
HAL Id: tel-00654188
https://theses.hal.science/tel-00654188v3

Submitted on 10 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation 3D à partir d’images : contributions en
reconstruction photométrique à l’aide de maillages

déformables
Amaël Delaunoy

To cite this version:
Amaël Delaunoy. Modélisation 3D à partir d’images : contributions en reconstruction photométrique
à l’aide de maillages déformables. Mathématiques générales [math.GM]. Université de Grenoble, 2011.
Français. �NNT : 2011GRENM069�. �tel-00654188v3�

https://theses.hal.science/tel-00654188v3
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques, Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Amaël Delaunoy

Thèse dirigée par Peter Sturm
et codirigée par Emmanuel Prados

préparée au sein de l’ Inria Grenoble, Laboratoire Jean Kuntzmann
et de l’école doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Multi-view Shape Modeling from
Images
Contributions to Photometric-based Recon-
struction using Deformable Meshes

Thèse soutenue publiquement le 2 Décembre 2011,
devant le jury composé de :

Prof. Augustin Lux
Professeur, Université de Grenoble, Président
Prof. Marc Pollefeys
Professeur, ETH Zürich, Rapporteur
Prof. Jean Ponce
Professeur, École Normale Supérieure, Rapporteur
Prof. Daniel Cremers
Professeur, Technische Universität München, Examinateur
Dr. Peter Sturm
Directeur de recherche, Inria Grenoble, Directeur de thèse
Dr. Emmanuel Prados
Chargé de recherche, Inria Grenoble, Co-Directeur de thèse





Abstract

Understanding, analyzing and modeling the 3D world from 2D pictures and videos is prob-

ably one of the most exciting and challenging problem of computer vision. In this thesis,

we address several geometric and photometric aspects to 3D surface reconstruction from

multi-view calibrated images.

We first formulate multi-view shape reconstruction as an inverse rendering problem. Us-

ing generative models, we formulate the problem as an energy minimization method that

leads to the non-linear surface optimization of a deformable mesh. A particular attention is

addressed to the computation of the discrete gradient flow, which leads to coherent vertices

displacements. We particularly focus on models and energy functionals that depend on visi-

bility and photometry. The same framework can then be equally used to perform multi-view

stereo, multi-view shape from shading or multi-view photometric stereo.

Then, we propose to exploit different additional information to constraint the problem

in the non-Lambertian case, where the appearance of the scene depends on the view-point

direction. Segmentation for instance can be used to segment surface regions sharing similar

appearance or reflectance. Helmholtz reciprocity can also be applied to reconstruct 3D shapes

of objects of any arbitrary reflectance properties. By taking multiple image-light pairs around

an object, multi-view Helmholtz stereo can be performed. Using this constraint acquisition

scenario and our deformable mesh framework, it is possible to reconstruct high quality 3D

models.

Keywords: Computer Vision, Multi-view Shape Reconstruction, Deformable Meshes, Pho-

tometry, Visibility, Shape from Shading, Variational Methods, Multi-view Stereovision.





Résumé

Comprendre, analyser et modéliser l’environement 3D à partir d’images provenant de caméras

et d’appareils photos est l’un des défis majeurs actuels de recherche en vision par ordinateur.

Cette thèse s’intéresse à plusieurs aspects géométriques et photometriques liés à la recon-

struction de surfaces à partir de plusieurs caméras calibrées.

La reconstruction 3D est vue comme le problème inverse de rendu graphique, et vise à

minimiser une fonctionnelle d’énergie afin d’optimiser un maillage triangulaire représentant

la surface à reconstruire. L’énergie est définie via un modèle génératif faisant naturellement

apparaître des attributs tels que la visibilité ou la photométrie. Ainsi, l’approche présentée

peut indifférement s’adapter à divers cas d’applications tels que la stéréovision multi-vues,

la stéréo photométrique multi-vues ou encore le shape from shading multi-vues.

Plusieurs approches sont proposées afin de résoudre les problèmes de correspondances

pour des scènes non Lambertiennes, dont l’apparence varie en fonction du point de vue. La

segmentation, la stéréo photométrique ou encore la réciprocité d’Helmholtz sont des élé-

ments étudiés afin de contraindre les algorithmes de reconstruction. L’exploitation de ces

contraintes dans le cadre de reconstruction multi-vues permet de reconstruire des modèles

complets 3D avec une meilleure qualité.

Keywords: Vision par ordinateur, Reconstruction 3D de formes, Maillages déformables,

Photométrie, Visibilité, Shape from Shading, Méthodes variationnelles, Stéréovision multi-

vues.
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CHAPTER I

Multi-view Shape Reconstruction:

Background and Introduction

In this chapter we introduce the problem of multi-view shape reconstruction from images

in computer vision. Inferring the 3D shape of objects given a set of several pictures of that

object is an ill-posed problem. It aims at solving the inverse problem of the image rendering

process. Therefore, it is necessary to understand this process in order to be able to recover

the 3D model. Image formation is a complex process that includes projective geometry,

scene geometry, appearance, materials, lighting and other complex photometric phenomena.

In order to constraint the problem, assumptions and simplified models are required. This

chapter overviews such simplifications. We will also present standard approaches to stereo

reconstruction, in particular in the multi-view setting where cameras are placed all around

the object of interest. We will see how generative models can lead to generic formulations

for multi-view reconstruction. We also detail the organization of the thesis and expose the

contributions of our work.
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I.1 The Shape from Images Reconstruction Problem

Nowadays, who does not hold a camera? Being in your phone, in your laptop, as a personal

camera or a video camera, digital cameras are everywhere and in everyone’s hand. This has

contributed making computer vision a fast growing field of research, with new perspectives

and research opportunities. Among this field, 3D reconstruction has called the attention of

many researchers in computer vision, and particularly during the last two decades. This

research aims at understanding and/or capturing the tri-dimensional information of a scene

thanks to two-dimensional images taken from (digital) cameras, by exploiting the redundant

information among those images.

I.1.1 Overview

Motivation

3D models are often needed in a large variety of applications and domains. The recent

number of 3D movies and interactive video games using 3D information such as the Nintendo

Wii or Microsoft Kinect are good examples of recent interest towards 3D models. Whereas

those general public applications are mainly focus in the multimedia and entertainment do-

main, 3D information is important and sometimes critical in a lot of different fields such as

industrial control, robotics, medical imaging, space industry or military applications.

Automatically reconstructing such 3D models is very difficult and challenging. It first

requires acquisition devices that can extract a 3D information of the scene. Then further

modeling, computation and algorithms are usually required. For a long time, Laser scans

(or similar techniques) have been extensively used, for example to produce 3D models in

computer graphics. Usually associated with geometry post-processing (such as recovering

smooth polygonal surfaces from point clouds), they provided nice results that are still used

nowadays as references [1] or ground truth data [136, 145].

On the other hand, cameras provide more information such as color and textures. Used in

stereo pairs or in multi-view settings with correct geometry modeling, they provide useful

information. This can be used to reconstruct shapes in environments where active systems

would not work, such as the reconstruction of large scale objects or environments [49, 154].

Moreover, used in appropriate manners, cameras can deal with objects of more diverse ma-

terials such as particular surface geometry texture, reflectance, transparency or refraction.

Cameras are more flexible and easier to use, and nowadays even outperforms Laser scans for

normal-sized objects in terms of resolution [105]. Even though multi-view 3D reconstruction

has been extensively used and developed recently (See Seitz et al. [136, 145] for comparisons

of recent techniques, as well as the Chapter 11 and 12 of [146]), there still remains open doors

and challenges.
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Problem Description

Stereo reconstruction techniques often refer to binocular stereo reconstruction, where

a scene is observed by a pair of two cameras, originally inspired by biological vision and

perception. In general correspondences between the left and right images allow to compute

what is called a disparity map or a depth map of the scene. The baseline between the two

cameras is usually small and the system only allow to recover partial 3D information due

to the limited visible field of view. In order to get a complete overview of the geometry,

multiple views are required. Extending binocular stereo to multi-view stereo is not straight

forward. This has lead to many specific research developments those last decades. We can

for instance refer to the multi-view geometry and 3D reconstruction parts of the following

books: Faugeras and Luong [43], Forsyth and Ponce [45], Hartley and Zisserman [63] or

Szeliski [146]. Those books give a good overview of the field as well as good pointers to

related publications.

Figure I.1: Overview of multi-view shape from images: On the left: input images taken from

the GRImage platform at Inria, that allows to acquire up to 32 synchronized and calibrated

video data. On the middle we show the calibrated pictures in the 3D space at time t. On

the right is an expected output: a tri-dimensional model representing the scene or object of

interest obtained with [31].

Multi-view shape from images is the process of reconstructing a tri-dimensional scene

given a set of images or pictures of that scene. The output of that process is a tri-dimensional

structure such as points or surfaces. Figure I.1 illustrates an example of acquisition system

used at Inria, along with the input of the algorithm (calibrated images) and one expected

result (a 3D triangle mesh). Those images first need to be calibrated, meaning that all camera

positions and parameters are known, and that there is a link between the 3D world and the

2D images. In the rest of this thesis, we will consider the camera positions to be known

in advance, that is the system is geometrically calibrated. We focus on the description and

modeling of the 3D reconstruction part only.

Then to achieve the reconstruction, many cues on images can be used, such as motion,

shading, occluding boundaries or texture information. Where acquisition techniques such

as Laser scans provide (up to calibration and noise) direct 3D measurements, multi-view

stereo rely on image processing and correspondences. The problem becomes finding dense

correspondences between the pixels in the different images. Then two pixels in two images
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that corresponds to the same 3D location can be used to retrieve that point using triangulation,

assuming that the camera positions are known. However finding a dense matching between

images is difficult because of occlusion problems as well as matching ambiguities and change

of appearance between the views. The difference in the appearance may come from as diverse

photometric phenomena as reflection, refraction or diffusion among others. Because of the

complexity of the image rendering process, new techniques have been developed and are

still being improved. The large disparity in image appearance and representations makes 3D

reconstruction a very hard and challenging problem. This creates needs to fully understand

and model images in order to be able to process information for building 3D models. Because

the physical models of cameras are too complex to use, one needs further assumptions.

Figure I.2: Life of a photon, courtesy of Pau Gargallo [55]. This figure illustrates the com-

plexity of the light energy received at a sensor: the eye in this case, the camera in computer

vision. Light is emitted by the sun or other light sources, then diffused, scattered, refracted

and reflected on different media and objects before finally reaching a sensor.

I.1.2 Geometric and Photometric Assumptions

Because 3D reconstruction from 2D images is the inverse problem of the image formation

process, it is necessary to understand that step. Digital camera create images of the world by

capturing for each pixel the incoming set of light rays coming to it through an optical device.

An image can be captured out of this world, but is just a 2D projection (a two dimensional

signal) of that 3D information. This involves complex photometric phenomena due to scene

geometry, materials, optical device and lighting conditions. In this thesis we define an image

as the result of following components:

• The acquisition device: its optical properties (along with projective geometry) and the

properties of the sensor itself (photometric and geometric aspects).

• The illumination: light sources, positions and intensity.

• The scene or object of interest: its appearance (object materials, object reflection/-

refraction) and its geometry (3D shape, self occlusions and visibility).
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Figure I.3: Simplified image formation process.

The Figure I.3 shows a simple example of the generation of images. In the following, we

discuss elements and information that are going to be useful in the context of this thesis. For

a more complete information, we refer the readers to [41, 45, 63, 146] and all the references

therein. Those books give a good overview of the computer vision research field [45, 146]

and its associated multi-view geometry in particular [43, 63].

I.1.2.1 Multi-view Geometry

Camera models and their associated projective geometry are fundamental in computer vision,

since it links the 3D world with its 2D projection in the images. Given a set of images,

we have the following relationship between a 3D point x of a scene and its associated 2D

projected pixel p:

p = Πi(x) , (I.1)

where Πi : R
3 → R

2 corresponds to the projection model of a camera i. Then calibrating a

camera i corresponds to find its function Πi. If this model can be parametrized, then the cal-

ibration consists in estimating the appropriate parameters of the camera model. The camera

position and orientation are called the extrinsic parameters. The intrinsic parameters depend

on the camera device itself, and correspond to the projection model parameters as well as

the radiometric response of the camera (For a pinhole camera model, the geometric intrinsic

parameters are typically the focal length, principal point, sensor size and resolution, or lens

distortions). Thanks to recent work those last decades [63], we have good and accurate cali-

bration. In the rest of this thesis we will consider those parameters to be known in advance,

and we will focus on the reconstruction part only.

In 3D reconstruction, it is often assumed that a camera can be modeled using the pin-

hole camera model. While this assumption is not true using real world data, in practice the

pinhole camera model is a good approximation and a simple model to use. We will see in

the following that recent 3D reconstruction techniques give reasonable 3D models using that
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assumption. From now on, we will only consider parametrized camera models such as the

pinhole model or push-broom cameras

Scene Geometry

For reconstruction, the scene geometry is represented by a shape model, that can have

different forms [87]. This model is really important since it conditions the underlined al-

gorithms used for reconstruction. Even though reconstruction methods can sometimes be

applied to a large variety of shapes, in general (numerical) algorithms are adaptive to par-

ticular subset of shapes. In multi-view reconstruction, it is often represented as one of the

following shapes:

• Point clouds or set of oriented patches. [48, 95]

• Depth map or Height maps. [54]

• Model-based representations. [16, 151]

• Implicit models - for example Level Sets or occupancy grids. [42, 82, 91, 130, 141,

160]

• Explicit surfaces such as meshes. [9, 31, 36, 154]

In the following, we will consider the shape to be a closed surface. It is a natural and

intuitive way of representing the shape of the object of interest to reconstruct. Moreover, the

visibility is clearly defined using a surface, whereas it is not clear how to define it on point

clouds or occupancy grids. We will also make the following assumption to the kind of scene

we can reconstruct: we will consider that the scene to be reconstructed can be modeled by a

piecewise planar surface. As a result, gas, fluids or objects that could not be represented as

closed surfaces won’t be addressed in this thesis. Let S be a 2D surface embedded into R
3,

and ds be the element of area of the surface.

I.1.2.2 Image Appearance

Bidirectional Reflectance Distribution Function

Here we describe the image formation process that is used by cameras to generate images.

The appearance of a pixel is proportional to the amount of light received at the sensor, called

the irradiance and measured in [W.m−2]. The irradiance is the total incoming light reaching

a surface patch. The radiance is the amount of light emitted by a surface patch in a particular

direction. It is expressed as the power of light by unit area, by solid angle [W.m−2.sr−1].

The image irradiance is actually proportional to the scene radiance.

The scene radiance depends on many factors which are mainly due to the illumination,

the reflectance of the scene and the position from which it is viewed. The reflectance is the

function that describes the surface material properties. If one consider that the reflectance

does not change over time, does not depend on the wavelength and does not have any scat-

tering effects, then the reflectance is called the bidirectional reflectance distribution function
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(BRDF). The BRDF indicates how bright a surface point appears from a particular direc-

tion, when illuminated from an other direction. It is the ratio between the incoming irradi-

ance and the outgoing radiance. Let us define β(v̂i, v̂o) to be the surface’s BRDF, where v̂i

parametrizes the incoming light direction and v̂o the outgoing (view) direction. One partic-

ularity of the BRDF is that it is reciprocal, meaning that the BRDF is the same if the input

direction and outgoing one are switched and that: β(v̂i, v̂o) = β(v̂o, v̂i). This property is

known as Helmholtz reciprocity, and we will see later in Chapter V that it can be used as a

cue for multi-view reconstruction.

The BRDF is very difficult and complex to acquire [156], even if the object’s shape is

known. Indeed, one need simplifications to be able to mix it with shape reconstruction. A

lot of simplified models and approximations have been proposed in computer graphics to

render images, see for instance Ngan [121] for a recent survey on the subject. Those models

rely either on physics models [26, 148] or empirical models [122, 127]. In general, BRDF

models are defined using a dichromatic model composed of a diffuse term and a specular

term. Depending on the kind of materials one wants to model, those diffuse and specular

term may have different formulations. For example, the Lambertian model usually describes

perfectly smooth and diffuse surfaces, whose appearance is independent on the view-point

direction. If the surface has micro-structures, then diffuse surfaces are better explained using

the Oren and Nayar reflectance model [122], whereas specular models can be modeled using

the Cook and Torrance reflectance model [26]. Unfortunately, there does not exist a single

reflectance model that encompasses all kind of object materials.

Illumination Models

Even though the most common illumination models used in 3D reconstruction are point

light sources or directional light, there exist many different ways to represent the illumina-

tion. A classical approach to model low frequency illumination is to use spherical harmonics.

To control the illumination, projectors are an easy way to go, since the can be modeled us-

ing camera geometry and then calibrated similarly (a projector model is homologous to a

camera).

Estimating the illumination is very complex. Indeed, most 3D reconstruction works as-

sume simple light sources or even consider the scene to be Lambertian so that modeling the

illumination is not required (See next paragraphs).

Shape and Reflectance

Estimating both the shape and reflectance of objects is challenging due to different rea-

sons. The two main reasons are that the model of the reflectance has to be known in advance,

and that the reflectance estimation is an under-constrained problem due to the number of pa-

rameters to estimate compared to the number of observations. A lot of effort has been done in

that direction, showing promising techniques and results, see for example [9, 115, 133, 163].

Most of those methods rely on alternated optimization between the shape of the scene S and

the parameters of the associated reflectance model R. They also assume that the illumination

conditions are known and that the class of objects to reconstruct fall in the chosen reflectance
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model.

The Constant Brightness Assumption

In computer vision applications, it is usually easier to consider that the appearance of

an object is independent on the view-point direction. In that case the reflectance model is

Lambertian and corresponds to the surface’s albedo. It can usually be represented as a cosine

law such that: I = ρ n ·L, where I is the intensity value, ρ the surface albedo, and L the light

vector.

In the real world, very few objects are truly Lambertian. However, some objects are close

to Lambertian, and some other can be considered as Lambertian under ambient illumination.

If one assumes a Lambertian world and if the illumination is fixed when several images from

different view-points are taken, then the constant brightness assumption is valid. Further-

more, the intensities values should be the same across images Ii and then modeling the illumi-

nation is unnecessary. This makes Lambertian approaches very popular since estimating the

illumination is a rather difficult task. In that case, matching between views can be exploited

to use stereo, structure-from-motion and 3D reconstruction algorithms. The Lambertian as-

sumption is used in most of photometric multi-view stereo reconstruction techniques, though

a lot of techniques use robust matching scores for more flexibility in appearance variations.

I.2 Reconstruction Techniques

This section addresses how the multi-view shape from images problem can be solved given

the assumptions described previously. While there is a full literature on that subject, we

focus our attention in techniques that automatically recover full 3D models. We first review

direct approaches, that extract information in the images in 2D, and use it to retrieve 3D

information. Then we describe methods that see 3D reconstruction as an inverse problem.

In particular, we use the Bayesian inference by describing how images are generated and

how this process can be inverted to infer the unknown geometry of the scene. This way of

reasoning, previously described in [112] and applied for multi-view stereo in [55], allows to

rigorously model the shape from images reconstruction problem. This is usually formulated

as a non-linear optimization problem. We will see this can be solved by minimizing an energy

functional explaining the scene.

I.2.1 Rapid Overview of Existing Approaches

There exist many different methods for reconstructing shapes from 2D images that have

been extensively developed during the last decades (See for instance Chapter 12 of [146]).

The differences between these approaches rely on the assumptions they make of the scene

(either on its geometry, illumination or image formation model), on the choice of the shape

representation, on their ability to deal with visibility, on their precision or applicative goal

(visualization, interaction, scientific computing). In this section, we briefly describe some of

those existing approaches.
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Many methods extract 3D information directly from 2D images, for example by match-

ing points between the different views or by merging depth maps obtained thanks to clas-

sical binocular stereo algorithms between image pairs. Binocular stereo algorithms have

been widely used [134] to extract such information. However their extensions to multi-view

settings are not straightforward and have been extensively researched so far. We refer for

example to [136, 145] for comparisons of recent techniques, which show the recent interest

in multi-view stereo techniques. The first category of algorithms use direct information from

the images, in order to estimate 3D points, 3D patches, lines, or other features. If points are

robustly matched across images, 3D model can be obtained and one can fit a surface to the

reconstructed points. Many multi-view stereo approaches follow that principle and use it as

an initialization for more complex algorithm by expanding it to either dense 3D reconstruc-

tion or dense stereo matching. If a large amount of images is available, robust algorithms can

be applied to keep the best candidates for matching. This allows to initialize more complex

algorithms that can reconstruct dense 3D models with large photo collections. Other works

consider particular scenarios in order to make the matching easier, by considering specific

acquisition setups (using for instance known illumination, changing illumination, etc.), or

imposing constraints on the scene (known materials, shape symmetry, etc.). We detail some

of those approaches in the next section.

Those previous methods can be described as direct methods, as opposed as to methods

that tend to estimate the shape directly or optimize it. One typical approach is to represent

the scene as a 3D volume, and then remove points that are not photo-consistent. This can be

done by using voxel coloring [137] or space carving algorithms [53, 94]. One major issue in

that case is to carefully account for visibility. This photo-consistency, as well as many other

cues that will be developed in the next sections, can be used to define a quality measure of a

reconstructed model. This model can be optimize by minimizing this error measure.

Energy Minimization Methods

Variational methods are commonly used in computer vision and computer graphics to

compute, improve and process surface interfaces. Such approaches consist in defining an

energy whose minimum is reached by the surface of the object of interest. The idea is to start

from an initial shape and optimize it to decrease the energy until it reaches its minimum. It is

usually performed through gradient descent techniques. This generic approach can be equally

applied to different kind of problems and has been for example successfully applied in image

segmentation [29]. During the last decades, this framework has been widely used in 3D

reconstruction problems as well to optimize surfaces, see for example [42, 82, 130, 141, 160].

In general, the total energy of the shape S (typically a 2D surface embedded into R
3)

can be defined as a sum of a regularization term and a data term (the next section describes

how to obtain those terms using the Bayesian approach). This energy functional quantifies

the quality of the geometric model to optimize with respect to the observed data. The reg-

ularization corresponds to the prior probability and describes for instance the elasticity and

rigidity of the model. This is typically a smoothness term toward some prior. The data term
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corresponds to the likelihood energy term, and measures the model’s fidelity compared to the

input data. It quantifies how close the current shape is from the observed images.

Let I = {I1, I2, . . . , Im} be the set of the observed images. If the problem is well-defined,

then the solution of the problem is the surface Ŝ that minimizes the following equation:

Ŝ = argmin
S







Edata(I,S)
︸ ︷︷ ︸

Data term

+ Ereg(S)
︸ ︷︷ ︸

Regularization term







. (I.2)

This energy minimization problem can be more generally described as minimizing the

following energy functional:

E(S) =
∫

Ω

f(x) dx +

∫

S

g(x,nS) ds , (I.3)

where g : R3 × S
2 → R

+ is a weighted area functional over the surface S and f : R3 → R
+

is a volume potential (sometimes called ballooning term) inside the shape S , where here

Ω represents the interior of the surface S . In multi-view shape reconstruction, g(x,nS) is

typically a photo-consistency metric at the surface point x with its associated normal nS .

Minimizing this kind of energy functional can be done using different techniques, de-

pending on the concerned application and on the shape representation one uses. It is usually

minimized through gradient descent techniques and therefore requires the computation of the

corresponding gradient [141]. Then, starting from an initial surface S0, the surface optimiza-

tion scheme follows the gradient descent flow:







S(0) = S0 ,

∂S(t)
∂t

= −∇ME(S(t)) ,
(I.4)

where ∇ME(S) is the gradient that depends on a metric defined on a Riemannian manifold

M such that S ∈ M . Changing the metric of the gradient may result in more coherent

gradient descent flow [24, 174]. Many tools are available to implement surface evolution,

such as for example Level Sets, Graph cuts, convex relaxation or deformable meshes. Those

techniques will be detailed in Section I.4.

One problem of this kind of energy is that the empty set is an obvious global minima.

Moreover, minimizing Equation (I.3) usually introduces bias toward small surfaces that are

usually compensated by adding additional terms. This classical problem is known as the

minimal surface bias [5], and can be reduced in multi-view reconstruction by considering a

Bayesian approach of the problem in order to properly define the energy functional. More

details are available in Gargallo et al. [56] and in Section I.2.2 that follows.
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I.2.2 Bayesian Formulation and Generative Models

Here, we describe the Bayesian rationale to multi-view reconstruction. This section is a

summary of several works already using this formulation [55, 163] on which the following

of this thesis is based. The Bayesian approach aims at defining the probability of a solution

given the observed data and obtain a solution that best maximizes this probability.

Let Ω be the unknown scene to recover (composed of geometry, appearance and illu-

mination), and I = {I1, I2, . . . , Im} be the set of given images previously defined. Ideally,

we would like to find the best scene Ω̂ that corresponds to the images I. This is called the

maximum a posteriori in the machine learning and statistics literature [10, 37]. Then Ω̂ can

be found using the joint probability of a scene given the images:

Ω̂ = argmax
Ω

{p(Ω|I)} . (I.5)

The joint probability of the scene and the images can be decomposed into a prior proba-

bility on the scene p(Ω) and the likelihood probability p(I|Ω) (which represents how likely

a given scene is to reproduce the input images).

• The term p(I|Ω) corresponds to the probability of having a set of images given the

parameters of a scene, and explain how likely is a scene to be the solution. In the

case of multi-view reconstruction, this can be seen as a generative model, where the

likelihood measures the error between the input images I and images that would be

generated by the scene Ω.

• The prior term p(Ω) imposes constraints over the set of all possible solutions, since

the non unique solution due to the huge space of possible scenes Ω makes it a difficult

and ill-posed problem.

Using the Bayes rule, one can rewrite Equation (I.5) as its negative logarithmic form:

Ω̂ = argmin
Ω

{log p(I|Ω) + log p(Ω)} . (I.6)

The scene Ω is composed of the shape S , the associated reflectance R and the illumi-

nation L. If we know the illumination, and that we consider the shape and reflectance to be

independent, then Equation (I.6) becomes:

Ω̂(S,R) = argmin
Ω(S,R)

{log p(I|S,R,L,Π) + log p(S) + log p(R)} . (I.7)

The terms p(S) and p(R) are respectively the prior terms on the shape and the reflectance.

p(I|S,R,L,Π) corresponds to the likelihood for a given shape S and reflectance R where the

illumination L and the camera models Π are fixed. p(I|S,R,L,Π) measures the similarity

between the generated images and the observed images. This part directly depends on the

image formation model chosen for the modeling.

Let I be one generated image of the scene Ω that would correspond to an input image I ,

based on some image formation model. Ideally, we would like I to be equal to I up to noise
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and small deviations from the model. In the literature, the probability density function p is

often defined as a normal (or Gaussian) distribution. Then a natural choice for the likelihood

term is:

p(I|S,R,L,Π) =
∏

i

p(Ii|I i) ,

∝
∏

i

∏

p

e−(Ii(p)−Ii(p))
2

,
(I.8)

where this is a product on all pixels p of all images i. Then the likelihood energy to minimize

can be expressed as:

Edata(Ω) =
∑

i

∫

Ii

(Ii(p)− I i(p))
2 dp+ const . (I.9)

The prior terms in Equation (I.7) are necessary because the set of all possible solutions

is too large, and input data only corresponds to a sparse set of images. Therefore, there are

not enough observations to explain all the shape and reflectance which makes the problem

under-determined. Moreover Equation (I.7) is rather difficult to optimize directly and people

generally split the optimization process by alternatively optimizing the Shape S for a fixed

R and vice-versa.

