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dr. Mariëlle Stoelinga University of Twente



Summary

As we dive into the digital era, there is growing concern about the
amount of personal digital information that is being gathered about us.
Websites often track people’s browsing behavior, health care insurers gather
medical data, and many smartphones and navigation systems store or trans-
mit information that makes it possible to track the physical location of
their users at any time. Hence, anonymity, and privacy in general, are in-
creasingly at stake. Anonymity protocols counter this concern by offering
anonymous communication over the Internet. To ensure the correctness of
such protocols, which are often extremely complex, a rigorous framework is
needed in which anonymity properties can be expressed, analyzed, and ulti-
mately verified. Formal methods provide a set of mathematical techniques
that allow us to rigorously specify and verify anonymity properties.

This thesis addresses the foundational aspects of formal methods for
applications in security and in particular in anonymity. More concretely,
we develop frameworks for the specification of anonymity properties and
propose algorithms for their verification. Since in practice anonymity pro-
tocols always leak some information, we focus on quantitative properties
which capture the amount of information leaked by a protocol.

We start our research on anonymity from its very foundations, namely
conditional probabilities – these are the key ingredient of most quantitative
anonymity properties. In Chapter 2 we present cpCTL, the first temporal
logic making it possible to specify conditional probabilities. In addition,
we present an algorithm to verify cpCTL formulas in a model-checking
fashion. This logic, together with the model-checker, allows us to specify
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and verify quantitative anonymity properties over complex systems where
probabilistic and nondeterministic behavior may coexist.

We then turn our attention to more practical grounds: the constructions
of algorithms to compute information leakage. More precisely, in Chapter
3 we present polynomial algorithms to compute the (information-theoretic)
leakage of several kinds of fully probabilistic protocols (i.e. protocols with-
out nondeterministic behavior). The techniques presented in this chapter
are the first ones enabling the computation of (information-theoretic) leak-
age in interactive protocols.

In Chapter 4 we attack a well known problem in distributed anonymity
protocols, namely full-information scheduling. To overcome this problem,
we propose an alternative definition of schedulers together with several
new definitions of anonymity (varying according to the attacker’s power),
and revise the famous definition of strong-anonymity from the literature.
Furthermore, we provide a technique to verify that a distributed protocol
satisfies some of the proposed definitions.

In Chapter 5 we provide (counterexample-based) techniques to debug
complex systems, allowing for the detection of flaws in security protocols.
Finally, in Chapter 6 we briefly discuss extensions to the frameworks and
techniques proposed in Chapters 3 and 4.
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Chapter 1

Introduction

1.1 Anonymity

The world Anonymity derives from the Greek ὰνωνυµία, which means
“without a name”. In general, this term is used to express the fact that
the identity of an individual is not publicly known.

Since the beginning of human society, ano-
nymity has been an important issue. For in-
stance, people have always felt the need to
be able to express their opinions without be-
ing identified, because of the fear of social and
economical retribution, harassment, or even
threats to their lives.

1.1.1 The relevance of anonymity nowadays

With the advent of the Internet, the issue of anonymity has been magni-
fied to extreme proportions. On the one hand, the Internet increases the
opportunities of interacting online, communicating information, expressing
opinion in public forums, etc. On the other hand, by using the Internet
we are disclosing information about ourselves: every time we visit a web-
site certain data about us may be recorded. In this way, organizations
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2 Chapter 1. Introduction

like multinational corporations can build a permanent, commercially valu-
able record of our interests. Similarly, every email we send goes through
multiple control points and it is most likely scanned by profiling software
belonging to organizations like the National Security Agency of the USA.
Such information can be used against us, ranging from slightly annoying
practices like commercial spam, to more serious offences like stealing credit
cards’ information for criminal purposes.

Anonymity, however, is not limited to individual issues: it has consider-
able social and political implications. In countries controlled by repressive
governments, the Internet is becoming increasingly more restricted, with
the purpose of preventing their citizens from accessing uncensored infor-
mation and from sending information to the outside world. The role of
anonymizing technologies in this scenario is twofold: (1) they can help
accessing sources of censored information via proxies (2) they can help in-
dividuals to freely express their ideas (for instance via online forums).

The practice of censoring the Internet is actually not limited to re-
pressive governments. In fact, a recent research project conducted by the
universities of Harvard, Cambridge, Oxford and Toronto, studied govern-
ment censorship in 46 countries and concluded that 25 of them, including
various western countries, filter to some extent communications concerning
political or religious positions.

Anonymizing technologies, as most technologies, can also be used for
malicious purposes. For instance, they can be used to help harassment, hate
speech, financial scams, disclosure of private information, etc. Because of
their nature, they are actually more controversial than other technologies:
people are concerned that terrorists, pedophiles, or other criminals could
take advantage of them.

Whatever is the use one can make of anonymity, and the personal view
one may have on this topic, it is clearly important to be able to assess the
degree of anonymity of a given system. This is one of the aims of this thesis.
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1.1.2 Anonymizing technologies nowadays

The most common use of anonymizing technologies is to prevent observers
from discovering the source of communications.

This is not an easy task, since in general users
must include in the message information about
themselves. In practice, for Internet communi-
cation, this information is the (unique) IP ad-
dress of the computer in use, which specifies its
location in the topology of the network. This
IP number is usually logged along with the host
name (logical name of the sender). Even when
the user connects to the Internet with a tempo-
rary IP number assigned to him for a single ses-
sion, this number is in general logged by the ISP
(Internet Service Provider), which makes it pos-
sible, with the ISP’s collaboration, to know who used a certain IP number
at a certain time and thus to find out the identity of the user.

The currently available anonymity tools aim at preventing the observers
of an online communication from learning the IP address of the participants.
Most applications rely on proxies, i.e. intermediary computers to which
messages are forwarded and which appear then as senders of the communi-
cation, thus hiding the original initiator of the communication. Setting up a
proxy server nowadays is easy to implement and maintain. However, single-
hop architectures in which all users enter and leave through the same proxy,
create a single point of failure which can significantly threaten the security
of the network. Multi-hop architectures have therefore been developed to
increase the performance as well as the security of the system. In the so-
called daisy-chaining anonymization for instance, traffic hops deliberately
via a series of participating nodes (changed for every new communication)
before reaching the intended receiver, which prevents any single entity from
identifying the user. Anonymouse [Ans], FilterSneak [Fil] and Proxify [Pro]
are well-known free web based proxies, while Anonymizer [Ane] is currently
one of the leading commercial solutions.
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1.1.3 Anonymizing technologies: a bit of history

Anonymous posting/reply services on the Internet were started around 1988
and were introduced primarily for use on specific newsgroups which dis-
cussed particularly volatile, sensitive and personal subjects. In 1992, ano-
nymity services using remailers were originated by Cypherpunk. Global
anonymity servers which served the entire Internet soon sprang up, com-
bining the functions of anonymous posting as well as anonymous remailing
in one service. The new global services also introduced the concept of
pseudonymity which allowed anonymous mail to be replied.

The first popular anonymizing tool was the Penet remailer developed
by Johan Helsingius of Finland in the early 1990s. The tool was originally
intended to serve only Scandinavia but Helsingius eventually expanded to
worldwide service due to a flood of international requests.

Based on this tool, in 1995, Mikael Berglund made a study on how
anonymity was used. His study was based on scanning all publicly available
newsgroups in a Swedish Usenet News server. He randomly selected a
number of messages from users of the Penet remailer and classified them
by topic. His results are shown in Table 1.1.

In 1993, Cottrell wrote the Mixmaster remailer and two years later he
launched Anonymizer which became the first Web-based anonymity tool.

1.1.4 Anonymity and computer science

The role of computer science with respect to anonymity is twofold. On one
the hand, the theory of communication helps in the design and implemen-
tation of anonymizing protocols. On the other hand, like for all software
systems, there is the issue of correctness, i.e., of ensuring that the protocol
achieves the expected anonymity guarantees.

While most of the work on anonymity in the literature belongs to the
first challenge, this thesis addresses the second one. Ensuring the correct-
ness of a protocol involves (1) the use of formalisms to precisely model the
behaviour of the protocol, and (2) the use of formalisms to specify unam-
biguously the desired properties. Once the protocol and its desired prop-
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Figure 1.1: Statistics on the Use of Anonymity – Penet

erties have been specified, it is possible to employ verification techniques
to prove formally that the specified model satisfy such properties. These
topics belong to the branch of computer science called formal methods.

1.2 Formal methods

Formal methods are a particular kind of mathematically-based techniques
used in computer science and software engineering for the specification and
verification of software and hardware systems. These techniques have their
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foundations on the most diverse conceptual frameworks: logic calculi, au-
tomata theory, formal languages, program semantics, etc.

1.2.1 The need of formal verification

As explained in previous sections, internet technologies play an important
role in our lives. However, Internet is not the only kind of technology we
are in contact with: Every day we interact with embedded systems such
as mobile phones, smart cards, GPS receivers, videogame consoles, digital
cameras, DVD players, etc. Technology also plays an important role in
critical-life systems, i.e., systems where the malfunction of any component
may incur in life losses. Example of such systems can be found in the areas
of medicine, aeronautics, nuclear energy generation, etc.

The malfunction of a technological device can have important negative
consequences ranging from material to life loss. In the following we list
some famous examples of disasters caused by software failure.

Material loss: In 2004, the Air Traf-
fic Control Center of Los Angeles Inter-
national Airport lost communication with
Airplanes causing the immediate suspen-
sion of all operations. The failure in the
radio system was due to a 32-bit countdown
timer that decremented every millisecond.
Due to a bug in the software, when the
counter reached zero the system shut down
unexpectedly. This communication outage disrupted about 600 flights (in-
cluding 150 cancellations) impacting over 30.000 passengers and causing
millionaire losses to airway companies involved.

In 1996, an Ariane 5 rocket launched by the European Space Agency
exploded just forty seconds after lift-off. The rocket was on its first voyage,
after a decade of development costing U$S 7 billion. The destroyed rocket
and its cargo were valued at U$S 500 million. A board of inquiry inves-
tigated the causes of the explosion and in two weeks issued a report. It
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turned out that the cause of the failure was a software error in the inertial
reference system. Specifically a 64 bit floating point number related to the
horizontal velocity of the rocket was converted to a 16 bit signed integer.

In the early nineties a bug (discovered by a professor of Lynchburg Col-
lege, USA) in the floating-point division unit of the processor Intel Pentium
II not only severely damaged Intel’s reputation, but it also forced the re-
placement of faulty processors causing a loss of 475 million US dollars for
the company.

Figure 1.2:Therac-25 Facility.

Fatal loss: A software flaw in the con-
trol part of the radiation therapy machine
Therac-25 caused the death of six cancer
patients between 1985 and 1987 as they
were exposed to an overdose of radiation.

In 1995 the American Airlines Flight
965 connecting Miami and Cali crashed
just five minutes before its scheduled ar-
rival. The accident led to a total of 159
deaths. Paris Kanellakis, a well known re-
searcher (creator of the partition refine-
ment algorithm, broadly used to verify
bisimulation), was in the flight together with his family. Investigations
concluded that the accident was originated by a sudden turn of the aircraft
caused by the autopilot after an instruction of one of the pilots: the pilot
input ‘R’ in the navigational computer referring to a location called ‘Rozo’
but the computer erroneously interpreted it as a location called ‘Romeo’
(due to the spelling similarity and physical proximity of the locations).

As the use and complexity of technological devices grow quickly, mech-
anisms to improve their correctness have become unavoidable. But, how
can we be sure of the correctness of such technologies, with thousands (and
sometimes, millions) of components interacting in complex ways? One pos-
sible answer is by using formal verification, a branch of formal methods.
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1.2.2 Formal verification

Formal verification is considered a fundamental area of study in computer
science. In the context of hardware and software systems, formal verifica-
tion is the act of proving or disproving the correctness of the system with
respect to a certain property, using formal methods. In order to achieve
this, it is necessary to construct a mathematical model describing all pos-
sible behaviors of the system. In addition, the property must be formally
specified avoiding, in this way, possible ambiguities.

Important formal verification techniques include theorem proving, sim-
ulation, testing, and model checking. In this thesis we focus on the use of
this last technique.

Model checking Model checking is an automated verification technique
that, given a finite model of the system and a formal property, systemati-
cally checks whether the property holds in the model or not. In addition,
if the property is falsified, debugging information is provided in the form
of a counterexample. This situation is represented in Figure 1.3.

Usual properties that can be verified are “Can the system reach a dead-
lock state?”, or “Every sent message is received with probability at least
0.99?”. Such automated verification is carried on by a so-called model
checker, an algorithm that exhaustively searches the space state of the
model looking for states violating the (correctness) property.

A major strength of model checking is the capability of generating
counterexamples which provide diagnostic information in case the prop-
erty is violated. Edmund M. Clarke, one of the pioneers of Model Check-
ing said [Cla08]: “It is impossible to overestimate the importance of the
counterexample feature. The counterexamples are invaluable in debugging
complex systems. Some people use model checking just for this feature”. In
case a state violating the property under consideration is encountered, the
model checker provides a counterexample describing a possible execution
that leads from the initial state of the system to a violating state.

Other important advantages of model checking are: it is highly au-
tomatic so it requires little interaction and knowledge of designers, it is
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Figure 1.3: Schematic view of model-checking approach

rather fast, it can be applied to a large range of problems, it allows partial
specifications.

The main disadvantage of model checking is that the space state of cer-
tain systems, for instance distributed systems, can be rather large, thus
making the verifications inefficient and in some cases even unfeasible (be-
cause of memory limitations). This problem is known as the state explosion
problem. Many techniques to alleviate it have been proposed since the in-
vention of model checking. Among the most popular ones we mention the
use Binary Decision Diagrams (BDDs), partial order reduction, abstrac-
tion, compositional reasoning, and symmetry reduction. State-of-the-art
model checkers can easily handle up to 109 states with explicit state rep-
resentation. For certain specific problems, more dedicated data structures
(like BDDs) can be used thus making it possible to handle even up to 10476

states.

The popularity of model checking has grown considerably since its in-
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vention at the beginning of the 80s. Nowadays, model checking techniques
are employed by most or all leading hardware companies (e.g. INTEL, IBM
and MOTOROLA - just to mention few of them). While model checking
is applied less frequently by software developing companies, there have
been several cases in which it has helped to detect previously unknown
defects in real-world software. A prominent example is the result of re-
search in Microsoft’s SLAM project in which several formal techniques
were used to automatically detect flaws in device drivers. In 2006, Mi-
crosoft released the Static Driver Verifier as part of Windows Vista, SDV
uses the SLAM software-model-checking engine to detect cases in which de-
vice drivers linked to Vista violate one of a set of interface rules. Thus SDV
helps uncover defects in device drivers, a primary source of software bugs
in Microsoft applications. Investigations have shown that model checking
procedures would have revealed the exposed defects in, e.g., Intels Pentium
II processor and the Therac-25 therapy radiation machine.

Focus of this thesis This thesis addresses the foundational aspects of
formal methods for applications in security and in particular in anonymity:
We investigate various issues that have arisen in the area of anonymity, we
develop frameworks for the specification of anonymity properties, and we
propose algorithms for their verification.

1.3 Background

In this section we give a brief overview of the various approaches to the
foundations of anonymity that have been explored in the literature. We
will focus on anonymity properties, although the concepts and techniques
developed for anonymity apply to a large extent also to neighbor topics
like information flow, secrecy, privacy. The common denominator of these
problems is the prevention of the leakage of information. More precisely,
we are concerned with situations in which there are certain values (data,
identities, actions, etc) that are intended to be secret, and we want to
ensure that an adversary will not be able to infer the secret values from
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the information which is publicly available. Some researchers use the term
information hiding to refer to this class of problems [HO05].

