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Abstract

To exploit the assets of robotics systems, missions are generally expressed through simul-
taneous or sequential goals to reach (objectives) while satisfying conditions on which no
compromise is acceptable (constraints). These operational inputs being usually consid-
ered as unknown a priori and unpredictable, reactive control laws algorithms are used;
these laws commonly satisfy constraints and objectives at their respective (potentially
strict) priority levels, handle specific cases, manage transitions, etc. However, all these
achievements focus on the resolution of the control problem, assumed to be feasible.
The simple case of a joint submitted to both deceleration and position limits shows that
constraints incompatibilities frequently occur.

To overcome such issues, a methodology is proposed to analyze the formulation of
control constraints. In this thesis, we show that to ensure safety at the control level,
either the permanent constraints compatibility should be proved, or the availability of
alternative safe behaviors should be guaranteed. Some case studies involving common
robotics constraints are proposed and lead to two main results: 1/ to remain compatible
with joint accelerations limits, the intuitive expression of the joint position limits is
modified; 2/ the operational acceleration being dependent of the robot configuration, its
compatibility with obstacle avoidance cannot be proved, so dedicated alternative safe
behaviors are proposed. These results are illustrated though experiments on a 6-DOF's
manipulator.

The control problem being adequately formulated, its resolution algorithm has var-
ious specifications: 1/enforce compliance with the considered constraints; 2/fit the con-
text efficiency requirements (real time, simulation, etc.); 3/find the optimal solutions;
4 /offer a satisfying general behavior. The compliance with constraints being a prereq-
uisite, compromises between those specifications are proposed. First, the elaboration of
the Constraints Compliant Control law (CCC) based on the passive avoidance principle
shows robust, efficient and performing features. It is particularly adapted to the task
based design of a manipulator morphology, for which a huge number of robots are eval-
uated through trajectory trackings. Then, the use of a virtual displaced configuration
in the control problem resolution enables to obtain a compromise between efficiency and
optimality (safety being ensured anyway) through the first safe single iteration resolution
method.

Keywords: Motion Safety, Robotic Constraints, Constraints Compliant Control, In-
verse Velocity Kinematics, Redundancy Resolution, Fvolutionary Design.

This thesis was hosted by Bouygues Travauxr Publics - 1, avenue Eugene Freyssinet
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tique dependent of the Ecole Doctorale de Sciences Mecanique, Acoustique, Electronique
et Robotique de Paris - 4, place Jussieu 75005 Paris France.
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Introduction

Robots are generally considered as efficient tools with high capabilities in terms of
velocity, precision, dexterity and strength. To exploit these skills, the specifications of
robotic missions are usually expressed through a set of simultaneous or sequential goals
(objectives) to reach, e.g. “the end-effector of the robot should be placed at location
A with orientation B”, while satisfying a set of conditions on which no compromise is
acceptable (constraints), e.g. “the robot should not collide with the environment”. For
historical reasons, the responsibility of the constraints satisfaction is generally attributed
to the developer/trajectory designer, or even the user in teleoperation for example. This
way of dealing with constraints is not suitable and the dissemination of robotics and
the rise of robots autonomy impose to consider a rigorous management of the robots
constraints directly at the root of the control law.

Reactive control loops are used in most robots control architectures; they are in
charge of converting operational inputs (user specified objectives and constraints) into
joint inputs at each time step. Algorithms are built to satisfy constraints and objec-
tives specified at various (potentially strict) priority levels, to handle specific cases, to
manage transitions, etc. However, all these achievements address only the resolution
of the control problem; the solvability of the problem and the impact of the retained
solution on the future control problems is rarely studied and constraints incompatibil-
ities recurrently occur in robotics, which inevitably implies constraints violations, thus
compromising safety. For example, to avoid an obstacle with a physical robot, the decel-
eration capabilities must be taken into account in the constraints formulation to ensure
their simultaneous satisfaction. Using a control law able to solve a feasible problem is
only the second condition to ensure safety at the control level; the first one is that the
problem formulation maintains its permanent feasibility.

Once the problem is adequately formulated, its resolution algorithm must satisfy
various specifications, among which: 1/enforce compliance with compatible constraints;
2/offer a satisfying general behavior; 3/find the optimal solutions; 4/fit the context
efficiency requirements (real time, simulation, etc.). The first one is a prerequisite to
ensure safety at the control level. The second one is often hard to formulate in terms of
operational objectives but gathers smoothness considerations, the absence of oscillations,
etc. The third one concerns the operational objectives and is more commonly treated
in the literature. In this context, analytic model inversion and convex optimization
methods offer many techniques which can be combined to obtain safe and performing
control laws. However, the existence of more and more sophisticated robots asks for
compromises between the efficiency of the controller and the optimality of the solutions.

The solutions and methods proposed in this thesis have been obtained by addressing
the control problem as a whole, from its formulation to its resolution.

This document is organized in four parts. The first chapter describes the PhD
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framework and exposes the context and problems addressed by this work. The second
chapter details the formulation of the control problem to maintain its feasibility. The
third chapter describes the constraint compliant control laws developed to ensure a safe
and satisfying behavior. The fourth chapter details the results obtained in simulation
for the task based design of a serial manipulator and some experiments on a 6-DOF's
teleoperated manipulator. Finally, the last chapter proposes a conclusion and some
perspectives.



Chapter 1

Context and Problems

This chapter is dedicated to the description of the thesis context. The thesis was hosted
by Bouygues Travaux Publics and the ISIR laboratory at Université Pierre et Marie
Curie, within the framework of TELEMACH, an R&D project dedicated to the feasibil-
ity of teleoperated maintenance in Tunnel Boring Machines (TBMs). TBMs are widely
used for the excavation of small (diameter 1 m) to large tunnels (diameter 15 m and
more). In this context, the task based design of the morphology of a robotic manipulator
as well as its real time teleoperation in a cluttered environment were led by the ISIR
laboratory. These two apparently unrelated topics raised a common and open research
problem: the safe control of constrained robots.

1.1 TELEMACH: immersed robots for the teleoperated
maintenance of TBMs

TELEMACH (TELE-operated MAintenance for TBMs Cutter-Head) is a research project
proposed by Bouygues Travaux Publics in 2007 in response to a call for project of the
Agence Nationale de la Recherche (ANR - France). This project lasted 30 months, from
February 2008 to September 2010.

1.1.1 Topic and Context

TELEMACH finds its origin in the field of shield tunneling (see Fig. [[LT]). There is
a clear need to dig deeper and longer tunnels in urban areas, leading to major risks.
Current working conditions are such that:

e The cutter head must be inspected frequently, if possible daily;

e In hyperbaric conditions, the intervention requires creating an air bubble in order
to reach the cutter head tools. The realization of this air bubble takes time, and
during this operation the front face (separation between the soil and the TBM) is
not balanced optimally: an air bubble has an homogenous pressure profile whereas
the front has an hydrostatic pressure profile, which is appropriately balanced dur-
ing the excavation as the excavation room is full of mud and materials, see Fig. .2}

e Maintenance operations are ensured by operators in harsh conditions: the tools
replacement imposes the operators to work in a hyperbaric air bubble within a

3
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Figure 1.1: Slurry TBM during an excavation phase: an air bubble is maintained on
the rear part of the excavation room to control the pressure of the mud. During the
maintenance phase, the air bubble (1) is extended to the whole excavation room (2) to
let the operators access the tools on the cutter head (3). The pressure bulkhead (4)
separates the hyperbaric area and the rear of the TBM at atmospheric pressure. The
diameters retained for the project are 9 m and larger.

narrow and dirty area only reachable by airlocks. The operators manipulate heavy
tools (for example a disc cutter weighs 150 kg and is roughly an iron cube of 60 cm?)
in a confined area.

e Hyperbaric operations become very complex, long and expensive for pressures su-
perior to 3 bars, which is common (equivalent to 30 m under the earth level).
Up to this pressure, operators can be trained to intervene in the excavation room;
nonetheless they must respect decompression cycles. Above 3 bars, it is mandatory
to resort to professional divers (Le Péchon et al. M) Above 4 bars, exceptional
measures of deep diving have to be taken: life in a hyperbaric caisson and dis-
placement in a hyperbaric shuttle, helium based breathable gas ... As an example,
on the Westershelde site (Holland), teams of 9 divers remained 3 weeks under a
pressure of 6.5 bars (see Fig. [2)).

TELEMACH is a feasibility study for replacing human interventions in the excava-
tion room of TBMs by teleoperated maintenance. The missions to carry out (inspection,
cleaning, tools replacement) would be performed by dedicated robotic systems: articu-
lated arms for inspection, tools changer, heavy loads carrier, conveyor and automated
airlock doors. The operator would act remotely through teleoperation and would be
assisted in real time by a mobile camera, a virtual environment and force feedback. One
of the particular aspects of the project concerns the performance of operations immersed
in the mud (bentonite): it makes the air bubble unnecessary, which decreases the major
risk of collapsing of the front face while reducing the idling time.
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Figure 1.2: Left: the front face needs a hydrostatic profile pressure to be adequately
balanced: using an air bubble constitutes a risk as the front face is not stable. Middle:
Mobile airlocks used by divers for depressurization phases. Right: Operator during a
depressurization phase.

1.1.2 TELEMACH consortium

TELEMACH was a feasibility project gathering various partners (see Fig. [[3]). The
project was led by Bouygues Travaux Publics (BYTP) — one of the leading contractors
in tunnel construction. The TBM design aspects were ensured by Herrenknecht (HK)
— the world leader in the design and manufacturing of TBMs. The architectural devel-
opment studies were led by Cybernétix (CYX) — a leading SME specialized in remote
operations for this industry. The Commissariat a I’Energie Atomique et aux Energies
Alternatives, Laboratoire d’Intégration des Systémes et des Technologies (CEA-LIST)
was responsible for the definition and development of the “hand-eye” support functions
for the operator. The Institut des Systemes Intelligents et de Robotique (ISIR), a uni-
versity based research laboratory brought its support for the initial design and control
of the robotic manipulator.

INSTITUT
DES SYSTEMES
INTELUGENTS
E7 OE ROBOTIQUE

Figure 1.3: Consortium of TELEMACH and main protagonists during a TBM visit on
A41 site (Geneva).
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1.1.3 TELEMACH achievements

TELEMACH ended in September 2010. The feasibility was demonstrated through var-
ious achievements:

e The TBM was modified and an original heavy load handling system
was developed. A whole flow study (man/tools/equipment) led to a complete
reorganization of the airlocks. Security constraints such as the capability to reach
any area with a stretcher were taken into account. The equipment airlocks, as
the whole logistic chain, were automated to avoid direct man interventions. All
actuators were deported in the rear part of the TBM at atmospheric pressure.
The Disc cutter Tool Changer (DTC), a parallel robot (Stewart platform), was
developed to unmount /extract worn disc cutters and insert/mount new disc cutter
(Fig. [4)). A mobile platform enables to reach the disc cutter casings by moving
along a vertical wall. The whole system is under patent application.

Figure 1.4: Disc cutter Tool Changer.

e New tools for Interactive Teleoperation were developed. A real time loop
between a supervision system, the master arm and the slave arm was established
with a satisfying transparency /stiffness compromise for the user. This framework
enables to generate force feedback from a real time updated virtual environment.
It opens the way to many applications developed along the project, for example:

— Dynamic anti-collision (David et al. ): at each time step, a distance
calculus between the robot and the environment is used to generate avoidance
forces on the master arm proportional to the proximity to the environment.

— Point of view optimization: a robot holding a camera holder is directly con-
trolled by the scene tracking while avoiding the occultations thanks to an
active anti-collision between the environment and a virtual cylinder repre-
senting the camera field of view.

All the developments have been experimented on a full scale mock-up (see Fig. [[H)
with a Maestrd] articulated arm (David et al. )

"http:/ /www.cybernetix.fr/Hydraulic-arms
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L

Figure 1.5: Full scale mockup of a 1/4 TBM cutter head.

e Intervention in the mud was assessed. Intervention in the mud offers a ma-
jor security advantage since pressure is balanced at the front (see Fig. [[2). In
this scope both touch-based recognition and ultrasound perception were assessed.
On the one hand, peg-in-hole experiments ensured the precise localization of land-
marks in the excavation room. On the other hand, the mud has been characterized
(absorption, dispersion, sensitivity to pressure and temperature) and proper pa-
rameters were found to lead to satisfying observation of the tools.

Other TELEMACH contributions are part of this thesis work and are described in the
next sections.

1.2 Control problems met in TELEMACH

Through TELEMACH, general control problems are addressed. The 2 main topics of
TELEMACH dealing with control are:

e the task based design of a manipulator thanks to a genetic algorithm which fitness
is a trajectory tracking;

e the real time control of this manipulator in a cluttered environment.

1.2.1 From a design to a control problem

The kinematic design of robotic manipulators is often seen as one among numerous
applications of engineering design. However, the workspace of the excavation chamber
is cluttered, so usual design techniques are inefficient and time-consuming. Moreover,
the complexity of the TBM environment and the tasks to be accomplished induce a
high number of potential design solutions among which the best ones may, given their
originality with respect to usual design problems solutions, probably not arise using
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classical design methods. The use of dedicated CAD tools may help to numerically
discard some of the potential solutions, but checking each robot candidate with respect
to a representative subset of tasks and environments still remains a complex and time
consuming work.

Instead, it is proposed to follow an approach where the design process is consid-
ered as a multi-objective optimization problem: tasks and constraints are formulated
in terms of functions to optimize and constraints to satisfy. Such a formulation allows
the automation of the design process in the preliminary phase. Given a family of auto-
matically obtained solutions, the so-called classical design methods can then be used to
converge towards a practical solution.

The retained design process is an example of task-based design carried out thanks
to an evolutionary process (e.g. Salle et al (@)) Robot morphologies are generated
thanks to a genetic algorithm which evaluation step (fitness function) aims to qualify
the ability of a robot to carry out a maintenance mission in the TBM. So, a relevant
trajectory has been defined in the simulation environment and the fitness function con-
sists of a trajectory tracking. The objectives (indicators) retained in our problem are
voluntarily simple and of a single dimension (no weighted sums representing a priori
tradeoffs between different variables). The trajectory tracking quality but also intrinsic
parameters, such as the number of DOFs, are evaluated.

Each robot morphology must be rated through a fair evaluation, i.e. an evaluation
which exploits its physical characteristics optimally. In that scope, the control law used
in the simulation is an essential element: it is responsible for the robot behavior, and
consequently its scores. As a result, some expected properties are identified at the
control level.

e Genericity in robots. Each morphology that can be described by the design
process must be controllable by the control law without any specific restriction (ge-
ometry, degree of freedom, ... ). The skills of each morphology must be exploited
with equal chances.

The genericity in robots demands a generic control law, the robot being redundant
(the number of DOFs needed to obtain the desired motion is lower than the actual
number of DOFs of the robot) or not. The terms of the control laws should be
automatically computed without particular tuning;

e Genericity in situations. The control law must take into account and manage
appropriately specific conditions such as singular configurations, constrained areas,
oscillating behaviors, ...

The genericity in situations requires the potential singularities to be automatically
treated, and a correct behavior (no oscillations, smoothness) for all cases. If matrix
singularities can be treated by the approximations of Damped Least Square Inver-
sion (DLS, Wampler 1986 and Nakamura et al, @), the solution to a smooth
and oscillations-free trajectory needs to be formalized and solved;

e Representativity. The control law used in the fitness should produce realistic
behaviors to get meaningful evaluations and meaningful results. In particular,
collisions should not occur in the simulations, as they cannot occur in reality.

Representativity induces the need to handle constraints at the top priority level
(the robot should not collide and, if possible, track the trajectory). Most of these
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constraints are expressed through inequalities, which induces a non linearity in
the problem. As a consequence, simple inversion operators are not able to satisfy
those constraints and the resort to iterative algorithms is neededﬁ to know which
constraint can be taken as an equality (active constraint) and which cannot;

e Coherency with indicators. Robots are evaluated though performance indica-
tors (for example trajectory tracking error, effort transmission capabilities, ...).
The control law must take these indicators into account.

Coherency with indicators induces the ability to deal with multiple objectives (min-
imization of the trajectory tracking error, getting close to a reference configuration,
etc.). These objectives does not have the same priority, thus the controller should
satisfy a strict priority between them. As for the constraints avoidance, getting
closer to the reference configuration should be carried out only if it does not impact
the trajectory tracking error minimization. However, the main difference between
the constraints and the objectives is that the first one usually prevents motions
while the second one generates motions. The satisfaction of multiple objectives in
presence of constraints can be treated by a sequence of Quadratic Programs (QP),
but it may turn out time consuming, which goes against efficiency;

e Efficiency. As a huge number of individuals are evaluated, the control law must
not be time-consuming.

1.2.2 Reactive control for teleoperation

The working conditions in the excavation room of a TBM are not only harsh (cluttered
area, dirty environment, hyperbaric pressure) but also critical in terms of safety. Actu-
ally, any failure of the robot implies exceptional measures (e.g. freezing the soil) to get
it out of the working area.

Similarly to the previous section, this context imposes specifications at the control
level.

e Constraints Compliance. The controller must be able to satisfy an arbitrary
number of constraints whenever the problem is feasible. The word “constraints”
used in this thesis always refer to safety and, as such, the top priority when consid-
ering multiple tasks. Differences between what the user sends at the operational
level and the actual motion are considered as acceptable if they are justified by
constraints compliance. Conversely, differences between the input sent by the con-
troller to the actuators and the motion actually carried out (called control losses)
should be limited to negligible errors.

Most constraints are naturally expressed by inequalities (e.g. limits on joint po-
sitions, velocities, accelerations, etc.). Moreover, the number of constraints being
potentially higher than the number of DOF, it is not possible to satisfy properly
the constraints by taking each of them as an equality tasks. As a result, the
controller should be able to deal with inequality constraints.

e Robustness. The errors between the input sent by the controller to the actuators
and the motion actually carried out should remain negligible. In particular, the

Zexcept for the inversion operator of Mansard et al.(lma)7 which is able to deal with simple robots
submitted to a few constraints but turns out time-consuming in more complex cases
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models validity conditions should be checked, especially when using locally linear
models such as Jacobians.

Robustness requires in particular a proper management of the model inversion
singularities.

e Multi-objective. The working environment is cluttered and the missions to carry
out in the excavation room are complex: cleaning, inspection, manipulation, etc.
The robotic system used to achieve these missions is complex and thus able to
carry out several objectives simultaneously. As a consequence, a multi-objective
control structure is required.

e Real-time. Indeed, teleoperation requires real-time control laws, i.e. a computa-
tion time which order of magnitude is 1 ms.

As a complement to these specifications, a particular aspect of the problem must be
considered. Actually, the control problem is often considered as a problem to solve, which
implicitly relies on the assumption that “the problem is feasible” (which is concretised
by the existence of control solutions). However, even when considering the reactive
aspect of the control (for which a new control problem should be solved at each time
step), it is fundamental to notice that the choice of motion at a given time step has an
effect on the behavior of the robot and thus on the feasibility (or unfeasibility) of the
incoming control problems. For example, accelerating the robot end-effector toward a
wall is a constraint compliant motion until the very last time step before the collision.
As a consequence, it seems that the control problem is also a problem to formulate to
maintain its feasibility along the time steps.

1.2.3 Specifications

As a conclusion to the presentation of the problems tackled in this thesis, even if the
proposed topics (task based design and teleoperation) are different, they present similar
requirements in control. The resulting specifications are:

e Feasibility awareness: guaranteeing the relevance (representativity) of GA eval-
uations or ensuring the safety of a teleoperated mission requires solving the control
problem while satisfying constraints. In order to maintain the feasibility of the
problem, the controller should ensure that the control problem of the incoming
time steps will be feasible;

e Constraints compliance: for the same reasons, the control law should be able
to solve a constrained problem whenever it is feasible;

e Multi-objective management: the coherency between indicators and the achieve-
ment of complex teleoperation missions require a hierarchized multi-objective
structure;

e Robustness and genericity: to ensure the same quality of control whatever the
robot and the situation, the control law should be robust and generic;

e Efficiency: for a huge amount of simulations or for real time teleoperation, effi-
cient control laws are expected.
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1.3 State-of-the-art and contributions

This section exposes the state-of-the-art of the tackled domain and presents the contri-
butions of the thesis.

1.3.1 Scope of the work

The topic considered in this thesis is usually referred as reactive Inverse Velocity Kine-
matics (IVK): at each time step, it is assumed that an operational velocity input X des
(size m) is received by the controller, which is expected to send a joint velocity output
d4es (size n) to the actuators. X 4es belongs to the operational space while 4., belongs
to the joint space. The examples used along this document are supposed to have exclu-
sively single-DOF actuated rotational joints, even if the proposed approaches are able to
deal with multi-DOF's usual joints. The number of objectives (m) concatenated in X jos
can be greater, equal or inferior to the number (n) of Degrees Of Freedom (DOFSs) of
the considered system: from a control perspective, the system can be over-constrained,
fully constrained or redundant.
To address the resulting problem, three main families of techniques are identified:

e The recent development of online planning algorithms (e.g. Kroger M) tends to
show that frontiers are getting thinner between planning and control. In spite of
the context difference, various approaches can now be foreseen to tackle these prob-
lems, and in particular the constraints compliance, in which planning techniques
have a strong history (Brady )

e The convex optimization techniques, which is a mathematical domain on its own.
Even if there are some robotics contributions in that field, these algorithms are
often used as off-the-shelf tools, mostly for their efficiency features in the control
of complex systems such as humanoids.

e The control based on model inversion in the lineage of Liégeois (@) is the widest
branch of the reactive IVK problems. This is the background of this thesis.

The management of the operational tasks into the controller scope (appearance,
transitions, removal) is not addressed in this document. The interested reader can refer
to the work of Mansard et al. (M), Keith et al. (M), Padois et al. (M) and Salini
et al. (M) Similarly, the enforcement of the desired joint output by the actuators is
out of the scope of this study.

1.3.2 State-of-the-art with respect to the specifications of the problem

The expected control law features are inequally treated in the literature. The efficiency
is rarely treated directly, it is rather a set of precautions and limitations on the possible
algorithms. The robustness and genericity have a considerable amount of literature:
the use of Jacobians as generic model representations are common and widely used in
reactive control to deal with any kind of robots (Liégeois , Baﬂlieul). Similarly,
the robustness to model inversion singularities has an important associated literature
and solutions such as the Damped Least Square pseudo-inversion method introduced by
Wampler (@) and Nakamura et al. (@) are considered as sufficient to reach the
expected specifications.
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The simultaneous management of multiple objectives is a well known problem
in reactive control. The most popular method to deal with a set of objectives is a hierar-
chical framework (Liégeois ): objectives are prioritized and low priority objectives
are carried out only if they do not impact the achievement of top priority objectives.
This approach was recently generalized with the notion of stack of task (Mansard et
al. ). Based on this framework, many kinds of inversion-based control problem
resolutions were proposed: potential fields and gradient projection methods (Khatib et
@I@) and Maciejewski et al. (@)), weighted inversion techniques (Chan et al.

, Huo et al. ), clamping (Baerlocher et al. ), etc. These resolution schemes
manage constraints avoidances as equality tasks and, the number of constraints being
potentially higher than the number of DOF, they mostly fail in highly constrained cases
and cannot lead to compliance with any constraints. Moreover, they are subject
to discontinuities, which requires dedicated developments: adaptative gains for weight-

ing techniques (Chaumette et al. ), transitions (Padois et al. ), progressive
clamping (Raunhardt et al. M), dedicated inversion operator (Mansard et al. a).

Induced by the management of constraints thanks to equalities, mostﬁ of these meth-
ods rely on active avoidance techniques, i.e. approaches where constraints avoidance
requires motions. As an alternative to this approach, Faverjon and Tournassoud (@)
proposed an obstacle avoidance technique included in a Quadratic Programming (QP)
control law structure. This method limits the velocities toward obstacles using inequali-
ties (passive avoidance), which is more likely to avoid the collisions whatever the number
of obstacles. An extension of this approach based on convex optimization to the case of
multiple objectives was recently proposed by Kanoun et al. m

From the
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Figure 1.6: Reactive velocity kinematics control law algorithm. At each time step, the
operational velocity inputs X 4.5 are converted into joint velocity outputs G ..

Finally, feasibility awareness and, as an extension, safety at the control level, is
a quite untackled field. Usual control approaches implicitly address the resolution of a
control problem assumed to be feasible (see Fig. [LA). In fact, most of the research work
related to safety at the control level is led in the field of mobile robotics, i.e. single body
mobile robots avoiding collisions: models are simpler, and the operational capabilities
predictions are easier (operational deceleration limits do not depend on the robot con-
figuration for example). As an example, the Dynamic Window Approach (DWA) (Fox
et al. ) involves the acceleration limits of a mobile robot and ensures its safety in
a fix environment. More recent developments in this domain are part of the framework
based on the notion of Inevitable Collision State proposed by Fraichard et al. (@)

3Excepted for weighting techniques and clamping. This point is detailed in chapter Bl
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To the best of our knowledge, although this framework could be used to assess the safety
of a wider scope of applications, 1/ it has never been applied to multi-body robots; 2/
it is limited to collisions avoidance with respect to dynamics, which can be formulated
as the compatibility between the constraint of geometric collisions avoidance and ac-
celeration limits. However, these are just two constraints among the many constraints
that have to be faced in robotics: joint position, velocity, acceleration and torque limits
(joint space), collisions with obstacles and forbidden regions (Cartesian space), contacts
conservation constraints (Park et al. M), comanipulation and cooperation (Khatib et
al. ), actuators temperature limits (Guilbert et al. ), etc. We can conclude
that there is still a lack regarding robots safety (in particular for multi-body robots)
when considering a large variety of constraints.

1.3.3 Contributions

The work carried out along this thesis addresses the control problem as a whole (see
Fig. [LT), from its formulation (chapter [2)) to its resolution (chapter B). Finally, chapter
Ml exposes the results through simulations and experiments.
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Figure 1.7: Organization of the manuscript. Chapter 2 deals with the formulation of
the control problem and the safety aspects. Chapter 3 focuses on the resolution of the
control problem. Chapter 4 validates the work exposed on the previous chapters through
simulations and experiments.

The aspects of safety and the formulation of the control problem are tackled in
chapter In this chapter we propose a formal approach to ensure safe behaviors of
multi-body robots in a reactive control framework, thus addressing feasibility awar-
ness. This approach focuses on the constraints expression; the compatibility between
these constraints is studied, and safe alternatives are ensured when compatibility can-
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not be established. A complete case study involving obstacles, joint position, velocity
and acceleration limits illustrates the approach. A particular method is developed to
take full advantage of the usual avoidance techniques while maintaining safety. The
corresponding work was recently proposed for publication in Autonomous Robots and is
under second reviewl] (Rubrecht et al. )

The aspects of constraints compliance and the resolution of the control problem are
tackled in chapter Bl First, the Constraints Compliant Control approach is introduced.
It relies on a passive avoidance scheme (no motion generation for constraints avoidance)
on a limited number of constraints selected from a vicinity analysis. A scaling solu-
tion, based on the feasible motions with respect to the constraints, enables to reach
the frontiers of the workspace. Second, the displaced configuration method extends the
Constraint Compliant Control law to any set of constraints and proposes a compromise
between optimality and efficiency. These contributions have respectively been published
in the ARK’2010 (Rubrecht et al. [2010d) and TROS’2010 (Rubrecht et al. ) inter-

national conferences.

The last chapter is dedicated to the results. First, simulations validates the approach
proposed to solve the control problem in a satisfying manner. Two missions described
as sequences of keyframes are simulated to compare the performances of the proposed
control law to state-of-the-art control laws. The obtained computation times remain
acceptable to consider a use in real time. Then, the results obtained in task-based
design are proposed. As the solution space is likely to be shaped strangely due to
the particular working area, a special attention is paid to support the evolutionary
algorithm exploration and avoid negative impacts from the problem formulation, the
fitness function or the evaluation. In that respect, a specific genome able to encompass
all cases is set up and a constraint compliant control law is used to avoid arbitrary
robots penalization. The presented results illustrate the methodology adopted to work
with the developped evolutionary-aided design tool. Finally, experiments involving a
6-DOFs manipulator operating in front of a TBM cutter head mock up confirms the
reliability of the approach to safety and validates the expected performances. The work
on design was published as a book chapter (Rubrecht et al. ) in a volume of the
Springer Studies in Computational Sciences dedicated to evolutionary robotics.