From Equation (I.9), one may notice that the energy is defined over the whole image

domain. As shown in [31, 56, 160], this has the advantage to reduce the minimal surface bias

present in most variational approaches without any additional terms or constraints. However,

one may also notice that the energy is not only defined on the part corresponding to the region

covered by the projection of the surface, but also on the background parts. This means that

prior information about the background is needed: either it has to be known in advance (for

example using background subtraction, silhouettes or simply by taking images without the

object of interest) or should be easy to model [56]. In such a case, Energy I.9 can be split

into two terms, the one where the surface projects (the image region denoted by Πi(S)) and

the one corresponding to the background. In that case the energy can be rewritten as an

energy over the surface, and then corresponds to standard energy minimization techniques

(See Equation (I.3)). This part will be detailed in Chapter II.

I.3 Information in Multi-view Reconstruction: Exploiting

Cues and Priors

While generative models offer a generic approach to reconstruct 3D models, estimating the

full radiance of a scene might be too complex. Therefore one may prefer to use different cues

in order to express the likelihood and prior energies. While it is often assumed that stereo

correspondence is the more common cue to use, this is just one among many that one has at

his disposal. The following section describes some of them, and how they can be used for
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recovering 3D models from multiple images.

We divide those cues into three categories. First, cues that are related to the images such

as color, texture, radiance as well as contours. They are usually closely related to the data

energy term previously defined since they directly depend on the input images. Secondly, we

describe how different constraints on the 3D shape can be used, and often be seen as a prior

term on the shape or on the initialization. Finally, we describe how changes in the acquisition

setups can lead to additional constraints in order to better pose the problem.

I.3.1 Image-based Cues

I.3.1.1 Correspondence and Matching

The natural way to see stereo reconstruction is to think about correspondences and matching

between images. If two points of two different images correspond to the same 3D point,

and if the cameras are calibrated, then the coordinates of a 3D point can be easily computed

[62, 63]. Image correspondence and matching has a long history in computer vision [84].

Since interest points are easier to handle, a full literature covers feature definition, detection

and tracking such as: the Lucas-Kanade tracker, the Sift [104] and more recently for denser

interest points Daisy [147]. See surveys on keypoint detector [135] and feature descriptions

[110] for further information. In that context, the goal is to define and detect robust point

(or patch or line) features to find a sparse set of correspondences. This matching is a pre-

requisite in order to automatically calibrate images, do object or camera tracking, structure

from motion or align images for stitching. However, such problem is clearly badly defined

since two 2D points sharing the same color may correspond to the projection of two different

3D points. This is usually due to the appearance of a 3D point that depends on the viewpoint

(if the object is not Lambertian, which is usually the case), or on points that are wrongly

matched (because the texture is repetitive, or not discriminative enough, or on textureless

objects). In that case robust estimations, and techniques to remove outliers such as RANSAC

[44] are usually used. Nevertheless recent algorithms allow to track, reconstruct and map

features in real-time such as PTAM [86] or DTAM [120].

In computer vision, in particular in 3D reconstruction, features are widely used because

they are easy to handle and fast to compute and match. Indeed, images can be matched to

millions of others in seconds [77]. This allows to match images from large image collections

and calibrate them using optimization such as bundle adjustment. Finally 3D models can

be recovered from large image databases [4, 46]. However, sparse features are mostly used

to calibrate cameras and to initialize dense multi-view stereo techniques. Indeed additional

steps are required to reconstruct dense 3D models such as patch expansion techniques [4, 52],

dense depth maps estimate and merging [46], or surface refinement [154].

Dense image matching

Dense matching can also be performed directly between images. Image registration aims

at finding a transformation between two images, and like many non-linear problems, are

mainly based on energy minimization techniques. Given two images I1 and I2, the goal is to
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find a transformation W such that:

Ŵ = argmin
W

{M(W(I1), I2)} (I.10)

where M(A,B) is an image metric measuring the similarity between two images A and B.

Typically M is the sum of squared differences between the pixel intensity values in I2 and

the transformed image W(I1). One may prefer to use more robust measurements such as the

Normalized Cross-Correlation or the Mutual Information [150]. Those metric account for the

image dynamic, and then are more robust to intensity variations, even for registering images

coming from different modalities [155]. Though originally developed to align 3D volumes

[155] and medical imaging applications, image registration can be applied to solve computer

vision problems since for example optical flow (usually applied to slow motion) and dense

stereo matching (constrained to epipolar geometry) are particular cases of deformable image

registration.

Dense image alignment, or deformable/non-rigid image registration, has been success-

fully applied to solve 3D reconstruction problems. For example, recently Newcombe and

Davison [119] use an initial surface recovered from structure from motion. Then Image reg-

istration is performed between each back-projection of the views in a reference frame and

the image of the reference frame itself, using optical flow [15]. The surface displacement

field is then integrated on the surface to optimize it, allowing to produce live dense recon-

struction [119]. In the multi-view context, Pons et al. [131] use the same idea and show how

surfaces can be optimized using the registration between an image and the projection of the

back-projection of a second image onto the surface. Compared to Newcombe and Davison

[119] that work on the 2D image space, Pons et al. [131] explicitly use a 3D surface model,

and then optimize it to make it matches with the data. In this case the warp function W is the

surface itself to recover. It makes the result more coherent in the multi-view setting since it

implicitly exploits the redundancy of information in the different views. Moreover it is also

more robust to occlusions since the optimization is done directly in 3D instead of in the 2D

images only.

Multiview Photo-Consistency

The generative models for 3D reconstruction use the similar "matching" idea, but in the

inverse order. Instead of starting from 2D positions in images and go for 3D coordinates,

one may think of the following problem: What is the appropriate 3D position such that the

color of its projections in images is the same across images? This way of thinking exactly

corresponds to the Bayesian rationale described previously. One advantage that multi-view

stereo algorithms have over depth maps or binocular stereo approaches is that they are scene-

based. Therefore they enjoy properties in principled manners such as being able to exploit the

redundancy of information across multiple views as well as visibility and occlusion handling.

In the ideal Lambertian world, such a point is called to be photo-consistent. The photo-

consistency of a point is its ability to project with the same (consistent) color in all images it
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is visible from. Please note that like the previous case, a 3D point that is photo-consistent is

not necessary a proper solution. The photo-consistency term is frequently used in multi-view

stereo and may have different forms and criteria [42, 81, 91, 130, 137].

We consider the function g : R3 7→ R to be the photo-consistency metric. A simple

choice for g is to check if the radiance of a point x is the same on all input images Ii by using

the simple following function:

g(x) =
∑

i

1

2

(
Ii(πi(x))− C(x)

)2
νS,i(x) , (I.11)

where νS,i(x) is a visibility function that is 1 if x is visible from the camera i, and 0 otherwise.

If g could be computed on the whole space R3, then finding the shape of the object would

be a segmentation problem, where the surface to recover would be the one such that all its

points satisfy g(x) = 0. However, the visibility function makes g only easily computable for

one given surface S .

Using generative models as explained previously in Section I.2.2, the photo-consistency

measure can be adapted in order to minimize the observed intensity in the image I with the

radiance I of the current model:

g(x) =
n∑

i

1

2

(
Ii(πi(x))− IS,i,πi

(x)
)2

. (I.12)

In that case the error measure is computed in the image domain and therefore more closely

corresponds to a Bayesian vision of the problem. In contrast to Equation (I.11), the observed

radiance I may depends here on the view-point direction, and eventually on some reflectance

and illumination models. There is a major problem in that formulation: the function that

generates the image I is non linear and depends on the shape itself and in particular the

visibility of that point with respect to the shape. The same dependency appears in Equation

(I.11). We will address this visibility issue in the following Section I.3.1.2.

I.3.1.2 Contours and Visibility

Contours or boundaries often give precious information about the shape of an object. Con-

tours in images are usually due to two main reasons:

• Occluding contours: which are related to the visibility of the surface, due to self-

occlusions or the presence of additional objects.

• Contours due to changes in the object’s appearance: this can be due to an object com-

posed of different materials, having different colors, having projected shadows on it,

or having brightness discontinuities (due for example to edges having discontinuous

normal directions).

If the latest can be used as a matching cue, this is not necessarily true for occluding contours.

In fact if the baseline between two images is large enough, the apparent contours in the two
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images do not necessarily correspond to the same occluding contour. This is the main reason

why stereo matching between wide baseline stereo pairs often fail or contains errors, because

features may be detected on parts that do not perfectly match in 3D.

In 3D reconstruction techniques, one classical approach using contour cues is to use im-

age’s silhouettes. Silhouettes are typically used to apply visual hull reconstruction [47, 100],

which gives a good approximation of the object’s shape if enough images are available and

if the object does not contain too many concavities. The main advantage is that it is fast

to compute and therefore can be used for interaction for instance. Visual hull can also be

obtained by applying stereoscopic segmentation [160], assuming that the object’s radiance

and the background radiance can be discriminatingly segmented. In that case the idea is to

segment the 3D space as being inside or outside the shape. Visual hulls are usually used as

initial conditions for more sophisticated multi-view stereo techniques or are used as addi-

tional boundary constraints such as in [138].

Similarly as with the visual hull, additional constraints on apparent contours and occlud-

ing contours can be used to improve multi-view stereo algorithms [66, 153]. Many other

authors have been working on the shape from contours problem so far, which leads to a good

understanding of the visibility.

Visibility is a major issue and a fundamental problem in computer vision and multi-view

reconstruction in particular. If a 3D point is a good candidate for the reconstruction, then that

means that all the space between that point and the camera center should be free [55]. In their

paper, the authors show how to compute the gradient of energy functional depending on the

visibility, such as the one in Equation (I.12). This kind of energy is known as reprojection

error functionals. This makes their surface evolution technique matches the recovered shape

with the apparent contours in the images. We extend that work to be applied with polygonal

meshes (See Chapter II and [31]), which is one of the contributions of this thesis.

I.3.1.3 Photometric Information

For now on, we presented works that use color and texture for matching and reconstruction.

However, the radiance captured by a camera carries more information than the intensity value

itself. Let us first remember that the image radiance comes from light reflection as illustrated

in Figures I.2 and I.3. As a consequence intensity is the result of light transport, and is a

product of light, reflectance, surface orientation and position. If assumptions about some of

those parameters are known or can be estimated, then information about the others can be

inferred.

Shading

One cue that has been exploited for years is the shading of objects. The shading on one

image is a big cue on the shape of an object, and is useful to distinguish concave and convex

parts, or appreciate its smoothness or roughness. This idea has even been used for hundreds

of years in painting to create the impression of 3D from flat 2D image representations.
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From the beginning of computer vision, a large area of research has been exploiting

shading to recover 3D shapes from a single image. This is known as the shape from shading

problem [71, 132]. The key idea is that the 3D perception of shapes highly depends on the

shading, which gives information on the surface normals orientations. Under the constant

brightness assumption, corresponding to the Lambertian reflectance model, the observed ra-

diance is proportional to the dot product between the normal of the surface and the lighting

vector L. The idea is to find for each pixel its associated surface normal using a Lambertian

model:

I = ρ n · L , (I.13)

where I is observed intensity value (radiance) at the current pixel, ρ is the surface’s albedo,

L is the light vector and n the surface normal to recover.

If a set of normals can be estimated at each pixel of the image, then a 3D surface can

be inferred from those information. However because of illumination estimation, Bas-relief

ambiguity [7] and varying surface albedo, it is often difficult to estimate the normals by ap-

plying shape-from-shading. If several images are acquired while moving the images and/or

the light sources, ambiguities can be reduced and the normal estimation becomes more robust

and accurate. If the camera is fixed and the light is moving, this is known as the photometric

stereo problem, which will be detailed in Section I.3.3.3. In the multi-view settings, several

approaches have been proposed and most of them use energy minimization and surface evo-

lution techniques [79, 163]. Those algorithms even provide a unique framework to combine

both multi-view stereo and shape-from-shading, similarly as what we will see in Chapter III.

Towards Complete Photometric Modeling

Shading is usually exploited under the Lambertian assumptions. But when the scene is

not Lambertian, which is the case for most (if not all) real world scenes, cues such as Lam-

bertian shading or stereo correspondences are not valid and algorithms fail to reconstruct

accurately the surface. However, photometry can still be exploited to estimate the surface

normals even for non-Lambertian surfaces. In the multi-view setting, non-Lambertian as-

sumption results in color changes across images. Therefore, correspondences can not be

straight-forwardly found in that context.

One solution to that problem is to consider robust error measurements. Instead of mea-

suring difference on pixel intensity measures, one may consider to match the dynamic of the

texture by using for instance (normalized) cross correlation (NCC) or mutual information

(MI). This way of reasoning allows more robust matching and better multi-view stereo al-

gorithms [130, 154]. One other approach consists in considering points that do not satisfy

the constant brightness assumption as outliers. For examples, points in shadows (typically

dark pixels) or points in strong highlights (for example saturated pixels) are not used [9, 68].

Robust estimators can also be used to remove outliers or attenuate their influence. In that

case more samples are usually needed to compensate the lack of information. Some others

modify the input images to have specular free images [162], or to be photometric invariant

[106, 173]. An alternative way is to use material samples in order to match them with target

objects [69, 60].
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In the rest of this thesis, we will denote by R the parameters of the reflectance model, and

assume objects can be modeled using BRDF’s. In particular transparent and purely specular

object reconstruction techniques that are nicely reviewed in [73] are out the scope of this

thesis work.

Previous works tried to estimate both the shape and the reflectance using several strate-

gies. Some propose to use more general reflectance / radiance parametric models. See for

instance [78, 79, 164, 163]. In practice, these approaches suffer from several limitations.

First of all the reflectance model has to be known in advance and this constrains scene to be

composed by materials consistent with the chosen reflectance model. Such algorithms tend

to solve non-linear systems of thousands of variables (one reflectance / radiance model per

surface point), or need additional assumptions (single or fixed number of materials, single

specular component, etc.). Those models are difficult to be optimized and generally require

to alternatively estimate the reflectance and the shape [115, 163]. They are numerically unsta-

ble and easily tend to get stuck in local minima [79]. Moreover, the algorithms are generally

ill-posed, and then require strong regularization which over-smooth the obtained results. Fi-

nally, the reflectance and illumination models need also to be approximated. Although such

algorithms show reasonable results for perfect synthesized scenes, their application to real-

world scenes is complex and requires accurate camera and light calibration, and is still an

open research area. Mainly based on generative models, they however offer good ways to

refine surfaces at a last stage of 3D reconstruction.

I.3.1.4 Motion Information

In computer vision, motion is a strong cue that can help analyze images and videos. We

already saw that optical flow can be used to estimate the displacement flow between two

images, and a fortiori, estimate the motion between consecutive frames as well.

In the 3D space, the equivalent of optical flow is known as scene flow. Instead of estimat-

ing a dense velocity field on the images like optical flow, the goal here is to estimate a dense

displacement field in the 3D space or attached to a 3D shape (often a 2D surface embedded

in R
3). This motion information can be used to track the surface points. This can be used

either to improve the quality of stereo reconstructions [72], multi-view 3D reconstruction

[27, 131], or for interaction purposes [126]. An other approach in exploiting motion cues is

to perform tracking on a reconstruction. In that case a 3D template is deformed to match the

images in order to get a temporally consistent deformable model across a whole sequence,

see for example [17].

Recently, authors have been exploiting motion in order to build temporally coherent 3D

models. In their papers, Aganj et al. [3] for 4D visual hull models and Courchay et al. [27]

for 3D + t multi-view stereo exploit this information. In fact, we also propose to exploit

motion in order to perform dynamic photometric stereo in [76]. In the paper, we combine

optical flow with variational methods in order to estimate temporally coherent normal maps

of textured dynamic scenes. However, this is out the scope of this thesis work. Although

motion information could also be added in our framework similarly as done in [27, 131], in

this thesis we only focus on 3D reconstruction of static scenes - or eventually static recon-
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structions of dynamic scenes (independent shapes at time t).

I.3.2 Shape Prior, Regularization and Initialization

Multi-view reconstruction is an ill-posed problem, not only due to matching difficulties and

ambiguities, but also because of the visibility problem. Points of scene that are seen by no

cameras, or just by one, cannot be explained using matching. Then more information are

required. As explained earlier, with the Bayesian formulation of the problem, in addition to

the likelihood term, there is a prior information term. Then, the energy minimization problem

often has a regularization term based on the surface itself.

Initialization

In non-linear optimization problems, the optimization starts from an initial condition. In

gradient descent based methods, the algorithms are subject to local minimas. To avoid those

solutions, it is common to start from a good initialization. In multi-view stereo reconstruc-

tion, those initial conditions can be of different natures.

The simplest idea is to take the visual hull as the initial surface. The best advantage is that

the visual hull is usually easy and fast to compute. The main idea is to segment the object of

interest to obtain its silhouette. This is usually done by background subtraction, but one may

use recent segmentation algorithms. The intersection of the cones formed by the silhouettes

and their associated camera center is called the visual hull, and can be exactly computed by

silhouettes. Visual hulls are commonly used as initial surfaces in variational methods for 3D

reconstruction [81, 82, 140, 161, 163]. Moreover, visual hulls have interesting properties. If

points lying on the visual hull are photo-consistent, they are likely to belong to the surface

itself. Furthermore, the surface’s normal at those points is the one of the visual hull and can

be used to estimate the light [68], or serve as a basis for multi-view stereo carving [51].

If one has enough images in his disposal and can extract feature points and match them,

then those features can be used to extract an initial surface. Furukawa et al. [52] propose

to extend those interest points by patches, and then grow and interpolate those patches by

checking the multi-view consistency. An other approach is to directly construct a triangular

mesh representation of the 3D point cloud coming from the features. In their paper, Labatut

et al. [95, 97] use a Delaunay tetrahedrization of the space, and recover the surface thanks to

a graph-cut algorithm based on visibility constraint. They show how to incorporate their al-

gorithm in a complete multi-view stereo pipeline to reconstruct large-scale 3D models [154].

Shape Prior

An other approach is to use a template model and deform it to match the data. This is

generally used to reconstruct dynamic human bodies, since a strong prior can be used on an

animated human model. While allowing more robust results in concerned applications where

the template model matches the data, they focus on specific applications and can not be used

for general 3D modeling of generic scenes. Similarly, in variational image segmentation,
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a lot of effort has been recently done in adding shape prior in minimizations. While this

significantly improves the robustness of the segmentation (for example with respect to noise

or occlusions), those methods have two main drawbacks: first they are limited by the prior

template, and second their extension to 3D is not straightforward. For example, one could

minimize the following energy functional:

E(S, T )prior = D(S, T (Q)) , (I.14)

where Q is the reference (prior) model, and T is a transformation that align the reference

model to the target. D(A,B) is a distance function between two surfaces A and B. D can

for instance be the Hausdorff distance between the two surfaces. The main difficulty is the

estimation of T .

While prior models are used now in several domains to recover the camera pose esti-

mation, or register images to CAD models, 3D shape prior for multi-view reconstruction

algorithms is still an open research area.

Regularization

In the previous section, we defined our energy as a sum of a data term and a regularization

term. The surface regularization term is often necessary to better constrain the optimization

and be more robust to noise in the energy functional. In general, variational methods use

a smoothness term as the regularization. A classical regularizer used in many variational

approaches is to minimize the total surface’s area using the following energy functional:

Ereg(S) =
∫

S

ds. (I.15)

Its associated gradient flow is the so called Mean Curvature Flow. This energy functional

tends to help the optimization to get to the closest minimal surface area solution. This regu-

larization is used in many multi-view stereo problems.

Other smoothness terms can also be used. Instead of minimizing the surface area, one

may add a smoothness term to penalize variations on the surface normals. Smoothing the

normals can be applied by minimizing the following energy functional:

Ereg(S) =
∫

S

|n(x)− h(x)|2 ds, (I.16)

where n(x) is the normal at the surface point x, and h(x) is a unit vector. Typically h(x)

is the mean normal on a local neighborhood around the point x. In that case the smoothing

algorithm directly depends on how h is defined: for example, this can be a simple mean

Gaussian normal vector or or more complicated one used for example to perform anisotropic

smoothing.

An other very popular regularizer is to use the Total Variation of a characteristic function

representing the surface. Let Hε be a regularized Heaviside function that models a char-

acteristic function [21], then the total variation of this function can be expressed using the
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following energy function: ∫

Ω

|∇Hε(x)| dx . (I.17)

Total variational regularizers have been successfully applied in order to solve convex seg-

mentation problems [14, 22], in the binary segmentation case as well as in multi-label seg-

mentation problems [19, 102, 166]. Recently, they also have successfully been applied to

multi-view shape reconstruction problems using convex relaxation methods, see [91]; as

well as in real-time structure from motion using dense tracking and mapping DTAM [120].

The approaches presented above work to regularize the shape. However, this can also

be applied in regularizing the reflectance on the shape in order to penalize variations in the

surface materials. Several works use this strategy by considering that materials are locally

smooth on the object of interest.

I.3.3 Setup-based Constraints

If cameras are good to provide information and appearances of objects, this is not the only

device one has to his disposal. For many years people have used for instance Laser scans,

which, despite limitations such as noise and material restrictions, provide good 3D models

after geometry processing steps or even after being combined with vision algorithms.

Most of those devices that do not use cameras cannot recover the appearance and there-

fore cannot exploit photometry. However, cameras used in particular setups, or along with

additional information such as lighting, can lead to powerful 3D scanning systems. Exploit-

ing lighting conditions, for instance, allows in many vision applications to remove ambigui-

ties and simplify the problems to solve. In the following, we describe some of those setups

with their advantages and their use in multi-view settings.

I.3.3.1 Active Illumination Systems

For decades, active vision systems have been widely used and developed. They provide effi-

cient and easy way to reconstruct 3D scenes and usually rely on active illumination systems,

but are difficult to use in a multi-view setting.

Methods based on structured light are probably the most commonly used, and recent

methods now use video projectors. The main reason is that the market now provides cheaper

video-projector at reasonable prices, and recent methods have been proposed to easily cali-

brate such systems [35]. Then the problem becomes the one of matching the projected pattern

with the image of the camera observing the object.

In order to solve the matching problem, encoded patterns are usually used. These meth-

ods can be divided into two categories, temporally coded patterns and spatially coded pat-

terns. The first category consists in changing the pattern across time. Because matching

can be easily performed, it provides an easy and fast method for 3D reconstruction [99].

However, because several patterns are needed to perform the matching, it makes this method

impossible to use for moving scenes and difficult to reconstruct the entire shape of objects.

On the other hand, spatially coded patterns approaches use a single static pattern, coded to



22 Chapter I. Multi-view Shape Reconstruction: Background and Introduction

reduce matching ambiguities. Such systems allow fast reconstruction suitable for real time

3D reconstruction. However, the main drawback is that it cannot straightforwardly be ap-

plied to entire shape acquisition in the multi-view setting, because of interferences between

the different patterns projected on the object, see [50].

As explained previously in Section I.3.1.2, visual hull is an easy way to approximate and

compute a 3D shape. However it relies on image segmentation and background subtraction

techniques. An easy and simple way to solve this problem is to use a moving light source,

and a camera to acquire the cast shadow projected onto a flat surface (for example a sheet

of paper). Then the segmentation of the projected silhouette is made easy and can be used

directly to construct the visual hull. Such techniques are referred as shadow-grams [158],

and are fast and accurate because the silhouette extraction is made easy by the shadows.

Recent advances in technology let also appear devices that directly compute a depth map.

This is for example the case of Time-of-Flight (ToF) cameras, that emit infra-red light and

estimate the depth from the time the signal is reflected on the surface and captured back

on the camera. An other example is devices such as Kinect, where the technology relies

on structured light as described previously but in the infra-red domain. Those systems of-

fer practical and fast depth map estimation. However, there extensions to multiple devices

settings are not straight forward because of possible interference between the sources or the

lighting environment.

I.3.3.2 Computational Cameras

Recently, there has been a lot of interest in computational photography. This domain consists

in adapting the acquisition device to the goal it is designed for [114, 117]. Even though most

of recent research in computational photography has been done in enhancing images and

improving their quality, some computational cameras techniques are related to 3D scene

reconstruction such as depth from defocus techniques.

Recently, powerful cameras have been designed to exploit focus changes in images in or-

der to perform shape from defocus. They usually change the camera aperture in such a way

that the image structure is preserved. By finding an appropriate deconvolution method, one

can achieve good results of 3D reconstruction from a single shot, or a set of shots with differ-

ent apertures [103, 169]. Shape from diffusion consider a similar idea. Instead of changing

the aperture and put a binary (or gray scaled) pattern filter, the authors [168] propose to add a

diffuser. The diffusion angle is spatially varying on the aperture, and depth can be estimated

using deconvolution techniques.

Although computational cameras offer promising perspectives, in the rest of this thesis

we focus on standard cameras. Those are easier to get, easy to use and do not need post-

processing steps that could alter the image formation process. However, because we focus

our attention on the modeling of the problem, these algorithms could be successfully adapted

to those kind of camera.
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I.3.3.3 Photometric Stereopsis

In multi-view stereo, it is sometimes difficult to find correspondences, like for instance if the

object is textureless. To avoid this problem, one can use photometric stereo. Photometric

stereo is a reconstruction technique that uses a single camera and a moving light source. The

goal is to take different images of an object under different illumination conditions with the

same view-point. Since the camera is fixed, no matching is required and a single pixel can

be seen under different lighting conditions. Then photometric information can be extracted,

which in general, leads to the estimation of the surface normal (Figure I.4 illustrates the pho-

tometric stereo approach). By repeating this process for all pixels, it is possible to estimate a

normal map and then infer the 3D shape through normal integration techniques. If the scene

is Lambertian, photometric stereo becomes a very compelling method to estimate both the

shape and the albedo. Even if Lambertian assumptions are not fully satisfied, this can leads

to good normal estimations and reconstruction results, see [67, 68, 76].

Figure I.4: Example of Dynamic Photometric Stereo [76]. Left: Two images from a fixed

camera taken under three color light sources; Right: Estimated normal maps.

When the object is not Lambertian, several approaches have been proposed. One neat

idea is to take sample images of a reference object with the same material as the target object

to reconstruct the scene under the same illumination conditions. The surface’s normals are

estimated by matching the intensities with the one of the reference images, see [69]. This can

even be extended to be able to deal with multiple materials or even when reference objects are

unknown but the number of fundamental materials is small [60]. Although it can deal with

many materials and anisotropic BRDF, material samples are needed. This can be a restrictive

assumption in concerned applications. Another approach is to look for highlights (points of

maximum intensity), where the surface’s normal should be the unit bisector vector between

the light source direction and the viewing direction. In that case surface’s normals can be

easily computed [25], but since only saturated pixels are accounted for, a large number of

images is required to estimate the normal at each image pixel. Other methods have also been

proposed, the recent work of [70] for instance shows impressive results.

On the other hand, the main problem of photometric stereo is that it usually requires a

precise calibration of light sources. Some work have been extended in order to work with

complex lighting [40] or even unknown one [6], but most works have been designed to work

using a single calibrated light source. This makes this method not very flexible to use for

outdoor scenes or even dynamic scenes. However dynamic photometric stereo can still be

performed by exploiting temporal smoothness, and by using colored light sources [67]. Even
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though this works for gray textureless surfaces, we have extended it by combining it with

optical flow [15] in order to perform colored dynamic photometric stereo [76].