The frameworks for reasoning about anonymity can be classified into
two main categories: the possibilistic approaches, and the probabilistic (or
quantitative) ones.

Possibilistic notions

The term “possibilistic” refers to the fact that we do not consider quan-
titative aspects. More precisely, anonymity is formulated in terms of the
possibility or inferring some secrets, without worrying about “how likely”
this is, or “how much” we narrow down the secret.

These approaches have been widely explored in the literature, using
different conceptual frameworks. Examples include the proposals based
on epistemic logic ([SS99, HO05]), on “function views” ([HS04]), and on
process equivalences (see for instance [SS96, RS01]). In the following we
will focus on the latter kind.

In general, possibilistic anonymity means that the observables do not
identify a unique culprit. Often this property relies on nondeterminism:
for each culprit, the system should be able to produce alternative executions
with different observables, so that in turn for a given observable there are
many agents that could be the culprit. More precisely, in its strongest
version this property can be expressed as follows: if in one computation
the identity of the culprit is i and the observable outcome is o, then for
every other agent j there must be a computation where, with culprit j, the
observable is still o.

This kind of approach can be applied also in case of systems that use ran-
domization. The way this is done is by abstracting the probabilistic choices
into nondeterministic ones. See for example the Dining Cryptographers ex-
ample in [SS96], where the coin tossing is represented by a nondeterministic
process.

In general the possibilistic approaches have the advantages of simplicity
an efficiency. On the negative side, they lack precision, and in some cases
the approximation can be rather loose. This is because every scenario that
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has a non-null probability is interpreted as possible. For instance, consider
the case in which a system reveals the culprit 90 percent of the times by
outputting his identity, while in the remaining 10 percent of the times it
outputs the name of some other agent. The system would not look very
anonymous. Yet, the possibilistic definition of anonymity would be satisfied
because all users would appear as possible culprits to the observer regardless
of the output of the system. In general, in the possibilistic approach the
strongest notion of anonymity we can express is possible innocence, which
is satisfied when no agent appear to be the culprit for sure: there is always
the possibility that he is innocent (no matter how unlikely it is).

In this thesis we consider only the probabilistic approaches. Their com-
mon feature is that they deal with probabilities in a concrete way and they
are, therefore, much more precise. They have become very popular in re-
cent times, and there has been a lot of work dedicated to understanding
and formalizing the notion in a rigorous way. In the next section we give a
brief overview of these efforts.

Probabilistic notions

These approaches take probabilities into account, and are based on the
likelihood that an agent is the culprit, for a given observable. One notion
of probabilistic anonymity which has been thoroughly investigated in the
literature is strong anonymity.

Strong anonymity Intuitively the idea behind this notion is that the ob-
servables should not allow to infer any (quantitative) information about the
identity of the culprit. The corresponding notion in the field of information
flow is (quantitative) non-interference.

Once we try to formalize more precisely the above notion we discover
however that there are various possibilities. Correspondingly, there have
been various proposals. We recall here the three most prominent ones.

1. Equality of the a posteriori probabilities for different culprits. The
idea is to consider a system strongly anonymous if, given an observ-
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able o, the a posteriori probability that the identity of the culprit
is i, P(i|o), is the same as the a posteriori probability of any other
identity j. Formally:

P(i|o) = P(j|o) for all observables o, and all identities i and j (1.1)

This is the spirit of the definition of strong anonymity by Halpern and
O’Neill [HO05], although their formalization involves more sophisti-
cated epistemic notions.

2. Equality of the a posteriori and a priori probabilities for the same
culprit. Here the idea is to consider a system strongly anonymous
if, for any observable, the a posteriori probability that the culprit
is a certain agent i is the same as its a priori probability. In other
words, the observation does not increase or decrease the support for
suspecting a certain agent. Formally:

P(i|o) = P(i) for all observables o, and all identities i (1.2)

This is the definition of anonymity adopted by Chaum in [Cha88]. He
also proved that the Dining Cryptographers satisfy this property if
the coins are fair. Halpern and O’Neill consider a similar property in
their epistemological setting, and they call it conditional anonymity
[HO05].

3. Equality of the likelihood of different culprits. In this third definition
a system is strongly anonymous if, for any observable o and agent i,
the likelihood of i being the culprit, namely P(o|i), is the same as the
likelihood of any other agent j. Formally:

P(o|i) = P(o|j) for all observables o, and all identities i and j (1.3)

This was proposed as definition of strong anonymity by Bhargava and
Palamidessi [BP05].

In [BCPP08] it has been proved that definitions (1.2) and (1.3) are
equivalent. Definition (1.3) has the advantage that it does extend in a nat-
ural way to the case in which the choice of the culprit is nondeterministic.
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This could be useful when we do not know the a priori distribution of the
culprit, or when we want to abstract from it (for instance because we are
interested in the worst case).

Concerning Definition (1.1), it probably looks at first sight the most
natural, but it actually turns out to be way too strong. In fact it is equiv-
alent to (1.2) and (1.3), plus the following condition:

P(i) = P(j) for all identities i and j (1.4)

namely the condition that the a priori distribution be uniform.
It is interesting to notice that (1.1) can be split in two orthogonal prop-

erties: (1.3), which depends only in the protocol, and (1.4), which depends
only in the distribution on the secrets.

Unfortunately all the strong anonymity properties discussed above are
too strong, almost never achievable in practice. Hence researches have
started exploring weaker notions. One of the most renowned properties of
this kind (among the “simple” ones based on conditional probabilities) is
that of probable innocence.

Probable innocence The notion of probable innocence was formulated
by Rubin and Reiter in the context of their work on the Crowds protocol
[RR98]. Intuitively the idea is that, after the observation, no agent is more
likely to be the culprit than not to be. Formally:

P(i|o) ≤ P(¬i|o) for all observations o, and all identities i

or equivalently

P(i|o) ≤ 1

2
for all observations o, and all identities i

In [RR98] Rubin and Reiter proved that the Crowds protocol satisfies prob-
able innocence under a certain assumption on the number of attackers rel-
atively to the number of honest users.

All the notions discussed above are rather coarse, in the sense that they
are cut-off notions and do not allow to represent small variations in the
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degree of anonymity. In order to be able to compare different protocols in
a more precise way, researcher have started exploring settings to measure
the degree of anonymity. The most popular of these approaches are those
based in information theory.

Information theory

The underlying idea is that anonymity systems are interpreted as channels
in the information-theoretic sense. The input values are the possible iden-
tities of the culprit, which, associated to a probability distribution, form a
random variable Id . The outputs are the observables, and the transition
matrix consists of the conditional probabilities of the form P(o|i), repre-
senting the probability that the system produces an observable o when the
culprit is i. A central notion here is the Shannon entropy, which represents
the uncertainty of a random variable. For the culprit’s possible identity,
this is given by:

H(Id) = −
∑
i

P(i) logP(i) (uncertainty a priori)

Note that Id and the matrix also determine a probability distribution on
the observables, which can then be seen as another random variable Ob.
The conditional entropy H(Id |Ob), representing the uncertainty about the
identity of the culprit after the observation, is given by

H(Id |Ob) = −
∑
o

P(o)
∑
i

P(i|o) logP(i|o) (uncertainty a posteriori)

It can be shown that 0 ≤ H(Id |Ob) ≤ H(Id). We have H(Id |Ob) = 0
when there is no uncertainty left about Id after the value of Ob is known.
Namely, when the value of Ob completely determines the value of Id . This
is the case of maximum leakage. At the other extreme, we have H(Id |Ob) =
H(Id) when Ob gives no information about Id , i.e. when Ob and Id are
independent.

The difference between H(Id) and H(Id |Ob) is called mutual informa-
tion and it is denoted by I(Id ; Ob):

I(Id ; Ob) = H(Id)−H(Id |Ob)
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The maximum mutual information between Id and Ob over all possible
input distributions PId (·) is known as the channel’s capacity :

C = max
PId (·)

I(Id ; Ob)

In the case of anonymity, the mutual information represents the dif-
ference between the a priori and the a posteriori uncertainties about the
identity of the culprit. It can therefore be considered as the leakage of
information due to the system, i.e. the amount of anonymity which is lost
because of the observables produced by the system. Similarly, the capacity
represents the worst-case leakage under all possible distributions on the cul-
prit’s possible identities. It can be shown that the capacity is 0 if and only
if the rows of the matrix are pairwise identical. This corresponds exactly
to the version (1.3) of strong anonymity.

This view of the degree of anonymity has been advocated in various
works, including [MNCM03, MNS03, ZB05, CPP08a]. In the context of
information flow, the same view of leakage in information theoretic terms
has been widely investigated as well. Without pretending to be exhaustive,
we mention [McL90, Gra91, CHM01, CHM05a, Low02, Bor06].

In [Smi09] Smith has investigated the use of an alternative notion of
entropy, namely Rényi’s min entropy [Rén60], and has proposed to define
leakage as the analogous of mutual information in the setting of Rényi’s
min entropy. The justification for proposing this variant is that it repre-
sents better certain attacks called one-try attacks. In general, as Köpf and
Basin illustrate in their cornerstone paper [KB07], one can use the above
information-theoretic approach with many different notions of entropy, each
representing a different model of attacker, and a different way of measuring
the success of an attack.

A different information-theoretic approach to leakage has been proposed
in [CMS09]: in that paper, the authors define as information leakage the
difference between the a priori accuracy of the guess of the attacker, and the
a posteriori one, after the attacker has made his observation. The accuracy
of the guess is defined as the Kullback-Leibler distance between the belief
(which is a weight attributed by the attacker to each input hypothesis) and
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the true distribution on the hypotheses. In [HSP10] a Rényi’s min entropy
variant of this approach has been explored as well.

We conclude this section by remarking that, in all the approaches dis-
cussed above, the notion of conditional probability plays a central role.

1.4 Contribution and plan of the thesis

We have seen in Section 1.3 that conditional probabilities are the key ingre-
dients of all quantitative definitions of anonymity. It is therefore desirable
to develop techniques to analyze and compute such probabilities.

Our first contribution is cpCTL, a temporal logic allowing us to specify
properties concerned with conditional probabilities in systems combining
probabilistic and nondeterministic behavior. This is presented in Chapter
2. cpCTL is essentially pCTL (probabilistic Computational Tree Logic)
[HJ94] enriched with formulas of the kind P≤a[φ|ψ], stating that the proba-
bility of φ given ψ is at most a. We do so by enriching pCTL with formulas
of the form P./a[φ|ψ]. We propose a model checker for cpCTL. Its de-
sign has been quite challenging, due to the fact that the standard model
checking algorithms for pCTL in MDPs (Markov Decision Processes) do
not extend to conditional probability formulas. More precisely, in contrast
to pCTL, verifying a conditional probability cannot be reduced to a linear
optimization problem. A related point is that, in contrast to pCTL, the
optimal probabilities are not attained by history independent schedulers.
We attack the problem by proposing the notion of semi history indepen-
dent schedulers, and we show that these schedulers do attain optimality
with respect to the conditional probabilities. Surprisingly, it turns out that
we can further restrict to deterministic schedulers, and still attain optimal-
ity. Based on these results, we show that it is decidable whether a cpCTL
formula is satisfied in a MDP, and we provide an algorithm for it. In ad-
dition, we define the notion of counterexample for the logic and sketch an
algorithm for counterexample generation.

Unfortunately, the verification of conditional cpCTL formulae is not ef-
ficient in the presence of nondeterminism. Another issue, related to nonde-
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terminism within the applications in the field of security, is the well known
problem of almighty schedulers (see Chapter 4). Such schedulers have the
(unrealistic) ability to peek on internal secrets of the component and make
their scheduling policy dependent on these secrets, thus leaking the secrets
to external observers. We address these problems in separate chapters.

In Chapter 3 we restrict the framework to purely probabilistic models
where secrets and observables do not interact, and we consider the prob-
lem of computing the leakage and the maximal leakage in the information-
theoretic approach. These are defined as mutual information and capacity,
respectively. We address these notions with respect to both the Shannon
entropy and the Rényi min entropy. We provide techniques to compute
channel matrices in O((o× q)3) time, where o is the number of observables,
and q the number of states. (From the channel matrices, we can compute
mutual information and capacity using standard techniques.) We also show
that, contrarily to what was stated in literature, the standard information
theoretical approaches to leakage do not extend to the case in which secrets
and observable interact.

In Chapter 4 we consider the problem of the almighty schedulers. We
define a restricted family of schedulers (admissible schedulers) which can-
not base their decisions on secrets, thus providing more realistic notions
of strong anonymity than arbitrary schedulers. We provide a framework
to represent concurrent systems composed by purely probabilistic compo-
nents. At the global level we still have nondeterminism, due to the various
possible ways the component may interact with each other. Schedulers
are then defined as devices that select at every point of the computation
the component(s) moving next. Admissible schedulers make this choice
independently from the values of the secrets. In addition, we provide a
sufficient (but not necessary) technique based on automorphisms to prove
strong anonymity for this family of schedulers.

The notion of counterexample has been approached indirectly in Chap-
ters 2 and 3. In Chapter 5 we come back and fully focus on this topic. We
propose a novel technique to generate counterexamples for model checking
on Markov Chains. Our propose is to group together violating paths that
are likely to provide similar debugging information thus alleviating the de-
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bugging tasks. We do so by using strongly connected component analysis
and show that it is possible to extend these techniques to Markov Decision
Processes.

Chapter 6 is an overview chapter. There we briefly describe extensions
to the frameworks presented in Chapters 3 and 41. First, we consider the
case in which secrets and observables interact, and show that it is still pos-
sible to define an information-theoretic notion of leakage, provided that we
consider a more complex notion of channel, known in literature as channel
with memory and feedback. Second, we extend the systems proposed in
Chapter 4 by allowing nondeterminism also internally to the components.
Correspondingly, we define a richer notion of admissible scheduler and we
use it for defining notion of process equivalences relating to nondeterminism
in a more flexible way than the standard ones in the literature. In particu-
lar, we use these equivalences for defining notions of anonymity robust with
respect to implementation refinement.

In Figure 1.4 we describe the relation between the different chapters of
the thesis. Chapter 5 is not explicitly depicted in the figure because it does
not fit in any of the branches of cpCTL (efficiency - security foundations).
However, the techniques developed in Chapter 5 have been applied to the
works in both Chapters 2 and 3.

We conclude this thesis In Chapter 7, there we present a summary of
our main contributions and discuss further directions.

1.5 Origins of the Chapters and Credits

In the following we list, for each chapter, the set of related articles together
with their publication venue and corresponding co-authors.

• Chapter 2 is mainly based on the article [AvR08] by Peter van Rossum
and myself. The article was presented in TACAS 2008. In addition,
this chapter contains material of an extended version of [AvR08] that
is being prepared for submission to a journal.

1For more information about the topics discussed in this chapter we refer the reader
to [AAP10a, AAP11, AAP10b, AAPvR10].
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Figure 1.4: Chapters relation.

• Chapter 3 is based on the article [APvRS10a] by Catuscia Palamidessi,
Peter van Rossum, Geoffrey Smith and myself. The article was pre-
sented in TACAS 2010.

• Chapter 4 is based on

– The article [APvRS10b] by Catuscia Palamidessi, Peter van Rossum,
Ana Sokolova and myself. This article was presented in QEST
2010.

– The journal article [APvRS11] by the same authors.

• Chapter 5 is based on the article [ADvR08] by Pedro D’Argenio, Peter
van Rossum, and myself. The article was presented in HVC 2008.

• Chapter 6 is based on

– The article [AAP10b] by Mário S. Alvim, Catuscia Palamidessi,
and myself. This work was presented in LICS 2010 as part of an
invited talk by Catuscia Palamidessi.

– The article [AAP10a] by Mário S. Alvim, Catuscia Palamidessi,
and myself. This work presented in CONCUR 2010.

