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Résumé:

Cette thèse se situe dans le cadre du projet MISS qui est une collaboration entre le CNES et différentes
institutions universitaires. Le principal but de ce projet est le calcul d’une reconstruction 3D d’une
scène urbaine à partir d’images satellitaires. Cette thèse se place dans la continuité du travail de Neus
Sabater sur le calcul de cartes de disparités à partir de deux prises de vues différant l’une de l’autre
d’un léger angle.
Notre objectif ici est de fournir une interprétation simple des cartes de disparités à travers une clas-
sification basée à la fois sur des critères bidimensionnels et tridimensionnels. Plus précisément, cette
classification est faite en regroupant les points d’une carte de disparité appartenant à un même plan
dans l’espace 3D.
Pour cela, plusieurs étapes ont été proposées. Dans un premier temps, un critère a contrario a été défini
afin de pouvoir décider de manière objective quand un groupe de points peut être considéré comme
planaire. Ce critère permet de plus de fixer certains des paramètres intervenant dans la plupart des
méthodes de classification plane-par-morceaux pour les cartes de profondeurs. Dans un second temps,
un algorithme rapide de calcul des plans basé sur une approche gloutonne est utilisé pour obtenir la
classification. Les résultats obtenus montrent que notre algorithme couplé avec le critère de validation
définissent une classification sensée permettant en plus de l’interprétation des données, le débruitage et
l’interpolation. Enfin, dans un dernier temps, une nouvelle approche pour affiner les contours séparant
deux plans de notre classification est décrite, ceci y compris dans les régions où les disparités sont
inconnues.

Abstract:

This thesis is part of the MISS project which is a collaboration between the CNES (French Space
Agency) and several academic institutions. The main goal of this project is the computation of 3D
urban scenes from satellite images. This thesis is the continuity of the work of Neus Sabater on
disparity map computation from two views with a low angle.
Our objective is to give a simple interpretation of disparity maps through a classification based on
both 2D and 3D criteria. More specifically, this classification is obtained by grouping points from a
disparity map when they stand on a same plane.
To achieve that, several steps are proposed. First, an a contrario criterion is defined in order to decide
whether or not a point group should be considered as planar. This criterion also allows to set some
of the parameters that are common to most piecewise-planar segmentation methods for range images.
Then, a fast algorithm based on a greedy approach is used to compute the classification. The results
show that our algorithm associated to our validation criterion defines a classification that allows data
interpretation, denoising and interpolation. At last, a new technique is used to refine the contour
separations between two planes from our classification even for regions with missing disparity data.
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merci à Ayman, Frédérique, Gael, Jérémie et Frédéric (le roi du dancefloor de la SMAI) et
Jean-François Aujol (qui même s’il n’est pas un thésard a toujours su prendre le temps pour
participer à nos pots).
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bilité, leur travail formidable et surtout leur bonne humeur constante (du moins avec moi. . . )
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sonnes rencontrées durant mes années de cours à l’Ecole des Ponts ParisTech: merci donc à
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Notations

• 2D point:
x = (x, y) ∈ R2

• 2D point homogenous coordinate:

x̃ =





x
y
1





• 3D point:
X = (x, y, z(x)) ∈ R3

• Reference image:
u : Ω ⊂ Z2 7→ R

x 7→ u(x)

• Secondary image:
ũ : Ω 7→ R

x 7→ ũ(x)

• Disparity map:
z : Ω 7→ R

x 7→ z(x)

• Homologous points in a stereo pair: x and x′.

• Plane π = (a, b, c). Equation: z(x) = a · x+ b · y + c.

• Image affine transform induced by plane π: Tπ : Ω 7→ Ω

• Squared patch of size s centered at point x: Ps(x).

• Probability: P.

• Expectation: E.
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Introduction

Contexte de la thèse: le projet MISS

Le projet MISS (Mathématiques de l’Imagerie Stéréoscopique Spatiale) est une collaboration
entre plusieurs institutions qui fut fondé en 2007. Il rassemble le Centre National des Études
Spatiales (CNES), le Centre de Mathématiques et Leurs Applications (CMLA), l’Université
René Descartes (Paris V), les écoles d’ingénieurs Télécom ParisTech et des Ponts ParisTech
(Imagine), l’Universitat Pompeu Fabra (UPF) et l’Universitat de les Illes Balears (UIB).

Le but principal de ce projet est la reconstruction de Modèle Numériques d’Élévation
(MNE) en milieu urbain, ce, à partir de deux prises de vues décalées l’une de l’autre d’un
léger angle. Cela nécessite une maitr̂ıse complète de chaque étape de la châıne 3D: l’acquisition
des images, la calibration, la rectification, le calcul des points 3D, la modélisation 3D. Le pro-
jet MISS s’intéresse de plus a d’autres problèmes indirectement liés à cette châıne de part
l’acquisition d’images: le débruitage, la compression de données ou encore l’échantillonnage
irrégulier.

Dans le cadre de sa thèse [Sabater, 2009], N. Sabater, a développé une approche permet-
tant de réaliser une étape cruciale de la reconstruction 3D: la mise en correspondance d’une
paire d’images d’une même scène. Pour cela, elle s’est basée sur les recherches de B. Rougé
portant sur les conditions nécessaires à une bonne reconstruction lorsque l’angle entre les deux
prises de vues est faible. Cette configuration, appelée faible B/H (où B est la distance entre
les deux prises de vues ou encore base, et H est la distance des prises de vues à la scène),
présente de nombreux avantages sur les configurations classiques (B/H fort). Toutefois, elle
requiert aussi une précision de calculs bien supérieure pour pouvoir espérer une précision iden-
tique sur les points 3D [Delon and Rougé, 2007].
Le travail de N. Sabater a non seulement permis de se rapprocher autant possible que la
théorie le permet de cette valeur de précision mais en plus de rejeter tous les points pour
lesquels le calcul n’était pas certain. Le résultat de ses algorithmes est une carte décrivant
les décalages à appliquer en chaque point de la première image pour pouvoir superposer les
deux images. Du fait du critère de rejet des points incertains, cette carte, appelée carte de
disparités, ne sera pas complètement dense. Il peut donc être utile de trouver un modèle
décrivant l’ensemble des points renseignés de manière à non seulement pouvoir interpoler la
carte de disparités en ses points manquant, mais aussi éventuellement de débruiter le résultat
final.

D’ici fin 2011, Pléiades, un satellite d’observation de la Terre à très Haute Résolution
(THR), sera lancé en orbite et permettra entre autre l’acquisition de paires stéréoscopiques
dans les conditions énoncées précédemment.
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14 Introduction

Contributions de la thèse:

La recherche d’un modèle simple permettant de décrire les données 3D quelque soit leur forme,
a fait l’objet de nombreux travaux depuis les 30 dernières années, en particulier en environ-
nement urbain. Cet engouement est motivé par les nombreuses applications d’un modèle 3D
plutôt que des points. Citons par exemple, le débruitage des données, la visualisation avec
un meilleur rendu, la compression des données, les simulations en milieu urbain (propagation
d’ondes Wifi), l’établissement simplifie des dégâts causés par des catastrophes naturelles. . . .

Ce problème peut se résumer par la recherche de la segmentation la plus simple possible
ainsi que, pour chaque région, le modèle décrivant le mieux les données. Le nombre de régions
à trouver, la classification de chaque point selon l’une des régions ainsi que les paramètres des
modèles utilisés pour chacune des régions sont tous des inconnues du problème, ce qui le rend
très difficile à résoudre. Ceci pourrait s’écrire sous la forme d’une minimisation d’énergie, par
exemple:

min
N, l(x) ∈ {1, · · · , N}

θ1, · · · , θN

∑

x∈Ω
ρ(|T (θl(x),x)− z(x)|) + λN (1)

où

• N est le nombre de modèles utilisés,

• l(x) est le label de la région utilisée pour le point x,

• θi est le jeu de paramètres du modèle décrivant la région i,

• T (θl(x)) est la valeur z obtenue par projection du point x par le modèle correspondant,

• ρ est une fonction croissante continue de R 7→ R,

• λ est le paramètre servant à pondérer l’attache aux données par rapport à la complexité
du modèle global.

Toutefois, cette énergie fortement non convexe est quasiment impossible à minimiser avec des
approches classiques. Enfin, la nécessité d’introduire différents paramètres, souvent difficiles
à estimer, pour pondérer la régularité de la solution ou la complexité du modèle rend les
approches variationnelles peu attrayantes pour ce genre de problèmes.

En milieu urbain, la recherche de modèles est la plupart du temps restreinte à la recherche
d’un jeu de facettes planes permettant de décrire la scène. Cela est généralement motivé par
plusieurs points:

• La plupart des objets en milieu urbain sont souvent plans-par-morceaux (toits, murs,
sols).

• Dans les cas non plans, une description suffisamment fine par un jeu de plans donne
souvent une bonne description d’une scène observée.

• De part sa simplicité, cette description peut être obtenue en un temps plus raisonnable.
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La plupart des méthodes utilisées sont le plus souvent limitées à des variantes d’algorithmes
connus: division et fusion, croissance de régions, transformée de Hough ou encore RANSAC.

Le point commun de toutes ces approches est qu’elles utilisent souvent le caractère local
et connexe des facettes recherchées. Ceci permet de restreindre la recherche et d’éviter de
nombreuses erreurs comme par exemple le mélange de plusieurs facettes planes.

Cependant, une contrainte presque nécessaire à imposer est le rejet par seuillage des points
trop éloignés des différents plans recherchés. Cette étape cruciale apporte de la robustesse aux
différentes méthodes car elle permet de ne pas prendre en compte des points aberrants dans
le modèle final. Elle nécessite cependant l’introduction d’un nouveau paramètre peu évident
à fixer (le seuil de rejet) et dont la valeur peut complètement changer le résultat.

Le but de ce mémoire est de proposer des approches permettant de segmenter les cartes
de disparités obtenues par stéréovision binoculaire en régions supposées planes. Le nombre
de plans à détecter, les paramètres de ces plans et l’association de chaque point de la carte
à un unique plan sont les différentes inconnues du problème. A travers le manuscrit, nous
garderons en tête l’objectif de limiter au maximum l’utilisation de paramètres ou, du moins,
nous chercherons des moyens permettant de les fixer intuitivement. Nous nous intéresserons
donc aux trois étapes suivantes:

1. Le contrôle des fausses détections de plans et l’estimation des paramètres.

2. La détection des plans dans une carte de disparités.

3. L’extension et le raffinement de la segmentation.

Contrôle des fausses détections:

Cette thèse introduit un modèle stochastique des cartes de disparités. Ce modèle a contrario
repose sur la théorie de la Gestalt et permet l’évaluation d’une configuration de points 3D
en tant qu’une facette plane. En définissant la notion de plan significatif, ce modèle assure
qu’en moyenne moins d’une fausse détection de plan sera validée en présence d’une carte de
disparités aléatoire. Ceci permet donc de rejeter l’explication planaire pour des groupes de
points aléatoires.

Le modèle est ensuite adapté au cas de plusieurs plans ceci permettant de choisir pour un
groupe de points 3D quelle est la description la plus adaptée:

• Un modèle à un seul plan, plus simple mais s’attachant moins aux données.

• Un modèle à deux plans, plus complexe mais commettant moins d’erreurs dans sa de-
scription.

Une dernière application de ce modèle, va être de décider quel est le meilleur choix de seuil de
rejet des points aberrants. Ce seuil est en effet implicitement intégré au modèle a contrario
et sa valeur peut modifier la significativité d’un plan par rapport à du bruit. Pour chaque
groupe de points 3D pour lequel on teste la planarité, on pourra alors choisir le seuil de rejet
le plus adapté à sa description. Ceci permet donc une sélection automatique du paramètre le
plus critique utilisé dans les méthodes de détection des plans.
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Détection de plans:

La recherche de la meilleure description plane-par-morceaux d’une carte de disparités sans
aucune information sur le nombre de primitives planes est un problème NP−complet. Il est
donc nécessaire de limiter la recherche par des algorithmes rapides fournissant une solution
approximative. Nous proposons deux stratégies différentes d’exploration des données:

• La première est basée sur une approche division fusion. Un groupe de points 3D est divisé
si une interprétation sous forme de deux plans semble plus adaptée. Une fois l’ensemble
des divisions effectuées, on tente de fusionner les groupes voisins géographiquement.

• La seconde méthode, nettement plus rapide que la première, est basée sur de la croissance
de régions. Pour une région donnée, les points connexes sont testés comme possiblement
appartenant au même modèle plan. Le critère de validation d’un point 3D est défini par
un seuillage dur sur les points aberrants.

Les décisions dans les deux méthodes proposées sont basées sur le modèle a contrario précédemment
défini. Ceci qui permet, contrairement aux approches classiques, une sélection automatique
des paramètres à utiliser.

Extension et raffinement de la segmentation

Cette thèse traite ensuite les trois problèmes suivants qui sont liés à la segmentation plane-
par-morceaux des cartes de disparités:

• En stéréovision, les algorithmes de calcul des cartes de disparités ne fournissent pas
nécessairement des cartes denses. En effet, dans la méthode utilisée en entrée de nos
algorithmes [Sabater, 2009], un critère de rejet est défini afin de ne garder que les points
dont la disparité calculée est sûre. Au final, les parties occluses ou peu texturées d’une
image à l’autre seront filtrées et n’auront pas de disparité assignée.

Toutefois, en définissant un modèle possible pour décrire les données dans ces régions,
une valeur de disparité peut être définie. La question que l’on se pose est donc de savoir
comment étendre aux points inconnus une classification plane-par-morceaux obtenue sur
les points connus.

• Un second problème provient des algorithmes locaux de calculs de cartes de disparités qui
souffrent pour la plupart d’un artefact appelé “adhérence”. Cet artefact se caractérise
par une dilatation de certains objets dans la carte de disparité lorsque leurs contours
sont trop fortement marqués par rapport à la texture locale. On se demande donc s’il est
possible de corriger l’adhérence à partir de la segmentation plane-par-morceaux d’une
carte de disparités.

• Le dernier problème provient des algorithmes de segmentations eux-mêmes où l’association
d’un point à l’un des modèles plans donnés se fait par un seuillage sur la distance du point
au modèle. Selon ce critère, un point peut potentiellement être validé pour plusieurs
modèles. Comment peut-on alors décider le modèle le plus adapté pour ce point?

Ces trois problèmes sont traités comme un seul: à partir d’une segmentation plane-par-
morceaux d’une carte de disparités, quel est pour chaque paire de plans voisins le meilleur
contour les séparant?
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L’approche considérée est la recherche d’un contour par minimisation d’énergie. Trois cas
sont alors envisagés:

• la validation de l’intersection entre les deux plans comme séparation.

• la validation du contour maximisant la photo-consistance entre les deux images de la
paire stéréo. Cela correspond à trouver le modèle pour lequel la reprojection de l’image
de référence sur l’autre image est la meilleure possible.

• la validation du contour le plus contrasté dans l’image entre les deux plans considérés.

Le choix entre les différentes possibilités est fait par rejet ou validation au fur et à mesure de
chacune des hypothèses. L’ordre considéré est le suivant: photo-consistance, intersection puis
contour contrasté. La validation de la photo-consistance est faite à partir de la définition d’un
nouveau modèle a contrario. L’intersection est validée par des critères purement géométriques.
Le contour fortement contrasté est enfin considéré comme dernier recours lorsque les deux
premières approches ont échoué.

Organisation du rapport:

Le Chapitre 1 introduit tout d’abord le problème en s’attardant sur les systèmes d’acquisition
3D, tout particulièrement la stéréo binoculaire. Puis une étude bibliographique des différentes
approches de segmentation 3D est fournie, principalement concentrée sur les approches pro-
posées pour les cartes de profondeurs en milieu urbain. Dans le Chapitre 2, le modèle a
contrario de validation des plans est défini et étudié. Puis l’algorithme de diffusion fusion
est testé à partir de ce modèle. Dans le Chapitre 3, l’algorithme de croissance de régions est
présenté ainsi que des résultats sur sa validité théorique. Des expériences supplémentaires sur
d’autres données ainsi qu’une amélioration de l’algorithme du Chapitre 3 sont ensuite fournies
dans le Chapitre 4. Dans le Chapitre 5, la méthode de raffinement des contours d’une seg-
mentation plane-par-morceaux est expliquée. Enfin, les différentes méthodes de calculs des
plans ainsi que des résultats théoriques sur la précision espérée pour certains cas sont décrits
en Annexe A.

Ce travail a fait l’objet de deux publications:

• Bughin, E. and Almansa, A. (2010). Planar patch detection for disparity maps.
3DPVT’10.

• Bughin, E., Almansa, A., Grompone Von Gioi, R. and Tendero, Y. (2010). Fast plane
detection in disparity maps. ICIP’10.
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Introduction (in English)

Context: the MISS Project

The MISS project(Mathematics for Stereoscopic Space Imagery) is a collaboration launched
in 2007 including several institutions such as the French Space Agency (CNES), the Center
for Mathematics and their applications (CMLA), Rene Descartes University (Paris V), Tele-
com ParisTech engineering school, Ponts et Chaussées ParisTech engineering school, Pompeu
Fabra University (UPF) and the Balearic Island University (UIB).

The main goal of this project is the reconstruction of Digital Elevation Models (DEM) in
urban area from two separate views shifted from a low angle. This requires the complete un-
derstanding of each step of the 3D reconstruction chain: image acquisition, camera calibration
and rectification, 3D computation and 3D modelling. The MISS project is moreover interested
in any problem related to this chain or to image acquisition: denoising, data compression or
irregular sampling.

In her Ph. D. thesis [Sabater, 2009], N. Sabater proposed a new approach to a crucial step
of the 3D reconstruction: making correspond two images of a same scene. Her work is based
on the results of B. Rougé on the necessary conditions to a good reconstruction when the
angle between the views is low. Such configuration, the so-called low B/H conditions (where
B stands for the baseline or the distance between the two cameras, and H is the distance to
the scene or height) shows several advantages over the classical configurations (large B/H).
However, to achieve the same precision magnitude on the resulting 3D points, the low B/H
conditions require a lot more precision in the computations.

Sabater obtained as precise results as the theory allowed to get and moreover proposed a
statistical approach to reject points for which the 3D value is uncertain. The results of her
algorithm is a map describing the shift necessary at each point of the first image (reference
image) to match the second image. Due to her rejection criterion, these so-called “disparity
maps” are not completely dense. A model describing the known points can then both be
useful to interpolate the missing data points but also to denoise the results.

From now till the end 2011, Pléiades, a very High-resolution Earth observation satellite
(VHR) will be launched and will allow the acquisition of stereoscopic pairs under those low
B/H conditions.

Contributions of this thesis:

The search for a simple model describing 3D points, especially under urban conditions, has
been a large source of inspiration over the last 3 decades. This has been mainly motivated
by the large amount of applications of a 3D model compared to 3D points. Let’s mention for
instance data denoising, visualisation with a nicer rendering, simulations in urban environment
such as Wifi wave propagation, estimation of recoveries after natural catastrophes.
This problem can be summarized by the search of the simplest segmentation and the model
best describing the data for each of the segmented regions. The number of regions, the
classification of each point to a unique region as well as the model parameters for each region
are the unknown of the problem, which makes it hard to solve. This could be written as an
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energy minimization problem such as:

min
N, l(x) ∈ {1, · · · , N}

θ1, · · · , θN

∑

x∈Ω
ρ(|T (θl(x),x)− z(x)|) + λN (2)

where

• N is the number of models and regions that are used,

• l(x) is the region label associated to any point x ∈ Ω,

• θi is the parameter set of the model describing region i,

• T (θl(x)) is the z value obtained after the projection of x using its corresponding model,

• ρ is an increasing and continuous function of R 7→ R,

• λ is the parameter weighting the data fitting compared to the global model complexity.

However, this strongly non-convex energy is almost impossible to minimized using classical
methods. Moreover, the necessity to introduce hard-to-estimate parameters to weight the
model complexity or regularity compared to the data fitting, makes variational approaches
not the best choice to solve this kind of problems.

In urban areas, this search of a 3D model is most of the time limited to the search of planar
facets. This is motivated by several things:

• Most man-made objects in urban situations are piecewise-planar (rooftops, walls, ground).

• Whenever this is not the case, a fine enough piecewise-planar description still gives a
good approximation of the observed scene.

• Because of its simplicity, a piecewise-planar model can be obtained with reasonable
computations.

Most method to find a coherent piecewise planar description are usually adaptations of well-
known algorithms: split and merge, region growing, Hough transform or RANSAC.

They all have in common to impose a local constraint by most of the time validating only
connected groups. This allows to restrain the search space and avoid classic errors such as
validating mixtures of several planes as a single one.

Moreover, they add another constraint which is almost necessary to impose, is the rejection
by hard thresholding of the points for which the distance to the planes is too large. This crucial
step brings robustness to the methods because outlier points are not taken into account in
the final model estimation. This however requires the introduction of a new parameter (the
rejection threshold) which value is hard to set and can completely change the final result.

The goal of this thesis is to propose approaches to obtain a piecewise-planar segmentation
of a disparity map obtained from binocular stereo-vision. The number of planes, the plane
parameters as well as the association of any point of the disparity map to one of those planes
are all unknown. Through the whole manuscript, we keep in mind to limit as much as possible
the use of parameters or at least we try to find coherent ways to set their values. We will
draw our interest on the three following steps:
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1. Controlling the false detection of planes and estimating the parameters.

2. Detecting a set of planes from a disparity map.

3. Refining the model and extending it to unknown points.

False detection control

In this thesis we introduce a stochastic model of disparity maps. This a contrario model is
based on the Gestalt theory and allows the evaluation of 3D point groups as planar facets.
Through the definition of meaningful planes, this model ensures that a mean of at most 1
false detection of a plane should occur with a random disparity map. This allows to reject
randomly distributed point groups during the plane detection.

This model is then adapted to the multi-plane case which allows to choose the most adapted
configuration for a 3D point group:

• A single plane model which is simpler but fit less to the data points.

• A two-planed model, more complex but better suited to the data.

A last application of this model is to be able to choose which outlier rejection threshold is
the most adapted. This threshold is implicit to the a contrario model and its value modifies
the meaningfulness of a plane within random points. For each 3D point group for which the
planar hypothesis is tested, the most adapted threshold value is then chosen. This allows an
automatic selection of the most critical parameter in classical plane detection methods.

Plane detection

The search of the best piecewise-planar explanation of a disparity map without any a priori
knowledge on the number of planar primitives is an NP−complete problem. Using a fast
algorithm which gives an approximative solution is absolutely necessary to limit the search of
the solution. We propose two different exploration strategies:

• The first one is based on a split and merge approach. A 3D point group is divided if
a two-planed model gives a better explanation than a single plane one. Once all the
divisions are done, a merging step is added on every neighboring groups.

• The second method, which is a lot faster than the first one, is based on a region growing
procedure. For a given region, the connected points are tested as possibly belonging to
the same corresponding plane. The validation criterion of a 3D point is defined with a
hard thresholding of the outlier points.

All the decisions in the two methods are based on the a contrario previously defined. Con-
trarily to classic approach, this allows an automatic selection of the parameter to be used.

Segmentation refinement and extension

This thesis then treats three problems linked to the piecewise-planar segmentation of disparity
maps:
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• In stereo vision, the disparity maps are not necessarily dense. Indeed, the approach that
we use as input to our algorithms [Sabater, 2009] is coupled with a criterion to reject
points for which the computed disparity is not sure. In the end, occluded regions or
low-textured regions are filtered and are not assigned any disparity.
However, a parametric model describing the data in those regions allows the definition
of a disparity. The question that remains is how the piecewise-planar classification can
be extended to the unknown points.

• Another problem related to local disparity computation algorithms is an artifact called
adhesion. This artifact causes the dilatation of some objects in disparity maps whenever
the contours delimiting those objects are a lot more contrasted than the neighboring
local textures. Is it then possible to correct this artifact from an initial segmentation
which gives information on the objects present in a disparity map?

• A last problem comes from segmentation algorithms themselves for which the association
of a point to one of the models is done by hard thresholding on the distance of the point
to the model. According to such criterion, how can we decide which model is the most
adapted to each point of the disparity map?

All those problems are treated as a single one: given an initial piecewise-planar segmentation
of a disparity map, what is the best separation between a pair of planes?

The contour is searched here using an energy minimisation approach. Three possibilities
are considered here:

• The validation of the intersection of the two planes as the separation.

• The validation of the contour maximizing the photo-consistency of the two images of
the stereo pair. This is equivalent to finding the model that is the most appropriate to
reproject the reference image onto the second image.

• The validation of the most contrasted contour between the two planes.

The choice between the three models is done by successively considering each hypothesis
and choosing the first valid one. The order considered is the following: photo-consistency,
intersection and at last contrasted contour. The validation of the photo-consistency model
is done by introducing a new a contrario model. The intersection hypothesis is validated by
a purely geometric criterion. At last, the most contrasted contour is validated as a default
choice when none of the two previous model has been validated.

Plan of the thesis

Chapter 1 introduce the global problem and explains how the 3D data are acquired, espe-
cially binocular stereo vision. Then a bibliographic review of the 3D segmentation methods
is given with a particular focus on the methods related to urban areas. In Chapter 2 the a
contrario validation of planes is defined and thoroughly studied. Then the split and merge
algorithm is defined from this model. In Chapter 3, the region growing algorithm is explained
and a mathematical justification is given. More experiments on the algorithm of Chapter 3
as well as an adaptation to other data-type are given in Chapter 4. In Chapter 5, the method
for contour refinement of an initial piecewise-planar segmentation is explained. At last, the
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different existing methods for plane computation as well as some theoretical results on the
expected precision are given in Appendix A.

Two publications were made in the context of this thesis:

• Bughin, E. and Almansa, A. (2010). Planar patch detection for disparity maps.
3DPVT’10.

• Bughin, E., Almansa, A., Grompone Von Gioi, R. and Tendero, Y. (2010). Fast plane
detection in disparity maps. ICIP’10.
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Résumé: Dans ce chapitre, nous introduisons les différentes difficultés pouvant
apparâıtre lors de la modélisation 3D en milieu urbain. Dans un premier temps,
nous rappellerons les différents types de données pouvant être utilisées. Puis, nous
passerons en revue les différentes méthodes utilisées dans la littérature pour faire
de la modélisation 3D ou de l’ingénierie inverse à partir de points 3D. Enfin, nous
étudierons les approches utilisées pour affiner un modelé 3D existant et définir des
contours précis entre deux primitives.

Abstract: In this chapter, we refer to the main difficulties that occur in urban 3D
modeling. We first introduce the different data types that are usually used. We
then review the various methods used in the literature for 3D modeling or reverse
engineering of 3D data. At last, we study the different approaches used to refine
an existing 3D model and define precise contours between the model primitives.

1.1 Introduction

Finding a three-dimensional model of architectural scenes has been an important and chal-
lenging problem in the computer vision and graphic communities for the last two decades.
Such modeling can be useful for several reasons and applications:

• First of all, as pointed out in [Digne, 2010], a pure 3D point cloud is unexploitable as
itself. Several notions and relations between points must be introduced such as point
neighborhoods or surface normal at each point for a proper visualization. A 3D model
gives all that by introducing a global surface where each point stands and are related
to each others.

• A good model can be used to reduce the noise values in the measurements of the input
3D data points.

• A model reduces the storage of the 3D shape and allows interpolation of data points.
One can think for instance of the case of thousands of points standing on same plane
(a wall for instance). Stocking the plane parameters (3 parameters for the plane + the
parameters defining the plane delimitations) instead of the points is a lot more economic
in memory. Moreover, points that were not present in the original data points can easily
be interpolated from the plane equation.

• At last, 3D models can be used for various applications such as wave reachability simu-
lations, urban planning or disaster recovery.

However, finding a simple model to explain data is not a simple task since the number of
regions, the association of each point to one of them as well as the model parameters used to
describe each region are all unknown of the problem. This makes the search for an optimal
solution an NP−complete problem.

A large amount of methods varying with the type of input data have been developed with
a sole and unique goal: giving a simple description of a 3D point cloud. The most common
approach is to look for a piecewise planar explanation. This is mainly justified by two points:

• most man-made objects especially buildings are often piecewise-planar,

• whenever this is not the case, a sufficiently fine piecewise-planar model gives a good
approximation of the data.
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This chapter is organized as follows. For a better comprehension of the problems and
challenges of 3D modeling, we first give a short description of 3D point acquisition systems.
Then we review the different methods that have been developed for 3D modeling. At last, we
review the different techniques used for fine contour detection of 3D models.

1.2 3D Point acquisition

3D points acquisition is done in several ways which can essentially be classified into two
categories: active or passive approaches.

In active acquisitions, the 3D points are deduced from an analysis of the time of flight
after reflexion of a pulsed wave (radio or light waves) onto the observed scene. The most
well known active acquisition systems are the LIDAR (light detection and ranging) and the
RADAR (Radio Detection and ranging) which have different properties and are therefore used
for different applications.

In passive acquisitions, 3D points are computed from one or several images of the observe
scene. In the shape from shading approach, a coherent 3D description is found from a single
image [Prados, 2004] [Durou, 2007]. In stereo-photometry [Durou and Courteille, 2007], several
identical pictures of a 3D scene are taken under different (and known) light conditions. The
3D geometry is then deduced from the variations in reflection of the various objects. In a
structured light 3D-scanner device, a structured light enlights the scene. The 3D is then
deduced from a measure of the variation of the light structure which depends on the observed
objects. At last, in stereoscopy, several pictures of the same scene are taken from different
points of view. The position of each object varies from an image to the other depending on the
point of view and the distance between the object and the camera. The 3D is then deduced
from the variations in positions in the different images.

In urban situations, the two most adapted techniques are LIDAR acquisitions and stere-
oscopy since their devices are very simple and feasible under such conditions. LIDAR ap-
proaches produce very precise results but still very expensive. On the other hand, stereoscopy
is rather cheap since it requires only the use of a single camera. Another advantage of stere-
oscopy upon LIDAR is the images that can be used as additive information to the 3D map
and give a better understanding of the observed 3D scene.

In this thesis, we therefore supposed that the data were obtained by stereo-vision even if
most of our work is also adaptable to LIDAR data. We now propose to explain a bit more
the principle of stereo-vision since this will be used as input to our algorithms.

1.2.1 Binocular stereo-vision

The 3D reconstruction from two separate views is done in several steps: camera calibration
and rectification, 2D point matching in the two views and 3D reconstruction. The final result
is an image, called disparity map, representing the shifts necessary at each point to match
the points of one image with the one of the other image. In what follows, we roughly explain
the different steps necessary to the reconstruction.

Pin-hole camera

In computer vision, it is usually common to assume that the image was acquired using the
pin-hole camera model. In this model, each 2D point in the image is obtained by projection
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of a 3D point of the scene onto the image plane:

P : R3 7→ R2

X = (x, y, z) 7→ (f x
z , f

y
z )

(1.1)

Where C is supposed to be the center of the camera and f its focal length. The x and y
axis are then the ones imposed by the image plane, the z−axis is defined as the normal vector
to the image plane.

Camera calibration and rectification

Calibration is the first step of the 3D reconstruction from a camera. The objective is to
find the intern and extern geometric properties of the acquisition system. With a pin-hole
camera configuration, these parameters are: the focal length f , the camera center C, the pixel
dimensions, the obliquity angles of the pixels and the 3 axis of the scene. For more details on
the calibration techniques, we refer to [Hartley and Zisserman, 2000], [Faugeras and Luong,
2001] and [Lavest et al., 1998] which gives fundamental results on this crucial step.

In binocular stereoscopy, one compares two views of a same scene obtained with two
different configurations. To be able to do so, re-project the two images needs to be reprojected
onto a common 3D referential. This is the rectification step. For a given 3D point X in the
observed scene, an epipolar plane is defined by X, and the two centers of the cameras C and
C ′ (see Fig. 1.1). The intersection of the epipolar plane of X with each image defines two
lines called the epipolar lines. Each epipolar line of one image intersect with the line formed
by the two camera centers at a single point called epipole. This epipole corresponds to the
projection of the center of the other camera onto the image plane.

Epipolarly rectifying images consists in putting the epipoles at infinity which is equivalent
to re-projecting the two image planes onto a single one. The epipolar lines are then parallel
to each other (this is usually done in such a way that they are parallel to horizontal axis). In
[Zhang, 1998], a review the various approaches used for epipolar rectification is given. In [Loop
and Zhang, 1999], the authors propose a way to find the epipolar rectification minimizing the
distortion of the two images.

The rectification is computed by finding the so called fundamental matrix F , which is a
3× 3 matrix of rank 2 such that any pair of homologous points in the two images (2D points
in the two images referring to a same 3D point in the scene) satisfies:

x̃F x̃′ (1.2)

where x̃ =





x
y
1



 and x̃′ =





x′

y′

1



 are the two homologous points in homogeneous coordi-

nates.

From disparity to 3D point

Once the two images have been epipolarly rectified, any 3D point X will be projected onto a
single line in the two images. The camera arrangement is then simplified to the one illustrated
in Fig. 1.2. From Fig. 1.2, one can see that the 3D depth of a 2D point can be deduced from
its shift in position (disparity) within the two images. From Thales theorem, one has:

B

D
=

H − h

h
∼ H

h
and

d

D
=

f

H
(1.3)
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Figure 1.1: Epipolar rectification. Left: camera configuration before rectification.
Right: rectified cameras. The 3D point X and the two camera centers C and C ′

define a plane. Its intersection with the two image planes defines two lines: the
epipolar lines for X (dashed red lines). The intersection of the epipolar lines of
X with the baseline (CC ′) (e and e′) are called the epipoles. They represent the
projection of the camera centers onto the other image plane.
The goal of the rectification is to find two transformations (one for each image) such
that the two resulting image planes are a single one. The epipolar lines for any point
X are then all parallel to the baseline (CC ′) in both images.
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Figure 1.2: Computation of the depth of a 3D point in epipolar geometry. From
Thales theorem, one can see that the height h of Y is proportional to the shift in
position d.
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The disparity in the two images and the height of the 3D point are then linked by:

d ∼ Bf

H2
h (1.4)

Disparity map computation

Matching points from the two images is one of the key elements to 3D reconstruction. As seen
in Eq. 1.4, the translation of a given point from one image to the other is proportional to the
distance of the corresponding 3D point to the image planes. We now explain how to compute
the disparity map, which is the map of translations necessary to match the two images.

There are two main categories of methods to compute a disparity map: local ones and
global ones. In local approaches, the disparity is computed separately at each point. In global
methods all the disparities are searched at the same time by minimizing a global criterion.
We will however concentrated on local methods.

