
HAL Id: tel-00654121
https://theses.hal.science/tel-00654121v2

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-performance floating-point computing on
reconfigurable circuits

Bogdan Mihai Pasca

To cite this version:
Bogdan Mihai Pasca. High-performance floating-point computing on reconfigurable circuits. Other
[cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2011. English. �NNT : 2011ENSL0656�.
�tel-00654121v2�

https://theses.hal.science/tel-00654121v2
https://hal.archives-ouvertes.fr

N◦ d’ordre : 656
N◦ attribué par la bibliothèque : 2011ENSL0656

ÉCOLE NORMALE SUPÉRIEURE DE LYON

Laboratoire de l’Informatique du Parallélisme

THÈSE

présentée et soutenue publiquement le 21 Septembre 2011 par

Bogdan PASCA

pour l’obtention du grade de

Docteur de l’École Normale Supérieure de Lyon

spécialité : Informatique

au titre de l’École Doctorale de Mathématiques et d’Informatique Fondamentale de Lyon

High-performance floating-point computing
on reconfigurable circuits

Directeur de thèse : Florent DE DINECHIN

Après avis de : Paolo IENNE
Olivier SENTIEYS

Devant la commission d’examen formée de :

Octavian CRET Membre
Florent DE DINECHIN Membre
Paul FEAUTRIER Membre
Paolo IENNE Membre/Rapporteur
Martin LANGHAMMER Membre
Olivier SENTIEYS Membre/Rapporteur

Acknowledgements

First of all, I want to thank my family for their priceless and unconditioned support all through-
out this thesis. They made me what I am today and I will be forever grateful.

Next, I want to kindly thank my girlfriend Mioara for her love and support which helped me
to seamlessly overcome all encountered challenges. Thank you for being supportive and encour-
aging during the late hours we spent at the office on our endless deadlines.

I also want to thank our Romanian community from ENS, for all the brilliant time spent to-
gether. The endless polemics on various subjects were both cultivating and helped me signifi-
cantly improve my argumentation capabilities. The long and challenging bike rides, gym practice,
climbing, running ... made me always push myself one step further, which I also tried to apply to
research.

I especially want to thank my supervisor Florent for believing in my potential and efficiently
using my skills throughout the thesis time. His guidance was excellent, always coming up with
interesting subjects to work on, but also providing me with sufficient freedom to tackle my own
research subjects.

I also want to thank my thesis reviewers, whose constructive comments helped me further
improve this manuscript, and the jury members for their pertinent and challenging questions
during the defense.

A big thanks to CompSys members, Alexandru and Christophe, for the interesting discussions
carried around the long coffee/tea brakes. These discussions did not only widen my research
interests, but also resulted in one research article during the last year of this thesis.

Last but not least, I want to thank the Arenaire team members, for their kindness and for
always having the door open for me. I also like to thank our team assistants, Severine and Damien
for all their help in simplifying the sometimes overwhelming paperworks.

Many thanks to my friends and everyone else which I haven’t mentioned here for their help
and support.

Contents

1 Introduction 1

2 Field Programmable Gate Arrays 5
2.1 Architecture . 6

2.1.1 Logic elements . 6
2.1.2 DSP blocks . 9
2.1.3 Block memory . 12

2.2 FPGA design flow . 13
2.3 Application markets . 15

3 Floating-point arithmetic 17
3.1 Generalities . 17

3.1.1 Representation . 17
3.1.2 Rounding . 20
3.1.3 Errors . 21

3.2 Floating-point arithmetic on FPGAs . 22

4 Custom arithmetic data-path design 25
4.1 Arithmetic operators . 26

4.1.1 FPGA-specific arithmetic operator design . 26
4.1.2 From libraries to generators . 27

4.2 Design choices for FloPoCo . 28
4.3 A motivating example . 28
4.4 The FloPoCo framework . 31

4.4.1 Operators . 31
4.4.2 Automatic pipeline management . 32
4.4.3 Synchronization mechanisms . 33
4.4.4 Managing subcomponents . 34
4.4.5 Sub-cycle accurate data-path design . 35
4.4.6 Frequency-driven automatic pipelining . 36
4.4.7 The Target class hierarchy . 36
4.4.8 The bottom-line . 37
4.4.9 Test-bench generation . 38
4.4.10 Framework extensions . 40

4.5 Conclusion . 41

vi Contents

5 Binary addition in FloPoCo 43
5.1 Related work . 43
5.2 Design-space exploration by resource estimation . 45
5.3 Pipelined addition on FPGA . 45

5.3.1 Classical RCA pipelining . 47
5.3.2 Resource estimation techniques . 47
5.3.3 Alternative RCA pipelining . 48
5.3.4 Area-complexity of the pipelined designs . 49

5.4 Short-latency addition architecture . 49
5.4.1 Classic carry-select adder . 50
5.4.2 Acceleration of inter-block carries . 50
5.4.3 The Add-Add-Multiplex (AAM) carry-select architecture 52
5.4.4 The Compare-Add-Increment (CAI) carry-increment architecture 53
5.4.5 The Compare-Compare-Add (CCA) carry-select architecture 54
5.4.6 Block-splitting strategies . 54
5.4.7 Area complexity of the designs . 57

5.5 Global inference of shift-registers . 58
5.6 Reality check . 59

5.6.1 Estimation formulas . 59
5.6.2 Synthesis results . 59

5.7 Conclusions . 60

6 Large multipliers with fewer DSP blocks 63
6.1 Large multipliers using DSP blocks . 63
6.2 Visual representation of multipliers . 64
6.3 Karatsuba-Ofman algorithm . 65

6.3.1 Two-part splitting . 65
6.3.2 Implementation issues on Virtex-4 . 66
6.3.3 Three-part splitting . 66
6.3.4 4-part splitting . 68
6.3.5 N-part splitting . 69
6.3.6 Issues with the most recent devices . 71

6.4 Non-standard tilings . 72
6.4.1 Design decisions . 73
6.4.2 Algorithm . 74
6.4.3 Reality check . 74

6.5 Squarers . 75
6.5.1 Squarers on Virtex-4 and Stratix-II . 76
6.5.2 Squarers on Stratix-III and Stratix-IV . 76
6.5.3 Non-standard tilings on Virtex-5/6 . 77

6.6 Truncated multipliers . 77
6.6.1 Faithfully accurate multipliers . 78
6.6.2 FPGA fitting . 79
6.6.3 Architecture generation algorithm . 79

6.7 Conclusion . 81

vi

Contents vii

7 Polynomial-based architectures for function evaluation 83
7.1 Related work . 84
7.2 Function evaluation by polynomial approximation . 85

7.2.1 Range reduction . 86
7.2.2 Polynomial approximation . 86
7.2.3 Polynomial evaluation . 88
7.2.4 Accuracy and error analysis . 89
7.2.5 Parameter space exploration for the FPGA target 90

7.3 Reality check . 92
7.3.1 Optimization effect . 92
7.3.2 Examples and comparisons . 92

7.4 Conclusion, open issues and future work . 94

8 Multiplicative square root algorithms 97
8.1 Algorithms for floating-point square root . 97

8.1.1 Notations and terminology . 98
8.1.2 The cost of correct rounding . 99

8.2 Square root by polynomial approximation . 100
8.3 Results, comparisons, and some handcrafting . 103
8.4 Conclusion and future work . 104

9 Floating-point exponential 107
9.1 Related work . 107
9.2 Algorithm and architecture . 108

9.2.1 Algorithm overview . 109
9.2.2 Range reduction . 109
9.2.3 Computation of eY . 111

9.3 Implementation issues . 112
9.3.1 Constant multiplications . 112
9.3.2 Overall error analysis . 113
9.3.3 The case study of single precision . 114
9.3.4 Polynomial approximation for large precisions 114
9.3.5 Parameter selection . 115

9.4 Results . 116
9.4.1 Synthesis results . 116
9.4.2 Comparison with other works . 116
9.4.3 Comparison with microprocessors . 117

9.5 Conclusion and future work . 117

10 Floating-point accumulation and sum-of-products 119
10.1 A fast and accurate accumulator . 120

10.1.1 Overall architecture . 120
10.1.2 Parameterisation of the accumulator . 121
10.1.3 Fast accumulator design using partial carry-save 122
10.1.4 Post-normalisation unit, or not . 123
10.1.5 Synthesis results . 123

10.2 Application-specific accumulator design . 124
10.2.1 A performance vs. accuracy tradeoff . 124
10.2.2 A case study . 126
10.2.3 Accuracy measurements . 126

vii

viii Contents

10.3 Accurate Sum-of-Products . 127
10.4 Comparison with related work . 128
10.5 Conclusion and future work . 129

11 High-level synthesis of perfect loop nests 131
11.1 Computational data-path generation . 132
11.2 Efficient hardware generation . 132

11.2.1 Background . 133
11.2.2 Working examples . 135
11.2.3 Parallelization . 139
11.2.4 One dimensional Jacobi stencil computation 141
11.2.5 Lessons . 142
11.2.6 Algorithm . 143

11.3 Computing kernel accuracy and performance . 146
11.3.1 Matrix-matrix multiplication . 146
11.3.2 One dimensional Jacobi stencil computation 148
11.3.3 Lessons . 149

11.4 Reality check . 149
11.5 Conclusion and future work . 151

12 Using FloPoCo to solve Table Maker’s Dilemma 153
12.1 The Table Maker’s Dilemma . 153
12.2 Proposed algorithm . 154

12.2.1 The tabulated differences method . 154
12.2.2 Error analysis . 156
12.2.3 An example: the exponential function . 157

12.3 Our design . 157
12.3.1 Functional model . 158
12.3.2 Bandwidth requirement . 162
12.3.3 Performance estimation . 162
12.3.4 Reality Check . 163
12.3.5 FloPoCo impact . 164

12.4 Conclusion . 165

13 Conclusions and Perspectives 167

viii

List of Figures

2.1 Very simplified view of a generic FPGA layout . 5
2.2 Left: CLB composition and interconnect in Virtex-4 devices Right: Detailed view of

a Virtex-4 Slice . 6
2.3 Ripple-Carry Adder (RCA) implementation in Virtex-4 devices 7
2.4 Architectural overview of the Adaptative Logic Module (ALM) block present in

Stratix devices . 9
2.5 Overview of the Xilinx DSP48 . 10
2.6 Interconnect of the DSP blocks Left: StratixII and Right: StratixIII-IV devices 11
2.7 Very simplified overview of the Stratix-III half-DSP block 11
2.8 Classical FPGA design flow . 14

3.1 Distribution of floating-point numbers in a system ξ(2, 3,−2, 3), having a IEEE-754
equivalent p = 3 and we = 3. The -3 and 4 values of e are used to represent the
special cases presented in table 3.2 . 19

3.2 The rounding modes specified by the IEEE-754 2008 standard 20
3.3 The absolute and relative errors of our representation 21
3.4 Instruction distribution in SPICE circuit modeling using FPGAs [94] 23

4.1 Productivity in porting applications to FPGAs and the relative performance of these
circuits provided the different levels of abstraction are provided for circuit description 27

4.2 Optimized architecture for the Sum-of-Squares operator 29
4.3 Very simplified overview of the FloPoCo class hierarchy 31
4.4 Parallel evaluation of the polynomial a2x

2 + a1x+ a0 33
4.5 Simplified overview of VHDL generation flow . 38

5.1 FloPoCo class structure for binary addition . 44
5.2 Ripple-Carry Adder implementation . 46
5.3 Ripple-Carry Addition Frequency for VirtexIV, Virtex5 and Spartan3E 47
5.4 Classical addition architecture [81] . 48
5.5 Annotated classical architecture . 48
5.6 Proposed FPGA architecture . 48
5.7 Classic Carry-Select Architecture . 50
5.8 Carry-Add-Cell (CAC) implementation and representation 51
5.9 Carry Computation Circuit with Carry Recovery . 52
5.10 The AAM Carry-Select Architecture using (a) the CCC and CR and (b) the CAC . . . 53
5.11 The CAI Carry-Increment Architecture . 54
5.12 The CCA Carry-Select Architecture . 54
5.13 Computation scheduling for the proposed architectures 55
5.14 Maximum adder width vs circuit frequency on Virtex5 . 60

x List of Figures

6.1 u× v-bit multiplier . 64
6.2 u× v-bit multiplier . 66
6.3 34x34bit multiplier using Virtex-4 DSP48 . 67
6.4 119x119bit multiplier using Virtex-4 DSP48 for QP mantissa multiplier 70
6.5 119x119-bit Karatsuba . 71
6.6 53-bit multiplication using Virtex-5 DSP48E. The dashed square is the 53x53 multi-

plication. 72
6.7 Some super-tiles exactly matching DSP blocks . 74
6.8 Super-tiling primitives . 74
6.9 Various tilings of large multipliers . 75
6.10 Double-precision squaring. Tilings for StratixIII/IV and Virtex-5/6 devices 77
6.11 Truncated multiplication and the corresponding tiling multiplication board 78
6.12 Truncation applied to multipliers. Left: Classical truncation technique applied to

DSPs. Center: Improved truncation technique; M4 is computed using logic. Right:
FPGA optimized compensation technique; M4 is not computed. 79

6.13 Tiling truncated multiplier using DSPs and soft-core multipliers 80
6.14 Mantissa multipliers for SP,DP,QP, Virtex4 (left) and Virtex5 (right) ensuring faithful

rounding. The gray tiles represent soft-core multipliers 81

7.1 FloPoCo class structure integrating the generic fixed-point FunctionEvaluator 84
7.2 Automated implementation flow . 85
7.3 Range reduction example for the f(x) = log2(x), for x ∈ [0, 1) where the input

interval is split into four sub-intervals . 86
7.4 Alignment of the monomials . 87
7.5 The function evaluation architecture . 91

8.1 Deducing the correctly rounded value of
√
x on wF bits from a faithfully rounded

result on wF+1 bits . 99
8.2 Bits involved in the comparison of̃ x2 ≥ x are highlighted 100
8.3 The multipliers required for the squaring operation operatioñ r2 for double-precision

on Virtex4 . 100
8.4 Generic polynomial evaluator for the square root . 101
8.5 Handcrafted architecture for single precision . 104

9.1 Operand alignment for 1 + x+ x2/2 for x < 2−wF−2 108
9.2 The ranges of the input where the exponential takes specific values 109
9.3 Architecture and fixed-point data alignment . 110
9.4 Improved accuracy constant multiplication . 113
9.5 The architecture evaluating eZ − Z − 1 for Virtex-5/Virtex-6 115

10.1 Iterative accumulator . 119
10.2 A typical floating-point adder (wE and wF are the exponent and significand sizes) . 120
10.3 The proposed accumulator (top) and post-normalisation unit (bottom). 121
10.4 Accumulation of floating-point numbers into a large fixed-point accumulator 121
10.5 Accumulator with 4-bit partial carry-save. The boxes are full adders, bold dashes

are 1-bit registers, and the dots show the critical path. 122

x

List of Figures xi

11.1 Automation flow: the C code is first parsed by the Bee research compiler; FloPoCo
is then invoked for generating the required arithmetic pipeline; the pipeline infor-
mation is then passed back to the Bee compiler for use in operation scheduling;
next, the pipeline depth adjustments are sent to FloPoCo for generating the final
VHDL. 132

11.2 Iteration domain for the matrix-matrix multiply code in Listing 11.1 for N=4 133
11.3 Matrix-matrix multiplication iteration domain with tiling 136
11.4 The iteration domain and dependence vectors for 1D Jacobi stencil computation in

Listing 11.3 . 137
11.5 Tiled iteration domain for 1D Jacobi stencil computation 138
11.6 Computational kernels of our two motivating examples. These were generated us-

ing FloPoCo . 139
11.7 Matrix-matrix multiply using blocking . 140
11.8 Matrix-matrix multiply blocking applied using our technique. Scheduling of com-

putations is modified in order to minimize external memory usage 140
11.9 Inter tile slice iteration domain for Jacobi 1D stencil code. The parallel hyperplane

has ~τ = (1, 3) and describes the tile-slices which can be executed in parallel. The
dashed lines indicated various translations of the hyperplane H~τ showing different
levels of parallelism. 141

11.10An alternative to executing the Jacobi Kernel using 2 processing elements. 142
11.11Architecture for the second proposed parallelization of Jacobi 1D 143
11.12The solution to the ILP finding τ for the Jacobi example 144

12.1 The tabulated difference method . 155
12.2 Polynomial Evaluator based on the tabulated differences method 158
12.3 Overview of the TaMaDi Cluster architecture . 159
12.4 Structure of one element in the ClusterInFIFO . 159
12.5 Global system dispatcher interface . 160
12.6 Global system architecture . 161
12.7 Placement of the synthesized the TaMaDi System using logical regions 164

xi

List of Tables

2.1 Main operating modes of the Virtex-4 DSP48 block . 10
2.2 Operational modes supported by the Stratix-II, Stratix-III and Stratix-IV DSP blocks 12

3.1 IEEE-754 2008 binary (β = 2) floating-point (FP) formats 18
3.2 Binary encodings of exceptions in the IEEE-754 Standard 19

4.1 Some synthesis results for x2 + y2 + z2. 30

5.1 Resource estimation formulas for the pipelined adder architectures with shift-register
extraction (SRL) (Xilinx only) and without SRL (Xilinx and Altera) 49

5.2 Advanced resource estimation formulas for the pipelined classical architecture, when
shift-register extraction is activated . 50

5.3 CAC Truth table. Greyed-out rows are not needed . 51
5.4 Inter-Block Carry Propagation Cases . 52
5.5 Area comparison against pipelined RCA schemes for Virtex5 and addition size L . . 58
5.6 Relative Error for the estimation formulas on a 128-bit adder Virtex4 and StratixIII

devices for a requested frequency of 400MHz. 59
5.7 Resource usage of 128-bit wide pipelined adders for different utilization contexts

for a target frequency of 400MHz (SRL allowed, post place-and-route) 59
5.8 Post place-and-route results on Virtex5 (-3) for various adder sizes and a target

f=250MHz using ISE 11.5. δcp denotes the length of the design’s critical path 60
5.9 Post place-and-route synthesis results for 128-bit addition on StratixIII 60

6.1 34x34 multipliers on Virtex-4 (4vlx15sf363-12). 66
6.2 51x51 multipliers on Virtex-4 (4vlx15sf363-12). 68
6.3 Synthesis results of large Karatsuba multipliers. For Stratix-II/III we used the lpm_mult

megafunction provided with the Megawizerd tool for generating binary multipliers 71
6.4 Comparison of multiplier implementations on Virtex5 devices. All our implemen-

tations are targeted at 400MHz. Frequency is expressed in MHz 75
6.5 32-bit and 53-bit squarers on Virtex-4 (4vlx15sf676-12) 76
6.6 Truncated multipliers providing faithful rounding for common floating point formats 78
6.7 Truncated multiplier results . 80

7.1 The decrease in internal datapath truncations allows reducing DSP count 92
7.2 Examples of polynomial approximations obtained for several functions. S repre-

sents the scaling factor so that the function image is in [0,1] 93

xiv List of Tables

7.3 Synthesis Results using ISE 11.1 on VirtexIV xc4vfx100-12. l is the latency of the
operator in cycles. All the operators operate at a frequency close to 320 MHz. The
grayed rows represent results without coefficient table BRAM compaction and the
use of truncated multipliers . 93

7.4 Comparison with CORDIC for 32-bit sine/cosine functions on Virtex5 94

8.1 FloPoCo polynomial square root for Virtex-4 4vfx100ff1152-12 and Virtex5 xc5vlx30-
3-ff324. The command line used is flopoco -target=Virtex4|Virtex5 -frequency=f

FPSqrtPoly wE wF 0 degree . 102

9.1 Synthesis results of the various instances of the floating-point exponential opera-
tor. We used QuartusII v9.0 for StratixIII EPSL50F484C2 and ISE 11.5 for VirtexIV
XC4VFX100-12-ff1152, Virtex5 XC5VFX100T-3-ff1738 and Virtex6 XC6VHX380T-3-
ff1923 . 116

10.1 Compared synthesis results for an accumulator based on FP adder, versus proposed
accumulator with various combinations of parameters, for Virtex-4 and Stratix-III
devices targeting 400 MHz. 124

10.2 Synthesis results for a LongAcc2FP compatible with Table 10.1, rounding an accu-
mulator of size 2wF to an FP number of size wF . Virtex-4 results are obtained using
ISE 11.5 and for Stratix-III using Quartus 10.1 (after place and route) 125

10.3 Compared performance and accuracy of different accumulators for SP summands
from [57]. 127

10.4 Accuracy of accumulation of FP(7,16) numbers, using an FP(7,16) adder, compared
to using the proposed accumulator with 32 bits (MSBA = 20, LSBA = −11). 127

10.5 Synthesis results for the sum-of-products operator. The accumulator is designed to
absorb at least 100,000 products in [0,1]. The accumulator parameters are MSBA =
dlog2(100, 000)e, MaxMSBX = 1 MSBA = −2 ∗ wF − 2 128

10.6 Accuracy results for the sum-of-products operator. The accumulator used had the
configuration MSBA = dlog2(n)e, MaxMSBX = 1, MSBA = −2 ∗ wF − 2 128

11.1 Minimum, average and maximum relative error out of a set of 4096 runs, for N =
4096, the elements of A and B are uniformly distributed on the positive/entire
floating-point axis. The third architecture uses truncated multipliers having an er-
ror of 1 ulp with ulp = 2−wF−6. Implementation results are given for a Virtex-4
speedgrade-3 FPGA device . 147

11.2 Minimum, average and maximum relative error for elements of an array in the Ja-
cobi stencil code over a total set of 4096 runs, for T = 1024 iterations in the time
direction. The numbers are uniformly distributed within wF exponent values. Im-
plementation results are given for a Virtex-4 speedgrade-3 FPGA device 148

11.3 Synthesis results for the full (including FSM) MMM and Jacobi1D codes. Results
obtained using using Xilinx ISE 11.5 for Virtex5, and QuartusII 9.0 for StratixIII . . . 150

11.4 Synthesis results for the parallelized MMM and Jacobi1D. Results obtained using
using Quartus II 10.1 for StratixIII with wE = 8, wF = 23 150

12.1 Post place-and-route results of the TaMaDi Core PE 159
12.2 Dependency between TaMaDi Core parameters, its area and the necessary band-

width/Core for a StratixIV. Similar results hold for other FPGAs 163
12.3 Performance estimates for double-precision exponential (one input exponent) 163
12.4 Post place-and-route results of the TaMaDi System. The Core parameters are: wdp =

120 bits and N = 4 . 165

xiv

Acronyms

FPGA Field Programmable Gate Array

GPU Graphical Procesing Unit

HPC High-Performance Computing

IC Integrated Circuit

ASIC Application-Specific Integrated Circuit

CUDA Compute Unified Device Architecture

HDL Harware Description Language

PAL Programmable Array of Logic

CPLD Complex Programmable Logic Device

LE logic element

LUT look-up table

CLB Configurable Logic Block

LAB Logic Array Block

MLAB Memory Logic Array Block (LAB)

ALM Adaptative Logic Module

ALUT adaptative look-up table

RAM Random-Access Memory

SRAM Static Random-Access Memory (RAM)

EDIF Electronic Digital Interchange Format

XNF Xilinx Netlist Format

FSM Finite State Machine

FP floating-point

SP single precision

DP double precision

QP quadruple precision

FPU Floating-Point Unit

CR correct rounding

FR faithful rounding

HLS High-Level Synthesis

DSP Digital Signal Processing

FFT Fast Fourier Transform

xvi List of Tables

FIR Finite Impulse Response

PE Processing Element

RCA Ripple-Carry Adder

FA Full-Adder

MSB Most Significant Bit

xvi

Publications

1. Florent de Dinechin, Jean-Michel Muller, Bogdan Pasca, and Alexandru Plesco. An FPGA ar-
chitecture for solving the Table Maker’s Dilemma. In International Conference on Application-
specific Systems, Architectures and Processors, 2011. Best Paper Award

2. Hong Diep Nguyen, Bogdan Pasca, and Thomas B. Preußer. FPGA-specific arithmetic op-
timizations of short-latency adders. In International Conference on Field Programmable
Logic and Applications. IEEE, 2011.

3. Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic data paths with
FloPoCo. IEEE Design and Test, 2011.

4. Christophe Alias, Bogdan Pasca, and Alexandru Plesco. Automatic generation of FPGA-
specific pipelined accelerators. In The 7th International Symposium on Applied Reconfig-
urable Computing, 2011.

5. Florent de Dinechin and Bogdan Pasca. Floating-point exponential functions for DSP-
enabled FPGAs. In IEEE International Conference on Field-Programmable Technology.
IEEE, 2010.

6. Sebastian Banescu, Florent de Dinechin, Bogdan Pasca, and Radu Tudoran. Multipliers
for floating-point double precision and beyond on FPGAs. In International Workshop on
Higly-Efficient Accelerators and Reconfigurable Technologies (HEART). ACM, 2010.

7. Florent de Dinechin, Mioara Joldes, and Bogdan Pasca. Automatic generation of polynomial-
based hardware architectures for function evaluation. In International Conference on Application-
specific Systems, Architectures and Processors, 2010.

8. Florent de Dinechin, Mioara Joldes, Bogdan Pasca, and Guillaume Revy. Multiplicative
square root algorithms for FPGAs. In International Conference on Field Programmable
Logic and Applications. 2010.

9. Florent de Dinechin, Hong Diep Nguyen, and Bogdan Pasca. Pipelined FPGA adders. In
International Conference on Field Programmable Logic and Applications. 2010.

10. Florent de Dinechin, Mioara Joldes, Bogdan Pasca, and Guillaume Revy. Racines carrées
multiplicatives sur FPGA. In SYMPosium en Architectures nouvelles de machines (SYMPA),
2009.

11. Florent de Dinechin and Bogdan Pasca. Large multipliers with fewer DSP blocks. In Inter-
national Conference on Field Programmable Logic and Applications. 2009.

12. Florent De Dinechin, Cristian Klein, and Bogdan Pasca. Generating high-performance cus-
tom floating-point pipelines. In International Conference on Field Programmable Logic and
Applications, 2009.

13. Florent de Dinechin, Bogdan Pasca, Octavian Creţ, and Radu Tudoran. An FPGA-specific
approach to floating-point accumulation and sum-of-products. In IEEE International Con-
ference on Field-Programmable Technology, 2008.

1 CHAPTER 1

Introduction

The classical version of Moore’s Law predicts that the capacity of Integrated Circuits (ICs)
doubles every 18 months. Microprocessor manufacturers followed this law by reducing the op-
erating voltages and using smaller and faster transistors. Frequency scaling got to the point that
circuits emitted too much heat to be reasonably dissipated – the so called power wall. This lead
the main microprocessor manufacturer, Intel, to publicly announce in 2004 that it would dedicate
all it future design efforts to multi-core environments. Nowadays, Intel offers a 8-core version
of the high-end Xeon processor (V8), while Opteron from AMD is provided in a 12-core version,
both at 45nm manufacturing process.

Just doubling the number of cores in a die doesn’t guarantee a speedup of two over the initial
microprocessor for a given application. Indeed, Amdahl’s law [34] suggests that the maximum
expected overall improvement of a system using N processors is highly influenced by the amount
of sequential execution of the program, but also by the degree of parallelism of the parallel sec-
tions. Most of the existing software, developed during the single-core era is essentially sequential
and therefore does’t benefit from any improvement on a multicore system. One idea, dating back
from the 1960s, is to write compilers that would automatically parallelize these sequential pro-
grams. The success of these approaches seems to be inversely proportional to the number of
targeted cores. One reason for this insuccess is that the sequential solution these tools start with
already looses some of the “parallel semantics” of the problem to be solved. Consequently, mak-
ing efficient use of multiple cores requires recovering some of this lost parallelism. This requires
recoding parts of the application using the thread programming model or using one of the well
known APIs supporting process intercommunication: MPI, PVM or OpenMP. Another reason for
the poor performance of these parallelized programs is that in a multicore system inter-process
communication, usually resolved by shared-memory techniques, is very costly. In any case, the
success of this approach will depend on the data-level parallelism of the initial application.

One success story is computer graphics. Graphics processing is an application domain having
massively parallel computational kernels: entire animation scenes and also parts of each frame
can be processed in parallel. Traditionally, Graphical Procesing Units (GPUs) consisted of numer-
ous but rather simple Processing Elements (PEs) capable of processing the numerous graphics-
related tasks in a flow-like manner. In 2001, with the introduction of first programmable GPU
(the NV20 series) programmers could execute custom visual-effects programs using the Shader
Language 1.1. In 2007 nVIDIA formalized the GPU’s computing capabilities under the name of
Compute Unified Device Architecture (CUDA): the parallel computing architecture present in
nVIDIA GPUs. General-purpose computations can be expressed using C for CUDA, a C sub-
set with nVIDIA extensions. As the PEs of modern GPUs support some of the basic floating-
point operators, it is tempting to use them to perform massively parallel scientific computations.

2 Chapter 1. Introduction

Nevertheless, acceleration degree is very application-dependent (applications should have high
data-level parallelism and main computation task should be supported in silicon by the PEs) and
obtaining good accelerations requires a significant amount of code refactoring.

Field Programmable Gate Arrays (FPGAs) have also benefited from the advances in circuit in-
tegration. With increased capacities, FPGAs moved from being used as glue-logic to prototyping
Application-Specific Integrated Circuits (ASICs), and recently to ASIC replacements and applica-
tion accelerators [111, 65, 57]. If in the past, performance- and power-demanding systems were
usually built using ASICs, their use today is being limited by their prohibitive manufacturing
price. Moving down in the manufacturing process from 130nm to 90nm has doubled ASIC mask
prices and requires millions more in engineering. This restricts the viable use of ASICs to medium
and hi-volume markets (more than 100K chips sold). On the other hand, older technology ASICs
(130nm and higher) are neither price- nor performance-efficient when compared to the current
45nm FPGAs.

FPGAs have recently been considered as accelerators for a wide spectrum of applications with
various computational needs: data mining [39] and genome sequencing [126], logical testing and
numerical aggregation operations, medical imaging [57], scientific visualization, physics simu-
lations [114] computational chemistry [88], financial analytics [117, 161]. All these applications
involve operations like coordinate mapping, mathematical transformations, filtering etc. and
involve massive low and medium-grain parallelism. The architecture of Modern FPGAs have
been augmented with “ASIC-like” features: fast-carry chains for enhanced binary addition per-
formance, multiplier blocks for better mapping of digital signal processing applications and arith-
metic functions, embedded memories for increasing on-chip throughput etc. These new added
features make FPGAs very suitable for accelerating these applications. On one hand, they al-
low the ad-hoc implementation of the exotic arithmetic operators needed by these computations
and not supported in hardware by processors or GPUs. These operators can be deeply pipelined
and function at FPGA nominal frequency, yielding significant speedups over their software im-
plementations counterparts. On the other hand, coarser computational data-paths, possibly us-
ing these exotic operator instances, may be instantiated. Rather then communicating by means
of shared memories wasting computation cycles and power, the data-path components may be
simply wired together using the FPGA’s reconfigurable interconnect network, allowing the data
produced to be directly consumed, thus maximizing efficiency. This thesis studies the FPGA im-
plementation of such arithmetic operators and also the design of coarser arithmetic data-paths.

It’s possible to use standard Harware Description Languages (HDLs) (VHDL or Verilog) to
manually design arithmetic operators. Handcrafting basic standard operators (not necessarily op-
timal) is possible using VHDL, but designing exotic operators is a task impossible to perform us-
ing VHDL alone. For instance, implementing operators such

√
x or some elementary functions

(ex, log x . . .) using polynomial approximations requires pre-computing tables of values which
are function- and precision-specific, but also depend approximating polynomial degree. Exter-
nal tools are usually used to pre-compute these values.

Operator generators can naturally alleviate the limitations of VHDL. The design space explo-
ration can be done using a high-level programming language (C++, Java, ...) and operator specific
VHDL description can be generated. To our knowledge Xilinx pioneered this approach with Logi-
core. Nowadays, main FPGA manufacturers (Altera and Xilinx) ship operator generators with
their design tools, allowing far more parameters for each operator than one could get using a
parametrized operator library.

In their simplest form generators can simply perform some design space exploration and write
VHDL code files. Therefore, generators are at least as expressive as VHDL. However, the gener-
ator’s framework could also allow reusing already designed operators, help signal declarations,
possibly facilitate pipelining but also provide specialized assistance: help manage arithmetic ar-

2

Chapter 1. Introduction 3

gument reduction and other. Due to their proprietary nature, it is unclear how many of these
features are provided by the generator frameworks of Altera and Xilinx. Operator generators can
also be used for on-the-fly generation of arithmetic components by High-Level Synthesis (HLS)
tools targeting FPGAs. They are more flexible and easier to maintain than VHDL arithmetic oper-
ator libraries.

FloPoCo 1 (Floating-Point Cores, but not only) is an open-source C++ framework for the gen-
eration of arithmetic datapaths. It provides a command-line interface that inputs operator specifi-
cations, and outputs synthesizable VHDL. The main goal of this thesis was to develop and refine
the FloPoCo generator framework for the class of arithmetic operators. Consequently, one of the
main contributions of this thesis is the framework itself. It assists in designing and testing arith-
metic operators which can be flexible in input/output precision, may be easily retargeted to other
FPGA devices and allow a user-defined trade-off between operating-frequency and occupied re-
sources. All this significantly shortens the arithmetic operator design cycle therefore enhancing
productivity.

The second main contribution concerns the library of flexible arithmetic operators designed
using the FloPoCo framework. These operators include basic fixed-point and floating-point op-
erators, an automatic generator of fixed-point function implementations based on polynomial ap-
proximation, operators for the floating-point square-root and exponential functions and also one
meta-operator allowing the fast assembly of available floating-point operators. The work done
for describing these operators has validated the framework and motivated its continuous devel-
opment. Often, the framework enhancements for one operator have improved the performance
of other existing operators.

The third contribution of this thesis is the efficient use of the pipelined arithmetic operators
generated by FloPoCo in an application context. FloPoCo optimizes the architecture of the gen-
erated operators for user defined application constraints, which causes the operator’s latency to
be dependent on these constraints. Our main objective was to optimize the execution scheduling
of codes using these operators which we successfully achieved for applications described using
perfectly nested loops with uniform data dependencies.

The final contribution of this thesis is the validation of the FloPoCo framework for implement-
ing a complete application. The framework is put to the test for implementing a flexible, paramet-
ric description of an FPGA-specific architecture for solving the “Table Maker’s Dilemma”. The
final architecture consists of several operator layers, all having multiple flexible parameters, and
is designed to fill-up the largest FPGAs available. Thanks to the FloPoCo framework, for an exten-
sive set of parameters including the deployment FPGA, an architecture composed of thousands of
lines of code is generated in seconds. It allows exploring a large set of possible implementations
to select the one which best fits the target FPGA.

We strongly believe that the FPGA implementation of arithmetic data-paths should make the
best use of the FPGA’s flexibility and available resources. Our experiences in designing arithmetic
operators, both before and during the development of FloPoCo, have helped establish and refine
a framework which offers, in our opinion, just the right abstraction level for an FPGA-specific
arithmetic circuit description.

The rest of this thesis is organized as follows: after briefly presenting in Chapter 2 an overview
of the modern FPGA architecture and particularly, the features relevant for arithmetic operator
design, we will give in Chapter 3 a brief introduction to floating-point arithmetic and present
the relevant works regarding the implementation of floating-point operators in FPGAs. Chap-
ter 4 will then show the various gains of using FloPoCo for designing custom arithmetic data-
paths and present in detail the framework’s features. Next, Chapter 5 will present the various
binary-adder architectures present in FloPoCo and prove that the optimal architecture for a given

1. http://flopoco.gforge.inria.fr/

3

http://flopoco.gforge.inria.fr/

4 Chapter 1. Introduction

scenario can be chosen based on analytically deduced resource estimation formulas. Chapter 6
will then give an insight on how to build binary multipliers and squarers using fewer multiplier
resources. Next, we will present in Chapter 7 a generic fixed-point function evaluation imple-
mentation based on polynomial approximation which is both scalable and more performant than
other available implementations. This function evaluator is used as the main building block of
the floating-point square-root operator presented in Chapter 8 and also as a key component in the
implementation of the floating-point exponential function presented in Chapter 9. Next, Chapter
10 presents the FloPoCo implementation of a FPGA-specific floating-point accumulator and of a
dot-product operator based on this accumulator. In Chapter 11 we focus on efficiently scheduling
the computations of computing kernels described by specific loop nests on pipelined-operators,
in the context of using FloPoCo as a back-end for semi-automatic HLS. Finally, in Chapter 12 we
show that FloPoCo can effectively be used for describing the architecture of a complete computing
application for solving the Table Maker’s Dilemma.

4

2 CHAPTER 2

Field Programmable Gate Arrays

FPGAs are memory-based integrated circuits whose functionality can be programmed after
manufacturing. They were commercially introduced in 1985 by Xilinx [11] with the XC2064 prod-
uct, and are natural descendants of Complex Programmable Logic Devices (CPLDs).

Unlike CPLDs which are organized as small arrays of PALs, FPGAs have a much finer gran-
ularity. An FPGA is structured as large bidimensional array (>100K) of logic elements (LEs).
The LEs contain small programmable memories (most FPGAs are SRAM-based) and are inter-
connected by a configurable wiring network. One possible layout of an FPGA architecture which
matches this description is presented in Figure 2.1. The reconfigurability of both LE and the inter-
connect network allows the implementation of any logical circuit provided it fits in the FPGA.

However, reconfigurability comes at a price. Despite an equivalent technological processes,
the typical frequency of FPGA designs is in the low hundreds of MHz, whereas the microproces-
sor counterpart runs at several GHz. A one-to-one comparison between an arithmetic operator
supported in silicon in a microprocessor (FP addition for example) and its FPGA counterpart will
roughly yield a speedup of 10 in favor of the microprocessor. FPGAs may recover this thanks to
the massive parallelism and fine-grain flexibility.

We review next architectural features of FPGAs introduced by the two market leaders Altera
and Xilinx between 2004 (with the introduction of the Stratix-II and Virtex-4 devices) up to 2011.
We focus on the elements which concern the design of arithmetic operators and we ignore features
like: transceivers and embedded processors whose documentation takes more than two thirds of
the device handbooks.

logic element

switch matrix

I/O pins

interconnect network

Figure 2.1 Very simplified view of a generic FPGA layout

6 Chapter 2. Field Programmable Gate Arrays

CLB

Cout

SHIFTout Cin Cin

SHIFTin Cout

SLICEM 2

SLICEM 0

SLICEL 1

SLICEL 3

Matrix
Switch

VersaBlock

General
routing
matrix

Cin

Cout

clk

direct

0 0
1

1

0 1

1
0

LUT4

LUT4

MUXFX

REG

REG

MUXF5

Figure 2.2 Left: CLB composition and interconnect in Virtex-4 devices Right: Detailed view of a
Virtex-4 Slice

2.1 Architecture

The architecture of modern FPGAs is composed of logic elements (implemented as look-up
tables), embedded memories, embedded multipliers and several other components as well. Some
of these features like look-up tables (LUTs) and small multipliers (in the case of Altera devices) are
regrouped into clusters. The advantage of clustering these components is that it reduces the rout-
ing pressure. Within a cluster the elements can be fully interconnected while keeping a relatively
low number of wires for connecting the cluster to the general routing network. Moreover, some
direct connections to neighboring clusters can exist, allowing clusters to interact while bypassing
the slower general routing network.

In the case of Xilinx devices, the clusters of LUTs are are called Configurable Logic Blocks
(CLBs) whereas in the case of Altera these are called Logic Array Blocks (LABs). The granularity
of these clusters is both manufacturer and FPGA-family dependent. It greatly impacts routing
and therefore the performance of the FPGA. Modern FPGAs from Xilinx use CLBs of eight LUTs
(again, the LUTs size and features vary among device families) whereas Altera uses a slightly
larger LAB, with 16 LUTs for Stratix-II and 20 LUTs for Stratix-III/-IV.

Both manufacturers use a second hierarchical regrouping of elements within a cluster: Slices
for Xilinx and Adaptative Logic Modules (ALMs) for Altera. The elements of this level regroup
together two LUTs together with several other enhanced features which will be reviewed next.

2.1.1 Logic elements

Xilinx

The CLB structure varies between FPGA generations. In the case of Virtex-4 devices [18] the
CLB is made out of four slices grouped in pairs. The pairs are organized in two columns, as
presented in Figure 2.2. The slices in the right column are called SLICELs (the L comes from
logic) and those in the left column are SLICEM (M comes from memory). SLICEMs provide the
same functions as SLICELs but additionally feature a superset of memory-related functions. A
simplified overview of the layout of a SLICEL is presented on the right of Figure 2.2.

There are two function generators in each Virtex4 slice, denoted by LUT4 in Figure 2.2. Each
function generator is implemented as a programmable 4-input LUT totaling 16-bits of memory.

6

2.1 Architecture 7

This allows the implementation of any 4-input boolean function.
Moreover, slices also contain multiplexers (denoted by MUXF5 and MUXFX in Figure 2.2).

They can play two roles: (1) in combination with fast local routing resources they allow imple-
menting functions of more than four variables and (2) can implement multiplexers of up to 16:1 in
one CLB and up to 32:1 in two neighboring CLBs.

Slices also provide enhanced performance of binary adder and subtracter implementation us-
ing the RCA scheme. In this configuration, each half-slice assumes the role of a full-adder. Dedi-
cated fast carry lines traversing vertically the CLBs allow the carry-bit to ripple faster than using
the general routing network. Figure 2.3 highlights the slice configuration and presents the imple-
mented full-adder equations necessary for performing binary addition.

Slices also contain storage elements. These can be configured either as flip-flops or as latches.
They allow for fine-grain pipelining of logic designs that increases circuit throughput. For exam-
ple, if the storage elements in Figure 2.3 are configured as D-Q flip-flops, then the signals S(0)_d1
and S(1)_d1 are available one clock cycle later after signals S(0) and S(1).

Additional memory-related functionalities are featured by SLICEMs:
– the 16-bit LUT memory can also be configured as a synchronous RAM. Consequently, the

CLB can be configured as a 16×4, 32×2, 64×1 single-port or 16×2 dual-port (two pairs of
ports for reading and writing) memory.

– the 16-bit LUT memory can play the role of a shift-register, often denoted in Xilinx terminol-
ogy by SRL16. The 16 suffix specifies that one element can delay serial data from one to 16
clock cycles. In order to build larger shift registers (often needed in digital signal processing
but also in datapath synchronization in deeply pipelined designs) the Virtex-4 fabric also
contains dedicated cascade lines, ripping vertically from top to bottom (Figure 2.2). Conse-
quently. one single CLB (2 SLICEM) may produce delays of up-to 64 cycles. Moreover, these
cascade lines also ripple beyond CLB borders allowing to extend the shift-register length at
minor delay increases.

The CLB configuration of the more modern Virtex-5 [23] and Virtex-6 [20] devices differs only
slightly from that of Virtex-4 devices. The CLB still contains eight function generators, however
these are split into two larger slices (one SLICEM and one SLICEL).

The function generators in both Virtex-5 and Virtex-6 devices are implemented as six-input
LUTs having two independent outputs (O6 and O5). They can implement any six-input boolean
function. In this context the O6 output is used exclusively. Nevertheless, as shown by Rose [33]
who searched the optimal LUT size in FPGAs, the optimal LUT size is somewhere between 4 and

MUXFX

MUXF5

p

p

g

g

S(1)

S(0)
S(0)_d1

Cout

X(0)
Y(0)

X(1)
Y(1) S(1)_d1

clk

Cin

0

1
0

1

0 1

0 1

REG

REG

s = a⊕ b⊕ cin

= p⊕ cin – XORCY (2.1)
cout = ab+ (a⊕ b)cin

= a(a⊕ b) + (a⊕ b)cin

= pa+ pcin – MUXCY (2.2)

where p = a⊕ b – LUT (2.3)

Figure 2.3 Ripple-Carry Adder (RCA) implementation in Virtex-4 devices

7

8 Chapter 2. Field Programmable Gate Arrays

6 with a cluster size ranging from 4 to 10, depending on the application. Consequently, in order to
maximize the utilization of the LUT memory, two five-input functions can be implemented in the
same LUT provided that they share inputs. In this case both the O5 and the O6 outputs are used.

It is often that in pipelined designs, when both O5 and O6 outputs are used, they are synchro-
nized. Either both outputs bypass the storage elements, or they both need storage elements. For a
Virtex-5 device, when both LUT outputs need to be registered, the second storage element needs
to be used from a close-by free register of a LUT-FF pair. Nevertheless, this introduces important
routing delays, especially when no free registers are not found within CLB borders.

In order to overcome this inconvenience, an extra storage element was added to the Virtex-6
slice. Consequently, both LUT outputs have independent storage elements. When used in LUT6
configuration, the second register is unused and is therefore accessible via the general routing
network for area efficient design packing.

Several multiplexers are also available allowing multiplexers of up to 16:1 to be implemented
in one single slice. Wider multiplexers are possible but require going through the general routing
network and are therefore much slower.

There are some differences in the additional functions provided by SLICEMs when compared
to Virtex-4 devices:

– with an increased memory of 64-bits per function generator the Virtex-5/6 FPGAs provide
4 times more distributed memory per SLICEM. The supported configurations are numer-
ous allowing single-port memories of up 256 bits with a configuration of 256×1, dual-port
memory with configurations 64×3 and 32×6 and quad-port 64×1 or 32×2 for quad-port
memories.

– the size of the shift-registers has increased to 32-bit per LUT (SRL32) from the 16 bits per
LUT in Virtex-4 devices. However, the cascading connections stop at CLB borders allowing
shift-registers of maximum 128 bits (32 bits × 4 function generators for each SLICEM) to be
implemented swithout going through the slow general routing network.

Altera

Each ALM in Stratix-II [14], Stratix-III [22] and Stratix-IV [27] devices is composed out of sev-
eral LUT resources (one 4-input and two 3-input LUTs for each half ALM) and up-to eight input
lines that can be shared between two adaptative look-up tables (ALUTs). As shown in Figure 2.4
each ALUT disposes of 32 bits of programmable memory (24 + 2 ·23) and can therefore implement
any function of 4 inputs (16 out of 32 bits used), as for Virtex4 devices. Moreover, the 64-bits of
memory corresponding to the two ALUTs in an ALM can be combined to implement any 6-input
function . There are several other combinations possible in sharing the 64-bits of data among eight
inputs, including the LUT5-LUT3 configuration with independent inputs.

Additional to the flexible ALUT resources, the ALM also contains two registers, one per ALUT.
The lack of a supplementary register for the case when the ALUT is configured as two function
generators affects performance in pipelined designs, similarly to Virtex-5 devices. The ALMs also
features a register chain used to build variable length shift-registers. The register chain stops at
LAB boundaries and needs to use the general routing network when its size exceeds 16 bits for
Stratix-II and 20 bits for Stratix-III/-IV.

Two dedicated full-adders and a carry-chain are present in each ALM. They provide enhanced
hardware support of the RCA scheme. The fast carry chain, similarly to the register chain, does
not exceed LAB boundaries. Therefore, binary adders of at most 16 bits for Stratix-II and of 20 bits
for Stratix-III/-IV can be instantiated within one LAB. Wider adders are affected by the inter-LAB
routing delays.

Additionally, a separate shared arithmetic chain combined with the flexible logic resources al-
lows implementing 3-operand adders in one ALM level. All these presented features are depicted

8

2.1 Architecture 9

+

+

...

ALM

R20 column

R4 column

interconnect

interconnect

interconnect
C4 column local

interconnect

LAB

interconnect

C12 column

Cinshared arith. in syncload reg. chain in

reg. chain outCoutshared arith. out
clk

LUT3

LUT3

LUT4

LUT3

LUT3

LUT4
REG

REG

Figure 2.4 Architectural overview of the ALM block present in Stratix devices

in Figure 2.4.

Other operating modes supported by Stratix ALMs also include the extended LUT mode. In
this mode specific 7-input functions can be implemented in one ALM. The function must follow
the 2:1 multiplexer template where each of the two inputs of the multiplexer is being fed by a
5-input line sharing 4-inputs).

Another particularly useful function supported by Stratix ALM is the implementation of max
function between two numbers: R=(X<Y)?Y:X in one ALM level. This function is often used for
exponent management in floating-point operations, but not only. On Xilinx devices this function
would require two slice levels, one for obtaining the boolean value of the comparison X < Y
(obtained via the Most Significant Bit (MSB) after a 2’s complement subtraction) and the second
one for multiplexing the two inputs. However, the comparison requires computing only the MSB.
Once this bit is computed via regular subtraction, its value is then fed back to the LAB via the
syncload line. This line is used for the select line of a multiplexer whose inputs are X and Y .

Stratix-III/-IV offer more user memory than Stratix-II devices. In this devices each LAB is
paired with a Memory Logic Array Block (LAB) (MLAB), the CLB equivalent of a SLICEM. MLABs
offer a set of supplementary memory-related features. They allow using the 64-bit ALUT memory
in different configurations: either as a 64×1 or a 32×2 dual-port memory block. As these devices
contain ten ALMs per LAB, allowing configurations of 64×10 or 32×20 can be implemented in
one LAB.

2.1.2 DSP blocks

When first introduced in 2000 by Xilinx in VirtexII devices, these blocks were in fact 18x18-bit
embedded multipliers. The first embedded DSP-blocks especially designed with DSP capabilities
was introduced in 2003 with the Altera Stratix device: it consisted of four 18x18-bit multipliers, an
adder network and a cascading network, the necessary components for most digital filter designs.
DSP blocks not only do enhance the performance of these applications but make routing more
predictable.

9

10 Chapter 2. Field Programmable Gate Arrays

REG REG

REG REG

REG

X

Y

Z
0

REG

18

18

wire shift by 17 bits

48

18

18

18

36

72

36

36

48

48

48

48

48

48

BCIN

C

B

A

BCOUT PCOUT

P

PCIN

CIN

SUB

Figure 2.5 Overview of the Xilinx DSP48

Table 2.1 Main operating modes of the Virtex-4 DSP48 block
P = Z ± (X + Y + C)
P = Z +A : B

P = Z ± (A×B + C)

Xilinx

Nowadays, the Digital Signal Processing (DSP) block of Virtex-4 devices (DSP48 [16]) basically
consist of one 18x18-bit two’s complement multiplier followed by a 48-bit sign-extended adder/-
subtracter or accumulator unit. The simplified overview of its architecture is depicted in Figure
2.5. The multiplier doesn’t output the full 36-bit product, but rather two subproducts aligned on
36-bits. The reason for this is that the adder unit is in fact a 3-operand adder which can be used in
this mode whenever the DSP’s multiplier is not used. When used in multiplier mode (two adder
inputs are occupied by the two sub-products), the third input can either come from global routing
(via the C-line) or from the neighboring DSP via the cascading line (PCIN). The possible operating
modes of the Virtex-4 DSP48 are presented in Table 2.1.

When in cascaded mode, the result of one block is fed directly into the adder/subtracter unit
of the neighboring block via the PCIN input line (Z=PCIN or Z=shiftRight17(PCIN)). The possible
shift amount of the PCIN input is fixed to 17 bits. The accumulations via cascading lines will allow
us to enhance the performance of large integer multipliers by mapping inside DSP blocks most
sub-product reductions.

Virtex-5/-6 feature DSP blocks (DSP48E [21] for Virtex-5 and DSP48E1 [25] for Virtex-6 in Xil-
inx terminology) with larger two’s complement 18x25-bit multipliers. The adder/accumulator
unit can now perform several other operations such as logic operations or pattern detection. Ad-
ditionally, the DSP48E1 of Virtex-6 devices includes pre-multiplication adders within the DSP
slice. These can be useful for various algorithm, including those in signal processing.

All these DSP blocks feature multiple pipeline registers (up to four levels) which can be used
to enhance their performance.

Altera

The Altera DSP blocks have a larger granularity than Xilinx DSPs. In a Stratix-II device a DSP
block essentially consists of four 18 x 18 bit multipliers and a flexible adder tree. The DSP blocks
are organized into columns, with one element having a height of four LABs, as depicted on the
left of Figure 2.6. The DSP block is connected to the rest of the FPGA is by 144-bit in/144-bit out

10

2.1 Architecture 11

L
A

B

L
A

B

L
A

B

.
.
.

.
.
.

.
.
.

 4 rows

half

DSP

DSP
half

144

144

72

72

.
.
.

.
.
.

.
.
.

36

36

36

36

36

36

36

DSP
block

36

 4 rows

StratixII StratixIII−IV

C4 column
interconnect

C4 column
interconnect

R4 row
interconnect

Figure 2.6 Interconnect of the DSP blocks Left: StratixII and Right: StratixIII-IV devices

REG
R

ou
nd

/S
at

ur
at

e

44

18

18
18

18
18

18
18

18

Pi
pe

lin
e

R
eg

is
te

r
Ba

nk

Loopback

CHAIN IN

CHAIN OUT

In
pu

tR
eg

is
te

r
Ba

nk

O
ut

pu
tR

eg
is

te
r

Ba
nk

Figure 2.7 Very simplified overview of the Stratix-III half-DSP block

data buses. These are sufficient to independently use the four multipliers.
The DSP block in StratixIII-IV device is still four LABs high (the LABs of these devices contain

10 ALMs whereas the StratixII had only 8 ALMs). However, in this devices the DSP block is
composed out of two rather independent half-DSP blocks, each of which having similar features
to the StratixII DSP block. All in all, the multiplier density is roughly doubled on these devices.
The DSP block’s input data bus has been correspondingly increased to 288 bits (each half receives
144-bits) but, due to I/O limitations, the DSP’s output bus has has the same width as for StratixII
devices: 144 bits (72-bits for each half-DSP). The increased multiplier density in the DSP-block
greatly benefits DSP applications which rarely need the independent multiplier outputs.

A simplified overview of a half-DSP block architecture is a StratixIII device is presented in
Figure 2.7.

The flexibility of the adder tree allows multiple operational modes, among which the 36x36-
bit multiplier. Some of the allowed functional modes for Altera Stratix-II/-III/-IV DSP blocks
are given in Table 2.2. The Two Multiplier-Adder mode can be described by

∑1
i=0 aibi and the

Four Multiplier-Adder mode is
∑3

i=0 aibi. Other functionalities (not mentioned in Table 2.2) in-
clude cascading the output of one half-DSP to the neighbor’s accumulator unit and multiple filter-
related enhancements, including hardware support for the 18-bit complex product.

In order to better support floating-point multiplication Stratix-III/-IV devices feature the dou-
ble mode for DSP blocks. In double mode the one half-DSP block can perform the reduction of the

11

12 Chapter 2. Field Programmable Gate Arrays

Table 2.2 Operational modes supported by the Stratix-II, Stratix-III and Stratix-IV DSP blocks

Mode Width Stratix-II Stratix-III Stratix-IV
(DSP) (half-DSP) (half-DSP)

Independent Multiplier

9 x 9 bit 8 4 4
12 x 12 bit - 3 3
18 x 18 bit 4 2 2
36 x 36 bit 1 1 1

Two Multiplier-Adder 9 x 9 bit 4 * *
18 x 18 bit 2 2 2

Four Multiplier-Adder 9 x 9 bit 2 * *
18 x 18 bit 1 1 1

sub-products described in equation 2.4. This mode could be useful for other applications as well.
Unfortunately, it is currently unavailable as a stand-alone mode using Megawizard.

X[52:0] · Y [52:0] =X[35:0] · Y [35: 0]+

236(X[52:36] · Y [17:0] +X[17:0] · Y [52:36]) + 218(X[52:36] · Y [35:18] +X[35:18] · Y [52:36])) (2.4)

272X[52:36] · Y [52:36]

2.1.3 Block memory

Many FPGA applications require interacting with some memory in order to read/store com-
putation values. Embedded memory blocks are fast, on-chip memories which can be used is
such situations. These blocks generally support numerous configurations from RAM, ROM, FIFO,
true-dual port memory etc, depending on the application requirements. Their granularity is man-
ufacturer and device dependent. Embedded memory blocks are a essential resource when using
FPGAs to evaluate functions using the polynomial approximation technique. One needs adapt
the technique (number of intervals, coefficient width) to the target FPGA by accounting for block-
memory size in order to maximize the use of these resources.

Xilinx

The embedded memory blocks of Virtex4 FPGAs have a capacity of 18 Kbits of data. Each
memory block has two symmetrical and totally independent ports, sharing only the stored data.
The ports can independently take different aspect ratios ranging from 16K x 1, 8K x 2, to 512 x 36.

The content of the BRAM memory can be defined by the configuration bitstream. This is a use-
ful feature when using BRAMs as initialized tables, such as those needed for storing precomputed
values, eg. coefficients in the polynomial approximation of functions.

In order to achieve higher performance, a pipeline register is available, for optional use, at the
data read output inside the memory block. Block RAMs also contains optional address sequencing
and control circuitry to operate as a built-in Multi-rate FIFO memory. The FIFO configurations
vary from 4Kx4, 2Kx9, 1Kx18, or 512x36. FULL and EMPTY flags are hardwired in Virtex-4 FIFOs.

The block RAMs of Virtex-5 and Virtex-6 [24] FPGAs have an increased capacity of 36K bits.
They may be either be configured as two 18Kb RAMs or as one 36Kb. The possible aspect ratios
range from 16K x 2 to 1K x 36 for the 36KB RAM and from 16K x 1 to 1K x 18 for the 18Kb RAMs.

Aside from the standard dual-port mode, where two read/write ports are available for each
memory content, the Virtex-5/-6 BRAMs also allow simple dual-port mode. This mode is defined
as having one read-only port and one write-only port with independent clocks. When operat-
ing in this mode, the data-width of the BRAM is doubled to 1K x 72 bits for the 36Kbit version

12

2.2 FPGA design flow 13

and to 1K x 36 bits for the 18Kbit version, doubling its capacity. The simple dual-port mode is
particularly useful when using BRAMs to store data (coefficients in our case) which are either
rarely modified (one port for writing suffices) or are not modified at all during the throughout the
entire program execution. The mode allows doubling the amount of data storage at no area or
performance penalty.

Altera

The StratixII devices contain three types of memory blocks: M512, M4K, and M-RAM. Their ca-
pacities grow from 512bits for M512, to 4Kbits and 144Kbits for the M4K and M-RAM respectively.
Out of the three, the M512 block only supports the simple dual-port memory mode whereas both
M4K and M-RAM support true dual-port mode. All memory blocks support FIFO functionalities.
Moreover, M512 and M4K also feature shift-register functionalities.

The aspect ratio of these blocks is flexible. It varies from 512 x 1 to 32 x 18 for M512, 4K x 1 to
128 x 36 for M4K and 64K x 8 to 4K x 144 for M-RAM. Out of these configurations, for instance,
we may use for storing precomputed value for polynomial approximation the 32 x 18 bit mode for
M512 and the 128 x 36 bits for M4K.

Stratix-III and Stratix-IV devices provide 3 different types of memory blocks: MLAB, M9K and
the M144K. The MLAB (LAB enhanced with memory attributes) has a capacity of 640 bits in ROM
mode and 320 bits in RAM mode. The M9K and M144K have capacities of 9Kbits and 144Kbits
respectively. They are also the only memory blocks with true dual-port support. All memory
blocks provide both FIFO and shift-register support.

The possible aspect ratio vary from 16 x 8 to 16 x 20 for MLAB in RAM mode, 64 x 8 to 32 x 20
for MLAB in ROM mode, 8K x 1 to 256 x 36 for M9K and 16K x 8 to 2K x 72 from M144K.

Now that we have seen the target architectures with their available resources, let us describe
the typical flow for in porting an application to an FPGA.

2.2 FPGA design flow

As we have seen, FPGA offer an important number of heterogeneous resources such as logic
elements, DSP blocks, block RAMs and many more. Configuring these resources to perform a
given computational task requires several steps. These stepsa are represented as a flow-chart in
Figure 2.8 and can be performed using vendor tools like the ISE suite from Xilinx or the QuartusII
suite from Altera. Circuit synthesis can also be performed using third party tools like Synopsys’s
Sinplify Pro, Cadence’s Encounter RTL compiler, Mentor Graphics’s Precision Synthesis or many
others. Here is a brief description of these steps.

1. Design entry
The first step of the design flow consists in formally describing the desired functionality
of the design using one or a mix of several techniques. Complex designs are composed of
components, each with its inputs and outputs and clearly defined functionality. Depending
on the component to be described, there are several ways to do this:
– one of the most common solutions of describing components is using schematics. Design

tools such as Xilinx ISE [32] and Altera Quartus II [30] offer integrated schematic editors.
The advantage of schematic editors is the ease of porting ideas from the drawing board
directly into functional designs. They allow for a system-like description and allow a
higher level view on the project. However, managing large projects using the schematic
editor can be cumbersome.
One can use schematic editors to take advantage of FPGA-specific primitives yielding
good performance on these platforms. This negatively affects portability: re-targeting the

13

14 Chapter 2. Field Programmable Gate Arrays

HDL Schematic IP Cores
Libraries

Simulation

Programming

Place and Route

FPGA

Synthesis

Design Entry

Netlist

Test-benchTiming Analysis
Back-Annotation

Mapping

Figure 2.8 Classical FPGA design flow

design requires hard work. Moreover, working at gate-level becomes tedious as designs
get more complex.
Schematic editors suffer from another great drawback: pipelining. Pipelining designs
described using the schematic editor is tedious and error prone. It gets sometimes difficult
to follow all the wire and to synchronize them.