– The journal article [AAP11] by the same authors of the previous
works.
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– The article [AAPvR10] by Mário S. Alvim, Catuscia Palamidessi,
Peter van Rossum, and myself. This work was presented in IFIP-
TCS 2010.

The chapters remain close to their published versions, thus there is
inevitably some overlapping between them (in particular in their introduc-
tions where basic notions are explained).

A short note about authorship: I am the first author in all the articles
and journal works included in this thesis with the exception of the ones
presented in Chapter 6.





Chapter 2

Conditional Probabilities
over Probabilistic and
Nondeterministic Systems

In this chapter we introduce cpCTL, a logic which extends the
probabilistic temporal logic pCTL with conditional probabilities
allowing to express statements of the form “the probability of φ
given ψ is at most a”. We interpret cpCTL over Markov Chains
and Markov Decision Processes. While model checking cpCTL
over Markov Chains can be done with existing techniques, those
techniques do not carry over to Markov Decision Processes. We
study the class of schedulers that suffice to find the maximum
and minimum conditional probabilities, show that the problem
is decidable for Markov Decision Processes and propose a model
checking algorithm. Finally, we present the notion of counterex-
amples for cpCTL model checking and provide a method for
counterexample generation.

23



24 Chapter 2. Conditional probabilistic temporal logic

2.1 Introduction

Conditional probabilities are a fundamental concept in probability theory.
In system validation these appear for instance in anonymity, risk assess-
ment, and diagnosability. Typical examples here are: the probability that
a certain message was sent by Alice, given that an intruder observes a cer-
tain traffic pattern; the probability that the dykes break, given that it rains
heavily; the probability that component A has failed, given error message
E.

In this chapter we introduce cpCTL (conditional probabilistic CTL), a
logic which extends strictly the probabilistic temporal logic pCTL [HJ89]
with new probabilistic operators of the form P≤a[φ|ψ]. Such formula means
that the probability of φ given ψ is at most a. We interpret cpCTL formulas
over Markov Chains (MCs) and Markov Decision Processes (MDPs). Model
checking cpCTL over MCs can be done with model checking techniques for
pCTL*, using the equality P[φ|ψ] = P[φ ∧ ψ]/P[ψ].

In the case of MDPs, cpCTL model checking is significantly more com-
plex. Writing Pη[φ|ψ] for the probability P[φ|ψ] under scheduler η, model
checking P≤a[φ|ψ] reduces to computing P+[φ|ψ] = maxη Pη[φ|ψ] = maxη
Pη[φ ∧ ψ]/Pη[ψ]. Thus, we have to maximize a non-linear function. (Note
that in general P+[φ|ψ] 6= P+[φ ∧ ψ]/P+[ψ].) Therefore, we cannot reuse
the efficient techniques for pCTL model checking, since they heavily rely
on linear optimization techniques [BdA95].

In particular we show that, differently from what happens in pCTL
[BdA95], history independent schedulers are not sufficient for optimizing
conditional reachability properties. This is because in cpCTL the opti-
mizing schedulers are not determined by the local structure of the system.
That is, the choices made by the scheduler in one branch may influence the
optimal choices in other branches. We introduce the class of semi history-
independent schedulers and show that these suffice to attain the optimal
conditional probability. Moreover, deterministic schedulers still suffice to
attain the optimal conditional probability. This is surprising since many
non-linear optimization problems attain their optimal value in the interior
of a convex polytope, which correspond to randomized schedulers in our
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setting.

Based on these properties, we present an (exponential) algorithm for
checking whether a given system satisfies a formula in the logic. Further-
more, we define the notion of counterexamples for cpCTL model checking
and provide a method for counterexample generation.

To the best of our knowledge, our proposal is the first temporal logic
dealing with conditional probabilities.

Applications

Complex Systems. One application of the techniques presented in this
chapter is in the area of complex system behavior. We can model the
probability distribution of natural events as probabilistic choices, and the
operator choices as non-deterministic choices. The computation of max-
imum and minimum conditional probabilities can then help to optimize
run-time behavior. For instance, suppose that the desired behavior of the
system is expressed as a pCTL formula φ and that during run-time we are
making an observation about the system, expressed as a pCTL formula ψ.
The techniques developed in this chapter allow us to compute the maxi-
mum probability of φ given ψ and to identify the actions (non-deterministic
choices) that have to be taken to achieve this probability.

Anonymizing Protocols. Another application is in the area of anonymiz-
ing protocols. The purpose of these protocols is to hide the identity of the
user performing a certain action. Such a user is usually called the culprit.
Examples of these protocols are Onion Routing [CL05], Dining Cryptogra-
phers [Cha88], Crowds [RR98] and voting protocols [FOO92] (just to men-
tion a few). Strong anonymity is commonly formulated [Cha88, BP05] in
terms of conditional probability: A protocol is considered strongly anony-
mous if no information about the culprit’s identity can be inferred from the
behavior of the system. Formally, this is expressed by saying that culprit’s
identity and the observations, seen as random variables, are independent
from each other. That is to say, for all users u and all observations of the
adversary o:
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P[culprit = u | observation = o] = P[culprit = u].

If considering a concurrent setting, it is customary to give the adver-
sary full control over the network [DY83] and model its capabilities as
nondeterministic choices in the system, while the user behavior and the
random choices in the protocol are modeled as probabilistic choices. Since
anonymity should be guaranteed for all possible attacks of the adversary,
the above equality should hold for all schedulers. That is: the system is
strongly anonymous if for all schedulers η, all users u and all adversarial
observations o:

Pη[culprit = u | observation = o]= Pη[culprit = u]

Since the techniques in this chapter allow us to compute the maximal and
minimal conditional probabilities over all schedulers, we can use them to
prove strong anonymity in presence of nondeterminism.

Similarly, probable innocence means that a user is not more likely to
be innocent than not to be (where “innocent” mans “not the culprit”). In
cpCTL this can be expressed as P≤0.5[culprit = u | observations = o].

Organization of the chapter In Section 2.2 we present the necessary
background on MDPs. In Section 2.3 we introduce conditional probabilities
over MDPs and in Section 2.4 we introduce cpCTL. Section 2.5 introduces
the class of semi history-independent schedulers and Section 2.6 explains
how to compute the maximum and minimum conditional probabilities. Fi-
nally, Section 2.7, we investigate the notion of counterexamples.

2.2 Markov Decision Processes

Markov Decision Processes constitute a formalism that combines nondeter-
ministic and probabilistic choices. They are a dominant model in corporate
finance, supply chain optimization, and system verification and optimiza-
tion. While there are many slightly different variants of this formalism (e.g.,
action-labeled MDPs [Bel57, FV97], probabilistic automata [SL95, SdV04]),
we work with the state-labeled MDPs from [BdA95].
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The set of all discrete probability distributions on a set S is denoted by
Distr(S). The Dirac distribution on an element s ∈ S is written as 1s. We
also fix a set P of propositions.

Definition 2.2.1. A Markov Decision Process (MDP) is a four-tuple Π =
(S, s0, τ, L) where: S is the finite state space of the system, s0 ∈ S is the
initial state, L : S → ℘(P) is a labeling function that associates to each
state s ∈ S a subset of propositions, and τ : S → ℘(Distr(S)) is a function
that associates to each s ∈ S a non-empty and finite subset of of successor
distributions.

In case |τ(s)| = 1 for all states s we say that Π is a Markov Chain.

s0 {P}

s1

{B,P}

s2

{P}

s3

{B,P}

s4

{P}

s5

{}

s6

{P}

s7

{}

π1

π2 π3

3
4

1
4

1
2
−α

α
1
2 1

10

9
10

Figure 2.1: MDP

We define the successor relation % ⊆ S × S
by % , {(s, t) | ∃π ∈ τ(s) . π(t) > 0}
and for each state s ∈ S we define the
sets Paths(s) , {s0s1s2 . . . ∈ Sω | s0 =
s ∧ ∀n ∈ N . %(sn, sn+1)}, and Paths?(s) ,
{s0s1 . . . sn ∈ S? | s0 = s ∧ ∀ 0 ≤ i <
n . %(sn, sn+1)} of paths and finite paths re-
spectively beginning at s. Sometimes we will
use Paths(Π) to denote Paths(s0), i.e. the set
of paths of Π. For ω ∈ Paths(s), we write
the n-th state of ω as ωn. In addition, we
write σ1 v σ2 if σ2 is an extension of σ1, i.e.
σ2 = σ1σ

′ for some σ′. We define the basic cylinder of a finite path σ as the
set of (infinite) paths that extend it, i.e 〈σ〉 , {ω ∈ Paths(s) | σ v ω}. For
a set of paths R we write 〈R〉 for its set of cylinders, i.e. 〈R〉 , ⋃σ∈R〈σ〉.
As usual, we let Bs ⊆ ℘(Paths(s)) be the Borel σ-algebra on the basic
cylinders.

Example 2.2.2. Figure 2.1 shows a MDP. States with double lines repre-
sent absorbing states (i.e., states s with τ(s) = {1s}) and α is any constant
in the interval [0, 1]. This MDP features a single nondeterministic decision,
to be made in state s2.
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Schedulers (also called strategies, adversaries, or policies) resolve the non-
deterministic choices in a MDP [PZ93, Var85, BdA95].

Definition 2.2.3. Let Π = (S, s0, τ, L) be a MDP and s ∈ S. An s-
scheduler η for Π is a function from Paths?(s) to Distr(℘(Distr(S))) such
that for all σ ∈ Paths?(s) we have η(σ) ∈ Distr(τ(last(σ))). We denote the
set of all s-schedulers on Π by Schs(Π). When s = s0 we omit it.

Note that our schedulers are randomized, i.e., in a finite path σ a scheduler
chooses an element of τ(last(σ)) probabilistically. Under a scheduler η,
the probability that the next state reached after the path σ is t, equals∑

π∈τ(last(σ) η(σ)(π) · π(t). In this way, a scheduler induces a probability
measure on Bs defined as follows:

Definition 2.2.4. Let Π be a MDP, s ∈ S, and η an s-scheduler on Π.
The probability measure Ps,η is the unique measure on Bs such that for all
s0s1 . . . sn ∈ Paths?(s)

Ps,η(〈s0s1 . . . sn〉) ,
n−1∏
i=0

∑
π∈τ(si)

η(s0s1 . . . si)(π) · π(si+1).

Often we will write Pη(∆) instead of Ps,η(∆) when s is the initial state
and ∆ ∈ Bs. We now recall the notions of deterministic and history inde-
pendent schedulers.

Definition 2.2.5. Let Π be a MDP, s ∈ S, and η an s-scheduler for Π. We
say that η is deterministic if η(σ)(π) is either 0 or 1 for all π ∈ τ(last(σ)) and
all σ ∈ Paths?(s). We say that a scheduler is history independent (HI) if for
all finite paths σ1, σ2 of Π with last(σ1) = last(σ2) we have η(σ1) = η(σ2).

Definition 2.2.6. Let Π be a MDP, s ∈ S, and ∆ ∈ Bs. Then the maximal
and minimal probabilities of ∆, P+

s (∆),P−s (∆), are defined as

P+
s (∆) , sup

η∈Schs(Π)
Ps,η(∆) and P−s (∆) , inf

η∈Schs(Π)
Ps,η(∆).

A scheduler that attains P+
s (∆) or P−s (∆) is called an optimizing scheduler.
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We define the notion of (finite) convex combination of schedulers.

Definition 2.2.7. Let Π be a MDP and let s ∈ S. An s-scheduler η is a
convex combination of the s-schedulers η1, . . . , ηn if there are α1, . . . , αn ∈
[0, 1] with α1+· · ·+αn = 1 such that for all ∆ ∈ Bs, Ps,η(∆) = α1Ps,η1(∆)+
· · ·+ αnPs,ηn(∆).

Note that taking the convex combination η of η1 and η2 as functions, i.e.,
η(σ)(π) = αη1(σ)(π) + (1− α)η2(σ)(π), does not imply that η is a convex
combination of η1 and η2 in the sense above.

2.3 Conditional Probabilities over MDPs

The conditional probability P (A | B ) is the probability of an event A,
given the occurrence of another event B. Recall that given a probability
space (Ω, F, P ) and two events A,B ∈ F with P (B) > 0, P (A | B) is
defined as P (A ∩B)/P (B). If P (B) = 0, then P (A | B) is undefined.
In particular, given a MDP Π, a scheduler η, and a state s, consider the
probabilistic space (Paths(s),Bs,Ps,η). For two sets of paths ∆1,∆2 ∈ Bs
with Ps,η(∆2) > 0, the conditional probability of ∆1 given ∆2 is Ps,η(∆1 |
∆2) = Ps,η(∆1 ∩∆2)/Ps,η(∆2). If Ps,η(∆2) = 0, then Pη,s(∆1 | ∆2) is
undefined. We define the maximum and minimum conditional probabilities
for all ∆2 ∈ Bs as follows:

Definition 2.3.1. Let Π be a MDP. The maximal and minimal condi-
tional probabilities P+

s (∆1|∆2), P−s (∆1|∆2) of sets of paths ∆1,∆2 ∈ Bs are
defined by

P+
s (∆1|∆2) ,

 sup
η∈Sch>0

∆2

Ps,η(∆1|∆2) if Sch>0
∆2
6= ∅,

0 otherwise,

P−s (∆1|∆2) ,

 inf
η∈Sch>0

∆2

Ps,η(∆1|∆2) if Sch>0
∆2
6= ∅,

1 otherwise,

where Sch>0
∆2

= {η ∈ Schs(Π) | Ps,η(∆2) > 0}.
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The following lemma generalizes Lemma 6 of [BdA95] to conditional prob-
abilities.

Lemma 2.3.2. Given ∆1,∆2 ∈ Bs, its maximal and minimal conditional
probabilities are related by: P+

s (∆1|∆2) = 1− P−s (Paths(s)−∆1|∆2).

2.4 Conditional Probabilistic Temporal Logic

The logic cpCTL extends pCTL with formulas of the form P./a[φ|ψ] where
./∈ {<,≤, >,≥}. Intuitively, P≤a[φ|ψ] holds if the probability of φ given
ψ is at most a. Similarly for the other comparison operators.

Syntax: The cpCTL logic is defined as a set of state and path formulas,
i.e., cpCTL , Stat∪Path, where Stat and Path are defined inductively:

P ⊆ Stat,
φ, ψ ∈ Stat ⇒ φ ∧ ψ,¬φ ∈ Stat,
φ, ψ ∈ Path ⇒ P./a[φ],P./a[φ|ψ] ∈ Stat,
φ, ψ ∈ Stat ⇒ φ Uψ,♦φ,� φ ∈ Path .

Here ./∈ {<,≤, >,≥} and a ∈ [0, 1].

Semantics: The satisfiability of state-formulas (s |= φ for a state s) and
path-formulas (ω |= ψ for a path ω) is defined as an extension of the sat-
isfiability for pCTL. Hence, the satisfiability of the logical, temporal, and
pCTL operators is defined in the usual way. For the conditional probabilis-
tic operators we define

s |= P≤a[φ|ψ] ⇔ P+
s ({ω ∈ Paths(s) | ω |= φ}|{ω ∈ Paths(s) | ω |= ψ}) ≤ a,

s |= P≥a[φ|ψ] ⇔ P−s ({ω ∈ Paths(s) | ω |= φ}|{ω ∈ Paths(s) | ω |= ψ}) ≥ a,

and similarly for s |= P<a[φ|ψ] and s |= P>a[φ|ψ]. We say that a model M
satisfy φ, denoted by M |= φ if s0 |= φ.
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In the following we fix some notation that we will use in the rest of the
chapter,

P+
s [φ] , P+

s ({ω ∈ Paths(s) | ω |= φ}),
P+
s [φ|ψ] , P+

s ({ω ∈ Paths(s) | ω |= φ}|{ω ∈ Paths(s) | ω |= ψ}),
Ps,η[φ|ψ] , Ps,η({ω ∈ Paths(s) | ω |= φ}|{ω ∈ Paths(s) | ω |= ψ}),

P−s [φ|ψ] and P−s [φ] are defined analogously.