The most classical approach is the block-matching. The disparity is computed by finding
the translation minimizing a cost function:

µ(x0) = argmin
t

C(x0, t) (1.5)

The cost function usually compares the gray level values for a given neighborhood in the two
images. The most common cost function is certainly the Normalized Crossed Correlation
(NCC) defined as:

C(x0, t) =

∑

x∈N (x0)

(u1(x)− ū1)(u2(x+ t)− ū2)

√ ∑

x∈N (x0)

(u1(x)− ū1)
2

∑

x′∈N (x0+t)

(u2(x
′)− ū2)

2
(1.6)

where ū1 (resp. ū2) is the mean value of the first image in N (x0) (resp. N (x0 + t)). Note
that in the case of the NCC, the best candidate is the one maximizing the cost function, not
minimizing.

High B/H V.S. low B/H

Reducing the distance between the two points of view (hence the B/H factor) has several
advantages. First, it makes it easier to take the pictures almost simultaneously which reduce
the changes (light conditions or objects) from one image to the other. Moreover, when the
two views are close to each other, fewer objects are occluded from one image to the other.
This allows to obtain denser disparity maps.

However, reducing the B/H also has an impact on the point precision. Differentiating Eq.
1.4, we obtain:

δh ∼ H

B
· H
f
δd (1.7)

One can see that to achieve a similar precision on the 3D estimation, a more precise disparity
computation is required with a lower B/H factor. To overcome this, sub-pixelic precision
methods have been proposed such as the ones in [Delon and Rougé, 2007] and [Sabater, 2009].
This two methods will be the one that we use in our experiments (see Chapter 4).
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The adhesion artifact (fattening)

Though probably the most popular approach, the computation of disparity maps by block
matching can introduce serious errors such as the adhesion artifact (also named fattening
or border errors). This artifact is due to the combination of a highly contrasted texture or
edge in the image and a large local variation in the scene depth. The most common and
troublesome situation appears near object delimitations which are usually characterized by a
very contrasted edge in the image and a jump in the depth values of the 3D scene. In this
case, the consequence is the dilatation the foreground object in computed disparity map.

The theoretical explanation to adhesion is that disparity values are supposed to be locally
constant in the windows that are matched in the stereo pair while this is clearly not the case
when there is a discontinuity for instance. The pixels that are likely to be affected by this
dilatation are the pixels such that their distance to the discontinuity is inferior to half the size
of the window used for the block-matching.
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Figure 1.3: Adhesion artifact. The correct disparity to r is r” but Br is mismatched
to Br′ . This figure was inspired from a figure on adhesion in Neus Sabater’s PhD’s
manuscript [Sabater, 2009].

Figure 1.3 represents a situation where adhesion happens. Three points are being observed
here: a point on the roof of a building Q, and two points on the ground R and S. Their
projection on the reference (resp. the secondary) image are noted q, s and r (resp. q′, s′

and r′). Using a block matching approach, q and s are well matched supposing that there is
enough texture to match the blocks in both images. However, r is matched to r′ (which gives
a disparity similar to a point on the roof) instead of being matched to r′′.

Indeed, in the reference image, the window around r is divided into two parts: the points
on the roof (sub-window B1) and the points on the ground (sub-window B2). The two parts
are separated by a very contrasted edge. Similarly, in the secondary image, the window
around r′ contains points on the roof (V1) and points in an occluded region (V2) and the
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window around r′′ contains points into the occluded region (W1) and points on the ground
(W2). r can be either matched with r′ or r′′. Since the window around r′ contains a very
contrasted edge, the correlation between r and r′ is higher than the correlation between r and
r′′. Therefore, r is matched with a point on the roof.

When dealing with a slanted roof (which is often the case in urban stereo-vision), the
dilatation due to adhesion is observed on both sides of a roof edge (see figure 1.4).

Figure 1.4: Continuous line: cut of a depth map of a house. Dotted line: estimated
depth affected by adhesion. Adhesion causes the dilatation of the depth value of the
roof edges.

1.2.2 Multi-view stereo-vision

With the appearance of picture databases where the same scene is sometimes observed from
thousands of points of views, multi-view stereo-vision has become one of the most popular
techniques to get dense 3D reconstructions.

To achieve such reconstructions, the cameras from the different views must be calibrated
and rectified all at the same time. If we note Nc the number of camera configurations (points
of views) and Np the 3D points that are observed in more than one image, one can estimate
both the camera parameters (internal and external) and the 3D coordinates of the points at
the same time:

min
{P1,...,PNc},{X1,...,XNp}

∑

i,j

vi,jd(Pj(Xi),xi,j)
2 (1.8)

where vi,j is a binary weight equal to 1 if the 3D point Xi can be seen from camera j and 0
otherwise and xi,j is the observed corresponding 2D point in image j.

The approach that is commonly used to solve this kind of problems is the one proposed by
[Lourakis and Argyros, 2009]. It uses the sparse properties of the equation system to achieve
a fast resolution with a Levenberg-Marquardt algorithm.

The 3D points that are used are then the ones that have been found with Eq. 1.8. The
final result is a 3D point cloud, possibly containing outliers, with no notion of neighborhood
between the points.
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1.3 3D modeling

Over the last two decades, a lot of methods have been developed to obtain a model describing
a set of 3D points. The objective is to find a small set of primitives (usually planar facets)
to describe the points. However, the problems and solutions strongly depend on the type of
input data points.

1. A first set of methods was proposed to find a classification of objects from two non-
rectified stereo images (unconstrained stereo-vision). Each object of the scene, is locally
represented by a different projective transformation. The point here is then to determine
these transformations from available feature points (usually obtained from SIFT [Lowe,
1985] or Harris [Harris and Stephens, 1988] detectors). The feature points are pairwise
in the two images, usually sparse and may contain outliers. Moreover, the number of
transformations that are looked for in those situations is usually limited to less than 10.

The searched transformations are two dimensional and limited to isometries, affine trans-
formations or homographies.

2. In presence of a range image in urban area, one usually looks for a set of planes to
describe the roofs, the walls or the ground. The points here are distributed on a regular
2D grid Ω ⊂ R2 which gives a natural notion of neighborhood. The depth at each point
is assumed to be defined by a unique plane among a finite set of planes (πi)i=1..n, where
n << Npoints:

∀x ∈ Ω, ∃i, 1 ≤ i ≤ n�z(x) = Tπi
(x) + ε(x) (1.9)

where Tπi
is the affine transformation associated to the plane πi and ε is an additive

noise usually supposed to be Gaussian and I.I.D.. The objective is to find both the set
of planes and the association to each 2D point.

With LIDAR images, the range image is usually dense and the noise is rather low. The
segmentation approaches are then only based on the 3D information of the points.

With disparity maps obtained from binocular stereo, some points might be missing and
the precision varies depending on the method that is used and the baseline between the
two images. However, the two images used for the disparity computation give another
source of information that may be used for the segmentation. Segmentation methods
are then usually based on both 3D from the disparities and image information.

3. In the case of multi-view stereo or merged LASER scan, pure 3D points are considered
(as opposed to 2.5D points for range image). The density and the precision of the points
are usually high. The methods usually start by the definition of a neighborhood as well
as the computation of the local normal of the surface at each point. When images
are available, additional information can be used by computing 3D line segments or
vanishing points.

Semi-automatic methods have been developed for building detection in range images
[Nevatia and Price, 2002], [Flamanc and Maillet, 2005] and [Gruen and Wang, 1998]. How-
ever, user interaction seems poorly adapted to the case of dense building areas which tend to
favor automatic approaches. The most popular techniques over the years have been split and
merge approaches, region growing, clustering, model fitting from a dictionary and random
procedures such as RANSAC. A good review of range image segmentation methods as well
as an evaluation procedure is given in [Hoover et al., 1996].
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1.3.1 Split and Merge

Originally introduced by [Horowidth and Pavlidis, 1974] for image segmentation, this algo-
rithm is separated into two steps:

• the splitting step, where the goal is to obtain an over-segmentation of the map or point
cloud,

• the merging step, where the connected regions are iteratively merged according to a
criterion to refine the segmentation.

In [Boulanger and Godin, 1992], the initial partition is obtained by robust fitting of local
planes and segmentation of the connected components sharing similar orientation and depth.
Then a Bayesian approach is proposed to possibly merge neighboring regions. In [Parvin and
Medioni, 1986] and [Xiang and Wang, 2004], the algorithm starts by assigning all the pixels
to one group. Then as long as a certain figure of merit for fitting is higher than a threshold
they keep on dividing. In [Taylor et al., 1989], the plane parameters are estimated in spherical
coordinates using a local neighborhood. Regions are then split and merged if one of the local
angle estimation deviates from the region estimation from more than a threshold or if in
presence of a jump in z-values. In [Jiang and Bunke, 1994], the split and merge procedure is
applied line by line and column by column to produce a very fast result. For each scan line,
a first linear estimation is made. Then if the distance of the furthest point is more than a
threshold, the line is split at there. The splitting continue on the two new estimations and so
on until the rejection constraint is respected everywhere.

In [Taillandier et al., 2003], the authors start from an initial segmentation and use a wa-
tershed approach to merge connected regions at different scale. The result is the construction
of a tree describing possible classification for each precision scale.

In [Igual et al., 2007], the authors propose an algorithm adapted to stereo-vision where
images can be used as additional information to the 3D map. First, Mumford-Shah’s algorithm
[Mumford and Shah, 1985] is used on the reference image of the stereo pair to obtain an initial
segmentation. Then an a contrario criterion based on a planar hypothesis is used to merge
the neighboring regions. In [Facciolo and Caselles, 2009], a similar image-based approach is
proposed for sparse disparity map. First, regions are obtained from the reference image by
computing the grey level geodesic Voronoi cells of the known points. Then, the regions are
merged with a simplified Mumford Shah’s procedure with data fitting based on the range
values and the estimated planes.

Remarks on the split and merge procedure

The problem of split and merge algorithms comes from the splitting step (or the first seg-
mentation). If this initial segmentation is not precise enough, the merging step won’t allow
to recover the lost details.

When the initial segmentation comes from an image, since the 3D information may not
be always related to the image information, some of the regions may contain outliers. This
means that robust approaches must be used to estimate the plane parameters.

When the initial segmentation comes from a splitting procedure, a criterion to decide when
to stop the splitting must be defined. This is usually done by introducing a threshold on the
minimal precision required.

At last, when the groups are merged according to a certain order, the algorithm may
become time consuming.
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1.3.2 Region growing

Due to the quality of its results and its low computation time, region growing has been
certainly the most popular approach for range image segmentation (see [Besl and Jain, 1988],
[Poppinga et al., 2008] for instance).

The idea is very simple. First, as an initialization step, a local estimation of the plane is
computed at each point of the map, usually using a least squares approach. Then seed points
are selected. For each seed point, a region is created by adding the connected neighbors (on
the 2D map) whenever their distance to the seed plane is less than a preset threshold and the
angle between their local orientation and the plane orientation is less than another threshold.
The validated points are marked and cannot be used for another group.

In [Fitzgibbon et al., 1997], a segmentation is computed by a quantification of the local
curvature values. This approach is similar in some ways to the method proposed in [Digne
et al., 2010] for mesh segmentation. However, in [Fitzgibbon et al., 1997], this step is used
as a seed selection step for region growing. In [Pu and Vosselman, 2006], the authors used
this approach for a first plane detection and added several criteria on the plane configuration
to classify them as walls, ground, roofs, windows or doors. In [Ameri and Fritsch, 2000],
the authors adapted this to aerial range imagery. Building parts are first detected by hard
thresholding on the height values then the region growing is used to detect the roof facets.
The main difference with the original approach of [Besl and Jain, 1988] is to select the seeds
before region growing by testing the flatness of the neighborhood. In [Poullis and You, 2009],
the authors use the region growing for large scale city modeling and set their threshold value
from an estimation of the noise in the range values.

Recent works showed that the region growing procedure for plane detection could be
adapted to other data-types. This is the case of [Fraundorfer et al., 2006] which proposes
an approach for homography detection (thus 3D planes) in non-rectified stereo pairs. In
their approach seed regions are found using the MSER algorithm to get a local homography
estimation. Then the region grows from the seed region by adding the connected points
whenever the gray level difference between the point and its projection on the second image
is less than a threshold. The main advantage of this approach is that the segmentation of the
stereo pairs is directly obtained without any computation of disparity. Another example is
given in [Chauve et al., 2010] where a segmentation of pure 3D points is searched for. In this
work, the growing step is done by using the k-nearest neighbors instead of using the 2D map
grid such as it is done for range image segmentation approaches.

Remarks on the method

The good results of the region growing procedure are ensured by several things:

• The points within a detected group are connected.

• The hard thresholding on the distance to the planes ensures the absence of outliers
within a validated group.

• This distance threshold defines the maximal error committed in the segmentation.

However, the main drawback of region growing is the constraint imposed by the choice
of this distance threshold which is critical to obtain a good result and may sometimes be
difficult. At last, when a point can potentially be associated to two planes (up to the threshold
parameter), the greedy approach tends to favor groups that have been detected first.
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1.3.3 Clustering and Hough transform

First introduced for the problem of line detection, the Hough transform [Hough, 1959] is
probably one of the most natural approaches for multiple object detection. In the case of
multiple plane detection, a version of the quantified space of plane parameters defines an
histogram. This dual space to the 3D points is define by the set of vectors (a, b, c) ∈ R3

defining the following plane equation:

z = a · x+ b · y + c (1.10)

The algorithm works as follows. Each possible triplet of points defines a plane configuration
which increments the corresponding bin in the histogram. The modes of this histogram then
defines probable planes of the 3D scene (see [Flynn, 1990], [Han et al., 1987]).

As pointed out in [Toldo and Fusiello, 2008], [Rabin et al., 2009] and [Vosselman and
Dijkman, 2001] several problems occur with this approach:

• Computing all the plane configurations can be very demanding.

• The choice of quantification is a compromise between precision and computation com-
plexity.

• Some of the highest peaks in the plane parameter histogram are sometimes due to the
mixture of several planes into a single one (which is not desirable).

The solution usually proposed in range image segmentation is to introduce neighborhood
information of the 3D points while detecting the peaks in the histogram. In [Vosselman
and Dijkman, 2001], the authors use cadastral ground planes to divide the range image into
different local regions. Then the planar Hough transform is applied in each region to detect
the probable planes which reduce the complexity and avoid false detection.

In [Filin and Pfeifer, 2006], a local estimation of the plane parameters is made instead of
triplets of points. Then the mode seeking algorithm of [Haralick and Shapiro, 1993] is applied
to detect clusters in the parameter space. The clusters made of connected points are kept and
validated as planar facets.

A similar approach is the one proposed in [Peternell and Steiner, 2004]. Local planes are
estimated at each point. A metric taking into account the points locality is then proposed
to define the distance between two planar faces. At last clusters in the parameter space are
found using this metric.

1.3.4 RANSAC

A fast alternative to the Hough transform is the RANSAC (RANdom SAmpling Consensus)
algorithm [Fischler and Bolles, 1981] which was originally designed for fast robust regression.
In the case of robust plane computation, the objective is to sort out random triplets of data
points to define planes. Then for each plane, one counts the number of points whose distance
to it is less than a threshold. The plane with the largest number of votes is then selected as
the best one.

The number of iterations necessary to find at least one valid triplet of points is usually
defined from prior knowledge on the data. If we suppose that a percentage p of the total
number of points can be associated to the searched plane, then the probability of sorting out
one good triplet within Ns is:

P = 1−
(
1− p3

)Ns
(1.11)
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Then supposing that one wants to ensure that the probability to get one good configuration
after Ns sorts is more than p0, we have:

Ns ≥
log(1− p0)

log(1− p3)
(1.12)

Though originally designed for the robust regression of a single model, several approaches
were proposed to adapt it to multiple model detection. The most intuitive and most used
one is the sequential RANSAC [Vincent and Laganière, 2001] and [Kanazawa and Kawakami,
2004]. The idea is to detect a first plane with RANSAC, remove the validated points, run
once again RANSAC for a new detection and so on until no points are left. However, as
pointed out in [Stewart, 1995], this procedure has a good chance to detect “ghost” planes
(mixture of several planes). Indeed, when one wants to detect one of the planar patches, the
points standing on other planes should be considered as outliers. However, the structured
distribution of these points goes against the uniform distribution hypothesis. A wrong plane
then sometimes accumulates more inliers than the actual plane that should be detected.

Several solutions were proposed to adapt the RANSAC algorithm to multiple object detection
in the case of unconstrained stereo-vision. One strategy is to try to find the multiple groups
simultaneously [Zuliani et al., 2005]. However, this requires the knowledge of the number
of groups which is an unknown parameter. An estimation of this parameter is proposed in
[Zhang and Kosecká, 2006] by an analysis of the mode of the histogram of residual errors for
each plane tested. Then once number of planes has been set, the groups are computed with
this knowledge. However the experiments from [Toldo and Fusiello, 2008] tend to prove that
all the previous methods are still not robust to real situations. The best approach seems to
be the one proposed in [Rabin et al., 2009] where the authors couple the sequential RANSAC
with a statistical decision criterion. This allows them to decide if a group is valid, set param-
eters and compare group configurations. To avoid false detection (mixture of several planes),
they also try to split the final result to see if a better configuration is preferable. However,
because of the considerably larger point density with range images or multi-view stereo data,
their criterion and searching approach are no longer adapted since they do not take into ac-
count the local aspect of the planar facets in those situations. In those cases, the RANSAC
approach proned there is indeed likely to detect mixtures of planes.

In the case of range images, a strategy to avoid “phantom” planes is to stay local when
sorting out the triplets of points. In [Forlani et al., 2004], a first hard thresholding on the
disparity values is done to separate buildings from the ground. Then the sequential RANSAC
procedure is applied on each building which forces the locality.

In [Kada, 2006], the sequential RANSAC was used as a first step to simplify a mesh.
The planes are detected by finding the mesh facets with identical orientation (up to an angle
threshold) which lie on a same plane (up to a distance threshold). Such is first done to detect
vertical walls. Each detected plane is used to segment the 3D space in two parts. A threshold
then helps to decide whether or not a segmented part contains a building part. Then for each
building part sequential RANSAC is used again to detect roof facets.

In [Labatut et al., 09] and [Schnabel et al., 2007b], sequential RANSAC is used to produce
a simple mesh. As in [Kada, 2006] the difference with regular RANSAC, is that inliers
are selected both from their angle and their distance to a tested plane. As an additional
constraint, the validated plane is the one with the maximum number of connected inliers.
The inlier connectivity is defined by the k-nearest neighbors.
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Remarks on the method

The RANSAC algorithm shows the same advantages and drawbacks as the region growing
approach. The threshold parameter is hard to set but is also what makes the approach robust.

In case of dense data, the connectivity constraint imposed on the final groups seems
necessary. This step makes the algorithm look even more like region growing.

1.3.5 Other methods

Other approaches have been developed to find a good model description of a 3D scene or a
good segmentation of range images.

In [Lin, 1998], the authors try to detect shadows of buildings to reconstruct the 3D from a
single image. Using a segment detector, hypotheses are formulated on building delimitations
and their shadows. The most likely configuration is selected and the 3D is deduced from the
size of the shadow. The results are rather good considering that only one image is available
but still not comparable to methods adapted for several images.

Other approaches are based on the detection of 3D features (points, lines) from several im-
ages. In [Bignone et al., 1996], 3D segments are computed by matching segments in several
images and grouped into planes. Then 2D enclosure is searched to delimit the various planes.
In [Baillard and Zisserman, 1999], 3D segments are computed from the various images. Then
half planes are deduced by sweeping planes around the segment. In [Werner and Zisserman,
2002], planes are computed by translation along their supposed normal direction (obtained
from vanishing points and 3D segments). At last, in [Sinha et al., 2008], 3D points, vanishing
points and 3D lines are detected and filtered. Then planes are computed with a RANSAC
procedure to maximize photo-consistency between images.

The main advantage of all these previous approaches is the absence of search of corre-
spondences between images. However, they either suffer from a lack of precision on contour
of planes or require a lot of images for a precise reconstruction.

At last, other approaches use a Bayesian framework to segment a range image into differ-
ent object classes. In these methods, several possible model hypotheses are formulated. The
Bayesian framework then quantifies the validity of a given model according to the observed
data, as well as the cost of changing from one configuration to another. The final global model
is then usually found using such approaches as Reversible Jump Monte Carlo Markov Chain
(RJMCMC) [Green, 1995].

[Han et al., 2004] proposes to use such approach by selecting among 5 possible models
(planes, conics, B-spline surface with four and nine control points, cluttered surfaces) based
on their probabilities to happen knowing the data points. The probabilities are based on
both range images and intensity images that are sometimes available with a LASER acquisi-
tion. In [Dick et al., 2004], the authors define parameters to qualify various part of different
architectural style. First planes are searched by using 3D features (lines, 3D points) and a
first classification of the planes is obtained. Then, from this MCMC algorithm is used to find
the most probable model. In [Lafarge et al., 2008b] and [Lafarge et al., 2008a], the authors
search for a set of oriented rectangles to describe buildings in a disparity map. Then from
this segmentation, a collection of rooftop shape is defined and fitted to obtain a description
of the observed scene. Both maximization steps are done using RJMCMC.
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For each algorithm, the obtained results are visually good. However, the complex parame-
ter optimization seems to be time consuming and not well adapted to complex configurations.

1.4 Segmentation refinement

The segmentation methods previously described usually associate the known points to a set
of primitives. However, the final classifications may be unsatisfying for several reasons:

• Depending on the input data, some points might be missing. In unconstrained stereo-
vision, only a few feature points are available. In binocular stereo-vision, some disparity
computation methods reject a part of the points ([Sabater, 2009]). These points are
usually either not precise enough (shadow regions) or missing in one of the two images
(occluded object). In multi-view stereo-vision, some parts may be missing (no feature
point or region occluded in every images).

For all these missing points or regions, one may want to be able to extrapolate the
classification. Since the models are usually parametric, the missing disparity values can
then be interpolated.

• The classification methods are sometimes not given for all the points (some methods
have a rejection threshold for outliers).

• The classification may be ambiguous for some of the points. As seen before, most of the
classification methods are based on a rejection threshold that defines inliers and outliers.
However, some points may be inliers for several groups which lead to an ambiguity. In
this case, the approaches usually favor the first group detected which has no reason to
be true.

• In stereo-vision some point disparities may be wrong because of computation artifacts
such as adhesion. This can lead to misclassification.

• To define a 3D model, vertical planes need to be introduced which requires the intro-
duction of clear contours in presence of a height jump.

All of this suggests the introduction of well delimited separations between the detected prim-
itives.

In most approaches, the problem is usually not treated or is only treated by considering
primitive intersections. This is usually the case when data points come from LASER range
scanners and no additional information is available. We will now present the main approaches
that have been used for model delimitation refinement.

1.4.1 Cadastre and rectangle fitting

A first class of approaches uses cadastral ground maps. The map delimitations are fitted to
range images and used as additional information (see for instance [Vosselman and Dijkman,
2001], [Peternell and Steiner, 2004], [Durupt and Taillandier, 2006], [Flamanc and Maillet,
2005]). The idea is usually the same. Man made building facets share a lot of symmetries
and parallelisms. This means that the orientations of the edges available in ground planes
can be used as probable orientations for the contours of each planar facets. The other source
of orientation comes from the possible intersections between planar facets.
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Once a first piecewise segmentation has been obtained, the graph of adjacent planar facets
is computed. In these approaches, the building has usually been delimited by the cadastre
which means that only roof shapes has to be found and the quantity of facets is usually low.
Then the objective is two-stepped. First, for each adjacent plane, detect if we consider either
an intersection or a height jump. In the height jump case, fit a polygonal line with orientations
similar to the principal directions in the cadastre.

Using cadastres will most certainly produce nice rectangular buildings with sharp edges,
however, the result is rather imprecise. Moreover, cadastral maps are not always available
and some more computations must be done to fit them to the range image.

Following a similar idea, in [Ortner et al., 2007] and [Lafarge et al., 2008b], propose an
approach to describe buildings in dense disparity maps. Buildings are disjointed from the
ground by height jumps, and are then described by a set of rectangles. The outer contour
is then refined into several polygons for a better description. The inner building description,
is then handled with their roof dictionary technique. However, as for the cadastral case, the
produced 3D model is visually very nice but not very precise.

1.4.2 Image information

With stereo-vision data, one can use the information given by the images to better define
the separations between planar facets. Indeed, under a Lambertian hypothesis, each oriented
planar facet will reflect light with a different intensity. Thus, the delimitation of the planar
facets in the image has a good chance to be associated to a jump in the grey level values
(therefore a strong gradient value).

When adding image information to refine the range image segmentation, two strategies
are generally used: use the image before and then the 3D information or the opposite.

In [Igual et al., 2007], a first segmentation is proposed using the Mumford-shah’s algorithm
[Mumford and Shah, 1985]. Then a merging strategy based on the 3D is used. In [Facciolo
and Caselles, 2009], a sparse version of the disparity map is required. Geodesic Voronoi
cells are then computed and merged according to a Mumford-Shah’s strategy (using the 3D
information as data fitting term). The problem of using the image segmentation before the
3D information is that if the initial segmentation is wrong, then the final one will be wrong
too.

Another strategy, is to use image features as a post-processing to delimit planar facets.
In [Ameri and Fritsch, 2000], image segments are mixed with intersection. The final decision
is made by hard thresholding. In [Bignone et al., 1996], 3D segments are computed from
the images and used to compute a set of planar facets. Then for each planar facet, the 2D
enclosure is found by trying out all the possible combinations of closed contour from segments.
The most likely combination is at last kept. [Vallet and Taillandier, 2005] finds the most likely
2D segments to be interpreted as a set of planar facets. Then the 3D model is adjusted to fit
these segments using a Levenberg-Marquardt approach. The problem of all these methods is
that a wrong model is produced if no segment is available in a region or if a wrong segment
is chosen.

1.4.3 Plane adjustment

Another strategy is to refine a set of connected planar facets to find the best fitting model.

In [Taillandier and Deriche, 2004], a set of planar facets is found either by the algorithm
described in [Taillandier et al., 2003], either by detection of vertical planes from the segments
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and height jump. Then, 3D graph corresponding to all the possible configurations of planes
is constructed and then filtered. The most likely graph configuration is at last kept using a
Bayesian approach.

In [Brédif et al., 2008], start from an existing 3D polygonal description of a disparity map.
Then they propose a kinetic framework to make the polygon evolve to a final solution that
best fit the data points.

1.4.4 3D completion

At last, let’s mention two approaches to enhance a 3D model and use it 3D completion in
the case of pure 3D points. In [Chauve et al., 2010] and [Schnabel et al., 2007a], the authors
both propose to use a graph-cut approach to find the best interpretation of data from an
existing set of primitives. This interpretation is also used to interpolate 3D points in the most
coherent way.
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Résumé: Dans ce chapitre, nous proposons une nouvelle méthode sans paramètre
pour détecter des patchs plans dans une carte de disparités quasi-dense. Dans un
premier temps, nous introduirons un critère de décisions a contrario qui peut-être
utilisé pour résoudre différents problèmes sur des configurations de points 3D: (i)
cette configuration est-elle bien expliquée par un plan? (ii) quel est le nombre
de plans optimal pour expliquer cette configuration? (iii) quelle valeur de seuil
est la plus adaptée pour rejeter des points aberrants? Ces critères de décisions
sont le coeur d’un algorithme qui recherche une explication plane-par-morceaux
d’une carte de disparités lorsque cela est possible. Cette approche peut être utilisée
pour la reconstruction 3D en milieu urbain, et tout particulièrement pour le cas de
stéréo à faible écart entre les vues où les contraintes de précisions sont plus dures
et où un choix pertinent de type et de quantité de régularité est indispensable
pour l’obtention de résultats précis.

Abstract: In this chapter, we propose a new parameter-free method for detecting
planar patches in quasi-dense disparity maps. We first introduce an a contrario
decision criterion which may be used to solve various decision problems on con-
figurations of 3D points: (i) is the configuration well explained by a plane?; (ii)
what is the optimal number of planes that best explains the configuration? (iii)
what threshold is best adapted to reject outliers? These decision criteria are the
core of an algorithm that searches for an optimal explanation of a disparity map
by planar patches whenever applicable. This method may be used for 3D recon-
struction of urban environments, particularly in the context of low-baseline stereo
where precision requirements are most strict, and a pertinent choice of the type
and amount of regularization is key to achieving accurate results. It also suggests
its use for automatic vectorization of urban DEMs, where a sensible geometric
representation is key to achieving good visualizations.

2.1 Introduction

2.1.1 Urban 3D modeling

Modeling a 3D urban environment has been widely studied for three decades. Methods have
been developed for various types of data such as unconstrained stereo-vision, two-view stereo-
vision, LIDAR data, SAR interferometry, 3D data (points or meshes). Most methods are
specific to the incoming data and are therefore rarely used for other data points even if some
similarities can be observed.

In the case of urban modeling, it is often assumed that a scene can be well described by
a piecewise-planar model. This approximation is made because first, man made objects espe-
cially buildings are often piecewise-planar, second, even when this is not the case, piecewise-
planar models give a good approximation of smooth surfaces.

Small baseline stereo

Despite the potential applicability of our technique with other data sets, we concentrate here
on the specific case of disparity maps obtained by photogrammetry from low-baseline stereo
pairs [Delon and Rougé, 2007] (however, the method we propose here does still work in the
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case of large-baseline stereo-vision). Such 3D measurement systems have a certain number of
advantages:

• sure and independent punctual matches become feasible in a relatively dense area
[Sabater, 2009];

• occlusions are reduced to a minimum and quasi-zenital views can be assumed.

They however introduce new challenges, since fattening artifacts become specially important,
and highly subpixel-accurate disparities are required to obtain a usable accuracy in height.
For this reason careful regularization techniques (like the robust affine regression we propose
here) are crucial to obtaining the required accuracy level. At last, such a regularization
should be applied only after verifying that the underlying data is well explained by the chosen
regularization model (thus enabling the use of other regularization or interpolation techniques
for non planar structures such as vegetation, domes, etc.) and level (thus avoiding over- of
sub-regularization).

RANSAC and Hough transform.

Robust estimators based on RANSAC or Hough transform have been widely used in uncon-
strained stereo-vision.

Though the Hough transform seems pretty natural for the detection of multiple objects,
its computational complexity makes it hard to use when the objects are defined by too many
parameters (typically more than 2).

One of the challenges to overcome when using RANSAC is that it was originally designed
to detect only one object among outliers. Several ways to cope with that were proposed. A
first solution is to apply RANSAC sequentially by removing the inliers at each group validation
[Vincent and Laganière, 2001; Kanazawa and Kawakami, 2004] which makes detecting a small
object possible even in presence of a much bigger one. Other approaches propose to find all
the objects simultaneously [Toldo and Fusiello, 2008; Zhang and Kosecká, 2006; Zuliani et al.,
2005]. However, each method was proved to fail with the experiments on 2D segment and
circle detection proposed in [Toldo and Fusiello, 2008]. This is mainly due to the detection of
“phantom” objects made of the combination of several objects which are validated because
of the high number of points attached to these objects by the RANSAC consensus.

Though [Toldo and Fusiello, 2008] looks robust in most cases, the main problem here
seems to get rid of groups made only of outliers. This points out the need of a criterion to
tell whether a group is valid or not.

Such a decision criterion was addressed in [Rabin et al., 2009] in the context of group
matching of SIFT descriptors to find different objects in a scene. However, this technique
does not scale well to quasi-dense correspondence maps, where both transformations to be
detected and data points are far more numerous.

In [Schnabel et al., 2007b], [Labatut et al., 09], different adaptations of the sequential
RANSAC method were proposed for the case of 3D segmentation. However, each case requires
the fine tunning of several thresholds such as a point and an angle precision parameter which
are critical for the result.

Geometric modeling from disparity maps.

Due to the larger number of both points and objects in disparity maps, other methods than
RANSAC or Hough transform have been proposed.
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In [Lafarge et al., 2008b] the authors used a dictionary of complex building models to fit
the disparity map. However the applicability to the low-baseline case is less evident because
the initial delimitations of buildings by rectangle-fitting to the disparity map is more error
prone when the latter is noisy and affected by fattening (adhesion) artifacts. In addition, the
slow convergence of the underlying non-convex optimization procedure, may scale up when the
number of models in the dictionary is increased to more closely fit reality. Another version
of this algorithm drops the rectangle-fitting part but has the main drawback of requiring
considerable user interaction.

In [Baillard and Zisserman, 1999], the authors tried to match line segments of both images
in order to find the height of a 3 dimensional edge. Then half planes are computed on each
side of the segment. Despite their good results in urban areas, their method does not apply
to low baseline stereo, because it relies on segment-to-segment matching, which proved to be
not precise enough in this case [Sabater, 2009]. Furthermore, when segments are badly or not
detected, no assumption can be made.

Various methods were proposed for the segmentation of range images [Jiang and Bunke,
1994; Taylor et al., 1989; Hoover et al., 1996] but they all lack at some point of either a generic
criterion to decide when a group can be considered as planar, or a way to set thresholding
parameters.

In [Igual et al., 2007], the authors propose an a contrario region merging procedure to
obtain a piecewise affine disparity map. However, the procedure is highly dependent on an
initial partition which can be error prone. This initialisation is obtained by assuming that
quasi-uniform gray-levels imply a common affine model, which is often, but not always the
case, even under Lambertian hypotheses.

Following the same hypothesis, [Facciolo and Caselles, 2009] uses the luminance-geodesic
Voronoi cells of a sparse disparity map to provide an initial piecewise affine interpolation.
From this partition, a merging procedure is proposed to find the final interpolation. However,
due to the computational complexity of the geodesic distance, its use with our quasi-dense
disparity maps becomes prohibitive.

2.1.2 Parameter settings and statistical decision

One of our main objectives is to limit as much as possible the use of parameters. In most
approaches that have been presented before, some of the basic and sometimes critical decisions
are made using parameters. These parameters are usually set to a completely arbitrary
values which may vary depending on the input data. We shall focus especially on two of the
parameters which are recurrent in piecewise-planar segmentation methods.

The first one is to decide wether or not a segmented group should be considered as planar.
This step is usually made by using a coarse threshold on the number of points associated to
the segmented group. Such validation is however not acceptable since it relies on the point
density which can change from a data set to another.