4«accepted pending revision”



Chapter 2

Motion safety and constraints
expression for multi-body robots

A usual robotic motion chain involves 3 main actors: the user, which sends operational
inputs to the robot, the controller, which transposes these inputs into the joint space,
and the physical system which carries out the motion (see Fig. 2I)). The principle
of safety applied to the control field requires a degree of autonomy of the controllers.
Given a user specified operational input, the controller is in charge of computing the
joint input so that it carries out the desired motion at best. Obviously, the best motion
tracking is not only the closest to the one specified by the user, but above all a controlled
one, i.e. a motion for which the desired joint input sent by the controller (motion
intended by the controller) is actually carried out by the physical system. Presently,
it may not be the case for example if the controller does not integrate the capabilities
of the physical system. In that perspective, a relevant and commonly used approach
consists in limiting the exploitation of the system model to a domain on which it is
reliable (usually referred as the wvalidity domain of the model). However, even over this
domain, the permanent satisfaction of the intuitive expression of usual constraints (e.g.
9 < a9 <4qy, 49, <4 <4y, G, < {d < d{,) turns out to be insufficient to prevent
their violation (see Fig. 2.2)).

Consequently, it is deemed that the control approach should be composed of 2 steps.
At each time step, the controller should:

1. Find the domain in the control variables space for which safety and constraints
are satisfied: the control problem formulation;

2. Find a control vector solution within this domain: the control problem resolu-
tion.

Chapter 2] deals with the control problem formulation and chapter [B] with the con-
trol problem resolution. As an illustration, if the control problem is formulated as a
Quadratic Program (QP), the aim is to define the equalities/inequalities subject to
which the problem is to be solved. Once this is done, whatever the resolution method,
if it is able to solve a feasible problem (in which constraints are compatible), then safety
is ensured. Chapter [3is dedicated to the control problem resolution assuming that the
expression of constraints is compatible and thus that safety has been ensured before-
hand; in the case of a QP, chapter [3] would be focused on the optimization algorithm
itself.

15
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Robot
User Controller Physical System
Operational ‘ Operational
Control space \ space
X ges(k +1) N G,k +1) N X(k+1)

Figure 2.1: Motion chain: at each time step, the user or a high level loop specifies an
operational desired value for the next time step in the operational space (in this case,
desired velocity in the Cartesian space X gos(k + 1)). This desired input is translated
into the joint space by the controller (1), yielding a joint velocity vector qg..(k + 1).
Finally, the motion is carried out (2) by the physical system, yielding a motion which
may be different from the one expected by the user.
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Figure 2.2: Example of incompatibility between constraints for a 1-Degree of Freedom
robot trying to reach the star-shaped object. The right part of the Figure is the sequence
of motion and the left part is the representation of the system configuration at times %,
to + 36t and to + 5t in the joint space. At time tg, the robot velocity is null, and the
next configuration can be chosen in the neighborhood of the current configuration ¢(k)
within the interval let free by the constraints of joint position and acceleration limits.
The terms q(k) + ¢(k)6t + G (k)0t? and q(k) + ¢(k)St + Gar(k)6t? are respectively the
configurations induced by a full acceleration and full deceleration (approximation by
finite differences). At time to + 3dt, the neighborhood of the configuration ¢(k) is no
longer reachable as it does not comply with the joint deceleration limit. Finally, at time
to + 5dt, there is no more constraint compliant solutions (no free interval in the joint
space) and the collision with the joint position limit cannot be avoided; this constraint
incompatibility should have been foreseen before the whole motion generation.

The first section of this chapter discusses the notion of safety at the control level.
Secondly, the concept of extended state (e-state) is introduced and a definition of safety
at the control level is proposed. The third section is dedicated to the methodology
proposed to guarantee safety. It is shown that safety can be ensured either by making
the constraints compatible with each other or by guaranteeing the permanent possibility
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to resort to an alternative safe behavior.

2.1 Safety at the control level

This section is focused on the notion of safety at the control level. In a first part, general
safety criteria are cited. Then, a literature review highlights the present lacks in this
particular domain. In a third part, safety is discussed and a safe motion chain structure
is proposed. Finally, an outcome sums up the objectives and the assumptions of the
study.

2.1.1 Criteria for safety

The notion of safety for a system is a principle applied at various levels. At the design
level, safety is often integrated directly in the system (Ikuta et al. , Zinn et al. m,
Haddadin et al. M) At the control level, the work related to offline optimal trajectory

lanning is closely linked to joint constraints management (Brady , Biagiotti et al.
m) but, despite the context diﬂ"erence'ﬂ, its recent adaptations to online frameworks
(Kroger M) exhibits some similarities with reactive control techniques. In a strictl
reactive context, safety has been neglected for a long time. Recently, Fraichard )
proposed 3 criteria to ensure safety:

1. To decide its future motion, a robotic system should consider its own dynamics;

2. To decide its future motion, a robotic system should consider the future behavior
of the environment;

3. To decide its future motion, a robotic system should reason over an infinite time-
horizon;

These criteria are formulated at a high level and seem to express rather well the common
feelings safety refers to. In his work, Fraichard assesses single body mobile robotics
control approaches with respect to his definition of safety.

2.1.2 Common control approaches for collisions avoidance

The following literature review evaluates multi-body robots control laws with respect to
Fraichard’s criteria. It does not detail the way the control problem is solved (for this,
refer to chapter [3]) but rather focuses on their adequacy with the safety criteria.

To illustrate the topic, let us consider a robot moving close to one of its joint position
limits (as in Fig. 22)). To handle safety, the controller must consider its ability to
avoid the joint limit (and its implication on the joint acceleration or torque limits) as
a prerequisite to motion. However, to our knowledge, the avoidance strategies in the
literature do not involve this type of information. As a result, these strategies are
either unsafe, and consequently cause joint position limits violations, or too cautious
and then waste the system workspace, which may prevent optimal mission performance
in cluttered environments for example.

Safety in itself is rarely addressed directly in the literature; it is usually treated
through collision avoidance or joint position limit avoidance for example. All the control

most of these approaches are exclusively concerned with joint physical limits as operational con-
straints are managed by path planning
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approaches from which we may expect safety rely on the model of the system, which
can be taken as the velocity kinematic model for example

q=Jo(a)d (2.1)

where X 45 is the operational desired velocity, q is the joint space configuration
(referred later simply as configuration), Jo is the Jacobian associated to the operational
objective and ¢ is the joint space velocity of the system.

2.1.2.1 Control based on model inversion

Most control laws in the literature solve the control problem by a direct inversion of
the model. In the case of serial manipulators, the main families of avoidance technique
are issued from Khatib et al. @1; and Maciejewski et al. (@), where forces or
velocities based on the distances to obstacles are applied to the robot to generate an
avoidance motion (active avoidance). All these approaches fail to ensure safety, even
when not considering a moving environment. Two main reasons are responsible for this
situation:

1. Their framework is not adapted to respect an arbitrary number of strict
constraints. For all these approaches, the way to impose conditions on the system
is done through equalities

):fdes1 = Jo1(q)4d (2.2)
X ges2 = Jo2(q)q (2.3)

: (2.4)
X desp = Jop(@)d. (2.5)

If the number of equalities imposed on the system is inferior or equal to the system
number of DOFs (n), the conditions are always (excepted for singularities) fully
satisfied; if the number of equalities imposed is superior to the system DOF, the
retained velocity vector ¢ minimizes the error, according to a predefined norm,
to the desired motionsﬁ, but are not able to satisfy all the conditions. As the
robot dynamics involve at least 6n limits when considering position, velocity and
acceleration limits, it is not possible to rely on such an approach to take into
account the robot dynamics (criterion 1).

2. These approaches do not consider acceleration or torque limits. These ap-
proaches do not consider the robot dynamics (criterion 1). Most of them consider
only the distance to the obstacle in the magnitude computation of the avoidance
term. A step toward safety has been made by Choi et al. (M) with the intro-
duction of collidability, which involves not only distances but also velocities toward
obstacles to have a better appreciation of the hazard of the situation. However,
this information refines the avoidance strategy, but is not sufficient to guarantee
a safe avoidance. For instance, what would happen if the operational deceleration
capability suddenly decreased near an obstacle?

2weighted inverse techniques (Chan et al. m, Park et al. m, Huo et al. M) define the norm
according to which to minimize the solution based on equalities to check.
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2.1.2.2 Optimization-based control

To impose the satisfaction of constraints without imposing equalities to the system, and
to profit from the fact that constraints are generally expressed by inequalities (@i <
a < @), Faverjon and Tournassoud (@) proposed an avoidance technique included
in a control law expressed as a Quadratic Programming (QP)

i X gos — Jo(q(k))g(k + 1 2.6
q(krfll)réwll d o(a(k))q(k + 1) (2.6)

subject to Joq(k+1)—b<0.

q(k + 1) is the velocity vector chosen for the next time step (control input vector),
Jo is the Jacobian of constraints and b is the constraints limit vector. This method
limits the velocities toward obstacles by inequalities (passive avoidance). As a result,
QP techniques do not suffer from the first drawback of control based on model inversion;
QP algorithms are now widely used in manipulators or humanoids controllers (Decre et
al. , Kanehiro et al. m: Salini et al. ). However, the avoidance methods still
do not include dynamics (criterion 1): as for control based on model inversion, the joint
torque or acceleration limits are not taken into account in the inequalities expressions.
Consequently, compatibility between constraints (i.e. the existence of g(k+1) such that
Joq(k + 1) — b < 0) is not guaranteed. The typical incompatibility case is the joint
position limit violation due to limited accelerations illustrated by Fig. If a joint
gets close to one of its position limits with a high velocity, its deceleration capabilities
may not be sufficient to avoid the collision with the position limit. As an example, a
maximum deceleration 2 rad/s? imposed on a joint moving at 1.0 rad/s requires 0.5 s
to actually stop; the distance travelled is 0.25 rad. This example illustrates the fact
that satisfying at each time the joint position and the joint acceleration limits does not
prevent from a constraint violation due to incompatibility. Usually, virtual envelopes
are set up around the physical limits to absorb such violations. These envelopes do not
guarantee safety and often artificially limit the performances of the robot. Relying on a
safe approach taking dynamics into account would enable to reduce significantly those
envelopes.

2.1.2.3 Main difficulty: operational capabilities

Actually, the main difficulty to consider operational deceleration capabilities in the con-
trol law is their dependency to the configuration of the system; thus, at a given time,
the design of a safe deceleration scheme in a cluttered environment is an open prob-
lem. It results that, to our knowledge, no control law for multibody robot passes
criterion 1.

In mobile robotics, the Dynamic Window Approach (DWA) (Fox et al. M) in-
volves dynamics (by taking acceleration limits into account) and ensures safety in a
static environment. The DWA is an example of method maintaining the compatibility
between collisions avoidance and acceleration limits constraints. However, to our knowl-
edge, 1/ this approach has never been applied to multi-body robots; 2/ this approach
is limited to collision avoidance and joint acceleration limits. Indeed, these are just two
constraints among the many constraints that have to be faced in robotics: joint posi-
tion, velocity, acceleration and torque limits (joint space), collisions with obstacles and
forbidden regions (Cartesian space), contact persistence constraints (Park et al. ),
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comanipulation and cooperation (Khatib et al. ), actuators temperature limits
(Guilbert et al. M), etc. We can conclude that there is still a lack regarding
robots safety (in particular for multi-body robots) when considering a large
variety of constraints.

2.1.3 Discussion of Fraichard’s criteria

‘Admissible sp%tcaet y
states

Robot

User Controller Physical System

Operational Operational
space space
issi Admissible
motions
OQ >~
X gos (k + 1) N G (k+1) N X(k+1)

> qdesO(k + 1)

Figure 2.3: Proposed structure for a safe motion chain: at each time step, the user or
a high level loop specifies an operational desired value for the next time step in the
operational space (in this case, desired velocity in the cartesian space X ges(k + 1)).
This desired input is translated into the joint space by the controller (1), yielding a
joint velocity vector gg..0(k + 1). As the controller knows the dynamics of the robot
and the environment, it is able to determine the admissible state space (subspace of the
state space) and thus the admissible control space (subspace of the control space) over
which the velocity vector ¢ .4(k + 1) must be chosen (1°). Finally, the motion is carried
out (2) by the physical system, yielding a motion different from the one expected by the
user, but known by the controller to be a safe motion.

Let us discuss the safety criteria proposed by Fraichard:
e To decide its future motion, a robotic system should consider its own dynamics;

First, the decision of a robotic motion should fall to the controller: through the op-
erational input, the user indicates its specifications; however, among all the potential
control vector solutions, this is the controller which possesses the information to assess
what is the best solution and how to act accordingly (Fig. 2.3]).

Then, one of the elements to evaluate a potential control solution is the robot’s own
dynamics, i.e. all the implications of the currently chosen motion on the future states
of the robot. In this scope, the key elements are:

1. A proper perception of the system state (by sensors and state observers for exam-
ple);
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2. A representative model of the system (i.e. given a joint input, an acceptable
matching between the predicted operational behavior and the real operational
behavior for a wide domain of the state space called nominal range);

3. The consideration of all the limits imposed on the system state: the actuators
features, the adequacy between the model and the real system, the limits imposed
directly by the user (collisions, forbidden areas, velocity limitations), the missions
specificities (e.g. cooperation missions), etc. Despite their differences, all these
limits should be considered equally at the control level. A robot holding a cup of
molten metal must not collide, spill it or reach forbidden velocities/accelerations
to avoid spatters. Equivalently, a magnitude saturation is a model limit (control
loss) and must be avoided.

e To decide its future motion, a robotic system should consider the future behavior
of the environment;

Similarly to the robot, the future behavior of the environment should be estimated
accurately (proper perception, representative model) to be treated as an input for the
controller.

e To decide its future motion, a robotic system should reason over an infinite time-
horizon;

As a consequence of integrating the dynamics in the decision making process, the time-
horizon to be considered should be infinite. An instant-safe situation (instantaneous
constraints satisfaction when not considering any time-horizon) is obviously not sufficient
to know whether a situation is globally safe or not.

2.1.4 Conclusion of 2.1

Multi-body robot control laws in the literature are not safe: the avoidance method used
do not take the robot capabilities into account. As a result, the system workspace is
wasted and the behavior is dangerous. Intuitive expressions of constraints such as joint
position limits and joint acceleration limits can become incompatible, which directly
leads to a safety violation. As a result, before solving the control problem, it is manda-
tory to take the robot capabilities into account in the constraints expression and to
study the potential incompatibilities between them to draw the boundaries of the space
over which the control problem should be solved.
The assumptions of the study are the following:

1. The perception of the system is exact;
2. The models of the system and the environment are known exactly;

3. The system limits implemented in the controller are representative of the system
real capabilities;

4. Once the control problem is expressed as feasible (all the constraints can be sat-
isfied simultaneously), an algorithm is able to solve it without any constraint
violation;
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5. At a given time step, a desired control input (e.g. w(k) = ¢g.5(k + 1) for time
step k) satisfying the constraints is perfectly carried out at the next time step

(dges(k +1) = g(k +1)).

The consequences of these assumptions are discussed for practical experiments in
section [4.3.1.3

2.2 Description for safety

This section is an interpretation based on the previous discussion: the definition of safety
is introduced, based on an appropriate description of the system and its constraints.

2.2.1 E-state

First, it appears that the description of the behavior of a robotic system > and its
constraints through its state s as defined in the State Representation formalism is in-
sufficient. As a matter of fact, an extended state vector (e-state) is defined and denoted
o; it gathers all the variables which allow to describe ¥ and its constraints. The e-state
is defined over continuous time (¢ € R, ) since it contains variables used to describe
the physical system. For example, a n-DOF manipulator controlled at the velocity
kinematic level and constrained by collisions avoidance and joint position, velocity and
acceleration limits has the following e-state

o=[q"¢" ¢ d"]" (27)

where d”' is a vector of distances to obstaclesﬁ. In the same example, the state of X
would be s = g. Conversely to o, the control vector u(k) = ¢(k + 1) belongs to R" and
it is defined over the discrete time (k € N). The e-state space is denoted . and the
control space (R™) is denoted €.

2.2.2 E-state constraints

The notion of constraint usually refers to both a test on the system (“Is the joint
boundary exceeded?”- denoted by e-state constraint) and a prerequisite to motion (“The
control input sent to the actuator should not lead to exceed the joint boundary.”- denoted
by control constraint). The e-state constraints describe if ¥ satisfies safety at the current
time, i.e. when not considering any time horizon. They can be expressed through
Boolean functions such as

S =P
f o — 1 if the constraint is satisfied (2.8)

0 else,

where .7 is the e-state space and # the Boolean space.

3To avoid obstacles, various kind of distance computations can be retained: single or multiple dis-
tances for one robot segment or for one convex body (issued of a convex decomposition), use of activation
areas, etc. In this example and in the rest of this work, this vector contains positive values and its size
is dynamic.
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As an example of e-state constraint, fpass (P for Position limit, M for Maximum)
describes the superior position limit of the 3™ joint

fpmz: o(t) —q3(t) —qu3 <0 (2.9)

where ¢3(t) is the joint position of joint 3 at time ¢ and ¢ps3 is the maximum joint
boundary value.

p being in N, any e-state satisfying the p e-state constraints imposed to ¥ satisfies
the property AP_; (fi(o)) =1, where A is the logical conjunction operator (AND). This
means that all e-state constraints are simultaneously true for the e-state . In this case,
o is called an instant-safe e-state.

2.2.3 Subspaces of the e-state space and definition of safety

The e-state space . is composed of subspaces that can be identified. The subspace of
< gathering all the instant-safe e-states is denoted 4. Conversely, the complementary
subspace gathers the e-states violating an e-state constraint; it is denoted .#/g (VS for
Violation e-State). As illustrated by Fig. 2.2] maintaining at each time step o in .4 for
the next time step is not sufficient to prevent an inevitable e-state constraint violation in
the future. As a consequence, there is a subspace of .4 which should not be reachable
by the system to guarantee its safety.

An e-state leading inevitably to an e-state constraint violation is called an Inevitable
Violation e-State (IVS). It is an extension of the notion of Inevitable Collision State
(ICS) defined by Fraichard et al. (@) which denotes a state from which, whatever the
sequence of control inputs sent, a collision finally occurs. Once an IVS is reached, the
system can be considered as not safe anymore as an e-state constraint violation is going
to happen. The space of IVS is a subspace of %4 denoted .7y s. The union of .y g
and S g is denoted . and gathers all the e-states that should be avoided to ensure
safety. The complement of .7y in . is denoted .#77. These subspaces are illustrated on
Fig. 24l A definition of safety is then

Definition 2.2.3.1. : Safety. The safety of a robotic system % is ensured at the control
level if its e-state o cannot reach Fy .

This definition enlightens the role of the constraints expression to limit the evolution
of the system toward dangerous areas.

The last subspace to define in this section regards the space that is reachable by a
system given its constraints expression. Given an initial e-state oy, Z (o) denotes the
space of all the reachable e-states on an infinite time horizon through all the possible
constraint compliant control (control law able to find a control vector compliant with
the constraints whenever the control problem is feasible).

2.3 Methodology to study and ensure safety

This section exposes the methodology to ensure safety. The proposed methodology must
be carried out offline, upstream from the robotic mission. The equivalent of e-state
constraints should be formulated at the control level. Once their wvalidity is ensured,
they should either be proved compatible, or the permanent availability of an alternative
safe behavior must be ensured on an infinite time horizon.
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yA y <5|/V

Figure 2.4: Partitioning of the e-state space. To be safe, a system should not be able to
reach .7 .

2.3.1 Step 1: Control constraints definition

The controller cannot act directly on the e-state o; it modifies it indirectly through the
control vector u. Inversely, at each time step, by imposing conditions on the e-state, each
e-state constraint forbids an area of the control vector space ¥. Hence, to each e-state
constraint f is associated a control constraint F which can be defined as the function
returning the space of admissible control vectors €4 (o), i.e. the control vectors leading
to an instant-safe e-state at the next time step. A control constraint can be expressed
as a Boolean function returning whether a given control vector belongs to €4(o) or not

(S, €)—~%
F:(o,u) =1 ifue%so) (2.10)

0 else.

The control input being discrete, control constraints are defined over discrete time
(k € N). As an extension of the notation o(t) (t € Ry), o(k) (k € N) denotes the
e-state at time step k.

In the example of the joint superior position limit, if the control is done at the
velocity kinematic level, a possible control constraint is

3rd

am3 — q3(k)

Fpug: (o(k),q(k+1)) —gs(k+1) - 5t

<0 (2.11)

where 6t is the time increment. It can be mentioned that from a practical point of view,
the inequalities imposed on the system at each time step in the QP control law structure
are an example of control constraints. At a given time step k, these terms are gathered
in

Je(q(k))q(k +1) — b(k) < 0. (2.12)

2.3.2 Step 2: Validity

In order to ensure safety, the first stage is to check that control constraints are valid.

Definition 2.3.2.1. : Validity. Let o be an instant-safe e-state at time step k, a control
constraint F' is said valid if its satisfaction implies the satisfaction of its associated e-
state constraint f at next time step k + 1 and for all time between k and k + 1.
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o€ . Sa ke NVt € [kot; (k+1)dt] :
Fo(k),u(k)) = 1= f(o(t)) = 1.

The validity of constraints is most of the time an assumption rather than a formally
proven property. For example, constraints at various physical levels (position, velocity,
acceleration, etc.) must be converted to the control physical level, which is often done
thanks to first order approximations (finite differences). The control being in discrete
time, the approximations induced by finite differences generate errors between the dis-
crete ideal behavior and the real one. However, it is assumed that the sampling period
is appropriately chosen to ensure that these errors remain acceptable with respect to
the various usual sources of errors (model approximations, sensors precision, etc.). As
a remark, it is always possible to find valid control constraints by reducing their space
of admissible control vector €4.

2.3.3 Step 3: Compatibility

A second stage to ensure safety is to check that the set of control constraints is compat-
ible.

Definition 2.3.3.1. : Compatibility. Given an initial e-state oq in /37, a set of p
control constraints is compatible if for all e-state o in X (o), there exists u in € such

that \P_, (F(o,u)) = 1.
The following proposition establishes that validity and compatibility ensure safety.

Proposition 2.3.1. : Let o in S be the e-state of ¥, a robotic system constrained by
p e-state constraints (p in N). If the p control constraints of ¥ are valid and compatible,
then safety is ensured.

Proof. : Let ¥ be a robotic system in an initial (time step 0) e-state oy belonging
to .#37. As the control constraints are compatible, there exists w in ¢ such that

P (F(oo,u)) = 1. Thus the control problem is feasible and as all the constraints
are valid, the system e-state o is instant-safe at time step 1 and for all time between
time steps 0 and 1.

Similarly, as the control constraints are compatible, a system 3 having its e-state o
belonging to .#3 at time step n in N has a control vector w in € such that AY_; (F(o,u)) =
1. Thus the control problem is feasible and as all the constraints are valid, the system
e-state o is instant-safe at time step n + 1 and for all time between time steps n and
n+ 1.

By recursion, o is maintained in .4 on an infinite time-horizon, which means that
it is maintained in #37; as a consequence, it cannot reach .y, and safety is ensured. [J

2.3.4 Step 4: Design of Alternative Safe Behaviors

The study of compatibility between control constraints is complex: an exhaustive method
would consist to, given an initial e-state o, evaluate all the control constraints for all the
e-states o reachable from o to detect empty intersections between control admissibility
spaces €a(o). Given the diversity of constraints, it seems vain to look for generic meth-
ods to detect incompatibilities and modify control constraints appropriately to eradicate
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them. Moreover, sometimes incompatibilities cannot be resolved: when variables cannot
be measured accurately, or when there is no model available, another method should be
used to ensure safety.

A second way to guarantee safety is to ensure the permanent availability of a sequence
of control solutions leading to instant-safe e-states on an infinite time horizon. At each
time step, it is ensured that the controller will be able at next time step to switch to
an infinite sequence of controls leading to exclusively instant-safe e-states. Similarly to
the proof of proposition 2.3.1], o is maintained in .4 on an infinite time-horizon, which
means that it is maintained in .%%7; as a consequence, it cannot reach .#3, and safety is
ensured. This control sequence is called an Alternative Safe Behavior (ASB - referred
as evasive manoeuvres by Parthasarathi et al. M)) Dedicated ASBs are exposed in
section according to the specifications of the proposed case studies.

2.3.5 Summary and methodology

To describe the physical system Y and its constraints in continuous time, the e-state
o is proposed, and the status of the system with respect to its constraints is given by
the e-state constraints. Based on this description, a definition of safety at the control
level is proposed: ¥ is safe if its e-state o is not able to reach the forbidden e-states
Sy . In order to prevent this, the control constraints F' are defined, and the validity
property keeps a link between control constraints in discrete time and e-state constraints
in continuous time. To ensure safety, either the compatibility property must be proved
for the set of control constraints, or the availability of an Alternative Safe Behavior must
be ensured on an infinite time horizon.
The algorithm presented on Fig. illustrates the following methodology:

1. Based on e-state constraints, formulate associated control constraints;
2. Prove validity;
3. Prove compatibility;

4. If step 3 is not possible, either go back to 1 and modify the control constraints
expression or define a new control sequence among ASBs. These ASB will then
be computed at each time step to ensure that the controller is able to switch at
the following time step to an infinite sequence of controls leading to exclusively
instant-safe e-states.

2.4 Safety preservation - case studies

As applications of the framework exposed above, three case studies are proposed in
this section. The considered system is a n-DOFs manipulator controlled at the velocity
kinematic level. The three case studies are associated to three constraints contexts
exploited in the chapter @t

e Joint position, velocity limits and static obstacles. This set of constraints is
the context of an evolutionary design process which involves kinematic trajectory
tracking simulations for evaluating manipulators morphologies (section [.2));
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Figure 2.5: Safe controller algorithm. The part of the algorithm above the dashed
line is offline and is concerned with the control problem formulation; the part of the
algorithm under the dashed line is online and is concerned with the control problem
resolution. From each identified e-state constraint (physical limit or induced by the
mission), a control constraint is formulated offline. If the validity of the constraints
cannot be proved, a new formulation of the control constraints must be expressed. It
is always possible to find valid control constraints by reducing their space of admissible
control vector €4. If the compatibility of the control constraints cannot be proved, a
new formulation can be expressed and evaluated, or an ASB must be established. Once
this is done, the reactive control loop is launched. At each time step, the controller is
fed with operational inputs and solves the control problem thanks to any Constraints
Compliant Control algorithm. In particular, it can include usual constraints avoidance
techniques (e.g. the one of Maciejewski et al (@)) If the compatibility of the control
constraints defined offline could not be proved, an ASB sequence is concatenated to the
desired joint motion: if the resulting behavior is not safe, then the first control input
of the ASB is sent (represented by gbzgg), which safety has been proved at a previous
time step; else, the control solution is sent to the actuators.

e Joint position, velocity and acceleration limits. These constraints consider a real
manipulator to be controlled in an empty environment; this case is simulated in
section L] and experimented in section [43L

e Joint position, velocity, acceleration limits and static obstacles. This set of con-
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straints is used to control safely a real manipulator in a cluttered environment;
this case is simulated in section ] and experimented in section

As a remark, moving obstacles and self-collisions (which can be considered as moving
obstacles) are not considered in these case studies.

First, all the e-state constraints and preliminary expressions of all the control con-
straints are proposed. Then, the three case studies are exposed.

2.4.1 E-state constraints expression

The e-state constraints expressions specify if an e-state o of the system X is instant-safe
at a given time. The following equations are expressed for a given time ¢ in R,..

e Joint position limit

fev o= q(t) <aqm (2.13)
fPm o = qm < q(t) (2.14)
where @,,, and gps are respectively the minimum and the maximum joint position
limits.
e Joint velocity limit
fvm o= q(t) < qum (2.15)
fvm o= gm <4(1) (2.16)

where ¢, and gps are respectively the minimum and the maximum joint velocity
limits. All elements of ¢,,, are negative; all elements of gps are positive.

e Joint acceleration limit

fav 1 o(t) = §t) < dm (2.17)
fam :o(t) = dm < §(t) (2.18)

where ¢, and Gps are respectively the minimum and the maximum joint acceler-
ation limits. All elements of §,, are negative; all elements of gps are positive.

e Collisions avoidance A collision is characterized by
S0 (2.19)

where ¥ is the system (meant here as the set of all the system points) and €2 is
the set of all the obstacles points. The e-state constraint expression is then

fo: o = VA€ X Galq) ¢ Q (2.20)
where G 4(q) is the geometric model of point A belonging to the robot.

