the wavelet decomposition
clearly identifies the strong velocity contrast at the interface between the two Corner Edge
spaces. The heterogeneous distribution of coefficients with varying amplitude illustrates
the strong influence of the wavelength change (v = A x f) due to the change in physical
parameters between the two media of the Corner Edge model.

The distribution of wavelet coefficients with respect to the complexity of the model
structure and the inherent frequency content in a wavelet expansion formulation allows
the definition of space adaptivity through the introduction of numerical masks (Operto
et al., 2002). We may define model regions where wavelet coefficients do not contribute
to the wave-field simulation in certain resolution approximation spaces. Adaption to a
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Figure 4.18: Wave-field solution for the DIWS fine-grid Corner Edge simulation. Fre-
quency maps are computed by the DIWS for the frequency f ~ 8Hz. From left to right,
we plot frequency maps for all wave-field solutions vy, 04y and o,, on two wavelet reso-
lution scales (J = 1) using the Daub4 wavelet basis. The upper left block is the wavelet
space (Wy x Wy), upper right and lower left blocks interaction spaces (V3 x Wi and
W1 x V1) and the lower right block the scaling space (V} x Vp). Clearly visible are strong
reflections from the horizontal interface and diffraction phenomena from the corner point
where the wave speed and model density change significantly from one grid point to the
next. On all four edges of the model we also note the wave-attenuation in the PML
absorbing layers.

local physical parameter that characterises the behaviour of the wave-field solution may
be obtained by inspecting the smoothness of the model structure. A typical region to
apply a mask would be the corner edge space on the fine-grid approximation scales in
Figure 4.18, where wavelet coefficients are small and therefore do not provide significant
contributions to the wave-field propagation at this frequency component. Although we
expect great CPU-time savings from the definition of masks, at this initial stage of the
DISS-DIWS comparison we did not address its implementation in the DIWS algorithm.

We compare the DISS and DIWS wave-field solutions to a time-seismogram that was
computed using a standard fourth-order staggered TDFD modelling scheme. The DISS,
DIWS and TDFD seismograms are shown in Figure 4.19. The overall fit of the three
solutions is good. We observe slight phase shifts between the TDFD and the FDFD
solutions for the reflection event from the corner edge interface. This illustrates the
approximative character of the iterative wave-field solutions computed by the DISS and
DIWS. An increase of GMRES iteration steps eliminates these artefacts.

Differences in CPU-time between the two DIS methods are related to the iterative
part of the algorithm, since both use the MUMPS solver for the coarse-grid computations.
Moreover, the DISS and DIWS prolongation of the coarse-grid solution is negligible from
a computational point of view. Therefore, we compare the DISS and DIWS performance
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Figure 4.19: Comparison of time-seismograms for the Corner Edge model computed by
the DISS, DIWS and a TDFD modelling schemes. The continuous, dotted and dashed
lines show the TDFD, DIWS and DISS solutions, respectively. The overall fit is good.
We observe phase shifts between the TDFD and FDFD solutions for the reflection event
from the corner edge interface.

for the matrix construction and convergence of the iterative scheme. At this stage, we
are mainly interested in the comparison of the DISS and DIWS iterative convergence be-
haviour under spatial and wavelet-based preconditioning by an initial coarse-grid solution
(nested iteration).

The DIWS impedance matrix needs to be constructed analytically in the wavelet do-
main by projecting matrix sub-blocks in the wavelet space (see Equation 4.13). Spatial
derivative operator expansions and convolution-type wavelet projections for diagonal ma-
trix blocks (see Equation 4.13) are performed only once before the modelling starts. For
each frequency component, the DIWS-matrix is then easily constructed by combining
pre-computed terms with the complex angular frequency w;. In the current implementa-
tion, we did not seek to optimise the sequential convolution computations which results
in large DIWS matrix construction times. For example, the construction of all diag-
onal matrix blocks in Equation 4.13 for the DIWS Corner Edge simulation on J =1
resolution scales, requires t4,,,,, s = 70min. In contrast, the DISS fine-grid impedance
matrix construction in the space-frequency domain for the same Corner Edge model is
done at practically no computational cost (t4,,,ss = 1sec). Note that all computations
are carried out on a stand-alone Linux-PC with 1GByte of RAM and 1GH z speed.

The GMRES iterative solver is set to perform a fixed number of iterations nj%" =

1500 with a tolerance (backward error) of tol = l.e~". Note that the case where the
tolerance is fixed and the number of iterations required for convergence is investigated,
is not addressed at this initial stage. The DISS and DIWS CPU-time for nj%* = 1500
iterative steps for a single frequency simulation on the 200 x 200 fine-grid is ranging from
torm. = 11/10min to ty ~ 12/11min, respectively.

10Hz
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Figure 4.20: Comparison of three traces that are extracted from the DISS- and DIWS-
seismograms of the Corner Edge model. Fine-grid solutions are obtained after n; = 1500
iteration loops. The dotted line is the DISS, the dashed line the DIWS solution. The
continuous line is the difference between DISS and DIWS solutions. In order to visualise
any differences we limited the amplitude to 10% of the maximum amplitude. Only on
trace 75 slight differences can be observed, while the overall fit is practically perfect.

For the DISS two-step and DIWS two-scale simulations, no significant difference in
CPU-time is observed, even though the number of non-zero coefficients in the DIWS-
matrix compared to the DISS-matrix is significantly larger. Normally we would expect
an increased number of matrix-coefficients to be accompanied by an increase of CPU-time
to perform the fixed number of iterations. This is not confirmed by our simulations and
gives a first indication of an accelerated convergence rate for the wavelet preconditioning.

In Figure 4.20, we show the DISS and DIWS comparison of the fine-grid Corner Edge
solution for three extracted traces (trace-number 10, 50 and 75). Note that the traces
amplitude is cut-off at 10% of the maximum amplitude. The ringing on the traces, for
example, on trace 10 for Osec < t < 1.8sec, is due to the wave-field solution being com-
puted by an iterative solver in the frequency domain with a limited number of iteration
steps. Increasing the number of iterations may suppress ringing completely. The overall
fit for the first arrival and reflection is good. More interesting is the difference of the
DISS and DIWS solutions that we observe on trace 75 for times Osec < ¢ < lsec and
3sec < t < 4sec. The DISS solution (dashed line) shows stronger ringing compared to
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Figure 4.21: Seismogram for the Corner Edge model computed from the DISS coarse-grid
solution. The spatial discretization step was set to Az = Az = 160m, which corresponds
to 1.25 grid points per shortest wavelength. Because of the large under-sampling of
wavelength components strong wave dispersion dominates the seismogram.

the DIWS solution (dotted line).

Simulation 2: Four-step case

We performed a second wave simulation for the Corner Edge model using the same model-
, source- and receiver-geometry as before. In contrast to the first simulation, we now
compute wave-field solutions on a coarse-grid that has half the size of the previous one.
The prolongation of the DISS and DIWS coarse-grid frequency solutions is performed
on the same fine-grid used for the two-step scenario (200 x 200). This is similar to
a two-grid situation, where the spatial discretization of the coarse-grid is divided by a
factor of 4 for the fine-grid simulation. For the DIWS scheme, this implies a wavelet
decomposition on J = 2 resolution approximation scales. The grid-combination set-up
is therefore denoted by four-step/three-scales geometry. The coarse-grid has a size of
50 x 50 grid nodes, of which 5 nodes on each side of the model are PML absorbing layers.
The spatial discretization on the coarse-grid is do = dz = 160m, which corresponds to
1.25 grid points per shortest wavelength. Applying the decimation factor 4 then gives a
spatial discretization for the fine-grid of do = dz = 40m.

In Figure 4.21, we show the seismogram obtained by the coarse-grid wave simulation.
Because of the large spatial discretization step with respect to the highest frequency
modelled, we observe strong wave dispersion that significantly pollutes wave-arrivals in
the seismogram. As for the two-step case, the DISS scheme required ¢ty ~ 11/12min



4.10 Numerical Examples

105

CPU-time to perform the fixed number of iteration steps (n]}%" = 1500), since despite
of a modified phase-error of the initial iterative solution, the physical dimensions of the
fine-grid stayed unchanged (number of non-zero coefficients in the DISS fine-grid matrix
similar for two-step and four-step geometry). In contrast, the CPU-time necessary to
construct the DIWS fine-grid matrix increases to 80 minutes, due to an increased number
of non-zero coefficients in the wavelet decomposition on three scales. Moreover, this
increase automatically leads to less efficient matrix-vector and dot-products during the

iteration steps, i.e., t; &~ 20/21lmin CPU-time for n72" = 1500 DIWS iteration steps.

iter

In Figure 4.22, we plot the comparison of the DISS and DIWS fine-grid solutions
for the four-step geometry. The DISS solution significantly improved when compared to
the previous two-step/two-scales simulation example, and now fits much better to the
DIWS solution. This is due to the DISS solution being less ringing than for the two-step
case. The improvement is related to the DISS low-frequency components being better
represented by the interpolated coarse-grid solution with respect to the convergence of
the GMRES iterative solver. This behaviour is not surprising, since standard multi-grid
V- and W-cycles, and especially Coarse Grid Correction (CGC), descend from a fine to
sets of coarser grids in order to obtain favourable iterative convergence conditions for the
fine-grid low frequency components.

In order to better quantify differences between the two- and four-step simulation
examples, we plot separately the direct comparison of the two DISS and DIWS solutions
in Figure 4.23 and Figure 4.24, respectively. Moreover, in both Figures 4.23 and 4.24 we
add the approximate exact solution that is obtained by the DISS scheme using n;; = 5000
iteration steps. As before, we observe an overall good agreement for both DISS and DIWS
comparisons for traces 10 and 50. In contrast, trace 75, that is seunsitive to the strong
reflection from the horizontal corner edge interface shows remarkable differences for the
DISS solutions. We find the four-step DISS solution (dotted line) significantly less ringing
than the two-step solution (dashed line), which is related to the better representation of
fine-grid low-frequency components on the four-step rather than the two-step coarse-grid.
Nevertheless, increasing the number of DISS iteration steps (up to ny = 5000) provides
a ringing-free seismogram (continuous line solution in Figure 4.23), but also increases
significantly the CPU-time from #1500 &~ 10min to ts000 ~ 20min.

The DIWS wave simulations for the two/three-scales setups do not suffer from similar
artefacts. Both simulation results fit well and practically no differences in amplitude are
observed. Note that wiggles on trace 10 at ¢ ~ bsec and trace 75 at ¢ ~ 3.5sec are
artificial noise due to the model-PML reflection. The multi-scale formulation effectively
combines numerical grids of varying resolution where grid interactions are accounted for
automatically. Therefore, the performance of DIWS iterations on the wavelet coefficients
is significantly less dependent on the number of iteration steps performed, since DIWS
is comparable to a Full Multi-Grid (FMG) method where resolutions grids are treated
simultaneously.
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Figure 4.22: Comparison of three traces, that are extracted from the DISS- and DIWS-
seismograms of the Corner Edge model for the four-step geometry after n; = 1500
iteration loops. The dotted line is the DISS, the dashed line the DIWS solution. The
continuous line is the DISS solution after n;; = 5000, which serves as the exact final
solution. The amplitude is limited to 10% of the maximum amplitude in order to visualise
any differences. Practically no difference between the two solutions can be observed.

4.10.2 The Marmousi model

We perform a second wave simulation example for a windowed part of the Marmousi model
(Bourgeois et al., 1991). This case-study illustrates the iterative performance of the DIS
approach for a wave simulation in a structurally complex heterogeneous media. DISS and
DIWS wave-field simulations have been performed for a two-step situation. We applied
PML absorbing boundary conditions on all four edges of the model (10, 20 grid nodes of
the coarse-grid and fine-grid). The velocity in the model ranges from 1500m/sec up to
4500m /sec and the density from 1000kg/m? to 2500kg/m?. We use a spatial stepping of
dx = dz = 16m and 8m for the coarse- and the fine-grid simulations, respectively. This
corresponds to approximately 10 and 20 grid-nodes per shortest wavelength, respectively.
The source, located at (dzs; = 50m,dzs = 720m), is the derivative of a Gaussian having
similar properties as the one used for the Corner Edge simulations.

Wave-field solutions are computed for 52 frequency components distributed over a
range of frequencies from fii &= 0Hz to fier = 10Hz. Receivers are spread out over
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Figure 4.23: Comparison of the two-step and four-step wave-field solution computed by
the DISS. The dotted line is the fine-grid solution for the two-step setup setup and the
dashed line for the four-step setup simulation. The continuous line is the DISS solution
after n; = 5000, which serves as the exact final solution. Only a slight difference can be
observed on trace 75.

the whole model at a depth of 100m and spacing of 12.5m. An example of a frequency map
(f = 9.5Hz) for the vy-velocity component (vy = vy, + vy.) is shown in Figure 4.25. In
(a), we plot the wave-field solution after n; = 3000 fixed GMRES iteration steps on J = 1
resolution scales. In the bottom right block of (a), we see the wave-field projection on the
V1 x V1 scaling approximation space. The upper left block is the fine-grid contribution to
the vy-wave-field (W7 x W) with respect to the initial Vg x V wave-field approximation.
Note the high frequency contribution on the fine wavelet scale in the surroundings of the
source excitation location. The other two blocks illustrate the coupling between the two
wave-field approximations spaces. Figure 4.25b is the same wave-field inverse wavelet
transformed in the physical space.

Wave-field simulations are performed for different grid-model dimensions and number
of fixed GMRES iterations (GMRES tolerance: tol = l.e — 7). We find the number
of DISS iteration steps required to provide dispersion-free wave simulations strongly in-
creased. In contrast, the DIWS simulations shows stable iteration rates that are inde-
pendent of grid size and number of resolution-grids used.

For example, we perform a DISS and DIWS wave simulation using a coarse-grid and
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Figure 4.24: Comparison of the two-scales and three-scales wave-field solution computed
by the DIWS. The dotted and dashed lines denote fine-grid wave-field solutions for the
two- and three-scales simulation, respectively. The difference between the two is plotted
as continuous line.

fine-grid of size 105 x 110 and 210 x 220, respectively. The DISS and DIWS seismograms
for n;; = 3000 number of iterations are plotted in Figure 4.26 and Figure 4.27. The DISS
seismogram contains strong vertically vibrating noise that hides interesting wave propa-
gation events. In contrast, the DIWS simulation provides a dispersion-free seismogram.
We extract three traces from each of the seismograms and plot the direct DISS-DIWS
comparison in Figure 4.28. On all traces, we observe ringing of the DISS solution. Far
offset traces, with respect to the source position, show stronger ringing artefacts.

We increase the maximum number of iterations from n; = 3000 to n; = 5000 and
re-compute DISS iterative wave-field solutions. Moreover, we compute the exact seis-
mogram using the direct solver for the fine-grid model setup. In Figure 4.29, we show
the comparison of three traces obtained by the exact direct solver and the DISS after
n; = 3000 and ny; = 5000 iteration steps. The increase of iteration steps significantly
reduces the previously detected ringing, and the DISS solution perfectly fits the exact
wave-field solution.

As for the DISS, we compare extracted traces for the DIWS simulation with the exact
Marmousi seismogram. In Figure 4.30, we plot the exact solution and two DIWS iterative
solution approximations after n; = 1500 and ng; = 3000 iteration steps. Even though
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Figure 4.25: Frequency map (f ~ 9.5Hz) computed by the DIWS scheme for the win-
dowed Marmousi Model. In (a) we show the frequency distribution of the wave-field
velocity component (v, = vy, + vy,) on the wavelet basis with J = 1 resolution scales.
Note that we only plotted the real part of complex valued wave-field. The gain in (a) is
significantly increased in order to enhance the interaction coefficients that appear on the
boundaries of different layers in the model with varying physical parameters. Application
of the inverse wavelet transform gives the velocity wave-field component in the physical
domain in (b).
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Figure 4.26: Time seismogram for the Marmousi model. The coarse-grid solution is
extrapolated from 105 x 110 nodes (dz = dz = 16m) to the fine-grid 210 x 220 (dz =
dz = 8m) by a bilinear interpolation. The seismogram is computed after n; = 3000
iteration steps in the frequency domain.
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Figure 4.27: Time seismogram for Marmousi model computed by the DIWS scheme. We
use J = 1 wavelet resolution spaces (coarse grid: 105 x 110/dz = dz = 16m, fine grid
210 x 220/dz = dz = 8m). The maximum number of iteration steps is set to 3000.

the DIWS iterative wave-field solution after n;; = 1500 still has deficiencies, at this early
stage (in terms of number of iterations) it already reproduces the main structure of the

final seismogram. After n; = 3000 iteration steps the DIWS provides a seismogram that
fits the exact solution very well.
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Figure 4.28: Comparison of three traces that are extracted from the Marmousi model
DISS- and DIWS-seismograms. The dotted and continuous lines are the DISS and DIWS
fine-grid solution after n; = 3000 iteration steps, respectively.

Computation times for different number of DISS and DIWS iteration steps are given
in Table 4.2. For a fixed number of iterations n; = 1500, the DISS requires ~ 40%
less computation time than the DIWS, though the obtained DISS wave-field solution is
strongly distorted by noise. In order to obtain a qualitatively dispersion-free wave-field
solution, the DISS scheme needs ~ 30% more computation time than the DIWS scheme.
The increase in iterative computation time is significant if one has to perform iterations
for many RHSs.

4.10.3 Discussion

The DISS and DIWS are tested for two complex modelling scenarios. Wave-field sim-
ulations in the Corner Edge model are performed for a two-step and four-step setup,
where spatial discretization steps change by a factor of 2 and 4 between the coarse- and
fine-grid. The second wave propagation simulation for the Marmousi model is performed
using a two-step combination.

The spatial DISS approach permits fast and efficient matrix constructions. In general,
the computation time related to the DIWS matrix construction is greatly increased,
because of convolution-type projections in the wavelet space. Although expensive, the
convolution calculations are carried out only once before the modelling starts.

The DISS matrix is sparse and therefore provides efficient computations of GMRES
iteration steps. In contrast, the number of non-zero coefficients in the DIWS-matrix
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Figure 4.29: Comparison of three traces that are extracted from the Marmousi model
exact seismogram and the DISS-seismograms after n; = 3000 and n;; = 5000 iteration
steps. The continuous line is the exact wave-field solution, the dotted and dashed lines
the DISS solutions for n; = 3000 and n; = 5000 iterations, respectively.

increases with respect to the number of wavelet resolution scales used. Therefore, iterative
matrix-vector and dot-product computations are slowed down, when compared to similar
products in the physical space. We did not address any space adaptivity implementation
at this stage of the development, although the wavelet formulation naturally supports the
definition of spatial masks that significantly increase the computational performance.

Nevertheless, the multi-scale formulation through wavelet-based iterations provides
a Full Multi-Grid environment, where intermediate iterative solutions on all resolution
scales are directed versus the correct final solution in a desirable automatic manner.
Already a relatively small number of iteration steps provide a useful homogenized version
of the final solution. With increasing iterations the wavelet and scaling coeflicients are
modified to finally construct the fine-grid wave-field solution.

The iteration on the wavelet basis is favourable, because interactions of the fine-grid
and coarse-grid approximations are accounted for automatically. Even though the DIWS
matrix construction is expensive, it is only performed once. More important is the reduc-
tion of necessary iteration steps required to compute a dispersion-free wave-field solution,
if one simulates large-scale multi-source experiments. The CPU-time performance may be
increased in the future through the invention of space adaptivity and optimised parallel
wavelet transform algorithms.

In contrast, the DISS matrix construction is performed at practically no computa-
tional cost. The matrix sparsity is guaranteed by the staggered finite-difference stencil
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Figure 4.30: Comparison of three traces that are extracted from the Marmousi model
exact seismogram and the DIWS-seismograms after n; = 1500 and ng = 3000 iteration
steps. The continuous line is the exact wave-field solution, the dotted and dashed lines
the DIWS solutions for n;; = 1500 and n; = 3000 iterations, respectively.

applied in the physical domain. Therefore, fast and efficient matrix-vector and dot-
products may be implemented. The main drawback of the DISS approach is related
to the simple-grid formulation that can only treat coarse- or fine-grid errors at a time.
Dispersion-free wave simulations are strongly dependent on the number of iteration steps
performed. Even though phase-corrected frequency-maps may be obtained when large
amounts of iteration steps are performed, the ambiguity for choosing the right amount
of iterations is rather cumbersome.

One possibility to introduce more variability in the DISS scheme to suppress inter-
polation related phase-shifts and the convergence of low-frequency components on the
fine-grid, is the extension of the current DISS nested iteration approach to a (space)
FMG method through loops over sequences of V- and W-cycles.