In addition to that, most methods (RANSAC, region growing, split and merge) uses a
distance threshold that we will note τz to decide when a point can be considered as part of
a given plane. Points for which the distance to a plane is inferior to τz are associated to this
plane, otherwise are rejected. When this parameter is wrongly set, the resulting segmentation
may change a lot from the one that is expected (see Figure 2.1 for an illustration of the
problems due to this threshold). Too small values tend to reject too many points which
produces an over-segmentation. As opposed to that, a too high value associates too many
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points to planes and produces a sub-segmentation. This parameter is both critical and hard
to set.

��� ���
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Figure 2.1: Influence of the distance threshold parameter on plane computation. (a)
Initial point set. (b) Optimal detection threshold. (c) Too small threshold. (d) Too
large threshold. A wrong threshold may change a lot the value of the computed
plane.

Though the choice of these two parameters is of capital interest, an automatic setting has
rarely been addressed in other segmentation methods. This problem will be addressed here
by the a contrario methodology proposed by [Desolneux et al., 2008b] for image analysis.
The core of this method is the so called Helmholtz principle, which supposes that a specific
point organization has a low probability to occur in noise. The idea is then to compare a
particular observed event to what could possibly happen with a background noise model.
The a contrario framework will then allow to set the parameters with a statistical decision.

This type of hypothesis testing was first proposed in Computer Vision by [Lowe, 1985],
[Grimson and Huttenlocher, 1991] or [Stewart, 1995]. In the next paragraph, we will discuss
anterior a contrario methods. We will see that this framework was used among other things
for various model detection, selection and validation problems.
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Previous a contrario works

Burrus’ image segmentation. [Burrus et al., 2009] recently proposed a new way to set
detection thresholds for image segmentation. Their a contrario model is constructed in such
a way that under their background hypothesis, the number of false alarms is ensured to stay
below a given threshold. The detection thresholds are learnt by Monte-Carlo simulations in
such way that a target NFA rate is ensured.

The point of this method is to simplify an initially over-segmented partition of an image.
A set of thresholds is defined to decide when two neighboring regions can be considered as
different. If this is the case, the two regions are kept separated otherwise they are merged.

Cao’s N-dimensional clustering. In [Cao et al., 2007], the authors propose a method
to detect meaningful clusters in an N-dimensional distribution of points. Their method was
successfully applied to shape detection, matching and grouping problems in images. They
first define an a contrario model to characterize clusters. A cluster is said to be meaningful if
its density in a given N-dimensional region is far superior to what we are expecting to observe
with data distributed according to their a contrario background model. The regions used for
the density measurements are a finite number of predefined N-dimensional hyper-rectangles.

Their heuristic used for the cluster testing is based on the construction of a dendogram.
Starting from the set of all singletons as the initial set of nodes, the two closest nodes are
merged to form a new parent. This process is then iterated until the tree is fully built. In the
end, the root node is the group containing all the points.

The dendogram is at last explored and the a contrario criterion is used to decide which
groups are meaningful. An additional criterion is moreover defined to see if two groups in the
dendogram should be merged or left separated.

Rabin’s multi-model detection. In [Rabin et al., 2009], the authors proposed a new
way to objects from pairs of images. They suppose that each object in a scene and common
to both images, is described by an unknown number of feature points and a transformation to
match those points from the first image to the second. The transformation is due to a change
in the point of view of the object in the two images. It is supposed to be either a homography,
an affine transformation, or a similitude.

The authors propose an extension of the a contrario criterion proposed in [Moisan and
Stival, 2004] for epipolar geometry computation and validation. Here, a point transformation
is considered as meaningful if the number of matched points for this transformation has a
low probability to happen with random points. Points from the two images are considered
as matched if their distance after applying the point transformation to the points of the first
image is less than a threshold. The whole interest of their method is that the threshold
parameter (common to all RANSAC approaches) is set automatically by the a contrario
criterion.

This validation criterion is associated to a RANSAC approach (applied sequentially) to
find all the principal transformations in the two images. To avoid possible ghost transforma-
tions (wrongly detected transformations that are the combination of several real ones), for
each validated group a division into two subgroups with distinct transformations is tested.
The choice between the two-grouped model and the single-grouped model is then chosen using
an a contrario model selection.

Igual’s plane validation. [Igual et al., 2007] propose a new approach for piecewise-planar
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segmentation of disparity maps. From an initial segmentation into a given number of regions,
the author define an a contrario measure to first define which region is planar and which one
is not, and then to possibly merge two regions together. The initial segmentation is computed
on the reference image using a simplified version of Mumford-Shah’s algorithm[Koepfler et al.,
1994].

For each region, the plane fitting the largest number of points is computed. If such
an amount of points is not likely to happen under a random hypothesis then the region is
validated as planar. The same criterion is then adapted to two regions for a merging purpose.
If considering the two regions as a single one gives a lower number of false alarms then the
regions are merged.

Though this method gives good results almost everywhere, it has two drawbacks:

• A wrong initial segmentation propagates error through the whole algorithm. Indeed,
this image segmentation is sensitive to strong change of contrast which may only be due
to texture on the scene. Moreover, the piecewise planar model is not always consistent
with the images of the scene.

• The plane computation and validation depends on a distance threshold to reject points
that are too far from the considered plane. As said before for the case of RANSAC-based
algorithms, this threshold is critical on the final result.

2.1.3 Overview

The Chapter is organized as follows. In Section 2.2, we introduce a new a contrario criterion
for validating a planar model and for selecting the best model among single or multiple planes.
This criterion is similar to the one introduced in [Igual et al., 2007] but does not rely on the
segmentation constraint or on a threshold parameter for plane computation. Unlike classical
model selection criteria like AIC and BIC [Akaike, 1974; Schwarz, 1978] which are quite similar
in nature, the proposed a contrario criterion serves also as a validation method. In Section
2.3, we propose a new algorithm using the a contrario criterion to search for the different
planes in a disparity map by means of a split & merge strategy. The heuristic is only based
on the knowledge of the 3D points which ensures a purely 3D segmentation. Using such an
approach is moreover a sanity check for our criterion since it is based on its quality as a model
selection criterion. At last, the experimental results in Section 2.4 support the effectiveness of
the proposed algorithm and its potential use for interpolation, de-noising, and vectorization
of urban DEMs.

2.2 A contrario plane validation

Most segmentation methods presented in the introduction lack of an automatic criterion to
decide when a group found by any algorithm actually is a plane. When a decision is made, this
is usually done by keeping the groups for which the size is superior to a predefined threshold,
which is difficult to tune in a universal manner. We propose here to use an a contrario
framework to make the decision automatic. This framework will moreover allow to set other
critical parameters such as the outlier rejection distance threshold τz or to decide which model
should be used to fit the data.

Following a similar methodology as the one done in [Igual et al., 2007], a group can be
considered as planar if observing a similar planar configuration with purely random points
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(background process) is very unlikely. In such a case, according to the Helmholtz principle,
the background hypothesis has to be rejected in favor of the detection of a significant planar
patch. The planarity of a group is measured by counting the points nearer than a certain
distance threshold to a plane.

An intuitive justification of the a contrario methodology is given with Figure 2.2.

��� ���

Figure 2.2: A contrario validation. (a) Points distributed randomly (background
process). (b) Same distribution with 30% of points projected on a plane. As opposed
to (a), (b) is very unlikely to be a pure realization of a random process. Visually, if
a plane can be guessed among random points, then it is not likely that the points on
the plane are part of the same random process as the random points. The Helmholtz
principle then states that since it is very unlikely, under a randomness assumption,
to observe as many points near a plane as we do in (b), (b) is not due to random.
It is therefore validated as a plane.

2.2.1 Data and background process

The a contrario framework is based on the comparison between data and points randomly
distributed according to a process called background process.

A (deterministic) disparity map z is a mapping where each 2D point x on a discrete grid
Ω ⊂ Z2 (image plane) is associated to a disparity (or height) z ∈ R. z depends on the observed
object on the disparity map and can take any value in [zmin, zmax] ⊂ R. It can also be seen
as the realization of the random process Z(x) defined as:

Definition 1 (Background process) The background process is a finite process Z(x) ∼
U([zmin, zmax]), x ∈ Ω, made of mutually independent variables.

Let NΩ be the number of points in the discrete grid Ω. Let’s consider a group G of
NG data points, a plane π and a distance rejection threshold τz. We can now compare K,
the (random) number of points out of NΩ with a random disparity value (drawn from the
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background process) nearer than τz to π, to k the actual number of points from G nearer than
τz to π. If the probability P[K > k] is small enough then the planar grouping π of the points
in G cannot be simply explained by the background process. The group G is then considered
as a meaningful planar patch.

Such a comparison is unfair since it penalizes small groups (even when they are actually
planar) because the comparison is made on all the NΩ points. Since our goal is to detect planar
facets which are very localized in space, the comparison of the background process should take
that locality into account. We therefore introduce a set of regions within the disparity maps
of various size and shape to be able to compare point groups even when they are spatially

very localized. Let R be such a sufficiently rich set of regions such that
⋃

R∈R
R = Ω.

2.2.2 Meaningful planes

Definition 2 (Number of False Alarms (NFA)) Let G ⊆ Ω be a group of points of the
disparity map. Let R ⊃ G, R ∈ R be a region containing G, π be a plane and τz a tolerance
threshold defining when a point belongs to π (τz may be different at each point). The NFA
of G according to (R, π, τz) is defined as:

NFA(G,R, π, τz) ≡ NtestsP [K(R, π, τz) > k(G, π, τz)] (2.1)

where

• k(G, π, τz) =
∑

x∈G
11{|z(x)−zπ(x)|<τz(x)} counts the number of points from G that are suf-

ficiently close to π. In a contrario methods, k is commonly referred to as the degree of
coincidences.

• K(R, π, τz) =
∑

x∈R
11{|Z(x)−zπ(x)|<τz(x)} is a random variable counting the number of

points in R that are sufficiently close to the plane π supposing that the disparity values
are random variables (following the background process).

• Ntests is the number of configurations of planes and regions that can be tested.

For simplicity reasons, we will note k and K to refer k(G, π, τz) and K(R, π, τz).

Analysis of equation (2.1)

The computation of k and K is done by computing a distance between a point and its pro-
jection along the z-axis on a plane π.

The probability P [K > k] is the probability that a random vector Z(R), of size defined by
a region R, has at least as many coincidences for plane π as the observed data vector z(G).

From figure 2.3, it can be easily seen that for any point x ∈ R, K(x, π, τz) is a Bernouilli
random variable of parameter p ≤ 2 · τz/(zmax− zmin). Supposing a constant value for τz and
p (each plane is equi-probable), P [K > k] is statistically the same for any region R ∈ R of
constant size. In that case, NFA(G,R, π, τz) is the expected number of time that one can
observe at least as many coincidences with random points in a region R as what is observed
for G and π, this by testing all the possible planes and all the possible regions of the same
size as R.
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Figure 2.3: Probability of a random point to be associated to plane π

Remark (distance threshold): In most methods described in the introduction, the dis-
tance rejection threshold τz is supposed to be known. We recall (see Figure 2.1) that the
value of this parameter is usually critical to the result. In [Sabater, 2009], Sabater gave an es-
timation of the finest disparity precision that can be expected at each point when the disparity
was computed with a block matching approach. The parameter τz in the NFA computation
can therefore be set to the value given by [Sabater, 2009].

However, in the more general case, the value of τz is unknown. We will see in section 2.3.4,
how to set this parameter using the a contrario framework. A similar methodology was used
in [Rabin et al., 2009] for plane detection in unconstrained stereo-vision.

In the rest of the chapter, we will therefore consider the value of τz as known.

Remark (regions and planes): From Equation (2.1) we see that the NFA of a group G
depends on a region R to which it is compared to, and on a plane π that we want to fit to
the points of G.

One could compare G to any point group of the same size as itself, but in that case, would
loose the information of locality of G since a group of NG points can be widespread in Ω as
well as concentrated in a small area. The purpose of using a region R ⊃ G is then to keep
that information in mind during the comparison. The choice of the set of regions R is then
very important. It will be discussed in detail in section 2.2.3.

For a given group G, the region R and the plane π can be chosen as the ones minimizing
the NFA:

Definition 3 The NFA of a group G ⊂ Ω is defined:

NFA(G) = min
R∈R,R⊃G

π∈ΠR

NFA(G,R, π) (2.2)

where ΠR is the set of all planes defined for region R.

From equation 2.1, it can be easily seen that the region R ∈ R minimizing the NFA of a
group G is the smallest region containing G. Indeed, the larger the region, the larger K is
expected to be, which increases the value of P [K > k].
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In addition to that, the plane minimizing the NFA is the plane that best fits the points
of G. Since any plane is expected to give the same value for K, we then concentrate on the
value of k. The more the plane fits to the points of G, the bigger k is, which decreases the
value of P [K > k].

A given group G can now be associated to a plane π and a region R: the ones minimiz-
ing the NFA. From now on, when referring to the NFA of a group G, we will refer to
Equation (2.2).

The next definition and proposition define when a group G can be considered as planar.

Definition 4 (ε-meaningful plane) A group G is said to be an ε-meaningful planar patch
whenever NFA(G) < ε.

Proposition 1 Let S be the set of all the possible pairs (R, π). If we consider a random data
set following the background model, then the expected number of ε-meaningful planes in S is
less than ε.

Proof Let’s note S the random variable defined as:

S =
∑

(R,π)∈S
χ(R,π)

where, χ(R,π) = 11(R,π) is ǫ-meaningful. Using the linearity of the expectation operator one
has:

E[S] =
∑

(R,π)∈S
E[χ(R,π)] (2.3)

Then, using definition 2 we can write: E[χ(R,π)] = P [K > k(ε)] 6 ε
Ntests

. At last using the
definition of the number of tests given in section 2.2.3, and substituting it in equation 2.3, we
obtain the result:

E[S] 6
∑

(R,π)∈S

ε

Ntests
= Ntests ·

ε

Ntests
= ε (2.4)

�

Proposition 2 is of capital importance in a contrario methods. It basically says that less
than ε a ε-meaningful plane are expected to be detected with a random data set (following
the background process). Setting the value of ε to 1 (which is a classical choice in a contrario
approaches) then means that at most one false detection of 1-meaningful plane is expected to
occur using random data. From now on, we therefore refer to 1-meaningful planes when we
speak about meaningful groups.

2.2.3 Number of tests

The number of tests is given by counting all possible region-plane configurations:

Ntests =
∑

R∈R
#ΠR (2.5)

As pointed out before, the choice of the set of regions R is very important. On one hand,
a too small set may penalize some groups since it may not represent well all the groups (for
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instance R = {Ω} is unfair to small groups). On the other hand, a too large set makes it
difficult for a group G to be meaningful and does not necessary well describe the situations
encountered.

The first thing that we should note is that we look for planar facets. This means that we
don’t want to validate groups of points scattered in Ω.

A simple choice for R is the set of all the rectangles in Ω (oriented along the 2 main
directions of the map). This choice is similar to the one made in [Cao et al., 2007] for their
a contrario clustering method for N -dimensional points. As in [Cao et al., 2007], scattered
groups will be automatically rejected because they are compared to large rectangular regions.
For each scale of planar patch, there will be a rectangle of the proper scale fitting the patch.
A small patch will then have the possibility to be validated as meaningful.

This region set can be reduced without loss of precision by limiting it to rectangles with a
power of 2 size (2× 2, 2× 4, 4× 4, etc.). The effect is then to limit the number of tests which
allows the validation of smaller groups. Another possibility, this time to fit even more to the
groups is to give other possible orientation to the rectangles than the two main axis.

To describe all the possible planes in a region R, we compute all the triplets of points in
R. The number of tests then becomes:

Ntests =
∑

R∈R
#R · (#R− 1) · (#R− 2) (2.6)

More specifically, using the rectangular region set along the two main axis and with anM×N
disparity map we have:

Ntests =
M∑

i=1

N∑

j=1

ij · (ij − 1) · (ij − 2) · (M + 1− i) · (N + 1− j) (2.7)

2.2.4 Probability of false alarms.

Computing the probability P[K > k] depends on the probability of a random point from the
background process to be near a given plane. Supposing a constant threshold τz for any point
x, and supposing the probability of a random point to be associated to any plane constant
with value p = 2 · τz/(zmin − zmax), the probability of false alarms is then the tail of the
binomial law:

P[K > k] = B(#R, k, p) =

#R
∑

j>k

(
#R
j

)

pj(1− p)#R−j (2.8)

When τz is not constant (this can happen when the precision estimation at each point is
used as values for τz), P[K > k] can be accurately approximated using the Hoeffding theorem
[Hoeffding, 1963]:

P[K > k] 6 e#Rω(η−µ,µ) (2.9)

with,

ω(η, µ) = (µ+ η) log(
µ

µ+ η
) + (1− µ− η) log(

1− µ

1− µ− η
) (2.10)

and

η =
k

#R
, µ = E[

K
#R

] =
1

#R

∑

x∈R
2

τz(x)

zmax − zmin
(2.11)
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2.2.5 Validation of the a contrario model

Let’s now numerically test the validity of Definition 2 and Proposition 2. To do so, we first
created a 512× 512 random disparity map where Z(x) ∼ U([0, 512]), ∀x ∈ Ω.

Since computing all the NFA for all the rectangular regions and all the triplets of points
in Ω, is an O(N5

Ω) algorithm (where NΩ is the number of points), testing all the possibilities
would require 30 billion years of computation with 1GHz processor.

We propose to reduce the number of tests to limit the number of computations. The first
step to that is to limit the number of regions. As proposed in section 2.2.3, one can use
rectangular regions for which the size is only a power of 2: 4×4, 4×8, 8×8, 4×16 etc. From
these regions, we then take only a few of the rectangles so that the centers of rectangles of a
given size are regularly spaced on the grid with a distance of half their size.

Compared to taking all the rectangular regions, for a disparity of size M ×N , the number

of regions is reduced from
M∑

i=1

N∑

j=1

ij = O
(
(MN)2

)
to

log2 M∑

i=1

log2 N∑

j=1

(2i+1) · (2j +1) = O(MN).

The second step to reduce computations is to reduce the number of planes to be tested.
This can be done by taking only a limited number of planes sorted out randomly ( we used
M ·N planes for this experiment).

We tried to compute the NFA for the limited region set and by computing 512 × 512
random planes (triplets of points). When computing Equation (2.1), Ntests was adapted to
our reduced set of planes and regions. For each plane, we tried several precision threshold
τz ∈ {0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256}. For each tested value, no meaningful plane was found
in our random disparity map as expected from Proposition 2. Though the test was done on a
limited set of planes and regions, this experiment tend to confirm the validity of our model.

2.2.6 Correlated points and sparse data

In the definition of the background process (Definition 1) that is used to define the data, the
disparity of each point is assumed to be independent of the other points. In practice, when a
disparity map has been computed using a block-matching approach, this assumption is false
since the correlation is computed on a neighborhood given by the correlation window. Each
point is then related to all the points within this correlation window.

To only consider independent points, one can subsample the data by taking only one point
per correlation window. In practice, this is equivalent to weighting the values of k and K in
Equation (2.2). Instead of being the number of valid points, k and K are changed to the sum
of the density weights wdx of each valid point x where the density weights are defined as:

wd(x) =
1

∑

x′∈Bx
11{z(x′)is defined}

(2.12)

where Bx ⊂ Ω is the correlation at point x ∈ Ω.
The second advantage of this normalization is that it is adapted to deal with regions

where not all the points are known. This allows to still validate meaningful planes in sparse
configurations.

2.2.7 A contrario model selection

Due to its generic form, the NFA can be easily adapted to test the validity of a configuration
with several groups, planes and regions. This allows to choose between two configurations: a
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simple one with one plane and a more complicated one with several planes. We give here an
example for the case of 2 groups by using a similar approach as the one done in [Igual et al.,
2007].

Using similar notations as before, we define the joint NFA for two groups G1 and G2 as:

Definition 5 (joint NFA for two groups, NFAj) Let G1 ⊂ Ω and G2 ⊂ Ω, G1
⋂

G2 =
∅, be two distinct group of points. We define the NFA of the two groups to be planar as:

NFAj(G1, G2) ≡ N ′′
tests · P [K1 +K2 > k1 + k2] (2.13)

where,

• k1 (resp. k2) is the number of coincidences in G1 (resp. G2) of the plane best fitting to
its points.

• K1 (resp. K2) is the random variable counting the number of coincidences in the region
best fitting to G1 (resp. G2) of any plane.

• N ′′
tests is the number of configuration of pairs of planes and pairs of regions that can be

tested. Following similar notations as before, the number of tests is defined as:

N ′′
tests =

∑

R1∈R
R2∈R\R1

#ΠR1
·#ΠR2

(2.14)

Note that this number of tests is larger as it was before for a single group. This is a way
of penalizing more complex models that best fit to the data.

The point of the joint NFA is to be able to decide which model gives the best description of a
given group: two planes or a single one. To do this comparison for a group G = G1

⋃
G2, we

compare NFA(G) and NFAj(G1, G2). However, for a fair comparison, the same conditions
needs to be used especially for the computation of the background number of coincidences
(K for NFA(G) and K1 + K2 for NFAj(G1, G2)). This means that the regions used for the
background computation needs to be the same. We therefore introduce a new NFA definition
of a group G = G1

⋃
G2 for a proper comparison with NFAj(G1, G2).

Definition 6 (comparison NFA, NFAc) Let G1 ⊂ Ω and G2 ⊂ Ω, G1
⋂
G2 = ∅, be two

distinct group of points, and let G ⊂ Ω be the group defined as G = G1
⋃
G2. We define the

NFA of G to be a plane knowing the division into two subgroups G1 and G2 as:

NFAc(G = G1

⋃

G2) ≡ N ′
tests · P [K1 +K2 > k] (2.15)

where,

• k is the number of coincidences in G of the plane best fitting to its points.

• K1 (resp. K2) is the random variable counting the number of coincidences in the region
best fitting to G1 (resp. G2) of any plane.

• N ′
tests is the number of configuration of planes and pairs of regions that can be tested:

N ′
tests =

∑

R1∈R
R2∈R\R1

#ΠR1

⋃
R2

(2.16)

To decide which configuration is the best between a pair of planar groups (G1, G2) and
a single one G = G1

⋃
G2, one just needs to compute NFAc(G) and NFAj(G1, G2). The

smallest value then determines the best configuration.
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Discussion on rectangular regions

A question that raises when using pairs of rectangular regions (for the comparison with the
background model) is what happens when the two regions overlap.

In such case, taking R1 and R2 separately is equivalent to considering the background
model twice in the region R1

⋂
R2. One could choose to count only once the intersection

region but this would make the number of tests a lot harder to compute we therefore choose
to keep considering R1 and R2 separately even when they overlap.

Now, what are the consequences of doing so? First of all, since the background model is
considered twice, this will make it harder for a given group (or pair of groups) to be meaningful.
Now, looking at Equations (2.13) and (2.15), we note that the background model is computed
under the same conditions. Since the goal here is comparison, overestimating the background
model is not really a problem as long as this is done equivalently for both configurations.

Analogy with AIC and BIC

In statistical model selection, standard criteria are AIC [Akaike, 1974] and BIC [Schwarz,
1978]. Both depend on the likelihood and on the complexity of the tested model. Though
different in their way of computation (AIC is found using the Kullback-Leibler distance and
BIC is obtained by approximating the integrated likelihood), their final expressions are pretty
similar. For a group G and a tested modelMi they are defined by:

AIC = −2 log(LMi
(Z, θ̂i)) + 2Vi

BIC = −2 log(LMi
(Z, θ̂i)) + 2Vi log(#G)

(2.17)

where LMi
is the likelihood of modelMi for the data Z and Vi is the number of parameters

of modelMi.
Let’s now take a look at the log of the NFA. We will consider here the case of two groups

G1 and G2 and compute log (NFAj(G1, G2)) and log (NFAc(G1
⋃

G2)) as we would normally
do for model selection:

log (NFAj(G1, G2)) = log (P[K1 +K2 > k1 + k2]) + log (N ′′
tests)

log (NFAc(G1
⋃
G2)) = log (P[K1K2 > k]) + log (N ′

tests)
(2.18)

For simplicity reasons, let’s now suppose that we only have regions of a single size #R (we
note NR the number of such regions). The two equations before can then be written as a
single one. Using similar notations as for the AIC and the BIC we then have:

log(NFA(G,Mi)) = log(P[K > k(Mi)]) + Vi log(
V1
Vi
#R) (2.19)

where Vi is the number of parameters of the considered model and V1 is the number of
parameters of a single plane.

We now see that all the three expressions have two terms:

• The first one tells how well the model fit the data.

For the AIC and BIC criterion, this term is the negative of the log likelihood. Because
of the minus sign, minimizing it means that you maximize the log likelihood which
means that your model well describes your data.

For the log NFA, the first term is the probability that the model explains random data
as well as it explains the observed data. When the model well describes the data, then
it usually doesn’t well explain random data and the log of the probability is minimum.
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• The second term in all three criteria, is a regularity term. It describes how complex
the model is (number of parameters of the model) and is minimum when the model is
simple. Its value is different for the three criteria but is always a function of Vi, the
number of parameters necessary for the model.

All three criteria then give a trade-off between fitting the data and having a simple model.
However, the main advantage of the a contrario criterion over the other two is to give a way
to automatically validate planar groups.

2.3 Plane search

In the previous section, we introduced a method to first, decide when a point group of a
disparity map can be considered as planar, then, to choose between two possible models to
describe the points. Since testing the planarity of all the possible groups is impossible for
obvious computational reasons, we need to find a method to explore the data and find groups
that may be defined as planar (up to our criterion). The main difficulties here are that we
do not have any information on the final number of planar groups or on their size, shape or
position.

In this section, we propose a heuristic based on the NFA to find potential planes in
disparity maps. Note that other heuristics can be used in conjunction with the NFA as a
validation criterion. The algorithm is based on the assumption that up to a certain scale,
any smooth and continuous surface can be considered as planar. The algorithm we propose
is two-step: first, a top-down dyadic division (splitting step) is done until a good solution is
reached, then the resulting groups are merged (merging step) to refine the result. In both the
division and the merging step, the NFA is used as a decision criterion. The main advantage
of this method over [Igual et al., 2007; Facciolo and Caselles, 2009] is to rely only on the 3D
information of the points which avoids errors due to image segmentation.

2.3.1 Splitting step

A 3-Dimensional bounded plane can be seen here as the realization of a 3-dimensional Normal
random process for which one of the eigen-values of the covariance matrix is very weak com-
pared to the other two (the corresponding eigen-vector is then orthogonal to the considered
plane). Since, as said before, up to a certain scale, a disparity map can be considered as
piecewise planar, a Gaussian mixture model seems to be a good description of the point dis-
tribution. We recall that under the Gaussian mixture hypothesis, an observed 3D point x is
supposed to be due to the contribution of several Gaussian distributions, where the influence
of each distribution Γi on x is given by:

pΓi
(x|µi,Σi) =

1

(2π)3/2|Σi|
e−1/2(x−µi)

TΣ−1
i (x−µi) (2.20)

The EM algorithm [Dempster et al., 1977], is an approach to find the best segmentation in
the maximum likelihood sense, of a data point set into N point distributions. The algorithm
is the alternation of two steps:

• Expectation step: given, the parameters of the N distributions, each point is associated
to the distribution that best describes it.
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Figure 2.4: Split and merge algorithm on Toulouse’s St-Michel Jail dataset. (a)
Reference Image. (b) Ground truth disparity map. (c) Computed disparity map
[Sabater, 2009] (red parts are unknown). (d) Segmentation found after splitting step
(with extension proposed in Section 2.3.5 on the ground truth with additive noise
(each color represents a meaningful-plane, black parts are either unknown points or
non-meaningful plane). (e) Merging step on (d). (f) Segmentation obtained with
real data (c). (g) Absolute value of the difference (L1-error) between the ground
truth and the planar projection with our segmentation (dark = low error, bright =
large error). (h) L1-error between the ground truth and the initial disparity map (c).
(i) L1-error between the ground truth and the projection with the planes obtained
in (f). The non-structured errors have been removed from (h) to (i).
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• Maximization step: given a segmentation of the points into N groups, the parameters
of each distribution are computed according to the maximum likelihood

The algorithm converges to a maximum, however, there is no insurance that this is a global
maximum. The result then depends on the initialization which can be done either on the
segmentation, either on the parameter of the N distributions.

The main drawback of the EM algorithm is that it is based on the knowledge of the
number of classes we look for (which we actually do not know). We instead propose to build
a dyadic tree which only requires the division into two groups at each node of the tree, which
can now be done using EM. At each possible node, a decision is made to choose if splitting the
group into two parts was reasonable or not. The choice of the configuration is based on the
computations of the NFA as suggested in Section 2.2.7. The construction of the tree starts
from the group containing all the points and the division stops when a good configuration is
reached.

The decision between one group or two groups is made by choosing the most meaningful
configuration according to the computation of the NFA. Moreover, we chose to force the
division in the case where the main group is not meaningful. Indeed, a group that is not
considered as a meaningful plane may contain a meaningful subgroup. The divisions needs
therefore to continue in order to find small meaningful planes. To sum up, the one-grouped
configuration is kept when:

{
NFA(G) < 1
NFAc(G = G1

⋃
G2) < NFAj(G1, G2)

(2.21)

where, G1 and G2 are the two resulting groups of the EM algorithm on G. A summary of the
whole splitting step is given by Algorithm 1.

Stop criterion

The first condition of division, NFA(G) > 1 implies that if a group G does not contain any
meaningful subgroups, it will be divided until it is reduced to monomes. The problem is that
even if G is not a meaningful plane, keeping G as a single group may be a better description
than dividing it into monomes. Another difficulty due to this over-segmentation is that the
merging step of the algorithm (see Section 2.3.2) gets time consuming because the number of
pairs to be merged increases a lot.

This problem can be overcome by limiting the division to groups bigger than the smallest
size authorized by the NFA. Indeed, for each region size, one can compute the minimal size
for a group to be meaningful: Nmin. Nmin depends on the number of tests and on the region
the group is compared to. We note Rmin the smallest region containing the minimal possible
meaningful group. For instance, given a 512× 512 disparity map, testing only the regions of
size that is a power of two and supposing that the points are uncorrelated, Rmin is a 4 × 4
region and Nmin = 9.

2.3.2 Merging step

Since the division process is dyadic, the final partition of the points might not be optimal.
Better configurations may then be found by merging some of the groups. Since we are inter-
ested in finding planar patches, we only try to merge groups that are neighbors to each other.
We therefore build an adjacency graph of the groups. The groups that are connected are the
candidates for merging.
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Algorithm 1: Splitting step

Data:
G0, a group of points of Ω
Dmax, the maximal depth of the tree
Result:

Gfinal = {G1, . . . , GN} such that G0 =

N⋃

i=1

Gi

begin1

G = {G0} is the set of all the groups2

Gnext = ∅ the next set of groups to be tested3

Gfinal = ∅ is the set of validated groups4

D = 0, the current depth of the tree5

while D < Dmax do6

foreach G ∈ G do7

(G1, G2)←− EM algorithm(G)8

nfa←− NFA(G)9

nfa1←− NFAc(G1

⋃
G2)10

nfa2←− NFAj(G1, G2)11

if
[(
nfa < 1

)
and

(
nfa1 < nfa2

)]
or [G ⊂ Rmin and #G < Nmin] then12

add G to Gfinal13

else14

Add (G1, G2) to Gnext15

end16

end17

D = D + 118

if D < Dmax then19

G = Gnext, Gnext = ∅20

else21

Gfinal = Gfinal
⋃
Gnext22

end23

end24

end25
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The decision of merging or not a pair of groups is made using the same criteria as for
the splitting step. However, the final segmentation may be dependant on which groups are
merged first. We therefore need a criterion to decide the merge order.

Following a similar reasoning as [Burrus et al., 2009], we introduce the following contrast
factor:

F (G1, G2) =
NFAc(G1

⋃
G2)

NFAj(G1, G2)
(2.22)

The lower F (G1, G2) is the lower the NFA of a single group is compared to the one of
two groups. In other words, the lower the contrast factor is the more likely it is to have a
configuration using a single group. A priority queue is built using growing contrast factor
(the lowest contrast factor is the first).

Whenever two groups G1 and G2 are merged, G1 and G2 are removed from the adjacency
graph and the new node G1

⋃
G2 is added and connected to whatever node G1 or G2 were

connected. The same goes for the priority queue, each pair containing either G1 or G2 is
removed, and the new edges created in the adjacency graph are added. The complete merging
process is shown in algorithm 2. Its effectiveness is illustrated with Figure 2.4 (d) and (e)
where the groups from the initial segmentation are merged into a coherent segmentation.

Algorithm 2: Merging step

Data:
V = {G1, . . . , GN}, where Gi is a group of points of Ω
G = (V, E) the adjacency graph of the groups.
Result:
G′ a simplification of the adjacency graph G obtained by merging nodes of G
begin1

G′ = G.2

Q = ∅ is the priority queue of merges.3

foreach (G1, G2) ∈ E do4

add (G1, G2) to Q5

end6

while #Q > 0 do7

(G1, G2) = argmin(G,G′) F (G,G′)8

Remove (G1, G2) from Q9

if
(
F (G1, G2) < 1

)
&&

(
NFA(G1 ∪G2) < 1

)
10

then11

Merge G1 and G2 in graph G′12

foreach k such that (G1, Gk) ∈ Q or (G2, Gk) ∈ Q do13

Remove (G1, Gk) and (G2, Gk) from Q14

Add (G1

⋃
G2, Gk) to Q15

end16

17

end18

end19

2.3.3 Plane computation

When computing the NFA for both the splitting and the merging step, we need to compute
the planes (or the two planes) maximizing the number of coincidence of a group G for a given
precision τz. Choosing the best plane is of capital importance since the segmentation is based
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on the comparison between configurations. For instance, in the division process, if the planes
computed for the two subgroups are poorly estimated, this may favor the configuration with
a single group and stop the division process here.

Due to the potential presence of outliers (the splitting step starts with the group containing
all the points, which is not likely to be planar), computing the plane by a least squares
approach is likely to fail. A robust computation method is then necessary.

From the discussion on the various robust plane regression methods done in Appendix A,
we chose to use a RANSAC algorithm (sort Niter triplets of points and take the one giving the
best number of coincidence). The number of iteration Niter used for the RANSAC algorithm
is computed as proposed in appendix A. We supposed that for each considered group, at
least half of the points are part of the best plane. We moreover expect that the probability
that none of the Niter tested triplets of points are on the best plane is less than 0.0001. Then
Niter ≥ log(0.0001)/ log(1− 0.53) ∼ 70.