These expressions are voluntarily simple and may not be sufficient to describe pre-
cisely real situations. For example, a joint velocity limit or a joint acceleration limit
depends on the configuration and on the velocities of all the system joints for most sys-
tems. In the particular case of virtual manikins, even the joint position limits depend on
the configuration. However, the proposed e-state expressions are considered sufficient
in approximate cases (using an under-estimation of the real acceleration capabilities for
example) and their simplicity is relevant to illustrate the methodology.
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2.4.2 Case study 1: Joint position and velocity limits, Collisions avoid-
ance

This case study involves three constraints: joint position limits, joint velocity limits and
collisions avoidance. The following control constraints (assumed to be valid, see section

232)) are derived from Eqs. (213]) - (2.10) and (220) thanks to finite differences.
Joint position limit (i joint) Fp

i —qi(k
Fpu (o, u(k)—~ J+q(k+1) < QM&CI()

ot

where J + = [0,...,0,1,0,...,0] (the i" term being 1) and J-=1[0,...,0,-1,0,...,0].
Joint velocity limit (i’* joint) Fy/

(2.21)

Fomi (o, u(k)— J-d(k +1) < (2.22)

Foari (o (k) w(k))= J+q(k +1) < qari (2.23)

Fym (k) w(k))— J -k +1) < —Gms. (2.24)

G
Collisions avoidance Fp

da,p(k)
ot

for all pairs of point (A, B), where A belongs to the robot and B to the obstacles;
da p is the distance between A and B; J4 p(q(k)) is the (line) Jacobian of point A along
the direction A — B. For practical reasons, this infinite set of constraints is reduced to
one constraint per segment of the robot (shortest distance to the environment). This
technique is frequently used despite its limits in some cases, as shown by Kanehiro et
al. m) Another method proposed by Peinado et al. (@) consists in assessing
analytically the system configuration in its environment to estimate the areas subject
to a potential collision and act adequately through an iterative process. This approach
builds incrementally collision-free solutions and avoids the approximations induced by
the linearization of collisions constraints (as when using of J4 g). In the present study,
the proposed expression is considered sufficient. As mentionned at the beginning of
section [Z4] this expression is limited to the description of static obstacles (no moving
obstacles of self collisions).

The space of admissible control vectors for control constraints Fp, Fy and Fp are
respectively denoted €1, ¢} and C@?.

Validity being assumed (cf. section 2:33.2), the compatibility is checked.

Fo (o, u(k))— Jap(qk))qk+1) <

(2.25)

Proposition 2.4.1. : The set {Fp, Fy,Fo} is compatible

Proof. : Let ¢, be the null control vector (¢, = 0) and let og be in .#5,. For any o €
Z(00), g(k+1) = g, belongs to €7, €} and €¢. As a result, for all o(k) in Z(0), 4,
is solution of the control problem and thus Fp(o,qy) A Fv(o,4.) A\ Fo(o,q,) =1. O

The compatibility of this set is illustrated on Fig. This figure describes the safety
of a system submitted to various constraints. For example, the cell “12” stands for a
system submitted to Fp (denoted by “1”) and Fy (denoted by “27); as it is written
in black, the system is safe. As all the control constraints are proved to be always
compatible, safety is ensured without modification or ASB required.
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Figure 2.6: Subsets generated by the set of constraints {Fp, Fy/, Fo}. Fp, Fy and Fp
are respectively represented by numbers 1, 2 and 4. Regarding the possible combination
of Fp, Iy and Fp, as these control constraints are compatible, safety is ensured.

2.4.3 Case study 2: Joint position, velocity and acceleration limits

As in the previous case, this case study involves three constraints but collisions avoidance
is replaced by joint acceleration limits. The control constraints for joint position and
velocity limits are taken from case study 1 (Eqgs. (221]) - (Z24))); the control constraint of
joint acceleration limit is derived from Eqs. (2.I7) and (2.I8]) thanks to finite differences
(it joint)

Fani (o(k),u(k)) — (2.26)
chd(k +1) < gm0t + Gi(k)

Fam,i :(o(k), u(k)) — (2.27)
J-q(k +1) < —Gm,idt — ¢i(k)

The space of admissible control vectors for control constraint Fy is denoted 65;14.
As illustrated by Fig. 27, the preliminary constraints expressions of joint position
limits and acceleration limits are incompatible.

Proposition 2.4.2. The sets of control constraints generated by {Fp,Fa} are incom-
patible.

Proof. : let og be in ;. From o, any oy € #Z(0g) for which a given joint satisfies

S M= q(k)

i(k — (G0t 2.28
q(k) 5 Gm (2.28)
is such that Fpyri(oy) and Fap, i(oy) are not compatible, which traduces that fpar;
and fa,,; cannot be satisfied simultaneously. As there is no assumption or constraint

preventing from reaching oy, then Fp and F4 are incompatible. ]

This incompatibility is illustrated on Fig. It has been locally treated by Decré
et al. (@), but as shown in appendix [Al the proposed method is tight and can be
smoothened by imposing that the joint distance to the joint position limit at next time
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Figure 2.7: Illustration of the compatibility of all the constraints subsets of case study
2. Fp, Fpi, Fy, Fx and Fp are respectively represented by numbers 1, 1°, 2, 3 and 4.
The initial control constraints of joint position and acceleration limits are incompatible,
which causes incompatibilities in all the sets containing both (in red). The modification
of the joint position limit control constraint ensures the control constraints compatibility.

step should remain superior to the current joint distance needed to decelerate. As a
result, a modified expression of Fp is proposed (it joint)

Fpar i : (o, u(k)) — (2.29)
- (g — q(k)) — (52 — 51)Gm0t?
JC?Q(k = (s1 —1—21)1515
Fpmi: (0,u(k)) = (2.30)
. (Qm - Q(k)) — 1(82 — SQ)(jMdtz
Teralk+1) < (a2 1ot
with
V" 2hmlqn — (k)
s1=— ot : (2.31)
V260 (gm — q(k))
o = Forot : (2.32)

Proposition 2.4.3. The set {Fp/, Fy, Fa} is compatible.

Proof. Let o be in .%57, the current time step k& be in N and the current e-state o (k)
be in Z(o). The design of Eqs. (2.29) and (2:30) is based on the condition

Ag(k+1) > dg gec(k) (2.33)

where Agq(k + 1) is the joint distance to the position limit at the next time step and
dp dec(k) is a vector of upper bounds of the joint distances needed to stop at current time
step (cf. appendix [A]). This condition implies that the vector of maximum deceleration
velocity qg..(k + 1) which general term is

Q(k) + GmSt if 4(k) > —Got
Gdec(k +1) = < (k) + Guét  if (k) < —Gardt (2.34)
0 else
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belongs to €1’ "(o). Then, by definition, it belongs to €4 (o). Finally, as it reduces the
velocity magnitude, it belongs to €} (o). As a result, for all o(k) in Z(00), Gaec 15
solution of the control problem and thus Fp/ (o, 4y) A\ Fv(o,qdy) \ Falo,qy) =1. O

This incompatibility between control constraints being resolved, the control con-
straints are ensured to be always compatible, which ensures safety.

2.4.4 Case study 3: Joint position, velocity and acceleration limits,
Collisions avoidance

This case study involves four constraints, gathering the two previous case studies: joint
position limits, joint velocity limits, joint acceleration limits and collisions avoidance.

The considered control constraints are Eqs. (223) - (227), (Z29) and 230).

Fy — 2

23 | 234 | 34 Fa—3

Fle =1 123 | 1234|134 | 13

Fy — 2

12 | 124 | 14 1

Fo | 23 | 234 | 34 Fa—=3

Fo — 4

Fpr — 1’

123 (1'234( 1’34 | 13

12 | 124 | 14 1

2 24

Fo — 4

Figure 2.8: Illustration of the compatibility of all the constraints subsets of case study 3.
Fp, Fpr, Fyy, Fq and Fp are respectively represented by numbers 1, 17, 2, 3 and 4. The
modifications brought to joint position limits control constraint avoid incompatibilities
between joint position and joint acceleration limits. However, incompatibilities between
joint acceleration limits and obstacles remain.

Proposition 2.4.4. : The sets generated by {Fo, Fa} are incompatible.

Proof. : Let o¢ be in .#57. From o, any oy € #(0g) for which

da(k)

Jap(q(k))q(k) > 5L

— Ja,B(q(k))§,,0t (2.35)
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shows that Fp (o) and Fa,, (o) are not compatible, which shows that fo(o) and fa., (o)
cannot be satisfied simultaneously. As there is no assumption or constraint preventing
from reaching oy, then Fp and F'4 are incompatible. ]

The incompatibility induced by the simultaneous presence of Fp and F4 is complex.
Actually, the operational acceleration depends on the robot configuration (derived from

Eq. 229)).
Xap=Ja(@)i+ Ja(q)d (2.36)

which does not enable to rely on any value for the operational acceleration capabilities
along a trajectory. In the worst cases, these capabilities may fall down to zero, which
prevents to take a lower bound on which to rely for the deceleration capabilities estima-
tion. As a result, ensuring compatibility between joint acceleration limits and collisions
avoidance seems impossible without an exploration in the neighborhood of the current
system e-state, which may turn time-consuming and thus not acceptable in real-time
reactive control. In this case, the permanent availability of an Alternative Safe Behavior
is required.

2.4.5 Alternative Safe Behaviors

When the control compatibility cannot be proved, the permanent availability of an
Alternative Safe Behavior is required, to be triggered in case of critical situation. As
mentioned in section B34 an ASB is a sequence of control solutions u leading to
instant-safe e-states on an infinite time horizon. It must be computed at each time
step and the safety of the resulting e-states must be checked, thus it should be fast to
compute. An ASB is a restriction of the control problem to a unique possible solution;
this can be seen as an Emergency Stop at the control level. It ensures the constraints
satisfaction but neglects the operational objectives. This may be detrimental to the
tasks under progress (orientations or positions of tools may be modified for example)
but these potential drawbacks are considered as secondary with respect to a constraint
violation.

To clarify the following descriptions, let ¢ denotes an infinite constraint compliant
control input, ¢.e. an infinite sequence of controls u satisfying the control constraints at
each time step.

2.4.5.1 Algorithm based on maximum joint deceleration ASB

As a preliminary observation, as the environment is assumed to be static, once an
instant-safe e-state is static (no variation with respect to time), it remains safe until
the end of time. Consequently, the first ASB proposed ¢asp1 is a full deceleration
at the joint level. This deceleration is the most efficient way to stop the robot: it is
fast as no Jacobian has to be recomputed at each time step, and the number of time
steps necessary to obtain a static robot is minimized. As the control constraints of joint
position, velocity and acceleration limits are compatible, the only remaining constraint
to check on all e-states resulting from ¢ 4551 is Fp, that is an intersection between the
robot bodies and the environment. The method is detailed on algorithm 1. It is assumed
that for & = 0, the initial e-state o belongs to .#3;. The algorithm is illustrated on
Fig.
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Algorithm 1 : Maximum joint deceleration ASB
for all k € N do

(1) Compute an admissible solution ¢(k + 1)

(2) Compute deceleration trajectory ¢ ¢z,

if (3) for all o resulting from gbZSBl, o is an instant-safe e-state then
(4.1) Send ¢(k + 1)

else
(4.2) Send the first element of ¢];‘_S§31

end if

end for

N~ ~—
W ow =
: NS

0 1 2 3 4.2

Figure 2.9: Algorithm of maximum deceleration based ASB. Blue is for non validated
motion, red is for non admissible motion and green for safe motion. In thin green, the
ASB computed at the previous time step. 0/ Situation at the beginning of the time
step; 1/ Control solution computation ¢(k+ 1); 2/ ASB1 profile computation qﬁ’IZSBl; 3/
Admissibility check; 4.1 (up) and 4.2 (down)/ Send appropriate output.

2.4.5.2 Algorithm based on mixable joint deceleration ASB

The algorithm of maximum joint deceleration ASB triggers a full joint deceleration at
the very last moment, when the next computed motion (concatenated with a prediction
of full joint deceleration) would lead to a collision. As a consequence, this algorithm may
show low performances when the robotic system works near obstacles. The problem lies
in the mazximal deceleration toward the stop e-state; when ¢ 4551 is chosen at one time
step, it is likely to be applied until the robot is completely stopped very close to the
environment. Then, the robot may oscillate between two behaviors when moving along
the environment: 1/ computation of a “nominal” ¢(k + 1) issued from the operational
input treated by the control law, and 2/ (;SZB}BI issued from the ASB, as the proximity
to obstacles is likely to require the ASB.

As shown on a simple example in Fig. 210 in most cases when a maximum de-
celeration ASB ¢a9p1 has begun, there is no other possibility than full deceleration
until the complete robot stop. To get a small margin in the control admissibility space
during the deceleration, it is then proposed to impose the resort to an ASB earlier, so
that the braking motion is not critical and the controller can allow other behaviors than
full deceleration. To that end, the use of a prediction ¢45p2 with reduced acceleration
capabilities is proposed.

At each time step, once the control solution ¢(k + 1) has been computed by the
controller through the “nominal” control law, each prediction (¢pasp1 and ¢aspe) is
concatenated separately to the current control solution. Then, 4 possibilities may occur,
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Figure 2.10: Comparative behaviors of robots trying to reach a keypoint (star) behind
a wall. On the right, the schemes are representations of the e-states projected on the
joint space of the 2”@ DOF of the system during 3 time steps. Top: maximum joint
deceleration (ASB1). The motion of the robot is decomposed in three parts. Black path:
the motion is computed through the control law, and at each time step the controller
concatenates the control vector to be sent with a full deceleration, to check if a collision
occurs and decide if the control vector should be sent or not. Red dashed path: a
collision with the predicted full deceleration being detected, it is applied before sending
the control law computed input; during the ASB deceleration, only the full deceleration
control solution is admissible (top right). However, when the robot stops, it is close to
the obstacle. Blue path: once near the obstacles, the controller oscillates between the
control law solutions and ASB. Bottom: mixable joint deceleration (ASB1 & ASB2).
As in the scheme at the top, the motion of the robot is decomposed in three parts. Black
path: control law based motion; it is shorter than the upper one, because deceleration
predictions are based on under-estimated capabilities. Red dashed path: the ASB is done
with maximal deceleration capabilities, but as it has been triggered before, the control
law solutions can be chosen in a small (but not reduced to a point) interval (bottom
right). Black path on the green curve: as a result, the robot progression toward the
wall can be damped by a smooth path constraint. Green curve: representation of the
smooth path trajectory.

3 of them leading to the same action:

e no collision is encountered, neither for ¢ 4551, nor for p45p2. The e-state TG (k+1)
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resulting from the control solution ¢(k + 1) belongs to .77, and it can be sent
safely to the actuators;

e pagp1 encounters a collision and ¢ 4952 not. It is the case met in the maximum
joint deceleration ASB, O Gk+1) AY belong to . and thus qblzngl should be sent

to the actuators for safety reasons.

o pasp1 and ¢ 45p2 encounter a collision. Similarly to the previous point, as ¢ 4551
encounters a collision, it is the case met in the maximum joint deceleration ASB
and (ﬁi}%l should be sent to the actuators for safety reasons.

® Pagpo encounters a collision and ¢agp1 not. This case is more likely to happen
than the 2 previous ones as ¢ 4552 is generated with reduced deceleration capa-
bilities. This case traduces that the robot is close to an unavoidable collision but
some margin (in the control admissibility space) remains. This free space can be
exploited to insert during the incoming time steps an appropriate behavior to the
robot, i.e. a behavior that would smoothens its reactions close to the environment.
This exploitation is exposed hereafter; to maintain the margin, a full deceleration
qblzg%l is sent to the actuators.

The behavior to be inserted is actually induced by a dedicated control constraint
F¢ which is valid but not a priori compatible with the other constraints (else, if such
a control constraint would be known, there would not be necessary to use an ASB). It
is designed so that its satisfaction induces good performances of the system (in terms
of smoothness for example), but its violation must be considered as acceptable, as its
addition in the set of constraints may not produce a feasible control problem; in that
case, Fo not considered in the control problem.

As an example for F, the method proposed by Faverjon and Tournassoud (@)
(referred later as Smooth Avoidance Technique (SAT)) can be used profitably. Briefly,
this method constrains the operational velocities of each point of the robot bodies that
gets close to an obstacle; each velocity limitation is done through an inequality constraint
and the whole control problem is solved by a QP algorithm (Eq. (2.0)). The general
velocity limit expression is

for d < d;, (2.37)

where d is the temporal derivative of the distance d between the robot point and the
obstacle. This technique involves 3 parameters: a is a positive coefficient for adjusting
convergence speed, ds is the security distance (envelope) and d; is the distance of influ-

ence, i.e. the distance under which the constraint is activated. A control constraint can
be derived from Eq. ([237)

da,p(k) — ds

Fo o (o(k),u(k) = Jag(k) < —a—= "0

for da p(k) < d;. (2.38)

As a remark, checking at each time step the feasibility of a control problem may
not be trivial: knowing if a set of linear constraint is compatible may require the
resolution of the associated linear system. When the set of considered constraint is
{Fp,Fy,Fa, Fo,Fc}, an approximate answer can be given by checking whether the
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configuration of maximum deceleration is admissible. It is not a requirement for com-
patibility (there may be cases for which this configuration is not admissible whereas the
constraints are compatible) but it is a sufficient condition. As a result, at each time
step the compatibility between the SAT control constraint and the other constraints is
checked: if the SAT is not compatible, it is not considered.

The final method is exposed on algorithm 2 and detailed on Fig. 2-IT] (step by step
illustration). As for algorithm 1, it is assumed that for & = 0, the initial e-state o
belongs to 73

Algorithm 2 : Mixable joint deceleration ASB
for all £ € N do
Control constraints: {Fp, Fy, Fa, Fo, Fc}
it A (F(0, ddeelk + 1)) # 1 then
Control constraints: {Fp, Fy, Fa, Fo}
end if
(1) Compute an admissible solution g(k + 1)
(2) Compute deceleration trajectories ¢’f45 B> qﬁ'jls B2
if (3) for all oq resulting from ¢]ZSBD o is a safe e-state AND for all o5 resulting
from ¢§13327 o9 is a safe e-state then
(4.1) Send ¢(k + 1)
else
(4.2) Send the first element of (;SIZE}BI
end if
end for

JUSE S e "
0 ‘ 1 2 \/\/Qt@.
& - A

/\//\‘R_@ 4.2
3

Figure 2.11: Algorithm of mixable deceleration based ASB. Blue is for non validated
motion, red is for non admissible motion and green for safe motion. In thin green, the
ASB computed at the previous time step. 0/ Situation at the beginning of the time
step; 1/ Control solution computation ¢(k + 1); 2/ ASB1 (¢%4p,) and ASB2 (¢ ¢5,)
profile computation; 3/ Admissibility check; 4.1 (up) and 4.2 (down)/ Send appropriate
output.

There is no theoretical proof that the SAT always smoothens the robot behavior and
prevents oscillations. However, as an informal clue, it can be mentioned that a robot
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moving slowly along an obstacle has a small velocity projection along the axis toward
the obstacle. If the problem is considered decoupled as a rough approximation (motion
along the wall are considered independent to motion toward the wall), the SAT has only
to deal with the part of the motions toward obstacles. The technique of Faverjon et al.

) is designed to manage such cases; the additional work on compatibility enables
to reduce significantly the envelope dg while ensuring safety. Finally, it is important to
recall that the main goal of an ASB is to ensure safety at all costs; as a drawback, an
ASB decreases the quality of solutions in terms of objectives tracking. The ASB should
be used as rarely as possible; it should remain a kind of emergency solution in control.

2.5 Partial conclusion and perspectives

This chapter is dedicated to the reactive control problem formulation to obtain a safe
problem behavior. It is based on the safety criteria enounced by Fraichard (M)

A framework is exposed in which safety is expressed as the conservation of the
system e-state in an admissibility space. This conservation is obtained through the
compatibility of the control constraints (expressions to be satisfied at each time step
by the control law). This compatibility can be ensured either by making the control
constraints compatible, or by ensuring that an Alternative Safe Behavior is available at
each time step.

The use of this framework is illustrated by case studies involving a n-DOF manip-
ulator controlled at the velocity kinematic level; the considered constraints are joint
position, velocity and acceleration limits and static obstacles. Examples of Alternative
Safe Behavior are proposed to obtain a safe but also acceptable robot behavior.

Many perspectives are foreseen:

e Application to other constraints: joint torque or power limits, moving obstacles,
etc. The exploitation of recent work based on Inevitable Collision States can be of
much interest (Fraichard et al. m, Parthasarathi et al. m, Martinez-Gomez
et al. , , Bautin et al. ) As a remark, dealing with moving obsta-
cles is particularly complex in our case: as the constraints compatibility depends
on the prediction of the system motion capabilities with respect to the environ-
ment, it strongly depends on the assumptions over the environment dynamics. A
first perspective in that field is the management of self-collisions, which can be
considered as a particular case of mobile obstacles with known dynamics;

e Application to controllers at other physical levels, such as position or torque con-
trol;

e Exploitation of the Partial Motion Planning studies (Petti et al. M, Van Den
Berg et al. , Bertolazzi et al. , Hauser ). Most studies are limited
to single body mobile robots, but even if the planning for multi-body robots is
time consuming, real-time planning is likely to be more and more used in robotics.
Research for intelligent ASBs is closely linked to this domain.



Chapter 3

Control problem resolution

The control problem usually covers various domains: planning, artificial intelligence,
actuators low level loop... The scope of this chapter is the mid-level loop resolution: it
is assumed that 1/ an operational input is given at each time step, coming from a high
level loop, 2/ a joint output should be provided at each time step, going to the actuators
low level loop. The proposed resolution method is based on the problem formulation
elaborated in chapter 2 it is assumed that the problem is solvable. This is not generally
the case in the literature, where the constraints are usually taken with sufficient margins
to compensate for the possible incompatibilities.

According to the need of the user, the tasks specified to the robotic system are
expressed in different ways in the literature: with the same or various (potentially
strict) priorities, by equalities (desired value) or inequalities (desired areas). It appears
that there are two main resolution families generally used to solve the control problem:
1/ Analytic Inversion Methods (AIM) which focus on the model inversion to obtain a
solution in a single resolution iteration; 2/ Convex Optimization Methods (COM) which
resort to all the available tools of this class of the mathematical optimizations field.
There is much interest to combine the comprehension of the robotics issues through
the AIM methods (widely used in robotics since the beginning of the exploitation of
redundancy by Liégeois dﬁ)) and the efficiency of the COM tools (used less frequently
but with much benefit, e.g. Faverjon et al. ), Escande et al. M)) A special
attention is paid in this chapter to draw the links between those methods (the AIM being
often based on the gradient projection method), and especially to summarily explicit
the COM frequently used in robotics reactive control (Annex [C]).

The contributions exposed in this chapter are based on this combination: the Con-
straint Compliant Control (CCC) is a complete algorithm that relies on passive avoid-
ance to comply with strict tasks while resorting to active avoidance to maintain a well
conditioned problem and reach the objective tasks. The displaced point principle en-
larges the scope of the CCC and opens a way to solve problems involving inequality
tasks in a single iteration by means of a (reduced) optimality loss.

The particular case of Alternative Safe Behaviors is not treated in this chapter; if
an ASB is required at a given time step, it is detected by a prediction consecutive to
the problem resolution (cf. section [2.4.5]).

As a vocabulary remark, a difference is made between time steps, which denote the
control instants k, k + 1, etc. and iterations, which denote the computation of internal
algorithm loops.

39
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3.1 State-of-the-art

The control problem formulation proposed in chapter 2involves constraints (inequalities)
expressed as conditions to be satisfied at all costs. However, as mentioned above, this is
not the only way the control problem is addressed in the literature. To differentiate from
the previous framework where the operational inputs where described with objectives
and constraints, the generic term task is used. The present state-of-the-art reviews the
most usual ways to solve the control problem according to its formulation. A special
attention is paid to draw the links between direct AIM (the most frequently used in
robotics) and COM. A quick presentation of COM is proposed in appendix It is
limited to methods actually used in Inverse Velocity Kinematics (IVK) problems, i.e.
the one exploiting the particular structure (especially the fact that the cost function is
generally quadratic) of the problem.

Section B.IT] exposes various ways to express the control problem. Sections
and B.1.3] detail single and multiple hierarchical levels problems, solved with AIM and
COM. Sections B.I.4 and introduce inequality tasks in the control problem; in this
case, only COMs remain.

3.1.1 Problem specifications

The problems addressed in control may vary according to the need of the user. Even
if high level control loops such as the ones of planning or supervision are out of the
scope of the present work, the way the user specifies his need has an impact on the
problem formulation. Among the operational inputs, the simplest way to specify tasks
is to impose one or several targets with relative importance (section BI.2)). However,
this cannot be sufficient for demanding tasks: the framework exposed in chapter
considers that independently of any specification type, the control law should be able
to satisfy tasks (constraints in this case) without influence (strict priority) of other
potential tasks. The problem is said to be formulated through strict hierarchical levels
(section B1.3). The management of these tasks into the controller scope (appearance,
transitions, removal) is not addressed in this document. The interested reader can refer
to the work of Mansard et al. (2007), Keith et al. (2009), Padois et al. (2007) and
Salini et al. (@) Finally, the tasks are almost always specified in terms of equalities,
probably because the usual solving methods (AIM) are likely to solve these kinds of
problems. But basically, there are many kinds of tasks that are relevant to be specified
as inequalities (section B.1.4)).

To illustrate the various methods referenced in the following literature review, the
case of a 4-DOFs planar manipulator in charge of observing a star-shaped object in a
cluttered environment is proposed (Fig. Bl). The presence of the text “you should read
this text toward the star” is here to illustrate that the robot should track a particular
trajectory to reach the star (a letter is red once the camera gets over it) and that any
tracking error is a drawback as the message cannot be red completely. The velocity
kinematic model of the camera motion is

Xo = Jog. (3.1)

X is the camera velocity in the Cartesian space (size(X)=3, 2 linear velocity and 1
angular velocity), Jo is the Jacobian of the camera (size(Jo)=(3,4)) and q is the vector
of joint velocity (size(¢)=4). The manipulator is said redundant with respect to the
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camera positioning task as there are more DOFs (4) than required (3) to move the
camera at a given position in the robot workspace.

Figure 3.1: 4 DOFs planar manipulator in a cluttered environment.

3.1.2 Single hierarchical level

In this section, all the tasks assigned to the system are expressed with relative but not
absolute importance (no strict priority).

3.1.2.1 Problem formulation
The problem is expressed through an equality expression:
Find ¢(k + 1) such that X ges0(k + 1) — Jo(q(k))g(k +1) =0 (3.2)

where X des,0(k + 1) is a concatenation of the desired operational inputs associated to
Jacobian Jp(q)(k) evaluated at current time step k and ¢(k + 1) is the vector of joint
velocities to find at time step k so that Xde&o(k + 1) is performed at time step k + 1.
The convex optimization version of this problem is an unconstrained quadratic op-
timization problem
- omin [ Xges,0(k + 1) — Jo(q(k))q(k +1)]]. (3.3)
q(k+1)eR™
This problem expression means that the aim of the resolution method is to find a control
solution ¢(k+1) so that Jo(q(k))g(k+1) is as close as possible to the desired operational
velocity X des,0(k+1). This way of considering the problem and the associated resolution
methods are exposed in appendix The particular case of inequalities in a single
priority level (rarely addressed) is described in

3.1.2.2 Resolution methods

For clarification, the dependence of the Jacobians to q(k) and the dependences to the
time steps k and k + 1 are no longer mentioned. When not explicitly mentioned, the
joint velocity ¢ denotes the control vector q(k + 1), and the other values are the e-state
variables expressed at time step k. The range of a linear application represented by
matriz A is denoted Rg(A); the kernel of a linear application represented by matriz A
is denoted Ker(A).

The formulation of Eq. (8.2)) enlightens the problem of the Jacobian inversion. The
general (potentially approximated) solution proposed by Liégeois (@) is

q= JgﬁXdes,o + Py, z (3.4)
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where Jﬁ is a weighted pseudoinverse of Jo, Py, is a projector on Ker(Jo) and z an
arbitrary vector of R™. Jgﬁ X des,0 1s the particular solution of Eq. (8.2) while Py, z is
its homogeneous solution (see appendix [Bl for more information on the inversion of the
linear problem of Eq. (8:2)). Considering a single hierarchical level means that only the
term J?Oéﬁxdes,o is used (z = 0).

In the case of the 4 DOFs manipulator, an example of task is to reach the star

Xdes,O - XO

Xdes,O = kl 5t

(3.5)

where k1 is an error gain, X 4.5 0 is the desired end-effector position and orientation at
the current time step, X is the current end-effector position and orientation and dt
is the time step. However, this task would lead to collisions as the environment is not
taken into account (Fig. B.2).

Figure 3.2: The robot tries to go straight to the star without considering the environ-
ment.