– another solution is to use an advanced schematic editor, such as the DSP Builder Ad-
vanced from Altera [29]. It works at a higher level of abstraction and features several
enhancements with respect to classical schematic editors, such as post-design pipelining,
but also comes with a substantial set of optimized primitives. Its downside, as for any
schematic editor is the difficulty of describing new, lower-level components.

– a common solution for describing Finite State Machines (FSMs) are state diagrams. Again,
most vendor design tools offer specialized editors for this task. Using these editors one
can specify in a graphical form the system states, state transitions, and output signals in
each state. Once described, these diagrams are compiled towards HDL. The upside of
these editors is the visual approach on the task. Its drawback is that is sometimes more
time consuming than using VHDL or Verilog.

– the most widely used solution of describing digital circuits is using Harware Description
Languages (HDLs) such as VHDL or Verilog. They allow for a higher-level functional de-
scription, without detailing the structure at the basic gate level. This significantly reduces
the time required to describe complex systems and unless using device-specific libraries,
it allows portability between FPGA devices. Although widely used, describing flexible
components (fully parametrized and optimally pipelined for each parametrization) is a
task out of the reach of HDLs. This type of components is needed in order to take advan-
tage of the FPGA flexibility.

– another solution is to use High-Level Synthesis (HLS) tools to convert specific type of
code (usually C) into HDL. Although a working circuit is obtained much faster than for
the other approaches, it usually has significantly lower performances.

14

2.3 Application markets 15

2. Synthesis
The next step after describing the circuit is synthesis. It consists in the translating the HDL
description of the circuit into a netlist. The obtained netlist represents a compact description
of the circuit. It is basically a file where the system components, and the interconnection
between them and the I/O pins are specified. There exist different formats, such as the
Xilinx Netlist Format (XNF) from Xilinx but the industry standard (used by Altera tools) is
the Electronic Digital Interchange Format (EDIF).

3. Simulation
Once the netlist with the compact circuit notation is obtained, a simulator is usually used
to verify its functionality, before passing to the more time-consuming phases of the process.
This verification phase is functional and does not consider implementation-specific signal
delays. Essentially, this phase consists in feeding test vectors (each test vector is a new set
of circuit inputs) to the simulator and checking the result against the specifications. If errors
are found at this phase the designs needs to be refined.

4. Mapping
The mapping step consists of a series of operations which process the netlist and adapt
it to the features and available resources of the target FPGA. Some of the most common
operations are: adapting to the physical resources of the device, optimizations, and checking
the designing rules (such as the available number of pins).

5. Place and Route
The placing phase consists in selecting the modules obtained during the mapping phase and
assigning them to specific locations on the FPGA device. Once this process is completed,
routing consists in interconnecting these blocks using the available routing resources. Both
placing and routing are NP-hard problems.

6. Timing Analysis
Having a designed mapped, placed and routed yields new informations on the delays of
the signals (interconnection delays) and of the components of the design. This information
can be used to produce a new, more detailed netlist (back-annotation) leading to a timing
accurate simulation.

7. Programming
At the end of placing and routing, a file is generated that contains all the necessary infor-
mation for configuring the device: logic block configuration and interconnections. This in-
formation is stored under the form of bitstream, where each bit indicates the open or close
state of a switch on the device. As, most FPGA devices are SRAM based (loose their con-
figuration at power-down), the configuration bitstream is usually loaded into a non-volatile
flash-memory (on the same platform as the FPGA) from where it is transfered to the FPGA
at power-up.

2.3 Application markets

Programming an FPGAs to perform a given task can easily be performed by following the
steps described in section 2.2. However, obtaining optimal performances requires a great deal of
expertise and time. Nevertheless, due to their good performances combined with their low cost
FPGAs are being used in an increasing number of domains:

ASIC Prototyping
FPGAs have been traditionally used to prototype ASICs. It allows fast RTL testing and
substantially decreases development time and reduces the risk of errors in the final ASIC
circuit.

15

16 Chapter 2. Field Programmable Gate Arrays

ASIC Replacements for medium-volume series and/or future-proofness.
– Networking

The number of users requiring high-performance networks is increasing. At the same
time, new services such as video-on-demand, voice over IP and others have hard quality-
of-service requirements. The solution is a new generation of intelligent routers, which due
to rapidly changing requirements are best implemented using FPGAs.

– Automotive
A new growing application market for FPGAs is automotive. As auto-vehicles become
ever more complex features like navigation systems, rear-seat entertainment including
movies, audio and even game consoles are being introduced into entry-level cars. En-
hanced driver-assistance including safety features such as night-vision, line tracking and
pedestrian-detection are also being integrated into top-range cars. The features of recent
FPGAs allow high-definition video and audio processing on a single chip. Due to its
inherent parallelism, the FPGA can match the throughput of DSPs at lower frequencies,
yielding less power consumption and dissipated heat. Driver-assistance safety features re-
quire a significant amount of image-processing which FPGAs are particularly well suited
for.

High-Performance Computing (HPC)
Nowadays, accelerating the execution of key applications is in ever-increasing demand. Ap-
plications requiring vast amounts of calculations such those in bioscience, medical imaging,
financial trading and others require significant processing power. The common implemen-
tation of these applications in the microprocessor environment is based on floating-point
arithmetic (the basic operations are supported in hardware). While a solution based on
assembling standard floating-point operators on an FPGA will probably speed-up the com-
putation to some extent, other application-specific solutions exist. These consist of using a
mix of both fixed and floating-point arithmetic using custom precisions as dictated by the
final required accuracy. Some floating-point data-paths may be fused reducing latency and
resource consumption.

All in all, using the FPGA’s flexibility to better implement the arithmetic behind the problem is
what makes FPGAs viable solutions for accelerating computations and reducing expenses. In this
thesis we have particularly focused on the design of efficient and portable floating-point operators,
as basic building blocks for accelerating scientific computations using FPGAs.

In the next chapter we introduce the basic notions regarding floating-point arithmetic and
explore the state of the art regarding its implementation in the context of FPGAs.

16

3 CHAPTER 3

Floating-point arithmetic

3.1 Generalities

Representing and manipulating real numbers efficiently by computers is required in many
field of science, engineering, finance and more. There exist several representations for approx-
imating real numbers: fixed-point (chap. 12 [148]), logarithmic [95], continued fractions [97],
floating-point (FP) and many more. Out of these representations, FP is the most popular in mod-
ern computer systems.

Each of these representation formats promises a different compromise between speed, accu-
racy, dynamic range and implementation cost. In modern computer systems, the FP representa-
tion seems to provide the best balance between these requirements. A detailed description of FP
arithmetic in modern computer systems can be found in [124].

The first computer-system to use the binary FP representation of real numbers is Konrad
Zuse’s Z3 computer [50] which dates from 1941. The format used in the Z3 computer comprised
of 22 bits, out of which 14 for the significand, 7 for the exponent and one for the sign.

3.1.1 Representation

Definition 3.1.1 Let ξ(β, p, emin, emax) be a FP format where:
– β denotes the radix, β ≥ 2
– p denotes the precision (the number of significant digits of the representation)
– emin and emax are two extremal exponents such that emin < 0 < emax

Definition 3.1.2 Given a FP format ξ(β, p, emin, emax) and a real number X we denote by x the
best approximation of X representable in the FP format ξ. x is represented by a triplet (s,m, e)
such that:

x = (−1)s ·m · βe (3.1)

s represents the sign (0 stands for positive and 1 for negative), m is the normal significand
having one digit before the radix point and at most p− 1 after, and e denotes its exponent.

Using the above definition does not guarantee the uniqueness of representing X in format
ξ. Take for instance, two equivalent representations of X = 177 in a toy-format ξ(10, 4,−3, 3):
x1 = 1.77 · 102 and x2 = 0.177 · 103.

18 Chapter 3. Floating-point arithmetic

Table 3.1 IEEE-754 2008 binary (β = 2) FP formats
Common name / Standard p emin emax we bias

half precision / binary16 10+1 -14 15 5 15
single precision / binary32 23+1 -126 127 8 127

double precision / binary64 52+1 -1022 1023 11 1023
quadruple precision / binary128 112+1 -16382 16383 15 16383

In practice, it is often required that the FP number representation is normalized. A normalized
representation x = (s,m, e) of a number X in format ξ requires that m ≥ 1. In other words,
normalization requires that the digit before the radix dot is not zero.

In the case of binary FP arithmetic (β = 2) this leads to m ∈ [1, 2). Thus, the normalized
representation when β = 2 always has a leading ’1’. Because this bit is constantly ’1’, the binary-
floating point format used in many computer systems don’t store it (it if often referred to as the
“hidden bit“ or the implicit bit).

The IEEE-754 standard for FP arithmetic, introduced in 1985 and revised in 2008 [17] defines
the formats of several FP representations. In addition to the single precision and double precision
formats present in the 1985-version of the standard, the new revision introduces two new formats
for binary: half and quadruple precision and also several equivalent formats for decimal FP. The
binary formats of the IEEE-754-2008 standard and their parameters are presented in Table 3.1.
Nowadays, the microprocessors offer hardware FPU support for basic arithmetic operations in
single and double precision.

We can clearly see that the FP formats used by the standard can be easily generalized for an
arbitrary precision p and exponent range. Nevertheless, using such custom FP formats in micro-
processors, where the FPU only supports single and double precision will bring no improvements
and will probably lead to significant speed penalties due to the custom data-type overhead. As
an example, consider an application for which a 26-bit precision datapath suffices to attain the
required accuracy. Single precision does not offer the required accuracy and the next best thing,
from a performance perspective, is to use double precision. This is a situation where it is perfectly
justified to use double precision. On the other hand, consider implementing the same application
on an FPGA. Simply instantiating double-precision FP cores would do the job at the expense of
a significant implementation size. However, in an FPGA one can instantiate custom operators,
having just the right precision (26 is our example). The implementation cost of the 26-bit precision
datapath, when compared to that of single-precision (24-bits of precision) is minimal, but com-
pared to the naive implementation using double-precision operators would be significant. Con-
sidering that the application’s accuracy requirements were met in both cases, its seems obvious to
use custom floating point formats in such a situation.

One nice property of the FP formats defined by the IEEE-754 is that it allows comparing two
numbers just by considering their fqbinary representation. If the numbers have different signs, a 1-
bit comparison suffices whereas if the signs are similar, a binary comparison on the rest of the bits
suffices. Take for instance the example of single precision (SP) with numbers having similar signs:
a 31-bit binary comparison suffices to decide their order. The trick that allows for this is exponent
biasing (the bias value for each format is presented in Table 3.1). Positive exponent represent
numbers larger than one, whereas negative exponents represent numbers in [0, 1). Using a signed-
magnitude or two’s complement representation, instead of the biased exponent representation,
would add several additional calculations to the computation’s critical path. Take for an example
X = 2−21.10 and Y = 211.11, with the exponent representation on 4 bits: in 2’s complement
-2=1110 and 1=0001 and in biased representation: -2=0101 and 1=1000. The comparison result is
immediate in the biased representation.

18

3.1 Generalities 19

Table 3.2 Binary encodings of exceptions in the IEEE-754 Standard
Exception s ebiased fraction
−0 1 0 0
+0 0 0 0
− inf 1 2we − 1 0
+ inf 0 2we − 1 0
NaN 0 2we − 1 > 0

0−∞ +∞1-1

(a) Without subnormals

0−∞ +∞1-1

(b) With subnormals

Figure 3.1 Distribution of floating-point numbers in a system ξ(2, 3,−2, 3), having a IEEE-754
equivalent p = 3 and we = 3. The -3 and 4 values of e are used to represent the special cases
presented in table 3.2

The IEEE-754 standard uses two exponent values to encode special cases: ebiased = 0 and
ebiased = 2we − 1. These exponent values, together with special fraction values are used to encode
different exceptions. Table 3.2 presents the different exceptions and their encoding as specified by
the IEEE-754 standard.

Encoding exceptions using a combination of exponent-fraction value reduces the range of rep-
resentable numbers, increases implementation size but also ensures trade-off with the format size
(in the case of SP for example, some numbers are lost but the format still fits in 32 bits). In the case
of FPGAs we can extend the format with a few bits (2 bits will suffice) in order to encode excep-
tions. The two extra bits will have little impact on the circuit’s area but the compact encoding will
reduce the hardware necessary for their decoding and improve the latency. Their significance can
be: 00 - zero, 01 - normal number, 10 - inf and 11 - NaN. This way of encoding exceptions was first
introduced by Detrey and de Dinechin in FPLibrary [67], a parametrized library of floating-point
operators for FPGAs.

The distribution of FP numbers in a toy system ξ(2, 3,−2, 3) is given in Figure 3.1(a). One can
observe that roughly half the representable FP numbers are found in the interval [-1,1]. As one
moves away from this interval, the gap between successive FP numbers increases by powers of
two. Nevertheless, one can observe that between zero and the first representable number there is
a gap.

This gap leads to one of the most controversial parts of the 1985 standard, especially regarding
hardware implementations: subnormals. Subnormals are FP numbers which are not normalized
(hence sub-normals). They are obtained by using the minimum value of the exponent (the same
that codes zero) but have a non-normalized significand (no more hidden ’1’) different than zero.
These numbers allow covering the gap between zero and the first representable numbers and
allow for a gradual underflow. It is due to them that some algorithms are numerically stable.

Early works proved that subnormals are the costliest part to implement in FP units [139]. At
the time, when transistors were still expensive, this made their mainstream acceptance controver-
sial for microprocessors. Nowadays, with the more than 80% of the microprocessor’s die occupied
by cache memories, the their presence in the microprocessor’s FPUs (even in GPUs) has become
universal.

19

20 Chapter 3. Floating-point arithmetic

0

X
machine
numbers

even

◦E(X) ◦A(X)

5(X)

◦A(Y)
◦E(Y)

5(Y)

Y

4(X)
4(Y)

Figure 3.2 The rounding modes specified by the IEEE-754 2008 standard

On the other hand, FPGAs provide another alternative to the (still) costly support of subnor-
mals. Extending the exponent width by one bit doubles the possible representable values. Not
only that all subnormals are now representable, but also larger magnitude values as well. The
width increase of 1 bit has little impact on the operator’s cost (in any case much less costly than
the effective support of subnormals) and provides the FPGA-specific alternative to subnormal
support.

3.1.2 Rounding

Rounding errors are inherent in floating-point computations. The simplest operations, like the
addition and multiplication do not always generate results representable in the target FP format.
The obtained result needs to be rounded to a FP value in that format. More formally, given a FP
format ξ, and two members of this format a, b, the result X = a op b is not usually representable
in ξ. The operation of approximating X to a number x, x ∈ ξ is called rounding. We generically
denote by machine number a FP number which can be exactly represented in a FP format ξ.

The IEEE-754-2008 [17] standard defines three directed rounding modes:
– round towards negative: 5(X) is the largest machine number less than or equal to X ;
– round towards positive: 4(X) is the smallest machine number greater than or equal to X ;
– round towards zero: Z(X) is5(X) when X > 0 and4(X) when X ≤ 0

and two variations of the round towards nearest mode. Both modes return the closest machine-
number to X . The differ in output only when X is exactly half-way between two FP numbers:

– roundTiesToEven: ◦E(X) is the closest machine number to X . When X is exactly in the
middle of two machine numbers then the one with an even significand will be returned.

– roundTiesToAway: ◦A(X) is the closest machine number to X . When X is exactly in the
middle of two machine numbers then the one with the larger magnitude will be returned.

The five rounding modes are illustrated in Figure 3.2.
When the result of a function is rounded according to a given rounding mode one says that

the function is correctly rounded. A rounding breakpoint is defined as a value when the rounding
function changes. In the case of round towards nearest, for example, the rounding breakpoints
are the exact middles of consecutive FP numbers.

For arithmetic operations such as +,−, /,
√
x it is fairly easy to return a correctly rounded

result. For other functions, such as the elementary functions, it is quite difficult to return such a
correctly rounded result. This is because the "gray area" of uncertainty on the computed result
may contain one such rounding breakpoint. In such a case one should increase the computation
accuracy until either the gray area contains no breakpoint or the gray-area is exactly one such
rounding breakpoint. The problem of making a correct decision in such a case is called Table
Maker’s Dilemma [124].

Due to the difficulty of this problem, a relaxed version of this requirement is often used in the
literature. In faithful rounding, when the result is in a gray-area of uncertainty either of the two

20

3.1 Generalities 21

-1

 0

 1

-14 -12 -10 -8 -7 -6 -5 -4 0 4 5 6 7 8 10 12 14

(a) absolute error

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-14 -12 -10 -8 -7 -6 -5 -4 0 4 5 6 7 8 10 12 14

(b) relative error

Figure 3.3 The absolute and relative errors of our representation

possible results can be returned. The name is misleading as faithful rounding is not a rounding
mode: the result of the operation is not uniquely specified which implies that using this mode will
break portability: two different platforms may not return bit-for-bit identical results.

3.1.3 Errors

When trying to represent infinitely precise real numbers using a computer system one needs
to approximate these with numbers in a representable format. The choice of the format influences
several parameters among which the range of representable numbers and the accuracy character-
istics.

Two of the tools used to measure accuracy are relative and absolute errors. We denote by � the
active rounding mode, which can be any of those presented in section 3.1.2. The relative error is
defined as:

ε(X) =

∣∣∣∣X − �(X)

X

∣∣∣∣ (3.2)

and the absolute error is defined as:

εa(X) = |X − �(X)| (3.3)

In the case of our toy FP format ξ(β = 2, p = 3, emin = −2, emax = 3) having the representable
number distribution depicted in Figure 3.1(b), and choosing the active rounding mode � = ◦E , the
relative and absolute errors of representing real numbers in this format are depicted in Figure 3.3.

For the round towards nearest rounding modes, andX in the normal range (excluding subnor-
mals) the relative error is bounded by 1

2β
1−p and for the directed rounding modes it is bounded by

β1−p. When x is exactly 0 it is considered that the relative error is 0. When X is in the subnormal
range, the relative error can get as big as 1.

The absolute error provided that we allow subnormals, is bounded by:

εa(x) ≤
{

1
2β

emin−p+1 when � = ◦
βemin−p+1 otherwise.

and when no subnormals are allowed this bound becomes:

21

22 Chapter 3. Floating-point arithmetic

εa(x) ≤
{

1
2β

emin when � = ◦
βemin otherwise.

Errors are very often expressed in terms of relative errors. However, it is sometimes desirable
to be able to express errors in a more atomic way: the weight of the last bit of the significand. One
definition, by Harrison [89], of the unit in the last place states:

Definition 3.1.3 ulp(X) is the distance between the closest standing FP numbers a and b (a ≤ X ≤
b, with a 6= b) assuming that the exponent range is not upper-bounded.

Now, given the error in ulps of a given computation we can easily translate this error into
a relative error. We take a computation where X denotes the real result and x is the machine-
number representation of X with |X − x| = α · ulp(X). The relative error, provided that there is
no underflow is: ∣∣∣∣X − xX

∣∣∣∣ ≤ α · β−p+1 (3.4)

And the other way around, given the relative error ε(X), the error in ulps is:

|X − x| ≤ ε · βp · ulp(X) (3.5)

3.2 Floating-point arithmetic on FPGAs

Floating-point seems to be a good compromise between dynamic range, accuracy and imple-
mentation complexity when trying to manipulate real numbers. This is one of the main reasons
why FP arithmetic is extensively used in scientific algorithms.

Popular programming languages used in scientific computing C and Fortran provide dedi-
cated datatypes for manipulating FP variables. These languages natively support the IEEE-754
single-precision (datatype name is float in C) and IEEE-754 double precision (DP) (double in C).
Depending on the target architecture, some of the basic operations on these datatypes are directly
supported by the Floating-Point Unit (FPU) while less frequently used operations, not supported
in hardware, are implemented by means of mathematical libraries (libms). The overhead of go-
ing through a libm is translated into roughly two orders of magnitude slowdown over the same
operator implemented in silicon.

Scientific computations usually also involve more operations than just additions and multipli-
cations (supported in hardware by most FPUs). They require divisions, trigonometric functions,
exponentials, logarithms, square-roots, accumulations and other. One example of such application
is circuit modeling in SPICE. Figure 3.4 presents the distribution of these operations for modeling
the electronic components. These electronic components basic blocks of the SPICE circuit mod-
eling tool [94]. When simulating these circuits using microprocessors, most of the time is spent
evaluating elementary functions (log, exp) which are not supported in silicon. Performance drops
even more if these are found deep inside in the inner loops of the code. Nowadays, FPGA im-
plementations of these operators can offer the same throughput as for basic operators, offering as
significant speedup compared to the microprocessor counterpart when simulating these models.
However, this was not always the case.

Early FPGAs had such low densities that basic IEEE-754 single-precision operators occupied
the entire device. Nevertheless, researchers were keen to prove that, even in these conditions,
FPGAs could be used to accelerate applications that required FP arithmetic. Their solution was to
use custom “smaller-precision” FP operators.

22

3.2 Floating-point arithmetic on FPGAs 23

Figure 3.4 Instruction distribution in SPICE circuit modeling using FPGAs [94]

A pioneering work in this context is due to Shirazi et al. [140] in 1995. The work proposed two
custom FP formats: (1) an 18-bit format having 7 bits of exponent and 10 bits of fraction, ideal for
packing 2 operands onto the 36-bit wide datapath width of the Splash-2 system [36] (2) a 16-bit
format with 6 bits if exponent and 9 bits of fraction, ideal for the 16-bit wide external memories
available for each FPGA of the Splash2 system. The chosen formats proved to provide sufficient
dynamic range and accuracy for implementing Fast Fourier Transforms (FFTs) and Finite Impulse
Response (FIR) filters using basic operators for this formats. We believe that adapting the working
FP formats: (1) to account for the application’s accuracy needs and (2) to better fit the deployment
FPGA, is part of the recipe of obtaining good accelerations using FPGAs.

In the spirit of adapting the arithmetic datapath width to the application’s accuracy require-
ments, Gaffar et al. [85] proposed a tool for automatically customizing the FP formats in FPGA
designs. The tool inputs a cost function, specifying the maximum allowed output error relative
to a reference representation. Heuristically and based on input data vectors the tool evaluates
several datapaths, using combinations of intermediary formats. The results obtained on repre-
sentative application data confirm that good savings in terms of area and increased performances
can be obtained for a user-defined accuracy criteria. What was still needed were libraries of FP
arithmetic operators which better used the FPGA’s resources.

Lee and Burgess [104] proposed Virtex-II optimized architectures for the basic operations: +,×,
÷ and √ for IEEE-754 single precision, double precision and also other custom formats. Their
implementations make good used of the multiplexers, XOR gates, carry chains, embedded multi-
pliers which allows better implementation performances. To our knowledge, the presented archi-
tectures were never made publicly available. Roesler and Nelson [134] also explore the impact of
embedded multipliers and shift registers (SRL16) in the context of deeply pipelined FP units. The
results obtained on adders, multipliers and multiplication-based dividers are enough to conclude
that the IEEE-754 single-precision is poor match for the multiplier and divider architectures due
to the 17-bit width of the embedded multiplier blocks of Xilinx devices. Due to the FPGA features
the architectures present sweet spots – formats for which the use of these features is maximized.
Roesler and Nelson suggest that these sweet-spot formats should be preferred whenever IEEE-
754 compliance is not mandatory, provided that the obtained datapath meets the application’s
accuracy requirements.

In this spirit is the recent work by Langhammer on the Altera Floating-Point Datapath Com-
piler [100]. The compiler inputs and outputs numbers in IEEE-754 format (SP is discussed) but
uses alternative internal representations and fuses similar operations into clusters. The represen-
tation format within these clusters are operation-dependent, for instance multiplier clusters use
extended fractions (32-bit) which better fit the DSP blocks of Altera devices (36-bit for StratixII-
IV). Using this extended formats allows relaxing the normalization stages within a cluster which
reduces resource occupation and latency.

23

24 Chapter 3. Floating-point arithmetic

Several other libraries of parametrized FP operators were developed in the context of accel-
erating applications: Lienhart et al. [114] in the case of N-body simulations and Belanović and
Leeser [43] for K-means clustering. FPLibrary [67], the precursor of FloPoCo was also released
at the time: it contained the basic operators: +,×,÷,

√
x but also conversion operators between

fixed to FP, and from the internal FP format to IEEE-754 format. In was only years later, in 2005,
that main FPGA manufacturers Altera and Xilinx shipped their first FP cores.

An exploration of the performances of IEEE-754 compliant double-precision operators on mod-
ern FPGAs is given by Govindu et al. [86]. IEEE-754 compliance includes subnormal support, ex-
ception management and rounding-mode support. The implementation results prove that IEEE-
754 compliance have a strong impact on implementation size.

However, when an FPGA implementation targets the accuracy of final result, rather than bit-
to-bit compatibility with the IEEE-754 compliant software 1, then several FPGA-specific methods
can be applied. We list here just a few, having direct connection with the FP representation:

– using a mix-and-match between custom fixed and floating point formats can significantly
save resources, when applicable.

– extending datapath width by 1 bit and employing rounding towards zero (truncation); the
accuracy of a result obtained using truncated rounding mode on wF + 1 bits is similar to
that obtained using the more costly round-to-nearest rounding mode onwF bits of precision.
This saves an (possibly pipelined) addition proportional to the FP format’s size

– faithful rounding ensures the same accuracy as the directed rounding modes but breaks
portability. Faithfully rounded FP multipliers on wF + 1 bits of precision offer the same
accuracy as those implementing round-to-nearest on wF bits. They can significantly save
resources (see Chapter 6). The same holds for implementing a faithfully rounded

√
x (see

Chapter 8) and other elementary functions using polynomial approximation (for ex see
Chapter 9). The overhead of these solutions is that the 1-bit datapath increase which has
little impact on the final area.

A complementary approach to take advantage of the FPGA’s flexibility is to go beyond basic
FP operations and formats. Two works in this direction are due to Detrey and de Dinechin [70, 68]
in the context of implementing FPGA-specific architectures for the FP exponential and logarithm.
By using this approach the estimation by Underwood that FPGAs will surpass microprocessors
by one order of magnitude by 2009 was already attained in 2005.

Exploring this flexibility when implementing FP operators is difficult and sometimes impos-
sible to do just by using VHDL, as Detrey and de Dinechin concluded when implementing the
exponential and logarithm operators. For these special architectures they made uses of several
external programs: one of them for populating tables with values, another for the application-
specific instances of specialized operators (for example constant multipliers). All this proves that
efficient operator generation needs the power high-level programming languages, but also require
the fine-grain control over generated code the VHDL offers: it needs operator generators.

The goal of the FloPoCo framework is to provide such an environment where FPGA-specific
operators can be developed. Its philosophy is that FP on FPGAs should not rely on operators that
mimic those available in processors, but on radically different new operators, which may obtain
more accurate, have shorter latency and require less hardware resources.

The advantages of using FloPoCo to design custom arithmetic data-paths, and its features will
be detailed in the next chapter.

1. the obtained result might also be more accurate than the software counterpart

24

4 CHAPTER 4

Custom arithmetic data-path design

There are several different ways to arithmetic pipelines. One solution consists in assembling
and synchronizing the pipeline by hand using as support operator libraries or operator generators
such as Xilinx Logicore [6], Altera Megawizard [9], FPLibrary [67], VFLOAT [153] and many other.
In this approach the user has full control over the choice of subcomponents and their characteris-
tics: input/output precision, latency etc. which potentially allows building efficient circuits. The
drawback of this approach lies in the long design cycles needed to build such pipelined system
by hand: if the performance is not acceptable some components need to be pipelined deeper and
the system resynchronized.

Another, definitely more expensive, solution is to use High-Level Synthesis (HLS) tools. These
tools start with a C-language description of the arithmetic datapath and produce either a VHDL
or RTL description of the circuit. Tools like Cynthesizer [8] are quite flexible and allow the de-
scription to use a mix of integer, fixed and floating-point data-types. They are mostly used in
ASIC design and lack the optimization support for FPGAs. Others tools like ImpulseC [3] are
more FPGA-specific and can use floating-point operators from Logicore or Megawizard. They
support integer, fixed-point and floating-point data-types and assemble arithmetic pipelines out
of these components. Nevertheless, the generated arithmetic datapaths lack fine-grain optimiza-
tions. Other tools like CatapultC [1] provide datapath support only for integer and fixed-point
internally convert floating-point description into fixed-point. To sum up, current HLS tools offer
sufficient data-types to allow users to express simple arithmetic pipelines. However, using C to ex-
press the fine-grain signal manipulation is problematic, and these manipulations are predominant
in describing efficient arithmetic operators and coarser arithmetic datapaths in FPGAs. Moreover,
parameterizing such a description is another challenge.

A more FPGA-specific solution which is arguably better when the data-type representation
is restricted to floating-point is given by the Floating-Point Datapath Compiler by Langhammer
[100]. The tool uses an internal data-path precision which maximizes the resource usage by tar-
geting the sweet-spots of Altera devices. It fuses similar operators in clusters (intermediary de-
normalization/normalization steps are saved) in order to reduce latency and implementation size
over alternative implementations based on operator assembly (HLS tools).

Between these approaches, none of them is really suited for an efficient and complete arith-
metic datapath description: using libraries and assembling datapaths by hand is slow, non-portable
and error prone; using HLS tools is too high-level to effectively express the semantics needed in
arithmetic pipeline design; using the Floating-Point Datapath Compiler is restricted to floating-
point pipelines.

Our work focuses on providing an extensible open-source framework which is well suited for
describing efficient FPGA-specific arithmetic pipelines. The FloPoCo framework embeds the full

26 Chapter 4. Custom arithmetic data-path design

power of HDL, necessary for fine-grain manipulation of signals. It also allows, by means of sub-
components, to mix the description’s granularity level from low-level pipelined binary adders, to
the evaluation of elementary functions in fixed and floating point and also the implementation
of custom-precision floating point data-paths from C code using the FPPipeline macro operator.
Additionally, FloPoCo assists in this description by automating signal management, path syn-
chronization, and also provides abstract delay primitives which allow the described circuit to be
pipelined at a user-specified frequency (automatic frequency-directed pipelining) and to be re-
targeted to other FPGA devices. Once description is finished, the FloPoCo framework also assist
in numerical validation of the designed operators by providing a test-bench generation suite.

4.1 Arithmetic operators

In this chapter we consider arithmetic operators as being circuits that can be described by a
function:

f(X) = Y

where X = x0, ..., xn−1 is a set of inputs and Y = y0, ..., ym−1 is a set of outputs. Any sequen-
tial code without feedback loops performing some computations fits this description. Take for
example the circuit performing the complex multiplication: (a+ bj)(c+ dj). The circuit inputs are
a, b, c, d and the output is the pair r = ac− bd, i = ad+ bc. The restriction to this class of arithmetic
operators allows us to build provably correct-by-construction pipelines for these circuits.

4.1.1 FPGA-specific arithmetic operator design

Two of the factors characterizing the quality of arithmetic operators on FPGAs are circuit area
and operating frequency. Generally there is a monotonic dependency between the two: the faster
a circuit is, the more resources it takes. It is often that the target frequency f part of the project’s
specifications so the designer’s goal is to build the circuit taking the “smallest” area (a maximum
value for the area is also accepted) matching this frequency in a given amount of time.

The success in achieving this goal relates to the engineer’s productivity and depends on his
prior expertise and with the performance of the tools used in this process.

Depending on the required quality and the given time-frame one solution is to assemble the
datapath from custom components built all for for same frequency f . By construction, the sys-
tem’s frequency will also be close to f , depending on the routing congestion.

Provided more development time is available, a better solution is to internally optimize the
given datapath. We will prove that this approach can significantly lower the operator’s size while
improving its accuracy.

The target of the FloPoCo framework is to allow users to explore both ends of the productivity
spectrum in designing arithmetic circuits for FPGAs. Unexperienced users are offered the possi-
bility to quickly assemble arithmetic datapaths, pipelined for a given frequency on a given FPGA
target. Experienced users can easily explore the arithmetic realm of FPGA devices by having a
framework which automates error-prone and tedious tasks such as pipelining.

For complying with these demands, our framework:
– provides quality implementations of all the basic off-the-shelf blocks available in commercial

core generators and more;
– provides the mechanisms for easily connecting and synchronizing these blocks;
– is expressive enough to capture low-level FPGA-specific architectural optimizations when

needed;
– employs frequency-directed pipelining for minimizing circuit area and pipeline depth;

26

4.1 Arithmetic operators 27

system

builder

loop

managementFPGA

primitives

C−like

arithmetic

datapath

highlow
abstraction

HDL

performance
HDL

FloPoCo

performance
FloPoCo

productivity

productivity

Figure 4.1 Productivity in porting applications to FPGAs and the relative performance of these
circuits provided the different levels of abstraction are provided for circuit description

– enhances productivity by stressing reusability. Each new operator described using the
framework becomes part of the ever-increasing available operators list;

– encourages parametric description of circuits so they can easily be retuned to changing pre-
cision requirements;

– allows to easily re-target existing operator descriptions to new FPGAs by providing a high-
level abstraction of FPGA features.

Figure 4.1 presents the target of FloPoCo: enhancing the description productivity at all levels
when compared to hardware description languages, while offering better performances due to the
enhanced architectural generation, operator construction and design space exploration allowed by
the supporting programming language.

4.1.2 From libraries to generators

Although early FP operators were proposed as VHDL or Verilog libraries, the current trend
is to shift to generators of operators (see [38] and references therein). A generator is a program
that inputs user specifications, performs any relevant architectural exploration and construction
(sometimes down to pre-placement), and outputs the architecture in a synthesisable format. Most
FPGA designers are familiar with the Xilinx core generator tool [6], which to our knowledge has
pioneered this approach, or its Altera MegaWizard [9] counterpart.

A generator may simply wrap a library, and for the simplest operators there is no need for
more, but it can also be much more powerful. For instance, the size of a library including multipli-
ers by all the possible constants would be infinite, but the generation of an architecture for such a
multiplier may be automated as a program that inputs the constant [49]. Detrey and de Dinechin
[69] have shown that the same approach can also be applied for table-based arbitrary function
evaluation implementations.

Generators allow for greater parameterization and flexibility. Whether the best operator is a
slow and small one, or a fast but larger one, depends on the context. FPGAs also allow flexibility
in precision: arithmetic cores should be parameterized by the bit-widths of their inputs and out-

27

28 Chapter 4. Custom arithmetic data-path design

puts. We are also concerned about optimizing the operators for different hardware targets, with
different LUT structure, memory and DSP features, etc. The more flexible a generator, the more
future-proof.

Lastly, generators may perform arbitrarily complex design-space exploration, automated error
analysis, and optimization [69, 74].

4.2 Design choices for FloPoCo

An architecture generator needs a back-end to actually implement the resulting circuit. The
most elegant solution is to write a generator as an overlay on a software-based HDL such as Sys-
temC, JBits, HandelC or JHDL (among many others). The advantages are a preexisting abstraction
of a circuit, and simple integration with a one-step compilation process. The inconvenience is that
most of these languages are still relatively confidential and restricted in the FPGAs they support.
Even SystemC synthesizers are far from being commonplace yet.

Basing our generator on a vendor generator would be an option, but would mean restricting it
to one FPGA family. We chose less restrictive route by implementing our generator from scratch
in a mainstream programming language. The chosen language was C++ due to its popularity,
compatibility with existing libraries: MPFR multi-precision library for test-bench suite generation
and Sollya [54], a floating-point software environment for generating approximation polynomials.

Thanks to the C++ language, our generator is in theory portable. Nevertheless, due to its de-
pendency to Sollya for generating function evaluators, is only functional on Linux platforms. On
the other hand, the generated operators are printed in vendor-independent VHDL which allows
it to be easily integrated into existing FPGA projects, simulated using mainstream simulators (for
the purpose of testing) and synthesized for any FPGA using the vendor back-end tools. Moreover,
the generated VHDL may be specifically optimized for the target FPGA.

4.3 A motivating example

This framework has been used to write and pipeline very large components, such as the
floating-point exponential described in Chapter 9. Nevertheless, we choose for clarity in this chap-
ter to discuss a simpler, but still representative example: the implementation of a sum-of-squares
operator used in the implementation of 3D norms: r = x2 + y2 + z2.

A first option is to assemble three FP multipliers and two FP adders. For this, the command
line:

flopoco -target=Virtex4 -frequency=200 FPAdder 10 36

will generate synthesizable VHDL for a floating-point adder, pipelined to run at 200MHz on
a Xilinx Virtex4, using a custom floating-point format with 10 bits of exponent and 36 bits of
significand (this format is intermediate between the standard single- and double-precisions).

For design exploration, the 4 parameters we have in this example (target FPGA, frequency,
exponent size and significand size) can be changed within sensible range. The frequency and the
precision are orthogonal parameters, as they should be, and the pipeline depth is reported.

More complex datapaths can be obtained in seconds using the FPPipeline meta-operator of
FloPoCo. Assume the file SumOfSquares.fpc contains the following pseudo-program:

R = X*X + Y*Y + Z*Z;
output R;

The command line:
flopoco -target=Virtex4 -frequency=300 FPPipeline SumOfSquares.fpc 9 31

will generate the VHDL for a complete floating-point pipelined datapath.

28

4.3 A motivating example 29

0

3

4

2

1

5

6

1

0

1 + wF 1 + wF 1 + wF

2 + wF + g 2 + wF + g 2 + wF + g

2 + wF + g 2 + wF + g2 + wF + g

4 + wF + g

wE + wF + g

MB2 MC2

X Y Z

MXEZEYEX MY MZ

R

EA

MA2

EB EC

shiftCshiftB

shifter

sort

shifter

squarer
sort

squarersquarer

add

normalize/pack

unpack

EA_d1

EA_d6

Figure 4.2 Optimized architecture for the Sum-of-Squares operator

A better implementation can be obtained by designing a specific operator for this computation.
There are many optimization opportunities with respect to the previous solution:

– Squarers are simpler than multipliers. They will in particular use less DSP blocks.
– We only add positive numbers. In an off-the-shelf floating-point adder, roughly half the

logic is dedicated to effective subtraction, and can be saved here. An optimizing synthesizer
would probably perform this optimization, but it will not, for instance, reduce the pipeline
depth accordingly.

– The significands of x2, y2 and z2 are aligned before addition. This may be done in parallel,
reducing pipeline depth and register usage with respect to an implementation using two
floating-point adders in sequence.

– A lot of logic is dedicated to rounding intermediate results, and can be saved by consider-
ing the compound operator as an atomic one [101]. We obtain an operator that is not only
simpler, but also more accurate.

It is common for a fused operator to be more accurate than the combination of FP ones by
using an extended internal precision and saving on the number of roundings. More subtly, with an
operator built by assembling two FP adders, there are some rare cases when the value of the sum
will change when one exchanges x and z due to the order of the two consecutive roundings. Our
proposed design won’t have such asymmetries and will be more accurate than the one obtained
by assembling FP operators.

The chosen architecture is depicted on Figure 4.2. Here, we wish to evaluate x2 + y2 + z2 with
1-ulp (unit in the last place) accuracy, knowing that the final rounding will introduce 0.5-ulp when
the round-to-nearest rounding mode is employed.

This architecture computes the three squares, truncates them towF+g bits, then aligns them to
the largest one and adds them. Worst-case error analysis shows that there are 5 truncation errors
in this computation (the three products, and bits discarded by the two shifters). The number of
guard bits g is therefore set to g = 1+dlog2(5)e = 4 so that the accumulated error is always smaller
than 0.5 ulp of r. The final rounding is upper bounded by 0.5 ulp yielding an architecture having
a maximum error of 1 ulp.

Table 4.1 presents the different trade-offs offered by the FloPoCo framework in terms of per-
formance, productivity, flexibility and portability. The first part of the table presents the results
for the productivity-performance metric. Assembling Logicore operators for each of the listed

29

30 Chapter 4. Custom arithmetic data-path design

Table 4.1 Some synthesis results for x2 + y2 + z2.

Productivity versus performance on Virtex4, target frequency f = 350 MHz
format approach performance cost

(8,23)
LogiCore 34 cycles @ 482 MHz 1356 slices, 12 DSP
option 1 35 cycles @ 327 MHz 1279 slices, 12 DSP
option 2 35 cycles @ 333 MHz 1043 slices, 9 DSP
option 3 11 cycles @ 369 MHz 470 slices, 9 DSP

(11,52)
LogiCore 50 cycles @ 354 MHz 3074 slices, 48 DSP
option 1 47 cycles @ 319 MHz 3859 slices, 48 DSP
option 2 45 cycles @ 322 MHz 3137 slices, 18 DPS
option 3 16 cycles @ 368 MHz 1866 slices, 18 DSP

Performance versus cost on Virtex4, option 3, varying target frequency
format target f performance cost

(10,36) 200 MHz 6 cycles @ 203 MHz 874 slices, 9 DSP
100 MHz 2 cycles @ 109 MHz 809 slices, 9 DSP
50 MHz 0 cycles @ 51 MHz 751 slices, 9 DSP

(11,52)
200 MHz 7 cycles @ 187 MHz 1285 slices, 18 DSP
100 MHz 3 cycles @ 102 MHz 1272 slices, 18 DSP
50 MHz 2 cycles @ 64 MHz 1130 slices, 18 DSP

Portability to different FPGAs, , target frequency f = 200 MHz
format FPGA performance cost

(10,36)
Virtex 5 5 cycles @ 196 MHz 1444L, 762 R, 9 DSP48E
Stratix II 8 cycles @ 179 MHz 1395L, 1295 R, 18 9-bit elem
Stratix IV 4 cycles @ 213 MHz 1529L, 792 R., 18 9-bit elem

Format is given as (exponent size, significand size). We provide a reference as LogiCore operators assem-
bled by hand. Option 1 is FPPipeline, using multipliers.
Option 2 is FPPipeline, using squarers. Option 3 is the fused datapath of of Figure 4.2. All these numbers
were obtained in empty FPGAs using ISE 11.5 for Xilinx and QuartusII 9.1 for Altera.

precisions (SP and DP) took some minutes, however, each time the precision changes the opera-
tors need to be regenerated and the computation paths resynchronized. Assembling the operators
using the FPPipeline meta-operator took a few seconds, both for the multiplier version (Option1)
and for the squarer version(Option2). The design is parametrized in terms of exponent and frac-
tion size, frequency and deployment FPGA. Obtaining the fused operator (Option3) took about
two days to code together with the associated testbench. One can clearly see that the FloPoCo
high productivity approaches match that obtained by using manufacturer specific core genera-
tors, and that the expert option (Option3) brings significant improvements over the assembling
FP operators approach.

The second metric allowed to be explored using the FloPoCo framework is performance-cost
one. As one requires a larger frequency from one operator, the area and latency of this operator
increase.

Lastly, the FloPoCo framework allows optimizing the designed operators for different FPGAs,
so that good performance is obtained for both Xilinx and Altera FPGAs.

The next sections will present in more details the features of the framework used to obtain
these results.

30

4.4 The FloPoCo framework 31

Signal
+width
+cycle
+lifeSpan

Operator
+signalList
+vhdl

+outputVHDL()
+emulate()
+buildStandardTestCases()

FPAdder
+wE
+wF

IntAddder
+size

Shifters SumOfSquares
+wE
+wF

Targets

Virtex4StratixII

TestBench

StratixIV

Classical Alternative ShortLatency

FPMultiplier
+wE
+wF

FPMultTrunc FPMultTiling FPMultTiling

Figure 4.3 Very simplified overview of the FloPoCo class hierarchy

4.4 The FloPoCo framework

In the following, we assume basic knowledge of object-oriented concepts with the C++ termi-
nology. Figure 4.3 provides a very simplified overview of the FloPoCo class hierarchy.

4.4.1 Operators

The core class is Operator. From the circuit point of view, an Operator corresponds to a VHDL
entity, but again, with restrictions and extensions specific to the arithmetic context. All the oper-
ators extend this class, including SumOfSquares, but also some of its sub-components (shifters,
squarers and adders) seen on Figure 4.2.

The main method of Operator is outputVHDL() whose purpose is to print out VHDL code in a stan-
dard C++ stream. Each operator inheriting from the Operator class can either override outputVHDL()

to manually print VHDL in that stream (including signal and component declarations, library in-
cludes, etc.) or rely on the default implementation of this method provided in the Operator class
(the standard way of using the framework). The default implementation takes the VHDL code of
the operator architecture from the vhdl stream attribute of Operator together relevant information
from other attributes (signal and component lists, lifespan and so on) and prints to the output
stream the full VHDL code (entity, architecture, subcomponents, register management and the
code from vhdl). The vhdl stream and other relevant attributes are populated during the execution
of the arithmetic operator’s constructor.

When printed to the vhdl stream, signals may be wrapped in several methods of the Operator

class. A first method is declare() through which signals are declared. Consider the following code
that computes the difference of two exponents of size wE, in order to determine in XltY which is
smaller.

vhdl << declare("DEXY", wE+1) << " <= (’0’ & EX) - (’0’ & EY);" << endl;
vhdl << declare("XltY") << " <= DEXY("<< wE <<");" << endl;

Unlike VHDL, where signals are declared in the architecture’s header and can be first used
hundreds of lines of code away, FloPoCo supports inline declaration of signals: the signal as-

31

32 Chapter 4. Custom arithmetic data-path design

signment is also joined with its declaration. Here the declare() method adds the signal to the
signalList of the operator so that the default implementation of outputVHDL() will automatically
deal with its declaration in the operator’s architecture header. The width of the signal is given as
the second argument of declare(). If this argument is missing, the default signal size will default
to 1. Aside from the background jobs the declare() method actually returns its first parameter, the
signal’s name.

The resulted VHDL code is presented in the Listing below:

(...)
signal DEXY: std_logic_vector (8 downto 0);
signal XltY: std_logic;
(...)
DEXY <= (’0’ & EX) - (’0’ & EY);
XltY <= DEXY (8);

The simple obfuscation of VHDL code using declare() allows automatically generating the
signal declaration lists which account for about one third of the total lines of code in a classical
VHDL architecture description. We will see next how this can also enable us to easily pipeline our
designs.

4.4.2 Automatic pipeline management

Building a working pipeline for a given set of parameters is conceptually simple: for each
operator synchronize its operands by inserting delay registers on the operand coming from the
short datapath. FloPoCo allows to express exactly that in a generic way. Consider the following
code describing the pipelined addition of three inputs:

addInput("X",k);
addInput("Y",k);
addInput("Z",k);
addOutput("R", k+1)

// current cycle = 0
vhdl <<declare("XpY", k+1)<< " <= (X"<<of(k-1)<<" & X) + (Y"<<of(k-1)<<" & Y);"<<end;
nextCycle (); // current cycle will be 1
vhdl <<declare("ZpXpY", k+1)<< " <= (Z"<<of(k-1)<<" & Z) + XpY;"<<end;
vhdl <<"R <= ZpXpY;"<<endl;

While sequentially printing the VHDL description of the circuit in the vhdl stream, a currentCycle

attribute which denotes the current cycle in the description is maintained. The value of the
currentCycle attribute is initially set to zero and can be changed by means of several methods:
setCycle(k) sets its value to k, nextCycle() increments its value, setCycleFromSignal("s") sets its
value cycle when signal s was declared, syncCycleFromSignal("s") advances the current cycle to
the declaration cycle of signal s if this value is larger than the current cycle.

Every signal declared through addInput() or declare() has a associated a cycle attribute, which
represents the cycle at which this signal is computed. It is 0 for the inputs (X,Y,Z) and is equal to
currentCycle at the time declare() is invoked for signals declared through declare() (cycle(XpY)=0,
cycle(ZpXpY)=1).

Every signal also possesses a lifeSpan attribute, useful for generating the correct number of
register levels a signal needs to be delayed with. This attribute is initialized to 0 and holds the
maximum number of cycles between the declaration of s and its uses. Therefore, for each right
hand side occurrence of signal s the value currentCycle-cycle("s") is computed; if this value is
larger than the signal’s current lifeSpan it will become the new lifeSpan. In the case of signal XpY
its lifeSpan is equal to 1.

32

4.4 The FloPoCo framework 33

2X

R

X a2 a1 a0

dL dR

Figure 4.4 Parallel evaluation of the polynomial a2x
2 + a1x+ a0

When the lifeSpan of a signal s is greater than zero, outputVHDL() will create lifeSpan new
signals, named s_d1, s_d2 and so on, and insert registers between them. In other words, s_d2

will hold the value of s delayed by 2 cycles. In the case of our simple example, the signals with
lifeSpan>0 are XpY but also Z with lifeSpan=1. The generated code will contain, for k=8:

(...)
signal XpY , XpY_d1: std_logic_vector (8 downto 0);
signal ZpXpY: std_logic_vector (8 downto 0);
signal Z_d1: std_logic_vector (7 downto 0);
(...)

process(clk)
begin

if clk ’event and clk=’1’ then
if rst = ’1’ then

XpY_d1 <= XpY;
Z_d1 <= Z;

else
XpY_d1 <= (others => ’0’);
Z_d1 <= (others => ’0’);

end if;
end if;

end process;

XpY <= (X(7) & X) + (Y(7) & Y);
-- entering cycle 1
ZpXpY <= (Z_d1 (7) & Z_d1) + XpY_d1;
R <= ZpXpY;
(...)

The impact of this simple technique of keeping track of signal lifespans has little overhead
overhead in the generated VHDL (some signals are suffixed by dXXX) but automates the gener-
ation of roughly one third of the lines of code of an architecture declaration.

4.4.3 Synchronization mechanisms

The type of synchronization we have talked about is valid for describing the execution of a
single execution path. However, consider we would like to write the architecture which evalu-
ates in parallel the second degree polynomial a2x

2 + a1x + a0 using floating-point arithmetic by
assembling library operators (Figure 4.4).

Suppose we are about to describe the final addition a2x
2+(a1x+ a0). At this point we need to

33

34 Chapter 4. Custom arithmetic data-path design

ensure that the two signals entering the adder are synchronized. The pipeline depth of the internal
components (squarer, adder and multipliers) depend on factors such as frequency, precision pa-
rameters and deployment target, making it impossible to say beforehand which of the two paths
will be longer.

We denote by dL and dR the pipeline depths of the signals exiting the multiplier and the adder
respectively (Figure 4.4). This yields three synchronization cases:

– dL>dR need to delay the FPAdder’s output with dL-dR cycles
– dL=dR two signals are already synchronized, nothing to do
– dL<dR need to delay the FPMultiplier’s output with dR-dL cycles
Managing these cases is trivial thanks to the cycle attribute associated with each signal decla-

ration. The task of synchronizing the datapaths reduces to setting the value of the currentCycle to
the maximum cycle value of all involved signals.

This could be tested by hand by examining the cycle value of each signal using the getCycle-

FromSignal("s") method. However, synchronizing datapaths is such a common task that FloPoCo
provides a method to facilitate this: syncCycleFromSignal("s") advances the currentCycle to the
declaration cycle of signal s if cycle(s)>currentCycle. All one has to do is then call this method for
each of the signals which input the next computation. This is exactly what happens at lines 47-48
in Listing 4.1 which presents the synchronization of the two main computing paths from Figure
4.4.

At this point we know how to synchronize multiple computing paths. What we need is a way
to start describing a new thread once the old thread’s description is finished. We can apply the
same mechanism: describing a new thread reduces to advancing currentCycle to the maximum
cycle values of the signals involved in the first calculation of that thread.

Consider for example that we have finished describing one thread and currentCycle=15. If the
inputs of the first computation of the new thread are also global inputs (therefore having cycle=0)
one could just use setCycle(0) and then start the description. The situation now changes if these
are not inputs and have cycle values cycle(a)=dA and cycle(b)=dB. Calling twice syncCycleFrom-

Signal() for a and b will only yield the desired result if both dA and dB are larger than currentCycle.
The way to go in this case is to first set currentCycle to either dA or dB using setCycleFromSignal()

and then call syncCycleFromSignal() on the rest of the inputs. This technique is illustrated in Listing
4.1 at lines 27-28.

4.4.4 Managing subcomponents

FloPoCo provides the infrastructure for managing subcomponents. The code presented in
Listing 4.1 makes extensive use of subcomponents. Subcomponents are instantiated just as reg-
ular C++ objects are – by calling their constructor. When using VHDL, before a subcompo-
nent to be used its entity header needs to be added to the architecture’s header as a subcom-
ponent. The FloPoCo equivalent implies adding the subcomponent’s object to the operator’s sub-
component list, as Listing 4.1 lines 8-9, 18-19 and 38-39 illustrate. It literally takes two lines of
code: one to instantiate the subcomponent (c=new ...) and one to add it to the component list
(oplist.push_back(c);).

Port mapping is very similar to VHDL: inPortMap(fpm,"X","X2"); maps the signal X2 to the fpm’s
X input port. The output port mapping is done in a similar way outPortMap(fpm, "R", "a2x2");. One
major difference between the two commands is that outPortMap() also declares the signal denoted
by the third argument (signal a2x2 in our case) and sets its cycle attribute correspondingly.

The instance() function deals with writing all this information to the vhdl stream. One has to
note that when instantiating subcomponents the currentCycle does not advance even though the
output of the subcomponent may be at a later cycle than the current one. The option of advancing

34

4.4 The FloPoCo framework 35

the description cycle to the output of the subcomponent is left to the user by means of the function
syncCycleFromSignal() (Listing 4.1 lines 15, 35, 47, 56).

1 int wE;
2 int wF;
3 addFPInput("X",wE,wF);
4 addFPInput("a2",wE,wF);
5 addFPInput("a1",wE,wF);
6 addFPInput("a0",wE,wF);
7

8 FPSquarer *fps = new FPSquarer(target, wE, wF);
9 oplist.push_back(fps);
10

11 inPortMap (fps, "X", "X");
12 outPortMap(fps, "R", "X2");
13 vhdl << instance(fps, "squarer");
14

15 syncCycleFromSignal("X2");// advance depth
16 nextCycle();//register level
17

18 FPMultiplier *fpm = new FPMultiplier(target,wE,wF);
19 oplist.push_back(fpm);
20

21 inPortMap (fpm, "X", "X2");
22 inPortMap (fpm, "Y", "a2");
23 outPortMap(fpm, "R", "a2x2");
24 vhdl << instance(fpm, "fpMuliplier_a2x2");
25

26 //describe the second thread
27 setCycleFromSignal ("a1");
28 syncCycleFromSignal("X");
29

30 inPortMap (fpm, "X", "X");
31 inPortMap (fpm, "Y", "a1");
32 outPortMap(fpm, "R", "a1x");
33 vhdl << instance(fpm, "fpMuliplier_a1x");
34

35 syncCycleFromSignal("a1x");// advance depth
36 nextCycle();//register level
37

38 FPAdder *fpa = new FPAdder(target, wE, wF);
39 oplist.push_back(fpa);
40

41 inPortMap (fpa, "X", "a1x");
42 inPortMap (fpa, "Y", "a0");
43 outPortMap(fpa, "R", "a1x_p_a0");
44 vhdl << instance(fpa, "fpAdder_a1x_p_a0");
45

46 //join the threads
47 syncCycleFromSignal("a1x_p_a0");//advance
48 syncCycleFromSignal("a2x2");//possibly advance
49 nextCycle();//register level
50

51 inPortMap (fpa, "X", "a2x2");
52 inPortMap (fpa, "Y", "a1x_p_a0");
53 outPortMap(fpa, "R", "a2x2_p_a1x_p_a0");
54 vhdl << instance(fpa,"fpAdder_a2x2_p_a1x_p_a0");
55

56 syncCycleFromSignal("a2x2_p_a1x_p_a0");
57 vhdl << "R <= a2x2_p_a1x_p_a0; " << endl;

Listing 4.1– FloPoCo parametric floating-point description for the circuit in Figure 4.4

4.4.5 Sub-cycle accurate data-path design

All basic FloPoCo operators have flexible pipelines, adapting to the user specified frequency,
target FPGA and input/output precisions. By considering each operation atomic, we guarantee
that its inputs come from registers and its output is registered. However, this is not optimal.

Consider again Listing 4.1, line 16 which will cause the insertion of a register at the output of
FPSquarer. What if the squarer already has a registered output? Or if not, what if the current com-
binatorial path delay at its output is small enough so that some other calculations in FPMultiplier

could be performed during the same cycle? If either answer true we are in a situation where we
have over-pipelined our design. Globally this involves a possible latency increase and most of
the time an area increase as well. What if the nextCycle() is removed? If there is some significant
combinatorial logic on the squarer’s output this could double the critical path delay, significantly
affecting performance.

The problem in both cases is that FPMultiplier has no way to know what’s the situation at the
FPSquarer’s output, so we chose the conservative solution by calling nextCycle(), expecting the
worst case.

A simple solution is to pass to FPMultiplier the combinatorial delays on its inputs as a param-
eter. Then, in its constructor FPMultiplier could explore if there are any more operations which
could be performed in the remaining amount of time and insert a register level only if no other
operations can be performed without exceeding the target delay (1/f). The solution involves re-
placing line 18 from Listing 4.1 with:

35

36 Chapter 4. Custom arithmetic data-path design

18 FPMultiplier *fpm = new FPMultiplier(target,wE,wF, inDelayMap("X",fps->getOutputDelay("R")));

Additionally, for such a system to be functional library operators should report their output
delay which corresponds updating the outDelayMap[] map attribute.

4.4.6 Frequency-driven automatic pipelining

The previous section gave us the flavor of sub-cycle accurate pipelining in the context of as-
sembling operators. This section generalizes the fine-grain pipelining technique to general VHDL
code.

Consider that we now want to pipeline our datapath for a given frequency f . When done by
hand, this task consists in identifying the critical path of the combinatorial circuit, then inserting
enough synchronization barriers to split it into sub-paths, each of delay smaller than 1/f .

In FloPoCo, code generation progresses from input to output, so the idea is to maintain an
estimation of the current critical path delay, and insert synchronization barriers when needed.
This is essentially what manageCriticalPath() does. This function takes as argument an estimation
of the critical path delay of the logic generated by the C++ code that follows it (up to the next
manageCriticalPath()). It adds this argument to a variable currentCriticalPath, and if the resulting
delay is larger than 1/f , it inserts a synchronization barrier: it increments currentCycle, and resets
the critical path delay to its argument.

In Listing 4.2 we have defined two atomic blocks that correspond respectively, on Figure 4.2, to
the expSort box (lines 7 to 20), and to the two parallel subtraction boxes (lines 25 to 26). Depending
on the target frequency, the code of Listing 4.2 will fuse these two blocks in a single cycle, or will
insert a synchronization barrier between them.

The designer has the freedom to chose the granularity of these atomic boxes. This is a matter
of expertise. Here, for instance, we know that we are subtracting exponents, which will therefore
remain relatively small (even the 128-bit quadruple precision format has only wE=16 exponent bits),
so it make sense to consider the expSort box as atomic.

Incorporating subcomponents with this methodology is simple. Line 28 in Listing 4.2 shows
how the following shifter whose input is shiftB would be instantiated to account for the input
delay. The possible existing delay on shiftB is available via the getCriticalPath() method which
returns the current value of the criticalPathDelay. Additionally, instantiated components should
also set the value of the criticalPathDelay corresponding to the component’s output (line 34).

4.4.7 The Target class hierarchy

The Target class abstracts the features of actual FPGA chips. Classes representing real FPGA
chips extend this class – we currently have classes for very different FPGAs, Xilinx Virtex-4/5/6,
Spartan3 and Altera StratixII-IV). The idea is to declare abstract methods in Target, which are
implemented in its subclasses, so that the same generator code fits all the targets.

Of course, it is also possible to have a conditional statement that runs completely different
code depending on the target - this will be the case for instance for the IntMultiplier class that
builds large multipliers, because DSP capabilities are too variable from one target to the other.

A Target is given as argument to the constructor of any operator. The methods provided by
the Target class can be semantically split into two categories:

– Architecture-related methods provide information about the architecture of the FPGA and
are used in architectural exploration. For instance, lutInputs() returns the number of in-
puts of the FPGA’s LUTs. This method is used by the Chapman’s constant multiplication
algorithm [51] implementation of FloPoCo.

36

4.4 The FloPoCo framework 37

1 // The expSort box
2 manageCriticalPath(// evaluate the delay
3 target->adderDelay(wE+1) // exp. diff.
4 + target->localWireDelay(wE) // wE is the fanout
5 + target->lutDelay()); // MUX
6

7 // determine the max of the exponents
8 vhdl << declare("DEXY", wE+1) << " <= (’0’ & EX) - (’0’ & EY);" << endl;
9 vhdl << declare("DEYZ", wE+1) << " <= (’0’ & EY) - (’0’ & EZ);" << endl;
10 vhdl << declare("DEXZ", wE+1) << " <= (’0’ & EX) - (’0’ & EZ);" << endl;
11

12 vhdl << declare("XltY") << "<= DEXY(wE);" << endl;
13 vhdl << declare("YltZ") << "<= DEYZ(wE);" << endl;
14 vhdl << declare("XltZ") << "<= DEXZ(wE);" << endl;
15

16 // rename exponents to A,B,C with A>=(B,C)
17 vhdl << declare("EA", wE) << " <= EZ when (XltZ=’1’) and (YltZ=’1’) else "
18 << "EY when (XltY=’1’) and (YltZ=’0’) else EX;" << endl;
19 vhdl << declare("EB", wE) << " <= " << (...);
20 vhdl << declare("EC", wE) << " <= " << (...)
21

22 // the parallel subtractions
23 manageCriticalPath(target->adderDelay(wE-1));
24

25 vhdl << declare("shiftB", wE-1) << " <= (EA(wE-2 downto 0) - EB (wE-2 downto 0);";
26 vhdl << declare("shiftC", wE-1) << " <= (EA(wE-2 downto 0) - EC (wE-2 downto 0);";
27

28 Shifter *rightShifter=new Shifter(target,wF+g,wF+g,Shifter::Right,inDelayMap("S",getCriticalPath()));
29 (...)
30 inPortMap (rightShifter, "S", "shiftValB");
31 vhdl << instance(rightShifter, "ShifterForB");
32

33 syncCycleFromSignal("shiftedB"); //advance currentCycle to the shifter’s output cycle
34 setCriticalPath(rightShifter->getOutputDelay("R"));

Listing 4.2 Exponent difference and sorting in Figure 4.2

– Delay-related methods provide approximative informations about computation time. For
example, adderDelay(int n) returns the delay of an n-bit addition. Thus for instance, adder-
Delay(16) will return different values for a Spartan-3 or a Virtex-5, and eventually the pipeline
will be deeper for a slower FPGA.