2.3.4 Estimating the precision threshold τz

As discussed in the introduction, the precision threshold τz that is used to decide what point is
considered as inlier to the plane is critical to the RANSAC result. When its value is unknown,
it is preferable to find a way to set it.

In [Rabin et al., 2009], the authors sort the points by their distance to a given plane. They
then try various threshold values defined as the distance of each point to the plane. Each
threshold then defines the addition of one more point to the inlier list. From this threshold
list, the one minimizing the NFA value is the one that is kept. Though the method works
very well for their problem where at most a few thousands of points are considered, it is not
applicable in our case where the number of points is a lot larger.

Instead of defining the possible thresholds by the distance of the points to the plane, we
propose to use a set of predefined thresholds. In our experiments, we used the following set:

τz ∈
{
(zmax − zmin)

2
,
(zmax − zmin)

4
, · · · , (zmax − zmin)

2K

}

(2.23)

where, zmin (resp. zmax) is the minimum (resp. maximum) disparity value and for an M ×N
disparity map, 2K ≥ 2 · max(M,N) and 2K−1 < 2 · max(M,N). Then, as in [Rabin et al.,
2009], the threshold is chosen as the one minimizing the NFA value for a given group.

Choosing τz using the NFA, requires some adaptation in the algorithm as well as in the
NFA computations.

First, it changes the values of the number of tests in Equations (2.1), (2.13) and (2.15) by
multiplying its former value by K, the number of possible thresholds.

Then, in the model selection, since we compare several possible configurations, it has to
be done under the same conditions. This means that when two groups G1 and G2 are tested
for merging, a unique value of τz has to be used for the computation of NFAj(G1, G2) and
NFAc(G1

⋃
G2). The only case that concerns us here is when one of the groups is meaningful

(otherwise, no comparison is necessary since the division is chosen). Since the final goal is
to validate planes, we first reject the non-meaningful groups (NFA > 1) among G1, G2, and
G1

⋃
G2. Then for each meaningful group, the value of τz is computed and the smallest one is

kept for the computation of NFAj(G1, G2) and NFAc(G1
⋃

G2). This ensures the selection
of the threshold best fitting to planes.
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2.3.5 Possible improvements

The principal risk of split/merge heuristic, is that if a division is not made during the splitting
step, the final segmentation will fail. Such situations can happen in the large scales where
groups may be validated because the intersection of a plane and a surface may contain a large
amount of points. In this case, the division into two groups may not be more meaningful
especially if none of the groups are really a plane.

To avoid those local minima of the NFA in the division process, a solution is to force the
division of large groups by roughly dividing the disparity map (for instance one can divide
the disparity maps into blocks). Then for each group, the splitting process can be applied.
The merging step is then applied as before on the set of all point groups and the result does
not suffer from the initial over-segmentation (see Figure 2.4).

The interest of doing so is twofold:

• This rough division limits the risk of detecting intersections of planes with large surfaces
since these surfaces are likely to be already divided.

• Since the division is binary, the division tree may be unbalanced. In this case, the
division process is likely to take a lot of time. Dividing the splitting process, simplify
the problem into simpler ones which speeds up the splitting step.

Another possible improvement is to add image information to this algorithm. For instance,
one could use the line segments of the reference image (by using for instance [Grompone von
Gioi et al., 2008]) to force group divisions. Indeed, the line segments might suggest separations
between different objects in the image. Therefore they might be used to guide the divisions
or to try other divisions than the ones given by the EM algorithm.

2.4 Experimental Results

We tried our algorithm on some of the disparity maps from the Middlebury database [Scharstein
and Szeliski, 2002]. In each experiment, the precision threshold was chosen automatically as
proposed in section 2.3.4. We obtained similar results as when we used a constant value of 1
pixel (which is the quantification step of the disparity maps). The results are given in Figure
3.6 and Table 2.1. The disparity maps of these data sets are sometimes only made of planes
(Venus, Sawtooth) and sometimes made of more complex structures. Extremely irregular
structures are rejected. If, however, structures are smooth enough, they can be locally ap-
proximated by planes up to the given precision and this is the answer of our algorithm. Note
that further extensions of our model selection criterion are possible, which should distinguish
for instance quadrics from planes.

The piecewise planar approximation is not too simplistic as shown by the error maps given
in Figure 3.6 (e) and the error measurements of Table 2.1. The remaining error after projection
on the various planes seems to be mostly due to the quantification step of the disparity maps.
This explains the oscillations of the errors. Each different period of oscillation corresponds to
a different plane. Had the planes been badly estimated, or some of the points been associated
to a wrong plane, more errors would be visible (see Figure 2.5). On the another hand, the
obtained classifications do not seem to be over-segmented. The various periods of oscillations
seem to correspond to one plane most of the time.

Another result is that when the precision parameter is set manually, the method stays
robust for different values of precisions and gives a planar approximation at different scales
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Figure 2.5: Failure case of the original algorithm (Teddy from the Middlebury
dataset). (a) reference image. (d) ground truth. (b) and (e) segmentation com-
puted with our algorithm (black parts are non meaningful groups). (b) original
version of our algorithm: all the yellow parts on the right are considered as a single
meaningful group which is of course false. (e) algorithm with improvements from
Section 2.3.5: the groups are well segmented this time. (c) and (f) error maps of the
projection on the planes of (b) and (e) (dark = low error, bright = large error). The
red parts are non meaningful groups in either one of the two possible segmentations.
In (c), the error is large because of the yellow group on the right. In (f), the only
remaining error is the one due to the quantification of the data.
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(see Figure 2.6). This is usually not the case of RANSAC based approaches which tend to
fail when the precision is not optimal.

We also tried our algorithm on a simulated stereo pair of Toulouse’s St-Michel Jail. For
this experiment, a subpixel precision is expected. As before the threshold parameter was
estimated automatically. Two tests were performed:

• We added an additional Gaussian noise of variance 0.02 pixels to the ground truth
disparity. The results are given in Figure 2.4 and Table 2.1, column Toulouse. For this
experiment, most of the planes seem to have been detected. The error was significantly
reduced (Figure 2.4 (f)) and is mostly localized around the edges (RMSE = 0.007 with
edges). However, the planes were estimated with a great precision (RMSE = 0.005
pixels without the edges).

• The algorithm in [Sabater, 2009] was used on a simulated low-baseline stereo pair to
obtain a disparity map with precision 0.024 pixels. After grouping with our algorithm
and re-projection of the measured disparity data on the detected planes we observe that
the RMSE is reduced to 0.021 pixels (see Table 1, column Toulouse2) which proves the
correctness of our planar approximation.

��� ��� ���

Figure 2.6: Classification obtained with different precisions. (a) precision=1 pixel,
85 planes detected; (b) precision=2 pixels, 44 planes detected; (c) precision=5 pixels,
23 planes detected.
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Initial variance(τz) 0.02 0.024 1 1 1 1 1
RMSE 0.005 0.021 0.29 0.29 0.95 1.15 1.01
Error> τz (%) 1.8 - 0 0 3.9 6 3.4
Error> 2τz (%) 0.7 - 0 0 0.8 1.9 0.9

Table 2.1: Error measurements. First line initial: precision of the ground truth.
Second line: RMSE (ℓ2 error). Third and fourth lines: percentage of outliers.
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2.5 Conclusion

We presented an algorithm for optimally grouping 3D point clouds into planar patches. In-
spired from computational gestalt theory [Desolneux et al., 2008b], it allows the use of simple
grouping laws to robustly detect simple patterns (planar patches here), and to apply later
these laws recursively (for instance symmetry or similarity of planar patches) in order to
obtain more complex structures, like those proposed in Lafarge’s dictionary [Lafarge et al.,
2008b], without making an a priori explicit list of all possibilities. As opposed to the method
proposed in [Igual et al., 2007; Facciolo and Caselles, 2009], our algorithm does not rely on
an initial segmentation which can be error prone. The various parameters can be easily set
which makes it almost automatic. The ε value can be set to 1 due to its statistical meaning
and the distance threshold τz used to reject outliers can be estimated as the one minimizing
the NFA.

Our experiments show that the proposed approach is capable of detecting a reasonable
piecewise affine decomposition even in complex scenes (as opposed to RANSAC based ap-
proaches). Moreover, the corresponding regularization reduces the error of punctual disparity
measures.

Several applications and improvements are thought of. The piecewise planar grouping can
be used as a basis for interpolation and vectorization algorithms. However, these applications
will require a stronger use of luminance (as a post processing refinement of the boundaries
between several planes).
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Figure 2.7: Results obtained with Middlebury’s ground truth datasets with the au-
tomatic threshold parameter. From top to bottom, Venus, Sawtooth, Cones, Teddy
and Books. (a) Reference Image, (b) ground truth (unknown parts are shown in
red), (c) disparity map obtained after projection on the planes that were found with
our algorithm (parts not referred as planar are shown in red), (d) planar classifica-
tion of the points (each color refer to one plane), (e) residual error after re-projection
on the planes. The errors are mostly due to the quantification of the disparity map
(which explains the oscillations).
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Résumé: Dans ce chapitre, nous proposons une nouvelle méthode pour la détection
de facettes planes dans les cartes de disparités. Cette approche est similaire à celle
introduite dans [Grompone von Gioi et al., 2008] pour la détection rapide de seg-
ments dans les images. Dans un premier temps, nous utilisons une approche par
croissance de régions à partir de graines aléatoires. Puis, le critère de décisions
introduit dans le Chapitre 2 est utilisé pour garder les patchs plans. Le princi-
pal avantage de notre méthode en comparaison à la littérature est sa capacité à
pouvoir estimer les paramètres critiques, ceci la rendant quasi automatique. Cet
technique est particulièrement adaptée au cas de la reconstruction 3D en milieu
urbain à partir de paires stéréo à faible écart entre les vues où un modèle plan-
par-morceaux peut-être appliqué.

Abstract: In this chapter, we propose a new method for fast detection of planar
patches in disparity maps. This approach is similar to the one introduced in
[Grompone von Gioi et al., 2008] for fast line segment detection in images. We
first use a region growing algorithm on random seeds. Then, the parameter-free
criterion introduced in Chapter 2 is used to keep only the patches that are planar.
The main advantage of our method is to be able to estimate a critical parameter.
This method is specially well suited to 3D reconstruction of urban environments
from low-baseline aerial or satellite stereo pairs where a piecewise-planar model
can be applied.

3.1 Introduction

In the previous Chapter, an a contrario criterion was defined which allowed us to make some
capital decisions in model detection algorithm:

• When can a group of points from a disparity map considered as a planar patch?

• What is the best point configuration in terms of planarity between two groups?

• What is the best choice for outlier rejection threshold?

• For a given point group, what model best explains the data between one plane or two
planes?

A split and merge algorithm which decisions were based on this a contrario framework was
then defined. However, this procedure requires a lot of computation resources especially
during the merging phase where a priority queue has to be updated at each merge. In this
Chapter, we propose a fast algorithm for plane detection in disparity maps. Once again, the
a contrario framework will prove itself very useful especially to decide what parameter should
be used.

Various methods have been proposed to achieve a fast piecewise planar segmentation of a
3D model.

In [Jiang and Bunke, 1994] a line-based and column based split and merge approach is
proposed for a fast segmentation. The first segmentation for each line and column is based on
the splitting into two groups as long as a precision threshold is not respected. Then a region
growing approach is used for to merge the possible group. However, their approach do not
seem very precise near the planes separation.
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Applying RANSAC sequentially by removing the detected groups from the data has been
a popular approach for fast plane detection. Initially used for multi-plane detection in uncon-
strained stereo-vision [Vincent and Laganière, 2001] and [Kanazawa and Kawakami, 2004],
it was proved to be unadapted as itself in [Toldo and Fusiello, 2008] and [Stewart, 1995]
where the detection of “phantom” planes (mixture of several models) was observed. Indeed,
the RANSAC algorithm was originally designed to fit single models to points corrupted by
outliers and fails when the outliers are structured because of other models.

To overcome this, an a contrario framework is proposed in [Rabin et al., 2009] and the
possible division of RANSAC-validated groups is tested. However, this approach seems not-
well adapted to disparity maps where the amount of points is considerably larger and do not
contain outliers. In [Schnabel et al., 2007b] and [Labatut et al., 09], the authors adapted
sequential RANSAC to 3D point cloud by introducing strong local constraints on the vali-
dation. In their procedure, only connected groups (according to a k− nearest neighbor) can
be validated and local plane orientation at each point has to be similar to the global orienta-
tion of the validated group. More parameters have to be finely tuned which goes against the
automatic detection we want to achieve.

Another popular approach for piecewise planar segmentation is region growing. This
approach, which is the base of the algorithm proposed here, has been successfully adapted
to both range image segmentation (see [Besl and Jain, 1988] and [Poullis and You, 2009] for
instance) and to 3D point clouds (see [Chauve et al., 2010]). However, in all these papers, no
automatic criterion is proposed to set the various thresholds.

The aim of this chapter is to develop a fast method to obtain a piecewise planar description
of a 3D point cloud. Based on region growing, our approach provides a faster search of planar
regions for similar error values than the methods described in Chapter 2 and [Labatut et al.,
09] both combined with the decision criterion of Chapter 2 as illustrated in Fig. 3.1. Our
second objective is to propose ways to automatically set the common parameters to both
region growing and RANSAC methods. This is the main advantage of our method since some
parameters such as the outlier rejection threshold are critical to obtain good results.

This chapter is organized as follow. First a global description of the algorithm is given
in section 3.2. Then more precisions on the steps of the algorithm and their mathematical
justication are given in section 3.3, 3.4 and 3.5. At last, some experimental results are given
in section 3.6.

3.2 Global description

In [Grompone von Gioi et al., 2008], the authors made a breakthrough in line segment detec-
tion by proposing a linear time algorithm with a false detection control. The algorithm they
propose is divided into three steps: (i) find line support regions using a greedy approach, (ii)
approximate regions by a rectangle, (iii) validate or not a line segment found by Desolneux
et al.’s theory [Desolneux et al., 2008b].

The algorithm we propose here is based on an adaptation of step (i) and (iii) to the case of
planar region detection. A description of our version of step (i) is given in this section and an
explanation of how to set the parameters is given in the next section. Step (iii) can be easily
solved by the parameter-free decision criterion of Chapter 2 and is therefore not explained
in this Chapter. The optimization step (ii) is irrelevant in our case since planar regions may
have any arbitrary shape, not necessarily rectangular.
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Figure 3.1: Comparison of [Labatut et al., 09], method of Chapter 2 and the proposed
algorithm on St-Michel disparity map with a constant precision parameter (size:
512 × 512 pixels, initial RMSE = 0.02 pixels). (a) Reference image. (b) Disparity
map. Bottom row: Planar patch classification. Each color corresponds to a different
plane. The black parts are defined as non planar according to the validation theory
of Chapter 2. (c) [Labatut et al., 09] computation time 50 s, 103 planes found,
91.2% points, RMSE = 0.0121 pixels. (d) Method of Chapter 2, computation time 4
m 02 s, 89 planes found, 92.6% points, RMSE = 0.0062 pixels. (e) Our algorithm,
computation time 9 s, 92 planes found, 92.2% points, RMSE = 0.0066 pixels.
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3.2.1 Region growing

Let us first introduce some notations. A disparity map is considered here as a mapping z from
a discrete grid Ω ⊂ Z2 to R. Each point x = (x, y) ∈ Ω has a unique value zx ≡ z(x) and
is therefore associated to a unique 3D point. We also define a patch of size s as a 2D square
neighborhood of a point x = (x, y), Ps(x) = {x′ = (x′, y′) ∈ Ω, |x− x′| 6 s, |y − y′| 6 s}.

Our algorithm is based on region growing from a point. A region starts from a patch Ps(x)
centered at a given point x. From the local neighborhood Ps(x), a first (imprecise) estimation
of the plane passing through x can be computed (more details on the plane computation and a
fast scheme to do it are given in section 3.5. Then, pixels connected1 to the region are tested:
if their z-distance to the plane is less than a given distance threshold τz, they are added to the
region. Each time the size of the region doubles, the plane is re-estimated for a more precise
estimation. The growing stops whenever none of the pixels neighboring the region verify the
distance precision constraint. An illustration of the previously described region growing step
is given in Fig. 3.2.

Figure 3.2: Region growing. From an initial point, the points are added progressively
if the distance between the real disparity and the projection on the estimated plane
is less than a threshold τz. Top row: disparity map. Bottom row: corresponding 3D
points.

Pixels within the detected region are marked and cannot be used again. Then, the local
planes of the remaining points are re-estimated omitting marked points which avoid mixing
planes in the local estimation. Another region then starts growing from a new point and so
on until the disparity map is entirely marked. The region growing algorithm is summarized
with algorithm 3.

3.2.2 Starting points

The choice of the initial point is critical in the region growing approach. The local plane
estimated from a point x0 standing on the edge of two planes will be a mixture of those two
planes. The initial plane estimation will give a poor description of the local neighborhood of
x0 and the region growing is likely to fail (either by growing on unwanted neighbor points or
by stopping right away). The starting region must then be chosen carefully.

14-connected pixel neighborhood is used here
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Algorithm 3: Region Growing

Data:
x0 ∈ Ω, starting point
{G1, · · · , Gn}, list of already validated planes
τz, distance threshold.
Result:
Gx0, the group of all the points on the same plane as x0

begin1

Gx0
= Ps(x0) \G1 ∪ · · · ∪Gn2

π0 ← compute plane of Gx0
3

N0 = #Gx0
4

Gcandidates = 4−connected(Gx0
) \ (Gx0

∪G1 ∪ · · · ∪GN )5

Gexplored = Gx0
6

foreach x ∈ Gcandidates do7

if x /∈ Gexplored & dist(x, π0) ≤ τz then8

add x to Gx0
9

add 4−connected(x) \ (Gx0
∪G1 ∪ · · · ∪GN ) to Gcandidates10

add x to Gexplored11

if #Gx0=2N0
then12

π0 ← compute plane of Gx0
13

N0 = #Gx0
14

15

end16

end17

To avoid this kind of situation, we propose to sort the patches according to their “flatness”.
Such is done by computing the mean square error (MSE) between the original z−value of
each point and the estimated one after projection on the local plane:

MSE(Ps(x)) =
∑

x′∈Ps(x)

(
z(x′)− zπx

(x′)
)2

#Ps(x)− 3
(3.1)

where zπx
(x′) is the z-value of plane πx at point x′, #· is the cardinal operator and #Ps(x)−

3 > 0. If we suppose that the z−values are distributed according to a piecewise-planar
model plus an i.i.e. Gaussian additive noise, then it can be proved that the expectation of
MSE(Ps(x)) is minimal if all the z-values of the points of Ps(x) were distributed from a
single plane (see section 3.4). Points with lowest MSE are then more likely to be distributed
from a single planar model. The sorting step then favors patches for which the local plane
description corresponds best to the real planar model. Other points will appear later in the
starting point queue and may never be used to grow a region.

3.2.3 Remarks on the algorithm

• The other heuristic proposed in Chapter 2 for piecewise-planar segmentation had a
limited number of parameters which for the most could be set automatically. In section
3.3 we propose a way to automatically set the most critical parameter of our method:
the distance rejection threshold τz.

• The local estimation combined with the region growing procedure ensures that each
region detected is made of connected points. This constraint on the result is in fact a
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good thing since this is what happens in practice. Indeed, two disjoint regions in an
image describes most of the time two distinct objects.

• The region growing threshold τz also represents the maximal error difference between
the original (and possibly noisy) z−value of a point and its projection on the plane it
is associated to after the piecewise-planar segmentation.

3.3 Point precision and rejection threshold estimation

The region growing rejection threshold parameter τz which is necessary for our region growing,
is common to most of the methods presented before. In RANSAC-based algorithms, it gets
critical because the plane selection process depends on the number of inliers according to that
precision. A wrong rejection parameter may lead to the validation of planes which do not
correspond at all to the data.

This parameter is usually supposed to be known, but this is actually not the case. To
our knowledge, only [Sabater, 2009] gives an estimation of the expected precision when they
compute disparities. However, the result is an inferior bound and is imprecise in case of
adhesion (see Chapter 5) which excludes using it to reject outliers.

Using our approach, an estimation of the distance rejection parameter is however possible.
This estimation is based on an iterative computation of the residual noise of the validated
planar groups by the mean of the previously defined MSE. For all that follows we supposed
that the disparity at each point can be described by a piecewise-planar model and an additive
Gaussian noise (due to the computation method).

3.3.1 Estimation from validated groups

Let’s first consider the following situation that happens while using the region growing algo-
rithm. M planar groups have already been found with the previous steps of the algorithm
(we use the validation criterion of Chapter 2 to decide whether a group can be considered as
planar). We now want to find the M + 1th group using the same procedure as before.

For each group validated as planar, one can estimate the mean square residual noise by
re-projecting the points on the associated plane. Such is done with the MSE definition given
by Equation (3.1). The larger the group is, the more accurate this noise estimation is.

The residual noise estimation can be computed iteratively. By noting (MSEi)i=1..M the
MSE of each validated group and (Ni)i=1..M their respective size, one can estimate a global
MSE:

MSEglob =

∑N
i=1MSEi · (Ni − 3)

−3 +∑N
i=1Ni

(3.2)

Now, let’s consider the point group G subject to the region growing procedure and let’s
make the following assumptions:

• All the points from G can be explained by a single plane π with an additive Gaussian
noise ε ∼ N (0, σ) along the z coordination.

• The estimated plane parameters are the real one.
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Then using classical results of Gaussian statistics we can state that for any point x ∈ Ω
following the same model (plane π + Gaussian noise ε ∼ N (0, σ)):

P (|z(x)− zπ(x)| < τz) = P (−τz ≤ ε(x) ≤ τz)
= erf( τz√

2σ
)

where erf is the error function. Then to ensure that 95% of the points following the right
model are validated, one can choose τz = 2 · σ. In practice, since σ is unknown, we use the
unbiased estimation of σ given by σ̂ =

√
MSEglob.

At last, the rejection threshold can be refined by estimating it progressively with both the
global MSE and the MSE of the patch to overcome the fact that the precision may not be
the same everywhere:

τz = 2 ·
√
MSEglob · (Nglob − 3) +MSEpatch · (Npatch − 3)

√
Nglob +Npatch − 3

(3.3)

3.3.2 First estimation

Algorithm 4: Distance threshold initialization

Data:
Seeds = {x0, · · · ,xn} ∈ Ωn

Θ = {τ1, · · · , τp}, possible threshold values
Result:
τz, the best distance threshold
begin1

NFAglobal =∞2

τz =∞3

foreach x in Seeds do4

NFAmin =∞5

foreach τ ∈ Θ do6

G(x, τ) ← region growing of x for threshold τ with Algorithm 37

nfa ← compute NFA of (G, τ)8

if nfa < NFAmin then9

NFAmin = nfa10

if NFAmin < NFAglobal then11

NFAglobal = NFAmin12

τz = τ13

14

15

end16

end17

end18

In the previous paragraph, we proposed a way to set the rejection threshold parameter
knowing at least one planar group of points. However, the question still remains on hold when
the region growing algorithm starts and no group has been validated.

For this step, we chose to set the parameter empirically by trying out several possible
initialisation. For a given starting point, we try several rejection threshold which all give a
different final group after region growing. The a contrario criterion described in Chapter 2
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then allows to decide which threshold was the best for this particular starting point. This
part is then exactly the same as what was done in Chapter 2 to set the rejection threshold.
It can also be seen once again as an adaptation of what is done in [Moisan and Stival, 2004]
and [Rabin et al., 2009] to larger dataset.

Without any prior information, we can only assume that the precision on along the z axis
is at most equal to the resolution along the x or y axis. We therefore choose the following set
of rejection threshold:

Θ =

{

(zmax − zmin),
(zmax − zmin)

2
, . . . ,

(zmax − zmin)

2n

}

with M < 2n ≤ 2M for an M ×M disparity map.
To make sure we find one of the largest planes in the disparity map, we propose to

try several initial points. In practice, we try the 10 initial points for which MSE(Ps(x))
is minimal. As demonstrated in the next section, this order is justified by the fact that
MSE(Ps(x)) is minimal (in expectation) if all the points of P

s
x are distributed according to a

single planar model. At last, the final initial configuration is once again the one for which the
NFA is minimal. The algorithm for the distance threshold initialization is given in Algorithm
4.

As shown in Figure 3.3, the residual noise between the ground truth and the input data
is approximately the same as the residual noise between the input data and our piecewise
planar approximation. This suggest that both the classification and the precision estimation
are good since a wrong classification would change the characteristics of the residual noise.
This result was obtained both with synthetic and real data.

3.4 Justification of the sorting step

In the global description of the algorithm, we proposed to sort the initial points so that the
one used first for region growing are the one for which the local neighborhood is best describe
by a single plane. We propose here to give a mathematical explanation of this step.

The following theorem gives a justification of the sorting step the data are described by a
reduced number of planes:

Theorem 1 Let’s consider a dense disparity map described as a 2D finite grid Ω ⊂ Z2 and
z values on this grid distributed according to a finite set of planes (πi)i=1..np, np ≪ #Ω and
corrupted by an i.i.d. additive Gaussian noise ε ∼ N (0, σ):

∀x ∈ Ω, ∃i, 1 ≤ i ≤ np, � z(x) = zπi
(x) + ε(x) (3.4)

If we note π̂s,x the least squares estimate of the plane from a local neighborhood of x, Ps(x),
then the expectation of the residual error is the sum of two terms:

E




∑

x′∈Ps(x)

(zπ̂s,x
(x′)− z(x′))2



 = λ(s)σ2 +B(x) (3.5)

where λ(s) only depends on the local neighborhood size #Ps(x) and B(x) is a bias term
depending on the model describing the z distribution within Ps(x). Moreover, the bias term
is null if the local model is made of a single plane.



76 Chapter 3. Fast plane computation

��� ��� ���

��� ��� ���

Figure 3.3: Automatic error estimation (black parts are either non-planar regions
or points with an unknown disparity). From left to right: classification obtained
after our algorithm, residual noise between the initial data and the ground truth
in the black square zone, residual noise between the initial data and our piecewise-
planar approximation in the black square zone. The residual noise looks the same.
The noise estimation is therefore precise in the planar regions. Top row: data =
ground truth + Gaussian white noise. Ground truth residual noise: 0.0199 pixels.
Piecewise-planar residual noise: 0.0212 pixels. Bottom row: real data obtained
using [Sabater, 2009]. Ground truth residual noise: 0.0306 pixels. Piecewise-planar
residual noise: 0.0214 pixels.
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Proof The demonstration follows the similar steps as the ones given to estimate the re-
projection error of a plane that is given in Appendix A.

Let ’s first introduce some notations. For any 2D point x = (x, y) ∈ Ω, we note X =
(x, y, 1) the corresponding point in homogeneous coordinate. We note µ the parameter defining
a projection onto a plane of a 2D point. For a given set of points Ps(x), its plane parameters
are computed as the one minimizing the ℓ2 error of the disparity values:

µ̂ = arg min
µ=(a,b,c)

∑

x′∈Ps(x)

(
z(x′) + (a · x′ + b · y′ + c)

)2

= argmin
µ

∑

x′∈Ps(x)

(
z(x′) +X ′Tµ

)2

=
(
ATA

)−1
ATb

(3.6)

with,

A =








X1

X2
...

Xn








with (xj)i=1..n = Ps(x), b =








z(x1)

z(x2)
...

z(xn)







, µ = −





a
b
c



 and E =








ε(x1)
ε(x2)
...

ε(xn)








Let’s first demonstrate Theorem 1 for a point x for which the local neighborhood is
modelled by two planes. A, b and E can be divided into two blocks, each corresponding to
one of the two plane models:

A =

(
A1

A2

)

, b =

(
b1

b2

)

and E =
(
E1
E2

)

such that

b1 = A1µ1 + E1
b2 = A2µ2 + E2

We can now express µ̂ as a function of µ1 and ∆µ = µ1 − µ2:

µ̂ =
(
ATA

)−1
ATb

=
(
ATA

)−1
AT

((
A1µ1
A2µ2

)

+ E
)

=
(
ATA

)−1
AT

(

Aµ1 +

(
O

A2∆µ

)

+ E
)

= µ1 +
(
ATA

)−1
AT

2 A2∆µ+
(
ATA

)−1
ATE

(3.7)

Then, for any point x1 ∈ Ps(x) described by model µ1, if we note X1 = (x1, y1, 1), the
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expectation of its residual square error (SE) is:

E
[
SE(x1)

]
= E

[
(z(x1)−XT

1 µ̂)
2
]

= E
[
(XT

1 (µ1 − µ̂) + ε(x1))
2
]

= E
[(
XT
1

(
(ATA)−1AT

2 A2∆µ+ (ATA)−1ATE
)
+ ε(x1)

)2]

= XT
1 (A

TA)−1AT
2 A2∆µ∆µTAT

2 A2(A
TA)−1X1

+ 2XT
1 (A

TA)−1AT
2 A2∆µE

[
ET

]

︸ ︷︷ ︸

0

A(ATA)−1X1

+ 2XT
1 (A

TA)−1AT
2 A2∆µE

[
ε(x1)

]

︸ ︷︷ ︸

0

+ 2XT
1 (A

TA)−1ATE
[
Eε(x1)

]

︸ ︷︷ ︸

σ2X1

+E
[
ε(x1)

2
]

︸ ︷︷ ︸

σ2

+ XT
1 (A

TA)−1AE
[
EET

]

︸ ︷︷ ︸

σ2In

A(ATA)−1X1

(3.8)

Simplifying the different terms and using clearer notations at last gives:

E
[
SE(x1)

]
= σ2

(
1 + 3XT

1 (A
TA)−1X1

)
+XT

1 B1X1 (3.9)

with B1 = (ATA)−1AT
2 A2∆µ∆µTAT

2 A2(A
TA)−1.

An analogous result is obtained for any point x2 ∈ Ps(x) described by model µ2:

E
[
SE(x2)

]
= σ2

(
1 + 3XT

2 (A
TA)−1X2

)
+XT

2 B2X2 (3.10)

with B2 = (ATA)−1AT
1 A1∆µ∆µTAT

1 A1(A
TA)−1.

At last, using Eq. 3.9 and Eq. 3.10 to sum over all the points x′ ∈ Ps(x) we obtain the
sum of square errors E[SE(Ps(x)]:

E [SE(Ps(x))] = σ2(n+ 3trace(A(ATA)−TAT)) + trace(A1B1A
T
1 ) + trace(A2B2A

T
2 )

= σ2(n+ 6) +B(x)
(3.11)

The simplification of trace(A(ATA)−TAT) into rank(A) = 2 is part of the proof of propo-
sition 4 in Appendix A. At last, noting that B1 = B2 = 0 when ∆µ = 0 (only one model),
and that

(
trace(A1B1A

T
1 ) + trace(A2B2A

T
2 )

)
>= 0 completes the proof.

Let’s now prove Theorem 1 in the general case considering more than two planes. Let’s
consider a point x for which Ps(x) is modelled by N planes. We use the following notation
for i, j = 1..N , ∆µi,j = µi − µj . Eq. 3.7 then becomes:

µ = µi +
(
ATA

)−1
ATE +

∑

j = 1..N
j 6= i

(
ATA

)−1
AT

j Aj∆µi,j (3.12)
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This means that Eq. 3.9 can be re-written with a similar form for any xi following the model
µi with i = 1..N :

E
(
SE(xi)

)
= σ2

(
1 + 3XT

i (A
TA)−1Xi

)
+XT

i B
′
iXi (3.13)

with this time B′i =
( ∑

j = 1..N
j 6= i

(ATA)−1(AT
j Aj)∆µi,j

)( ∑

j = 1..N
j 6= i

(ATA)−1(AT
j Aj)∆µi,j

)T
.

At last, summing the residual error over all the points as done in Eq. 3.11 finally gives:

E [SE(Ps(x))] = σ2(n+ 3trace(A(ATA)−TAT)) +
N∑

i=1

trace(AiB
′
iA

T
i )

= σ2(n+ 6) +B(x)

(3.14)

Finally remarking that the bias term is always positive, and still null when Ps(x) is mod-
elled by a single plane completes the proof.

�

Another interpretation of Theorem 1 is that if we consider a multi-plane description, the
expectation of the reprojection error for a given patch Ps(x) if all the points in Ps(x) were
issued from a same plane. This means that during the sorting step of our algorithm, the
patches containing only points from a same plane model are expected to be considered first.

Let’s now analyze more thoroughly Eq. 3.9. The first term of the equation only depends
on the noise and the 2D spatial distribution. Since the point set we consider here are square
neighborhoods of constant size, this term is always the same. It can be interpreted as the dis-
tance between the noisy data and the estimated model if the data were distributed according
to only one planar model.

The second term of Eq. 3.9 can be seen as the bias on the estimation that is introduced by
all the points following a different model. Let’s now take a look at the term (ATA)−1AT

2 A2.
The part ATA is computed from N points whereas the part AT

2 A2 was computed from n
points. This means that if we normalize the matrices by the number of points, a factor n/N
appears. In other words, the more points the second planar model contains, the bigger the
bias term will be for the points of the first planar model which makes sense.

We note that in the N plane cases, the bias term may be null for a given point since one
plane can nullify the effect of another. However, this cannot be the case for all the points in
a given neighborhood which plays in favor of choosing neighborhood where only one plane
describes the whole dataset.

Let’s now illustrate these results experimentally. We considered two possible cases:

• Two planes separated at their intersection and forming an angle α with their orienta-
tions.

• Two horizontal planes separated by a step along the z-axis.

From these two cases, we considered different patches of points Ps(x) containing from 50% to
100% of points from the first plane and the rest from the second plane. We then computed the
z-variance as proposed in Eq. 3.1. Figure 3.4 shows the results obtained for the two possible
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situations with different angles and steps. The experiments were done on 9× 9 neighborhood
with an additive noise on the disparity of standard deviation σ = 0.5 (similar results were
obtained with different size of neighborhood and different standard deviation). In order to
get the expectation, we took the average result obtained from 100 different realizations of
input noise. The results go in accordance with the mathematical analysis and the intuitive
prediction. The more points of a single model, the lower the error is expected to be.
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Figure 3.4: z−variance of the plane estimation depending on the percentage of points
from another model. (a) First experiment: two intersecting planes forming an angle
α with their orientations. (b) Second experiment: two horizontal planes separated
by a step along the z-axis. (c) Results of first experiment for different angles. (d)
Results of second experiment for different steps.