Observation 2.4.1. As usual, for checking if s |= P./a[φ|ψ], we only need
to consider the cases where φ = φ1Uφ2 and where ψ is either ψ1Uψ2 or
�ψ1. This follows from ♦φ↔ trueUφ, �φ↔ ¬♦¬φ and the relations

P+
s [¬φ|ψ] = 1− P−s [φ|ψ] and P−s [¬φ|ψ] = 1− P+

s [φ|ψ]

derived from Lemma 2.3.2. Since there is no way to relate P+[φ|ψ] and
P+[φ|¬ψ], we have to provide algorithms to compute both P+[φ|ψ1Uψ2]
and P+[φ|�ψ1]. The same remark holds for the minimal conditional prob-
abilities P−[φ|ψ1Uψ2] and P−[φ|�ψ1]. In this chapter we will only focus
on the former problem, i.e., computing maximum conditional probabilities,
the minimal case follows using similar techniques.

2.4.1 Expressiveness

We now show that cpCTL is strictly more expressive than pCTL. The
notion of expressiveness of a temporal logic is based on the notion of formula
equivalence. Two temporal logic formulas φ and ψ are equivalent with
respect to a set D of models (denoted by φ ≡D ψ) if for any model m ∈ D
we have m |= φ if and only if m |= ψ. A temporal logic L is said to be at
least as expressive as a temporal logic L′, over a set of models D, if for any
formula φ ∈ L′ there is a formula ψ ∈ L that is equivalent to φ over D.
Two temporal logics are equally expressive when each of them is at least as
expressive as the other. Formally:

Definition 2.4.1. Two temporal logics L and L′ are equally expressive
with respect to D if

∀φ ∈ L.
(
∃ψ ∈ L′.φ ≡D ψ

)
∧ ∀ψ ∈ L′. (∃φ ∈ L.φ ≡D ψ) .
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Theorem 2.4.2. cpCTL is more expressive than pCTL with respect to
MCs and MDPs.

Proof. Obviously cpCTL is at least as expressive as pCTL, hence we only
need to show that the reverse does not hold. The result is rather intuitive
since the semantics of the conditional operator for cpCTL logic is provided
by a non-linear equation whereas there is no pCTL formula with non-linear
semantics.

The following is a formal proof. We plan to show that there is no
pCTL formula ψ equivalent to φ = P≤0.5[♦A|♦B], with A and B atomic
propositions. The proof is by cases on the structure of the pCTL formula
ψ. The most interesting case is when ψ is of the form P≤b[ψ], so we will
only prove this case. In addition we restrict our attention to b’s such that
0 < b < 1 (the cases b = 0 and b = 1 are easy). In Figure 2.2 we depict the
Markov Chains involved in the proof. We use ¬ψ1 to mark the states with
an assignment of truth values (to propositional variables) falsifying ψ1.

Case ψ = P≤b[♦ψ1]:
If ψ1 is true or false the proof is obvious, so we assume otherwise. We
first note that we either have ¬ψ1 ⇒ ¬(B ∧¬A) or ¬ψ1 ⇒ (B ∧¬A).
In the former case, it is easy to see (using ¬B ⇒ ψ1) that we have
m2 |= φ and m2 6|= ψ. In the second case we have m1 6|= φ and
m1 |= ψ.

Case ψ = P≤b[ψ1Uψ2]:
We assume ψ1 6= true, otherwise we fall into the previous case. We
can easily see that we have m3 |= ψ but m3 6|= φ.

Case ψ = P≤b[�ψ1]:
The case when ψ1 = true is easy, so we assume ψ1 6= true. We can
easily see that we have m3 |= ψ but m3 6|= φ.

Note that, since MCs are a special case of MDPs, the proof also holds
for the latter class.

We note that, in spite of the fact that a cpCTL formula of the form
P≤a[φ|ψ] cannot be expressed as a pCTL formula, if dealing with fully
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¬ψ1
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Figure 2.2: Markov Chains m1, m2, and m3 respectively.

probabilistic systems (i.e. systems without nondeterministic choices) it is
still possible to verify such conditional probabilities formulas as the quotient
of two pCTL? formulas: P[φ|ψ] = P[φ∧ψ]

P[ψ] . However, this observation does
not carry over to systems where probabilistic choices are combined with
nondeterministic ones (as it is the case of Markov Decision Processes). This

is due to the fact that, in general, it is not the case that P+[φ|ψ] = P+[φ∧ψ]
P+[ψ]

.

2.5 Semi History-Independent and Deterministic
Schedulers

Recall that there exist optimizing (i.e. maximizing and minimizing) sched-
ulers on pCTL that are HI and deterministic [BdA95]. We show that,
for cpCTL, deterministic schedulers still suffice to reach the optimal condi-
tional probabilities. Because we now have to solve a non-linear optimization
problem, the proof differs from the pCTL case in an essential way. We also
show that HI schedulers do not suffice to attain optimal conditional proba-
bility and introduce the family of semi history-independent schedulers that
do attain it.

2.5.1 Semi History-Independent Schedulers

The following example shows that maximizing schedulers are not necessarily
HI.
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Example 2.5.1. Let Π be the MDP of Figure 2.3
and the conditional probability Ps0,η[♦B|♦P ]. There
are only three deterministic history independent sched-
ulers, choosing π1, π2, or π3 in s0. For the first one,
the conditional probability is undefined and for the sec-
ond and third it is 0. The scheduler η that maximizes
Ps0,η[♦B|♦P ] satisfies η(s0) = π3, η(s0s3) = π5, and
η(s0s3s0) = π1. Since η chooses on s0 first π2 and later
π1, η is not history independent.

Fortunately, as we show in Theorem 2.5.3, there exists a nearly HI scheduler
that attain optimal conditional probability. We say that such schedulers
are nearly HI because they always take the same decision before the system
reaches a certain condition ϕ and also always take the same decision after
ϕ. This family of schedulers is called ϕ-semi history independent (ϕ-sHI for
short) and the condition ϕ is called stopping condition. For a pCTL path
formula φ the stopping condition is a boolean proposition either validat-
ing or contradicting φ. So, the (validating) stopping condition of ♦φ is φ
whereas the (contradicting) stopping condition of �φ is ¬φ. Formally:

StopC(φ) ,

{
¬ψ1 ∨ ψ2 if φ = ψ1Uψ2,

¬ψ if φ = �ψ.

Similarly, for a cpCTL formula P./a[φ|ψ], the stopping condition is a
condition either validating or contradicting any of its pCTL formulas (φ,
ψ), i.e., StopC(P./a[φ|ψ]) = StopC(φ) ∨ StopC(ψ).

We now proceed with the formalization of semi history independent
schedulers.

Definition 2.5.2 (Semi History-Independent Schedulers). Let Π be a MDP,
η a scheduler for Π, and φ ∨ ψ ∈ Stat. We say that η is a (φ ∨ ψ) semi
history-independent scheduler ((φ ∨ ψ)-sHI scheduler for short) if for all
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σ1, σ2 ∈ Paths?(s) such that last(σ1) = last(σ2) we have

σ1, σ2 6|= ♦(φ ∨ ψ)⇒ η(σ1) = η(σ2), and {HI before stopping condition}
σ1, σ2 |= ♦φ⇒ η(σ1) = η(σ2), and {HI after stopping condition}

σ1, σ2 |= ♦ψ ⇒ η(σ1) = η(σ2). {HI after stopping condition}

We denote the set of all ϕ-sHI schedulers of Π by Schϕ(Π).

We now prove that semi history-independent schedulers suffice to attain
the optimal conditional probabilities for cpCTL formula.

Theorem 2.5.3. Let Π be a MDP, φ, ψ ∈ Path, and ϕ = StopC(φ) ∨
StopC(ψ). Assume that there exists a scheduler η such that Pη[ψ] > 0.
Then:

P+[φ|ψ] = sup
η∈Schϕ(Π)

Pη[φ|ψ].

(If there exists no schedulerη such that Pη[ψ]>0, then the supremum is 0.)
The proof of this theorem is rather complex. The first step is to prove

that there exists a scheduler η HI before the stopping condition and such
that Pη[φ|ψ] is ‘close’ (i.e. not further than a small value ε) to the optimal
conditional probability P+[φ|ψ]. For this purpose we introduce some defini-
tions and prove this property first for long paths (Lemma 2.5.5) and then,
step-by-step, in general (Lemma 2.5.6 and Corollary 2.5.1). After that, we
create a scheduler that is also HI after the stopping condition and whose
conditional probability is still close to the optimal one (Lemma 2.5.7). From
the above results, the theorem readily follows.

We now introduce some definitions and notation that we will need for
the proof.

Definition 2.5.4 (Cuts). Given a MDP Π we say that a set K ⊆ Paths?(Π)
is a cut of Π if K is a downward-closed set of finite paths such that every
infinite path passes through it, i.e.

• ∀σ1 ∈ K . ∀σ2 ∈ Paths?(Π) . σ1 v σ2 =⇒ σ2 ∈ K, and
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• ∀ω ∈ Paths(Π) .∃σ ∈ K .σ @ ω.

where σ1 v σ2 means that σ2 is an “extension” of σ1, i.e. σ2 = σ1σ
′ for

some path σ′. We denote the set of all cuts of Π by K(Π).

For R ⊆ Paths?(s), we say that η is history independent in R if for all
σ1, σ2 ∈ R such that last(σ1) = last(σ2) we have that η(σ1) = η(σ2). We
also define the sets Φ and Ψ as the set of finite paths validating φ and ψ
respectively, i.e. Φ , {σ ∈ Paths?(Π) | σ |= φ} and Ψ , {σ ∈ Paths?(Π) |
σ |= ψ}. Finally, given a MDP Π, two path formulas φ, ψ, and ε̂ > 0 we
define the set

K , {(K, η) ∈ K(Π)× Sch(Π) | Φ ∪Ψ ⊆ K and η is HI in K \ (Φ ∪Ψ)

and P+[φ|ψ]− Pη[φ|ψ] < ε̂}

If a scheduler η is HI in K \ (Φ ∪ Ψ) then we say that η is HI before the
stopping condition.

Lemma 2.5.5 (non emptiness of K). There exists (K, η) such that (K, η) ∈
K and that its complement Kc , Paths?(Π) \K is finite.

Proof. We show that, given formulas φ, ψ and ε̂ > 0, there exists a cut K
and a scheduler η? such that Kc is finite, Φ∪Ψ ⊆ K, η? is HI in K \(Φ∪Ψ),
and P+[φ|ψ]− Pη? [φ|ψ] < ε̂ .

The proof is by case analysis on the structure of φ and ψ. We will
consider the cases where φ and ψ are either “eventually operators” (♦) or
“globally operators” (�), the proof for the until case follows along the same
lines.
• Case φ is of the form ♦φ and ψ is of the form ♦ψ:
Let us start by defining the the probability of reaching φ in at most N steps,
as Pη[≤N,♦φ] , Pη[〈{σ ∈ Paths?(Π) | σ |= ♦φ ∧ |σ| ≤ N}〉]. Note that for
all pCTL reachability properties ♦φ and schedulers η we have

lim
N→∞

Pη[≤N,♦φ] = Pη[♦φ].

We also note that this result also holds for pCTL? formulas of the form
♦φ ∧ ♦ψ.
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Let us now take a scheduler η and a number N such that

P+[♦φ|♦ψ]− Pη[♦φ|♦ψ] < ε , ε̂/3, and (2.1)

Pη[♦φ ∧ ♦ψ]− Pη[≤N,♦φ ∧ ♦ψ] < ε′, and (2.2)

Pη[♦ψ]− Pη[≤N,♦ψ] < ε′. (2.3)

where ε′ is such that ε′ < min
(

2 · ε · Pη[♦ψ],
ε·Pη [♦ψ]2

Pη [♦φ∧♦ψ]+2·ε·Pη [♦ψ]

)
. The rea-

sons for this particular choice for the bound of ε′ will become clear later on
in the proof.

We define K as Φ ∪Ψ ∪ Paths?(≤N,Π), where the latter set is defined
as the set of paths with length larger than N , i.e. Paths?(≤N,Π) , {σ ∈
Paths?(Π) | N ≤ |σ|}. In addition, we define η? as a scheduler HI in
Paths?(≤ N,Π) behaving like η for paths of length less than or equal to
N which additionally minimizes P[♦ψ] after level N . In order to formally
define such a scheduler we let SN to be the set of states that can be reached
in exactly N steps, i.e., SN , {s ∈ S | ∃σ ∈ Paths?(Π) : |σ| = N ∧
last(σ) = s}. Now for each s ∈ S we let ξs to be a HI s-scheduler such that
Ps,ξs [♦ψ] = P−s [♦ψ]. Note that such a scheduler exists, i.e., it is always
possible to find a HI scheduler minimizing a reachability pCTL formula
[BdA95].

We now define η? as

η?(σ) ,


ξs(σ|α|σ|α|+1 · · ·σ|σ|) if α v σ for some α ∈ Paths?(=N,Π)

such that last(α) = s,

η(σ) otherwise.

where Paths?(=N,Π) denotes the set of paths of Π of length N . It is easy to
see that η? minimizes P[♦ψ] after level N . As for the history independency
of η? in K there is still one more technical detail to consider: note there may
still be paths α1s1σ1t and α2s2σ2t such that α1s1, α2s2 ∈ Paths?(=N,Π)
and ξs1(s1σ1t) 6= ξs2(s2σ2t). This is the case when there is more than one
distribution in τ(t) minimizing Pt[♦ψ], and ξs1 happens to choose a different
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(minimizing) distribution than ξs2 for the state t. Thus, the selection of
the family of schedulers {ξs}s∈SN must be made in such a way that: for all
s1, s2 ∈ SN we have Ps1,ξs1 [♦ψ] = P−s1 [♦ψ], Ps2,ξs2 [♦ψ] = P−s2 [♦ψ], and for

all σ1t ∈ Paths?(s1), σ2t ∈ Paths?(s2) : ξs1(σ1t) = ξs2(σ2t). It is easy to
check that such family exists. We conclude that η? is HI in Paths?(≤N,Π)
and thus HI in K \ (Φ ∪Ψ).

We note that Pη? [♦ψ] > 0, this follows from 0 < Pη[♦ψ], (2.1), (2.3),
and the definition of η?.

Having defined η? we proceed to prove that such scheduler satisfies
P+[φ|ψ]− Pη[φ|ψ] < ε̂. It is possible to show that:

Pη[≤N,♦ψ] ≤ Pη? [♦ψ] ≤ Pη[♦ψ], (2.4)

Pη[≤N,♦φ ∧ ♦ψ] ≤ Pη? [♦φ ∧ ♦ψ] < Pη[♦φ ∧ ♦ψ] + ε · Pη[♦ψ]. (2.5)

(2.4) and the first inequality of (2.5) follow straightforwardly from the def-
inition of η?. For the second inequality of (2.5) suppose by contradiction
that Pη? [♦φ ∧ ♦ψ] ≥ Pη[♦φ ∧ ♦ψ] + ε · Pη[♦ψ]. Then

Pη? [♦φ ∧ ♦ψ]

Pη? [♦ψ]
≥

Pη[♦φ ∧ ♦ψ] + ε · Pη[♦ψ]

Pη[♦ψ]
= Pη[♦φ|♦ψ] + ε

contradicting (2.1).
Now we have all the necessary ingredients to show that

|Pη[♦φ|♦ψ]− Pη? [♦φ|♦ψ]| < 2 · ε. (2.6)

Note that

Pη[♦φ ∧ ♦ψ]−ε′
Pη[♦ψ]

<Pη? [♦φ|♦ψ] and Pη? [♦φ|♦ψ]<
Pη[♦φ ∧ ♦ψ]+ε · Pη[♦ψ]

Pη[♦ψ]− ε′ .