Multi-view photometric stereo can be performed in order to recover full 3D models by

exploiting multi-view settings. Several techniques have been applied, for example by opti-

mizing a mesh starting from the visual hull using multiple views/light configuration [68] or

by estimating normal maps from a light stage [40] and finally integrate them in 3D to obtain

full 3D reconstructions of dynamic scenes [152]. Those methods [68, 152] have been proved

to provide high quality 3D reconstructions. In this thesis, we will show that integrating sev-

eral normal maps in a multi-view setting can be used using a generative based approach to

recover full, dense and high quality 3D models, see Chapter III.

I.3.3.4 Helmholtz Stereopsis

As we have seen previously, most of multiview reconstruction algorithms rely on image cor-

respondences (as done for instance in multiview stereo [57]) or shading (using the normal

information in multiview shape from shading [80, 79] or multiview photometric stereo [68]).

When texture information (stereo case) is good enough or Lambertian assumption is suf-

ficiently verified, those methods have been proved to give good results with surfaces that

are nearly. They then obtain either accurate correspondences or accurate normal estimates.

When objects are not Lambertian, several methods can be performed as presented in previ-

ous sections. However, those approaches are not generic enough to be able to reconstruct

surfaces of any spatially varying BRDF, even under constrained scenarios.

Helmholtz Reciprocity

The bidirectional reflectance distribution function (β) is the same if the light input direc-

tion v̂l and the camera direction v̂c are switched: β(v̂l, v̂c) = β(v̂c, v̂l). This particularly

interesting property is known as Helmholtz Reciprocity [65, 171]. In practice, the idea behind

Helmholtz reciprocity is to exploit a pair of images under a single light source, where camera

centers and light positions are exchanged at each shot. It uses the fact that in this particular

setup, for a single reciprocal pair, the relationship between two radiances of a single surface

point is independent on the reflectance β. Then, a constraint that links the two observed

radiances can be formulated, which leads to the following equation:

Ic
vc

|vc|3
· n = Il

vl

|vl|3
· n , (I.18)

where Ic (respectively Il) is the intensity observed at the camera of view direction vc (respec-

tively vl) and light direction vl (respectively vc); n is the unit surface normal. During the last

decades, previous authors have proposed to use Helmholtz reciprocity in order to perform 3D

reconstruction [61, 149, 170, 171, 172].

Figure I.5 illustrates a reciprocal image pair that shares interesting image properties. That

can be used to estimate the normals of the surface using Equation (I.18).
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Figure I.5: Helmholtz reciprocal image pair. Those two images are taken such that the

camera and light positions are switched. Those two images share important properties: for

example specular highlights appear at the same locations in both images, or cast shadows

boundaries in one image correspond to occluding contours in the second image. Helmholtz

reciprocity allows to constrain surface normals in reconstruction algorithms.

Contrary to works described in previous paragraphs and in particular in Section I.3.3.3

about photometric stereo, methods based on Helmholtz reciprocity [61, 149, 170, 171, 172]

allow to accurately estimate the normals at one point, independently on the reflectance model.

This can be used to obtain a 3D surface. In this context, modeling the reflectance, having

material samples or being photometric invariant is not required. Nevertheless, contrary to

most of multiview stereovision algorithms, the state of the art in Helmholtz reconstruction is

limited to depth map reconstructions. In this thesis, we will see in Chapter V that we push

the envelope by proposing an entire shape 3D multi-view Helmholtz stereovision method.

I.3.4 Conclusion

Many cues are available to infer the 3D shape from images. Contrary to works that are

usually limited to particular scenarios, the goal of this thesis is to propose a framework that

can equally be applied to a number of classical scenarios such as for example multi-view

stereovision, photometric stereo or multi-view shape from shading. Similarly as done in

Yoon et al. [163], we combine different cues into a single framework. Then we naturally

account for classical cues in 3D shape reconstruction such as stereo matching, shading as

well as apparent contours in images, such as in Gargallo [55]. In addition, we apply it to

different scenarios where the setup could eventually help constraining the problem. This

way, the same framework can also be used to apply multi-view photometric stereo or multi-

view Helmholtz stereovision.
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I.4 Reconstruction Tools for Deformable Surfaces

In this section, we explore surface evolution solutions for shape reconstruction. Deformable

models are often used in computer vision to address those kinds of problems. In Section

I.2, we have seen that the multi-view shape reconstruction problem could be seen as an op-

timization problem. This can be performed by minimizing an appropriate energy functional

defined using the different cues and priors presented in Section I.3. Until now, we focused

more on the modeling part as well as the definition of the objective function. In this section

we present tools and in particular deformable models that are generally used to solve those

non linear optimization problems.

In the following of this thesis we will focus on deformable meshes. Then in this section

we first briefly review some of the techniques that do not fall in this category and that are

used in multi-view reconstruction. In particular, we will focus on deformable models that

use surface representations. Then we will focus on mesh-based surfaces and motivate that

choice for the rest of this thesis.

I.4.1 Rapid Overview of Previous Work

Deformable models are usually referred as Snakes [85], Active Contours [18] or deformable

surfaces [111], and often describe a surface of co-dimension 1 (a 2D surface in R
3, a curve

in R
2 and so on) that is deformed from an induced velocity field from an initial surface. That

velocity field depends on the application, and in our case follows the gradient descent scheme

presented in Section I.2. Then it can be arbitrarily applied to multi-view stereo, multi-view

photometric stereo or any other computer vision tasks depending on the cues one wants to

use (See Section I.3) to compute the gradient or velocity field.

Minimizing an energy functional directly depends on the surface representation one has

at his disposal, and has been widely studied over the past decades. We will overview some

of those optimization methods. Graphical models such as Markov random fields are usually

represented using occupancy grids. The 3D space is discretized and represented by variables

and edges connecting them. The energy is discretized in term of those variables with prob-

ability density functions. The shape can be obtained for example by Graph Cuts algorithms

that will extract the surface by finding the minimal cut of the variable edges. Under certain

conditions, the global optimal solution can be found [93]. Graph cuts are commonly used in

multi-view stereo [138, 153].

Implicit representations are usually referred as the Level Set approach [123]. The surface

is represented by the 0-level of an implicit function defined on the 3D space that is negative

inside the shape and positive outside. Approaches using this representation have been ex-

tensively used in multi-view stereo [42, 56, 131] as well as in photometric-based multi-view

reconstruction [79, 163].

Convex relaxation methods have been recently applied to multi-view reconstruction [28,

91]. The idea is similar to the level set approach in the sense that an implicit function is

optimized on the 3D space. In that case, the problem is relaxed on a function defined on a
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convex set (between 0 and 1) and regularized using Total Variation. Since their function is

convex, a global optima can be found.

All of those methods are implemented on 3D voxel grids and therefore contain limitations

due to space discretization. The chosen resolution then directly affects the model precision,

and fine resolution requires high memory usage. In order to reconstruct high resolution

models and use limited memory, several approaches have been proposed for instance using

narrow-bands to store only useful information or octrees that allow non-uniform (but still

fixed) discretization of the 3D space. Finally, Eulerian methods cannot be used to track

surface properties such as textures or reflectance, and therefore are not suitable for dynamic

reconstruction and surface tracking.

I.4.2 Deformable Meshes

Recently, deformable models based on explicit representations have become more popular.

In the variational framework, this type of discrete representations leads to the Lagrangian

setting, which are generally contrasted with Eulerian approaches which are mainly based

on implicit representations such as the level set representation. In computer graphics for

instance, surface representations based on polyhedral and especially triangular meshes are the

most commonly used. Moreover, the design of graphics hardware makes triangular meshes

the most natural way to represent surfaces in a large number of applications [11].

During the last decades, Eulerian methods have become very popular mainly because

they allow us to naturally deal with topological changes. In particular, this last setup has

been extensively used for 3D reconstruction problems. Nevertheless, recent advances in

mesh processing allow Lagrangian methods to enjoy the same facilities [98, 129, 167]. Even,

the same idea can be done in higher dimensions in order to build 4D models [3] or 3D + t

temporally coherent 3D models [27]. Moreover, the level set representation used in the works

mentioned above has usually high computation cost and very poor memory efficiency when

reconstructing high resolution 3D models. Polygonal meshes have a better precision since

they are not limited to a fixed spatial resolution, and then can be used to reconstruct thin

structures. Optimization highly depends on the surface representations one chooses, and

polygonal meshes seem to be an appropriate choice. Moreover, recent advances in computer

graphics allow to enjoy interesting properties and computations on polygon meshes, we refer

to [11] and the references therein for further information.

Lagrangian methods may be classified into two different categories:

• The first strategy consists in:

1. formulating the problem with continuous surfaces and computing the gradient in

the continuous framework,

2. then discretizing the continuous gradient in order to apply it to the discrete surface

representation.
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• The second strategy consists in:

1. formulating directly the problem with the discrete surface representation, by dis-

cretizing the energy accordingly,

2. then computing the exact gradient of the formulated discretized energy.

In fact in the first strategy we do not know if finally in practice the discrete representation

minimizes something; in the best case, we do not know which exact energy the computed so-

lution really minimizes since it does not necessarily corresponds to the shape representation.

Also, surprisingly, a number of works follow the first strategy, see for example [9, 36, 167].

In particular, in this case the computed gradient assumes normal velocities whereas the sec-

ond approach may have tangential components which leads to more coherent flow.

In this thesis, for those reasons we follow the second approach that has been previously

referred as a discretize then optimize strategy by [154] which seems more appropriate because

it is consistent with the representation. Then our approach is similar as other previous authors

works: for example, Slabaugh and Unal [139] who deal with surface segmentation, Eckstein

et al. [39] who are interested in shape matching in order to register scanned meshes, or Vu

et al. [154] who propose a complete multi-view stereo-vision algorithm whose final surface

refinement step is performed with a deformable mesh that is similar surface evolution to

ours. We also use the similar strategy presented by Debreuve et al. [30] who deal with

discrete parametric active contours for segmentation or Dziuk and Elliott [38] using finite

element modeling on evolving surfaces. In this thesis, we will represent the surface S by

a triangular mesh X, where topology changes can be handled by the methods described in

[129, 167]. Following those works, we will show how to compute the gradient flows for the

kind of energy functionals presented in Section I.2. The details of this computation will be

presented in Chapter II, whereas its applications to multi-view shape reconstruction will be

shown in Chapter III.

I.5 Contributions and Organization of this Thesis

In this thesis, we provide practical solutions for the shape from multi-view cameras problem.

We exploit different cues as diverse as color and texture information, segmentation prior,

constraint multi-view setups or photometric cues. In all the following contributions, we use

generative approaches based on Bayesian rationale in order to recover the 3D model that best

corresponds to the observed images.

• In Chapter II we propose to model the 3D world as represented by a 3D surface. Such

3D representation allows to directly link the 3D shape to the input images in a coherent

way and avoid redundancy in the representation. We propose to see the 3D world as

piecewise planar such as represented by triangle meshes. We show how to optimize

such shape representation in order to recover 3D models via surface evolution tech-

niques. We use gradient descent techniques and we show how to compute the gradient

of a generic likelihood energy often used in computer vision and related fields. By
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adding different cues such as stereo-vision correspondence or photometric information

to this optimization, one may adapt the energy functional depending on the application.

We show different cases for solving the multi-view shape from images problem.

We focus our attention on two particular points toward optimizing deformable meshes.

First we rigorously compute the gradient of generic energy functionals depending on

visibility. This ensures that the occluding boundaries of the surface match with the

occluding contours in the observed images. Second, we also account for functionals

depending on the normals. This is needed to nicely account for photometric informa-

tion (for example the shading) and then allows to produce high quality 3D models.

• After showing how to optimize such deformable meshes in Chapter II, Chapter III

demonstrates how this can be applied for 3D reconstruction from images. This is done

by adapting an appropriate energy functional depending on the concerned application.

In particular the approach is successfully applied for multi-view stereo reconstruction

as well as multi-view reconstructions based on photometry, where we present recon-

struction results on several data. The coherent gradient flow of Chapter II is suitable

for recovering accurate and detailed 3D models.

• In Chapter IV, we propose to segment a shape into several meaningful parts. This

provides semantic information about the scene, from a geometric aspect as well as a

photometric one. We present a continuous optimization scheme based on recent image

segmentation techniques that we adapt for the case of segmenting data on surfaces.

We propose a multi-region segmentation algorithm based on convex relaxation. Such

algorithm can be useful to decompose the mesh into regions of uniform property such

as surface radiance, surface reflectance or any geometric information. For example in

the case of reflectance, only one needs to be estimated for one particular region. Since

those points all share the same reflectance, this last one is easier to estimate.

• In Chapter V, we address the problem of recovering the shape of object of any arbitrary

BRDF model. Instead of exploiting photometric cues directly, we change the acqui-

sition setup using Helmholtz reciprocity. This particular setup allows to constrain the

problem in such a way that it becomes independent on the reflectance model. This is

done by taking reciprocal views, which are a pair of images that consists in an image

taken under a single source light illumination, and its reciprocal view taken by switch-

ing the camera and light positions). Then we can define a likelihood energy functional

to minimize and use the work presented in Chapter II to recover the 3D shape. It is

then possible to reconstruct full and high accurate 3D models of objects of arbitrary

reflectance model.

To summarize, we provide tools for solving variational problems of computer vision us-

ing deformable triangle meshes. By defining appropriate energy functionals based on visual

cues from multiple images, we show how to automatically obtain dense and full 3D models.

We give a discussion about the thesis and future work in Section VI, which also concludes
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this thesis. The list of related article published based on this thesis work is available in

Section B.



CHAPTER II

Gradient Flows for Optimizing

Triangular Meshes: Applications to 3D

Reconstruction Problems dealing with

Visibility

This chapter tackles the problem of using variational methods for evolving 3D deformable

surfaces. As shown in the introduction, deformable surfaces are of wide interest to solve 3D

reconstruction problems. We give an overview of gradient descent flows when the shape is

represented by a triangular mesh-based surface, and we detail the gradients of two generic

energy functionals which embody a number of energies used in mesh processing, computer

vision and related fields. In particular, we show how to rigorously account for visibility in the

surface optimization process. The gradient correctly takes into account the visibility changes

that occur when a surface moves; this forces the contours generated by the reconstructed

surface to match with the apparent contours in the input images. In the next chapter we will

present different applications regarding 3D reconstruction from multiple views for which the

visibility is fundamental.
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II.1 Introduction

As we have seen in the introduction of this thesis, variational methods are commonly used in

computer vision and computer graphics to compute, improve and process surface interfaces.

Such approaches consist in defining an energy whose minimum is reached by the surface of

the object of interest. In particular, this framework has been widely used in 3D reconstruction

problems, see for example [23, 42, 56, 81, 82, 89, 91, 96, 131, 143, 142, 157, 160, 163]. In

mesh processing, geometric flows have been extensively used in different applications such

as texture synthesis [8], mesh denoising [33, 108] and shape matching [39].

This chapter focuses on the optimization of 2D surfaces of R3 represented by triangle

meshes, via gradient descent methods. We rigorously establish and detail the gradient flows

of some generic energies which encompass a large number of energies used in computer

vision and for which the normal to the surface and the visibility appear in their formulation.

We demonstrate the interest of this contribution by illustrating it via several applications

in the next chapter, in particular applications in 3D reconstruction from multiple calibrated

cameras. But before we will first focus on the theoretical part and gradient computation.

II.1.1 Considered Energies: from Weighted Area Functionals to Func-

tionals that account for Visibility

In this paper, we first consider the following generic energy:

E(S) =
∫

S

g(x,n(x)) ds , (II.1)

where S is a 2D surface embedded into R
3. Here g : R3 × S

2 → R is a scalar function

defined on the surface that eventually depends on the normal n to the surface S; S being

the unit sphere of R3. ds is the element of area of the surface. This generic energy is very

classical and is called a weighted area functional. It has already been studied in the literature

in the continuous framework, see in particular [58, 59, 141]. A number of energies proposed

in the computer vision, image processing and mesh processing literature are particular cases

of this energy.

In this paper we are also considering more complex families of energies. Generally in

inverse problems, all rests on a prior knowledge (models, regularization etc) and the data

fidelity. A common solution to inverse problems is provided by minimizing a criteria which

compares the real input data to the synthetic data generated by the models. Also, to be

complete, the comparisons must be done on the data space. In particular, as explained in
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[56, 140], in 3D reconstruction problems from image data, a natural solution would be a

surface such that the images generated from the model are more similar to the observed

images (i.e. the data). This naturally leads to formulate the problem as the minimization of

an error measure between the observed and predicted values of pixels, carried out over all

pixels in all input images. It corresponds to a Bayesian vision of the problem. This thus

brings us to minimize an energy of the form [56, 140]:

E(S) =
∫

I

g
(
π−1
S (p), n(π−1

S (p))
)
dp , (II.2)

where I is the set on which data is defined (the set of all pixels in the image, in the case of

the 3D reconstruction problems from images), and π−1
S (p) is the point of the surface corre-

sponding to the pixel p (the surface point which is viewed in pixel p, in the 3D reconstruc-

tion problems from images). In the case where π−1
S (p) does not reproject onto the surface

S , π−1
S (p) is a point on the background B. dp is the area measure on the image. g gives the

error measure for the data point p. Such functionals are generally called reprojection errors.

One of the major properties in image formation, also one of the major problems in computer

vision, is that only visible (i.e. unoccluded) elements are present in the image. Functionals

(II.2) can then be rewritten as an integral over the surface (instead of the image) by counting

only the visible points [130, 140, 160]. This gives, by a simple change of variables:

E(S) =
∫

S∪B

g(x,n(x)) · n(x) νS(x) ds . (II.3)

This involves adapting the measure on the surface [140] and the expression of g which di-

rectly depends on the projection model being used. In most cases, e.g. for orthographic,

perspective or linear pushbroom cameras, we have:

g(x,n) = −g(x,n)k(x)d(x) ,

where k(x) is a specific scalar function of x and d(x) is the projection vector of x according

to the camera. For example, for a perfect pinhole camera model, the adequate g is given

by g(x,n) = −g(x,n) 1
x3
z
x, see [130, 140, 160]. For a linear pushbroom camera, we have

g(x,n) = −g(x,n) 1
v·d(x) dz(x)

d(x), where d(x) is the vector joining x and the optical center

of the sensor at corresponding time; v is a vector depending on the speed of the satellite, see

[64]. In Equation (II.3), B is the surface behind S that corresponds to the background (i.e.

the points on the data set which do not correspond to any point of the surface model of the

object of interest). νS(x) is the visibility function νS : R3 7→ [0, 1] such that:

νS(x) =

{

1 if x is visible from the camera,

0 otherwise.
(II.4)

Finally, by using the separation technique proposed by [160], we can rewrite energy (II.3)
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Figure II.1: Banana Shape seen from a vantage point (See [55]). The energy defined over

the image explains the visibility interface ∂νS (in red) of the surface S .

as an integral over only the visible surface:

E(S) =
∫

S

g(x,n(x)) · n(x) νS(x) ds . (II.5)

To obtain g from g, we refer the reader to Section III.1.2 and especially Equation (III.4), as

well as [160], which comprehensively details this step. Figure II.1 illustrates the case of an

energy defined over a visible volume.

Let us emphasize that handling properly the visibility term is a non-trivial undertaking. In

particular, this is one of the major difficulties in the stereo-vision problem. Previous works

cope with this difficulty more or less elegantly. Most often the authors approximate the

visibility in pre-processing steps which can be completely prior to the whole algorithm or

else inside the iterations of the minimization process [9, 42, 68, 81, 130, 140, 165].

Only recently, some authors [56, 160] manage to rigorously and fully account for visi-

bility in the optimization process. In their recent work, Yezzi and Soatto [160] (for convex

surfaces) and Gargallo et al. [56] (in the general case) provide the exact gradient of the

reprojection error. This computation is done in the mathematical framework of continuous

(smooth) surfaces as used in [141]. This work has shown that a proper handling of the vis-

ibility automatically forces the apparent contours generated by the reconstructed surface to

perfectly match with the apparent contours in the observed data. This makes the use of addi-

tional energy terms like ballooning [153], visual hull [66, 138] or contours unnecessary and

significantly reduces the minimal surface bias present in many other problem formulations.

In this chapter, we rigorously minimize energies (II.1) and (II.5). But contrary to the

works [56, 160] which deal with continuous surfaces, here we consider triangle mesh-based

surfaces.

II.1.2 Gradient Descent Optimization

Energy (II.5) is rather difficult to optimize. In particular, the complexity is due to the de-

pendency on the normal and the visibility term. There exist several tools to minimize energy
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functionals. Recent methods, such as graph-cuts for example, allow us to find global mini-

mum. At the present time these global optimization techniques are limited to rather simple

energies [93] and, based on the current state-of-the-art, it seems extremely difficult to apply

them for minimizing energies such as (II.5). Recent advances also allow such minimiza-

tion via total variation and convex relaxation methods [28, 89, 91], however it is difficult to

apply those methods for functionals depending on the surface normal. The recent work of

[92] allows to take the normal into account but is not directly applicable to general energy

functionals like (II.1) and (II.5). Taking the normal into account in the minimization allows

to produce high quality 3D models [118]. In this chapter we compute the derivatives of

the generic functionals (II.1) and (II.5) which allow us to minimize it via gradient descents

[24, 42, 58, 141], see Section II.2.

II.1.3 Triangle Mesh-based Representation

Surface representation based on polyhedral and especially triangular meshes are the most

commonly used in graphics. Moreover, the design of graphics hardware makes triangu-

lar meshes the most natural way to represent surfaces in a number of applications. In the

variational framework, this type of discrete representations leads to the Lagrangian setting.

Lagrangian methods are generally contrasted with Eulerian approaches which are mainly

based on the level set representation [123]. During the last decades, Eulerian methods

have become very popular mainly because they allow us to naturally deal with topologi-

cal changes. In particular, this last setup has been extensively used for 3D reconstruction

problems [23, 42, 56, 81, 82, 90, 96, 131, 143, 142, 157, 163]. Nevertheless, recent advances

in mesh processing allow Lagrangian methods to enjoy the same facilities [129, 167]. In

other respects, in the Eulerian methods, the gradient is computed in the continuous frame-

work. Technically, computing the gradient in the continuous framework is more complicated

than in a discrete framework, since the first one requires functional analysis when the second

one only needs differential calculus. Furthermore, in practice in Eulerian approaches, one

finally needs to discretize the continuous gradient flow since the level set function is also

discretized on a grid. Also, this discretization (which is usually obtained using discrete dif-

ferential operators [108] or finite element modeling [38]) is sometimes difficult to obtain, as

we can see for example in Sections II.3 and II.4. By directly considering discrete surfaces,

this last step is not necessary in our case.

Now, let us note that Lagrangian methods may be classified into two different approaches:

The first strategy consists in 1) formulating the problem with continuous surfaces and com-

puting the gradient in the continuous framework, then 2) discretizing the continuous gradient

in order to apply it to the discrete surface. The second strategy consists in 1) formulating

directly the problem with the discrete surface representation, then 2) computing the exact

gradient of the formulated energy. Clearly, the second strategy is better than the first one:

in fact in the first strategy we do not know if finally in practice the discrete representation

minimizes something; in the best case, we do not know which exact energy the computed so-

lution really minimizes since it does not necessarily corresponds to the representation. Also,

surprisingly, a number of works follow the first strategy, see for example [9, 36, 167]. In
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particular, the gradient is computed using normal velocities whereas the second approach

may have tangential components which leads to more coherent flow. In this chapter, we fol-

low the second strategy as other authors: for example, Slabaugh and Unal [139] who deal

with surface segmentation, Eckstein et al. [39] who are interested in shape matching, or Vu

et al. [154] who proposes a complete multi-view stereo-vision algorithm. We also use the

similar strategy presented by Debreuve et al. [30] who deal with discrete parametric active

contours for segmentation or Dziuk and Elliott [38] using finite element modeling on evolv-

ing surfaces. More exactly, we detail the exact gradient flow of energy (II.1) in which the

surface S is explicitly a discrete surface based on triangular meshes, and also extend it to

visibility-driven energies (II.5).

II.1.4 Contributions

In this chapter, we first give an overview of gradient descent flows with deforming surfaces,

when represented by triangular surface meshes. Here, the gradient is the one of the energy

defined with the discrete surface; we do not need to approximate and discretize it when we

finally evolve the surface. Even though the visibility plays a key role in computer vision,

until now it has been managed more or less elegantly. It is clearly a key difficulty in the field,

which has been recently solved in the theory of continuous surfaces [55, 56]. Here, we show

how to rigorously deal with the visibility in the framework of discrete surface representations

and we give the gradient flow of generic energies which encompasses a large class of energies

used in computer vision (see Section II.4).

We then illustrate the presented results by giving the gradient of commonly used function-

als in computer vision and graphics, and we emphasize the 3D reconstruction applications

for which the visibility is fundamental; we thus show in Chapter III how one can apply mesh

evolution techniques to 3D reconstruction applications from multiple views. In particular in

Section III.1 we focus on the multi-view stereo-vision problem and we propose a successful

algorithm which, since it fully accounts for visibility, automatically aligns contour generators

with image contours.

This chapter generalizes our previous conference paper [32] in which the considered

energy does not depend on the normal. This allows us to present here a larger spectrum

of applications including multi-view shape from shading and multi-view photometric stereo

(see Section III.3).

II.2 Gradient Flows

In this section, we are interested in minimizing energy functionals defined on surfaces with

respect to the surface representation. Whatever surface representation one chooses, the en-

ergy minimization should be consistent with it in order to be sure the energy minimized is

the right one. It has been common to minimize such energy by performing gradient descent.

Computing an adequate gradient corresponding to the representation of the surface is not

trivial, and the following gives a way for computing generalized gradient flows for an energy
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E(S), where S is a 2-dimensional surface in R
3, g is a differentiable scalar function and n is

the Gauss map for S .

In the following, we explain how to obtain such gradients firstly in the theory of contin-

uous smooth surfaces, and finally using triangular meshes.

II.2.1 Gradient Descent in the Continuous Case

Let M denote the set of all admissible 2D-manifolds embedded in R
3, and S ∈ M . Let v

be a vector in the tangent space of M , denoted by TFM , associated with an inner product

〈·, ·〉F . Let E(S) : M → R be a surface functional as defined previously (II.1) such that its

Gâteaux Derivative in the direction v can be expressed as : DE(S,v) ≡ d

dτ
E(S + τv)

∣
∣
∣
τ=0

.

Then the gradient of E at S is the unique vector ∇ME(S) ∈ TFM such that DE(S,v) =
〈∇ME(S),v〉F for all v ∈ TFM . See for instance Solem and Overgaard [141] for a more

detailed explanation.

Then, the gradient descent flow of an energy E(S) as the form:







S(0) = S0 ,

∂S(t)
∂t

= −∇ME(S(t)) .
(II.6)

II.2.2 Gradient Descent for Polyhedral Meshes

In practice, we often deal with discrete representations of the surface. Also whichever this

representation is, computing exactly the gradient of the energy including directly the discrete

representation of the surface is much more suitable than computing the gradient in an ideal

continuous framework (with continuous surfaces) and then discretizing the continuous gradi-

ent accordingly to the discrete representation. In fact, the second strategy has two significant

drawbacks. First, the continuous gradient lets often appear terms that are very difficult to dis-

cretize and which sometimes do even not really make sense in the case of discrete surfaces.