3.5 Plane estimation

The validation of points by hard thresholding in the region growing algorithm ensures that
no outliers will be present in the final group. The estimation of the plane parameters can
therefore be done by least squares minimization. A survey of the different approaches, on the
best choice with our data as well as results on the expected precision from an estimation are
given in Appendix A. We will concentrate here on the best estimator for our case given by
Eq. 3.6 and try to give an explicit formulation for a fast and iterative expression adapted to
region growing.

Another classical approach to solve Eq. 3.6 is proposed in [Taylor et al., 1989]. The
result is obtained by deriving Eq. 3.6 with respect to each component of µ and equating each
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equation to 0. The following equation system is then obtained:







2
N∑

i=1

xi(z(xi) + âxi + b̂yi + ĉ) = 0

2
N∑

i=1

yi(z(xi) + âxi + b̂yi + ĉ) = 0

2

N∑

i=1

z(xi) + âxi + b̂yi + ĉ = 0

(3.15)

which gives the following solution:







â =
σx,yσy,z − σx,zσy,y
σx,xσy,y − σ2x,y

b̂ =
σx,yσx,z − σy,zσx,x
σx,xσy,y − σ2x,y

ĉ = −(âx̄+ b̂ȳ + z̄)

(3.16)

where for (α, β) ∈ {x, y, z}2:






ᾱ =
1

N

N∑

i=1

αi

σα,β =
1

N

N∑

i=1

(αi − ᾱ)(βi − β̄) =
1

N
·
(

N
∑

i=1

αiβi

)

− ᾱβ̄ = sα,β − ᾱβ̄

From this explicit formulation of the solution, one can reestimate all the parameters using an
iterative scheme each time a new point is added:



























ᾱ(n+1) = n
n+1 ᾱ

(n) + αn+1

n+1

sα,β
(n+1) = n

n+1sα,β
(n) + αn+1βn+1

n+1

σα,β
(n+1) = sα,β

(n+1) + ᾱ(n+1)β̄(n+1)

(3.17)

An interesting result is that this estimation is independent from a scaling along the z−axis.
From Eq. 3.16, one can easily deduce that the scaling z′ 7→ λz gives the same parameter
scaling: â′ = λâ, b̂′ = λb̂ and ĉ′ = λĉ. Then, the plane detection is robust to any scaling of
the values of a disparity map.

A second thing to note is that only few changes on the previous results are necessary in
the weighted case. If we consider the weighted problem:

min
a,b,c

N
∑

i=1

wi(z(xi) + axi + byi + c) (3.18)

Then the solution is Eq. 3.16 is the weighted least squares solution with the following modi-
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fications for (α, β) ∈ {x, y, z}2:


































































ᾱ =

N
∑

i=1

wi · αi

N
∑

i=1

wi

σα,β =

N
∑

i=1

wi · (αi − ᾱ)(βi − β̄)

N
∑

i=1

wi

=

N
∑

i=1

wi · αiβi

N
∑

i=1

wi

− ᾱβ̄ = sα,β − ᾱβ̄

At last, a significant simplification in the expression of µ̂ can be made in presence of a
rectangular neighborhood (see [Haralick, 1980]):



















â = −σx,z
σx,x

b̂ = −σy,z
σy,y

ĉ = −z̄

(3.19)

3.6 Complete algorithm and experimental results

The complete algorithm with all the steps is given in Algorithm 5.
Our algorithm was tested on various different disparity maps both piecewise planar and

not. For all the experiments, 9× 9 square patches were used independently of the size or the
precision. At last, the plane validation criterion of Chapter 2 was used for each experiment
to remove non planar regions.

3.6.1 Pure noise

As a sanity check experiment for both the algorithm and the a contrario validation, we
first tried our method on randomly distributed disparity maps. The first disparity map was
generated from a uniform distribution U([0, 100]), the second from a normal distribution
N ([0, 100]). The results obtained in the two situations are given in Fig. 3.5.

In the uniform distribution case, since the input data are exactly the same as the back-
ground model used the a contrario validation, no plane can possibly be detected. This result
is the one expected from proposition 2 of Chapter 2.

In the Normal distribution case, the background model is estimated from the extrema of
the distributed values. The more points, the more likely these extrema values are to be far
from the mean of the normal distribution and the more narrow the point concentration will
be compared to the extrema. Then this means that the Normal distribution is meaningful
compared to the Uniform distribution which explains the final result. At last, the correct
noise estimation was made in this case.

3.6.2 Disparity maps

Our next experiment was to try our algorithm on disparity maps. First, we used as input the
St-Michel ground truth disparity map corrupted by an additive Gaussian noise of variance
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Algorithm 5: Fast plane segmentation

Data:
Input disparity map: (Ω, z(Ω))
s: half the size of the local patch
Result:
G = {G1, · · · , GN} a segmentation of Ω into disjoint groups
Π = {π1, · · · , πN} the list of corresponding planes
begin1

G = ∅2

Seeds = ∅ foreach x ∈ Ω do3

compute local plane and local residual error of Ps(x)4

add point x to Seeds5

end6

Seeds ← sort Seeds by local residual error7

τz ← compute initial threshold with Algorithm 4 on Seeds(1..10)8

foreach Nmin in
{

(2s+ 1)2, 3
4 (2s+ 1)2, 1

2 (2s+ 1)2, 1
4 (2s+ 1)2, 0

}

do9

Seeds2 = ∅10

foreach x ∈ Seeds do11

if #
(
Ps(x) \ ∪G∈GG

)
≥ Nmin then12

G ← region growing on x with Algorithm 3 with τz13

add G to G14

update τz value15

else16

add x to Seeds217

end18

end19

Seeds ← sort Seeds2 by local residual error20

end21

end22
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Figure 3.5: Noise as input disparity map. (a) U([0, 100]). (b) N (0, 100). (c)-(d)
Detected planes.
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init err ℓ2 err Nplanes valid time
Sawtooth 0.125 px 0.036 px 3 100% 2s
Venus 0.125 px 0.039 px 5 100% 2s
Cones 0.25 px 0.187 px 77 93.2% 3.9s
Teddy 0.25 px 0.189 px 72 93.1% 5.3s
books 0.25 px 0.149 px 63 98% 7.4s

St-Michel gt 0.02 px 0.0066 px 92 92.2% 8.9s
St-Michel [Sabater, 2009] 0.0304 px 0.0237 px 95 63% 12.6s

Table 3.1: Experimental results. First column: Initial uncertainty of input data in
pixels. Second column: final ℓ2 error between our piecewise planar approximation
and the ground truth in pixels. Third column: Number of planes. Fourth column:
percentage of valid points. Fifth column: computation time in seconds.

0.02 pixels. Our algorithm was compared to both methods in [Labatut et al., 09] and Chapter
2 using the same constant precision. The results given in Fig. 3.1 show that our algorithm is
faster than the other two methods for the same order of precision.

The segmentation seems to be visually good which is all that can be said since no ground
truth segmentation is available. In addition to that, the remaining ℓ2 error (RMSE) is lower
than the initial noise. This de-noising sanity check confirms the correctness of our planar
grouping since a wrong segmentation provokes large errors after re-projection on planes.

At last, we used our automatic precision threshold estimation and obtained similar seg-
mentation results. The resulting RMSE was exactly the same (0.0066) as the one obtained
with an optimally hand-tuned threshold.

Similar conclusions were drawn when using our algorithm on real disparity maps computed
with [Sabater, 2009]. The classification obtained in Figure 3.3 and the residual noise similar
to the one of the ground truth proves that our piecewise-planar approximation is coherent.
This is confirmed by Table 1 (last two rows), where the ℓ2 error (RMSE between planar
approximation and ground truth) is lower than the initial error (RMSE between input data
and ground truth).

Our second experiment was done on Middlebury’s disparity maps2 [Scharstein and Szeliski,
2002] using the automatic precision of section 3. This time, the initial error q is only due to
the quantization step, and the ℓ2 error of our piecewise planar approximation is measured with
respect to this quantized ground-truth. Thus q/

√
12 provides a lower bound to the ℓ2 error

(see Table 1). Since, this lower bound is met exactly for Sawtooth (and up to 10% accuracy
for Venus), we conclude that we do not introduce any error by projecting on the planes that
we found, and that the automatic noise estimation works correctly. For the other three maps,
the result is a piecewise planar approximation of a scene containing non-planar surfaces, so
the slightly larger errors may be attributed to model mismatch. The results of Middlebury
experiments are shown in Fig 3.6 and the error measurements are all given in Table 1.

3.6.3 Expected re-projection error

In Appendix A, an important result on the expected error from linear regression was shown
through proposition 4: the expectation of the re-projection error (square of the difference

2www.vision.middlebury.edu/stereo
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Figure 3.6: Middlebury results: from top to bottom, Venus, Sawtooth, Cones, Teddy,
Books. Left: reference image. Middle: original disparity map. Right: piecewise
planar classification (each grey level corresponds to a different plane).
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between the perfect disparity and the one obtained after re-projecting on the plane) at each
point is given by σ2rank(A)/n, where σ is the standard deviation of the additive Gaussian
noise, A is the matrix used before for parameter estimation and n is the total number of
points used for the plane estimation. This means that for any group of points, its expected
cumulative re-projection error is independent from the number of points and is: σ2rank(A).

We tried to observe this result experimentally with the obtained disparity map segmen-
tation. For this experiment, we used two piecewise-planar ground truth disparity maps cor-
rupted by an additive Gaussian noise (Toulouse St-Michel and village 1).

Figure 3.7: Cumulative square re-projection error for each plane detected:
∑

x∈G(z(x)− zπ(x))
2. (a) Toulouse ground truth. (b) Village 1 ground truth.

The first thing to note is that the cumulative error is a square error at each point which
means that any wrong point in a segmentation is likely to increase considerably the final
measure. The main default of the approach presented here is its greedy component. A point
standing near the edge of two distinct planes will be associated to the first one considered by
the algorithm as long as the rejection conditions are respected (hard thresholding). This is
done regardless the potential belonging to another planar group.

For the sake of this experiment, we propose to remove all these ambiguous points from the
plane parameter estimations and the final measurements. To do so, we first propose to run the
algorithm as proposed before. Then, the algorithm is run once again, for all the meaningful
planes, this time in reverse order. The differences in segmentation are due to the ambiguous
points up to the rejection threshold. The final measurements are done by considering only
the meaningful planes without the ambiguous points.

Fig. 3.7, show the results obtained for each detected plane in the two disparity maps.
In each case, the ground plane was removed from the results since its error was very large
compared to the other planes which made the results impossible to view. One can see that
in both cases, the results are coherent with what was expected for most planes which confirm
that the segmentation is rather good up to the ambiguous points which were removed. The
planes with larger errors must be taken into account carefully since a few points can make
the measurements fail (because of the square errors). The bad results in that cases may then
not be due to a bad segmentation.
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3.7 Conclusion

We presented an algorithm for optimally grouping 3D points into planar patches. Inspired
from the line-segment detection algorithm of [Grompone von Gioi et al., 2008], it is composed
of a region growing step to find potentially planar regions in a disparity map, and of a
validation step based on computational gestalt theory [Desolneux et al., 2008b]. The algorithm
was proved to give faster results than the method of [Labatut et al., 09] and Chapter 2 for the
same order of precision. Moreover, our algorithm has the main advantage of automatically
estimating the precision of the disparity map, which is usually a critical parameter for other
methods.

Our experiments show that the proposed approach is capable of detecting a reasonable
piecewise affine decomposition in both complex urban scenes, and in non-piecewise-planar
scenes. Moreover, the corresponding regularization actually reduces the surface approximation
error contained in disparity measurements. In the piecewise planar case, the experiments
suggests that theoretical errors (see proposition 4 of Appendix A) are obtained for most
planes in the final classification.

Several applications and improvements are thought of. The piecewise planar grouping can
be used as a basis for interpolation and vectorization algorithms. However, these applications
will require a stronger use of luminance, such as the geodesic distance technique in [Facciolo
and Caselles, 2009], that can be useful for fine-tuning of the border location between planar
regions, as well as for model selection between continuous or discontinuous transitions between
patches. Moreover, overall performance will be improved if completely automatic methods are
developed for detecting the regions that are potentially affected by strong fattening effects.
These points are tackled in the next Chapter of this thesis. At last, due to the good results
of our algorithm obtained on disparity maps, an extension to 3D data is envisaged.
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Résumé: Dans ce chapitre, nous donnons des résultats supplémentaires obtenus
avec l’Algorithme 5 présenté dans le Chapitre 3 sur différents types de données.
Dans un premier temps, nous avons testé l’algorithme sur la vérité terrain de
Toulouse St-Michel corrompue par un bruit additif Gaussien et avec seulement
10% des points renseignés. Puis nous avons utilisé les images de profondeur ABW
fournies par l’Université de Floride du Sud. Ces tests ont pointé la nécessité
d’une correction de l’approche gloutone lorsque le bruit dans les données n’est
pas homogène et que les plans intersectent le sol. Puis, dans un troisième temps,
nous avons testé l’algorithme ainsi corrigé sur des données stéréo obtenues par
différentes approches de calcul de cartes de disparités. Enfin, dans un dernier
temps, nous avons testé la possibilité d’utiliser la connaissance de la précision de
la carte de disparités pour améliorer le calcul des différents plans. Ces résultats
tendent à montrer l’efficacité de notre algorithme pour plusieurs domaines: seg-
mentation, débruitage et enfin interpolation.

Abstract: In this chapter, we give additional results obtained with Algorithm 5
introduced in Chapter 3 on various datatypes. First, we tried our algorithm on
the Toulouse St-Michel ground truth corrupted with additive Gaussian noise and
with only 10% of known disparities. Then, we tested the ABW range images from
the University of South Florida. This pointed out the necessity of correcting our
greedy algorithm when the noise is not homogeneous and when planes intersect
the ground. We then tested our algorithm with the previous correction on real
stereo dataset computed from various algorithms. At last, we tried to see if using
the a priori knowledge of the point precision could improve the plane estimation.
All these results tend to prove the efficiency of our method for 3 different things:
segmentation, denoising and interpolation.

4.1 Sparse disparity maps

As a first test, we propose to try our algorithm on a sparse disparity map. It is necessary
for our algorithm to work under those conditions since stereo data are usually not dense. We
consider here the situation described in Fig. 4.1 (a): a noisy version (additive Gaussian noise)
of the Toulouse St-Michel ground truth with only 10% of available points. To work in this
case, the algorithm first needs some modifications.

In its original version, the region growing step consisted in testing the distance to the
considered plane of the neighboring points and adding those points if the distance was less
than a threshold. Since the points stood on a regular grid, the neighboring points were defined
by the 4-connectivity.

In the sparse case, the points are still on a regular grid but some of them are missing.
To define the connectivity in this case, we compute the Voronoi diagram of the remaining
points. The connectivity is then defined by the connectivity of the Voronoi cells. When the
sparse points stand on a regular grid, an approximation of the Voronoi diagram can be fast
computed (O(#Ω) computations) using the 3-4 Chamfer distance [Borgefors, 1986] (see Fig.
4.1 (b) to see the Voronoi cells obtained in the tested case).

Figure 4.1 show the results that were obtained with this modification of the algorithm
on the sparse disparity map of Toulouse St-Michel. The final classification is close to the
classification that was obtained was a denser disparity map (see previous Chapter). Moreover,
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combining the Voronoi cells to the classification, one can interpolate the missing disparities
by projection on the associated plane. The result of the obtained interpolation is shown on
Fig. 4.1 (d). The error committed after the reprojection on the planes from our classification
are then compared to the one committed by interpolating the missing points with a median
filter, which is the method proposed in [Sabater, 2009] to interpolate missing disparities (see
Figure 4.1 (e) and (f) for these results). In these two images, the same dynamique was used:
the error values are spanned between 0 pixels (white) and 0.10 pixels(black). One can see that
the method we propose here seems far more adapted because it denoises the initial points.
The remaining error are for the most located near the plane delimitations which is due to the
fact that the contours of the Voronoi cells have no reason to correspond to the actual contours
of the planes in the scene. This suggest the use of another approach to refine the contours of
the plane classification (see next Chapter).

4.2 Range datasets

We now propose to use range data as an input to our algorithm. We used the ABW dataset
from the University of South Florida1. This dataset is made of 40 range and intensity images
obtained from a structured light device on piecewise planar scenes. Though the real final
classifications are not available, the intensity images give a good hint on how the range images
should be segmented. This dataset was part of the experiments made in [Hoover et al., 1996]
to compare range image segmentation algorithms.

4.2.1 Misclassifications

After having run our algorithm on this dataset two shortcomings were pointed out:

1. A point is associated to a plane when the distance to that plane is less than the distance
rejection threshold τz. The problem is that this condition may be true for more than
one plane. Because our algorithm is greedy, the points are then associated to the first
group selected for region growing for which the distance condition is respected. This
means that the classification is probably wrong near plane intersections.

2. The estimation of the rejection threshold is made from the previously validated groups.
However, if the point precision is not homogeneous through the different regions, this
estimation may not be adapted everywhere. Since the first regions that are tested are
the flattest ones (lowest error), the regions with a larger error will be over-segmented
because the rejection threshold will be too low.

These two defects are illustrated with Figure 4.2 (c): the front green face of the object splits the
ground in our classification because it appears before in the greedy classification. Moreover,
the back plane is separated into several parts because the precision is not homogeneous.

Note that the defects did not appear with the experiments of the Chapter 3 for two reasons.

• In the previous experiments, the ground plane was always detected first because or-
thofrontal planes (in this case the ground) are favored by the seed sorting step and are
therefore usually selected first for region growing. In the ABW dataset, the orthofrontal
planes are the background and some object facets. The orthofrontal facets of objects

1http://marathon.csee.usf.edu/range/DataBase.html
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Figure 4.1: Toulouse St-Michel ground truth + additive noise: 10% of total number
of points. (a) Input disparity map. Red parts represent unknown points. (b)
Voronoi diagram of the known points. (c) Piecewise-planar classification obtained
with our algorithm. (d) Interpolation of the missing disparities by reprojection from
the classification. (e) Error after interpolation with median filter (0 pixel error =
white, 0.1 pixel error = black). (f) Final reprojection error after plane classification
(same image dynamique as (e)).
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are detected before the ground plane and the points standing on the intersection line
between the ground plane and the object facet are validated as part of the object facet.

• The second reason is that the noise was uniform in the tests that were made in Chapter
3.

��� ��� ��� ���

Figure 4.2: (a) Input range image (red parts are missing points). (b) Intensity
image. (c) Classification with the original algorithm of Chapter 3. (d) Classification
after correction of our algorithm.

4.2.2 Greedy correction algorithm

To overcome the two defects presented before, two corrections are needed:

• Merging the groups that have been separated by either one of the two defects.

• Associating the points with an ambiguous classification to the most likely plane.

The first thing to do before applying any of these two corrections, is to find the ambiguous
points. To do so, we propose to run the greedy algorithm in reverse order. As the points are
associated to the first valid group encountered, ambiguous points will then have a different
classification. Moreover, this will point out the candidate group pairs for merging since these
pairs should obviously share ambiguous points.

To both be able to merge groups and assign ambiguous points, we propose to use the lo-
cal plane orientations. This is justified by the fact that points associated to a same plane
should have locally a similar orientation than the global plane orientation. The choice of
using local orientation has also been made in other methods such as [Chauve et al., 2010]
or [Schnabel et al., 2007b] to gain robustness. In those methods, it was used as an additive
criterion to reject points: the points for which the angle between the local and the global
plane is larger than an angle threshold set by the user. However using another parameter is
not in accordance with our will to limit parameters.

Following a similar reasoning as in Chapter 3, we propose to estimate the distribution of
the differences between local plane orientations and global plane orientations. Once again, we
suppose that these angle differences are distributed according to a Normal law N (0, σθ). The
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standard deviation σθ can then be estimated from the initial piecewise planar classification
(Gi)i=1..n:

σ̂θ =

√

√

√

√

√

√

√

√

∑

Gi

∑

x∈Gi

arcos < N(x),N(Gi) >

∑

Gi

#Gi

(4.1)

where N(x) is the local orientation of point x computed from the local neighborhood Ps(x),
N(Gi) is the global orientation of plane Gi and < ·, · > is the scalar product between the two
3D vectors.

Since the local orientations are not precise when the points inside Ps(x) are distributed ac-
cording to several planes, the points near the group delimitations should be rejected from the
estimation:

σ̂θ =

√

√

√

√

√

√

√

√

∑

Gi

∑

x∈Gi\Ps(∂Gi)

arcos < N(x),N(Gi) >

∑

Gi

#(Gi \ Ps(∂Gi))
(4.2)

From this estimation we can now define a simple merging criterion. Two planes sharing
ambiguous points are merged if:

• The distance of the barycenter of each plane to the other plane is less than the distance
rejection threshold τz given by Eq. 3.3 from Chapter 3.

• The angle between the two plane orientations is less than the σ̂θ given in Eq. 4.2.

The ambiguous point correction is then treated by associating the points to the plane with
the orientation most similar to theirs. At last, for more robustness with the angle estimation,
the algorithm can be run in loop until the final number of groups stays constant. A summary
of the correction algorithm is given with Algorithm 6.

4.2.3 Results

The final result obtained after applying the correction algorithm is shown in Figure 4.2 (d).
One can see that the planes were properly merged and the ambiguous points assigned to the
right plane. The final segmentation is coherent with the intensity image.

The new algorithm was then tested on the 40 images of the dataset. Figure 4.3 shows
some example of the obtained classifications as well as the error compared to the original
range image after having reprojected the points on the planes that were found. Among the 40
range images we obtained a segmentation visually coherent with the corresponding intensity
images for 36 of them. An over-segmentation for two of the planes was obtained for 2 of the
range images. At last, 2 segmentation were wrong because of a wrong plane merging.

The RMSE (Root Mean Square Error) of the reprojection error 2 was then computed for
each range image. Its mean value was 3.7025 for range images with values between 0 and 255

2

√

∑

x∈Ω
(zπ(x)− z(x)2)

#Ω
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Algorithm 6: Non-homogeneous noise and greedy corrections

Data:
G = {G1, · · · , GN} a list of meaningful planar groups of a disparity map (Ω, z(Ω))
Result:
G′ = {G′1, · · · , G′M} the corrected segmentation
begin1

G′ ← run Algorithm 5 in reverse order2

Ngroups = 03

while G′ 6= Ngroups do4

Ngroups = #G5

σ̂θ ← estimate the local angle distribution from G′6

σ̂z ← estimate the local error distribution from G′7

foreach (i, j), i 6= j such that Gi ∩G′j 6= ∅ do8

α ← compute angle between normal of the planes of Gi and G′j9

disti ← compute distance between plane of Gi and barycenter of G
′
j10

distj ← compute distance between plane of G′j and barycenter of Gi11

if α < σ̂θ & disti < σ̂z & distj < σz then12

Merge Gi and Gj in G13

Merge G′i and G′j in G
′

14

else15

Gambiguous = Gi ∩G′j16

Gi = Gi \Gambiguous, G
′
i = G′i \Gambiguous17

Gj = Gj \Gambiguous, G
′
j = G′j \Gambiguous18

foreach x ∈ Gambiguous do19

αi ← compute angle between normal of the plane of Gi and local plane of x20

αj ← compute angle between normal of the plane of G′j and local plane of x21

if αi < αj then22

add x to Gi and G′i23

else24

add x to Gj and G′j25

end26

end27

end28

end29

end30

end31
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Figure 4.3: Experiments on range images. (a) Range values (red parts are unknown).
(b) Intensity image. (c) Classification obtained with our algorithm. (d) Reprojection
error (the larger the error, the darker the image)
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which proves that both the classification and the planes computed are correct. The largest
errors are mostly due to the planes which orientation is almost along the z-axis. In the case,
the plane estimation is not very precise. This is confirmed by the aspect of the reprojection
error images given in Figure 4.3 (d).

All these experiments confirm the validity of our algorithm with laser range images.

4.3 Real stereo dataset

To see how our algorithm behaves in real situations, we now try our algorithm on disparity
maps which were computed with three different methods:

• MARC algorithm (Multi-resolution Algorithm for Refined Correlation) [Delon and Rougé,
2007] which was designed by the French Space Agency (CNES);

• MicMac algorithm (Multi-Image Correspondances, Méthodes Automatiques de Corrélation)
[Pierrot-Deseilligny and Paparoditis, 2006] from the French Geographic Institute (IGN);

• and the algorithm proposed by Neus Sabater [Sabater, 2009] in her Ph.D. thesis.

Each of these methods has its own advantage compared to the other two which allows to face
different situations and see what makes our algorithm succeed or not.

4.3.1 Short description of the methods

Let’s first give a short description of each algorithm for a better understanding of the resulting
disparity maps.

MARC [Delon and Rougé, 2007] and Sabater’s algorithm [Sabater, 2009]

These two local methods were designed to work under low baseline conditions which requires
a sub-pixelic precision of the final result (see Chapter 1 for more details on the low baseline
configuration). Both uses the same two-stepped approach to achieve this precision:

1. Rough localization of the disparity at each point by maximizing the Normalized Crossed
Correlation(see Chapter 1) and rejection of the uncertain points.

2. Sub-pixelic refinement by finding the local minimum of the weighted quadratic distance
between the two images. This distance is given for a point x0 of the first image, a
disparity µ and a smooth weighted window ϕ by the following formula:

dϕ(x0, µ) =

∫

x∈Ω
ϕ(x− x0)

(
u(x)− ũ(x+ (µ, 0))

)2
dx (4.3)

The first step is what differs in each of the two methods.

In MARC, the chosen strategy is multi-scale (coarse to fine). At each scale, the disparity
is computed by maximizing the Normalized Crossed Correlation(NCC) at the pixelic level
for the considered scale. Then, the obtained estimation is used to limit the search at the
next scale. An analysis of the correlation measure is moreover used to reject the disparities
computed in regions with not enough texture to achieve a good precision. At last, the disparity
computation is coupled with a correction to avoid the adhesion artifact (see Chapter 1 for
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more details on this artifact). This correction assigns the computed disparity to the barycenter
of the points within the correlation window. The result is then a sparse disparity map with
points concentrated around highly contrasted edges and textures.

In Sabater’s Algorithm, the first step is achieve by a rough search of the maximum of the
NCC. This approach takes more computations than the multi-scale approach but avoids the
propagation of errors through the scales. An a contrario criterion is then defined to reject the
points where the measure may be false.

The second step of both algorithms is done at each point of the grid by first interpolat-
ing the quadratic distance of Eq. 4.3 for all the values of µ, then finding the local minimum
within the interval [µ̂(x0)− 0.5, µ̂(x0) + 0.5], where µ̂(x0) is the disparity estimated at point
x0 at a pixelic precision level. The interpolation is performed using a 1D Shannon interpola-
tion from the distance values at each µ with half a pixel resolution (see [Sabater, 2009] for a
justification of that). This step then requires to zoom in the two images of a factor 2 to be
able to compute Eq. 4.3 for half pixel values of µ. Such is done by zero-padding of the two
images.

MicMac [Pierrot-Deseilligny and Paparoditis, 2006]

MicMac algorithm was designed to compute disparities under several conditions. Contrary
to the other two methods, the approach the disparities are computed globally by minimizing
the following energy:

Eα(µ) =
∑

x∈Ω
A(x, µ(x)) + αR(x, µ(x)) (4.4)

where

• A(x, µ(x)) is a data fitting term such as the reverse Normalized Crossed Correlation
1−NNC(x, µ). This term is null for a perfect matching between images and equals to
1 when the images do not match at all.

• R(x, µ(x)) = |µ(x+1, y)−µ(x, y)|+ |µ(x, y+1)−µ(x, y)| is a term imposing regularity
on the values of the disparity.

• α is a parameter weighting the relative importance of data fitting and regularization.

The energy is minimized by first quantifying the possible disparity values and applying a
multi-scale variant of the min cut max flow algorithm [Roy and Cox, 1998]. The result is then
a dense disparity map with quantified values.

4.3.2 Experiments

We tested the algorithm with various real stereo pairs. The result of the three algorithms
is not available for all pairs. Moreover, a ground truth disparity map is sometimes available
which allows comparison of the stereo computation algorithms. For a fair comparison, we
chose not to use the RMSE since its value is not completely representative of what happens.
Indeed, a single outlier can completely change the RMSE value even if the error in each point
was reduced.

Instead of that, we computed error maps and used the same dynamique for each error
image. The comparison are then made qualitatively by observing grey level values for each
error image.
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“Bergerie” dataset

This dataset is a stereo pair which was simulated by Lionel Moisan for CNES. For this map, a
ground truth is available which allows to make error measurements. Moreover, the denoising
effect of the planar reprojection can be observed.

The reference image of the stereo pair as well as the ground truth disparity are shown in
Figure 4.4. The observed 3D scene is made of three distinct planes.

��� ���

Figure 4.4: “Bergerie” dataset: (a) Reference image of the stereo pair. (b) Ground
truth disparity map.

The results that were obtained with the different algorithms as input are shown in Figure
4.5. The three different algorithms are tested here as well as the ground truth with an additive
noise. The errors of the algorithms to the ground truth are shown in Figure 4.5 (d). For a
better comparison, the same image dynamique was used on every error image (white = 0 pixel
error, black = 0.10 pixel error). Then, the whiter the error image looks, the less error there
is. As expected from the algorithm description, the method producing the lowest error is
Sabater’s algorithm. The results are better than MARC algorithm which uses the same sub-
pixelic approach. This is mainly due to the multi-scale step of MARC which can propagate
errors through the scales combined with the outlier rejection criterion which is less effective
than the one in Sabater’s algorithm. At last, MicMac algorithm is the less precise because it
is not well adapted to compute sub-pixelic disparity. Moreover, the result is quantized which
is a flaw compared to the other two algorithms. However the disparity map is dense which is
an advantage over the other two algorithms.

Let’s now look at the classification results obtained with the original algorithm from
Chapter 3 (Figure 4.5 (b)). The disparity maps were well segmented with noisy ground
truth, MARC and MicMac algorithms. However, the classification obtained with Sabater’s
algorithm is not satisfactory. The explanation is that the residual errors of the noisy ground
truth, MARC and MicMac are almost homogeneous whereas it is not the case for Sabater’s
algorithm. As explained in section 4.2, as the outlier rejection threshold in our algorithm is
estimated from the first planes that are detected (usually the planes with a lower error), the
threshold is not adapted to the parts of the disparity maps with another error distribution.

Let’s now give an explanation of the non-homogeneous error distribution of Sabater’s
algorithm. In this method, the disparity is computed by block matching and is based on the
assumption that the disparity is constant in the blocks that are matched. This hypothesis
is however not in accordance with the 3D geometry of the scene and is not adapted to very
slanted planes. The disparity error will then be higher for slanted planes than for orthofrontal
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Figure 4.5: Results with different input algorithms. From top to bottom: ground
truth + additive Gaussian noise, Sabater’s algorithm, MARC algorithm, MicMac
algorithm. (a) Disparity map (red parts are missing points). (b) Classification with
the initial algorithm of Chapter 3. (c) Classification after the correction of section
4.2.2. (d) Initial error to ground truth (0 pixel = white, 0.1 pixels = black). (e)
Final error after reprojection on the classification planes (0 pixel = white, 0.1 pixels
= black).
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planes (which is one of the aspects of the adhesion artifact, see Chapter 5). For MARC and
MicMac algorithm, this error is partly corrected by the barycentric correction (MARC) and
by the global minimization (MicMac) which explains the more homogeneous distribution of
the global error.

To correct the classification errors due to the non-homogeneity of the error distribution,
we used the correction algorithm that was described in Algorithm 6 (Figure 4.5 (c)). After
applying the correction, good segmentations were obtained in every situations.

Let’s now compare the residual error maps before and after reprojection on the classified
planes (Figure 4.5 (d) and (e)). We see that with all the input algorithm, the images are
whiter than before which means that the error to the ground truth has been reduced after
the reprojection with our classification. This tends to justify the usefulness of this algorithm
for disparity map denoising in piecewise-planar situations. Moreover, we see that the re-
sults obtained with Sabater’s algorithm are a lot better than the ones found with the other
approaches.

At last, in Figure 4.6 we show that our plane classification algorithm can be used for the
interpolation of missing data. To do so, each unknown point is reprojected on the same plane
as the nearest known point. The comparison with the median filter interpolation, as proposed
in [Sabater, 2009], shows that our method is more adapted for data interpolation. This is due
to the fact that the median filter is not adapted to noisy data which is always the case with
real disparity maps. As opposed to that, since our method can also be used to denoise the
data points, it is more adapted to interpolate missing points.

“Village” dataset

As the previous dataset, “Village” dataset is a stereo pair which has been simulated by Lionel
Moisan. Once again a ground truth is available which allows to compare the input methods
and the validity of interpolation. Figure 4.7 shows the reference image as well as the ground
truth disparity map.

For this dataset, only the results of MicMac algorithm and Sabater’s algorithm were
available. Figure 4.8 shows the results obtained on the resulting disparity maps as well as
the ground truth corrupted with additive Gaussian noise. As for the “Bergerie” dataset, a
coherent classification was obtained after the application of our algorithm with the correction
from section 4.2.2. Once again, the disparity maps were denoised in all the situations after
reprojection of the points on the planes that were found.

At last, Figure 4.9, shows that the obtained classification can once again be used to
interpolate the missing disparities in a coherent way. As before, by looking at the error
images, one can see that the found interpolation is more adapted than the median filtering
interpolation proposed in [Sabater, 2009].