The role of wavelet resolution scale interactions is illustrated in Figure 4.31a and b
for a single frequency-map f = 9.5H z of the Marmousi simulation. In Figure 4.31a from
left to right, we show the coarse-grid solution recast as initial iterative solution on J =1
resolution scales, the result from the iteration process, and the difference between the
initial and the final solution on the wavelet basis. Figure 4.31b is the same sequence,
though now after inverse wavelet transformation in the physical space.

Interesting to note is the fact that the DIWS modified the coarse-grid solution in
the V1 x Vi space. This indicates the necessity of coarse grid corrections in the itera-
tive scheme to suppress fine-scale low-frequency components that otherwise may cause
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| Solver | Nr. of Iterations | CPU-time / frequency [min] |

DISS 1500 6
DISS 2500 12
DISS 3500 17
DISS 5000 23
DIWS 1500 16

Table 4.2: Computation times for the complex Marmousi Model for the DISS and DIWS
schemes. DISS wave-field solutions have been computed for four increasing number of
iteration steps (n;** = 1500, 2500, 3500, 5000) while the DIWS simulation was performed

using n;** = 1500 iteration steps only.

severe difficulties in the iteration process. Even though fine-grid wavelet and interaction
contributions are less strong, they still influence the iteration process at each iteration
step. The wavelet multi-scale formulation naturally incorporates these effects, while the
DISS nested iteration requires excessive CPU-time or manual corrections through V- and
W-cycles that are difficult to perform.

4.11 Conclusion and Perspectives

We perform wave propagation simulations in structurally complex media with strong
velocity contrasts. Wave-field solutions are computed using the DISS and DIWS schemes
for a set of frequency components. The space- and wavelet-based solvers are compared
with respect to CPU-time performance and accuracy of the solution.

The combination of a direct with an iterative solver (DIS) allows wave-field simulations
in synthetic models of larger size, compared to applications of a single direct solver. The
performance of the DIS approach depends mainly on the formulation of the iterative
solution scheme.

We found that space linear grid-combinations lead to fast and efficient matrix con-
structions, matrix-vector, and dot-product algorithms. The DISS approach is similar to
the nested iteration part of a standard multi-grid method. The phase-shifts introduced by
simple bilinear interpolation require large numbers of iteration steps in order to provide
dispersion-free wave simulation results.

The second DIS approach uses the multi-scale formulation of a standard orthogonal
Daubechies-4 wavelet transform (DIWS). The analytic construction of the principal ma-
trix terms in the spectral wavelet space, though performed only once before the modelling
starts, requires the calculation of expensive convolution-type projection algorithms and
leads to less efficient matrix computations than in the physical space.

The main advantage of the wavelet-based preconditioning is the simultaneous itera-
tion on all wavelet resolution grids, where interaction between scales are accounted for
automatically. In a way, the DIWS scheme therefore performs FMG V-cycles at each it-
eration step The wavelet-iteration was found to be largely independent of the number of
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a) Wavelet Space (J=1)
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Figure 4.31: Ilustration of grid interactions occurring during the iteration process on a
wavelet expansion for the DIWS scheme. The example is shown for a frequency map
(f = 9.5Hz) computed by the DIWS on J = 1 resolution scales for the Marmousi model.
In (a) we plot the coarse-grid wave-field solution recast in the wavelet expansion, where all
wavelet coefficients are initially zero. The middle panel shows the output of the GMRES
iterative solver after n;; = 3000 iteration steps. The right panel is the difference of the
initial and final wave-field solution. Part (b) is similar to (a), though now the velocity
wave-field solutions have been inverse transformed in the physical domain. Interesting
to note is that the iterative solver modified the Vi x Vi-space in the wavelet expansion.
This signifies that the fine-grid wavelet coefficients interact and alter the coarse-grid
representation of the wave-field solution.

iterations steps performed. Already a small number of iteration steps provided quantita-
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tive dispersion-free seismograms where principal wave phenomena may be distinguished.

We illustrated the accuracy and performance of DISS and DIWS approaches for the
Corner Edge model and the Marmousi model with respect to varying grid sizes and
number of iteration steps.

The numerical tests clearly indicate superior iteration behaviour for the DIWS multi-
scale formulation rather than for the DISS nested iteration approach. The combination
of the wavelet multi-grid construction with an iterative solver eliminates the ambiguity
of manual grid combinations of standard nested iteration techniques.

The computational cost for matrix constructions in the spectral wavelet space may be
reduced when space adaptivity strategies are implemented. Moreover, significant speed-
up is obtained by the extension of the DISS and DIWS sequential codes to run on parallel
computer structures.

Nevertheless, large 2D and 3D wave propagation simulations require significantly in-
creased memory and computational power, such that the passage of the existing sequential
code to a parallel version seems unavoidable. Although it was not considered in this study,
standard numerical preconditioning is expected to provide another important speed-up
for the iterative scheme.

Altogether, the DIWS approach provides a powerful tool to investigate wave propa-
gation phenomena for discrete frequency components or complete sets of frequencies for
multiple RHSs in media having complex heterogeneous rheology. Typical applications are
site effect studies, where the response to single frequencies is of great interest. Moreover,
wave-field simulations of discrete frequency components provide powerful information for
full waveform inversion schemes. Other applications include standard forward modelling
of large-scale marine multi-source experiments for high frequency bands.

The next development step of the DIS strategy investigates the iterative convergence
for a fixed tolerance level that was not addressed here. Furthermore, the numerical
code will be parallelized together with an extension to 3D modelling for elastic wave
propagation. This work is under way and will be presented in a separate article.
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4.13 Appendix A - Basic wavelet theory

We introduce some important features of the orthogonal wavelet transform using Daube-
chies wavelets without reviewing the mathematical principals that led to the development
of the wavelet theory. This appendix is rather limited in content and explications are
mainly provided to set right the terminology used in the article. For further readings
concerning wavelet theory, we refer to works of Mallat (1989), Daubechies (1992) and
Beylkin (1998).

The orthogonal wavelet transform developed by Daubechies (1992) is defined by two
functions: ¢(x) is the scaling function and v(z) the wavelet function. In order to see
how these functions build the basis of the wavelet transform we first introduce the multi-
resolution analysis (MRA). The MRA can be compared to a microscope with which
we are able to analyse a function with any desired resolution. The MRA is a way to
approximate a function, which is done by the above mentioned scaling function. In order
to approximate an L2-function, we try to represent it by a linear combination of a family
of scaling functions, where family here denotes translations of scaling functions. We have:

Py, (f) = Y ujndjk
keZ
(A. 1)
where ¢; , are dilations (j) and translations (k) of the function ¢:
Bn(t) = 2B (2771 — k)
(A. 2)

If we now assume that the scaling functions ¢;(keZ) build an orthonormal family at a
given approximation, we can then write the coefficients wu;j, as:

+00

wie =< dissd >= [ o) (0

(A. 3)

We note that the coefficients w; define a weighted average of the function f in the
surroundings of the location k27. The smaller j gets, the smaller will be the approximation
region and therefore the approximation of the discretized function f by the coefficients
Uj k-

In other words, the approximation of the initial function f is performed by an analysis
with dilated and translated versions of the scaling function. The scaling function adapts
to spatially local features in f that correspond to the actual resolution approximation.
This gives the desired multi-resolution decomposition property.

With the definition of the scaling function, we have found a way to represent a function
on any desired approximation space V;, while the initial scaling function ¢ itself lies in Vj.
We assume Vj to be the finest discretization space. Clearly, several approximations of a
function on different resolution scales (levels of j) are connected to each other. Intuitively
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we would require that an exact approximation of a function f on a resolution scale V;
would imply an exact approximation on any finer resolution scale V,, if p < j. In other
words, the MRA defines a chain of approximation subspaces:

L.cVicVyCcVo i CcVyC...
(A. 4)

Without giving further evidence, it can also be shown that the scaling functions are
connected by filter coefficients hy(keZ) such that

Gik =D hk—onbm—1k

keZ
(A.5)
As a consequence the scaling function ¢ can be integrated and we get:
+oo
/‘ S(t)dt = 1
—00
(A. 6)

The MRA provides a tool to decompose a function on approximation spaces V; of
different resolution using scaling functions. In order to construct a complete orthonormal
basis of L? on the basis of the MRA, we have to add some missing information. The scaling
functions ¢; ;. do not build a basis for two reasons. First, we did not require the functions
¢k of different resolutions spaces V; to be orthogonal. And second, scaling functions of
coarse subspaces can be constructed from linear combination of the scaling function from
finer subspaces (Equation A. 5). Scaling functions ¢;; only form an orthonormal basis
for fixed subspaces V.

At this point the wavelet functions 4, come into play. Since we have already con-
structed basis functions on each subspace Vj, it would be logic to just extend the existing
bases in order to form a basis for the next coarser scale with respect to the underlying
fine scale, and so forth.

Following this idea leads to the construction of the wavelet functions that again is
defined through dilations and translations of one function (compare with the scaling
function in Equation A. 2):

Yi(t) == 275277t — k)
(A.7)

The scaling and wavelet functions are then related through:

ik = D Gn-ok$j 1m

nez

P(t) = V2 (~1)"h_np(2t — k)

nez
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with g = (—1)khl_k.

It is possible to show that the shifted and translated wavelet functions g (eVp) do
complete the scaling functions ¢ (€Vp) to an orthonormal basis of the subspace V_j.
Moreover, this procedure can be extended to any other subspace and it can further be
shown that for any L?function the following relation holds:

f= Z Z Vi kP k

jeZ keZ
(A. 9)

with v =<k, f >.

Since the wavelet functions do encode just the extension to complete the passage from
one approximation subspace to the next coarser one, the resulting wavelet coefficients are
also called ‘details’, and in the same logic the scaling coefficients ‘averages’.

We are therefore able to replace a signal in the physical domain e.g., a time snapshot
of a wave propagating in a homogeneous medium (see Figure 4.10a) by its projection
on a number of subspaces that are spanned by the scaling and wavelet functions. They
can be combined to form a cascaded algorithm where the initial signal is decomposed on
a series of wavelet approximation spaces (Wj-spaces) and one scaling space (Vj-space).
This representation is cascaded in the sense that we reconstruct the initial signal subspace
by adding ‘detail’-information to the scaling space (V; + W; = V;_1):

J1
Ajof = Zujl,k¢jl,k + Z Z Vj,qubj:k

keZ Jj=jo+1 keZ
(A. 10)

where we assumed 7y < j1.

Arf = kes uj kPjk 1s the approximation of f on the resolution scale m and u;, =<
Gk, [ > and v =< i, f > the corresponding projection coefficients.

At each step of the cascade, the combination of the corresponding V- and W-space
forms the next finer approximation space and the re-construction can be continued until
the initial representation. In Figure 4.10c we show the projection on 3 resolution scales.
The Wy . 3 x Wi, 3 spaces encode the ‘details” and the Vj—3 x V;_3 is the coarsest
‘average’ space (see Figure 4.10d).

4.14 Appendix B - Matrix projection in orthogonal wavelet
basis

4.14.1 Projection of physical medium parameters (diagonal blocks)

We first derive Equation 4.13, that is the product of medium properties with wave-field
components projected on an orthogonal wavelet basis. Note that wave-field projections
on the wavelet basis in x-direction are denoted by indices ¢, 7, k,! and for the z-direction

by a, B.
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We start the wavelet transformation by expanding the expression iwé(z,w)p(z, z) -
Vyz (@, z) first on an orthogonal wavelet basis with respect to the x-direction:

D < iwkap(@, 2)oge (@, 2), i > o
| (B. 1)

We separate the wave-field component v, and the density term iw&,p(z,z) through
permutation and subsequent application of a second wavelet expansion to the wave-field
component vy,. The new basis which is also a projection in x-direction, is denoted by
tpj. We obtain the double sum:

Zi,j < Uya:(ivaz)ﬂﬁj >< ¢j,iw§xp($az)¢i > wz
(B. 2)

We are now ready to project Equation B. 2 on a wavelet basis in z-direction, denoted by
1o. This gives:

DO << wvyelm, ), >< oy, iwep(x, 2)i >, o > Pitda
@ 4,

(B. 3)

Again, we need to separate terms depending on z and therefore apply a second wavelet
projection following the same procedure as before, but now in the z-direction (¢3):

DO <wyalw, 2), 9545 >< Pt iwéep(@, 2)tita > Pitha
a,B i,j
(B. 4)

The inner products in Equation B. 4 form a term-to-term product which has to be recast
to verify the matrix equation A -z = b, with x being the desired solution constructed
by the GMRES iterative solver. In order to compute the necessary terms, we first need
to construct the wavelet basis functions ; and 1. For each pair (i,«) we compute the
product of medium parameters iwp(x, z) with the wavelet basis functions 1; and 1), and
then expand the resulting term on the wavelet basis through subsequent projections in
the x- and z-directions. The term-to-term product will then be verified through correct
storage of the corresponding term < 13, iwé,p(x, 2)i1ho > in the impedance matrix
A and < wyg(z,2),1j98 > in the desired solution z to give a standard matrix-vector
product.

4.14.2 Projection of differential operators

We compute the projection of staggered grid derivative operators on an orthogonal wavelet
basis. For simplicity, we show the development for the x-derivative operator only, since
replacing x by z and following a similar procedure, leads to the z-derivative operator:
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We project the derivative operator on an initial basis %); in x-direction and obtain

Z < Uya:a"/}z > P
(B. 5)

As before, we need to separate contributions depending on the x-direction, namely the
operator d/0z and the wave-field vy, (z,2). We go back to the definition of the inner
product and apply an integration by parts which gives:

/+oo Ovye(z, 2) () d

oo ox

Z < Uyza"/}z > P

“Uye (2, 2)dx

+00 T
— W) () - [

(B. 6)

Because of the local support of the Daubechies wavelets, the first term in Equation B. 6
is zero. We therefore obtain,

Z< Uywa¢z>'¢}z = _Z< ny$2)>¢z
(B.7)

We separate the remaining expression by projecting the derivative term 3%7,01 onto a new
wavelet basis 1;, and obtain:

0
- 2} < gt i >< v > i
(B. 8)

Finally, we perform the wavelet expansion in the z-direction. Since the derivative operator
depends on the x-component only, no further projections have to be performed and we get
the final wavelet expansion of the x-derivative operator on a two-dimensional orthogonal
wavelet basis:

0
o ZZ < %¢i,¢j >< Vyg, Pitha > Yitha
4,J

(B. 9)
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Chapter 5

Wayve-field simulations: 2D
benchmark tests

5.1 Résumé

Dans ce chapitre, les performances des méthodes DISS et DIWS développées au chapitre
4 sont évaluées a I’aide de plusieurs tests numériques calculés dans des modéles 2D ho-
mogénes et hétérogenes. Les algorithmes des méthodes directe et itérative de résolution
de systéme d’équations linéaires sont évalués en détail.

Dans un premier temps, je présente une comparaison des méthodes de résolution
numérique directs UMFPACK et MUMPS pour des modélisations calculées par 'approche
DISS dans des modéles homogenes de taille différente et pour 3 fréquences de la bande
0 — 10Hz. Les deux logiciels UMFPACK et MUMPS de factorisation LU d’une matrice
sont basés sur une méthode de rangement "frontal" de la matrice. Les tests démontrent
les performances supérieures du solver MUMPS par rapport &8 UMFPACK en termes de
taille maximale des modéles pouvant étre traités ainsi quun temps CPU indépendant de
la fréquence modélisée.

Le solver itératif commun aux approches DISS et DIWS est fondé sur une approche de
type Krylov. Ces méthodes permettent de calculer la solution d’un systéme matriciel dont
la matrice associée est & coefficients complexes et non symétrique. Pour cela, j’utilise le
logiciel GMRES développé au CERFACS. L’implémentation de GMRES au sein du code
de modélisation est facile et laisse toute latitude a l'utilisateur pour l'optimisation du
stockage et du calcul des produits matrice-vecteur.

Plusieurs résultats de modélisation du champ d’onde dans des milieux 2D dans le
domaine des fréquences (cartes en fréquences) et du temps (sismogrammes) calculés par
les approches DISS et DIWS sont présentés et comparés avec ceux obtenus avec des codes
par différences finies classiques en temps (TDFD) et des solutions analytiques.
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5.2 Introduction

In addition to wave-field simulations presented in the previous Chapter 4, I show bench-
mark tests for 2D homogeneous and heterogeneous media. All wave propagation sim-
ulations have been performed using the DISS and DIWS approaches for similar model
geometries and physical parameter setups.

5.3 Direct and iterative solver

The implementation of the DISS and DIWS strategy uses external software to perform the
direct matrix factorization and iterative procedure for the computation of coarse-grid and
fine-grid wave-field solutions. I did not address the implementation of the solver schemes,
because I am mainly interested in studying complex wave propagation phenomena rather
than developing a numerical tool. For example, the estimated development time for an
optimised direct matrix factorization solver is in the range of years (Amestoy and Giraud,
2002), and therefore was not considered here. Moreover, many different highly optimised
solver software has become accessible without any difficulties, and it is rather a question
which method and implementation scheme for a given problem at hand may provide the
best numerical performance in terms of numerical stability and CPU-time and memory
requirements.

5.3.1 Direct solver software

For the computation of the direct matrix factorization, I tested two different LU de-
composition schemes that are both based on minimum matrix ordering approaches (Duff
et al., 1997). The first software implemented in the DIS algorithm is the UMFPACK
package developed by Davis and Duff (1997). UMFPACK is written in Fortran F77 and
therefore is easily incorporated in the DISS and DIWS approach. The UMFPACK code
combines two pivot strategies, namely uni-frontal and multi-frontal methods, in order to
reduce matrix fill-in during the matrix factorization. The second software incorporated
in the DISS and DIWS codes was directly provided by Amestoy et al. (2001). Their ma-
trix factorization algorithm, called MUMPS, is based on a strict multi-frontal ordering
method. Even though MUMPS was developed especially for direct matrix factorizations
performed on parallel distributed computer environments, I used the existing sequential
version to compare with the UMFPACK software. Both factorization schemes can treat
un-symmetric complex-valued matrices in sparse format.

I tested the UMFPACK and MUMPS solvers for a DISS wave propagation simulation
in the Corner Edge model of varying grid sizes. Moreover, | examined the performance
of the two factorization schemes with respect to the frequency modelled. Performance
variations of the matrix factorization depend strongly on the absolute numerical value of
the coefficients in the matrix. As I noted in the previous Chapter 4, I equalised matrix
entries by applying a simple normalisation strategy to the hyperbolic wave equation. The
normalisation is necessary, since otherwise diagonal matrix entries for the DISS and DIWS
scheme range from 1.e®3 to l.e™'! depending on the physical medium parameters for
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density p and the shear modulus p. Although the physical normalisation may be applied
specifically for each model scenario, I used a constant set of normalisation coefficients
throughout all wave simulations. The deduced values are ¢® = 1.et1? and v° = 1.e*3.
The wave simulation test for the UMFPACK versus MUMPS performance comparison
are performed on a stand-alone Linux PC with 1GByte of RAM and processor speed of

IMHz. Table 5.1 summarises the parameters used for the performance comparison
Model Matrix Size Frequency MUMPS UMFPACK
nz X ne NOZ |H z| Factorize ‘ Solve | Factorize ‘ Solve
50 x 80 16€e3 x 16€3 0.1 100 <1 330 <1
110440 4.5 95 <1 59 <1
9.8 97 <1 66 <1
60 x 100 24e3 x 243 0.1 238 <1 1168 1
166080 4.5 228 <1 130 <1
9.8 228 <1 227 1
80 x 120 | 38.4e3 x 38.4€3 0.1 659 <1 3146 3
266400 4.5 660 2 676 1
9.8 639 1 449 1
100 x 160 | 64e3 x 64e3 0.1 2978 2 — —
444880 4.5 2785 3 — -
9.8 2908 3 — —
140 x 200 | 112¢® x 112¢3 0.1 8356 6 - -
779920 4.5 7414 6 — —
9.8 7445 6 — —

Table 5.1: Comparison of matrix factorization performed using UMFPACK and MUMPS
for the Corner Edge model of varying size. All computations are computed by the DISS
scheme on a stand-alone Linux PC with 1GByte of RAM memory and a processor speed
of 1M Hz. Computation times are given in [sec]|.

as well as the CPU time results for the matrix factorizations and the solving of the
equations, separately. Note that the solve-phase computation time is interesting since it
demonstrates the efficiency of FDFD direct approaches for wave propagation simulations
with numerous RHSs.