To avoid these obvious collisions, Khatib (@) considers potential fields (attrac-
tive for the robot target, repulsive for the obstacles) to generate virtual forces on the
robot (Fig. B3]). However, this approach generates numerous operational inputs on the
manipulator, making the control law unable to satisfy all of them simultaneously. As a
consequence, it is not possible to ensure the permanent satisfaction of all tasks, and en-
velopes around the obstacles are needed. As a result, the compromise between repulsive
and attractive fields does not yield optimal results.

Other single hierarchical level approaches involves the augmented matrix approach
(Bailleul et al. ) which proposes to fit the tasks of a redundant system so that the
Jacobian remains a square invertible matrix. To this end, additional tasks are inserted:
matrix singularities avoidance and/or tasks making closed operational trajectories gen-
erate closed joint trajectories, which is of interest in industrial applications for example.
In the same scope, Seraji proposed in 1989 the configuration control approach (Seraji
et al. ), improved later (Seraji et al. @) thanks to a singularity-robust task-
prioritized reformulation. More recently, Shen et al. M) solved the control problem
by minimizing a weighted sum of task errors. Similarly to the approach of Khatib (@),
although these methods meet quite well the single hierarchical level specifications, they
suffer from the limits inherent to these specifications: they consider a limited number of
tasks with the same priority. However, they do not meet for example the needs expressed
in chapter [2 (satisfy the constraints, and, if possible, the objectives).
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Figure 3.3: The robot is submitted to repulsive (obstacles) and attractive (star) forces.
The resulting compromise is not theoretically safe and not optimal.

3.1.3 Multiple hierarchical levels

This section deals with multiple hierarchical levels specifications for which strict priority
levels are defined: influences of the performance of low priority tasks on the performance
of higher priority tasks are forbidden.

3.1.3.1 Problem formulation

The multiple hierarchical levels control is the most largely used control problem formu-
lation. In this case, tasks are strictly prioritized: any performance for a given level can
be carried out as long as it does not cause a deterioration of the tasks at higher levels.
A representative expression of such a problem can be done through a sequence of Least
Square problems with Equality constraints (LSE)

i X a1y — Jiian € 3.6
q(kfﬁl)rémn” (i+1) — Ja+ndll (3.6)
subject to  J(;q — X(i) =0 (3.7)

where J;) is the Jacobian of tasks of the it hierarchical level (the higher the index,
the lower the priority) and X(i) the associated operational input. ||X(i+1) = Jgnall is
the Cost Function (CF), and J;yg — X ;) = 0 are the Equality Constraints (EC). The
resolution of this LSE with COM algorithms is described in appendix[C.2l Its resolution
with AIM is exposed hereafter.

3.1.3.2 Resolution through gradient projection method
Based on the expression of Liégeois (cf. Eq. (8.4]))
q=J} X ges0 + P2, (3.8)

an exploration of the null space of the main task (Jo, X des,0) is possible through the z
term projected on the Jacobian kernel by P;,. This method is often called the Gradient
Projection Method in the literature as the potential (magnitude to be decreased) from
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which z is derived (gradient) is projected on the kernel of the high priority task Jacobian
Jo. This approach is the application of the COM Gradient Projection Method in the
case of a quadratic problem. An extension of Eq. ([B.4]) enables to take an arbitrary

number of tasks into account (Siciliano et al. )
4o =de-1 + jf)(X(i) —Jwdu-1)), 4oy = J(J{)X(n (3.9)
with
T
o =JoPi-r, Po=T=J0J0, Jo= J(;Q) : (3.10)
Ja)

A large part of the literature dedicated to constraints avoidance techniques (e.g. ob-
stacles or joint position limits) resorts to strictly prioritized problems. Active avoidance
techniques, such as the one introduced by Maciejewski et al. @), tends to get the
robot away from areas by imposing velocities on the segments at the lowest hierarchical
level. The proposed control law is then

d = JZ;#Xdes,O + (JobstPJo)#(Xdes,obst - JobstJ(#j#Xdes,O) (311)

where J,ps is the concatenation of the Jacobians of closest obstacles points to the robot
(1 by segment maximum) - referred as J4 p in section To increase safety, the hier-
archy is inverted ((Jo, X des,0) <> (Jobst X des,obst) ), avoidance at the highest level). The
method is generalized by Sentis et al. ) through a whole body motion framework.
This approach imposes to use activation thresholds in order to define areas where the
avoidance motions are active. Else, the robot would be permanently avoiding obstacles
without considering the trajectory tracking. The comparative behaviors of the 4 DOFs
manipulator submitted to the control law of Maciejewski and Sentis are represented on
Fig. B4

The principle of strict priority between hierarchical levels has been soften by Mansard
et al. b) who introduced directional redundancy to enable favorable influences of
low hierarchical levels on high hierarchical levels. Mansard et al. (Ma) addressed the
problems of discontinuity induced by Jacobian rank changes (the continuity being not
explicitly taken into account as a task itself).

As partially shown on Fig. B4 these techniques suffer from severe drawbacks:

e They overconstrain the robot, by imposing arbitrary inputs on it; when too many
conditions are imposed (more than 1 by DOF), the solution found at best min-
imizes the error toward the desired behavior. As the expected behavior is not
feasible, the robot is in a control loss (does not strictly behave as specified by the
user), which is critical in presence of constraints;

e To overcome the lack of safety, obstacles and constraints are surrounded by en-
velopes of arbitrary width, which decreases the working space of the robot without
strictly ensuring safety;

e They generate oscillations at the activation threshold. For example, if a task
tends to get the robot closer to obstacles: 1/ the robot is inside the obstacle acti-
vation area — active avoidance; 2/ the robot gets outside the obstacle activation
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g °
Figure 3.4: Comparison between obstacle avoidance at the second (Maciejewski et al.
@) and the first level (Sentis et al. M) Left: the robot tracks perfectly the
trajectory and the configuration obtained maximizes the distance to the obstacles while
maintaining the camera on the star. However, as it is not possible to reach the star
without obstacle avoidance, a collision occurs. Right: the robot cannot properly tracks
the trajectory as it avoids the obstacles in first priority. The avoidance methods generate
oscillations on the camera at the avoidance activation threshold; the camera alternates
between 2 states as the trajectory and the obstacles have opposite effects at different
priority levels. Despite its cautious behavior this method is not safe, as exposed in
Fig.

area — no obstacle avoidance, motion toward the obstacles; 3/ back to 1. This
phenomenon is limited if the active avoidance is at a low hierarchical level: as the
superior tasks are not impacted by the oscillations, there is no particular reason for
the configuration to be maintained in the neighborhood of activation thresholds.
However it increases the risks of safety violations;

e The addition of potentials (as in the case of competition between joint boundaries
and obstacles for example, see Fig. B.0) may lead to infinite inputs and direct
violations.

3.1.3.3 Resolution through Jacobian inversion weighting methods

Another way to explore the kernel of the high level tasks is to modify the norms (in
operational and joint spaces) being minimized by the pseudoinverse (for calculus details
about weighting see appendix [B.3.1] and refer to Doty et al. (@) and Ben Israel et
al. M)) Briefly, in most of the cases (Jo is full rank in line) the pseudo-inversion
is influenced by weights attributed to the joints: the operational motion being satisfied,
the repartition of this motion between the joint is done accordingly to the weighted norm
minimization. The avoidance in this case is not based on an active but on a passive
approach: the avoidance does not generate a motion, it rather slows or prevent motions.
The weight attributed to a joint can get so important that the control gets progressively
unable to resort to it. This possibility is used for joint boundaries avoidance by Chan et
al. (@) Huo et al. ) proposed a self adapting weighting coefficient algorithm
that increases the performances of joint limits and singularity avoidance. This approach
was recently generalized by Xiang et al. (@) who, by introducing virtual joints, enable
to handle an arbitrary number of constraints by avoiding virtual joints boundaries. To
our knowledge, this approach has never been applied to obstacles avoidance.
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Figure 3.5: Example of competition between obstacles and joint boundary avoidance
tasks. In this example, the controller has 2 tasks strictly prioritized: 1/ Moving ¢;
according to Xde&o; 2/ Avoiding the two obstacles and the joint boundary. The second
task involves 3 avoidances that are in competition to prevent the violation of their as-
sociated constraints. Between the two obstacles: each obstacle generates avoidance
velocities on the closest point of the robot, which magnitude depends on the obstacle
proximity. Given the problem configuration, the second segment of the robot converges
toward a position which proximities to O; and Os depends on the distance Lq and Lo.
This becomes a problem when ¢; continues its motion as L; tends to 0, which should
provoke an infinite avoidance magnitude from obstacle Oy. This is likely to lead to a
collision with Oy in discrete time control. Competition with the joint boundary:
the joint boundary avoidance is computed differently from the obstacles avoidance as
there is no length L3 associated to it. So, a normalization should be done. Anyway, the
behavior induced by the avoidance of O7 in its competition with Oy is likely to violate
joint boundary Bj as well. This behavior is not acceptable as it seems that, until the
second joint reaches O, non violating solutions exist.

As the gradient projection method, the weighting methods exploit the null space
(redundancy) of a task. If both methods are used to explore the same null space at
the same hierarchical level, the gradient projection task is effectively carried out at
a superior sub-level than the weighting method. Actually, the weighting influences the
Jacobian inversion while the projection on the Jacobian kernel is an additional term that
takes the inversion into account to exploit directly the redundancy, thus overlapping any
operation carried out on the inversion.

Classical weighting techniques use positive definite matrix to define the weights (Ben
Israel et al. ). Using semi-positive definite matrix may violate the strict hierarchy
by having influences on top priority tasks, which can punctually be useful (typically for
constraints imperative satisfaction). This technique is exploited by Xiang et al. ).
However, discontinuities in the solutions occur when the matrix passes from positive to
semi-positive definition.

A more disturbing drawback is that weighting cannot deal with tasks expressed as
inequalities: the weighting coefficient are fixed before the model inversion, i.e. without
knowledge about the direction of the solution along the tasks. For example, if a joint
is close to its boundary, its weight is high, so it has difficulties to get closer as well as
further from the boundary. The only way to remedy to this drawback is to resort to
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iterations (e.g. in Xiang et al. (@)) to incrementally fix the weights.

3.1.4 Use of inequality tasks in IVK problems

As described in B3] tasks associated to limits (inequalities by essence) are most of the
time considered through equalities, probably because of the AIM resolution structure.
The introduction of inequalities in the problem formulation has been for a long time
addressed only by COM. Conversely to equality objective problems, any problem in-
cluding inequalities requires iterative algorithms to be solved (excepted for the method
proposed by Mansard et al. (@a), which relies on multiple Jacobian inversions and is
very time-consuming). The most efficient way to solve a problem involving inequalities
is to consider them as equalities. This is the principle of active sets methods for example
(see section B.T.4.3]), which key to solve an inequality constrained problem is to find the
appropriate equality constrained problem to be considered.

3.1.4.1 Problem formulation

There can be many ways of specifying a control problem involving inequalities. However,
most of them can be gathered in 2 categories:

e The inequality is an objective (e.g. an area to reach in the operational space):
this problem has been neglected for a long time, the only contribution found in
this field is the one of Kanoun et al. M), described in section B.1.5

e The inequality is a constraint (e.g. a forbidden area in the operational space):
this problem is far more common as it describes well the physical limits of robotic

systems, it is formulated through Least Square problem with Inequality constraints
(LSI).

A LSI can be expressed ad

min||Xdes,O - JOqH (312)
geR”
subject to  Jog — b < 0. (3.13)

In this problem, the tasks are divided into objectives (Jo, X des,0) and constraints
(Jo, b). The problem involves a single objective (or a set of objectives at the same
hierarchical level) and possibly inequality constraints. Many techniques can be used to
solve such a problem with COM. For example, interior points methods turns this problem
into a sequence of unconstrained ones by adding the constraints to the cost function
with an increasing penalizing weight. Other methods frequently used with quadratic
programs are active-sets methods. These methods are based on a simple observation:
the solution of an LSI can be obtained by the resolution of a LSE constrained by a
subset of the inequality constraints taken as equalities. The key is to determine which
inequalities are active (= the optimal solution satisfies it as an equality). Both methods
are regularly used in Model Predictive Control (MPC) (Bartlett et al. ); for example
in the case of IVK problems, active sets methods are the most widely used. The reason
is that usual IVK problems are small (with respect to MPC ones) and active constraints
are quickly identified.
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As an example, the primal active sets method is briefly exposed hereafter (section
D143 For a more detailed description, refer to appendix and Nocedal et al.
)). As an introduction, the work of Baerlocher et al. (@) is described (section

B.IT.47).

3.1.4.2 Joint clamping on a humanoid

Baerlocher et al. (@) propose an algorithm to satisfy joint boundaries constraints
on a humanoid robot. At each time step, a whole model inversion is done; if the
obtained motion violates some joints position limits, then these joints are clamped to
their boundaries. The resulting operational motion is taken into account and a new
model inversion is done, without considering the previously clamped joints. Again, if
the motion violates other joints position limits, these joint are clamped, etc. At the end
of the computation, the final joint motion is sent to the actuators and all the joints are
unclamped for next time step. This algorithm is presented on Fig.
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Figure 3.6: Prioritized Inverse Kinematics algorithm (Baerlocher et al. ): once the
prioritized joint variation is obtained as the output of the inner loop (priority loop),
the updated configuration is checked for joint limit violation. Any detected subset of
violating variations leads to the introduction of temporary equality constraints that
clamp the corresponding joints on their respective limit. The prioritized solution is
re-evaluated with this updated context as long as additional limit violation is detected
(clamping loop).

This approach finds incrementally the set of active constraints by clamping the vi-
olated joint position limits in a try/check/clamp iterative structure. The convergence
of this algorithm is illustrated on Fig. Bl The projectors on the tasks kernel are built
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iteratively to increase the algorithm efficiency. In more recent works (Raunhardt et al.
M, Peinado et al. M), the problems of discontinuity at the velocity level induced
by clamping is circumvented and obstacle avoidance management is included in the
framework).

However, despite optimized computation methods (PIK), these approaches lacks of
efficiency: as there is no indication whether an active constraint should be relaxed or
not, the active set begins empty at each time step and grows progressively, which is
time-consuming in very constrained cases. Moreover, for the same reason, in a few case
this method is non optimal (Fig. B.8)).

q2

q2,min

Max ql

Figure 3.7: Representation of the clamping method convergence (Baerlocher et al. M)
in the joint space. q is the current configuration. The point to reach is the centre of
the equipotential ellipses. Solution 1 reaches the minimum of the unconstrained cost
function but exceeds the first joint boundary. Joint 1 is then clamped (1’) and a new
solution is computed. Solution 2 is then computed with joint 1 clamped; the solution 2
exceeds the boundary of joint 2. Joint 2 is thus clamped (2’). The final motion is the
concatenation of 1’ and 2’; it is the optimal solution for the given problem.

3.1.4.3 Primal active sets method

The active sets methods enables to get information on the constraints that should be
activated and/or relaxed along the iterations in order to find the adequate LSE yielding
the optimal value. A short description of the primal active set method is given hereafter.
The detailed algorithm and an example are given in appendix A rigorous and
complete approach is given in Nocedal et al. ).

The primal active-set algorithm begins by a phase I problem, i.e. by finding a feasible
point (this problem is assumed to be solvable). Once found, the algorithm addresses
phase 11, i.e. the optimal resolution of a constrained problem from an admissible initial
solution. Similarly to the clamping method, this algorithm looks for the set of constraints
that are active at the optimal point. Given a subset J. of all the constraints Jo and an
associated admissible point, an optimal solution ¢ is found (LSE problem).

e [f one or more constraints of Jo are violated by ¢, then the solution is scaled to fit
the most constraining constraints and this constraint is added to J.; a new LSE
problem is to be solved.
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q2

q1

Figure 3.8: Example of non optimality of the clamping method: 2 joint boundaries
are violated simultaneously, so solution 1 is clamped on both boundaries (solution 17).
However, the optimal solution is at the blue point (tangency with equipotential curves).

e Else, ¢ is submitted to a Karush Kuhn Tucker (KKT) optimality condition (see

appendix [C3] Eq. (C25)
— in case of success, the solution is optimal.

— else, a constraint must be removed from .J.; a new LSE problem is to be
solved.

The important step (that could be introduced with much interest in the clamping
method) is the submission to the optimality condition; it would enable the clamping
method algorithm to initialize the subset of constraints to a non empty subset, which
should be very profitable in very constrained situations.

As a remark, the optimality conditions impose the inversion of a linear system,
which requires that the set of constraints is linearly independent. As a consequence, a
preliminary conditioning work is to be done at the beginning of each iteration.

The computational efficiency being critical for such methods, Baerlocher et al. (@)
propose incremental computation for projectors; Similarly, Nocedal et al. ) present
factorization updates. A recent contribution of Escande et al. ) introduce the
use of the Complement Orthogonal Decomposition (COD) based inverse (instead of the
widely used Singular Value Decomposition) in an active set based algorithm which is such
that complexity is less sensitive to the number of constraints. The computation times
obtained are impressive and sufficiently low to consider the use of such an algorithm
in real time control of humanoids (see Fig. BJ). However, as a drawback inherent to
such methods, the research for the optimal active constraints can be costly; the peaks
in Fig. multiplies the computation times by 5.

The behavior obtained with such methods is generally satisfying; they enable an
appropriate management of priorities and present a correct behavior (no avoidance os-
cillations as the method is passive, no motion is generated). However, these methods
often stick to the constraints as there is no avoidance motion generated by the control.
Moreover, they are not adapted to avoid concave obstacles (Kanehiro et al. M) As
a result, they have difficulties to converge in cluttered environments.
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Figure 3.9: Figure taken from Escande et al. (M) Computation times obtained by
Escande et al. M) for a 36 DOF humanoid submitted to more than 50 constraints.
The times of the yellow curve and the blue curve are to be added.

3.1.5 Inequalities as objectives

Considering inequalities as objectives for a robot is rarely addressed; however it can be
the case for example if the robot should be maintained in an area without specifically
giving him a target point. In this case, the problem can be expressed by:

min [lsup, (ig — b, 0)|| (3.14)
geR”

where sup, is the component-by-component function that returns a vector containing
the highest values of its two arguments. For example, Fig. shows a case where in-
equalities and equalities (each can be expressed by 2 inequalities) are taken into account
at the same hierarchical level.

2 q;0
421 fmmm R S o  EA—_

s

lopt N
o COESD) )
d10 q1

Figure 3.10: Problem considering 2 equalities (that can be expressed by 4 inequalities:
q1,des < o, q1,des > qio, q2,des < @0, q2,des > q20) and 1 inequality (q2,des > Q21)
objectives at the same hierarchical level. g; is the initial point. The optimal point g,
is equidistant from the inequality boundary and the equality desired configuration.

The problem is not addressed in this form in optimization as it is not derivable. This
problem can be re-expressed by the following problem using slack variables (Kanoun et
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al. )

min |w]|? (3.15)
gER™ wERP
subject to Jog — b < w. (3.16)

In this case, the vector on which to carry out the optimization is [qT,wT]T. This
problem is then a Least Square Problem submitted to Inequality constraints (LSI), which
can be addressed as described above.

~ min |w]|? (3.17)
gER™ wERP
subject to [Jo — I] [qT wT}T -b<o. (3.18)

3.1.6 Summary

The control laws proposed in this literature review are all fitted to their associated
problem. The most generic problem formulation (hierarchical with inequalities) is the
only one able to deal with the framework exposed in chapter Pl It is addressed by
iterative algorithms such as the clamping methods or the LSI COM. However, it seems
that these algorithms can reach high computation times; the clamping algorithm is
limited to a certain types of constraints (joint limits); active set algorithms are not
always adapted to complex robotics environment (no constraints avoidance).

3.2 Constraint Compliant Control

The so-called Constraint Compliant Control (CCC) is a control problem resolution algo-
rithm developed for the particular context of an evolutionary design process that resorts
to trajectory trackings in a cluttered environment to evaluate successively the kinematic
performances of a huge number of robotic systems (part [2]). In this context, the CCC
should be applicable to any kind of serial robot (redundant or not with respect to a
3D trajectory tracking), with the prerequisite that no collision should occur with the
environment to have a representative and relevant evaluation. As the environment is
cluttered, most control laws described previously are inadequate, which could penalize
the robots arbitrarily.

In a first section, the context and the assumptions are briefly summed up. The
second section is structured on the basis of the desired features of the CCC: safety with
respect to the considered constraints, ability to address various constraints, acceptable
behavior. Then, the third section focuses on the algorithm and its implementation
details. A conclusion sums up the CCC schemes and its expected performances.

The CCC as described below is limited to problems involving constraints which
control admissibility space (¢(o), see[Z3.]]) contains the null vector (i.e. instantaneously
stopping the robot is admissible with respect to the constraints, in other words the joint
acceleration limits are not taken into account). This scope is enlarged in section
thanks to the displaced configuration technique.

3.2.1 Context and considered constraints

The control problem has been largely discussed in previous sections (213 2.T4). It is
summarized through the following assumptions:
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The control problem is considered at the velocity kinematic level: at each time step,
the aim is to find joint velocities ¢(k+1) from the operational inputs X 4.5 o (k+1);

The models of constraints represent reality with an infinite precision;

The sensors measure reality perfectly;

The joint inputs are carried out by the actuators perfectly and in a single time
step;

The considered constraints in the context of the design problem are kinematic (sim-
ulation):

e Joint position limits;

e Joint velocity limits, to satisfy the assumptions of small motions between time
steps (the Jacobian is a local model);

e Obstacles avoidance.

According to section 22421 the 3 constraints functions associated to these 3 con-
straints are compatible: actually, the null motion solution is always admissible. The
CCC exploits this particularity.

3.2.2 Safety and passive avoidance

The notion of safety, as defined in chapter Bl requires the control problem resolution
algorithm to be able to satisfy an arbitrary set of compatible constraints. As each
equality imposed to a controller requires one DOF in the general case, it is important to
maintain the number of equality constraints as low as possible. In particular, it seems
hazardous to try to satisfy inequality constraints by introducing equality constraints
corresponding to avoidance terms. In that approach, the passive avoidance is a principle
according to which the robot should not move to avoid static constraints (constraints
which expression does not change when the robot does not move).

3.2.2.1 Passive avoidance

The principle of passive avoidance is that a static constraint should not impose a motion
to a moving system, but rather an absence of motion. This principle is able to deal with
an arbitrary number of constraints, as all of them impose the same condition (absence
of motion). The Jacobian of these constraints being concatenated in a matrix .J., the
application of this principle yields

G(k+1) = Je(q(k)) 0
=0. (3.19)

This term is always null, but the choice of matrix .J. is essential: the exploration of its
kernel prevents the robot to move along the constraints directions.

To know which constraint should be in J. or not, an iterative method (detailed in
section B:2.4]) is used.
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3.2.2.2 Admissibility of the Null motion

In the retained context, the null motion is always admissible, i.e. the control problem
solution g(k+ 1) = 0 satisfies the constraints whatever the situation. As a consequence,
Eq. BI9) can be directly the first hierarchy level of the control law: in the most
constraining case, J. covers all the system DOFs (robot blocked), and the resulting
motion is always null (and safe).

3.2.2.3 Comparison with other approaches

This no-motion high hierarchy level is an extension of the clamping algorithm (Baer-
locher et al. ), any violating motion being somehow clamped to its current position.
In the original clamping algorithm, the equivalent of J, is limited to a diagonal matrix
composed of 0 / 1 terms, representing the non-active / active joint boundaries; here, it
can include any kind of static constraints.

In a convex optimization point of view, this no-motion high hierarchy level is the
equivalent of the constraints subject to which the problem is solved. The other tasks
are expressed in terms of cost functions.

3.2.3 Correct behavior and active avoidance

This section introduces the other hierarchy levels of the CCC control law.

3.2.3.1 Objectives

In accordance with the specifications of chapter 2], the trajectory tracking comes at a
lower hierarchical level than constraints. It is expressed as a set of equalities concate-
nated in a Jacobian matrix Jo.

4= J 0+ (JoP;)" (X aes,0 — JoJ.0)
= (JoPs)* X des.0- (3.20)

This set of equality tasks can be expressed through several hierarchical levels, but
always below the passive avoidance task (J., 0).

3.2.3.2 Active Avoidance

Conversely to passive avoidance, active avoidance methods impose motions on the sys-
tem. Active avoidance has a lot of interests with respect to passive avoidance, in par-
ticular it increases the avoidance robustness:

e with respect to perturbations (approximate distance measures for example) in
feasible problems as it maintains the robot away from its constraints;

e with respect to local minima in a more global scope.

However, as seen in section B.I1.3.2] active avoidance has many drawbacks (briefly sum-
marized here):

e It overconstrains the robot, by imposing numerous arbitrary inputs on it;
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e [t reduces the working space of the robot by envelopes around obstacles and con-
straints in general,;

e [t generates oscillations at the activation thresholds, especially for high priority
avoidance tasks;

e The addition of potentials may lead to infinite inputs.

3.2.3.3 CCC law

In order to benefit from both passive and active avoidance, at each time step, all the
problem constraints are concatenated in the matrix J¢, which is divided into constraints
avoided passively J. (chosen among the most critical constraints) and actively J_. An
appropriate repartition of constraints between passive and active avoidance is not easy
to find a pm’or and an iterative scheme is required. The CCC law is then

+
G= (JoP;) " Xueso+ <Jc P[JC ]> (Xdesy — J-(JoP1 )t X ges.0) (3.21)

Jo

Objective tracking e ”
ctive avoidance

where Py, 7 is the projector on the concatenation of J. and Jp, and J_ is the complement
Jo

of the lines of J; in Jo. In a practical aspect, J_ can be replaced by Jo in Eq. B21])
without any consequence on the result. The active avoidance term tends to move the
manipulator away from the constraints as long as the objective is not impacted.

To avoid the drawbacks related to infinite terms, the potential from which the avoid-
ance term X, is differentiated is limited to a predefined value. Actually, this can be
done safely as passive avoidance enforces the constraints satisfaction anyway. Finally,
there are no oscillations on the functional part as the active avoidance term is lower than
the objective related terms in the hierarchy. For each constraint, an active avoidance
threshold ¢ is defined as a distance under which the avoidance is switched on.

3.2.4 CCC algorithm

The CCC algorithm can be outlined as follow: at each time step, the algorithm is
initialized, then a loop is executed: for all the combinations of line J.. in Jgg (subset of the
constraints of Jo that may be violated at the next time step), a solution is computed and
scaled by the most constraining constraint. The loop stops when all the combinations
have been tried or when the error is lower than the threshold. The algorithm is illustrated
by Fig. BIIl The following of this section details the implementation.

3.2.4.1 Jacobian inversions and implementation

This part describes general implementation elements. A dedicated section ([AI.1.2])
focuses on the practical implementation of the algorithms (numerical values etc.).

!Considerations about possible perspectives are presented in sections 3.4 and [5.2.2
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Figure 3.11: CCC Algorithm. comb(J¢g) denotes the set of combinations of lines of J¢q

3.2.4.1.1 Pseudo-inversions In the control law of Eq. (8:21]), in order to avoid the
usual conditioning problems in the neighborhood of singularities, the pseudo-inversions
are done with the Damped Least Square (DLS) method (matrix conditioning improve-
ment, see Nakamura et al. (@) and appendix [B:2.2]).

q :(JOPJC)JDDLSXdes,O

+,DLS
+ (JC P[Jc ]> (X des. — J(JoPy) TP X ges 0) (3.22)

Jo

3.2.4.1.2 Projectors A common way of computing a projector Py is given by Ps =
(I — AT A), which can be made robust to singularity thanks to the DLS inversion Py =
(I — AHPLS A); however, the DLS method induces an error in the inversion that distorts
the projection. As a consequence, the tasks of lower priority may have an impact on the
fulfilment of tasks of upper priority, which is not acceptable in our case, as constraints
may be violated. A safe way to compute P4 can be obtained directly from the Singular
Value Decomposition (SVD) of A which provides an access to the kernel of A without
requiring its inversion (see appendix [B.3.2] and Baerlocher et al. )

Pa=V,nVih, (3.23)

where V is issued from the SVD decomposition of A and V., is the matrix which content
is the 7 to n columns of V', r being the rank of A.

For the same reason, in the terms (APB)J“DLS, the projection is biased by the DLS,
which once again may provokes an impact of lower priority tasks to upper priority
tasks. To prevent this, a preprojection is introduced (APg)™PLS — Pp(APg)HPLS

(see appendix [B.3.2)).

q =P, (JoP;) P X 4es 0

+DLS )
+P[Jc ] (Jc P[Jc ]) (X dese — Py (JoPs,) TP X ges 0) (3.24)

Jo Jo
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3.2.4.1.3 Distance computation The distance computation is provided by a col-
lision detection packagdd. As for most of these tools, the information returned is, for
each segment, the point of the segment that is the closest to the obstacles. Anyway,
the approach that consists in constraining only the closest point to the obstacle (based
on Maciejewski et al. (@) for the whole manipulator and on Faverjon et al. (@)
for convex segments) seems valid in continuous time. In discrete time, progressive dis-
placements can violate constraints because of segment rotations around the constrained
point. To our knowledge, no work has been carried out on the consequences of the
transition from continuous to discrete time control on obstacle avoidance, although a
contribution of Kanehiro et al. (@) deals with the passage of strictly convex to non-
strictly convex segments, in which the problems are similar to those encountered when
passing from continuous to discrete time. To overcome these drawbacks, Peinado et al.