Toulouse PELICAN dataset

PELICAN images are aerial images acquired by CNES. A stereo pair of the city of Toulouse
was acquired and Sabater’s algorithm was then ran on it. Since this stereo pair is a real one, no
ground truth is available in this case. Therefore, the analysis of the results can only be based
on the coherence with the reference image. The results are shown in Figure 4.10. Even in
this case were the data are very noisy, we obtained a classification which seems coherent with
the reference image. This coherence is confirmed by the fact that after the reprojection of the
disparitiy map with our classification, the disparity map seems to be unchanged. However,
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Figure 4.6: Interpolation of the missing points from the classification. Top Row:
interpolation by reprojection on the nearest plane found with our algorithm. Down
row: interpolation with median filtering. (a) Interpolated disparity for Sabater’s
algorithm disparity map. (b) Error between the reprojected disparity and the ground
truth for Sabater’s algorithm disparity map (0 pixel = white, 0.1 pixels = black).
(c) Interpolated disparity for MARC algorithm disparity map. (d) Error between
the reprojected disparity and the ground truth for MARC algorithm disparity map
(0 pixel = white, 0.1 pixels = black). In both cases, the error commited with our
interpolation is a lot lower than the one obtained with median filtering.
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Figure 4.7: “Village” dataset. (a) Reference image. (b) Ground truth disparity
map.
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Figure 4.8: Result on the “Village” dataset. From top to bottom: ground truth +
additive Gaussian noise, MicMac algorithm, Sabater’s algorithm. (a) Disparity map
(red parts are missing points). (b) Classification with the initial algorithm. (c) Clas-
sification after the correction. (d) Initial error to ground truth (dynamique: 0 pixel
= white 0.1 pixels = black). (e) Final error after reprojection on the classification
planes (dynamique: 0 pixel = white 0.1 pixels = black).
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Figure 4.9: Interpolation of the missing points in disparity map obtained with
Sabater’s algorithm. (a) Interpolated disparity map by reprojection from our clas-
sification. (b) Error between the interpolation and the ground truth (the larger the
error, the darker the image). (c) Interpolated disparity map with median filtering.
(d) Error between the interpolation and the ground truth.
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Figure 4.10: Toulouse PELICAN dataset. (a) Reference image. (b) Disparity map
obtained with Sabater’s algorithm. (c) Classification result with our algorithm. (d)
Reprojection on the planes found with our classification
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using the result of MicMac algorithm as input data gave poor results because the precision of
MicMac’s output was not precise enough.

Middlebury Venus and Sawtooth

As a last experiment, we ran our algorithm on the Middlebury3 disparity maps obtained from
Sabater’s algorithm. We only tried here “Venus” and “Sawtooth” disparity maps because
they are both piecewise planar. Our results are shown in Figure 4.11. The classification that
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Figure 4.11: “Venus” and “Sawtooth” disparity maps. (a) Ground truth disparity
map. (b) Disparity maps obtained with Sabater’s algorithm. (c) Classification
obtained with our algorithm. (d) Interpolated disparity map from our classification.
(e) Error between interpolation and ground truth (the darker the image, the larger
the error).

was obtained was more or less the one expected and the interpolation a lot similar to the
ground truth. The error maps confirm all that since the remaining error is almost everywhere
less than the quantification step of the ground truth. The black parts in the error images
(large errors) are all localized near the planes delimitations. This result was expected since
the unknown points were affected to the nearest group which do not necessarily corresponds
with their actual plane. This suggests the use of a contour detection method to correct these
misclassification. This will be the topic of the next chapter of this thesis.

4.4 Weighted planes

We now propose two modifications of our algorithm to see if the a priori knowledge on the
point precision can be used for a better classification or a better plane estimation:

• Use the point precision as the distance rejection threshold in Algorithm 5 instead of
using the automatic estimation.

• Weight the plane computations according to this precision.

3www.vision.middlebury.edu/stereo
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In her Ph.D. thesis, Neus Sabater gave a formulation of the errors committed during the
computation of disparity maps. In particular, she gave an expression of the variance of the
main error term which is a function of the image noise variance σ2:

Var(Ex0
) = 2σ2

∫

[ϕ(x− x0)ux(x+ ε)]2Ndx
(∫

ϕ(x− x0)ux(x+ ε)2dx
)2 (4.5)

where u(x)x is the derivative according to the x axis of the image at point x, ε is the disparity,
and ϕ is the smooth weighted window used for correlation. From Eq. 4.5, one can see that
the error variance will be low in well contrasted regions (high gradient values) and high in
poorly contrasted regions (low gradient values). However, in presence of adhesion, this error
estimation does not reflect well what happens. Indeed, since adhesion happens in presence of
a highly contrasted edge or texture, the error variance estimation from Eq. 4.5 is very low
but the actual error can be very high because of the adhesion.

In order to still be able to use this error estimation in our experiments, we propose to use
the RAFA algorithm (Rectification de l’Adhérence par Fenêtre Adaptative) [Blanchet et al.,
2011] to compute disparity maps since it is made to avoid adhesion artifact. However, the
cost is a lower quality of the disparity maps.

4.4.1 RAFA algorithm description

RAFA algorithm [Blanchet et al., 2011] is a disparity map computation algorithm which aims
to limit the effects of the adhesion artifact. The algorithm is based on a fine analysis of
the correlation measure and on the observation that adhesion is among other things due to
highly contrasted textures or edges. This is characterized by a peak in the values of the image
gradient.

To avoid this during the disparity computation, the authors proposed to locally weight
the classical window used for the correlation ρ with the inverse of the gradient of the image
along the x direction ux:

ϕx0
(x) =

ρx0
(x)

(ux(x+ ε(x)))2
(4.6)

The effect of this weight is a noticeable reduction of the adhesion in regions where the
disparity is continuous.

We ran RAFA algorithm on the following three stereo pairs: the simulated pair of Toulouse
St-Michel, the “Bergerie” pair and the “Village” pair. The results of the algorithms, the
expected error from Eq. 4.5 and the actual error to the ground truth are shown in Figure
4.12. Note that the predicted error do not completely match the actual one. For the Toulouse
disparity map, the predicted error is a little pessimistic and the real error is a little noisier.
However, the regions of low and high error seem to match.

For the other two maps, the prediction is not the same as the observed error. As explained
before in the “Bergerie” experiment, the real error is stronger in some regions because the
block matching approach does not take into account the 3D geometry of the observed scene.
However, when this bias is removed, one can see that the error estimation and the real error
look similar. This means that for each considered planar region, the error prediction gives an
information on where the disparity computation should be less precise which is what we need
here.
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Figure 4.12: Disparity obtained with RAFA algorithm. From top to bottom:
Toulouse, “Bergerie” and “Village”. (a) Disparity map. (b) Precision estimated
from Eq. 4.5. (c) Error to the ground truth.
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4.4.2 Experiments

As a first experiment, we try to use the error prediction as the rejection threshold at each point
in our algorithm. The classifications obtained are shown in Figure 4.13. One can see that the
error prediction is not well adapted to the Toulouse disparity map because it is overestimated.
The results obtained with the classical approach are not completely satisfactory but this is
mostly due to the fact the disparity map is not very precise.

��� ��� ��� ���

������

Figure 4.13: (a), (c) and (e): classification obtained using the error prediction. (b),
(d) and (f): result using the classical approach.

We now propose to observe the effect of using weights in the computations of the classified
planes. The goal here is to attenuate the importance of the less precise points to improve the
plane estimation. We therefore decide to use the following weight at each point:

w(x0) =
1

0.01 +
√

Var(Ex0
)

(4.7)

where Var(Ex0
) is the predicted error variance given by Eq. 4.5.

We tried this computation on the three different disparity maps and used two different
classifications each time: the one obtained from the ground truth disparity map as an input
to our algorithm and the one obtained by applying our algorithm on the real disparity map.
In the latter case, to avoid misclassification errors which are not related to the disparity map
error, we also tried to measure the reprojection error after the rejection of the most error
prone points (points for which the reprojection error is more than 0.5 pixels). The values of
the RMSE (Root Mean Square Error) between the projected points and the ground truth in
each situation are given in Table 4.1.The results show that the weighted estimation and the
least square estimation give similar results which tends to favor the least square estimation
since it requires less computations.
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GT classification Disparity classification Filtered classification
Init Classic Weighted Init Classic Weighted Init Classic Weighted

Toulouse 0.2610 0.0338 0.0323 0.1593 0.1353 0.1353 0.1416 0.1283 0.1283
“Bergerie” 0.6537 0.0396 0.0360 0.5248 0.4843 0.4843 0.0310 0.0169 0.0169
“Village” 3.6728 1.6288 1.6543 1.6435 0.7411 0.7487 0.0595 0.2843 0.2851

Table 4.1: Root Mean Square Error in pixels between the reprojected disparity and
the ground truth.

4.5 Conclusion

In this Chapter, we completed the experiments of Chapter 3 with other data. Using data
with a non-homogeneous error distribution pointed out the need of a correction. With this
corrected algorithm, coherent segmentations were obtained on the different dataset. Moreover,
by reprojecting the points on the segmented planes we were able to reduce the error of the
disparity maps, which tend to confirm the quality of the segmentation. This segmentation
was also used to interpolate points with an unknown disparity in what seems to be a coherent
way. However, so far the missing points are just associated to the same group as their nearest
known point which produce errors near the plane delimitation. In the next Chapter, a solution
will be proposed to overcome these errors by finding a proper separation for each pair of plane
in the classification. At last, the experiments on the error prediction showed that the plane
estimation was not significantly improved by weighting the points with this error. Using an
error estimation may then be seen as an overkill compared to our original method seems
similar results were obtained with less computations.
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Résumé: La méthode introduite dans les chapitres précédents permet de seg-
menter une carte de disparités (ou des cartes de profondeur laser) en régions où
un modèle planaire peut être appliqué. Toutefois, la segmentation obtenue peut
être imprécise au niveau des frontières entre plusieurs régions. Cette imprécision
de classification est causée par différents facteurs variant selon les données utilisées.
Pour le cas des cartes de disparités, cela est par exemple dû à:

• un non référencement des points c’est-à-dire que soit la disparité n’a pas
été calculée en un point donné, soit que le point ne fait pas parti de la
segmentation plane par morceaux;

• un mauvais calcul de la disparité dû par exemple à l’effet d’adhérence;

• l’incertitude sur la disparité faisant qu’un point peut potentiellement ap-
partenir à plusieurs régions en même temps.

Dans ce chapitre, nous introduisons une nouvelle approche pour calculer les séparations
entre deux régions planaires en prenant en considérations les différents points ex-
posés précédemment. On se servira pour cela à la fois de l’information fournie par
les images utilisées pour calculer la carte de disparités mais aussi de l’information
fournie par le modèle plan de chaque région et l’interpolation qui en résulte selon
l’endroit où l’on suppose que s’arrête chaque région.

Ce calcul a de nombreuses applications dont, entre autres, la correction de l’adhérence,
l’interpolation des points manquants ou encore la vectorisation de la carte de dis-
parités.

Abstract: The method previously described in the former chapters provides a
segmentation of disparity maps (or range images) into regions where a planar
model can be applied. However, the resulting segmentation may be imprecise
near regions boundaries. These misclassifications are caused by various elements
that depends on the data. In the case of disparity maps, this is for instance due
to:

• the unknown value of the disparity at one point or its non-classification during
the segmentation process;

• an error in the computation of the disparity that may be due to adhesion;

• the uncertainty on the disparity computation that makes it possible to be
associated to several planar groups.

In this chapter we introduce a new approach to compute the boundary between
two planar regions that takes into account the points previously exposed. We will
use the information given by the images of the stereo pair as well as the information
given by the planar model of each region which allows the interpolation of missing
data depending on where we suppose that region boundaries are.

This computation has a lot of applications including adhesion correction, interpo-
lation of missing points or disparity map vectorization.
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5.1 Introduction

In the previous Chapters, two approaches were proposed to achieve the piecewise-planar seg-
mentation of a disparity map. These methods were both simply based on the 3D information
given by the map and thus could be applicable to other type of range images. However, since
the belonging to a plane is made up to a distance threshold, there may be an ambiguity in the
segmentation when a point is distant of less than this threshold for several planes. Moreover,
if we consider that the input disparity maps were computed with a block matching approach
(such as the one proposed by [Sabater, 2009]), the data points may suffer from the fattening
artifact (see Chapter 1 for more details on this artifact). The consequence of this artifact is
the dilatation of some objects in the disparity map which can then be transfered to our final
segmentation. At last, in methods like [Sabater, 2009], a rejection criterion is defined to avoid
potentially miscalculated points. As a result, the disparity map may not be completely dense
and so is our segmentation from that. All of this suggests the use, at some point, of the infor-
mation given by the two images of the stereo pair to refine our piecewise planar segmentation
and define it at all points of the grid.

5.1.1 Previous work on adhesion correction

Several authors proposed approaches to correct or suppress adhesion during the disparity
map computation. A first way to deal with this artifact is to adapt the size and shape of
the windows used for correlation. Reducing the size of the correlation window reduces the
probability of having a discontinuity inside it. However, the smaller the windows are, the
more the sensitive to noise the results are. [Okutomi and Kanade, 1993] proposes to adapt (in
both size and shape) the window used at each point depending on the local variation of both
intensity and disparity. [Lotti and Giraudon, 1994] argues that this solution gives good results
as long as the discontinuities are already well localized. They propose to constrain the windows
by the contours but still to keeping the window size constant. This however may imply a
strong deformation of the windows in one of the directions. [Boykov et al., 1998] chooses
an arbitrary window that varies at each pixel. Their results tend to be better than other
classical correlation methods. However, the authors point out a systematic error that occurs
when propagating information from highly-textured area to low-textured area. [Veksler, 2002]
and [Veksler, 2003] propose to choose a window among windows of various size and shape,
however this window selection needs much parameter tuning. At last, [Hirschmüller et al.,
2002] proposes a two-step approach. Disparities are fast-computed a first time using windows
of multiple support. Then, the disparities in regions with discontinuities are computed a
second time with a split window.

Other existing methods set the size and shape of correlation windows but assign weights
to each pixel of the window to improve results near edges [Prazdny, 1987], [Darrell, 1998],
[Xu et al., 2002] or more recently [Yoon and Kweon, 2006]. [Delon and Rougé, 2007] and
[Delon, 2004] analytically study the correlation measure and propose to correct adhesion
using a so called barycentric correction. For a given correlation window, instead of associating
the disparity found to the central pixel, it is associated to the weighted barycenter of the
contributing points. The effect of this correction is an irregularly sampled disparity map
with points concentrated around well contrasted edges. This correction is optimal when
the compared patch contains only one edge with only one discontinuity in depth which is
unfortunately not always the case.

Inspired from that, [Sabater, 2009] proposes to remove points that may suffer from adhe-
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sion. The author first computes a corrected disparity map. First, for each correlation window,
the disparity that is found is associated to the 25% points whose gradient orientation match
best. As opposed to that, classical approaches associate the block disparity only to the central
pixel, and the barycentric correction only to the block barycenter. In the final result, some
of the points will be associated to several disparities and some others to none. Then, the
median disparity is taken for each point (when it exists). From the corrected disparity map,
the points risking adhesion can be found. Due to the influence of a window on points, these
points are completed by all the points nearer than half a correlation window from them. The
main drawback of this approach is that it removes the points suspected of adhesion instead
of correcting them. A lot of information is then lost in the process.

Some other approaches match features instead of blocks of pixels and are therefore not
sensitive to adhesion. However, this is often at the cost of a substantial reduction of the
match density. [Schmid and Zisserman, 2000] proposes various methods to match individual
line segments and curves. [Robert and Faugeras, 1991] matches cubic B-splines interpolation
of 2-dimensional edges. [Musé et al., 2006] and [Cao et al., 2007] propose to use an a contrario
framework to automatically match pieces of level lines. [Matas et al., 2004] matches homoge-
neous and stable regions but the results is still sparse. Apart from the possibly poor density of
features, all these approaches may still suffer from adhesion. Indeed, all the features presented
depend at some point of a neighborhood. As an example, even if the Laplacian extrema of
the SIFT are very local, the feature descriptor involves an 8× 8 pixel window.

To sum up, all the local methods correcting adhesion are not a 100% effective and may leave
residual adhesion. In another hand, global methods for disparity computation do not suffer
from adhesion but may propagate wrong information in the disparity map. The approach
proposed by [Sabater, 2009] remove most of the adhesion points as well as other points and
useful information for post-segmentation algorithms are lost in the process. The disparity
map segmentation method we propose here, takes into account the possible adhesion artifacts
and uses the additional information given by the computed planes to simulate disparity and
adhesion.

5.1.2 Previous work on contour refinement in range segmentation algo-
rithms

The contour delimitation and refinement problem was treated in different ways by several
authors.

In some methods adapted to urban situations, the segmentation is made with a strong
a priori on the shape of the buildings. In [Ortner et al., 2007] and [Lafarge et al., 2008b],
a rectangle fitting approach is proposed as a pre-segmentation. Each building is roughly
described by a set of rectangles and then refined with another approach. These methods
produce a visually nice 3D model of data but are rather imprecise. Moreover, they are
adapted to dense disparity maps.

In a similar vein, some authors use cadastral ground plans to simplify the building seg-
mentation (e.g. [Vosselman and Dijkman, 2001], [Durupt and Taillandier, 2006], [Flamanc
and Maillet, 2005]). These plans are first fitted to the range images, then parallelism and
symmetry assumptions on the walls and roof separations are made to guide the final segmen-
tation. However, as for the rectangle fitting approach, the final segmentation is usually not
very precise since cadastral plans are not rarely adapted to the views.

Some other methods use a combination of 2D and 3D feature segments to define a polygonal
enclosure to each planar facet defining a rooftop. In [Ameri and Fritsch, 2000], the segments
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are mixed with intersection segments and the best configuration is chosen by thresholding.
In [Bignone et al., 1996], a set of possible contours for a planar facet is defined by all the
combination of segments. The most likely combination is then kept. In [Vallet and Taillandier,
2005], the 3D plane configuration is modified to fit a set of 2D segments with a Levenberg-
Marquardt minimization.

In some methods, an initial piecewise-planar configuration is adjusted to better fit a dense
disparity map. In [Taillandier and Deriche, 2004], a graph corresponding which vertices
correspond to all the possible planes (including vertical ones) is computed. The most likely
configuration is then chosen with a Bayesian approach. In [Brédif et al., 2008], an initial 3D
polygon evolves with a kinetic framework to better fit the data.

At last, when no other information is available, some methods ([Schnabel et al., 2007a],
[Chauve et al., 2010]) both use a graph-cut approach to extrapolate a set of primitives to
missing points and chose where these primitives stop when the points are available. However,
using graph-cut introduces new parameters which are hard to tune.

In this chapter, we propose a method that refines an initial piecewise planar segmentation
especially where there may be some uncertainty. Considering two planes, we first define a
region where the association of a point to one plane or the other may be wrong. Then we
search for the best separation between these two planes within this ambiguity region. The
separation is computed either by considering the intersection between the two planes (when
it exists), either by finding a contour that fits to the strong gradients of the reference image,
or at last by finding the contour minimizing the re-projection error of the reference image
onto the second image. The decision between these three possible solutions is made using an
a contrario criterion. As in the previous chapters, we try to avoid as much as possible the use
of parameters. To do so, we limit our search to continuous polygonal contours. This moreover
ensures the simplicity of the result. The last advantage is the possible analytic expression of
the final contour.

The chapter is organized as follow. First, we will give a global description of the contour
detection algorithm. Then, each detail of the different steps will be given in the following
sections.

5.2 Boundary refinement between two planar groups

We now introduce a new method to refine the piecewise-planar segmentation of disparity maps
introduced in the former chapters. As opposed to other segmentation approaches, our method
assumes that the disparity map is not perfect. In particular, since the input disparity maps
were computed using a block matching approach, we assume that it may suffer from adhesion.
This artifact is indeed the source of segmentation errors since foreground objects tend to be
fattened.

Assuming the presence of adhesion allows us to correct it. The main advantage of our
approach compared to other adhesion corrections methods (see previous section), is to know
the two possible models that can be used near an object edge. Knowing this, disparities can
be removed and interpolated. The only thing that remains to know is where to stop using
one model and start using the other one.

To our knowledge, our segmentation algorithm is the first one to take into account the
possible errors in the disparity maps. Since methods like [Igual et al., 2007] and [Facciolo
and Caselles, 2009] are based on an image segmentation, they are likely to be robust to
adhesion. However, this image segmentation is also a source of errors since the piecewise-
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planar segmentation does not always match an image segmentation. This is indeed the case
when an edge is not contrasted enough in the image or when for instance a spherical surface
has to be approximated by several planes.

Overview of our method

Let’s now give a global description of our algorithm. Given two planar regions of a disparity
map segmented with Algorithm 5 and 6 (see Chapter 3 and 4), we aim to refine the separation
between these two regions. The separation is refined in a zone where the disparity points are
either unknown, risking adhesion or possibly associated to both model plane according to the
distance threshold that is used.

Generally speaking, the search for an optimal separation between two planes π1 and π2 can
be viewed as an energy minimization problem (or a maximization depending on the energy
that is used):

γ1,2 = argmin
γ∈Γ

E(R1,2, γ) (5.1)

where γ1,2 is the optimal separation that is found, Γ is a set of possible separations, and R1,2

is the research region and therefore the target set of the parametric curve γ1,2.
For instance, if we consider the Snakes energy [Kass et al., 1988], then Γ is the set of

parametrical curves of [0, 1] 7→ R1,2 twice differentiable, and E(R1,2, γ) can be defined as:

E(R1,2, γ) =

∫ L(γ)

0
g(|−→Du(γ(s))|)ds+ C

∫ L(γ)

0
(a+ |−−−→Curv(γ(s)))|ds (5.2)

where u is in our case the reference image of the stereo pair, a and C two parameters,−−−→
Curv(γ(s)) = −→γ ss(s), and g is a positive and decreasing function. However, since the energy
increase when the curve gets longer, minimizing it tends to shrink the snake curve.

A more recent and simpler snake approach proposed in [Kimmel and Bruckstein, 2003]
avoids this length dependent energy by maximizing the average contrast:

E(γ) =
1

L(γ)

∫ L(γ)

0
g(
−→
Du(γ(s) · −→n (s)))ds (5.3)

where g is this time an increasing function and positive function usually | · |α. However, as
pointed out in [Desolneux et al., 2008a] with their experiments, the choice of this remaining
parameter α affects a lot the result since it partly defines the regularity of the result.

The construction of our method was driven by two goals:

• To avoid as much as possible the use of parameters or at least to be able to set them
using a simple decision criterion.

• To find an energy that properly describes our situation and to handle as much as possible
all the information that is available: 3D information and image information.

Constrained set of solutions Γ

As a choice for Γ, we used the set of polygonal curves [0, 1] 7→ R1,2.
The first interest of doing so is that the regularization of the solution γ is self imposed by

the number of vertices that are used to define the curve. This number can be set naturally
as it will be exposed later by dividing the search regions.

Another advantage of using the set of polygonal curves is that the solution γ can be
expressed analytically at any point.
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Energy choice

Different situations may arise when seeking to localize the curve that separates two planar
patches of a surface or DEM. Each situation calls for different ways to look for the optimal
separation by defining a specific energy for each case. In addition we need an algorithm to
decide in which situation we are. Our approach, follows the Occam’s razor principle, and
consists of progressing from the simplest possible explanation to more complex ones. If a
simple solution passes a coherence test, it is kept. Otherwise more complex solutions are
tested until one of them is kept as the final solution.

In our case, three different situations have been identified:

1. Plane Intersection. In this case the surface is continuous and both neighboring patches
are sufficiently large and camera-facing to be detected as independent groups. In this
case the intersection between the two planes is the natural location of the intersection.
We identify this situation as coherent with the measured data if the plane intersection lies
within the uncertainty region AND the plane intersection model provides a sufficiently
photo-consistent explanation of the captured images.

2. Very different planes ; Discriminant photo-consistency. In this case the surface presents
a discontinuity between the two surface patches or the angle between the two continu-
ous planes is very sharp. This may be due to a real discontinuity, or to the fact that
the joining surface patch is either occluded or non-detected because it is too small.
In this case we try to locate the border between both surface patches by maximizing
photo-consistency between both images in the pair, as long as this criterion provides
sufficiently discriminative evidence. The photo-consistency between the reference im-
age and the second image using each plane models π1 and π2 is then likely to be very
different. In [Vu et al., 2009], the authors made a similar reasoning and used the photo-
consistency to refine an existing mesh obtained from multi-view stereo data.

3. Discontinuous surface; Non-discriminant photo-consistency. If the surface is dis-
continuous but photo-consistency is not discriminative enough we are left with a mere
heuristic to locate the surface discontinuity at its most probable position. As we shall
deduce later from the properties of Lambertian surfaces, a sensible heuristic can be
formulated as a gradient energy minimization. Computing this energy is then similar
to computing the geodesic distance as introduced in [Yatziv and Sapiro, 2006], [Bai
and Sapiro, 2007]. A similar approach was also used in [Facciolo and Caselles, 2009] to
compute geodesic Voronoi cells as a prior segmentation to their algorithm for piecewise-
planar segmentation of sparse disparity maps.

In the first situation, the location of the border between planar patches is trivial and
reduces to standard affine 3D geometry. The main difficulty lies in the latter two, however,
require a more sophisticated energy to be minimized as stated in Equation (5.1). In the general
case the problem leads to non-convex optimization in a quite large domain, with several local
minima. Such can be observed easily if one consider the third energy functional. Two distinct
highly contrasted level lines in the search region will produce two different minima of the
energy, which implies that the problem is non-convex. A similar reasoning can be applied to
the photo-consistency energy.

In order to make the problem more tractable, we looked (in each of these two cases) for
sensible energies that can be minimized numerically by fast algorithms like dynamic program-
ming, without tricky convergence issues. Such is done by dividing R1,2 into small subregions
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where the searched separation is likely to be linear. Note that this particular case in not
adapted to graph-cuts since they do not ensure a single continuous separation between the
points of R1,2.

The next three sections are devoted to the derivation that has been followed to obtain
suitable energies in both cases (2 and 3), the hypothesis testing methodologies that are used
to decide between the two possible energies, the resolution with the dynamic-programming
framework, and on how to solve the trade-off between curve complexity and data-fitting. Next
section focus on the definition of a search region for the contour between two planes R1,2.
The section after, gives details on the computation of the different energies and on how to
decide which energy best describes the situation encountered. The adaptation of the problem
to make the energy minimization by dynamic programming possible is then explained in a
last section.

A global description of the method is given in Algorithm 7.

Algorithm 7: Plane separation refinement

Data:
R = {R1, . . . ,RN}, a partition of the disparity map into planes
Result:
GR(R,Q) the adjacency graph of each region
∀(Ri,Rj) ∈ Q, γi,j the polygonal curve that best separates the two planes
begin1

Compute the adjacency graph of regions GR(R,Q).2

foreach (Ri,Rj) ∈ Q do3

Compute the search region for the contour Ri,j .4

Divide Ri,j into subregions (Ri,j,k)k=1..M to simplify the problem5

foreach Ri,j,k do6

Find all the possible segments7

end8

Find γi,j , the sequence of segments minimizing E(Ri,j , γ), using dynamic9

programming
end10

end11

5.3 Search regions

5.3.1 Adjacency graph of regions GR
The first step of our method is to compute the adjacency graph of regions GR of our disparity
map segmentation. To deal with potential holes in disparity maps, such is achieved by com-
puting the Voronoi map of each segmented region. Neighboring regions are then defined as
regions whose Voronoi cells share a mutual edge.

One of the main advantage of using disparity maps as data is that the points stand on
a regular grid D. The computation of the Voronoi cells can then be considerably reduced
using the 3-4 Chamfer distance [Borgefors, 1986] (which only require two explorations of the
disparity map).
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Since the 3-4 Chamfer distance is an approximation of the L2 one, this may produce small
errors in the Voronoi segmentation. This however does not really matter since the goal here
is not the precision but just to find out the neighboring regions to construct GR. A similar
approach was chosen in [Ameri and Fritsch, 2000] in their segmentation algorithm. Figure 5.1
illustrates what was said before with an example of a real disparity map segmentation.
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Figure 5.1: Neighboring regions. Left: initial segmentation, the black parts rep-
resents holes in the segmentation. Right: Voronoi cells of each region. From the
Voronoi segmentation, finding the neighboring regions becomes obvious. In this case
the edges of the adjacency graph of regions are: {(1−5); (1−7); (2−3); (2−4); (2−
7); (3− 4); (3− 7); (3− 8); (3− 10); (4− 10); (4− 11); (4− 13); (4− 14); (4− 15); (5−
6); (5 − 7); (6 − 7); (6 − 9); (6 − 16); (7 − 8); (7 − 9); (8 − 9); (8 − 10); (9 − 10); (9 −
16); (9−17); (10−11); (10−13); (10−17); (11−13); (12−13); (13−14); (13−18); (14−
15); (14− 18); (15− 18); (16− 17)}

5.3.2 Search region for the separation between two planes

Now that the neighboring regions have been defined, we need to define where the separation
between two regions can be found. As said previously, we suppose that separation between
two regions can evolve wherever the segmentation of the two regions may be wrong.

Let’s now draw our attention on two neighboring regions that we will call R1 and R2.
Let’s note RV1

and RV2
their associated Voronoi cells. We define Ω0 as the common edge

border of RV1
and RV2

.

Ω0 =
{

x ∈ RV1

⋃

RV2
�d(x,R1) = d(x,R2)

}

(5.4)

where d(x,Ri) = minxi∈Ri
||x − xi||2. Note that when R1 = RV1

and R2 = RV2
, then Ω0 is

the initial separation between the two regions R1 and R2.

From Ω0 we can now define the points that were possibly misclassified by the segmentation
algorithm. This research region, R1,2, is defined by:

• the unknown points between the two regions (no classification label). Since we are only
interested in the unknown points that may be related to the contour, we define two sets:
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The points of RV1
\ R1 closer to R2 than any other set Ri ∈ R, i 6= 1, 2 and reversely:

Ω1→2 = {x ∈ (RV1
\ R1) � d(x,R2) < d(x,Ri), ∀Ri ∈ R, Ri 6= R1,R2}

Ω2→1 = {x ∈ (RV2
\ R2) � d(x,R1) < d(x,Ri), ∀Ri ∈ R, Ri 6= R1,R2} (5.5)

• the points that could have been associated to both regions R1 and R2 by the segmenta-
tion algorithm. This is due to the fact that a point is associated to a plane if its distance
to the plane along the z-axis is less than the distance threshold τz. A point may then
be valid for several planes according to this criterion. The set is then defines as:

Ω2 =
{

x ∈ R1

⋃

R2� |z(x)− zπ1
(x)| < τz and |z(x)− zπ2

(x)| < τz

}

(5.6)

• the points for which the disparity computation may have been corrupted by the adhesion
artifact.

Since R1,2 should not contain missing interior points of R1 and R2, Ω1→2 and Ω2→1 are
reduced to their subsets that are connected Ω0. Moreover, Ω2 is reduced to its subsets that
are either connected to Ω1→2, Ω2→1 or Ω0. We note Ω′1→2, Ω

′
2→1 and Ω

′
2 these reductions of

Ω1→2, Ω2→1 and Ω2. In the discrete case, this connectedness can be defined for example using
the 4-connectivity. This can be computed using a greedy approach. For clarity reasons, we
will note:

Ω1,2 =
(

Ω0
⋃

Ω′1→2

⋃

Ω′2→1

⋃

Ω′2
)

(5.7)

From the description of the adhesion artifact (see Chapter 1), one can see that the points
closer than half a correlation window (W/2) to an edge in the disparity map may have been
corrupted by adhesion. Given two objects in a 3D scene, the segmentation of the front object
may then have been dilated of a correlation window W . This means that all the points
nearer than half a correlation to a set border may be wrong and should be removed from
the classification if they belong to a plane in front of another one. To take that into account
during the search of the plane separation, we define the search region as the dilatation of Ω1,2
by a correlation window whenever the points belong to the front region:

R1,2 = (Ω1,2 ⊕W1)
⋃

(Ω1,2 ⊕W2) (5.8)

where

(Ω1,2 ⊕W1) = Ω1,2
⋃ {x ∈ R1 � zπ1

(x) > zπ2
(x) and d(x,Ω1,2) < W/2}

(Ω1,2 ⊕W2) = Ω1,2
⋃ {x ∈ R2 � zπ1

(x) < zπ2
(x) and d(x,Ω1,2) < W/2} (5.9)

An illustration of the construction of a search region is given in Figure 5.2 and an example of
such construction on real data is shown in Figure 5.3.

5.4 Energy choice.

As discussed in Section 5.2, the second step of the algorithm is to choose an energy functional
in Eq. (5.1) to quantify how good a separation between two planes is. Three different solutions,
each corresponding to a different situation, are proposed:

1. computing the intersection between planes,
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Figure 5.2: Construction of a search region. R1 and R2 are the two regions for
which we want to refine the separation. The search region R1,2 is defined as the
dilatation by a correlation window of Ω0 (edge of the two Voronoi cells, in red here),
Ω1 (unknown points, in blue) and Ω2 (points possibly belonging to both planes, in
orange). The dilatation is delimited by the dash lines.

2. computing an energy quantifying the photo-consistency of the reference image and the
second image by applying at each point the two possible disparities implied by the two
possible planes,

3. computing an energy that is minimal when the selected contour correspond to a maxima
of the gradient of the reference image

To decide which situation should be considered in priority, an a contrario criterion is
defined.

This section is organized as follow. First, each of the two energies are described in details
(gradient energy for case 3, and L2 re-projection energy for case 2, see Sections 5.4.1 and
5.4.2). Then we address the problem of how to decide between cases 2 and 3 by means of an
a contrario methodology (see Section 5.4.3).

5.4.1 Gradient energy

In the absence of any further evidence we can use the following commonly accepted heuristics:
DEM discontinuities coincide to a large extent with gray-level discontinuities. There is not a
perfect coincidence but a large correlation and an almost inclusion relationship of the DEM’s
topographic map within the luminance’s topographic map.

The reason is the following:

• Most common case: different objects. A surface discontinuity is most often due to an
occlusion (a close object that hides a more distant one). The object in the foreground
and the one in the background have no reason to have similar color, or texture. And
even if they do have the same texture, it is extremely unlikely that the texture patterns
between foreground and background coincide perfectly. This leads to high luminance
gradients at the border separating the foreground object to the background one.

Another exception happens whenever these high luminance gradient are not the highest
gradients in the considered region. In this special case, finding the maximal gradient
will fail, but luckily, computing the photo-consistency between images should work.
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Figure 5.3: Example of construction of the search on Toulouse dataset. (a) Input
classification. (b) Region formed using the points with unknown disparities. (c)
Regions without intersection points. (d) Regions without adhesion points (dilatation
of (b) and (c))
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• Similar objects, different luminance. Now assume the less probable case where both
objects have similar color (albedo) and texture. To simplify the reasoning consider the
case where the surfaces are Lambertian. In that case the observed luminance is directly
proportional to the cosines of the angles between the surface normal and the light source,
and between the surface normal and the gazing direction. Hence in all probability, even
if the albedo of both surface patches is the same, the observed luminance will be in all
probability different between both patches.

• Similar objects, similar luminance. Still, if both surface patches are parallel (but at
different depths) or in a few pairs of (non-parallel) surface orientation combinations, the
observed intensity may be the same and no significant luminance gradient is observed in
the image. This is a highly unlikely situation, that may occasionally happen. Luckily,
when it does happen, most often the surface is continuous and the intersection criterion
(see Section 5.2) holds valid or when it does not, the photo-consistency between images
is likely to be valid.