The first inequality holds because Pη? [♦ψ] ≤ Pη[♦ψ] and (combining (2.5)
and (2.2)) Pη? [♦φ ∧ ♦ψ] > Pη[♦φ ∧ ♦ψ] − ε′. The second inequality holds
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because Pη? [♦φ ∧ ♦ψ] < Pη[♦φ ∧ ♦ψ] + ε ·Pη[♦ψ] and (combining (2.4) and
(2.3)) Pη? [♦ψ] > Pη[♦ψ] − ε′. It is easy to see that Pη[♦φ|♦ψ] falls in the
same interval, i.e., both Pη[♦φ|♦ψ] and Pη? [♦φ|♦ψ] are in the interval( Pη[♦φ ∧ ♦ψ]− ε′

Pη[♦ψ]
,

Pη[♦φ ∧ ♦ψ] + ε · Pη[♦ψ]

Pη[♦ψ]− ε′
)
.

Thus, we can prove (2.6) by proving

Pη[♦φ ∧ ♦ψ]

Pη[♦ψ]
−

Pη[♦φ ∧ ♦ψ]− ε′
Pη[♦ψ]

< 2 · ε, and

Pη[♦φ ∧ ♦ψ] + ε · Pη[♦ψ]

Pη[♦ψ]− ε′ −
Pη[♦φ ∧ ♦ψ]

Pη[♦ψ]
< 2 · ε.

The first inequality holds if and only if ε′ < 2 · ε · Pη[♦ψ]. As for the second
inequality, we have

Pη [♦φ∧♦ψ]+ε·Pη [♦ψ]

Pη [♦ψ]−ε′ − Pη [♦φ∧♦ψ]

Pη [♦ψ] < 2 · ε

⇐⇒ Pη[♦ψ]2 · ε+ Pη[♦φ ∧ ♦ψ] · ε′ < 2 · ε · (Pη[♦ψ]− ε′) · Pη[♦ψ]

⇐⇒ Pη[♦ψ]2 · ε+ Pη[♦φ ∧ ♦ψ] · ε′ < 2 · ε · Pη[♦ψ]2 − 2 · ε · ε′ · Pη[♦ψ]

⇐⇒ ε′ <
ε·Pη [♦ψ]2

Pη [♦φ∧♦ψ]+2·ε·Pη [♦ψ] .

We conclude, by definition of ε′, that both inequalities hold.

Now, putting (2.1) and (2.6) together, we have P+[♦φ|♦ψ]−Pη? [♦φ|♦ψ] <
3 · ε = ε̂, which concludes the proof for this case.

• Case φ is of the form ♦φ and ψ is of the form �ψ:
We now construct a cut K and a scheduler η? such that Kc is finite, Φ∪Ψ ⊆
K, η? is HI in K \ (Φ ∪ Ψ), and Pη? [�¬φ|�ψ] − P−[�¬φ|�ψ] < ε̂. Note
that such a cut and scheduler also satisfy P+[♦φ|�ψ]− Pη? [♦φ|�ψ] < ε̂.

The proof goes similarly to the previous case. We start by defining
the probability of paths of length N always satisfying φ as Pη[=N,�φ] ,
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Pη[〈{σ ∈ Paths?(Π) | σ |= �φ ∧ |σ| = N}〉]. Note that for all pCTL formula
of the form �φ and schedulers η we have

lim
N→∞

Pη[=N,�φ] = Pη[�φ].

The same result holds for the pCTL? formula �(φ ∧ ψ). It is easy to check
that for all N and φ we have Pη[=N,�φ] ≥ Pη[�φ].

Now we take a scheduler η and a number N such that:

0 ≤ Pη[�¬φ|�ψ]− P−[�¬φ|�ψ] < ε , ε̂/3, and

0 ≤ Pη[=N,�(¬φ ∧ ψ)]− Pη[�(¬φ ∧ ψ)] < ε′, and

0 ≤ Pη[=N,�ψ]− Pη[�ψ] < ε′.

where ε′ is such that ε′ < min
(
ε · Pη[�ψ],

ε·Pη [�ψ]2

Pη [�(¬φ∧ψ)]

)
.

We define K as before, i.e., K , Φ ∪ Ψ ∪ Paths?(≤N,Π). In addition,
we can construct (as we did in the previous case) a scheduler η? behaving
as η for paths of length at most N and maximizing (instead of minimizing
as in the previous case) P[�ψ] afterwards. Again, it is easy to check that
η? is HI in K \ (Φ ∪Ψ).

Then we have

Pη[�ψ] ≤ Pη? [�ψ] ≤ Pη[=N,�ψ],

Pη[�(¬φ ∧ ψ)]− ε · Pη[�ψ] < Pη? [�(¬φ ∧ ψ)] ≤ Pη[=N,�(¬φ ∧ ψ)].

In addition, it is easy to check that

−Pη[�ψ] · ε < Pη? [�(¬φ ∧ ψ)]− Pη[�(¬φ ∧ ψ)] < ε′

0 ≤ Pη? [�ψ]− Pη[�ψ] < ε′.

Similarly to the previous case we now show that

|Pη[�¬φ|�ψ]− Pη? [�¬φ|�ψ]| < 2 · ε. (2.7)

which together with Pη[�¬φ|�ψ]− P−[�¬φ|�ψ] < ε concludes the proof.
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In order to prove (2.7) we show that

−2 · ε < Pη? [�¬φ|�ψ]− Pη[�¬φ|�ψ] < ε

or, equivalently

a) Pη? [�(¬φ ∧ ψ)] · Pη[�ψ]− Pη[�(¬φ ∧ ψ)] · Pη? [�ψ] <
Pη[�ψ] · Pη? [�ψ] · ε, and

b) 2 · Pη[�ψ] · Pη? [�ψ] · ε <
Pη? [�(¬φ ∧ ψ)] · Pη[�ψ]− Pη[�(¬φ ∧ ψ)] · Pη? [�ψ].

It is possible to verify that a) is equivalent to ε′ < ε · Pη[�ψ] and that

b) is equivalent to ε′ <
ε·Pη [�ψ]2

Pη [�(¬φ∧ψ)] . The desired result follows by definition

of ε′.

In the proof of the following lemma we step-by-step find pairs (K, η) in
K with larger K and η still close to the optimal until finally K is equal to
the whole of Paths?(Π).

Lemma 2.5.6 (completeness of K). There exists a scheduler η such that
(Paths?(Π), η) ∈ K.

Proof. We prove that if we take a (K, η) ∈ K such that |Kc| is minimal
then Kc = ∅ or, equivalently, K = Paths?(Π). Note that a pair (K, η) with
minimal |Kc| exists because, by the previous lemma, K is not empty.

The proof is by contradiction: we suppose Kc 6= ∅ and arrive to a
contradiction on the minimality of |Kc|. Formally, we show that for all
(K, η) ∈ K such that Kc 6= ∅, there exists a cut K? ⊃ K and a scheduler
η? such that (K?, η?) ∈ K, i.e. such that η? is HI in K? \ (Φ ∪ Ψ) and
Pη[φ|ψ] ≤ Pη? [φ|ψ].

To improve readability, we prove this result for the case φ is of the form
♦φ and ψ is of the form ♦ψ. However, all the technical details of the proof
hold for arbitrary φ and ψ.

Let us start defining the boundary of a cut K as

δK , {σ1 ∈ K | ∀σ2 ∈ Paths?(M) . σ2 @ σ1 =⇒ σ2 /∈ K}.
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Let ρ be a path in Kc such that ρt ∈ δK. Note that by assumption
of Kc 6= ∅ such ρ exists. Now, if for all paths α ∈ K we have last(α) =
last(ρ) =⇒ η(α) = η(ρ) then η is also HI in (K ∪ {ρ}) \ (Φ∪Ψ) so we have
(K ∪ {ρ}, η) ∈ K as we wanted to show. Now let us assume otherwise, i.e.
that there exists a path α ∈ K \ (Φ ∪ Ψ) such that last(α) = last(ρ) and
η(α) 6= η(ρ). We let s , last(ρ), π1 , η(ρ), π2 , η(α), and Ks , {σ ∈ K |
last(σ) = s} \ (Φ ∪ Ψ). Note that for all α′ ∈ Ks we have η(α′) = π2, this
follows from the fact that η is HI in K \ (Φ ∪Ψ).

Figure 2.4 provides a graphic representation of this description. The fig-
ure shows the set Paths?(Π) of all finite paths of Π, the cut K of Paths?(Π),
the path ρ reaching s (in red and dotted border line style), a path α reach-
ing s in K (in blue and continuous border line style). The fact that η takes
different decisions ρ and α is represented by the different colors and line
style of their respective last states s.

Figure 2.4: Graphic representation of Paths?(Π), Φ ∪Ψ, K, δK, ρ, and α.

We now define two schedulers η1 and η2 such that they are HI in (K ∪
{ρ}) \ (Φ ∪Ψ). Both η1 and η2 are the same than η everywhere but in Ks

and ρ, respectively. The first one selects π1 for all α ∈ Ks (instead of π2 as
η does), and the second scheduler selects π2 in ρ (instead of π1):
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η1(σ) =

{
π1 if σ ∈ Ks

η(σ) otherwise
and η2(σ) =

{
π2 if σ = ρ

η(σ) otherwise.

Now we plan to prove that either η1 is “better” than η or η2 is “better”
than η. In order to prove this result, we will show that:

Pη1
[♦φ|♦ψ] ≤ Pη2

[♦φ|♦ψ]⇐⇒Pη[♦φ|♦ψ] ≤ Pη2
[♦φ|♦ψ] (2.8)

and
Pη2

[♦φ|♦ψ] ≤ Pη1
[♦φ|♦ψ]⇐⇒Pη[♦φ|♦ψ] ≤ Pη1

[♦φ|♦ψ] (2.9)

Therefore, if Pη1
[♦φ|♦ψ] ≤ Pη2

[♦φ|♦ψ] then we have (K∪{ρ}, η2) ∈ K, and
otherwise (K ∪ {ρ}, η1) ∈ K. So, the desired result follows from (2.8) and
(2.9). We will prove (2.8), the other case follows the same way.

In order to prove (2.8) we need to analyze more closely the conditional
probability P[♦φ|♦ψ] , P[Φ|Ψ] for each of the schedulers η, η1, and η2. For
that purpose we partition the sets Φ∩Ψ and Ψ into four parts, i.e. disjoint
sets. The plan is to partition Φ∩Ψ and Ψ in such way that we can make use
of the fact that η, η1, and η2 are similar to each other (they only differ in
the decision taken in Ks or ρ) obtaining, in this way, that the probabilities
of the parts are the same under these schedulers or differ only by a factor
(this intuition will become clearer later on in the proof), such condition is
the key element of our proof of (2.8). Let us start by partitioning Ψ:

i) We define Ψρ,ks
as the set of paths in Ψ neither passing through Ks

nor ρ, formally
Ψρ,ks

, Ψ \ (〈Ks〉 ∪ 〈ρ〉)

ii) We define Ψρ,ks
as the set of paths in Ψ passing through ρ but not

through Ks, i.e.:
Ψρ,ks

, Ψ ∩ (〈ρ〉 \ 〈Ks〉).

iii) We define Ψρ,ks as the set of paths in Ψ passing through ρ and Ks,
i.e.:

Ψρ,ks , Ψ ∩ 〈ρ〉 ∩ 〈Ks〉.
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iv) We define Ψρ,ks as the set of paths in Ψ passing through Ks but not
through ρ, i.e.:

Ψρ,ks , Ψ ∩ (〈Ks〉 \ 〈ρ〉).

Note that Ψ = Ψρ,s ∪Ψρ,ks
∪Ψρ,ks ∪Ψρ,ks

.
Similarly, we can partition the set of paths Φ ∩ Ψ into four parts ob-

taining Φ ∩Ψ = (Φ ∩Ψ)ρ,s ∪ (Φ ∩Ψ)ρ,ks ∪ (Φ ∩Ψ)ρ,ks(Φ ∩Ψ)ρ,ks .
In the following we analyze the probabilities (under η) of each part

separately.

• The probability of Ψρ,ks
can be written as pρ ·xψ, where pρ is the prob-

ability of ρ and xψ is the probability of reaching ψ without passing
through Ks given ρ. More formally, Pη[Ψρ,ks

] = Pη[Ψ ∩ (〈ρ〉 \ 〈Ks〉)]
= Pη[〈ρ〉] · Pη[Ψ ∩ (〈ρ〉 \ 〈Ks〉)|〈ρ〉] , pρ · xψ.
• The probability of Ψρ,ks can be written as pρ · xs · yψ

1−ys , where xs is
the probability of passing through Ks given ρ, yψ is the probability
of, given α, reaching ψ without passing through Ks after α; and ys
is the probability of, given α, passing through Ks again. Remember
that α is any path in Ks. Formally, we have

Pη[Ψρ,ks ] = Pη[Ψ ∩ 〈ρ〉 ∩ 〈Ks〉]
= Pη[〈ρ〉] · Pη[〈Ks〉|〈ρ〉] · Pη[Ψ|〈Ks〉 ∩ 〈ρ〉]
= pρ · xs · Pη[Ψ|〈α〉].

Furthermore,

Pη[Ψ|〈α〉] = Pη[Ψ|Ks again ∩ 〈α〉]
=

Pη [Ψ∩Ks again|〈α〉]
Pη [Ks again|〈α〉]

=
yψ

1−ys .

where Ks again , 〈α〉 \ {ω ∈ 〈ασ〉 | ασ ∈ Ks}.
• The probability of Ψρ,ks can be written as pks ·

yψ
1−ys , where pks is the

probability of passing though Ks without passing through ρ. For-
mally, Pη[Ψρ,ks ] = Pη[Ψ ∩ (〈Ks〉 \ 〈ρ〉)] = Pη[〈Ks〉 \ 〈ρ〉] · Pη[Ψ|〈α〉] ,
psk ·

yψ
1−ys
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• Finally, we write the probability of Ψρks
as pψ.

A similar reasoning can be used to analyze the probabilities associated
to the parts of Φ ∩ Ψ. In this way we obtain that (1) Pη[(Φ ∩Ψ)ρ,ks ] =
pρ · xφψ, where xφψ is the probability of reaching φ and ψ without passing
through Ks given ρ, (2) Pη[(Φ ∩Ψ)ρ,ks ] = pρ · xs · yφψ1−ys , where yφψ is the
probability of reaching φ and ψ without passing through Ks afterwards
given α, (3) Pη[(Φ ∩Ψ)ρ,ks ] = pks ·

yφψ
1−ys , and (4) Pη[(Φ ∩Ψ)ρ,ks ] = pφψ.

In order to help the intuition of the reader, we now provide a graphical
representation of the probability (under η) of the sets Φ ∩ Ψ and Ψ by
means of a Markov chain (see Figure 2.5). The missing values are defined
as pφψ , pψ − pφψ, p∅ , 1− psk − pρ − pψ; and similarly for xφψ, x∅, yφψ,
and y∅. Furthermore, absorbing states φψ denote states where φ∧ψ holds,
absorbing states φψ denote states where ¬φ ∧ ψ holds, and ψ denote a
state where ¬ψ holds. Finally, the state ρ represents the state of the model
where ρ has been just reached and α a state where any of the paths α in
Ks as been just reached. To see how this Markov Chain is related to the
probabilities of Φ ∩ Ψ and Ψ on the original MDP consider, for example,
the probabilities of the set Φ ∩Ψ. It is easy to show that

Pη[Φ ∩Ψ] = Pη[Φρ,ks ] + Pη[Φρ,ks ] + Pη[Φρ,ks
] + Pη[Φρ,ks

]

= pφψ + pρ · xφψ + pρ · xs · yφψ1−ys + psk ·
yφψ

1−ys = PM [♦φψ].