All the delays passed to manageCriticalPath() are evaluated thanks to methods of such target

object. This object holds the current target FPGA (which can be specified by the -target option of
the FloPoCo command line).

Modeling FPGAs is an endless effort, all the more as new models appear each year, but the
reliance on the virtual Target class ensures that FloPoCo datapaths are designed in a reasonably
future-proof way.

4.4.8 The bottom-line

The presented technique for pipeline management has many advantages:
– It is simple to implement, as it involves only comparisons and subtractions of integers.
– It clearly separates two very different issues: building a functional combinatorial datapath

(on the left of Fig. 4.5), and pipelining it (on the right). From a combinatorial datapath,
we are guaranteed to obtain a correctly synchronized pipeline with the same functionality,

37

38 Chapter 4. Custom arithmetic data-path design

subcomponent list

in structural VHDL syntax)

(combinatorial description

 streamvhdl

for each signal

valuelifeSpan

for each signal

cycle value

IntSquarer *is;
is = new IntSquarer(target..
oplist.push_back(is);

inPortMap(is,"X","Y");

vhdl<<instance(is,"Squarer")

outPortMap(is,"R","X2");

syncCycleFromSignal("X2");

Constructor

addOutput("R",wOut);

(...)

addInput("Y",wIn);

vhdl<<declare("k",wK)<<"<=Y(

nexyCycle();

C++

recursively calling constructors of all
sub−compenents to know their pipeline depth

generation of VHDL declarations

generation of VHDL register code

generation of VHDL architecture code

(second pass on vhdl stream,

delaying right−hand side signals)

functional information

(bitwidth, etc)

signal list

pipeline information

currentCycle

Operator.outputVHDL()

C++

architecture

entity ...

port (...)

component

signal

output file

DEXY <= ...

DEYZ <= ...

...

end process

begin

process(clk)

....

end architecture

VHDL

Figure 4.5 Simplified overview of VHDL generation flow

without touching any of the lines that define this datapath (the lines starting with vhdl).
– Its complexity is linear in the size of the generated code. Two passes are necessary: The

first one writes the combinatorial VHDL code in the vhdl stream, and builds a dictionary of
signals with their cycle and lifeSpan. The second one delays right-hand side signals.

– It adapts to arbitrary, dynamical placement of synchronization barriers, which is what we
need for frequency-directed pipeline. It also gracefully degrades to a unpipelined, combina-
torial implementation.

– The overhead of pipeline management in the generated code is minimal (some signal names
posfixed by _dxxx), and this code remains as easy to read as the unpipelined version, es-
pecially compared to a pipeline of similar flexibility that would be written using VHDL
GENERATE constructs.

– Finally, since this technique only involves post-processing signal names, it works for arbi-
trary VHDL.

4.4.9 Test-bench generation

Testing the designed arithmetic circuits is an essential feature of FloPoCo. Arithmetic circuit
design starts with a mathematical specification which is then translated into an architecture that
can be significantly different from the initial specification. Testing the implementation against its
mathematical specification is not only simpler than mimicking the architecture, but it also mini-
mizes the possibility of making the same mistake in both the operator’s architecture and its test
bench.

In FloPoCo, each operator can be associated with an emulate() method. Its purpose is to de-
scribe the operator’s functionality starting from its mathematical specification. The method re-
ceives a set of inputs and returns the associated output for those inputs. For testing basic inte-

38

4.4 The FloPoCo framework 39

1 void FPExp::emulate(TestCase * tc)
2 {
3 /* Get I/O values */
4 mpz_class svX = tc->getInputValue("X");
5

6 /* Compute correct value */
7 FPNumber fpx(wE, wF);
8 fpx = svX;
9

10 mpfr_t x, ru,rd;
11 mpfr_init2(x, 1+wF);
12 mpfr_init2(ru, 1+wF);
13 mpfr_init2(rd, 1+wF);
14 fpx.getMPFR(x);
15 mpfr_exp(rd, x, GMP_RNDD);
16 mpfr_exp(ru, x, GMP_RNDU);
17 FPNumber fprd(wE, wF, rd);
18 FPNumber fpru(wE, wF, ru);
19 mpz_class svRD = fprd.getSignalValue();
20 mpz_class svRU = fpru.getSignalValue();
21 tc->addExpectedOutput("R", svRD);
22 tc->addExpectedOutput("R", svRU);
23 mpfr_clears(x, ru, rd, NULL);
24 }

Listing 4.3 emulate() for ex

1 TestCase* FPExp::buildRandomTestCase(int i){
2 TestCase *tc;
3 tc = new TestCase(this);
4 mpz_class x;
5 mpz_class normalExn = mpz_class(1)<<(wE+wF+1);
6 mpz_class bias = ((1<<(wE-1))-1);
7 /* Fill inputs */
8 if ((i & 7) == 0) { //fully random
9 x = getLargeRandom(wE+wF+3);
10 }else{
11 mpz_class e = (getLargeRandom(wE+wF)
12 %(wE+wF+2))-wF-3;
13 e = bias + e;
14 mpz_class sign = getLargeRandom(1);
15 x = getLargeRandom(wF)
16 + (e << wF)
17 + (sign<<(wE+wF))
18 + normalExn;
19 }
20 tc->addInput("X", x);
21 /* Get correct outputs */
22 emulate(tc);
23 return tc;
24 }

Listing 4.4 Specialized test-cases for ex

ger arithmetic operators such as high-precision adders, multipliers but also shifters, leading-zero
counters etc. we use the GNU Multiprecision (GMP) library [2]. It allows manipulating large inte-
gers without worrying about overflow. When implementing emulate() for variable-precision both
fixed and floating-point operators we use the MPFR multi-precision floating-point library [4].

Listing 4.3 presents the code of the corresponding emulate() function for the faithful floating-
point exponential operator. For one input value x this operator allows two valid outputs (the
two floating-point numbers closer to ex). The random value for x is received via the tc (test case)
parameter (line 4). This value (from a random stream of bits) is then converted to a mpfr floating-
point variable (line 14). Next, ex is computed with infinite precision and then rounded towards
−∞ (line 15) and towards +∞ (line 16). The two output floating-point values are converted back
to bit-streams (lines 19,20) and then returned in the same tc (lines 21-22) parameter. The code of
this function is simple and is much less error prone than the designed architecture for the floating-
point exponential operator (see Chapter 9, Figure 9.3).

Test-bench suites, consisting of a user-defined number of test-cases (tc), can be generated for
all operators having and emulate() function. As exhaustive testing is not usually possible, the
problem boils down to choosing the test-vectors which best test the given operator.

For some operators such as fixed-point +,×, floating-point×, the test-vectors can be generated
using the classical random-number generators. The probability of testing all the data-paths of the
circuit suffices. Other floating-point operations are more sensitive:

– +. The architecture usually consists of two main data-paths, one for the case when the dif-
ference in exponents is ∈ {−1, 0, 1}. The probability of generating a test-vector which tests
this data-path using an random-number generator with a uniform distribution is approxi-
matively 1/170 for single-precision and 1/1365 for double-precision.

– ex. The exponential returns zero for input numbers smaller than log(2(2wF−1−1)), and should
return + inf for all inputs larger than log((2− 2−wF) · 22wE−1−(2wF−1−1)). In single precision
the set of input numbers on which a computation will take place is just [-88.03, 88.72]. In

39

40 Chapter 4. Custom arithmetic data-path design

addition, as for small x we have ex ≈ 1 + x + x2/2, the exponential will return 1 for all
the input x smaller that 2−wF−2. One consequence is that the testing of a floating-point
exponential operator should focus on the this range of the input. More details can be found
in chapter 9.

FloPoCo offers the possibility of overriding the default behavior of the test-bench genera-
tion suite which fills test-cases using random-numbers having a uniform distribution. The new
function which generates the random test-cases for ex if given in Listing 4.4. This new version
of the random generator function generates 1/8 truly random inputs, and the rest of 7/8 tests
generate inputs where the exponent is in the range x ∈ [Xmin, Xmax], where Xmin = 2−E0 and
Xmax = (2− 2−wF) · 22wE−1−E0 .

For the case of the floating-point addition one could decide that testing the two data-paths
with the same probability suffices. Implementing this change is trivial, but might not be enough.
Consider the extreme case X + (−X). This causes a massive cancellation of the mantissas and is
therefore a difficult case to cover. Probabilistically, this has a 1/2wF chances of happening with a
uniform distribution. In order to capture all these corner-cases, FloPoCo allows manually defining
a set of standard test-cases which make it possible specify the extreme cases. The standard test-
cases for floating-point addition are presented in Listing 4.5.

4.4.10 Framework extensions

Managing feedback loops

Up to this point we have constrained our definition of arithmetic operator to functions. In
fact, the current implementation of FloPoCo can also manage feedback loops. This is especially
important as the accumulation 1 circuit which falls in this category is considered by many the 5th

basic operation. The subtlety in this case is using a signal which may be declared cycles later.
Say for example that the accumulation circuit takes has 5 pipeline stages. The result signal of this
accumulation is declared only at cycle 5 in the design, however, it needs to be fed back to the first
cycle, at the accumulator’s input. From the framework’s point of view there’s no problem with
this: the lifespan computation does not insert any registers as the signal is used at an earlier cycle.
However, using a signal cycles before it’s declared leads to errors in designs not having feedback
loops. Consequently, at circuit generation, our framework signals as a warning the signals hav-
ing this property. If indeed the signals are feedback signal this may be ignored; otherwise, the
described circuit may not be what the user planed-for.

An extension for VLSI ALU design

The initial purpose of FloPoCo was to provide a flexible environment for describing purely
arithmetic operators for FPGAs. Nevertheless, FloPoCo may be extended to be used in VLSI ALU
design. The extension is in fact a simplification of all basic components for the VLSI target. The
VHDL code generated for the basic operators will simply be "+,-,*".

FloPoCo will be used perform and initial pipelining of the ALU. The code generated will then
be passed through VLSI specific tools which replace the "+,-,*" operators by VLSI-specific instan-
tiations and perform register retiming.

Backend for HLS

Our framework can also be used as a back-end for high-level synthesis as it offers an important
basis of arithmetic operators optimized for different types of contexts. The tool itself is open-

1. [63] presents a detailed implementation specific to FPGAs

40

4.5 Conclusion 41

1 void FPAdder::buildStandardTestCases(TestCaseList* tcl){
2 TestCase *tc;
3

4 // Regression tests
5 tc = new TestCase(this);
6 tc->addFPInput("X", 1.0);
7 tc->addFPInput("Y", -1.0);
8 emulate(tc);
9 tcl->add(tc);
10

11 tc = new TestCase(this);
12 tc->addFPInput("X", 1.0);
13 tc->addFPInput("Y", FPNumber::plusDirtyZero);
14 emulate(tc);
15 tcl->add(tc);
16

17 tc = new TestCase(this);
18 tc->addFPInput("X", 1.0);
19 tc->addFPInput("Y", FPNumber::minusDirtyZero);
20 emulate(tc);
21 tcl->add(tc);
22

23 tc = new TestCase(this);
24 tc->addFPInput("X", FPNumber::plusInfty);
25 tc->addFPInput("Y", FPNumber::minusInfty);
26 emulate(tc);
27 tcl->add(tc);
28

29 tc = new TestCase(this);
30 tc->addFPInput("X", FPNumber::plusInfty);
31 tc->addFPInput("Y", FPNumber::plusInfty);
32 emulate(tc);
33 tcl->add(tc);
34

35 tc = new TestCase(this);
36 tc->addFPInput("X", FPNumber::minusInfty);
37 tc->addFPInput("Y", FPNumber::minusInfty);
38 emulate(tc);
39 tcl->add(tc);
40 }

Listing 4.5 Standard test-cases for floating-point addition

source and extensible allowing an on-demand update of the available operator basis. This is as
flexible as being able to add a new instruction to the instruction set of a microprocessor. Work is
undergoing in experimenting in this research direction at ENS de Lyon and in several other places.

4.5 Conclusion

The FloPoCo framework improves the productivity of designing flexible and efficient arith-
metic datapaths for FPGAs. It offers designers some unique features: state-of-the-art arithmetic
operator library, a novel methodology for the generation of correct-by-construction pipelines match-
ing a given frequency on a given FPGA target, and arithmetic-oriented test-bench generation.

Combined, these features provide a competitive solution both for novice users building com-
putational pipelines by assembling operators, but also for experienced users who need full control
over the entire design process. The next chapters will present some of the flexible operators we

41

42 Chapter 4. Custom arithmetic data-path design

have implemented using FloPoCo.
The long-term plan is to use FloPoCo for ever coarser datapaths such as signal-processing

filters. We also hope it will be used as a back-end for high-level synthesis tools. Both the library
and the framework will be developed to address the needs of these application fields. Potential
future work also includes adding to the framework resource estimation, floorplaning support,
fixed-point support, support of sequential circuits, and ASIC targets.

Thanks

I would like to kindly thanks all the FloPoCo developers for their respective contributions:
Cristian Klein for integrating Jérémie Detrey’s HOTBM generator in the early stages of the project,
and also for his initial work on the testing infrastructure; Nicolas Brunie which has improved and
extended the testing framework; Mioara Joldes, one of the main developers of Sollya, for her
work on developing the polynomial table generator, one of the key features of FloPoCo; Sebas-
tian Banescu and Radu Tudoran for their work on the FloPoCo multipliers; Sylvain Collange for
contributing with the LNS operators; Alvaro Vasquez for contributing with his decimal operators.

42

5 CHAPTER 5

Binary addition in FloPoCo

Integer addition is used as a building block in many coarser operators. Examples which re-
quire large adders include integer multipliers, most floating-point operators, and modular adders
used in some cryptographic applications. In floating-point, the demand in precision is now mov-
ing from double (64-bit) to the recently standardized quadruple precision (128-bit format, includ-
ing 112 bits for the significand) [17]. In elliptic-curve cryptography, the size of modular additions
is currently above 150 bits for acceptable security.

This chapter presents the binary addition operator generator part of FloPoCo. When the
FloPoCo project was initiated, it was not expected that we would need to dedicate so much work
to something as seemingly simple as integer addition on FPGAs. The reason why it became im-
portant is that addition is so pervasive. The presented adder generator provides subcomponents
for integer multipliers and constant multipliers, and for most floating-point cores, including ad-
dition, multiplication, division and square root, and elementary functions. If we want these cores
to work at a high frequency for double precision and beyond, we need high-performance adders,
but we also need them to consume as little resources as possible. Therefore, the adder generation
described here is frequency-driven (possibly inheriting the frequency from the wider context) and
minimizes resource consumption, based on accurate resource estimation formulas of the architec-
tures.

Adders differ in the way they propagate carries. Modern FPGAs include special hardware
dedicated to carry propagation [12, 19, 18, 23, 14, 14, 22, 27]. Sending a carry to a neighboring
cell through the dedicated carry line is much faster than sending a bit to the same cell through the
general reconfigurable routing fabric. Therefore, proven solutions for VLSI designs like carry look-
ahead or prefix adder trees [81] bring little speed improvement on FPGAs over the ripple carry
adder (RCA) except for very wide addition sizes [159]. These speed improvements are small, and
they come at a cost penalty exceeding a factor 2 over the RCA. Therefore, a binary addition is
expressed in VHDL as a + and is implemented by default as an RCA.

In this chapter we re-evaluate this situation when a pipelined adder is needed but also propose
several short-latency adder architectures as alternatives to the deeply-pipelined RCA in the case
of wide adders. We restrict our discussion the architectures which can be described using portable
VHDL as we believe this will make our core-generator more future-proof.

5.1 Related work

The simplest pipelining of binary addition [151, 58, 81] consists in buffering the carry-out of
each full-adder (FA) along the carry propagation path, and inserting synchronization registers for

44 Chapter 5. Binary addition in FloPoCo

Signal
+width
+cycle
+lifeSpan

Operator
+signalList
+vhdl

+outputVHDL()
+emulate()
+buildStandardTestCases()

IntAdder
+size

Targets

Virtex4StratixII StratixIV

Classical Alternative ShortLatency

AddAddInc AddAddMux CmpAddInc CmpCmpAdd

Figure 5.1 FloPoCo class structure for binary addition

I/O. This technique is wasteful when the objective period is larger than the delay of a 1-bit carry
propagation. For these cases, a better version [120, 81, 42] consists in registering carries only every
α FA cells. This technique will be detailed in section 5.3.1, and is referred to as the classical RCA
pipelining technique.

Faster techniques than the previous classical architecture have been developed for VLSI. A first
idea is to speed up the logic on the carry propagation path [122, 58]. Other, more algorithmic ap-
proaches include carry-select, carry-skip, and the family of prefix adders [81]. These designs map
poorly on FPGAs, however they have served as an initial source of inspiration for the proposed
alternative pipelining technique from section 5.3.3.

An initial study evaluating the performance of fast addition schemes on FPGAs is presented
by Xing and Yu [159] back in 1998. The study concludes that among the numerous fast addition
schemes, the only ones mapping reasonably well to FPGAs are carry-skip and the carry-select,
the latter providing the best performances. The optimizations applied by Xing and Yu to the clas-
sical carry-select architectures are structural, speculative carry-bit computations being addressed
by carry-skip structures. The carry-in computation for each carry-select block is done using the
classical multiplexer network, which is slow in FPGAs.

A discussion on the synthesis of carry-select adders in modern FPGAs is presented by Naik
and Shah [125]. The study proposes bitwise computation of the speculative sums using XOR gates
and an inverters. The impact of these optimizations in modern FPGAs is little, if any, as presented
in section 5.6.2.

Another variation of the carry-select architecture is presented by Devi et al. [75]. It is based on
the idea of time-multiplexing the same adder resource for computing the two speculative sums
and carry-bits. The design manages to reduce the area at the expense of latency. Its implemen-
tation requires low-level directives for mapping the circuit to hardware, thus lacking portability.
The results are presented for a maximum addition size of only 32bits which makes it impossible
to compare against.

In this chapter we provide several efficient mappings of the carry-select addition architec-
ture in modern FPGAs. For wide enough additions, the proposed adder family can consume
less resources than the pipelined RCA schemes, while having an unpipelined architecture. The
presented adder architectures are part of the FloPoCo class hierarchy as Figure 5.1 presents.

44

5.2 Design-space exploration by resource estimation 45

5.2 Design-space exploration by resource estimation

Modern FPGA resources are heterogeneous, including LUT-based logic, embedded memories,
embedded DSP blocks, and others. Pipelined adders generally require logic and registers. Several
chained registers, often encountered in pipelined designs form shift-register. Shift-registers can be
easily implemented by chaining the registers available in the SLICE/ALM of the device. However,
this technique is inefficient for implementing deep shift-registers.

Modern Xilinx FPGAs have been enhanced with hardware support for shift-registers: the LUTs
in SLICEMs can be configured as variable length shift-registers (up to 16 levels for Virtex-4 and 32
levels for Virtex-5/-6). Counting LUTs and registers will suffice for adder resource estimation on
these devices, either if the shift-registers will be implemented using LUTs in the SRL configuration,
or just using regular registers.

In the case of Altera devices the available embedded memories (Altera devices have 3 degrees
of granularity, see Section 2.1.3 for more details) provide hardware support for shift-register im-
plementation. Their granularity is slightly larger than the SLICEM of Xilinx (see section 2.1.3)
which restricts their efficient usage in this context to longer register chains (i.e. wider additions).
When embedded memories are used to implement shift-registers one may need to also count
these, alongside with LUTs and registers for adder resource estimation.

The default behavior of the Altera QuartusII synthesis tool is reluctant in assigning the pre-
cious embedded memories for shift-register implementations. It roughly requires seven levels of
registers for StratixIII devices for such a shift-register to start using embedded memories. In the
case of adders, this number of pipeline levels is usually associated with very wide adders, for
which we will provide specialized low-latency architectures in Section 5.4. Therefore, we have de-
cided to count LUTs and registers on these devices as well, although clearly the synthesis options
may prove that some of the registers will be implemented using embedded memories.

The resource estimation formulas for each architecture allow choosing the best adder architec-
ture for a given situation on-the-fly. Once the decision is made, the VHDL code of the adder can
be generated and synthesized. It is obvious that in order for this method to provide the expected
results, the estimation formulas must effectively predict the performance and resource consump-
tion of the operator after synthesis and technology mapping. The results presented in Section 5.6.1
will validate this assumption, proving that in practice, these formulas are accurate to 1-3% in all
cases.

5.3 Pipelined addition on FPGA

Let X,Y be two integers representable on w bits either in unsigned representation or in 2’s
complement. These numbers are either zero/sign extended to w + 1 bits in order to absorb the
possible overflow. This is the usual technique used for addition in FPGAs:

S ← signExtend(X,w + 1) + signExtend(Y,w + 1) + cin.

There are numerous addition architectures that compute this sum. The most popular in the
FPGA context is the Ripple-Carry Adder (RCA). A w-bit RCA with a carry-in is composed of
w+1 chained Full-Adders (FAs) 1 2, as presented in Figure 5.2. The Full-Adder (FA) equations are:

1. in Xilinx devices it is possible to intercept the carry-out bit of the S(w − 1) cell; however, this has no associated
register and is of little use in our context

2. in Altera devices the carry-in bit requires a supplementary FA with one zero input for introduction in the carry-
chain

45

46 Chapter 5. Binary addition in FloPoCo

s = a⊕ b⊕ cin

cout = a · b+ cin · (a⊕ b)

These equations can also be written using the classical generate, propagate signals:

s = p⊕ cin

cout = g + cin · p, with p = a⊕ b and g = a · b

or for Xilinx FPGAs

cout = p · a+ cin · p

The RCA adder delay is proportional to the addition sizew. It generally has three components:
– the delay to compute the generate and propagate signals δp
– the gate-delay for carry-out bit propagation δc
– the delay of computing the most significant sum bit (equation 2.1) δs.
The worst case delay for the RCA is:

δS(w) = δp + (w − 1)δc + δs (5.1)

In Xilinx devices, these delays directly map to the architecture: (1) the LUT is used to compute
the propagate delay so δp = δLUT (2) the δc = δMUXCY and (3) the sum delay is δs = δXORCY.

Altera devices provide dedicated FAs in the ALMs. According to the delay-informations ex-
tracted using Chip-Planner, the hardware FA is implemented using the generate-propagate equa-
tions, and thus has different delays for carry-out bit and sum-bit computations. Due to an elab-
orated scheme allowing the summation of 3 inputs in one LUT level, the FA inputs pas through
the LUT logic. Consequently, for these devices δp = δLUT + δ̃p. Due to the ASIC-like nature of
the FA, the delay for computing p is much smaller than the LUT delay, allowing for a reasonable
estimation δp = δLUT. The sum bit computation is also very fast, however, the signal needs to pass
through the ALM’s output multiplexer network δs = δ̃s + δoutMUX.

The major difference to Xilinx FPGAs is the estimation of the carry-delay which is not fixed.
This is due to the fact inter LAB transitions and mid-LAB carry amplifiers introduce larger delays.
Consequently, the worst-case delay equation in the case of Altera devices is:

δS(w) = δLUT + δ̃p︸ ︷︷ ︸
δp

+
w

2wLAB︸ ︷︷ ︸
i

δiLAB +
w

wLAB︸ ︷︷ ︸
b

δbuf + (w − i− b)δc + δ̃s + δoutMUX︸ ︷︷ ︸
δs

(5.2)

As w increases the addition frequency decreases as illustrated in Figure 5.3 for three FPGAs.

... FA FA FAFAFAFAFA

X(0) Y(0) cinY(1)X(1)X(2) Y(2)

S(w-1)S(w)

X(3) Y(3)X(4) Y(4)X(w-1) Y(w-1)

S(4) S(3) S(2) S(1) S(0)

0 0

Figure 5.2 Ripple-Carry Adder implementation

46

5.3 Pipelined addition on FPGA 47

100

200

500

8 64 128 256 512 1024

F
re

q
u
e
n
c
y
(M

H
z
)

Width (bits)

300

400

VirtexIV
Virtex5
Spartan3

Figure 5.3 Ripple-Carry Addition Frequency for VirtexIV, Virtex5 and Spartan3E

In the context of frequency-driven pipelining, a pair (w, f) which is under the corresponding
curve in Figure 5.3 meets the frequency constraint. There are two solutions for additions not
meeting this constraint: (1) Pipeline the adder design such that the critical path of the circuit is
less than the target period T = 1/f or (2) We can choose a different addition architecture that is
able to reach the frequency without too much of a cost penalty; such architectures will be discussed
in Section 5.4. In this chapter we will focus on developing the best solutions for both alternatives.
Then, based on preliminary resource estimation values, the best architecture will be chosen for a
given context.

5.3.1 Classical RCA pipelining

A tight frequency-driven pipelining is obtained by first determining the maximal addition size
α in equation 5.1 for which the critical path delay is less than the target period T (finding α for
Altera devices is similarly done by solving equation 5.2):

α = 1 +

⌊
T − δp − δs

δc

⌋
.

Next, the addition is split into k chunks of α bits (except the last chunk denoted by β, β ≤ α)
such that w = (k − 1)α+ β.

An instantiation of this architecture highlighting the previously discussed parameters is pre-
sented in Figure 5.4 for k = 4. As k decreases, the number of registers used for synchronization
decreases. When the critical path of the w-bit addition is ≤ T , no pipelining is required (k = 1)
and the addition may be expressed as a simple + in VHDL.

The column labeled Classical in Table 5.1 presents the resource estimation formulas function
of α, β, w, k, respectively with and without allowing shift-register packing in LUTs (SRL). Let us
now explain how such formulas were built.

5.3.2 Resource estimation techniques

Let us take as a running example the previous classical architecture, annotated on Figure 5.5.
The LUTs of the Xilinx FPGAs can be be used either as a function generator, or as a variable

length shift-register, as previously presented in Section 5.2.
For classical architecture, the addition diagonal uses w LUTs configured as function generators

(Figure 5.5, σ). The LUT SRL configuration is used when two or more flip-flops are cascaded to
form a shift register, if one of the two does not immediately follow one LUT. This is the case of the
(k−3)α SRLs under the addition diagonal (Figure 5.5, ξ), together with the 2β SRLs corresponding

47

48 Chapter 5. Binary addition in FloPoCo

R0R2 R1R3

Y3 Y2 Y1 Y0

+

+

+

+

X3 X2 X1 CinX0

β

1 + α

1 + α

β β α α α α α α

1 + α

Figure 5.4 Classical addition
architecture [81]

σ

θµ

ρ

ξφ

R0R2 R1R3

Y3 Y2 Y1 Y0

+

+

+

+

X3 X2 X1 CinX0

β

1 + α

1 + α

β β α α α α α α

1 + α

Figure 5.5 Annotated classical
architecture

R0R2 R1R3

Y3 Y2 Y1 Y0

+

+

+

+

+++

X3 X2 X1 CinX0

1 + α

β

β β α α α α α α

Figure 5.6 Proposed FPGA ar-
chitecture

to the last column of width β (Figure 5.5, µ) and of the 2(k − 3)α SRLs above the diagonal (Figure
5.5, θ). In addition, one also has to count the k − 1 extra LUTs needed to extend the α additions
by one bit in order to buffer the carry-out. These sum up to w + (3k − 9)α + 2β + k − 1 =
(4k − 10)α+ 3β + k − 1, which is the value reported in Table 5.1.

There is one consideration to be made before counting registers: each time an SRL is used, the
corresponding slice flip-flop is also used. In other words, for a p-level shift-register, p−1 levels are
pushed into the SRL and one into the flip-flop. Hence, we count (3k − 9)α + 2β registers for the
same number of SRL, and, in addition, 3α registers under the diagonal (Figure 5.5, φ), 2α registers
above the diagonal (Figure 5.5, ρ) plus the k− 1 registers for the carry-bit propagation. These total
(3k − 4)α+ 2β + k − 1, the value reported in Table 5.1.

The next task is to count elementary LUT-FF pairs which correspond to half-slices for Virtex-
4, quarter-slices for Virtex-5/-6 and half-ALMs in Altera FPGAs. This corresponds to a dense
placement of the pipelined adder, which the tools are expected to favor. Experimental results
given in Section 5.6.1 will validate this assumption.

The number of LUT-FF pairs used by the classical implementation is: w for the diagonal addi-
tion, (3k − 9)α+ 2β for the SRL and corresponding flip-flops, and 5α+ k − 1 for the independent
registers. However, we subtract 2α as the left-most 2 additions of α bits include the registers in
the same pair with the LUT. The number totals (4k − 7)α+ 3β + k − 1, which is reported in Table
5.1.

All the formulas presented here were deduced using these techniques. Relative errors of these
estimation formulas are given in Table 5.6. The worst case relative error is of the order of one
percent which makes them sufficiently accurate for estimation formulas.

5.3.3 Alternative RCA pipelining

The classical pipelining technique requires a significant amount of registers for input synchro-
nization. This number may be lowered by performing the chunk additions at the first pipeline
level and then propagating these sums instead. When no SRL are allowed, the number of regis-
ters propagated above the diagonal will be approximatively halved, and may still be packed in
shift registers. An instantiation of this architecture for k = 4 is presented in Figure 5.6.

Each adder on the addition diagonal takes as input an operand on α + 1 bits and a 1-bit carry
in and returns a α+ 1-bit wide result. This addition does not overflow, as the α+ 1-bit input was
the result of an addition of two α-bit numbers with a carry-in of 0.

The resource estimation formulas for this architecture are presented in Table 5.1.

48

5.4 Short-latency addition architecture 49

Table 5.1 Resource estimation formulas for the pipelined adder architectures with shift-register
extraction (SRL) (Xilinx only) and without SRL (Xilinx and Altera)

Classical Alternative

SRL
REG

{
α+ 2β : k = 2
(4k − 7)α+ 2β + k − 1 : k ≥ 3

{
(k − 1)w + (k − 1)k/2 : k ≤ 3
(2k − 2)α+ bβ + (k − 1)k/2 : k ≥ 4

LUT
{
α+ β : k = 2
(4k − 10)α+ 3β + k − 1 : k ≥ 3

{
(k − 1)w − α− (k − 1)k/2 : k ≤ 3
(4k − 10)α+ 3β + 2k − 1 : k ≥ 4

LUT-FF (4k − 7)α+ 3β + k − 1

{
(k − 1)w + β + (k − 1)k/2 : k ≤ 3
(4k − 8)α+ 3β + 2(k − 2) : k ≥ 4

No SRL
REG 3k2−7k+4

2
α+ 2(k − 1)β + k − 1 (k − 1)w + k2 − 2k + 1

LUT w + k − 1 2w − α+ 2k − 3

LUT-FF w + 3(k2−3k+2)
2

α+ 2(k − 1)β + k − 1 (k − 1)w + β + k2 − 2k + 1

5.3.4 Area-complexity of the pipelined designs

Table 5.1 presents the resource estimation formulas for LUT, Register and LUT-FF costs for both
the Classical and Alternative architectures in the case when the inputs arrive from a register, but
there is a clear isolation between hierarchy boundaries: in such case the chunk-splitting strategies
are similar for both architectures.

The formulas in the top part of the table (SRL) are valid only for Xilinx devices. The bottom
part of the table presents the estimation formulas for the case no shift-registers are extracted, and
are valid for both Xilinx and Altera (see Section 5.2 for a discussion). These formulas have been
experimentally validated in Section 5.6.2.

A close analysis of these formulas reveals that the alternative architecture slightly outperforms
the classical one in terms of LUT-FF pairs. One might then argue that there is no design-space
exploration to perform, and one should use the alternative architecture whenever the LUT-FF
metric is targeted.

However, in larger designs, softening the hierarchy boundaries allows cross-boundary shift-
register inference which significantly reduces component cost. This is the case of the Classical
architecture when some of its inputs arrive from a shift-register register level. Work is undergoing
in order to evaluate the possibility of integrating this feature in the FloPoCo framework.

Table 5.2 presents the corresponding estimation formulas for the Classical architecture when
there exist combinatorial delays on the inputs. In such a case, the size of the first addition, now
denoted by γ ≤ α, has to be reduced in order for this addition to meet the frequency target.

The impact of this scenario in the case of the Alternative architecture is that all input chunks
have to be reduced to size γ (α = γ for the formulas in Table 5.1 and β = β′ with β′ ≤ α). This has
the potential to increase the number of chunks we need to split the addition in, therefore affecting
the resource usage, possibly making the Classical architecture more attractive.

The bottom line is that, in order to properly integrate our adder architectures in the FloPoCo
framework, and automatically select best architecture for a context, we need to evaluate the cost
of all these architectures.

5.4 Short-latency addition architecture

Given a target frequency f , the pipeline depth of the previously presented architectures in-
creases linearly with addition size. In this section we propose a scalable low-latency addition
architecture based on the textbook carry-select architecture, whose novel feature is to make effi-
cient use of the fast-carry chains for the carry-bit computations.

49

50 Chapter 5. Binary addition in FloPoCo

Table 5.2 Advanced resource estimation formulas for the pipelined classical architecture, when
shift-register extraction is activated

Input delays

REG

γ + 2α+ 1 : k = 2
2γ + 3α+ 2β + 2 : k = 3
2γ + (4k − 9)α+ 2β + k − 1 : k ≥ 4

LUT

γ + α+ 1 : k = 2
w + 2β + 2 : k = 3
w + γ + (3k − 10)α+ 2β + k − 1 : k ≥ 4

LUT-FF

γ + 3α+ 1 : k = 2
w + 2β + γ + 2 : k = 3
w + γ + (3k − 7)α+ 2β + k − 1 : k ≥ 4

Y1 Y0Y2Y3Yk−1 X1 1 X0 cin

. . .

X2 1X3Xk−1

+ +++

11

+

. . .

c1
3c0

3

S0
3 S1

3 S1
2S0

2 S1
1S0

1 S0

c1
2c0

2 c1
1c0

1 c0

S1
k−1S0

k−1

R0R1R2R3Rk−1

10101010

10 10 10

++++

Figure 5.7 Classic Carry-Select Architecture

5.4.1 Classic carry-select adder

The classic carry-select adder [81] block consists of two RCAs and one multiplexer. Each pair
of adders computes the two possible block results, one speculating on a carry-in of 0 and one
on a carry-in of 1. The carry-in then feeds the select line of the multiplexer to choose the correct
sub-sum and carry-out bit.

Large additions can be split into multiple carry-select adder blocks (k). The speculative sub-
sums S1

k , S
0
k and corresponding carry-out bits c1

k, c
0
k are computed all in parallel. Please note that

c1
k : S1

k > c0
k : S0

k (where the : operator denotes the concatenation of the carry-out bit to the sum)
so that c0

k always implies c1
k.

The carry-in ripples through the multiplexer network to propagate the correct carry-outs. Fig-
ure 5.7 presents the architecture of such an addition that is split into multiple carry-select blocks.
For clarity, the block carry-out multiplexers have been separated from the block result multiplex-
ers. The multiplexer network is generally fast. However, if greater performance is needed, a costly
but faster carry look-ahead structure can be used for carry-bit computation.

Unfortunately, both the multiplexer network and carry look-ahead adders map poorly on FP-
GAs. This is because in FPGAs the routing delay exceeds by 3 to 4 times the delay of the logic
element. Despite this major drawback, this naive mapping outperforms in latency the highly
FPGA-optimized RCA for extremely large additions.

5.4.2 Acceleration of inter-block carries

The inter-block carries of the carry-select adder take a shortcut through the multiplexer net-
work skipping a complete block with a single multiplexer stage. This advantage is mostly given
away if the multiplexers are implemented using standard LUTs connected through the general-

50

5.4 Short-latency addition architecture 51

CACFA FA ci−1

ci
11 ci

00

ci

¬ci

ci

ci
1 ci

0

¬ci

ci−1

s′i

Figure 5.8 Carry-Add-Cell (CAC) implementation and representation

Table 5.3 CAC Truth table. Greyed-out rows are not needed
ci−1 ci

0 ci
1 ci ¬ci s′i

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 1 0 1

purpose routing network. To compete with the fast carry propagation within a block, the inter-
block carry propagation must also exploit the available carry-chain structures. We will present two
different techniques which make use of the fast-carry chains for inter-block carry acceleration.

As shown in Table 5.4, the different cases of the propagation of the inter-block carries can be
easily distinguished by the values of the speculative block carry outputs. As c0

k implies c1
k, the line

c0
kc

1
k can be neglected in the truth table. All others perfectly coincide with the carry propagation

in a full adder so that the plain binary word addition of the bit vectors (c0
k) and (c1

k) produces the
correct carry propagation.

Having an addition with the correct carries inside is of limited value if these cannot be ac-
cessed. While a direct tapping of the carry signals is, indeed, possible on the Virtex architectures,
such a solution is not not portable (we did not find it possible to intercept the carry signals for
Altera FPGAs) and would require the use of device-specific, low-level component primitives.

One solution to the portability issue is to express the carry-sum in such a way that the internal
carry-out bits are also available on the “sum” outputs. This will make the architecture portable and
still take advantage of the fast computational data-path ensured by the carry-chains. Therefore we
express the carry-out computation under the form of a 2-bit addition addition (Figure 5.8) whose
correctness can be verified using the truth table 5.3.

ci¬cis′i = ci−1 + ci
0 + ci

1 + 2

The value of s′i is not used further in the computation but is necessary for correct inference and
mapping of the addition on the fast-carry chains of the FPGA.

The disadvantage of this approach compared to a low-level primitive implementation is that
the carry-propagation circuit has twice the width. This is not a big impediment for additions
whose width determine a relatively low number of chunks. However, in the following we provide
an alternative solution for FPGAs offering 5-input LUTs which solves this inconvenience. This is
the case of most modern FPGAs from Xilinx: Virtex-5/-6 and Altera StratixII-IV.

The following mapping will be achieved thanks to the technique described by Preußer and
Spallek [133] for mapping general computations on the fast carry-chain structures. We start from
the equation s = p ⊕ cin, which allows to infer the incoming carry from the obtained sum bit sk,
so that a standard addition operator suffices to implement the core carry-chain implementation:

51

52 Chapter 5. Binary addition in FloPoCo

Table 5.4 Inter-Block Carry Propagation Cases

c0
k c1

k ck – Case
0 0 0 – Kill
0 1 ck−1 – Propagate
1 0 ∗ – Impossible
1 1 1 – Generate

ck−1 = sk ⊕ pk
= sk ⊕ c0

kc
1
k (5.3)

and hence (see also Table 5.4):

ck = c0
k + ck−1c

1
k | by Eq. 5.3

= c0
k +

(
sk ⊕ c0

kc
1
k

)
c1
k

= c0
k + skc

1
k (5.4)

The carry computation circuit with the resulting recovery of the carries from the sum bits is
depicted in Figure 5.9. Note that the recovery computation can often be merged into the further
processing of the recovered carry signal.

5.4.3 The Add-Add-Multiplex (AAM) carry-select architecture

The AAM architecture derives directly from the classic carry-select architecture. The multi-
plexer chain computing the carry bits is replaced with the much faster carry-computation-circuit
(CCC) and carry-recovery (CR) circuit. Figure 5.10(a) highlights the three stages of the AAM
Carry-Select architecture:

1. For each block, two sums are computed, one for each possible value of the block carry-in.
Both of these additions are extended to compute the block carry-out.

2. The two bit vectors formed by the block carries speculating on a carry-in of 0 and 1 are
added in the CCC using a fast short ripple-carry adder. The output sum bits and their two
respective speculative input carries are fed to the CR circuit, which recovers the proper block
carry outputs.

FAFAFA FA

c2c3ck−1 c1

. . .

c1
3

ck−1

s1

c1
1c0

1c1
2c0

2c0
3c1

k−2c0
k−2

. . .

c0
CCC

s2s3sk−2

CRCRCR CR

Figure 5.9 Carry Computation Circuit with Carry Recovery

52

5.4 Short-latency addition architecture 53

Y1 Y0Y2Y3Yk−1 X1 1 X0 cin

. . .

X2 1X3Xk−1

+ +++

11

+

S0
3 S1

3 S1
2S0

2 S1
1S0

1 S0S1
k−1S0

k−1

c1
3 c1

2 c1
1 c0c0

1c0
2c0

3

c1c2c3ck−2

Rk−1 R1R2R3 R0

10101010

+

CR

++++

CRCR

CCC

(a)

Y1 Y0Y2Y3Yk−1

+
+

X1 1 X0 cin

. . .
+

X2 1

+

X3 1

+

Xk−1 1

. . .

. . .

R0R1R2R3Rk−1

1010 10 10

++++

CAC CAC CAC

(b)

Figure 5.10 The AAM Carry-Select Architecture using (a) the CCC and CR and (b) the CAC

3. The computed block carries are used to select the proper speculative block sum for the adder
output.

The AAM architecture uses a multiplexer to select among the two block sums. The multiplexer
is a 3-input function, the two sum-bits and the carry-bit generated by the CR. For FPGAs with 5-
input LUTs, the CR can be merged with the multiplexing. This is the case of FPGAs like Virtex-5
and Virtex-6 having 6-input LUTs, and also Altera Stratix devices whose ALUTs can be configured
for supporting 5-input functions. Having only 4-input LUTs available such as on Virtex-4 devices,
the CR introduces an extra LUT level and a supplementary wire delay. On these architectures,
adders with a low block count and, thus, a short CCC should prefer the first carry-acceleration
technique based on the CAC (Figure 5.10(b)). It uses extra intermediate propagating stages but
provides direct access to the inverted propagated carry.

5.4.4 The Compare-Add-Increment (CAI) carry-increment architecture

The CAI architecture adopts some features from the carry-increment adder, a widely adopted
structural simplification of the carry-select scheme. In particular, the CAI only uses the block
sums produced for the case of no incoming block carry. The final multiplexer stage is replaced
by another adder, which adds the actual incoming carry and, thus, corrects the produced sum if
necessary. Note that the choice of this incrementer instead of a multiplexer does not increase the
number of occupied LUTs.

As the CAI does not need the sum speculating on an incoming block carry, the corresponding
adder only serves the purpose of computing the associated carry-out of the speculative block sum
Xk + Yk + 1. This can, however, be obtained by the simple comparison:

c1
k <= ’1’ when Xk ≥ not(Yk) else ’0’; (5.5)

All in all, the CAI offers the following improvements:
1. The use of a comparator for the computation of c1

k is, at most, as complex as the replaced
addition. On Virtex5 and Virtex6 devices, the number of required LUTs is even halved as
every stage on the carry chain processes two adjacent input positions rather than just one.
This is possible as the sum bits are not asked for.

2. The number of registers required in a pipelined implementation is almost halved as only
one of the two speculative block sums must be stored.

3. The wide fanout of the computed block carries for the control of the multiplexers is elimi-
nated.

The resulting architecture is sketched in Figure 5.11. On FPGAs with 5-input LUTs, the CR is
merged into the LSB computation of the final addition. On 4-input LUT FPGAs the final addition
is extended with one lower bit for computing the CR output signal.

53

54 Chapter 5. Binary addition in FloPoCo

Y1 Y0Y2Y3Yk−1

R0R1R2R3Rk−1

X0 cin

. . .

X2X3

>

X1

>

Xk−1

>
+

S0
k−1

c1
3 c1

2 c1
1 c0c0

1c0
2c0

3

c1c2c3

S0
3 S0

2 S0
1S1

k−1

ck−2

. . .
S0

+

CRCRCR

+ + + +

+ + +

CCC

Figure 5.11 The CAI Carry-Increment Architecture

Y1 Y0Y2Y3Yk−1

Rk−1 R1R2R3 R0

X0 cin

. . .

X2X3 X1Xk−1

+
>
> > >

>

c1
3 c1

2 c1
1 c0c0

1c0
2c0

3

c1c2c3

S0
. . .

ck−2

>

+

CR

+ + +

CR CR

+

CCC

Figure 5.12 The CCA Carry-Select Architecture

5.4.5 The Compare-Compare-Add (CCA) carry-select architecture

The CCA architecture takes the CAI architecture one step further. It uses two comparators to
generate both c1

i and c0
i .

c0
k <= ’1’ when Xk > not(Yk) else ’0’; (5.6)

The final step is turned from an incrementer into a complete adder computing Xk + Yk + ck.
The greatest benefit of this implementation is achieved on FPGAs with 5-input LUTs. Not only

can the CR be merged into the LSB computation of the final addition, but the whole critical path is
shortened as the computation of both speculative block carries is only half as wide as a true adder.
The architecture is outlined in Figure 5.12.

5.4.6 Block-splitting strategies

The data dependences between stages of the proposed architectures together with the FPGA-
specific component timings yield different block-splitting strategies for maximizing adder size for
a frequency f .

We denote by L the addition size. Our objective is finding a length k vector of block sizes
denoted by (lk−1...l0), L =

∑k−1
0 li, such that the circuit delay does not exceed the target period T .

Let us now recall the delay primitives we will be using next:
– delay of obtaining the jth sum bit:

δsj = δp + (j − 1)δc + δs (5.7)

– for the jth addition bit the inputs xj , yj can arrive later that xj−1, yj−1, as long as the pro-
duced propagate signal gets synchronized with carry cj−1.

54

5.4 Short-latency addition architecture 55

. . .

T

. . .

rk−2
rk−3

rk−4

r2. . .r3r4

δw

r1

c1
k−2

c1
k−1

c1
4

c1
3
c0

2
c0

1

δp

c0

r0

CCC

rk−1

δc

δs

(a) AAM

c0
1

. . .
rk−2

. . . δw

r1

CCCT

r4 r3 r2

r0

c0
k−1
c0
k−2

c0
4
c0

3
c0

2

rk−1

c0

δp

δc

δs

(b) CAI

r4 r3 r2

δw

r1

. . .

. . .

CCC
T c0

k−1

c0
k−2

c0
4

c0
3
c0

2
c0

1 c0

r0

rk−1

rk−2

δp

δs

(c) CCA

Figure 5.13 Computation scheduling for the proposed architectures

The delay of the j − 1th carry-bit is:

δcj−1 = δp + jδc (5.8)

resulting that the inputs xj , yj can arrive as late as:

δxj ≤ jδc (5.9)

– the delay of the comparator varies among FPGA devices:

δcmpk =

{
δp + kδc + δs Virtex-4, StratixII-IV
δp + d(k/2)eδc + δs Virtex-5/-6

(5.10)

On Virtex4 the delay of a k-bit comparator is equal to that of a k-bit RCA while on Virtex5
the same comparator maps in half the LUTs.

– the wire delay, δw

The Add-Add-Multiplex architecture

The constraints given by the timing model of this architecture will allow us to determine the
optimal block sizes. A visual indication of a tight computation scheduling which optimizes the
AAM block-sizes is given in Figure 5.13(a). The length of the segments is proportional to the
computation delay of the components (adders and multiplexers for AAM). The length of the RCA
delays (first stage) is proportional to the block size.

Considering the timing and architectural constraints, the CCC is a k − 2-bit RCA having the
delay of the MSB δsk−2

(Eq. 5.7). The MSB inputs the select line of the k − 1th block multiplexer
(Figure 5.10(a)), having a delay δMUX .

On the other hand, as CCC is implemented as an RCA, it allows the inputs to be delayed at
most as specified by Equation 5.9. As the speculative carries (c1

i and c0
i) are also computed using

RCAs, this allows the size of successive blocks to increase by exactly one bit.
We therefore choose to fix the 2nd block size, l1 = 1 bit. For a given frequency f , this sets the

maximum value of k, which is the solution of the equation:

δs1 + δw + δsk−2
+ δw + δMUX = T (5.11)

55

56 Chapter 5. Binary addition in FloPoCo

As successive-block size increases by exactly one bit, lk−2 = k − 2. Blocks 1 to k − 2 total
(k − 2)(k − 1)/2 bits. The lk−1 and l0 block sizes are the solutions of the equation:

δslk−1
= T − (δw + δMUX) (5.12)

δsl0 = δsl1 + δLUT (5.13)

The maximal addition size for frequency f is l0 + (k − 2)(k − 1)/2 + lk−1.

The Compare-Add-Increment architecture

The CAI architecture computes the speculative c1
i bit using Equation 5.5. On Virtex5 devices

this comparison takes half the resources needed to obtain c1
i using a RCA. The latency improve-

ment over these devices is given in equation 5.10. However, this latency improvement is lost by
using a RCA for computing c0

i .
The third stage of the CAI architecture is an incrementation of the speculative sum for a 0

carry-in (S0
i) with the carry-in obtained by the CCC. The incrementation is implemented as a RCA

in FPGAs.
The output delays of the sum-bits of CCC are given in Equation 5.7. The difference between

successive sum bits is δc. The sum-bits are used as carry-in bits for the final stage adder. If we en-
force that all the result bits be synchronized (Figure 5.13(b)) this leads to successive blocks having
the size decreased by 1-bit.

We choose to fix the size of the k − 1th block, lk−1 = 1 bit which leads to l2 = k − 2. Moreover,
the difference in input delay between the speculative carry bits of l2 and of l1 for CCC is δc. This
leads to l1 = l2 − 1 = k − 3.

Given the constraint that the carry-out of block 0 is the carry-in of CCC, the size of this block
is the solution of the equation:

δsl0 = δsl1 + δp (5.14)

The maximal adder size for this architecture for frequency f is (k − 2)(k − 1)/2 + k − 3 + l0.

The Compare-Compare-Add architecture

The CCA architecture uses comparators for computing the two speculative caries, c0
i , c

1
i (Equa-

tions 5.6,5.5). When compared to the CAI architecture, the latency of the first stage is reduced on
Virtex-5/-6 devices.

However, the block splitting strategy remains the same. The size of the first chunk is now the
solution of the equation:

δcmpl1
+ 2δw + δp + δs + δsl2 = T (5.15)

where l2 = k − 2.
The number of blocks (k) is now the solution of the equation:

δcmpl2
+ δw + δp + δs + δw + δsl3 = T (5.16)

The size of block 0 is:

δsl0 = δcmpl1
+ δp (5.17)

56

5.4 Short-latency addition architecture 57

5.4.7 Area complexity of the designs

Once the block-splitting procedure is finished, we can closely approximate the area of the
circuit on the FPGA.

In this section we present the LUT-count formulas for the proposed architectures for Virtex5/6
devices. Similar formulas can be derived for Virtex4 devices and Altera devices. The formulas are
deduced based on the resources occupied by the basic blocks:

– 2:1 n-bit multiplexer occupies n LUTs.
– n-bit RCA takes n LUTs
– n-bit comparator takes dn/2e LUTs on Virtex5/6 and n LUTs on Virtex4/StratixII-IV.
Consequently, based on the chunk-size vector (lk−1, ..., l0) returned by the previous step and

the addition size L, the size of the architectures is:

1. for the AAM architecture

LUTs =
k−1∑

0

li +
k−1∑

1

li + k − 2 +
k−1∑

1

li = 3L− 2l0 + (k − 2),

2. for the CAI architecture

LUTs =
k−2∑

0

li +
k−2∑

1

⌈
li
2

⌉
+ k − 2 +

k−1∑
1

li ≈
5

2
L− 3

2
l0 −

3

2
lk−1 + (k − 2),

3. for the CCA architecture

LUTs = l0 + 2
k−2∑

1

⌈
li
2

⌉
+ k − 2 +

k−1∑
1

li ≈ 2L− l0 − lk−1 + (k − 2).

Block sizes (lk−1, ..., l0) and the number of blocks k are different in the above formulas for
the three architectures. One can use Figure 5.13 for the order of magnitude of the block sizes
(lk−1, ..., l0).

Comparison with pipelined-RCA schemes

The immediate advantages of the proposed addition architectures when compared to pipelined
RCA architectures is the reduction of pipeline stages of the design. We are interested in the area
cost we have to trade to get this advantage. Consequently, we have compared the area magnitude
of our architectures against the previously pipelined RCA architectures.

Table 5.5 synthesizes resource estimation formulas for Virtex5 FPGAs. Please note that the
values of k and (l0,, lk−1) might be different for all these architectures, only the addition size
L remains constant. The proposed addition architectures represent very attractive alternatives to
the pipelined RCA schemes. For more than two pipeline levels the CCA architecture takes ap-
proximately as many resources as the pipelined schemes while at the same time reducing pipeline
depth. For a larger number of pipeline levels, the proposed architectures takes fewer resources,
providing that it can match the frequency.

Pipelining options

The short-latency architectures presented so far are all combinatorial. They allow reducing the
number of pipeline stages by effectively replacing deeply pipelined RCA. However, for very large
additions at very-high frequencies the architectures are unable to provide a satisfactory solution.
Pipelining them (usually one pipeline level suffices) is a solution for these contexts.

57

58 Chapter 5. Binary addition in FloPoCo

Table 5.5 Area comparison against pipelined RCA schemes for Virtex5 and addition size L
Architecture LUT-FF pairs Depth

AAM 3L− 2l0 + (k − 2)
0CAI 5

2L−
3
2 l0 −

3
2 lk−1 + (k − 2)

CCA 2L− l0 − lk−1 + (k − 2)

Classical
8L/3 2
3L 3
16L/5 4

Alternative
7L/3 2
11L/4 3
3L 4

The AAM architecture can be effectively pipelined by inserting the register level after the first
addition stage. The registers are combined with the LUTs for free.

For the CAI architecture, the register level can be similarly inserted after the first computations.
Although several registers may be combined with LUTs, there is a small increase of 2lk−1 LUT
Flip-Flop pairs for buffering the final block inputs. One solution to save lk−1 LUTs would be to
perform the final chunk computation for cin = 0. Inserting the register before the last computation
phase requires in addition buffering the CCC outputs, therefore yielding a less attractive solution.

The CCA architecture can easily be pipelined. The first two levels are regrouped to balance the
size of the adders at the last level. Pipelining this architecture is expensive, costing an additional
2L− l0 LUT Flip-Flops pairs.

One should only consider the pipelined implementations when none of the combinatorial ver-
sions are capable of reaching the requested frequency. When deciding what pipelined architecture
to use, one should first try the CAI architecture, and, if this one also fails, one should go with the
pipelined AAM architecture.

5.5 Global inference of shift-registers

In the case of Xilinx FPFAs, we have so far relied on the fact that the pipelined addition schemes
can make extensive use of the shift-registers available in SLICEMs. However, this resource is get-
ting rarer over the years: all VirtexII-Pro slices device were similar to SLICEMs, their number was
cut to half with respect to the total number of slices in Virtex4 and Spartan3 devices, and is roughly
equal to one quarter (with higher density at the input of the DSP48E blocks) in Virtex-5/-6 devices.
Moreover, the granularity of these blocks has also increased over the year: the LUT6 of Virtex-5/-6
devices can be configured as a 64-bit memory or SRL32 (shift-register with maximum 32 levels).
The effectiveness of using SRL32 for implementing a 2-3 level shift-register is questionable. There
may be better uses of these resources for longer-length shift-registers. Moreover, the ISE synthe-
sizer has an option that prevents using this resource. It may therefore be relevant to be able to
generate adders with this in view.

Moreover, the larger-granularity of embedded memories in Altera devices also validates the
necessity of generating adders in this context.

Out of the presented architectures, the low-latency architectures one will behave best when no
shift registers are allowed. On one hand, being strictly combinatorial, it does no use registers. On
the other hand, when pipelined, two register levels usually suffice. These registers can naturally
be paired with LUTs, bringing no area overhead.

Resource estimations for the pipelined architectures when SRLs are not allowed are presented
in Table 5.1.

58

5.6 Reality check 59

Table 5.6 Relative Error for the estimation formulas on a 128-bit adder Virtex4 and StratixIII de-
vices for a requested frequency of 400MHz.

Freq. Architecture SRL Target Depth Results Estimations Relative Error
LUTs REG LUT-FF/2 LUTs REG LUT-FF* LUTs REG LUT-FF*

400 MHz

Classical N Virtex-4 3 131 579 307 131 579 611 0% 0% 0.4%
Stratix-III 3 135 519 263 131 519 521 2% 0 0.9%

Y Virtex-4 3 291 355 195 291 355 387 0 0 0.7%

Alternative N Virtex-4 3 229 390 214 224 393 425 2% 0.7% 0.7%
Stratix-III 3 219 390 197 219 393 395 0% 0.7% 0.2%

Y Virtex-4 3 293 326 182 291 322 356 0.6% 1% 2%

Table 5.7 Resource usage of 128-bit wide pipelined adders for different utilization contexts for a
target frequency of 400MHz (SRL allowed, post place-and-route)

δin

Classical Alternative

k β α γ
Expected Obtained

k β α
Expected Obtained

L R L-FF L R L-FF/2 L R L-FF L R L-FF/2

0 4 32 32 32 191 355 387 191 355 195 4 32 32 291 322 356 293 326 182
1.2e-9 5 14 32 18 338 420 434 338 420 219 8 2 18 417 464 466 421 454 239
1.5e-9 5 23 32 9 347 420 443 347 420 225 15 2 9 494 508 579 502 508 285

5.6 Reality check

5.6.1 Estimation formulas

We have checked our estimation formulas against synthesis results using Xilinx ISE 11.5 and
QuartusII 10.1. Results presenting the resource usage estimations, obtained results and relative
errors for both with and without SRLs are presented in Table 5.6 for a 128-bit addition synthesized
on a Virtex4 (speedgrade -12) and StratixIII (speedgrade C2) with a required frequency of 400MHz.

First, it should be mentioned that all the synthesized adders met the frequency target. In
addition, one may observe that the resource estimations are accurate for all criteria. The best
estimations are obtained, as expected, for LUTs and registers. The LUT-FF estimations represent
the lowest bound obtainable leading to underestimation of the result. Nevertheless, the relative
error of the estimation remains small, of the order of one percent.

5.6.2 Synthesis results

The highlighted cells in Table 5.7 indicate the lowest costs for the given metric. We can observe
that different context (input delays) greatly influence the size of the architecture. The advantage
of the generator is that we can perform this exploration and always choose the best architecture.

Next we have decided to test our proposed short-latency architectures. The largest theoretical
adder width for a given frequency is plotted in Figure 5.14 for Virtex5 FPGAs. We have focused on
the 200-300MHz frequency range for two reasons: 1) for lower frequencies the highly optimized
RCA manages to provide sufficient performance; 2) larger frequencies are hard to obtain due to
routing congestion for chip-filling designs. As expected, the proposed architectures provide 1-
cycle solutions for a wide range of interesting addition sizes.

Table 5.8 presents a comparison between our proposed architectures and a pipelined RCA

59

60 Chapter 5. Binary addition in FloPoCo

AAM
CAI

CCA
RCA

 10

 100

 1000

 10000

 200 220 240 260 280 300

W
id

th
 (

b
it

s)

Frequency (MHz)

Maximum Addition Width

Figure 5.14 Maximum adder width vs circuit frequency on Virtex5

Table 5.8 Post place-and-route results on Virtex5 (-3) for various adder sizes and a target
f=250MHz using ISE 11.5. δcp denotes the length of the design’s critical path

Size RCA – Coregen AAM CAI CCA
bits LUT-FF δcp(ns) cycles LUT-FF δcp(ns) LUT-FF δcp(ns) LUT-FF δcp(ns)
128 145 3.48 1 391 3.93 330 3.99 271 4.16
256 469 4.98 1 795 4.43 641 4.25 534 4.37
384 1042 4.88 2 1187 4.58 972 4.91 818 4.75
512 1541 4.36 3 1581 4.62 1290 5.10 1062 4.98

implementation in terms of occupied resources, critical-path length and number of pipeline levels
for addition sizes ranging from 128 to 512-bits, targeting a frequency of 250MHz. The presented
numbers have been obtained after place-and-route using ISE 11.5.

The results prove two points: 1) the routing delay penalty for proposed architectures has the
same order of magnitude as for a pipelined RCAs 2) for sufficiently large widths, the proposed
architectures take less resources while reducing the cycle count to one.

Table 5.9 presents a comparison of the AAM architecture against [125], the Altera lpm_add_sub
megafunction [9] and the alternative RCA pipelining scheme. Compared to the combinatorial
approach presented in [125] the critical path delay of our architecture is much shorter. When
compared to the pipelined approaches, the AAM architecture provides a design that does not
need pipelining with a competitive area.

5.7 Conclusions

This chapter has presented the binary adder generator part of FloPoCo, comprising of several
different adder architectures. The area of these architectures can be computed on-the-fly based on
the deduced resource estimation formulas thanks to the high-level programming language of our
generator. Once the best suited architecture for a given user context is found, its VHDL code is

Table 5.9 Post place-and-route synthesis results for 128-bit addition on StratixIII

Tool Area Latency
ALUT REG δcp(ns) cycles

[125] ? - 7.73 -
MegaWizard(lpm_add_sub) 270 259 3.64 2

RCA Alternative 190 129 3.18 1
AAM 376 - 3.70 -

60

5.7 Conclusions 61

directly produced.
Moreover, as binary adders are often subcomponents in larger designs, their integration in

the sub-cycle accurate pipelining framework of FloPoCo is of primal importance. This is again
possible thanks to the programming-language support of our generator.