For example the notion of surface curvature on mesh representation has a lot of different ap-

proximations. Second, since the discrete object we are practically handling is not deformed

following the exact gradient but by an approximation of it, finally, we do not exactly know

what we are minimizing. In this chapter, we then compute the exact gradient of the energy

including directly the discrete representation of the surface in the same way as [38, 39].

Let the mesh X = {x1 . . .xn} be the piecewise planar polyhedral representation of S .

Vertices of X are denoted by xk and S is deformed by moving vertices xk. We denote

by φk : S → R the piecewise linear, interpolating basis function such that φk(xk) = 1

and φk(xi) = 0 if i 6= k. Then any point x on the surface S can be defined such that

∀x ∈ S, x =
∑

k xkφk(x), where we also have ∀x ∈ S, ∑k φk(x) = 1.

Let the set {Vk} be a parametrized vector field defined on all the vertices xk of the

mesh X representing the surface deformation. {Vk} can be naturally extended on S by a

piecewise linear vector field on S . For convenience, we denote this extension V : V(x) =
∑

k Vkφk(x).
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Then, evolving X, by moving its vertices xk following Vk is equivalent to deform the

surface S by the dense deformation following V.

Figure II.2: Local evolution of a surface point xk under induced velocity Vk used to compute

the gradient.

The gradient of the energy is computed using shape gradient [30]. We consider the evo-

lution of this energy according to the deformation V. In other words, we assume that the

vertices xk[t] of X[t] are moving according to xk[t] = x0
k + tVk (See Figure II.2). The

method for computing the gradient of E(S) consists in computing the directional derivative

of E(S[t]) for this deformation and then in rewriting it as a scalar product of V, i.e. as

〈V,G〉, G being independent of V. The obtained vector G is called the gradient and the

energy necessarily decreases when deforming the surface according to its opposite direction

−G. Indeed, for xk[t] = x0
k − tGk, we have

[E ◦ S]′(0) = −〈G,G〉 ≤ 0,

see [39].

Let us recall now that, as underlined by [24, 39], the notion of gradient depends on the

underlying scalar product. In this work we will only consider the L2 inner product which

has the advantage of taking into account the area of the triangles contrarily to the pointwise

scalar product, which is necessary if the surface is not a regular mesh. Let A = {ak} and

B = {bk} be vector fields on the mesh X. Let a and b be their linear extension on the whole

surface S . Then their L2 scalar product is:

〈A,B〉L2 =

∫

S

〈a(x), b(x)〉 ds

=

∫

S

〈
∑

k

akφk(x),
∑

k

bkφk(x)

〉

ds

= A⊤ M B ,

(II.7)

where M = {mij} is the mass matrix defined by mij = Id3
∫

S
φi(x)φj(x)ds. In the last line

of Equation (II.7), A and B are the matricial representations of the vector fields. They are

column vectors containing successively ak and bk vectors. Then the gradient becomes:

∇E(X) = M−1 ∂E

∂X
(X) , (II.8)
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where
∂E

∂X
(X) =

[
∂E

∂x1

(X)
∂E

∂x2

(X) . . .
∂E

∂xn

(X)

]′

corresponds to the gradient associated with the pointwise inner product < A,B >=
∑

k ak ·
bk.

One classically approximates M by the diagonal mass lumping M̃ , where m̃ii is the area

of the Voronoi dual cell of xi times the identity matrix Id3, see e.g. [39]. It follows that the

L2 gradient descent flow is:







X[0] = X0 ,

∂X[t]

∂t
= −M̃−1 ∂E

∂X
(X[t]) .

(II.9)

II.2.2.1 Triangle Mesh Representation and Notations

Figure II.3: Local parametrization of the discrete representation of the surface into a triangle

mesh. Figure on the left shows the local parametrization u(u, v) of a surface point. On the

right, we show the notations used in the thesis where xk is the current vertex of S , Sj is the

current facet around xk and ej,k is the opposite edge of xk in Sj . The gray area represent the

set of triangles around xk denoted by Jk.

The previous results are valid for any polyhedral representation. Also in practice and in

the following, we will focus on triangle representation that are easier to understand and more

simple to handle using computers.

Let Sj be the jth triangle of the mesh and xk be a vertex of Sj . Let us consider the

parametrization on the triangle Sj such that

x(u) = xk + u −−−→xkxk1 + v −−−→xkxk2 , (II.10)

where xk1 and xk2 are the two other vertices of the triangle Sj such that (xk,xk1,xk2) is a

counter-clockwise triangle. Here, u = (u, v) ∈ T , where

T = {(u, v)|u ∈ [0, 1] and v ∈ [0, 1− u]} .

Figure II.3 illustrates this representation and parametrization. Too be rigorous, we should

write x
j
k(u) instead of x(u), since the parametrization depends on j and k. Nevertheless, in

order to simplify equations and improve the clarity of the thesis, we remove these indexes in
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the rest of the thesis. In the following, when we use x(u), the choice of the associated j and k

is directly given by the context. On each triangle Sj , we denote by φk the linear interpolating

basis function that verifies φk(x(u)) = (1− u− v) , ∀(u, v) ∈ T .

We denote by Aj the surface area of triangle Sj and by nj its outward surface normal. Aj

and nj can easily be defined with respect to the triangle vertices such that:

Aj =
1

2
|−−−→xkxk1 ∧ −−−→xkxk2| and nj =

−−−→xkxk1 ∧ −−−→xkxk2

2Aj

,

where the operator ∧ denotes the cross product. Indeed it is easy to show that the area surface

measure on the surface ds can be written using the parametrization u such that:

ds = 2Aj du . (II.11)

In the following, we also denote by ej,k the opposite edge of the vertex xk in the triangle Sj

such that ej,k =
−−−−→xk1xk2.

Jk represents the set of triangles containing vertex xk and the set Kj is the set of indexes

of the three vertices of triangle Sj (See Figure II.3.).

II.3 Gradient of Weighted Area Functionals

II.3.1 Continuous Case

Let S ∈ M be the surface to deform in order to minimize the following classical weighted

area functional (II.1):

E(S) =
∫

S

g(x,n(x))ds ,

where g is a differentiable scalar function defined all over the surface. Then using shape

gradient as described previously, one can rewrite the differential of E(S) under a linear

deformation V in order to find the expression of ∇E(S). As used in [56] and shown in

[141], the gradient descent flow of the functional defined in (II.1) has the form:

∇E(S) = ∇ · (gn + gn) , (II.12)

where gn is the gradient on the unit sphere S.

II.3.2 Gradient for Triangle Mesh-based Surfaces

In this paragraph, we consider the discretization on the surface and the gradient descent flow

described in the previous section, when the surface is represented by a triangular mesh. Also
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we consider the case where the energy functional to be minimized is:

E(S) =
∫

S

g(x,n(x)) ds

=
∑

j

2Aj

∫

T

g(x(u),nj) du ,
(II.13)

where Aj and nj are defined in Section II.2.2.1.

Let us focus on the evolution of E(S) under the induced velocity V on triangle Sj only.

We have

E(Sj[t]) = 2Aj[t]

∫

T

g(x(u) + tV(x(u)),nj[t]) du , (II.14)

where Aj[t] is the area of the triangle Sj[t] and nj[t] is its normal at time t. By simple

derivation we get

d

dt
E(Sj[t])

∣
∣
∣
t=0

= 2A′
j[0]

∫

T

g(x,nj) du

+ 2Aj

∫

T

∇xg(x,nj) ·V(x) du

+ 2Aj

∫

T

∇ng(x,nj) · n′
j[0] du .

(II.15)

Above, in order to simplify equations, we have removed the dependency in u by writing

x instead of x(u). In the sequel, we will use this abuse of notation. In order to rewrite
d
dt
E(Sj[t])

∣
∣
∣
t=0

as a scalar production of V, we use also the fact that ∀x ∈ Sj , V(x) =
∑

k∈Kj
Vkφk(x), and then use the expressions of A′

j[0] and n′
j[0] computed in appendixes

A.2.1 and A.2.2:

A′
j [0] =

d

dt
Aj [t]

∣
∣
∣
t=0

=
1

2

(
nj ∧ −−−−→

xk1xk2

)
·Vk ,

n′
j [0] =

d

dt
nj [t]

∣
∣
∣
t=0

=
−−−−→
xk1xk2 ∧Vk −

(
(−−−−→xk1xk2 ∧Vk) · nj

)
nj

2Aj
.

(II.16)

It follows that:

d

dt
E(Sj [t])

∣
∣
∣
t=0

=
∑

k∈Kj

Vk·
{

nj ∧ ej,k

2Aj

∫

Sj

g(x,nj) ds

+

∫

Sj

∇xg(x,nj)φk(x) ds

− ej,k

2Aj
∧
∫

Sj

gn(x,nj) ds

}

,

(II.17)

where we define gn = ∇ng(x,nj)− 〈∇ng(x,nj),nj〉 nj , where ∇ng(x,nj) is the gradient

of g with respect to the second variable (i.e. n ∈ R
3).
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It then immediately follows that

d

dt
E(S[t])

∣
∣
∣
t=0

=
∑

k

Vk ·




∑

j∈Jk

{
∫

Sj

∇xg(x,nj)φk(x) ds

− ej,k

2Aj
∧

∫

Sj

g(x,nj)nj + gn(x,nj) ds

}]

,

(II.18)

Finally the part in brackets gives the kth component of
∂E

∂X
and one has to use Equation (II.9)

in order to get the gradient and optimize the mesh X.

Discussion about the continuous gradient

By looking at both gradients, one may note similarities. First it is worth it to notice

that the discrete gradient is written with respect to well defined quantities that can be easily

expressed, such as edges vectors, or triangle area.

On the other hand the continuous gradient has terms depending on the curvature for

instance, which is well defined in the theory of continuous differential surfaces, but is hard

to discretize on mesh representations. By making a piecewise linear surface assumption, the

obtained gradient directly accounts for those intrinsic properties.

II.3.3 Applications

II.3.3.1 Mean Curvature Flow

As described in the introduction, one of the most commonly used gradient flow is the mean

curvature flow, that minimizes the surface area. This energy is often used to perform mesh

smoothing, or more often as a smoothing energy term. The associated energy functional is

simply

E(S) =
∫

S

ds , (II.19)

and its associated continuous gradient is ∇E = κ, where κ is the surface’s curvature.

However, one needs approximations in order to apply it to discrete surface representations

since notion of discrete curvature is not clear. On triangular meshes, different approximated

flows have been proposed like Laplacian approximation or the umbrella operator. Meyer et al

[108] have computed the discrete gradient flow that minimizes Equation (II.19) with respect

to the triangle mesh representation. It is easy to show that the same result can be obtained

using the presented approach. Following Section II.2, we have

d

dt
E(S[t])

∣
∣
∣
t=0

=
∑

k

Vk ·
∑

j∈Jk

1

2
nj ∧ ej,k . (II.20)
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Figure II.4: Evolution of smoothing algorithms on the Stanford Bunny data. From left to

right: input noisy data; denoised mesh obtained using the mean curvature flow (MCF) of

Section II.3.3.1; MCF result versus the noisy input (in red); denoised mesh obtained using

the normal smoothing algorithm (NS) of Section II.3.3.2; NS result versus the noisy input (in

red). Smoothing the normals help preserving details better than the mean curvature flow and

does not over-smooth the result at concavities and convexities as much as the mean curvature

flow.

The evolution of one vertex k then follows

dxk

dt
=

1

Ak

∑

j∈Jk

1

2
ej,k ∧ nj , (II.21)

where Ak is the area of the neighborhood Jk of vertex k. Note that this result is exactly

the same as the results in [108], but is just expressed differently. The given formulation can

be useful for applications where edges and surface normals have been previously computed.

Figure II.4 illustrates this algorithm on the Stanford Bunny data [1].

II.3.3.2 Normal Field Integration

One of the applications is to align a surface with respect to an external normal field. For

instance, in 3D reconstruction, one recover the surface by integrating photometric normals

[23, 68, 152]. Let h be a unit vector field in R
3. Integrating this vector field h such that the

surface normals n correspond to it involves minimizing the following functional

E(S) = 1

2

∫

S

|h− n|2 ds

=
∑

j

∫

Sj

(1− h · nj) ds .
(II.22)
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Figure II.5: Evolution of smoothing algorithms on simple cube data. From left to right: noisy

input and corresponding original surface; mean curvature flow smoothing; normal smooth-

ing; median filtering. The red part corresponds to the input noisy mesh being displayed

together with the results.

As explained in Section II.3, it is easy to show that the following gradient descent flow is:

dxk

dt
=

1

Ak

∑

j∈Jk

1

2
ej,k ∧

∫

T

(nj − h) du . (II.23)

Normal Smoothing

As an example we show now that this approach can be easily applied to normal smoothing

with efficiency, and is barely more time consuming than the mean curvature flow. Let hj be

the weighted average normal of the triangle j and its neighborhood N j:

hj =

∑

l∈Nj
αl nl

|
∑

l∈Nj
αl nl|

, (II.24)

where the weights αl can be chosen depending on the application. It could for instance be

the area Al of the triangle l, a Gaussian weight or more simply one can set αl = 1. Therefore

the energy functional to be minimized can be expressed as:

E(S) =
∑

j

∫

Sj

(1− hj · nj) ds , (II.25)

where hj is constant over the surface. Note that we cannot directly apply the results presented

in Section II.3.2 to energy (II.25) since it depends on the normal at several surface points.
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To minimize energy (II.25), we consider hj to be fixed while updating the surface. In other

words, we alternately update the surface and the vector field h. The gradient descent flow

corresponding to the normal smoothing energy with respect to the surface is

dxk

dt
=

1

Ak

∑

j∈Jk

1

2
ej,k ∧ (nj − hj) . (II.26)

Note the similarity of the above equation with the mean curvature flow (Equation (II.21)),

and the fact that the gradient flow with respect to the surface is barely more time consuming.

Results are shown in Figure II.4, where the evolution is stopped once the noise is no longer

visible. The figure also shows a comparison between the mean curvature flow. In particular,

when displayed with the input noisy mesh, one may notice the different density of noise

in the mesh (shown in red). Since this is a Gaussian noise, the quantity of noise should

be uniform all over the surface, as it is almost the case for normal smoothing. However,

proportion of the visible noisy mesh in the mean curvature flow example is much denser in

the convex parts and disappears in concavities. While mean curvature flow is popular for

surface regularization and smoothing, normal smoothing preserve details better and does not

over-smooth as much as the mean curvature flow.

Median Filtering

Similarly, one may choose the external vector field hj to be the median vector of the

neighborhood N j of Sj to perform median filtering on the mesh. hj can be computed by first

computing the spherical coordinates (θm, φm) of each normal nm ∈ N j . Then by sorting

the spherical coordinates (θm, φm) along each component, one can obtain the median normal

by getting back to Cartesian coordinates. Results on a noisy cube and comparison with the

previous smoothing algorithms are shown in Figure II.5.

II.4 Gradient of Functionals defined on Visible Surface

As described in the introduction, computer vision applications are most likely able to deal

with what the camera sees, i.e. the projected image. Such projection imply 3D information

such as depth and occlusion as well as a camera model. An energy functional can be ex-

pressed accordingly as in Equation (II.5), where the energy is defined on the visible interface

(See also Figure II.1). Often some quantities can be estimated (it can be for instance color,

photometric normals, reflectance, etc) and used to compare them with data in the input im-

ages. In the sequel we denote such energies reprojection error functionals. As shown for

example in [56, 159], an accurate Bayesian formulation of computer vision problems (as e.g.

in 3D reconstruction) yields to the minimization of reprojection error functionals instead of

classical weighted area functionals.
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Figure II.6: Geometric representation of the change of visibility when moving the mesh.

Contrary to the interior (left), movements of the horizon (right) strongly affect the movement

of the visible interface between visible and occluded volumes by creating a movement of the

crepuscular rays.

Let us then consider the energy functional (II.5)

E(S) =
∫

S

g(x,n(x)) · n(x) νS(x) ds .

In this section, we compute the gradient of this functional with respect to the shape S .

In practice, the direction of the 3D vector g corresponds to the direction of the viewing

ray. Thus the reprojection error functionals generally verify g(x,n∂V(x)) · n∂V(x) = 0 for

all points x on the horizon of the visibility interface (∂V being the visibility interface and

n∂V its normal, see Figure II.1). Then, by Gauss’ divergence theorem, we can rewrite E(S)
as an integral over R3, see [55, 56].

E(S) =
∫

∂V

g(x,n∂V(x)) · n∂V(x) ds

= −
∫

R3

∇ · g(x,n(x)) νS(x) dx .

(II.27)

Let S[t] be a variation of S such that S[t] = S + t V . By the product rule, the derivative

of the energy with respect to t is:

d

dt
E(S[t])

∣
∣
∣
t=0

= −
∫

R3

∇ · d

dt

(

g(x,n[t](x))
)∣
∣
∣
t=0

νS(x) dx

−
∫

R3

∇ ·
(

g(x,n(x))
) d

dt
νS[t](x)

∣
∣
∣
t=0

dx .

(II.28)

For notation simplicity we have denoted S = S[0], n = n[0].
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In Section II.4.2.1, we write the first integral of Equation (II.28) linearly with respect to V.

We then describe the corresponding part of the gradient of E(S). We denote it Gnorm.

In the second integral of Equation (II.28), the normal does not depend on t. Thus, this term is

the derivative of a quantity (which does not depend on S and does not vary in time) integrated

over the visible volume. In other words, the second term of Equation (II.28) is the derivative

(with respect to the shape S) of an energy:

Ẽ(S) =
∫

R3

f(x)νS(x) dx ,

where f(x) does not depend on S;

f(x) = −∇ ·
(

g(x,n(x))
)

.

It is the derivative of a scalar field integrated over a visible volume.

Until now all equations are valid for both the continuous case and the discrete case. In

order to find the gradient expression, the idea is to see what happens to the energy under an

induced velocity on the surface. In the continuous case under a continuous vectorial field

V , and under a piecewise linear vectorial field V defined by the discrete field {Vk} in the

other case. In both cases we have the following geometric interpretation of the changes in

the energy when the surface is deforming.

Since this energy Ẽ(S) is an integral over the visible volume, its variations are only due

to the variations of the visible volume. Also, as illustrated by Figure II.6 (reduced to the 2D

case for simplicity), when the vertex xk is moving according to Vk we have to separate two

cases:

1. when all the triangles adjacent to xk are visible, the variation of the visible volume is

just the sum of the tetrahedron formed by the adjacent triangles and the moved point

xk +Vk (see Figure II.6, left). The corresponding gradient computation is detailed in

Section II.4.2.2. By replacing f(x) by −∇ · g(x,n(x)), this gives a second part of the

gradient of E(S) ; we denote it Gint.

2. when xk is generating occluding contours in images, i.e. when it is a horizon point,

its movement affects the visibility of other points located behind it (called terminator

points). So the variation of the visible volume is the sum of the first case term, plus

the volume swept out by the crepuscular rays generated by the horizon movement

(see Figure II.6, right). The corresponding gradient computation is detailed in Section

II.4.2.3. Again, by replacing f(x) by −∇ · g(x,n(x)), this gives a third part of the

gradient of E(S) that we denote it Ghoriz.

Now let us first remind the expression of the gradient in the continuous case (Section

II.4.1) and then compute it when using triangle meshes (Section II.4.2).
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II.4.1 Gradient in the Continuous Case

The differential of the energy (II.5) in the case of continuous surfaces is the work of Gargallo

[55] and is:

∇ ·
(

gn · n+ g
)

νS − xt∇n (g − g′)δ(x · n)νS , (II.29)

where δ is a Dirac distribution function and g′ is the value of g at the terminator of the current

point. In the presence of a discrete surface, terms like the curvature ∇n are difficult to handle

and have to be approximated. The following section shows that by computing the gradient

with respect to the true representation of the surface, one can use a new formulation using

intrinsic surface properties.

II.4.2 Gradient for Triangle Meshes

Here, we derive the exact gradient (with respect to the shape) of these functionals in the

case where the surface is represented by a triangular mesh. Here, contrary to our previous

conference article [32], the function g may also depends on the normal of the surface.

Then we can summarize the way gradient descent is performed in that case. The variation

of an energy that depends on the visibility and the surface normal can be decomposed into

three different cases. The three terms are:

1. the one due to the change in the normal Gnorm (Equation (II.33)) that corresponds to

Section II.4.2.1,

2. the term due to the movement of points on the fully visible areas Gint (Equation (II.38))

of Section II.4.2.2,

3. and finally the term due to the movement of points on occluding contours Ghoriz (Equa-

tion (II.44)) that makes global (in the sense on the whole surface) changes of the energy

(Described in Section II.4.2.3).

II.4.2.1 Term due to the Variation of the Normal

In this section, we are going to rewrite the first integral term appearing in equation (II.28),

linearly with respect to V. This will directly give us the first term of the gradient of E(S)
defined in (II.5). First, using Gauss’ divergence theorem again, let us rewrite it as an integral
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over the surface. This gives:

−
∫

R3

∇ · d

dt
g(x,n[t](x))

∣
∣
∣
t=0

νS(x) dx

=

∫

S

d

dt
g(x,n[t](x))

∣
∣
∣
t=0

· n(x) νS(x) ds

=
∑

j

∫

Sj

d

dt
g(x,nj[t])

∣
∣
∣
t=0

· nj νS(x) ds

=
∑

j

∫

Sj

(Dng(x,nj)n
′
j[0]) · nj νS(x) ds ,

(II.30)

where Dn is the differential with respect to the second variable and where n′
j[0] is the deriva-

tive of the normal nj[t] of the triangle Sj[t] at time t = 0. Here we have assumed that the

reprojection error functional verifies

(
d

dt
g(x,n∂V [t](x))

)

· n∂V(x) = 0

for all points x on the horizon lines of the visibility interface; it is generally the case in

practice, see [55, 56].

The computation of n′
j[0] is detailed in appendix A.2.2. We have

n′
j [0] =

1

2Aj








∑

k∈Kj

ej,k ∧Vk



−



(
∑

k∈Kj

ej,k ∧Vk) · nj



nj



 . (II.31)

So

∫

R3

∇ · d

dt
g(x,n[t](x))

∣
∣
∣
t=0

νS(x) dx

=
∑

j

∫

Sj

n′
j[0] ·Dng(x,nj)

⊤nj νS(x)ds

=
∑

k

Vk ·
[ ∑

j∈Jk

(−1)
ej,k

2Aj

∧
∫

Sj

Pnj⊤(Dng(x,nj)
⊤nj) νS(x) ds

]

,

(II.32)

where Pnj⊤(Dng(x,nj)
⊤nj) is the projection on the orthogonal plane to nj of Dng(x,nj)

⊤nj .

The edge ej,k is defined in appendix A.2.1. Roughly ej,k is the opposite edge of the vertex xk

in the triangle Sj . Finally, writing the previous expression on the mesh parametrization x(u)
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yields: which can be rewritten as :

Gnorm
k =

∑

j∈Jk

ej,k ∧
∫

T

Pnj⊤(Dng(x(u),nj)
⊤nj) νS(x(u)) du. (II.33)

II.4.2.2 Term Due to the Tetrahedra of the Visible Adjacent Triangles

In this paragraph, let us focus on the variation of the energy caused by the variation of the

visible volume corresponding to the tetrahedra formed by the visible adjacent triangles of

vertex xk and xk +Vk. (See Figure II.2)

In the sequel, we denote Sj the jth triangle of the mesh. Following the variation of the

energy caused by the visible adjacent triangles of xk, we have

Ẽ(S[t])− Ẽ(S[0]) =
∑

j

̟j,Vk

∫

V ol[j,V,t]

f(x) dx + . . . , (II.34)

where V ol[j,V, t] is the volume of the tetrahedron formed by the vertices of the visible

triangle Sj and the point xk + Vk. (See Figure II.2) The sign ̟j,Vk
specifies if matter has

been added to or removed from the object volume and it is equal to the sign of nj ·Vk, where

nj is the outward surface normal of triangle Sj . The dots part ". . . " on the right of equation

(II.34) is null except if the vertex xk is a horizon point, which means that this point is on the

occluding contour; this additional part will be detailed in the next paragraph.

Now, we parametrize the volume V ol[j,V, t] by the point x(u, v, w) = x(u, v) +w tVk,

where x(u, v) = x(u) parametrizes the triangle Sj as defined previously and shown in figure

II.3; The local parametrization is such that u(u, v) ∈ T = {(u, v) | u ∈ [0, 1] and v ∈
[0, 1− u]} and w ∈ [0, 1− u− v]. By a change of variables, Equation (II.34) becomes

∑

j

̟j,Vk

∫

T

∫ φk(u)

0

{

f(x(u) + wtVk)

× |det(−−−→xkxk1,
−−−→xkxk2, tVk)|

}

dwdu+ . . . (II.35)

Let Aj be the area of the triangle Sj . It is easy to show that ̟j,Vk
|det(−−−→xkxk1,

−−−→
xkxk2, tVk)| =

2t AjVk · nj . Then Equation (II.35) becomes

2t Vk ·




∑

j

Ajnj

∫

T

∫ φk(u)

0
f(x(u) + wtVk) dwdu



+ . . . (II.36)

It follows that the limit of
Ẽ(S[t])−Ẽ(S[0])

t
when t tends to zero is

Vk ·
[

2
∑

j

Ajnj

∫

T

f(x(u))φk(x(u)) du

]

. (II.37)
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Now the derivative of the energy can be expressed as a scalar product between the velocity

Vk and a quantity that corresponds to the gradient as explained previously. The part in square

brackets corresponds then to the interior term of the gradient of E(S) with respect to xk:

Gint
k = 2

∑

j

Ajnj

∫

T

∇ · g(x(u),nj)φk(x(u)) du , (II.38)

where the sum is on all the (completely) visible triangles containing vertex xk.

II.4.2.3 Term due the movement of the crepuscular cone

In this section we are then going to compute the additional term which appears when xk is

a horizon point on the occluding contour. In this case the energy variation during a surface

movement is due to the volume created by the crepuscular cones. This movement is not

affected by the dependency in n(x) since this is purely due to the visibility changes.

Let Hk,j be the vector such that [xk,xk+Hk,j] is the edge of the triangle Sj generating the

horizon. The volume corresponding to the movement of the horizon can be parametrized by

the points y(u, v) of the triangle {xk,xk +Hk,j,xk + v tVk} generated by the movement of

the horizon. More rigorously, it can be parametrized as the set of points x(u, v, r) = r y(u, v)

where y(u, v) = xk + u Hk,j + v tVk; r corresponds to the depth of x in the view point

direction; r ∈ [1, T(u,v)], where it corresponds to the terminator of xk when r = T(u,v).

Let us note that y(u, v) depends on t; we emphasize this dependency by denoting yt(u, v).