We note that the values psk , pρ, pφψ, pφψ, and p∅ coincide for η, η1, and

η2. Whereas the values ~x , (xs, xψ, xφψ, x∅) coincide for η and η1 and the
values ~y , (ys, yψ, yφψ, y∅) coincide for η and η2. Thus, the variant of Mη

in which ~y is replaced by ~x describes the probability of each partition under
the scheduler η1 instead of η. Similarly, the variant on which ~x is replaced
by ~y represents the probability of each partition under the scheduler η2.

Now we have all the ingredients needed to prove (2.8). Our plan is to
show that:

1) Pη1
[Φ|Ψ] ≤ Pη2

[Φ|Ψ] ⇐⇒ (pρ + psk) · d ≤ 0 ⇐⇒ d ≤ 0, and
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Figure 2.5: Graphical representation of how we write the probability of
each partition: Mη.

2) Pη[Φ|Ψ] ≤ Pη2
[Φ|Ψ] ⇐⇒ (1− ys) · pρ · d ≤ 0 ⇐⇒ d ≤ 0.

where d is the following determinant

d =

∣∣∣∣∣∣
ps + psk xs − 1 ys − 1
pφψ xφψ yφψ
pψ xψ yψ

∣∣∣∣∣∣ .
We now proceed to prove 1)

Pη1
[Φ|Ψ]− Pη2

[Φ|Ψ] ≤ 0

⇐⇒
pφψ+pρ·xφψ+(pρ·xs+psk )·

xφψ
1−xs

pψ+pρ·xψ+(pρ·xs+psk )·
xψ

1−xs
− pφψ+pρ·yφψ+(pρ·ys+psk )·

yφψ
1−ys

pψ+pρ·yψ+(pρ·ys+psk )·
yψ

1−ys
≤ 0

⇐⇒
pφψ(1−xs)+pρxφψ+pskxφψ
pψ(1−xs)+pρxψ+pskxψ

− pφψ(1−ys)+psyφψ+pskyφψ
pψ(1−ys)+pρyψ+pskyψ

≤ 0

⇐⇒∣∣∣∣pφψ(1− xs) + pρxφψ + pskxφψ pφψ(1− ys) + pρyφψ + pskyφψ
pψ(1− xs) + pρxψ + pskxψ pψ(1− ys) + pρyψ + pskyψ

∣∣∣∣ ≤ 0.
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A long but straightforward computation shows that the 2x2 determinant
in the line above is equal to (pρ + psk)d.

The proof of 2) proceeds along the same lines.

Pη[Φ|Ψ]− Pη2
[Φ|Ψ] ≤ 0

⇐⇒
pφψ+pρ·xφψ+(pρ·xs+psk )·

yφψ
1−ys

pψ+pρ·xψ+(pρ·xs+psk )·
yψ

1−ys
− pφψ+pρ·yφψ+(pρ·ys+psk )·

yφψ
1−ys

pψ+pρ·yψ+(pρ·ys+psk )·
yψ

1−ys
≤ 0

⇐⇒
pφψ(1−ys)+pρxφψ(1−ys)+(pρxs+psk )yφψ
pψ(1−ys)+pρxψ(1−ys)+(pρxs+psk )yψ

− pφψ(1−ys)+pρyφψ+pskyφψ
pψ(1−ys)+pρyψ+pskyψ

≤ 0

⇐⇒

∣∣∣∣pφψ(1−ys)+pρxφψ(1−ys)+(pρxs+psk)yφψ pφψ(1−ys)+pρyφψ+pskyφψ
pψ(1−ys)+pρxψ(1−ys)+(pρxs+psk)yψ pψ(1−ys)+pρyψ+pskyψ

∣∣∣∣
≤ 0

and also here a long computation shows that this last 2x2 determinant is
equal to (1− ys) · pρ · d.

Finally, we have all the ingredients needed to prove that there exists a
scheduler close to the supremum which is HI before the stopping condition.

Corollary 2.5.1. [HI before stopping condition] Let Π be a MDP, φ, ψ ∈
Path. Then for all ε̂ > 0, there exists a scheduler η? such that P+[φ|ψ] −
Pη? [φ|ψ] < ε̂ and η? is history independent before the stopping condition.

Proof. Follows directly from Lemma 2.5.5 and Lemma 2.5.6.

We now proceed with the construction of a maximizing scheduler and
HI after the stopping condition.

Lemma 2.5.7. [HI after stopping condition] Let Π be a MDP, φ, ψ ∈ Path,
and ϕ = StopC(φ) ∨ StopC(ψ). Then for all schedulers η there exists a
scheduler η? such that
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1) η? behaves like η before the stopping condition,

2) η? is HI after the stopping condition ϕ, and

3) Pη[φ|ψ] ≤ Pη? [φ|ψ].

Proof. We will prove this result for the case in which φ is of the form ♦φ
and ψ is of the form ♦ψ, the proof for the remaining cases follows in the
same way.

Let us start by introducing some notation. We define, respectively, the
set of paths reaching φ, the set of paths not reaching φ, the set of paths
reaching φ without reaching ψ before, and the set of paths reaching ψ∧¬φ
without reaching φ before as follows

∆φ ,{ω ∈ Paths(Π) | ω |= ♦φ},
∆¬φ ,{ω ∈ Paths(Π) | ω |= �¬φ},
∆ψφ ,{ω ∈ Paths(Π) | ω |= ¬ψUφ},
∆φψ ,{ω ∈ Paths(Π) | ω |= ¬φU(ψ ∧ ¬φ)}.

Note that the last two sets are disjoint. It is easy to check that

∆φ ∩∆ψ = (∆ψφ ∩∆ψ) ∪ (∆φψ ∩∆φ),

∆ψ = ∆φψ ∪ (∆ψφ ∩∆ψ) = [(∆φψ ∩∆φ) ∪ (∆φψ ∩∆¬φ)] ∪ (∆ψφ ∩∆ψ).

Let us now define the minimal set of finite paths “generating” (by their
basic cylinders) ∆ψφ and ∆φψ: Kψφ , {σ ∈ Paths?(Π) | last(σ) |= φ∧ ∀ i <
|σ| : σi |= ¬φ ∧ ¬ψ} and similarly Kφψ , {σ ∈ Paths?(Π) | last(σ) |=
(ψ ∧ ¬φ) ∧ ∀ i < |σ| : σi |= ¬φ ∧ ¬ψ}. Note that ∆ψφ = 〈Kψφ〉 and
∆φψ = 〈Kφψ〉. Now we can write

Pη[♦φ|♦ψ] =
Pη[〈Kψφ〉 ∩∆ψ] + Pη[〈Kφψ〉 ∩∆φ]

Pη[〈Kψφ〉 ∩∆ψ] + Pη[〈Kφψ〉 ∩∆φ] + Pη[〈Kφψ〉 ∩∆¬φ]
.

The construction of the desired scheduler η? is in the spirit of the construc-
tion we proposed for the scheduler in Lemma 2.5.5. We let Sφ , {s ∈ S |
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s |= φ} and Sψ , {s ∈ S | s |= (ψ∧¬φ)}. Note that Sφ and Sψ are disjoint.
Now we define two families of schedulers {ξs}s∈Sφ and {ζs}s∈Sψ such that:
for all s1, s2 ∈ Sφ we have Ps1,ξs1 [♦ψ] = P+

s1 [♦ψ], Ps2,ξs2 [♦ψ] = P+
s2 [♦ψ],

and for all σ1t ∈ Paths?(s1), σ2t ∈ Paths?(s2) we have ξs1(σ1t) = ξs2(σ2t).
Similarly for {ζs}s∈Sψ : for all s1, s2 ∈ Sφ we have Ps1,ζs1 [♦φ] = P+

s1 [♦φ],

Ps2,ζs2 [♦φ] = P+
s2 [♦φ], and for all σ1t ∈ Paths?(s1), σ2t ∈ Paths?(s2) we

have ζs1(σ1t) = ζs2(σ2t).
We now proceed to define η?:

η?(σ) ,


ξs(σ|α| · · ·σ|σ|) if α v σ for some α∈Kφ such that last(α)=s,

ζs(σ|α| · · ·σ|σ|) if α v σ for some α∈Kψ such that last(α)=s,

η(σ) otherwise.

where Kφ , {σ ∈ Paths? | last(σ) ∈ Sφ}, and similarly Kψ , {σ ∈ Paths? |
last(σ) ∈ Sψ}.

It is easy to check that η? satisfies 1) and 2). As for 3) we first note
that Pη[〈Kψφ〉 ∩Ψ] ≤ Pη? [〈Kψφ〉 ∩Ψ], Pη[〈Kφψ〉 ∩∆φ] ≤ Pη? [〈Kφψ〉 ∩∆φ],
and Pη[〈Kφψ〉 ∩∆¬φ] ≥ Pη? [〈Kφψ〉 ∩∆¬φ].

In addition, we need the following simple remark.

Remark 2.5.8. Let f : R→ R be a function defined as f(x) , a+x
b+x where

a and b are constants in the interval [0, 1] such that b ≥ a. Then f is
increasing.

Finally, we have

Pη[♦φ|♦ψ] =
Pη[〈Kψφ〉 ∩∆ψ] + Pη[〈Kφψ〉 ∩∆φ]

Pη[〈Kψφ〉 ∩∆ψ] + Pη[〈Kφψ〉 ∩∆φ] + Pη[〈Kφψ〉 ∩∆¬φ]

{by Remark 2.5.8}

≤
Pη? [〈Kψφ〉 ∩∆ψ] + Pη[〈Kφψ〉 ∩∆φ]

Pη? [〈Kψφ〉 ∩∆ψ] + Pη[〈Kφψ〉 ∩∆φ] + Pη[〈Kφψ〉 ∩∆¬φ]

{by Remark 2.5.8}
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≤
Pη? [〈Kψφ〉 ∩∆ψ] + Pη? [〈Kφψ〉 ∩∆φ]

Pη? [〈Kψφ〉 ∩∆ψ] + Pη? [〈Kφψ〉 ∩∆φ] + Pη[〈Kφψ〉 ∩∆¬φ]

≤
Pη? [〈Kψφ〉 ∩∆ψ] + Pη? [〈Kφψ〉 ∩∆φ]

Pη? [〈Kψφ〉 ∩∆ψ] + Pη? [〈Kφψ〉 ∩∆φ] + Pη? [〈Kφψ〉 ∩∆¬φ]

= Pη? [♦φ|♦ψ]

Proof of Theorem 2.5.3. It follows straightforwardly from Corollary
2.5.1 and Lemma 2.5.7.

2.5.2 Deterministic Schedulers

We now proceed to show that deterministic schedulers suffice to attain
optimal conditional probabilities.

The following result states that taking the convex combination of sched-
ulers does not increase the conditional probability P[φ|ψ].

Lemma 2.5.9. Let Π be a MDP, s a state, and φ, ψ path formulas. Sup-
pose that the s-scheduler η is a convex combination of η1 and η2. Then
Ps,η[φ|ψ] ≤ max(Ps,η1

[φ|ψ],Ps,η2
[φ|ψ]).

Proof. To prove this lemma we need to use the following technical result:
The function f : R→ R defined as below is monotonous.

f(x) ,
xv1 + (1− x)v2

xw1 + (1− x)w2

where v1, v2 ∈ [0,∞) and w1, w2 ∈ (0,∞). This claim follows from the fact
that f ′(x) = v1w2−v2w1

(xw1−(1−x)w2)2 is always ≥ 0 or always ≤ 0.

Now, by applying the result above to

[0, 1] 3 α 7→
αPs,η1

[φ ∧ ψ] + (1− α)Ps,η2
[φ ∧ ψ]

αPs,η1
[ψ] + (1− α)Ps,η2

[ψ]

we get that the maximum is reached at α = 0 or α = 1. Because η is a
convex combination of η1 and η2, Ps,η[φ|ψ] ≤ Ps,η2

[φ|ψ] (in the first case)
or Ps,η[φ|ψ] ≤ Ps,η1

[φ|ψ] (in the second case).
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Lemma 2.5.10. Let Π be a MDP, s a state, and φ a path formula. Then
every ϕ-sHI s-scheduler on Π is a convex combination of deterministic ϕ-sHI
s-schedulers.

Proof. The result follows from the fact that sHI schedulers have only finitely
many choices to make at each state (at most two) and every choice at a
particular state – either before or after the stopping condition– is a convex
combination of deterministic choices at that state – either before or after
the stopping condition.

Finally, combining Theorem 2.5.3 and the previous lemma we obtain:

Theorem 2.5.11. Let Π be a MDP, φ, ψ ∈ Path, and ϕ = StopC(φ) ∨
StopC(ψ). Then we have

P+[φ|ψ] = sup
η∈Schϕd (Π)

Pη[φ|ψ],

where Schϕd (Π) is the set of deterministic and ϕ-sHI schedulers of Π.

Since the number of deterministic and semi HI schedulers is finite we
know that there exists a scheduler attaining the optimal conditional prob-
ability, i.e. supη∈Schϕd (Π) Pη[φ|ψ] = maxη∈Schϕd (Π) Pη[φ|ψ]. Note that this
implies that cpCTL is decidable.

We conclude this section showing that there exists a deterministic and
semi HI scheduler maximizing the conditional probabilities of Example
2.5.1.

Example 2.5.12. Consider the MDP and cpCTL formula of Example 2.5.1.
According to Theorem 2.5.11 there exists a deterministic and (B ∨ P )-sHI
scheduler that maximizes Ps0,η[♦B|♦P ]. In this case, a maximizing sched-
uler will take always the same decision (π3) before the system reaches s3 (a
state satisfying the until stopping condition (B ∨ P )) and always the same
decision (π1) after the system reaches s3.
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2.6 Model Checking cpCTL

Model checking cpCTL means checking if a state s satisfies a certain state
formula φ. We focus on formulas of the form P≤a[φ|ψ] and show how to
compute P+

s [φ|ψ]. The case P−s [φ|ψ] is similar.
Recall that model checking pCTL is based on the Bellman-equations.

For instance, P+
s [♦B] = maxπ∈τ(s)

∑
t∈succ(s) π(t) ·P+

t [♦B] whenever s 6|= B.
So a scheduler η that maximizes Ps[♦B] chooses π ∈ τ(s) maximizing∑

t∈succ(s)π(t) ·P+
t [♦B]. In a successor state t, η still behaves as a scheduler

that maximizes Pt[♦B]. As shown below, such a local Bellman-equation
is not true for conditional probabilities: a scheduler that maximizes a
conditional probability such as Ps[♦B|�P ] does not necessarily maximize
Pt[♦B|�P ] for successors t of s.

Example 2.6.1. Consider the MDP and cpCTL formula P≤a[♦B|�P ]
of Figure 2.1. There are only two deterministic schedulers. The first
one, η1, chooses π2 when the system reaches the state s2 and the sec-
ond one, η2, chooses π3 when the system reaches s2. For the first one
Ps0,η1

[♦B|�P ] = 1 − 2α
7 , and for the second one Ps0,η2

[♦B|�P ] = 30
31 . So

P+
s0 [♦B|�P ] = max(1 − 2α

7 ,
30
31). Therefore, if α ≥ 7

62 the scheduler that
maximizes Ps0 [♦B|�P ] is η2 (Ps0,η2

[♦B|�P ] = P+
s0 [♦B|�P ]) and otherwise

it is η1 (Ps0,η1
[♦B|�P ] = P+

s0 [♦B|�P ]).
Furthermore, P+

s1 [♦B|�P ] = 1 and P+
s2 [♦B|�P ] = 1−2α; the scheduler

that obtains this last maximum is the one that chooses π2 in s2.
Thus, if α ≥ 7

62 the scheduler that maximizes the conditional probability
from s0 is taking a different decision than the one that maximize the condi-
tional probability from s2. Furthermore, max(1− 2α

7 ,
30
31) = P+

s0 [♦B|�P ] 6=
3
4P

+
s1 [♦B|�P ] + 1

4P
+
s2 [♦B|�P ] = 1 − α

2 for all α ∈ (0, 1], showing that the
Bellman-equation from above does not generalize to cpCTL.