There is still room for improvement in what concerns incorporating these architectures in
coarser-grain operators. One such situation is when part of adder’s inputs arrive from a shift-
register. Then, the registers (or part of them) required for synchronizing the classical architecture’s
inputs will be absorbed by these shift-registers yielding in a real cost smaller than the one reported
by our formulas. We are currently considering integrating this framework support in FloPoCo.

Other optimization possibilities can arise if one accounts that different sections of the adder’s
inputs are available at different clock cycles. For an example, if two adders pipelined using the
classical technique are chained, all the synchronization registers between can be discarded, yield-
ing in a more economical architecture. The IntNAdder component of FloPoCo accounts for this
information in the case of addition. Again, we are considering adding framework support which
would allow exploiting these opportunities in the general case.

All these optimizations are local, and target finding the local minima for that particular adder
instance. We are still exploring whether using an adder which a shorter-latency (number of cy-
cles) but with a higher local cost (LUT-FF) may globally reduce resource usage my minimizing
synchronization cost.

Thanks

Most of the material presented in this chapter is based on collaborations with Hong Diep
Nguyen at the time he was involved in his PhD at ENS de Lyon, Thomas Preußer from the In-
stitute of Computer Engineering at TU Dresden, Germany whom I had the pleasure to meet at
FPL’10 in Milano. I would like to thank them for their contributions.

61

6 CHAPTER 6

Large multipliers with fewer DSP blocks

A paper-and-pencil analysis of FPGA peak floating-point performance [145] clearly shows that
DSP blocks are a relatively scarse resource when one wants to use them for accelerating double-
precision (64-bit) floating-point applications.

Moreover, demand for more accuracy is growing, especially in scientific computing [61], and
the IEEE-754-2008 revision of the Standard for Floating-Point Arithmetic [17] has introduced a
higher precision floating-point format: quadruple precision (QP), a 128-bit format including a 112-
bit mantissa. So far no general purpose processor offers hardware floating-point units supporting
this format. Proprietary core generators such as LogiCore [6] from Xilinx and Megawizard [9]
from Altera currently do not scale to QP either.

In this chapter we focus on techniques reducing DSP block usage for large multipliers. Here,
large means: any multiplier that, when implemented using DSP blocks, consumes more than
two of them, with special focus on the multipliers needed for single-precision (24-bit), double-
precision (53-bit) and quadruple-precision(113-bit) floating-point. Although the techniques are
presented here in the context of unsigned multipliers, their extension to sign multipliers is straight-
forward.

There are many ways of reducing DSP block usage, the simplest being to implement multi-
plications in logic only. However, a LUT-based large multiplier has a large LUT cost (at least n2

LUTs for n-bit numbers, plus the flip-flops for pipelined implementations). In addition, there is
also a large performance cost: a LUT-based large multiplier will either have a long latency, or a
slow clock. Still, for some sizes, it makes sense to implement as LUTs some of the sub-multipliers
which would use only a fraction of a DSP block.

We focus here on algorithmic reduction of the DSP cost, and specifically on approaches that
consume few additional LUTs, add little to the latency (and sometime even reduce it), and operate
at a frequency close to the peak DSP frequency.

The presented multipliers have been implemented as part of the FloPoCo class hierarchy and
are extensively used in coarser operators, as those presented in the following chapters. All the
results presented have been obtained using ISE 11.5 / LogiCore Multiplier 11, after placing and
routing, unless explicitly stated otherwise.

6.1 Large multipliers using DSP blocks

Let k be an integer parameter, and let X and Y be 2k-bit integers to multiply. We will write
them in binary X =

∑2k−1
i=0 2ixi and Y =

∑2k−1
i=0 2iyi.

64 Chapter 6. Large multipliers with fewer DSP blocks

Y
0

0

Y

2

3

35

2

4

23+2X[5:3]Y[4:2]
20+0X[2:0]Y[3:0]

u
v

v

X

u

X

u

v

represented

∑

Figure 6.1 u× v-bit multiplier

Let us now split each of X and Y into two subwords of k bit each:

X = 2kX1 +X0 and Y = 2kY1 + Y0

X1 is the integer formed by the k most significant bits ofX , andX0 is made of the k least significant
bits of X .

The product X × Y may be written

X × Y = (2kX1 +X0)× (2kY1 + Y0)

or
X × Y = 22kX1Y1 + 2k(X1Y0 +X0Y1) +X0Y0 (6.1)

This product involves 4 sub-products. If k is the input size of an embedded multiplier, this
defines an architecture for the 2k multiplication that requires 4 embedded multipliers. This archi-
tecture can also be used for any input size between k+1 and 2k. Besides, it can be generalized: For
any p > 1, numbers of size between pk − k + 1 and pk may be decomposed into p k-bit numbers,
leading to an architecture consuming p2 embedded multipliers.

Early FPGAs had only embedded multipliers [15], but the more recent DSP blocks [16, 21,
14, 22] also include internal adders and cascading features, designed in such a way that most
of the additions in Equation (6.1) can be computed inside the DSP blocks (see page 9 for more
information on the DSP block structure in modern FPGA devices). In this Chapter we also focus
on effectively using these internal adder structures for minimizing global logic cost.

6.2 Visual representation of multipliers

Throughout this chapter we will make extensive use of visual representations of large multipli-
ers. Let’s consider again the multiplication X × Y with our operands on u and v bits respectively.
Each line from the multiplication described in Figure 6.1 presents the operands formed by the
bitwise multiplication between Y[i], i ∈ [0..v − 1] and X. In order to obtain the final multiplication
result these operands need to be summed together.

The contribution of each sub-product Y[iY :jY]X[iX :jX] with jY ≤ iY , jX ≤ iX , jX ≤
u − 1, jY ≤ v − 1, iX , iY ≥ 0 can be clearly be identified in the sub-product diamond. Figure
6.1 highlights two such sub-products: X[2:0]Y[3:0] and X[5:3]Y[4:2]. Their contribution to the final
product is weighted by the sums of their operand magnitudes: 20 for X[2:0]Y[3:0] and 23+2 for

64

6.3 Karatsuba-Ofman algorithm 65

X[5:3]Y[4:2]. The sum of weighted contribution of all sub-products with non-overlapping contri-
butions is equal to the product XY.

An equivalent but more natural representation is obtained by converting the diamond into a
rectangle by aligning all rows to the right (Figure 6.1). The small diamond tiles are now rectangu-
lar, and are easier to manipulate.

In this new representation building a large multiplier reduces to tiling the multiplier’s rect-
angular board with rectangular, non-overlapping 1 tiles. Once a valid tiling is performed, it can
easily be converted into an architecture. The contribution of each tile is equal to the tile’s projec-
tion on the X and Y axis (in Figure 6.1 the green tile computes the product X[5:3]Y[4:2]) weighted
by 2 to the sum of the tile’s upper right corner coordinates (23+2). In the case of Figure 6.1, the
tiling on the right computes:

XY =20+0X[2 : 0]Y [3 : 0] + 23+2X[5 : 3]Y [4 : 2] + 23+0X[5 : 3]Y [1 : 0] + 20+4X[2 : 0]Y [4 : 4]

6.3 Karatsuba-Ofman algorithm

6.3.1 Two-part splitting

Let us now consider again our two inputsX,Y on 2k bits each. The classical step of Karatsuba-
Ofman algorithm is the following. First compute DX = X1 −X0 and DY = Y1 − Y0. The results
are signed numbers that fit on k+1 bits 2. Then compute the product DX ×DY using a DSP block.
Now the middle term of equation (6.1), X1Y0 +X0Y1, may be computed as:

X1Y0 +X0Y1 = X1Y1 +X0Y0 −DXDY (6.2)

Then, the computation ofXY using (6.1) only requires three multiplier blocks: one to compute
X1Y1, one for X0Y0, and one for DXDY .

This computation can be visualized in Figure 6.2 using the already introduced tiling represen-
tation. There, black-square tiles are products which are computed by means of direct multipli-
cations. White-square tiles are grouped in pairs, symmetrical to the black-square diagonal. One
pair of white-square tiles is computed using the two already computed black-square tiles (in the
case of 2-way splitting: X0Y0 and X1Y1) and only one more sub-product: (X1 −X0)(Y1 − Y0) (the
dashed square groups two black-square and two white-square tiles indicating the tiles part of this
computation).

There is an overhead in terms of additions. In principle, this overhead consists of two k-bit
subtractions for computing DX and DY , plus one 2k-bit addition and one 2k-bit subtraction to
compute equation (6.2). There are still more additions in equation (6.1), but they also have to
be computed by the classical multiplication decomposition, and are therefore not counted in the
overhead.

Counting one LUT per adder bit 3, and assuming that the k-bit addition in LUTs can be per-
formed at the DSP operating frequency, we get a theoretical overhead of 6k LUT. However, the
actual overhead is difficult to predict exactly, as it depends on the scheduling of the various oper-
ations, and in particular in the way we are able to exploit registers and adders inside DSPs. There
may also be an overhead in terms of latency, but we will see that the initial subtraction latency
may be hidden, while the additional output additions use the cycles freed by the saved multiplier.

1. Overlapping parts of tiles are computed twice and need to be subtracted in order to keep the tiling valid
2. There is an alternative Karatsuba-Ofman algorithm computing X1 +X0 and Y1 + Y0. We present the subtractive

version, because it uses the Xilinx 18-bit signed-only multipliers fully, while working on Altera chips as well.
3. In all the following we will no longer distinguish additions from subtractions, as they have the same LUT cost in

FPGAs.

65

66 Chapter 6. Large multipliers with fewer DSP blocks

Latency Frequency Slices DSPs
LogiCore 6 447 26 4
LogiCore 3 176 34 4
K-O-2 3 317 95 3

Table 6.1 34x34 multipliers on Virtex-4 (4vlx15sf363-12).

4−way recursive3−way2−way

X0X1

Y1

Y0

X1X2

Y0

Y1

Y2

X0

Y0

Y1

Y2

X0

Y3

X1X2X3
X0X1X2X3

Figure 6.2 u× v-bit multiplier

At any rate, these overheads are much smaller than the overheads of emulating one multiplier
with LUTs at the peak frequency of the DSP blocks. Let us now illustrate this discussion with a
practical implementation on a Virtex-4.

6.3.2 Implementation issues on Virtex-4

The fact that the differences DX and DY are now signed 18-bit is actually a perfect match for a
Virtex-4 DSP block.

Figure 6.3 presents the architecture chosen for implementing the previous multiplication on a
Virtex-4 device. The shift-cascading feature of the DSPs allows the computation of the right-hand
side of equation (6.2) inside the three DSPs at the cost of a 2k-bit subtraction needed for recovering
X1Y1. Notice that here, the pre-subtractions do not add to the latency.

Table 6.1 presents the corresponding synthesis results for this operator, which is compared
against the architecture of LogiCore multipliers. As we can see from these results, the overhead
in terms of logic is minor for similar performances while our architecture consumes one DSP less.
For the same latency, our architecture manages to outperform the LogiCore multipliers.

6.3.3 Three-part splitting

Now consider two numbers of size 3k, decomposed in three subwords each:

X = 22kX2 + 2kX1 +X0 and Y = 22kY2 + 2kY1 + Y0

66

6.3 Karatsuba-Ofman algorithm 67

34

Y0

17

17
X0

36

z

DSP48

DSP48

34

z

18

18

Y0

Y1

X1

X0

17

17
X1

Y1

35

(X
0
Y

0
)[
33

:
17
]

51

(X
0
Y

0
)[
16

:
0]

68
P

DSP48

Figure 6.3 34x34bit multiplier using Virtex-4 DSP48

We have
XY = 24kX2Y2

+ 23k(X2Y1 +X1Y2)
+ 22k(X2Y0 +X1Y1 +X0Y2)
+ 2k(X1Y0 +X0Y1)
+ X0Y0

(6.3)

After precomputing X2 −X1, Y2 − Y1, X1 −X0, Y1 − Y0, X2 −X0, Y2 − Y0, we compute (using
DSP blocks) the six products

P22 = X2Y2 D21 = (X2 −X1)× (Y2 − Y1)
P11 = X1Y1 D10 = (X1 −X0)× (Y1 − Y0)
P00 = X0Y0 D20 = (X2 −X0)× (Y2 − Y0)

and equation (6.3) may be rewritten as

XY = 24kP22

+ 23k(P22 + P11 −D21)
+ 22k(P22 + P11 + P00 −D20)
+ 2k(P11 + P00 −D10)
+ P00

(6.4)

Here we have reduced DSP usage from 9 to 6 which, according to Montgomery [121], is opti-
mal. There is a first overhead of 6k LUTs for the pre-subtractions (again, each DSP is traded for
2k LUTs). Again, the overhead of the remaining additions is difficult to evaluate. Most may be
implemented inside DSP blocks. However, as soon as we need to use the result of a multiplication
twice (which is the essence of Karatsuba-Ofman algorithm), we can no longer use the internal
adder behind this result, so LUT cost goes up. Table 6.2 provides some synthesis results. The
implementation provides lower latency, higher frequency and reduced DSP cost from 9 to 6 at the
expense of some logic.

67

68 Chapter 6. Large multipliers with fewer DSP blocks

Latency Frequency Slices DSPs
LogiCore 11 353 185 9
LogiCore 8 264 102 9
K-O-3 8 387 387 6

Table 6.2 51x51 multipliers on Virtex-4 (4vlx15sf363-12).

6.3.4 4-part splitting

Classically, the Karatsuba idea may be applied recursively: A 4-part splitting is obtained by
two levels of 2-part splitting. However, a direct expression allows for a more straightforward
implementation. From

X = 23kX3 + 22kX2 + 2kX1 +X0

Y = 23kY3 + 22kY2 + 2kY1 + Y0

we have
XY = 26kX3Y3

+ 25k(X2Y3 +X3Y2)
+ 24k(X3Y1 +X2Y2 +X1Y3)
+ 23k(X3Y0 +X2Y1 +X1Y2 +X0Y3)
+ 22k(X2Y0 +X1Y1 +X0Y2)
+ 2k(X1Y0 +X0Y1)
+ X0Y0

(6.5)

Here we compute (using DSP blocks) the products

P33 = X3Y3

P22 = X2Y2

P11 = X1Y1

P00 = X0Y0

D32 = (X3 −X2)× (Y3 − Y2)
D31 = (X3 −X1)× (Y3 − Y1)
D30 = (X3 −X0)× (Y3 − Y0)
D21 = (X2 −X1)× (Y2 − Y1)
D20 = (X2 −X0)× (Y2 − Y0)
D10 = (X1 −X0)× (Y1 − Y0)

and equation (6.5) may be rewritten as

XY = 26kP33

+ 25k(P33 + P22 −D32)
+ 24k(P33 + P22 + P11 −D31)
+ 23k(P33 + P00 −D30 + P22 + P11 −D21)
+ 22k(P22 + P11 + P00 −D20)
+ 2k(P11 + P00 −D10)
+ P00

(6.6)

Here we have only 10 multiplications instead of 16. Note that the recursive variant saves one
more multiplication: It precomputes

D3210 = (X3 +X2 +X1 +X0)× (Y3 + Y2 + Y1 + Y0)

68

6.3 Karatsuba-Ofman algorithm 69

instead of P30 and P21, and computes the middle term X3Y0 + X2Y1 + X1Y2 + X0Y3 of equation
(6.5) as a sum of P3210 and the other Pij . However this poses several problems. Firstly, we have to
use a smaller k (splitting in smaller chunks) to ensure P3210 doesn’t overflow from the DSP size.
Secondly, we currently estimate that the saved DSP is not worth the critical path degradation.
Synthesis results of this implementation can be fond in Table 6.3.

6.3.5 N-part splitting

We now try to relate our multiplier expression to the visual tiling technique previously intro-
duced using Figure 6.2. The purpose is to find a natural form for expressing directly (without
recurrences) the product XY which allows an implementation suited for modern DSP blocks. We
want this technique to scale to the 7-part splitting needed for the quadruple-precision floating-
point multiplier.

We start with a (N × k)× (N × k) board tiled using N ×N tiles of size k× k-bit (where k is the
DSP block multiplier size), as in Figure 6.4 for N = 7.

The black-square diagonal tiles will each be computed using one multiplier, for a total of N
embedded multipliers. Next, each pair of tiles symmetric to this diagonal will be computed using
two of the already computed products and only one additional product for a total of N(N − 1)/2
multiplications. Using this technique the full productXY requiresN(N −1)/2+N = N(N +1)/2
embedded multipliers.

The diagonal elements involved in computing the symmetric pair of tiles are those found at the
intersection of the already tiled diagonal with a square connecting the tile pair (the dashed square
in Figure 6.2). For a pair of tiles meant to compute XiYj +XjYi with i > j, their contribution is:

XiYj +XjYi = Pii + Pjj −DXij ∗DYij︸ ︷︷ ︸
Dij

Expressing the full product P basically consists in first expressing the contributions for each
weight of k, and then summing up these contributions. The red lines in Figure 6.4 regroup the
tiles whose contribution’s weight is equal. The major components of the contribution are (we use
the green line in Figure 6.4 as a running example)

– the diagonal tile’s sub-product if the tile is intersected by the red line (P22 in our working
example)

– the sum of contributions of the tiles on the red line; this also has two components:
– a positive component formed by the sum of diagonal tiles onto which the red line is

projected in the two directions: P00 + P11 for the projection on Y and P33 + P44 for the
projection on X in Figure 6.4

– a negative component comprising of the sum of all the products of differences corre-
sponding to these tiles D40 +D31

This sums-up the contribution for weight 24k to: P22 + P00 + P11 + P33 + P44 − (D40 + D31).
The full-expansion of all these contributions for a 7-part splitting is given below:

69

70 Chapter 6. Large multipliers with fewer DSP blocks

accumulations inside DSP blocks

Y6

Y5

Y4

Y3

Y1

Y2

Y0

X6 X5 X4 X3 X2 X1 X0
P00

P11

P22

P33

P44

D31

D40

Figure 6.4 119x119bit multiplier using Virtex-4 DSP48 for QP mantissa multiplier

XY = P00+
2k(P00 + P11 −D10)+
22k(P00 + P11 + P22︸ ︷︷ ︸

S2k

−D20

︸ ︷︷ ︸
S∗2k

)+

23k(P00 + P11 + P22 + P33 − (D30 +D21))+
24k(P00 + P11 + P22 + P33 + P44 − (D40 +D31))+
25k(P00 + P11 + P22 + P33 + P44 + P55 − (D50 +D41 +D32))+
26k(P00 + P11 + P22 + P33 + P44 + P55 + P66 − (D60 +D51 +D42))+
27k(P11 + P22 + P33 + P44 + P55 + P66 − (D61 +D52 +D43))+
28k(P22 + P33 + P44 + P55 + P66 − (D62 +D53))+
29k(P33 + P44 + P55 + P66 − (D63 +D54))+
210k(P44 + P55 + P66 −D64)+
211k(P55 + P66 −D65)+
212kP66

On Virtex4 devices, the sum of negative contributions can be performed entirely inside the
DSP blocks. On Stratix devices, some of these additions can as well be pushed inside the DSP
blocks. The sum of positive contributions can be computed using the circuit in Figure 6.5(a). On
Virtex devices, the sum P00 + ... + P66 is computed constructively inside the DSP blocks, so that
the positive contribution of the first N terms of the final sum brings no logic overhead. Moreover,
in order to compute the positive contribution from the rest, an extra N − 1, 2k + g-bit subtracters
are needed. The number of guard bits g is chosen such that

∑k−1
i=0 Pii does not overflow.

Finally, one needs to sum-up all these contributions. We can exploit the fact that these contri-
butions each have a specific weight and a maximum length 2k+ g, smaller than 3k. Consequently,
we compact these contributions into 3 operands as presented in Figure 6.5(b). On Stratix devices,
this addition can take advantage of the hardware support for 3-operand adders and can therefore

70

6.3 Karatsuba-Ofman algorithm 71

additions performed

inside DSPs

Sk S2k S3k S4k S5k S∗7k S∗8kS6k

P55P44 P66P22P11 P33P00

S∗9k S∗10k S∗12kS∗11k

(a) Sub-product weight contributions

S0

S∗
2k

...
S12k

S∗
k

S∗
3k

S∗
4k

S∗
11k

compaction

0k2k3k11k12k

S0

S∗
k

S∗
2k

S∗
4kS∗

7kS∗
10k

S12k S∗
3kS∗

6kS∗
9k

S∗
5kS∗

8kS∗
11k

(b) Final weighted contributions compacted

Figure 6.5 119x119-bit Karatsuba

Target Latency Freq. Slices DSPs Bits
K-O-4 Virtex-4 15 370 918 10 68
K-O-5 Virtex-4 14 325 1272 16 85
K-O-6 Virtex-4 16 323 1655 21 102
K-O-7 Virtex-4 18 322 2053 28

119

[142] 0 76 1100 49
K-O-7 Stratix-II 22 227 2569 ALUT, 9832 REG 56 9-bit (28 18-bit)
lpm_mult 22 73 454 ALUT, 594 REG, 7 M4K 122 9-bit (61 18-bit)
K-O-7 Stratix-III 16 312 2466 ALUT, 7817 REG 42 18-bit
lpm_mult 22 136 483 ALUT, 2549 REG, 4 M9K 62 18-bit
K-O-15 Virtex4 35 312 6624 121 255

Table 6.3 Synthesis results of large Karatsuba multipliers. For Stratix-II/III we used the lpm_mult

megafunction provided with the Megawizerd tool for generating binary multipliers

reduce implementation cost.
Table 6.3 presents synthesis results of large multipliers built using this technique. The highlight

of this table is the 119-bit multiplier, suited for the mantissa multiplier in quadruple-precision.
The number of DSPs, when compared to a standard implementation is reduced from 49 to 28. We
acknowledge that Montgomery’s study [121] lowers the number of multiplications to 22, however,
some of them exceed the embedded multiplier’s size and the circuit has much less regularity.

6.3.6 Issues with the most recent devices

The Karatsuba-Ofman algorithm is useful on Virtex-II to Virtex-4 as well as Stratix-II devices,
to implement single and double precision floating-point multiplication.

The larger (36 bit) DSP block granularity (see Section 2.1.2) of Stratix-III and Stratix-IV are
not as well suited to this algorithm as they prevent us from using the 18x18 bit product twice.
However, for larger values of N (N = 7 for quadruple-precision) some of the contributions may
still be pushed inside the DSPs, lowering the total multiplier count, as Table 6.3 shows.

On Virtex-5 devices, the Karatsuba-Ofman algorithm can be used if each embedded multiplier
is considered as a 18x18 one, which is suboptimal. For instance, single precision K-O requires 3

71

72 Chapter 6. Large multipliers with fewer DSP blocks

51

48

(a) standard tiling

0
0

16

33

163358

58

(b) Logicore tiling

34

0

0

24

41

58 34 17

41 24

17

52

52

M1

M2

M3M4
M5

M6

M7
M8

S0

(c) our tiling

Figure 6.6 53-bit multiplication using Virtex-5 DSP48E. The dashed square is the 53x53 multipli-
cation.

DSP blocks, where the classical implementation consumes 2 blocks only. Nevertheless, as operand
width increases, the DSP savings are still visible on this architecture, for example 119-bit wide
multipliers can be implemented using 28 DSPs whereas the best implementation we found while
maximizing DSP usage took 34 DSPs. However, we still have to find a variant of Karatsuba-Ofman
that exploits the 18x25 multipliers to their full potential.

We now present an alternative multiplier design technique specific to Virtex-5/-6 devices but
which can also reduce implementation cost on other platforms, such as the Virtex-4 and StratixII-
IV devices.

6.4 Non-standard tilings

This section optimizes the use of the Virtex-5 25x18 signed multipliers. In this case, X has
to be decomposed into 17-bit chunks, while Y is decomposed into 24-bit chunks. Indeed, in the
Xilinx LogiCore Floating-Point Generator, version 3.0, a double-precision floating-point multiplier
consumed 12 DSP slices (see Figure 6.6(a)): X was split into 3 24-bit subwords, while Y was split
into 4 17-bit subwords. This splitting would be optimal for a 72x68 product, but quite wasteful
for the 53x53 multiplication required for double-precision, as illustrated by the dashed square
indicating the DP mantissa multiplier board from Figure 6.6(a).

In version Floating-Point Generator version 4.0, and in LogiCore multiplier starting with ver-
sion 11.0, DSP blocks are arranged in a different way, detailed in [21, p.78], and illustrated in
Figure 6.6(b). This new arrangement has the advantage that although four of multipliers are used
in 17x17-bit mode, all multipliers can be cascaded as indicated by the red line in Figure 6.6(b).
All the additions may be performed within the DSP blocks but some additional shift-registers are
needed in order to synchronize the I/O in deeply pipelined implementations. Again, some of
these shifters (at most 4 levels) can be packed inside the DSPs. This approach exploits no paral-
lelism and therefore has a very long latency. This latency can be reduced by breaking in two the
cascade chain and using a pipelined adder to sum the two contributions (Figure 6.6(b), green line).

The following equation presents an original way of implementing double-precision (actually
up to 58x58) multiplication, using only eight 18x25 multipliers, whereas the Logicore version uses
ten.

72

6.4 Non-standard tilings 73

XY = X0:23Y0:16 (M1)
+ 217(X0:23Y17:33 (M2)
+ 217(X0:16Y34:57 (M3)
+ 217X17:33Y34:57)) (M4)
+ 224(X24:40Y0:23 (M8)
+ 217(X41:57Y0:23 (M7)
+ 217(X34:57Y24:40 (M6)
+ 217X34:57Y41:57))) (M5)
+ 248X24:33Y24:33

(6.7)

The reader may check that each multiplier is a 17x24 one except the last one. The proof that
Equation (6.7) indeed computes X × Y consists in considering

X × Y = (
57∑
i=0

2ixi)× (
57∑
j=0

2jyj) =
∑

i,j∈{0...57}

2i+jxiyj

and checking that each partial bit product 2i+jxiyj appears once and only once in the right-hand
side of Equation (6.7). This is illustrated by Figure 6.6(c).

The last line of Equation (6.7) is a 10x10 multiplier (the white square at the center of Fig-
ure 6.6(c)). It could consume an embedded multiplier, but due to its small size it is probably best
implemented as logic.

We have parenthesized the Equation (6.7) in order to make full use of the Virtex-5 internal
DSP adders (see page 10). Due to the fixed 17-bit shifts between the operands, the sub-sums
corresponding the red tiles and those corresponding to the green tiles are computed entirely using
DSP block resources. This reduces the number of inputs of the final multi-operand adder to three.

Such a parenthesing involving only 17-bit shifts is graphically descried as a super-tile. Fig-
ure 6.7 shows some super-tiles corresponding to the DSP capabilities of Virtex-4 and Virtex-5/6.
These super-tiles (and all their subsets) don’t require additional hardware to perform the full
product. In addition, larger super-tiles can be obtained by coupling the black and white circles
of adjacent super-tiles. This corresponds to using the cascading adder input of the DSP blocks.
Actually, all the possible super-tiles may be generated by the primitives shown on Figure 6.8.

On Stratix, the large adders inside the DSP block that can be used to add up to four 18x18-bit
partial products having the same magnitude. This corresponds to a line of tiles parallel to the main
diagonal. However, as previously stated, we are currently unable to obtain the predicted perfor-
mance out of the Altera Quartus tools. This could be solved by using Alter-specific primitives, but
would require much more development work and would break portability.

6.4.1 Design decisions

In the previous example, there remains an untiled 10-bit × 10-bit square. Should this be im-
plemented as logic, or as an underutilized DSP block? This is a trade-off between logic and DSP
blocks, and as such the decision should be left to the user. We have therefore decided to offer the
user the possibility to select a ratio between DSP count and logic-consumption. This ratio is as a
number in the [0, 1] range. Larger values for the ratio favour DSP oriented architecture whereas
lower values favor logic-oriented architectures. The total number of multipliers used is a function
of the input widths, ratio and FPGA target.

In order to exploit this user-provided ratio accurately, we have modeled the logical equivalence
of a DSP block for various FPGA families, inside FloPoCo’s Target hierarchy.

73

74 Chapter 6. Large multipliers with fewer DSP blocks

Virtex4 Virtex5/6

Figure 6.7 Some super-tiles exactly matching DSP blocks

Virtex5Virtex4

Figure 6.8 Super-tiling primitives

6.4.2 Algorithm

The construction of a tentative multiplier configuration consists of three steps.

1. Generate a valid partition of the large multiplication into smaller partial products or tiles.

2. Group these tiles as super-tiles in order to reduce the number of operands of the large mul-
tiplier’s final adder. The super-tiles are built using the regrouping primitives presented in
Figure 6.8. Two successive tiles can be regrouped if their their black and white circles cor-
respond to one of the regrouping primitives. When building super-tiles we also balance
their sizes in order to reduce operator pipeline depth and the number of synchronization
registers.

3. Compute the approximate cost of the configuration. This cost includes: the DSPs, the slices
needed for computing the rest of the multiplication, and the cost of the multioperand adder
used to compute the final result.

Configurations may be compared according to this cost. The best one will be chosen, and its
VHDL generated.

Choosing among all possible configurations takes an exponential number of steps with re-
spect to the size of the multiplication board O((u × v)δ), where u and v are the dimensions of the
multiplication and δ is the number of DSPs. Although this would ensure we find the optimal con-
figuration, the exponential complexity prevents from obtaining results in reasonable time. Hence,
we prune exploration branches using the following criteria:

– Tiles do not overlap. In step 1, we only consider tilings which align tile edges. This reduces
the number of tilings to O(2δ) for Virtex4 and O(3δ) for Virtex5.

– Configurations symmetrical to already existing ones are pruned.
– Configurations where large holes appear inside the tiling are also pruned.

6.4.3 Reality check

We have used the presented algorithm in order to generate mantissa multipliers for DP (53bit)
and QP (113bit) floating-point. Table 6.4 presents the synthesis results obtained these mantissa
multiplier on Virtex5 (xc5vfx100T-3-ff1738) FPGAs using Xilinx ISE 11.4. The results of this work
are compared to Xilinx Logicore core generator and combinatorial results obtained from [142].

Our implementation offers a wide range of user-defined trade-offs between DSP, logic and
latency. Our automatically generated multipliers provide better performance than the handcrafted

74

6.5 Squarers 75

M0

M1

M2

M3

S0

040

0

40

(a) 41-bit, 4 DSPs

M0

M1

M2

M3

M4

M5

S0

X

Y

53
0

52S1

0

(b) 53-bit, 6 DSPs

M0M1

M2

M3

M4

M5

M6

S0

S1

X

Y

52 0
0

52

(c) 53-bit, 7 DSPs

Figure 6.9 Various tilings of large multipliers

Table 6.4 Comparison of multiplier implementations on Virtex5 devices. All our implementations
are targeted at 400MHz. Frequency is expressed in MHz

w Tool Multiplier w × w-bit
cycles Freq. Logic DSP

41 ours Fig.6.9(a) 6 424 363LUT 342REG 4
53 ours Fig.6.9(b) 8 382 1143LUT 1052REG 6
53 ours Fig.6.9(c) 9 410 792LUT 853REG 7
58 ours Fig.6.6(c) 8 410 454LUT 751REG 8
53 [142] 0 111 200LUT 12
53 Logicore Fig.6.6(b) 12 450 229LUT 280REG 10
113 ours 13 407 2070LUT 2062REG 34
113 ours (Karatsuba) 18 367 3134LUT 2435REG 29
113 [142] 0 90 1000LUT 35

ones from [142], while also reducing DSP count. The biggest difference is for DP, where their
decomposition technique infers 12 DSPs, out of which several are underutilized. With respect to
Xilinx Logicore, our implementation saves DSP blocks without big penalties in logic consumption.

Unfortunately, the tiling technique proves less effective as the multiplier size increases. For
these large multiplier sizes, the Karatsuba technique manages to better reduce DSP count, even
thought multipliers are underutilized (used in 17x17 mode).

6.5 Squarers

The bit-complexity of squaring is roughly half of that of standard multiplication. Indeed, we
have the identity:

X2 = (
n−1∑
i=0

2ixi)
2 =

n−1∑
i=0

22ixi +
∑

0<i<j<n

2i+1xi

This is is only useful if the squarer is implemented as LUTs. However, a similar property holds
for a splitting of the input into several subwords:

(2kX1 +X0)2 = 22kX2
1 + 2 · 2kX1X0 +X2

0 (6.8)

75

76 Chapter 6. Large multipliers with fewer DSP blocks

(22kX2 + 2kX1 +X0)2 = 24kX2
2 + 22kX2

1 +X2
0

+ 2 · 23kX2X1

+ 2 · 22kX2X0

+ 2kX1X0

(6.9)

Computing each square or product of the above equation in a DSP block, yields a reduction of
the DSP count from 4 to 3, or from 9 to 6. Besides, this time, it comes at no arithmetic overhead.

6.5.1 Squarers on Virtex-4 and Stratix-II

Now consider k = 17 for a Virtex-4 implementation. Looking closer, it turns out that we
still lose something using the above equations: The cascading input of the DSP48 and DSP48E is
only able to perform a shift by 17. We may use it only to add terms whose weight differs by 17.
Unfortunately, in equation (6.8) the powers are 0, 18 and 34, and in equation (6.9) they are 0, 18,
34, 35, 42, 64.

One more trick may be used for integers of at most 33 bits. Equation (6.8) is rewritten

(217X1 +X0)2 = 234X2
1 + 217(2X1)X0 +X2

0 (6.10)

and 2X1 is computed by shifting X1 by one bit before inputting it in the corresponding DSP. We
have this spare bit if the size of X1 is at most 16, i.e. if the size of X is at most 33. As the main
multiplier sizes concerned by such techniques are 24 bit and 32 bit, the limitation to 33 bits is not
a problem in practice.

Table 6.5 provides synthesis results for 32-bit squares on a Virtex-4. Such a squarer architecture
can also be fine-tuned to the Stratix II-family.

6.5.2 Squarers on Stratix-III and Stratix-IV

On the most recent Altera devices, the 36-bit granularity means that the previous technique
begins to save DSP blocks only for very large input sizes.

We now present an alternative way of implementing a double-precision (53-bit) squarer on
such devices using only two 36x36 half-DSPs, where a standard multiplier requires four on a
Stratix-III and two and a half on a Stratix-IV. It exploits the fact that, although the addition struc-
ture of the four 18x18 sub-multipliers is fixed, their inputs are independent.

The two 36x36 multipliers we need are illustrated on Figure 6.10(a) (P0 and P1). P0 is com-
pletely standard and computes the sub-square X35:0X35:0. The bottom-left one (labeled P1) is con-
figured as a multiplier, too, but it doesn’t need to recompute and add the sub-productX35:18X35:18

(the dark square in the center), which was already computed by the previous multiplier. Instead,
this sub-multiplier will complete the 53-bit square by computing 2X17:0X52:36 (the sum of the two

Latency Frequency Slices DSPs bits
LogiCore 6 489 59 4

32LogiCore 3 176 34 4
Squarer 3 317 18 3
LogiCore 18 380 279 16

53LogiCore 7 176 207 16
Squarer 7 317 332 6

Table 6.5 32-bit and 53-bit squarers on Virtex-4 (4vlx15sf676-12)

76

6.6 Truncated multipliers 77

0

0

36

36

X0

X2

X1

X0X1X2

P1

P0

(a) DP Squarer for StratixIII/IV

36

53

17

0

M1

M2

M3 M6M5

M4

(b) DP Squarer Virtex-5/6 (i)

0
41 24 0

19

36

53

M1

M2

M3

M4
M5

(c) DP Squarer Virtex-5/6 (ii)

Figure 6.10 Double-precision squaring. Tilings for StratixIII/IV and Virtex-5/6 devices

white squares), which has the same weight 236. To this purpose, the inputs of the corresponding
18x18 sub-multiplier have to be set as X0:17 and 2X52:36. The latter will not overflow, because
a double-precision significand product is 53x53 and not 54x54, therefore we have X53 = 0. The
corresponding squarer equation is given below:

X2 = X10X10︸ ︷︷ ︸
P0

+236 (2X2X0 + 218(X2X1 +X1X2) + 236X2X2)︸ ︷︷ ︸
P1

Applied to a single 36x36 block, a similar technique allows us to compute squares up to 35x35
using only three of the four 18x18 blocks. The fourth block is unusable, but this may reduce power
consumption.

We were not able to verify these designs experimentally. Low level access to the DSP blocks is
possible only through Altera Megafunctions which currently don’t implement our desired func-
tional mode.

6.5.3 Non-standard tilings on Virtex-5/6

Figures 6.10(b),6.10(c) illustrate non-standard tilings for double-precision square using six or
five 24x17 multiplier blocks. These tilings are symmetrical with respect to the diagonal, so that
each symmetrical multiplication may be computed only once. However, there are slight overlaps
on the diagonal: the darker squares are computed twice, and therefore the corresponding sub-
product must be removed. These tilings are designed in such a way that all the smaller sub-
products may be computed in LUTs at the peak DSP frequency.

Note that a square multiplication on the diagonal of size n, implemented as LUT, should con-
sume only n(n+ 1)/2 LUTs instead of n2 thanks to symmetry.

We currently do not have implementation results. It is expected that implementing such equa-
tions will lead to a large LUT cost, partly due to the many sub-multipliers, and partly due to the
irregular weights of each line (no 17-bit shifts) which may prevent optimal use of the internal
adders of the DSP48E blocks.

6.6 Truncated multipliers

Truncated multipliers reduce resources, delay, or power consumption [157, 138] for a well-
controlled accuracy degradation. Let us consider two integersX and Y on u and v bits respectively
with XY on n = u + v bits. The idea is to save the computation of some of the less significant
columns in the multiplication array (see the greyed-out rows in Figure 6.11(a)) so that the error
of the integer multiplication remains small enough. More precisely, given an integer k, we build

77

78 Chapter 6. Large multipliers with fewer DSP blocks

Table 6.6 Truncated multipliers providing faithful rounding for common floating point formats
Precision k Discarded d

Single 23 18
Double 52 46

Quadruple 112 105

×

∑
u

k
d

n− k

v

X
Y

1
11 round-to-nearest

trunc. compensationround+compensate

(a) truncated multiplication

u

v

(b) truncated board

Figure 6.11 Truncated multiplication and the corresponding tiling multiplication board

a multiplier that returns a result faithfully rounded on n − k bits, meaning that the final error
between the result of the full multiplier and the truncated multiplier is smaller than 2k.

6.6.1 Faithfully accurate multipliers

Let us first determine the maximum number of columns, denoted by d, that may be removed
(see Figure 6.11(a)).

The error Etotal has two components:

Etotal = Eapprox + Eround,

where Eapprox is the approximation error introduced by the truncation of the d columns, and
Eround is the error of rounding the n− d-bit intermediate result to n− k bits.

To ensure that Etotal ≤ 2k, we need to distribute our 2k error budget between the two error
sources. Firstly, the Eround can be bounded by 2k−1 when implementing round-to-nearest. From
the implementation perspective, this reduces to adding a 1 in position 2k−1 (highlighted in Figure
6.11(a))

Secondly, the error budget for Eapprox is now 2k−1. The sum of the first d discarded columns is
in the interval:

0 ≤ Eapprox ≤
d∑
i=1

i2i−1 = (d− 1)2d + 1

An offset correction bit in position 2k−1 can reduce this error by almost half by centering it
[157] (the green ’1’ in Figure 6.11(a)). Combined with the previous constraint Eapprox < 2k−1, this
provides us with a relation of the form d = f(k). Table 6.6 shows how the number of discarded
columns varies for common floating point formats.

Truncated multipliers can effectively be used for implementing the mantissa multiplication
in floating-point multipliers: if no IEEE-754 compliance is mandatory, or data-paths includes the
evaluation of elementary functions. Moreover, fixed-point pipelines can also take benefit from this

78

6.6 Truncated multipliers 79

M2

M3 M1

k

d

M4

(a) wasteful

M2

M3 M1

k

d

M4

(b) better

M2

M3 M1

k

d

(c) compensated

Figure 6.12 Truncation applied to multipliers. Left: Classical truncation technique applied to
DSPs. Center: Improved truncation technique; M4 is computed using logic. Right: FPGA op-
timized compensation technique; M4 is not computed.

techniques. For example, truncated multiplications together with the proper approximation-error
estimation techniques will be used to reduce the number of DSP blocks for large precision Horner
polynomial evaluation scheme in Chapter 7.

6.6.2 FPGA fitting

The theoretical saves in complexity entailed by truncated multiplications approaches 50%. The
entailed savings have two components: the size of the sub-products non computed and the size
reduction of the operands in the multioperand reduction scheme. The truncation technique ap-
plied to a multiplication performed using DSP blocks is presented in Figure 6.12(a). The archi-
tecture consumes 4 DSPs to compute the sub-products M1-M4. The grayed out parts of these
sub-products are then discarded before performing the final addition. Out of the 4 DSPs used, 2
are softly underutilized (M1 and M2) and one is greatly underutilized (M4). A better architecture
that performs M4 in logic is presented in figure 6.12(b). This architecture saves one DSP block at
the expense of the logic used to perform M4, which can be itself truncated.

However, on both Figure 6.12(a) and 6.12(b), the monolithic DSP blocks compute all the bits of
M1 and M2. As these bits come for free, we may take them into account, as it will reduce Eapprox
and possibly allow us to increase d. This requires adders extending beyond n− d, but those come
for free if they are inside the DSP blocks.

We therefore want to tile the truncated multiplier such that the error entailed by discarding the
untiled part meets the previously defined error budget. In this way, the bits not computed at the
left of k will be compensated by the ones computed at the right, as illustrated on Figure 6.12(c).

6.6.3 Architecture generation algorithm

A two phase algorithm was implemented in order to generate truncated multiplier using the
previously presented tiling technique. The first phase tiles the multiplication board starting from
bottom left using δ = bAreaboard/Areatilec DSPs where Areaboard is the area of a multiplication
board similar in shape to that in Figure 6.11(b) (size is dependent on k) and Areatile = α × β. By
construction, the approximation error of this tiling, Eapprox ≥ 2k−1.

The second phase reduces Eapprox so that it becomes smaller than 2k−1. In order to do this,
we rely on pipelined soft-core multipliers (pipelined multipliers using logic-only). Eapprox can be
reduced by tiling some high-weighted yet untiled bits. Taking Figure 6.13(a) as running example,
these are the untiled bits situated further away (Euclidean distance) from the origin (top right
corner). This is an iterative process which ends when the error bound is reached. Each iteration
consists in finding the furthest untiled point from the origin: if this point is adjacent to an existing
soft-core multiplier, it increases the respective dimension of this multiplier by 1 (illustrated in

79

80 Chapter 6. Large multipliers with fewer DSP blocks

0
0

u− 1

d

v − 1

d

X

Y

δ DSP
tiling

line

Virtual
truncation

soft-multiplier compensations

tiles not computed
free compensations

soft-multipliers
standard

(a) our implementation

0
0

u− 1

d

v − 1

d

X

Y

δ DSP
tiling

line

Virtual
truncation

tiles not computed
free compensations

non-standard
soft-multiplier

(b) ideal implementation

Figure 6.13 Tiling truncated multiplier using DSPs and soft-core multipliers

Table 6.7 Truncated multiplier results
FPGA Prec. Latency, Freq. Resources

Virtex5
DP 6 cycles @ 414MHz 320LUT 302REG 5DSP
QP 20 cycles @ 334MHz 2497LUT 2321REG 19DSP
QP 14 cycles @ 245MHz 2249LUT 1576REG 19DSP

Virtex4 DP 11 cycles @ 368MHz 358sl. 7DSP
QP 21 cycles @ 368MHz 1735sl. 26DSP

Figure 6.13(a)); otherwise, an 1 × 1 bit soft-core multiplier is instantiated at that point. There is
a small inefficiency here in using standard multipliers as they would eventually end-up tiling
some of the lower-weighted points (top-right corner) whereas some higher-weighted points are
still untiled. One would better use in this situation non-standard multipliers 6.13(b). These can
eventually decrease the soft-multiplier size but require more work to implement and integrate
so it is left for future work. Now back to soft-multiplier tiling, once the process finishes, a post-
processing phase replaces large soft-core multipliers by DSP blocks.

Figure 6.13(a) shows how the size these soft-core multipliers increases. When a valid config-
uration is met, its hardware cost is evaluated, and stored if minimal. If possible, a new tiling is
explored and cost is re-evaluated.

We remark that with respect to the classical truncation algorithm, not all the bits at the left of
the virtual truncation line are computed. In fact, the bits computed for free at the right of this line
compensate them. The extra cost of this architecture comes from the few extra bits of the operands
in the final multi-operand addition.

Figure 6.14 shows some possible tilings for high precision truncated multipliers. Table 6.7
presents synthesis results for DP and QP. Using our improved truncated multiplier technique
we are able to significantly reduce the number of DSPs with respect to classical multiplications.
For example, on Virtex4 for DP we are able to reduce DSP count from 10 to 7 DSPs while also
reducing slice count, and for QP we reduce from 49 to 26 at without any slice penalty. On Virtex5,
the reductions are from 6 to 5 for and roughly half the LUTs and REGs for DP and from 34 to 19 at
a small increase in logic resources for QP.

80

6.7 Conclusion 81

(a) SP (b) DP (c) QP (d) SP (e) DP (f) QP

Figure 6.14 Mantissa multipliers for SP,DP,QP, Virtex4 (left) and Virtex5 (right) ensuring faithful
rounding. The gray tiles represent soft-core multipliers

6.7 Conclusion

We have presented in this chapter several situations where the DSP resources can be saved by
by exploiting the flexibility of the FPGA target. An original family of multipliers for Virtex-5/6
is also introduced, along with original squarer architectures. FPGA-specific implementations of
truncated multipliers are also presented. These manage to substantially reduce DSP cost and help
reduce the cost of implementing high-performance polynomial evaluators, as those presented in
Chapter 7.

Most of the presented architectures, aside from DSP reduction, also enable a possible reduction
in latency. In the case of multipliers implemented on Xilinx devices, one can trade a longer latency
for significantly less resources, mostly due to the cascading opportunities of the DSP-blocks com-
bined with the SRL slice configurations. We believe that the best decision to be made is dependent
on the context, and therefore this should be left as a user knob.

Moreover, we believe that the place of some of these algorithms is in vendor core generators
and synthesis tools, where they will widen the space of implementation trade-off offered to a
designer.

Thanks

Part of the material presented in this chapter is based on collaborations with Sebastian Banescu
and Radu Tudoran, students at the Technical University of Cluj-Napoca, whom I had the pleasure
to work with during their summer internship in the Arenaire team. I gratefully acknowledge their
contributions.

81

7 CHAPTER 7

Polynomial-based architectures for
function evaluation

Function evaluation is the implementation bottleneck of computational-bound scientific com-
putations: over 60% of time is time is spent evaluating functions for a jet-engine simulation in
[127], SPICE circuit simulations based on electronic component modeling make extensive use of
functions [94] (see Figure 3.4 for arithmetic operation distribution in modeling the basic circuit
components).

In this chapter, we consider real functions f(x) of one real variable x, and we are interested in
a fixed-point implementation of this function over some interval. We will implement composed
functions as a fused operator, rather than a composition of successive operators. We assume that
f is continuously differentiable over this interval up to a certain order. There are many examples
where the hardware implementation of such functions is required. The following list should not,
in any case, be considered exhaustive:

– Fixed-point sine, cosine, exponential and logarithms are routinely used in signal processing
algorithms.

– Random number generators with a Gaussian distribution may be built using the Box-Muller
method, which requires logarithm, square root, sine and cosine [106]. Arbitrary distribu-
tions may be obtained by the inversion method, in which case one needs a fixed-point eval-
uator for the inverse cumulative distribution function (ICDF) of the required distribution
[52]. There are as many ICDF as there are statistical distributions.

– Approximations of the inverse 1/x and inverse square root 1/
√
x functions are used in recent

floating-point units to bootstrap division and square root computation [119].
– flog(x) = log(x + 1/2)/(x − 1/2) over [0, 1], and fexp(x) = ex − 1 − x over [0, 2−k] for some

small k, are used to build hardware floating-point logarithm and exponential in [72].

– fcos(x) = 1 − cos
(
π
4x
)
, and fsin(x) = π

4 −
sin(π4 x)

x over [0, 1], are used to build hardware
floating-point trigonometric functions in [71].

– s2(x) = log2(1 + 2x) and d2(x) = log2(1 + 2x) are used to build adders and subtracters in the
Logarithm Number System (LNS), and many more functions are needed for Complex LNS
[37].

Many function-specific algorithms exist, for example variations of the CORDIC algorithm pro-
vide low-area, long-latency evaluation of most elementary functions [123]. However, these im-
plementations lead to substantial non-reusable work for obtaining a functional implementation.
The work presented in this chapter focuses on a generic implementation method which not only
works well for a large class of functions, but is also well suited to the architecture of modern FP-
GAs containing many embedded multipliers. The generic operator for this implementation has
been developed and integrated in the FloPoCo framework, as Figure 7.1 presents. This operator

84 Chapter 7. Polynomial-based architectures for function evaluation

Signal
+width
+cycle
+lifeSpan

Operator
+signalList
+vhdl

+outputVHDL()
+emulate()
+buildStandardTestCases()

FunctionEvaluator
+wIn
+p

Targets

Virtex4StratixII StratixIV

Table
+wIn
+wOut

PolyTableGenerator

PolynomialEvaluator
+coefSize[]
+coefAlign[]

IntAdder
+wIn

Classical Alternative

IntMultiplier
+wIn

TilingLogicMult

+FPMinimax()

Sollya

Truncated

Figure 7.1 FloPoCo class structure integrating the generic fixed-point FunctionEvaluator

makes extensive use of other FloPoCo components such as pipelined binary adders and truncated
multipliers whose architecture was described in the previous chapters.

The work presented in this chapter will facilitate the implementation of a full hardware math-
ematical library (libm) in FloPoCo. Next chapters will illustrate the first steps in this direction:
designing of the floating-point

√
x and ex operators. Although some specific-FPGA optimizations

are presented here, most of the methodology is independent of the FPGA target and could apply
to other hardware targets such as ASIC circuits. This would need adding an ASIC target to the
FloPoCo target hierarchy.

7.1 Related work

There have been an important numbers of articles published on polynomial evaluators. We
focus here on those which describe generic methods as a fair comparison with work described
next.

Several table-based, multiplier-less methods for linear (or degree-1) approximation have evolved
from the original paper by Sunderland et al [147]. See [60] or [123] for a review. These methods
have very low latency but do not scale well beyond 20 bits: the table sizes scale exponentially, and
so does the design-space exploration time.

The High-Order Table-Based Method (HOTBM) by Detrey and Dinechin [69] extended the
previous methods to higher-degree polynomial approximation. An open-source implementation
is available in FloPoCo. In its current version, the generated architectures fit poorly recent FP-
GAs with powerful DSP blocks, and don’t scale beyond 32 bits. Retargetting it would require
considerable effort. Additionally, HOTBM focuses on parallel polynomial evaluation whereas, in
this work, we use a sequential evaluation which reduces implementation cost at the expense of
latency.

Lee et al [105] have published many variations on a generic datapath optimization tool called
MiniBit to optimize polynomial approximation. They use ad-hoc mixes of analytical techniques
such as interval analysis, and heuristics such as simulated annealing to explore the design space.
However, the design space explored in these articles does not include the architectures we describe
in this work: All the multipliers in these papers are larger than strictly needed, therefore they miss

84

7.2 Function evaluation by polynomial approximation 85

Approximation
generation

CodeEvaluation

optimizer

VHDL

compute approximation error
compute evaluation error

function

degree εapprox

coeff tables
architecture
parameters

precision

increase the gπj and gyjvary coefficient sizes
increase k

Figure 7.2 Automated implementation flow

the optimal. In addition, this tool is closed-source and difficult to evaluate from the publications,
in particular it is unclear if it scales beyond 32 bits.

Tisserand studied the optimization of low-precision (less than 10 bits) polynomial evaluators
[149]. He finetunes a rounded minimax approximation using an exhaustive exploration of neigh-
boring polynomials. He also uses other tricks on smaller (5-bit or less) coefficients to replace the
multiplication with such a coefficient by very few additions. Such tricks do not scale to larger
precisions.

Compared to these publications, the work presented next has the following distinctive fea-
tures:

– it scales to precisions of 64 bits or more, while being equivalent or better than the previous
approaches for smaller precisions.

– it uses minimax polynomials provided by the Sollya tool 1 for polynomial approximation,
which is the state-of-the-art for this application, as detailed in Section 7.2.2.

– it attempts to reduce the number of embedded-multipliers used. On one hand we attempt
to minimize coefficient sizes (as others in the literature do as well). On the other hand, we
trim the evaluation data-path to the bare minimum of bits that are needed at each step. We
integrate the truncated multipliers introduced in Chapter 6 to additionally save multiplier
resources.

– it is fully automated, from the parsing of an expression describing the function to VHDL
generation. It is integrated in the FloPoCo class hierarchy under the name FunctionEvalua-
tor and allows for the generated code to be optimized for a wide range of target FPGAs and
operating frequencies.

– it is fully pipelined to a user-specified frequency.
– the resulting architecture evaluates the function with last-bit accuracy. The associated emulate()

function and the integration in the FloPoCo framework allows generating test-benches for
operator testing.

7.2 Function evaluation by polynomial approximation

Polynomial approximation is the generic mathematical tool that reduces the evaluation of a
function to additions and multiplications. For these operations, we can either build architectures
(in FPGAs or ASICs), or use built-in operators (in processors or DSP-enabled FPGAs). A good
primer on polynomial approximation for function evaluation is Muller’s book [123].

Building a polynomial evaluator for a function may be decomposed into two subproblems: 1/
approximation : finding a good approximation polynomial, and 2/ evaluation : evaluating it using
adders and multipliers. The smaller the input argument, the better these two steps will behave,
therefore a range reduction may be applied first if the input interval is large.

1. http://sollya.gforge.inria.fr/

85

http://sollya.gforge.inria.fr/

86 Chapter 7. Polynomial-based architectures for function evaluation

0

1

0 0.2 0.4 0.6 0.8 1

x−1 x−2 x−3 x−4 x−5f0(y)

f1(y)

f2(y)

f3(y)

y︷ ︸︸ ︷
︸ ︷︷ ︸

x

k = 2

Figure 7.3 Range reduction example for the f(x) = log2(x), for x ∈ [0, 1) where the input interval
is split into four sub-intervals

We now discuss each of these steps in more detail, to build the implementation flow depicted
on Figure 7.2. In this chapter, without loss of generality we consider a function f over the input
interval x ∈ [0, 1).

In our implementation, the user inputs a function (assumed on [0, 1)), the input and output
precisions (both expressed as LSB weight), and the degree d of the polynomials used. This last
parameter could be determined heuristically, but we leave it as a user-defined parameter which
allows to trade-off multipliers and latency for memory size.

7.2.1 Range reduction

In this work, we use the simple range reduction that consists in splitting the input interval in
2k sub-intervals, indexed by i ∈ {0, 1, ..., 2k−1}. The index imay be obtained as the leading bits of
the binary representation of the input: x = 2−ki + y with y ∈ [0, 2−k). This decomposition comes
at no hardware cost. We now have ∀i ∈ {0, . . . , 2k − 1} f(x) = fi(y), and we may approximate
each fi by a polynomial pi. This simple range reduction is illustrated in Figure 7.3. A table will
hold the coefficients of all these polynomials, and the evaluation of each polynomial will share
the same hardware (adders and multipliers), which therefore has to be built to accommodate the
worst-case among these polynomials. Figure 7.5 describes the resulting architecture.

Compared to using a single polynomial on the interval, this range reduction increases the
storage space required, but decreases the cost of the evaluation hardware for two reasons. First,
for a given target accuracy εtotal, the degree of each of the pi decreases with increasing k. There is
a strong threshold effect here, and for a given degree there is a minimal k that allows to achieve
the accuracy.

Second, the reduced argument y has k bits less than the input argument x, which will reduce
the input size of the corresponding multipliers. If we target an FPGA with DSP blocks, there will
also be a threshold effect here on the number of DSP blocks used.

Many other range reductions are possible, most related to a given function or class of functions,
like the logarithmic segmentation used in [52]. For an overview, see Muller [123]. Most of our
contributions are independent of the range reduction used.

7.2.2 Polynomial approximation

One may use the well-known Taylor or Chebyshev approximation polynomials of arbitrary de-
gree d [123]. These polynomials can be obtained analytically, or using computer algebra systems.

86

7.2 Function evaluation by polynomial approximation 87

a0

a1y

a2y
2

k

2k

any
n

2−p

Figure 7.4 Alignment of the monomials

A third method of polynomial approximation is Remez’ algorithm, a numerical process that, un-
der some conditions, converges to the minimax approximation: the polynomial of degree d that
minimizes the maximal difference between the polynomial and the function. We denote εapprox
the approximation error, defined as the maximum absolute difference between the polynomial
and the function.

Between approximation and evaluation, for an efficient machine implementation, one has to
round the coefficients of the minimax polynomial (which are real numbers in theory, and are com-
puted with large precision in practice) to smaller-precision numbers suitable for efficient evalua-
tion. On a processor, one will typically try to round to single- or double-precision numbers. On
an FPGA, we may build adders and multipliers of arbitrary size, so we have one more question to
answer: what is the optimal size of these coefficients?

Lee et al. [105] use an error analysis that considers separately the error of rounding each coef-
ficient of the minimax polynomial (considered as a real-coefficient one) and tries to minimize the
bit-width of the rounded coefficients while remaining within acceptable error bounds. However,
there is no guarantee that the polynomial obtained by rounding the coefficients of the real min-
imax polynomial is the minimax among the polynomials with coefficients constrained to these
bit-width. Indeed, this assumption is generally wrong.

Finer quality polynomials are obtained using the analysis by Tisserand [149] for low-degree
polynomials targeting very low precisions. There, after rounding the minimax coefficients to the
target precisions, several other polynomials derived from the initial one are explored. The new
polynomials are obtained by allowing each coefficient to “move" in a tight interval around this ini-
tial value. The polynomial with the smallest approximation error is then returned. While testing
all these polynomials is possible for low polynomial degrees, this method doesnt’s scale to larger
degree polynomials. Moreover the method finds the local-minimum in the neighborhood of the
rounded minimax solution but this may not be the global optimum.

One may obtain much more accurate polynomials for the same coefficient bit-width using a
modified Remez algorithm due to Brisebarre and Chevillard [48] and implemented as the fpminimax
command of the Sollya tool. This command inputs a function, an interval and a list of constraints
on the coefficients (e.g. constraints on bitwidths), and returns a polynomial that is very close to
the best minimax approximation polynomial among those with such constrained coefficients.

Since the approximation polynomial now has constrained coefficients, we will not round these
coefficients anymore. In other words, we have merged the approximation error and the coefficient
truncation error of Lee et al. [105] into a single error, which we still denote εapprox. The only
remaining rounding or truncation errors to consider are those that happen during the evaluation
of the polynomial.

Let us now provide a good heuristic for determining the coefficient constraints. Let p(y) =
a0 +a1y+a2y

2 + ...+ady
d be the polynomial on one of the sub-intervals (for clarity, we remove the

87

88 Chapter 7. Polynomial-based architectures for function evaluation

indices corresponding to the sub-interval). The constraints taken by fpminimax are the minimal
weights of the least significant bit (LSB) of each coefficient. To reach some target accuracy 2−p, we
need the LSB of a0 to be of weight at most 2−p. As P (y) is the sum of d+ 1 terms, a few guard bits
are additionally needed for a0 such that the summation accuracy will be of the order 2−p. This
provides the constraint on a0.

Now consider the developed form of the polynomial, with the terms illustrated in Figure 7.4.
Coefficient aj is multiplied by yj (y < 2−k) which is smaller than 2−kj . The accuracy of the mono-
mial ajyj will be aligned on that of the monomial a0 if its LSB is of weight 2−p+kj+g. This provides
a constraint on aj .

The heuristic used is therefore the following (remember that the degree d is provided by the
user):

– the constraints on the d+1 coefficients are set as previously explained. Moreover, for a given
k we also explore neighboring coefficient constraints. From this new set of constraints, some
may reduce block memory cost by sufficiently reducing the coefficient table width so that
it falls into a memory sweet-spot (a memory whose width is a multiple of the embedded
memory width, for instance the memory 512x72=(512x32)x2 falls in such a sweet-spot on a
Virtex-4).

– for increasing k, we try to find 2k approximation polynomials pi of degree d respecting
the constraints, and fulfilling the target approximation error (which will be defined in Sec-
tion 7.2.4). The smallest k might not be the best from the implementation point of view:
larger k can fill-up better the used block memories and reduce evaluation cost. For instance
k = 7 on a Virtex4 fills 128 memory addresses out of the minimum 256 of the half-BRAM,
thus wasting half the resources. If k = 8, the size of y is reduced by one bit and we may also
gain a few bits on the coefficients, as this time the same degree polynomials are used on half
the interval size.

– the best value of k which meets all the requirements is then returned. The maximum mag-
nitude of all the coefficients of degree j (the largest MSB) together with the constraints on
their LSB give the width that each coefficient occupies in the final coefficient table. These
values are constantly used in order to target memory sweet-spots. All this information must
then be passed towards the polynomial evaluator.

7.2.3 Polynomial evaluation

Given a polynomial, there are many possible ways to evaluate it. The HOTBM method [69]
uses the developed form p(y) = a0 + a1y + a2y

2 + ... + ady
d and attempts to tabulate as much of

the computation as possible. This leads to short-latency architecture since each of the aiyi may be
evaluated in parallel and added thanks to an adder tree, but at a high hardware cost.

In this work, we chose a more classical Horner evaluation scheme, which minimizes the num-
ber of operations, at the expense of latency: p(y) = a0 + y × (a1 + y × (a2 + + y × ad)...). Our
contribution is essentially a fine error analysis that allows us to minimize the size of each of the
operations. This analysis is presented in Section 7.2.4.