) propose an efficient iterative method using preventive damping constraints in
case of potential collisions.

3.2.4.2 Particular case of the joint velocity limits - Scaling

It is not appropriate to address joint velocity limits with passive avoidance as it may
stop a joint to prevent it from going too fast. If a joint velocity is too high, it is
preferred to scale the control solution to the maximal admissible velocity, i.e. to reduce
the norm of the control solution to fit the velocity limit. To maintain the motion
operational coherency, the scaling is done homogenously, i.e. with a proportionality
coefficient applied over the whole vector, so that the operational direction of the solution

is maintained. )
. . . di,mazx
gy = q mn — 3.25
" OSZSn( gl ) (3:29)

where ¢; mq, is the maximum velocity of joint 7.

3.2.4.3 Admissibility and scaling generalization

The test of admissibility with respect to the constraints is performed through
Jog <b (3.26)

where b is the concatenation of the maximum velocities along the constraints. In order
to increase the compliance of the solutions with respect to the constraints, the scaling
technique is extended to all the constraints and applied to all the control solutions

obtained. .
s . i. 397
v =9 8 ((ch>¢> (3.2

(Jcq)i>0

where min ¢<;<, denotes the minimum of the given expression for all the constraints
(Jeq)i>0
(7 between 1 and p) along which the joint motion is positive ((J¢); > 0). The scaled

motion ¢ generalizes the one of Eq. (8:23]). In order to limit the notation, at the end
of the admissibility test, g gets the value of g

4 < dn (3.28)

2SWIFT++: Speedy Walking via Improved Feature Testing for Non-Convex Objects. Ehmann et al.
). http://gamma.cs.unc.edu/SWIFT++
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The systematic scaling enables to obtain an admissible solution for each constraints
combination in J.. Actually, as the null motion belongs to the intersection of the control
admissibility spaces (¢'(o), see section 2Z3.1]), then for any solution

VgeR" Jae€l0,1], gy = aqg is admissible (3.29)

In fact, as the constraints are all linear inequalities (as in Eq. (8:26])), the solutions
space is convex and contains the null solution (no motion). So, in every direction of the
joint displacement space, there exists an admissible solution, which norm is null in the
worst case. This method enables to get as close as possible to the constraints if there is
a persistent demand in that way (input repetition).

3.2.4.4 Algorithm

The general CCC algorithm is given by Algorithm 3.

Algorithm 3 : CCC
Jo < constraints under the active avoidance threshold
Joo + constraints of Jo that may be violated at the next time step (tight threshold)
Geng < O rad; g < 0 rad
Erreng < 1 m/s; Err < 0 m/s; € < 1072 m/s;
for all Lines Combinations .J. in Jgg do
g <+ Joint velocity Computation - Eq. (3:24])
Admissibility Test - Eq. (3.20)
Scaling - Eqs. .21), B.23)
Err HJOq - Xdes,OH
if Err < e then
break
else
if Err < Err,,,4 then
Erreng < Err; G0 < 4
end if
end if
end for

send g4

Once the initialization is done (the variables with subscript .,q4 being the data to
be sent at the end of the time step), the loop over the combinations of lines of Jgg
put in J. begins. Based on the admissibility test which evaluates the highest constraint
violation rate, the scaling reduces the magnitude of the solution so that it complies with
the constraints. If the operational error obtained from the resulting joint velocity is
acceptable (the value of ¢ < 1072 m/s is an example), then the computation is finished
and q,,q is sent; if not, the combination of constraints of Jcg is changed in J. and a
new iteration begins. If all the combinations have been tried, the joint velocity yielding
the minimum operational error is sent to the actuators.

For complexity reasons, the condition on the combinations For all lines combinations
Je in Joo can be approximated to the addition of the jacobians of violated constraints
at each iteration to J. (being initialized empty). When all lines of Jog are in J,., then
the most constrained motion is carried out, which necessarily produces a constraint
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compliant motion, and can thus constitute a condition to get out of the loop. In this
case, the number of iteration is limited to the number of lines of Jgg. This is the
implementation carried out in chapter @l

3.2.5 Partial conclusion and CCC theoretic performances

The CCC is an iterative control method that solves the hierarchical multi-objective
control problem while satisfying any number of static constraints of obstacles, joint
boundaries and joints velocity limits.

In non over-constrained cases (when the robot is able to fulfil all the objectives
and all the active avoidance terms), the CCC behavior is equivalent to the control law
of Maciejewski et al. (@) which is optimal and very fast. In a more global scope,
the behavior of a robot submitted to this control law tends to maintain these non
over-constrained situations as long as they are possible (it tends to get far from the
constraints). In over-constrained cases, the CCC has the advantage to always satisfy
the constraints (assumed to be compatible). However, in these cases, the CCC may be
non optimal. Fig. B.I2]illustrates the comparison between an active set method and the
CCC method. The solution found by the CCC is not optimal, and a strong perspective is
to rely on the KK'T optimality conditions to increase efficiency and optimality. However,
as mentioned previously, this comparison is partial, as the main advantage of the CCC
is its satisfying behavior in cluttered environments.

3.3 Displaced configuration control

In this section, a technique that fully takes advantage of the constraints formulation is
proposed. It resorts to a virtual configuration called displaced configuration to adapt
the usual operational control scheme to satisfy any kind of compatible constraints.

For example, when the null motion is not admissible with respect to the constraints
(in other words, the current e-state is not an instantaneous safe e-state for the next time
step), techniques to compute a constraint compliant motion such as scaling (section
BZ3) cannot be used: the current configuration being not constraint compliant, there
may not be any « in Eq. ([8:29) such that a constraint compliant solution can be found
(see Fig. B13).

One can observe that the scaling can be applied safely to any control solution com-
puted from an instantaneous safe e-state (the null control vector being constraint com-
pliant in that case, « = 0 in Eq. (8:29) produces a constraint compliant control vector).
The idea of the displaced configuration is to solve the control problem from another
configuration qg, than the current one g, such that the scaling can be used. To that
end, g4, should be chosen so that the resulting displaced e-state (o with qqp instead of
q) is instantaneous safe.

This control law principle can be used in various frameworks:

o [t extends the CCC framework to deal with any kind of constraints;

e [t enables to obtain safe single iteration resolution scheme in presence of compatible
constraints.

e It is a solution of the phase I problem (finding an initial point admissible with
respect to the constraints) in convex optimization;
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q2

q1

Figure 3.12: Comparison of an active set method and the CCC method on a 2 DOFs
problem constrained by 2 inequalities (A and B). The active set methods, assumed
to begin with an empty active constraint set, needs 3 iterations to reach the optimal
point (motions 1, 2 and 3). The CCC method is not an incremental method, i.e.
during one time step it does not concatenate several control vectors obtained through
several iterations (as vectors 1, 2, and 3 for the active set method) to obtain the final
control solution; each iteration returns a whole control solution. It relies on scaling
to move progressively, on several time steps, toward the goal. The CCC, assumed to
begin with an empty passive avoidance set, has the same result of the active set method
on the first iteration (motion 1). Then, the constraint A is avoided passively (motion
a), and then constraint B (motion b). Avoiding constraint A and B simultaneously
produces no motion (2 DOFs problem). The retained motion is a, as it reaches the
closest equipotential curve.

This section is divided as follows: first, the displaced configuration based control law
is exposed. Then, based on a usual IVK reactive control scheme, a full control algorithm
using displaced configuration is detailed, relying on scaling to comply with any kind of
compatible constraints. Finally, the application of the displaced configuration within a
single iteration constraint compliant control law is exposed.

3.3.1 Displaced configuration based control law

For clarification, the space E¢ (o) is introduced. E¢c(o) denotes the subspace of the joint
space containing all the configurations resulting from all the admissible control vectors
(€a(0)). As the constraints are assumed to be linear, and given the approximation of
finite differences between time steps, Ec (o) is convex (intersection of semi intervals).
Ec (o) is never empty as the constraints are assumed to be compatible (else an ASB is
used and the control problem resolution is out of the scope of this chapter).
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q2

q1

Figure 3.13: Use of a displaced configuration. The current configuration q(k) is vir-
tually displaced (0) to the admissible configuration g4,(k), from which a solution is
computed (1). This solution can then be scaled safely (1’). The final motion is the
vector represented by (0)4(1’).

3.3.1.1 Displaced configuration expression

The basis of the displaced configuration is to work from another configuration g, (k)
than the current one g(k). The motion is then divided into two terms

dap — 4 .
a + dap . (3.30)
ot N
S Motion toward the target

q =
Reaching the displaced configuration

e the first term is the displacement toward the displaced configuration. This solution
is always constraints compliant, as the displaced configuration belongs to Ec(o);

e the second term is the motion from the displaced configuration toward the target.

When using the scaling technique (section B.2.43]) to comply with constraints for
example, the scaling is only applied on the second term

._qdp_q
ot

+ aqgy,. (3.31)

where « is the scaling rate.

3.3.1.2 Choice of the displaced point

The choice of q,(k) in Ec(o(k)) at the beginning of a time step determines the behavior
of the robot and may impact the optimality of the motion (see Fig. BI4l). Potentially,
all configurations of Ecx (o) can be retained as the displaced configuration.

The elements to take into account for this choice are the considered constraints and
predictability of the operational inputs:

e When the constraints are compatible and without any information on the opera-
tional inputs at the next time step, a good compromise is to take qdp(k) at the
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q2
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Figure 3.14: One of the interests of the displaced configuration method when using
scaling. A configuration (q(k)) close or “on” a constraint induce a bad scaling rate
(ao = [|11]]/1]11"]] tends to 0). If the above representation is a small part (projection) of
the whole problem (robot with more than the two represented DOF's), the whole motion
(and thus the operational error) may suffer from this bad scaling rate. When using
a displaced configuration (g, (k)), the solution (2) permits to obtain a correct scaling
factor (o = 1]2[|/]|2||) that, even if non optimal, enables a significant motion.

center of E¢ (o). If the considered constraints are exclusively joint-dependent (e.g.
joint position, velocity, acceleration, torque limits), for each articulation 7 it yields

q(dp,m),i T d(dp,M),i
2

Qdp,i = (3.32)

where g, s (respectively gy, ,,) is the vector of maximum (respectively minimum)
joint position of E¢(o). This choice leaves an equal space of admissible motion on
both side of qgp, ; (k). It is particularly appropriate when using scaling to keep some
admissible space around g, (k) as the motion is scaled by the maximum violation
rate of the motion beginning at q,,(k) with respect to the constraints limits.

When the constraints are not proved to be compatible (as in section[Z4t obstacles,
joint position, velocity and acceleration limits), a relevant possibility is to place
q4, at the maximal deceleration configuration as it necessarily belongs to Ec(o)

(cf. section 2.A5.T))
ddp = ddecM- (333)

On the one hand, it favors joint accelerations in the direction of the previous ve-
locity which constitutes an a priori on the operational tasks. On the other hand,
it is less efficient for operational motions with sudden direction changes. As a
remark, this displaced configuration is a solution of the phase I problem in convex
optimization. The phase I problem aims at finding an initial constraints compliant
solution from which to work (the phase II problem being the optimization of this
admissible solution). Even if the problem is known to be feasible, the phase I
problem can be hard to solve and constitutes an optimization algorithm in itself.
In the framework of chapter 2l the permanent availability to the developed ASBs
is always ensured, which guarantees that a maximum deceleration is always admis-
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sible (section [Z4.5]). As a result, taking the maximal deceleration configuration
Q4ecn (k) as the displaced configuration offers a solution to the phase I problem.

3.3.2 Modification of a usual IVK reactive control scheme

This section details the modifications induced by the use of a displaced configuration
when the technique to comply with constraints is scaling (section B.2.4.3]).

3.3.2.1 Usual IVK reactive control scheme

The scheme of a usual reactive control law algorithm is described in algorithm 4. First,
the operational input is computed based on the measures of the current e-state and the
desired behavior. Second, an IVK algorithm is used to compute joint velocities from the
operational input. Third, the joint velocity is treated to comply with constraints not
handled in 2 (by scaling for example). Fourth, the resulting joint velocity is sent to the
lower control loop.

Algorithm 4 : General operational space control law scheme

Computation of Xdes,o from X g4e5.0 — Xo

Jacobian Inversion: ¢ = IV K(J, Xde&o)

Operations to comply with the constraints not handled in 2.
Send ¢

Ll e

3.3.2.2 Modified control algorithm

Using a displaced configuration modifies Algorithm 4 into Algorithm 5.

Algorithm 5 : Control law iteration using the displaced configuration

Choice of qap € Ec(0); Xo,4p = Go(qqy)

Computation of Xdes,O’dp from X ges.0 — X0,dp

Jacobian Inversion: §g,, = IVEK (J, X ges.0.dp)

Operations to comply with the constraints: ¢, () = scaling(qg,)

Send g = ng;q + dgp, (o) to low level controller

ARl i o

3.3.2.3 Step 1: Computation of the displaced configuration and the dis-
placed operational position

Considerations about the choice of g4, are exposed in section Basically, as
the solution is scaled, and as the scaling is coherent, it is important to keep a scaling
factor (o in Eq. (3:29])) as high as possible to keep a significant part of the motion (see
Fig. BI4). Thus, the displaced configuration should be chosen as far as possible from
the most violated constraints.

The computation of X ¢ g4, is obtained by applying the forward kinematic model

GO() to ddp-
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3.3.2.4 Step 2: Computation of the desired displaced operational velocity

X des,0,dp 15 computed similarly to X des,0 in the initial algorithm, but taking Xo 4
instead of X .

3.3.2.5 Step 3: Inverse Velocity Kinematics

This step aims at computing the joint velocities g4, that minimizes the error

||Xdes,o,dp —Jq,,l|- The Jacobian is assumed to be constant between q and qg,, so no
Jacobian computation is done at configuration qg,.

As mentioned in the introduction, any kind of IVK method (CCC, COM, AIM) can
be used with various advantages. For any technique relying on Jacobians inversions
submitted to exclusively joint dependent constraints (e.g. joint position, velocity, ac-
celeration and torque limits), the following indication is proposed: as the scaling rate
is aimed to be maximized, in order to take into account the motion capabilities of each
joint at the current time step and thus reduce the resort to highly constrained joints (see
Fig. BI0)), the inverse velocity kinematics is weighted in the joint space (see appendix
[B.37)) by the width of each joint admissibility interval

M(;l = diag(qdp,M - qdpJn) (334)

where M~ lis the weighting matrix used for the inversion (see Eq. (B.8)) of appendix
[B:3d]). This technique enables to balance the joints contributions to the operational
motion with respect to their current capabilities. Moreover, it has the interesting effect
to prevent a joint motion when the associated weighting coefficient is null (semi-positive
definite matrix weighting, see section B.I.3.3)). For example, when the constraints im-
pose a maximal joint deceleration for a given articulation ¢, the associated admissibility
interval is reduced to a point (which is necessarily the displaced point): so, the interval
width is null and the inversion does not take this joint into account. The only motion
is then to reach the displaced configuration (cf. Eq. (B31])). As a result, the joint is not
asked to contribute to the motion (¢; 4, = 0 in Eq. (8:31))) and the scaling is not impacted
by the proximity of this joint to its constraint (« can take any value in Eq. (8.31])).

3.3.2.6 Step 4: Compliance with the constraints

This step aims at making the solution calculated at step three ¢,, compliant with
the constraints. This operation is done by scaling, and as mentioned previously, it
is important to make it from of g, as it belongs to Ec(o). The general constraints
expression is

Jog<b (3.35)

where J¢ is the concatenation of all the Jacobian constraints and b the concatenation
of all associated limits. The introduction of g, yields (cf. Eq. [3.31)

qdp_q

Joqay <b—Jo—5—

£ by (3.36)

3 As an example, a 1-DOF rotational joint submitted to acceleration limits and moving at ¢ = 1 rad/s
with a §¢ = 10 ms time step has a displacement gqp—¢ = 0.01 rad when taking the displaced configuration
of Eq. ([@32). The resulting impact on the Jacobian is then very low, even in the neighborhood of
singularities where the use of Damped Least Square inversion induces errors much higher.
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Figure 3.15: Interest of the pseudoinverse weighted by the joint admissibility interval. In
this redundant case, the system is assumed to be only limited by its joint position limits
(in green on the upper scheme). On the left graph, the representation of the problem
in the joint space shows that a direct inversion without particular weighting minimizes
the Euclidian norm (equipotential curves are circles) which, given the constraints limits
positions, yields a bad scaling. Conversely, a relevant weighting (right graph) enables to
obtain a better scaling, and thus a better solution. In this example, a more accentuated
weighting would have certainly led to an optimal solution (no scaling needed).

Then, if Eq. (8:36]) is not verified, the scaling is done by (cf. Eq. (321))

. . . bdp,i
dap (o) = dap 002 <( To Q)¢> (3.37)
(Jcd)i>0

where j is the number of constraints.

3.3.3 Single iteration constraints compliant control law SICCC

The displaced configuration control scheme can be used to solve efficiently the control
problem in a single iteration, thus offering a fast resolution method. Actually, the need
to resort to iterations in constraints compliant control laws comes from the fact that it
is not possible to know a priori when a motion is forbidden or not. Let a manipulator
being “on” one of its joint position limits. If the associated constraint is not active at
the beginning of the resolution (as it is necessarily the case in clamping or CCC), and
if the motion pushes the joint over its boundary, the violation rate is infinite and the
scaling step cuts this first solution to 0, which prevents any progression of the joints,
even the unconstrained ones. The algorithm then begins again the resolution, with the
considered constraint avoided passively. Conversely, with a displaced configuration taken
far from the constraints, motions in every directions are possible, thus the exceedance
rate cannot become infinite, the first control solution computed is not null (see Fig. B.14])
and the scaling step enables a reasonable progression for the joint not concerned by the
constraints in a coherent motion.

As mentioned in section B.3.2.5, any kind of inversion method can be used. A
control law example can then be adapted from the 2-levels multi-objective control law
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of Maciejewski et al. (M)

qap = JgDLSXdes,O,dp + Py (Je Py ) FPEN( X ges.cap — JCJg7DLSXdes,O,dp) (3.38)

where #PLS is the operator of weighted pseudo-inversion with Damped Least Square

approximation. Even if the initial control law of Maciejewski is not safe, the compliance
to constraints is ensured here by the scaling.

This control law offers a good compromise between quality and efficiency. It can be
seen as the first step of an active-set method algorithm with a chosen phase I solution (cf.
appendix [C)). Tt has the advantage to offer good solutions to the inequality constrained
control problem in a single iteration scheme.

However, this control laws sometimes implies a deterioration of the task perfor-
mances. For example, this is the case of Fig. This case happens when the optimal
configuration does not belong to the displaced configuration/ideal configuration progres-
sion line. This drawback can be cancelled by a simple test to stay on the current (and
thus better) configuration. Even if not treated by a test, this motion converges toward
a stable configuration (no oscillation) if the retained displaced configuration is one of
the two proposed in section

3.4 Partial conclusion and perspectives

This chapter deals with the control problem resolution of a feasible problem (for example
issued from chapter [2).

Based on state-of-the-art methods, the Constraints Compliant Control is set up to
obtain a satisfying behavior in presence of strict priority levels and imperative con-
straints. The notion of passive avoidance is introduced to enforce the satisfaction of an
arbitrary number of constraints; a common strict priority multi-objective structure is
used for the tasks to carry out and the low priority level is reserved for active avoidance
tasks in order to maintain a good problem conditioning and avoid behavior singularities
due to multiple constraints closeness. Iterations on the constraints avoided passively
and solutions scaling are used to increase optimality.

The CCC scope is limited to problems involving constraints allowing an instanta-
neous stop. It is extended to any kind of compatible constraints through the use of a
displaced configuration. This technique can also be used in a safe single iteration control
law offering a compromise between efficiency and optimality.

The control scheme obtained as an outcome of chapter 2l and [3 is presented on
Fig. B17

Perspectives involve the improvement on the CCC thanks to the exploitation of
the KKT conditions to enable an intelligent exploration of the constraints combination
space. This exploration could also be guided by factors related to the global mission
(e.g. active avoidance for better motion capabilities, passive avoidance to work close to
the constraints) and not only the performance of the task at the current time step. On
another scope, the active avoidance of obstacles could be influenced by the convexity
parameters of the environment and the time step period or the velocity of the robot
(e.g. the work on collidability of Choi et al. (Iﬁg)).
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Figure 3.16: Illustration of a deterioration phenomenon. Left: the robot in the current
e-state, trying to reach a star. (1): solution (not admissible) in the unconstrained
case. (2): displaced configuration: the configuration gets far from the constraints; (3):
final solution, the final motion gets away from the objective (its configuration is on a
further equipotential). Nonetheless, the resulting behavior tends to converge to a stable
configuration.
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Figure 3.17: Safe Constraint Compliant Controller. From each identified e-state
constraint (physical limit or induced by the mission), a control constraint is formulated
offline. If the validity and the compatibility of the control constraints cannot be proved,
a new formulation can be expressed and evaluated, or an ASB must be established. Once
this is done, the reactive control loop is launched. At each time step, the controller is
fed with operational inputs. If the current configuration is not admissible, working from
a displaced configuration enables to maintain constraints compliance with any control
method and solves the phase I of a Quadratic Program. If the control constraints defined
offline could not be proved valid and compatible, an ASB sequence is concatenated to
the desired joint motion: if the resulting behavior is not safe, then the first control input
of the ASB is sent, which safety has been proved at a previous time step; else, the control
solution is sent to the actuators.
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Results

The work carried out along this thesis is involved in the TELEMACH project which
addresses the feasibility of replacing human interventions in TBMs excavation rooms by
teleoperated maintenance (see chapter [Il). The retained missions (inspection, cleaning,
tools replacement) would be performed by dedicated robotic systems: articulated arms
for inspection and cleaning, tools changer, heavy loads manipulator (for instance, each
disc cutter tool weighs 150kg), conveyor and automated airlock doors.

The environment is complex and the interventions are critical, so both the design and
the control of the manipulator dedicated to inspection and cleaning have been addressed
during the thesis:

e The manipulator design is carried out thanks to global multi-objective optimiza-
tion techniques (evolutionary algorithm); in this context, a huge number of robots
are evaluated through a trajectory tracking simulation, for which a specific control
law is required;

e The control of a teleoperated manipulator in real time in a TBM cutter head
demands an extreme level of safety, as any failure is critical (impossibility for
human operators to intervene), which is similar to the nuclear plant dismantling
context. A special attention to the constraints compatibility is meaningful for
these applications.

This chapter is divided in 3 sections. In the first section, simulations obtained with
the CCC and the displaced configuration method are presented; these simulations vali-
date the CCC approach and its application to the evolutionary design process exposed in
the second section. Finally, the third section describes the experiments carried out with
a 6-DOF manipulator in real-time trajectory tracking for compatible and incompatible
constraints sets.

4.1 CCC and displaced point control simulation results

This section describes the results obtained in simulation with the control laws developed
in chapter Bl First, the CCC is compared to other state-of-the-art control laws in the
constraint context exposed in the first case study (section 2.4.2]). It can be considered
as a preliminary validation for the application of the CCC to the evolutionary design
process presented in section .2l Then, the second section exposes results obtained with

69
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the displaced configuration control used both in a single iteration control law and in the
CCC structure, in the constraints context of the second case study (section [Z4.3)).

4.1.1 CCC results

This section is dedicated to the simulation of the CCC in presence of the following
constraints:

e Joint position limits - control constraints Eqs. (221]) and ([2.22);
e Joint velocity limits - control constraints Eqs. (2.23) and (2.24));
e Obstacles - control constraints (2.25]).

As established in section 2.4.2] this set is compatible.

4.1.1.1 Simulations presentation

The proposed simulations consist of two inspection missions involving trajectories close
to obstacles. The proposed environment is composed of a column and a wall; the
manipulator has 6 DOFs, all the links being 1 DOF rotational joints. The environment
and the manipulator are represented on Fig. E.11

O D2
D1

traj,

robot
basis|

traj1

o u(d

Figure 4.1: Views of the environment and the two trajectories to track; manipulator
schemes.

To assess the performances of the CCC, 3 multi-objective control laws are compared:

e Control law A: Trajectory tracking as 1° task, obstacle avoidance as 2"¢ task

(adapted from Maciejewski et al. )):
qg= Jg’DLSXO + PJO(Jcpjo)Jr’DLS(XC — chg’DLSXO) (4.1)
with Jo the Jacobian of the effector for trajectory tracking, J(J;’DLS its DLS-

pseudoinverse (see appendix [B.2.2]), Py, an exact projector on the kernel of Jo
based on the SVD decomposition of Jo (see appendix [B.3.2)), and Jo the Jacobian
of obstacle avoidance. X is the trajectory tracking desired velocity and X ¢ the
avoidance terms based on the inverse of the distance to the closest points of each
segment to the obstacles. The “adaptation” from the control law of Maciejewski
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consists of 2 modifications: 1/ inversion using DLS to increase robustness with
respect to bad matrix conditioning for the inversion and 2/ premultiplication by
Py, in the term Pj, (Jo Py, )P LS This premultiplication enforces strict priority
by projecting the errors induced by the approximation of the DLS inverse into the
appropriate kernel (see appendix [B.3.2)).

e Control law B: Obstacle avoidance as 1% task, trajectory tracking as 2"¢ task
(adapted from Sentis et al. M))

g= JE’DLSXC + PJC(JOPJC)+’DLS(XO — J()JS’DLSXC) (4.2)

with Py, a projector on the kernel of Jo, as above. The “adaptation” from the
control law of Sentis are the same than the previous ones done for Maciejewski’s
control law.

e Control law C'CC': Constraint Compliant Control, as described in section B.2.4.1]

G =P;.(JoP; )" X0
+ P (J: P[Jﬂ)*DLS (X_— J_Py (JoP;)"PL9X ) (4.3)

with J. the Jacobian of constraints avoided passively, J_ the Jacobian of constraints
avoided actively (complementary of J. in J¢) and P[Jc] a projector on the kernel of the
J

matrix containing the concatenation of J. and J.

For each inspection mission, the manipulator must track a 3D trajectory (position
without orientation); it is assumed that the effector (camera) would have the orientation
DOF's needed to observe the points to be inspected. For the sake of simplicity, the results
presented here do not integrate joint boundaries avoidance even though the proposed
framework can deal with this type of constraint without any specific difficulty. These
constraints are treated with the CCC in section

The two missions can be described as follow:

e Mission 1: Go around the wall by the left side. The environment is barely
constrained in that area, the manipulator tracks a trajectory (traji, in Fig. 1)) of
330 points on 3.50 m, so an operational displacement of 11 mm is expected at each
time step. The mission is achievable, i.e. the number of DOFs of the manipulator
enables to fulfill the mission while avoiding the constraints.

e Mission 2: Reach a point behind the wall. The trajectory (traje, in Fig. 1)
has 560 points, for a back and forth trajectory (to check that getting out of a very
constrained configuration is not a problem). The total distance is 5.20 m long, so
the expected operational displacement is 9 mm at each time step. The mission is
not achievable as the manipulator is not long enough to reach the furthest point.

4.1.1.2 Implementation

The implementation is done in C4++ within a velocity kinematic simulator coded during
the thesis and named Nageval (Fig.[L.2). Nageval is linked to the following libraries and
software:

e Kinematic and Dynamic Library (KDL), a library for modelling and computation
of kinematic chains, from the OROCOS project (Bruyninckx m)
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CoDRoS, a distance computation engine based on Swift++ (Gamma Group, Ehmann
et al. )

Graphic Display for Hilare Experiments (GDHE), a software for 3D visualization
of robotics applications (Herrb M)

For each display request

GDHE NAGEVAL

Display Simulation
4 4
[ [
Models Distances
! !
KDL CoDRoS
Kinematic library Distance Comp
For each control time step

Figure 4.2: Environment of the Nageval simulator.

Regarding the controller, the following implementation elements are detailed:

Operational input: the operational input X is computed by the difference of
the current effector position and the current desired effector position divided by
the time step period dt (which value is transparent as the simulation is at the
velocity kinematic level).