As consequence of this observation, it is not possible to “locally max-
imize” cpCTL properties (i.e. to obtain the global maximum P+

s0 [φ|ψ] by
maximizing Pt[φ|ψ] for all states t). This has a significant impact in terms
of model-checking complexity: as we will show in the rest of this section,
to verify a cpCTL property it is necessary to compute and keep track of
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several conditional probabilities and the desired maximum value can only
be obtained after all these probabilities have been collected.

2.6.1 Model Checking P≤a[φ|ψ]
An obvious way to compute P+

s [φ|ψ] is by computing the pairs (Ps,η[φ ∧ ψ],
Ps,η[ψ]) for all deterministic sHI schedulers η, and then taking the max-
imum quotient Ps,η[φ ∧ ψ]/Ps,η[ψ]. This follows from the fact that there
exist finitely many deterministic semi history-independent schedulers and
that one of them attains the maximal conditional probability; however, the
number of such schedulers grows exponentially in the size of the MDP
so computing these pairs for all of them is computationally expensive.
Our plan is to first present the necessary techniques to naively compute
(Ps,η[φ ∧ ψ], Ps,η[ψ]) for all deterministic sHI schedulers η and then present
an algorithm that allows model checking P≤a[φ|ψ] without collecting such
pairs for all sHI scheduler.

1) A naive approach to compute P+[φ|ψ]

The algorithm is going to keep track of a list of pairs of probabilities of the
form (Pt,η[φ ∧ ψ], Pt,η[ψ]) for all states t and η a deterministic sHI scheduler.
We start by defining a data structure to keep track of the these pairs of
probabilities.

Definition 2.6.2. Let L be the set of expressions of the form (p1, q1)∨· · ·∨
(pn, qn) where pi, qi ∈ [0,∞) and qi ≥ pi, for all n ∈ N?. On L we consider
the smallest congruence relation ≡1 satisfying idempotence, commutativity,
and associativity, i.e.:

(p1, q1) ∨ (p1, q1) ≡1 (p1, q1)
(p1, q1) ∨ (p2, q2) ≡1 (p2, q2) ∨ (p1, q1)

((p1, q1) ∨ (p2, q2)) ∨ (p3, q3) ≡1 (p1, q1) ∨ ((p2, q2) ∨ (p3, q3))

Note that (p1, q1) ∨ · · · ∨ (pn, qn) ≡1 (p′1, q
′
1) . . . (p′n′ , q

′
n′) if and only if

{(p1, q1), . . . , (pn, qn)} = {(p′1, q′1), . . . , (p′n′ , q
′
n′)}.
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We let L1 be the set of equivalence classes and denote the projection
map L→ L1 that maps each expression to its equivalence class by f1. On
L we also define maximum quotient > : L→ [0,∞) by

>
(

n∨
i=1

(pi, qi)

)
, max

({
pi
qi
|qi 6= 0, i = 1, . . . , n

}
∪ {0}

)
Note that > induces a map >1 : L1 → [0,∞) making the diagram in

Figure 2.6.1 (a) commute, i.e., such that >1 ◦ f1 = >.

Definition 2.6.3. Let Π be a MDP. We define the function δ : S ×
Stat×Path×Path→ L by

δ(s, ϕ, φ, ψ) ,
∨

η∈Schϕs (Π)

(
Ps,η[φ ∧ ψ],Ps,η[ψ]

)
and we define δ1 : S × Stat×Path×Path→ L1 by δ1 , f1 ◦ δ.

L

L1

[0,∞)

f1

⊤

⊤1

(a) Commutative diagram (b) δ-values

When no confusion arises, we omit the subscripts 1 and omit the projection
map f1, writing (p1, q1)∨· · ·∨ (pn, qn) for the equivalence class it generates.

Example 2.6.4. In Figure 2.6.1 we show the value δ(s,B ∨ ¬P,♦B,�P )
associated to each state s of the MDP in Figure 2.1.

The following lemma states that it is possible to obtain maximum condi-
tional probabilities using δ.
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Lemma 2.6.5. Given Π = (S, s0, L, τ) an acyclic MDP, and φ1, φ2, ψ1, ψ2 ∈
Stat. Then

P+
s [φ1Uφ2|ψ1Uψ2] = >

(
δUs (φ1Uφ2 | ψ1Uψ2)

)
and

P+
s [φ1Uφ2|�ψ1] = >

(
δ�s (φ1Uφ2 | �ψ1)

)
,

where δUs (φ1Uφ2 | ψ1Uψ2) , δ(s, StopC(φ1Uφ2) ∨ StopC(ψ1Uψ2), φ1Uφ2,
ψ1Uψ2) and δ�s (φ1Uφ2 | �ψ1) , δ(s, StopC(φ1Uφ2) ∨ StopC(�ψ1), φ1Uφ2,
�ψ1).

Proof. The lemma follows straightforwardly from the definitions of δ and
> and the fact that the maximum conditional probability is indeed reached
by a deterministic sHI scheduler.

Remember that there are finitely many sHI schedulers. Thus, δ (and there-
fore P+[−|−]) can in principle be computed by explicitly listing them all.
However, this is of course an inefficient way to compute maximum condi-
tional probabilities.

We now show how to compute P+[−|−] in a more efficient way. We will
first provide an algorithm to compute maximum conditional probabilities
for acyclic MDPs. We then show how to apply this algorithm to MDPs
with cycles by mean of a technique, based on SCC analysis, that allows the
transformation of an MDP with cycles to an equivalent acyclic MDP.

2) An algorithm to compute P+[φ|ψ] for Acyclic MDPs

We will now present a recursive algorithm to compute P+[φ|ψ] for acyclic
MDPs using a variant of δ (changing its image). As we mentioned be-
fore, to compute maximum conditional probabilities it is not necessary to
consider all the pairs (Pη[φ ∧ ψ],Pη[ψ]) (with η a deterministic and semi
HI scheduler). In particular, we will show that it is sufficient to consider
only deterministic and semi HI schedulers (see definition of D below) that
behave as an optimizing scheduler (i.e. either maximizing or minimizing
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a pCTL formula φ) after reaching the stopping condition (i.e. a state s
satisfying StopC(ϕ)).

We plan to compute a function δ̂(−) ⊆ δ(−) such that >(δ) = >(δ̂).
Intuitively, δ̂(−) can be thought as

δ̂(s, ϕ, φ, ψ) =
∨
η∈D

(
Ps,η[φ ∧ ψ],Ps,η[ψ]

)
where D contains all deterministic and semi HI schedulers η such that η
optimizes Ps,η[φ] for some s |= StopC(ϕ) and φ ∈ pCTL formula.

This intuition will become evident when we present our recursive al-
gorithm to compute conditional probabilities (see Theorem 2.6.11 below).
The states s involved in the definition of D correspond to the base case
of the algorithm and the formula φ corresponds to the formula that the
algorithm maximizes/minimizes when such s is reached.

We will present algorithms to recursively (in s) compute δ̂Us and δ̂�s in
acyclic MDPs. The base cases of the recursion are the states where the
stopping condition holds. In the recursive case we can express δ̂Us (respec-
tively δ̂�s ) in terms of the δ̂Ut (respectively δ̂�t ) of the successors states t of
s.

We start by formalizing the notion of acyclic MDP. We call a MDP
acyclic if it contains no cycles other than the trivial ones (i.e., other than
selfloops associated to absorbing states).

Definition 2.6.6. A MDP Π is called acyclic if for all states s ∈ S and all
π ∈ τ(s) we have π(s) = 0 or π(s) = 1, and, furthermore, for all paths ω,
if there exist i, j such that i < j and ωi = ωj , then we have ωi = ωk for all
k > i.

In addition, in order to formally define δ̂ we define a new congruence ≡2.

Definition 2.6.7. Consider the set of expressions L defined in Definition
2.6.2. On L we now consider the smallest congruence relation ≡2 containing
≡1 and satisfying

(1) (p1, q1) ∨ (p1, q2) ≡2 (p1,min(q1, q2)), and
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(2) (p1, q1) ∨ (p2, q1) ≡2 (max(p1, p2), q1), and

(3) (p1 + a, q1 + a) ∨ (p1, q1) ≡2 (p1 + a, q1 + a),

where a ∈ [0,∞). We write L2 for the set of equivalence classes and denote
the projection map L→ L2 by f2.

Since ≡1⊆≡2, this projection maps factors through f1, say g : L1 → L2 is
the unique map such that g ◦ f1 = f2.

Definition 2.6.8. We define δ̂ : S×Stat×Path×Path→ L2 by δ̂ , f2 ◦ δ.

Now, in order to prove that >(δ) = >(δ̂) we need to define a scalar
multiplication operator � and an addition operator ⊕ on L.

Definition 2.6.9. We define � : [0,∞)× L→ L and ⊕ : L× L→ L by

c�
n∨
i=1

(pi, qi) ,
n∨
i=1

(c · pi, c · qi) and

n∨
i=1

(pi, qi)⊕
m∨
j=1

(p′j , q
′
j) ,

n∨
i=1

m∨
j=1

(pi + p′j , qi + q′j).

Note that � and ⊕ induce maps �1 : [0,∞)×L1 → L1 and ⊕1 : L1×L1 →
L1 as shown in Figure 2.6 below. As before, we omit the subscript 1 if that
will not cause confusion.

L

L1

[0,∞)×L

[0,∞)×L1

⊙

⊙1

id×f1 f1

L

L1

L×L

L1×L1

⊕

⊕1

f1×f1 f1

Figure 2.6: Commutative diagrams

The following seemingly innocent lemma is readily proven, but it con-
tains the key to allow us to discard certain pairs of probabilities. The fact
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that > induces operations on L2 means that it is correct to “simplify” ex-
pressions using ≡2 when we are interested in the maximum or minimum
quotient.

The intuition is as follows. Normally, which decision is best in a cer-
tain state (or rather, at a certain finite path) to optimize the conditional
probability, might depend on probabilities or choices in a totally differ-
ent part of the automaton (see Example 2.6.1). Sometimes, however, it
is possible to decide locally what decision the scheduler should take. The
congruence ≡2 encodes three such cases, each of them corresponding to
one clause in Definition 2.6.7. (1) If from a state t the scheduler η can
either take a transition after which Pη[φ ∧ ψ] = p1 and Pη[ψ] = q1 or a
transition after which Pη[φ ∧ ψ] = p1 and Pη[ψ] = q2, then in order to
maximize the conditional probability is always best to take the decision
where Pη[ψ] = min(q1, q2). (2) Similarly, if the scheduler can either take
a transition after which Pη[φ ∧ ψ] = p1 and Pη[ψ] = q1 or one after which
Pη[φ ∧ ψ] = p2 and Pη[ψ] = q1, then it is always best to take the decision
where Pη[φ ∧ ψ] = max(p1, p2). (3) Finally, if η has the option to either take
a transition after which Pη[φ ∧ ψ] = p1 + a and Pη[ψ] = q1 + a or one after
which Pη[φ ∧ ψ] = p1 and Pη[ψ] = q1, for some a > 0, then a maximizing
scheduler should always take the first of these two options.

Lemma 2.6.10. The operators �, ⊕, and > on L induce operators �2, ⊕2,
and >2 on L2.

Proof. The idempotence, commutativity and associativity cases are trivial;
we only treat the other three cases.

(� ) For (1) we have

c� ((p, q) ∨ (p, q′)) , (c · p, c · q) ∨ (c · p, c · q′)
≡ (c · p,min(c · q, c · q′)
= (c · p, c ·min(q, q′))

, c� (p,min(q, q′))

Additionally, note that since q ≥ p and q′ ≥ p we have min(q, q′) ≥ p.
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For (2) the proof goes like in (1). For (3) we have the following

c� ((p+ a, q + a) ∨ (p, q)) , (c · p+ c · a, c · q + c · a) ∨ (c · p, c · q)
≡ (c · p+ c · a, c · q + c · a)

, c� (p+ a, q + a)

(⊕ ) For (1) we have

((p, q) ∨ (p, q′))⊕∨n
i=1(pi, qi)

,
∨n
i=1(p+ pi, q + qi) ∨

∨n
i=1(p+ pi, q

′ + qi)
≡ ∨n

i=1((p+ pi, q + qi) ∨ (p+ pi, q
′ + qi))

≡ ∨n
i=1(p+ pi,min(q + qi, q

′ + qi))
=

∨n
i=1(p+ pi,min(q, q′) + qi)

, (p,min(q, q′))⊕∨n
i=1(pi, qi)

For (2) the proof goes like in (1). For (3) we have the following

((p+ a, q + a) ∨ (p, q))⊕∨n
i=1(pi, qi)

,
∨n
i=1(p+ a+ pi, q + a+ qi) ∨

∨n
i=1(p+ pi, q + qi)

=
∨n
i=1(p+ a+ pi, q + a+ qi) ∨ (p+ pi, q

′ + qi)
≡ ∨n

i=1(p+ a+ pi, q + a+ qi)

, (p+ a, q + a)⊕∨n
i=1(pi,+qi)

(> ) For (1) we will start by assuming that q, q′ 6= 0. Then

> ((p, q) ∨ (p, q′) ∨∨n
i=1(pi, qi))

, max
(
{pq} ∪ {

p
q′ } ∪ {

pi
qi
|∀1≤i≤n.qi 6= 0} ∪ {0}

)
= max

(
{ p
min(q,q′)} ∪ {

pi
qi
|∀1≤i≤n.qi 6= 0} ∪ {0}

)
, > ((p,min(q, q′)) ∨∨n

i=1(pi, qi))

Now assume that q = 0, q′ 6= 0 and the case q 6= 0, q′ = 0 is similar.
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Note that we now have that p = 0. Then

> ((p, q) ∨ (p, q′) ∨∨n
i=1(pi, qi))

, max
(
{ 0
q′ } ∪ {

pi
qi
|∀1≤i≤n.qi 6= 0} ∪ {0}

)
= max

(
{piqi |∀1≤i≤n.qi 6= 0} ∪ {0}

)
, > ((p, 0) ∨∨n

i=1(pi, qi))
= > ((p,min(q, q′)) ∨∨n

i=1(pi, qi))

Finally, assume that q = q′ = 0, then also p = 0, so

> ((p, q) ∨ (p, q′) ∨∨n
i=1(pi, qi)) , max

(
{piqi |∀1≤i≤n.qi 6= 0} ∪ {0}

)
, > ((p, 0) ∨∨n

i=1(pi, qi))
= > ((p,min(q, q′)) ∨∨n

i=1(pi, qi))

For (2) the proof goes like in (1). For (3) we first need the following.