There are intermediate schemes that could be explored. For large degrees, the polynomial may
be decomposed into an odd and an even part: p(y) = pe(y

2) + y×po(y2). The two sub-polynomial
may be evaluated in parallel, so this scheme has a shorter latency than Horner, at the expense of
the precomputation of x2 and a slightly degraded accuracy. Many variations on this idea, e.g. the
Estrin scheme, exist [123], and this should be the subject of future work. A polynomial may also
be refactored to trade multiplications for more additions [96], but this idea is mostly incompatible
with range reduction.

88

7.2 Function evaluation by polynomial approximation 89

7.2.4 Accuracy and error analysis

The maximal error target εtotal is an input to the algorithm. Typically, we aim at faithful round-
ing, which means that εtotal must be smaller than the weight of the LSB of the result, noted u. In
other words, all the bits returned hold useful information. This error is decomposed as follows:
εtotal = εapprox + εeval + εfinalround where

– εapprox is the approximation error, the maximum absolute difference between any of the pi
and the corresponding fi over their respective intervals. This computation belongs to the
approximation step and is also performed using Sollya [53].

– εeval is the total of all rounding and truncation errors committed during the evaluation;
– εfinalround is the error corresponding to the final rounding of the evaluated polynomial to the

target format. It is bounded by u/2.
We therefore need to ensure εapprox + εeval < u/2. The polynomial approximation algorithm

iterates until εapprox < u/4, then reports εapprox. The error budget that remains for the evaluation
is therefore εeval < u/2− εapprox and is between u/4 and u/2.

In p(y) = a0 + a1y + a2y
2 + ... + ady

d, the input y is considered exact, so p(y) is the value of
the polynomial if evaluated in infinite precision. What the architecture evaluates is p∗(y), and our
purpose here is to compute a bound on εeval(y) = p∗(y)− p(y).

Let us decompose the Horner evaluation of p as a recurrence:
σ0 = ad
πj = y × σj−1 ∀j ∈ {1...d}
σj = ad−j + πj ∀j ∈ {1...d}
p(y) = σd

This would compute the exact value of the polynomial, but at each evaluation step, we may
perform two truncations, one on y, and one on πj . As a rule of thumb, each step should balance
the effect of these two truncations on the final error. For instance, in an addition, if one of the
addends is much more accurate than the other one, it probably means that it was computed too
accurately, wasting resources.

To understand what is going on, consider step j. In the addition σj = ad−j + πj , the πj should
be at least as accurate as ad−j , but not much more accurate: let us keep gπj bits to the right of the
LSB of ad−j , where gπj is a small positive integer (0 ≤ gπj < 5 in our experiments). The parameter
gπj defines the truncation of πj , and also the size of σj (which also depends on the weight of the
MSB of ad−j).

Now, since we are going to truncate πj = y×σj−1, there is no need to input to this computation
a fully accurate y. Instead, y should be truncated to the size of the truncated πj , plus a small
number gyj of guard bits.

The computation actually performed is therefore the following:
σ∗0 = ad
π∗j = ỹj × σ∗j−1 ∀j ∈ {1...d}
σ∗j = ad−j + π̃∗j ∀j ∈ {1...d}
p∗(y) = σ∗d

In both previous equations, the additions and multiplications should be viewed as exact: the
truncations are explicited by the tilded variables, e.g. π̃∗j is the truncation of π∗j to gπj bits beyond
the LSB of ad−j . There is no need to truncate the result of the addition, as the truncation of π∗j
serves this purpose already.

We may now compute the rounding error:

εeval = p∗(y)− p(y) = σ∗d − σd

89

90 Chapter 7. Polynomial-based architectures for function evaluation

where
σ∗j − σj = π̃∗j − πj

= (π̃∗j − π∗j) + (π∗j − πj)

Here we have a sum of two errors. The first, π̃∗j − π∗j , is the truncation error on π∗ and is bounded
by a power of two depending on the parameter gπj . The second is computed as

π∗j − πj = ỹj × σ∗j−1 − y × σj−1

= (ỹjσ
∗
j−1 − yσ∗j−1) + (yσ∗j−1 − yσj−1)

= (ỹj − y)σ∗j−1 + y × (σ∗j−1 − σj−1)

Again, we have two error terms which we may bound separately. The first bound is the trun-
cation error on y, which depends on the parameter gyj , and is multiplied by a bound on σ∗j−1 which
has to be computed recursively itself. The second term recursively uses the computation of σ∗j−σj ,
and the bound y < 2−k.

The previous error computation is implemented in C++. From the values of the parameters gπj
and gyj , it decides if the architecture defined by these parameters is accurate enough.

7.2.5 Parameter space exploration for the FPGA target

The architecture of our implementation is depicted in Figure 7.5. It consists of a table stor-
ing the coefficients of the polynomials p0 . . . p2k−1 approximating f(x) on x ∈ [0..1) and one
polynomial evaluator using the Horner scheme. As briefly introduced in Section 7.2.1 various
optimizations are applied for generating this coefficient table. Their purpose is to minimize the
block-memory count and at the same time, if possible, reduce the multiplier cost. We will next
present in some more details these optimizations, and we will use the Virtex4 FPGA to illustrate
our examples (the same type of optimizations are preformed for all FPGAs).

First, k directly influences block memory count. The BRAM configuration allowing for the
widest output is 512x36 bits for Virtex4. Moreover, this configuration has two independent ports,
therefore its granularity can be seen as 2x(256x36) bits. In the following we consider the case
for which the function evaluators are needed every clock cycle and the frequency is high-enough
that no time-multiplexing schemes can be applied 2. In such a case, if the number of polynomials
used for one function is less than 256, the rest of the half memory block will remain unused. The
remaining half-memory block can be efficiently used to wrap in the same block memory coefficient
tables wider than 36 bits. Therefore, our heuristic will try to fill these half-tables. By doing so we
minimize y which reduces the overall evaluation cost. Additionally, this may also gain a few
bits on the coefficients (the same-degree polynomials are used on half the interval) which reduces
evaluation cost and may allow exploiting a memory sweet-spot.

Secondly, the total width of the coefficient table is computed as the maximum width needed
to store each of the d + 1 coefficients. As the same evaluation unit is used for all the 2k polyno-
mials, these are needed to be stored in memory in the same format. Therefore, once a set of 2k

approximation polynomials have been found, the main task is to compute the magnitude of their
coefficients in order to determine their width. For 2k = 512, the best use of Xilinx memory blocks
of Virtex4 devices is the 512x36 bits configuration. If the coefficient table would have 74-bits for
instance, three blocks would be needed for storage. Our heuristic tries several tighter coefficient
constraints in order to reduce this number to 72, a sweet-spot for this device. In the case when
2k = 1024, the configuration 1024x18 bits would be better used. In this case our heuristic will try
to reduce the coefficient size to a multiple of 18, and so on.

2. If time-multiplexing can be effectively applied when the target circuit’s frequency is significantly lower than the
nominal speed of embedded memories such that multiple reads/writes can be accomplished during one system cycle.

90

7.2 Function evaluation by polynomial approximation 91

1 110 00010101 00 1.

address

P0

P1

P2

P2k−1

a1 a0ad

ỹd
σ′d

Coefficient ROM

ỹ1 σ′d−1 π̃′d

y
i

round

x

r

Figure 7.5 The function evaluation architecture

Next, moving to the polynomial evaluator component of our implementation, we need to find
the truncation sizes which minimize the number of required embedded multipliers. Let us first
consider the gyj parameter. The size of this truncation directly influences the DSP count. Here, we
observe that once a DSP block is used, it saves us almost nothing to under-use it. We therefore
favor truncations which reduce the size of y to the smallest multiple of a multiplier input size
that allows us to reach the target accuracy. For Virtex4 and StratixII, the size of y should target a
multiple of 17 and 18 respectively. On Virtex5 and Virtex6, multiples of 17 or 24 should be inves-
tigated. Consequently, each gyj can take a maximum of three possible values: 0, corresponding to
no truncation, and one or two soft spots corresponding to multiples of multiplier input size.

The determination of the possible values of gπj also depends on the DSP multiplier size, as
the truncation of π∗j defines the size of the sum σ∗j , which inputs a multiplier. There are two
considerations to be made: First, it makes no sense to keep guard bits to the right of the LSB of π̃∗j .
This gives us an upper bound on gπj . Secondly, as we are trying to reduce DSP count, we should
not allow a number of guard bits that increases the size of σ∗j over a multiple of the multiplier
input size. This gives us a second upper bound on gπj . The real upper-bound in computed as a
minimum of the two precomputed upper-bounds.

These upper bounds define the parameter space to explore. We also observe that the size of the
multiplications increases with j in our Horner evaluation scheme. We therefore favor truncations
in the last Horner steps, as these truncations can save more DSP blocks. This defines the order of
exploration of the parameter space. The parameters gπj and gyj are explored using the above rules
until the error εeval satisfies the bound εeval < u/2− εapprox.

Finally, we use truncated multipliers in order to additionally reduce multiplier usage. Con-
sider gπj which determines the number of guard bits for ad−j , before its addition to π∗j . At the
same time, gπj determines the truncation size of π∗j . If part of this result is not used, then we may
use truncated multipliers to compute this value, accurate to this truncation size. This does not
change the presented error analysis, as this truncation is already accounted for. However, trun-
cated multipliers have an important impact on the number of multipliers used.

All in all, this is a fairly small parameter space exploration, and its execution time is negligible
with respect to the few seconds it may take to compute all the constrained minimax approxima-
tions.

91

92 Chapter 7. Polynomial-based architectures for function evaluation

Standard datapath Truncated datapath Trunc. datapath + mult
π1 43× 15 3 DSPs π∗1 18× 15 1 DSPs π∗1 35× 19 trunc. to 24 2 DSPs
π2 43× 26 6 DSPs π∗2 35× 26 4 DSPs π∗2 35× 30 trunc. to 32 3 DSPs
π3 43× 37 9 DSPs π∗3 43× 39 9 DSPs π∗3 44× 41 trunc. to 40 4 DSPs
π4 43× 48 9 DSPs π∗4 43× 52 9 DSPs π∗4 44× 52 trunc. to 50 5 DSPs

27 DSPs 23 DSPs 14 DSPs

Table 7.1 The decrease in internal datapath truncations allows reducing DSP count

7.3 Reality check

This section will first try to show the effect of the several optimizations we apply in the process
of generating the implementation. Then, we will provide general data for the implementation of
several common fixed-point functions for several accuracies, together with synthesis results for
these functions on a Virtex4 FPGA. Finally, we compare our generic approach against the CORDIC
implementation of sin and cos of Logicore.

7.3.1 Optimization effect

Let us take as a running example the function log2(1 + x). For an implementation accurate to
23-bits (single-precision equivalent) this function requires 2k = 128 subintervals. The coefficients
sizes are 26, 20, 12 plus the 3 more sign bits as we store our coefficients signed in memory: these
total 61 bits. A direct implementation on our Virtex4 FPGA would require 2 BRAMs with configu-
ration 512x36. Due to the dual-port nature of the BRAM, the 25-bits exceeding the 36-bit capacity
are packed in the BRAM starting with address 256. This optimization saves one memory blocks,
reduces the latency by one cycle (from 9 to 8 in our case) and reduces slice count (from 134 to
121 for our case). For the 36-bit version of the same operator this optimization reduces the BRAM
count from 4 to 2.

We next investigate the savings on the total DSP count by truncating the operators to the min-
imum width. For this we use log2(1 + x) for 52-bit accuracy (double-precision equivalent) for
which the internal multiplication sizes are shown in the left column of Table 7.1. This standard
implementation would require 27 DSP blocks. The middle column shows the effects of the data-
path trimming on the multiplier inputs: a total reduction of four DSP blocks is accomplished by
finding the datapath’s sweet-spot (one multiplier input is reduced from 43 to 18, another from 43
to 35. The third column shows the reduction in DSP count caused by the introduction of truncated
multipliers in the datapath. This entails additional savings, roughly reducing the initial count by
half.

All in all, the presented optimizations significantly reduce both BRAM and DSP count. Let us
now give more general results and see how well these perform against some examples from the
literature.

7.3.2 Examples and comparisons

Table 7.2 presents the input and output parameters for obtaining the approximation polyno-
mials for several representative functions mentioned in the introduction. The functions f are all
considered over [0, 1], with identical input and output precision. Three precisions are given in
Table 7.2. Table 7.3 provides synthesis results for the same experiments.

It is difficult to compare to previous works, especially as none of them scales to the large
precisions we do. Our approach brings no savings in terms of DSP blocks for precisions below 17
bits.

92

7.3 Reality check 93

Table 7.2 Examples of polynomial approximations obtained for several functions. S represents
the scaling factor so that the function image is in [0,1]

f(x) S
23 bits (single prec.) 36 bits 52 bits (double prec.)
d k Coeffs size d k Coeffs size d k Coeffs size

√
1 + x 1

2

2 64 26, 20, 14 3 128 39, 32, 25, 18 4 512 55, 46, 37, 28, 19
1 2048 26, 15 2 2048 39, 28, 17 3 2048 55, 44, 33, 22

π
4 −

sin(π4 x)

x
23

2 128 26, 19, 12 3 128 39, 32, 25, 18 4 256 55, 47, 39, 31, 23
1 4096 26, 14 2 2048 39, 28, 17 3 2048 55, 44, 33, 22

1− cos(π4x) 2
2 128 26, 19, 12 3 256 39, 31, 23, 15 4 256 55, 47, 39, 31, 23
1 4096 26, 14 2 2048 39, 28, 17 3 4096 55, 43, 31, 19

log2(1 + x) 1
2 128 26, 19, 12 3 256 39, 31, 23, 15 4 256 55, 45, 35, 25, 15
1 4096 26, 14 2 4096 39, 27, 15 3 4096 55, 43, 31, 19

log(x+1/2)
x−1/2

1
2

2 256 26, 18, 10 3 512 39, 30, 21, 12 4 1024 55, 45, 35, 25, 15
1 4096 26, 14 2 4096 39, 27, 15 3 8192 55, 42, 29, 16

Table 7.3 Synthesis Results using ISE 11.1 on VirtexIV xc4vfx100-12. l is the latency of the operator
in cycles. All the operators operate at a frequency close to 320 MHz. The grayed rows represent
results without coefficient table BRAM compaction and the use of truncated multipliers

f(x)
23 bits (single prec.) 36 bits 52 bits (double prec.)

d l slices DSP BRAM d. l slices DSP BRAM d l slices DSP BRAM
√
1 + x 2 9 118 3 2 3 18 351 9 3 4 32 893 21 5

1 5 62 1 5 2 12 231 5 9 3 24 668 15 17
√
1 + x

2 8 92 2 1 3 17 672 3 2 4 31 1313 11 6
1 4 37 1 3 2 11 373 3 5 3 23 819 9 18

π
4
− sin(π

4
x)

x

2 9 120 2 1 3 19 1039 4 2 4 34 1172 14 3
1 4 36 1 11 2 13 412 3 11 3 25 1029 10 19

1− cos(π
4
x)

2 9 120 2 1 3 19 1039 4 2 4 34 1773 14 3
1 4 36 1 11 2 13 412 3 11 3 22 790 9 40

log2(1 + x)
2 9 120 2 1 3 21 1066 4 2 4 33 1569 14 6
1 4 36 1 11 2 11 320 3 22 3 24 933 9 40

log(x+1/2)
x−1/2

2 8 103 2 1 3 17 779 4 4 4 32 1584 12 11
1 4 36 1 11 2 11 314 3 22 3 23 999 8 78

93

94 Chapter 7. Polynomial-based architectures for function evaluation

LogiCore CORDIC 4.0 sin+cos
32 cyles@296MHz, 3812 LUT, 3812 FF

This work, sin alone
16 cycles@353MHz, 2 BlockRam, 3 DSP48E, 575 FF, 770 LUT

This work, cos alone
16 cycles@390MHz, 2 BlockRam, 3 DSP48E, 609 FF, 832 LUT

Table 7.4 Comparison with CORDIC for 32-bit sine/cosine functions on Virtex5

We may compare to the logarithm unit by Lee et al. [106] which computes log(1 + x) on 27
bits using a degree-2 approximation. Our tool instantly finds the similar coefficient sizes 30, 22
and 12 (13 in [106]). However, our implementation uses 2 DSP blocks where [106] uses 6: one
multiplier is saved thanks to the truncation of y and others thanks to truncated multipliers. For
larger precisions, the savings would also be larger.

We should compare the polynomial approach to the CORDIC family of algorithms which can
be used for many elementary functions [123, 26]. Table 7.4 compares implementations for 32-
bit sine and cosine, using for CORDIC the implementation from Xilinx LogiCore [26]. This ta-
ble illustrates that these two approaches address different ends of the implementation spectrum.
The polynomial approach provides smaller latency, higher frequency and low logic consumption
(hence predictability in performance independently of routing pressure). The CORDIC approach
consumes no DSP nor memory block. Variations on CORDIC using higher radices could improve
frequency and reduce latency, but at the expense of an even higher logic cost. A deeper compari-
son remains to be done.

7.4 Conclusion, open issues and future work

Application-specific systems sometimes need application-specific operators, and this includes
operators for function evaluation. This work has presented a fully automatic design tool that al-
lows one to quickly obtain architectures for the evaluation of a polynomial approximation with a
uniform range reduction for large precisions, up to 64 bits. The resulting architectures are better
optimized than what the literature offers, firstly thanks to state-of-the-art polynomial approxi-
mation tools, secondly thanks to a finer error analysis that allows for truncating the evaluation
datapath and thirdly thanks to the state-of-the-art truncated multipliers available in the FloPoCo
framework which were integrated in the polynomial evaluator. The architectures presented here
benefit from the FloPoCo framework integration and may therefore be fully pipelined to a fre-
quency close to the nominal frequency of current FPGAs.

This work will enable the design, in the near future, of elementary function libraries for recon-
figurable computing that scale to double precision. However, we also wish to offer the designer
a tool that goes beyond a library: a generator that produces carefully optimized hardware for his
very function. Such application-specific hardware may be more efficient than the composition of
library components.

Towards this goal, this work can be extended in several directions.
– Non-uniform range reduction schemes should be explored. The power-of-two segmentation

of the input interval used in [52] has a fairly simple hardware implementation using a lead-
ing zero or one counter. This will enable more efficient implementation of some functions.

– More parallel versions of the Horner scheme should be explored to reduce the latency.
– Our tools could attempt to detect if the function is odd or even [103], and consider only odd

or even polynomials for such case [123, 103]. Whether this works along with range reduction
remains to be explored.

94

7.4 Conclusion, open issues and future work 95

– We currently only consider a constant target error corresponding to faithful rounding, but a
target error function could also be input.

– Designing a pleasant and universal interface for such a tool is a surprisingly difficult task.
Currently, we require the user to input a function on [0, 1), and the input and output LSB
weight. Most functions can be trivially scaled to fit in this framework, but many other spe-
cific situations exist.

Thanks

The material presented in this chapter is based on collaborations with Mioara Joldes, a PhD
student at ENS de Lyon and one of the main developers of the Sollya tool. I would like to kindly
thank Mioara and her supervisors Nicolas Brisebare and Jean-Michel Muller for making this col-
laboration possible.

95

8 CHAPTER 8

Multiplicative square root algorithms

Most current square root implementations for FPGAs use a digit recurrence algorithm which
is well suited to their LUT structure. However, recent computing-oriented FPGAs include embed-
ded multipliers and memory blocks which can also be used to implement quadratic convergence
algorithms, very high radix digit recurrences, or polynomial approximation algorithms. In this
chapter we compare the classical digit-recurrence implementation of FloPoCo 1 to a new polyno-
mial approximation implementation based on the FunctionEvaluator operator described in the
previous chapter. We prove that polynomial approximation implementations manage to achieve
shorter latencies than the classical approach for faithful (last bit accurate) results. Moreover, we
show that the cost of IEEE-compliant correct rounding using such approximation algorithms is
very high, and faithful operators are advocated in this case.

8.1 Algorithms for floating-point square root

There are two main families of algorithms that can be used to extract square roots.
The first family is that of digit recurrences, which provides one digit (often one bit) of the

result at each iteration. Each iteration consists of additions and digit-by-number multiplications
(which have comparable cost) [81]. Such algorithms have been widely used in microprocessors
that didn’t include hardware multipliers. Most FPGA implementations in vendor tools or in the
literature [113, 104, 73] use this approach, which was the obvious choice for early FPGAs, which
did not yet include embedded multipliers. Probably this is also the approach which minimizes
the complexity in terms of logical operations for computing the square root.

The second family of algorithms is multiplication based, and was studied as soon as proces-
sors included hardware multipliers. It includes quadratic convergence recurrences derived from
the Newton-Raphson iteration, used in AMD IA32 processors starting with the K5 [137], in more
recent instruction sets such as Power/PowerPC and IA64 (Itanium) whose floating-point unit
is built around the fused multiply-and-add [119, 56], and in the INV_SQRT core from the Al-
tera MegaWizard. Other variations involve piecewise polynomial approximations [93, 130]. On
FPGAs, the VFLOAT project [153] uses an argument reduction based on tables and multipliers,
followed by a polynomial evaluation of the reduced argument.

To sum up, digit recurrence approaches allow one to build minimal hardware, while multi-
plicative approaches allow one to make the best use of available resources when these include
multipliers. As a bridge between both approaches, a very high radix algorithm introduced for the

1. This implementation is based on the FPLibrary FPSqrt operator

98 Chapter 8. Multiplicative square root algorithms

Cyrix processors [47] is a digit-recurrence approach where the digit is 17-bit wide, and digit-by-
number multiplication uses the 17x69-bit multiplier designed for floating-point multiplication.

Now that high-end FPGAs embed several thousands small multipliers, the purpose of this
work is to study how this resource may be best used for computing square root [102]. To this
purpose we provide an implementation of a multiplier-based square root based on polynomial
evaluation, which is, to our knowledge, original in the context of FPGAs.

The conclusion is that it is surprisingly difficult to really benefit from the embedded multi-
pliers as precision increases from single to double-precision. One problem is correct rounding
(mandated by the IEEE-754 standard) which is shown to require a large final squaring of size
2 + wF bits.

Even if correct rounding is relaxed to save this final operation (which is perfectly acceptable if
the square root is used to build coarser atomic operators such as

√
x2 + y2), the logic consump-

tion of a double-precision multiplicative square root surpasses that of a digit-recurrence one, of
comparable performance and which doesn’t consume any multiplier. For this case, the saving of
using the polynomial approximation version are in terms of latency: the operator’s pipeline depth
is usually reduced to half, but also in terms of performance predictability, due to the lower routing
pressure.

8.1.1 Notations and terminology

In all this chapter, x, the input, is a floating-point number on wF bits of mantissa and wE bits
of exponent. IEEE-754 single precision is (wE , wF) = (8, 23) and double-precision is (wE , wF) =
(11, 52).

Given a floating-point format with wF bits of mantissa, it makes no sense to build an operator
which is accurate to less than wF bits: it would mean wasting storage bits, especially on an FPGA
where it is possible to use a smaller wF instead. However, the literature distinguishes two levels
of accuracy, as previously presented in Chapter 3: correct and faithful rounding. Consider the
round-to-nearest rounding more:

– with correct rounding (CR): the operator returns the FP number nearest to
√
x. This cor-

respond to a maximum error of 0.5ulp with respect to the exact mathematical result. Not-
ing the (normalized) mantissa 1.F with F a wF -bit number, the ulp value is 2−wF . Correct
rounding is the best that the format allows.

– with faithful rounding (FR): the operator returns one of the two FP numbers closest to
√
x,

but not necessarily the nearest. This corresponds to a maximum error strictly smaller than
1ulp.

In general, to obtain a faithful evaluation of a function such as
√
x to wF bits, one needs to first

approximate it to a precision higher than that of the result (we denote this intermediate precision
wF +g where g is a number of guard bits), then round this approximation to the target format. This
final rounding performs an incompressible error of almost 0.5ulp in the worst case, therefore it is
difficult to directly obtain a correctly rounded result: one needs a very large g, typically g ≈ wF
[123]. It is much less expensive to obtain a faithful result: a small g (typically less than 5 bits) is
enough to obtain an approximation on wF + g bits with a total error smaller than 0.5ulp, to which
we then add the final rounding error of another 0.5ulp.

However, in the specific case of the square root, the overhead of obtaining correct rounding is
lower than in the general case. Section 8.1.2 shows a general technique to convert a faithful square
root on wF + 1 bits to a correctly rounded one on wF bits. This technique is, to our knowledge,
due to [93], and its use in the context of a hardware operator is novel.

98

8.1 Algorithms for floating-point square root 99

wF

precision
wF + 1
precision

r̃
√
x

r̃2 > x

√
xr̃

r̃2 < x

Figure 8.1 Deducing the correctly rounded value of
√
x onwF bits from a faithfully rounded result

on wF+1 bits

8.1.2 The cost of correct rounding

For square root, correct rounding may be deduced from faithful rounding thanks the following
technique, used in [93]. We first compute a value of the square root r̃ on wF + 1 bits, faithfully
rounded to that format (total error smaller than 2−wF−1). This is relatively cheap. Now, with
respect to thewF -bit target format, r̃ is either a floating-point number, or the exact middle between
two consecutive floating-point numbers. In the first case, the total error bound of 2−wF−1 on r̃
entails that it is the correctly rounded square root. In the second case, squaring r̃ and comparing it
to x tells us (thanks to the monotonicity of the square root) if r̃ <

√
x or r̃ >

√
x. What needs to be

proved is that
√
x cannot be exactly equal to the middle of the floating-point numbers at precision

wF , that is, it cannot have the form:
√
x = 1.XXXXXXX︸ ︷︷ ︸

wF+1

1.

If
√
x would indeed have this form, its square would have a length of at least 2(wF + 2) − 1

bits, which is impossible as x has at most wF + 2 bits (x ∈ [1, 4[). The possible cases for correct
rounding are illustrated in Figure 8.1.

This is enough to conclude which of its two neighboring floating-point numbers is the correctly
rounded square root on wF bits.

We use in this work the following algorithm, which is a simple rewriting of the previous idea.

◦ (
√
x) =

{
r̃ truncated to wF bits if r̃2 ≥ x,
r̃ + 2−wF−1 truncated to wF bits otherwise.

(8.1)

With respect to performance and cost, one may observe that the overhead of correct rounding
over faithful rounding on wF bits is

– a faithful evaluation on wF +1 bits – this is only marginally more expensive than on wF bits;
– a square on wF + 1 bits – even with state-of-the-art dedicated squarers presented in Chapter

6, this is expensive. The cost of this operation can be reduced if we consider that we are
actually interested only in the lower squarer bits (see Figure 8.2). The largest difference
between x and r̃2 is bounded by one ulp, or 2−wF . Therefore, by keeping the bits up to
weight 2−wF+1 out of r̃2, which we denote by r2, suffices find whether r̃2 ≥ x. Indeed, if
|r2 − x| ≤ 2−wF then:

◦ (
√
x) =

{
r truncated to wF bits if r2 ≥ x,
r + 2−wF−1 truncated to wF bits otherwise.

(8.2)

Otherwise, if |r2 − x| > 2−wF :

99

100 Chapter 8. Multiplicative square root algorithms

◦ (
√
x) =

{
r truncated to wF bits if r2 < x,
r + 2−wF−1 truncated to wF bits otherwise.

(8.3)

2

x

2−wF+2

r̃

r̃2

not computed

comparison between

2−wF−1

r2

Figure 8.2 Bits involved in the comparison of x̃2 ≥ x are highlighted

The highlighted bits from Figure 8.2 suggest that a the squaring computation can indeed
save multipliers. The savings will be larger as precision grow, and an example of a squaring
architecture for double precision is depicted in Figure 8.3.

This overhead (both in area and in latency) may be considered a lot for an accuracy improve-
ment of one half-ulp. Indeed, on an FPGA, it will make sense in most applications to favor faithful
rounding on wF + 1 bits over correct rounding on wF bits (for the same relative accuracy bound).

The FloPoCo implementation offers both alternatives, but in the following, we only consider
faithful implementations for approximation algorithms.

8.2 Square root by polynomial approximation

We compute the square root of a floating-point number X in a format similar to IEEE-754:

X = 2E × 1.F

where E is an integer (coded on wE bits with a bias of 2wE−1 − 1), and F is the fraction part of
the mantissa, written in binary on wF bits: 1.F = 1.f−1f−2 · · · f−wF (the indices denote the bit
weights).

There are classically two cases to consider.
– If E is even, the square root is √

X = 2E/2 ×
√

1.F .

0

2

253

0

53

bits not required

bits computed
using symmetry

M2 M3

M1

M4

S1

S2

Figure 8.3 The multipliers required for the squaring operation operation r̃2 for double-precision
on Virtex4

100

8.2 Square root by polynomial approximation 101

01

0f−k...f−wFf−k...f−wF0

Horner

e0f−1...f−k+1

Evaluator

multiplier
truncated

c0

cd−1

cd

√
X

√
2X

c0cd cd−1

R

Figure 8.4 Generic polynomial evaluator for the square root

– If e is odd, the square root is
√
X = 2(E−1)/2 ×

√
2× 1.F .

In both cases the computation of the result exponent is straightforward, and we will not detail
it further. The computation of the square root is reduced to computing

√
Z for Z ∈ [1, 4[.

We are classically [105] splitting the interval [1, 4[into sub-intervals, and using for each sub-
interval an approximation polynomial whose coefficients are read from a table. The state of the
art for obtaining such polynomials is the fpminimax command of the Sollya tool [54] whose ad-
vantages have been stated in Chapter 7.

The polynomial evaluation hardware is shared by all the polynomials, therefore they must be
of same degree d and have coefficients of the same format (here a fixed-point format). We evaluate
the polynomial in Horner form, computing just right at each step by truncating all intermediate
results to the bare minimum and making use of truncated multipliers.

A first idea is to address the coefficient table is to use the most significant bits of Z. However,
as Z ∈ [1, 4[, the address range 00xxx...xxx is unused, which would mean that one quarter of
the table is never addressed. A good compiler might save the resources needed to implement this
quarter-table for some very specific cases. For example, if the table size is 2048×36 bits (4 BRAMs
on Virtex-4 using the configuration 512×36) one BRAM, used to implement one quarter of the
table, could be saved.

A better idea is to take advantage that the function
√
Z varies more for Z on the left of interval

[1, 4[. For a given degree d, the polynomials on the left of [1, 4[will be less accurate than those
on the right. Our improved strategy consists in splitting the computation

√
Z over [1, 4[into two

cases, according to the exponent parity: [1, 2[for even exponents and [2, 4[for odd exponents. We
now split both [1, 2[and [2, 4[into an equal number of sub-intervals, with the sub-interval size for
[1, 2[being twice as small than that for [2, 4[. This technique will balance the approximation errors
between the two cases and can save, in most cases, one quarter of the coefficient table.

Next we give the details of the algorithm. Let k be an integer parameter that defines the
number of sub-intervals (2k in total). The coefficient table has 2k entries.

– If E is even, let τeven(x) =
√

1 + x for x ∈ [0, 1): we need a piecewise polynomial approxi-
mation for τeven.
The interval [0, 1[is split into 2k−1 sub-intervals [i

2k−1 ,
i+1
2k−1 [for i from 0 to 2k−1 − 1. The

index (and table address) i consists of the bits f−1f−2 · · · f−k+1 of the mantissa 1.F . On each

101

102 Chapter 8. Multiplicative square root algorithms

Table 8.1 FloPoCo polynomial square root for Virtex-4 4vfx100ff1152-12 and Virtex5 xc5vlx30-3-
ff324. The command line used is flopoco -target=Virtex4|Virtex5 -frequency=f FPSqrtPoly wE wF
0 degree

(wE , wF) Acc. Degree cycles Synthesis results
Freq. Slices BRAM DSP

handcrafted

(8, 23)

FR 2 4 339 79 2 2
handcrafted CR 2 13 303 245 2 5

FR 2 10 318 165 2 2
CR 2 18 334 297 2 5

Virtex4, 400 MHz

(9, 36)
FR 3 22 319 473 4 6
CR 3 34 270 840 4 12

(10, 42)
FR 3 23 311 876 8 6
CR 3 35 311 1148 15 12

(11, 52)

FR 3 29 319 1192 76 8
FR 4 35 319 1797 11 12
FR 5 40 318 1944 7 15

2010 version: FR 4 33 318 1145 11 26
digit-rec. FloPoCo: CR - 53 307 1770 - -
digit-rec. CoreGen: CR - 57 265 1820 - -

VFLOAT [153] 2.39 ulp - 17 >200 1572 116 24

Altera (1/
√
x) [102] 1 ulp? - 32 ? 900 ALM 32 M9K 27 (18-bit)

Altera (1/
√
x) [31] 1 ulp? - 36 192 1200 ALM - 78 (18-bit)

Virtex5, 400 MHz

(8, 23) FR 2 7 415 177LUT 132REG 2 2
(9, 36) FR 3 22 330 760 LUT, 665 REG 4 4
(10, 42) FR 3 25 320 1735 LUT, 1289 REG 4 4
(11, 52) FR 4 35 336 2533 LUT, 2146REG 6 9

of these sub-intervals, τeven(1 + i
2k−1 + y) is approximated by a polynomial of degree d:

pi(y) = c0,i + c1,iy + · · ·+ cd,iy
d.

– If E is odd, we need to compute
√

2× 1.F . Let τodd(x) =
√

2 + x for x ∈ [0, 2[. The interval
[0, 2[is also split into 2k−1 sub-intervals [j

2k−2 ,
j+1
2k−2 [for j from 0 to 2k−1 − 1.

The reader may check that the index j consists of the same bits f−1f−2 · · · f−k+1 as in the even
case. On each of these sub-intervals, τodd(1 + j

2k−2 + y) is approximated by a polynomial qj
of same degree d.

We will use the FunctionEvaluator component presented in the previous chapter to implement
these two functions. Once d is chosen by the user we need to determine the minimum number
of intervals, given by k, such that max(|τ(y) − pj(y)|) < 2−wF−2 holds for both our cases [1, 2[
and [2, 4[. Due to the splitting strategy previously described kodd should equal keven in most cases.
Nevertheless, we cannot guarantee this without loosing efficiency. Once the smallest number of
intervals meeting the accuracy constraint has been found for the even case keven, it might not be
possible to meet the same accuracy constraint with kodd = keven. In such a case the table will not
be filled entirely and we must rely on the compilation tool to save the memory blocks associated
with the empty part of the table.

This way we obtain 2k polynomials, whose coefficients are stored in a ROM with 2k entries
addressed by A = e0f−1f−2 · · · f−k+1. Here e0 is the exponent parity, and the remaining bits are i
or j as above.

We choose to share the same hardware polynomial evaluator between the to implemented
functions, based on exponent parity. Nevertheless, if kodd = keven = k − 1 then the reduced
argument Y will not have the same weight in the two cases and will have to be tweaked before
feeding it to the evaluator:

– In the even case we have 1.f−1 · · · f−wF
= 1 + 0.f−1 · · · f−k+1 + 2−k+10, f−k · · · f−wF .

102

8.3 Results, comparisons, and some handcrafting 103

Listing 8.1 Emulate function for the polynomial approximating square root
1 void FPSqrtPoly::emulate(TestCase * tc){
2 mpz_class svX = tc->getInputValue("X"); /* Get I/O values */
3 FPNumber fpx(wE, wF);
4 fpx = svX;
5 mpfr_t x, r;
6 mpfr_init2(x, 1+wF);
7 mpfr_init2(r, 1+wF);
8 fpx.getMPFR(x);
9

10 if(correctRounding) {
11 mpfr_sqrt(r, x, GMP_RNDN);
12 FPNumber fpr(wE, wF, r);
13 /* Set outputs */
14 mpz_class svr= fpr.getSignalValue();
15 tc->addExpectedOutput("R", svr);
16 }else { // faithful rounding
17 mpfr_sqrt(r, x, GMP_RNDU);
18 FPNumber fpru(wE, wF, r);
19 mpz_class svru = fpru.getSignalValue();
20 tc->addExpectedOutput("R", svru);
21
22 mpfr_sqrt(r, x, GMP_RNDD);
23 FPNumber fprd(wE, wF, r);
24 mpz_class svrd = fprd.getSignalValue();
25 /* Set outputs */
26 tc->addExpectedOutput("R", svrd);
27 }
28 mpfr_clears(x, r, NULL);
29 }

– In the odd case, we need the square root of 2× 1.F
= 1f−1.f−2 · · · f−wF
= 1 + f−1.f−2 · · · f−k+1 + 2−k+20, f−k · · · f−wF .

As we want to build a single fixed-point architecture for both cases, we align both cases:
y = 2−k+2 × 0, 0f−k · · · f−wF in the even case, and
y = 2−k+2 × 0, f−k · · · f−wF 0 in the odd case.
Figure 8.4 presents the generic architecture used for the polynomial evaluation. The internal

datapath of the Horner evaluator is trimmed to the bare minimum such that the error budget of
2−wF−1 − δ is still met. For a more detailed insight of corresponding techniques used to minimize
hardware evaluation please consult chapter 7.

8.3 Results, comparisons, and some handcrafting

Table 8.1 summarizes the actual performance obtained from the polynomial square root from
the FloPoCo 2.2.2. All these operators have been tested for faithful and correct rounding, using
FloPoCo’s testbench generation framework. The code of the emulate() function for the square
root operator is given in Listing 8.1. We can observe the simplicity of this function describing the
functionality of the proposed architectures. The same correctly rounded branch is also used to test
the FloPoCo digit-recurrence version.

The polynomials are obtained completely automatically using FunctionEvaluator operator.
When compared with our results previously published in 2010 [64], we have considerably im-
proved the heuristics that define the coefficient sizes and and we now also use truncated multi-
pliers within our generic polynomial approximator which severely reduce DSP usage. The line
for double-precision 2010 version in table Table 8.1 uses 26 DSP blocks whereas the actual version
available with FloPoCo 2.2.2 requires just 10 DSPs for roughly 1K slices more. Conservatively es-
timating that implementing the functionality of the DSP block requires 350 slices (DSP blocks also

103

104 Chapter 8. Multiplicative square root algorithms

>>8

×

+

9
17

17
34
19

×
17

+
27

51
19

r̃2

50r̃2

+

wF + 1

26

+

00

27

Y

17

17

19

+

16

C1

C2

C0

53

8

17

9

1.F 2
R

−

Y
C2

Y C2

C1

C1 + Y C2

Y

Y (C1 + Y C2)

C0

C0 + Y (C1 + Y C2)

2× 1.Fx
1.Fx

1

10

17

17

19

faithful wF

correctly rounded

full datapath
faithful

correct rounded

f−8f−9...f−23e0f−1...f−7 e0

...

...
Fraction
Alignment

faithful result

26

oddeven
>

Coefficient
Table

1 01
fracX25

RcorrectRfaithful

10

10

>

1

Figure 8.5 Handcrafted architecture for single precision

count adders and pipeline registers not accounted for here) we can state that we manage to save
13 DSPs for double precision.

Even so, we still think that there is place for improvement. For illustration, compare the two
first lines of Table 8.1. The first was obtained one year ago, as we started the work by design-
ing by hand a single-precision square root using a degree-2 polynomial (Figure 8.5 presents the
architecture and the corresponding operand alignments of the datapath). In this context, it was
an obvious design choice to ensure that both multiplications were smaller than 17 × 17 bits. Our
current heuristic manages to obtain the same numbers as our handcrafted version for BRAM and
DSP count, but it is a bit larger and takes more cycles to compute.

We also hand-crafted a correctly rounded version of the single-precision square root, Fig-
ure 8.5, adding the squarer and correction logic described in Section 8.1.2. One observes that it
more than doubles the DSP count and latency for single precision (we were not able to attain the
same frequency but we trust it should be possible). For larger precisions, the overhead will be pro-
portionally smaller, but disproportionate nevertheless. Consider also that the correctly rounded
multiplicative version even consumes more slices than the iterative one. Indeed, it only has the
advantage of latency.

8.4 Conclusion and future work

In this chapter we have investigated the best way to compute a square root on a recent FPGA
by comparing a state-of-the-art pipelining of the classical digit recurrence, and an original poly-
nomial evaluation algorithm. For large precisions, the latter has the best latency, at the expense
of an increase of resource usage. We also observe that the cost of correct rounding with respect to
faithful rounding is quite large, and therefore suggest sticking to faithful rounding. In the wider
context of FloPoCo, a faithful square root is a useful building block for coarser operators, for in-
stance an operator for

√
x2 + y2 + z2 (based on the sum of square presented in chapter 4) that

would be faithful itself.

104

8.4 Conclusion and future work 105

Considering the computing power they bring, we found it surprisingly difficult to exploit the
embedded multipliers to surpass the classical digit recurrence in terms of latency, performance
and resource usage. However, as stated by Langhammer [102], embedded multipliers also bring
in other benefits such as predictability in performance and power consumption.

Future works include a careful implementation of a high-radix algorithm, and a similar study
around division. The polynomial evaluator that was refined along this work can be used as a
building block for many other elementary functions as Chapter 9 will show for the exponential
function.

Stepping back, this work asks a wider-ranging question: does it make any sense to invest in
function-specific multiplicative algorithms such as the high-radix square root (or the iterative exp
and log of [74], or the high-radix versions of CORDIC [123], etc)? Or won’t a finely tuned poly-
nomial evaluator, computing just right at each step, be just as efficient in all cases? It seems to be
a good idea to invest in function-specific multiplicative algorithms for software implementations
of elementary functions [119, 56]. However, for FPGAs which have smaller multiplier granular-
ity, and logic, a finely tuned polynomial evaluator, computing just right at each step, might be as
performant, while being generic.

Thanks

The work presented in this chapter is based on a collaboration with Mioara Joldes and Guil-
laume Revy. I would also like to thank Claude-Pierre Jeannerod for the insightful discussions
on the published article on this subject, and also Marc Daumas for pointing to us the high-radix
recurrence algorithm. I would also like to thank Jérémie Detrey for this implementation of the
digit-recurrence algorithm from FPLibrary, which was recoded in FloPoCo for comparison pur-
poses.

105

9 CHAPTER 9

Floating-point exponential

The exponential function is, after the basic arithmetic operators, one of the next most useful
building block for floating-point applications. On FPGAs, it has been used for scientific or finan-
cial Monte-Carlo simulations [79], for SPICE simulation [94], in phylogenetic tree reconstruction,
in quantum chemistry simulations, and in the implementation of the power function [78] among
others [156].

9.1 Related work

Several publications have described exponential implementations. Earlier works targeted sin-
gle precision, first by adapting to FPGAs a software algorithm based on floating-point operations
[76], then by using a more efficient fixed-point architecture [70]. This architecture was later im-
proved [79], however the table-based method used there doesn’t scale up to double-precision, as
the size of the tables grows exponentially with the mantissa size.

As FPGAs are increasingly being used for double-precision floating-point, iterative architec-
tures that scale better [80, 158, 129] were adapted for FPGAs [74]. The architecture in [74] was
designed with 5-input LUTs in mind, but is poorly suited to DSP-enabled FPGAs, as Section 9.4.2
will show. It was parameterized in precision, but to our knowledge was never pipelined. Another
pipelined, but double-precision only implementation was proposed in [154, 155].

In [132], a CORDIC-based approach using several parallel CORDIC cores was proposed. It has
a complex control logic including input and output FIFOs. Being radix-2 CORDIC, it computes
one digit per iteration and thus has a very long latency. Moreover, it is based on a floating-point
adder, whereas CORDIC is inherently a fixed-point computation, so there is probably room for
improvement there.

From a user point of view, the current state of the art is probably the floating-point exponential
function ALTFP_EXP provided with Altera Megawizard since 2008 [102]. This implementation is
parameterized in exponent and mantissa size and fully pipelined. Being included in the standard
Quartus releases, it is widely available, although only for Altera targets.

Many other publications have addressed the computation of exponential function in ASIC, e.g.
[80, 158, 152, 129]. However, it is difficult to evaluate the relevance of such works on FPGAs.

In the present chapter, we propose yet another architecture for the floating-point evaluation
of the exponential function, and its implementation in the open-source FloPoCo project. Its main
specificities are the following.

– The algorithm, based on the usual multiplicative range reduction followed by a polynomial
approximation, was chosen with DSP blocks and embedded memories in mind, so it makes

108 Chapter 9. Floating-point exponential

1 ...

1

0 0 0 0 0 0 0 0

X X X X X X X X...

X X ...

1 0 0 0 X X X

X X X X X X X

...

x2

2

x
+

binary weights

−
w
F

0

Figure 9.1 Operand alignment for 1 + x+ x2/2 for x < 2−wF−2

efficient use of these resources. For instance, the single-precision version now involves just
one 17x17-bit multiplier and 18Kbits of dual-port memory, and runs at 375MHz on a Virtex-
4, which is a large improvement in all respects over the state of the art [79].

– As we believe that floating-point on FPGA should exploit the flexibility of the target and
therefore not be limited to IEEE single and double precision, the algorithm and implemen-
tation proposed here are fully parametrized in exponent and mantissa size. They scale to
double-precision and beyond.

– The implementation is pipelined to a user-specified frequency. It is last-bit accurate for all
supported mantissa sizes.

– The architectures are generated as synthesizable VHDL portable to any FPGA target. In
addition, many target-specific optimizations are performed by the FloPoCo framework.

– A novel variation of the KCM algorithm (which initially multiplies and integer by an integer
constant) was developed for multiplying an integer by a real constant.

– All this work is freely available as the FPExp operator of the FloPoCo project, since version
2.1.0. It comes with test vector generation. In general, it should be immediately usable for
application designers.

Section 9.2 gives an overview of the algorithm used, and Section 9.3 discusses some implemen-
tation choices. Section 9.4 compares implementation results with the literature, and Section 9.5
concludes.

9.2 Algorithm and architecture

The exponential function is defined on the set of the reals. However, in this floating-point
format, the smallest and largest representable numbers are:

exponent | 1. fraction value
Xmin 000...000 | 1.000...000 2−E0

Xmax 111...111 | 1.111...111 (2− 2−wF) · 22wE−1−E0

The exponential should return zero for all input numbers smaller than log(Xmin), and should
return +∞ for all input numbers larger than log(Xmax). In single precision (wE = 8, wF = 23),
for instance, the set of input numbers on which a computation will take place is [−88.03, 89.42]. In
addition, for small x we can use the Taylor series expansion of ex so we have ex ≈ 1 + x + x2/2.
As soon as x is smaller than 2−wF−2 the exponential will return 1. The operand alignment in
Figure 9.1 makes this clear.

The reduced exponent range of our implementation is presented in Figure 9.2. One conse-
quence is that testing a floating-point exponential operator should focus on numbers between
Xmin and Xmax. In FloPoCo’s testbench generator for FPExp, the exponent of the random inputs is
restricted to [−wF − 3, wE − 2].

108

9.2 Algorithm and architecture 109

 0

 1

0 log(Xmax)log(Xmin)

|x| < 2−wF−2

ex = 1

ex = +∞

ex = 0

Figure 9.2 The ranges of the input where the exponential takes specific values

9.2.1 Algorithm overview

The algorithm used is similar to what is typically used in software [112].
The main idea is to reduce X to an integer E and a fixed-point number Y such as:

X ≈ E · log 2 + Y (9.1)

where Y ∈ [−1/2, 1/2) – we will show in section 9.2.2 how to ensure this enclosure.
Then, we may then use the identity

eX ≈ 2E · eY (9.2)

soE is almost the exponent of the result, and eY almost the mantissa. Indeed, if Y ∈ [−1/2, 1/2),
we have eY ∈ [0.6, 1.7], and a mantissa must be 1.F ∈ [1, 2). Thus the exponent and mantissa of
the result may be obtained as {

R = 2E · eY if eY ≥ 1)
R = 2E−1 · (2eY) if eY < 1)

(9.3)

This test boils-down to testing the most significant bit of eY , and the multiplication by 2 is just
a shift.

The architecture of this operator is given on Figure 9.3. This figure also explicits the alignment
of the fixed-point data.

9.2.2 Range reduction

To implement equation (9.1), we have to implement an approximation of

E =

⌊
X

log 2

⌉
(9.4)

where bxe denotes the rounding of x to the nearest integer. Then,

Y = X − E × log 2. (9.5)

If computed infinitely accurately, this would ensure Y ∈ [− log 2
2 , log 2

2]. On one hand, this is not
ideal from an architectural point of view, as Y will later be input to a table and log 2

2 is not a power
of two (as log 2 ≈ 0.34, the next power of 2 is 1/2, so only 69% of the table would be used). On
the other hand, implementing (9.4) and (9.5) accurately enough would be expensive. A solution

109

110 Chapter 9. Floating-point exponential

Shift to fixed−point

ss s

normalize / round

binary weights

×1/ log(2)

× log(2)

eA eZ − Z − 1

Z

eZ − 1

eZ − Z − 1
+

SX EX FX

wE + wF + g + 1

ER FR

k

wF + g − k

wF + g − k + 1

MSBwF + g − k + 3

2 + wF + g

eA truncated
eZ − 1×

wF + g

k

wE + wF + g + 1

Xfix (Fixed-pointX)

Y
A Z

Xfix

−
w
F

−
g

−
k

0w
E

+
1

wF + g − k + 1

eA × (eZ − 1)
(truncated)

−
2
k

eY

eA
eA × (eZ − 1)

+

eA

0

− Xfix

A Z
Y = A+ Z

E × log 2

E

1 + wF + g

wE + 1

wE + wF + g + 1

wF + g − 2k

Figure 9.3 Architecture and fixed-point data alignment

to both problems is therefore a relaxed implementation of (9.4) that will save on the computation
of (9.4) and (9.5) while ensuring Y ∈ [−1/2, 1/2). The idea is that the computation of E can be
grossly approximate, as long as (9.5) is accurately implemented. The normalization process (9.3)
will take care of the cases where E was not directly computed as the exact result exponent.

As (9.4) and (9.5) are inherently fixed-point computations, the first task is to build a fixed-
point representation Xfix of the input X . The most significant bit (MSB) of this representation
is provided by the condition X > log(Xmax) ⇒ exp(X) = +∞, from which we deduce X >
2wE+1 ⇒ exp(X) = +∞. The MSB of Xfix should therefore have weight wE . The least significant
bit is provided by the condition X < 2−wF−2 ⇒ exp(x) = 1, which defines a LSB of weight
−wF − 2. Actually, we will improve this accuracy to −wF − g with g = 3 (see below in 9.3.2) to
allow for rounding error accumulation in these g guard bits.

Thus the shift to fixed point box on Figure 9.3 shifts the mantissa by the value of the exponent.
More specifically, if the exponent is positive, it shifts to the left by up to wE positions (more means
overflow). If the exponent is negative, it shifts to the right by up to wF + g positions. This box also
generates out-of-range signals (not shown on the figure).

Let us now turn to the relaxed computation of E which is an integer. Since it is almost the re-
sult’s exponent (of size wE), its size in bits will bewE+1, including one sign bit, the +1 preventing
overflow in the second case of (9.3).

Let us first determine the error we are allowed to perform in the relaxed computation of E.
We will denote this value by E′. This value is directly influenced by the relaxed version of Y ,

110

9.2 Algorithm and architecture 111

Y ′ ∈
[
−1

2 ,
1
2

]
.

We have Y ′ − Y ∈
[
−1

2 + log 2
2 , 1

2 −
log 2

2

]
=
[
−1+log 2

2 , 1−log 2
2

]
. But E′ − E, which defines the

maximum miss-computation of E is:

E′ − E =
Y − Y ′

log 2
∈
[
−1 + log 2

2 log 2
,
1− log 2

2 log 2

]
≈ [−0.22, 0.22]

This gives us a bound on the error when computing E′. Next, E = Xfix
1

log 2 . For simplic-
ity we denote C = 1

log 2 which gives the value of E, if computed accurately E = XfixC. The
miss-computed E′ = X ′fixC

′ where X ′fix is Xfix truncated to −wx precision, and C ′ is the constant
rounded-to-nearest on −wc bits of precision.

E′ − E = X ′fixC
′ −XfixC

= (X ′fixC
′ −X ′fixC) + (X ′fixC −XfixC)

= X ′fix(C ′ − C) + C(X ′fix −Xfix)

where C ′ − C represents the rounding error on C and is lower than 2−wc−1, X ′fix − Xfix is
truncation error on Xfix bounded by 2−wx . and X ′fix and C are the magnitudes of the operands.
The inequation:

(2wE − 1)2−wc + 1.4442−wx < 0.22

has a solution wx = 3 and wc = 8 for single precision. Which yields:

E′ =

⌊
bXfixc−3 ×

⌊
1

log 2

⌉
−8

⌉
(9.6)

Then, (9.5) may be implemented as

Y ′ = Xfix − E′ × log 2. (9.7)

This fixed-point subtraction cancels the integer part and the first bit of the fractional part.
In this work, we have also considered reducing to Y ∈ [0, 1) instead of Y ∈ [−1/2, 1/2). It

turns out that guaranteeing this enclosure, especially Y ≥ 0, is more expensive.

9.2.3 Computation of eY

Let us now turn to the computation of eY . From here on Y ∈ [−1
2 ,

1
2]. We use a second range

reduction, splitting Y as:

Y = A+ Z (9.8)

where A consists of the k most significant bits of Y , and Z consists of the wF + g − k least
significant bits. Then we have

eY = eA+Z = eA · eZ . (9.9)

Here eA will be tabulated in a table indexed by A, and Z is small enough to enable us to use
the Taylor formula

eZ ≈ 1 + Z + Z2/2 + ... (9.10)

This formula has the advantage that the three first coefficients are powers of two, therefore the
corresponding multiplications can be mere shifts. Actually we define

111

112 Chapter 9. Floating-point exponential

f(Z) = eZ − Z − 1 (9.11)

From 0 ≤ Z < 2−k and eZ − Z − 1 ≈ Z2/2 + ..., we know that the MSB of f(Z) has weight
−2k − 1. As f(Z) will be added to Z, its LSB should have the same weight −wF − g. The useful
size of f(Z) is therefore wF + g − 2k. As a consequence, we do not need to compute it out of all
the bits of Z. Truncating Z to its wF + g− 2k MSBs will entail an error of roughly the same weight
as the error entailed by the fixed-point format of f(Z).

Out of Z and f(Z), we compute eZ − 1 = f(Z) + Z. This addition may overflow, so the result
is on wF + g − k + 1 bits, one more bit than Z.

If 1 + wF + g < 17, the final multiplication eY = eA · eZ may be computed directly as a single
DSP block. For larger precisions, the cost of this multiplication is reduced by implementing it as

eA · (1 + Z + f(Z)) = eA + eA · (Z + f(Z)) (9.12)

Again, the two addends have LSB weight −wF − g. Again, the multiplier inputs need not be
more accurate than their output, so we truncate eA to its LSB wF + g − k + 1 bits.

As we need to truncate the result of this multiplier, we may as well use, for large precisions,
truncated multipliers to save DSPs and possibly reduce latency.

A final normalization step possibly shifts left the mantissa by one bit, then performs the final
rounding. The rounding consists in possibly adding one bit, then truncating. The IEEE-754 format
has the nice property that we may use an adder of size wE +wF + 1 to add the rounding bit to the
concatenated exponent and mantissa: carry propagation from mantissa to exponent will handle
the possible exponent change due to rounding up.

9.3 Implementation issues

This computation involves several approximation and rounding errors. The purpose of this
section is to guarantee faithful rounding, ie. an error of less than one unit in the last place (ulp)
of the result. Here the ulp has the value 2−wF , the weight of the last bit of the mantissa 1.F of the
result.

9.3.1 Constant multiplications

As both constant multiplications (by 1/ log 2 and log 2) multiply a large constant by a small
input, it is natural to use the KCM algorithm [51]. For the larger multiplication by the real value
log 2, we actually use a variation that is original to our knowledge and that we briefly present now.

Assume we need to multiply a n-bit integer E by a real constant K (here K = log 2), and we
want an m-bit result with m ≥ n. The usual techique is to first round the constant to precision m,
then use a fixed-point multiplier (that returns an n + m-bit result), then again round the result to
m bits. We have two roundings to m bits that each introduces one half-ulp of error on the result,
so the final result is accurate to 1 ulp. This accuracy can be improved by rounding the constant to
more than m bits. On the implementation side, the multiplication by a constant can use the KCM
algorithm [51], and the final rounding costs one addition (truncation is also possible, but then the
total error is above 1 ulp). The following technique attains the same accuracy, saving hardware in
the KCM, and without needing this final adder.

Let α be the LUT input size of the target FPGA. The input E is split into chunks of size α:

E =

p∑
i=0

2iαEi

112

9.3 Implementation issues 113

X0X2 X1

γ

K

KX0+u/2

×

+ KX1

KX2

KX

Figure 9.4 Improved accuracy constant multiplication

therefore

KE =

p∑
i=0

2iαKEi .

We tabulate in LUTs each product 2iαKEi on just the required precision, so that its LSB has
value 2−γuwhere u is the ulp of the result. Here γ is again a number of guard bits. Each table may
hold the correctly rounded value of the product of Ei by the real value log 2 to this precision, so
entails an error of 2−γ−1 ulp. Finally, the first table actually holdsKE0 +u/2, so that the truncation
of the sum will correspond to a rounding of the product. The value of γ is chosen to ensure 1-ulp
accuracy. Figure 9.4 presents the operator alignment for this operator when multiplying a n-bit
variable by a real constant.

This operator is implemented generically as the FixRealKCM operator in FloPoCo. Back to the
exponential, as α ∈ {4..6} for current FPGAs, and practical values of E are smaller than 15, the
value γ = 2 is usually enough to ensure that this multiplier returns a faithful multiplication by
log 2. For the multiplier by 1/ log 2 we manually set γ = 3 to mimic (9.6).

9.3.2 Overall error analysis

In the following, all the errors will be expressed in terms of unit in the last place of Y , which has
the value 2−wF−g. Thus errors expressed this way can be made as small as required by increasing
g.

First, note that the argument reduction is not exact. As already stated, numerical errors in the
computation (9.6) ofE mostly impact the range of Y . Concerning the computation of Y (9.1), there
are two exclusive cases:

– If X is large (its exponent is larger than −2), its mantissa is shifted without loss of informa-
tion, then the computation of E × log 2 introduces at most one ulp of error in Y as seen in
9.3.1.

– Or, X is small, its mantissa is shifted right beyond the ulp, so its LSBs are lost, which also
entails an error of one ulp in Y . However, in this case E = 0, so the computation of E× log 2
is exact.

In both cases we may thus have an error of at most one ulp on Y . Let us now see how it propagates
to eY .

eA is tabulated rounded to the nearest, thus with an error of 1/2 ulp.
eZ − Z − 1 is either tabulated (1/2 ulp) or evaluated through polynomial approximation (1

ulp). As the higher order bits of Z are used, the error on Y (which is the error on Z) is scaled
down and becomes negligible.

113

114 Chapter 9. Floating-point exponential

Then eY − 1 adds the error on Z and the error on eZ − Z − 1, and thus holds an error of 1.5 or
2 ulps.

The error on the other input to the multiplier (eA truncated) is of one ulp. The product adds
these error as (a+ ε)× (b+ ε′) = ab+ bε+ aε′ + εε′. Here is another subtlety. This formula shows
that the error on eZ−Z−1 is scaled by the value of eA. Fortunately, the worst case error will occur
for eA < 1, since in this case the result will be shifted left by one bit. In the case eA > 1 the error on
eZ − Z − 1 may be scaled up (by up to 1.6) but we will have in this case the extra bit of precision
needed for the other case, so it doesn’t matter.

Truncating the multiplier result would yield another error of one ulp, however we may instead
round it (1/2 ulp only) at very little cost by adding its round bit to the right of eA, so the addition
of eA will also compute the rounding of the product.

Finally the product holds an error of 3 or 3.5 ulps.
Adding the error on eA, we deduce that the error on eY may be up to 3.5 ulp in the dual table

case, and 4 ulp in the polynomial case.
If eY < 1 the final 1-bit shift will multiply this error by 2, so we need g = 3 guard bits.
Previous works need more guard bits for the same final accuracy (5 guard bits in [70], 8 in

[132] for instance), hence a wider datapath. This improvement in the present work is partly due
to a finer error analysis, partly to a refined implementation, in particular of the multiplication by
log 2. It is proportionally more important for lower precisions.

However, our implementation also allows increasing the parameter g beyond this minimal
value of 3. More guard bits will mean a larger percentage of correctly rounded results. This pos-
sibility is also useful when building larger faithful operator based on the exponential, for instance
the power function [78] (under development in FloPoCo).

9.3.3 The case study of single precision

Setting wF = 23 and g = 3 in the previous architecture, it turns out that k = 9 allows for a
highly efficient architecture on recent FPGAs.

Firstly, we need altogether 29 × 27 bits of RAM for eA and 29 × 9 bits for eZ − Z − 1. We can
group both tables in a single 29× 36 table with dual-port access. This perfectly matches one Xilinx
BlockRAM, or two Altera M9K.

Secondly, the multiplication is now 18x18 bits, unsigned. This perfectly matches the DSP
blocks of Altera chips. On Xilinx chips up to Virtex-4, the multipliers are able of 17x17 unsigned,
so the cost is one DSP block plus two 18-bit additions. On Virtex-5 the DSP block is able of 17x24
unsigned, so we only need one addition. One more trick allows us to hide the latency of this
addition. We choose to input eA on 17 bits only instead of 18. To keep the same error bound of
one ulp, we now need to round it to 17bits. This rounding requires an addition (so there is no
saving compared to extending the multiplier input to 18 bit), but this addition is now before the
multiplier, in parallel to the addition of Z to eZ − Z − 1.