Pseudo-inversion: the Damped Least Square pseudo-inversions are carried out
with the damping factor A chosen as 0.50 (see appendix [B:22.2]). This value for A
is a compromise between robustness with respect to singularities and operational
error induced by the regularization (Hue et al. ).

Active avoidance: for control laws A and B, the active avoidance threshold is
fixed to dact4, = 150 mm, the gains are proportional (factor u = 2.5 1073) to
the inverse of the distance to the constraint. For the C'C'C', the active avoidance
threshold is fixed to dactavccc = 40 mm, the gains are the same than for control
laws A and B but the maximum value of the avoidance magnitude X ¢ is fixed
t0 pPmaz = 0.25 which is equivalent to a distance of § = 10 mm between the

manipulator closest point and the obstacle (pymar = m).

Distance computation: as mentioned in section B.2ZZ4.1], given the unreliability
of the avoidance techniques based on a unique point per segment constraint in
discrete time, an envelope of 20 mm is added around the environment.

Joint velocity limit: g¢,,,, was fixed to 2 rad/s.
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Figure 4.3: Mission 1 results. Graphs of line 1 are obtained with control B, line 2 with
control CC'C. The distances to the closest obstacle are drawn for the last segments
(D4 to D7, see Fig. [A1]); the operational error concerns only position, as the trajectory
does not involve orientation. The snapshots are views of the manipulator showing the
position in the environment at the end of the simulation.

4.1.1.3 Results and Analysis

Figs. and (4] present the results obtained on the 2 missions with control laws A,
B and CCC'. Some indications are given in the text about the computation times as a
comparison basis, but they depend on the implementation and computing power. For all
the control laws, the operational errors stabilize around 30 m in areas free of obstacles,
what can then be considered as negligible error in the control laws comparisons. These
errors are due to the linearization approximations induced by the resolution of the control
problem at the velocity kinematic level.

e Mission 1: Go around the wall by the left side. As expected, the mission is
achievable: the error can be maintained negligible without colliding (CCC results).

— Control law A. As the behavior is identical to the CC'C on underconstrained
cases (see section [3.2.5]), the behavior of the manipulator submitted to control
law A is not represented on Fig. 3]

— Control law B. The tracking is not optimal at the end where the effector
gets close to the wall: oscillations are generated at the activation thresholds
(observable on both graphs) and the operational error grows up to 131 mm.
These oscillations can be well observed on the graph of distances to closest
obstacle which focuses on the last time steps of the simulation. The period of
those oscillations vary from 2 time steps to 6 time steps. These oscillations
can be decomposed as follow:

1. Robot out of the activation area. The obstacle is not taken into account,
the robot tracks the trajectory which brings it close to the obstacle (1

'See graph for example
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Distance to closest obstacle (m)  Operational Position (m) Snapshot
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Figure 4.4: Mission 2 results. Graphs of line 1 are obtained with control A, line 2 with
control B, line 3 with control CCC. The distances to the closest obstacle are drawn for
the last segments (D4 to D7, see Fig. [I1]); the operational positions show the desired
(X4, Ya, Zq) and real (X, Y, Z) positions of the effector. The snapshots are views of the
manipulator showing the position in the environment in the most constrained position
(time step 300).

time step).

2. Robot in the activation area. The obstacle is taken into account in the
control law at first priority level, so the robot avoids the obstacles and
thus gets far from the trajectory tracking desired position. The number
of time steps needed to get out of the activation area depends on the
position within the area (1 to 5 time steps).

The obtained behavior is as expected the one of Fig. B4l (right). The safety
of this approach is not proved; the behavior is not correct (oscillations); the
solutions are not optimal (important errors).

Control law CCC. The missions is completed successfully by the manipu-
lator as the error remain below 30 mm, it does not collide and has a correct
behavior. The distances to obstacle reach 50 mm but seem well balanced
between joints 6 and 7. As there is no collision risk when tracking the path
with active avoidance at a lower level, the behavior is identical to control law
A (see Fig. 34 (left)). The robot tracks the trajectory and avoids obstacles if
it does not impact the trajectory tracking; neither the passive avoidance, nor
the scaling are used and the control problem is solved in a single iteration at



Contributions to the Control of Constrained Robots 75

each time step. The behavior is correct and the solutions are optimal.
e Mission 2: Reach a point behind the wall.

— Control law A. As shown on the snapshot, the robot collides considerably
with the environment (D4: time steps 340 — 450; D5: 340 — 405; D6: 380
— 405; D7 190 — 210 and 380 — 405). The trajectory tracking being at
the first priority level, the robot avoids the obstacles as long as this does not
prevent from reaching the trajectory goal. As the mission is not achievable
the robot collides. Each time a collision occurs, the velocity jumps because
the active avoidance coefficient tends to infinity as it is proportional to the
inverse of the distance to the obstacles. Except for this case, the trajectory
tracking is quite perfect. For implementation reasons, the distance between
the environment and the segments is not considered anymore when the robot
is in collision; that is why there is only a jump and no permanent infinite
velocities when in collision.

— Control law B. As for mission 1, the robot behavior is correct until it
reaches the obstacle activation thresholds. Then, oscillations occur and main-
tain the robot far from the environment and the trajectory target. Even if
the robot does not collide in this case, safety is not guaranteed as it relies on
the activation threshold width.

— Control law CCC. First, the robot does not collide (and the distance re-
mains superior to the envelope of 20 mm), the trajectory tracking presents
no oscillation and the most constrained situation (snapshot) shows that the
robot is extended without reaching the trajectory tracking target (mission
not achievable); the come back is done successfully (robot not stuck to the
constraints). When the manipulator comes close to the environment (enve-
lope distance: 20 mm), the passive avoidance clamps the directions to the
obstacles (point A, B, C and D on the first graph) and the concerned seg-
ments moves along the orthogonal directions. When the manipulator seems
completely constrained (point E on the second column graph), the scaling
step enables little displacements to track as much as possible the trajectory.
The robot is safe, the behavior is correct ad the tracking is close to optimal-
ity (see section B.2.5]). The computation time is multiplied by a factor of 6.7
times with respect to the ones obtained with control law A on mission 1.

4.1.1.4 CCC results conclusion

The results presented here illustrate the ability of the CC'C' algorithm to solve hierarchi-
cal multi-objective control problems while satisfying any number of constraints allowing
instantaneous stops: for example obstacles, joint boundaries and joints velocity lim-
its. The passive avoidance principle and the solutions scaling enable to overcome the
drawbacks of active avoidance at the top (optimality loss, oscillations) or at the bottom
(constraints violation, infinite terms) of the hierarchy, while ensuring a computation
time low enough to consider its use in real time on classical manipulators.

The C'CC performances can be compared to the one obtained with convex optimiza-
tion algorithms (even if the latter cannot ensure strict priorities between the hierarchy
levels without resorting to sequential programs, see section B.I.3T]). As an example, the
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algorithm QuadProg—i——l—E satisfies the constraints with a maximum computation time of
3 times the one of control law A. As strict priority between multiple objectives cannot
be ensured in a simple framework, the absence of active avoidance in the implemented
control law contributes to the algorithm tendency to run along the constraints. It makes
the manipulator not able to get away of the most constrained configurations: as an ex-
ample, it does not track the second part of the trajectory (it remains stopped in a
constrained configuration in the most extended position).

However, the CCC' presented in this section cannot deal properly with joint ac-
celeration constraints as it relies on the fact that the current configuration is always
admissible - belongs to E¢ -. The displaced configuration principle presented hereafter
enables the CCC' to consider all kinds of constraints.

4.1.2 Displaced configuration control results

The simulations presented hereafter illustrate the behavior of control laws using dis-
placed configurations. The first simulation is a simple example of a 3R planar manip-
ulator submitted to constraints of joint position, velocity and acceleration limits. The
second simulation involves a 7R manipulator in 3D which handles the same constraints
plus obstacles.

4.1.2.1 3R planar manipulator: simulation presentation

As an exception, this simulation is carried out through arborisﬁ, a dynamic simulator
coded in python and used for example in Salini et al. ).

This simulation involves a 3R planar manipulator in charge of tracking a trajectory
with a single iteration constraint compliant control law (as described in section B3.3)).
The aim of the simulation is to check on a simple example that the manipulator tracks
properly the trajectory while satisfying the constraints. The considered constraints are:

e Joint position limits - control constraints Eqgs. ([Z29) and ([230);
e Joint velocity limits - control constraints Eqs. ([2:23]) and (2:24));
e Joint acceleration limits - control constraints Eqs. ([2.26) and (2.27).

As there is no obstacle to avoid, Alternative Safe Behaviors (section [ZZ.0]) are not
required as the control constraints are made compatible (see section 2.4.3] case study
2). The features of the manipulator are presented on table 4.1. The manipulator is
presented on Fig.

The tracked trajectory consists of a 2D point moving toward the basis of the ma-
nipulator. The mean distance between two points of the trajectory is around 3 mm.
As the robot has 3 DOFs, it is redundant with respect to the trajectory tracking task
(J1, X1); a second task (Jo, X3) is arbitrarily applied on the third joint (blue arrow on
Fig. A) between t = 0.6 s and t = 1 s to check that a sudden Jacobian rank change
does not lead to a velocity discontinuity (Mansard et al. Ma); finally, at ¢t = 3s, a

2http:/ /sourceforge.net /projects/quadprog/ This algorithm is a quadratic program solver relying on
the active set dual method of Goldfarb and Idnani M)

3 Arboris-Python, by S. Barthélemy, J. Salini and A. Micaelli. https://github.com/salini/arboris-
python
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Figure 4.5: The 3R planar manipulator motion sequence.

Table 4.1: 3R Characteristics

1 2 3
Segment Length (m) | 0.5 0.4 0.2
Joint limit (rad) /2 +£7m/2 +7/2
Vel limit (rad/s) +1 +1  +£1.5
Acc limit (rad/s?) +5 +5 +5

new operational objective is given (green triangle on Fig. [4.1]) to check that the robot
is able to move away from its constraints.

The retained displaced configuration is at the center of E¢ (Eq. (8:32])). The control
law is recalled here (Eq. (838))

dap = J7 P X1y + P, (JoPr ) FPES (X g gy — Jod i PH X1 gp) (4.4)

where the pseudo-inversion are approximated (DLS) with A = 0.5 and weighted by
the joint space admissible widths (see section B.3.2.0)). When the second task is active
(between t = 0.6 s and t = 1 s), J, = [0 0 1] and X5 = a(qges — q3) where a =
30 m.s~L.rad~! and gges = 0.5 rad.

4.1.2.2 3R planar manipulator: results

The simulation sequence is presented on Fig. The graphs of positions, velocities and
accelerations for each joint are presented on Fig. Every constraint is always satisfied
(grey horizontal lines). As expected, the joint positions and velocities are smooth, and
the velocity slopes are bounded. When some segments of the manipulator reach their
joint position limits, the manipulator continues to move even if the control problem is
solved in a single iteration.

e At time step A, the objective of second priority is added, which is supposed to
cause a discontinuity in the joint velocities with usual control methods. In the
presented case, the velocity slope changes but the accelerations remain between
their limits. The second objective is left at time step B, and the same phenomenon
occurs.
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Figure 4.6: Joints position, velocity and acceleration with respect to time steps.
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o At time step C, joints 1 and 2 reach their position limits simultaneously. These
joints were decelerating since time step 150 to maintain joints position and accel-
eration limits compatible, according to the expected behavior established in case
study 2 of section Then, even if joint 1 and 2 cannot contribute to the
motion, joint 3 continues to track the trajectory at best until its position limit
(time step D).

e Finally, at time step E, the desired operational direction changes (green point on
Fig. 430 and the manipulator gets away from its constrained configuration.

Between time steps C' and D, the use of a displaced configuration in the control is
required to continue the motion while joint 1 and 2 are on their position limit. Actually,
without it the scaling would prevent any motion of the manipulator (see Fig. B.14)). The
use of the displaced configuration at the center of Ec moves g, away from the position
limits, so the motion is not scaled by 0 and some joint motions are possible.

Figure 4.7: Lack of optimality of the displaced configuration technique. In grey, the
displaced configuration. The arrows are the operational input. Without the ¢ f loop used
in the proposed simulation, the robot configuration might have converged toward the
black configuration: conversely to joint 1 and joint 2, joint 3 has not completely reached
its limit. The homogeneous scaling makes the motion from the displaced configuration
not optimal (see Fig. BI0). In the presented simulation, the fold up configuration is
reached thanks to the full deceleration enforced by the constraints.

However, as mentioned in section 3.3.3] and as showed on Fig. 7] the robot submit-
ted to a displaced configuration based control tends to converge toward a non optimal
configuration. Actually, this is not the case in the presented simulation thanks to the
way the joint position reaches its limit. During the deceleration, the constraints compat-
ibility enforces a full deceleration until the joint position limit. As shown in Fig. 7] the
fold up configuration is not stable: the displaced configuration is behind the robot with
respect to the point to reach, as the centre of E¢ gets away from the joint position limit.
However, as suggested in section [3.3.3] this case is treated by an if loop to maintain
the robot in the best configuration.

This method may turn out insufficient to carry out properly the tasks. This can be
the case when the robot moves slowly toward one the fold up configuration. In these
cases, any approach iterating on the passive avoidance of constraints (as the clamping
method in Baerlocher et al. (@) or the CCC presented in section B.2]) can be used.
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4.1.2.3 T7DOF's manipulator: simulation presentation

This simulation is an extension of the one presented above: it involves a 3D manipulator
in charge of tracking a trajectory in presence of obstacles. The simulator used is Nageval
(velocity kinematics). The aim of this simulation is to illustrate the behavior of the
CCC law with a displaced configuration located at the maximum deceleration point (cf.
Eq. 333)) in a complex case. The considered constraints are:

e Joint position limits - control constraints Eqs. (Z29) and (230);

e Joint velocity limits - control constraints Eqs. ([223) and ([2.24));

e Joint acceleration limits - control constraints Eqs. (2:26]) and (2:27);
e Obstacles - control constraints ([2.25]).

As for the previous simulation, the presence of joint acceleration limits imposes to use
the constraints function of Eqs. (Z29) and ([Z30) rather than Eqs. (221) and (Z22)) for
joint position limits. The simultaneous presence of joint acceleration limits and obstacles
imposes to use Alternative Safe Behaviors (section 2Z4.5]). In this particular case, the
ASB retained is the maximum joint deceleration (section [Z4.5.T]).

The manipulator has 7 rotational DOFS, it is the same than the one used in the
simulations of section LTI but in a different environment (Fig. [Lg]). The joint positions
of the robot are limited to +3 rad , the velocities +1.5 rad.s~' and the accelerations
+10 rad.s~2. The simulator used is Nageval.

The tracked trajectory is composed of 3D points (position without orientation) which
by-pass the wall (Fig. [L8]). The mean distance between two points of the trajectory is
8 mm. The mission is not achievable, i.e. the manipulator is geometrically not able to
track the trajectory perfectly.

The retained displaced configuration is the maximal deceleration configuration (cf.
Eq. (833)), which is efficient on smooth operational tasks (see section B:31.2)). The
environment envelope e is 10 mm. The control law used is the one of Eq. ([43]) recalled
hereafter with 1/ pseudo-inversions weighted by the joint interval width (see section

2.

Figure 4.8: 7 DOFs manipulator in the last configuration of the simulation. The joint
axes are represented in red.
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B325), 2/ the trajectory tracking as unique objective in (Jo, X0 4p) and 3/ the con-
straints terms ((Je,0), (J,, X, ,,))-

d =P, (JoP;)*PL5X 0 4p
+Ppe (S5 P[Jj])#’DLS(XE,dp — J_Py.(JoPs )" X 0 4p) (4.5)

The time step increment is 6t = 0.01 s.

4.1.2.4 T7DOFs manipulator: results

The graphs of joints positions, velocities and accelerations of DOFs 1, 4 and 7 as well
as the distances to the nearest points of the environment are presented on Fig.
As in the previous experiment, the positions and the velocities are smooth, and every
constraint is always satisfied. At time step 95, the first DOF reaches its position limits,
which provokes an acceleration of the other DOFs to maintain the desired operational
velocity. At time step 135, the robot begins its deceleration close to the obstacle; the
ASB provokes a deceleration of the whole robot as the prediction loop ¢ 4551 detected
a collision with the envelope. When all the DOFs are stopped (time step 175), DOF7
has a margin to continue to minimize the tracking error until it reaches the envelope of
the environment. As expected in section 22452 the behavior of DOF7 presents some
oscillations before the final deceleration (time steps 185 — 195), showing the limits of
the maximum deceleration ASB.

4.1.3 Control problem resolution results conclusion

In this section, two sets of simulations are presented:

e The first one uses the CCC in a context involving joint position, velocity limits and
obstacles. The simulation illustrates that the control law has a behavior similar
to state-of-the-art control laws in underconstrained cases. In over-constrained
cases, it fulfills the multiple objectives while satisfying the constraints without the
drawbacks encountered with state of the art control law (high lack of optimality
and oscillations). These simulations validate this approach for an implementation
in the multi-objective evolutionary design process (section F.2]).

e The second set of simulations involves the same constraints and joint accelera-
tion limits. These simulations illustrate the ability of the displaced configuration
control to fulfill the objectives while satisfying the constraints, either with single
iteration control law or with the CCC.

4.2 Evolutionary design

This section is dedicated to the design of a manipulator in charge of the maintenance
operations (cleaning, inspection) in the Tunnel Boring Machine excavation room of
the TELEMACH project. The environment is cluttered and the mission requires high
reachability skills.

The kinematic design of robotic manipulators is often seen as one among numerous
applications of engineering design. When robots are uniquely used as chain manufac-
turing tools, this vision is appropriate and classical design methods (Pahl et al. )
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turn out to be rather efficient especially when combined with dedicated CAD and pPLMA
tools, allowing to numerically evaluate potential solutions.

The complexity of TBM environment and the tasks to be accomplished induce a
high number of potential design solutions among which the best ones may, given their
originality with respect to usual design problems solutions, probably not arise using
classical design methods. The use of dedicated CAD tools may help to numerically
discard some of the potential solutions, but checking each robot candidate with respect
to a representative subset of tasks and environments still remains a complex and time
consuming work.

Recently, the enormously increasing popularity of optimization methods led to their
effective application in robotic design. Amidst several works presented for optimal de-
signs of fundamental robots Kim et al. (@), Chen et al. M), Lee et al. (@)
Ceccaralli and Lanni M) involved two conflicting design objectives: maximum work
volume and minimum link lengths. The problem is converted into a single objective
problem through a weighted sum approach and solved using Sequential Quadratic Pro-
gramming (SQP). More recently, a multi-objective optimal design algorithm for 6-dof
PUMA robots was discussed by Carbone et al. ). Though, these works introduce
the simultaneous fulfillment of multiple design criteria through optimization techniques,
the methods used for solving the problems fall short in providing multiple optimal solu-
tions. Besides, the complexity associated with cluttered environments and larger number
of degrees of freedom is left unaddressed. A very recent work presented by Singla et al.
(Iﬁ; utilizes another classical optimization technique, called Augmented Lagrangian
approach, for designing redundant manipulators working in constrained workcells. Al-
though the paper deals with practical trajectories in constrained environments, it pos-
sesses the limitation of fixing the number of degrees of freedom a priori.

Instead, it is proposed to follow an approach where the design process is consid-
ered as a multi-objective optimization problem: tasks and constraints are formulated
in terms of functions to optimize and constraints to satisfy. Such a formulation allows
the automation of the design process in the preliminary phase. Given a family of auto-
matically obtained solutions, the so-called classical design methods can then be used to
converge towards a practical solution.

The presence of multiple objectives in a problem gives rise to a set of optimal solu-
tions, instead of a single optimal solution. This set of solutions is known as the set of
Pareto-optimal solutions and rely on the notion of Pareto-dominance (Deb et al. M)
to treat simultaneously and independently each performance indicator.

In a typical minimization problem where the fitness (evaluation of the individuals) f
is composed of n functions f; (1 <i < n), a solution z is dominating an other solution
xif

3 such as fi(z) < fi(z') (4.6)

and
Vi # i, fi(z) < fi(2) (4.7)

Based on this principle, the solution of the multi-objective optimization is the set of
non-dominated solutions to the problem (Pareto-optimal solutions). In the absence of
any further information, one of these Pareto-optimal solutions cannot be said to be
better than the other.

4Product Lifecycle Management
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In a first section, the literature review exposes the principles of Multi-objective
optimization through Genetic Algorithms (GAs). The choices made for each step of the
design process are detailed. The third section focuses on the control law used in the
simulations to evaluate the robots. Finally, some results are exposed and discussed.

4.2.1 Genetic Algorithm and architecture adopted
4.2.1.1 Context

The work is oriented toward task based design through the evaluation step of a GA (see

Fig. E.10).
Initial Optimal
Population Population

Stop

Criterion

Parent

Population

. Genitor
Replacement @ Population
Fit Children Genetic
1Iness Population Operations

Figure 4.10: Genetic Algorithm general scheme. The initial population is evaluated
through the fitness function, then the generation loop begins. A stop criterion is ap-
plied to the resulting parent population. If the criterion is not verified, the selection
process retains the individuals (genitor population) on which to carry out the genetic
operations (most of the times crossover and mutations on the genotypes representing the
individuals). The resulting population is then evaluated, and the replacement produces
the new parent population.

In this framework, a huge number of a individuals (robots) are evaluated thanks to
the ad hoc velocity kinematic simulator Nageval (see section LT.T.2), which is linked to
Sferes,2, a framework for evolutionary computation experiments (Mouret et al. )

(see Fig. EIT).

4.2.1.2 Genetic Algorithms literature review

Genetic Algorithms are optimization processes inspired from natural evolution. The
first introductions of GAs come from the books of Holland (@) and Goldberg (@)
At that time, GAs were used in mono-objective optimization framework. GAs are a
part of Evolutionary Algorithms (EAs), which gathers all the algorithms resorting to
techniques inspired from natural evolution.

One of the first robot design problems using Evolutionary Algorithms (EAs) was car-
ried out by Sims (@), generating creatures competing in walking, jumping, swimming,
etc. The concept of dominance (Eqs. (£6), (£1)) introduced by Pareto in 1906 was
then exploited to open the way for Multi-Objective Evolutionary Algorithms (MOEAS).
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Figure 4.11: Architecture of the Evolutionary Design software. Each individual of the
Children Population, expressed by a genotype, is evaluated through the fitness thanks
to the Nageval simulator which returns the Results, i.e. the scores of the individuals.

Since 1990, a high number of MOEAs have been proposed (Fonseca et al. , Horn
et al. @, Srinivas et al. @, Zitzler et al. |l9_9ﬂ, Deb l29_(l1|, 120112) GAs are now
widely used in robotics as they are very well adapted for optimization over vast, non
continuous search space. Applications fields spread from the whole system structure de-
sign ((Chocron et al. , Leger ), Gallant et al. ) to robots reconfiguration
(Han et al. ), controller design (Cheng et al. ), and in various domain such as
cooperative robotics (Sotzing et al. ) and mini-invasive surgery (Salle et al. M)

4.2.2 Design formulation and resolution method

In this section, the stakes and the choices made for each step of the design process are
exposed and discussed.

4.2.2.1 Genetic Algorithm

The efforts made to approach the Pareto-optimal front involve two (possibly conflicting)
objectives:

e Convergence: minimizing the distance between the final Pareto front and the
optimal front;

e Diversity: maximizing the difference in the generated solutions in terms of ob-
jectives or parameter values.



86 Chapter 4. Results

To consider both items, the commonly used technique of Nondominated Sorting Genetic
Algorithm IT (NSGA-II) (Deb et al. ) is considered suitable for the considered design
problem. This technique possesses the features of elitism and parameter-less selection.
Elitism is the process of selecting the best solutions out of the combined population
of parent and child generations and, therefore, avoiding the elimination of any good
solution. For a problem with the population size as N, NSGA-II works on 2N solutions
at each iteration. These solutions are sorted with respect to their non-domination and
are arranged into different Pareto optimal fronts. This is termed as non-dominated
sorting. Within a given Pareto front, all candidates are equally good; to obtain the
N individuals (genitor population), the best Pareto front are integrally kept until the
number of individuals gets superior to N. The extra individuals are removed according
to the crowding distance preference: the most isolated individuals on the objective space
are preferred to support exploration. This helps maintaining some significant diversity
in the resulting solution, by selecting widely spread population.

It is important to notice that the complexity of the problem resolution (conver-
gence/diversity) depends not only on the size of the search space, but also on the num-
ber and on the nature of the retained indicators. The number of indicators increases
exponentially the dimension of the pareto front space. If these indicators are highly non
linear with respect to the retained representation of the search space, the algorithm is
ill-conditioned. Actually, both the dimension and the shape of the indicators space are
critical.

Figure 4.12: Example of robot segments of the Maestro manipulator from which the
genome is inspired.

4.2.2.2 Genotype

The design process focuses exclusively on the robot morphology using elementary seg-
ments such as the ones shown in Fig. In that framework, each robot is described
as a concatenation of segments. A segment is composed of a link having a joint (rota-
tional) or not. Two frames are associated to each elementary segment. The first one
represents the three possible joint axes: every link is oriented along its z axis. The
second one represents the three possible orientations of the next segment. According to
this description, there are 11 elementary segments (see Fig. L13):

e 3 with a rotational joint about the x axis, the following segment being oriented
along x, y or z (called rxx,rxy, and rxz respectively)



Contributions to the Control of Constrained Robots 87

Table 4.2: Genome

Gene ABC | AB: Joint type
C: length (m)

Joint number - AB | 10 11 12 13 14 15
Joint type No rxx rxy 71Xz TyxX TIyy
Joint number - AB | 16 17 18 19 20 21
Joint type Yz 12X TZZ €X ey €z

Length number - C 0 1 2 3 4
segment length (m) | 0.05 0.15 0.25 0.35 0.45
Length number - C 5 6 7 8 9
segment length (m) | 0.55 0.65 0.75 0.85 0.95

e 3 with a rotational joint about the y axis (ryx, ryy and ryz)
e 2 with a rotational joint about the z axis (rzx and rzz)

e 3 segments without joint (ex, ey and ez)

rzy is not mentioned as it is the same as rzx rotated by § rads around z axis. In

addition we define 10 possible lengths for the segments between 0.05 m and 1.05 m.
The association table is presented in Table. As an example, a portion of a robot is
represented on Fig. E14

Each robot is defined by a chromosome of 16 genes, each one representing a segment
or not: the genes from 100 to 109 do not match anything (segment “None”) which is
consistent with the fact that we do not want every robot to have 16 DOFs. When a
fixed segment appears in the genotype of an individual (gene 190 to 219), a segment
combination is done, thus offering the possibility to get segments which orientation
differs from the x, y and z axes (Fig. 4.15).

As a conclusion, the retained genome (representation) has the following features
(Palmer et al. M)

1. The representation is able to represent all possible robots;
2. The representation does not encode unfeasible solutions;

3. The representation is redundant, as several genotypes can encode the same indi-
vidual.

Features 1 and 2 are part of the recommendation of Palmer; other considerations such
as locality (small changes in the genotype should result in small changes in the phe-
notype) and balance (all possible individuals are equally represented in the set of all
possible genotypic individuals) have been neglected to keep the genome expression sim-
ple. Feature 3 is largely induced by genes 100 to 109 (— no segment) and seems useful
as it eases the access to simple morphologies. Redundancy is often seen as profitable as
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Figure 4.13: Scheme of the GA representation (genotype).

it increases the evolvability of the systems through neutral networks (set of genotypes
connected by single-point mutations which map to the same individual). However, it
increases the randomization of the search. Recent discussions about genetic algorithms
representations can be found in Rothlauf (2006).
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0.55m

Figure 4.15: Combination of 2 segments.

4.2.2.3 Missions

The aim of the fitness function is to qualify the ability of a robot to carry out a mainte-
nance mission in the TBM (Figs. A.16, A1I7). So, a relevant trajectory has been defined
in the simulation environment and the fitness function consists of a trajectory tracking.
The trajectory is composed of 360 3D points without orientation, it is assumed that the
end-effector held by the manipulator has the needed DOFs to perform the operations
properly once it is at the correct operational position. As every robot has to track
the same trajectory, an automatic presimulation executed for each robot is in charge of
bringing the manipulator end effector near the trajectory first point. This presimulation
remains an open problem as the interference between the robot and the environment is
resolved by the elimination of the individual, which is not optimal.

The simulation is done at the velocity kinematic level, as dynamics is time consuming
and offers poor advantages in this particular case: the fitness evaluates the geometry
of the robot (is the robot able to reach the desired points without colliding with the
environment) and not the ability of the controller to track the trajectory with a given
dynamics.