By a change of variable, we get Ẽ(S[t])− Ẽ(S[0]) =

· · · − 1

2

∫

T

∫

r∈[1,T(u,v)]

{

f(r yt(u, v)) (Hk,j ∧ tVk) ·
yt(u, v)

|yt(u, v)|
r2
}

drdudv , (II.39)

where ". . . " corresponds to the part described in the previous paragraph. It follows that the

limit of
Ẽ(S[t])−Ẽ(S[0])

t
when t tends to zero is the term in Equation (II.38) plus the following

term

− 1

2

∫

T

∫

[1,Tu]

f(r y(u)) (Hk,j ∧Vk) ·
y(u)

|y(u)|r
2drdudv , (II.40)

where y(u) = xk + u Hk,j and Tu = T(u,0). Let us denote L(u) such that

L(u) =
∫

[1,Tu]

f(r y(u))r2dr . (II.41)

The right-hand part of equation (II.40) can be rewritten as

−Vk ·
1

2

∫

u∈[0,1]

L(u)
(

y(u)

|y(u)| ∧Hk,j

)

(1− u)du , (II.42)

where L(u) =
∫

1,Tu
f(r y(u))r2dr. Here we have f(x) = −∇ · g(x,n(x)). Here we can
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explicit L(u) as :

L(u) = −
∫

1,Tu

∇g(ry(u)) · y(u)

y(u)3z
dr

= −
[
g(T (y(u)))− g(y(u))

] 1

y(u)3z
,

(II.43)

where we have denoted g(x) = g(x,n)
x

x3
z

and T (y(u)) is the point located behind y(u) in

the direction of the viewpoint (i.e. its terminator point).

This gives the third part of the kth component of the gradient of E(S) defined in Equation

(II.5):

Ghoriz
k =

∑

Hk,j

1

2

∫ 1

0

{
(
g (T (y(u)))− g (y(u))

)

×
(

y(u) ∧Hk,j

|y(u)||y(u)|3z

)

(1− u)

}

du , (II.44)

where the sum is on the edges containing xk and which generate horizons. Hk,j are the

horizon edges around vertex xk.

II.4.2.4 Total Gradient Descent Flow

Finally, as explained in Section II.2.2, the gradient descent flow depends on the choice of

an inner product for the gradient. Here we use the L2 gradient that allows to account for

triangle area variations. As described previously and shown in [24, 39], changing the metric

can result in more coherent gradient flows, but this study is out the scope of this thesis. In this

case the gradient descent flow for a point xk corresponding to our energy functional defined

on a visible domain is:







xk(0) = x0
k ,

dxk

dt
= − 1

Ak

{
Gint

k +Ghoriz
k +Gnorm

k

}
.

(II.45)

II.5 Conclusion

In this chapter we compute the shape gradient of general energy functionals which account

for normals and visibility changes and which embody a number of energies used in mesh

processing and computer vision. Gradient computation is done directly with respect to the

discrete representation of the surface based on triangular meshes. This allows for coherent
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gradient flows that tend to place the mesh vertices to their correct locations and make triangle

edges match with the data.

In particular we presented a mesh evolution technique for 3D vision problems, when

the cost functional depends on an image based score and a camera model. For instance, our

approach can be used to solve multi-view shape reconstruction problems from images using a

discrete representation. The following chapter illustrates the use of the presented framework

for different application scenarios and examples. Contrary to most previous works, during

the evolution, we correctly deal with visibility changes by expressing the exact gradient of

the reprojection error functional. In particular, exactly as in the continuous case [56], this

forces the contour generators of the surface to appear at their correct location in the images

and reduces the minimal surface bias from which most of variational methods suffer.

In the next Chapter (III) we present examples and experiments on various multi-view

reconstruction cases, which are straightforward implementations of the results shown in this

Chapter. Additional discussions and comments are developed in the conclusion of Chapter

III.





CHAPTER III

Applications to 3D Shape Reconstruction

from Images

Recently many multi-view stereo techniques have emerged to produce high quality 3D mod-

els from two or multiple images. In the previous chapter, we have seen how to optimize 3D

deformable meshes from energy functionals. In this chapter, we will see how this framework

can be applied to a family of 3D reconstruction problems not limited to stereo correspon-

dence. As described in Chapter I, many other cues can be used to describe the objective

functional. In order to illustrate Chapter II, we present different examples of multi-view

shape from images problems dealing with visibility issues and exploiting some of those cues

such as stereo matching or shading. In particular, we present results for multi-view stereo,

multi-view shape-from-shading and multi-view photometric stereo applications. Both syn-

thesized and real experiments are presented in order to validate our approach.
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This chapter shows how the gradient descent framework presented in Chapter II can be

used to perform mesh evolutions. In particular several concrete examples that are common

in computer vision and especially 3D reconstruction are presented. For more clarity and

comparison purposes, the following examples use the L2-gradient descent scheme presented

in the previous chapter. Since the minimization is performed via gradient descent, the algo-

rithm needs to start from some initialization. In most examples the initial shape is the visual

hull of the scene, where we assume silhouettes can be easily computed or are given, or that

stereoscopic segmentation [160] can be easily performed. It is also important to notice that

the horizon term is performed only on existing contour generators, so that the topology has to

be close to the final one, or that contour generators can be created thanks to the interior term

influence. Also, since it is based on energy differences one may add more or less importance
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to it. In particular in the following experiments, we add a weight λH to control this amount,

which is empirically determined. If λH is too big, the horizon term will make the contour

generators of the surface oscillates around their corresponding apparent contours.

In the following examples, the mesh evolution algorithm that includes the remeshing

and the topology changes is done using the Delaunay topology-adaptive meshes proposed

by [129] or using TransforMesh [167], both written using CGAL [2]. A multi-resolution

coarse-to-fine scheme is used to avoid local minima and make the optimization faster. Also,

all figures shown in this section are displayed using flat shading rendering. This means that

the shading is computed using the facet’s normals and not the weighted normals estimated

at each vertex as used in many other works (this makes the model to appear smoother in the

images). In that way, one can better estimate the real surface’s shape and see triangle edges.

III.1 Multi-view Stereovision

In this example, we detail how the gradient defined in Section II.4 can be used in three-

dimensional surface reconstruction from images.

Multi-view stereo is the problem of recovering the shape of scenes using multiple cam-

eras, by assuming that matching or correspondences between different views can be obtained

(by usually considering Lambertian constant brightness assumptions). Given a set of images

of a scene taken from different camera positions, the goal is to reconstruct the shape S , and

optionally the appearance, of the object. Since it is the inverse problem of image rendering,

this problem can be modeled in a Bayesian framework by minimizing the difference between

the images of the reconstructed model and the observed ones, i.e. the reprojection error.

The multi-view stereovision algorithm we propose here is based on the same modeling

as the one proposed by Gargallo et al. [56]. As [160], Gargallo et al. use the Eulerian for-

mulation and implement their algorithm in the level-set framework. Here, we use a triangle

mesh-based representation, as described in the previous chapter. Below, we describe the

modeling of the problem and then detail the exact gradient for our discrete representation

obtained by using the results developed in Section II.4.2.

III.1.1 Modeling of the Reprojection Error

In order to be able to compare the whole observed images (data) with the images generated

by the model, it is crucial to define and model the background. Also, as shown by [56, 160],

this allows us to be sure that the estimated foreground surface does not shrink to an empty

set (which is the global optimum for most cost functionals used in other work). Whereas

most of the previous work assumes that the background is known (e.g. simply modeling

it as uniformly black, or by exploiting given silhouette images), here we also estimate the

background images Bi : Ii → R
3 , under the single assumption that these images are smooth,

similarly as [160]. Here i corresponds to the index of the camera and Ii is its image domain.

Now, let us assume that the scene surface S is Lambertian and the illumination static.

Let C : S → R
3 be the radiance function that associates colors to the points on the surface.
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Ideally, the color Ii(p) observed at pixel p of image Ii should be equal to the color C(π−1
i,S (p))

of its backprojection π−1
i,S (p) onto the surface or, in the case where p /∈ πi(S), to the color

Bi(p) of the same pixel on the background images (πi denoting the projection associated

with camera i). Thus, the reprojection error of the surface is

Edata =
1

2

∑

i

[∫

πi(S)

(
Ii(p)− C(π−1

i,S (p))
)2

dp +

∫

Ii−πi(S)

(
Ii(p)− Bi(p)

)2
dp

]

. (III.1)

Finally, in order to well pose the problem, we use as a prior on S an additional smoothing

area energy. As described previously, smoothing the normals gives a better prior than the

commonly used mean curvature flow. It helps not to over-smooth the surface and to preserve

geometric details better. The considered energy is

ERS =

∫

S

(1− h(x) · n) ds ,

where h is the average normal of the considered surface point. We also assume that the

background images are smooth by adding the total variation term

ERB =
∑

i

∫

Ii

|∇Bi(p)|dp.

The total variation helps preserving edges and does not over-smooth the object boundaries. In

practice, the background images can be identified before the surface optimization by giving

the silhouettes or doing stereoscopic segmentation.

III.1.2 Minimization of the Total Energy

For optimizing our total energy

Etotal = Edata + λSERS + λBERB , (III.2)

we perform gradient descents alternately with respect to Bi and S .

The computation of the gradients with respect to Bi is classical since it is image-based.

For a fixed shape S and a fixed C, we have

∇Etotal(B) = −
∑

i

[

(Ii − Bi)(1− h) + λB∇ · ∇Bi

|∇Bi|

]

, (III.3)

where h is the characteristic function that indicates if u is covered by the projection of the

surface S (h(p) = 1) or not (h(p) = 0, p being explained by the background); λ is the

smoothness parameter; C(x) is computed by taking the mean color of the projection in the
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image Ii where x is visible.

Let us now detail the gradient of Etotal with respect to S . Since ERB do not depend on

S and ERS is classical [33, 160]), the main point is to compute the gradient of Edata with

respect to S . To apply the results presented in the previous sections, we first need to rewrite

the energy Edata as an integral over only the visible surface. For simplicity of notation, we

are going to give the gradient for a single camera and so we remove the dependency on i. For

several cameras, the gradient will be the sum of the gradients associated with each camera.

As explained in the introduction, the first step, to be able to apply our previous results,

is to rewrite the energy as an integral over the surface instead of the image. This change

of variable implies the geometric model of the camera which we assume to be a pinhole

perspective camera model in this work. It also involves adapting the measure on the surface

[140] and in counting only the visible points [56, 130, 160]. This can be achieved by du =

−x·n(x)
x3
z

νS(x)ds where ds is the classical surface area measure and xz is the depth of x. Thus,

by using the separation technique proposed by [160], the energy functional becomes (for a

single image):

Edata(S) =−
∫

S

gI(x)
x · n(x)

x3
z

νS(x)ds

+

∫

I−π(S)

gB(p)dp ,

=−
∫

S

[gI(x)− gB(π(x))]
x · n(x)

x3
z

νS(x)ds

+

∫

I

gB(p)dp ,

(III.4)

where gI(x) is 1
2
[I(π(x)) − C(x)]2 and gB(p) is 1

2
[I(p) − B(p))]2. The right-hand term

of equation (III.4) does not depend on S , so in the following we intentionally omitted it

as it does not contribute to the gradient expression (with respect to S). Hence, denoting

g(x) = gI(x)− gB(π(x)) for convenience, the energy to be minimized with respect to S is

Edata(S) = −
∫

S

g(x)
x · n(x)

x3
z

νS(x)ds. (III.5)

Now, the energy functional Edata(S) is of the form of Equation (II.5) with

g(x) = −g(x)

x3
z

x.

The gradient descent flow for the shape is then directly given by (II.45)







xk(0) = x0
k ,

dxk

dt
= − 1

Ak

{
Gint

k +Ghoriz
k

}
,

(III.6)
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where Gint
k and Ghoriz

k are respectively obtained from Equations (II.38) and (II.44) where

g(x) is replaced by −g(x)

x3
z

x.

Expression of C(x): As mentioned above, C : S → R
3 is the estimated radiance on the

surface. Then C(x) should satisfy the following equation:

∑

i

∫

S

[Ii(π(x))− C(x)]2 wi(x) νi,S(x) = 0 . (III.7)

Here xi denote the coordinate of the point x in the camera coordinate system of camera i

(which in this thesis is often omitted since equations are often written for a single image).

wi(x) is a weight function that depends on the camera model. As described previously, for a

pinhole camera model then wi(x) =
xi·n(x)
x
i,z3

. Then an obvious choice for the color C(x) is to

take the weighted mean color at point x of the image intensity values from the images where

x is visible. This leads to:

C(x) =

∑

i Ii(πi(x)) wi(x)νi,S(x)
∑

i wi(x) νi,S(x)
. (III.8)

III.1.3 Experiments for the multi-view stereovision application

As previously described, the mesh evolution algorithm is implemented using the Delaunay

topology-adaptive meshes. The visibility is computed using OpenGL Z-buffer. The evolution

is done using a multi-resolution scheme and starting from the visual hull. The discretization

over the triangles is automatically adapted to the image resolution. Horizons are located

using the changes of signs of the dot products of facet normals and viewpoint directions. The

terminator error metric is computed using OpenGL Shader Language.

As in [56], we first reconstruct three uniformly colored balls arranged on a plane (20

images of resolution 640× 480), see Figure III.1. This way we ensure the importance of the

horizon term as the color gradient is null over the surface except at the interfaces between

objects in images (which correspond to object boundaries). Using only the interior term

(Section II.4.2.2), the surface shrinks due to the minimal bias. By using the horizon term

only (given in Section II.4.2.3), we correctly reconstruct and separate the balls, and occlud-

ing contours correctly reproject in the images. Then we tested our algorithm on synthetic

Lambertian data for the Stanford dragon mesh (Figure III.2) composed of 32 images of reso-

lution 640× 480. The result shows the correct reconstruction of the dragon, even though the

texture is smooth and some parts in shadow are dark (See Table III.1). Here the initial shape

was a visual hull automatically computed from a stereoscopic segmentation algorithm [160].
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Figure III.1: The balls sequence. Top row: 4 of 20 input images. Bottom row: results with

the horizon term computed in Section II.4.2.3 from different viewpoints.

Figure III.2: Synthesized dragon sequence. Top row: 4 of 32 diffuse input images. Bottom

row: Initial shape; recovered shape by our algorithm; ground truth model.

Then, we tested our method on the classical Dino (16 images of 640 × 480) and Temple

(16 images of 640×480 images) datasets from the Middlebury repository (Figure III.3). The

results and a comparison with selected approaches that motivated our work is presented Table

III.2. The results of [55, 56] are done in the continuous domain using level set implementa-

tion. We refer to the Middlebury benchmark website [136] for evaluation with state-of-the-art
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Dragon Diffuse images

(Figure III.2)

Acc. 95% 0.241mm

Comp. 0.5mm 98.3%

Table III.1: Numerical evaluation of the proposed method for the dragon sequence that

shows accuracy at 95% and completeness at 0.5mm following [136]. (compared to ground

truth)

templeSparseRing dinoSparseRing

accu. (mm) compl. (%) accu. (mm) compl. (%)

Gargallo [56] 1.05 81.9 0.76 90.7

Gargallo [55] 0.79 96.8 0.50 97.7

Our approach 0.73 95.9 0.89 93.9

Table III.2: Results for the temple and dino datasets. For each dataset, accuracy and com-

pleteness scores are given. Results of Gargallo et al. are shown for comparison purposes.

reconstruction. We can see that our method is comparable to state-of-the-art, but the main

contribution here results in giving a unified framework for photo-consistency optimization

that correctly handle visibility using triangular meshes. Additional terms like ballooning

forces or silhouettes terms can now be understood, by only dealing with the reprojection

error criteria.
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Figure III.3: Dino and Temple sequence (input data courtesy of [136]). From left to right: 1
of 16 input images; estimated background images (scaled by 2 for visualization); estimated

radiance; estimated mesh seen from a different viewpoint.
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Comparison with Structured Light Scanning using 6 Cameras

Structured light is a 3D reconstruction technique that has proved to provide accurate

results. In that case a designed pattern is projected onto the object (for example using a

projector). This makes the correspondence between the pattern and capture images easier,

and 3D models can be reconstructed by simple matching algorithms. Recent techniques allow

those approaches to work in multi-view settings [50]. In [50], the authors extract 3D points

by direct matching between projectors and cameras, and by checking the consistency in

multiple views. Finally a surface is extracted via Graph cuts from those points and silhouette

information.

The following Figures III.4 and III.5 show results for multi-view 3D reconstruction of

dynamic scenes, without time consistency. The projected pattern are composed of color

coded lines. In this system there are only 6 cameras along with 6 projectors, that are placed

in circle around the object of interest in order to capture the full 3D shape. From a multi-

view stereo point of view, the projected patterns can also be exploited as additional texture

information onto the images. Then if the pattern is designed to be locally unique, it will

result in a more discriminative photo-consistency, and multi-view stereo can be performed

even though there are only 6 cameras.

From the Figures III.4 and III.5, we can see that our reconstruction is not perfect but

still in some areas performs better than using the structured light system. Please notice that

only 6 cameras where used here, which is a very critical case for multiview stereo. In fact,

each surface point is seen by 1, 2 or 3 cameras at most, since the relative angle between two

cameras is approximately 60 degrees. Then points seen by 3 cameras are watched by two

camera whose angles are 120 degrees, which is an extreme case for stereo and would make

any feature based technique fail to reconstruct points (note that the structured light system

uses nearby camera/projector pairs and therefore performs matching with a 30 degrees of

baseline). In that context, we believe our approach performs very well and that extra cameras

could reduce errors and improve the reconstruction significantly. In our approach, since

consistent points are search directly in 3D and that the projected pattern helps making the

photo-consistency discriminative enough, 3D models can be recovered. Also, it surprisingly

even outperforms structured light systems, See Figures III.4 and III.5. However, without

much effort on both cases on parallelization, GPU computing and optimization, the algorithm

of [50] takes around 20 seconds where our optimization method takes between 5 and 10

minutes for one frame (where most time is spent on last fine resolution iterations).

One other extension of this work is to use motion as an additional reconstruction cue in

order to obtain temporally consistent reconstructions. This would improve the 3D models

and avoid flickering in the results. In this case texture information is hard to extract, since

the texture is mostly the one coming from the projected patterns, and is not attached to the

surface. Then approaches such as [27] can not be straightforwardly applied in this case since

texture cannot be tracked. Finally photometry could also be exploited in this case since the

illumination sources can be easily calibrated (since they are coming from a projector). While

dealing with photometry will be addressed in the next sections using directional or point light
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Figure III.4: Comparison with a structured light multi-view system. From left to right: the

6 input images; the visual hull; the reconstructed shape from [50]; the estimated mesh using

our multi-view stereo approach.
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Figure III.5: Comparison with a structured light multi-view system. From left to right: the

6 input images; the visual hull; the reconstructed shape from [50]; the estimated mesh using

our multi-view stereo approach.
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sources, dealing with projected light pattern would be worth to try and might be part of future

work.

III.2 Lambertian 3D Reconstruction using Illumination

In the previous case, the illumination was not taken into account. In fact the estimated color

of the surface compared to the input images was the estimated radiance of the object (which

was supposed to be Lambertian). However, radiance contains shading, inter-reflections, cast

shadows and other non-Lambertian phenomena. The illumination adds additional cues that

can be used to estimate surface normals. Considering this, shading can be used in order to

recover the geometry of textureless regions. This also allows to separate the surface albedo

from the radiance and allows to do more realistic object relighting.

In this section, we only consider the case of Lambertian surfaces. In particular, this

allows to consider the multi-view Shape From Shading problem (SFS) and the multi-view

Photometric Stereo problem (PS). These problems consist in recovering the 3D shape of a

scene by exploiting the information contained in the shading of the corresponding images. In

contrast to multi-view stereo, the illumination conditions may vary between different views,

and has to be known in advance or has to be estimated. Basically in multi-view photometric

stereo, the images are generated with varying lighting (typically, each point of the surface

must be seen with three different lights). Whereas in multi-view shape from shading, the

lighting is the same for all the images. The SFS problem is therefore less well-posed than

the PS problem. It then needs additional constraints. In SFS, we classically assume that the

reflectance properties are homogeneous over the whole scene.

A solution to such problems would be a surface S such that the images generated from

that surface are very similar to the observed images (i.e. the data). This naturally leads to

formulate the problem as the minimization of an error measure between the observed and

predicted values of pixels. For simplicity, here we are going to consider only Lambertian

scenes illuminated by point light sources. This work can nevertheless be extended to other

parametric reflectance models and to more realistic lighting conditions for example as done

in [79, 163]. For a point x of the surface S , the radiance equation for the ith image is then

Ii(πi(x)) = ρ(x)





ni
L∑

l=1

Li
lν

i
l,S(x)(n(x) · lil(x)) + E0





= R(x,n(x),S) .

(III.9)

Above Li
l and lil are respectively the light intensity color and the light direction of the lth

light in the ith image. νi
l,S(x) is the visibility of the lth light source of the ith image at point

x according to S . The additional term E0 corresponds to the ambient lighting.
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A natural energy functional to be considered can be written as :

E(S) = 1

2

∑

i

∫

Ii

(
Ii(p)−R(π−1

i,S (p),n(π
−1
i,S (p)),S)

)2
dp, (III.10)

see Jin et al. [79] for details.

To minimize this energy, we alternately minimize it with respects to the shape S and to

the albedo ρ.

Let us first fix the albedo and optimize energy (III.10) with respects to the shape. To

simplify, we are going to neglect the variations of the visibility of the light sources νl,S(x)

when the shape is deforming. These variations are null almost everywhere. They are Dirac

functions with a support restricted to the shadow boundaries. In other words, we are neglect-

ing cast shadows information. Practically in the following, this is equivalent to assuming that

R(x,n,S) does not depend on S .

In other respects, as previously done in other applications, let us note that the gradient of

the energy (III.10) is the sum of the gradients associated with each one of the images. In

the sequel we only compute the gradient associated with one image. By assuming that the

camera is a pinhole, we can rewrite this energy for a single image as:

E(S) =
∫

S

g(x,n(x)) · n(x) νS(x) ds , (III.11)

where

g(x,n) = −1

2
(I(π(x))−R(x,n))2

x

x3
z

(III.12)

and where

R(x,n) = ρ(x)

(
nL∑

l=1

Llνl(x)(n · ll(x)) + E0

)

. (III.13)

We can then directly use the results of Section II.4. The gradient is split into three parts: one

for the term depending on normals, one for the interior term, and a last one for the horizon

term.

For the term depending on normals, we have :

Gnorm
k = −

∑

j∈Jk

ej,k ∧
∫

T

Pnj⊤(Dng(x(u),nj)
⊤nj) νS(x(u))du (III.14)

where Pnj⊤(Dng(x,nj)
⊤nj) is the projection of Dng(x,nj)

⊤nj on the tangent plane of the

surface. It can be re-written as Dng(x,nj)
⊤nj −

(
nj ·Dng(x,nj)

⊤nj

)
nj . Here we have

Dng(x,nj) = ρ(x) (I(π(x))−R(x,nj))
x

x3
z

(
nL∑

l=1

Llνl(x)ll(x)
⊤

)

; (III.15)
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x
x3
z

(∑nL

l=1 Llνl(x)ll(x)
⊤
)

being a 3 matrix, so

Dng(x,nj)
⊤nj = ρ(x) (I(π(x))−R(x,nj))

(
x

x3
z

· nj

)(
nL∑

l=1

Llνl(x)ll(x)

)

. (III.16)

The kth component of the interior term is:

Gint
k =

∑

j

Ajnj

∫

T

∇ · g(x(u),nj)φk(u) du , (III.17)

where the sum is on the set of the (completely) visible triangles Sj containing the vertex xk,

and where

∇ · g(x(u),nj) = − (I(π(x))−R(x,n))

×
(
Dπ(x)⊤∇I(x)−∇xR(x,nj)

)
· x

x3
z

. (III.18)

Above, all the terms are explicit at the exception of ∇xR(x,nj). In fact ∇xR(x,nj) =

∇ρ(x)L(x,nj) + ρ(x)∇xL(x,nj) where we denote L(x,nj) =
∑nL

l=1 Llνl(x)(nj · ll(x)) +
E0. The computation of the term ∇xR(x,nj) and ∇xL(x,nj) are detailed and discussed in

Appendix A.2.3.

The kth component of the Horizon term is:

Ghoriz
k = −

∑

Hk,j

1

2

∫ 1

0

L(u)
(

y(u)

|y(u)| ∧Hk,j

)

(1− u)du , (III.19)

where L(u) = −
[
h(T (y(u))) − h(y(u))

]
1

y(u)3z
with h = 1

2
(I(π(x))−R(x,n(x)))2 and

T (y(u)) is the terminator point of y(u).

Then, for a fixed shape S , the optimal albedo ρ(x) is obtained using :

ρ(x) =

∑

i Ii (πi(x))wi(x) νS,i(x)
∑

i

(
∑ni

L

l=1 L
i
lν

i
l,S(x)(n(x) · lil(x)) + E0

)

wi(x) νS,i(x)
, (III.20)

where similarly as in Equation (III.8), the weight function wi depends on the camera model,

here a pinhole model: wi(x) =
n(x)·x
x3
z

.

The gradient descent flow is the same as previously defined, where we alternatively

update the shape S (using Equations (III.14),(III.17) and (III.19)) and the albedo ρ (using

Equation (III.20)). If the albedo is known in advance, this last step is unnecessary. When

we assume that the albedo is homogeneous (single material objects), the denominators and

numerators of the above equation have to be integrated on the whole surface S .
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III.2.1 Experimental Results on Asteroid Reconstruction

Reconstructing 3D objects in Space such as asteroids and planets is of broad interest in the

research space industry. 3D models allow researchers to study the structure of asteroids in

order to understand their history and trajectory. In such a context, active illumination vision

systems can not be applied. However, probes can be sent in orbit around those objects in

order to take pictures of them. Vision in Space has interesting properties. In particular

the simplified image formation model presented in the introduction (Section I.1) is almost

valid and asteroid’s reflectance is very close to Lambertian. In space the single point source

illumination is also valid since the only light source is the sun, and no scattering and diffusion

effects are observable since there is no atmosphere in front of the camera. If sufficiently far

from the asteroids, then the directional light source assumption can also be exploited.

In order to illustrate the multi-view shape from shading approach presented above, we

show an example of a 3D reconstruction of an asteroid. The images were generated from a

dedicated simulator Pangu [125] and given by the company EADS Astrium. First we show an

example where the illumination is fixed with respect to the object. In that case it corresponds

to the multi-view stereovision case presented in Section III.1. Since the sun is fixed with

respect to the asteroid, only the illuminated part of the object can be reconstructed since the

rest is occluded by the light.

��

��
��

��

Figure III.6: Asteroid reconstruction scenario. Left: images taken under different lighting

conditions. Right: Example of images taken around the asteroid.