9.3.4 Polynomial approximation for large precisions

For larger values of wF , the generic polynomial evaluator presented in chapter 7 is used as
a black box. It inputs a function of [0, 1] → [0, 1] (here e2−kx − 2−kx − 1) with its input and
output precisions (given on Figure 9.3) and a degree, and implements a piecewise polynomial
approximation. The input interval is decomposed into smaller intervals, and the number of such
intervals is computed so that the generated architecture returns a faithfully rounded result. The
architectures are optimized for the target FPGA (currently Xilinx Virtex-4, Virtex-5 and Virtex-6,
and Altera Stratix II to IV), making efficient use of the DSP blocks to attain high frequencies.

114

9.3 Implementation issues 115

address

0 −
1
8

−
9

−
5
2
−
3
+
9

−
5
2
−
3

−
2
7

−
3
6

...

...

...

...

A 9

29 × 95 3BRAM

23 32

48 23 33

0
29

62

40

70 37
250

Z28

0

×

+

+

×

Coefficient ROM

a2 a1 a0

sign

a2

a1

a0

sign

eZ − Z − 1

tr
un

c

tr
un

c

trunc

r

Y

Figure 9.5 The architecture evaluating eZ − Z − 1 for Virtex-5/Virtex-6

One advantage of this approach is that it is DSP- and memory-based. Another one is its gener-
icity, as future improvements to the polynomial evaluator will immediately benefit the exponen-
tial. This includes the adaptation of the polynomial evaluator to newer FPGAs, but also perfor-
mance improvements. For instance, we have improved the polynomial evaluator so that it can
make use of truncated multipliers to reduce the DSP count, and this has improved FPExp.

More specifically, the function evaluated here is easy to approximate by a low-degree poly-
nomial approximations. It turns out that degree 2 is enough for precision up to double-extended
precision.

9.3.5 Parameter selection

We now have two parameters to set: k, that fixes the input to the eA table, and the degree d
of the polynomial, that fixes the trade-off between area of the coefficient table and DSP count/la-
tency. We have varied these parameters to obtain the best trade-offs, that is a an architecture well
balanced between DSP and memory consumption, with memories as full as possible and multi-
pliers used as fully as possible. For instance, for double precision, on all targets the best choice
is k = 9 and a degree-2 approximation on 512 intervals. The FPExp operator provides a good
default choice of these parameters, and an expert mode allows the user to set them manually for
a different trade-off.

Figure 9.5 details one instance of this architecture for Virtex-5/6.

115

116 Chapter 9. Floating-point exponential

Table 9.1 Synthesis results of the various instances of the floating-point exponential operator. We
used QuartusII v9.0 for StratixIII EPSL50F484C2 and ISE 11.5 for VirtexIV XC4VFX100-12-ff1152,
Virtex5 XC5VFX100T-3-ff1738 and Virtex6 XC6VHX380T-3-ff1923

Precision FPGA Tool
Performance Resource Usage

f (MHz) Latency Logic Usage DSPs Memory(A)LUTs Reg. Slice

(8,23)

StratixIII
Altera MegaWizard 274 17 527 900 - 19 18-bit elem. 0

ours 391 6 832 374 - 2 18-bit elem. 0
405 7 519 382 - 2 M9K

VirtexII 1000 [74] 1/123ns 0 728 0 0

VirtexIV ours 313 14 613 469 338 1 DSP48 1 BRAM208 7 584 245 318

Virtex5 ours 349 12 520 436 - 1 DSP48E 1 BRAM197 6 488 215 -

Virtex6 ours 401 10 507 458 - 1 DSP48E1 1 BRAM265 5 445 169 -

(10,40)

Virtex4 ours* (k=5,d=2) 320 29 1798 1529 1067 11 DSP48 3 BRAM
Virtex5 ours (k=5,d=2) 310 26 1192 1035 - 8 DSP48E 3 BRAM
Virtex5 ours* (k=5,d=2) 216 16 1003 586 - 8 DSP48E 3 BRAM
Virtex6 ours (k=5,d=2) 396 23 1182 1008 - 8 DSP48E1 3 BRAM
Virtex6 ours* (k=5,d=2) 225 14 1058 475 - 8 DSP48E1 3 BRAM

(11,52)

StratixIII
Altera MegaWizard 213 25 2941 1476 - 58 18-bit elem. 0

ours 327 29 1307 3757 - 22 18-bit elem. 10 M9K256 15 1437 1984 -
VirtexII 1000 [74] 1/229ns 0 2045 0 0

VirtexIV

[154] ? 0 1293 105 71 DSP48 6 BRAM
[155] 200 30 13614 19704 0 29 BRAM

[132] (CORDIC) 5.25clk@100Mhz >61 23455 36 DSP48

ours 319 37 2460 2336 1596
14 DSP48 5 BRAM178 23 2128 1361 1154

Virtex5 ours 334 32 1930 1792 -
9 DSP48E 5 BRAM165 18 1647 917 -

Virtex6 ours 407 27 1846 1693 - 9 DSP48E1 5 BRAM225 15 1748 738 -

(15,64) Virtex6 ours (k=11, d=2) 353 40 4410 3352 - 17 DSP48E1 7 BRAM

(15,112) Virtex6 ours (k=11, d=4) 360 63 12467 9859 - 61 DSP48E1 17 BRAM

9.4 Results

9.4.1 Synthesis results

Table 9.1 provides synthesis results for several precisions and several FPGA targets, and com-
pares with results from previous works. Our approach is clearly the most efficient of the literature
for all the precisions. It combines very high frequency (close to the nominal DSP block frequency),
the lowest DSP and memory consumption, portability to both Xilinx and Altera targets, last-bit
accuracy, flexibility in precision, and also flexibility in terms of latency versus frequency.

Note that the synthesis on Stratix III reports 2 DSP blocks for single precision. One is actually
unused. The coarse-grain DSP block structure of Altera chips since Stratix III prevent using the
18×18-bit multipliers completely independently.

Of special interest is the last line of this table, which shows that even a quadruple-precision
exponential function will consume only one tenth of the resources of a high-end FPGA while still
running at a very high frequency.

9.4.2 Comparison with other works

In [74], a double-precision combinatorial operator consumes, on VirtexII, 2045 slices for a de-
lay of 229 ns. To our knowledge, it was never pipelined, but we estimate that a high-frequency
pipelined would require a doubling of the area and roughly 40 cycles.

116

9.5 Conclusion and future work 117

In addition, this architecture was based on tables inputting α bits and rectangular multipliers
where one dimension was also α (an integer parameter) and the other dimension varied from α
to the mantissa size. This was a good design choice for LUT-based FPGAs, but it poorly matches
the capabilities of the DSP blocks and embedded memories of modern FPGAs. For a short latency,
and to use the DSP blocks optimally, one should choose α = 17, but then the tables would be much
too large (217 entries). Or, one should chose α ≈ 10, but then the DSPs would be underutilized.

As Altera Megawizard produces readable source files, we analyzed the algorithm used for
double precision. The range reduction is the usual one, and the architecture diverges only for
the computation of eY . Altera’s architecture is based on a decomposition of the input as Y =
Y0 + Y1 + Y2 + YL where Y0 consists of the 9 leading bits, Y1 and Y2 consist of the two following
9-bit chunks, and YL consists of the remaining lower bits. The exponential is computed as eY =
(ey0 × ey1) × (ey2eyL), where the three first terms are simply read from tables with 29 entries, and
eyL is approximated as the Taylor polynomial eYL ≈ 1 + YL. This is very similar to the method
proposed by Wielgosz et al [154, 155], and both were probably designed independently. However
the Altera implementation is generic in precision.

This approach has a potential of lower latency, as the multipliers are organized in tree, and not
in sequence as in our proposal. Its drawback is that it doesn’t exploit the structure of the numbers.
Indeed, the three multiplications are of size roughly 60×60 bits. However, ey1 , ey2 , and eyL are all
of the form 1 + ε, so at the bit level, we have a lot of predictable multiplications by 0, for which the
hardware could be saved. Table 9.1 illustrates this waste of resource compared to our approach.

We also remark in Table 9.1 that the Altera ALTFP_EXP operators do not use 9Kbit embedded
memories, although this design would be a perfect match for them (it should consume (61 + 51 +
42)/18 = 9 of them, with a corresponding huge reduction in logic resources).

A final remark is that the two references by Wielgosz et al. [154, 155] seem to use the same
architecture, however the first one reports results using DSP blocks, while the second one replaces
all the DSPs with logic. This actually makes sense, since in this case the parts of the large multi-
pliers that multiply by zero will indeed be optimized out by the synthesizer.

9.4.3 Comparison with microprocessors

This table allows us to compare the theoretical peak performance, in terms of floating-point
exponentials, of a large FPGA and a high-end processor. These numbers, of course, should be
taken for what they are, as they ignore the critical issue of data movements [155].

The largest Virtex-6 FPGA (XC6VSX475T) could accommodate 168 double-precision exponen-
tial cores running above 400 MHz, thus providing a theoretical peak performance over 60 giga
double-precision exponentials per second (GDPexp/s).

For a fair comparison, we have to compare to the highest performance software implementa-
tion currently available, one which was tuned with comparable effort. To our knowledge, it is the
Intel Vector Math Library (VML), which can achieve a peak of 6 cycles/DPExp on Itanium-2 or
Core i7. On an 8-core processor running at 3GHz, we obtain a peak performance of 4 GFPExp/s,
with a speed-up of 15 in favor of the FPGA. On single precision, the numbers are in excess of
400GSPExp/s for the FPGA while the performance of VML is only improved to 6GSPExp/s. The
FPGA speed-up is now above 60.

9.5 Conclusion and future work

We have presented in this chapter a state-of-the-art floating-point exponential operator gen-
erator. It produces last-bit accurate architectures for a wide range of FPGA targets, for a wide

117

118 Chapter 9. Floating-point exponential

range of precisions up to IEEE-754-2008 quadruple precision, and for a wide range of latency/fre-
quency trade-offs. It is designed to make good use of the DSP blocks and embedded memories of
high-end FPGAs, and outperforms previous works in performance and resources consumption.

Hopefully, other elementary function of the same quality will join the exponential, forming
a complete open-source mathematical library for FPGAs. To this purpose, the case study of the
exponential has already lead to improvements in the pipeline framework and the generic poly-
nomial approximator. These will be improved further. This work also suggests that the FloPoCo
framework could be enhanced by attaching an optional fixed-point semantics to the signals, which
is being investigated.

118

10 CHAPTER 10

Floating-point accumulation and
sum-of-products

Summing many independent terms is a very common operation. Scalar product, matrix-vector
and matrix-matrix products are defined as sums of products. Numerical integration usually con-
sists in adding many elementary contributions. Monte-Carlo simulations also involve sums of
many independent terms. Many other applications involve accumulations of floating-point num-
bers, and some related work will be surveyed in section 10.4.

If the number of summands is small and constant, one may build trees of adders, but to ac-
commodate the general case, it is necessary to design an iterative accumulator, illustrated by Fig-
ure 10.1.

It is a common situation that the error due to the computation of one summand is independent
of the other summands and of the sum, while the error due to the summation grows with the
number of terms to sum. This happens in integration and sum of products, for instance. In this
case, it makes sense to have more accuracy in the accumulation than in the summands.

A first idea is to use a standard floating-point adder, possibly with a larger significand than
the summands. The problem is that FP adders have long latencies: typically l = 3 cycles in a
processor, up to tens of cycles in an FPGA (see Table 10.1). This is explained by the complexity of
their architecture, illustrated on Figure 10.2. This long latency means that an accumulator based
on an FP adder will either add one number every l cycles, or compute l independent sub-sums
which then have to be added together somehow. This will add to the complexity and cost of the
application, unless at least l accumulations can be interleaved, which is the case of large matrix
operations [162, 44]. In addition, an accumulator built out of a floating-point adder is inefficient,
because the significand of the accumulator has to be shifted, sometimes twice (first to align both
operands and then to normalise the result, see Figure 10.2). These shifts are in the critical path of
the loop of Figure 10.1.

In this chapter, we suggest building an accumulator of floating-point numbers which is tai-
lored to the numerics of each application in order to ensure that (1) its significand never needs to

accumulated value

register

input (summand)

Figure 10.1 Iterative accumulator

120 Chapter 10. Floating-point accumulation and sum-of-products

sign and exception handling

X

X Y EX − EY

Y

MY

MYMX

M ′
Z

EX

FZ
k

EZ

EX

FZ

M ′
Z

MX
M ′

Y

Z

wE + wF + 3 wE + wF + 3

wE + wF + 3 wE + wF + 3

wF + 1wF + 1wE

wF + 3

dlog (wF + 3)e

wE + 1

wF + 1
wF + 1

wE
wF + 4

wF + 1
wF + 4

wF + 1

wE

wE + wF + 2

wE + wF + 3

close/far

+/–

final normalization

LZC

shift/round
round

shift

/

swap/difference

far path
close path

Figure 10.2 A typical floating-point adder (wE and wF are the exponent and significand sizes)

be shifted, (2) it never overflows and (3) it eventually provides a result that is as accurate as the
application requires. We also show that it can be clocked to any frequency that the FPGA sup-
ports. We show that, for many applications, the determination of operator parameters ensuring
the required accuracy is easy, and that the area can be much smaller for a better overall accuracy.
Finally, we combine the proposed accumulator with a modified, errorless FP multiplier to obtain
an accurate application-specific dot-product operator.

10.1 A fast and accurate accumulator

This section presents the architecture of the proposed accumulator. Section 10.2 will discuss
the determination of its many parameters in an application-specific way.

10.1.1 Overall architecture

The proposed accumulator architecture, depicted on Figure 10.3, removes all the shifts from
the critical path of the loop by keeping the current sum as a large fixed-point number. In this figure
only the registers on the accumulator itself are shown. The rest of the design is combinatorial and
can be pipelined arbitrarily. There is still a loop, but it is now a fixed-point addition for which
current FPGAs are highly efficient. Specifically, the loop involves only the most local routing, and
the dedicated carry logic of current FPGAs provides good performance up to 64 bits. For instance,
a Virtex-4 with speed grade −12 runs such a 64-bit accumulator at more than 220MHz, while
consuming only 64 LUTs. Section 10.1.3 will show how to reach even larger frequencies and/or
accumulator sizes.

For clarity, some details are not shown on this figure. In particular, LongAcc also outputs three
sticky bits (input overflow, input underflow, and accumulator overflow), and manages exceptional
cases (infinities and Not-a-Number).

Figure 10.4 illustrates the accumulation of several floating-point numbers (represented by their
significands shifted by their exponent) into such an accumulator.

120

10.1 A fast and accurate accumulator 121

L
o
n
g
A
c
c
2
F
P

L
o
n
g
A
c
c

wA

shift value

mantissa

carry in

MaxMSBX − LSBA + 1

MaxMSBX

exponent

wE wF

sign

mantissa signexponent

fixed-point sum

registers

w′F

wA

w′E

carry propagation

LZC + shifter

Input Shifter

1’s complement

2’s complement

Figure 10.3 The proposed accumulator (top) and post-normalisation unit (bottom).

The shifters now only concern the summand (see Figure 10.3), and, being combinatorial, can
be pipelined as deep as required by the target frequency.

As seen on Figure 10.3, the accumulator stores a two’s complement number while the sum-
mands use a sign/magnitude representation, and thus need to be converted to two’s complement.
This can be performed without carry propagation: If the input is negative, it is first complemented
(fully in parallel), then a 1 is added as carry-in to the accumulator. All this is out of the loop’s crit-
ical path, too.

10.1.2 Parameterisation of the accumulator

Let us now introduce, with the help of Figure 10.4, the parameters of this architecture.

000

0 0000

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

000 0 0 0 0 00 0 0 0 0

1

1

1 1 0 00

1

1 1

1 1

1

1 1 1 1 1 1

1111

100 1 1 1 1 1 1 101010 0

0000 11111

wA = MSBA − LSBA + 1

Accumulator

wF + 1 LSBA = −12MaxMSBX = 8MSBA = 16

fixed point

Summands (shifted mantissas)

Figure 10.4 Accumulation of floating-point numbers into a large fixed-point accumulator

121

122 Chapter 10. Floating-point accumulation and sum-of-products

– wE and wF are the exponent size and significand size of the summands
– MSBA is the position of the most-significant bit (MSB) of the accumulator. If the maximal

expected sum is smaller than 2MSBA , no overflow ever occurs.
– LSBA is the position of the least-significant bit of the accumulator. It will determine the final

accuracy as Section 10.2 will show.
– For simplicity we note wA = MSBA − LSBA the width of the accumulator.
– MaxMSBX is the maximum expected position of the MSB of a summand. MaxMSBX may

be equal to MSBA, but very often one is able to tell that each summand is much smaller
in magnitude than the final sum. In this case, providing MaxMSBX < MSBA will save
hardware in the input shifter.

We strongly believe that for most applications accelerated using an FPGA, values of MaxMSBX ,
MSBA and LSBA can be determined a priori, using a rough error analysis or software profiling,
that will lead to an accumulator smaller and more accurate than the one based on an FP adder.
This claim will be justified in section 10.2.

This claim sums up the essence of the advantage of FPGAs over the fixed FP units available
in processors, GPUs or dedicated floating-point accelerators: We advocate an accumulator specif-
ically tailored for the application to be accelerated, something that would not be possible or eco-
nomical in a general-purpose FPU.

10.1.3 Fast accumulator design using partial carry-save

If the dedicated carry logic of the FPGA is not enough to reach the target frequency, a partial
carry-save representation allows to reach any arbitrary frequency supported by the FPGA. As
illustrated by Figure 10.5, the idea is to cut the large carry propagation into smaller chunks of k
bits (k = 4 on the figure), simply by inserting b(MSBA−LSBA)/kc registers. The critical path is now
that of a k-bit addition, and the value of k can therefore be chosen to match the target frequency.
This is a classical technique which was in particular suggested by Hossam, Fahmy and Flynn [82]
for use as an internal representation in processor FPUs. For k = 1 one obtains a standard carry-
save representation, but larger values of k are prefered as they take advantage of dedicated carry
logic while reducing the register overhead. The FloPoCo implementation computes k out of the
target frequency. For illustration, k = 32 allows to reach 400MHz on Virtex-4 and StratixII. The
additional hardware cost is just the few additional registers – 1/4 more in our figure, and 1/32
more for 400MHz accumulation on current FPGAs.

Of course, a drawback of the partial carry-save accumulator is that it holds its value in a non-
standard redundant format. To convert to standard notation, there are two options. One is to
dedicate b(MSBA − LSBA)/kc cycles at the end of the accumulation to add enough zeroes into the
accumulator to allow for carry propagation to terminate. This comes at no hardware cost. The
other option, if the running value of the accumulator is needed, is to perform this carry propaga-
tion in a pipelined way before the normalisation – this is the carry propagation box on Figure 10.3.
The important fact is again that this carry propagation is outside of the critical loop.

Figure 10.5 Accumulator with 4-bit partial carry-save. The boxes are full adders, bold dashes are
1-bit registers, and the dots show the critical path.

122

10.1 A fast and accurate accumulator 123

10.1.4 Post-normalisation unit, or not

Figure 10.3 also shows the FloPoCo LongAcc2FP post-normalisation unit, which performs the
conversion of the long accumulator result to floating-point.

Let us first remark, using a few examples, that this component is probably much less useful
than the accumulator itself.

In [57], the FPGA computes a very large integration – several hours – and only the final result
is relevant. In such applications, it makes no sense to dedicate hardware to the conversion of the
accumulator back to floating-point. FPGA resources will be better exploited at speeding up the
computation as much as possible, and FloPoCo provides a small helper program to perform this
conversion in software.

Another common case is that one needs one normalisation every N accumulations. For in-
stance, a dot product of vectors of size N accumulates N numbers before needing to convert the
result back to floating-point. Therefore, in matrix operations, one pipelined LongAcc2FP may be
shared betweenN dot product operators [162], at the cost of some multiplexers and routing. Alter-
natively, one may use N instances of LongAcc2FP running at 1/N the frequency of the accumulator
– they will be smaller. In both cases, it makes sense to provide LongAcc2FP as a separate compo-
nent, as on Figure 10.3. In the following we give separate synthesis results for the accumulators
themselves and the post-normalisation unit.

Note that the same discussion holds for an accumulator based on an FP adder of latency l (that
actually computes l intermediate subsums). If only the final sum is needed, it may be computed
in software at no extra hardware cost. However, if the running sum is needed at each cycle, it will
take l − 1 additions to get it [162, 44].

Back to LongAcc2FP, it mostly consists in leading-zero/one counting and shifting, followed by
conversion from 2’s complement to sign/magnitude, and rounding. If the accumulator holds a
partial carry-save value, the carries need to be propagated. This simply requires dwA/ke pipeline
levels, each consisting of one k-bit adder and dwA/ke − 1 registers of k bits, and it can actually be
merged with the 2’s complement conversion. Again, all this may be performed at each cycle and
pipelined arbitrarily.

10.1.5 Synthesis results

All the results presented here are synthesis results obtained for Virtex-4, speedgrade -12, us-
ing ISE 11.5 (before place-and-route) and for Stratix-III, fastest speedgrade, using Quartus 10.1
(post place-and-route on an empty FPGA). Post place-and-route results will depend on the FPGA
occupation and floorplanning.

Table 10.1 illustrates the performance of the proposed accumulator compared to one built us-
ing a floating-point adder from the Xilinx CoreGen tool. These operators are not functionally
equivalent. The FP adder-based accumulator either computes an accumulation every l-clock cy-
cles, either needs a supplementary reduction circuit to summing-up the l partial sub-sums. The
proposed accumulator is more accurate (Section 10.2.3 will study this quantitatively), but does not
return a normalized result as the accumulator based on an FP adder.

For each summand size, we build accumulators of twice the size of the input significand
(MSBA = wF , LSBA = −wF) for two configurations: a small one where MaxMSBX = 1, and a
larger one where MaxMSBX = MSBA = wF . For single and double precision we additionally list
one more configuration MSBA = wwE−1 + 22, LSBA = −(2wE−1 − 1) − wF where MaxMSBX =
2wE−1. This configuration allows error-free accumulation of at least 222 floating point numbers on
the entire floating-point range of SP (wE = 8, wF = 23) and DP (wE = 11, wF = 52). Again, these
results are for illustration only: an accumulator should be built in an application-specific way. As
section 10.2 will show, a typical accumulator will be between these configurations.

123

124 Chapter 10. Floating-point accumulation and sum-of-products

Summand FPGA Accumulator Synthesis Results
(wE , wF)

(7,16) Virtex-4
CoreGen FP adder (wE , wF) 317 slices 12 cycles 358 MHz
2wF accumulator MaxMSBX = 1 81 slices 3 cycles 451 MHz
2wF accumulator MaxMSBX = MSBA 110 slices 3 cycles 443 MHz

(8,23)
Virtex-4

CoreGen FP adder (wE , wF) 482 slices 13 cycles 486 MHz
2wF accumulator MaxMSBX = 1 110 slices 3 cycles 391 MHz
2wF accumulator MaxMSBX = MSBA 143 slices 3 cycles 385 MHz
22 + 2wE acumulator MaxMSBX = 2wE−1 537 slices 4 cycles 335 MHz

Stratix-III 2wF accumulator MaxMSBX = 1 164 ALUT 75 REG 2 cycles 491 MHz
2wF accumulator MaxMSBX = MSBA 189 ALUT 97 REG 2 cycles 495 MHz

(10,37)
Virtex-4

CoreGen FP adder (wE , wF) 633 slices 14 cycles 421 MHz
2wF accumulator MaxMSBX = 1 208 slices 3 cycles 363 MHz
2wF accumulator MaxMSBX = MSBA 271 slices 4 cycles 396 MHz

Stratix-III 2wF accumulator MaxMSBX = 1 257 ALUT 117 REG 2 cycles 454 MHz
2wF accumulator MaxMSBX = MSBA 312 ALUT 153 REG 2 cycles 442 MHz

(11,52)

Virtex-4

CoreGen FP adder (wE , wF) 839 slices 14 cycles 354 MHz
2wF accumulator MaxMSBX = 1 268 slices 3 cycles 350 MHz
2wF accumulator MaxMSBX = MSBA 361 slices 4 cycles 381 MHz
22 + 2wE acumulator MaxMSBX = 2wE−1 5496 slices 6 cycles 371 MHz

Stratix-III 2wF accumulator MaxMSBX = 1 384 ALUT 163 REG 2 cycles 451 MHz
2wF accumulator MaxMSBX = MSBA 463 ALUT 216 REG 2 cycles 460 MHz

Virtex-II
MPFA [92] 4991 slices 2 BRAM 207 MHz
AeMPFA [92] 3130 slices 14 BRAM 204 MHz
FAAC [146] 6252 slices 162 MHz

Table 10.1 Compared synthesis results for an accumulator based on FP adder, versus proposed ac-
cumulator with various combinations of parameters, for Virtex-4 and Stratix-III devices targeting
400 MHz.

We also give results for DP for three recently published architectures MPFA, AeMPFA from
[92] and FAAC from [146] which are complete solutions based on floating-point adders. All these
results are given for Virtex-II which essentially has the same architecture as Virtex-4 in what con-
cerns our accumulator but has lower frequencies.

Table 10.2 provides results for the LongAcc2FP post-normalization unit. The results prove the
portability of our proposed operator, providing good results on both Virtex-4 and Stratix-III FP-
GAs. Moreover, the integration of this operator into the FloPoCo framework allows exploring a
wide range of frequencies, which has in immediate impact on its area and latency, for selecting
the best suited operator for a given design.

10.2 Application-specific accumulator design

Let us now justify the claim, made in 10.1.2, that the few parameters of the proposed accumu-
lator are easy to determine on a per-application basis. We acknowledge that the main purpose
of floating-point is to free the designer from the painful task of converting a computation on real
numbers to fixed-point. Indeed, the proposed accumulator is definitely a floating-point operator,
and we hope to convince the reader that the effort it requires to set up is minimal.

10.2.1 A performance vs. accuracy tradeoff

First note that a designer has to provide a value for MSBA and MaxMSBX , but these values do
not have to be accurate. For instance, adding 10 bits of safety margin to MSBA has no impact on
the latency and very little impact on area. Now, from the application point of view, 10 bits means

124

10.2 Application-specific accumulator design 125

(wE , wF) FPGA Freq.(MHz) LongAcc2FP, 2wF → wF

(7,16)
Virtex-4

400 178 slices 9 cycles 445 MHz
200 116 slices 3 cycles 247 MHz
100 98 slices 1 cycles 85 MHz

Stratix-III 400 87 ALUT, 212 REG 7 cycles 461 MHz
200 151 ALUT, 91 REG 3 cycles 345 MHz

(8,23)
Virtex-4

400 234 slices 10 cycles 411 MHz
200 153 slices 3 cycles 195 MHz
100 136 slices 1 cycles 83 MHz

Stratix-III 400 120 ALUT, 275 REG 7 cycles 444 MHz
200 193 ALUT, 119 REG 3 cycles 361 MHz

(10,37)
Virtex-4

400 486 slices 13 cycles 364 MHz
200 282 slices 4 cycles 186 MHz
100 261 slices 2 cycles 101 MHz

Stratix-III 400 294 ALUT, 494REG 9 cycles 447 MHz
200 366 ALUT, 235REG 4 cycles 262 MHz

(11,52)
Virtex-4

400 659 slices 14 cycles 364 MHz
200 371 slices 4 cycles 182 MHz
100 386 slices 2 cycles 88 MHz

Stratix-III 400 370 ALUT, 779 REG 10 cycles 414 MHz
200 487 ALUT, 324 REG 4 cycles 254 MHz

Table 10.2 Synthesis results for a LongAcc2FP compatible with Table 10.1, rounding an accumu-
lator of size 2wF to an FP number of size wF . Virtex-4 results are obtained using ISE 11.5 and for
Stratix-III using Quartus 10.1 (after place and route)

3 orders of magnitude. For most applications, it is huge. A designer in charge of implementing
a given computation on FPGA is expected to understand it well enough to bound the expected
result with a margin of 3 orders of magnitude. An actual example is detailed below in 10.2.2.
As another example, consider a Monte Carlo simulation where the accumulation computes an
estimate of the value of a share. No share will go beyond, say, $100,000 before something happens
that makes the simulation invalid anyway.

It may be more difficult to evaluate MaxMSBX . In doubt, MaxMSBX = MSBA will do, but in
many cases application knowledge will help reduce it, hence reducing the input shifter size. For
instance, in Monte Carlo simulations, probabilities are smaller than 1. Another option is profiling.
A typical instance of the problem may be run in software, instrumented to output the max and
min of the absolute values of summands. Again, the trust in such an approach comes from the
possibility of adding 20 bits of margin for safety.

In some cases, the application will dictate MaxMSBX but not MSBA. In this case, one has to
consider the number n of terms to add. Again, one will usually be able to provide an upper bound,
be it the extreme case of 1 year running at 500MHz, or 253 cycles. In a worst-case scenario on such
simulation times, this suggests the relationship MSBA = MaxMSBX + 53 to avoid overflows. For
comparison, 53 is the precision of a DP number, so the cost of this worst case scenario is simply
a doubling of the accumulator itself, but not of the input shifter which shifts up to MaxMSBX
only. It will cost just slightly more than 53 LUTs in the accumulator (although much more in the
post-normalisation unit if one is needed).

The last parameter, LSBA, allows a designer to manage the tradeoff between precision and
performance. First, remark that if a summand has its LSB higher than LSBA (case of the 5 topmost
summands on Figure 10.4), it is added exactly, entailing no rounding error. Therefore, the pro-
posed accumulator will compute exactly if the accumulator size is large enough so that its LSB is
smaller than those of all the inputs. Conversely, if a summand has an LSB smaller than LSBA (case
of the bottommost summand on Figure 10.4), adding it to the accumulator entails a rounding error

125

126 Chapter 10. Floating-point accumulation and sum-of-products

of at most 2LSBA−1. In the worst case, when adding n numbers, this error will be multiplied by
n and invalidate the log2 n lower bits of the accumulator. A designer may lower LSBA to absorb
such errors, an example is given below in 10.2.2. A practical maximum is again an increase of 53
bits for 1 year of computation at 500MHz.

Here we have only discussed the errors due to the accumulation process. In practice, even
when a summand is added exactly, it is usually the result of some rounding, so it carries an error
of the order of its LSB, which it adds to the accumulator. These summand errors, which are
outside of the scope of this work (they can be reduced by increasing wF), will typically dwarf
the rounding errors due to the accumulator. This suggests that the previous worst-case analysis
will typically lead to an accumulator that is much more accurate (and bulky) than the application
actually requires.

All considered, it is expected that an accumulator will rarely need to be designed larger than
100 bits. Note that the fast carry chain of the smallest Virtex-4 already extends to 128-bit.

Finally, thanks to the sticky output bits for overflows in the summands and in the accumulator,
the validity of the result can be checked a posteriori.

10.2.2 A case study

In the inductance computation of [57], physical expertise tells that the sum will be less than
105 (using arbitrary units due to factoring out some physical constants), while profiling showed
that the absolute value of a summand was always between 10−2 and 2.

Converting to bit positions, and adding two orders of magnitude (or 7 bits) for safety in all
directions, this defines MSBA = dlog2(102 × 105)e = 24, MaxMSBX = 8 and LSBA = −wF − 15
where wF is the significand width of the summands. For wF = 23 (SP), we conclude that an
accumulator stretching from LSBA = −23− 15 = −38 (least significant bit) to MSBA = 24 (most
significant bit) will be able to absorb all the additions without any rounding error: No summand
will add bits lower than 2−38, and the accumulator is large enough to ensure it never overflows.
The accumulator size is therefore wA = 24 + 38 + 1 = 63 bits.

Remark that only LSBA depends on wF , since the other parameters (MSBA and MaxMSBX)
are related to physical quantities, regardless of the precision used to simulate them. This illus-
trates that LSBA is the parameter that allows one to manage the accuracy/area tradeoff for an
accumulator.

10.2.3 Accuracy measurements

Table 10.3 compares for accuracy and performance the proposed accumulator to one built us-
ing Xilinx CoreGen in the context of the previous case study. To evaluate the accuracies, we com-
puted the exact sum using multiple-precision software on a small run (20,000,000 summands),
and the accuracy of the different accumulators was computed with respect to this exact sum. The
proposed accumulator is both smaller, faster and more accurate than the ones based on FP adders.
This table also shows that for production runs, which are 1000 times larger, a single-precision FP
accumulator will not offer sufficient accuracy.

Table 10.4 provides other examples of the final relative accuracy, with respect to the exact
sum, obtained by using an FP adder, and using the proposed accumulator with twice as large a
significand. In the first column, we are adding n numbers uniformly distributed in [0,1]. The sum
is expected to be roughly equal to n/2, which explains that the result becomes very inaccurate for
n=1,000,000: As soon as the sum gets larger than 217, any new summand in [0,1] is simply shifted
out and counted for zero. This problem can be anticipated by using a larger significand, or a larger
MSBA in the accumulator as we do.

126

10.3 Accurate Sum-of-Products 127

accuracy area latency

SP FP adder acc 1.2 · 10−3 482 slices 13 cycles @ 486 MHz
DP FP adder acc 2.8 · 10−15 839 slices 14 cycles @ 354 MHz

proposed acc 2.0 · 10−16 182 slices 3 cycles @ 451 MHz

Table 10.3 Compared performance and accuracy of different accumulators for SP summands from
[57].

sum size rel. error for unif[0, 1] rel. error for unif[-1, 1]
FP adder long acc. FP adder long acc.

1000 -5.76e-05 1.05e-07 -1.59e-05 1.40e-04
10,000 -2.74e-04 1.07e-08 -3.04e-04 2.36e-04
100,000 -4.31e-04 1.07e-09 2.54e-03 -2.73e-04

1,000,000 -0.738 -3.57e-09 3.18e-03 -4.47e-05

Table 10.4 Accuracy of accumulation of FP(7,16) numbers, using an FP(7,16) adder, compared to
using the proposed accumulator with 32 bits (MSBA = 20, LSBA = −11).

In the second column, numbers are uniformly distributed in [-1,1]. The sum grows as well (it
is a random walk) but much more slowly. As we have taken a fairly small accumulator (LSBA =
−11), for the first sums floating-point addition is more accurate: While the sum is smaller than
1, its LSB is smaller than −16. However, as more numbers are added, the sum grows. More and
more of the bits of a summand are shifted out in the FP adder, but kept in the long accumulator,
which becomes more accurate. Note that by adding only 5 bits to it (LSBA = −16 instead of −11),
the relative error becomes smaller than 10−10 in all cases depicted in Table 10.4: Again, LSBA is
the parameter allowing to manage the accuracy/area tradeoff.

We have discussed in this section only the error of the long fixed-point accumulator itself
(the upper part of Fig. 10.3). If its result is to be rounded to an FP(7,16) number using the post-
normalisation unit of Figure 10.3, there will be a relative rounding error of at most 2−17 ≈ 0.76 ·
10−5. Comparing this value with the relative errors given in Table 10.4, one concludes that the
proposed accumulator, with the given parameters, always leads to a result accurate to the two last
bits of an FP(7,16) number.

10.3 Accurate Sum-of-Products

We now extend the previous accumulator to a highly accurate sum-of-product operator. The
idea is simply to accumulate the exact results of all the multiplications. To this purpose, instead
of standard multipliers, we use exact multipliers which return all the bits of the exact product:
For 1 + wF -bit input significand, they return a FP number with a 2 + 2wF -bit significand. Such
multipliers incur no rounding error, and are actually cheaper to build than the standard (wE , wF)
ones. Indeed, the latter also have to compute 2wF + 2 bits of the result, and in addition have to
round it. In the exact FP multiplier, results do not need to be rounded, and do not even need
to be normalised, as they will be immediately sent to the fixed-point accumulator. There is an
additional cost, however, in the accumulator, whose input shifter is twice as large.

This idea was advocated by Kulisch [99, 98] for inclusion in microprocessors, but a generic
DP version requires a 4288 bits accumulator, which manufacturers always considered too costly
to implement. On an FPGA, one may design an application-specific version with an accumulator
of 100-200 bits only. This was implemented in FloPoCo, and Table 10.5 provides synthesis results
for the DotProduct operator, compared to units built using standard floating-point operators. The

127

128 Chapter 10. Floating-point accumulation and sum-of-products

Sum-of-product Synthesis Results
Slices DSPs Cycles Freq.

CoreGen SP × SP + 587 4 23 482 MHz
CoreGen SP × DP + 1011 4 24 354 MHz

ours SP × proposedAcc 363 3 10 356 MHz
CoreGen DP × DP + 1309 16 36 354 MHz

ours DP × proposedAcc 1038 9 20 353 MHz

Table 10.5 Synthesis results for the sum-of-products operator. The accumulator is designed to ab-
sorb at least 100,000 products in [0,1]. The accumulator parameters are MSBA = dlog2(100, 000)e,
MaxMSBX = 1 MSBA = −2 ∗ wF − 2

Sum-of-product
Accuracy (relative error)

unif[0, 1] unif[-1, 1]
1,000 10,000 100,000 1,000 10,000 100,000

CoreGen SP × SP + 4.45e-07 2.09e-06 4.22e-06 4.42e-07 5.09e-06 8.63e-06
CoreGen SP × DP + 4.31e-10 1.15e-10 5.28e-11 1.36e-08 5.01e-10 1.28e-08

ours SP × proposed Acc. 2.99e-15 2.93e-15 2.91e-15 7.15e-16 1.22e-14 2.44e-15

CoreGen DP × DP + 2.22e-15 6.89e-15 2.13e-14 6.83e-16 4.46e-16 9.34e-14
CoreGen DP × QP + 8.25e-19 2.52e-19 4.67e-20 3.34e-16 4.53e-17 4.64e-17

ours SP × proposed Acc. 1.06e-32 1.03e-32 1.01e-32 3.22e-33 3.09e-33 1.56e-32

Table 10.6 Accuracy results for the sum-of-products operator. The accumulator used had the
configuration MSBA = dlog2(n)e, MaxMSBX = 1, MSBA = −2 ∗ wF − 2

accuracy of this operators is tested on synthetic examples in Table 10.6. From these tables we can
clearly see that the proposed sum-of-products operator is both smaller, and more accurate.

10.4 Comparison with related work

Much research has been dedicated to converting floating-point computations to fixed-point.
When an input vector is to be multiplied by a constant matrix (as happens in filters, FFTs, etc),
one may use block floating-point (BFP), a technique known since the 50s and recently applied
to FPGAs [13, 35]. It consists in an initial alignment of all the input significands to the largest
one (bringing them all to the same exponent), after wich all the computations (multiplications by
constants and accumulation) can be performed in fixed-point. The proposed accumulator could
be used as a building block for BFP, however it was designed for a much larger class of application,
and with a motivation of accuracy inspired by Kulisch’s work [99, 98].

The group-alignment based floating-point accumulation technique of He et al [90] applies BFP
to arbitrary accumulation. The inputs are first buffered into blocks (called groups here) of size m
(with m = 16 in the paper). The numbers in a group are added using BFP. Then, these partial
sums are fed to a final stage of FP accumulation that may run at 1/m the frequency of the first
stage, and may therefore use a standard unpipelined FP adder. This is a very complex design (for
SP, 443 slices without the last stage, 716 with it). Besides, the frequency of the BFP accumulator
will not scale well to higher precisions without resorting to techniques similar to our partial carry
save.

Luo and Martonosi [116] have described an architecture for the accumulation of SP numbers
that uses two 64-bit fixed-point adders. It first shifts the input data according to the 5 lower bits
of the exponent, then sends it to one of the fixed-point accumulators depending on the higher
exponent bits. If these differ too much, either the incoming data or the current accumulator is
discarded completely, just as in an FP adder. The critical path of the accumulator loop includes one
64-bit adder and a 3-2 compressor. The main problem with this approach (besides its complexity)

128

10.5 Conclusion and future work 129

is that it is a fixed design that will not scale beyond single-precision. Another one is that the
detection of accumulator overflow may stall the operator, leading to a variable-latency design.
The authors suggest a workaround that imposes a limit on the number of summands to add.

Zhuo and Prasanna [162], then Bodnar et all [44] have described high-throughput matrix op-
erations using carefully scheduled standard FP adders. Performance-wise, this approach should
be comparable to ours. Still, the proposed accumulator is more generic and exposes a finer control
of the accuracy-performance tradeoff.

10.5 Conclusion and future work

The accumulator design presented here perfectly illustrates the philosophy of the FloPoCo
project: Floating-point on FPGA should make the best use of the flexibility of the FPGA target,
not re-implement operators available in processors. The proposed accumulator is deliberately
application-specific. In addition it may be tailored to be arbitrarily faster and arbitrarily more
accurate than a naive floating-point approach, without requiring more resources.

This approach requires the designer to provide bounds on the orders of magnitudes of the
values accumulated. We have shown that these bounds can be taken lazily. In return, the de-
signer gets not only improved performance, but also a provably accurate accumulation process.
We believe that this return is worth the effort, especially considering the overall time needed to
implement a full floating-point application on an FPGA.

Thanks

The work presented was motivated by partnership between ENS Lyon and Technical Univer-
sity of Cluj-Napoca. I would like to thank our partners, Octavian Creţ and Radu Tudoran for their
contributions to this work.

129

11 CHAPTER 11

High-level synthesis of perfect loop nests

In this chapter we are interested in the synthesis of a special class of loop nests into FPGA-
specific accelerators, for which the computational datapath generation is done using FloPoCo.
Synthesis of loop structures where the inner statements involve deeply pipelined operators (such
as the one required in scientific computing), is a challenge when data-dependencies exist between
subsequent loop iterations (also called loop-carried dependencies). Unfortunately, most scientific
codes using nested loop constructions fall in this category. Having to wait tens or even hundreds
of cycles for the result to be available at the pipeline’s output before starting the next loop iteration
severely impacts performance. Waiting for the result of one iteration before starting the next is
not necessary when there are no loop-carried dependencies. Most current HLS tools detect this
situation and perform this optimization. However, no satisfactory solution is provided when
subsequent iterations do have data-dependencies.

For some applications like matrix-matrix multiplication kernel, which indeed has inter-loop
dependencies, hand-coded approaches by Zhuo and Prasanna [162], and Bodnar et al. [44] effi-
ciently use pipelined adders for the reduction operation. For this application (C code in Listing
11.1) the two outer loops describe execution of statements having no dependencies. Therefore,
the execution of these statements can be used to constantly keep the pipeline busy, maximizing
efficiency. The work presented here follows the same spirit, but applies to a general class of appli-
cations and is automated to the point that it requires minimal user intervention.

More exactly, we target the class of applications which can be described by perfectly nested
loops having uniform data dependencies (see Section 11.2.1 for a terminology reminder) and
where the loop bounds are affine expressions of the loop counters. The loops inner statement is im-
plemented as a FloPoCo operator, pipelined for a specific user-defined frequency and deployment
FPGA. The operator’s pipeline depth is accounted for while rescheduling the code’s execution in
order to minimize pipeline stalling. This technique is illustrated on the popular matrix-matrix
multiply kernel and also on a Jacobi stencil kernel. Next, we consider multiple execution cores
for completing one task and we show that hand-guided application-specific parallelizations can
often surpass the performance of classical parallelization techniques. Therefore, we propose our
one-core scheduler as a stand-alone tool which can be used in the process of parallelizing codes on
an application-basis. Finally, we show that the general accuracy of these codes can be improved
on FPGAs by using custom formats and accounting for the application’s accuracy requirements.

132 Chapter 11. High-level synthesis of perfect loop nests

for (i=0;i<N;i++)

for (j=0;j<M;j++)

for (k=0;k<M;k++)

c[i][j]=...

Bee Bee

Application

target FPGA

frequency f
precision p

core
specification

pipeline
information

Kernel

Computing

VHDL

code
analyzer

core
information FSM

generator

VHDL

FSM

//C code

dictates

Figure 11.1 Automation flow: the C code is first parsed by the Bee research compiler; FloPoCo
is then invoked for generating the required arithmetic pipeline; the pipeline information is then
passed back to the Bee compiler for use in operation scheduling; next, the pipeline depth adjust-
ments are sent to FloPoCo for generating the final VHDL.

11.1 Computational data-path generation

The generation of FPGA accelerators for a given computational task can be divided into several
high-level steps:

– identification and generation of the arithmetic data-path (we will refer from here-on to the
arithmetic data-path as an arithmetic operator). This step includes identifying application
accuracy requirements and trimming the operator’s internal data-path to the bare minimum
which still ensures this accuracy.

– scheduling the execution of instructions on the previously arithmetic operator. High-through-
put arithmetic data-paths implemented at the previous step generally feature deep pipelines:
the challenge at this step is keep the pipeline as busy as possible while at the same time re-
ducing memory accesses.

– if more performance is needed than what can be provided by using only one arithmetic oper-
ator, instantiating several operators is a option. This step introduces a new set of challenges
in scheduling the computation task.

We delegate the first task: arithmetic datapath generation to be performed using the FloPoCo
tool. Using FloPoCo for the arithmetic datapath generation will help minimize circuit’s size for
a user-given frequency due to the frequency directed pipeline-construction. A similar approach
can only be found in Perry’s work [128] and implemented in DSP Builder Advanced from Altera.
Nevertheless, it is not clear how we could interface our compiler front-end to DSP Builder Ad-
vanced as this tool uses a Simulink graphical interface. Moreover, this would limit us to Altera
FPGAs.

In the following sections we present an automatic approach for generating computational-
kernel specific FSMs. We specify that although the process is conceptually automated, experienced
users can intervene at any point to override the default execution of the flow, in order to optimize
some steps. Figure 11.1 presents the flow datapath from input-file core specification, to output
VHDL generation. The technique used will be presented in the next sections.

11.2 Efficient hardware generation

Given an input program written in C (with limitation which will be made clear) and a set
of constraints on the output accuracy, the first step consists in generating an arithmetic operator
using FloPoCo which will handle the computational part of the task. Next, starting with this oper-
ator, we need to generate the finite state machine (FSM) which controls the execution of the code

132

11.2 Efficient hardware generation 133

1 void mmm(float *a, float *b, float *c, int N) {
2 int i, j, k;
3
4 for (i = 0; i < N; i++)
5 for (j = 0; j < N; j++)
6 for (k = 0; k < N; k++)
7 c[i][j] = c[i][j] + a[i][k]*b[k][j];
8 }

Listing 11.1 C routine for the execution a the matrix-matrix multiplication kernel

k

i

jN-10
0

N-1

N-1

dependence vector

Figure 11.2 Iteration domain for the matrix-matrix multiply code in Listing 11.1 for N=4

by scheduling its instructions. The main goal of this step is to optimize the instruction scheduling
such that the arithmetic operator is kept busy as much as possible (as few voids in the pipeline).
At a higher level, we accomplish this task by reordering the initial program execution. Finally, we
generate the corresponding FSM (VHDL code) corresponding to the enhanced program execution
scheduling.

11.2.1 Background

In this section we briefly introduce some of the basic notions we need in order to describe our
technique. The interested reader should check [84] for more details.

Iteration domains

A perfect loop nest is an imbrication of for loops where each level contains either a single for
loop or a single assignment S. A typical example is the matrix-matrix multiply kernel given in
Listing 11.1 where line 7 denotes the statement.

Each loop has a counter (i, j and k in our running example from Listing 11.1) which gets ini-
tialized when the loop starts, and is modified at each loop iteration (incremented in our example
i++). Loops also have a continuation condition (i<N for example) which decides whether or not the
loop will execute.

Writing~i1, ...,~in the loop counters, the vector~i = (~i1, ...,~in) is called an iteration vector. The set
of iteration vectors~i reached during an execution of the kernel is called an iteration domain. The
iteration domain for the code in Listing 11.1 is represented by the array of points in Figure 11.2.

The execution instance of S at the iteration~i is called an operation and is denoted by the couple
(S,~i). As there is a single assignment in the loop nest, when we refer to an iteration we implic-
itly acknowledge the execution of the statement of that iteration. The ability to produce program

133

134 Chapter 11. High-level synthesis of perfect loop nests

analysis at the operation level rather than at assignment level is a key point of our solution. We
assume loop bounds and array indices to be an affine expression of the surrounding loop coun-
ters. Under these restrictions, the iteration domain I is an invariant polytope.

Dependence vectors

There exist a data dependence from iteration p to iteration q if data produced during iteration p
is used at iteration q. A data dependence is uniform if it occurs from the iteration~i to the iteration
~i+ ~d for every valid iterations~i and~i+ ~d. In this case, we can represent the data dependence with
the vector ~d that we call a dependence vector. In the case of matrix-matrix multiplication there
exist a dependence on the accumulation in c[1, 0] between iteration i = 1,j = 0,k = 0 (which we
will denote by (1,0,0)) and iteration (1,0,1). This dependence is denoted by the vector in Figure
11.2.

When array indices are themselves uniform (e.g. a[i-1]) all the dependencies are uniform.
In the following, we will restrict to this case and we will denote by D = {~d1, . . . ~dp} the set of
dependence vectors.

Many numerical kernels fit or can be restructured to fit in this model [41]. This particularly
includes stencil operations which are widely used in signal processing.

Schedules and affine hyperplanes

The sequential execution of the program processes each iteration in the lexicographic order. In
most cases, program optimizations boils down at specifying a new execution order. This can be
done by means of a schedule.

A schedule is a function θ which maps each point of I to its execution date. It is convenient to
represent execution dates by integral vectors which are processed in lexicographic order: θ : I →
Nq.

We consider linear schedules θ(~i) = U~i where U is an integral matrix. If there is a dependence
from an iteration~i to an iteration~j, then~i must be executed before~j: therefore, there the schedule
must lexicographically map the execution of ~j before that of ~j. We denote this by the ordering on
the schedule: θ(~i)� θ(~j).

Each line ~φ of U can be seen as the normal vector to an affine hyperplane H~φ
, the iteration

domain being scanned by translating the hyperplanes H~φ
in the lexicographic ordering. An hy-

perplane H~φ
satisfies a dependence vector ~d if by “sliding” H~φ

in the direction of ~φ, the source~i is

touched before the target~i+ ~d for each~i, that is if ~φ.~d > 0.
We say that H~φ

preserves the dependence ~d if ~φ.~d ≥ 0 for each dependence vector ~d. In that

case, the source and the target can be touched at the same iteration. ~d must then be solved by a
subsequent hyperplane.

We can always find an hyperplane H~τ satisfying all the dependencies. Any translation of H~τ

touches in I a subset of iterations which can be executed in parallel. In the literature,H~τ is usually
refereed as parallel hyperplane.

Loop tiling

With loop tiling, the iteration domain of a loop nest is partitioned into parallelogram tiles,
which are executed atomically. The tiles are executed sequentially, respecting the inter-tile depen-
dencies. For a loop nest of depth n, this requires to generate a loop nest of depth 2n, the first n

134

11.2 Efficient hardware generation 135

inter-tile loops (the outer loops) describing the execution order of the tiles and the next n intra-tile
loops (inner loops) scanning the current tile.

A tile band is the nD set of iterations described by the last inter tile loop, for a given value of
the outer inter tile loops. A tile slice is the 2D set of iterations described by the last two intra-tile
loops for a given value of the outer loops. See Figure 11.3 for an illustration on the matrix multiply
example.

We can specify a loop tiling for a perfect loop nest of depth n with a collection of affine hyper-
planes (H1, . . . ,Hn). The vector ~φk is the normal to the hyperplane Hk and the vectors ~φ1, . . . , ~φn
are supposed to be linearly independent. Then, the iteration domain of the loop nest can be tiled
with regular translations of the hyperplanes keeping the same distance `k between two trans-
lations of the same hyperplane Hk. The iterations executed in a tile follow the hyperplanes in
the lexicographic order, it can be view as “tiling of the tile” with `k = 1 for each k. A tiling
H = (H1, . . . ,Hn) is valid if each normal vector ~φk preserves all the dependencies: ~φk.~d ≥ 0 for
each dependence vector ~d. As the hyperplanes Hk are linearly independent, all the dependencies
will be satisfied. The tilingH can be represented by a matrix UH whose lines are ~φ1, . . . ~φn. As the
intra-tile execution order must follow the direction of the tiling hyperplanes, U also specifies the
execution order for each tile.

Dependence distance

The distance of a dependence ~d at the iteration~i is the number of iterations executed between
the source iteration ~i and the target iteration ~i + ~d. Dependence distances are sometimes called
reuse distances because both source and target access the same memory element. It is easy to see
that in a full tile, the distance for a given dependence ~d does not depend on the source iteration
~i (see Figure 11.5). Thus, we can write it ∆(~d). However, the program schedule can strongly
impact the dependence distance. In the following, managing the dependence distances in accor-
dance with the pipeline depth of the operator will allow us to schedule computations so that the
produced data will always be immediately consumed by the operator.

11.2.2 Working examples

In this section we illustrate the feasibility of our approach on two examples. The first example
is the matrix-matrix multiplication, that has one uniform data dependency that propagates along
one axis. The second example is the Jacobi 1D stencil computation having three uniform data
dependencies with different distances.

Matrix-matrix multiplication

The classical code for matrix-matrix multiplication is given in Listing 11.1. The iteration do-
main is the set integral points lying into a cube of size N, as shown in Figure 11.3.

Each point of the iteration domain represents an execution of the assignment S with the corre-
sponding values for the loop counters i, j and k. Essentially, the computation boils down to the
accumulation of products between elements of A and B. The arithmetic operator needed in this
case is has to compute f(x, y, z) = x+ y × z. We will use FloPoCo to generate this operator (more
on the specifics of this operator will be given later). The architecture of this operator is given in
Figure 11.6(a).

There is a unique data dependency in this example. The dependency is carried by the inner-
most loop k, and can be expressed as a vector ~d = (0, 0, 1) (Figure 11.3).

135

136 Chapter 11. High-level synthesis of perfect loop nests

0

N-1

N-1

N-1 j~φH2

~φH1 ~τ

i

0

tile slice

tile band

k

I = 1

J = 0 J = 1

K = 0

K = 1

I = 0

Figure 11.3 Matrix-matrix multiplication iteration domain with tiling

1 int tsi = 2;
2 int tsj = 2;
3 int tsk = 2;
4 int N=4;
5 for (I = 0; I < N/tsi; I++)
6 for (J = 0; J < N/tsj; J++)
7 for (K = 0; K < N/tsk; K++)
8 for (ii = 0; ii < tsi; ii++)
9 for (kk = 0; kk < tsk; kk++)
10 for (jj = 0; jj < tsj; jj++)
11 c[I*tsi+ii][J*tsj+jj] += a[I*tsi+ii][K*tsk+kk]*b[K*tsk+kk][J*tsj+jj];

Listing 11.2 One valid tiling for the matrix-matrix multiplication

In the case of using a pipelined operator for implementing f(x, y, z), which is reasonable to
assume in a high-throughput scenario, the operator would need to stall for an amount of cycles
equal at least to the depth of the floating-point adder used as an accumulator.

We would like to find a better scheduling θ which maximizes the use of our computational
resources. Let us consider the affine hyperplane H~τ with ~τ = (0, 0, 1), which satisfies the data
dependency ~d and describes a parallel execution front. Each integral point at the intersection of
this hyperplane with the iteration domain can be executed in parallel as these points have no
dependencies among them. It feels natural to use these points to fill the voids in the pipeline of
our arithmetic operator. Therefore, we can keep our operator busy each cycle. However, executing
all these independent points (N in our case) increases our dependency distance to N. If N is much
larger than m, the number of stages of the FPAdder, we need to store these intermediary results
back in the memory. In order to avoid the costly and unnecessary memory activity we find a tiling
such that the dependency distance between iteration~i and~i+ ~d is exactly equal to m (∆(~d) = m).
Using such a tiling, the data produced at iteration ~i is available for consumption at the adder’s
output, and consequently also available at the adder’s input via the feedback line, exactly when
the iteration is started.

The tiling is obtained by first finding a parallel hyperplane H~τ (here ~τ = (0, 0, 1)). Next, we
complete the tiling by choosing hyperplanes: H1 with ~φH1 = (1, 0, 0) and H2 with ~φH2 = (0, 1, 0)
such thatH = (H1, H2, H~τ).

The final tiled loop nest will have the six nested loops: three inter-tile loops I, J, K iterating over

136

11.2 Efficient hardware generation 137

1 void jacobi1d(float a[TIME][N]){
2 int i,t;
3 for (t = 0; t < TIME; t++)
4 for (i = 1; i < N-1; i++)
5 a[t][i] = (a[t-1][i-1] + a[t-1][i] + a[t-1][i+1])/3;
6 }

Listing 11.3 1D Jacobi stencil computation

N-10
0

i

t

TIME-1

~d3
~d1

~d2

Figure 11.4 The iteration domain and dependence vectors for 1D Jacobi stencil computation in
Listing 11.3

the tiles, and three intra-tile loops ii, jj, kk iterating into the current tile of coordinate (I,J,K).
For each value of the outermost loop counters (I,J,K,ii), the loops on jj and kk iterate into

a tile slice. Figure 11.3 depicts the tile slice for (I=0,J=0,K=0,ii=0).
We schedule each tile slice to execute consecutive iterations on the parallel front. Therefore,

the main iteration vector can be expressed as (I,J,K,ii,kk,jj).
We select the width of the tile size (the number of iterations to be performed in the jj direc-

tion) to be equal to the pipeline depth or our FPAdder, m. This ensures that the result produced by
the adder is consumed immediately at its input. Thus, it can be fed immediately without any tem-
porary buffering using the feedback connection. The execution order presented above allows to
obtain a circuit that computes a temporary value of c at each cycle, and stores the temporary data
inside the pipeline registers of the arithmetic operators, without any temporary storage buffer.
The code corresponding to the valid tiling presented in Figure 11.3 is given in Listing 11.2.

One dimensional Jacobi stencil computation

The kernel is given in Listing 11.3. This is a standard stencil computation with two nested
loops. The inner loop iterates over the elements of the array a (in the direction of i) and the outer
loop iterates over the time dimension.

Although it has just two perfectly nested loops, this application poses more problems in execu-
tion due to the complex dependencies between elements. The set of dependence vectors has three
elements, highlighted in Figure 11.4– D = { ~d1 = (−1, 1), ~d2 = (0, 1), ~d3 = (1, 1)}. The iteration
space and the dependence vectors are depicted in Figure 11.4.

We apply the same tiling method as in the previous example. The first step consists in finding
a parallel hyperplane. One obvious solution for Hτwould be ~τ = (0, 1). Together with the hyper-
plane Hφ1 with ~φ1 = (1, 0) this would yield a valid tiling. However, the dependence distances of
this tiling are N-1, N and N+1 which, as in the case of the matrix-matrix multiplication example are
much larger than m, the pipeline depth pf our arithmetic operator.

The technique applied in the case of the previous example consisted in "tiling the tile". How-

137

138 Chapter 11. High-level synthesis of perfect loop nests

tile band
tile slice

N-1

~τ

710 4

`2`0

propagate
virtual iterations

TIME-1

0

0 1 2 3 4

0

1

T

I

~φH10

x

xl xc xr

`1

Figure 11.5 Tiled iteration domain for 1D Jacobi stencil computation

ever, due to the negative dependencies in D this technique cannot be applied in our case. The left
tile would be executed first, even though it depends on data not produced yet. This violates a
valid tiling.

We therefore choose to use a less obvious parallel hyperplane, having the normal vector ~τ =
(2, 1), H~τ satisfies all the data dependencies of D. Then, we complete H~τ with a valid tiling hy-
perplane H1. Here, H1 can be chosen with the normal vector (1, 0). By analogy with the matrix
multiply example, we denote by (T,I,ii,tt) the new iteration domain of the resulting tiled loops.
Figure 11.5 shows the initial iteration domain divided into several tile slices. Their execution in
lexicographic order according to the schedule (T,I,ii,tt) is indeed valid because it respects the
data dependencies in D.

For this new tiling we compute the dependency distance between the production of the data
required by an iteration (we denote it by x for clarity) and its consumption at iteration x. Figure
11.5 highlights the dependency distances for our proposed tiling.

The data produced at iteration xl (see Figure 11.5) must be available 10 iterations later, xc must
be available 7 cycles later and xr must be available 4 cycles later. Notice that the dependence
distances are the same for any point of the iteration domain, as the dependencies are uniform.

The obvious solution for hardware implementation is to add delay shift registers at the oper-
ator’s output such that, when executing iteration x the data produced at iterations xl, xc and xr
is available at three distinct and precise points of the operator’s pipeline. The precise points are
given by the values of the dependencies `0, `1 and `2. We choose `2 to be equal to the operator’s
pipeline depth. In order to be able to access data produced at xc at the same time as data produced
at xr we need to add some extra `1− `2 registers. The same technique is applied for synchronizing
the consumption of xl with xc and xr: we require `0 − `1 extra registers. The architecture is de-
picted in Figure 11.6(b). Once again, the intermediate value are kept in the pipeline, no additional
storage is needed when executing the points in a slice.

As the tiling hyperplanes are not parallel to the original axis, some tiles on the borders would
not be full parallelograms. Inside these tiles, the dependence vectors are not longer constant.
To overcome this issue, we extend the iteration domain with virtual iteration points where the
pipelined operator will compute dummy data. This data is discarded at the border between the
real and extended iteration domains (propagate iterations, when i=0 and i=N-1. For the border
cases, the correctly delayed data is fed via line Q (oS=1) in Figure 11.6(b).The C code having the
tiled iteration domain is given in Listing 11.4.