4.2.2.4 Genetic parameters

The genetic operators (crossover and mutations) are regularly used at various rates, and
their tuning are sometimes included in the optimization process (Srinivas et al. ).
The crossover probability influences the injection of new solutions in the problem, which
must not be too high to be exploited properly by the selection step. The mutation is
often considered as a secondary operator to restore the genetic material; it should not
be too high to avoid turning the GA into a random search algorithm. In our case the
values have been taken as
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Figure 4.16: Comparative views of the TBM CAD and the simulation environment.

Figure 4.17: 7 DOFs Robot and trajectory example in the TBM environment.

e Crossover rate: 13%

e Mutation rate: 10%

The population size and the number of generations is limited by the design process
time consumption. As one evaluation takes around 300 ms, a night-fitted design process
is obtained with

e Generations: 500

e Individuals: 150
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4.2.2.5 Indicators

The indicators are the criteria on which the robot is evaluated through the fitness
function. Independently from the search space dimension (defined by the genotype),
the number of indicators has a direct impact on the behavior of the problem resolution.
For a M-criteria problem, a rough approximation could assimilate the Pareto front to
an hypersurface of dimension (M — 1); when the dimension increases, maintaining an
equal resolution quality for the Pareto front description requires a number of individual
exponential in M. However, the relations between the indicators impact the Pareto
front shape and thus the complexity of the problem; these relations can be (Purshouse
et al. ):

e Independence The relation of independence qualifies the absence of influence
between indicators. For example, maximizing the number of DOFs while max-
imizing the length of each segment. In that case, the problem can be divided
into subproblems and the criteria can in theory be optimised separately from each
other.

e Conflict The relation of conflict qualifies the impossibility to satisfy both of them
simultaneously. For example, minimizing the size of a robot while maximizing its
workspace. This is the usual reason for resorting to multi-objective optimization,
as the Pareto front contains all the compromises between these indicators. This
relation has the worst impact on the algorithm convergence.

e Harmony The relation of harmony qualifies the fact that the variation of one in-
dicator is likely to provoke the same variation on the other indicator. For example,
maximizing the size of a robot is in harmony with maximizing its workspace. This
has only a small effect on the algorithm convergence.

In practice, relations between indicators are rarely pure and often change according to
the search space area. A general recommendation in Genetic Algorithm based optimiza-
tion is to limit the number of conflicting criteria to 3.

The indicators retained in our problem are voluntarily simple and of a single dimen-
sion (no weighted sums representing a priori tradeoffs between different variables). The
trajectory tracking quality but also intrinsic parameters, such as the number of DOFs,
are evaluated. All the retained indicators are to be minimized:

e Maximum linear error along the trajectory tracking. There are no strategic
points on which to compute the error with a higher weight with respect to others:
the current design being a preliminary design, the trajectory should be equally
tracked;

e Number of DOFs. The number of DOFs is a technological difficulty (manu-
facturing, energy, control), even if the degree of redundancy usually increases the
reachability skills in a cluttered environment;

e Robot total length. The shortest robots able to perform the trajectory tracking
in a cluttered environment have usually better adaptability to other tasks. In
addition, their energetic rates (e.g. admissible load / energy consumed) are higher.

e Number of collisions per segment per time step. As mentioned previously
(section B24T]), despite the use of passive avoidance, the single point per segment
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constraint is not sufficient to ensure a strict collision avoidance. As a result, and
despite the initial specifications, the number of collisions cannot be ignored in
the indicators. However, the use of the CCC has a significant impact on the
consequences of the introduction of this indicator in the problem as discussed in
section 1.2.4.3

There are no purely conflicting indicators in the proposed set. The minimization
of the number of DOFs and the robot total length tends to be in harmony (robot size
minimizers). They together tend to be in conflict with the minimization of the maximum
linear error along the trajectory tracking. The number of collisions is a bit particular:
it is conflicting with the robot size minimizers for small robots (no redundancy) and for
big robots (cluttered environment). However, the CCC tends to minimize its impact as
only a few robot encounter collisions, due to singularity in the avoidance method, which
can be interpreted as an independency feature for this criterion.

4.2.3 Control law

The control law used in the simulation of the fitness function is an essential element.
It is responsible of a part of the scores (trajectory tracking errors and collisions) the
individuals get in the evaluation.

4.2.3.1 Control law expected features

The control law gives a behavior to the individuals. Many features are demanded:

e Genericity in robots. Each morphology the genome can describe must be con-
trollable by the control law without any specific restriction (geometry, degree of
freedom, ... ). The skills of each morphology must be exploited with equal chances;

e Genericity in situations. The control law must take into account and manage
appropriately the specific conditions as configurations singularities, constrained
areas, oscillating behaviors, .. .;

e Representativity. The control law used in the fitness should produce realistic
behaviors to get meaningful evaluations and meaningful results. In particular,
collisions should not occur in the simulations, as it cannot occur in reality;

e Coherency with indicators. Robots are fairly evaluated when the control law
takes the fitness criteria into account to act appropriately. For example, if the
number of collision is a part of the evaluation, the control law must integrate a
collision avoidance technique. As a consequence, the control law should be able to
consider several tasks.

e Efficiency. As a huge number of individuals are evaluated, the control law must
not be time-consuming.
4.2.3.2 Context and choices

The CCC is the control law retained for the evaluations. After some design process
attempts, it is decided to consider only the following constraints:
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e Joint velocity limits. These constraints are retained as they enforce the assump-
tion of small displacement required by the use of linearized models (Jacobians) -

Control constraints Eqs. (2.23]) and (2.24));

e Obstacles. These constraints are needed to have a realistic behavior (no collisions
and active avoidance when possible) - Control constraints Eq. (2.25]).

The joint position limits are not retained as they increase the size of the problem by
imposing extra parameters for each joint (minimum and maximum boundaries)ﬁ. As a
result, no joint position limit is imposed to any robot; the joint boundaries are set up
adequately on the eventually retained robots.

The CCC law retained is Eq. (£3), as in section L.I.1] (reminded hereafter)

4 =P;,(JoPs) """ X0
+P[JC]] (JE P[JCI])+7DLS<_X.E — JEPJC(J0PJ6)+’DLSXO) (4.8)

e Operational input: the operational input Xo is computed by the difference
between the current effector position and the current desired effector position
divided by the time step period dt (which value is transparent as the simulation is
at the velocity kinematic level).

e Pseudo-inversion: the Damped Least Square pseudo-inversions are done with
the damping factor A chosen as 0.50 (see appendix [B.2.2] and section LT.1.2]).

e Active avoidance: the active avoidance threshold is fixed to dacavccc = 40
mm, the avoidance coefficients gains are proportional (factor u = 2.5 1073) to
the inverse of the distance to the constraint; the maximum value of the avoidance
magnitude X ¢ is fixed t0 pmar = 0.25 which is equivalent to a distance of § = 10

mm between the manipulator closest point and the obstacle (ppqer = m).

e Distance computation: as mentioned in section B.2.Z4.1] given the unreliability
of the avoidance techniques based on a unique point per segment constraint in
discrete time, an envelope of 20 mm is added around the environment.

e Joint velocity limit: ¢,,,, has been fixed to 2 rad/s.

The resulting control law is adaptable to all the potential robots as its writing does
not involve gains explicitly dependent of the robots morphology (genericity in robots).
There is no identified situation where it penalizes arbitrarily the robots (genericity in
situations). The joint trajectory obtained for each robot is geometrically acceptable and
its tracking could be considered with any velocity profile, so the simulation is meaningful
(representativity). The CCC implemented is multi-objective: it tracks the trajectory and
avoids obstacles actively, so the GA indicators are taken into account in the control law
(coherency with indicators). Finally, the statistics obtained along the design processes
shows that the mean fitness time is 300 ms. As the trajectory counts 360 point, and
the presimulation counts 40 points, it gives a mean time step computation time of 0.75
ms on a off-the-shelf computer. This is considered acceptable (efficiency) as, even if the
robots can have between 1 and 16 DOFs, the mean time step is compatible with real
time requirements.

5As a additional justification, it is observed that almost every optimal individual obtained uses its
joint on a reasonnable (i.e. technologically acceptable) range
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4.2.4 Results and Analysis
4.2.4.1 Preliminary results

Preliminary designs have been carried out with a simple trajectory to set up the process
properly. The robot presented in Fig. is one of the optimal solutions obtained with
only 3 indicators (maximum linear error: 8 cm, number of DOFs: 5, collisions: 0). As
the size of the robot is not taken into account in the minimization, the robot obtained
is huge (total length: 6.40 m).

Figure 4.18: Robot 1, evaluation with linear error - number of DOFs - number of
collisions.

In order to obtain more reasonable robots, the indicator of robot total length is
added to the set of indicators. As a result, the robot presented in Fig. is much
shorter (total length: 1.60 m), has the same number of DOFs, it has approximately the
same linear error (maximum linear error 9 cm) and never collides either.

\

~

Figure 4.19: Robot 2, evaluation with indicators: linear error - number of DOFs -
number of collisions - robot total length.

4.2.4.2 Final results

As the solutions fit the specifications for the simple trajectory presented above, a similar
work is carried out with the trajectory representing a maintenance mission (inspection
of the cutter head). Using the 4 previous indicators (linear error, number of DOF's, total
length and number of collisions) seems sufficient to obtain appropriate robots. One of
those is presented in the sequence of Fig. This robot has 5 DOFs, it has a maximal
linear error of 12 cm, its length is 2.80 m and it never collides.
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Figure 4.20: Sequence of the complex trajectory tracking. Evaluation with linear error,
number of DOFs and robot total length.

An update in the TELEMACH project introduces a mobile magnetic platform that
enables a vertical motion of the robot basis. This module being integrated in the design
process, new results are obtained. The final retained robot has 4 degrees of freedom, it
has a maximum tracking error of 10 cm, a length of 2.05 m and it never collides (Fig.

R4

Figure 4.21: Robot obtained with a (not represented) vertical prismatic link at the
beginning of the chain. This prlsmamc link enables the robot basis to move vertically
from the red point. Given the desired trajectory, it reduces the DOFs and the lengths
with respect to the robot obtained previously (Fig. [1.20).

4.2.4.3 Discussion

One of the main problems encountered when using genetic algorithms is the size and the
shape of the Pareto front to be exploited, which are critical for the algorithm convergence
toward appropriate solutions. Moreover, despite the use of the CCC, the number of
collisions had to be introduced as a fourth indicator to be minimized, which could tend
to dramatically increase the complexity of the problem. However, the CCC considerably
reduces the number of collisions with respect to usual control laws. As a result, almost
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every robot obtain 0 (no collision), and the size of the problem is not that much increased
by the presence of this indicator. The collision occurrence may seem arbitrary for a robot
morphology, as it can be seen basically as a control singularity. However, an analysis
of these singularities shows that they only appear in case of insisting motions toward
obstacles. As a result, it occurs for robots having generally bad scores. In order not to
penalize the individuals for which this failure occurs, it has been decided not to take
this indicator as a constraint (in the GA meaning: criterion which, if not respected,
disqualifies the individual).

Finally, the control law used in the fitness has an impact on the size and the shape
of the Pareto front from 2 sides:

e criteria nature: by reducing the collision occurrence to “accidental”, this indicator
is at its optimal value (no collision) for a high majority of individuals, which
decreases the pareto front size;

e criteria relations: by reducing the collision occurrence to a control singularity, it
results that this indicator is independent from the other ones.

4.3 Constraints compatibility experiments

This section is dedicated to experiments involving a 6DOFs manipulator submitted to
various sets of constraints. The aim is to illustrate the relevance of the compatibility
framework exposed in chapter Pl The results are composed of 3 experiments showing:

e the safe behavior obtained thanks to the resolution of the joint constraints com-
patibility;

e the safe behavior obtained thanks to the resolution of the joint constraints com-
patibility and the maximum joint deceleration Alternative Safe Behavior;

e the safe behavior obtained thanks to the resolution of the joint constraints com-
patibility and the mixable joint deceleration ASB with the Smooth Avoidance
Technique.

All the experiments are done with the same state-of-the-art control law (Quadratic
Programming). At each time step, the operational input sent is a desired velocity issued
from a 3-DOF desired operational point (position only, no orientation). It induces a
Degree Of Redundancy (DOR) of 3.

4.3.1 Experiments presentation
4.3.1.1 Experiment site

The experiments were performed in a facility of the French Atomic and Alternative
Energy Commission (CEA), a government-funded technological research organization.
Its Direction of Research and Technology division main goals are to meet the needs
of industry by setting up industrial partnerships, promoting technology transfer and
creating start-ups, and to explore and propose new innovative breakthrough technologies
by putting the skills of its research laboratories to the best possible use. The 6-DOF's
arm used in these experiments is a 100dalN advanced remote hydraulic manipulator
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dedicated to heavy loads manipulation (100 daN) with force feedback capabilities, the
Maestrdd (David et al. M), designed by CEA. Its design prevent any self collision.
This robot is usually used in various applications where remote handling with high
strength and dexterity are needed like in nuclear or offshore hostile environments.

4.3.1.2 Experimental equipment

The robot’s controller uses a generic hard real-time application, TAO2000 (Gicquel et al.

), developed by CEA for computer aided teleoperation systems (teleoperators) and
coming from its experience for objects remote manipulation in hazardous environment.
It can address both masters and slaves robots, whatever their kinematics and actuation
technologies, providing them with a whole generic set of useful features with nearly no
specific development. This application provides, via a standard Ethernet link, a high
level communication interface to control the robot and a low level real-time tuning and
spying interface.

The Maestro works at the front of a tunnel boring machine mock-up (Fig. [A22]).

I

Figure 4.22: Teleoperated Maestro operating in front of the tunnel boring machine
cutting wheel mockup.

4.3.1.3 Initial assumptions versus experimental conditions

The assumptions made in chapter [ are at the basis of the framework (section 2Z1.7]).
The validity of these assertions and their actual potential violation should be discussed.
They are briefly recalled hereafter:

1. The perception of the system is exact;
2. The models of the system and the environment are known exactly;

3. The system limits implemented in the controller are representative of the system
real capabilities;

4. Once the control problem expressed is feasible (all the constraints can be satisfied
simultaneously), an algorithm is able to solve it without any constraint violation;

Shttp://www.cybernetix.fr/Hydraulic-arms
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5. At a given time step, a desired control input (e.g. w(k) = ¢g.5(k + 1) for time
step k) satisfying the constraints is perfectly carried out at the next time step

(daes(k +1) = g(k +1).

Assumptions 1, 2, 3 and 5 generate errors: sensors have a limited precision and their
measures are influenced by the environment variations; there are always geometric un-
certainties and many factors (e.g. oil temperature for an hydraulic robot) may impact
the quality of the model; even if the actuators capabilities are generally known, a whole
robot controller usually interlinks many loops, which may complicate the problem, es-
pecially through the response time for example. Thus, these assumptions imply errors
and approximations. Despite the work carried out on safety, these approximations may
provoke incompatibilities. These incompatibilities are localized and do not have a big
impact on the robot behavior: as shown on the following results, the envelope needed to
absorb them could be small with respect to what would be needed without the compati-
bility study. However, at the control level, an incompatibility provokes the impossibility
to solve the problem. For practical reasons, the occurring incompatibilities are denied
at the control level: for example, if the current position of the joint parameter gs(k)
is inferior to the artificial minimum joint position q%%m, then the inferior joint posi-
tion limit is taken as the minimum between the current joint position and theoretical
minimum joint position g3 min gets min(gz(k), qg’%m)

Assumption 4 is true: many control resolution problem algorithms can be used. As
an example, a generic QP solver has been used.

Finally, the control constraints validity is assumed, which involves that the errors
induced by finite differences approximations used in transpositions across physical levels
are neglected. Independently of their magnitude these errors nonetheless provoke in-
compatibilities. However, in the same manner than for the previous assumptions, these
incompatibilities are absorbed by envelopes and denied for the solver. In the particular
case of ASB, these errors are cumulated over all the prediction toward a stop, which typ-
ically represent 100 time steps (deceleration 1 rad/s?, velocity 1 rad/s, period 10 ms).
In this case, 2 kinds of errors are added: 1/ the errors induced by the approximation
of finite difference, which should not exceed the distance traveled during 1 time step
at maximum speed (see Fig. [£.23)); 2/ the absence of matching with reality during the
prediction, which may cause more important errors due to the approximations induced
by assumption 3.

From a practical point of view, the envelopes around the joint position limits e;
and around the environment e. are unknown from the controller and considered as an
origin offset: for example, the controller considers that a collision occurs if the distance
between the robot and the environment is lower than e,.

4.3.2 Safe behavior with compatible constraints - experiment 1
This first experimentﬁ illustrates the behavior of a multi-body robot submitted to control
constraints modified to become compatible.

4.3.2.1 Task presentation

The robot is subject to a brutal fold up from a configuration of extended robot to a
configuration in which the robot has reached its joint position limits (Fig. 4.24]). During

"http://www.isir.upme.fr/UserFiles/File/ VpadoiS /Medias /JointPosLim.avi
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Figure 4.23: Approximations induced by finite differences. ¢(t) is a continuous velocity,
G+1(k) its approximation with advance convention q(k) = ¢(k)+q(k—1), whereas ¢_1 (k)
is its approximation with delay convention ¢(k) = ¢(k — 1) 4+ ¢(k — 1). In any case, the
maximum error on position along this deceleration is the distance carried out during
one time step at initial velocity.

a first period (5.0 s), the desired operational velocities are maintained constant and
maximum toward a point at the left infinite; then, the desired operational velocity brings
back the robot toward the initial Cartesian point at lower velocity (the aim is to check
that the deceleration toward the joint position limit is safe). The considered e-state
constraints are joint position, velocity and acceleration limits (Eqs. (Z13]) - (21]])). For
the sake of clarity, the e-state constraints limits are the same for each joint: respectively
+1.0 rad, £1.5 rad/s, £2.0 rad/s*. The acceleration limits have been taken voluntarily
low (lower than the robot actual capabilities) in order to better illustrate the results. For
this particular experiment, the trajectory is considered in a (z,y)-plane (2 DOF desired
velocity) and only 3 DOF's are used (see Fig. £.24]), which brings the DOR to 1.

The control constraints used to enforce the considered e-state constraints are Fy/, F's
and Fp: (respectively Eqs. (223)), 224), 226), 227), (229) and (Z30)). The control
problem is expressed as a QP, and the solver is an efficient open source algorithrrﬁ.

Given the limits of the robot, the joint position overshoot could reach 0.56 rad
without the proposed methodology (by taking Eqs. (2.21]) and (2:22]) as the joint position
control constraints for example). As a benefit of our approach, the envelope retained on
joint position limits for this experiment is e; = 0.1 rad.

4.3.2.2 Results and analysis

The results are presented on Fig. The ¢,., values are the joint velocity sent
to the actuators (¢(k + 1)) and ¢,., are the velocities actually carried out by the
actuators. Only the 3 DOFs concerned by the planar trajectory are represented (the
other are excluded from the model, so they remain static). During the first second, each
joint contributes to the operational motion at its best: accelerations are maximal for
each joint. Joint 5 is the first to undergo a deceleration (before reaching its maximum
velocity) due to the initial proximity to its position limit. Joint 3 reaches its velocity

8QuadProg++: http://sourceforge.net/projects/quadprog/



100 Chapter 4. Results

_____ ,,*2---.’_5..---

B
&

L
e

Figure 4.24: Views of the robot in initial position (extended) and at ¢ = 5s (fold up).
The white arrow shows the direction of the constant operational desired velocity from
t=0stot=>5s.

limit for a short time. Joint 2 does not perform high accelerations due to the fact that the
operational velocity is sufficiently high thanks to the other joints. At ¢ = 4.0 s, the small
motion of joint 2 is induced by a disturbance which, given the system configuration, leads
to the tracking of the desired Cartesian velocity. At ¢ = 5.0 s, the operational desired
velocity is inverted (the robot goes back to its initial operational position), and the robot
gets away from its boundaries without any difficulty. At the end of the experiment,
(t = 7.5 s), the deceleration is provoked by a reduction of the operational desired
velocity; it is not provoked by any constraint. The envelope violation of joint 3 occuring
at the beginning of the experiment (¢t = 1.5 s) is attributed to the approximations
discussed in section (especially the exact execution of the desired joint input).
However, the envelope is slightly violated, which tends to show that it can reliably be
reduced (maximum overshoot is 3.03E~2 rad).

4.3.3 Safe behavior with ASB - Experiment 2

The second experimemﬂ illustrates the behavior of a multi-body robot submitted to
incompatible control constraints; at each time step, the computed control input is sent
if a consecutive deceleration toward a stop e-state is admissible (see section 2.4.5]).

4.3.3.1 Task presentation

The robot is subject to various motions in the cluttered environment of the cutting wheel
mock-up (Fig. 222)). The desired operational velocity is issued from a 3D trajectory
involving unreachable points. The considered e-state constraints are joint position,
velocity and acceleration limits and collisions avoidance (Egs. (Z13) - (ZI8)) and (Z20)).
The trajectory involves motions close to joint position limits. The joint position limits
are +£1.0 rad. The joint velocity limits are not reached during this experiment; The
joint accelerations limits are set to 1.0 rad/s?. The distances are computed in real-time
using a CAD model of the environment (Fig. £.22).

The control law is similar to the previous experiment. To deal with incompatible
constraints (joint acceleration limits and collisions avoidance), the control uses algorithm

“http://www.isir.upmec.fr/UserFiles/File/VpadoiS/Medias/Obst Avoid ASB1.avi
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Figure 4.25: Position, velocity and acceleration of joints 2, 3, and 5 during experiment
1. The position is directly measured on the robot, the velocity ¢ ., is the input sent to
actuators and ¢,.,; is the measured one. The acceleration is computed from ¢, ... All
the variables remain between their limits. The control constraints modification imposes
appropriate decelerations to satisfy the joint position limits.
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1. To differentiate accelerations due to the trajectory tracking and accelerations issued
from ASBI1, the acceleration value for prediction and alternative behavior is lower than
the one retained for the control constraint: 0.9 rad/s?. This modification has no major
impact on the results but makes them clearer.

Given the limits of the robot, the joint position overshoot could reach 0.5 rad without
the proposed methodology. In the same conditions, given the dimensions of the robot,
the potential collision without ASB would have required an envelope ~ 1 m to be
avoided. As a benefit of our approach, the envelope retained on joint position limits is
ej = 0.1 rad and the envelope around the environment is e, = 0.1 m.

4.3.3.2 Results and analysis

The results are presented on Fig. The 4 motions getting close to obstacles, easily
identifiable at t = 2.0 s,t =5.0 s, t = 8.0 s and t = 17.0 s on the graph of distance to
environment, end-up in the envelope e.. The 3 first motions (t = 2.0 s, ¢ =5.0 s and t =
8.0 s) gets close to obstacles with a reasonable velocity, but as there is no compatibility
between collisions avoidance and acceleration limits, resort to the alternative behavior is
needed (red squares). The fourth motion toward obstacles is done at higher speed; the
deceleration begins nearly 1.0 s before the impact (blue square). Finally a motion in the
neighborhood of the obstacle generates high frequency oscillations on the acceleration
(t =20.0 s). Actually, as the robot remains close to the obstacles, a deceleration at the
joint level tends to maintain the robot close to the environment. As a result, oscillations
between the trajectory tracking and the alternative behavior occur. Thanks to the
envelope e, taken, safety is preserved.

4.3.4 Integration of a SAT into the mixable joint deceleration ASB -
Experiment 3

This third experimen@ illustrates the possibility to introduce usual collisions avoidance
methods into a safe framework for a multi-body robot. The resulting behavior remains
safe and takes full advantage of the avoidance method.

4.3.4.1 Task presentation

The robot is in charge of reaching a setpoint from which it is separated by an infinite
horizontal plane (Fig. £27). As in the first experiment, the trajectory is considered in
a plane (2 DOF desired velocity) and only 3 DOFs are used (the same as in Fig. [L.24)),
which gets the DOR to 1. The magnitude of the desired velocity is maintained constant
toward the desired point. At the end of the experiment, a second setpoint is given to
get far from the obstacle. The considered e-state constraints are joint position, velocity
and acceleration limits and collisions avoidance (Eqs. [213]) - 2I8]) and (220)). The
trajectory does not involve motion close to joint position limits. The joint velocity limits
are not reached along this motion. The joint accelerations limits are set to 1.0 rad/s>.
The distances are computed in real time using a virtual environment.

The control law is based on the one of experiment 2. The approach used to preserve
safety in the previous experiment has the severe drawback to generate oscillations on the
accelerations when the robot is moving along obstacles. Actually, the control alternates

Yhttp://www.isir.upme.fr/UserFiles/File/VpadoiS /Medias/Obst Avoid ASB2SAT.avi
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Figure 4.26: Results of experiment 2. Left column: shortest distance between body 6
and the environment, desired and real position along cartesian axis X; right column:
desired and real velocity of joint 2, accelerations of joint 2.
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Figure 4.27: Views of the robot during the trajectory. The red arrows show the desired
operational velocity input along the robot trajectory (green line).

between the trajectory tracking and the alternative behavior at nearly each time step. As
detailed in section 245 the control constraint induced by the SAT (Eq. (Z38)) is added
to the set of considered constraints. The following values have been used: d; = 0.15 m
(area I), ds = 0.07 m (area II) and the envelope around obstacles is e, = 0.05 m (area
IIT). Taking different values for ds and e, eases the interpretation of the results.

4.3.4.2 Results and analysis

The results are presented on Fig. As in experiment 2, the arrival on the obsta-
cle causes the maximum overshoot in the area II. The robot never enters the security
envelope (area III) as it is managed by the SAT. The distance to obstacle stabilizes
during the sliding motion (see Fig. [L27]) until ¢ = 6.0 s when another objective is given
to the effector. The transition time can be detected on the acceleration (blue square),
when it switches from 1.0 rad/s? (deceleration coming from the alternative behavior)
to approximately 0.93 rad/s?. At that time (¢ = 1.62 s), the distance to the obstacle is
10.9 e¢m, and the avoidance method begins to limit the robot motion along direction z.
The acceleration is then smooth, the collision management being ensured by the SAT.
During the motion along the obstacle (between ¢ = 2.0 s and t = 6.0 s), the velocity of
joint 2 contributes to the motion, but the velocity is small as the setpoint is far under
the table, increasing the angle between the desired velocity vector and the infinite plane
toward orthogonality.

4.3.5 Partial Conclusion

The presented experiments illustrate the behavior of a robot which safety is ensured
thanks to a modification of the constraints expression to ensure their compatibility and
alternative safe behaviors in case of unsolvable incompatibilities.

In the first experiment, the manipulator is submitted to compatible constraints;
the control constraints impose appropriate deceleration to maintain the joints positions
within their limits. In the second experiment, the manipulator is submitted to a set
of constraints which are known to be incompatible. Various motions close to obstacles
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Figure 4.28: Results of experiment 3. Left column: shortest distance between body 6
and the environment (areas I, I and III are limited by parameters d;, ds and d. ), desired
and real position along Cartesian axis Z; right column: desired and real velocity of joint

2, accelerations of joint 2.
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provoke critical situations where the maximal deceleration Alternative Safe Behavior is
exploited. The obtained behavior is safe but oscillations may occur because of the ASB,
which is not completely satisfying. The third experiment focuses on an obstacle avoid-
ance when incompatibilities are treated with mixable deceleration ASB. The obtained
behavior is no longer oscillating.

As aresult, whatever the set of constraints, the behavior is safe and present satisfying
properties (smoothness, no oscillation, no ill-timed use of ASB). It is important to keep
the resort to ASB as rare as possible, because it decreases the quality of solutions in
terms of objectives tracking; ASB should remain a kind of emergency solution in control.



Chapter 5

Conclusion

5.1 Contributions

In this work, we tackle the formulation and the resolution of the control problem of
constrained robots. Our contributions to this fairly complex and large issue are method-
ological but also applied, in a rather generic manner, to dedicated robotic applications:
constraint-based robot design and teleoperation.

In the first chapter, the context of this thesis is presented from the industrial point
of view of the TELEMACH project. This project dedicated to the automation of main-
tenance tasks in the cutter-head of tunnel boring machines, exhibits general issues in
terms of constraint-based robot design and teleoperation. The link between these two
fields of investigation is drawn: they both rely on the safe and optimal reactive control of
robotic manipulators. A short overview of the literature in this domain is proposed and
our contribution to open problems is presented. This contribution goes beyond what
is usually proposed in the state-of-the-art: not only do we tackle the control problem
resolution but we also address its formulation. The latter is very critical since it con-
ditions the existence of a solution to the control problem but also has some interesting
implications in terms of its resolution.