In Figure 5.2 and Figure 5.3, [ show the complex impedance matrix for the DISS and
DIWS scheme for a two-step/two scales modelling scenario. All non-zero coefficients are
plotted as black dots. The DIWS matrix holds wavelet and scaling coefficients from the
spaces Wi x Wy, Vi x Wq, Wi x V4 and V7 x Vi. I underline the increase of non-zero
coefficients in the DIWS-matrix as a function of number resolution scales that is due to
the expansion in the wavelet domain.

In Figure 5.1, I illustrate the results of the performance test for the complex DISS
matrix graphically. The multi-frontal scheme MUMPS performs matrix factorizations up
to a model size of about 150 x 200 grid-nodes, while the UMFPACK software already
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Figure 5.1: Comparison of matrix factorization software: UMFPACK versus MUMPS.
The x-axis corresponds to the order x1.e® of the matrix that is factorized into its LU-
factors. The y-axis indicates the computation time needed in [sec|. Tests are performed
for three frequency components. The red line denotes f = 0.1Hz, the green line f =
4.5H z and the blue line f = 9.8Hz. (a) gives the numerical results for MUMPS and (b)
for UMFPACK.

breaks down for model sizes of 80 x 120 grid-nodes. Note, break down signifies that
not sufficiently RAM memory is available to perform the desired matrix factorization.
Moreover, MUMPS matrix factorizations have been found to give stable computation
times despite of the frequency used. In contrast, UMFPACK factorizations may vary
significantly, or even break down depending on the frequency modelled.

I decided to use the MUMPS software for the DISS and DIWS direct matrix factor-
ization, because of the possibility to simulate wave propagation in larger earth models
independent from the frequency modelled. Moreover, since MUMPS is developed to run
on parallel distributed computer structures by a combination of MPI and Fortran F90,
a parallelization of the direct matrix factorization in the DISS and DIWS approaches is
reduced to the construction or distribution of the impedance matrix with respect to the
parallel environment.
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Figure 5.2: The FDFD matrix used in the DISS approach to compute coarse-grid and
fine-grid solution of the first-order hyperbolic wave equation. In this plot the matrix
is constructed using second-order staggered grid discretizations. The matrix contains
(4 - nz - nz)? elements from which approximately 6 - nz? + 6 - nz + 4 - nx - nz elements
are different from zero. (a) shows the real part and (b) the imaginary part of complex
DISS matrix. Non-zero coefficients are represented as black dots. All white coefficients

are zero.
(@)
N 1024 2048 3072
1024 <
2048-
30724
AN
S

(b)
0

1024 2048 3072

1024 1

2048 1

3072 1

Figure 5.3: The FDFD matrix used in the DIWS approach to compute fine-grid solutions
of the first-order hyperbolic wave equation projected on two resolution scales (J = 1).
The matrix is constructed using second-order staggered grid discretizations. (a) shows
the real part and (b) the imaginary part of complex DIWS matrix. Non-zero coefficients
are represented as black dots. All white coefficients are zero.
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Figure 5.4: PML absorbing boundary function applied on all four edges of the two-
dimensional homogeneous half space model. The PML layer size is 20 grid points.

5.3.2 Iterative solver software

The iterative solver method chosen needs to be applied to the complex-valued, un-
symmetric impedance matrix. The constraints entered by the characteristics of the
impedance matrix automatically lead an iterative method based on a Krylov formula-
tion. A widely distributed iterative method of this group of approaches is the GMRES
iterative solver developed by Saad and Schultz (1996). GMRES fulfils all above men-
tioned requirements. One of the key points of a practical GMRES implementation is
an efficient restart strategy that avoids excessive amounts of computations and mem-
ory communication during iteration steps. Moreover, the overall iterative convergence of
GMRES methods may be significantly increased by appropriate preconditioning through
e.g., a parallel domain decomposition strategy.

I use a GMRES implementation that was provided by L. Giraud (Frayssé et al.,
1997). Their algorithm essentially involves the impedance matrix A during iterations only
through matrix-vector and dot-products. The routines to perform these operations are
entirely written by the user. Therefore, sparse iterative computations in both, sequential
and parallel mode are easily implemented and even the construction of the impedance
matrix on the fly may be performed. Although the matrix construction on the fly is
possible and has been implemented by e.g., Pessel (2000), I do not consider it a first
choice alternative since matrix constructions become extremely expensive with respect to
the necessary CPU-time.

5.4 2D homogeneous media

The first benchmark test is computed for a simple 2D model with homogeneous velocity
and density distribution. I use a two-step/two-scales scenario, where the coarse-grid
consists of nz = 60 x nx = 80 grid-nodes including 10 grid-nodes on each edge of the
model for PML absorbing boundary conditions. The fine-grid solution is computed on
a grid of size nz = 120 x nz = 160 with 20 PML-grid-nodes. In order to illustrate the
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PML absorbing boundary conditions used for all wave simulation examples, I combined
absorbing functions v, and 7, in Equation 4.5 to a 2D-function and plotted the result for
the fine-grid model setup in Figure 5.4. The PML absorbing layers are applied on all four
edges of the numerical models. The implementation of a stable free-surface boundary
condition has not been investigated at this stage.

5.4.1 Frequency maps

I show a set of frequency maps computed by the DISS and DIWS scheme for the ho-
mogeneous model and a frequency component of f = 9.5Hz. I use the derivative of a
Gaussian as introduced in Chapter 4 as source function. The source is located near the
upper model-PML boundary at (nz = 160m,nx = 2400m). The coarse discretization
step is dx = dz = 80m, which corresponds to 5 grid-points per shortest wavelength. The
homogeneous wave speed and density are v = 4000m /sec and p = 2500kg/m?>, respec-
tively. This gives a shear modulus of u = p - v? = 4e!’. I compute frequency domain
solutions for 52 discrete frequencies ranging from f,;, = 0Hz to fie =~ 10Hz. The
frequency sampling corresponds to time seismograms of length 4sec and a time sampling
of nt = 0.0lsec. The direct coarse-grid solution for the DISS approach is shown in the
left column of Figure 5.5 for all three wave-field components separately (vy, 03y and o,y).
The middle column is the coarse-grid solution expanded on the fine grid by the simple
bilinear interpolation scheme. The discretization step on the fine-grid is half the coarse
step size, i.e. de = dz = 40m. In the right column, I present the final wave-field solution
after 2000 iteration steps. Note that the GMRES backward error tolerance level was set
to tol = l.e~7 which did not allow the DISS nor the DIWS scheme to converge in the
tolerance limits. Therefore modelling computations stopped when the maximum number
of iteration steps are performed. In the homogeneous model example, I set the limit to
n* = 2000 steps. In Figure 5.6, I show the DIWS frequency maps for the coarse-grid
(left column) and the fine-grid (middle and right column) solutions. The middle column
is the fine-grid solution after 2000 iteration steps computed on J = 1 resolution scales
(two-scales scenario). The right column is obtained from the wavelet-domain solution by
inverse wavelet transform.

The large difference in amplitde between the coarse-grid and fine-grid wave-field so-
lution is caused by the normalisation of the hyperbolic wave equation. The coarse-grid
solution is normalized, since it is subsequently used as initial solution for the iterative
scheme that is based on the normalized equation discretized for the fine-grid model.
The final frequency map has been corrected for the applied normalisation and therefore
represents real amplitude values.

Fine-grid wavelet coefficients in the upper right Wi x Wy approximation space are low
in amplitude, therefore difficult to visualize. I note the interaction coefficients in spaces
W1 x Vi and Vi x W) between the wavelet and scaling approximation spaces.
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Figure 5.5: DISS Frequency solution maps for the Homogeneous Model for f = 9.5Hz.

5.4.2 Seismograms

In Figure 5.7, I illustrate the time seismogram that has been computed from the DISS
and DIWS frequency domain wave-field solutions by inverse Fourier transform. Moreover,
I add a time domain FD (TDFD) solution in order to verify correct modelling results. In
general, the overall match of the DISS and DIWS solution is perfect. The wave arrival
for near offset traces fits perfectly for all three modelling solutions. With increasing
distance from the source point, differences in amplitude between the TDFD and the
FDFD approaches become visible. This is shown in greater detail in Figure 5.8, on three
extracted traces from the time seismogram. In order to better quantify the frequency
domain solution, I compare the DISS and DIWS coarse-grid and fine-grid solutions to an
analytic solution. Figure 5.9 and Figure 5.10 show the DISS and DIWS time seismogram
solutions from Figure 5.8, though now I add the time solutions computed from the coarse-
grid frequency maps. Moreover, I replace the TDFD solution by an analytic solution.
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Figure 5.6: DIWS Frequency solution maps for the Homogeneous Model for f = 9.5H z.

The comparison demonstrates that the DISS and DIWS solutions with increasing distance
from the source develop increasing dispersion. The deviation of the frequency domain
solutions from TDFD and analytic solutions is due to a coarse-grid discretization step that
incorporates 5 grid-points per shortest wavelength only. Moreover, I limit the maximum
number of iteration steps to 2000 which did not allow the DISS and DIWS scheme to
converge in the pre-defined tolerance limits. Despite of the difference in the main arrival,
I note a small signal on the far offset traces (Offsets 0.4Km and 4.4Km) at a propagation
time of about 2.2sec. This event is due to an artifical reflection from the model-PML
boundary.
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Figure 5.7: Seismograms for the Homogeneous Model simulation computed by the DISS,
DIWS and a standard TDFD scheme. In red, I plot the TDFD solution. Green and blue
are the DISS and DIWS modelling results, respectively.
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Figure 5.8: The plot shows three extracted traces (Offsets 0.4Km, 2.44Km and 4.4Km)
from the Homogeneous Model time seismogram shown in Figure 5.7. Red is the TDFD,
green the DISS and blue the DIWS solution. We note significant differences of the TDFD
and FDFD solutions on the far offset traces.

5.5 Two-Layer model

I investigate the DISS and DIWS approaches for a simple heterogeneous media, denoted
by TwoLayer Model, that consists of two homogeneous spaces separated by a horizontal
interface. The upper medium has a velocity of v = 2000m/sec and density of 2000kg/m?,
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Figure 5.9: I compare the DISS wave-field solutions for the coarse-grid and the fine-grid
simulation with an analytic solution computed for the homogeneous model. The plot
shows traces from time seismogram in Figure 5.7 (Offsets 0.4Km, 2.44Km and 4.4Km).
Red denotes the analytic response, green the coarse-grid and blue the fine-grid DISS
solution.

and the lower medium v = 5000m/sec and 2500kg/m3, respectively. The TwoLayer
Model is illustrated in Figure 5.11. The numerical grid has a size of nz = 60 x nz = 120
grid-nodes for the coarse-grid and nz = 120 x nz = 240 grid-nodes for the fine-grid. The
coarse- and fine-discretization steps are de = dz = 40m and dx = dz = 20m, respectively.
The source is a derivative of a Gaussian also used for the Corner Edge model simulation.
PML absorbing boundary conditions are applied on all four sides of the model. The PML
layer thickness is 400m which is equivalent to 20 grid-nodes for the fine-grid scenario. The
source is located at (nz = 2400m, nz = 200m). Receivers are spread over the whole model
at a depth of 100m. This gives 84 receiver stations with a spacing of 48m. I compute
wave-field solutions for 52 frequency components spanning a frequency band from 0Hz
to 10H z.

5.5.1 Frequency maps

[ demonstrate results from the DISS and DIWS simulation for two frequency components.
The first set in Figure 5.12, shows the DISS and DIWS frequency map solutions for a
frequency of f = 1.8Hz. In the first column, I plot from top to bottom the corresponding
wave-fields v, o,y and o,, for the DISS simulation. The second column to the right is
the DIWS solution for the same wave-fields. The third column is the difference of the
DISS and DIWS solution, where the size of the error is indicated by the legend on
the left. For example, differences between the velocity wave-field solutions (v) at the
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Figure 5.10: I compare the DIWS wave-field solutions for the coarse-grid and the fine-
grid simulation with an analytic solution computed for the homogeneous model. The plot
shows traces from time seismogram in Figure 5.7 (Offsets 0.4Km, 2.44Km and 4.4Km).
Red denotes the analytic response, green the coarse-grid and blue the fine-grid DIWS
solution.

frequency f = 1.8Hz for the DISS and DIWS schemes are shown in the top right panel
in Figure 5.12. The difference plot holds values in a range from 0 to 3 that have to be
multiplied by x1072 to get the corresponding error amplitude value related to the DISS
and DIWS wave-field plots. Note, the velocity wave-field has been re-combined from the
PML-components v, = vy, + vy,. Figure 5.13 shows the same setup, though now for
a frequency of f = 9.5Hz. The overall fit of the DISS and DIWS wave-field solutions
in the frequency domain is good. I note that the difference between the solutions is
larger for the low frequency component f = 1.8Hz with respect to the higher frequency
comparison f = 9.5Hz. Moreover, differences in the frequency domain solutions close to
the horizontal interface in e.g., Figure 5.13 are caused by the artifical interaction of the
waves when hitting the model-PML boundary.

5.5.2 Seismograms

The 52 wave-field solutions in the frequency domain where combined and inverse Fourier
transformed. The resulting seismogram has a time-length of 4sec. In Figure 5.14, 1
show the seismograms for the TwoLayer Model for the DISS and DIWS simulations. The
top and bottom panels are the DISS and DIWS solutions, respectively. On the right, I
compare three traces extracted from the DISS and DIWS seismograms. I plot in red and
green the DISS and DIWS solution, respectively. As I expect from the study of frequency
map errors, both modelling approaches give almost identical results. In Figure 5.14,
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Figure 5.11: The TwoLayer Model consists of two homogeneous spaces separated by a
horizontal interface. The upper medium has a velocity of v = 2000m/sec and density of
2000kg/m3, and the lower medium v = 5000m/sec and 2500kg/m?, respectively. The
grid has a size of nz = 60 x nax = 120 for the coarse-grid part and nz = 120 X nz = 240
for the fine-grid part. The coarse and fine discretization steps are dz = dz = 40m and
dz = dz = 20m, respectively. The source is a derivative of a Gaussian also used for
the Corner Edge model simulation. PML absorbing boundary conditions are applied on
all four sides of the model. The PML layer thickness is 4007n which is equivalent to 20
grid-nodes for the fine-grid scenario. The source is located at (nz = 2400m;nz = 200m).
Receivers are spread over the whole model at a depth of 1007n. This gives 84 receiver
stations with a spacing of 48m.

the first arrival and reflection from the interface that separates the two homogeneous
sub-spaces are clearly visible.

I detect the creation of spurious noise when the reflection from the interface event
hits the model-PML boundary. The PML function used inside the damping layer is (see
also Figure 5.4),

T s

)

72(e) = @ cos( 3

(B. 1)

where z,,,; denotes the PML layer thickness, z the spatial position, and a an empirically
estimated value that is a function of the PML layer thickness.

The damping function is illustrated in Figure 5.15. In the example shown in Fig-
ure 5.4, the value for a was set to ¢ = 33. In order to eliminate the spurious reflection
from the model-PML boundary, I tested the wave damping behaviour for different PML-
layer thicknesses with varying coefficients a. The rather limited empirical study did not
deliver a simple PML configuration that allows wave simulations without spurious noise
reflections from the media-PML interface. Since the PML problematic was not one of my
primary concerns, I continue the DISS and DIWS development, though I like to under-
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Figure 5.12: Frequency solution maps for the TwoLayer Model for f = 1.8Hz. In the
first column, I plot the DISS solution separated for each wave-field solution from top to
bottom: vy, oy, and o,,. The second column contains the DIWS solutions for the same
wave-fields. The third column is the difference of the two solutions.

line that the PML conditions for the frequency domain hyperbolic system of equations
requires a more detailed investigation to suppress unwanted numerical noise.

5.6 Marmousi model

I present additional modelling result for the Marmousi model simulation discussed in
the previous Chapter 4. The windowed part of the Marmousi model is illustrated in
Figure 5.16, for e.g., the Shear modulus distribution. On the right and left, I plot the
coarse-grid and fine-grid DISS input models, respectively. The colour scheme indicates
strong heterogeneous variations of the physical medium parameters. The dotted line
indicates the model-PML boundary.

5.6.1 Frequency maps

In the following, I show additional wave-field simulation results for the Marmousi simu-
lation in the frequency domain. Even though in Chapter 4, the results were discussed by
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Figure 5.13: Frequency solution maps for the TwoLayer Model for f = 9.5Hz. In the
first column, I plot the DISS solution separated for each wave-field solution from top to
bottom: vy, oy, and oy,,. The second column contains the DIWS solutions for the same
wave-fields. The third column is the difference of the two solutions.

studying time seismograms, here I present the primary output of the frequency domain
DISS and DIWS wave simulation code. Each Figure contains three columns (from left
to right) that represent the DISS and DIWS solutions plus the difference between them
(DISS-DIWS) for the wave-field components vy, oy, and o,,. Note that the velocity wave-
field has been recombined from the PML wave-field components v, = vy, + v,,. I plot
the frequency response for a low and a high frequency fi,, = 1.8Hz and frign = 9.5H z,
respectively. Figures 5.17 and 5.18 show wave-field solutions for the coarse-grid sim-
ulations (direct matrix solver), while Figures 5.19 and 5.20 are the solutions from the
iterative scheme on the fine-grid. = Coarse-grid solutions for the DISS and DIWS show
strong differences, since the physical input models for the space-DISS and wavelet-DIWS
simulations are not identical. The overall fit of the fine-grid solutions is good, though dif-
ferences may be observed. Since the Marmousi model is structurally rather complicated, a
more detailed study for several frequency components directly on computer screen allows
further interpretations of the existing differences.
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Figure 5.14: Seismograms for the TwoLayer Model for DISS and DIWS simulations. The
top and bottom panels are the DISS and DIWS solution, respectively. On the right, I
compare three traces extracted from the DISS and DIWS seismograms. [ plot in red and
green the DISS and DIWS solution, respectively.
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Figure 5.15: Illustration of the PML damping function.
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Figure 5.16: The Marmousi Model.
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Figure 5.17: Frequency solution maps for the coarse-grid Marmousi Model for f = 1.8H z.
In the first column, I plot the DISS solution separated for each wave-field solution from
top to bottom: vy, oy, and oy,. The second column contains the DIWS solutions for the
same wave-fields. The third column is the difference of the two solutions.
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Figure 5.18: Frequency solution maps for the coarse-grid Marmousi Model for f = 9.5H z.
In the first column, I plot the DISS solution separated for each wave-field solution from
top to bottom: vy, oy, and oy,. The second column contains the DIWS solutions for the
same wave-fields. The third column is the difference of the two solutions.



142

Wave-field simulations: 2D benchmark tests

Marmousi Model
DISS/DIWS Fine-Grid Frequency Maps [f=1.8 Hz]

Offset

[

Km] Offset [Km] Offset [Km]
0.5 1.0 15 0 0.5 1.0

0 -'é;
1_‘ . .0
- .‘

DISS - DIWS
0 05 1.0 15

o

1.5

Depth [Km]

DISS - V

Depth [Km]

- 4
DISS - SX DIWS - SX DISS - DIWS
1.0 1.5 05 1.0 1.5 0 0.5 1.0 1.5

W — 0 —
-~

0.5

0.05

B~ oA

DISS - SZ DIWS - SZ DISS - DIWS

Depth [Km]

Figure 5.19: Frequency solution maps for the fine-grid Marmousi Model for f = 1.8Hz.
In the first column, I plot the DISS solution separated for each wave-field solution from
top to bottom: vy, oy, and oy,. The second column contains the DIWS solutions for the
same wave-fields. The third column is the difference of the two solutions.
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Figure 5.20: Frequency solution maps for the fine-grid Marmousi Model for f = 9.5Hz.
In the first column, I plot the DISS solution separated for each wave-field solution from
top to bottom: vy, oy, and oy,. The second column contains the DIWS solutions for the
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Chapter 6

Frequency Domain Finite-Difference
Modelling in 3D Acoustic Media

6.1 Résumé

Dans ce chapitre, je développe les méthodes "Direct-Iterative-Space Solver" (DISS-3D)
et " Direct-Iterative- Wavelet Solver" (DIWS-3D) pour des modélisations des ondes acous-
tiques dans des milieux 3D fortement hétérogénes. Les approches suivent exactement les
développements présentés au chapitre 4 pour les cas 2D, sauf que dans le cas 3D I’équation
d’onde acoustique est traitée alors que I’équation SH était abordée en 2D.