Henceforth we shall assume that when all else fails, plane separation is trust-worthily
provided by the most regular and contrasted luminance edge that goes through the uncertainty
region R1,2.

The gradient energy functional that we adopt here takes advantage of this hypothesis by
computing the gradient of an image orthogonally to a given contour:

E∇(R1,2, γ) = −
∫ 1

0

∣

∣

−→∇u(γ(s)) · −→̇γ (s)
∣

∣ds (5.10)

E∇(R1,2, γ) is highly negative if the contour γ follows a well contrasted edge in the image
and close to 0 otherwise.

This energy is the core of several well known segmentation tools that are based on geodesic
distance computation [Bai and Sapiro, 2007]. It was also used in [Facciolo and Caselles, 2009]
as the base of their planar segmentation algorithm with geodesic Voronoi cells. In all those
works the minimizing curve γ is used to defined a geodesic distance between points, where
the weighted metric ensures that geodesics hardly go though contrasted edges.

Figure 5.4 shows an experiment done on the Toulouse Data set using only the gradient
Energy as described before. One can clearly see that this energy is not adapted in a lot
of cases and fails when the most contrasted curve does not correspond to the actual 3D
separation. This suggests the use of other energies (such as the photo-consistency or L2 re-
projection described in the next section) or the use of purely geometric criteria such as plane
intersections.

5.4.2 L2 re-projection error energy (photo-consistency energy)

Using the gradient energy functional gives good results in most situations. However, it will
fail whenever a strong gradient in R1,2 do not match the edge between planes. We therefore
introduce another energy functional based on the computation of the re-projection error to
deal with these situations.

Let’s first define the following norm and scalar product:


















< u, v >T ,A=

∫

x∈A
u(T (x)) · v(x)

||u||A =

√

∫

x∈A
u2(x) =

√
< u, u >I,A

(5.11)
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Figure 5.4: Resulting contours between planes using the gradient energy. (a) Input
disparity map classification. (b) Zoom of the gradient of the reference image into
the search regions. (c) Resulting contours. This energy seems very adapted in
cases where the 3D separation corresponds to a unique highly contrasted curve, but,
however fails in cases where the gradient is not very contrasted or where the most
contrasted curve is not the right one.

Where u, v : R2 −→ R are two functions that can be viewed as the reference and the sec-
ondary images, I, T : R2 −→ R2 are two point transformation functions (I is the identity
transformation) and A ⊂ R2 is a point set within two images.

Let’s consider as before the case of two regions R1 and R2 associated to the planes π1 and
π2 for which we wish to find the separation. Each curve γ ∈ Γs splits R1,2 into two parts:
Rγ,1 which is associated to plane π1 and Rγ,2 which is associated to π2.

We define the L2 re-projection error energy as the grey level difference between the two
images after applying the disparity induced by each planar model:

Eε(R1,2, γ) = ||u ◦ Tγ − ũ||R1,2
(5.12)

where

Tγ :
R2 7→ R2

x 7→
{

Tπ1
, if x ∈ Rγ,1

Tπ2
, if x ∈ Rγ,2

(5.13)

and where Tπ is the affine point transformation induced by plane π. The point transformation
Tγ depends on the partition of R1,2 that is induced by γ and on the two planes π1 and π2.
Modifying γ changes the partition and therefore the point transformation Tγ . We then search
for the curve γ that will minimize the error between the re-projection of reference image using
Tγ and the secondary image. Note that a similar energy was used in [Vu et al., 2009] to adapt
the mesh of a 3D scene to better fit to the corresponding stereo images.

Similarities with the correlation measure

The computation of disparity maps using a block matching approach is usually made by
maximizing the normalized crossed correlation between the images. Let’s consider a window
Wx around point x and the translation point transformation Tx : x ∈ R2 7→ x + t where
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t ∈ R2. Then the normalized crossed correlation between two images u and ũ around point x
and for a translation vector t is given by:

ρt(x) =
< u, ũ >Tt,Wx

||u||Wx+t
· ||ũ||Wx

(5.14)

The translation vector t maximizing (5.14) is then defined as the disparity at point x.
The L2 re-projection error energy given by Equation (5.12) is pretty similar to the corre-

lation measure (5.14). Indeed developing (5.12) we obtain:

Eε(R1,2, γ) = ||u ◦ Tγ ||2R1,2
+ ||ũ||2R1,2

− 2 < u, ũ >Tγ ,R1,2
(5.15)

Considering the first two terms of (5.15) as constants (which is not true since the first term
depends on Tγ) then minimizing (5.15) is equivalent to maximizing the non-normalized crossed
correlation for a non constant point transformation Tγ , that is < u, ũ >T ,R1,2

.
There are however two main differences with the standard correlation used for disparity

computation:

• The correlation measure is used on a block region to compute the disparity of a single
point whereas the re-projection error energy is computed for a all the points at the same
time.

• In the correlation, the disparity is assumed to be constant in the neighborhood Wx

(which is false for instance when the 3D points on a tilted plane or in presence of a
discontinuity). In the re-projection error energy, each point is associated to its own
disparity with supposedly correct model. The discontinuities in disparity are handled
by the two possible model.

The two previous points are the reason of the adhesion artifact in the correlation measure
(see Chapter 1). Assuming that the disparity in R1,2 can be represented by two possible
planar models, and adapting the “window” A to best separate both models is what makes us
robust to it.

Occlusions

The energy derived in Eq. 5.12 was somewhat naive, since it ignores occlusion artifacts. In
stereo-vision, some objects are occluded in some views but not in others (see Figure 5.5 for an
illustration of that). This must be taken into account for a realistic model. When the images
are rectified in epipolar geometry, this occlusion is observed only along horizontal lines.

When one computes an energy based on the similarity between two images such as the
re-projection error energy, the occlusion introduces errors since the energy compares objects
that are not present in both images. This can therefore make the energy minimization fail.

To avoid these occlusion errors, we propose to compute occluded regions and remove them
from the energy computation. As shown in Fig. 5.5 (c), a region is occluded whenever
the profile x + z(x) is discontinuous and the jump is negative (a positive jump represents a
desocclusion).

The occluded regions can be deduced from the 3D model. To see how they are computed,
let’s consider a given line y = y0 and two planes π1 and π2 modelling what happens on the left
and right of a point x0. If zπ1

(x0) > zπ2
(x0) then the points before x0 are possibly occluded.

The occluded points are computed iteratively: starting from point x0, a point x is occluded
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Figure 5.5: Occlusion in stereo-vision. (a) Two views of a same scene. (b) Disparity
values along the blue line. (c) x+ z(x).

if x+ zπ1
(x) > x0 + zπ2

(x0).

Let’s now integrate this in the re-projection error energy given by Eq. 5.12. Considering
a situation with two planes π1 and π2, each possible separation γ ∈ Γs induces a different 3D
model and therefore a possibly different occlusion region. Let us call R1,2,γ,occ the occluded
region caused by the closest of objects 1 or 2, when the separation between R1 and R2 occurs
along curve γ, and the disparity in regions R1 and R2 follow respectively the affine models
π1 and π2. We can then define a more accurate re-projection energy considering occlusion as
follows:

Eε,occ(R1,2, γ) = Eε(R1,2 \ R1,2,γ,occ, γ) (5.16)

The problem that occurs with Equation (5.16) is that since the energy is computed only on
non-occluded points, the number of points considered Equation (5.16) may vary depending on
the curve γ that is considered. We propose to overcome this situation by adding to Equation
(5.16) an expectation of the error that should occur in the occluded region considering what
is observed in the visible region. If the error at each point is seen as a random variable,
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the expectation of the error of the occluded points can then be estimated from the observed
points. Equation (5.16) then becomes:

E′ε,occ(R1,2, γ) = Eε(R1,2 \ R1,2,γ,occ, γ) + E (Eε(R1,2,γ,occ, γ))

=

(

1 +
#R1,2,γ,occ

#(R1,2 \ R1,2,γ,occ)

)

· Eε(R1,2 \ R1,2,γ,occ, γ)
(5.17)

where #· is the cardinal operator of a finite set.

5.4.3 Contour validation for the L2 error energy.

Whenever two planes are very close to each other or when the texture in the image is not
well defined, the re-projection error may be unreliable. In the first situation, since the planes
are close to each other, the disparities extrapolated from their equation have similar values.
The computation of the re-projection is then almost the same for both planes which makes
it hard to separate them. In the second situation, when the texture is not well contrasted,
any disparity gives about the same error value after re-projection. We therefore introduce an
a contrario to decide when it is preferable to reject the result obtained by the re-projection
error.

We first propose to simplify the re-projection error energy by binarizing it. This way, it
becomes a lot easier to define a sensible background model to describe the data for the a
contrario criterion. Though this new energy is simpler than before, the results obtained are
comparable to the one obtained with the classical re-projection error energy Eε,occ. Moreover,
the failure cases, are the same as before: similar planes or no texture. The last interest is
that the energy gets contrast invariant and is no longer sensitive to big contrast changes.

The binarization is done by first assigning a binary label to each point. For any point that
we consider, this label will be 1 if plane π1 causes the lower re-projection error than plane π2
and 2 otherwise. The binarized error is then measured by counting the number misclassified
points for a given contour:

E#ε(R1,2, γ) =
∑

x∈R1,2

11{|u ◦ Tγ(x)− ũ(x)| > |u ◦ T̄γ(x)− ũ(x)|} (5.18)

where T̄γ is the complementary point transformation of Tγ :

T̄γ :
R2 7→ R2

x 7→
{

Tπ1
, if x ∈ Rγ,2

Tπ2
, if x ∈ Rγ,1

(5.19)

Including occlusion as before gives:

E#ε,occ(R1,2, γ) =

(

1 +
#R1,2,γ,occ

#R1,2 \ R1,2,γ,occ

)

·
∑

x ∈
R1,2 \ R1,2,γ,occ

11{|u ◦ Tγ(x)− ũ(x)| > |u ◦ T̄γ(x)− ũ(x)|}

(5.20)
This energy measures if the two classifications given in one hand by the separation γ and

in another hand by the binary plane association are in accordance. When the edge between
the two planes is well defined, the plane labels are clearly separated into two distinct groups
and the curve minimizing the re-projection error fits to this separation (see Figure 5.6 (d) and
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(e)). As opposed to that, when the two planes are very close to each other or when the texture
is not well contrasted, the plane labelling is arbitrary and seems to be random (see Figure 5.6
(b) and (c)). The curve γ minimizing the energy is not necessarily the one separating best
the two planes. The randomness of the plane label distribution therefore tells how reliable the
contour detection will be. The more random the less reliable. This is a perfect environment
to define an a contrario criterion and define when the curve obtained by minimizing Equation
(5.20) is valid.

(a) (b) (c)

(d)

(e)

Figure 5.6: Illustration of the a contrario validation. (a) shows a piecewise-planar
segmentation obtained with our method. We focus on two regions and show which
plane gives the lowest re-projection error in R1,2, (b) and (d). We then show the
contour obtained by the minimization of Equation (5.20), (c) and (e). In the first
region, (b) and (c), the plane labels seem to be distributed randomly and the ob-
tained contour is not validated by the a contrario criterion. In the second region,
(d) and (e), the plane labels are organized and the contour is validated by the a
contrario criterion.

A contrario contour validation

We now define an a contrario model to quantify for a given contour how likely the energy
measure done in (5.20) is to happen randomly. This criterion then says if the contour found
by minimizing (5.20) should be used or not.

To do so, we need to define two distribution model: one describing the plane labelling and
one describing the error distribution.

Definition 7 (Label distribution HL) For any deterministic point x ∈ R1,2, let’s note
L(x) the i.i.e. random variable following the Bernouilli distribution with value 1 if point x is
associated to the plane π1 and value 2 if x is associated to π2:

P (L(x) = l) =







pl, if l = 1
1− pl, if l = 2
0 otherwise

(5.21)
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The distribution parameter pl can be either supposed to be equi-distributed for each label
(pl = 0.5) or estimated over the data.

pl =
# {x ∈ R1,2, l(x) = 1}

#R1,2
(5.22)

where l(x) is the observed label value at point x:

l(x) =

{

1, if |u ◦ Tπ1
(x)− ũ(x)| < |u ◦ Tπ2

(x)− ũ(x)|
2, otherwise

Considering that any contour γ ∈ Γs splits R1,2 into two parts, the validity of labelling of
a point x ∈ R1,2, with label L(x) following HL, is then a Bernouilli random variable V (x) of
parameter p(γ):

p(γ) =
#Rγ,1

#R1,2
· pl +

#Rγ,2

#R1,2
· (1− pl) (5.23)

This parameter varies from min(pl, 1 − pl) to max(pl, 1 − pl). We then define the following
distribution model for a point to be well classified:

Definition 8 (Valid Point distribution(background process) H0) We call background
process the set of i.i.e. Bernouilli random variable Vγ(x), x ∈ R1,2, where Vγ(x) equals 1 if
the label of x induced by γ is valid, and 0 otherwise. Vγ is then defined as:

P (Vγ(x) = vγ) =

{

p0 = max(pl, 1− pl), if vγ = 1
1− p0 = min(pl, 1− pl), if vγ = 0

(5.24)

From that, we now define the Number of False Alarms:

Definition 9 (Number of False Alarms (NFA)) Given a parametric curve γ ∈ Γs that
separates R1,2 into two disjoint subsets Rγ,1 and Rγ,2, we define the number of false alarms
of γ and R1,2 as:

NFA(R1,2, γ) = Ntests · P [K(R1,2) ≥ k(R1,2, γ)] (5.25)

where,

• k is the number of points properly classified by γ;

k(R1,2, γ) =
∑

x∈Rγ,1

11{l(x)=1} +
∑

x∈Rγ,2

11{l(x)=2}

• K is a random variable that counts the number of well classified random points that
would be obtained if the data were distributed according to model H0:

K(R1,2) =
∑

x∈R1,2

Vγ(x)

• Ntests is the number of possible separations that can be tested:

Ntests = #Γs
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• P [K(R1,2) ≥ k(R1,2, γ)], is the probability to obtain as many valid points with the back-
ground model H0 as what we observe with the data. It can be computed using the tail of
the binomial law:

P [K(R1,2) ≥ k(R1,2, γ)] = B
(

#R1,2, k, p0
)

=

#R1,2
∑

j≥k

(

#R1,2

j

)

pj0 · (1− p0)
#R1,2−j

The NFA is the expected number of times to obtain a random configuration as good
as what observed. If the NFA is low, the observed configuration is not likely to happen
randomly.

Definition 10 (ε-meaningful contour) Given a region R1,2 ∈ D, a contour γ ∈ Γs is said
to be ε-meaningful for R1,2 whenever NFA(R1,2, γ) < ε.

The following proposition provides a sanity check, ensuring that the definition of the NFA
(and the detection rule based on it) have actually the intended meaning, namely limiting the
expected number of false detections due to noise below ε:

Proposition 2 Given a region R1,2 and supposing that the valid points are distributed ac-
cording to the background model, the expected number of ε-meaningful separation γ that is
obtained by testing all the possible separations in Γs is less than ε.

Proof Let’s note S the random variable defined as:

S =
∑

γ∈Γ1,2

χ(R1,2,γ)

where, χ(R1,2,γ) = 11γ is ε-meaningful. Using the linearity of the expectation operator we have:

E[S] =
∑

γ∈Γs

E[χ(R1,2,γ)] =
∑

γ∈Γs

P

[

B(#R1,2,K(R1,2), p0) <
ε

Ntests

]

Since the survival function of K is k → B(#R1,2, k, p0), we have

P

[

B(#R1,2,K(R1,2), p0) <
ε

Ntests

]

<
ε

Ntests

then

E[S] <
∑

γ∈Γs

ε

Ntests
= ε

�

Proposition 2 used with ε = 1 implies that less than one false alarm is expected using the
background model as data and testing all the possibilities. This threshold is therefore the one
usually used in a contrario methods.

Note that for simplicity reasons, we supposed that the background model was the same
for all possible contour γ ∈ Γs instead of using equation (5.23). This supposition is a little
optimistic for the background model which makes it harder for a contour to be meaningful.
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The experiments of section 5.6 were all done under this assumption. Figure 5.7 shows the
result of the a contrario model on the Toulouse dataset.

One may see that almost no contour was NFA validated at a plane intersection. This can
be explained by the fact that when two planes intersect each other with a large angle, since
the disparity is very close using one plane or the other in the contour search region, it is hard
to say which plane fits best the data.

In another hand, almost all the contours were validated when the two planes were very
different (large discontinuity, intersection with a sharp angle). In the Toulouse example, an
exception is noticeable at the top branch of the star-shaped building. In that case, the contour
was rejected because of the low texture in the shadow region.

��� ��� ���

������

Figure 5.7: Results of the a contrario criterion on Toulouse dataset. (a) Input planar
classification. (b) and (c) Binary re-projection error and found contours before (b)
and after (c) NFA filtering. (d) Reference image and NFA validated contours. (e)
Ground truth disparity map and validated contours. One can see that the validated
contours tend to fit the data.

5.5 Resolution schemes

As discussed before in the general overview of the algorithm, we propose to solve all the
energy minimization problems using dynamic programming. To do so, some adaptation must
be made. We propose to divide the search region into subregions where the reduction of the
final contour can be supposed linear. From this, a graph where each possible segment of a
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subregion is an edge can be build. Dynamic programming then allows to find the sequence of
connected segments (one segment per subregion) minimizing each proposed energy.

The reasons of doing so are the following:

• Minimizing the proposed energies is a non convex problem. To understand that, one
can think of two highly contrasted curve in the search region which can be represents
two local minima of the gradient energy. A similar situation can occur with the L2
re-projection error energy.

• The result obtained from dynamic programming is a global minimum (since all the
possibilities are tried).

• The division into subregions forbids the final curve to go backward or make loops.

• The regularization of the curve is directly induced by the division into subregions which
allows simple ways to set this parameter.

This section is organized as follow. We start with a short review of dynamic programming
(see Section 5.5.1). Then we describe how the search region R1,2 can be divided into a finite
set of subregions (R1,2,i)i=1..N adapted to the contour we are looking for.

5.5.1 Dynamic programming

Dynamic programming is a powerful algorithmic paradigm in which a complex problem is
solved by breaking it into a collection of subproblems and by using the answer to the sub-
problems to compute the complex problem solution. When applicable, dynamic programming
considerably reduces computations compared to naive resolution schemes.

Dynamic programming implicitly requires the construction of a Direct Acyclic Graph
(DAG). The nodes of the DAG can be considered as the subproblems and the edges are
the relations between the subproblems. For a better comprehension, let’s now focus on the
special case illustrated in Figure 5.8. Now let’s illustrate with this example how a dynamic
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Figure 5.8: (a) A DAG G(V, E) and (b) its linearization.

programming algorithm proceeds to find the shortest path from S to E. We will denote by
dist(x) the minimal distance from S to any node x of the graph.

A dynamic programming algorithm starts from the end E and applies a Divide & Conquer
strategy to recursively find dist(E) in terms of dist(x) for all nodes x directly connected to
E by a single edge. In our case, since E can only be reached from nodes x = B (with cost 2)
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and x = D (with cost 1), it is obvious that dist(E) = min(dist(B)+2, dist(D)+1). Then the
computation of dist(E) can be simplified by solving the two (smaller) subproblems dist(B)
and dist(D). The same reasoning can then be done recursively until we reach the subproblem
of computing dist(S) = 0.

Figure 5.8.b shows a linearized version of the graph G = (V, E) in Figure 5.8.a. In this
linearized version S is always the first node, E is always the last node, and the remaining
nodes x are sorted in one of the linear orders that are compatible with the pre-order induced
by the DAG. By this we mean that if x < Y in the linearized graph, then no directed edge
(Y,x) goes from Y to x in G. There may be several such linear orders, but we only care here
about the fact that at least one exists, because G is a DAG.

Using the linearized version of the graph, this recursive reasoning can be implemented by
the more efficient iterative Algorithm 8, which follows the linear order from S to E. In fact,
observe that when the loop reaches node v, then dist(u) already contains the right (finite)
value for any u < v. Therefore dist(u) is well defined for any (u, v) ∈ E . The shortest path
from S to E can then be computed in a single path using Algorithm 8.

Algorithm 8: Shortest path in a DAG with dynamic programming.

Data:
A DAG G = (V, E), with S the start node and E the end node
A weight function of each edge w : E 7→ R

Result:
dist(E)
begin1

∀v ∈ V, dist(v) =∞2

dist(s) = 03

foreach v ∈ V,in linearized order do4

dist(v) = min(u,v∈E) dist(u) + w(u, v)5

end6

end7

5.5.2 Division into subregions

To be able to use dynamic programming to find the contour minimizing one of the energies
presented before(see Sections 5.4.1 and 5.4.2), we slice the search region into smaller subre-
gions. The division into subregions should be such that the restriction of the final separation
contour γ1,2 to any subregion is a segment.

Let’s consider as before the case of two regions R1 and R2 for which we want to find the
separation γ1,2 and let’s note ∂R1 (resp. ∂R2) the common border of R1 (resp. R2) with
the search region R1,2 (see previous subsection). We are looking for a set of pairs of points
(Pi, Qi) ∈ ∂R1× ∂R2 such that each segment [Pi, Qi] is entirely contained in R1,2 and do not
intersect with any other segment [Pj , Qj ]. According to this definition, each segment splits
region R1,2 into two parts. The subregions are then defined by two consecutive segments. We
note R1,2,i the subregion defined by the two consecutive segments [Pi−1, Qi−1] and [Pi, Qi].
Figure 5.9 shows an example of division into subregions and recall some of the notations.

The first interest of doing this division is that the number of vertices of the polygonal
curve is set. Since the separation γ1,2 is supposed to be linear in each subregions, the vertices
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Figure 5.9: Notations used to define the curve search problem.

is set by the division into subregions. The problem is now reduced to finding a sequence of
points Gi, Gi ∈ [Pi, Qi], defining the polygonal curve γ1,2. We will note Γs the set of all
possible polygonal curves defined by the previous sequence. Another interest of the subregion
division is that it ensures that the polygonal curve found do not make any loops (which is
something good since this curve is supposed to separate two regions). At last, this division
allows a resolution of Equation 5.1 using dynamic programming (this sometimes requires an
adjustment depending on the energy that is used).

The division of R1,2 is achieved with the following steps (see Figure 5.10):

• First, we define the two border point sets ∂R1 and ∂R2. In the discrete case, this can
be done using the 4-connectivity for instance.

• Then for each point P ∈ ∂R1 we find its closest pointQ ∈ ∂R2. (∀Q′ ∈ ∂R2, ||P−Q||2 ≤
||P − Q′||2) such that the segment is entirely contained in R1,2 ([P,Q] ⊂ R1,2). The
same is done for all the points of ∂R2.

• Since we want to achieve a partition of R1,2, we remove the identical segments and
intersecting segments. This is likely to happen if the distance between ∂R1 and ∂R2 is
not constant (as shown in Figure 5.10.

• At last, we interpolate the missing segments so that each point of ∂R1 and ∂R2 has at
least one correspondence. This can be done by interpolating the correspondence linearly.

The results of this approach on data (Toulouse St-Michel and Village disparity maps) is
shown on Figure 5.13.

5.5.3 Optimal contour search

We now explain how to combine the division into subregions and dynamic programming to
find an optimal contour for each possible energy case.

Minimisation of Eq. 5.10 and Eq. 5.12

If consider the reduction of the searched contour γ to each subregion R1,2,i of R1,2 as a
segment γi, then one can easily see that the two energies from Eq. 5.10 and Eq. 5.12 can
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Figure 5.10: Division into subregions. (a) Find for each point in ∂R1 its closest
point in ∂R2. (b) Find for each point in ∂R2 its closest point in ∂R1.(c) Remove
the intersecting segments. In this case this happened because the search region was
enlarged. (d) Interpolate the missing segments.

be computed independently within each subregion. The integrals can be decomposed into a
finite sum of simpler integrals. The gradient energy case is pretty straightforward since the
energy is computed along the contour:

E∇(R1,2, γ) = −
Ns
∑

i=1

∫ 1

0

∣

∣

−→∇u(γi(s)) ·
−→̇
γi (s)

∣

∣ds = −
Ns
∑

i=1

E∇(R1,2,i, γi) (5.26)

The same can be done with the L2 re-projection error energy since it is a sum of square
error at each point and that: ∪iR1,2,i = R1,2 and R1,2,i ∩R1,2,j = ∅ if i 6= j. We then have:

Eε(R1,2, γ) =

Ns
∑

i=1

Eε(R1,2,i, γi) (5.27)

Using the same notation as in section 5.5.2, we note Γs the set of all the possible polygonal
curves define by the division into subregions. Let’s now build the following graph G = (V∇, E∇)
where each node is the extremity of a possible segment γi and each edge is the segment γi.
We at last consider the following weight function:

w∇ :
E∇ 7→ R

γi 7→ E∇(R1,2,i, γi)

for the gradient energy case and

wε :
Eε 7→ R

γi 7→ Eε(R1,2,i, γi)

for the L2 re-projection error energy case.
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Each possible continuous polygonal contour is composed of a unique set of segments
(γi)i=1..Ns

. By construction, each of these sets of segments is represented by a unique path in
the graph G. Conversely, each path through all the subregions, is equivalent to a unique set
of segments (γi)i=1..Ns

representing a continuous polygonal curve. Moreover, the weight w∇
associated to each path in the graph, is exactly the Gradient energy of the associated contour
as defined in Eq. (5.26). The same can be stated for the weight wε and Eq. 5.27.

Then finding the shortest path in graph G associated to the weight function w∇ (resp.
wε) is equivalent to finding the solution to Eq. 5.1 (resp. Eq. 5.27) using the gradient energy
(resp. the L2 re-projection error energy).

Since each path in the graph goes only once through each subregions, G is already a DAG.
The shortest path can then be found by dynamic programming using Algorithm 8.

Occlusion

We saw in Section 5.4.2 that adding the occlusion information changed the re-projection error
energy (see Eq. 5.17). Let’s now consider the division into subregions in Equation(5.17):

E′ε,occ(R1,2, γ) =

Ns
∑

i=i

(

1 +
#(R1,2,i

⋂R1,2,γ,occ)

#(R1,2,i \ R1,2,γ,occ)

)

· Eε(R1,2,i \ R1,2,γ,occ, γi) (5.28)

The reduction γi of γ ∈ Γs to the subregion R1,2,i may occlude points from other sub-
regions R1,2,k. The energies in each subregion are then no longer independent. As a direct
consequence, the graph G = (V, E) described before is no longer suitable to describe the data
since the weight associated to an edge e ∈ E may depend on the edges it is connected to. An
example of this situation is shown in Figure 5.12. The occlusion of region R0 is not the same
when segment e0 is connected to e1,1 and e1,2. The correlation energy changes depending on
what segment e0 is connected to, which means that dynamic programming can no longer be
used to solve Equation (5.1).

To avoid this, we propose to control the occlusion that each subregion causes on the others.
To do so, we redefine the subregion partitioning so that the occlusion induced by the segments
in each subregion affects at most its two neighboring subregions. With this new partition,
the occlusion induced by a contour γ onto a subregion R1,2,i is completely defined by the
reduction of γ to 3 subregions: R1,2,i−1, R1,2,i and R1,2,i+1. Then the occlusion energy of any
segment γi from a subregion R1,2,i can be computed knowing γi−1 and γi+1. This filtering is
both explained and illustrated in Figure 5.11.

We then construct a new graph Gocc = (Vocc, Eocc) in a similar way as for graph G. Each
vertex is one of the possible segment extremity and each edge is one of the possible segments.
However, this time a segment appears as many times in the graph as it has different occlusion
energies. This depends on the segments it is connected to. In Figure 5.12, since e0 has a
different energy if it is connected to e1,1 and e1,2, the vertex B of G is split into B and B′ in
Gε.

The number of edges of the new graph Gocc is O((#E)3) which is three orders of magnitude
as big as before. However, dynamic programming can now be used, and the fact that most
configurations do not produce occlusion ensures relatively fast results.

5.5.4 Contour simplification

The result obtained with each energy functional is rather noisy due to the large number of
vertices of the polygonal curve. We therefore need a way to simplify the obtained contour.
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Figure 5.11: Filtering of the subregions of R1,2.(a) and (b) explicative drawing, (c)
and (d) example on real data. (a) Initial segmentation of R1,2: in red, the segments
delimiting the subregions, in blue, the maximal occlusion caused by the delimiting
segments. (b) Filtering of the delimiting segments. Starting from segment “i-2”,
segment “i-1”is filtered as its occlusion is beyond segment “i-2”. The next one then
becomes segment “i”. (c) Input disparity map classification. (d) New partitioning
of the search regions after the occlusion filtering. Note that depending on the pair
of planes that is considered, the subregions are more or less big depending on the
possible occlusion.
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Figure 5.12: Occlusion and graph

Introducing a measure to compare model depending on their complexity is a classical
approach in statistical model selection problems. This is usually done using AIC [Akaike, 1974]
or BIC [Schwarz, 1978] criteria but can also be done by adapting the a contrario criterion from
Section 5.4.3 to polygonal curves with less vertices. This way, polygonal curves of different
complexity can be compared. Reducing the number of vertices of a curve reduces the number
of tests and therefore the NFA in Equation (5.25). However, a simpler model also increases
the error. The NFA comparison of two polygonal curves is then a trade-off between precision
and model simplicity.

This procedure was used successfully in the case of piecewise planar segmentation as it
was shown in Chapter 2. However, in this case, the operation is too difficult to solve. Indeed
if one wants to merge two consecutive parts of γ, γi and γi+1, composed of three vertices Gi−1,
Gi and Gi+1 there are two possibilities to keep the continuity of γ:

1. The simplest solution is to remove the vertex common to γi and γi+1, Gi, and only
consider the merged segment formed by Gi−1 and Gi+1. The problem is that simplifying
γ by just removing some of the vertices gives bad results if the vertices are not good from
the beginning. A good example would be to consider a sawtooth polygonal curve. If we
wish to simplify the curve into a single line, then the result is not the line minimizing the
mean square error but the line connecting the two extremities of the polygonal curve.

2. The second solution is to test all the possibilities, which means that merging γi and
γi+1 requires recomputing the minimal paths for each new possible edge in subregion
R1,2,i

⋃R1,2,i+1. However, for each new path, one cannot use former results because
the computation of the minimal path in a graph is done dynamically. This is because
the number of possible paths is too high to store the distance value for each of them.
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The solution would then be to compute the minimal path for each possible configuration
of subregions ofR1,2. If we consider thatR1,2 can be divided into at most Ns subregions,
this would require running the algorithm (Ns−1)times which is of course unacceptable.

Instead of running Algorithm 8 for each possible configuration of subregions, one can
think of a way to simplify the partition of R1,2 and run it only once. We propose to merge
the neighboring subregions whenever the polygonal curve can be assumed to be a single line
segment. To do so we compute the principal directions of R1,2, γdir, and assume that γ
behaves similarly as to γdir (i.e. it has as many linear segments as principal directions in
R1,2). We therefore divide R1,2 depending on the principal directions that were found. The
contour is then found as before using the simplified subregion set to build the solution graph.

Principal directions of R1,2

Finding principal directions of a 2D region is similar in some ways to finding the planar
segmentation of a 3D scenes. Instead of fitting planes to 3D data, we want to find line segments
describing 2D data. The principal directions are computed from an approximate skeleton of
R1,2. The skeleton gives a good description of how R1,2(and therefore the final separation γ1,2
behaves especially when their main direction changes. Then from this simplified point set, we
propose to find the main directions using RANSAC sequentially as proposed in [Vincent and
Laganière, 2001] and [Kanazawa and Kawakami, 2004] for plane detection.

To find the skeleton data points, we propose to use the result of the subregion division
described in Section 5.5.2 to obtain a sampling of the skeleton of R1,2. We recall that each
subregion R1,2,i is completely defined by the boundary of R1,2 with R1, ∂R1, the boundary
of R1,2 with R2, ∂R2, and two segments [Pi−1, Qi−1] and [Pi, Qi], (Pi−1, Pi) ∈ ∂R2

1 and
(Qi−1, Qi) ∈ ∂R2

2.
At last, as pointed out in [Zuliani et al., 2005], one of the problems of using RANSAC

recursively for structured data is the validation of phantom models which can in fact be the
mix of several separate models. However, in our situation, the algorithm stays robust because
each model found has to be included in R1,2 (which limits possible shortcuts) and the data
set is limited to the skeleton (which limits the number of outliers).

An example of the search region partitioning and of its simplification on two dataset is
shown in Figure 5.13.

5.6 Experimental results

We tried our algorithm on several dataset. The input classifications were all obtained using
the algorithm described in Chapter 3. The disparity maps used here were either ground truth
maps with an additive noise or obtained from Neus Sabater’s algorithm [Sabater, 2009]. In
the latter case, the disparity map is polluted by adhesion.

In all the experiments, the contours were first computed using the binary L2 re-projection
energy (see Section 5.4.3) and validated by the a contrario criterion (see Section 5.4.3). In
case of rejection, the intersection between the two planes is tested. At last, when none of the
first two possibilities were successful, the contours computed using the gradient energy (see
section 5.4.1) were used. All the results were then regularized as described in Section 5.5.4.

In Figure 5.14, 5.15 and 5.16 we first show the input classification of the disparity map,
and then the reference image and the ground truth with the contour that were found. The
red contours are the one that were computed using the binary L2 re-projection energy and a
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Figure 5.13: Example of search region partitioning. First raw Toulouse dataset.
Second raw Village dataset. (a) and (d) input classification. (b) and (e) Result of
the search region partitioning as explained in Section 5.5.2. (c) and (f) simplification
of the partition.
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contrario validated. The green ones are the validated intersection. At last, the blue contours
are the ones found using the gradient Energy.

In the Toulouse experiment (See Figure 5.14), we obtained good results both with the
ground truth and the disparity map computed with [Sabater, 2009]. As expected, the result
with the computed disparity map is a bit noisier than the one of obtained for the ground
truth. This is mostly due to the classification that contains a lot less points (See Figure 5.14
(b)) which are moreover a bit less precise. At last, the results need to be observed both with
the reference image and the ground truth because they do not exactly correspond each other.
The remaining errors of the L2-re-projection energy are mostly due to the fact that the ground
truth shows some adhesion near some of the separations.