138

11.2 Efficient hardware generation 139

S

`

0
1

0 R

m
Y

X

(a) Matrix-Matrix Multiply

... ...

1

0
0

1
0

1

X

Y

Z

S
Q

oS

1

0

R

`2 `1 `0

1
3

(b) Jacobi

Figure 11.6 Computational kernels of our two motivating examples. These were generated using
FloPoCo

1 int T,I,ii,tt, TIME, N;
2 int th, tw;
3 for (T = 0; T < TIME/th; T++)
4 for (I=0; I < N/tw; I++)
5 for (ii=0; ii<tw; ii++)
6 for (tt=0; tt<th; tt++)
7 if (I*tw-2*tt+i == 0 || I*tw-2*tt+i == N-1) //propagate
8 a[T*th+tt][I*tw-2*tt+i] = a[T*th+tt-1][I*tw-2*tt+i];
9 else if (I*tw-2*tt+i < 0 || I*tw-2*tt+i > N-1){
10 //dummy: virtual iteration points
11 }else
12 a[T*th+tt][I*tw-2*tt+i] = (a[T*th+(tt-1)][I*tw-2*(tt-1)+(i-1)]+
13 a[T*th+(tt-1)][I*tw-2*(tt-1)+ i]+
14 a[T*th+(tt-1)][I*tw-2*(tt-1)+(i+1)])*1/3;

Listing 11.4 1D Jacobi stencil computation

11.2.3 Parallelization

In this section we are interested in mapping these applications to multiple computing kernels
in order to improve performance. We show here that the same methodology we have used for
mapping the application onto a single computing kernel can effectively be used to generate the
corresponding FSMs of the computing cores in a parallelization scenario.

Parallelizing the matrix-matrix multiplication kernel can be seen as simple due to the fact that
both external loops i and j carry no dependencies. However, this is not entirely true if we want
this parallelization to be efficient as well, with regard to memory transfers.

A naive implementation of a single computing kernel performing C = AB requires 4N3 mem-
ory accesses: N3 (read(a) + read(b) + read(c) + store(c)). At each step two elements are ready
from A and B together with the destination accumulator from C. After the computation is done,
the corresponding element from c is updated in the memory. By using our technique to reschedule
the execution of this core we avoid having to read and update c at each iteration step, as its value
is stored inside the pipeline’s registers: N2(N(read(a) + read(b)) + store(c)).

We can additionally reduce this cost if we are provided with local memory. Blocking consists
is splitting the input matrices into blocks which are fetched in pairs into the local memory. Figure
11.7 illustrates this technique. For a given block-size p × q (where we suppose for simplicity that
both p and q divide N) and suppose we are provided with 2(p × q) + (p × p) local memory for
buffering (sufficient to store one block from A,B and C), the external memory requirement is:

139

140 Chapter 11. High-level synthesis of perfect loop nests

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���
���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

A B C

p

q

p

p

i

j

A0,0

A1,0

A2,0 A2,1

A1,1

A0,1

B1,0 B1,1 B1,2

B0,0 B0,1 B0,2

Figure 11.7 Matrix-matrix multiply using blocking

B CA

q

i

j

q
m

m

m

A0,0 A0,1

A1,0 A1,1

A2,0 A2,1

B0,0

B0,1

Figure 11.8 Matrix-matrix multiply blocking applied using our technique. Scheduling of compu-
tations is modified in order to minimize external memory usage

M = 2
N

p

N

q

N

p
(p× q) +

(
2
N

q
− 1

)
N2

p2
(p× p)

= 2
N3

p
+

(
2
N

q
− 1

)
N2

The technique trades local memory requirement for memory bandwidth. For p = q = N it
reduces to storing locally the three matrices 3N2 buffer. The bandwidth requirement is 2N2 for
fetching A and B and N2 for writing C.

When the execution schedules the processing of consecutive memory blocks in the direction
of j: A0,0 ×B0,0, A0,1 ×B1,0 etc. the same block C block will get affected, and is therefore possible
to skip its writing to memory until the last product affecting it was processed (C0,0 is written to
the main memory only when A0,1 × B1,0 was complete. This reduces our memory bandwidth to
2N

3

p +N2. Now, by applying our scheduling technique, we are able to process entire computation
without even needing a buffer for the C block (its values are stored inside the operator’s pipeline
levels). The current technique requires freezing the computational kernels the time needed to
fetch a new pair of blocks from A and B.

Consider the Figure 11.8 which illustrates how our scheduling algorithm would perform if
blocking was used. Note that m denotes the number of stages of our accumulator (see Figure
11.6(a)). The points executed in the i direction of are on parallel front and therefore have no data
dependencies. While m is fixed by the operator’s pipeline depth, the size of the internal memory

140

11.2 Efficient hardware generation 141

0 1 2

1

2

0
I

T

~τ

~φH1

3 4 5 6

3

Figure 11.9 Inter tile slice iteration domain for Jacobi 1D stencil code. The parallel hyperplane
has ~τ = (1, 3) and describes the tile-slices which can be executed in parallel. The dashed lines
indicated various translations of the hyperplane H~τ showing different levels of parallelism.

dictates the size of q.
When sufficient local memory is available, a second well known technique, double buffering,

is used to interlacing memory access and computations. Provided we are assigned twice the local
memory we need for our enhanced blocking, 2× 2(p× q), the idea is to fetch the next set of blocks
from A and B for computation at time t+ 1 while performing the computing stage at time t. This
said, when a variable is reused on successive tiles, it is better to load it one time for all, and to
avoid reloading it for each tile. An exact solution to this problem has been found recently [131].
The objective now is to try to reuse the same fetched block as much as possible.

The execution schedule is optimized such to maximize the use of theA block buffer. Successive
blocks of A and B (A is by far more costly with a size of m × q whereas B has a size q × 1) are
fetched from the memory in the direction of j for A and i for B. Once the edge is reached (say we
have finished processing A0,1 × B1,0), we keep A0,1 (which would be costly to discard) and we
load B1,1 instead. We can clearly execute the accumulation on C iterating from N − 1 towards
0. This saves an important amount of external memory accesses particularly when implementing
the double buffering technique.

Now, finally we consider using multiple processing elements to accomplish the task. It is
easy too see that up to m PEs can work on the same block of A and on m different blocks of B
(Bml,m(l+1)−1). The local memory requirement is as much 2 ×m × q for such a case (m PEs). The
size of m can be increased within reasonable limits due to the embedded memories which can act
as shift-registers in modern FPGA devices. Nevertheless, it is much more likely that the external
memory bandwidth will be the real limitation.

11.2.4 One dimensional Jacobi stencil computation

In this section we will present two solutions to parallelize the Jacobi 1D stencil execution. The
first solution is based on classical parallel execution of tile slices. Consider the execution of the
tile slices in Figure 11.5. Finding what tile slices can be executed in parallel reduces to finding a
hyperplane parallel H~τ which in the new iteration domain of the tile slices.

The new iteration domain and the corresponding hyperplane H~τ are depicted in Figure 11.9.
The normal vector ~τ = (1, 3) indicates that the maximum degree of parallelism is dN/3e. One
could increase this to dN/2e at the expense of performing a different tiling than Figure 11.5 shows.
In the new tiling the tile slices at T = 1 would be described by the transition of the same hyper-
plane H~τ as for T = 0. This increase the complexity of the border conditions (where we propagate
or execute virtual points). We believe that the complexity of the conditions in such an implemen-
tation would severely affect the performance of our FSM and we did not consider it further.

141

142 Chapter 11. High-level synthesis of perfect loop nests

~τ1 ~τ2

3

1 4

5

6

7 10 13

14

1

8 11
2

4

5

7

8

10

2
11

15
12 9 6 312

13

14

15

16

17

18

16

17

18
9

border iteration pointsiteration domain border

4

3

2

1
0 1 2 3 N-1

TIME

Figure 11.10 An alternative to executing the Jacobi Kernel using 2 processing elements.

Our second proposed parallelization solution will be described next. It was initially supposed
to be example-specific, however its execution can be extended to some reduced set of application
classes presenting dependence symmetries. The benefits of this solution are: a wider degree of
parallelism in execution and a reduced local memory size.

Figure 11.10 presents the basic principle behind our proposed solution for two PEs. The itera-
tion domain is split into two parts (suppose for clarity that N is even in this example): right part is
tiled as previously described in Figure 11.5 and the left part part tiling is mirrored (symmetrical)
to that on the right.

The tile slices intersect the neighboring iteration domains. The set of points described by this
intersection represent virtual iteration points.

The border iteration points carry the dependencies between the tile slices of neighboring itera-
tion domains. On these points, the green incoming dependence represents a datum computed by
neighboring PE which must be communicated. Thanks to the symmetry of the execution sched-
ule, two symmetric iteration points are executed at the same time. This means that two symmetric
border iteration points are executed at the same time. Consider for example the iteration points
executed at time 1 on Figure 11.10, say P1 on the left and P2 on the right, and consider the red
dependence starting from P1 to a point P3 executed by the right PE. The corresponding datum
should be communicated exactly at the execution of P3, which is the same as the symmetric of
P3 in the left PE. This means that the left PE should communicate the datum as for a vertical
dependence.

From the architecture perspective this involves widening the green multiplexer of each accel-
erator with one input from the neighboring blue extraction point and modifying the select line of
the multiplexer so to fetch the correct data for these border points.

Figure 11.11 illustrates the simplicity of this architecture. When recursively instantiating mul-
tiple pairs of accelerators the tails of the tile slices will similarly overlap. The border iteration point
at this intersections will be solved by the blue dependency from neighbor. Consequently, the red
multiplexer will have a third input fed from from the second neighbor’s blue dependency.

Notice that this method could be easily applied to any stencil computation. The only difficulty
is to insert a wire to communicate the data at the relevant time. Indeed, it can happen that the
symmetric of P3 is not targetted by a dependence starting from P1. In this case, the execution
distance with P1 should be computed as in the step c, and extra wire/registers should be added.

11.2.5 Lessons

In this section, we have derived by hand several parallel pipelined accelerators by following
different methodologies. We have started from the sequential accelerators generated with the

142

11.2 Efficient hardware generation 143

.
.
.

.
.
.

.
.
.

.
.
.

10 1 0
` 2

Z Y X S Q oS

`
2

ZYXSQoS

` 1
` 0

`
0

`
1

R R

1
3

1
3

Figure 11.11 Architecture for the second proposed parallelization of Jacobi 1D

technique described in the previous section.
For data parallel examples like matrix multiplication the parallelization is trivial and consists

in instantiating multiple parallel computational cores each having assigned a subdomain of the
global iteration domain.

Unfortunately, for examples like Jacobi 1D, the parallelization is not trivial. Due to many data
dependencies, the parallel hyperplanes are skewed. There exist an infinite number of such parallel
hyperplanes. One has to chose a tradeoff between maximizing the parallelism and not increasing
dramatically the number of delay registers. The second solution that consists in cutting the do-
main into subdomains which execute using a mirror-like schedule seems to be more adapted for
stencil examples as it benefits the most from FPGA structure and fast direct links between adjacent
computational cores. This solution should be used for stencil examples on FPGA platforms and
could be easily automatized.

11.2.6 Algorithm

In the following we formalize the ideas presented intuitively on our working examples and
present a two-step algorithm to translate a loop kernel written in C into an hardware accelerator
using pipelined operators efficiently. Firstly, we describe how to get the tiling followed by an
explanation on how to generate the control FSM respecting the schedule induced by the loop
tiling.

Step 1: Scheduling the kernel

The key idea is to tile the program in such a way that the distance associated to each depen-
dence is constant. Then, it would be always possible to reproduce the solution described for the
Jacobi 1D example.

The only issue is to ensure that the minimum dependence distance is equal to the pipeline
depth of the FloPoCo operator. The idea presented on the motivating examples is to force the last
intra-tile inner loop Lpar to be parallel. This way, for a fixed value of the outer loop counters,
there will be no dependence among iterations of Lpar. The dependencies will all be carried by the
outer-loops, and then, the dependence distances will be fully customizable by playing with the
tile size associated to the loop enclosing immediately Lpar, Lit.

This amounts to finding a parallel hyperplane H~τ (step a), and to complete it with others
hyperplanes H1, . . . ,Hn−1 (assuming the depth of the loop kernel is n) in order to form a valid

143

144 Chapter 11. High-level synthesis of perfect loop nests

0 1 2 4-1 3

1

2

3

4

-1

y

x0

solve dependencies
minimizes q~τ

Figure 11.12 The solution to the ILP finding τ for the Jacobi example

tiling (step b).
Now, it is easy to see that the hyperplane H~τ should be the (n-1)-th hyperplane (implemented

by Lit), any hyperplane Hi being the last one (implemented by Lpar). Roughly speaking, Lit
pushes H~τ , and Lpar traverses the current 1D section of H~τ , feeding the pipeline with parallel
point.

It remains in step c to compute the actual dependence distances as an affine function of tile
sizes. Then, given a FloPoCo operator with a certain minimum pipeline depth m we can easily
find a proper tile size for which the minimum dependence distance is ≥ m. For the remaining
dependence distances, (≥ m) one needs then to insert shift registers at the output of the operator’s
pipeline in order to keep all the dependencies of a point x inside the pipeline. We will detail these
three steps in the following.

Step a. Find a parallel hyperplane H~τ

This can be done with a simple integer linear program (ILP). Here are the constraints:

– ~τ must satisfy every dependence: ~τ · ~d > 0 for each dependence vector ~d ∈ D.
– ~τ must reduce the dependence distances. Notice that the dependence distance is increas-

ing with the decrease in angle between ~τ and a dependence vector ~d.
Also notice that the value of the inner product (~τ · ~d) is increasing with the decrease in
angle between ~τ and a dependence vector ~d. It is therefore sufficient to minimize the
quantity: q = max(~τ · ~d1, . . . , ~τ · ~dp).
We build the constraints q ≥ ~τ · ~dk for each k between 1 and p, which is equivalent to
q ≥ max(~τ · ~d1, . . . , ~τ · ~dp).

It remains to find the objective function. We want to minimize q. Then, for the minimal value
of q, we want to minimize the coordinates of ~τ . This amounts to look for the lexicographic
minima of the vector (q, ~τ). This can be done with standard ILP techniques [83]. On the
Jacobi1D example, this gives the following ILP, with ~τ = (x, y):

min� (q, x, y)
s.t. y − x > 0 ∧ y > 0 ∧ x+ y > 0

q ≥ x− y ∧ q ≥ x+ y ∧ q ≥ x

The ILP is solved in Figure 11.12 for the Jacobi example.

Step b. Find the remaining tiling hyperplanes
Let us assume a nesting depth of n, and let us assume that p < n tiling hyperplanes H~τ ,

144

11.2 Efficient hardware generation 145

H~φ1
, . . . ,H~φp−1

were already found. We can compute a vector ~u orthogonal to the vector

space spanned by ~τ , ~φ1, . . . , ~φp−1 using the internal inverse method [45]. Then, the new tiling
hyperplane vector ~φp can be built by means of ILP techniques with the following constraints.
– ~φp must be a valid tiling hyperplane: ~φp.~d ≥ 0 for every dependence vector ~d ∈ D.
– ~φp must be linearly independent to the other hyperplanes: ~φp.~u 6= 0. Formally, the two

cases ~φp.~u > 0 and ~φp.~u < 0 should be investigated. As we just expect the remaining
hyperplanes to be valid, without any optimality criteria, we can restrict to the case ~φp.~u >
0 to get a single ILP.

Any solution of this ILP gives a valid tiling hyperplane. Starting from H~τ , and applying re-
peatedly the process, we get valid loop tiling hyperplanes H = (H~φ1

, . . . ,H~φn−2
, H~τ , H~φn−1

)

and the corresponding tiling matrix UH. It is possible to add an objective function to reduce
the amount of communication between tiles. Many approaches give a partial solution to
this problem in the context of automatic parallelization and high performance computing
[45, 115, 160]. However how to adapt them in our context is not straightforward and is left
for future work.

Step c. Compute the dependence distances
Given a dependence vector ~d and an iteration ~x in a tile slice the set of iterations~i executed
between ~x and ~x+ ~d is exactly:

D(~x, ~d) = {~i | UH~x� UH~i� UH(x+ ~d)}

Remember that UH, the tiling matrix computed in the previous step, is also the intra-tile
schedule matrix. By construction, D(~x, ~d) is an integral polyhedron (conjunction of affine
constraints). Then, the dependence distance ∆(~d) is exactly the number of integral points in
D(~x, ~d) (that does not depend on ~x). The number of integral points in a polyhedron can be
computed with the Ehrhart polynomial method [55] which is implemented in the polyhedral
library [10]. Here, the result is a degree 1 polynomial in the tile size `n−2 associated to the
hyperplane Hn−2, ∆(~d) = α`n−2 + β. Then, given a fixed input pipeline depth δ for the
FloPoCo operator, two cases can arise:
– Either we just have one dependence, D = {~d}. Then, solve ∆(~d) = δ to obtain the right

tile size `n−2.
– Either we have several dependencies,D = {~d1, . . . , ~dp}. Then, choose the dependence vec-

tors with smallest α, and among them choose a dependence vector ~dm with a smallest β.
Solve ∆(~dm) = δ to obtain the right tile size `n−2. Replacing `n−2 by its actual value gives
the remaining dependence distances ∆(~di) for i 6= m, that can be sorted by increasing or-
der and used to add additional registers to the FloPoCo operator in the way described for
the Jacobi 1D example (see Figure 11.6(b)).

Step 2: Generating the control FSM

This section explains how to generate the FSM that will control the pipelined operator accord-
ing to the schedule computed in the previous section. A direct hardware generation of loops,
which is usually used, would produce multiple synchronized FSMs, each FSM having an initial-
ization time (initialize the counters) resulting in an operator stall on every iteration of the outer
loops. We avoid this problem by using the Boulet-Feautrier algorithm [46] to generate a single
loop that executes one instruction per iteration.

The method takes as input the tiled iteration domain and the scheduling matrix (UH) and
uses ILP techniques to generate two functions: First and Next. The operation returned by First
represents the first operation to be executed.

145

146 Chapter 11. High-level synthesis of perfect loop nests

Then, the Next function computes the next operation to be executed given the current opera-
tion. The generated code looks like:

1 I := First();
2 while(I 6= ⊥) {
3 Execute(I);
4 I := Next(I);
5 }

where Execute(I) is a macro in charge of sending the correct control signals to compute the it-
eration I of the tile loop. The functions First and Next are directly translated into VHDL if
conditions. When these conditions are satisfied, the corresponding iterators are updated and the
control signals are set.

The signal assignments in the FSM do not take into account the pipeline level at which the
signals are connected. Therefore, we use additional registers to delay every control signal with
respect to its pipeline depth. This ensures a correct execution without increasing the complexity
of the state machine.

Parallelization

There are classical techniques of parallelizing the execution of a given tiling. They all ba-
sically consist in finding a parallel hyperplane which describes the tiles which have no inter-
dependencies. Although this technique works for all examples, we believe that kernel-specific
parallelizations can yield better performances, as in the case of the Jacobi kernel. In this direction,
we propose to generalize the Jacobi parallelization to codes presenting dependence symmetries.

11.3 Computing kernel accuracy and performance

In this section we show, on our two working examples that the accelerator’s implementa-
tion cost can be significantly reduced by designing operators which account for the application’s
accuracy requirements. In other words, given an average target relative error (which roughly
gives average number of valid result bits) we give here an heuristic for choosing the intermediary
floating-point formats based on a worst case error analysis. The validity of these heuristics is then
tested on several examples.

11.3.1 Matrix-matrix multiplication

Let’s consider the matrix-matrix multiplication C ← AB, where the elements of these ma-
trices are floating-point numbers having wE bits for representing the exponent and wF bits for
representing the fraction.

The standard iterative operator used in matrix-matrix multiplication performs
∑N−1

k=0 ai,kbk,j .
For relatively small values of N this sum can be performed in parallel. For larger values of N an
iterative operator ci,j ← ci,j + ai,kbk,j , k ∈ 0..N − 1 is used.

The iterative operator implementation requires assembling one FP multiplier and one FP adder
which serves as an accumulator. First, we consider that the elements of the input matrices A and
B are exact and the instantiated FP operators employ the round-to-nearest rounding mode (the
result of a calculation is rounded to the nearest floating-point number).

We denote by fl(·) the evaluation in floating-point arithmetic of an expression and we assume
that the basic arithmetic operators +,−, ·, / satisfy:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ ulp/2

146

11.3 Computing kernel accuracy and performance 147

Table 11.1 Minimum, average and maximum relative error out of a set of 4096 runs, for N =
4096, the elements of A and B are uniformly distributed on the positive/entire floating-point axis.
The third architecture uses truncated multipliers having an error of 1 ulp with ulp = 2−wF−6.
Implementation results are given for a Virtex-4 speedgrade-3 FPGA device

Architecture Sign Min Average Max Performance

SP in/out, + 1.55e-08 (2−25) 5.19e-05 (2−14) 1.06e-04 (2−13)
21 clk, 368MHz, 565 sl., 4 DSP

SP intern ± 3.00e-11 (2−34) 9.27e-06 (2−16) 1.68e-03 (2−9)

SP in/out, + 9.34e-10 (2−29) 4.72e-07 (2−21) 1.49e-06 (2−19)
32 clk, 308MHz, 1656 sl., 16 DSP

DP intern ± 3.00e-11 (2−34) 3.99e-06 (2−17) 8.42e-04 (2−10)

SP in/out, + 1.11e-10 (2−33) 5.29e-07 (2−20) 1.64e-06 (2−19)
22 clk, 334MHz, 952 sl., 1 DSP

wF + 6 intern ± 3.02e-11 (2−34) 5.14e-06 (2−17) 1.29e-03 (2−9)

In plain words we state that the maximum rounding error introduced by one of the above
basic operations is bounded by 1/2 ulp and is in average 1/4 ulp.

During the iterative calculation of ci,j (a dot product between one vector of A and one of B)
the rounding errors build-up at each iteration. Possible cancellations at each iteration prevent us
from finding a practical static error bound in the general case. Therefore, we decide to provide an
approximate static error bound, for each element of c by discarding the cancellation effects [91].
Let’s consider as an example the dot product between two vector having two elements:

p̂0 = a0b0(1 + δ0)

p̂1 = a1b0(1 + δ1)

ŝ0 = (p̂0 + p̂1)(1 + δ2)

= a0b0(1 + δ0)(1 + δ2) + a0b0(1 + δ1)(1 + δ2)

From here on we don’t wish to distinguish between the δi so we use a notation due to Higham
[91] which denotes products of the form (1 + δi)...(1 + δi+k−1) with (1 ± δ)k. Using this new
notation, the error of the N -length dot-product kernel is:

ĉN = (ĉN−1 + ai,N−1 bN−1,j(1± δ))(1± δ)

= ai,0 b0,j(1± δ)N +

N−1∑
k=1

ai,k bk,j(1± δ)N+1−k

A simplified way to express this, due to Higham [91] is using the following notation:

n∏
i=1

(1 + δi)
ρi = 1 + θn, ρi ∈ {−1, 1}

where:
|θn| ≤

nu

1− nu
= γn

The dot product can then be written as:

ĉN = ai,0 b0,j(1 + θN) +

N−1∑
k=1

ai,k bk,j(1 + θN+1−k)

147

148 Chapter 11. High-level synthesis of perfect loop nests

Table 11.2 Minimum, average and maximum relative error for elements of an array in the Jacobi
stencil code over a total set of 4096 runs, for T = 1024 iterations in the time direction. The numbers
are uniformly distributed within wF exponent values. Implementation results are given for a
Virtex-4 speedgrade-3 FPGA device

Architecture Min Average Max Performance

SP 1.29e-11 (2−35) 2.56e-06 (2−18) 5.24e-04 (2−10) 32 clk, 395MHz, 954 slices
SP in/out, DP int. 1.90e-11 (2−38) 2.12e-08 (2−25) 5.83e-08 (2−24) 44 clk, 308MHz, 2280 slices
SP in/out, wF + 3 int 1.78e-11 (2−35) 6.97e-08 (2−23) 4.53e-06 (2−17) 31 clk, 313MHz, 1716 slices

The error will exhibit the largest value when all sub-products have the same magnitude, and
the rounding errors will all have the same sign. We will denote this bound by ∆. A well known
rule of thumb [91] states that given an error bound ∆, the average error will roughly be

√
∆. The

number of invalid bits due to roundings alone is bounded by log2(∆) and is equal, on average
to log2(

√
∆). This value was indeed validated experimentally as presented in Table 11.1. which

reports the minimum, average and maximum relative errors for the vector product, the basic block
in the matrix-multiplication algorithm. The input vectors have been populated using positive
random numbers for one set of tests, and both positive and negative random numbers for the
second set, uniformly distributed on the corresponding floating-point axis (uniformly distributed
exponents).

The average relative error reported for a standard single-precision architecture using positive
inputs (in order to avoid the effects of cancellation) is of the order 2−14. The error bound obtained
using equation 11.3.1 is about 4100 ulp. Using the previously mentioned rule of thumb, we expect
that the average relative error in this case to be

√
4100 ≈ 64.03. Therefore the number of inval-

idated bits is equal to dlog2(64.03)e = 7. Which gives an expected average relative error of 2−16

which is close to the 2−14 obtained experimentally.
The second architecture listed in table 11.1 processes the same SP input data using double-

precision operators. The result is finally rounded back to single-precision. As expected, the accu-
racy of this architecture is improved, at a significant increase in operator size.

The third architecture processes the same SP input data using internal operators with a slightly
larger precision (wF + 6 bits). Additionally, the floating-point multiplier is is implemented using
truncated multipliers [40] (allow reducing the number of DSP blocks over classical implementa-
tions). Due to the extended fraction, the ulp value for this architecture is 2−29. Accounting for
the lower multiplier accuracy and the final conversion back to single precision, this architecture
should still be roughly 26 times more accurate than the SP version. Indeed, experimental results
presented in table 11.1 confirm that the average relative error for this implementation is of the
order of 2−20, 26 times smaller than the 2−14 for SP.

The second row for each architecture presents same relative error values when the input num-
bers are uniformly distributed on the entire floating-point axis (positive and negative) making
cancellations possible. In average, each run had 7 cancellations. It can be observed that in such a
situation, the three different architectures report similar numbers for the relative errors. Improv-
ing accuracy in such a case could be accomplished by avoiding cancellations as much as possible,
allowing the computing unit to reorder the operations on the fly. Unfortunately, the proposed
scheduling solution requires deterministic execution of operations which will not be the case in
such an architecture.

11.3.2 One dimensional Jacobi stencil computation

The Jacobi stencil computation offers similar optimization opportunities. The main statement
executes the averaging of three consecutive members of array a at time t to update the middle

148

11.4 Reality check 149

index at time t+ 1.
We can model the impact of the rounding errors on this code using the arithmetic model pre-

viously introduced. Consider the assembly of standard floating-point operators.

ât+1,k =(((ât,k−1 + ât,k−1)(1 + δ1) + ât,k+1)(1 + δ2)
1

3
)(1 + δ3)

=
1

3
(ât,k−1(1 + θ3) + ât,k(1 + θ3) + ât,k+1(1 + θ2))

The error bound after T steps is of the order θ3T . In the case of an FPGA architecture, this error
bound can be reduced to θ2T by using a 3-input adder:

ât+1,k =((ât,k−1 + ât,k−1 + ât,k+1)(1 + δ1)× 1

3
)(1 + δ2)

=
1

3
(ât,k−1(1 + θ2) + ât,k(1 + θ2) + ât,k+1(1 + θ2))

Using the same rule or thumb we estimate that the average error for a single-precision im-
plementation with two floating-point adders and one constant multiplier will be 2−23+5 = 2−18

(dlog2(
√
|θ3T |)e = 5). This is indeed confirmed by the data presented in Table 11.2.

The our specific implementation (third line in table 11.2) uses a fused 3-input adder in order to
enhance accuracy by saving one rounding error. Moreover, it uses an extended format of wF + 3
bits. The average error in ulps one would expect from this implementation is dlog2(

√
|θ2T |)e = 4

which invalidates 4 lower bits. Fortunately, the extended precision should absorb 3 of those,
leaving the relative error of the order 2−22. This is indeed confirmed by Table 11.2.

11.3.3 Lessons

The heuristic we propose is very simple, works for codes involving the basic operations:
+,−,×,÷,

√
x working in floating-point arithmetic. The first task consists in defining the aver-

age accuracy requirement of the application (how many bits we expect, on average to be valid
in our result), which we denote by γ. Why this average number of bits and not the worst case
accuracy? Because in floating-point arithmetic, due to cancellations (subtraction of two very close
values) errors can be amplified theoretically at every subtraction, possibly loosing all the result’s
accuracy.

Next, we express the accumulation of rounding errors (by discarding the possible amplifying
effect of cancellations) using the model of floating-point arithmetic previously introduced (the
interested reader should check the excellent book by Higham [91]). This gives us a worst case
relative error (considering that no cancellations have amplified any error in the process) which we
denote by ∆. We use the rule-of-thumb presented in [91]: the average relative error of the result is
roughly equal to

√
∆. The average number of invalidated bits, due to this error is ζ = dlog2(

√
∆)e.

The working precision we chose for our circuit is therefore ψ + ζ in order to attain an average
output accuracy of ψ.

11.4 Reality check

Table 11.3 presents synthesis results for both our running examples, using a large range of
precisions, and two different FPGAs. The results presented confirm that precision selection plays
an important role in determining the maximum number of operators to be packed on one FPGA.

149

150 Chapter 11. High-level synthesis of perfect loop nests

Table 11.3 Synthesis results for the full (including FSM) MMM and Jacobi1D codes. Results ob-
tained using using Xilinx ISE 11.5 for Virtex5, and QuartusII 9.0 for StratixIII

Application FPGA Precision Latency Frequency Resources
(wE , wF) (cycles) (MHz) REG (A)LUT DSPs

Matrix-Matrix
Virtex5(-3)

(5,10) 11 277 320 526 1

Multiply
(8,23) 15 281 592 864 2

(10,40) 14 175 978 2098 4

N=128
(11,52) 15 150 1315 2122 8
(15,64) 15 189 1634 4036 8

StratixIII (5,10) 12 276 399 549 2
(9,36) 12 218 978 2098 4

Jacobi1D Virtex5(-3)
(5,10) 98 255 770 1013 -

stencil
(8,23) 98 250 1559 1833 -

N=1024
(15,64) 98 147 3669 4558 -

T=1024 StratixIII
(5,10) 98 284 1141 1058 -
(9,36) 98 261 2883 2266 -

(15,64) 98 199 4921 3978 -

Table 11.4 Synthesis results for the parallelized MMM and Jacobi1D. Results obtained using using
Quartus II 10.1 for StratixIII with wE = 8, wF = 23

Application Par. factor Frequency Resources
(MHz) REG (A)LUT M9K DSPs

Matrix-Matrix
1 308 701 614 3 4

Multiply
2 282 1317 999 5 8

N=128
4 303 2473 1789 12 16
8 302 4842 3291 20 32

16 281 9582 6291 32 64

Jacobi1D 1 311 1217 1199 9 -

stencil 2 295 2394 2095 21 -

N=1024
4 283 4600 3853 38 -

T=1024
8 274 9018 7314 69 -

16 251 17806 14218 132 -

As it can be remarked from the table, our automation approach is both flexible (several precisions)
and portable (Virtex5 and StratixIII), while preserving good frequency characteristics.

The generated kernel performance for one computing kernel is: 0.4 GFLOPs for matrix-matrix
multiplication, and 0.56 GFLOPs for Jacobi, for a 200 MHz clock frequency. Thanks to program
restructuring and optimized scheduling in the generated FSM, the pipelined kernels are used with
very high efficiency. Here, the efficiency can be defined as the percentage of useful (non-virtual)
inputs fed to the pipelined operator. This can be expressed as the ratio #(I \ V)/#I, where I is
the iteration domain and V ⊆ I is the set of virtual iterations. The efficiency represents more than
99% for matrix-multiply, and more than 94% for Jacobi 1D. Taking into account the kernel size
and operating frequencies, tens, even hundreds of pipelined operators can be packed per FPGA,
resulting in significant potential speedups.

Table 11.4 presents synthesis results of the parallelization for both our running examples on
the StratixIII FPGA using the single precision format. As expected, due to massive parallelism
and no inter parallel process communication, for matrix multiplication example the scaling in
terms of resources is proportional to the parallelization factor. The maximum operating frequency
remains fairly constant. Jacobi 1D scales very well too. A small increase in utilized resources is
due to the increase in the multiplexer size in order to fit signals from neighbor computational
cores. The frequency remains fairly constant. This proves that our method is well suited for FPGA
implementation.

150

11.5 Conclusion and future work 151

There exists several manual approaches like the one described in [77] that presents a man-
ually implemented acceleration of matrix-matrix multiplication on FPGAs. Unfortunately, the
paper lacks of detailed experimental results, so we are unable to perform correct performance
comparisons. Our approach is fully automated, and we can clearly point important performance
optimization. To store intermediate results, there approach makes a systematic use of local SRAM
memory, whereas we rely on pipeline registers to minimize the use of local SRAM memory. As
concerns commercial HLS tools, the comparison is made difficult due to lack of clear documenta-
tion as well as software availability to academics.

11.5 Conclusion and future work

In this chapter we have presented a FPGA-specific approach to synthesizing programs de-
scribed by perfectly nested loops with affine dependencies. The technique uses the information
on the pipeline depth of the arithmetic operator implementing the inner statement in order to
reschedule the program execution. Once a scheduling has been found, the arithmetic operator’s
architecture is attached with a specific interface consisting of multiplexers and shift-registers. This
technique is FPGA-specific in the sense that the arithmetic operator with corresponding shift reg-
isters and multiplexers are generated on an application-basis.

The technique only writes data in the memory at tile boundary. In the context of multiple
parallel processing elements, we have also presented an FPGA-specific technique that allows inter
PE communication by simply connecting their interfaces. This technique discards the need for
buffers in inter-process communication for our restricted class of applications.

We have also presented a heuristic method that given the average target accuracy for an appli-
cation allows dimensioning the internal floating-point arithmetic data-path to obtain this accuracy.
This technique can be easily automated and integrated in the same compiler tool. The savings in
terms of resource usage implied by this technique are significant.

In the future, it would be interesting to extend our technique to non-perfect loop nests. This
requires to consider each assignment as a process, the whole kernel being a network of commu-
nicating processes. Several model of process networks can be investigated, depending on the
communication medium between processes (FIFOs or buffers).

Thanks

Most of the material presented in this chapter is based on a collaboration with the members of
the COMPSYS team Christophe Alias and Alexandru Plesco under the supervision of my thesis
advisor Florent de Dinechin. I would like to thank them all for their contributions.

151

12 CHAPTER 12

Using FloPoCo to solve Table Maker’s
Dilemma

The IEEE 754-2008 standard for Floating-Point arithmetic [17] suggests (yet does not dictate)
that some elementary functions should be correctly rounded. That is, given a rounding function
◦ (e.g., round to nearest even, or round to ±∞), when evaluating function f at the floating-point
number x, the system should always return ◦(f(x)).

One of the main objectives of the Arénaire project is building a fast mathematical library for
these functions. Reaching this goal requires first solving a problem called the Table Maker’s
Dilemma for each target floating-point format and each elementary function. The problem re-
quires massive amounts of computations which can be performed using computing environments
and number formats substantially different from the target environment and floating-point for-
mat. In this chapter we propose a generic algorithm for this problem which maps well on modern
FPGAs. A parametric description of the whole system architecture is designed entirely using the
FloPoCo framework. Using FloPoCo to describe such a complex project has allowed us to val-
idate the framework in new conditions, and to gain knowledge on how the framework can be
improved.

12.1 The Table Maker’s Dilemma

For the sake of simplicity, we assume from here on that the rounding function is round to
nearest even.

On the target environment, to compute f(x) in a given format, where x is a FP number, we
must first compute an approximation to f(x) with a given accuracy [123], which we round to the
nearest FP number in the considered target format. The problem is the following: find what must
the accuracy of the approximation be to make sure that the obtained result be always equal to the
“exact” f(x) rounded to the nearest FP number. To solve that problem we have to locate, for each
considered target floating-point format and for each considered function f , the hardest to round
(HR) points, that is the floating-point numbers x such that f(x) is closest to the exact middle of
two consecutive floating-point numbers (we call such a middle a midpoint), without being exactly
a midpoint.

Assuming (after some re-normalization) that x and f(x) are between 1 and 2, that the target
floating-point format is a binary format of precision p, we need to find the largest possible value
of m such that there exist a FP number x that satisfies:

– f(x) is not exactly equal to a midpoint;

154 Chapter 12. Using FloPoCo to solve Table Maker’s Dilemma

– the binary representation of f(x) has the form

m bits︷ ︸︸ ︷
1.xxxxx · · ·xxx︸ ︷︷ ︸

p bits

1000000 · · · 000000xxx · · · or
m bits︷ ︸︸ ︷

1.xxxxx · · ·xxx︸ ︷︷ ︸
p bits

0111111 · · · 111111xxx · · · ;

Two different algorithms have been suggested for dealing with this problem:

1. L-algorithm first presented in Lefèvre’s PhD dissertation [107, 108] allowed Lefèvre and
Muller to publish the first tables of HR points for the most common functions in double-
precision/binary64 FP arithmetic [109]

2. SLZ algorithm introduced by Stehlé, Lefèvre and Zimmermann [143, 144], was used to find
the HR points for the exponential function in decimal64 arithmetic [110].

The SLZ-algorithm has a better asymptotic complexity than the L-algorithm. However, when
the target format is the double precision/binary64 format, they require similar computational de-
lays: weeks of computation for all input exponents (hours of computation for one input exponent),
using massive parallelism. The problem with these algorithms does not only lie in this huge com-
putation delay: it lies in the fact that a very complex algorithm, implemented in a very complex
program, runs for weeks and just outputs one result: what confidence can we have in that result?

The HR points are one of the few weak parts of libraries such as CRLibm [59] where each
function of that library comes with a theorem of the form “if the HR points have been rightly com-
puted then the function always outputs a correctly rounded result”. Hence, our major goal here is
to design a very simple, very regular algorithm (therefore suited for FPGA implementation): if it
outputs the same results as the L-algorithm, then this will give much confidence in these results.

The method we are going to suggest here has a worse asymptotic complexity than the L- and
SLZ-algorithms. And yet, due to its simplicity, the hidden constant in the complexity term is so
small that, still with double precision/binary64 as a target, our method will require similar delays
on a single FPGA.

12.2 Proposed algorithm

Defining u = 21−p, we will compute the values of f(1) mod 21−p, f(1 + u) mod 21−p, f(1 +
2u) mod 21−p, f(1 + 3u) mod 21−p, . . . , f(2) mod 21−p, with a given, predetermined, accuracy 2−µ

(with µ larger than p and—for probabilistic reasons [123]—less than 2p).
Each time we find a value f(1 + ku) mod 21−p extremely close to 2−p (i.e., whose leading bits

are of the form 011111111 · · · or 10000000 · · ·), we output the value of k for some further testing.
The major difficulty here is that since there are 2p−1 values f(1+ku) mod 21−p, and p is fairly large
(a typical value is 53 for the double precision/binary64 format), the computation of these values
must be done very quickly.

To do this, we will approximate f by some polynomial P (with an accuracy of approximation
significantly better than 2−µ), and compute the successive values P (1 + ku) mod 21−p using a
modulo 21−p adaptation of the well-known tabulated differences method [96].

12.2.1 The tabulated differences method

Let P be a polynomial of degree n and x0 a real. We define xk = x0 + ku for k > 0, and we
wish to compute the successive values P (x0), P (x1), P (x2), P (x3), The tabulated differences
method is based on the fact that if we define the following “discrete derivatives”:

– P (1)(x) = P (x+ u)− P (x);

154

12.2 Proposed algorithm 155

– P (2)(x) = P (1)(x+ u)− P (1)(x);
– . . .
– P (n)(x) = P (n−1)(x+ u)− P (n−1)(x);

then P (n) is a constant C. This leads to the following algorithm.

Initialization compute P (x0), P (x1), P (x2), . . . , P (xn), and deduce from these values all the
possible partial discrete derivatives, of which we keep the initial vector at point x0: P (n)(x0) = C,
P (n−1)(x1), P (n−2)(x2), . . . , P (2)(xn−2), P (1)(xn−1), P (xn).

Iteration The following recurrence computes the value of this vector at point xk+1 = xk + u out
of the vector at point xk.

P (n−1)(xk+2) = P (n−1)(xk+1) + C

P (n−2)(xk+3) = P (n−2)(xk+2) + P (n−1)(xk+2)
...

...
...

P (2)(xk+n−1) = P (2)(xk+n−2) + P (3)(xk+n−2)

P (1)(xk+n) = P (1)(xk+n−1) + P (2)(xk+n−1)

P (xk+n+1) = P (xk+n) + P (1)(xk+n)

(12.1)

P (xn)P (xn−1)P (x0) P (x1) P (xn−2)

P (1)(xn−1)P (1)(xn−2)

P (2)(xn−2)

P (n−1)(x1)P (n−1)(x0)

P (1)(x0)

P (n)(x0) = C C

P (2)(xn−1)

P (n−1)(x2)

C

P (1)(xn+1)

P (2)(xn)

P (n−1)(x3)

P (1)(xn)

P (xn+1) P (xn+2)initialization data

Initialization
process

iteration 1 iteration 2

Figure 12.1 The tabulated difference method

The computations in (12.1) are done modulo 21−p: they are simple fixed-point additions,
with the bits of weight ≥ 21−p being ignored. Notice that the n additions in (12.1) are straight-
forwardly pipelined, hence, once the initialization is done, computing a new value P (xk) takes
the time of one addition. It should also be noted that the problem is embarrassingly parallel: Al-
though the iteration itself is intrinsically sequential, the full domain of an elementary function in
double-precision may be split into arbitrarily many sub-domains, and we may perform initializa-
tion/iteration processes in parallel for each sub-domain. We indeed aim at processing hundreds
of sub-intervals in parallel within a single FPGA.

The initial values P (x0), P (x1), P (x2), . . . , P (xn) cannot be computed exactly in practice. They
are correct within some rounding error, and we will see in the following that when performing

155

156 Chapter 12. Using FloPoCo to solve Table Maker’s Dilemma

(12.1), these errors accumulate quite quickly. After some value of k, say kmax this accumulated
error becomes unacceptable, and we have to invoke the initialization process again, with x0 re-
placed by x0 +kmaxu. In other words, the size of a sub-interval is dictated by an error analysis that
will be the subject of Section 12.2.2.

The initialization process requires n+ 1 polynomial evaluations, and n(n+ 1)/2 subtractions.
There are two possible ways of performing it:

1. on the FPGA itself, or

2. in software on the host computer.

In any case, we chose kmax so that the initialization time is totally overlapped by the iterations
(12.1).

The initialization process first involves evaluating the polynomial in n+1 points using a classi-
cal multiplication-based scheme (typically Horner’s). Modern FPGAs contain up to several thou-
sand small multipliers that could be used for this purpose, but designing an architecture for this
initialization would add a lot to the FPGA design effort. In the sequel of this chapter, we therefore
choose the simpler second approach. It also has the advantage of exploiting the computing power
of the host processor. However, there is a price to pay: due to limited bandwidth between the
host and the FPGA, iteration (12.1) must run for a much longer kmax. We will see in next section
that this entails a significantly wider data-path, hence more resource consumption for the itera-
tion hardware, possibly cancelling the benefits of saving the initialization hardware. This question
remains to study quantitatively.

Let us now formalize the dependency between kmax and the datapath width.

12.2.2 Error analysis

Let us bound the difference between the value computed F (xk) and the true value of the
function f(xk). We may first decompose this error as follows:

F (xk)− f(xk) = (F (xk)− P (xk)) + (P (xk)− f(xk))

The second term is the approximation error, and the Remez approximation algorithm will allow
us to keep it as small as needed. Let us focus on the first term, the rounding error.

Let δ(i)(x0 + ku) be the overall rounding error in the initial evaluation of P (i)(x0 + ku). Notice
that the additions in (12.1) are performed in fixed-point, ignoring the outgoing carries: they do not
induce any error, yet they propagate the initial rounding errors on the P (i)(x0). Let ε be a bound
on the errors on P (n)(x0) = C, P (n−1)(x0 + u), P (n−2)(x0 + 2u), . . . , P (1)(x0 + (n− 1)u). We easily
find

δ(n−1)(x0 + ku) ≤ δ(n−1)(x0 + (k − 1)u) + ε,

so that
δ(n−1)(x0 + ku) ≤ (k + 1)ε.

From that, we deduce

δ(n−2)(x0 + ku) ≤ δ(n−2)(x0 + (k − 1)u) + δ(n−1)(x0 + (k − 1)u)

≤ δ(n−2)(x0 + (k − 1)u) + kε,

so that

δ(n−2)(x0 + ku) ≤ (1 + 2 + 3 + · · ·+ k)ε =
k(k + 1)

2
ε.

Similarly,

δ(n−3)(x0 + ku) ≤
(

1 + 2(2+1)
2 + 3(3+1)

2 + · · ·+ (k−1)k
2

)
ε = (k−1)(k)(k+1)

6 ε.

156

12.3 Our design 157

An elementary induction shows that the bound on the error of the computed value of P (x0 + ku)
satisfies

δ(0)(x0 + ku) ≤ (k − n+ 2) · · · (k − 1)(k)(k + 1)

n!
ε. (12.2)

12.2.3 An example: the exponential function

All parameters in the method are function-dependent, so we cannot give a general perfor-
mance result (although it should not vary much with the function). Hence, we give here some
figures related to the exponential function on the input interval [1, 2). We take f(x) = 1

2e
x to

normalize the output to [1, 2).
We first split the input interval into 2m sub-intervals, each of size 2−m, and we will compute

one approximation polynomial on each sub interval, using the Remez algorithm. The trade-off
here is between the degree of the obtained polynomials (the smaller, the better for the subsequent
evaluation) and the number of Remez polynomial to compute. A good choice here is m = 15:
on each of the 215 = 32768 sub-intervals, a polynomial of degree 4 approximates f(x) with an
accuracy better than 2−90, and the Sollya tool is able to compute all these polynomials and formally
validate their accuracy [53] in about 3 hours.

Now we must choose kmax, which dictates the length of an evaluation run between reinitializa-
tions. Having decided that reinitializations are performed on the host processor, we now have to
take into account the limits on 1/ computing power of the host processor and 2/ data bandwidth
between processor and FPGA. A larger kmax means fewer initializations, but larger data-path,
hence slower operation and less parallelism. Note also that if we have P parallel iteration cores,
the host must serve them all.

Our current trade-off is to take kmax = 220. Equation (12.2) with degree n = 4 tells us that the
error is smaller than 276ε. For our target accuracy of 2−85 modulo 252, we need to have 85−52 = 33
valid bits at the end of the computation. A datapath width of 33 + 76 = 109 bits ensures this
accuracy. AssumingM = 28 parallel iterations on the FPGA, the host must be able to compute one
initialization every 220/28 = 4096 FPGA cycles. FPGA cycles are typically 10 times slower than
processor cycles, so the host has roughly 40,000 cycles to compute each initialization. Efficient
multiple-precision libraries such as GMP and MPFR make this possible. Host-FPGA bandwidth,
in this scenario, is not a problem.

12.3 Our design

A natural technology for implementing this type of algorithm is the FPGA. There are several
reasons for that:

– for a given set of input parameters we need to perform a big, one-off computation. Once
completed we can reconfigure the FPGA for a different set of input parameters.

– the implemented method is based on binary additions for which FPGAs are very well opti-
mized to perform.

Nevertheless, manually implementing such a complex, multi-parametrized design using a
hardware description language (HDL) is a tedious and error-prone task. We have decided to
use the FloPoCo framework for the parametric architectural description for two main reasons:

– the full architecture should by fully parametric in order to easily explore different trade-offs.
Due to the high-abstraction level provided by C++, the numerous parameters: polynomial
degree, data-path bit-widths, FIFO sizes, number of processing elements etc. are more easily
managed. The generated VHDL has no parameters or FOR... GENERATE constructs which
makes it easier to verify.

157

158 Chapter 12. Using FloPoCo to solve Table Maker’s Dilemma

... ...

{

Counter

n

CCE

Counter

Ready
Interval

rst
ce count

D Q
ce

D Q
ce

ce
D
we

QD
ce

ce
D Q

Pattern
Detector

Control
FSM

adder 0

adder 1

adder n-1

+

+

+

...

TaMaDi Core

Interval

DataIn

Valid

Init

Figure 12.2 Polynomial Evaluator based on the tabulated differences method

– the implementation of such a complex project in FloPoCo will provides us with precious
feedback on how to improve the framework.

12.3.1 Functional model

TaMaDi Core

The core component of our design is the polynomial evaluator based on the tabulated differ-
ences method. The architecture of this component is depicted in Figure 12.2. Its main entities are
the n− 1 adders chained together which are used to evaluate the vector of discrete derivatives.

Each computation starts with the component receiving a ’1’ value on the Initialize line to-
gether with a unique interval identifier on the Interval bus. During the next N + 1 clock cycles,
the values of the initialization vector C = P (n)(x0), ..., P (x0 + nu) are received in sequence on the
DataIn bus, and fill the pipeline. A counter is used to keep track of k in evaluating P (x0 + ku).
The output of the nth adder feeds a pattern detector unit, implemented as wide AND. A value of
’1’ at the output of the pattern detector signals that the value present on the output Counter bus,
together with the interval identifier, points to one HR case. The component raises the Ready line
to ’1’ when it has finished the allowed number of iterations and needs a new reinitialization.

The architecture of the TaMaDi Core (Core) is perfectly suited to FPGA hardware. Adders
benefit from the fast carry-chains which allow the simple ripple carry adder (RCA) scheme to be
implemented efficiently. The pattern detector may also take advantage of these fast carry-chains in
Xilinx devices. On Altera devices, the 6-input ALUT feature is used to implement this using multi-
level logic. The inter-LAB direct connections allow fast frequencies. In any case, the component
can be pipelined as it is outisde the loop’s critical path.

Table 12.1 presents area and timing post place-and-route results of the TaMaDi Core on modern
FPGAs from Xilinx [23, 20] and Altera [27, 28] for the exponential function example presented in
Section 12.2.3. The area of one Core occupies a very small fraction of these FPGA. The largest
StratixV from Altera(5SGXAB) having 1052K LUTs and 1588K REGs can, in theory accommodate
over 1500 Cores while the largest Virtex6 from Xilinx(XC6VLX760) having 758K LUTs and 1516K
REGs can accommodate roughly 1000 Cores, if one also considers the interfaces overhead.

158

12.3 Our design 159

Table 12.1 Post place-and-route results of the TaMaDi Core PE
Datapath Degree FPGA Frequency Area

width N LUTs REGs

120 4

StratixIV 237 MHz 584 750
StratixV 359 MHz 585 750
Virtex5 262 MHz 640 646
Virtex6 332 MHz 640 646

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

wiid

wiid
dwdp

wk

(n + 1)wdp
+wiid

o(n-1)
i(l-1)

i(0)

o(0)

i(n-1)
o(l-1)

o(0)
i(0)

DataIn
ReadEN

WriteEN Full
Empty

DataOut

DataIn
ReadEN

WriteEN Full
Empty

DataOut

Ready
ValidOut
Interval
Counter

Counter
Interval
ValidOut

Ready

DataOut
Ready

o(0)
i(0)

o(n-1)

i(l-1) o(l-1)

o(0)
i(0)

i(n-1)

Full

Empty

DataOutDataIn

ReadEN

WriteEN

Data
LoadEN

DataIn
Interval
Init
CE

DataIn
Interval
Init
CE

wk + wiid
DataIn

ReadEN

WriteEN

DataOut

Empty

Full

...

...
...

...

Decoder

Decoder Priority
Encoder

ClusterInFIFO

Shift Register

TaMaDi Core CoreFIFO

CoreFIFO
Priority
EncoderTaMaDi Core

...

ClusterOutFIFO

Figure 12.3 Overview of the TaMaDi Cluster architecture

TaMaDi Cluster

Multiple TaMaDi Cores may be assembled in a larger component named TaMaDi Cluster,
whose architecture is depicted in Figure 12.3.

The presented system has several parameters:
– M the number of TaMaDi Cores in the system. The maximum value of this parameter de-

pends on the size of one Core and the size of the FPGA. The practical value for this parameter
also depends on the bandwidth between FPGA and the host system, Core datapath width,
degree and reinitialization interval.

– size of the input and output FIFOs, also depends on bandwidth, M and Core characteristics.
– size of CoreFIFO. Their dimension can be as small as one element. However, for good per-

formance their size should be dimensioned according to the probability of finding HR cases
in that interval and the output bandwidth.

The TaMaDi Cluster is connected to the host system (or the next hierarchical level) by means
of two FIFOs. Data is fed by the host system to ClusterInFIFO while this FIFO is not full. Each
element on this FIFO has the structure depicted in Figure 12.4.

...IntervalID C

wiid wdp wdp wdp wdp

P (n−1)(x0 + u)P (n−2)(x0 + 2u)P (X0 + nu)

Figure 12.4 Structure of one element in the ClusterInFIFO

159

160 Chapter 12. Using FloPoCo to solve Table Maker’s Dilemma

...

...

...

empty

down
...

up

down

r
e
a
d
x

empty

.
.
.

...

...

empty

...

upup up up

down

1

...

>0

re0

>0

Empty
DataIn Read

Empty
DataOut Read

>0 >0

we0

we(k-1)

down
up

>0

DataIn
Write

DataOut
Read

DataIn DataOut
ReadWrite

TaMaDi Cores

OutCreditCounter

Decoder

Priority Encoder

SystemOutFIFO

Serializer

DMA FIFOs

SystemInFIFO

Deserializer

Decoder

ClusterOutFIFO
CreditCounter K-1

ClusterInFIFO
CreditCounter 0

ClusterInFIFO
CreditCounter K-1

Cluster K-1
senderreceiver

ClusterOutFIFO
CreditCounter 0

CreditCounter

Priority Encoder

ClusterOutFIFOClusterInFIFO

senderreceiver

pipelined communications

Cluster 0

Figure 12.5 Global system dispatcher interface

The ClusterInFIFO element contains the necessary information to bootstrap one processing
element. Once a TaMaDi Core is ready to process new information (signaled ’1’ on the corre-
sponding output Ready port) the input FIFO is popped one element. The uppermost wiid bits of
information containing the interval ID are fed to the processing element together with a value on
’1’ on the corresponding Initialize input pin. The lowermost (N + 1)wdp bits are loaded into a
N + 1-level shift-register in order be serialized in chunks of wdp bits. During the next N + 1 clock
cycles, the shift-register feeds the TaMaDi Core as the pipeline starts.

When the TaMaDi Cores signals the detection of a HR case, the information concerning this
case (counter value and interval identifier, totaling wk+wiid bits) is pushed into the corresponding
Core output FIFO.

The data from the CoreFIFOs is then placed in the ClusterOutFIFO whenever this FIFO is not
full. Simple priority encoders on both inputs and outputs manage the access to the Cluster input
and output FIFOs.

TaMaDi System

The TaMaDi Cluster has low resource count and fast clock speeds for modest number of Cores
(up to 32). However, this multiplexed data dispatch architecture scales badly due to several issues:
(1) size of the multiplexers and priority encoder-decoder circuitry (2) the long lines between the
dispatcher (shift-register in our implementation) and the computing cores (TaMaDi Cores).

By grouping multiple TaMaDi Cores into a small number of Clusters (where the size of the
Cluster remains reasonably small say 16), we could potentially use the same dispatching architec-
ture at a macro-level.

160

12.3 Our design 161

128 Avalon ST Interface

R
ef

er
en

ce
D

es
ig

n

registers

...

......

FPGA

TaMaDi
Interface

TaMaDi
Interface

Altera Hard IP

EZDMA IP

DMA FIFOs

Pipelined Credit Based
Dispatcher Interface

HOST PC PCIExpress

Cluster Cluster

Figure 12.6 Global system architecture

However, when filling up a large FPGA chip, a new problem arises: connections between the
dispatcher and the Clusters become very long, introducing large delays. To overcome this, we
have used a different, credit-based, dispatcher, depicted in Figure 12.5. It allows us to pipeline the
communication lines to Clusters, thus breaking the long delays into several shorter ones.

A detailed view of this sender/receiver interface is presented on the bottom of Figure 12.5.
The receiver part of the interface is tightly coupled to the TaMaDi Cluster. It consists of a counter,
initialized to the size of the Cluster Input FIFO. The value of this counter represents the number
of elements that the Cluster Input FIFO can receive before being full. At each clock cycle, the
counter will send one credit to the dispatcher’s sender interface and will block when no credits
are available.

This credits are counted in the dispatcher’s sender interface. Whenever this counter has credits
(value > 0), it asserts a ready signal. This signal indicates that the cluster is ready to receive an
initialization vector. A priority encoder/decoder circuit is then used to select the Cluster to which
the initialization vector will be sent to.

The initializationData and write-enable signals are sent synchronously through the pipelined
connection to the input FIFO of the TaMaDi Cluster. When this data will be read from this FIFO,
the credit will be incremented in the Cluster’s receiver interface.

The protocol passes credits between the interfaces in a circular manner. The maximal number
of credits is equal to the size of the TaMaDi Cluster Input FIFO. In the worse case there will be
no credits in any of the credit counters, no data in the pipeline connection, thus all the credits are
transformed into data elements inside the input FIFO.

A similar system is used for the Cluster sender/ dispatcher retrieval part. In addition, an
System Output Credit Counter is used to to keep track of the number of empty elements of the
System Output FIFO. This counter is decremented whenever a read signal is sent to the TaMaDi
Cluster and is incremented whenever the System Output FIFO is popped one element.

Full Prototype

For prototyping purposes we use the Stratix IV GX development board featuring a Stratix
IV GX EP4SGX530KH40C2 FPGA. The board communicates with a host PC by means of a PCI
Express 2.0 8x interface that can provide up to 3.4 GB/s full-duplex.

161

162 Chapter 12. Using FloPoCo to solve Table Maker’s Dilemma

The Altera PCI Express hard IP together with the PLDA EZDMA2 IP [5] offered in the PLDA
reference design ensure a simple FIFO interface for our pipelined credit-based Dispatcher Inter-
face (Figure 12.6). The PLDA host driver offers a high-level API interface for feeding and retrieval
of information from the DMA FIFOs by means of multiple DMA channels (2 in our case).

12.3.2 Bandwidth requirement

In this section we will compute the bandwidth requirement of the entire TaMaDi System. First,
we need to compute the bandwidth of TaMaDi Cluster depicted in Figure 12.3.

We use the following notations:
f circuit frequency
K the number of TaMaDi Clusters
M number of TaMaDi Cores within a Cluster
N approximation polynomial degree
wdp the datapath width of the TaMaDi Core
kmax the number of iterations between re-initializations
wk = dlog2(kmax)e, width in bits of the iteration counters.
η the maximum number of intervals to be processed by the system
wiid = dlog2(η)e, width in bits of interval identifiers
ξ the probability of finding one HR case
The input bandwidth for one TaMaDi Core:

Bin
Core =

(
(N + 1)wdp + wiid

) f

kmax +N + 1
(12.3)

and the output bandwidth of one Core is:

Bout
Core = ξ(dlog2(kmax)e+ wiid)

f

kmax +N + 1
(12.4)

The Core bandwidth is BCore = Bin
Core +Bout

Core. Considering that a TaMaDi Cluster has M such
Cores, the total bandwidth requirement for a Cluster is BCluster = M · BCore. A TaMaDi System is
composed out of K Clusters, therefore requiring a bandwidth equal to: BSystem = K · BCluster =
K ·M ·BCore.

Table 12.2 presents the dependency between the parameters of a Core, its area and the re-
quired bandwidth for keeping it busy at 100MHz. A larger bandwidth requirement leads to more
pressure on the I/Os but a smaller Core size, which allows fitting more in one single FPGA.

For a system comprising of 100 TaMaDi Cores, each requiring a bandwidth of 5.42 MBit/s
the bandwidth requirement is approximatively 0.5 Gb/s which seems to be reasonably within
our available bandwidth potential. Nevertheless, this configuration would require us generating
more than 57 TBytes of reinitialization data (some of which can indeed be generated on-the-fly)
compared to a more manageable 1.9 TBytes required for a wdp = 120.

For a 200-Core system BSystem = 3.4 Mbits/s, which can easily be provided by FPGA plat-
forms connected through to the host system through the PCIE bus, Ethernet interface and even
USB2.0.

12.3.3 Performance estimation

We are currently using the Altera StratixIV development kit based on an EP4SGX530KH40C2
FPGA to prototype our system. This gives us an environment for estimating the performance and
scalability of our architecture. However, as presented in this section the amount of computation

162

12.3 Our design 163

Table 12.2 Dependency between TaMaDi Core parameters, its area and the necessary bandwidth/-
Core for a StratixIV. Similar results hold for other FPGAs

Parameters Area Bandwidth
N wdp kmax wiid LUTs REGs (Mbit/s)
4 120 220 32 584 750 0.017
4 81 8,192 39 400 531 5.42

needed for an elementary function, on one exponent value is of the order of tens of hours. We
therefore envision mapping this architecture on even larger FPGAs, and even multi-FPGA based
systems.

In this section we provide a performance estimation for the case of the exponential function
for double precision p = 52 (we consider one input exponent). Considering the 220 iterations until
having to reinitialize the Core, the total number of intervals to process is about 4.3 · 109.

Table 12.3 shows the dependency between system frequency, number of Cores and task com-
pletion.

On our current FPGA prototyping system we conservatively estimate to be able to pack 200
PE which yields a realistic execution time of approximatively 50 hours.