In the second chapter, the formulation problem is introduced from a safety preser-
vation perspective. Indeed, ensuring the existence of a solution to the control problem
that complies with robotic constraints is a safety issue both for robots and their envi-
ronments. We showed that to ensure safety either the constraints expressions have to
be permanently compatible, i.e. allow some space for control at any time, or alternative
safe behaviors (ASBs) must be designed in order to properly manage emergency cases
where the robot has to be stopped in a safe manner. As examples, the study of all
the combinations of the set {joint position limits - joint velocity limits - joint acceler-
ation limits - obstacles avoidance} is proposed. As a result, the intuitive expression of
joint position limits is modified to remain compatible with joint accelerations limits,
and ASBs are proposed to ensure safety when dealing with obstacles avoidancd]. A
particular strategy is developed to take full advantage of the usual avoidance techniques
while maintaining safety.

The control problem being adequately formulated, the third chapter focuses on its
resolution. Our proposed resolution algorithms have various specifications: 1/enforce

LCompatibility for these constraints is hard to prove, due to the dependence of operational deceler-
ation capabilities with respect to the robot configuration
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compliance with the considered constraints; 2/fit the context efficiency requirements
(real time, simulation, etc.); 3/find the optimal solutions; 4/offer a satisfying general
behavior. The compliance with constraints being a prerequisite, compromises between
efficiency (time computation), optimality (reduction of the tasks errors) and correct
behavior (no oscillations, smoothness) are proposed. First, the elaboration of the Con-
straints Compliant Control law (CCC) based on the passive avoidance principle and ex-
isting techniques coming from analytic model inversion and convex optimization methods
enables to obtain robust, efficient and interesting characteristics. The passive avoidance
principle and the solutions scaling enables to overcome the drawbacks of active avoidance
at the top (optimality loss, oscillations) or at the bottom (constraints violation, infinite
terms) of the hierarchy. The displaced configuration method extends the Constraint
Compliant Control law to any set of constraints and proposes a compromise between
optimality and efficiency.

The fourth chapter is dedicated to applications of the proposed framework. First,
simulation results illustrate the CCC performances in various contexts. When involving
joint position limits, velocity limits and obstacles avoidance, the control law has a behav-
ior similar to state-of-the-art control laws in underconstrained cases. In over-constrained
cases, it fulfills the multiple objectives while satisfying the constraints without the draw-
backs encountered with state-of-the-art control law (high lack of optimality and oscil-
lations). If the constraints set prevents the admissibility of the current configuration,
the use of a virtual displaced configuration in the control problem resolution enables to
obtain a compromise between efficiency and optimality (safety being ensured anyway)
through a safe single iteration resolution method. It is particularly adapted to the task
based design of a manipulator morphology in cluttered environments, for which a huge
number of robots are evaluated through trajectory trackings, for which only kinematics
constraints hold. The impact of the CCC on the task based design is discussed and ori-
ented toward efficiency. The obtained robot morphologies are discussed with respect to
the associated context of tunnel boring machine maintenance. The methods relative to
safety developed in this thesis have been applied on a 6-DOF manipulator operating in
a cluttered environment. The obtained results illustrate the reliability of the approach
and validate the expected performances: whatever the set of constraints, the behavior is
safe and present satisfying properties (smoothness, no oscillation, limited use of ASBs).

5.2 Perspectives

The rather large scope of the research topic tackled in this thesis leaves many unanswered
questions and hence several directions for future research. We briefly discuss these
directions here.

5.2.1 Safe control problem formulation

e Transposition of the work on constraints compatibility to torque con-
trolled systems. The control of robotic systems involving fast motions and thus
implying high dynamics requires resorting to the dynamic equations of motion of
the system and displaces the control problem at the torque level. The transpo-
sition of the proposed work at this physical level is rather straightforward since
there exists a bijective mapping between torques and joint space accelerations. In
fact, actuator limitations are more naturally expressed in terms of torques limits
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since acceleration limits are configuration dependant. As a matter of fact, this
perspective is a short term one. Its impact may be significant, as more and more
robots are being controlled at the torque level.

e Adaptation of the work on Inevitable Collision State to Inevitable Vi-

olation State. The notion of Inevitable Collision State introduced by Fraichard

) denotes a state for which, whatever the control inputs sent, a collision fi-

nally occurs. It is extended in this thesis to Inevitable Violation State, denoting

a state for which, whatever the control inputs sent, a constraint violation finally

occurs. The ICS notion is now widely exploited in robotics control and it would

be profitable to apply some contributions in this domain to the IVS studies, for
example:

— Management of dynamic environments. Dealing with moving obstacles is par-
ticularly complex in our case: as the constraints compatibility depends on the
prediction of the system motion capabilities with respect to the environment,
it strongly depends on the assumptions over the environment dynamics. As
a consequence, a work on the specifications and on the possible assumptions
of the problem may be carried out. A first perspective in that field is to deal
with self-collisions;

— ICS-checkers and avoiders (Parthasarathi et al. , Martinez-Gomez et al.

2008, [2009);
— Approximations of ICS regions (Chan et al. );
— Probabilistic checking (Bautin et al. )

e Intelligent Alternative Safe Behaviors. Although efficient, the ASBs pro-
posed in the thesis are rather basic: the maximum deceleration ASB is intuitive
and simple but may lead to oscillations; the mixable deceleration ASB offers better
performances. Actually, ASBs are roughly considered in this thesis as emergency
stops at the control level. However, they can be considered as IVS avoiding mo-
tions, or transitions between determined safe regions. In that scope, they can even
take the tasks objectives into account, thus getting closer to the planning domain.
In that framework, the emergence of real-time motion planning (Brock et al. M)
and Partial Motion Planning (Petti et al. ) which focuses on the optimal use
of the time step as a computation time are promising.

5.2.2 Control problem resolution

e Constraints criticity. As mentioned in the conclusion of section B.2] a strong
perspective of the CCC is to rely on the KKT optimality conditions to increase
efficiency and optimality. This would enable to find the optimal combination of
constraints (Optimal Active Constraints Set - OACS) efficiently, relying on the
widely known active sets method of the convex optimization research field. How-
ever, there are many cases where the number of constraints is huge and even opti-
mized algorithms may turn unable to find optimal solutions within the time step
in real time. In Escande et al. (@) for example, the robot HRP-2 is controlled
in real time (40 DOFs, at least 120 constraints, so 2!20 possible combinations). In
the case of multiple simultaneous constraints activations, many iterations may be
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required. The key is to guess the OACS at the first iteration of the control prob-
lem resolution. This research for the optimal active constraints set could be fed
by the knowledge of the system evolution within its environment: as an example,
when a joint is close to its maximum position limit, considering the constraints of
minimum joint limit as potentially active has no sense. As a consequence, a lot of
constraints can be intuitively not considered. A first idea is to take as a first guess
the OACS of the previous time step. But in addition, there are many reasonable
assumptions to make: one can think of a constraints criticity index, quantifying
the probability to have the constraints in the OACS or not.

Integration of the environment shape in the dangerousness estimation
for collisions avoidance. The usual collisions avoidance method, as proposed
by Maciejewski et al. @), has an avoidance coefficient magnitude linked to
the distance to the environment, as it is considered that the closer the robot is
to the environment, the more dangerous it is. More recently, Choi et al. M)
proposed to include the velocity toward obstacle into the avoidance motion mag-
nitude (collidability), as it contributes to the criticity of a situation. However,
these methods consider elements involved in the danger estimation, but they do
not consider danger formally, as it is done for example by Ikuta et al. ) or
Kulic et al. ). As an example, it seems obvious that, given the method to
avoid obstacles (impose an avoidance effort or velocity to the closest point of a
part of the robot), the shape of the environment and in particular its convexity
are involved in the criticity of a situation. Moreover, it is closely linked to the
time period of the controller with respect to the velocity of the robot. Finally,
another way to tackle this problem is not to avoid obstacles directly, but rather to
avoid inevitable collision states, as they include all of what can be meant by the
“dangerousness” of a situation.
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Compatibility between joint
position and acceleration limits

The relations between position, velocity and acceleration in discrete calculus are different
from the continuous ones. Let (g(k)) be the sequence of positions of the joint of a 1-DOF
system along the iterations, (¢(k)) its velocities and (G(k)) its accelerations. The motion
is modelized with a first order approximation by

q(k+1)=q(k)+q(k+1)dt

g(k +1) = (k) + G(k + 1)t (A1)

As shown by Decré et al. (@), in case of constant acceleration §,,, the position
evolution in s time step is

ﬂk+s):q@ﬁ+8ﬂk+lﬁt+%@2—sﬁm&2 (A.2)

If we suppose ¢(k) > 0 and G, < 0 (deceleration example), the condition g(k + s) < qas
for all integer s leads to

av —q(k) 1 i}

= — —(s — 1){mot A3
I s = Vi (4.3)

The minimization of the right member can be obtained by relaxing the integer optimiza-

tion problem (s — sg) and differentiating this expression with respect to sg

sg 20 V= 2Gm (qn — q(k))
—au 1B Lot =0 } R G A

s]iét

Gk +1) <

which then can be solved by finding the integer value sy that minimizes the maximum
velocity in ([A.3). However, if sg < 1, the method retained by Decré et al. (M)
(¢(k) < 0) may violate the acceleration limit constraint. Moreover, this method is tight
and may fail in case of any measure error.

The expression of the deceleration distance obtained from the relaxed expression is

) 1 .
d]R,dec(k) = 8R7d€CQ(k + 1>6t + 5(8%,d66 - SR,dec)Qm6t2 (A5)

with

_ \/_Qéjm<QM - Q<k))
G4mOt

SR,dec =

(A.6)
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It is obvious that dr gec(k) > dndec(k) where dy gec(k) would be the exact discrete
deceleration distance at time step k. To satisfy the constraints, a cautious condition is

d(k + 1) > dR,dec(k) (A7)
where d(k + 1) is the distance gy — q(k + 1). It leads to

(QM - q(k)) - %(SIQR,dec - SR,dec)(jm(Stz

(k4 1) <
gk +1) < (SE.dec + 1)0t

(A.8)

The comparative deceleration of a joint with the two methods can be observed on Fig.

Al

q (rad) i (rad/s?)

Figure A.1: Curves p; and ps represent the distances to the joint position limit (g,, = 0)
according to the deceleration strategies respectively proposed in this work and in Decre
et al. (@) Curves a; and ag represent the associated deceleration profiles. The
acceleration limit is g, = —2 rad.s™2 and §t = 0.05 s. It is obvious form this graph
that strategy 1 is safe whereas 2 is not. Moreover the deceleration profile of strategy 1
is smoother than strategy 2 which requires full deceleration and thus a peak of jerk.

The choice of Eq. (A8) as the joint position limit constraint provokes a small re-
duction of the reachable positions. Actually, the resolution of ¢(k + 1) = 0 in Eq. (A.8)
induces
— (i 612

8
which means that the asymptotic value of the joint position according to this constraint
is no longer qp; but

am — q(k) = (A.9)

v =qM =~ (A.10)

The order of magnitude of this reduction is ~ §t2, which can be considered negligible.
However, it is a reduction of the space of reachable e-state, and all the compatibility
studies involving this control constraint must be checked over the joint position space

Ap = [gm’; qm] (A11)

. o9
where g = gm + qM85t :




Appendix B

Linear Problem Resolution
Reminder

This appendix is a brief reminder of the linear problem resolution results regularly used
in robotics. It is based on Ben Israel et al. (@g ; it is also largely inspired of the report
of Buss (@) and on the thesis of Padois ).

B.1 Problem

A linear problem is expressed by the equation
X =Jg (B.1)

where X is a vector of size m, J is a (n, m) matrix and ¢ is a vector of size n. The aim
of the problem is to find a solution ¢ so that Eq. (B is verified.

As a first remark, this equation does not have an exact solution if X ¢ Range(J);
however, it can be interesting to find approximated solutions to this problem. Con-
versely, if X € Range(J) and Dim(Ker(.J)) > 0, there is an infinite number of solutions
(redundancy); it can be then profitable to exploit the possibility to choose a solution
adapted to secondary needs.

B.2 pseudo-inversion

B.2.1 General expression

The problem addressed requires an inversion of the relation expressed by Eq. (B,
even if the matrix J is not square or invertible. As exposed by Ben Israel et al., the

pseudoinverse is given by:
JT=GT(FTJG") 1 FT (B.2)

where J = F'G is the full rank decomposition of J. The solution given by
g=J"X (B.3)
has the following properties:

e Exact and minimal ly-norm solution if the equation is solvable (X € Rg(.J));
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e Approximate result with minimal operational ls-norm error if the system is not

solvable (X ¢ Rg(J));
o Jt = J7lif Jis square and full rank.
When the matrix J is not singular, the pseudoinverse has simple expressions:
e if J is full rank in line (rk(J) = m < n), Eq. (B.2)) is equivalent to

Jt=JtgJght (B.4)

e if Jp is full rank in column (rk(J) =n < m), Eq. (B2) is equivalent to

Jt =ttt (B.5)

B.2.2 Approximated pseudoinverse

The problems induced by singularities are widely known and often addressed in the

literature. An elegant method to avoid the drawbacks of singularities at a small precision

cost is the Damped Least Square pseudo-inversion method, introduced by Wampler
) and Nakamura et al. ).

In the neighborhood of a singularity, (JJ7) is badly conditioned. This conditioning
problem leads to high joint space velocitiesEl (potentially infinite). To avoid, the problem
can be slightly changed to induce a conditioning improvement of (JJ7). The proposed
modification is

lfnqinlle*?'KIIQ+/\Hd|!2 (B.6)

where A is a constant damping scalar. Eq. (B.6) has the analytic solution
g=JTJJT + 2)1X = JhPES X (B.7)

which has the advantage to be always computable and not sensitive to the conditioning
of J. The damping constant must be chosen carefully to make Eq. (B.Z) numerically
stable: the damping constant should be large enough so that the solutions are well-
behaved near singularities, but if it is chosen too large, then the errors induced by this
regularization may be too large for the considered robotic application. Among methods
proposed for selecting damping constants, interested readers can refer to Chiaverini et

al. (M), Deo et al. (@) and Hue M)

B.3 Exploitation of the redundancy

In case of multiple solutions (X € Range(J) and Dim(Ker(J)) > 0), it can be profitable
to exploit the possibility to choose a solution adapted to secondary needs.

1J is a first order, configuration dependant approximation of the system at the kinematic level. Its
validity requires a limitation of the joint space velocities.
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B.3.1 Weighted pseudoinverse

The pseudoinverse can be extended to a weighted pseudoinverses (J* — J#) when the
minimized norms (in joint or operational space) are modified. Again with J = FG, we

have
J* =M P FM ET) G MG G M, (B.8)

where M, is the joint space weighting matrix and M, is the operational space weighting
matrix. M, and M, are assumed to be symmetric positive definite.
These weighted pseudoinverses have the following properties:

e Exact and minimal M -weighted [o-norm solution if the equation is solvable (min-

imization of the norm \/M);

e Approximate result with minimal operational M, -weighted ly-norm error (mini-

. T .
mization of the norm \/ X M, X) and minimal M,-weighted [>-norm solution if
the system is not solvable;

o J# = J 1 if J is square and full rank.

As previously, when the matrix J is not singular, the weighted pseudoinverse has
simple expressions:

e if J is full rank in line (rk(J) = m < n), Eq. (B.8) is equivalent to

J* =M T (M) (B.9)
e if Jo is full rank in column (rk(J) =n < m), Eq. (B) is equivalent to
J# = (JE M, J) LT M,. (B.10)

Using different weighting matrices is a way to exploit the redundancy of the robot
(Chan et al. [1993, Park et al. 2001, Xiang et al. 2010).

B.3.2 Projection on the Jacobian Kernel

The general solution of Eq. (B proposed by Liegeois @) is
q=J"X +P;z (B.11)

where Pj is a projector on the kernel of J and z an arbitrary vector of R". J*X is the
particular solution of Eq. (B) while Pyz is its homogeneous solution. When z spans
R™, all the solutions of Eq. (B.l) are reached, which is not the case with weighting
techniques as such.

A common and efficient way to compute P; is given by

Py=I—J%T) (B.12)

which yields an orthogonal projector. Using weighted pseudoinverse in Eq. (B12) is a
way to use non orthogonal projectors

Py =(I—J%J). (B.13)
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The projectors relying on expressions involving inversions of J such as Eq. (BI3)
and Eq. (BI2) are sensitive to the conditioning of J. In particular, they are subject to
the same problem in the neighborhood of singularities. However, using a DLS inverse is
not a good way to remedy to this problem. First, the DLS method induces an error in
the inversion that distorts the projection. As a consequence, the homogeneous solution
term may have a non-homogeneous component, which is not acceptable in the control
context as these solutions are used in a context of strict priority. Second, the null space
of the Jacobian matrix and a projector onto this null space always exist, even when in
singular configuration. Given the Singular Value Decomposition of J

J=USvT (B.14)

where U an (m,m)-matrix, S an (m,n)-matrix, and V' an (n,n)-matrix, a robust and
exact expression of the projector onto the kernel of J is given by

Py =V, V., (B.15)

where V;.,, is the matrix which content is the r to n columns of V', r being the rank of
J (Baerlocher et al. M)

Usual strict priority multi-objective control laws uses the pseudo-inversion of the
matrix Jo Py, to obtain an optimal solution. For example, in Maciejewski et al. (@)

qg=J X1+ [L(I - JFI) (X — JoJ X1) (B.16)

Using a DLS pseudo inverse for the term [Jo(1—J;".J1)]* has the consequence to influence
the projection, which may provoke an impact of lower priority objectives on upper
priority ones. To circumvent this drawback, a premultiplication by the exact projector
must be introduced.

G =JPEX ) + Py [JoPy, PR (X — Jod PRI X)) (B.17)

This has the consequence to affect lightly the realization of secondary objective but it
enforces the strict priority.



Appendix C

Convex Optimization Methods in
IVK problems

This appendix aims to describe briefly the resolution of the Inverse Velocity Kinematics
(IVK) problem from a Convex Optimization point of view. Convex Optimization is a
domain of non linear programming which proposes very efficient tools to solve a broad
class of problems among which IVK in robotics.

C.1 Single hierarchical level: unconstrained problem

C.1.1 Task through equality

The unconstrained problem expressed through equalities is expressed by

i 1Kk +1) = Jo(a(k)at + 1) (1)

where X des(k + 1) is the current desired operational velocity for the next time step,
q(k) is the current configuration, Jo(g(k)) is the Jacobian of operational objectives and
q(k 4 1) is the joint velocity to find to carry out X g4es(k + 1) at next time step. This
problem involves a single objective (or a set of objectives at the same hierarchical level,
X ges(k + 1) being in that case a concatenation of several operational objectives) and
does not consider any constraint. This problem expression means that the aim of the
resolution method is to find a control solution ¢(k + 1) so that Jo(q(k))g(k + 1) is as
close as possible to the desired operational velocity X es-

C.1.2 Problem resolution

The problem of Eq. (CJl) can be modified slightly without modifying the results (the
dependence to g(k) and the time steps k and (k + 1) are omitted for the sake of clarity)

min HXdes - JO(:I||2' (02)
geR”

Considering this problem from the convex optimization point of view means that the
problem is solved by evaluating the local behavior of the cost function. In this scope,
the first step is to differentiate the cost function with respect to the joint velocity

V| X des — Jod||* = 2JE5X ges — 275 J0q. (C.3)
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The optimal value ¢* is reached when this gradient is null. The particularity of this
problem is that this gradient is linear, which enables to use analytic resolutions method;
in a more general convex problem, a descent method may have been used. The resolution
of the annulation of the gradient is (known as the optimality conditionﬂ)

JEJoq* — JEX ges = 0. (C.4)

The kernel of Jo (notation Ker(.J})) and the range of Jo (notation Rg(Jo)) being
orthogonal, we have

JOq* - Xdes =0. (C5)

This result is obvious but it exposes the way quadratic problems are addressed
in a convex optimization point of view (1/derivation, 2/descent or use of optimality
conditions if possible). This equation is the one addressed by Liegeois ).

As seen in appendix [B] the general solution of Eq. (C.H) is

q=JEX + P,z (C.6)

where Jgﬁ is a weighted pseudoinverse of Jo, Py, is a projector on Ker(Jo) and z an
arbitrary vector of R"™.

C.2 Multiple hierarchical levels: Least Square problem
with Equality constraints

The multiple hierarchical levels control is the most largely used control problem formu-
lation. Objectives are hierarchized and the contribution to an objective at a given level
cannot be carried out if it impacts higher levels objectives.

C.2.1 Tasks through equalities

A Least Square problem with Equality constraints (LSE) is expressed by

' Xaes(k+1) — Jo(q(k))g(k +1
q(k%%w\y des(k +1) — Jo(q(k))a(k + 1)]|

subject to  Jo(q(k))g(k+1) —b(k) =0 (C.7)

where Jo(q(k)) is the Jacobian of equality constraints and b(k) its associated offset
term. As in the previous section, the dependence to g(k) and the time steps k and
(k + 1) are omitted.
C.2.2 Optimality conditions
Again, this problem can be written without modification on the results as
in || X ges — Jod||?
min || X ges — Jod||

subject to Jog — b= 0. (C.8)

L Optimality conditions are equations that enables to check if a solution is optimal with respect to the
considered problem. In a few cases (as here), they can be inverted to find directly the optimal solution.
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If a solution g is optimal, then for any other control vector q; satisfying Jog,;—b = 0,
the following equation must hold

(V| X des — Jod||>)* (g1 — a@g) > 0. (C.9)

This equation can be interpreted as follows: in the kernel of the constraints any dis-
placement from the optimal point has a positive projection on the gradient. Since g,
and @, satisfy the constraints, there exists qg; in Ker(J¢) such that ¢, = ¢g+ g¢;- The
optimality condition can then be expressed as

(V| X ges — Joa|>) qo; > 0 Vo, € Ker(Je). (C.10)

As this linear function (left hand term of Eq. (CI0Q)) is nonnegative on the vector space
Ker(J¢), then it is zero on the subspace. In other words: in the kernel of the constraints
any displacement from the optimal point has a null projection on the gradient. As a
consequence

(VX des — Joqo|*) € Ker(Je)™ (C.11)
and thus
(VIIX des = Joaol*) € Rg(JE). (C.12)
Consequently
v eRP, (V|| X ges — Joqo||H)T + JEv =0. (C.13)

where v is known as a Lagrangian multipliers vector. Finally, the optimality conditions
for a control solution g, are Eq. (CI3) and Jogy — b = 0. These conditions can be

summarized as . . e
o 7] i) _ [44] c19)

C.2.3 Analytic resolution through the optimality conditions

The LSE problem can be solved through the resolution of the optimality conditions
Eq. , which comes out to use the well known multi-objective solution (Maciejewski
et al. )

4= J3b+ (Jo(I — JEJe)) (X — JoIfb) (C.15)

when the problem is feasible (# being the weighted pseudo-inversion operator, see ap-
pendix [B]).
The convex optimization algorithms usually deals with problems with multiple (> 2)
hierarchical levels thanks to sequences of quadratic programs. The work of Salini et al.
) evaluates such a technique.

C.3 Least Square problem with Inequality constraints (LST)

A Least Square problem with Inequality constraints (LSI) can be expressed by

min || Xges(k +1) = Jo(q(k))a(k + 1| (C.16)
q(k+1)eR"

subject to Joq(k+1) —b(k) <0.
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This problem involves a single objective (or a set of objectives at the same hierar-
chical level) and some inequality constraints. This problem cannot be treated directly
analytically; there is no other way than resorting to iterations to find which constraints
are active (constraints reached at the optimal solution) and which are not. To avoid
iterations, most of the robotics literature techniques take constraints that are fundamen-
tally inequalities (joint physical limits, obstacles) as equalities by introducing avoidance
terms. These methods may impose a very large number of conditions, making them
potentially not satisfied.

The method exposed to solve such problem is the primal active set method. Active
sets methods enable to get information on the constraints that should be activated
and/or relaxed in order to find the adequate LSE yielding the optimal value. They are
usually composed of 2 phases: phase I is in charge of finding a feasible point, it can be
addressed for example through an unconstrained optimization problem; phase II is in
charge of minimizing the cost function while maintaining the progression of the solution
within the admissibility space. Phase I is not described here, it is assumed that the
initial solution ¢(°) satisfies the constraints.

The best way to describe this algorithm is through an example; a more complete
approach is given in Nocedal et al. ).

C.3.1 Example

Fig. illustrates an inequality constrained quadratic problem.

q2

q1

Figure C.1: An example of inequality constrained quadratic problem. A, B, C and D
are the linear constraints.

On this example, the initial point is 0, the initial admissible solution of the problem is
then q(0>. The algorithm is incremental; the joint space velocity increments are denoted
s.

e On the first iteration, without any indication on the constraints to activate, it is
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decided to consider that no constraint is active (Jg) ) = 0). The quadratic problem

min 174 + ) = X ges| (C.17)

subject to Jg))s(o) =0

is solved with Jg) ) — 0. This problem is formulated in a particular manner to keep
the right hand term null, which enables to avoid to waste an important amount
of time when solving the problem thanks to the optimality conditions (see part
[C23). The obtained solution ¢(©) = ¢ + s does not satisfy the admissibility
test (Jog(®) > b), so ¢(©) is scaled by a factor u(® < 1 (the constraint A is the
constraint that limits u(?) here) in order to make the solution compliant with the
constraints, thus obtaining the point (j(l) = g(® 4 4050,

e A constraint should be activated to continue the progression. The constraint to
add is the one that limited u(?) to the smallest value (constraint A). The problem
is then solved another time with the initial point ¢V and Jg) containing uniquely
the jacobian (line) associated to constraint A:

min[[J(§" + s) — X e (C.18)
s
subject to Jél)s(l) =0.

The solution found ¢ = ¢ + s() violates a constraint (constraint B). A

scaling scalar u(!) is thus used and the solution obtained at this iteration is then
G? = ¢ 4 4MsM),

° Jéz ) contains then 2 active constraints (A and B), and we try to solve the following
problem:

min ||J(§® +s@) — X (C.19)
s
subject to Jg)s(z) =0.

The resolution of this problem gives as a solution s2) = 0, because the problem
is too much constrained (problem with 2 DOFs constrained by 2 linearly inde-
pendant equations). The solution 4(2/) is then (j(Q). This solution is admissible
(the constraint equation JC(j(Ql) < b is satisfied). It is thus kept. In these cases,
the optimality conditions are exploited, to know if solution 4(3) = (j(Ql) = 4(2) is

optimal or if a constraint should be removed from the set Jg ),

[JTJ <J§)>T] {qm] [—<JTXdes>T
2 - (2)
720 y b

(C.20)

Where y is a Lagrange multiplier vector and b the subvector of b containing the

components associated to Jg ). 2 possibilities then:

— all the components of y are negative of null — 4(2) is the optimal point, which
is not the case here.
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— at least one of the components of y is positive — the solution can be increased

. . . 2 .
if the associated constraints are removed from Jé): our case here for i = 1,

that is constraint A.

e Constraint A is so removed from Jg ), yielding matrix Jg’ ). The new problem is
then addressed:

min 17(g® + 5®) — X ges| (C.21)
subject to Jg’)s(?’) =0

The resolution gives (j(gl) = (j(?’) + s3) which is admissible. The optimality condi-
tion is then computed:

JTT (JONT] 143) —(JTX )T
IR R G

Vector y checks well y < 0, which means that solution 4(3’> is optimal.

C.3.2 Algorithm

The active set method algorithm is then:

C.3.3 Nice guess!

In the case where the optimal active constraints set is known (or guessed) the problem
comes out to a unique equalities constrained problem, which can be solved very effi-
ciently. The only extra operation is to check thanks to the optimality conditions that
the solution found is the optimal one.
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Algorithm 6 : Active set method

0. Initialization of (j(o) with an admissible solution (satisfying ch(o) < b); Initializa-

tion of the active constraints matrix Jg) )

1. Resolution of the equalities-constrained problem with a null right hand member.

i 17(G® + s®)) = X oo | wort. TP s =0 (C.23)

by the analytic resolution method based on the optimality conditions (see [C.2.3). We
obtain the solution (j(k,) = q<k> + sk
2. Admissibility check:

Jog*) < b (C.24)

If the case, then go to step 4. Else, go to step 3.
3. Computation of the scaling coefficient u*) such that tj(k'H) = (j(k) + uk) g(k)

is admissible and «(*) is maximal. Jék) is concatenated with the most constraining

constraint (i.e. the one that conditions u(k)) to yield Jékﬂ); Update: k:=k+1; Go
back to step 1.
4. Computation of the Lagrange coefficients y in the equation:

JTT  (JUNT] 140 —(JT X gos)T
3 R[0T e

If y < 0, the solution q'(k,) is optimal: get out of the algorithm.
Else, the negative components of y are the constraints that must be removed from

Jék); Update: k := k + 1; Go back to step 1.
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