Dans un premier temps, plusieurs exemples de simulation d’ondes dans des milieux
3D de complexité variable (homogeéne et hétérogéne) sont présentés. A titre de validation,
je compare, & une fréquence donnée, la solution de "approche DISS-3D dans un milieu
homogeéne pour une ligne de sources avec celle de I’approche DISS-2D calculée dans une
section du modeéle 3D. Une carte en fréquence d’'une modélisation par I’approche DIWS-
3D sur une échelle (J=1) est présentée pour illustrer la décomposition sur 2 échelles
de résolution du champ d’onde 3D. Le dernier exemple présente une simulation pour
une fréquence dans un modele Corner Edge 3D. Ces exemples permettent une premiere
évaluation respective des méthodes DISS-3D et DIWS-3D. La taille des applications 3D
présentées est limitée considérablement par 1'utilisation de programmes séquentiels.

Par conséquent, plusieurs stratégies d’implémentation des approches DISS-3D et DIWS-
3D dans un environnement de mémoire distribuée sont explorées. Tout d’abord, un
langage de de programmation en paralléle est choisi fondé sur le Fortran77/90 et MPI
("Message Passing Interface") afin de garantir une large portabilité des logiciels.

La parallélisation intervient a différents niveaux dans les algorithmes DISS-3D et
DIWS-3D. Plus précisément, trois différentes types de calcul doivent étre optimisés: la
transformée en ondelettes, la méthode de résolution directe (factorisation de la ma-
trice), la méthode de résolution itérative (produit matrice-vecteur et vecteur-vecteur).
Pour la transformée en ondelettes plusieurs algorithmes adaptés a différentes architec-
ture d’ordinateurs paralléles ont été publiés. La méthode de résolution directe (MUMPS)
utilisé initialement pour les simulations 3D séquentielles a été initialement développé
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spécifiquement pour des calculs sur des machines & mémoire distribué si bien que le seul
travail & faire comporte la construction de la matrice en parallele. Pour la méthode de
résolution itérative, une approche par décomposition en sous-domaines est préférée a des
approches de parallélisation purement numériques.

A ce jour, le travail de parallélisation des approches DISS-3D et DIWS-3D n’est pas
terminé si bien que le chapitre se termine par une discussion sur les différentes approches
possibles de parallélisation des codes sur une machine & mémoire distribuée.

6.2 Introduction

In this Chapter, I extend the DISS and DIWS approaches that have been presented for 2D
problems in the Chapter 4, for wave propagation simulations in complex heterogeneous
3D media. For simplicity, I only treat solutions to the partial differential wave equation
that are gradients of a 3D scalar. Waves of this sort are compressional waves where the
corresponding wave equation is called acoustic wave equation. Despite of little differences
between the 2D SH-wave and 3D acoustic-wave formulations, the concept of the DIS
strategy in 3D media is exactly similar to the 2D developments presented before.

Introducing the third dimension significantly increases the necessary computer struc-
ture requirements to run 3D wave simulations, because of the extremely large impedance
matrix for 3D media. Even though the sequential code may be extended to three di-
mensions, its application to wave simulations are limited to very small model sizes only.
Therefore, the main difficulty faced to perform 3D FDFD modelling is the development of
an appropriate DIS implementation that allows wave simulations on distributed memory
super computers.

This chapter will formulate the finite-difference DISS-3D and DIWS-3D frequency do-
main acoustic wave equations. The DISS-3D and DIWS-3D schemes for 3D simulations
are first developed in sequential mode which are directly comparable to the 2D formula-
tions. Then different parallelization strategies are introduced and discussed, with respect
to the complexity of implementation and the computational gain expected.

6.3 Frequency domain forward modelling in 3D

In this Section, I introduce the acoustic wave equation for pressure wave propagation
in 3D media and formulate the DISS-3D and DIWS-3D approaches. The first-order
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hyperbolic system of equations for the pressure field P writes,

ATV ED @) Papznt) = Ky ) 28TV | gy
8Py(x6,ty, z,t) () Py (2, 2, 1) K(z,y,7) BR(:Jséz, z,t)

W +7:(2) P (2, y, 2, 1) K(%%Z)W

WEIZD | Qa2 = by, L EL2Y
L e

HEVED Ty zt) = by, T EL2D

(6.1)

where I introduce three pressure wave-fields P, P, and P, to account for the PML
absorbing boundary conditions (see Berenger, 1994, for details). The PML damping
functions for each spatial direction are denoted by <z, v, and ..

I introduce three additional functions ), R and 7" in order to formally construct the
acoustic analogues of the first-order velocity-stress formulation of the hyperbolic wave
equation. The buoyancy, inverse of the density p(z,y,z) is denoted by b(z,y,z), and
the Bulk modulus that describes the stress-strain relation under hydrostatic pressure is
K(x,y,z). The pressure wave-field decomposition P, P, and P, can be combined into
the physical P wave-field by simple addition P(z,y, z,t) = Py(,y, 2, t) + Py(x,y, z,t) +
P,(z,y,z,t). The external source function is denoted by S(z,y, z, t).

The system of Equations 6.1 is transformed in the Fourier domain:

w00 s Palosh ) + SOLED (o y0)
iw{(y,w)m-P(:v,y,z,w)Jr%w =0
iw{(z,w)m-Pz(:v,y,z,w)—i-W — 0

it 0)p(r,5,2) - Qay, ) + CLEBEED
w00, p.2) - By, zy) + T2

it (2, ol ,2) Tl 2,0) + ZLELEBD

(6.2)

where I introduce the frequency dependent PML damping terms &gy .0 = 1 4 075y, /w
to keep the presentation clear.
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The system of equations is recast into a matrix-type equation of the form A -z = b.
The complex impedance matrix is denoted by A and the wave-field solution by z. The
external source term is b, which is also called right-hand side (RHS).

I construct the complex impedance matrix, such that complex- and frequency-dependent
terms are confined to the diagonal matrix blocks only. Spatial derivative operators in off-
diagonal blocks are real-valued and need to be computed ounly once before the modelling
starts. Matrix constructions for varying frequency components are easily performed by
replacing diagonal matrix contributions:

w&/K 0 0 9oz 0 0 P, S
0 iwgl/K 0 0 8/dy 0 P, 0
0 0 w&l/K 0 0 9/z r,| | o
0/0x 0/0x 0/0x  w&p 0 0 Qs | 0
d/0y /0y d/0y 0 iwlyp 0 R, 0
0/0z 0/0z 0/0z 0 0 iw&p T, 0

(6.3)
The overall size of the matrix is (6 x nz x ny x nz)?, where the physical model dimensions
are nx X ny X nz grid-nodes.

6.3.1 The Direct-Iterative-Space Solver

In order to find wave-field solutions to the matrix Equation 6.3, I extend the DISS-2D
strategy for SH-wave simulations to heterogeneous acoustic 3D media. From a concep-
tional point of view, the DISS-3D only differs from the 2D-version with respect to the
number of equations enlarged by one additional spatial dimension. The direct-iterative
solver combination and resolution strategy are similar to the 2D case.

The DISS-3D computes a coarse-grid solution by computing the LU factorization of
the complex impedance matrix A using the MUMPS direct solver (see Equation 6.3).
Note that the coarse-grid size, in general, is determined by the computer resources avail-
able rather than by wave-field simulation constraints. The LU-factors of A are computed
separately for all necessary frequency components. Then, coarse-grid wave-field solutions
(z,) can be computed for numerous RHSs at practically no computational cost (Stekl,
1997).

The combination of the direct coarse-grid solutions with the fine-grid iterative solver is
obtained by a simple space bilinear interpolation procedure. The interpolated wave-field
solutions serve as initial solutions for the iterative scheme. As for the DISS-2D scheme,
the computed 3D fine-grid wave-field solutions suffer from spatial phase-shift artefacts
caused by the interpolation process. Additional V- and W-cycles or large amounts of
iteration steps are necessary to efficiently eliminate the interpolation artefacts.

6.3.2 The Direct-Iterative-Wavelet Solver

The Direct-Iterative-Wavelet Solver (DIWS-3D) solves the matrix Equation 6.3 in the
spectral wavelet domain. The matrix is projected on the orthogonal Daub4 wavelet
basis. Necessary wavelet expansions follow exactly similar computation procedures as
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developed for the DIWS-2D. Each term in Equation 6.2 is transformed using the wavelet
projection operators W and W7, Since the Daub4 wavelet expansion is an orthogonal
transform, the inverse projection operator is equivalent to the transpose of the forward
operator W1 =WwT.

The following equations are transformed in the wavelet domain:

W[iwfx%-Pw]WT—lrW[g—f]WT = wW[-Swt
W[iwgy%-Py]WT—l—W[%—l:]WT =0
W[iwﬁz%-Pz]WT—irW[g—f]WT =0
Wliwtap- QW + WIEDIWT = 0
W[z'wgyp-R]WTJrW[aa—];]WT =0
W[iw{zp-T]WT—l—W[aa—]:]WT =0

(6.4)

For the complex-valued diagonal terms that hold medium and frequency relevant param-
eters, I obtain:

1
W[waxE : Pa:]WT =

S S S < Pt >< Yyt ik thitbatb > Yitbath

u,v a:ﬂ l:]

(6.5)

where indices (i, 5), («, 8) and (u,v) represent wavelet projections with respect to the -,
y-, and z-directions. The corresponding wavelet basis functions are denoted by 4; ;, ¥ g,
and 4, ,. I reintroduce the initial PML damping function v in Equation 6.5 and obtain:

_ Az L
Wlhiw(l +i2Z2y= . p 1wt =
[iw(1 41 )K e

S SN < P thiththe >< it (9= — Yo bitbathu > Yibath
K K

u,v a:ﬂ ’LaJ

(6.6)
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Equation 6.6 is split up with respect to terms depending on the frequency w:

. oy 1 T
]. - I .P:L‘ -
Wliw(l +i—) 124

i YOS < Pttty >< byt (g ithathu > Yithath

u,v O‘aﬂ l:]

= Y3 < Pty >< it (s Withathe > Yithat

u,v w,f i,j

(6.7)

In order to obtain an efficient DIWS-3D algorithm, I calculate the two convolution projec-
tions of W[y, #]WT and W[&]WT before the modelling starts. The algorithm to obtain
the coefficients ¢;a,, = Wliw(1 +i22) %)W" then writes:

dot=1,n,
do a=1,my
dou=1,n,
do j =1,nnz;
do B =1,nnz,
do v =1,nnz,
chaa = o) #0) - ¥al8) - 0ul0)
G = Bhongargr) 950 - Ya(8) (0
end do
end do
end do
call WT3D(c;, )
call WT3D(c} )
end do
end do

end do (6.8)

I underline the importance of the appropriate choice of wavelet basis functions in
order to guarantee fast and efficient spectral transformation algorithms. One coefficient
Ci,a,u 18 computed by the multiplication of physical media parameters at the grid point
(i, ,u) with the corresponding wavelet basis functions in all three dimensions. In case
the wavelet basis functions are sparse, which is equivalent to the wavelets having small
number of vanishing moments and quadrature mirror filter coefficients, the products and
the subsequent wavelet projections can be computed efficiently. The Daub4 wavelet basis
fulfills these requirements and is therefore used throughout.
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Nevertheless, the convolution projections need to be computed only once before
the modelling starts. During wave propagation simulation, I construct the complex
impedance matrix for the corresponding angular frequency components w; by simple
multiplications and subtractions of precomputed projection terms (Equation 6.7), which
significantly reduces the computational cost of the DIWS-3D approach:

1 1
iw - W[E]WT - W[%E]WT

(6.9)

Off-diagonal matrix terms consists of derivative operators for all three spatial dimen-
sions. I discretize the operators in physical domain using the standard staggered FD
geometry. A typical expansion of an operator in the spectral wavelet domain e.g., for the
z-direction, gives:

0

0
QW ==3 3> < othinthy >< Quivatbu > Yitbathu
u o 4,]
(6.10)

Similar projections can be performed for spatial operators in y- and z-directions. The
matrix formulation in Equation 6.3 results in real-valued and frequency independent
derivative operators. Therefore, they are constructed only once before the modelling
starts.

6.4 Benchmark tests for sequential code

I implement the acoustic DISS-3D and DIWS-3D approach for 3D wave simulations in
a sequential version. The 3D sequential code is tested for a simple homogeneous model
using the DISS-3D and DIWS-3D in order to verify the correct implementation and
moreover to evaluate the largest possible model size that still could be simulated on a
single desktop Linux PC. The principal purpose of the sequential 3D wave simulation
tests presented here, is to serve as comparison for possible parallel implementations of
the DIS strategies.

6.4.1 Homogeneous cube

The first numerical tests for the DISS-3D and DIWS-3D were performed for a simple ho-
mogeneous cube. The medium velocity is v = 4000m/sec and the density p = 2500kg/m?>.
PML absorbing boundary conditions are defined on all edges of the cube. The PML layer
size for the direct coarse-grid and iterative fine-grid, is 2 and 4 grid-nodes, respectively.
The source function S is the derivative of a Gaussian exactly similar to the one defined in
Chapter 4 for the Corner Edge simulation. In order to keep the matrix size small, at this
stage, I only use second-order derivative approximations rather than fourth-order used
for the 2D simulations.
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Y-Offset [Km]
1

Z-Depth [Km]

DIWS-3D Homogeneous Model (J=1)

Figure 6.1: 3D Pressure wave-field component calculated by the DIWS-3D on J =1
wavelet resolution scales. The frequency is f = 9.5Hz. The wave-field has been recom-
bined from the three PML contributions P = P, + P, + P,.

All simulations were run on a single desktop Linux PC with 1GByte of RAM memory
and processor speed of 1M Hz. At the current stage, the largest DISS-3D wave simulation
that can be performed, uses a coarse-grid of size 34 x 30 x 14 grid-nodes. Using a two-step
grid combination gives a fine-grid of size 68 x 60 x 28, where PML absorbing layers are
included. Note that larger 3D models require larger RAM memory available for the direct
matrix factorization.

The largest DIWS-3D model simulation is performed on a coarse-grid 16 x 15 x 11. As
for the DISS-3D, I use a two-scales geometry which gives a fine-grid of size 32 x 30 x 22.
Note that the DIWS-3D implementation is not optimised in order to model the largest
possible 3D model in sequential mode. Therefore, the largest DIWS-3D model size is
limited by the RAM memory available to expand the impedance matrix in the spectral
wavelet domain.

In Figure 6.1, I illustrate a DIWS-3D simulation result for the frequency compo-
nent f = 9.5Hz on J = 1 resolution scales. The model is the largest DIWS-3D model
mentioned earlier. The plot shows only the recombined pressure wave-field component
(P = P, + Py + P,). The spatial discretization step for the coarse-grid and fine-grid, is
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Figure 6.2: 3D Line Source model.

dx = dy = dz = 80m and 40m, respectively.

6.4.2 Line Source simulation

In order to verify the correct computation of the 3D wave propagation, I perform a DISS-
3D wave simulation in a homogeneous model that is excited by a line source. Then, the
obtained solution may be directly compared to a DISS-2D wave-field simulation.

The line source is placed in y-direction at the coordinates (nz = 0.56Km,ny =
0—1.44Km,nz = 1.2K'm) in the 3D model. The fine-grid has a size of 60 x 44 x 28 and
a spatial discretization step of 40m. This corresponds to a 3D model with dimensions
24Km x 1.76 Km x 1.12K'm. The Line Source model geometry setup is illustrated in
Figure 6.2. Overall godd agreement of the two solutions is observed.

In Figure 6.3, I show the re-combined pressure wave-field component (P = P, + P, +
P,) for the frequency f = 9.5Hz. Clearly visible is the 2D frequency map on the xz-plane
of the cube.

In order to compare the DISS-3D solution, I cut a 2D slice out of the cube in the
xz-plane as indicated in Figure 6.2. The 2D slice frequency map and the corresponding
DISS-2D simulation results for a homogeneous 2D model having similar properties, are
shown in Figure 6.4.

6.4.3 3D Corner Edge model

I perform a 3D Corner Edge simulation using the DISS-3D approach. The Corner Edge
model in 3D media separates two homogeneous volumes, where the corner edge volume
is a sub-block in the cube. An illustration of the 3D Corner Edge model is given in
Figure 6.5.

The surrounding media has a velocity and density of v = 2000m/sec, p = 2000kg/m?,
while the corner edge volume physical parameters are v = 5000m/sec and p = 2500kg/m3,
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Figure 6.3: 3D frequency map (f = 9.5Hz) of the recombined pressure wave-field P =
P, + P, + P, computed by the DISS-3D scheme. The source is a line source in the y-
direction placed in the middle of the xz-plane (i, = 0.4Km, j, = 1,..,ny, k; = 1.04Km).
Note that the frequency map is plotted with PML absorbing boundary layers included.

respectively. The DISS-3D simulation is run for a two-step scenario, where the fine-grid
is the largest possible sequential grid (68 x 60 x 28). The fine-grid discretization step is
dxr = dy = dz = 20m.

A wave-field simulation for the frequency component f = 9.5Hz is illustrated in Fig-
ure 6.6. The source is located at (nx = 0.76 Km,ny = 0.56 Km,nz = 0.16 Km). 1 show
the pressure wave-field component that has been recombined from its PML contributions.

6.4.4 Discussion

Frequency-domain (FD) modelling for large-scale complex 3D media is difficult to perform
on single desktop workstations, because of the massive computer resources required. A
large 2D model that incorporates strong structural complexity is, in general, already too
large to be treated by a direct matrix factorization and iteration procedure.

The actual physical model size of a 3D wave simulation that can be computed by the
DISS-3D sequential mode (for second-order derivative approximations) on a stand-alone
Linux-PC consists of 68 x 60 x 28 grid-nodes. Even though the combination of both solver



6.4 Benchmark tests for sequential code

155
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Z-Depth [Km]

2D simulation

b) X-Offset [Km]

Z-Depth [Km]

2D-slice extracted from 3D simulation (XZ-plane )

Figure 6.4: 3D line source simulation performed by the DISS-3D scheme compared to
the 2D simulation for the pressure wave-field shown in Figure 6.3. The 2D solution in
(a) was computed for exactly the same model parameters using the DISS-2D code. The
sliced-out frequency map is shown in (b).

schemes in the DISS and DIWS approaches increases the dimension of the model that
can be simulated, the gain obtained is not sufficient to treat realistic large-scale earth
models.

Ideally, I would like to model 3D simulations for acoustic wave propagation using the
DISS-3D and DIWS-3D strategies for a realistic model configuration shown in Table 6.1.
I assume the model to have a physical size of 10Km x 10Km x 10K'm, where the minimal
wave-speed in the model is ¢, = 2000m/sec. I would like to model frequencies in a
range from 0Hz — 5Hz which gives a shortest wavelength of 400m. In order to provide
a sufficiently accurate and stable modelling result, I define a spatial discretization that
guarantees at least 10 grid points per shortest wavelength. Therefore, I set the spatial
discretization to doz = dy = dz = 40m which gives a computational grid of 256 x 256 x 256
grid-nodes.

The overall matrix size for the DISS-3D and DIWS-3D scheme is 6 - 2563 x 6 - 256.
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3D Corner Edge Model

Figure 6.5: 3D Corner Edge model that consists of two homogeneous volumes, where the
corner edge volume is a sub-block in the cube. The media surrounding the corner edge
has a velocity and density of v = 2000m/sec, p = 2000kg/m?3, while the corner edge
volume physical parameters are v = 5000m/sec and p = 2500kg/m?3, respectively.

If T assume fourth-order derivative approximations, the DISS-3D and DIWS-3D matrices
contain approximately 9 x 108 and 3.5 x 10° coefficients different from zero, respectively.
Note that the number of non-zero coefficients in the DIWS-3D matrix are estimated for
J = 2 wavelet resolution scales. Therefore, I would need at least TG Bytes, 28G Bytes
memory to hold the non-zero coefficients of the DISS-3D and DIWS-3D matrix in RAM
memory. The extremely large memory demand directly excludes any sequential FDFD
modelling schemes on common single desktop workstation configurations.

Because of the estimated computer resources required for realistic 3D FDFD simul-
ations, I propose to transfer the DISS-3D and DIWS-3D sequential code to large-scale
distributed memory PC-Clusters. The deduced parallel algorithm shall construct blocks
of the complex impedance matrix on a group of processors, independently. The ma-
trix blocks are defined with respect to local memory and CPU configurations of a single
processor in the parallel environment.