12.3.4 Reality Check

We have tested the real performance of different configurations of our proposed systems on the
prototyping StratixIV development-kit. The purpose of these tests was to show the performance
of our solutions and to determine the degree of scalability of the proposed architectures (both the
simple-dispatcher and the credit-based dispatcher solution). The results are shown in Table 12.4

First, the results obtained validate that, once the number of Cores exceeds a certain threshold
(32 for StratixIV), the credit-based dispatch offers a more attractive solution. As the number of
Cores scales up, the credit-based dispatch will continue to function at frequencies over 150 MHz,
as the critical path of this system is in the adders of the TaMaDi Core. Nevertheless, due to chip
congestion, once the global resource utilization is above 80% frequencies are expected to drop
as well for this architecture. In our experiments we have created logical regions for helping the
place-and-route tool better place the cluster modules of the credit-based dispatch archtitecture.
The logical regions were restricted to one cluster, with separate regions for the dispatcher and
deserializer units. Moreover, we have fixed the placement of the dispatcher region in the central
area of the FPGA, in order to minimize wire length to the Clusters. Figure 12.7(a) presents the
placement of the 128 cores using logical regions for all clusters. As it can also be observed from
Table 12.4 the logical regions fit nicely, as only half the FPGA resources are occupied.

When trying to place 256 cores using the same methodology, we were unsuccessful. The
project itself had no problem fitting (only 82% of the resources were used) if no logical regions
are used. As the size of the logical region was determined by the number of M9K memories used

Table 12.3 Performance estimates for double-precision exponential (one input exponent)
Frequency

100 150 200

C
or

es

100 125h 83.4h 62.5h
200 62.5h 41.7h 31.3h
400 31.2h 20.9h 15.7h
800 15.7h 10.4h 7.9h

163

164 Chapter 12. Using FloPoCo to solve Table Maker’s Dilemma

TaMaDiDeserializer_wp120_interations360000_degree4_uid4:PCIEDeserializerUnit

TaMaDiDispatcherInterface_n16_wp120_interations360000_degree4_uid6:DispatcherInterface

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module0

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module1

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module10

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module11

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module12

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module13

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module14

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module15

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module2

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module3

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module4

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module5

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module6

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module7

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module8

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module9

TaMaDiDispatcherInterface_n16_wp120_interations360000_degree4_uid6:DispatcherInterface

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module0

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module1

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module10

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module11

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module12

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module13

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module14

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module15

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module2

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module3

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module4

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module5

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module6

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module7

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module8

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module9

TaMaDiDeserializer_wp120_interations360000_degree4_uid4:PCIEDeserializerUnit

(a) 128 cores

TaMaDiDispatcherInterface_n32_wp120_interations360000_degree4_uid6:DispatcherInterface

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module0

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module1

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module10

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module11

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module12

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module13

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module14

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module15

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module2

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module3

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module4TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module5

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module6

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module7

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module8

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module9

TaMaDiDeserializer_wp120_interations360000_degree4_uid4:PCIEDeserializerUnitTaMaDiDeserializer_wp120_interations360000_degree4_uid4:PCIEDeserializerUnit

TaMaDiDispatcherInterface_n32_wp120_interations360000_degree4_uid6:DispatcherInterface

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module0

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module1

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module10

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module11

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module12

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module13

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module14

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module15

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module2

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module3

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module4TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module5

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module6

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module7

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module8

TaMaDiModuleWrapperInterface_wp120_interations360000_degree4_uid22:Module9

(b) 256 cores

Figure 12.7 Placement of the synthesized the TaMaDi System using logical regions

to implement the FIFOs of one Cluster, some of logic and registers in that region was underuti-
lized. Our strategy in this case was to assign logic regions to the dispatcher and 16 out of the 32
clusters, and leave the synthesizer pack the rest of the 16 clusters in the remaining area. Figure
12.7(b) presents the placement of the 256 cores using this strategy. This has allowed us to obtained
better frequencies for this number of cores than by not using logical regions.

However, when reading this table one should consider that, as the size of the FPGA increases
linearly, the time needed to compile the project on the FPGA increases at best polynomially. In
other words, if for the 16 cores StratixIV design, compilation took some tens of minutes on a fast
server, StratixV designs took tens of hours to compile.

A solution to improve the compile/execution time ratio is to use a multi-FPGA based system,
comprising of multiple similar FPGAs, such as the multi-FPGA prototyping board DN7020K10
from Dini Group [7], comprising 16 Altera StratixIV FPGAs. The TaMaDi System would be com-
piled once, then replicated on these FPGAs. For simplicity one FPGA will also contain a dispatcher
interface and will be connected to the host system. We estimate that one such system would com-
plete the execution of one exponent in less than 2 hours.

All in all, depending on the available FPGA, the order of magnitude of the time required to
process one input exponent is between a few hours and two days. Although the double preci-
sion/binary64 format has 2046 possible exponents, we do not need to perform such a calculation
for every exponent: the exponential of a number larger than 710 is an overflow, and if |u| ≤ 2−54,
then eu correctly rounded to that format is equal to 1. The most up-to-date implementation of the
L-algorithm takes 45 hours to process one input exponent on a fairly recent FP core (AMD Opteron
2.19 GHz). Since these algorithm are very different and are run on very different machines, we
suggest using both of them, which allows one to get much confidence in the obtained results.

12.3.5 FloPoCo impact

The work we performed on this project has confirmed that FloPoCo can be used with success
to design entire computational systems. It did however suggest that some improvements can be
made in order to further increase design productivity:

– counters are a basic design block in computing systems but don’t entirely fit the definition

164

12.4 Conclusion 165

Table 12.4 Post place-and-route results of the TaMaDi System. The Core parameters are: wdp = 120
bits and N = 4

FPGA Cores Freq.
Area Completion

LUTs REGs M9K Time

StratixIV

16 196 MHz 10,614 (2%) 14,725 (3%) 17 398.9h

(EP4SGX530KH40C2)

32 174 MHz 20,021 (4%) 26,250 (6%) 17 224.7h

simple-dispatch

64 154 MHz 48,416 (11%) 61,234 (14%) 148 126.9h
128 111 MHz 95,428 (22%) 118,944 (28%) 276 88.05h
256 97 MHz 189,298 (45%) 234,432 (55%) 532 50.4h

StratixIV
16 (2x8) 198 MHz 13,159 (3%) 21,586 (5%) 53 394.9h

(EP4SGX530KH40C2)

32 (4x8) 193 MHz 25,014 (6%) 39,402 (9%) 87 202.6h

credit-based dispatch

64 (8x8) 168 MHz 59,213 (14%) 89,051 (21%) 308 116.4h
128 (16x8) 168 MHz 96,534 (22%) 156,370 (36%) 592 58.2h
256 (32x8) 127 MHz 232,649 (54%) 348,335 (82%) 1172 38.5h

of operators FloPoCo was designed to support. Providing these counters as basic FloPoCo
primitives would reduce design time. The main difficulty does not lie in the feedback loop,
but rather on the chip enable and reset signals. By default, pipelined FloPoCo operators are
connected to a global clock clk and a global reset rst. This is however insufficient for more
complex situations: the interval counter of the TaMaDi Core needs to be reseted each time
Init=’1’. A specific reset signal needs to be mapped to this component.

– by default, FloPoCo operators are meant to function in a pipelined fashion, at each clock
cycle. However, there are situations when we would desire stopping the execution of a
component for a certain time: if the TaMaDi Core’s corresponding CoreFIFO is full, we need
to stop the execution of the core until the CoreFIFO has at least one free element. Otherwise,
some HR cases could be lost. Adding optional CE signals to generated components is a
necessity if we desire using FloPoCo in such context.

– in this project we saw that using logic-regions, in combination with design partitions signif-
icantly improves compilation and place-and-route times. Doing it by hand using the ven-
dor tools is a possibility, however, FloPoCo could allow exporting the partition information
alongside with vhdl file. We are considering adding this feature to all FloPoCo operators.
In the case of TaMaDi Clusters we know that the shape of this region will be influenced by
the number of M9K memories available in that region for implementing the FIFOs. In the
case of more complex operators, making use of logic, DSP blocks and BRAMs, the decision
might not be that simple. We are currently investigating these possibilities.

Some of the components used in this project, such as the FIFOs, priority encoder/decoder, and
serializer/deserializer units are also available as stand-alone FloPoCO operators.

12.4 Conclusion

We have suggested an algorithm and an FPGA architecture that make it possible to find
hardest-to-round points for elementary functions in double precision. This requires huge com-
putations, but they are done once for all, and allow one to design efficient libraries or hardware
for elementary function evaluation. The achieved performance is slightly better than the one ob-
tained using Lefèvre’s L-algorithm but the real gain is not there: it lies in the fact that if, with a
completely different method that runs on a completely different hardware, we obtain the same
results, this gives much confidence in these results.

165

166 Chapter 12. Using FloPoCo to solve Table Maker’s Dilemma

Thanks

I would kindly like to thank Jean-Michel Muller for bringing this computational intensive
task to us. I would also like to thank Alexandru Plesco for his contributions to the design and
optimization the FPGA architecture. Also, I gratefully acknowledge the donation of a DK-DEV-
4GX530N board by the Altera University which will be used as our production board.

166

13 CHAPTER 13

Conclusions and Perspectives

The increasing capacities and new added features, like embedded multipliers, have made
FPGA devices attractive for accelerating applications. A large class of targeted applications make
extensive use of floating-point arithmetic. Their acceleration is directly dependent on the avail-
ability of high-performance floating-point operators which are hard (and sometimes impossible)
to design by hand using standard HDLs. In this thesis we have proposed the FloPoCo framework
for the development of arithmetic operators.

The FloPoCo framework brings several features to help the development of operators of differ-
ent granularities which make it the most advanced tool for building flexible arithmetic pipelines
for FPGA.

– Firstly, FloPoCo provides a vast library of highly-efficient operators: fixed-point includ-
ing adders (multi-operand as well), multipliers (regular, truncated and constant), shifters,
leading-zero and leading-one counters, and two generic function evaluators HOTBM [66]
and FunctionEvaluator (Chapter 7) and many more; floating point operators including the
square-root, exponential, logarithm, power; the FPPipeline meta-operator allowing fast float-
ing point pipeline assembly. These operators can be optimized for several target FPGAs.

– Secondly, it provides a pipelining infrastructure which decouples the task of describing a
combinatorial operator and the task of pipelining it (the pipelines are correct by construc-
tion). Pipelining is frequency-driven and uses abstract FPGA models to capture the device’s
features and routing information. Frequency-driven pipelining based on these models min-
imizes resource consumption and latency. Moreover, operator design and pipelining based
on abstract FPGA models ensures that FloPoCo operators are future-proof. Porting all op-
erators to a new FPGA, which is not substantially different from our currently supported
FPGAs, should reduce to adding a new target class to the FloPoCo hierarchy.

– Finally, FloPoCo offers a built-in test-bench generation suite which allows testing the de-
signed operators against their mathematical specification using specialized mathematical li-
braries. This suite can and will be extended to support automatically testing entire pipelines
built by operator assembly.

FloPoCo is a relatively young project (3 and a half years). It is used in several academic and
industrial projects and has received several external contributions.

– The PandA Project 1 from Politecnico di Milano uses FloPoCo as a back-end for core gener-
ation. They also contribute to the project and maintain the automake tools.

– The PivPav project from University of Paderborn is an open-source circuit library with
benchmarking facilities which offers both FloPoCo and CoreGen alternatives to their op-

1. http://trac.elet.polimi.it/panda/

168 Chapter 13. Conclusions and Perspectives

erator generator backend [87].
– The Greco project from Universidade Federal de Pernambuco uses FloPoCo for designing

DSP architectures (Fast Fourier Transform) [136].
– FloPoCo is also used at Imperial College, London [118, 135].
– The ADACSYS (Advanced Acceleration Systems) startup is currently using FloPoCo as their

core generator. They have provided us use of their hardware testing infrastructure for on-
chip operator testing.

– The Prüftechnik Group (Industrial maintenance and quality control) also uses FloPoCo.
They have also contributed to the framework with the description of an Altera CycloneII
target FPGA.

– NASA evaluated FloPoCo in their project Low Power Supercomputing in Space [141].
– The pipelined adder architectures of FloPoCo are used in the Computer Arithmetic curricula

at George Manson University (http://ece.gmu.edu/coursewebpages/ECE/ECE645/S11/)
Other academics using FloPoCo include: University of Cape Town, South Africa, U.T. Cluj-

Napoca, T.U. Hamburg, University of Essex, U. Madrid, T. U. Muenchen, T. U. Kaiserslautern,
CalTech, U. Perpignan, U. Tokyo, Virginia Tech U.

When this project started, our main goal was to have in FloPoCo an efficient and flexible
floating-point mathematical library. In this process we had to spend a significant amount of effort
optimizing the most often encountered subcomponents: adders and multipliers.

– Therefore, we have proposed several pipelined adder architectures which allow fine-grain
integration in the sub-cycle accurate FloPoCo framework. We have also presented an im-
proved family of short-latency architectures based on the carry-select architecture, which
take full advantage of the fast-carry chains of modern FPGAs. Addition is a pervasive op-
eration which makes the design of these basic blocks of primal importance for the FloPoCo
project.

– The multipliers families presented here exploit the flexibility of the FPGA target and they are
original in that respect. The Karatsuba-like multipliers significantly reduce DSP usage both
for FPGAs with square multipliers, but also on FPGAs with rectangular ones for larger input
width. The tiling-based multiplier family takes the best advantages of rectangular multipli-
ers and offers performant multipliers up to double-precision. The tiling-based truncated
multipliers are a precious resource for implementing high-performance polynomial evalu-
ators. All these multiplier architectures are essential building blocks for coarser FloPoCo
operators.

In our way to a complete floating-point libm, we also had to build a generic tool for fixed-
point function evaluation. Our implementation, FunctionEvaluator, scales beyond the precisions
of existing works and provides significant better performance compared to the literature. On the
one hand, this tool provides FPGA-specific flexible implementations of fixed-point function, often
needed digital signal processing. On the other hand, it provides an effective implementation of
fixed-point functions needed for implementing the components of our objective floating-point
libm.

The first concrete member of the FloPoCo libm is a floating-point square root operator based
on the previous FunctionEvaluator. This operator is smaller and more performant than what
the literature offers. A second member of this library is the presented floating point exponential
operator. It produces last-bit accurate architectures, is fully parameterizable and is optimized for
a wider range of FPGA targets, range of precisions, latency/frequency trade-offs. The operator
makes good use of the DSP blocks and embedded memories of high-end FPGAs, and significantly
outperforms previous works in performance and resources consumption.

We hope that other operators of the same quality will soon be part of the FloPoCo libm. Work
is currently on the way to implement the powering function, and the next step will be to imple-

168

Chapter 13. Conclusions and Perspectives 169

ment the trigonometric and hyperbolic functions, and also a DSP-oriented architecture for the
logarithm. These tasks are much simplified thanks to our generic fixed-point function evaluator.

Now that the our floating-point libm already contains some very efficient components we are
receiving positive feedback regarding the FPPipeline operator, which assembles a full floating-
point datapath starting from a C-like description. This encourages us to further improve this
component. Some possible enhancements include:

– adding support for flow-control statements (if()...else) which are simply implemented as
multiplexers.

– the possibility to use custom floating-point formats for each operation.
– support boolean and custom precision integer and fixed-point data-types and array struc-

tures. Supporting these new data-types at the level of FPPipeline requires extending our
operator library with basic fixed-point operators, but also providing a better interface for
FunctionEvaluator, one which doesn’t require the user to manually pre-scale the input and
output of the operator to [0, 1).

FloPoCo is used as a backend for operator generation for the HLS tool developed in the PandA
project. However, this tool is tightly coupled with FloPoCo, which might not always be possible
for vendor tools. In order to facilitate the use of FloPoCo arithmetic pipelines by these tools,
a standardized interface is required. The FPPipeline component might be a good entry point
towards interfacing FloPoCo to these tools.

In this thesis we have ourselves explored using the frequency-driven pipelined FloPoCo op-
erators in the context of synthesizing perfect loop nests with uniform data dependencies, where
loop iterations carry dependencies. It is known that for this restricted class of applications, when
the inner statement is implemented as a deeply pipelined operator, current HLS tools have poor
performances. We have shown here that we can efficiently reschedule the code execution to ac-
count for the operator’s pipeline depth and keep the operator’s pipeline busy. Future work in this
direction includes extending the supported application class to codes with non-uniform depen-
dencies.

Using multiple processing elements to accelerate the execution poses new problems. Indeed,
polyhedral parallelization techniques can help us find and exploit the parallelism. However, more
FPGA-specific techniques, which allow minimizing communications and resources can be man-
ually found. We believe that there is still research to be done for the FPGA context. Particularly,
we plan to extend and generalize the parallelization technique presented for the Jacobi stencil for
non-symmetric data dependencies. Once these techniques are matured, they can be included in
commercial HLS tools and applied each time this type of kernels are encountered.

Considering that the FPGAs are flexible and efficient enough to implement custom datapaths
with FloPoCo, we hope that the top entry of the top 10 predictions of the FFCM conference 2

which reads “FPGAs will have floating point cores”, will turn-out out to be wrong! Having in
mind that GPUs already offer massive numbers of floating-point cores, FPGAs should go further
on their own way, which has always been flexibility. Flexibility allows for application-specific mix-
and-match between integer, fixed point and floating point numbers, between adders, multipliers,
dividers, and even more exotic operators [145, 62].

We have shown in this work that by using this flexibility, FPGAs can be used with success to
accelerate both arithmetic datapaths and also small computational kernels. The speedup of these
datapaths over microprocessor systems can be significant, with a much lower power consumption.
However, why are then FPGAs still being used so confidentially on the acceleration market, where
in just a few years GPUs have become so common? The answer to this question might not be the
higher price of these devices, but may be the bad reputation regarding the programming and
interfacing of these devices. Nevertheless, last years have brought significant progress in these

2. http://www.fccm.org/top10.php

169

http://www.fccm.org/top10.php

170 Chapter 13. Conclusions and Perspectives

directions (the QSys system builder from Altera and the Embedded Design Kit from Xilinx). We
hope FloPoCo also participates to this effort of making FPGA-based acceleration more common.

Many things remain on the roadmap. However, the FPGA community’s gratitude towards our
initiative (keeping things free and open-source) and what we have accomplished so far, acts as an
important driving force for us, FloPoCo developers.

The best and most versatile free floating point unit out there is FloPoCo.
Check it out: http://flopoco.gforge.inria.fr/

It outperforms even expensive professional solutions.
(http://embdev.net/topic/215370 Forum)

FloPoCo is really an amazing piece of software, can handle complex floating
point exponentials, trig, as well as standard operators. The nice thing about

it is one of the input modes, you just write the expression in a text file and
it will generate an FPU with the required hardware to perform the operations

in the given expression...
(http://www.edaboard.com/thread202615.html Forum)

170

Bibliography

[1] CatapultC Synthesis. http://www.mentor.com.

[2] GMP, the GNU multi-precision library. http://gmplib.org/.

[3] Impulse-C. http://www.impulseaccelerated.com.

[4] MPFR library: multiple-precision floating-point computations with correct rounding. http:
//www.mpfr.org/.

[5] PLDA EZDMA2 DMA for PCI Express Hard IP. http://www.plda.com.

[6] ISE 11.4 CORE Generator IP. http://www.xilinx.com/ipcenter/coregen/updates_11_4.htm.

[7] DN7020K10 ’Uncle of Monster’ Altera Stratix IV ASIC Prototyping Engine. http://www.

dinigroup.com.

[8] Forte Design Systems: Cynthesizer. http://www.forteds.com.

[9] Megawizard plug-in manager. http://www.altera.com.

[10] Polylib – a library of polyhedral functions. URL http://www.irisa.fr/polylib.

[11] Our History, 1985. http://www.xilinx.com/company/history.htm.

[12] Virtex-II Platform FPGA Handbook, 2000.

[13] FFT/IFFT block floating point scaling, 2005. http://www.altera.com/literature/an/an404.pdf.

[14] StratixII Device Handbook, 2007. http://www.altera.com/literature/hb/stx2/stratix2_

handbook.pdf.

[15] Virtex-II Platform FPGA User Guide, 2007. www.xilinx.com/support/documentation/user_

guides/ug002.pdf.

[16] XtremeDSP for Virtex-4 FPGAs, 2008. http://www.xilinx.com/support/documentation/user_

guides/ug073.pdf.

[17] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–58, 29 2008. doi:
10.1109/IEEESTD.2008.4610935.

[18] Virtex-4 FPGA User Guide, 2008. http://www.xilinx.com/support/documentation/user_guides/
ug070.pdf.

[19] Spartan-3 Generation FPGA User Guide, 2009.

[20] Virtex-6 FPGA Configurable Logic Block User Guide, 2009. http://www.xilinx.com/support/

documentation/user_guides/ug364.pdf.

[21] Virtex-5 FPGA XtremeDSP Design Considerations, 2010. http://www.xilinx.com/support/

documentation/user_guides/ug193.pdf.

[22] StratixIII Device Handbook, 2010. http://www.altera.com/literature/hb/stx3/stratix3_

handbook.pdf.

http://www.mentor.com
http://gmplib.org/
http://www.impulseaccelerated.com
http://www.mpfr.org/
http://www.mpfr.org/
http://www.plda.com
http://www.xilinx.com/ipcenter/coregen/updates_11_4.htm
http://www.dinigroup.com
http://www.dinigroup.com
http://www.forteds.com
http://www.altera.com
http://www.irisa.fr/polylib
http://www.xilinx.com/company/history.htm
http://www.altera.com/literature/an/an404.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
www.xilinx.com/support/documentation/user_guides/ug002.pdf
www.xilinx.com/support/documentation/user_guides/ug002.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf

172 Bibliography

[23] Virtex-5 FPGA User Guide, 2010. http://www.xilinx.com/support/documentation/user_guides/
ug190.pdf.

[24] Virtex-6 FPGA Memory Resources User Guide, 2010. http://www.xilinx.com/support/

documentation/user_guides/ug363.pdf.

[25] Virtex-6 FPGA DSP48E1 Slice, 2011. http://www.xilinx.com/support/documentation/user_

guides/ug369.pdf.

[26] LogiCORE IP CORDIC v4.0, 2011. http://www.xilinx.com/support/documentation/ip_

documentation/cordic_ds249.pdf.

[27] StratixIV Device Handbook, 2011. http://www.altera.com/literature/hb/stratix-iv/stx4_

5v1.pdf.

[28] StratixV Device Handbook, 2011. http://www.altera.com/literature/hb/stratix-v/stratix5_

handbook.pdf.

[29] DSP Builder – Advanced blockset with timing-driven Simulink synthesis, 2011. http://www.
altera.com/products/software/products/dsp/adsp-builder.html.

[30] QuartusII Design Software, 2011. http://www.altera.com/products/software/quartus-ii/

subscription-edition/design-entry-synthesis/qts-des-ent-syn.html.

[31] Floating-point megafunctions user guide, January 2011. http://www.altera.com/literature/

ug/ug_altfp_mfug.pdf.

[32] ISE Design Suite 13, 2011. http://www.xilinx.com/support/download/index.htm.

[33] E. Ahmed and J. Rose. The effect of LUT and cluster size on deep-submicron FPGA perfor-
mance and density. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12
(3):288 – 298, march 2004. ISSN 1063-8210. doi: 10.1109/TVLSI.2004.824300.

[34] Gene M. Amdahl. Validity of the single processor approach to achieving large scale comput-
ing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference,
AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM. doi: http://doi.acm.
org/10.1145/1465482.1465560. URL http://doi.acm.org/10.1145/1465482.1465560.

[35] Raymond Andraka. Hybrid floating point technique yields 1.2 gigasample per second 32 to
2048 point floating point FFT in a single FPGA. In High Performance Embedded Computing
Workshop, 2006. http://www.andraka.com/files/HPEC2006.pdf.

[36] J.M. Arnold, D.A. Buell, D.T. Hoang, D.V. Pryor, N. Shirazi, and M.R. Thistle. The Splash 2
processor and applications. In Computer Design: VLSI in Computers and Processors, pages
482 –485, oct 1993. doi: 10.1109/ICCD.1993.393329.

[37] M.G. Arnold and S. Collange. A real/complex logarithmic number system ALU. IEEE
Transactions on Computers, 60(2):202 –213, feb. 2011. ISSN 0018-9340. doi: 10.1109/TC.
2010.154.

[38] D. Bakalis, K. D. Adaos, D. Lymperopoulos, M. Bellos, H. T. Vergos, G. Ph. Alexiou, and
D. Nikolos. A core generator for arithmetic cores and testing structures with a network
interface. Journal of Systems Architecture, 52:1–12, January 2006. ISSN 1383-7621. doi:
10.1016/j.sysarc.2004.12.006. URL http://portal.acm.org/citation.cfm?id=1131948.1131949.

[39] Zachary K. Baker and Viktor K. Prasanna. Efficient hardware data mining with the apriori
algorithm on fpgas. Field-Programmable Custom Computing Machines, Annual IEEE Sym-
posium on, 0:3–12, 2005. doi: http://doi.ieeecomputersociety.org/10.1109/FCCM.2005.31.

[40] Sebastian Banescu, Florent de Dinechin, Bogdan Pasca, and Radu Tudoran. Multipliers
for floating-point double precision and beyond on FPGAs. In International Workshop on
Higly-Efficient Accelerators and Reconfigurable Technologies (HEART). ACM, jun 2010.

172

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_5v1.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_5v1.pdf
http://www.altera.com/literature/hb/stratix-v/stratix5_handbook.pdf
http://www.altera.com/literature/hb/stratix-v/stratix5_handbook.pdf
http://www.altera.com/products/software/products/dsp/adsp-builder.html
http://www.altera.com/products/software/products/dsp/adsp-builder.html
http://www.altera.com/products/software/quartus-ii/subscription-edition/design-entry-synthesis/qts-des-ent-syn.html
http://www.altera.com/products/software/quartus-ii/subscription-edition/design-entry-synthesis/qts-des-ent-syn.html
http://www.altera.com/literature/ug/ug_altfp_mfug.pdf
http://www.altera.com/literature/ug/ug_altfp_mfug.pdf
http://www.xilinx.com/support/download/index.htm
http://doi.acm.org/10.1145/1465482.1465560
http://www.andraka.com/files/HPEC2006.pdf
http://portal.acm.org/citation.cfm?id=1131948.1131949

Bibliography 173

[41] Cedric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, Olivier Temam, A Group,
and Inria Rocquencourt. Putting polyhedral loop transformations to work. In Workshop on
Languages and Compilers for Parallel Computing (LCPC’03), LNCS, pages 209–225, 2003.

[42] Rachid Beguenane, Jean-Luc Beuchat, Jean-Michel Muller, and Stéphane Simard. Modular
multiplication of large integers on FPGA. In Asilomar Conference on Signals, Circuits and
Systems, pages 1361–1365, 2005.

[43] P. Belanović and M. Leeser. A library of parameterized floating-point modules and their
use. In International Conference on Field Programmable Logic and Applications, volume
2438 of LNCS, pages 657–666. Springer, 2002.

[44] Michael R. Bodnar, John R. Humphrey, Petersen F. Curt, James P. Durbano, and Dennis W.
Prather. Floating-point accumulation circuit for matrix applications. In International Sym-
posium on Field-Programmable Custom Computing Machines, pages 303–304. IEEE Com-
puter Society, 2006. doi: http://doi.ieeecomputersociety.org/10.1109/FCCM.2006.41.

[45] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-
matic polyhedral parallelizer and locality optimizer. In ACM International Conference on
Programming Languages Design and Implementation (PLDI’08), pages 101–113, Tucson,
Arizona, jun 2008.

[46] Pierre Boulet and Paul Feautrier. Scanning polyhedra without do-loops. In IEEE Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT’98), pages
4–9, 1998. ISBN 0-8186-8591-3.

[47] W.S. Briggs and D.W. Matula. A 17 × 69 bit multiply and add unit with redundant binary
feedback and single cycle latency. In 11th Symposium on Computer Arithmetic, pages 163
–170, 1993. doi: 10.1109/ARITH.1993.378096.

[48] N. Brisebarre and S. Chevillard. Efficient polynomial l∞-approximations. In 18th IEEE
Symposium on Computer Arithmetic (ARITH 18), pages 169–176, Los Alamitos, CA, June
2007. IEEE Computer Society.

[49] Nicolas Brisebarre, Florent de Dinechin, and Jean-Michel Muller. Integer and floating-point
constant multipliers for FPGAs. IEEE International Conference on Application-Specific Sys-
tems, Architectures and Processors, 0:239–244, 2008. doi: http://doi.ieeecomputersociety.
org/10.1109/ASAP.2008.4580184.

[50] P. E. Ceruzzi. The early computers of Konrad Zuse, 1935 to 1945. Annals of the History of
Computing, 3(3):241–262, 1981.

[51] K.D. Chapman. Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner). EDN
magazine, May 1994.

[52] R.C.C. Cheung, Dong-U Lee, W. Luk, and J.D. Villasenor. Hardware generation of arbitrary
random number distributions from uniform distributions via the inversion method. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 15(8):952 –962, aug. 2007. ISSN
1063-8210. doi: 10.1109/TVLSI.2007.900748.

[53] S. Chevillard, J. Harrison, M. Joldes, and Ch. Lauter. Efficient and accurate computation of
upper bounds of approximation errors. Theoretical Computer Science, 412(16):1523 – 1543,
2011.

[54] S. Chevillard, Ch. Lauter, and M. Joldes. Users manual for the Sollya tool, Release 2.9.
http://sollya.gforge.inria.fr/, February 2011.

[55] Philippe Clauss. Counting solutions to linear and nonlinear constraints through Ehrhart
polynomials: Applications to analyze and transform scientific programs. In International
Conference on Supercomputing (ICS’96), pages 278–285. ACM, 1996.

173

http://sollya.gforge.inria.fr/

174 Bibliography

[56] Marius Cornea, John Harrison, and Ping Tak Peter Tang. Scientific Computing on Itanium-
based Systems. Intel Press, 2002.

[57] Octavian Creţ, Florent de Dinechin, Ionuţ Trestian, Radu Tudoran, Laura Creţ, and Lucia
Vǎcariu. FPGA-based acceleration of the computations involved in transcranial magnetic
stimulation. In Southern Programmable Logic Conference, pages 43–48. IEEE, 2008.

[58] L. Dadda and V. Piuri. Pipelined adders. IEEE Transactions on Computers, 45(3):348–356,
Mar 1996. ISSN 0018-9340. doi: 10.1109/12.485573.

[59] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, C. Q. Lauter, and J.-M.
Muller. CR-LIBM, a library of correctly-rounded elementary functions in double-precision.
Technical report, LIP Laboratory, Arenaire team, Available at https://lipforge.ens-lyon.fr/
frs/download.php/99/crlibm-0.18beta1.pdf, December 2006.

[60] Florent de Dinechin and Arnaud Tisserand. Multipartite table methods. IEEE Transactions
on Computers, 54(3):319–330, 2005.

[61] Florent de Dinechin and G. Villard. High precision numerical accuracy in physics research.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, 559:207–210, 2006.

[62] Florent de Dinechin, Jérémie Detrey, Ionuţ Trestian, Octavian Creţ, and Radu Tudo-
ran. When FPGAs are better at floating-point than microprocessors. Technical Report
ensl-00174627, École Normale Supérieure de Lyon, 2007. http://prunel.ccsd.cnrs.fr/ensl-
00174627.

[63] Florent de Dinechin, Bogdan Pasca, Octavian Creţ, and Radu Tudoran. An FPGA-specific
approach to floating-point accumulation and sum-of-products. In IEEE International Con-
ference on Field-Programmable Technology, pages 33–40. IEEE, 2008.

[64] Florent de Dinechin, Mioara Joldes, Bogdan Pasca, and Guillaume Revy. Multiplicative
square root algorithms for FPGAs. In International Conference on Field Programmable
Logic and Applications. IEEE, aug 2010.

[65] Florent de Dinechin, Jean-Michel Muller, Bogdan Pasca, and Alexandru Plesco. An FPGA
architecture for solving the Table Maker’s Dilemma. In International Conference on
Application-specific Systems, Architectures and Processors, 2011.

[66] Jérémie Detrey. Arithmétiques réelles sur FPGA : virgule fixe, virgule flottante et système
logarithmique. PhD thesis, École Normale Supérieure de Lyon, Lyon, France, January 2007.
URL http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2007/PhD2007-01.pdf.

[67] Jérémie Detrey and Florent de Dinechin. FPLibrary: operators for the design of real num-
ber processing cores on FPGA, sep 2003. URL http://perso.ens-lyon.fr/jeremie.detrey/

publications/pub/Det2003_rnc_slides.pdf.

[68] Jérémie Detrey and Florent de Dinechin. A parameterizable floating-point logarithm op-
erator for FPGAs. In 39th Asilomar Conference on Signals, Systems & Computers, pages
1186–1190, Pacific Grove, CA, USA, November 2005. IEEE Signal Processing Society. doi:
10.1109/ACSSC.2005.1599948.

[69] Jérémie Detrey and Florent de Dinechin. Table-based polynomials for fast hardware func-
tion evaluation. In Application-specific Systems, Architectures and Processors, pages 328–
333. IEEE, 2005.

[70] Jérémie Detrey and Florent de Dinechin. A parameterized floating-point exponential func-
tion for FPGAs. In Field-Programmable Technology. IEEE, 2005.

174

https://lipforge.ens-lyon.fr/frs/download.php/99/crlibm-0.18beta1.pdf
https://lipforge.ens-lyon.fr/frs/download.php/99/crlibm-0.18beta1.pdf
http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2007/PhD2007-01.pdf
http://perso.ens-lyon.fr/jeremie.detrey/publications/pub/Det2003_rnc_slides.pdf
http://perso.ens-lyon.fr/jeremie.detrey/publications/pub/Det2003_rnc_slides.pdf

Bibliography 175

[71] Jérémie Detrey and Florent de Dinechin. Floating-point trigonometric functions for FPGAs.
In International Conference on Field Programmable Logic and Applications, pages 29–34,
Amsterdam, Netherlands, aug 2007. IEEE. doi: 10.1109/FPL.2007.4380621.

[72] Jérémie Detrey and Florent de Dinechin. Parameterized floating-point logarithm and expo-
nential functions for FPGAs. Microprocessors and Microsystems, Special Issue on FPGA-
based Reconfigurable Computing, 31(8):537–545, 2007. doi: 10.1016/j.micpro.2006.02.008.

[73] Jérémie Detrey and Florent de Dinechin. A tool for unbiased comparison between logarith-
mic and floating-point arithmetic. Journal of VLSI Signal Processing, 49(1):161–175, 2007.
doi: 10.1007/s11265-007-0048-7.

[74] Jérémie Detrey, Florent de Dinechin, and Xavier Pujol. Return of the hardware floating-
point elementary function. In 18th IEEE Symposium on Computer Arithmetic (ARITH 18),
pages 161–168, Montpellier, France, jun 2007. IEEE Computer Society. doi: 10.1109/ARITH.
2007.29.

[75] Padma Devi, Ashima Girdher, and Balwinder Singh. Improved carry select adder with
reduced area and low power consumption. International Journal of Computer Applications,
3(4):14–18, June 2010. Published By Foundation of Computer Science.

[76] Christopher Doss and Robert L. Riley, Jr. FPGA-based implementation of a robust IEEE-754
exponential unit. In Field-Programmable Custom Computing Machines, pages 229–238.
IEEE, 2004. doi: 10.1109/FCCM.2004.38.

[77] Yong Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev. 64-bit floating-point FPGA
matrix multiplication. In ACM/SIGDA symposium on Field-Programmable Gate Arrays
(FPGA), 2005.

[78] P. Echeverría and M. López-Vallejo. An FPGA implementation of the powering function
with single precision floating-point arithmetic. In Proceedings of the 8th Conference on
Real Numbers and Computers, Santiago de Compostela, Spain, 2008.

[79] Pedro Echeverría, David Thomas, Marisa López-Vallejo, and Wayne Luk. An FPGA run-
time parameterisable log-normal random number generator. In Reconfigurable Computing:
Architectures, Tools and Applications, volume 4943 of Lecture Notes in Computer Science,
pages 221–232. 2008. http://dx.doi.org/10.1007/978-3-540-78610-8_22.

[80] M. Ercegovac. Radix-16 evaluation of certain elementary functions. IEEE Transactions on
Computers, C-22(6):561–566, 1973.

[81] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Publishers, 2004. ISBN
1-55860-798-6.

[82] Hossam A. H. Fahmy and Michael J. Flynn. The case for a redundant format in floating point
arithmetic. In 16th Symposium on Computer Arithmetic, pages 95–102. IEEE Computer
Society, 2003.

[83] Paul Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle, 22(3):
243–268, 1988.

[84] Paul Feautrier and Christian Lengauer. The polyhedron model. Encyclopedia of Parallel
Computing, 2011.

[85] A. A. Gaffar, W. Luk, P. Y. K. Cheung, N. Shirazi, and J. Hwang. Automating customisation
of floating-point designs. In Field Programmable Logic and Applications, volume 2438 of
LNCS, pages 523–533. Springer, 2002.

[86] Gokul Govindu, Ronald Scrofano, and Viktor K. Prasanna. A library of parameterizable
floating-point cores for FPGAs and their application to scientific computing. In International
Conference on Engineering Reconfigurable Systems and Algorithms, pages 137–148, 2005.

175

http://dx.doi.org/10.1007/978-3-540-78610-8_22

176 Bibliography

[87] Mariusz Grad and Christian Plessl. An open source circuit library with benchmarking fa-
cilities. In The International Conference on Engineering of Reconfigurable Systems and
Algorithms, pages 144–150, 2010.

[88] Y. Gu, T. VanCourt, and M.C. Herbordt. Accelerating molecular dynamics simulations with
configurable circuits. Computers and Digital Techniques, 153(3):189 – 195, may 2006. ISSN
1350-2387. doi: 10.1049/ip-cdt:20050182.

[89] John Harrison. A machine-checked theory of floating point arithmetic. In Theorem Proving
in Higher Order Logics, pages 113–130, 1999.

[90] Chuan He, Guan Qin, Mi Lu, and Wei Zhao. Group-alignment based accurate floating-point
summation on FPGAs. pages 136–142, 2008. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.91.3335.

[91] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA,
2nd edition, 2002. ISBN 0-89871-521-0.

[92] Miaoqing Huang and David Andrews. Modular design of fully pipelined accumulators. In
IEEE International Conference on Field-Programmable Technology, pages 118–125, 2010.

[93] C.-P. Jeannerod, H. Knochel, C. Monat, and G. Revy. Faster floating-point square root for
integer processors. In International Symposium on Industrial Embedded Systems (SIES’07),
pages 324 –327, july 2007. doi: 10.1109/SIES.2007.4297353.

[94] Nachiket Kapre and André DeHon. Accelerating SPICE Model-Evaluation using FPGAs.
IEEE Symposium on Field-Programmable Custom Computing Machines, 0:37–44, 2009. doi:
10.1109/FCCM.2009.14. URL http://dx.doi.org/10.1109/FCCM.2009.14.

[95] N. G. Kingsbury and P. J. W. Rayner. Digital filtering using logarithmic arithmetic. Electronic
Letters, 7:56–58, 1971. Reprinted in E. E. Swartzlander, Computer Arithmetic , Vol. 1, IEEE
Computer Society Press, Los Alamitos, CA, 1990.

[96] D. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Ad-
dison Wesley, 3rd edition, 1997.

[97] P. Kornerup and D. W. Matula. Finite precision lexicographic continued fraction number
systems. In Proceedings of the 7th IEEE Symposium on Computer Arithmetic. IEEE Com-
puter Society Press, Los Alamitos, CA, 1985. Reprinted in E. E. Swartzlander, Computer
Arithmetic , Vol. 2, IEEE Computer Society Press, Los Alamitos, CA, 1990.

[98] Ulrich Kulisch. Circuitry for generating scalar products and sums of floating point numbers
with maximum accuracy. United States Patent 4622650, 1986.

[99] Ulrich W. Kulisch. Advanced Arithmetic for the Digital Computer: Design of Arithmetic
Units. Springer-Verlag, 2002. ISBN 3211838708.

[100] M. Langhammer. Floating point datapath synthesis for FPGAs. In International Conference
on Field Programmable Logic and Applications, pages 355 –360, sept. 2008. doi: 10.1109/
FPL.2008.4629963.

[101] M. Langhammer. Floating point datapath synthesis for FPGAs. In International Conference
on Field Programmable Logic and Applications, pages 355 –360, sept. 2008. doi: 10.1109/
FPL.2008.4629963.

[102] Martin Langhammer. Foundation of FPGA acceleration, 2008. http://www.rssi2008.org/

proceedings/industry/Altera.pdf.

[103] Christoph Lauter and Florent de Dinechin. Optimising polynomials for floating-point im-
plementation. In Proceedings of the 8th Conference on Real Numbers and Computers, pages
7–16, 2008.

176

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.3335
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.3335
http://dx.doi.org/10.1109/FCCM.2009.14
http://www.rssi2008.org/proceedings/industry/Altera.pdf
http://www.rssi2008.org/proceedings/industry/Altera.pdf

Bibliography 177

[104] B. Lee and N. Burgess. Parameterisable floating-point operations on FPGA. In Asilomar
Conference on Signals, Systems and Computers, volume 2, pages 1064 – 1068, nov. 2002.
doi: 10.1109/ACSSC.2002.1196947.

[105] D.-U. Lee, A.A. Gaffar, O. Mencer, and W. Luk. Optimizing hardware function evaluation.
IEEE Transactions on Computers, 54(12):1520 – 1531, dec. 2005. ISSN 0018-9340. doi: 10.
1109/TC.2005.201.

[106] D.-U. Lee, J.D. Villasenor, W. Luk, and P.H.W. Leong. A hardware gaussian noise generator
using the Box-Muller method and its error analysis. IEEE Transactions on Computers, 55
(6), 2006.

[107] V. Lefèvre. Moyens Arithmétiques Pour un Calcul Fiable. PhD thesis, École Normale
Supérieure de Lyon, Lyon, France, 2000.

[108] V. Lefèvre. New results on the distance between a segment and Z2. Application to the exact
rounding. In Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH-
17), pages 68–75. IEEE Computer Society Press, Los Alamitos, CA, June 2005.

[109] V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the elementary functions
in double precision. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH-16), Vail, CO, June 2001. doi: http://doi.ieeecomputersociety.org/10.1109/ARITH.
2001.930115.

[110] V. Lefèvre, D. Stehlé, and P. Zimmermann. Worst cases for the exponential function in
the IEEE 754r decimal64 format. In Reliable Implementation of Real Number Algorithms:
Theory and Practice, volume 5045 of Lecture Notes in Computer Sciences, pages 114–126.
Springer, Berlin, 2008.

[111] P.H.W. Leong. Recent trends in FPGA architectures and applications. In Electronic Design,
Test and Applications, 2008. DELTA 2008. 4th IEEE International Symposium on, pages 137
–141, jan. 2008. doi: 10.1109/DELTA.2008.14.

[112] R.-C. Li, P. Markstein, J. P. Okada, and J. W. Thomas. The libm library and floating-point
arithmetic for HP-UX on Itanium. Technical report, Hewlett-Packard company, 2001.

[113] Y. Li and W. Chu. Implementation of single precision floating point square root on FPGAs.
In FPGAs for Custom Computing Machines, pages 56–65. IEEE, 1997.

[114] G. Lienhart, A. Kugel, and R. Männer. Using floating-point arithmetic on FPGAs to ac-
celerate scientific N-body simulations. In FPGAs for Custom Computing Machines. IEEE,
2002.

[115] Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synchronization
with affine transforms. In 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (PoPL’97). ACM Press, jan 1997.

[116] Z Luo and M Martonosi. Accelerating pipelined integer and floating-point accumulations in
configurable hardware with delayed addition techniques. IEEE Transactions on Computers,
49:208–218, 2000.

[117] Bryce Mackin and Nathan Woods. FPGA acceleration in HPC: A case study in financial
analytics. XtremeData Whitepaper, November 2006. http://oldwww.xtremedatainc.com/pdf/

FPGA_Acceleration_in_HPC.pdf.

[118] Manouk Manoukian and George Constantinides. Accurate floating point arithmetic
through hardware error-free transformations. In Reconfigurable Computing: Architectures,
Tools and Applications, volume 6578 of Lecture Notes in Computer Science, pages 94–101.
2011. http://dx.doi.org/10.1007/978-3-642-19475-7_11.

177

http://oldwww.xtremedatainc.com/pdf/FPGA_Acceleration_in_HPC.pdf
http://oldwww.xtremedatainc.com/pdf/FPGA_Acceleration_in_HPC.pdf
http://dx.doi.org/10.1007/978-3-642-19475-7_11

178 Bibliography

[119] Peter Markstein. IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard
Professional Books. Prentice Hall, 2000.

[120] Peiro Marcos Martinez, Valls Javier, and Boemo Eduardo. On the design of FPGA-based
multioperand pipeline adders. In XII Design of Circuits and Integrated System Conference,
1997.

[121] P.L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE Transactions on
Computers, 54(3):362 – 369, march 2005. ISSN 0018-9340. doi: 10.1109/TC.2005.49.

[122] J. M. Muller. Arithmétique des Ordinateurs. Masson, Paris, 1989.

[123] Jean-Michel Muller. Elementary Functions, Algorithms and Implementation. Birkhäuser,
2nd edition, 2006. ISBN 0-8176-4372-9.

[124] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vin-
cent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres.
Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010. ACM G.1.0; G.1.2; G.4;
B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[125] Romana Naik and Hakim Shah. Synthesis of carry select adder in 65 nm FPGA. In TENCON
2008 - 2008 IEEE Region 10 Conference, pages 1–6, nov. 2008. doi: 10.1109/TENCON.2008.
4766397.

[126] D. Strenski O. Storaasli, W. Yu and J. Maltby. Performance evaluation of FPGA-based bio-
logical applications. Cray Users Group Proceedings, 2007. http://ft.ornl.gov/~olaf/pubs/

CUG07Olaf17M07.pdf.

[127] E. Pearse O’Grady and Chung-Hsien Wang. Performance limitations in parallel processor
simulations. Transactions of the Society for Computer Simulation International, 4:311–330,
October 1987. ISSN 0740-6797. URL http://portal.acm.org/citation.cfm?id=58390.58393.

[128] Steve Perry. Model based design needs high level synthesis: a collection of high level synthe-
sis techniques to improve productivity and quality of results for model based electronic de-
sign. In Conference on Design, Automation and Test in Europe, DATE ’09, pages 1202–1207,
2009. ISBN 978-3-9810801-5-5. URL http://portal.acm.org/citation.cfm?id=1874620.1874909.

[129] J.-A. Pineiro, M.D. Ercegovac, and J.D. Bruguera. Algorithm and architecture for logarithm,
exponential, and powering computation. Computers, IEEE Transactions on, 53(9):1085 –
1096, sept. 2004. ISSN 0018-9340. doi: 10.1109/TC.2004.53.

[130] José-Alejandro Piñeiro and Javier D. Bruguera. High-speed double-precision computation
of reciprocal, division, square root, and inverse square root. IEEE Transactions on Comput-
ers, 51(12):1377–1388, December 2002. doi: 10.1109/TC.2002.1146704.

[131] Alexandru Plesco. Program Transformations and Memory Architecture Optimizations for
High-Level Synthesis of Hardware Accelerators. PhD thesis, École Normale Supérieure de
Lyon, 2010.

[132] Robin Pottathuparambil and Ron Sass. A parallel/vectorized double-precision exponential
core to accelerate computational science applications. In Proceeding of the ACM/SIGDA
international symposium on Field programmable gate arrays, FPGA ’09, pages 285–285,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-410-2. doi: http://doi.acm.org/10.
1145/1508128.1508198. URL http://doi.acm.org/10.1145/1508128.1508198.

[133] Thomas B. Preußer and Rainer G. Spallek. Mapping basic prefix computations to fast carry-
chain structures. In International Conference on Field Programmable Logic and Applica-
tions, pages 604–608. IEEE, aug 2009.

178

http://ft.ornl.gov/~olaf/pubs/CUG07Olaf17M07.pdf
http://ft.ornl.gov/~olaf/pubs/CUG07Olaf17M07.pdf
http://portal.acm.org/citation.cfm?id=58390.58393
http://portal.acm.org/citation.cfm?id=1874620.1874909
http://doi.acm.org/10.1145/1508128.1508198

Bibliography 179

[134] Eric Roesler and Brent E. Nelson. Novel optimizations for hardware floating-point units in a
modern FPGA architecture. In International Conference on Field-Programmable Logic and
Applications, pages 637–646, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-44108-5.
URL http://portal.acm.org/citation.cfm?id=647929.740071.

[135] Antonio Roldao Lopes and George Constantinides. A fused hybrid floating-point and
fixed-point dot-product for fpgas. In Reconfigurable Computing: Architectures, Tools and
Applications, volume 5992 of Lecture Notes in Computer Science, pages 157–168. 2010.
http://dx.doi.org/10.1007/978-3-642-12133-3_16.

[136] Arthur Umbelino Alves Rolim. Transformada rápida de fourier para fpga. www.cin.ufpe.br/
~auar/Apresentacao%20FFT%202-6.ppt, 2011.

[137] David M. Russinoff. A mechanically checked proof of correctness of the AMD K5 floating
point square root microcode. Form. Methods Syst. Des., 14:75–125, January 1999. ISSN 0925-
9856. doi: 10.1023/A:1008669628911. URL http://portal.acm.org/citation.cfm?id=607542.

607571.

[138] Michael J. Schulte, Kent E. Wires, and James E. Stine. Variable-correction truncated floating
point multipliers. In Asilomar Conference on Signals, Circuits and Systems, pages 1344–
1348, 2000.

[139] E. M. Schwarz, M. M. Schmookler, and S. D. Trong. Hardware implementations of denor-
malized numbers. In 16th IEEE Symposium on Computer Arithmetic, pages 70–78, Wash-
ington, DC, 2003. IEEE Computer Society. ISBN 0-7695-1894-X.

[140] N. Shirazi, A. Walters, and P. Athanas. Quantitative analysis of floating point arith-
metic on FPGA based custom computing machines. In International Symposium on Field-
Programmable Custom Computing Machines, page 155, Washington, DC, USA, 1995. IEEE
Computer Society. ISBN 0-8186-7086-X.

[141] Robert Shuler, Li Chen, Andrew J. Hartnett, and Dave Rutishauser. Low power supercom-
puting in space. http://www.nasa.gov/pdf/499470main_jsc_shuler_low_power_supercomputing_

in_space.pdf, 2010.

[142] Shreesha Srinath and Katherine Compton. Automatic generation of high-performance mul-
tipliers for FPGAs with asymmetric multiplier blocks. In Field Programmable Gate Arrays,
pages 51–58, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-911-4.

[143] D. Stehlé, V. Lefèvre, and P. Zimmermann. Worst cases and lattice reduction. In Proceedings
of the 16th Symposium on Computer Arithmetic (ARITH’16), pages 142–147, 2003.

[144] D. Stehlé, V. Lefèvre, and P. Zimmermann. Searching worst cases of a one-variable function.
IEEE Transactions on Computers, 54(3):340–346, March 2005.

[145] Dave Strenski. FPGA floating point performance – a pencil and paper evaluation. HPCWire,
January 2007. http://www.hpcwire.com/features/FPGA_Floating_Point_Performance.html.

[146] Song Sun and J. Zambreno. A floating-point accumulator for fpga-based high performance
computing applications. In IEEE International Conference on Field-Programmable Technol-
ogy, pages 493 –499, dec. 2009. doi: 10.1109/FPT.2009.5377624.

[147] D. A. Sunderland, R. A. Strauch, S. S. Wharfield, H. T. Peterson, and C. R. Role. CMOS/SOS
frequency synthesizer LSI circuit for spread spectrum communications. IEEE Journal of
Solid-State Circuits, 19(4):497–506, 1984.

[148] Zheng-Hua Tan, Børge Lindberg, and Enrico Bocchieri. Fixed-point arithmetic. In Au-
tomatic Speech Recognition on Mobile Devices and over Communication Networks, Ad-
vances in Pattern Recognition, pages 255–275. Springer London, 2008. ISBN 978-1-84800-
143-5. http://dx.doi.org/10.1007/978-1-84800-143-5_12.

179

http://portal.acm.org/citation.cfm?id=647929.740071
http://dx.doi.org/10.1007/978-3-642-12133-3_16
www.cin.ufpe.br/~auar/Apresentacao%20FFT%202-6.ppt
www.cin.ufpe.br/~auar/Apresentacao%20FFT%202-6.ppt
http://portal.acm.org/citation.cfm?id=607542.607571
http://portal.acm.org/citation.cfm?id=607542.607571
http://www.nasa.gov/pdf/499470main_jsc_shuler_low_power_supercomputing_in_space.pdf
http://www.nasa.gov/pdf/499470main_jsc_shuler_low_power_supercomputing_in_space.pdf
http://www.hpcwire.com/features/FPGA_Floating_Point_Performance.html
http://dx.doi.org/10.1007/978-1-84800-143-5_12

180 Bibliography

[149] Arnaud Tisserand. High-performance hardware operators for polynomial evaluation. In-
ternational Journal of High Performance Syststem Architectures, 1:14–23, April 2007. ISSN
1751-6528. doi: http://dx.doi.org/10.1504/IJHPSA.2007.013288. URL http://dx.doi.org/

10.1504/IJHPSA.2007.013288.

[150] Keith Underwood. FPGAs vs. CPUs: trends in peak floating-point performance. In 12th
International Symposium on Field Programmable Gate Arrays, pages 171–180, New York,
NY, USA, 2004. ACM. ISBN 1-58113-829-6. doi: http://doi.acm.org/10.1145/968280.968305.

[151] I. H. Unwala and E. E. Swartzlander. Superpipelined adder designs. In Circuits and Sys-
tems, 1993., ISCAS ’93, 1993 IEEE International Symposium on, pages 1841–1844, May 1993.

[152] Álvaro Vázquez and Elisardo Antelo. Implementation of the exponential function in a
floating-point unit. The Journal of VLSI Signal Processing, 33:125–145, 2003. ISSN 0922-
5773. URL http://dx.doi.org/10.1023/A:1021102104078. 10.1023/A:1021102104078.

[153] Xiaojun Wang, Sherman Braganza, and Miriam Leeser. Advanced components in the vari-
able precision floating-point library. In Field-Programmable Custom Computing Machines,
pages 249–258. IEEE Computer Society, 2006. doi: http://doi.ieeecomputersociety.org/10.
1109/FCCM.2006.21. URL http://dblp.uni-trier.de/db/conf/fccm/fccm2006.html#WangBL06.

[154] Maciej Wielgosz, Ernest Jamro, and Kazimierz Wiatr. Highly efficient structure of 64-bit
exponential function implemented in FPGAs. In Reconfigurable Computing: Architectures,
Tools and Applications, volume 4943 of Lecture Notes in Computer Science, pages 274–279.
2008. http://dx.doi.org/10.1007/978-3-540-78610-8_28.

[155] Maciej Wielgosz, Ernest Jamro, and Kazimierz Wiatr. Accelerating calculations on the RASC
platform: A case study of the exponential function. In Reconfigurable Computing: Archi-
tectures, Tools and Applications, volume 5453 of Lecture Notes in Computer Science, pages
306–311. 2009. http://dx.doi.org/10.1007/978-3-642-00641-8_33.

[156] Maciej Wielgosz, Ernest Jamro, and Kazimierz Wiatr. Hardware implementation of the ex-
ponent based computational core for an exchange-correlation potential matrix generation.
In Parallel Processing and Applied Mathematics, volume 6067 of Lecture Notes in Computer
Science, pages 115–124. 2010. http://dx.doi.org/10.1007/978-3-642-14390-8_13.

[157] Kent E. Wires, Michael J. Schulte, and Don McCarley. FPGA resource reduction through
truncated multiplication. In International Conference on Field Programmable Logic and
Applications, pages 574–583. Springer-Verlag, 2001. ISBN 3-540-42499-7.

[158] W. F. Wong and E. Goto. Fast hardware-based algorithms for elementary function computa-
tions using rectangular multipliers. IEEE Transactions on Computers, 43(3):278–294, 1994.

[159] SZ Xing and WWH Yu. FPGA adders: Performance evaluation and optimal design. IEEE
Design & Test Of Computers, 15:24–29, 1998.

[160] Jingling Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers, 2000. ISBN 0-7923-
7933-0.

[161] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C. Cheung, D.-U. Lee, R.C.C. Cheung,
and W. Luk. Reconfigurable acceleration for monte carlo based financial simulation. In
IEEE International Conference on Field-Programmable Technology, pages 215 –222, dec.
2005. doi: 10.1109/FPT.2005.1568549.

[162] Ling Zhuo and Viktor K. Prasanna. High performance linear algebra operations on re-
configurable systems. In ACM/IEEE conference on Supercomputing. IEEE, 2005. doi:
http://dx.doi.org/10.1109/SC.2005.31.

180

http://dx.doi.org/10.1504/IJHPSA.2007.013288
http://dx.doi.org/10.1504/IJHPSA.2007.013288
http://dx.doi.org/10.1023/A:1021102104078
http://dblp.uni-trier.de/db/conf/fccm/fccm2006.html#WangBL06
http://dx.doi.org/10.1007/978-3-540-78610-8_28
http://dx.doi.org/10.1007/978-3-642-00641-8_33
http://dx.doi.org/10.1007/978-3-642-14390-8_13

	Introduction
	Field Programmable Gate Arrays
	Architecture
	Logic elements
	DSP blocks
	Block memory

	FPGA design flow
	Application markets

	Floating-point arithmetic
	Generalities
	Representation
	Rounding
	Errors

	Floating-point arithmetic on FPGAs

	Custom arithmetic data-path design
	Arithmetic operators
	FPGA-specific arithmetic operator design
	From libraries to generators

	Design choices for FloPoCo
	A motivating example
	The FloPoCo framework
	Operators
	Automatic pipeline management
	Synchronization mechanisms
	Managing subcomponents
	Sub-cycle accurate data-path design
	Frequency-driven automatic pipelining
	The Target class hierarchy
	The bottom-line
	Test-bench generation
	Framework extensions

	Conclusion

	Binary addition in FloPoCo
	Related work
	Design-space exploration by resource estimation
	Pipelined addition on FPGA
	Classical RCA pipelining
	Resource estimation techniques
	Alternative RCA pipelining
	Area-complexity of the pipelined designs

	Short-latency addition architecture
	Classic carry-select adder
	Acceleration of inter-block carries
	The Add-Add-Multiplex (AAM) carry-select architecture
	The Compare-Add-Increment (CAI) carry-increment architecture
	The Compare-Compare-Add (CCA) carry-select architecture
	Block-splitting strategies
	Area complexity of the designs

	Global inference of shift-registers
	Reality check
	Estimation formulas
	Synthesis results

	Conclusions

	Large multipliers with fewer DSP blocks
	Large multipliers using DSP blocks
	Visual representation of multipliers
	Karatsuba-Ofman algorithm
	Two-part splitting
	Implementation issues on Virtex-4
	Three-part splitting
	4-part splitting
	N-part splitting
	Issues with the most recent devices

	Non-standard tilings
	Design decisions
	Algorithm
	Reality check

	Squarers
	Squarers on Virtex-4 and Stratix-II
	Squarers on Stratix-III and Stratix-IV
	Non-standard tilings on Virtex-5/6

	Truncated multipliers
	Faithfully accurate multipliers
	FPGA fitting
	Architecture generation algorithm

	Conclusion

	Polynomial-based architectures for function evaluation
	Related work
	Function evaluation by polynomial approximation
	Range reduction
	Polynomial approximation
	Polynomial evaluation
	Accuracy and error analysis
	Parameter space exploration for the FPGA target

	Reality check
	Optimization effect
	Examples and comparisons

	Conclusion, open issues and future work

	Multiplicative square root algorithms
	Algorithms for floating-point square root
	Notations and terminology
	The cost of correct rounding

	Square root by polynomial approximation
	Results, comparisons, and some handcrafting
	Conclusion and future work

	Floating-point exponential
	Related work
	Algorithm and architecture
	Algorithm overview
	Range reduction
	Computation of eY

	Implementation issues
	Constant multiplications
	Overall error analysis
	The case study of single precision
	Polynomial approximation for large precisions
	Parameter selection

	Results
	Synthesis results
	Comparison with other works
	Comparison with microprocessors

	Conclusion and future work

	Floating-point accumulation and sum-of-products
	A fast and accurate accumulator
	Overall architecture
	Parameterisation of the accumulator
	Fast accumulator design using partial carry-save
	Post-normalisation unit, or not
	Synthesis results

	Application-specific accumulator design
	A performance vs. accuracy tradeoff
	A case study
	Accuracy measurements

	Accurate Sum-of-Products
	Comparison with related work
	Conclusion and future work

	High-level synthesis of perfect loop nests
	Computational data-path generation
	Efficient hardware generation
	Background
	Working examples
	Parallelization
	One dimensional Jacobi stencil computation
	Lessons
	Algorithm

	Computing kernel accuracy and performance
	Matrix-matrix multiplication
	One dimensional Jacobi stencil computation
	Lessons

	Reality check
	Conclusion and future work

	Using FloPoCo to solve Table Maker's Dilemma
	The Table Maker's Dilemma
	Proposed algorithm
	The tabulated differences method
	Error analysis
	An example: the exponential function

	Our design
	Functional model
	Bandwidth requirement
	Performance estimation
	Reality Check
	FloPoCo impact

	Conclusion

	Conclusions and Perspectives