Finally, asteroids usually turn around themselves, and as a consequence, light conditions

are different for each of the taken images (Figure III.6 illustrates that scenario). Each image

is taken under a single but different light source (with respect to the 3D shape) that can be

modeled as directional if the sun is sufficiently far from the asteroid. Then, the constant

brightness assumption is not valid and multi-view stereo cannot be applied since correspon-

dence will fail. It is in that case necessary to exploit shading using the gradient computed

above in this Section. Figure III.8 shows a reconstructed asteroid by minimizing a similar

energy as Equation (III.11) that has been simplified to match our assumptions:

E(S) =
∑

i

∫

S

(Ii(πi(x))− ρ(x) νS,li(x) n(x) · li)2
n(x) · x

x3
z

νS,i(x) ds . (III.21)
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Figure III.7: Asteroid 3D reconstruction example with fixed illumination (stereo case). Top:

3 of 30 input images; Middle: Initial shape (sphere) and ground truth data; Bottom: two

views of the reconstructed shape using multiview stereo. Parts occluded by the sun cannot

be recovered.
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Figure III.8: Asteroid 3D reconstruction example with illumination changes. Top: 3 of 40
input images; Middle: two views of the reconstructed shape using multiview shape-from-

shading and starting from the visual hull. Bottom: close-up views and details on the ground

truth data (left), the multiview stereo results (Figure III.7) and the multi-view shape from

shading approach (right). Since in this case the light source position is different for each

view, the whole asteroid can be reconstructed by exploiting photometry.
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III.3 Multi-view Normal Integration

In this section, we present an application for integrating surfaces from multiple normal maps

like for instance the one of Chang et al.[23] developed in the level sets framework. Such nor-

mals can for instance be obtained via photometric stereo that uses a single fixed camera and

a moving light source [68, 152]. Having different illumination conditions for one particular

view-point allows to estimate the surface normals (See Chapter I for more details on this). By

integrating this normal field, it is possible to recover the 3D geometry of the scene. This can

be done using the previously described method for normal field integration. However, since

photometric stereo is a vision-based application that allows to recover normals for each pixel

in the image, the energy functional is based on camera modeling and therefore the energy

can be expressed as a reprojection error functional. The gradient descent corresponding to

this problem then directly follows the approach presented in Section II.4.

The problem can be solved by minimizing the following energy functional:

E(S) =
∑

i

∫

I

1

2

(
Ni(p)− n(π−1

S (p))
)2

dp , (III.22)

where N(p) is the normal in input image and n(x) is the normal of the surface S at point x.

As the norms of N and n are equal to 1, for simplicity one can rewrite Equation (III.22) for

a single image as:

E(S) =
∫

I

(
1−N(p) · n(π−1

S )
)
dp . (III.23)

Rewriting it as an integral over the visible surface, we have:

E(S) =
∫

S

(1−N(π(x)) · n(x)) x · n(x)
x3
z

νS(x) ds , (III.24)

which has a similar form as the one used previously for the reprojection error with g(x,n) =

(1−N · n). This way one can use previous results when the energy functional also depends

on the normal. The differential of the energy with respect to a vertex xk for the term due to

the normal is:

Vk ·
∑

j

ej,k ∧
∫

Tj

{(

N − (N · nj)nj

) x · nj

x3
z

νS(x) φk(x(u))

}

du . (III.25)

Then, to get the complete gradient, one has to sum (the gradient corresponding to Equa-

tion (III.25)) with the term due to the differential of a quantity integrated over a visible

volume (containing the interior term and the horizon term). The interior term is null because
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on the triangle ∇ · nj = 0 and because (∇N) · x = 0. The Horizon term is:

Vk ·
∑

Hk,j

1

2

∫ 1

0

{(

nj − n(T (y(u)))
)

·N(u)

y(u) ∧Hk,j

|y(u)| [y(u)]3z
(1− u)

}

du ,

(III.26)

where T (y(u)) is the terminator of the current point y(u) (located behind y(u) in the view

point direction). Note that compared to the gradient in the continuous case, we have here

a lower complexity (we are missing the divergence operator and have instead the vectorial

product with the opposite edge of the triangle). It is more natural to implement on triangular

meshes than the previous continuous case [55] :

∇
(

(N − (N · n)n)x · n
x3
z

+ (N − n)2
x

x3
z

)

νS

+
(
(N − n)2 − (N − n′)2

)xt∇nx

x3
z

δ(x · n)νS . (III.27)

As described previously, this can be extended to multiview photometric stereo methods,

where normals are estimated using reflectance and lighting conditions. Then it is possible to

integrate this normal field estimated for each image pixel in order to recover the full 3D shape

[23, 68, 152]. In the following, we illustrate the approach with different example, where we

also add a smoothness term . The corresponding energy is:

ERS =

∫

S

(1− h(x) · n) ds ,

where h(x) corresponds to the mean of all the normals viewed from each camera at point x.

The corresponding gradient is a straight forward application of Section II.3.3.2.

Figure III.9, III.10 and III.11 illustrates our method on synthetic examples for multi-view

normal field integration. First, we tested the multiview normal integration algorithm on the

simple Ellipse dataset. By using only the term depending on the normal, the surface shrinks.

The horizon term allows to constraint the surface such that it matches the image contours.

It naturally gives boundary conditions for the normal integration and allows to start from

surfaces that does not fully contain the object of interest.

The second experiment shown in Figure III.10 illustrates the approach on a CAD de-

signed mesh. The original mesh as twice more vertices and triangles than the reconstructed

one. Moreover, since we use a coherent gradient descent flow with respect to the mesh

representation, we do not assume normal velocity like in [9, 36], making vertices move to

appropriate locations. This makes the recovered triangles nicely matches image edges even

though the mesh resolution is not very high. Our method can then be used to reconstruct

surfaces with sharp edges which is, as far as we know, not possible using implicit surface

representations.

The third experiment (Figure III.11) shows the efficiency of the proposed method for
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Figure III.9: The ellipse sequence. Top row: 3 of 24 input images showing normal maps of

the object of interest; Bottom row: Initial surface; Intermediate result during the evolution;

Reconstructed surface.

handling complex surfaces. The initial surface is the visual hull and a coarse to fine approach

is used for the evolution. Details of the result are well recovered, and the final shape is very

similar to the ground truth even though the input images have low resolution (640 × 480).

Using photometric information, our method can then be used in order to obtain high quality

meshes.

In order to compare ours results to state-of-the-art methods, we tested our approach on

the dynamic photometric stereo dataset provided by Vlasic et al. [152]. It is composed of 8

images associated with 8 normal maps. The presented approach can directly be applied to

their dataset by performing normal integration. Figure III.12 illustrates those results. One of

the images shows the shape obtained without using the horizon term. In this case the surface

shrinks toward the empty set. The result on the right is obtained using the same flow plus

the one of the horizon term, which yields the expected result. Integrating the normal field

gives good high frequency and details, but is poor for low frequency due to the integration. In

these conditions, mixing multiview stereo and multiview normal field integration will provide

powerful 3D reconstruction algorithms [118, 152]. Figure III.13 shows the results obtained

by [152] along with ours. In their paper, the authors compute several normal maps from

each view, and then register and merge the different integrations in order to obtain the final

mesh. In this context they have troubles in recovering parts where the normal maps contain

occluding contours. Since our approach is surface-based, we can better exploit the multi-view

system in the reconstruction process and the 3D position of the surface is more accurate even

though both methods nicely recover shape details (note that there are only 8 images). In fact,

Figure III.13 also shows the textured meshes obtained by reprojecting camera images onto the
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Figure III.10: The Fandisk sequence. From Top to Bottom rows: 3 of 24 input images

showing normal maps of the object of interest; original CAD model; reconstructed mesh.

The last column shows details of the meshes with the associated triangulation. It shows that

the coherent gradient flow makes triangle edges match with the data.
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Figure III.11: The dragon sequence (mesh obtained from Stanford repository [1]). Top row:

4 of 24 input images (640× 480) showing normal maps of the object of interest; From top to

bottom: Initial surface; Ground truth shape; Reconstructed surface. Rendering is performed

using ambient vertex occlusion and flat shading so that it displays the surface without missing

any details.
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Figure III.12: MIT Sequence (Courtesy of [152]). Top row: 3 of 8 input images and normals

(1024× 1024). Bottom row, from left to right: visual hull; result using Section III.3 without

using the horizon term; result using Section III.3 with the horizon term; result of [152].

mesh. This emphasize the fact that even though the recovered surface of [152] visually looks

really nice, they suffer from the integration bias and registration errors which leads to slightly

incorrect 3D positions, as well as incomplete surface recovery. For example, the two images

seeing the right ear reproject in different locations, creating a non-coherent textured surface

- other problems are shown in red. This might result in wrong visual artifacts for relighting

purposes. In contrast, our approach naturally takes advantage of the multi-view information.

Also, our approach is purely image-based and does not use pre or post-processing such as re-

estimating (and smoothing) the normal maps or performing hole filling like in [152]. Some

part like the cap are not well recovered in our case, mainly due to noise and missing normals

in the input images, but also by the fact we use a closed surface. Those are still promising

results for reconstruction high quality 3D models.
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Figure III.13: Results and comparison with [152]. From left to right: final shape of [152];

corresponding mean texture from visible cameras; result with the proposed approach; corre-

sponding mean texture from visible cameras.

III.4 Conclusion

In this chapter we implement deformable meshes in order to solve 3D reconstruction from

images problems. The gradient flows described in Chapter II is used in order to optimize

triangular meshes via gradient descent. The proposed approach presents several benefits:

• The same framework can equally be applied to a large number of multi-view recon-

struction algorithms.

• The energy functional that is minimized can be easily adapted to a particular appli-

cation, by defining an appropriate error measure exploiting stereo matching, shading,

occluding contours or any other cue.

• A coarse-to-fine multi-resolution scheme is adapted so that even being a gradient de-

scent based method, good results can be achieved.
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• If the error metric is discriminative enough, a small number of images can be con-

sidered to recover full dense and high quality models. We present two example, one

for stereo using only six cameras and an other one exploiting photometric stereo using

height cameras. In both cases full dense models are reconstructed.

• The approach is flexible with the camera model being used. Even though pinhole

camera models were used here, this can straightforwardly be applied to many others

such as push-broom cameras.

• Contrary to previous works, during the evolution, we correctly deal with visibility

changes by expressing the exact gradient of the reprojection error functional. In par-

ticular, exactly as in the continuous case [56], this forces the contour generators of

the surface to appear at their correct location in the images and reduces the minimal

surface bias from which variational methods suffer. This is particularly important in

photometric approaches where flows tend to oversmooth the solution.

• Gradient computation is done directly with respect to the discrete representation of the

surface based on triangular meshes. This allows for coherent gradient flows that tend

to place the mesh vertices to their correct locations and make triangle edges match with

the data.

• Triangular meshes offer more flexibility and allow to obtain higher quality models than

previous similar approaches using Level Sets, while using the same variational models

[80, 79, 163].

Discussion

While not being perfect, the results presented in this chapter illustrate the fact 3D models

can be recovered with simple energy functionals and simple gradient descent. This leads to

several difficulties and limitations, but also to place for further improvements:

• The presented error measures are simple since this is just the sum of squared differ-

ences between pixel intensities. One may define a more robust cost measure to improve

robustness such as for example [131] who already proposed a global error metric based

on cross-correlations that has even been used using triangle meshes [154].

• While all experiments start from a simple sphere or a visual hull, many approaches

have been proposed to better initialize 3D meshes, for example from point clouds [75,

95]. This would speed up the optimization and avoid local minimas.

• The way the surface is optimized might be improved since it uses simple L2 gradient

descent. One may change the gradient metric, make the functional convex, or change

the optimization algorithm in order to improve robustness or speed. Changing the
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gradient metric allows to get more coherent gradient descent flows [24, 174]. This

can be easily applied since that corresponds to a straightforward extension of [39] that

already does it using triangle meshes.

• While this work focus more on the modeling part, there is place for implementation

improvements especially via robust estimators, parallelism and GPU computations.

• The thesis however shows that it can be successfully applied for mesh refinement in a

variety of cases, including geometric flows that depends on the surface’s normal and/or

visibility. Moreover one may adapt its error metric g for concerned applications - for

example adding volumetric flows such as silhouettes constraints or edge attachment

weight as done in geodesic active contour methods. In all cases adapting the metric is

straight forward and its minimization via L2 gradient descent is a direct application of

the presented approach.

• Finally, in this work we used deformable meshes which imply remeshing (in particular

for topology changes) during the optimization. In this context, removing points might

slightly change the objective functional. One additional improvement would be to

change the remeshing algorithm in order to completely ensure the spatial consistency

in the optimization process, but this is out of the scope of this thesis and is still an open

research area.



CHAPTER IV

Segmentation as a 3D Reconstruction

Prior

Multi-view shape reconstruction usually exploits the redundancy of information in the

images, either by the fact several views of a same point are available, or that appearances

under different lighting conditions can be observed. In this chapter we take a more surface-

centered strategy, where we have a look at the redundancy of information such as color,

texture or reflectance that can be exploited directly on the surface itself. By using the fact

that objects are defined by a finite set of materials, we can segment those properties and

classify them on the shape.

This chapter reviews recent advances in variational multi-labels segmentation using con-

vex relaxation. Those global methods have been proved to be robust to both initialization

and noise. We apply those methods to segment piecewise constant regions on 3D shapes.

We show in particular how this can be implemented on triangular surface meshes via gradi-

ent descent methods. We finally discuss how this could be integrated in photometric-based

multi-view reconstruction in order to constrain reflectance estimation for instance.
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Being on the image domain or the shape itself, segmentation offers semantic information

about the scene. This decomposition of the scene can be used to improve 3D reconstruc-

tion algorithms. For example, visual hull based techniques rely on silhouettes, which is the
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segmentation of the object of interest over images. Visual hull can also be seen as a seg-

mentation of the 3D space [159]. One good example is body reconstruction. The skin of

the person, on his arms, hands, or on his face, share the same reflectance properties. Then

global segmentation approaches offer significant advantage towards local methods because

all those regions are considered in the same cluster. Following the same idea, a shirt or a pant

is usually composed of one or two reflectance models.

In the previous chapters, we have seen that 3D reconstruction from images can be solved

by minimizing a proper energy functional. This energy depends on an error metric, which

is generally designed for particular reconstruction purposes. For example, one could use a

proper photo-consistency measure for textured objects, or use a photometric cost designed

for smooth uniform Lambertian surfaces. However, real-world objects are not composed of

perfect textured surfaces, or purely uniform Lambertian materials. Real-world objects are a

mix of those type of reflectance since they are usually composed of a finite number of mate-

rials. In that context, segmentation can be used on the scene to tell the algorithm what kind

of information to use. For example in the Lambertian case, a binary segmentation algorithm

can distinguish textured and textureless areas. Then textured parts could be recovered using

multi-view stereo, while textureless areas could exploit shape from shading techniques.

The same idea could be applied to reflectance models instead of reconstruction models.

Unfortunately, there does not exist a single reflectance model that encompasses all kind of

object materials. We saw in Section I.1 that depending on the kind of objects one wants to re-

construct, models are valid under certain assumptions (mainly depending on specular/diffuse

and smooth/rough surface properties). Then, if segmentation can be performed to identify

what models are best to use, algorithms can be adapted to concerned parts of the scene.

Though this is our main motivation to exploit segmentation as an additional prior for models

and algorithms, this chapter focuses on segmentation of data on surfaces. We describe and

give ideas on how to exploit this for improving 3D reconstruction algorithms, but further

experimental results and analysis will be part of future work.

In the following we describe recent advances in image segmentation, as well as how this

can be applied to segment surfaces in 3D. We also describe how incorporating semantic infor-

mation can be useful to improve 3D reconstruction, or make some algorithms possible, such

as multi-view shape from shading of scenes composed of several albedos, like for instance in

Jin et al. [83]. In particular we are interested in global segmentation approaches, from which

recent techniques offer convex solutions. This is important because if the reflectance models

are known, it assures consistency in the segmentation (for example across multi-view images

or in the temporal domain). After describing how those methods can be applied on images,

we show one way to solve it on arbitrary 2D manifolds. In particular, since triangular meshes

are now popular, and is the base of our work in previous chapters, we show how to perform

segmentation using gradient descent based approaches.
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IV.1 Global Minimization Models for Image Segmentation

Image segmentation aims to partition a given image into several meaningful regions based

on certain attributes such as intensity, texture, color, etc. This problem is one of the most

challenging and important problems in computer vision, as well as many other fields of image

processing such as medical imaging. Many approaches have been proposed to solve image

segmentation problems. In particular, via gradient descents, variational methods for image

segmentation have had a great success, such as snakes [85], geodesic active contours [18],

geodesic active regions [124] and the Chan-Vese models [21]. See for example Cremers

et al. [29] for a recent review of different approaches. Yet, the main drawback of those

methods is the existence of local minima due to the non-convexity of the energy functionals.

As a consequence, minimizing those functionals by gradient descent methods makes the

initialization critical.

To obtain global minima, some previous image segmentation works have used different

optimization techniques: For example the graph-cuts in a fully discrete setting, see [13, 88,

93] and the references therein. Nevertheless, while binary segmentation methods based on

graph-cuts assure to get a global minima, multi-region segmentation algorithms are based on

sequences of graph-cuts which cannot guarantee a global optimization.

Recently, some authors have tried to handle the problem in another direction. Instead

of working on the optimization techniques in order to compute the minima of non-convex

problems, they have reformulated the energy in order to get a convex problem [5, 14, 19, 20,

22, 102, 128, 166]. These segmentation techniques are based on TV-regularizers and aim

at finding characteristic functions that minimize the objective functions. Obtaining global

minima becomes easy and can be done by simply performing a gradient descent. Also the

initialization problem vanishes: the algorithm can start from any initialization and obtains

the same result. The multi-region segmentation models proposed by [19, 102, 166] are rather

similar, the work of Pock et al. [128] (inspired form Ishikawa’s [74]) differs from the fact that

it deals with ordered labels and uses a regularization term which favors transitions between

nearby labels. This makes sense in their stereo application where the ordering is due to

depth, but it is not the case when we deal with independent labels. Here, we adopt the model

of [19, 102, 166] which is more appropriate to the applications we have in mind (the fact that

real-life scenes are made by a finite number of independent materials in 3D reconstruction

problems) and we adapt this image labeling model to manifolds.

IV.1.1 Convex Binary Segmentation

In this section, we describe the convex image segmentation model we will use in this thesis.

To make this model comprehensible and intuitive, let us first remind of the region-based

active contour model of Chan and Vese [21]. Here we show that the energy functional of

Chan and Vese, which is the piecewise constant case of the Mumford-Shah model ([113]),

can be recast as a convex functional in order to find the global minimizer of the original

energy functional.

The Chan-Vese model [21], which is formulated in the level set framework, partition a
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given image into two subregions. For a given image I , the idea is to find a subset Σ of

a bounded domain Ω ⊂ R
N , whose boundary ∂Σ is represented by the zero level set of

function φ : Ω → R
N . This is done by minimizing the energy functional:

min
φ,c1,c2

∫

Ω

{

Hε(φ)(I(p)− c1)
2

+ (1−Hε(φ))(I(p)− c2)
2 + λ |∇Hε(φ)|

}

dp , (IV.1)

where λ ∈ R, c1, c2 ∈ R and Hε is a regularized Heaviside function, which models a charac-

teristic function (see [21]).

Since the energy functional (IV.1) is not convex, minimizing it by gradient descent meth-

ods may result in reaching local minima. By relaxing the characteristic function Hε(φ) by

an arbitrary function y bounded between 0 and 1, Chan et al. [22] showed that minimizing

(IV.1) can be rewritten as the following convex minimization problem:

min
0≤y≤1

{∫

Ω

{

y(p)(I(p)− c1)
2

+ (1− y(p))(I(p)− c2)
2
}

dp+ λ

∫

Ω

|∇y| dp
}

, (IV.2)

c1 and c2 being fixed, in R. As proved in [14, 22], if y(x) is a minimizer of (IV.2), then for

a.e. µ ∈ [0, 1], the set Σ(µ) = {x ∈ Ω, y(x) > µ} is a minimizer of the Mumford-Shah

functional [113], implying that the solution to (IV.1) can be obtained by thresholding y at

any arbitrary threshold between 0 and 1. The last term of Equation (IV.2) is called the Total

Variation of y.

IV.1.2 Multi-Region Segmentation of an Image

Recently, several authors [19, 102, 166] have extended the convex formulation (IV.2) to

multi-region segmentation:

min
y∈K

{∫

Ω

< y(p), s(p) > +λ |∇y(p)| dp
}

, (IV.3)

where Km is the set of function y : Ω → R
m such that

{

∀ p ∈ Ω, ∀ p ∈ [1..m] : yp(p) ≥ 0,
m∑

p=1

yp(p) = 1

}

. (IV.4)

Km is defined on a standard m-simplex and basically represents the convex hull of (m + 1)

points in an Euclidean space of dimension m or higher. |∇y(p)| corresponds to
√∑

p |∇yp(p)|2,
where |.| denotes the L2 norm. m denotes the number of labels and s(p) is an m-dimensional
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Figure IV.1: Example of segmentation on a manifold. (a) The Input textured surface. (b)

The triangular representation of the surface with the retrieved contour (in red). (c) Surface

colored with the mean values of the segmented regions (and surface shading).

vector; sp(p) indicates the affinity of the data at point p with class p. From a statistical point

of view, it represents the likelihood probability to belong to that class. The convex domain

naturally allows direct competition between the labeling.

IV.2 Segmentation on Manifolds via Convex Relaxation

In this section, we address the problem of segmenting data defined on manifolds (typically

a 2-surface in R
3) into a set of multiple regions of uniform properties such as piecewise

constant attributes. The ability to solve such a problem offers significant new possibilities

in a number of applications. For example, in 3D reconstruction (see Jin et al. [83]), a

segmentation into piecewise constant data of the reconstructed surface allows to naturally

introduce constraints on the materials of the scene.

In particular, we propose a numerical method when the manifold is represented by a tri-

angular mesh. Based on recent image segmentation models, our method minimizes a convex

energy and then enjoys significant favorable properties: it is robust to initialization and avoid

the problem of the existence of local minima present in many variational models. The con-

tributions of this chapter are threefold: firstly we adapt the convex image labeling model to

manifolds; in particular the total variation formulation. Secondly we show how to implement

the proposed method on triangular meshes, and finally we show how to use and combine the

method in other computer vision problems, such as 3D reconstruction. We demonstrate the

efficiency of our method by testing it on various data.

IV.2.1 A Convex Multi-Region Segmentation Formulation on Manifolds

We extend the multi-region convex model (IV.3) defined in the previous Section IV.1.2 on

a manifold, and we show how to optimize the associated energy for a surface represented
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by a mesh. To our best knowledge, these convex formulations (IV.2,IV.3) have been defined

only on open subsets of R2 which correspond to image domains, as described in the previous

section.

Let S be a Riemannian manifold. Typically, S could be a smooth 2D surface of R
3.

Energy (IV.3) is adapted as follows:

min
y∈K

{∫

S

< y(x), s(x) > +λ|∇S y(x)| ds
}

, (IV.5)

where now the functions y are defined on S instead of Ω, |.| is the Riemannian norm, ∇S is

the intrinsic gradient on S and ds is the manifold’s element measure (surface’s area measure

for 2D manifolds).

Now, let us consider a manifold represented by a mesh. The following results apply to

manifolds with any topology. Let X be a (piecewise linear) polyhedron representation of

the surface S , defined by a set of vertices xk : X = {xk} and let l be the cardinality of

X (the number of vertices). As in the finite elements literature, we define φk : S → R as

the piecewise affine, interpolating basis function such that φk(xk) = 1 and φk(xi) = 0 if

i 6= k. The vector valued field Y = {yk} is defined on all vertices x of the polyhedron

X. Y can be naturally extended on S by a piecewise affine vector valued field on S . We

denote this extension y(x) =
∑

k ykφk(x). To make the thesis easier to read and because of

space limitations, we assume that the manifold is a 2D surface of R3. However, the following

method applies to any dimension. Let Sj be the jth triangle of the mesh. The multi-region

segmentation energy can then be rewritten as

∑

j

∑

k

〈

yk,

∫

Sj

φk(x)s(x)ds
〉

+ λ

∫

Sj

|∇S y(x)|ds, (IV.6)

where y is constrained to be in K. The first term of (IV.6) is explicitly written with respect

to Y. In order to make the total variation term explicit with respect to Y, we first consider a

local paramtrization (u, v) on the manifold. Following [34, 78], we rewrite the right term of

Equation (IV.6) using fundamental forms:

∇S y =

[
∂x

∂u

∂x

∂v

] [
E F

F G

]−1 [
yu

yv

]

, and then

|∇S y| =

√

[
yu yv

]
[
E F

F G

]−1 [
yu

yv

]

,

where E =
∂x

∂u
· ∂x
∂u

, F =
∂x

∂u
· ∂x
∂v

and G =
∂x

∂v
· ∂x
∂v

are coefficients of the first fun-

damental form (see [34, 78]). yu and yv are partial derivatives of y with respects to u

and v respectively. Considering the mesh representation, we parametrize the triangle Sj

by x(u, v) = xj,1 + u −−−−→xj,1xj,2 + v −−−−→xj,1xj,3 where xj,1, xj,2 and xj,3 are the three vertices

associated with the triangle Sj and where (u, v) ∈ T = {(u, v)|u ∈ [0, 1] and v ∈ [0, 1−u]}.
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We then have
∫

Sj
|∇S y(x)|ds =

∫

T

√
∑

p

yp
2
u
G− 2ypu

· ypv
F+ yp

2
v
E dudv . (IV.7)

ypu
and ypv

are partial derivatives of yp with respects to u and v respectively. Here the

reader will easily verify that E, F, G, ypu
and ypv

are constant functions on Sj and that

their respective values are equal to Ej = |xj,2 − xj,1|2, Fj =< xj,2 − xj,1,xj,3 − xj,1 >,

Gj = |xj,3 − xj,1|2, yp
j
u
= yj,2p − yj,1p and yp

j
v
= yj,3p − yj,1p, where yj,1, yj,2 and yj,3 are

the values of y at vertices xj,1, xj,2 and xj,3 respectively. Now the term inside the integral

of (IV.7) does not depend on u and v. The convex multi-region segmentation energy on the

meshed manifold becomes:

E(Y) =
∑

j

∑

k

〈

yk,

∫

Sj

φk(x)s(x)ds
〉

+
λ

2

∑

j

√
∑

p

yp
j
u

2
Gj − 2yp

j
u
· yp

j
v
Fj + yp

j
v

2
Ej . (IV.8)

IV.2.2 Gradient Descent Method

When the (surface) manifold is represented by a mesh, the convex multi-region segmentation

model then leads to optimizing the convex energy (IV.8) with respect to Y ∈ R
l×m, with the

convex constraint Y ∈ K; K being the set {Y s.t. ∀k,
∑

p ykp = 1 and ∀p, ykp ≥ 0}. This

convex constrained optimization problem on R
l×m can be solved by the projected gradient

method [12], which consists in generating the sequence U t via:

Yt+1 = ProjK(Y
t − τ∇E(Yt)) , (IV.9)

for a fixed time step τ > 0, until |Yt − Yt−1|∞ ≤ δ, a small constant. ProjK is the

projection on the convex set K. In other words, we iteratively process gradient descent steps

and projections of the yk on the set K. One interesting property of simplicies like the set

K is that they are composed of simplicies of lower dimensionality, and then their projection

can be computed recursively using a low dimensional set where projection is easy, such as

triangle, segments or points. These projections can be done via Michelot’s algorithm [109]

that uses that property. From energy (IV.8) we easily obtain:

∇ ∂E

∂ykp

(Y) =
∑

j∈N (k)

[
∫

Sj

φk(x)s(x)ds

]

p

− λ

2
Q (ξ + ε)−

1
2 , (IV.10)

where Q = (yj,2p−ykp)(Gj−Fj)+(yj,3p−ykp)(Ej−Fj), ξ is the term in the squared root of

(IV.8), and N (k) is the 1-ring neighborhood of vertex k. Figure IV.2 shows an example of a 3-

simplex, with random points and their projections onto the simplex. As in [22], we regularize
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the term ξ by incorporating a small value ε inside the squared root to avoid instabilities when

the gradient of y is 0.