When the matrix blocks have been constructed locally, we ideally would like each
processor to perform local parts of a global computation using only matrix information
a processor holds in its proper RAM memory. Moreover, expensive communications
between single or groups of processors shall be reduced to the minimum in order to obtain
the maximum possible speed. In case each processor successfully terminates its task, the
parallel code performs one single global communication between processors in order to
combine local solutions to the overall global problem solution. Since local problems on
each processor are greatly reduced in size, I expect their computation to be fast and
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Figure 6.6: Frequency map (f = 9.5Hz) computed by the DISS-3D in the 3D Corner
Edge model. The source is excited at (nx = 0.76 Km,ny = 0.56 Km,nz = 0.16 Km). The
frequency map corresponds to the pressure wave-field, that is recombined from its PML
components.

efficient.

Typical computational tasks in the DISS and DIWS strategies that need to be par-
allelized are the matrix construction and factorization, as well as the matrix-vector and
dot-products in the iterative scheme.

Another possibility to overcome computer hardware limits for a large-scale FDFD
wave propagation simulations is the matrix construction on-the-fly. As before, I as-
sume the complete matrix to be too large to be constructed directly in RAM memory.
In an iterative scheme, the complete matrix A only takes part in the iteration process
through matrix-vector products. Therefore, the matrix coefficients that are required by
the matrix-vector product at an instant of the computation may be constructed only
when needed. Once a matrix coefficient has been derived and subsequently been used
in the matrix-vector product, its memory space is set free to be accessed by the next
required coefficient. In this case, the complete impedance matrix is never constructed
and memory constraints become negligible (Pessel, 2000).

From a strict memory constraints point of view, large wave simulation problems may
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Model Dim. [Km)| 10 x 10 x 10
P-Velocity |m/sec] 2000
Frequency [Hz| 5
Wavelength |m)| 400
Discretization [m] 40
Grid 256 x 256 x 256
Scheme DISS-3D | DIWS-3D
Non-zero Coef. | 0.9 x 10 | 3.5 x 10?
RAM |G Bytes] 7 28

Table 6.1: Computer resources requirements for a desired 3D wave propagation simulation
using the Direct-Iterative Strategy

be treated using the matrix construction on-the-fly, since RAM memory is only needed
to construct single matrix coefficients and to hold wave-field and RHS vectors. However,
the approach is extremely expensive in CPU-time demands. Matrix coefficients need to
be re-constructed at each step of the iteration process when a matrix-vector product is
required. Moreover, iterations are repeated for multiple RHSs and additional frequency
components. With respect to the estimated matrix size of a realistic 3D wave simulation
(number of non-zero coefficients of the order of 1 x 10%), the approach is not considered
here.

6.5 Parallelization

A brief look at FDFD modelling schemes suggest a parallelization approach that dis-
tributes the simulation of several frequency components to a group of processors, where
each processor computes one frequency component. Even though this parallelization
approach is rather simple to implement and also effective to cut down required CPU-
time, it does not permit large-scale wave simulations, since required RAM memory and
CPU-time are restricted to the performance of a single processor PC. I rather suggest to
speed-up the principal numerical expensive computations, such as matrix constructions,
factorizations, and iterative processes, that have to be computed inside the frequency
loop. Thus, computations for one frequency component will be significantly accelerated,
which implies an overall CPU-time gain for the whole scheme. Moreover, distribution of
single frequency components to distinct processors or, in parallel to a group of procssors,
may still be performed if necessary.

Many different techniques to parallelize a numerical code exist, where the main dif-
ference, to my knowledge, is related to code-portability aspects. One of the standard
tools out of the group of parallel languages that provides stable and repeatable numer-
ical simulations is the MPI (Message Passing Interface Forum, 1994) standard. Similar
approaches, such as High Performance Fortran (HPF), are easier to implement, though
they are still under development, and therefore not considered here.
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In addition to parallelizing the principal computational processes on a distributed
memory system, one may include OpenMP (Dagum and Menon, 1998) to further opti-
mise computations on shared memory structures. A typical example is a combination
of the general code parallelization on a distributed memory PC-Cluster using MPI with
applications of OpenMP to parallelize the CPUs combined at one node in the Cluster.

In the first stage of the DIS parallelization, I restrict the developments to the MPI
standard formulation that provides large code-portability. Moreover, the sequential DISS-
3D and DIWS-3D codes rely entirely on Fortran 77/90 programming language. Since the
MPI standard is easily combined with Fortran code, I decide to develop the DISS-3D and
DIWS-3D parallel versions using Fortran 77/90 together with MPI. Any further code
optimisation is not hindered by this approach and may be pursued in the future.

An effective parallelization of the DIS approach requires three different strategies
corresponding to the principal processes that need to be computed during wave simulation
modelling. In Figure 6.7, I illustrate the computationally expensive procedures that
appear in either the DISS and DIWS approaches, or in both.

6.5.1 Parallel convolution computation

The DIWS approach suffers from expensive convolution-type expansion algorithms that
have to be computed to transform physical media property-terms in the orthogonal Daub4
wavelet basis (see Equation 6.8). Approximately 60% — 70% of the dispensed CPU-time
for the convolution computations is due to wavelet transformations that may be easily
parallelized on a group of processors (Homlstrom, 1995).

Despite of the wavelet transform, both space- and wavelet solvers require the com-
putation of the complex impedance matrix LU-factorization and the iterative solver i.e.,
matrix-vector and dot-products, to obtain coarse-grid and fine-grid wave-field solution.
The direct and iterative solvers are the principal CPU-costly computations and it is
desirable to parallelize both in an optimal way. This is explained in the following.

6.5.2 Parallel direct solver

The direct solver software MUMPS for the matrix factorization was especially developed
for parallel applications. Therefore, parallelization of the coarse-grid computations are
restricted to construct the complex impedance matrix in the format required by MUMPS
in a distributed manner.

MUMPS provides several options to enter the matrix into the factorization phase,
such as centralised and distributed input. Since my principal concern is the overall size
of the impedance matrix for a 3D simulation, I choose the distributed matrix input for
the DISS and DIWS schemes.

The complex impedance matrix in Equation 6.3 and its DIWS wavelet expansion are
constructed in a row-wise manner. Since the row-wise matrix construction is natural to
the DIS-FDFD approaches, I distribute blocks of matrix rows to every processor that
contributes to the parallel factorization process. Each processor then constructs the
matrix parts that correspond to the number and position of rows it is responsible for.
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| Construct Operators: d/dx, d/dy, d/dz

l

| Construct Medium Contribution |

DISS: DIWS:
ig /K W[ 1/K ]WT and W[y I/K ]WT

do i=1,nw

—>| Combine Impedance Matrix |

—>| Part I: Factorise Matrix A (MUMPS) |

—>| do j=1,nsrc

—>| Part I: Solve MUMPS |

—>| Part II: Iteration (GMRES) |

end do
end do

Figure 6.7: Flowchart of the DIS approach. Only computational expensive procedures
are shown, where bold type parts are possible candidates for parallelization.

MUMPS demands the distributed matrix blocks in a sparse Harwell-Boeing type format,
that consists of three arrays storing the actual non-zero matrix values and their row and
column indices. The complete matrix in centralised form is never constructed.

The block structure information of the matrix distribution on all (slave-) processors
in the group is passed to MUMPS on the host processor. MUMPS then performs an
analysis phase where the distributed input matrix is ordered with respect to a minimum
degree pivot strategy. Therefore, I neglect any manual pre-ordering of the impedance
matrix. Note that in the new MUMPS version the user will have the choice between
different ordering strategies, such as minimum degree or nested dissection (Amestoy and
Giraud, 2002), while for the current simulations the minimum degree ordering is used
throughout.

When the analysis phase is successfully terminated, MUMPS performs the distributed
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matrix factorization. Even though MUMPS may choose all computational related pa-
rameters automatically, the software also provides extensive possibilities for the user to
interact in order to provide additional relevant information, such as predefined pivot
vectors, etc.

For initial DISS and DIWS wave simulation tests on parallel computer structures, 1
increased the matrix-block buffer size to allow increased fill-in during the matrix factor-
ization phase. This modification becomes necessary when low frequency components are
modelled (f < 1 —2Hz), since, otherwise, the required memory to account for increased
matrix fill-in caused by the numerical pivoting is insufficient. All other parameters are
left with theirs default values.

6.5.3 Parallel iterative solver

The third DIS procedure that requires efficient computations is the iterative solver applied
to compute fine-grid wave-field solutions in the space (DISS) and wavelet domain (DIWS).
As for the direct matrix factorization part, I use an external software developed by Frayssé
et al. (1997) to compute the iterative solution. I use a GMRES (Saad and Schultz, 1996)
iterative solver that belongs to the class of Krylov based iterative methods, since the
DISS- and DIWS impedance matrices are complex-valued and asymmetric.

The GMRES implementation computes only the strictly iterative part. Subrou-
tines for computational costly procedures that appear during the iteration steps, such
as matrix-vector and dot-products, as well as preconditioning, are left to the user’s re-
sponsibility. Note that until now, I did not investigate any numerical preconditioning
strategies. Therefore, parallelization strategies investigated for the iterative scheme are
restricted to solve the matrix-vector and dot-products as efficiently as possible. Since
the matrix-vector are the heaviest computations to be performed, I prioritize possible
parallelization strategies for distributed matrix-vector products.

Column matrix distribution

The first matrix-vector parallelization strategy is of purely mathematical nature. Any
constraints imposed by the physics of the underlying wave simulation problem are not
considered for the parallelization process.

As [ illustrate in Figure 6.8, I assume that the matrix A and the vector = are dis-
tributed over a group of distributed memory processors. Each processor in the group holds
a vertical slice of matrix columns and the corresponding slice of the vector z;,.. The size
of the slice is denoted by m. Then each processor may perform a local matrix-vector
product (Ajee X zj0c) corresponding to the distributed matrix-vector-slice it is responsible
for. The obtained result on each processor (by.) is of length n. When all processors
terminate the local product computations, two global communication steps are required
to collect and pass on the locally computed information to the whole group of processors.

At first, all local results need to be collected from each processor and recombined on
e.g., the host processor to obtain the global matrix-vector result (bg;). Since the matrix-
vector product in an iterative scheme is an intermediate step to update the iterative



162

Frequency Domain Finite-Difference Modelling in 3D Acoustic Media

“«—m—>

35—

Matrix (A) (_X) 6
Vectors

Figure 6.8: Parallelization of a matrix-vector product on a group of processors. The
matrix A and the vector z are distributed in slices of size m over a group of processors.
Each processor performs a local matrix-vector product (Ajpe X %), that gives a part
of the global RHS result (by;). The final result may be constructed through a global
communication step that collects the local solution from each processor in the group.

solution approximation, the computed RHS vector by needs to be distributed to the
group of processors with respect to the slice each processor is responsible for. The two
global communication steps are easily implemented using MPI-based message passing
subroutines.

The main drawback of this matrix-vector product parallelization comes from the
column-wise matrix decomposition. As I mentioned earlier, the complex impedance ma-
trices for the DISS and DIWS approaches are naturally constructed in a row-wise manner.
Moreover, blocks of rows rather than columns are easily constructed in a distributed en-
vironment.

The development of a direct column-wise matrix construction algorithm is possible,
though excessive processor communications are required, which renders the approach
inefficient. Because of the mentioned handicaps, I did not further pursue a column-wise
matrix implementation.

Row matrix distribution

The second parallelization strategy considered is similar to the first one, though now
I distribute the DISS-3D and DIWS-3D matrices by packets of rows to the group of
processors rather than columns. The row-wise distribution strategy obliges each processor
to hold the entire wave-field solution in memory (see Figure 6.9).

Local matrix-vector products are performed on each processor which results in the
global RHS vector solution being distributed over the group of processors. In the GMRES
scheme we therefore have to collect the RHS; vector components from each processor,
combine the information, and redistribute the result to all processors after each iteration
step.
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Figure 6.9: Parallelization of a matrix-vector product on a group of processors. The
matrix is distributed in slices of rows over the group of processors. Then each proces-
sors performs a local matrix-vector product that constructs separate slices of the global
RHS result. The global matrix-vector product is obtained by first collecting and then
recombining all slices from all processors in the group.

Compared to the column-wise matrix distribution, the row-wise decomposition is
favourable since it follows natural DISS and DIWS matrix constructions. Moreover,
the transfer from the sequential to parallel implementation is not arduous to perform.
The main drawback of this approach is related to a large number of expensive global
processor communications. Thus, the approach may be superior to the first column-
wise parallelization strategy, but the computational load for communications and to hold
the complete wave-field in memory is not optimal. Also, the iterative GMRES solver is
applied to the global wave-field approximation solution. Allocation of iterative working
arrays relate to the iterative problem size, which for the row-wise ordering is similar
to the sequential load. Thus, the strict iterative part will have similar performance as
the sequential version. Therefore, the row-wise ordering does not provide an optimal
parallelization startegy, and may only be implemented to perform simple initial tests for
parallel computations.

Domain decomposition

The third parallelization approach is based on a domain decomposition concept, which
is widely used for efficient parallelization strategies of finite-element and time-domain
FD modelling approaches. Domain decomposition breaks up the physical model into a
number of sub-domains that are distributed over an existing group of parallel processors.

The idea of the model decomposition is the partition of a global, computational ex-
pensive procedure to a number of local problems of significantly reduced size, such that
each processor in the group easily performs its attributed local process. Moreover, the
decomposition has to be performed in a manner that guarantees parallel computations,
with inter-processor communications kept to a minimum. Thus, the initially large com-
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Figure 6.10: Parallelization by domain decomposition for a FDFD modelling scheme. In
this example, the physical model is subdivided into 2 sub-domains (a), which implies
a parallel computation using 2 processors. Each processor constructs a local impedance
matrix corresponding to the sub-domain it is responsible for (b). Computations of partial
derivatives require coefficients in neighbouring sub-domains that need to be sent by an
inter-processor communication step (c).

putation is split into a set of local problems that are easily solved in a fast and efficient
manner using known sequential algorithms.

In order to obtain the desired model decomposition, we need to formulate local FDFD
matrix equations for each sub-domain. Moreover, the deduced model decomposition
subsequently induces a similar decomposition of the approximated wave-field solution
x; and the RHS vector b. Note that, in general, it is desirable to formulate the domain
decomposition in such a way that the initial sequential code for the global problem is only
adapted to local sub-domains, while the computational structure remains unchanged.

Once local systems of equations are defined, we can run local iterative schemes on
each processor for each sub-domain independently. The distributed iterative solver is
then similar to a parallel iterative computation, where the initial global procedure is
distributed over the group of sub-domains on each processor.

In oversimplified terms, I said the parallel iterations to be domain-independent. This
is only true for the inner sub-domain body. Since derivative operators require grid-node
information from neighbouring points in order to precisely estimate spatial derivatives,
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sub-domain interactions exist near the interfaces of domains.

Krylov-based iterative solvers, such as GMRES, update the approximate iterative
solution through matrix-vector or dot-product computations. In order to guarantee the
correct evaluation of a global iterative solution e.g., for the matrix-vector product z =
A Xy, processors require information passing from neighbouring sub-domains to compute
the corresponding local product 2/ = A7 xy/ they are responsible for. The message passing
is implemented by an overlap of a given sub-domain into the neighbouring domains,
where the dimension of the overlap is controlled by the order or spatial size of the partial
derivative operator used.

In Figure 6.10, I illustrate a domain decomposition situation for the DISS-2D ap-
proach. The physical model is decomposed into two sub-domains building a vertical
interface (a). For each sub-domain a local matrix equation is formulated that is similar
to Equation 6.3. The local impedance matrix (see Figure 6.10b) holds discretized deriva-
tive operators that require grid-node information from the neighbouring domain (denoted
by stars near the interface in Figure 6.10¢). Since the overlapping data is defined on the
next processor only, MPI message passing is performed to guarantee exact matrix-vector
computations.

Dot-product computations follow a similar parallelization induced by the domain
decomposition. Each processor performs a local product corresponding to the data of
its sub-domain. Once all processors in the group terminate their calculations, a MPI
processor communication step constructs the global wave-field approximation solution for
the given iteration step. The iteration process is continued by updating corresponding
vector slices for all processors in the group.

Domain decomposition may be directly applied to the DISS approach for parallelising
the iterative scheme. For the DIWS approach, this may not be true since the decom-
position into sub-domains, similar to the approach presented here, is not natural to the
global wavelet projection of the computational domain.

Discussion

Three different parallelization strategies for matrix-vector products resulting from a
FDFD-DISS or DIWS formulation have been discussed. The main problem underlying
all approaches is to find a good matrix decomposition strategy that respects the physical
characteristics of the DISS and DIWS formulation.

The first column-wise matrix distribution is in contrast to the sequential matrix con-
struction algorithm. I therefore expect large additional work to be performed in order to
construct the impedance matrix directly in distributed mode, which is why this approach
is considered not being appropriate for the FDFD-DIS formulation.

The same kind of parallelization strategy is followed for the second approach, called
row-wise parallelization. As the name indicates, this approach is better adapted to the
problem at hand and, moreover, the implementation of the parallel code is estimated
to stay rather simple. Still, this approach requires large processor communications and
the strict iterative scheme is not parallelized in an optimal way. Therefore the row-wise
matrix distribution is not the ideal solution for large-scale wave simulation modelling.
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The third parallelization strategy relies on a physical domain decomposition approach.
The inherent structure and expected algorithms for a domain decomposition fulfil the
desired parallelization constraints, since large-scale global computation for the sequen-
tial code are efficiently split-up in a large number of practically independent problems.
Therefore, domain decomposition shall be investigated in greater detail for an optimized
DISS-3D implementation.

For now, the question remains how the domain decomposition approach may be ap-
plied to the wavelet-based DIWS scheme. Although it might be possible to apply the
DIWS resolution strategy to each sub-domain in the decomposition, this does not lead
to a proper wavelet-based parallelization strategy, since the underlying physics of the
wavelet formulation are disregarded.

In my opinion, the DIWS parallelization of the iterative scheme should build on the
intrinsic multi-scale decomposition provided by the wavelet expansion. Unfortunately,
I did not have enough time to further pursue these ideas and I will therefore end the
discussion here.

6.6 Conclusion

I demonstrate acoustic wave propagation modelling in homogeneous and heterogeneous
3D media using the space DISS-3D and wavelet-based DIWS-3D FDFD approaches. The
3D approaches are exactly similar to the 2D developments discussed in Chapter 4.

The current sequential implementation of both DIS schemes limits significantly the 3D
grid sizes that may be modelled. Nevertheless, DISS-3D and DIWS-3D were compared
to simple 2D wave simulations to guarantee correct numerical wave simulations. In fact,
I compute 3D wave-field simualtions that are excited by an external line source linearly
spread out over one spatial coordinate direction. Then extracted 2D-planes out of the 3D
solution provide wave-field frequency maps exactly similar to standard 2D computations.
In case numerical or implementation errors exist, they can be detected easily following
this comparison test.

In order to permit acoustic wave modelling in large-scale earth models, the paral-
lelization of the DISS-3D and DIWS-3D approaches is unavoidable. Therefore, different
parallelization strategies for different computational aspects are discussed with respect
to their feasibility and expected performance.

I choose MPI-based Fortran programming for all DIS parallelization aspects in order
to guarantee large code-portability on numerous distributed memory computer structures.

[ detect three principal CPU-time expensive computations that may be parallelized in
a DIS approach. The first is the wavelet transform applied during convolution-type spec-
tral wavelet expansions performed in the DIWS approach. The transformation algorithm
may be parallelized on multi-processors structures using wavelet-adapted parallelization
strategies developed by mathematicians (Homlstrom, 1995).

The second computational expensive calculation is the coarse-grid LU-matrix factor-
ization. Since I apply a minimum degree ordering solver that was developed especially for
parallel applications, the principal task is an optimised matrix construction algorithms for
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the solver software. I implement a distributed parallel matrix construction scheme, where
each processor constructs a pre-defined number of rows of the global impedance matrix.
The distributed matrix blocks are analysed and subsequently re-ordered by the factor-
ization software following minimum pivot strategies. The combined global impedance
matrix is never constructed.

Finally, I discuss parallelization strategies for the iterative GMRES computations of
the fine-grid wave-field solutions. I find the domain decomposition approach promising
to provide a powerful DISS-3D parallelization strategy. This shall be implemented in the
near future.

A domain decomposition parallelization for the DIWS approach requires significant
modifications to the spatial DISS approach due to the global view of the wavelet trans-
form. Different strategies may be imagined that, in my opinion, should profit from the
natural wavelet-based multi-scale decomposition. This needs to be investigated in further
detail.
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Chapter 7

Conclusions

7.1 Résumé

La modélisation de la propagation des ondes est essentielle pour évaluer le risque sismique
d’un site donné, comme outil numérique dans des algorithmes d’inversion des données sis-
miques, ou pour effectuer des simulations des ondes pour des expériences multi-sources.
Parmi ’ensemble des méthodes de modélisation existantes, les méthodes par différences
finies (FD) ont un intérét particulier dans la mesure ou elles fournissent la réponse com-
plete du champ d’onde sur un ensemble de points d’une grille numérique pour des struc-
tures hétérogénes complexes arbitraires. Des phénomeénes réalistes de propagation des
ondes peuvent étre reproduits dans des modéles complexes tridimensionnelles de grande
taille (par exemple, 10x10x10 Km) et des excitations de source de bande passante élevée
(par exemple, 0-10 Hz).