The “village” and “campagne” results are rather good. However, some errors still remain
(see Figure 5.16: top left zoom region, the red and blue contours; bottom left zoom region).
They are mostly due to the fact that the simulated images (reference and secondary) lack of
enlightenment conditions. Therefore, the separation is not always clearly delimited especially
if the color information of the images is not used. Adding the color information to the
computation would certainly enhance the results.

5.7 Conclusion

We presented a new algorithm to refine the separations between planes from a piecewise-planar
disparity map segmentation. The refinement may be used as a correction of the adhesion
artifact since it is supposed that the data are polluted by it. Another application could be
the interpolation of missing points from the detected contour. The contours are computed by
taking advantage of both image and 3D information using 3 possible computation criteria.

Though we obtained good results with both noisy ground truth disparity maps as well as
computed disparity maps (using [Sabater, 2009]), there is still room for some improvements.
For instance, one could think of adding color information to the computation to give more
robustness to the result.

So far, the contours are computed only considering the planes two by two. Other im-
provements could then be to deal with junctions of more than two planes. This amounts to
extending curves until they intersect with another curve. A simple way to do so would be the
following:

• Construct the adjacency graph G(R,Γ) composed of the regions R ∈ R as vertices, and
the detected contours γi,j ∈ Γ as edges joining two adjacent regions Ri and Rj . This
graph has planar graph structure by construction (meaning that no two edges cross in
the plane).

• Each minimal loop of length l in the planar graph Grepresents a junction of l planar
patches R1, . . . , Rl where a decision between 1, . . . , l − 1 between extended curves γij
has to be made

At last, an application of this contour refinement could be to recompute the disparity
maps in the following way in order to limit adhesion:

• correlation windows restricted to belong to a single class in the piecewise planar seg-
mentation of the image domain,

• affine rectification of each correlation window before computations.
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Figure 5.14: Toulouse St-Michel experiment. First column: noisy ground truth as
input, Second column: disparity map computed using [Sabater, 2009]. (a) and (b)
input classification, (c) and (d) reference image with computed contours, (e) and (f)
ground truth disparity map with computed contours.
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Figure 5.15: Village experiment. (a) Input classification. (b) Reference image with
computed contours. (c) Ground truth disparity map with computed contours.
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Figure 5.16: Country side experiment. First row: input classification. Second row:
Reference image with computed contours (left) and ground truth disparity map with
computed contours (right). Last row: zoom on some regions of the reference image
and the ground truth.



Chapter 6

Conclusion et perspectives

Dans ce travail de thèse, nous avons étudié la segmentation affine-par-régions des cartes de
disparités. Nous nous sommes en particulier intéressés au cas de cartes de disparités issues
de stéréoscopie à faible B/H en milieux urbain. Pour toutes les différentes étapes que nous
avons étudiées, nous avons mis l’accent sur le caractère automatique et proposé des moyens
de sélectionner les valeurs des différents paramètres.

L’approche que nous avons proposée repose sur la définition d’un critère a contrario perme-
ttant non seulement de définir lorsqu’une configuration de points peut être considérée comme
une facette plane mais aussi la comparaison entre différentes configurations. Nous avons en-
suite utilisé une approche gloutonne permettant d’obtenir rapidement la segmentation d’une
carte en différents groupes plans. Nous avons de plus défini une méthode pour fixer le seuil
de rejet des points aberrants. Ce seuil critique aux résultats est commun à la plupart des
méthodes robustes de segmentation de données 3D. Toutefois, peu d’auteurs proposent des
solutions permettant de le choisir. Enfin, afin d’affiner le résultat de la segmentation et de la
définir aux endroits où la disparité n’est pas renseignée, nous avons proposé une méthode de
calcul des contours entre deux facettes planes.

Nos expériences ont prouvé que la reprojection sur les plans obtenus par notre segmenta-
tion permettait à la fois de débruiter la carte de disparités mais aussi d’interpoler efficacement
les données manquantes.

Nous envisageons plusieurs pistes pour continuer et améliorer notre travail.

Gestion des contours et vectorisation

Pour l’instant, le calcul fin des contours a été effectué en ne considérant les plans que deux à
deux. Le comportement de cette approche dans les régions où plus de deux plans interagissent
n’est donc pas clairement défini. Une première approche pourrait consister à utiliser des
distances géodésiques pour assigner les différents points manquant dans ces régions à l’un des
plans disponibles.

Une étape finale serait enfin de pouvoir définir un contour polygonal fermé pour chacune
des facettes planes. Il suffit pour cela d’appliquer les propositions faites en conclusion du
Chapitre 5 c’est-à-dire de considérer les extensions de chaque contour dans les zones où plus de
deux régions planes s’intersectent et de choisir la meilleure explication. Le résultat serait alors
une carte de disparités vectorielle définie par un ensemble de plans 3D et leur contour polygonal
associé. Ceci permettrait enfin d’ajouter toutes les facettes planes verticales manquantes en
prenant en compte les plans voisins présentant une discontinuité. Une surface continue serait
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alors accessible, ceci permettant une visualisation 3D de la scène.

Recalcul fin des disparités

L’un des défauts du calcul de disparités par mise en correspondance de blocs (“block match-
ing”) est de supposer une disparité constante à l’intérieur du bloc considéré. Ceci ne prend
pas en compte la géométrie 3D de la scène et est à l’origine d’artefacts tels que l’adhérence.
La conséquence a pu être observée dans les expériences du Chapitre 4: les plans 3D non-
ortho-frontaux au plan image sont calculés avec un biais et les bords des objets en premiers
plans sont dilatés. À partir d’une segmentation affine-par-morceaux telle que celle que nous
proposons, deux corrections sont possibles pour affiner la mise en correspondance en évitant
l’adhérence:

• Appliquer la transformation affine locale trouvée par la segmentation au moment de la
recherche du meilleur bloc et supprimer le biais dans les calculs de disparités dans les
plans non-orthofrontaux.

• Adapter la forme et la taille de la fenêtre de recherche à proximité d’un contour de la
segmentation de manière à ne jamais prendre en compte plusieurs objets 3D lors du
calcul de disparités.

Ces deux corrections couplées à l’algorithme RAFA permettraient alors d’obtenir une carte
de disparités avec une adhérence minimale.
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Résumé: La recherche des meilleurs paramètres pour décrire un plan dans une
carte de disparités représente un grand intérêt. Dans cette annexe, nous testons
différentes approches pour calculer ces paramètres à partir d’un groupe de points.

Abstract: Finding the best parameters describing a plane in a disparity map is
of capital interest. In this appendix, we try different different way of computing
the best parameters of a plane given a group of points.

A.1 Introduction

Given a 2-dimensional point set xi = (xi, yi)i=1..n and their corresponding depth values
(z(xi))i=1..n, we want to find the best planar model that fits these data. In this appendix, we
review several methods to estimate the parameters of a plane given a data set. First, we will
concentrate on data with no outliers, since it is the case for the region growing algorithm. In
that case, the data are supposed to respect the following model:

z(xi) = zπ0
(xi) + ε(xi), for i = 1 . . . n (A.1)

with,

a0 · xi + b0 · yi + c0 · zπ0
(xi) + d0 = 0, for i = 1 . . . n, (A.2)

µ0 = (a0, b0, c0, d0)
T is a vector representing the ideal plane parameters and ε(x) ∼ N(0, σ)

are random variables uniformly distributed following a Normal law. For this case, optimal
results are obtained using least square approaches. We will therefore concentrate on different
ways to compute a least squares estimation and see which approach is the best in our case.

For the case of the split and merge algorithm, another model has to be chosen since a
data set may contain outliers. Thus, robust estimators are required in this situation. For
a review of the various techniques (robust and least squares) on parameter estimation, see
[Zhang, 1997] .

A.2 Least squares

In this section, we are looking for a vector µ = [a, b, c, d]T minimizing an energy E:

µ̂ = argmin
(a,b,c,d)

N
∑

i=1

(a · xi + b · yi + c · z(xi) + d)2

= argmin
(a,b,c,d)

E(µ)

(A.3)

Three remarks come from this equation:

• The parameters for a same plane are defined up to a multiplicative constant. This
means that a minimum for E can be defined only under some constraints on µ. Indeed,
if µ1 were the minimum of E and E(µ1) 6= 0, then ∀µ ∈ R4, E(µ) > E(µ1) and ∀λ ∈
R, E(λµ) = λ2E(µ) > E(µ1) which is of course false.

• If we note N = (a, b, c)T then for any point X = (x, y, z)T ∈ R3, (a ·x+b ·y+c ·z+d)2 =
||N||22 · d(X, πµ)

2, where πµ is the plane defined by µ and d(X, πµ) is the orthogonal
distance of point X to plane πµ.



A.2. Least squares 149

This can be seen easily by computing the distance d(X, πµ). If we note X
⊥ the orthog-

onal projection of X on πµ and N⊥ = N/||N||2 then we have:

X⊥ = X+ λN⊥

⇔ a · x⊥ + b · y⊥ + c · z⊥ + d = a · x+ b · y + c · z + d+ λ(a2 + b2 + c2)/||N||2
⇔ 0 = a · x+ b · y + c · z + d+ λ||N||2

where λ is the signed distance to the plane. Taking the square of the last equation then
proves the result.

• If the additive noise is null, the ideal plane parameters are solution of equation (A.3)
since E(µ0) = 0.

Depending on the constraint that one imposes, the minimization of (A.3) do not have the
same meaning.

This section is organized as follow. We will first define the least squares problem min-
imizing the distance along the z-axis. We will see that in that case, an estimation of the
expected error after re-projection on the plane can be given and that this estimator is the
BLUE estimator for this particular problem. In a second part, we will define the least squares
problem on the unitary sphere of parameters. At last, we will define the classical least squares
problem that is usually proposed for plane estimation in 3D.

A.2.1 z-distance minimization: c = c0 = cste, c 6= 0

The constraint c = c0 = cste, c 6= 0 is equivalent to finding the plane minimizing the distance
between each point and its projection on the plane along the z-axis. This can be easily seen
by rewriting (A.3):

µ̂ = argmin
(a,b,c=cste,d)

1

c2

N
∑

i=1

(

z(xi)−
−(a · xi + b · yi + d)

c

)2

(A.4)

Using matrix notations, E(µ) can be written as:

E(µ) = ||Aµ− b||22 (A.5)

with

A =
1

c











x1 y1 1
x2 y2 1
...

...
...

xn yn 1











, b =











z(x1)
z(x2)
...

z(xn)











and µ = −





a
b
d





Note that this is a slight abuse of notations since the vector µ that we search here is
3-dimensional instead of being 4-dimensional as in the introduction.

Solution

Proposition 3 The solution of Equation (A.4) is an unbiased estimator of the real plane
parameter µ0 and its covariance can be expressed as a function of the noise variance σ2:

cov(µ̂) = E
(
(µ̂− µ0)(µ̂− µ0)

T
)
= σ2(ATA)−1 (A.6)
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Proof Let’s first find the solution of Equation (A.4). Deriving equation (A.5) and equating
it to 0 to find the minimum, we obtain:

ATAµ̂ = ATb (A.7)

Since ATA is rang complete, we can invert it and obtain the minimum:

µ̂ = (ATA)−1ATb (A.8)

Developing b to express it as a function of the ideal parameters gives:

µ̂ = (ATA)−1ATb
µ̂ = (ATA)−1AT (b0 + ε)
µ̂ = (ATA)−1AT (Aµ0 + ε)
µ̂ = µ0 + (ATA)−1AT ε

(A.9)

At last using the linearity of the expectation operator gives the first result: E(µ̂) = µ0.
Using this result, the covariance of µ̂ can be easily computed and expressed as a function of
the noise variance σ2.

cov(µ̂) = E
(

(µ̂− µ0)(µ̂− µ0)
T
)

= E
(

(ATA)−1AT εεTA(ATA)−T
)

= (ATA)−1ATE(εεT )A(ATA)−T

= (ATA)−1ATσ2InA(A
TA)−T

= σ2(ATA)−T

= σ2(ATA)−1

(A.10)

�

Note that using constant data with an additive noise ε, then cov(µ̂) = cov(ε) which is what
should be expected.

It can be shown (see [Beck and Arnold, 1977] for more precision on that property) that
if the εi are independents and of constant variance σ2, this estimator is optimal in terms of
minimal covariance of µ.

Error using the estimated parameters
Let’s now compute the expected error that we make by projecting the data on the estimated
plane along the z-axis (re-projection error). First it can be noted that for any point from the
data, the square re-projection error at this point is given by:

e2i =

(

zπ0
(xi)−

−(â · xi + b̂ · yi + d̂)

c

)2

= x̃i
T (µ̂− µ0)(µ̂− µ0)

T x̃i (A.11)

with x̃i =
1
c (xi yi 1)

T . Using the linearity of the expectation operator and Equation (A.6) we
then have:

E(e2i ) = σ2x̃i
T (ATA)−1x̃i (A.12)

This last formula shows that the error depends on the 2-dimensional distribution of the points.
The following proposition gives another formulation of the re-projection error. It shows

that the expected mean square error has a very simple expression that only depends on the
noise variance and the dimension of the data. This result was observed experimentally on
simulated data as shown in Figure A.1.
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Proposition 4 (Reprojection error) The expected mean square re-projection error is a
function of the variance of the noise and the dimension of the data:

E





1

n

n
∑

i=1

(

zπ0
(xi)−

−(â · xi + b̂ · yi + d̂)

c

)2


 =
1

n
E
(

||Aµ̂− b0||22
)

=
σ2 · rank(A)

n
(A.13)

Proof Let’s first rewrite the total square re-projection error using equation (A.9):

||Aµ̂− b0||22 = ||Aµ̂−Aµ0||22
= ||A

(

ATA
)−1

AT ε||22
= εTA

(

ATA
)−T

ATA
(

ATA
)−1

AT ε

= εTA
(

ATA
)−T

AT ε
= εTCε

(A.14)

where C = A
(

ATA
)−T

AT . Taking the expectation of this error and developing the
expression gives:

E(||Aµ̂− b0||22) =
∑

i,j

E(εici,jεj)

=
∑

i,j

ci,jE(εiεj)

=
∑

i,j

ci,jσ
2δi,j

= σ2 · trace(C)

(A.15)

Let’s now prove that trace(C) = rank(A). The first thing is to note that CA = A.
Taking the SVD decomposition ofA we then haveA = UΣV, whereV is n×n orthogonal

matrix, U is a 3×3 orthogonal matrix and Σ is a 3×n diagonal matrix. We note λi, 1 ≤ i ≤ 3,
the non-null singular valuesA and ui (resp. vi) the left (resp. right) singular vector associated
to them. We have:

Avi = λiui = Cλiui (A.16)

which means that ui is an eigen vector of C associated to the eigen value 1. Since rank(C) =
rank(A) then the vectors ui are the only non-null eigen vectors of C and trace(C) = rank(A).

�

This last proposition, can be easily extended to N -dimensional data on an hyperplane
with noise along one direction (since its proof is done using matrices).

At last, let’s remark that this computation is invariant to a compression of the z-axis.
Indeed, taking αb instead of b gives αµ̂ instead of µ, which is exactly the same.

Weighted z-minimization
When one has extra information on the data points, it can be interesting to add weights
when computing the optimal plane parameters. This can be the case for instance when the
2-dimensional points are not regularly distributed or when some extra information on the
points precision are available.

Minimizing the weighted problem is pretty similar to what was done previously. Using
the same notation as before, we are now looking for a vector µ̂W minimizing:

EW (µ) = ||
√
W(Aµ− b)||22 (A.17)
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Figure A.1: Sum of squared re-projection errors for simulated data. The figure
shows that this sum do not depend on the number of points. Moreover, the mean
result is close to what is expected from Proposition 4.

whereW is n×n diagonal matrix of weights. Using the same approach as before, the solution
is given by:

µ̂W = (ATWA)−1ATWb
= µ0 + (ATWA)−1ATWε

(A.18)

Taking the expectation of that shows that this estimator is still unbiased. As before, the
covariance of µ̂ can be computed, except that this time, no simplification is possible:

cov(µ̂W ) = E
(

(ATWA)−1ATWεεTWA(ATWA)−T
)

= σ2(ATWA)−1ATW2A(ATWA)−T
(A.19)

The expected re-projection at each point can still be computed as before, however, the global
re-projection error has no simple expression because there are no matricial simplification.

A.2.2 Minimization on the sphere of parameters: ||µ||22 = 1

Another solution to find the best parameter set is to look for µ minimizing E such that
||µ||22 = 1. Using matrix notations, we can write:

E(µ) = µTAT
PAPµ = µTBPµ (A.20)
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with

AP =
1

c











x1 y1 z1 1
x2 y2 z2 1
...

...
...

...
xn yn zn 1











and µ =









a
b
c
d









Note that this time µ is a 4-dimensional parameter vector as in the introduction.

Solution
The matrix BP is real symmetric therefore diagonalisable. Moreover, since the minimiza-

tion is a sum of square, the eigen values of BP are all positive.
Let’s note e0, e1, e2, e3 the eigen vectors of BP and v0, v1, v2, v3 its eigen values, such

that v0 ≤ v1 ≤ v2 ≤ v3. Each vector µ can be written as a linear combination of e0, e1, e2
and e3:

µ = α0e0 + α1e1 + α2e2 + α3e3 (A.21)

such that α20 + α21 + α22 + α23 = 1. Then:

E(µ) = v0

(

α20 +
v1
v0

α21 +
v2
v0

α22 +
v3
v0

α23

)

≥ v0 (A.22)

Therefore, E is minimum for µ = e0.

A.2.3 Orthogonal minimization: a2 + b2 + c2 = 1

Whenever a2 + b2 + c2 = 1, then for any X = (x, y, z)T ∈ R3, a · x + b · y + c · z + d is the
orthogonal distance of point X to the plane generated by µ = (a, b, c, d)T , πµ.

Proposition 5 (Orthogonal minimizer) The plane minimizing the orthogonal distance to
the points is defined by the barycenter of the points and the smallest the eigen vector of the
covariance matrix of the 3-dimensional points.

Proof Let’s rewrite function E in it’s unconstrained form:

E′(µ) =
N
∑

i=1

(a · xi + b · yi + c · z(xi) + d)2 + λ(a2 + b2 + c2 − 1) (A.23)

where λ is the Lagrange multiplier. Deriving E′ with respect to a, b, c, d and λ and equating
everything to 0 gives the following system:











































































N
∑

i=1

xi(a · xi + b · yi + c · z(xi) + d) + λa = 0

N
∑

i=1

yi(a · xi + b · yi + c · z(xi) + d) + λb = 0

N
∑

i=1

z(xi)(a · xi + b · yi + c · z(xi) + d) + λc = 0

N
∑

i=1

(a · xi + b · yi + c · z(xi) + d) = 0

a2 + b2 + c2 = 1

(A.24)
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Replacing d by the value given by the fourth equation in all the other equations is then
equivalent to finding the solution of the following constrained problem:

min
N=(a,b,c)T

N
∑

i=1

(a · (xi − x̄) + b · (yi − ȳ) + c · (z(xi)− z̄))2 (A.25)

under the constraint ||N||22 = a2+ b2+ c2 = 1. This can be written using matrix notations as:

min
N
(A⊥N)

T (A⊥N) = NTB⊥N (A.26)

where B⊥ is the covariance matrix of the point set (xi, yi, z(xi))i=1..N . Following the same
approach as for the minimization on the sphere, it can be easily demonstrated that the solution
vector N̂ is the eigen vector associated to the smallest eigen value of the covariance matrix.

�

A.2.4 Conclusion on the theoretical results

We proposed three different ways to pose the least squares problem for plane estimation.
In our particular case, the only random part in the data points is their z coordinate. The
z-minimization approach (section A.2.1) then seems more appropriate since the minimization
is made on the random parts of the data. As opposed to that, the two other approaches,
including the least squares solution usually used with pure 3D points, mix every coordinates
of the points for their minimization. At last, it can be proven that in this particular case,
the least squares estimator of section A.2.1 is the BLUE estimator (see [Sen and Srivastava,
1990] for instance). All of this then suggests that we choose the z least squares estimator to
compute planes with our particular data.

A.3 Robust regression

The least squares regression is adapted to the case where no outliers are present among the
points tested. This situation is the one encountered using the algorithm of Chapter 3 since a
hard thresholding is done in the region growing which excludes most outliers (at least the ones
that are far from the expected plane). However, in Chapter 2 a split and merge procedure is
proposed which suggests the presence of outliers until a good solution is reached.

In this section, we do an exhaustive survey of existing techniques on robust regression.

A.3.1 Regression diagnostics

A first method for robust regression is the so-called Regression diagnostics [Belsey et al., 2005].
The idea here is to try to detect possible outliers from a first estimation of the regression
parameters. The algorithm outline is the following:

1. Estimate the regression parameters.

2. Mark points whose residual error is above a preset threshold as outliers and do another
parameter estimation with the remaining inliers.

3. Re-estimate the parameters with the new inlier list.
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4. If the difference between the two estimations is not to large stop. Otherwise go back to
step 2.

The main drawback of this technique is that a good final result is not guaranteed especially
if the first estimation is bad. However, in presence of a not too large amount of outliers and
more importantly with reasonable error.

Another version of this algorithm tries to point out the points causing the largest error in
the estimation. This is done by computing for each point, a new model without it, and by
rejecting the point that changes the most the error estimation. The algorithm stops when the
measure of fit at an iteration is acceptable.

A.3.2 M-estimators

A popular approach for robust parameter estimation are the M-estimators. The point of this
technique is to find the parameter vector µ minimizing the problem:

µ̂ = argmin
(a,b,c=cste,d)

∑

i

ρ(ri)

= argmin
(a,b,c=cste,d)

∑

i

ρ

(∣

∣

∣

∣

z(xi)−
−(a · xi + b · yi + d)

c

∣

∣

∣

∣

) (A.27)

where ρ is a positive-definite function with a unique minimum at 0, chosen to be less
increasing than square and ri is the residual error at each point. Note that by taking ρ : x 7→ x2

we find the classical least squares problem given by Eq. A.4.
To solve this problem, the classical approach is to implement it as a re-weighted least

squares problem. The first thing to note is that µ is solution of the following equation system.

∑

i

ρ′(ri)
∂ri
∂µj

= 0, for µj ∈ {a, b, d} (A.28)

Introducing the so-called weight function w : x 7→ ρ′(x)/x, we obtain:

∑

i

w(ri)ri
∂ri
∂µj

= 0, for µj ∈ {a, b, d} (A.29)

We notice that the Equation system (A.29) is the same that we would obtain by solving the
iterated re-weighted least squares problem:

µ̂(k) = argmin
(a,b,c=cste,d)

∑

i

w(ri
(k−1))r2i (A.30)

Several ρ functions are commonly used for the M-estimator problem. The choice of a
function over another can be based on its convexity as well as its behaviour in presence of
a standard normal distribution with no outlier. According to [Rey, 1983], one of the best ρ
functions which yields to a nice converging scheme is the “Fair” function defined as:

ρ : x 7→ c2
( |x|

c
− log

(

1 +
|x|
c

))

(A.31)

where the constant c is often set to 1.3998 to achieve a 95% asymptotic efficiency in presence
of a normal distribution.
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A.3.3 Hough transform

A standard procedure to robust regression is to use the Hough Transform [Hough, 1959].
The idea is to define a quantized parameter space to have another representation of the data.
Then each possible triplet of points uniquely defines a plane which corresponds to a particular
quantized value within this parameter space. Once all the triplets have been considered, the
quantized parameter value that has the largest number of votes is the one corresponding to
the main plane transformation.

This procedure is rather robust even in presence of a large amount of gross outliers.
However, the number of tests required to compute a final transformation makes it hard to
use in its raw form. To limit the computations, on can think of adding randomness to the
procedure which make it more looks like the RANSAC algorithm.

A.3.4 RANSAC

A faster alternative to the Hough Transform is the RANSAC (RANdom SAmpling Consensus)
algorithm [Fischler and Bolles, 1981] which consists in the following steps:

1. Sort out a Ntri random triplets of points and compute their associated planes.

2. For each triplet, find among all the remaining points which one are the inliers (residual
error less than a threshold).

3. keep the triplet with the largest amount of inliers as the final estimator.

The number of iteration can be estimated from prior knowledge on the real percentage
of inliers pin. Indeed, the probability that among the Ntri triplets one of them is actually a
triplet of inliers is:

P = 1−
(

1− p3in
)Ntri (A.32)

which implies the following number of iterations:

Ntri =
log(1− P )

log
(

1− p3in
) (A.33)

For instance if one wishes to be sure up to P = 99% to get at least one triplet of inliers
supposing 40% of inliers, at least 70 iterations are necessary.

The main drawback of this approach is the threshold parameter which is critical for a good
solution. The following approach is pretty similar to the RANSAC procedure but propose a
way to set this threshold when the amount of outliers is less than 50%.

A.3.5 Least median of squares

The least median of squares procedure consists in solving the following non-linear minimization
problem:

µ̂ = argmin
(a,b,c=cste,d)

median r2i (A.34)

Since no direct estimation of the solution of Eq. A.34 is possible, a random procedure similar
to the one done in the RANSAC algorithm is usually used. The only difference is in the second
and third step: instead of estimating for each plane the number of points whose residual is
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within a threshold, the median residual is computed. The best triplet is then the one with
the lowest square residual.

Compared to the RANSAC algorithm, no prior on the data precision is required (which
is a critical parameter of RANSAC algorithms). However, in presence of more than 50% of
outliers, the least median of squares estimator has a good chance to fail.

At last, as pointed out in [Rousseeuw and Leroy, 1987], the Least median of squares esti-
mation is poor in presence of Gaussian noise (the same can be stated for RANSAC algorithm).
It is then common to refine the result given by each of the algorithms by computing the least
squares estimator from the final inliers of each method. In the least median of squares case,
the inlier threshold is deduced from the robust estimate of the standard deviation [Rousseeuw
and Leroy, 1987]:

σ̂ = 1.4826 (1 + 5/(N − p)) median |ri| (A.35)

The points are then considered as inliers if their residual to the estimated plane is less
than 2.5σ̂.

A.4 Experimental results

In this section, we compare the methods previously described. We first describes our exper-
iments done on the least squares fitting which is more adapted with the method described
in Chapter 3. Then we propose other experiments for robust estimation that are adapted to
situations encountered in the split and merge algorithm of Chapter 2.

A.4.1 Least squares

We propose here several experiments to point out which least square estimation is preferable
for the situations encountered with the algorithm of Chapter 3. In the first two experiments,
a set of 3D points was created from a set of 2D points on a regular grid. Each 3D point is
obtained by computing the projection on a given plane and by adding a uniformly distributed
Gaussian noise ε ∼ N (0, σ). In the first experiment the noise is only added along the third
direction whereas this is done independently along every direction for the second experiment.
For each experiment, the error was averaged through different plane orientations.

Figure A.2 shows the evolution of the error along the z-axis with the initial number of
points for the three methods. Figure A.3 shows the evolution of the angle between the real
plane and estimated plane with the initial number of points for the three methods.

From these experiments it can be seen that the least squares plane estimation with c =
cste 6= 0 tend to give better results than the orthogonal least squares plane estimation when
the additive corruption noise is along the z-axis. This is however the opposite when the
additive noise is along every direction. The least square plane estimation with ||µ||22 = 1
seems to give similar results to the least squares with c = cste but is never better. At last, it
can be noted that each of the three methods tend to the real solution both when the number
of points tend to infinity and when the 2D grid span is a lot larger than the additive noise.

In the third experiment, piecewise planar disparity maps (Toulouse, village1, village2,
countryside) were corrupted with an additive Gaussian noise (along the z-direction). Then the
three plane estimation methods were used to run the region growing algorithm. Such was done
to compare the results both in quality and computation time obtained for the 3 approaches.
For a fair comparison the error measurements were done using a same classification for the 3
methods.



158 Chapter A. Plane parameter estimation

Figure A.2: Mean error (plain lines) and max error (dashed lines) along the z-axis.
In red, least squares with c = cste 6= 0; in green, orthogonal least squares; in
blue, least squares with ||µ||22 = 1. Left image: Data set corrupted with an additive
Gaussian noise on the z-axis only. Right image: Data set corrupted with an additive
Gaussian noise on each axis.

Toulouse Village1 Village2 Countryside

time error Nπ time error Nπ time error Nπ time error Nπ

ZLS 9.9s 0.009 95 49.2s 0.0234 193 1m52s 0.0272 88 56s 0.0024 11

OLS 11.5s 0.009 93 47.3s 0.0285 191 2m23S 0.0272 93 57s 0.0024 11

GLS - 0.0475 - - 0.0699 - - 0.0504 - - 0.026 -

Table A.1: Execution time (s), mean root square residual error (pixel) and number of
detected planes on the 4 disparity maps corrupted with Gaussian noise. First line:
least squares approach with c = cste 6= 0. Second line: orthogonal least squares
approach. Third line: least squares approach with ||µ||22 = 1.

Table A.1 and Figure A.4 show the results of this experiment.

In this experiment, the least squares minimization on the parameter sphere failed. This is
due to the initialisation patches which were too small for a good first estimation and therefore
a good region growing. As shown on Figure A.4, the plane classification obtained with the
z-least squares approach and the one obtained with the orthogonal least squares are pretty
similar. The residual errors are located at the same place but at are slightly different. This is
confirmed by the numerical results of Table A.1. Both the computation times and errors are
almost the same for the two approaches even if the c = cste least squares are slightly better.

Even if the difference is mere, we chose to use the c = cste least squares approach for our
algorithm. This choice was also driven by the fact this method is invariant by compression
along the z-axis which avoids setting the baseline parameter as an input.

Least squares V.S. M-estimators

We at last tried to estimate a plane using both least squares and M-estimators. In this
experiment, several “slanted” planes were simulated and corrupted along their z− axis by an
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Figure A.3: Mean error angle (plain lines) and max error angle (dashed lines) be-
tween the real plane and the estimated plane. In red, least squares with c = cste 6= 0;
in green, orthogonal least squares; in blue, least squares with ||µ||22 = 1. Left image:
Data set corrupted with an additive Gaussian noise on the z-axis only. Right image:
Data set corrupted with an additive Gaussian noise on each axis.

additive Gaussian noise. Then for each configuration, the final plane was estimated by both
least squares and M-estimators using the fair function.

The obtained estimation gave the same error order with a slight preference for Least
squares when the noise variance gets large.

A.4.2 Robust estimators

In this section we propose two sets of experiments to find out which estimator is more adapted
to the situations encountered in Chapter 2. We considered the two following situations:

• Two planes separated at their intersection forming an angle α.

• Two planes identically oriented separated by a step edge ∆z.

For each experiment, the data were polluted with an additive i.i.e. Gaussian noise along the
z−direction.

Since the goal here is to measure the capacity of each method to find the right model,
we computed the Mean Square Errors of each algorithm considering only the points of the
principal plane. For each situation, we ran the algorithm with the following proportions of
points distributed according to the first plane: 50%, 75% and 100%. Table A.2 show the
mean and median results obtained using different values angle α and step edge ∆z for the
three following algorithms: M-estimators (Mest), Least Median of Squares (LMS) without and
with M-estimator refinement (M-LMS) and RANSAC (Ran) without and with M-estimator
refinement (M-Ran). In this experiment, the threshold for the RANSAC algorithm was chosen
as 2.5σ where σ is the standard deviation of the additive Gaussian noise. The threshold for the
refinement of the Least Median of Squares was chosen as 2.5σ̂ where σ̂ is the robust standard
deviation computed according to Eq. A.35.

From the results, one can see that the RANSAC algorithm refined using the M-estimators
almost always gives the best results, supposing that you know the right threshold for it.
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Experiment Intersection Step edge Single plane
Inliers: 50% 75% 50% 75% 100%

mean median mean median mean median mean median mean median

M-est 3806 1293 1.93 1.47 1961 1878 5.3 5.26 2 E−4 2 E−4

Ran 25127 0.27 0.072 0.056 19857 19434 0.081 0.076 0.048 0.039
LMS 20550 0.25 0.053 0.045 23341 22308 0.062 0.05 0.038 0.038
M-Ran 5832 6.5 E−3 8 E−4 5 E−4 3116 4911 6 E−4 6E−4 8 E−4 6 E−4

M-LMS 33969 0.053 0.0046 0.0043 3596 4862 0.0032 0.0031 0.0062 0.0057

M-Ran:σ 15666 0.13 0.03 0.023 0.034 0.029 8613 0.16 0.026 0.04
M-Ran:5σ 23574 0.043 0.027 0.004 23496 22496 3 E−4 3 E−4 2 E−4 2 E−4

M-Ran:10σ 378 1.01 0.54 0.13 23564 22504 3 E−4 3 E−4 5 E−4 5 E−4

Table A.2: Mean Square Error of robust algorithms for the points of the first model.

The results are slightly better than the ones using Least Median of Squares. However, with
the latter algorithm the threshold can be set automatically. At last, one can see that the
M-estimators are not well adapted to robust estimation. In most cases, they are not able
to separate the two models (MSE > 1000). Moreover, when they do, the results are less
precise than the ones obtained with RANSAC or Least Median of squares. The two exception
situations are:

• A single plane describes the data. In This case the M-estimators are a better descriptor
because they are more adapted to this type of data.

• A step edge where half the points are distributed according to one plane and the other
half corresponds to the other plane. In this situation, neither RANSAC nor Least
Median of Squares are able to separate the two models. Then once again, the M-
estimators give a better mean description. Note that if a smaller threshold is used for
RANSAC (σ instead of 2.5σ), the separation can be found.

The second part of Table A.2 shows the effect of using different threshold values for the
RANSAC algorithm and the refinement with M-estimators. One can see that if a wrong
threshold is used, the Least Median of Squares + robust standard deviation is preferable in
almost all the configurations.
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Figure A.4: Results on Village1 disparity map. First line: reference image(left) and
disparity map(right). Second line: plane classification obtained with least squares
minimization with c = cste(left) and orthogonal constraint(right). Third line: resid-
ual error obtained with least squares minimization with c = cste(left) and orthogonal
constraint(right).
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Zhang, W. and Kosecká, J. (2006). Nonparametric estimation of multiple structures with
outliers. In ECCV 06, pages 60–74.

Zhang, Z. (1997). Parameter estimation techniques: a tutorial with application to conic
fitting. Image and Vision Computing.

Zhang, Z. (1998). Determining the epipolar geometry and its uncertainty: A review. Inter-
national Journal of Computer Vision, 2:161–195.

Zuliani, M., Kenney, C. S., and Manjunath, B. S. (2005). The multiransac algorithm and its
application to detect planar homographies. In ICIP.