XX

-0.48-0.48
-0.0025-0.0025

0.480.48
0.950.95

1.41.4

YY

1.51.5

0.970.97

0.490.49

0.00450.0045

-0.48-0.48

ZZ

1.41.4

0.930.93

0.480.48

0.0270.027

-0.42-0.42

Figure IV.2: An example of a 3-dimensional convex set (a standard 3-simplex). Random

points in R
3 (blue) are projected onto the simplex (into red points) using recursive projection

on sub-simplicies.

Then from Equation (IV.10), we can obtain the complete L2 gradient by following Chap-

ter II.

IV.3 Applications with Image-Based Segmentation Cues

IV.3.1 Applications

In the previous sections the data term of the segmentation model s is assumed to be known

(Equation IV.5). This term depends on parameters than can eventually be estimated before-

hand, in cases where the distribution models are known in advance (such as mean colors,

Gaussian radiance distribution and so on). In the applications, this term can also be esti-

mated, and depends on some parameters that have to be optimized. However we will con-

sider that the number of regions to segment is known in advance, similarly as in K-Means

approaches. The convex problem can be solved by alternating optimization of the parame-

ters in a bi-convex way. For fixed parameters of s we update y and vice-versa. y is updated

according to the method presented in section IV.2.2. In practice we update the parameters of

s every r update iterations of y (r is chosen arbitrary; we fix r = 10 in our experiments).

Piecewise Constant Data Segmentation

Let us consider the case where the data we want to segment are assumed to be piecewise

constant. Here a natural expression for sp(x) is to use the squared error between the scalar
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or vector-valued data C(x) at the point x and the value µp associated with the label p (µp

having the same dimension as the data):

sp(x) = (C(x)− µp)
T (C(x)− µp) .

The optimization of the energy (IV.5) with respect to µp gives:

µp =

∫

S
yp(x) C(x)ds
∫

S
yp(x)ds

,

which corresponds to the mean value of the data of the associated region. Note that the

previous model can be easily extended to any probability density function Dp. For example,

Dp can be a multivariate Gaussian density function of mean µp and covariance Σp, and then

we would have:

sp(x) = − ln(Dp(x, µp,Σp)) , with

Dp(x, µp,Σp) =
1

m
√
2π|Σ|

e−
1
2
(C(x)−µp)TΣ−1

p (C(x)−µp) .

Segmentation in 3D Reconstruction Problems

Such segmentation framework can be incorporated in 3D Reconstruction applications.

In such applications, it can be interesting to segment a particular region, or all parts of the

surface sharing the same reflectance properties. In 3D reconstruction, most of the variational

methods yield to minimizing an energy of the form

E(S) =
∑

i

∫

S

g(x)
xi · n
x3
i,z

νS(x) ds , (IV.11)

see for example [32, 79, 78]. Moreover, if we choose

g(x) =
m∑

p=1

yp(x)(Ii(πi(x))− µp)
T (Ii(πi(x))− µp) ,

where πi(x) is the projection of the surface point x into the ith image and Ii : w 7→ Ii(w)

is the function which associates to each pixel w, its color on the ith image. We then get an

extension of the stereoscopic segmentation method proposed by [159] to the case where the

surface is composed of more than two regions of piecewise constant radiance. Also, contrary

to our method, the segmentation approach proposed in [159] is subject to local minima.

Finally, the optimization of the energy (IV.5) with respect to µp gives:

µp =

∫

S
yp(x)

∑

i Ii(πi(x))
x · n
x3
z

νS,i(x)ds

∫

S
yp(x)

∑

i

x · n
x3
z

νS,i(x)ds
.
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If we chose g(x) =

m∑

p=1

yp(x)(Ii(πi(x))− ρp n(x) · L)T (Ii(πi(x))− ρp n(x) · L),

where N(x) is the normal to the surface at the point x and L is the vector corresponding to the

light source illuminating the scene, then we get an extension of the (Lambertian) multi-view

shape from shading method proposed by [83] for surfaces with piecewise constant albedo.

In the same way, contrary to our approach, the method proposed by [83] is limited to two

regions segmentation and is strongly subject to local minima. The optimization of energy

(IV.5) with respect to the albedo gives:

ρp =

∫

S
yp(x)

∑

i Ii(πi(x))n(x) · L
x · n
x3
z

νS,i(x)ds

∫

S
yp(x)(n(x) · L)2

∑

i

x · n
x3
z

νS,i(x)ds
.

The theoretical and experimental study of these algorithms will be the topic of forthcoming

works.

IV.3.2 Experiments

In order to validate the proposed multi-region segmentation approach on meshes, we present

different experiments on synthetic as well as realistic data. In practice as explained in pre-

vious section, the segmentation is solved by alternating between region parameters and the

segmentation variable Y, with a known number of regions. The algorithm complexity is lin-

early dependent on the number of facets and the number of classes. Experiments have been

performed on a 2.66GHz linux machine and take about 200 seconds on a mesh of 200,000

facets and for a 4 regions segmentation. The values of λ have been manually chosen in each

example but a value of 0.01 gives reasonable results in most cases.

The Two Region Case

Figures IV.3 and IV.4 show examples of our algorithm using a synthetic image mapped onto

a mesh for the Stanford bunny model. Noise has been added to the image. Here, we show

that our algorithm performs well on the given example and that the final solution is binary.

Moreover it is robust to the initialization of the scalar function Y. Note that the retrieved

solution that has been displayed is the auxiliary value y, and not the segmented constant

values µ1 and µ2. Also because the energy functional is convex in y only and the values µ1

and µ2 are optimized during the evolution, they can be assigned to the region corresponding

to either y = (1, 0) or y = (0, 1), this explains why the last initialization do not show

the same values of y but an inverted one. In practice, although the total functional is not

fully convex, we obtain the same results and really similar µ1 and µ2 for each example.

We respectively obtain (µ1 = 140.778 , µ2 = 231.003), (µ1 = 140.746 , µ2 = 231.01),

(µ1 = 140.75 , µ2 = 231.03 ) and (µ1 = 230.992 , µ2 = 140.765) for the four different
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Figure IV.3: Segmentation result on the synthesized Stanford bunny surface. (a) Input

shaded object. (b) Input mesh with synthetic texture mapping. (c) Input textured mesh

(shaded visualization) and final contour (in red).

initializations. Note that in the last column, values of µ1 and µ2 are inverted and the solution

y as well. In this example, geodesic active contours or level sets methods would tend to the

closest local minima from the initialization as the texture is not clearly binary. Nevertheless,

as the method is global here, segmenting a particular region should be done using additional

cues.

Figure IV.5 present segmented surfaces from real-world textures that have been mapped

onto a mesh, in the case of the two-phases segmentation. We show different examples from

classical images used in segmentation. Note that the segmentation is done on the mesh using

the method described in this chapter and not on an image. The experiments show three

different non binary images and their segmentation into two different regions. As expected

the results are binary even though the initial values of the segments are random values. The

mean values of each region is estimated during the process as described before, and the

parameters λ can be adjusted to add more smoothness to the segmentation. As shown by

experiments, even though the initialization is random and the parameters of each region are

computed during the evolution, the algorithm still converges to the desired solution as a

binary solution.

Dealing with Multiple Regions

Here we show the efficiency of the proposed method when dealing with multiple regions.

Different examples are shown, first with synthetic textures on which noise has been added,

and then on meshes textured by real-world images like previous examples. Note that the

number of regions is initially given and is not automatically estimated.

In Figure IV.6, the experiment shows noisy texture on meshes, the segmentation result

using K-Means, and the result of our TV-based algorithm on meshes. Because the K-Means

algorithm does not take into account the spatial coherence of points, the result is noisy. On

the other hand, the TV regularization allows coherence in the scene and the segmentation

is close to the expected solution. In addition to be robust to initialization, our approach is
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Figure IV.4: The evolution on the synthesized bunny surface. Different initialization of Y

(first row); Intermediate values of Y (second row); The obtained solution Y (third row); The

obtained mean values (fourth row) with shading.

robust to noise.

We then tested our multi-region segmentation approach on various data from real-world

images [107], see Figure IV.7.

Figure IV.8 also shows result on more image regions, in that case six regions. On that

figure we also put the histogram of the convex variable Y onto the convex domain K. Since

a 6-Simplex can only be represented in dimension 5 or higher, we represent it as a 6-node

connected graph on a 2D plane. Each node represents the vertices of the simplex, and since

the final values should be binary, pics should appear at the vertices locations like it is the case

in Figure IV.8. Each node represents each class ot fhe segmentation.

As an example, we applied our approach to segment mean curvature on a mesh using

three different regions. Figure IV.9 shows that we are able to segment concave and convex

parts of the mesh.
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Figure IV.5: Segmentation results on meshes in the two-region segmentation on three differ-

ent examples. From top to bottom: Input textured mesh; Mesh shape where the segmentation

is performed and the initial random value of one component of Y; Recovered mean values

of each region; Segmented object.

Finally, in Figure IV.10, we show the examples of a 3D mesh obtained by 3D recon-

struction algorithms, as the one in [144, 167]. The last row shows the obtained color-based

labeling (into three regions). Even though the texture is far from being binary, the segmenta-

tion is the expected one. For instance in the result, we nicely recover the skin, the pant and

the shirt. Here again, initialization was random. Figure IV.10 shows a graph of the histogram

evolution of Y during the optimization.

For comparison of the convex image multi-region segmentation model (IV.3) with other

methods, we refer to [102] which shows quantitative and qualitative comparisons with be-

lief propagation, sequential belief propagation, graph cuts with alpha-expansion, graph cuts

with alpha-beta swap and sequential tree reweighted belief propagation methods. The experi-

ments show that the generated labeling is comparable to state-of-the-art discrete optimization

methods.
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Figure IV.6: Segmentation results on meshes in the multi-region case on synthesized ex-

amples inspired from [102]. (a) Input textured mesh (same shape as previous Butterfly and

Horses data). (b) Clustering using K-Means algorithm. (c) Recovered mean values of each

region obtained by our approach.

Figure IV.7: Segmentation results on meshes in the multi-region case. Top row: Horse data

set and its segmentation for three regions. Bottom row: Four regions labeling of the Butterfly

data. (a) Input textured mesh; (b) Recovered mean values of each region obtained by our

approach; (c) One of the segmented regions.

This chapter shows a proof of concept of multi-labeling on triangular meshes. It works

well on the presented examples, however there is still a long way to go to jointly use it with
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Figure IV.8: Segmentation results and histogram evolution of the convex variable onto a

graph representation of the convex set K (a standard 6-simplex here). The six nodes of the

graph corresponds to the six values of the mean colors of each region.

Figure IV.9: Segmentation results on mesh curvature in 3 regions. (a) Input mesh. (b) Mean

Curvature visualization. (c) Simple thresholding of the mean curvature. (d) Segmentation

result of the mean curvature into three regions with our approach.

3D reconstruction as originally motivated. Unfortunately, the optimization is too slow to

alternatively update the shape, the reflectance and the segmentation. This is a direct conse-

quence of using a gradient descent flow, known to be slow for such energy. In fact, recent

methods allow to compute the same energies defined over images in the same way more ef-

ficiently. In particular Primal-Dual approaches have been recently very promising and fast

methods [20, 101]. Alternatively, a mesh being a graph structure, one may suggest to use

Graph-cut techniques, whose recent developments in multi-labeling allow optimal solutions
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Figure IV.10: Segmentation result on a colored mesh obtained by multiview stereo algo-

rithm. Front view (left) and back view (right). From top to bottom: Original input colored

mesh and the associated 3D shape; Result of the segmentation into three regions obtained by

our algorithm; Recovered mean values displayed for each region; Histogram of the convex

variable.
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as well. This would be worth to extend our work to those methods in future experiments.

One other benefit of our work is to show how Total Variation can be performed on triangle

meshes. While used in this work as a segmentation regularizer, this could be used as a

general regularization for surface properties such as reflectance, scene flow or other. Let w

be a m-dimensional vector defined over a surface S , then this corresponds to minimizing the

following equation:

E(w) =

∫

S

|∇S w(x)| ds .

Then its gradient flow with respect to w is a straightforward application of this chapter.

IV.4 Conclusion

In this chapter we propose a variational method for segmenting data on manifolds into regions

of constant properties. Based on recent image processing procedures, we adapt methods

based on convex relaxation onto surfaces. The convex formulation makes the proposed model

robust to initialization. Moreover, the total variation regularizer makes the method robust

to noise while preserving region boundaries. We show how to implement the method, in

particular how to compute the gradient of the total variation term, when the surface has

a discrete representation such as triangular meshes. We have demonstrated the efficiency

of our method by testing it on various synthetic and realistic data from computer vision

applications.





CHAPTER V

Multi-view Helmholtz Stereovision:

Towards 3D Modeling of Arbitrary

Objects

Reconstructing objects of non-Lambertian reflectance is a difficult task as discussed earlier

and seen in previous chapters. Several approaches have been proposed to face those limi-

tations more or less elegantly. One interesting approach is to exploit BRDF properties and

in particular the fact that it is reciprocal. This is called Helmholtz reciprocity and has been

previously exploited in 3D reconstruction algorithms and referred as Helmholtz Stereopsis.

Helmholtz stereovision algorithms are limited to binocular stereovision or depth maps

reconstruction. In this chapter, we extend these methods to recover the full 3D shape of the

objects of a scene from multiview Helmholtz stereopsis. Thus, we are able to reconstruct

the complete three-dimensional shape of objects made of any arbitrary and unknown bidirec-

tional reflectance distribution function. Unlike previous methods, this can be achieved using

a full surface representation model. In particular occlusions (self occlusions as well as cast

shadows) are easier to handle in the surface optimization process. As described in previous

chapters, we use a triangular mesh representation which allows to naturally specify relation-

ships between the geometry of a point of the scene and its surface normal. We show how

to implement the presented approach using the coherent gradient descent flow previously

presented in Chapter II.
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V.1 Introduction

Reconstructing shape and appearance of objects from images is still one of the major prob-

lems in computer vision and graphics. In this work, we are interested in recovering a full and

dense representation of the object’s three-dimensional shape. Multi-view reconstruction sys-

tems are commonly used to estimate such a model, as they provide information from many

viewpoints around the object of interest. Among these approaches, variational methods have

been popular because they can be used to solve a wide variety of vision problems. The idea

is to minimize an energy functional that depends on the considered object surface and on the

input images, whose minima is reached at the object of interest. Many methods have been

proposed in order to solve this problem, but these approaches are often limited in the kind

of appearance they can handle. To overcome these limitations, we exploit Helmholtz reci-

procity and propose a single framework for normal estimation and normal integration using

a triangular mesh-based deformable model. In contrast with Chapter III, we do not make any

assumption about the nature of the reflectance of objects to be reconstructed.

V.1.1 Helmholtz Stereovision: a Reconstruction Approach for Real World

Objects

Most of the multiview reconstruction algorithms rely on image correspondences (as done

for instance in multiview stereo [57]) or shading (using the normal information in multiview

shape from shading [80, 79] or multiview photometric stereo [68]). When texture informa-

tion (stereo case) is good enough or Lambertian assumption is sufficiently verified, those

methods have been proved to give good results with surfaces that are nearly. They then ob-

tain either accurate correspondences or accurate normal estimates. But when the scene is

not Lambertian, which is the case for most (if not all) real world scenes, such cues are not

valid and algorithms fail to reconstruct accurately the surface. In order to solve this problem,

many alternatives have been proposed. Some authors consider specular highlights as outliers

[68], and consider a large number of images in order to compensate. Some others modify

the input images to have specular free images, and be photometric invariant [106, 173]. An-

other approach is to have a robust similarity measurement [131, 154]. All these methods

try to compensate the non-Lambertian components in order to run reconstruction algorithms

designed for the Lambertian case.

Some authors consider another strategy: they propose to use more general reflectance /

radiance parametric models. See for instance [78, 164, 163]. In practice, these approaches

suffer from several limitations. First of all the reflectance model has to be known in advance

and this constrains scene to be composed by materials consistent with the chosen reflectance
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model. Such algorithms tend to solve non-linear systems of thousands of variables (one

reflectance / radiance model per surface point), or need additional assumptions (single or

fixed number of materials, single specular component, etc.). Those models are difficult to

be optimized and generally require to alternatively estimate the reflectance and the shape.

They are numerically unstable and easily tend to get stuck in local minima [79]. Moreover,

the algorithms are generally ill-posed, and then require strong regularization which over-

smooth the obtained results. Finally, the reflectance and illumination models need also to

be approximated. Although such algorithms show reasonable results for perfect synthesized

scenes, their application to real-world scenes is complex and requires accurate camera and

light calibration.

A different approach introduced by [69] uses radiance samples of reflectance exemplars

to match it with the observed images. A direct matching allows to estimate the surface

normal in order to reconstruct the shape by normal integration. Although it can deal with

many materials and anisotropic BRDF, material samples are needed. This can be a restrictive

assumption in concerned applications.

During the last decade, some authors have proposed to use Helmholtz reciprocity in order

to perform 3D reconstruction [171, 172, 61, 170, 149]. In practice, Helmholtz reciprocity is

exploited by taking a pair of images under a single light source, where camera centers and

light positions are exchanged at each shot. It uses the fact that in this particular setup, for

a single reciprocal pair, the relationship between two radiances of a single surface point is

independent of the reflectance. Contrary to works described in previous paragraphs, meth-

ods based on Helmholtz reciprocity [171, 172, 61, 170, 149] allow to accurately estimate the

normals at one point, independently of the reflectance model. This can be used to obtain

a 3D surface. In this context, modeling the reflectance, having material samples or being

photometric invariant is not required. Nevertheless, contrary to most of multiview stereo-

vision algorithms, the state of the art in Helmholtz reconstruction is limited to depth map

reconstructions. In this chapter, we push the envelope by proposing a Full 3D multiview

Helmholtz stereovision method.

V.1.2 A Surface-Based Approach

Until now, all the previous Helmholtz reconstruction methods were camera-view centered.

On the contrary, we propose to change the surface representation and to adopt an object-

centered strategy. Thus, instead of using a 2.5D surface as it used to be done previously, we

represent the object’s surface by a closed and dense 2D manifold embedded in the euclidean

3D space. The interest of this choice is two-fold. First this allows to naturally recover a full

3D surface when the other approaches only recover a depth map (or a needle map). Secondly,

this allow to easily and properly handle visibility (shadows as well as self occlusions). Figure

V.1 sheds light on these advantages: the picture on the left illustrates the case of conventional

Helmholtz Stereovision methods, that recover a surface based on a virtual view (here in red).

The drawing on the right illustrates the proposed approach which is surface-based instead

of view-based reconstruction. The red contours show the optimal surface each method can

recover. Clearly, the conventional approaches are confronted with difficulties with visibility
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since it generates discontinuities in the depth maps and the needle maps. Also, this difficulty

spreads at the integration steps which behave badly in presence of discontinuities.

����������	�
��
���


�
���
�����	���

Figure V.1: Recovered surfaces by conventional Helmholtz Stereopsis versus proposed ap-

proach (surface in red). Left: case of conventional Helmholtz Stereo methods which recovers

the shape based on a virtual view (in red). Right: the proposed surface-based approach.

In this work, as we will discuss in section V.3, we represent the 2D surface using a triangle

mesh. In our context, where the surface normals play a key role, this representation offers

significant advantages. In particular, it intrinsically links a depth to its surface normal which

is, in the case of piecewise planar surfaces like triangular meshes, well defined on each facet.

Also, this allows us to naturally combine both the normal integration and normal estimation

when these were two separate stages in most of previous approaches [171, 172, 61].

V.1.3 Contributions

This chapter presents several improvements to state-of-the-art 3D reconstruction techniques

exploiting Helmholtz reciprocity. First, we model the problem as an energy minimization

problem which is completely surface-based (when all previous methods were camera based).

Secondly, we present a method for solving this problem and show how to implement it on

triangular surface meshes by using a coherent discrete gradient flow as shown in Chapter V.

Finally, since we optimize a full surface, the method is able to handle visibility. This also

allows to fully reconstruct dense 3D surfaces of complex objects in a single framework.

V.2 Helmholtz Stereopsis: A Variational Formulation

As described previously, Helmholtz reciprocity exploits the fact that BRDFs are gener-

ally symmetric and therefore, for any incoming angle î and outgoing direction ô, we have

β(̂i, ô) = β(ô, î) where β is the BRDF function. By interchanging light and camera positions,

one can exploit the constraint on β in radiance equations in order to solve 3D reconstruction

problems.

Given a camera – light pair, one can write the radiance equation Ic of a scene seen from

a camera c as:

Ic = αβ(vc,vl)
vl · n
|vl|3

, (V.1)
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where vc is the vector from the camera center to the point, vl is the vector from the light

center to the view-point and α is a constant. n is the surface normal of the considered point

and β(vc,vl) is the BRDF at the surface point (See Figure V.2). The same radiance equation

can be written for modeling the radiance Il with the BRDF β(vl,vc). Using Helmholtz

reciprocity allows us to write β(vc,vl) = β(vl,vc). This equality then defines the Helmholtz

stereopsis constraint for all the point of the surface S:

[

Ic
vc

|vc|3
− Il

vl

|vl|3
]

· n = 0 . (V.2)

Now, we are going to formulate this constraint in the variational framework via a weighted

area functional defined over the surface of the object.

We denote by πc(x) (resp. πl(x)) the projection of a point in space x in the camera c (light l

respectively), and Ic (or Il) its corresponding intensity value in the image. For more clarity,

we also denote

h(x) =

[

Ic(π(x))
vc

|vc|3
− Il(π(x))

vl

|vl|3
]

. (V.3)

In this case, the surface that "best" verifies Equation (V.2) can be obtained by minimizing the

following energy functional defined over the surface, with respect to the surface itself:

EHS(S) =
∫

S

(h(x) · n(x))2 νS,c,l(x) ds , (V.4)

where νS,c,l is the characteristic function such that νS,c,l(x) = 1 if x is visible from both

images, or 0 otherwise. ds is the element of area of the surface. This problem formulation

allows thus to naturally integrate both multiview geometry and normal constraint. The func-

tional (V.4) constrains the surface normals to be on the orthogonal plane of h(x). This is an

ill-posed problem since there is an unlimited choice for the normal. In this context several

reciprocal pairs are needed in order to better pose the problem and Energy (V.4) has to be

adapted to multiview settings. At the end, we then consider the energy to minimize as the

sum of all energies for all Helmholtz pairs i:

EHS(S) =
∑

i

∫

S

(hi(x) · n(x))2 νS,ci,li(x) ds , (V.5)

where i is the ith camera / light pair.

In the next section, we show how to minimize this energy via gradient descent when the

surface is represented by a triangle mesh. To simplify the notations, we will just consider

and compute the gradient of the functional (V.4). The gradient of (V.5) is then obtained by

summing the gradients of all the camera / light pairs.
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V.3 Optimization for Triangle Mesh Representation

V.3.1 Choice of Representation

In section V.1.2 we show the interest of using an intrinsic and full surface representation. In

practice, there exists several possibilities for such representation. We propose to minimize

energy (V.5) using a gradient descent algorithm. The choice of the representation must then

be consistent with the surface evolution technique which is the base of gradient descent

methods. Here we chose to use the Lagrangian framework and to represent the surface by

a triangle mesh. Several reasons motivate this choice. In recent years, Lagrangian methods

have taken advantage of significant advances in mesh processing allowing these methods to

enjoy practical properties such as topological changes [129, 167]. In Lagrangian methods,

the gradient is computed directly from the discrete representation, whereas in the Eulerian

framework the continuous gradient is computed and then discretized. Performing gradient

descent in the context of discrete representations allows to make the minimization coherent

with the handled numerical object. In other respects, the visibility of a point from a vantage

point is well defined and easy to compute with a mesh representation (by using graphic

hardware). In practice, it is easier to check the visibility with such a representation than

with a level-set representation. All these reasons make nowadays Lagrangian methods more

and more popular. Also these methods have recently proved their strong potential for 3D

applications [154, 39, 32].

V.3.2 Shape Gradient and Evolution Algorithm
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Figure V.2: Notations. Parametrization of the discrete representation of the surface into a

triangle mesh.

In this section we first summarize Chapter II for surface evolution. Like previously, we

consider that the surface is a piecewise planar triangular mesh. Let X = {x1 . . .xn} be a

discrete mesh, xk being the kth vertex of X, and let Sj be the j th triangle of X. With such a

representation, functional (V.4) can be discretized and be rewritten as:

EHS(S) =
∑

j

∫

Sj

(h(x) · nj)
2 νS,c,l(x) dsj , (V.6)

where nj is the normal to Sj and where the sum is over all the triangles of the mesh X.

Figure V.2 illustrates these notations.
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We propose to optimize EHS with respect to S using the shape gradient [30]. Let V be a

vector field defined on all the vertices x of the mesh X representing the surface deformation.

Let us consider the evolution of EHS according to the deformation V. In other words, we

assume that the vertices xk[t] of X[t] are moving according to xk[t] = x0
k+ tVk. The method

for computing the gradient of EHS with respect to S consists in computing the directional

derivative of E(S) for this deformation V, i.e., d
dt
E(S[t])

∣
∣
∣
t=0

, and then in rewriting it as a

scalar product of V, i.e. as 〈V,G〉 =
∑

k Vk · Gk. The obtained vector G is called the

gradient and the energy necessarily decreases when deforming the surface according to its

opposite direction −G. Indeed, for xk[t] = x0
k − tG, we have d

dt
E(S[t])

∣
∣
∣
t=0

= −〈G,G〉 ≤
0, see [39].

To obtain the gradient of our energy EHS , we have then to calculate the expression of
d
dt
EHS(S[t])

∣
∣
∣
t=0

and express it as a scalar product of V. In Section II.3, we have detailed this

calculus in the general case where a functional
∫

S
g(x,n(x))ds is minimized. By replacing

g(x,n(x)) by (hi(x) · n(x))2, we get:

d

dt
E(S[t])

∣
∣
∣
t=0

=
∑

j

∑

k∈Kj

Vk ·
{

ej,k

Aj

∧
∫

Sj

(
(h · nj)

2
nj − 2 (h · nj)h

)
dsj

−
∫

Sj

2(h · nj)∇x(h · nj) φk(x) dsj

}

, (V.7)

where Aj is the area of Sj , ej,k is the edge of Sj that is at the opposite of vertex k; Kj is the

set of the indexes of the three vertices of the triangle Sj and φk : S → R is the piecewise

linear interpolating basis function such that φk(xk) = 1 and φk(xi) = 0 if i 6= k.

Since, ∇x(h · nj) = Dxh nj , Dxh being the 3× 3 Jacobian matrix, from (V.3) we get:

∇x(h · nj) = ∇Ic
v̂c · nj

‖vc‖2
+

Ic
‖vc‖3

(nj − 3(v̂c · nj)v̂c)

−∇Il
v̂l · nj

‖vl‖2
− Il

‖vl‖3
(nj − 3(v̂l · nj)v̂l) , (V.8)

where v̂ = v
‖v‖

.