Les algorithmes standard FD fournissent un outil puissant pour la modélisation des
ondes en deux dimensions (2D). Dans le cas de la propagation en trois dimensions (3D),
les discrétisations FD classiques des équations aux dérivés partielles (PDE) sur des grilles
cartésiennes nécessitent des temps CPU et des volumes de mémoire vive prohibitifs, qui
exceédent considérablement les capacités actuelles des ordinateurs. L’utilisation de grilles
numériques uniformes conduisent & des algorithmes stables et des implémentations aisées.
Néanmoins, les performances limitées de ces approches dans les cas de modélisations en
3D ont motivé le développement d’approches multi-grilles utilisant des combinaisons de
grilles ayant des résolutions variables. Ces développements ont permis d’améliorer les
performances des méthodes par différences finies, bien que d’autres méthodes basées sur
des éléments finies (FE) et des éléments spectraux (SE) sont clairement supérieures aux
méthodes FD optimisées.

Les techniques FE et SE définissent une grille numérique irréguliére pour un niveau de
précision donné. La grille numérique est construite de maniére & représenter parfaitement
les frontiéres ou discontinuités du modéle. Par conséquent, les problémes liés & la modéli-
sation tendent plutdt a étre reportés au niveau de la construction de la maille irréguliére.
Malheureusement, mailleurs (AMR) sont plutot difficiles & controler par l'utilisateur et,
en général, sont loin d’étre évidents & mettre en oeuvre.
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Cette these étudie le potentiel d’une approche utilisant ’analyse multirésolution fournie
par la transformée en ondelettes (WT) dans une formulation classique par FD pour des
simulations de la propagation des ondes dans des milieux 2D et 3D fortement hétérogénes.
La formulation en ondelettes fournit un outil puissant pour représenter le champ d’onde
modélisé et le milieu de propagation sur plusieurs grilles numériques de résolution dif-
férente moyennant la projection de ’équation d’onde sur une base de fonctions orthog-
onales, les ondelettes. Cette approche reléve de ce fait des méthodes spectrales. Avant
de faire des remarques de conclusion, je récapitulerai briévement différentes étapes du
travail présenté dans la thése.

Apreés la présentation de différentes approches de discrétisation spatiale des équa-
tions aux dérivés partielles, j’ai présenté un nouveau schéma basé sur une géométrie des
grilles en quinconce pour la modélisation des ondes acoustiques par FD dans le domaine
des fréquences (FDFD). Ce schéma, qui est appelé croiz 13-points a cause de sa forme
géométrique, a été comparé & 'approche classiquement utilisée pour les modélisations
dans le domaine des fréquences fondée sur des grilles tournées de 45 degrés par rapport
au repére cartésien. Les deux schémas ont été comparés analytiquement par analyse
de dispersion et numériquement via des simulations des ondes dans des milieux 2D ho-
mogenes et hétérogeénes en ce qui concerne la rapidité et la précision. Par ailleurs, j’ai
étendu 'implémentation séquentielle des deux approches au cas des architectures paral-
leles & mémoire distribuée de maniere a accélérer les calculs numériques.

La stratégie sélectionnée d’optimisation des modélisations des ondes FDFD propose
une extension des approches multigrilles classiques. La nouvelle approche, appelée " Direct-
Iterative Solver" (DIS), combine des calculs de simulation sur des grilles numériques de
résolution variable. La stratégie de I’approche DIS est sudivisée en trois principales étapes
de calcul:

e la solution sur la grille grossiére est calculée de maniére exacte par une méthode
directe (factorisation LU de la matrice d’impédance)

e la solution grossiére est prolongée sur la grille fine

e la solution prolongée est corrigée pour obtenir la solution finale sur la grille fine par
une méthode itérative

J’al présenté deux procédures différentes de prolongation de la solution de la grille
grossiére sur la grille fine qui sont fondées respectivement sur une interpolation bilinéaire
en espace, dénommeée le " Direct-Iterative-Space Solver" (DISS), et sur une décomposition
multi-échelles en ondelettes, dénommeée "Direct-Iterative- Wavelet Solver" (DIWS). Les
deux approches de simulation sont mises en oeuvre pour modéliser des ondes SH dans
des milieux 2D fortement hétérogénes et structurellement complexes. Des exemples divers
de simulation de propagation des ondes ont été présentés afin d’évaluer efficacité et la
précision des méthodes DIS.

Les deux approches DIS ont été alors étendues a la propagation d’onde acoustique dans
des milieux 3D. Mis a part la construction de la matrice d’impédance, 'implémentation
des approches DIS en 3D et en 2D repose sur les mémes principes. Les codes séquentiels
ont été validés sur des modeles 3D de taille limitée.
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L’utilisation de la stratégie DIS pour des simulations de la propagation des ondes a
grande échelle nécessite la parallélisation du code afin de le rendre opérationnel sur des
architectures paralléles en mémoire distribuée. Différentes stratégies de parallélisation
des méthodes DIS ont été discutées et en partie implémentées. Par manque de temps,
la parallélisation des approches DISS et DIWS n’a pu étre complétement implémentée
durant cette thése.

Résultats

Je présente les principaux résultats de cette thése dans deux paragraphes séparés, core-
spondant respectivement aux recherches sur la discrétisation par différences finies des
dérivés partielles spatiales (schémas en quinconce versus schémas combinés suivant plus-
ieurs systémes d’axes) et sur les développements d’optimisation en espace et en ondelettes
dédiés aux simulations FDFDs.

Discrétisation spatiale de ’équation d’onde

Le schéma résultant de la géométrie de grilles en quinconce pour les approximations
d’ordre 2 des dérivées est identique au schéma & 5-points tel qu’il a été introduit il y a
une dizaine d’année dans les modélisations en fréquence. Les approximations d’ordre 4
des dérivées pour des simulations FDFD en 2D conduisent & un schéma a 13-points. La
comparaison de l’étoile 9-points, qui résulte d'une approche par rotation de grille, avec le
schéma a 13-points montre que 'approche en quinconce est moins efficace. La géométrie
en quinconce conduit a un schéma qui contient les contributions de 13 points de la grille
numérique, par rapport aux 9 points pour I’approche par rotation de grille.

Par conséquent, les factorisations de la matrice d’'impédance dans la modélisation par
FDFD sont moins efficaces. D’ailleurs, la combinaison des grilles en rotation avec une
approche de condensation de masse fournit des relations optimisées de dispersion pour
I’étoile de 9-points. La précision du schéma 13-points peut également étre améliorée en
appliquant des optimisations de courbe de dispersion. Néanmoins, cette optimisation n’a
pas permis d’obtenir des résultats supérieurs a ceux obtenus par la combinaison de la
condensation de masse avec la rotation des grilles. J’en conclus que la recherche d’une
approche numérique qui combine des grilles en quinconce avec une rotation pour des
simulations de la propagation des ondes par FD mériterait d’étre menée également dans
le domaine du temps (TDFD).

Dans le cas des modélisations en 3D, I’approche par rotation de grille conduit & une
étoile de 27-points. Le schéma résultant des grilles en quinconce contient seulement
19 coefficients. Bien que le schéma de 19-points soit moins compact (distance entre la
diagonale et la frange externe de la matrice d’impédance), le nombre de coefficients du
schéma 3D est sensiblement réduit. Par conséquent, nous pouvons anticiper différentes
conclusions sur les performances respectives des schémas 3D correspondant a 1’étoile 27-
points et la croix 19-points.
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Optimisation dans le domaine spatial et des ondelettes

L’approche DIS combine des solutions du champ d’onde calculées sur une grille grossiére
et sur une grille fine. Les solutions sur la grille grossiére sont utilisées pour counstruire,
par prolongation, la solution intiale d’une approche itérative calculée sur la grille fine.
Bien que les simulations des ondes par FDFD peuvent étre calculées par méthode itéra-
tive en partant d’une solution initiale nulle, le préconditionnement fourni par I’approche
DIS, sous forme d’une solution initiale proche de la solution finale, accélére de maniére
significative la convergence du processus itératif.

Les approches DISS et DIWS fournissent des simulations des ondes stables et précises
pour des modéles hétérogénes complexes, telles que le modéle Marmousi. La différence
principale entre la formulation spatiale (DISS) et la formulation en ondelettes (DIWS)
est liée aux algorithmes de construction de la matrice et & la performance de la méthode
de résolution itérative.

L’approche DISS fournit naturellement des approches de construction rapides et ef-
ficaces de la matrice dans 'espace physique. La principale limite de ’approche DISS
est comparable a celle des méthodes multigrilles classiques. J’ai noté que le nombre
d’itérations pour faire converger le processus itératif variait significativement dune sim-
ulation & lautre. Ce comportement instable est attribué a l'interpolation bilinéaire util-
isée pour prolonger la solution grossiére sur la grille fine. Par conséquent, 1'utilisation
de I'approche DISS se révéle peu conviviale dans la mesure ou il est difficile d’anticiper
le nombre minimal d’itérations nécessaire a la convergence de l'algorithme. Dans les ap-
proches multigrilles classiques, la convergence est accélérée en utilisant des cycles en V et
W cousistant & résoudre séquentiellement le probléme itératif sur des grilles de résolution
variable. Néanmoins, le nombre de cycles & utiliser n’est pas facile a déterminer a priori.

L’approche de DIWS effectue des itérations sur une base orthogonale d’ondelettes.
J’ai limité I’analyse a l'utilisation des ondelettes de Daubechies-4 (Daub4).

La construction de la matrice d’'impédance dans le domaine spectral des ondelettes
nécessite des calculs cotteux sous forme de convolutions multidimensionnelles (temps
CPU). Bien que ces calculs soient cotiteux, ils ne sont effectués qu’une fois avant que la
modélisation sensu stricto ne commence.

Par ailleurs, la matrice d'impédance dans ’espace des ondelettes contient un plus
grand nombre de coefficients non nuls comparativement a la matrice discrétisée dans
I’espace physique. L’augmentation du nombre de coefficients non nuls, qui résulte de
la prise en compte des intéractions entre les différentes résolutions, dépend du nombre
d’espaces (ou de grilles) d’approximation utilisées dans ’analyse multirésolution. Cette
augmentation du nombre de coefficients non nuls peux étre compensés en appliquant des
masques dans le domaine des ondelettes dont 'objectif est d’adapter localement le nombre
de grilles utilisées aux propriétés locales du milieu (les grilles fines ne sont utilisées que
dans les parties du modéle ou se propagent des phénoménes de courte longueur d’onde).
Cette stratégie d’adaptabilité spatiale exploite la double localisation spatiale et spectrale
fournie par la représentation en ondelettes.

L’apport observé de ’approche itérative DIWS est ’accélération de la convergence
vers la solution désirée du champ d’onde sur la grille fine ainsi qu’une certaine stabilité
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de la convergence par rapport au nombre de résolutions utilisées. La représentation multi-
grilles fournie par la transformée en ondelettes se substitue efficacement et de maniére
automatique aux cycles en V et W des approches multigrilles classiques. En effet, la
représentation en ondelettes fournit la représentation multigrille mais est capable en plus
de résoudre le probléme itératif simultanément sur chacune des grilles. La résolution
simultanée du probléme itératif sur chaque grille est rendue possible par le fait que la
transformée en ondelettes prend en compte les intéractions entre les différentes échelles
lorsque par exemple un opérateur différentiel est appliqué a un champ d’onde. La prise
en compte de ces intéractions entre grilles se substitue aux opérations de prolongation et
de restriction des approches multigrilles classiques.

D’ailleurs, j’ai constaté que l'itération DIWS fournit une solution homogénéisé du
champ d’onde pour un nombre considérablement réduit d’itérations. En d’autres ter-
mes, les principaux composants du champ d’onde sont déja présents dans la solution
rapprochée.

Des simulations d’ondes acoustiques dans des milieux hétérogenes 2D et 3D ont été
effectuées par les méthodes DISS et DIWS en mode séquentiel. La taille maximale de la
grille numérique (nombre des noeuds) de 'approche DISS-3D est limitée par la mémoire
vive nécessaire au calcul de la solution du champ d’onde par une factorisation de la matrice
d’impédance. En revanche, 'approche DIWS-3D séquentielle a permis des modélisations
des ondes dans des modeéles 3D ayant la taille de la moitié des modéles de DISS-3D,
puisque ’attribution des espaces mémoire liées a la construction et stockage de la matrice
d’impédance dans le domaine d’ondelette, excéde les ressources d’informatique locales
disponibles.

Des simulations de la propagation des ondes en 3D ont été validées par comparaison
avec des simulations calculées en 2D avec les programmes DISS-2D et DIWS-2D. Pour
effectuer ces comparaisons, j’ai utilisé une ligne de sources orientée perpendiculairement
au plan dans lequel les simulations 2D ont été calculées. Les simulations 3D pour une
ligne de sources et 2D pour une source ponctuelle ont fourni les mémes résultats.

Future

Pour conclure, je propose quelques idées dans la perspective de futurs développements
des méthodes de modélisation des ondes par FDFD. La discussion concerne les stratégies
de discrétisation spatiale et d’optimisation des FDFD par "approche DIS.

7.2 Summary

Seismic wave propagation modelling is essential to quantify site effects and local seismic
risk, as a numerical tool in seismic data inversion algorithms, or to perform wave sim-
ulations for multi-source experiments. Finite-difference (FD) methods are of particular
interest as they provide the complete wave-field response on a discrete numerical set of grid
points for arbitrary complex heterogeneous structures. Realistic wave propagation phe-
nomena are accounted for when large complex 3D models (e.g., 10Km x 10Km x 10Km)
and high frequency ranges (e.g., 0Hz — 10H z) are modelled.
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Standard finite-difference algorithms provide a powerful tool for 2D simulations. For
3D modelling, natural FD discretizations of the partial differential equations (PDEs) on
Cartesian grids require massive amounts of CPU-time and memory, which greatly exceeds
available computer hardware systems. In general, simple grids are desirable since they
lead to numerical stable algorithms and simple implementation schemes. However, the
limitations due to computational inefficiencies have been reduced through the introduc-
tion of irregular grids, combinations of grids having varying resolution, and optimized
implementation schemes for parallel super computers. These developments increased the
computational efficiency, though other methods based finite elements (FE) and spectral
elements (SE) spatial discretizations clearly outperform optimized FD methods.

FE and SE techniques, by default, define an irregular numerical grid that, for a given
accuracy level, needs to be constructed to perfectly fit the internal model structures.
Therefore, problems related to accurate and efficient forward modelling are shifted to
the development of an appropriate mesh generation algorithm. Unfortunately, powerful
(automatic) mesh refinement techniques are rather difficult to control by the user and, in
general, are far from being obvious to implement.

This thesis investigates potentials of the wavelet transform combined in a classic FD
formulation for 2D and 3D wave propagation simulations, with respect to the CPU-time
performance and accuracy. The study was motivated by shortcomings of existing forward
modelling techniques to deliver synthetic results for large-scale wave simulation scenarios.
Moreover, the wavelet formulation seemed to provide a powerful tool that nicely intro-
duces the, in general, difficult multi-grid combination at the cost of a transformation in
the spectral wavelet domain. Before making concluding remarks, I will briefly summarise
different steps of the work presented in the thesis.

After introducing different spatial discretization schemes for general PDE formula-
tions, I presented a new staggered cross stencil for frequency domain finite difference
(FDFD) acoustic wave modelling. The deduced stencil, called 13-points cross stencil
because of its geometrical shape, was compared to the state-of-the-art grid rotation ap-
proach in FDFD modelling. Both stencils have been compared for wave simulations in
2D homogeneous and heterogeneous media with respect to computational efficiency and
accuracy. Moreover, I extended the initially sequential implementations for both grid-
rotation and staggered-grids to run on a distributed memory computer environment in
order to accelerate numerical computations.

I proceeded the research by developing a new FDFD modelling approach that pro-
vides an alternative optimization for standard multi-grid simulation strategies. The new
approach, called Direct-Iterative Solver (DIS), combines wave simulations on coarse-grid
and fine-grid discretizations. The DIS strategy is based on three different computation
steps:

1. compute coarse-grid solution by direct matrix factorization
2. project coarse-grid solution on fine-grid

3. extend projected solution to desired fine-grid solution by iterative solver
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Two different coarse-grid projection procedures have been introduced that, either rely on
a space bilinear interpolation, denoted by Direct-Iterative Space Solver (DISS), or on a
wavelet-based multi-scale decomposition, called Direct-Iterative-Wavelet Solver (DIWS).
Both solver approaches are implemented for SH-wave simulations in strongly heteroge-
neous and structurally complex 2D model scenarios. Various wave propagation simulation
examples have been presented in order to evaluate the computational efficiency and ac-
curacy of the DIS schemes.

Both DIS approaches are then extended to acoustic wave propagation in 3D media.
Besides the matrix construction, the DIS concept for the 3D and 2D implementation are
exactly identical. The sequential codes are evaluated for limited 3D models.

The extension of the DIS strategy to allow large-scale wave simulations requires a
complete parallelization of the code in order to run on distributed super computer en-
vironments. Different DIS parallelization strategies have been discussed and partly im-
plemented. Due to time constraints, the complete parallelization of the DISS and DIWS
approaches could not fully implemented in this thesis.

7.3 Results

I present the principal outcomings of the work in two separate subsections that correspond
to investigations related to space discretizations by the staggered-grid and grid-rotation
strategies, and to space and wavelet optimization developments performed for FDFD
modelling.

7.3.1 Space discretization

The deduced staggered cross stencil for second-order derivative approximations is exactly
similar to the 5-points stencil strategy. Fourth-order staggered derivative approximations
in 2D FDFD modelling lead to the 13-points cross stencil. Compared to the 9-points
star stencil that results from a grid rotation approach, the 13-points cross stencil is less
efficient. The staggered geometry gives a computational stencil that incorporates grid
contributions from 13 points, rather than 9-points for the grid rotation approach.

Therefore, required matrix factorizations in FDFD modelling are less efficient. More-
over, the combination of the grid rotation geometry with a lumped mass approach pro-
vides optimized dispersion relations for the 9-points star. The accuracy of the 13-points
cross stencil may be increased by applying dispersion curve optimizations, though I do
not find superior results compared to the rotation-lumped mass combination. Therefore,
I propose the investigation of a staggered grid rotation approach for 2D time domain
finite difference (TDFD) wave propagation simulations.

In case of 3D modelling, the grid rotation approach leads to a 27-points star. The
corresponding staggered stencil incorporates only 19 grid nodes. Even though the 19-
points stencil is less compact, the number of stencil coefficients in 3D is significantly
reduced. Therefore, we may expect different results for the 3D stencil comparison between
the 27-points star and the 19-points cross.
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7.3.2 Space and wavelet optimization

The Direct-Iterative Solver approach combines coarse-grid and fine-grid wave-field solu-
tions, thereby extending the dimensions of numerical grids in FDFD modelling. Even
though FDFD wave simulations may be performed using an iterative solver with zero ini-
tial solution, the DIS preconditioning strategy significantly accelerates the convergence
of the iteration process.

The DISS and DIWS provide stable and accurate wave simulations for complex het-
erogeneous model structures, such as the Marmousi model. The main difference between
the space and the wavelet formulation is related to the matrix construction algorithms
and to the performance of the iterative scheme.

The DISS approach, that is similar to a multi-grid nested iteration scheme, natu-
rally provides fast and efficient matrix construction schemes in the physical space. The
main drawback that prohibits stable wave simulations comes from known shortcomings
of standard full multi-grid methods. The performance of the space bilinear interpolation
as preconditioner for an iterative matrix solver was found to be strongly dependent on
the maximum number of iteration steps performed. Therefore, dispersion-free wave sim-
ulations become a cumbersome task to evaluate, since a given simulation problem may, or
may not be performed efficiently. The DISS ambiguity related to the space interpolation
phase-shifts may be reduced by the use of V- and W-cycles.

The DIWS approach performs iterations on an orthogonal wavelet basis. I restricted
investigations to the Daub4 wavelet basis, since it leads to fast and efficient numerical
algorithms while providing accurate and stable approximation properties.