Then the L2 gradient descent flow using the triangular mesh uses the gradient ∇E(X) =

M−1 ∂E

∂X
(X), where M is the mass matrix and

∂E

∂X
(X) is directly given by the part in braces

of Equation (V.7). One classically approximates M by the diagonal mass lumping M̃ , where

M̃ii is the area of the Voronoi dual cell of xi times the identity matrix Id3; for more details,

see e.g. [39, 108]. The evolution algorithm used here is:







X[0] = X0 ,

X[t+ 1] = X[t]− dt M̃−1 ∂E

∂X
(X[t]) ,

(V.9)
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where X0 is some initial mesh.

V.4 Experiments

V.4.1 A New Practical Setup

Switching light and camera positions for real experiments is not trivial. However, easy prac-

tical setups can be designed to satisfy the Helmholtz stereo restrictive configuration. In their

original paper, Zickler et al. [172] have designed such a setup, where a turning wheel is used

to reconstruct the shape of an object. The camera and the light are diametrically opposed on

the wheel. By turning the wheel, the light and camera position can be exchanged easily. In

their configuration, a fixed object is disposed in front of the acquisition device and images

can only be captured from one side of the object. This setup is shown in the left part of Figure

V.3.

Although the setup of [172] can acquire 3D shape of arbitrary appearance, it is difficult to

extend it to reconstruct entire 3D shapes. Since our main concern in this work is the recovery

of full 3D shapes, we propose a new practical solution for that case. Instead of moving the

camera and the light, we propose to place the object on a rotating table and turn it of an angle

θ. We place two light L1 and L2 sources respectively at angles −θ and θ from the center of

rotation, and at the same height and distance as the camera’s one. Then the reciprocal image

of a first image taken with the light L1 corresponds to a second image taken under the light

L2 and a rotation angle of the object of θ. Then by taking pictures that way all around the

object, one can capture multiview Helmholtz stereo data. The drawing Figure V.3 illustrates

the method. A possible extension is to use several cameras and more lights using the same

principle, at different heights. This way one could capture and reconstruct higher quality 3D

models. The following section shows results using the presented acquisition setup.
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Figure V.3: Two practical solutions for Helmholtz Stereo: On the left, the acquisition wheel

of the setup proposed by Zickler et al. [172]; on the right, the proposed configuration. Our

configuration allows more easily to acquire entire 3D shapes, whereas the setup on the right

requires the object or the acquisition device to be moved during the scanning of the object.
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V.4.2 Experimental Results

In this section we present results using the gradient developed in section V.3 (Equation (V.7))

that directly corresponds to the minimization of our original Energy (Equation (V.6)).

Let us emphasize here that the gradient descent flow used to obtain the results is exactly

the one described previously. In particular, it does not require additional terms or parameters

such as surface smoothing present in most variational formulations like the one in Chapter

III. Of course, adding such a term would help in being more robust to noise and calibration

errors. The only parameters used by us are for numerical computations, like for instance

the numerical integration over the triangles. All those can be easily estimated automatically.

Since this is a gradient descent approach, one needs some reasonable initialization of the

surface such as the visual hull to avoid local minima.

The experiments were implemented in C++ and OpenGL using the CGAL library for

mesh computation running on a standard 2.4GHz Linux machine – and the topology adaptive

meshes of [129]. The optimization starts from an initial condition which is the visual hull

in our case. A coarse-to-fine approach is applied to help prevent from local minima. The

rendered results use only one constant normal per facet (flat shading).

We first apply our method to synthesized data. Figure V.4 shows an example of simple

objects disposed on a plane, where images were generated using non-Lambertian reflectance.

This dataset is composed of 32 reciprocal pairs with images of resolution 800× 600, placed

all around the object of interest. This example shows that our method is able to recover the

surface whereas previous Helmholtz stereo methods, where visibility is not accounted for,

would fail. In order to solve this problem, they would need to cluster the camera positions

to find several view-centered cameras, integrate multiple normal maps and then merge the

final reconstructions into a single surface. Our method is simpler in the sense that it works

without additional steps.

Even though the number of vertices is low, the gradient flows tends to place them in their

correct location. In particular triangle edges perfectly match the one in the images. Again,

this is made possible because the discrete gradient is computed with respect to the discrete

representation. Also the approach is suitable for reconstructing objects with sharp edges,

having depth discontinuities or self-occlusions.

The example in figure V.5 shows that our method can be applied to reconstruct full

and high quality object shapes. Even though the input resolution of the images is low

(1024 × 768), the recovered surface nicely matches the ground truth model. The images

were generated using a mixture of different specular models so that it looks realistic and

non Lambertian. Details are well recovered, and the quality of the mesh is good enough for

further object relighting.

Following the evaluation presented in [136], we perform a quantitative evaluation of ex-

amples from Figures V.4 and V.5 where we consider the object in a 2m diameter bounding

box. For Figure V.4, the completeness at 10mm is 87.51%, and the accuracy at 95% is

9.301mm. For the Buddha, the completeness at 10mm is 95.766%, and the accuracy at 95%

is 5.29mm.

The next two figures V.6 and V.7 show real data used in previous work [171, 172], that
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Figure V.4: A simple synthetic example. Top row: 2 camera / light pairs out of the 32.

Middle row: ground truth surface; ground truth mesh representation; Bottom row: final

result; mesh representation of the result; details on the mesh.

have been capture only from one side. We then cannot reconstruct the full surface of the

object since images behind the object are missing. Figure V.6 shows the 3D reconstruction

of a textured box. Since we can choose the mesh resolution, having large triangles compared

to the image resolution allows to integrate the gradient over the triangle and have a correct

gradient flow for the vertices of the triangle. Then we can reconstruct objects with textured

or rough surfaces using Helmholtz reciprocity similarly as in [61]. This figure also shows

different optimizations taken from different initial conditions that finally give similar results.

Figure V.7 shows results for two real datasets, the mask containing 18 reciprocal pairs,

and the mannequin containing 8 reciprocal pairs.

Finally, the approach was tested on real dataset on full 3D objects (Figure V.8). It consists

of 18 reciprocal pairs (using 1104× 828 resolution images) taken on a ring around the object

slightly on top of it. The two data show a "Fish" reconstruction highly specular with fine

changing surface structure, whereas the second one "Dragon" has strong self-occlusions and

complex shape. Starting from the visual hull, we are able to recover details on the surface

even though the input image resolution is not too high. Results are illustrated in Figure
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Figure V.5: Buddha dataset. Top row: 2 camera – light pairs out of the 32. Bottom row:

ground truth surface; initial visual hull; estimated mesh; input image zoom and correspond-

ing recovered mesh details.
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Figure V.6: Small box data: results of the proposed method with different initial conditions

and mesh resolution. From left to right: 1 camera – light pair out of the 8 pairs; result from

a small non-encompassing initial surface; result from an encompassing initial surface; result

from an encompassing initial surface with a more dense resolution.

Figure V.7: Mannequin (8 reciprocal pairs) and Mask (18 reciprocal pairs) data: results of

the proposed method for two real dataset containing varying complex appearance. From left

to right: 1 camera / light pair out of the 18 (respectively 8); final result; final mesh textured

with the mean of the reprojected colors from the cameras.

V.8 and present the recovered full 3D surface. Some parts of the surface are not visible

from the images and thus cannot be recovered. Camera calibration was performed using a

checker board without distortion corrections and light positions were empirically positioned

and calibrated. Images are taken around the object so some parts are occluded from images

and objects also contain self-occlusions. For those reasons, previous approaches using a

camera-center view do not apply – since it requires depth continuity – whereas our surface-

based approach can recover the full 3D shape.
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Figure V.8: Fish and Dragon data (18 reciprocal pairs of 1104×828): Results of the proposed

method for two full 3D real world datasets. Top and third row: 2 camera / light pairs out of

the 36. Second and last row: initial visual hull; recovered 3D mesh; final mesh textured with

the mean of the reprojected colors from the cameras; input image zoom and corresponding

recovered mesh details.
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All these examples illustrated the advantage of having a mesh representation. It allows to

preserve edges, and we show that having a coherent discrete gradient flow allows vertices to

be placed at their correct locations. Possible extensions to the approach may use automatic

adaptive meshes, where big triangles would fill planar surface parts and high curvature would

have a more dense mesh.

V.5 Multi-view Helmholtz Stereo as a Reprojection Error

V.5.1 Problem Modelling

Second order minimization is known to recover well the higher frequency of the surface, but

poorly recover the lower ones. Also, due to the integration process, the optimization might

be slow if the surface is too far from the solution. A good initial condition and a coarse to

fine approach significantly help to prevent these problems, as illustrated in the experiments.

In particular, the gradient flow tends to shrink the surface and introduce a minimal surface

bias, as explained in Chapter III.

Moreover, since here the method minimizes a weighted area functional defined over the

surface, one of its global minima (in addition to the real surface) is the empty set. To prevent

from this effect, one can add an additional term, start closer to the solution, or fix boundary

conditions. A more elegant way is to see the problem as a reprojection error as introduced

in Chapter II. Instead of minimizing a weighted area functional, one can reformulate the

problem (V.2) by minimizing the following energy functional:

E(S) =
∫

Ic

(

Ic −
(
Il ◦ πS,Il ◦ π−1

S,Ic

) v̂l ·
(
n ◦ π−1

S,Ic

)

v̂c ·
(
n ◦ π−1

S,Ic

)

)2

dp , (V.10)

where π−1
S,Ic

(p) is the reprojection of an image point p of the image Ic on the surface S . dp

represents the pixel area measure. This energy is image-based and so is closer to a Bayesian

vision of the problem as described in the Introduction I.2.2.

This formulation has been already presented by [149] in case of Helmholtz stereo. How-

ever it has not been minimized as a reprojection error, like for instance in the case of [55] for

continuous surfaces, and of [31] using deformable meshes like in Chapter II. Such formu-

lation lets appear an additional term, that turns out to behave like a visual hull constrain on

the silhouette occluding contours, or as a contour matching term for self occlusions. Such a

term will give boundary conditions to prevent from shrinkage, and will help the method to

be more robust to initial conditions.

As shown in Chapter II, Equation (V.10) can be seen as a reprojection error functional,

and can then be rewritten as an energy functional defined over the visible surface. The only

difference here is that both camera and light visiblity need to be carefully accounted for.

Following the explanations in Chapter II, we can compute the gradient and separate it into

the interior term and the horizon term. The difference here is that the horizon term does not

only appear at occluding contours, but also at horizon points created by the light crepuscular
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rays. To understand this, let us first rewrite Equation (V.10) as an energy functional defined

over the visible surface:

E(S) = −
∫

S

(

Ic ◦ πS,Ic(x)− Il ◦ πS,Il(x) α(x,n(x))
)2 x · n(x)

x3
z

νS,Il(x) νS,Ic(x) ds ,

(V.11)

where α(x,n(x)) is the quantity
v̂l(x) · n(x)
v̂c(x) · n(x)

and as before, ds is the surface area measure

such that:

dp =
x · n(x)

x3
z

νS,Il(x) νS,Ic(x) ds .

Then instead of having Equation II.5 like in Chapter II, we have an energy of the form:

E(S) =
∫

S

g(x,n(x)) · n(x) νS,Il(x) νS,Ic(x) ds . (V.12)

This equation can then be minimized the same way as it is done in Chapter II. In Equation

(V.11), we only consider a single image. However the full energy is a sum over all images. In

particular, this is a sum over all image reciprocal pairs. Then for a given reciprocal pair, the

energy is the sum of two reciprocal terms as in Equation (V.11), and corresponds to Equation

(V.12) with the function g(x,n(x)) equals to:

g(x,n(x)) =
(

Ic ◦ πS,Ic(x)− Il ◦ πS,Il(x) α(x,n(x))
)2 xc

x3
c,z

+
(

Il ◦ πS,Il(x)− Ic ◦ πS,Ic(x)
1

α(x,n(x))

)2 xl

x3
l,z

, (V.13)

where xc and xl are the coordinates of the point x in the camera coordinates system of

respectively cameras c and l.

Finally by following Chapter II, then the gradient descent flow is composed of three

terms: one interior term which applies to points visible by both cameras, and two horizon

terms corresponding to each of the two camera’s visibility.

V.6 Conclusion and Discussion

In this chapter we have presented a surface-based method to estimate the 3D shape of objects

from multiview Helmholtz stereo pairs. This leads to several benefits:

• Unlike examples treated in Chapter III, no assumptions are made about the reflectance

of the object of interest. As a consequence, we can estimate 3D models of objects of

any arbitrary BRDF.

• As far as we know, this is the first time Helmholtz stereopsis can be used to recover

dense and full 3D models into a single framework. This is made possible thanks to the

compact surface representation that allows to easily compute surface point visibility.
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Moreover, the mesh based representation used allows to naturally exploit geometric

relationships between a point of the scene and its surface normal.

• Unlike many variational methods, we do not use any additional regularization term

here such as surface smoothing as used in some examples in Chapter III.

• We propose a new acquisition setup for Helmholtz Stereovision, that easily allows to

acquire entire 3D shapes of static objects. This requires a single fixed camera and

two light sources, correctly positioned with respect to a rotating table. This simplify

Helmholtz stereo vision acquisitions scenarios to recover entire shapes. Extensions

using more cameras and lights could be done by placing them at different heights.

This would give a more complete set of images around the object in order to improve

the reconstructions.

• This acquisition scenario requires a dark room. While being very restrictive, a simple

solution toward this problem is to separate direct and indirect illumination from the

light source, as done in [116]. This would have two significant advantages: the first

one is being able to recover a larger class of objects, and the second is to remove

inter-reflection effects and therefore improve the result’s accuracy.

• Like in Chapter II, multi-view Helmholtz stereo can be modeled as a reprojection error

functional, and as a consequence enjoy the same gradient descent flows that correctly

account for visibility changes during the optimization. Further experiments are re-

quired to fully validate this step.



CHAPTER VI

Conclusion

In this chapter, we conclude this thesis work on multi-view shape reconstruction. We first

summarize the main contributions of our work and then discuss further directions of research.

VI.1 Summary and Discussion

We can summarize the multi-view shape reconstruction problem as identifying and exploiting

information, cues and priors (obtained from 2D images and knowledge of the scene) that

along with proper numerical tools and algorithms, allows to recover a 3D shape of a scene

or object of interest. This process can be addressed using generative models and can be

recovered using Bayesian inference. This leads to the energy minimization of an energy

functional defined over all images that minimizes the error between generated images from

a given model and the observed images. This functional is called the reprojection error.

This error depends on image formation processes that are very complex to model, due to

illumination, reflectance, projection models used as well as occlusions. As a consequence,

its minimization is not trivial. We solve the problem using gradient descent for surface

evolution.

This thesis has two main contributions. The first one is to exploit the surface’s represen-

tation one has in its hand, and the importance of having an optimization algorithm consistent

with it. The other is how, given such a representation, one can model different multi-view

reconstruction algorithms that can handle different cases: textured, Lambertian, textureless,

specular or generic scenes. We detail some of those contributions:

• Importance of shape representation

The choice of a scene representation in multi-view reconstruction algorithms is very

important. The type of object to be modeled directly depends on it. In Chapter I, we

reviewed some of them and listed the advantages in existing surface models for multi-

view stereo techniques. We have seen in the following that a large variety of objects

can be modeled using mesh-based surfaces. This is due to the flexibility meshes offer

from a practical point of view, either by their non-fixed spatial resolution, their compact

representation and memory efficiency or their Graphics-oriented nature. As a surface-

centered approach, they allow to reconstruct general objects from multiple sides and

allow to easily model occlusions and deal with them.

The representation not only conditions the class of objects one may or not reconstruct,

but it more importantly conditions the algorithms that are going to be used in order

to optimize or retrieve that representation. Again here, the use of triangular meshes

has been driven by several choices, and has been proved to be of particular interest
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in all the examples that we have shown in this thesis. In Chapter II we show how to

optimize a deformable mesh by minimizing reprojection error functionals, even when

this energy depends on the normals or the visibility. We compute the exact gradient of

the discretized reprojection error over the mesh, which leads to coherent gradient flows.

As a consequence, this leads to coherent vertex displacement that makes edges match

with apparent contours in images, and triangle tend to orient themselves correctly. In

addition, the gradient of the reprojection error accounts for visibility changes during

the surface evolution similarly as in [55], which reduce minimal surface bias in this

problem. Computing the differential of the reprojection error using deformable meshes

is the main contribution of this thesis.

• Lambertian reconstruction

In Chapter III we show different applications of 3D reconstruction including multi-

view stereo and multi-view shape-from-shading, where we consider a constant bright-

ness assumption across views. In those cases a simple generative model is adopted, but

still in this case simple gradient descent can be performed and can achieve reasonable

results. This can be obtained by the correct minimization of the reprojection error. If

image correspondence is very popular, exploiting photometry and surface orientations

has been proved efficient for recovering high quality 3D models. In those cases the

generative model carries terms depending on the normal that help in getting better ac-

curacy and more precise 3D models. Then stereo and shading cues are accounted for

in a unique framework.

• Towards non-Lambertian modeling

When the constant brightness assumption is not valid, reconstruction can still be achieved.

If normals can be estimated using for example photometric stereo techniques, then they

are sufficient to build consistent 3D models. In Chapter III we show how to integrate

multiple normal fields in order to reconstruct hight quality 3D models. This can be

obtained by adapting the generative model of the reprojection error.

When normals cannot be easily detected or for non-Lambertian reflectance, both the

shape and the reflectance have to be estimated. This makes the problem ill-posed.

Additional smoothness terms on reflectance such as the one based on Total Variation

described in Chapter IV can be applied. Alternatively, segmentation could be used

in order to reduce the number of reflectance parameters to estimate by using the fact

several surface points share the same reflectance.

In order to estimate the shape of objects of any arbitrary BRDF, we introduce Multi-

view Helmholtz Stereo in Chapter V. Helmholtz reciprocity is exploited and adapted

as an energy functional minimized thanks to the approach described in Chapter II.

The mesh representation makes it possible to reconstruct the dense entire shape of the

object, where previous methods were limited to partial reconstructions. Finally we

propose a simple acquisition setup that makes Hemlholtz stereo practical.
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VI.2 Future Research Directions

As discussed in each of the chapters, there is a large place for improvements. Those can be

used in different stages of the reconstruction, from the physical model used to the additional

cues to exploit, from the optimization tools to the acquisition setup. We discuss here different

directions in which this thesis work can be extended and pursued.

• The choice of a projection model, an illumination model or a reflectance model con-

ditions the kind of scenes one wants to reconstruct. Several improvements on the

generative model could be done in order to make it more robust or more generic. In

this thesis, the cost of a 3D point is computed independently from each other. Then

more prior information could be used from the images, such as adaptive smoothness

terms depending on the context, geometric prior, or segmentation prior as described in

Chapter IV.

• A better initialization: In most examples, the surface evolution starts from the visual

hull. However, a lot of recent approaches in multi-view stereo allow to reconstruct

dense point clouds accurately and robustly. By extracting a surface out of it, one could

use our deformable mesh framework as a last surface refinement stage to gain accuracy

and robustness.

• Improving the optimization: as described in this thesis, the surface evolution is based

on gradient descent techniques. Therefore, this is a local method and may fall into local

minimas. This effect is reduced by the fact we have a coarse-to-fine strategy, but then

coarse meshes cannot approximate complex shapes very well. To improve that, one

can work on the model as described above, but one can also change the algorithm. One

straightforward idea is to change the gradient metric to have a more coherent gradient

flow, similarly as [24, 39]. Also gradient descent schemes such as Levenberg-Marquart

or BFGS could be applied to speed up the optimization. Convex models such as the

ones described in [28] is an alternative technique which is worth to study.

• Generative vs. non-generative. While generative approaches offer a nice theoretical

and Bayesian motivated framework, direct methods or heuristic based approaches of-

fer very good alternatives. For example, one could find a term that acts the same as the

horizon term but would be more efficient to compute (which is actually what many peo-

ple already do to prevent from minimal surface bias). Similarly, heuristic-based terms

can be added or can replace existing ones. Generative models are more general but

are sometimes more difficult to optimize as well. Recent 3D reconstruction applica-

tions, while being less general, offer faster algorithms that turn out to be very accurate.

There is a trade-off to find between physically motivated models and heuristic or em-

pirical models. Continuing research on both sides is a necessity to fully understand 3D

reconstruction and propose better algorithms.

• Temporal consistency. In this thesis, only static reconstructions have been performed.

Dynamic scenes have been reconstructed as independent reconstructions at each time
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instant. However, motion is a very important cue and could be easily added in our

models. That would require to develop 4D or 3D + t mesh tools, such as the work of

[3, 27] and looks more promising and appropriate than methods that require implicit

functions as the surface representation.

• In this work we assume that the image information is available thanks to usual digital

images. Since our primary goal is to reconstruct a 3D shape, those might not be the

best tools to do so. Recent advances in computational cameras allow to design systems

for their purpose. A multi-view system could be designed that way, by exploiting for

instance coded aperture cameras. Moreover, using the appropriate generative models,

this could directly be integrated in our framework, and could lead to promising results.
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Computational Details

In this appendix, we detail computations used in this thesis, in particular in Chapter II.

Contents
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A.2.3 Details on the Lambertian Case Using Illumination . . . . . . . . . . . 121

A.1 Camera Modeling and Differential Properties in Im-

ages

A.1.1 Pinhole Camera

Here we briefly describe some calculations regarding the pinhole camera model that are

required in the context of this thesis. In particular, we show how to deal with change of

variables from the surface S to the image I .

In Chapter II, we rewrite the energy functional on the image domain as an integral over

the surface (See Equations (II.2) and (II.5) ). This implies defining the change of variable in

the integrals. Basically we want to estimate the pixel element area in images dp in terms of

the surface element area ds. The following result is well known in the literature [56, 130,

140, 160]:

dp = −n · x
x3
z

ds , (A.1)

where x is a surface point and n the surface normal at that point. xz is the third coordinate

of x in the camera coordinate system. Let us note that we forgot to put the visibility term in

Equation (A.1) on purpose.

Equation (A.1) can be shown easily. Let dw be the solid angle unit measure that would

see a surface patch ds at a point x. Then it is easy to show that:

dw =
cos(θ)

|x|2 ds = −n · x
|x|3 ds , (A.2)
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where θ is the angle between the viewing direction and the surface’s normal n. Similarly,

one can write the unit solid angle measure dw with respect to the image unit area dp:

dw =
cos(α)

|y|2 ds , (A.3)

where y Finally we have:

dw =
x3
z

|x|3 f 2
dp . (A.4)

Finally, from Equations (A.2) and (A.4), and by adding the visibility function νS we have

the following result:

dp = f 2 n · x
x3
z

νS(x) ds . (A.5)

A.2 Computational Details on Gradient Flows for Triangu-

lar Meshes

A.2.1 Expression of A′
j[0]

We have to explicit A′
j[0] linearly in function of the V. The area Aj[t] of a triangle Sj[t] is

Aj[t] =
1
2
|−−−−−−→xk[t]xk1[t] ∧

−−−−−−→
xk[t]xk2[t]| where xk[t], xk1[t], xk2[t] are the vertices of triangle i

at time t. For more convenience, we express the squared area A2
j to avoid squared root while

computing the differential at t = 0. Then we have :

A2
j [t] =

1

4

(−−−−−−→
xk[t]xk1[t] ∧

−−−−−−→
xk[t]xk2[t]

)

·
(−−−−−−→
xk[t]xk1[t] ∧

−−−−−−→
xk[t]xk2[t]

)

d

dt
A2

j [t]
∣
∣
∣
t=0

=
1

2

(−−−→xkxk1 ∧ −−−→xkxk2

)

·
(−−−−→xk1xk2 ∧Vk +

−−−→xk2xk ∧Vk1 +
−−−→xkxk1 ∧Vk2

)
.

Using d
dt
A2

j [t]
∣
∣
∣
t=0

= 2Aj[0]
d
dt
Aj[t]

∣
∣
∣
t=0

, we get

A′
j[0] =

∑

k∈Kj

Vk ·
(
1

2
nj ∧ ej,k

)

. (A.6)

If we move only one vertex at once (meaning Vk1 & Vk2 are null for vertex k), we have :

A′
j[0] =

1

2

(
nj ∧ −−−−→xk1xk2

)
·Vk . (A.7)
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A.2.2 Expression of n′
j[0]

We have to explicit n′
j[0] linearly in function of the V. Considering nj =

−−−−→xkxk1∧
−−−−→xkxk2

2Aj
, we

have :

n′
j[0] =

1

2Aj[0]
2

(

(−−−→xkxk1 ∧ −−−→xkxk2)
′[0]Aj[0]

−
(−−−→xkxk1 ∧ −−−→xkxk2

)
A′

j[0]
)

.

n′
j[0] =

1

2Aj

(−−−−→xk1xk2 ∧Vk +
−−−→xk2xk ∧Vk1 +

−−−→xkxk1 ∧Vk2

−
(
(−−−−→xk1xk2 ∧Vk +

−−−→xk2xk ∧Vk1 +
−−−→xkxk1 ∧Vk2) · nj

)
nj

)

.

So

n′
j[0] =

1

2Aj








∑

k∈Kj

ej,k ∧Vk



−



(
∑

k∈Kj

ej,k ∧Vk) · nj



nj



 . (A.8)

Therefore n′
j[0] is the projection of

∑

k∈Kj
ej,k ∧Vk on the orthogonal plane to nj , divided

by 2Aj .

In the case where we consider moving only one vertex at once (meaning Vk1 & Vk2 are

null for vertex k), we have :

n′
j[0] =

−−−−→xk1xk2 ∧Vk −
(
(−−−−→xk1xk2 ∧Vk) · nj

)
nj

2Aj

. (A.9)

A.2.3 Details on the Lambertian Case Using Illumination

All the terms in Equation (III.18) are explicit at the exception of ∇xR(x,nj). In fact

∇xR(x,nj) = ∇ρ(x)L(x,nj) + ρ(x)∇xL(x,nj) where we denote

L(x,nj) =

nL∑

l=1

Llνl(x)(nj · ll(x)) + E0 .

In the case of a homogeneous albedo (typically in shape from shading) we have ∇ρ(x) = 0.

According to (III.20), for x in Sj , we have ∇ρ(x) =
b ∇a− a ∇b

b2
, where a and b are

defined by

a =
∑

i

Ii(πi(x))νS,i(x) ,

b =
∑

i





ni
L∑

l=1

Li
lνli,S(x)(nj · lil(x)) + E0



 νS,i(x)

(A.10)
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and where ∇a and ∇b are

∇a =
∑

i

Dπ(x)⊤∇Ii(πi(x))νS,i(x) ,

∇b =
∑

i





ni
L∑

l=1

Li
lνli,S(x)(nj · ∇lil(x))



 νS,i(x).

(A.11)

(We assume here that visibilities are the same for all the points x on the triangle Sj , or we

neglect their variations). For scenes illuminated by far light sources we have ∇lil(x) ≈ 0,

and so ∇ρ ≈ a′/b. Moreover, if the light sources are same for all the image, then

b = (
∑

i

νS,i(x))

(
nL∑

l=1

Ll(nj · ll)νl,S(x) + E0

)

.

Finally, neglecting the variations of the light visibility, we have

∇xL(x,nj) =

nL∑

l=1

Llνl(x)Dll(x)
⊤nj,

where Dll(x)
⊤ is the transposition of the differential of ll (3 × 3 matrix). In the case of far

light sources, we have ∇xL(x,nj) ≈ 0.
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