The construction of the complex impedance matrix in the spectral wavelet domain
requires extensive wavelet expansion computations that have CPU-expensive convolution-
type structure. Even though convolutions are heavy to compute, they are only performed
once before the modelling starts and provide several optimization possibilities that, until
now, have not been investigated. Typical approaches to speed-up wavelet transform
algorithms include e.g., optimized parallelization techniques.

In addition to convolution-type expansions, the DIWS matrix in the wavelet space
contains an increased number of non-zero coefficients compared to the corresponding
DISS matrix in the physical space. The increase of coefficients depends on the number
of wavelet resolution approximation spaces applied and may slow down the performance
of the spectral approach. However, space adaptivity can be incorporated in the ma-
trix construction process, which is expected to largely eliminate shortcomings caused
by increasing matrix entries. From a conceptual point of view, the multi-scale wavelet
decomposition of the DIWS is similar to a Full Multi-Grid method.

The main advantage of the DIWS iteration process is the possibility to perform
restriction and prolongation steps simultaneously at each iteration step through the
wavelet multi-scale formulation. Therefore fast and stable convergence to the desired
fine-grid wave-field solution may be obtained. The multi-scale preconditioning efficiently
accounts for grid interactions and interpolation phase-shifts intrinsic to a numerical grid-
combination technique. Moreover, I find that the DIWS iteration provides a homogenized
wave-field solution for a greatly reduced number of iteration steps. Homogenized, as I
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used here implies that the principal wave-field components are present in the approxi-
mated solution.

Acoustic wave simulations in 3D heterogeneous media are performed by the DISS-3D
and DIWS-3D approaches in sequential mode. The largest possible DISS-3D grid model
size is limited by the required RAM memory for the direct matrix factorization solver. In
contrast, the sequential DIWS-3D approach permitted 3D models having only half size of
the largest DISS-3D model, since allocation of working arrays related to the construction
and storage of the complex impedance matrix in wavelet domain, exceed the available
local computer resources.

Correct 3D wave simulations have been verified by comparisons with DISS-2D and
DIWS-2D modelling examples. I excite the 3D simulations in simple homogeneous media
by a line source function parallel to one of the principal axis of the 3D space. The
wave-field extractions from 2D-planes perpendicular to the line source are compared to
corresponding 2D simulations. I find good fit of the two solutions.

7.4 Future work

In this section, I give some ideas for future developments of the FDFD forward mod-
elling schemes. The discussion is subdivided with respect to the space discretization
developments and DIS FDFD optimization strategies. At the end, I make a final remark
concerning the principal aims of this work.

7.4.1 Staggered grids versus grid rotation
FD and grid rotation

To start with, I comment on the space discretization scheme used for second-order FDFD
modelling of the acoustic wave equation. As I have shown, in 2D media the grid-rotation
approach gives superior results over the staggered grid geometry. Since the principal
difference between the frequency and time domain FD modelling is a Fourier transform, I
suggest the investigation of a corresponding staggered grid-rotation approach for standard
TDFD wave simulations.

In view of the FDFD results, I mainly expect increasing stability during wave propaga-
tion. Computational speed-up, as obtained for FDFD modelling due to the compactness
of the 9-points star stencil, may not be achieved in a time domain grid-rotation scheme.

The staggered-grid-rotation strategy may then be extended to the FDFD modelling
described in Chapter 3 and Chapter 4.

3D investigation

For 3D modelling, the conclusions for 2D FDFD modelling might not be true anymore.
The grid rotation strategy in 3D media leads to a 27-points star. In contrast, the staggered
grid geometry in 3D gives a 19-points cross stencil. Therefore, the number non-zero
matrix coefficients of the grid-rotation approach is approximately 30% larger than for the
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staggered scheme. In contrast, the grid-rotation approach guarantees a compact stencil,
while the cross stencil is naturally enlarged. Which of the two approaches provides better
CPU-performance and less memory requirements for the direct matrix factorization in
case of a 3D wave simulation example, will be investigated in the near future.

Parallelization

The current star and cross stencil implementations for 2D acoustic wave propagation
exist in sequential and parallel form. The parallel implementation simply constructs
blocks of matrix rows on a group processor in a distributed computer environment. Given
the result of the stencil comparison i.e., 19-points cross versus 27-points star, the most
efficient approach should be parallelized using a domain decomposition strategy rather
than simple block-row distributions. In the same context, numerical preconditioning may
be investigated in order to optimize the overall convergence performance of the modelling
scheme.

Realistic wave propagation

Both space discretization approaches may be extended to allow elastic wave propaga-
tion modelling including visco-elastic effects for models including free-surface boundary
conditions with complex topography, that have important implication for real-case wave
simulation examples.

DIS strategy

The DISS strategy that was developed in Chapter 4 for the first-order hyperbolic wave
equation may easily be applied for the staggered cross and grid rotation approaches.
Then, FDFD wave simulation for largely extended grid-models may be performed. In
contrast, the wavelet-based DIWS for second-order hyperbolic equations was estimated
to be computational expensive due to convolution calculations, and shall therefore not
be considered.

Applications

Once the parallel code optimization has been implemented, large-scale 3D frequency do-
main wave simulations may be performed. A typical application is a wave-form inversion
processing flow where the forward problem has to be solved for numerous external source
positions.

7.4.2 Direct-Iterative-Solver approach in 3D

More important for large-scale 3D FDFD wave propagation simulations is the optimal
extension of the sequential DISS and DIWS algorithms to parallel super computer struc-
tures. I propose a combination of Fortran90 and MPI based implementation to allow
large code portability.
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Iteration

In a first step, the behaviour of the DISS and DIWS iterative scheme have been inves-
tigated for fixed numbers of iteration steps. In order to better evaluate the difference
between the simple space nested iteration (DISS) and the wavelet full multi-grid scheme
(DIWS), the convergence of iterative solver needs to be studied for a fixed tolerance level
rather than number of iteration steps.

Parallelization

Since the direct matrix factorization parallelization is included in the MUMPS solver, in
principal parallel wavelet transform algorithms and a parallel iterative GMRES scheme
should be developed. Ideally, the DISS iterative solver should be parallelised using a
standard domain decomposition approach. In case of the DIWS, a similar parallelization
strategy based on a wavelet domain decomposition is desirable and should be investigated.

Space adaptivity

The CPU-time performance of the DIWS is largely accelerated through the definition
of space adaptive strategies. Computational mask should optionally be defined on each
resolution approximation grid with respect to a physical parameter characterizing the
local accuracy of the solution. Ideally, different physical parameters shall be evaluated in
order to study the influence on the overall performance of the optimization approach.

Matrix ordering

Moreover, both DIS approaches should be evaluated with respect to their performance
when additional numerical pivoting strategies for the iterative scheme and different matrix
ordering techniques for the direct matrix factorization (e.g., minimum ordering, nested
dissection, etc.) are applied.

Absorbing boundary conditions

Once a fast and efficient implementation is obtained, a set of necessary and interesting
implementation related problems may be studied in further detail. At first, the PML
absorbing boundary conditions need modifications in order to suppress any artificial re-
flections from the model-PML boundary.

Elastic wave propagation

In orer to allow wide-spread applications to numerous geophysical and geological prob-
lems, the DISS and DIWS approaches shall be extended for visco-elastic wave propagation
modelling. From a conceptional point of view, elasticity and viscocity are fast and easy
implemented. I suggest that the extension shall be performed for the final optimized
DISS and DIWS versions, since memory and CPU-time constraints will become even
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more important than in the acoustic case due to an increase in the number of equations
and therefore the number of non-zero coefficients in the complex impedance matrix.

Free surface

An important feature required to perform realistic wave propagation simulations is the
implementation of a stable free-surface boundary condition with topography in the DISS
and DIWS approaches. In general, the exact verification of the free surface boundary
condition is a difficult task for strong formulation PDE discretizations, since equations
are verified on discrete grid points. FD methods are extremely sensible to the strongly
changing physical parameters at the boundary, which often causes numerical instabilities.
Because of the great implementation difficulties of a stable boundary condition, the FDFD
DISS and DIWS investigation may even re-consider other, more stable, discretization
stencils. For example, we might investigate the stability performance for a staggered
grid-rotation approach combined in the DISS and DIWS modelling schemes.

3D applications

The deduced DISS and DIWS approaches may then be applied to a realistic 3D wave
propagation simulation scenario, such as a multi-source experiment carried on the Vesu-
vius volcano in 1998 (Auger, 2000). Also, the parallel implementation should be compared
to other high performance modelling schemes (e.g., spectral element code). The 3D par-
allel benchmark tests for acoustic wave propagation will provide important constraints on
possible extensions to DISS and DIWS approaches for elastic wave propagation modelling.

Frequency interpolation

For now, all FDFD approaches presented in this thesis were set up to compute a pre-
defined number of discrete frequency components. Although I did not comment on exact
details, a set of frequencies was assumed to be computed by repeated applications of the
e.g., DISS or DIWS approach. Clearly, this is only one possibility to obtain the required
frequency component solutions. Other strategies that rely on intermediate interpolation
and iteration procedures should be tested.

For example, we might assume the wave-field solution for a given frequency com-
ponent to resemble slightly higher and lower neighbouring frequencies. The DISS and
DIWS implementations could be modified to allow exact DIS computation of distinct
frequency components only, while all remaining wave-field frequencies are determined
through interpolation and subsequent iterations of the interpolated solutions.

7.4.3 Final remark

Altogether, the current DISS and DIWS implementations provide a first development step
of a powerful wave simulation strategy based on optimized FD space discretizations. All
the above suggestions for future work are mainly related to the necessary developments
to render the principal DIS approach stable and efficient.
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Even though I only considered applications in seismology, the general problematic to
solve efficiently matrix-type equations resulting from discretization of PDEs is encoun-
tered in many sciences. Therefore, this DIS approach should be widely distributed which,
in my opinion, includes free access to all developments I performed.

Thus, the final outcome should be a free distributed modelling tool that can be applied
to numerous interesting geophysical and geological problematics. Typical applications are
strong ground motion site-effect studies, large-scale wave-form inversions, etc..
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Appendix A

Wavelets and PDEs

A.1 Multi-resolution analysis and wavelet transform

I illustrate the basic principles that define the orthogonal Daubechies wavelet basis and
multi-resolution analysis. The aim of this Appendix is to provide the background in-
formation regarding wavelet definitions used in the thesis and, moreover, to define the
wavelet notations I applied throughout. For detailed mathematical developments, I refer
the reader to the original works by Daubechies (1988); Mallat (1989); Daubechies (1992);
Mallat (1999). For simplicity, wavelet explanations are given on 1D examples only, since
2D and 3D generalisations may be derived through repeated application of 1D processes
for each spatial dimension.

The orthogonal wavelet transform, that leads to the Daubechies wavelets, is based
on two functions: the scaling function ¢(z) and the wavelet function 1 (z). The scaling
function defines a dilation relation of the form,

L—1
$(x) = V2 hpp(2z — k),
k=0
(6.1)

where hy, is one of two quadrature mirror filters. In addition to the dilation property, the
scaling function is normalized [ ¢(x)dz = 1.
I define the corresponding wavelet function in terms of the scaling function to be,

L—1
P(@) = V2 gep(2x — k),
k=0
(6.2)

where g, is the second quadrature mirror filter.
With the help of dilating and translating the scaling and wavelet function, one can
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build an orthonormal basis of L?(R):
bi(w) =272 9270 — k),
Prla) =277 2w — k),
(6.3)

where jeZ is the dilation and keZ the translation parameter, respectively. The quadrature
mirror filter coefficients H = {hy}; =, and G = {gx}; =, are related by gy = (—1)¥hy_j
for £k = 0,...,L — 1. All wavelet properties can be specified through the quadrature
marror filters, which therefore allows the computation of the discrete orthogonal wavelet
transform (OWT) without constructing the basis functions. In this sense, the OWT
is similar to the Fourier transform, where Fourier coefficients are obtained through a
subdivision process, without constructing the Fourier basis functions.

The accuracy of the transform is defined by the number of vanishing moments (M)
of the wavelet function ¥(z). It is,

dudim = [ @0 @),

- (6.4)
where d0p; denotes the Kronecker symbol. Then the wvanishing moments require that
Y(z) = 99 (), which is similar to,

/00 P(x)z"dz =0,
- (6.5)

with m = 0,..., M — 1. For Daubechies wavelets, the number of filter coefficients in H
and G, denoted by L, is related to the number of vanishing moments by 2M = L.

The two basic functions that define the wavelet transform, ¢ () and (), span
spaces for a fixed parameter k, called scaling (V;) and wavelet (W;) spaces, respectively,

V; = span ¢f€(33) (6.6)
keZ
W; = span 1/1%(35)
keZ
(6.7)

The spaces V; and W; build a chain of subspaces and are related by

L.cvicVy eV C V..,
(6.8)

and

Vi=Vinn®@Win



A.2 1D wave propagation on a wavelet basis using the Non-Standard Form

185

where Vj1 @ Wj1 is the direct sum, which is equivalent to the vectors in Vj 1 being
orthogonal to the vectors in Wj11. One step in a wavelet transform simply decomposes
the given Vj-space into two disjoint subspaces. The decomposition procedure can be
repeated by storing the wavelet space coefficients in W;1 and continuing the subdivision
process with the next coarser Vji-space, until the coarsest resolution space is reached.

I remind that the latter Equations 6.8 and 6.9 express the fact that the scaling func-
tions, which build the basis to the multi-resolution analysis, only form a proper basis on
each resolution approximation space, since bases of the Vj-spaces are linear dependent
(see Equation 6.8). The combination of the Vj-space with the wavelet space W on a
given resolution level, permits the construction of a basis on the next finer level (Equa-
tion 6.9), which can be repeated until Vj is reached. Note that I denote V{ as being the
finest resolution space throughout.

It is the extension of the scaling basis functions with the wavelet functions that build
the desired linear independent set of functions, that together form the wavelet basis.
In case Daubechies wavelets are used, the wavelet basis is also orthogonal. In practice,
the wavelet transformation of a signal on a Daubechies wavelet basis can be performed
through a convolution type procedure using the quadrature marror filters. Therefore, the
number of filter coefficients is crucial to provide fast transform algorithms. T used the
wavelet transform algorithm developed in Press et al. (1992).

A.2 1D wave propagation on a wavelet basis using the Non-
Standard Form

I give a brief review of the Non-Standard Formulation (NSF) in a Daubechies wavelet
basis. By means of the NSF, I show the development of a 1D finite-difference (FD) wave
propagation algorithm in the wavelet domain. Moreover, I will discuss the problemat-
ics related to scale interaction in the wavelet domain representation with respect to a
time-adaptivity implementation, which guided me to work on frequency-domain rather
than time-domain wave propagation modelling. For a detailed discussion of the NSF,
I recommend the original articles by Beylkin et al. (1991). In addition to the example
shown here, I refer to the wave propagation simulation developments, using a wavelet-FD
approach in standard form, by Operto et al. (2002).

A.2.1 The Non-Standard Form

The NSF is a signal representation that results from a wavelet-based projection procedure,
though the final transformed signal does not lie in the wavelet domain.

The Standard Form (STF) of a signal holds coefficients that are decomposed on a series
of discrete wavelet-spaces plus a scaling-space. I denote with Py, f(z) the projection of a
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continuous signal f(z) in the wavelet domain. Then the STF gives,

J
PETF) = 3" el @) + 03 flwl (),
keZ 7=1 keZ
(6.10)

where ka are the scaling function coefficients on the coarsest approximation space V,
and f; the wavelet function coefficients on all finer spaces W

= " f @) (o) de

fi = / RELE
(6.11)

In contrast to the STF representation, the NSF projects the signal f(z) in another domain
since, not only wawvelet contributions on all approximation spaces are stored, but also the
corresponding scaling informations:

J
PYSEp(@) =337 Hdh@) + 3 ().
71=1 keZ keZ
(6.12)

As was shown by Beylkin (1992), the transformation of an operator into the NSF
domain can be obtained by an expansion into a telescopic series. The resulting operator
can then be applied to the NSF vector defined in Equation 6.12.

In Figure A.1, I show the matrix-vector product in NSF without repeating the strict
mathematical development of the NSF. Each resolution approximation subspace is en-
coded by three different blocks, denoted by T' = {{A;, B}, C}}jez:j<1, T}, that build the
telescopic series of the operator T'. These blocks act on the wavelet subspaces V; and
W

Aj : Wj — Wj,
Bj : VJ — Wj,
Cj : Wj — VJ
(6.13)

The operator A; describes the interaction on the scale j only, while B; and C; define the
interaction between the scale j and all coarser scales j' > 7.

As for a standard wavelet transform, the telescopic series admits a recursive definition
on subsequent coarser resolution levels,

Ay B
T; = JHL Pyl > 6.14
’ ( Cit1 Tjin (614
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Figure A.1: Multi-resolution matrix-vector product in the Non-Standard Form. The
result from the standard matrix-vector product does not give a vector that lies in a wavelet
domain since contributions from wavelet- and scaling-spaces are stored (coefficients Jj and
5j). Additional wavelet projections may transform the vector in the standard wavelet
basis.

where T = V; — Vj is an averaged version of the operator Tj_; . Note that Tp is the
operator discretized on the finest resolution level.

In a similar way, I construct the NSF of a vector (see Figure A.1 and Equation 6.12)
which, in addition to coefficients in the wavelet spaces (JJ) also stores the corresponding
scaling coefficients in 5;. I set the initial vector size in the physical domain to be np and
the size of the coarsest approximation space in the NSF to n0. Then, the NSF of a vector
has the length n =2 x np — n0.

In order to compute a multi-resolution matrix-vector product, I first apply standard
matrix-vector multiplications on each resolution scale separately. The resulting coeffi-

cients, denoted by cij and 4, belong to the following subspaces,
CZJ' = AjCZj + Bjs; e Wy,
§j = dej 9 Vj,
(6.15)

fory = 1,2,...,J, and on the coarsest scale

~

Sy = CJJJ+TJ§J 6VJ.
(6.16)

[ underline that the NSF representation of the operator decouples the different approxi-
mation spaces, since a standard matrix-vector product is applied independently on each
resolution scale. The apparent scale-decoupling, noted by Beylkin (1992), first motivated
my work on a time domain FD approach.



188

Wavelets and PDEs

Additional Projections
on Multiresolution Non-Standard Form
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Figure A.2: Additional multi-resolution projection procedure to obtain a vector in stan-
dard form. The result of the standard matrix-vector product is denoted by cij for wavelet,
and §; for scaling coefficients. The expansion vector ({d;, 5;}1<;j<s) is computed via one
step of the discrete wavelet transform. The final result of the multi-resolution matrix-
vector product i.e., a vector in the standard form, is shown in grey. Note that the finest
scale produces pollution on all coarser scales.

The NSF of an operator can be stored in a compressed form respecting the initial
operator dimensions (np x np), since coefficients from coarser scales can be injected in
the 0-blocks of the next finer scale (see Figure A.1). Then, only the NSF-vector requires
additional storage of n = 2 X np — n0, rather than np. However, the vector that results
from the NSF matrix-vector product ({Jj}lSjS] , &) still needs to be further expanded
in order to give the desired proper representation in a basis ({d;}i1<j<7s,s75). Except
from the finest scale, intermediate expansion vectors appear at each scale, denoted by
{d;; 5j}2<j<r-

In Figure A.2, I show the recursion that needs to be computed for all scales j =
2,...,J in order to map currently missing fine-scale information to the coarser scales,

Sjm1 +5-1 T (dy . 5)
(6.17)

The sum of the intermediate and the expansion vectors allows the construction of standard
wavelet coefficients,
dj = Czj + Jj
sy = 85 +35y.
(6.18)
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A.2.2 Finite-difference scheme in NSF

The 1D SH-wave equation can be written as follows (Virieux, 1984),

ou(x,t) 1 Jo(z,t)
ot  plw)  Ox
do(z,t) Ou(z,t)

(6.19)

where u (z,t) is velocity of the displacement, o (z,t) the shear stresses, p(z) the density,
and p(x) the first Lamé parameter. Following the developments of Virieux (1984), I
discretize the wave equation on spatially staggered grids:

utl o= yn +Atlg—a
p Oz

0

O'n—i—1 = O'n + Atua—u,
z

(6.20)

where n is the time index and At the time stepping. Each term discretized in Equa-
tion 6.20, is projected in the Daub4 wavelet domain:

Yoo o<u gy > o = Y <u > Yo
« «

o

—At% Ea: 25: <Un,1/1[3><¢5,8—x>

Z <0n+17¢a> T/Ja = Z <Una7/}a> T/Ja

[0}

“Atp > Y <u”,z/z5><¢g,%>,

8
(6.21)

where 1), and 13 are two wavelet bases. The term < ¢, % > is the projection of the
derivative operator in the wavelet basis, which is independent of the time evolution. A
detailed discussion concerning the projection of an operator in a wavelet basis is given
by Operto et al. (2002).

In order to verify the NSF-based FD scheme, I implemented Equations 6.21 for the
first-order hyperbolic SH-wave equation in one spatial dimension. In Figure A.3, I show
the seismogram obtained from a wave propagation simulation using the NSF-FD scheme
for a simple heterogeneous model example.

A.2.3 Time-adaptivity in the NSF

In order to increase the performance of a wavelet-based FD scheme, we ideally would like
to adapt the, in general unique, time evolution step with respect to the local stability
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Figure A.3: Seismogram for a 1D SH-wave propagation in a heterogeneous media using
the Non-Standard Form Finite-Difference method. To the right, I plot the SH-wave
velocity and density models.

requirements (spatial discretization) on each resolution grid in the wavelet expansion.
Since at each time step, the wave-field solution is advanced by performing an operator-
wave-field product (see Equation 6.21), we require this product to be independent from
the actual resolution scale. If we assume to find such a representation, the Daub4 wavelet
basis would provide us with a tool to perform adaptive FD wave simulations independently
on several resolution scales.

Although for Equation 6.20, I mentioned transforming the terms on a wavelet basis
without any loss of information, I can also perform a projection in a NSF domain. Then,
different resolution scales are decoupled since the matrix-vector product in the NSF is
performed separately on each resolution scale. The desired time-adaptivity for a NSF-
FD scheme is shown in Figure A.4

Unfortunately, we require more than just decoupling of scales. In order to perform
FD-time evolution on each scale independently, we ask for a wavelet representation where
the outcome of the extrapolation (the matrix-vector product) lies in the wavelet domain,
not in the NSF. As I noted before, this is not case the for the NSF since additional pro-
jections need to be performed that contain interactions from the finest scale. Therefore,
time-adaptivity applied independently for each resolution scale, to my knowledge, is not
possible using the NSF. Only if the NSF-pollution from the fine-grid is extrapolated in
time, a different time-step can be assigned to each resolution scale. Unfortunately, this
requires the storage of a large amount of additional coefficients in the operator, as well as
numerous additional wavelet projections and matrix-vector products which renders the
approach inefficient.
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Figure A.4: Cartoon showing the desired time evolution scheme for a Non-Standard Form
Finite-Difference method. In the Non-Standard Form, a matrix-vector product can be
performed on each resolution scale independently. Therefore, we would like to assign
an independent time-step to each resolution scale that propagates wavelet and scaling
coefficients with respect to their local stability criterium. The matrix-vector product in
NSF on one resolution scale is denoted by M — V.
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B.2 Place et Enjeux de la Thése

B.2.1 Résumé

Dans le domaine de la sismologie, la propagation des ondes sismiques est importante
pour analyser des informations du sous-sol. Les enregistrements a la surface de la Terre
donnent, aprés un traitement du signal adéquat, une image du sous-sol détaillée dépen-
dante de I’échelle caractéristique des ondes utilisées pendant le traitement. Pour créer
cette image, il est souvent nécessaire de reproduire synthétiquement le trajet suivi par
des ondes pendant leur propagation, du point d’excitation, par exemple, un tremblement
de terre, jusqu’a la surface. La modélisation synthétique des ondes permet également
de quantifier, de fagon déterministe, le niveau du risque sismique d’un site donné, par
exemple la ville de Nice.

Des simulations réalistes doivent remplir un certain nombre de conditions qui sont a
la limite de ce que les ordinateurs puissants actuels peuvent faire. Mon travail de thése
comprend donc la recherche et la mise en place de nouveaux schémas numériques qui
permettent de dépasser les limites présentes. Par exemple, une modélisation des ondes
d’un modele de 20 x 20 x 20Km et une fréquence maximale de 10H z n’est pas faisable
actuellement.

B.2.2 Motivations personnelles

Mes motivations personnelles pour faire une thése en France ont été a la fois influencées
par des attentes professionnelles mais aussi, de facon plus importante, par le désir de vivre
dans un pays autre que I’Allemagne. Pour comprendre lorigine de ce qui m’a poussé a
ce désir, il faut savoir que j’ai commencé mes études en Géophysique en Allemagne en
1993. Aprés quatre années d’études non-validées, je suis allé en 1997 en Angleterre a
I’ University of Leeds pour m’inscrire dans un programme d’études Master of Science
by Research. C’est un programme de recherche d’un an en interaction avec le monde
industriel, ce qui a 'avantage de favoriser pour les étudiants des contacts avec leur futur
éventuel employeur : l'industrie pétroliére. Pour pouvoir m’inscrire dans ce programme,
j’al di surmonter des obstacles : 'autorisation de mon inscription a ’Université et le
financement de mon année d’étude. Pour cela, jai effectué de nombreuses démarches
qui m’ont permis de rencontrer un responsable de "Université qui a été séduit par mon
initiative et a donc favorisé mon inscription. Par la méme, il m’a mis en contact avec
un employeur potentiel avec qui j’ai signé un CDD de 6 mois pour pouvoir financer mes
frais d’étude et d’inscription a I’Université (4500 Euro). La qualité des rapports que j’ai
établis avec mon employeur m’a permis de bénéficier de son soutien jusqu’a la fin de mon
Master.

J’ai donc pendant mon séjour en Angleterre, pour la premiére fois de ma vie, effectué
un vrai travail de recherche d’un an, mais aussi un travail contractuel pour gagner de
I’argent. Cette expérience m’a bien montré les deux scénarios possibles pour la suite
du Master. Finalement, aprés deux années en Angleterre, j’ai décidé de poursuivre des
études de Géophysique en faisant une thése. A la fois, ce choix était poussé par un désir
de continuer un travail de recherche plus fondamental, plus long et plus intensif, mais
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également et a mon avis le plus important, par la liberté d’aller dans un autre pays de
mon choix pour apprendre une autre langue et vivre une autre culture. Ce pays était
la France dont la maniére de vivre, les arts, la culture, etc. m’ont toujours intéressé. Il
y avait plusieurs handicaps liés & ce choix : je ne savais pas parler francais a I'époque,
je n’avais pas de contact en France, et je n’avais pas de bourse pour faire une thése
ni des possibilités d’en récupérer une allemande ou anglaise. En plus, je ne voulais pas
faire une thése financée par I'industrie pétroliére, parce que la recherche dans ce milieu me
semblait trop proche d’un travail contractuel, travail que j’avais déja effectué. Pendant ma
recherche d’un laboratoire d’accueil et d’un sujet de these en France, j’ai rencontré mon
futur responsable, le Professeur Jean Virieux, a Géosciences Azur, qui a été tout de suite
trés motivé pour me proposer un sujet de recherche. La seule difficulté était de trouver
encore une fois un financement de trois ans en France. A cause de nombreux problémes
administratifs et financiers, j’ai d’abord fait un stage de recherche d’un an a Naples, en
Italie, dans le cadre du projet européen TOMOVES (TOMOgraphie VESuvious) pour
bien préparer le début d’une thése & ’Université de Nice. Ce stage m’a aussi aidé a
obtenir 1’équivalence de mon Master avec le DEA en France, qui est obligatoire pour
s’'inscrire a "Université.

B.2.3 Ressources humaines et financiéres

Mon travail de thése a été financé par une bourse du Ministére de Recherche (MENRT).
Il s’inscrit dans un programme de recherche en géophysique établi par le CEA. Le sujet
fait partie d'un effort de développement méthodologique des approches de la simulation
numérique des ondes sismiques dans des milieux tridimensionnels fortement hétérogeénes
et complexes pour étudier les phénomeénes comme les effets de site et le risque sismique
(ProSIS3D).

En terme de ressources humaines, ce programme de travail regroupe des chercheurs
(5) et étudiants (2) : un chercheur et un étudiant de CEA/DASE & Paris (Comimnissariat
d’Energique Atomique/Département Analyse Surveillance et Environnement), deux cher-
cheurs de LGIT a Grenoble (Laboratoire de Géophysique Interne et de Tectonophysique),
trois chercheurs et un étudiant de 'UMR Geéosciences Azur. Les chercheurs et étudiants
sur chaque site ont suivi différents axes de recherche pour développer des approches
numériques pour la simulation des ondes en 3D. Les groupes de recherche des trois sites
se sont réunis tous les 6 mois ol chacun des groupes a présentés ces principaux résultats
suivis par une discussion sur des éventuels point communs, des comparaisons a faire, etc..

Le montant du financement fourni par le CEA pour supporter le projet de recherche
ProSIS3D (achat des ordinateurs, financement des missions des conférences et workshops
nationaux et internationaux, etc.) est de 30.500 Euro par an. Le travail a nécessité
principalement des ressources humaines ainsi que des moyens et systémes informatiques.
Le travail de recherche a bénéficié de I’aide de mon Professeur, Jean Virieux (environ 5
heures par semaine), et d’un chercheur CNRS, Stéphane Operto (environ 1.25 heures par
semaine) en moyenne sur 3 ans : Autres frais sur 3 ans: On peut estimer le cott total de
ce travail de theése a 164.200 Euro.
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Personnel Temps / mois | Salaire (net) / mois | Salaire (net) / 3 ans

Professeur 20h ~ 800 Euro 19200 Euro
Chercheur CNRS 5h ~ 200 Euro 4800 Euro

Doctorant 240h ~ 1000 Euro 25000 Euro

Table B.1: Resources humaines de la thése

Formation (éducation continue) 1200 Euro
Congrés nationaux et internationaux 1200 Euro
Moyens informatiques 4000 Euro
Calculs paralléles 200h / IDRIS (difficilement évaluable)
Fonctionnement 10800 Euro

Table B.2: Resources financiéres de la thése

B.3 Gestion du Projet

Durant mon stage de recherche a I’ Universita di Napoli en Italie, une question clé m’a été
posée concernant la simulation 3D de la propagation des ondes dans des milieux comime
les volcans, une question qui a servi a déterminer mon futur travail de thése. De maniére
a me former & des questions de modélisation numérique avant de commencer ma theése,
j’ai également suivi une école d’été européenne a Marseille (Multiscale approaches for
partial differential equations, 1999) pour obtenir une version différente sur les approches
de la modélisation numérique utilisées actuellement par des mathématiciens.

Le titre initial de ma thése était : Modélisation 3D des Effets de Site : Application &
la quantification du Risque Sismique. Ce projet de thése était prévu pour une durée de
trois ans qui se décomposait de la maniére suivante : la premiére année était consacrée a
I’étude et le choix d’un schéma numérique le plus prometteur pour étudier les effets de site,
en interaction avec des mathématiciens lorsque cela serait nécessaire. Puis une deuxiéme
année de mise en forme numérique, probablement sur une machine de calcul massivement
paralléle pour permettre des modélisations & grande échelle. Enfin, la troisiéme année
était réservée a ’étude des confrontations entre les résultats numériques et les données
réelles des sites intéressants.

Au début de ma thése, j’ai mis en place approche standard de modélisation dans le
domaine espace-fréquence de maniére & comprendre les subtilités de 1’état de l'art dans
ce domaine. Par exemple, un code de modélisation des ondes sismiques acoustiques en
deux dimensions spatiales (2D) est utilisé d’une maniére routiniére dans mon équipe sci-
entifique. Ensuite, j’ai continué a approfondir cette approche en utilaisant les techniques
nouvelles de factorisation des matrices, de compression du maillage, de schémas itératifs,
de décomposition sur plusieurs échelles de résolution différentes (ondelettes), développées
par des mathématiciens. J’ai eu de la chance de pouvoir approfondir personnellement ma
connaissance de ces techniques dans le cadre de deux écoles que j’ai suivis : ['une a Trieste
en Italie (Workshop on three-dimensional modelling of seismic wave generation, propaga-
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tion and their inversion, 2000), I'autre & FINRIA Roquencourt (Ecoles des ondes, 2001).
Cette partie de la mise en place de 'approche développée a eu lieu par une coopération en-
tre I’équipe locale de 'UMR, Géosciences Azur, le CERFACS de Toulouse, et de 'INRIA a
Sophia-Antipolis. Pendant les deux premiéres années de ma thése, 'approche scientifique
développée était définie et partiellement mise en place & Géosciences Azur sans des inter-
actions avec d’autres équipes de recherche. Pour maintenir une discussion vivante et une
échange réguliére entre mes directeurs de thése (Jean Virieux, basé a Sophia Antipolis,
et Stéphane Operto de Villefranche-sur-Mer) et d’autres chercheurs et étudiants du lab-
oratoire éventuellement intéressés par notre projet, j’ai organisé une réunion scientifique
une fois par semaine. En général, les sujets de discussion d’une réunion fixée étaient
déterminés au fur et & mesure des demandes actuels. A part des thémes spécifiques, j’ai
toujours profité de ces réunions pour présenter I’état actuel de mon travail ou bien des
éventuels problémes qui ont bloqué un avancement de mon projet de recherche. Dans la
troisiéme année de ma thése, les réunions scientifiques ont eu lieu occasionnellement avec
mes directeurs de thése (environ une fois tous les mois). Par contre, le travail de recherche
a renforcé des interactions avec des chercheurs du CERFACS et d’INRIA principalement
par courrier électronique et également par des visites des différentes sites, des échanges de
logiciels (CERFACS) et des permissions d’accés a des ressources informatiques (INRIA).

En utilisant 'ensemble des techniques, deux nouvelles approches de modélisation ont
été analysées en 2D et 3D qui permettent la simulation des modeéles de taille élevée
par rapport a ’approche classique. J’ai estimé les besoins de temps de calcul et d’espace
mémoire pour des modeéles 3D, qui m’ont permis de faire appel & des moyens nationaux de
gros calculateurs (IDRIS, CEA, INRIA) pour calculer, & partir des codes de modélisation,
des exemples réalistes. La derniére étape, notamment ’application du code a un modéle
réaliste, n’a pas été mise en place, en raison de nombreuses difficultés rencontrées pendant
I'implémentation parallele de I'approche numeérique. Le titre de ma theése était donc
modifié en Propagation des ondes : approches espace et ondelette. L’état actuel de mon
travail était présenté réguliérement a des conférences workshops et a donné lieu a deux
publications importantes dans des revues internationales.

A coté de la recherche liée au développement d’une approche de modélisation numeérique,
j’al participé a de nombreuses campagnes de sismologie, a la fois dans le département des
Alpes-Maritimes (GéoFrance3D, SALAM), au Chili en Amérique du Sud (Ovalle99), et
aussi au Japon sur un bateau de recherche (Kaiyo2001).

B.4 Compétences Dévelopées dans le Cadre du Projet

B.4.1 Domaine d’Expertise

e Physique: pour conduire ce sujet de recherche, j’ai acquis et approfondi I’ensemble
des connaissances liées aux phénomeénes de la propagation des ondes dans un milieu
géologique.

e Mathématique: pour mettre en place une approche de modélisation numérique
de la propagation des ondes, j’ai dii maitriser les bases de la mathématique liées aux
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équations partielles. Mon sujet de theése spécifique utilise également une approche
basée sur une transformation ondelette qui n’était pas incluse dans mon parcours
universitaire en Allemagne. La maitrise de cette discipline mathématique spécifique
était donc incontournable pour aborder le probléme posé.

Numeérique: la modélisation de la propagation des ondes nécessite la connaissance
et la compréhension des méthodes numériques de représentation d’une équation
partielle d’'une maniére discréte dans un code de programmation d’un ordinateur.

Programmation: une grande partie de ma thése comporte la mise en oeuvre d’un
logiciel de simulation numérique, ce qui m’a conduit & apprendre des langages de
programmation tels que Fortran77/90 et MPI, en séquentiel et paralléle.

B.4.2 Autres Compétences

e Résolution d’un probléme: initialement je n’avais aucune connaissance du do-

maine afférent au sujet de thése. J’ai dit dans un premier temps intégrer et maitriser
les fondements théoriques (mathématiques, modélisations numériques, propagation
des ondes) de maniére a résoudre le probléme scientifique.

Abstraction des résultats: durant le travail de recherche, il était souvent néces-
saire d’abstraire les points et contraintes clés des résultats intermédiaires pour,

ensuite, les présenter & mes responsables de recherche, et qui me permettaient de
mieux cerner les axes principaux a suivre au cours du travail.

Organisation des réunions de travail: réguliérement, j’étais chargé de planifier
et d’animer des réunions de groupe de travail avec plusieurs chercheurs du labo-
ratoire. Ces réunions ont servi de débats entre tous les chercheurs et étudiants
intéressés par la modélisation des ondes. Ces occasions m’ont permis de mettre
en oeuvre mes capacités de communication et mon sens critique, de présenter les
résultats et problémes rencontrés, et de me forcer & développer mon point vu et a
le défendre.

Communication pluridisciplinaire: la maniére de présenter mon travail théorique
a des communautés différentes, I'une formée en géologie / géophysique, 'autre en
mathématique et informatique, m’a permis de m’ouvrir et de m’adapter & d’autres
cultures scientifiques. A l'issue de ma thése, je pense avoir perfectionné et consolidé
mes acquis de base méme si certaines lacunes subsistent.

Langue anglaise: la rédaction de mon manuscrit de these et les articles soumis a
des journaux de publication scientifique ont été rédigés en anglais.

Langue francaise: au début de mon séjour en France je ne maitrisais pas la langue
frangaise. Pendant une durée de trois mois j’ai appris les bases de la grammaire et
de la communication orale et écrite en suivant deux cours de francais au CNRS et
a I’Alliance Francaise.
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e Enseignement: j’ai assuré pendant un certain temps des enseignements en pro-
grammation informatique en Fortran et C au niveau Licence des Sciences de la
Terre.

B.5 Evaluation des Retombées de la Thése

De maniére générale, la thése a apporté des résultats scientifiques intéressants. Méme si le
but initial de la thése n’a pas été entiérement atteint, le travail de recherche a montré de
nouvelles approches qui, & long terme, vont rendre envisageable la simulation numérique
des ondes dans des milieux 3D complexes. Tout de méme, jusqu’a aujourd’hui, deux
publications dans des journaux scientifiques internationaux et de nombreuses présenta-
tions de recherche ont montré l'intérét de la communauté par rapport au sujet traité.
Par ailleurs, des coopérations entre plusieurs équipes de géophysiciens, mathématiciens
et informaticiens qui vont, & ma connaissance, continuer & travailler dans cet axe de
recherche.

D’un autre coté, la question se pose: quel bénéfice ai-je moi-méme tiré de ces trois
années de thése et comment vont elles étre profitables pour mon avenir professionnel.
Bien entendu, la nécessité d’apprendre un savoir-faire lié & mon travail de recherche est
une grande réussite et peut certainement étre utile si mes axes de recherche futurs sont les
mémes que ceux de la thése. Bien souvent, c’est par d’autres qualités, plutot de nature
personnelle, qui deviennent les points clés pour les réussites futures. A mon avis, les
aspects de la culture générale que j’ai pu consolider au cours de ces trois années en France
sont d’une valeur extrémement importante. Des diverses présentations a des conférences
et réunions, des participations & des campagnes de terrain, ’organisation et la motivation
pour le travail, la communication avec d’autres étudiants et chercheurs, m’ont donné une
bonne préparation pour 'aprés thése, que ce soit dans la vie universitaire ou bien dans
le secteur privé. Pour résumer, la thése m’a donné le temps nécessaire pour avoir une
réflexion profonde sur la vie professionnelle a suivre, que ce soit comme Chercheur au
CNRS, Maitre de Conférences a I’Université, ou intégrer un département de recherche et
développement dans 'industrie. Mon expérience personnelle a travers ces années de thése
m’a permis de me rendre compte que ni le sujet de thése, ni le titre de Docteur, me permet
de garantir un accés systématique dans le monde du travail. Mais bien souvent le choix
professionnel est dépendant de la capacité du thésard a se représenter et a se projeter
dans des environnements professionnels différents de ceux auxquels il est habitué. A la
fin de la thése il ne faut pas rester cantonné & un seul choix qui est celui de son domaine
scientifique, mais accepter de s’ouvrir & d’autres choix possibles qui peuvent constituer
un réel enrichissement. Par exemple, pour la suite de ma thése, j’ai obtenu un poste de
recherche dans l'industrie oli, pendant le processus de sélection, mon sujet de thése n’a
joué aucun role. Bien stir, pour trouver un certain poste, peut-étre faut-il envisager de
partir dans une autre ville ou méme un autre pays, mais je suis convaincu que la thése a
bien servi a me former.
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