Let f : R → R be a function defined as f(x) , a+x
b+x where a and b

are constants in the interval (0, 1]. Then f is increasing. Let us now
assume that q 6= 0 or a 6= 0. Then

> ((p+ a, q + a) ∨ (p, q)) ∨∨n
i=1(pi, qi))

, max
(
{p+aq+a} ∪ {

p
q} ∪ {

pi
qi
|∀1≤i≤n.qi 6= 0} ∪ {0}

)
= max

(
{p+aq+a} ∪ {

pi
qi
|∀1≤i≤n.qi 6= 0} ∪ {0}

)
{By obervation above about f}

, > ((p+ a, q + a)
∨n
i=1(pi, qi))

Now assume that q = a = 0. Then

> ((p+ a, q + a) ∨ (p, q)) ∨∨n
i=1(pi, qi))

, max
(
{piqi |∀1≤i≤n.qi 6= 0} ∪ {0}

)
= > ((p+ a, 0) ∨∨n

i=1(pi, qi))

, > ((p+ a, q + a) ∨∨n
i=1(pi, qi))
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The fact that >(δ) = >(δ̂) follows from previous lemma.

Finally, the following theorem provides recursive equations for the val-
ues of δ̂Us and δ̂�s . If the MDPs is acyclic, it can be used to compute these
values.

Theorem 2.6.11. Let Π be a MDP, s ∈ S, and φ1Uφ2, ψ1Uψ2,�ψ1 ∈ Path.
Then δ̂Us (φ1Uφ2 | ψ1Uψ2) =



(P+
s [ψ1Uψ2],P+

s [ψ1Uψ2]) if s |= φ2,
(P+
s [φ1Uφ2], 1) if s |= ¬φ2∧ψ2,

(0,P−s [ψ1Uψ2]) if s |= ¬φ1∧¬φ2∧¬ψ2,
(0, 0) if s |= φ1∧¬φ2∧¬ψ1∧¬ψ2,∨
π∈τ(s)

 �
∑

t∈succ(s)

π(t)� δ̂Ut (φ1Uφ2 | ψ1Uψ2)

 if s |= φ1∧¬φ2∧ψ1∧¬ψ2,

and δ̂�s (φ1Uφ2 | �ψ1) =



(P+
s [�ψ1],P+

s [�ψ1]) if s |= φ2,
(0, 0) if s |= ¬φ2 ∧ ¬ψ1,
(0,P−s [�ψ1]) if s |= ¬φ1 ∧ ¬φ2 ∧ ψ1,∨
π∈τ(s)

 �
∑

t∈succ(s)

π(t)� δ̂�t (φ1Uφ2 | �ψ1)

 if s |= φ1 ∧ ¬φ2 ∧ ψ1.

Proof. We will consider the case δ̂Us . We will use ϕ to denote φ1∧¬φ2∧ψ1∧
¬ ∧ ψ2, i.e., the stopping condition of cpCTL formula under consideration.

(a) Note that if s |= φ2, then semi HI schedulers are exactly the HI
schedulers, i.e., Schϕs (Π) = SchHI

s (Π).
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δ̂Us (φ1Uφ2 | ψ1Uψ2)

=
∨

η∈Schϕs (Π)

(
Ps,η[φ1Uφ2 ∧ ψ1Uψ2],Ps,η[ψ1Uψ2]

)
{s |= φ2}

=
∨

η∈Schϕs (Π)

(
Ps,η[ψ1Uψ2],Ps,η[ψ1Uψ2]

)
=(P+

s [ψ1Uψ2],P+
s [ψ1Uψ2]) {Case (3)}

(b) δ̂Us (φ1Uφ2 | ψ1Uψ2)

=
∨

η∈Schϕs (Π)

(
Ps,η[φ1Uφ2 ∧ ψ1Uψ2],Ps,η[ψ1Uψ2]

)
{s |= ψ2}

=
∨

η∈Schϕs (Π)

(
Ps,η[φ1Uφ2],Ps,η[true]

)
{Case (2) and definition of P[true]}

=(P+
s [φ1Uφ2], 1)

(c) δ̂Us (φ1Uφ2 | ψ1Uψ2)

=
∨

η∈Schϕs (Π)

(
Ps,η[φ1Uφ2 ∧ ψ1Uψ2],Ps,η[ψ1Uψ2]

)
{s |= ¬φ1 ∧ ¬φ2 ∧ ¬ψ2}

=
∨

η∈Schϕs (Π)

(
Ps,η[false],Ps,η[ψ1Uψ2]

)
{Case (1) and definition of P[false]}

=(0,P+
s [ψ1Uψ2])
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(d) δ̂Us (φ1Uφ2 | ψ1Uψ2)

=
∨

η∈Schϕs (Π)

(
Ps,η[φ1Uφ2 ∧ ψ1Uψ2],Ps,η[ψ1Uψ2]

)
{Since s |= ¬φ1 ∧ ¬φ2 ∧ ψ1 ∧ ¬ψ2}

=
∨

η∈Schϕs (Π)

(
Ps,η[false],Ps,η[false]

)
= (0, 0)

(e) δ̂Us (φ1Uφ2 | ψ1Uψ2)

=
∨

η∈Schϕs (Π)

(
Ps,η[φ1Uφ2 ∧ ψ1Uψ2],Ps,η[ψ1Uψ2]

)

=
∨

η∈Schϕs (Π)

 ∑
t∈succ(s)

η(s)(t)�
(
Pt,η[φ1Uφ2 ∧ ψ1Uψ2],Pt,η[ψ1Uψ2]

)
={Since Π is acyclic}∨
π∈τ(s)

 �
∑

t∈succ(s)

π(t)�
∨

ηt∈Schϕt (Π)

(
Pt,ηt [φ1Uφ2 ∧ ψ1Uψ2],Pt,ηt [ψ1Uψ2]

)
=
∨

π∈τ(s)

 �
∑

t∈succ(s)

π(t)� δ̂Ut



From MDPs to Acyclic MDPs

Now, we show how to reduce a MDP with cycles to an acyclic one, thus
generalizing our results to MDPs with cycles. For that purpose we first
reduce all cycles in Π and create a new acyclic MDP [Π] such that the
probabilities involved in the computation of P+[−|−] are preserved. We
do so by removing every strongly connected component (SCC) k of (the
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graph of) Π, keeping only input states and transitions to output states
(in the spirit of [ADvR08]). We show that P+[−|−] on [Π] is equal to
the corresponding value on Π. For this, we have to make sure that states
satisfying the stopping condition are ignored when removing SCCs.

(1) Identifying SCCs. Our first step is to make states satisfying the
stopping condition absorbing.

Definition 2.6.12. Let Π = (S, s0, τ, L) be a MDP and ϕ ∈ Stat a state
formula. We define a new MDP 〈Π〉ϕ = (S, s0, 〈τ〉ϕ, L) where 〈τ〉ϕ(s) is
equal to τ(s) if s 6|= ϕ and to 1s otherwise.

To recognize cycles in the MDP we define a graph associated to it.

Definition 2.6.13. Let Π = (S, s0, τ, L) be MDP and ϕ ∈ Stat. We define
the digraph G = GΠ,ϕ = (S,→) associated to 〈Π〉ϕ = (S, s0, 〈τ〉ϕ, L) where
→ satisfies u→ v ⇔ ∃π ∈ 〈τ〉ϕ(u).π(v) > 0.

Now we let SCC = SCCΠ,ϕ ⊆ ℘(S) be the set of SCC
of G. For each SCC k we define the sets Inpk of
all states in k that have an incoming transition of
Π from a state outside of k; we also define the set
Outk of all states outside of k that have an incoming
transition from a state of k. Formally, for each k ∈
SCC we define

Inpk , {u ∈ k | ∃ s ∈ S \ {k} such that (s, u) ∈ %},
Outk , {s ∈ S \ {k} | ∃u ∈ k such that (u, s) ∈ %}.

where % is the successor relation defined in Section 2.2.
We then associate a MDP Πk to each SCC k of G. The space of states of Πk

is k ∪Outk and the transition relation is induced by the transition relation
of Π.

Definition 2.6.14. Let Π be a MDP and k ∈ SCC be a SCC in Π. We pick
an arbitrary element sk of Inpk and define the MDP Πk = (Sk, sk, τk, L)
where Sk = {k} ∪ Outk and τk(s) is equal to {1s} if s ∈ Outk and to τ(s)
otherwise.
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(2) Constructing an acyclic MDP. To obtain a reduced acyclic MDP
from the original one we first define the probability of reaching one state
from another according to a given HI scheduler in the following way.

Definition 2.6.15. Let Π = (S, s0, τ, L) be a MDP, and η be a HI scheduler

on Π. Then for each s, t ∈ S we define the function R such that RΠ(s
η
 

t) , Ps,η({ω ∈ Paths(s) | ∃ i.ωi = t}).

We note that such reachability values can be efficiently computed using
steady-state analysis techniques [Cas93].
Now we are able to define an acyclic MDP [Π] related to Π such that
P+

[Π] [−|−] = P+
Π[−|−].

Definition 2.6.16. Let Π = (S, s0, τ, L) be a MDP. Then we define [Π]
as ([S], s0, [τ ], L) where

[S] =

Scom︷ ︸︸ ︷
S \

⋃
k∈SCC

k ∪

Sinp︷ ︸︸ ︷⋃
k∈SCC

Inpk

and for all s ∈ [S] the set [τ ](s) of probabilistic distributions on [S] is given
by

[τ ](s) =

{
τ(s) if s ∈ Scom,
{λ ∈ [S].RΠks

(s
η
 t)) | η ∈ SchHI

s (Πks)} if s ∈ Sinp.

Here ks is the SCC associated to s.

Theorem 2.6.17. Let Π = (S, s0, τ, L) be a MDP, and P≤a[φ|ψ] ∈ cpCTL.

Then [Π] is an acyclic MDP and P+
s0,Π

[φ|ψ] = P+
s0,[Π] [φ|ψ], where P+

s,Π′ [−|−]

represents P+
s [−|−] on the MDP Π′.

Proof. The proof follows straightforwardly by the construction of [Π] and
Theorem 2.5.11.

Finally we can use the technique for acyclic MDPs on the reduced MDP in
order to obtain P+

s0 [−|−].
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2.6.2 Complexity

As mentioned before, when computing maximum or minimum conditional
probabilities it is not possible to locally optimize. Therefore, it is necessary
to carry on, for each deterministic and HI scheduler η, the pair of probabil-
ities (Pη[φ ∧ ψ],Pη[ψ]) from the leafs (states satisfying the stopping condi-
tion) to the initial state. As the number of HI schedulers in a MDP grows
exponentially on the state space, our algorithm to verify cpCTL formulas
has exponential time complexity.

We believe that the complexity of computing optimal conditional prob-
abilities is intrinsically exponential, i.e. computing such probabilities is an
NP problem. However, a deeper study on this direction is still missing,

Conditional probability bounds Even if computing exact conditional
probabilities is computationally expensive (exponential time), it is still pos-
sible to efficiently compute upper and lower bounds for such probabilities
(polynomial time).

Observation 2.6.1. Let Π be a MDP and φ, ψ two path pCTL formulas.
Then we have

P−[φ ∧ ψ]

1− P−[ψ]
≤ P+[φ|ψ] ≤ P+[φ ∧ ψ]

1− P+[ψ]
.

2.7 Counterexamples for cpCTL

Counterexamples in model checking provide important diagnostic informa-
tion used, among others, for debugging, abstraction-refinement [CGJ+00],
and scheduler synthesis [LBB+01]. For systems without probability, a coun-
terexample typically consists of a path violating the property under consid-
eration. Counterexamples in MCs are sets of paths. E.g, a counterexample
for the formula P≤a[φ] is a set ∆ of paths, none satisfying φ, and such that
the probability mass of ∆ is greater than a [HK07a, ADvR08, AL06].

In MDPs, we first have to find the scheduler achieving the optimal
probability. Both for pCTL and cpCTL, this scheduler can be derived from
the algorithms computing the optimal probabilities [ADvR08]. Once the
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optimal scheduler is fixed, the MDP can be turned into a Markov Chain and
the approaches mentioned before can be used to construct counterexamples
for pCTL. For cpCTL however, the situation is slightly more complex. It
follows directly from the semantics that:

s 6|= P≤a[φ|ψ] iff ∃η ∈ Schs(Π).
Ps,η({ω ∈ Paths(s)|ω |= φ ∧ ψ})
Ps,η({ω ∈ Paths(s)|ω |= ψ}) > a.

Lemma 2.7.1. Let a ∈ [0, 1] and consider the formula P≤a[φ|ψ]. Let

∆φ , {ω ∈ Paths | ω |= φ}, ∆1 ⊆ ∆φ∧ψ, and ∆2 ⊆ ∆¬ψ. Then a <
Pη(∆1)/(1− Pη(∆2)) implies a < Pη[φ|ψ].

Proof. We first note that

Pη(∆1) ≤ Pη(∆φ∧ψ) and Pη(∆2) ≤ Pη(∆¬ψ).

Then, it is easy to see that

a <
Pη(∆1)

1− Pη(∆2)
≤ Pη(∆φ∧ψ)

1− Pη(∆¬ψ)
=

Pη(∆φ∧ψ)

Pη(∆ψ)
= Pη[φ|ψ].

This leads to the following notion of counterexample.

Definition 2.7.2. A counterexample for P≤a[φ|ψ] is a pair (∆1,∆2) of
measurable sets of paths satisfying ∆1 ⊆ ∆φ∧ψ, ∆2 ⊆ ∆¬ψ, and a <
Pη(∆1)/(1− Pη(∆2)), for some scheduler η.

Note that such sets ∆1 and ∆2 can be computed using the techniques on
Markov Chains mentioned above.

Example 2.7.3. Consider the evaluation of s0 |= P≤0.75[♦B|�P ] on the
MDP obtained by taking α = 1

10 in the MDP depictured in Figure 2.1. The
corresponding MDP is shown in Figure 2.7(a). In this case the maximizing
scheduler, say η, chooses π2 in s2. In Figure 2.7(b) we show the Markov
Chain derived from MDP using η. In this setting we have Ps0,η[♦B|�P ] =
68
70 and consequently s0 does not satisfy this formula.

We show this fact with the notion of counterexample of Definition 2.7.2.
Note that ∆♦B∧�P = 〈s0s1〉∪〈s0s2s3〉 and ∆¬�P = 〈s0s2s5〉. Using Lemma
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2.7(a) MDP
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{}

s6 s7

π1

π2

3
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1
4

1
5 3

10

1
2

2.7(b) Markov Chain

2.7.1 with ∆1 = 〈s0s1〉 and ∆2 = 〈s0s2s5〉 we have 3
4 <

Pη(∆1)
1−Pη(∆2) = 3/4

1−1/8 =
6
7 . Consequently 3

4 < Ps0,η[♦B|�P ], which proves that s0 6|= P≤3/4[♦B|�P ].



Chapter 3

Computing the Leakage of
Information Hiding Systems

In this chapter we address the problem of computing the infor-
mation leakage of a system in an efficient way. We propose two
methods: one based on reducing the problem to reachability, and
the other based on techniques from quantitative counterexample
generation. The second approach can be used either for exact or
approximate computation, and provides feedback for debugging.
These methods can be applied also in the case in which the in-
put distribution is unknown. We then consider the interactive
case and we point out that the definition of associated channel
proposed in literature is not sound. We show however that the
leakage can still be defined consistently, and that our methods
extend smoothly.

3.1 Introduction

By information hiding, we refer generally to the problem of constructing
protocols or programs that protect sensitive information from being de-
duced by some adversary. In anonymity protocols [CPP08a], for example,

69
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the concern is to design mechanisms to prevent an observer of network
traffic from deducing who is communicating. In secure information flow
[SM03], the concern is to prevent programs from leaking their secret input
to an observer of their public output. Such leakage could be accidental or
malicious.

Recently, there has been particular interest in approaching these is-
sues quantitatively, using concepts of information theory. See for example
[MNCM03, CHM05b, DPW06, CMS09, CPP08a]. The secret input S and
the observable output O of an information-hiding system are modeled as
random variables related by a channel matrix, whose (s, o) entry specifies
P (o|s), the conditional probability of observing output o given input s.
If we define the vulnerability of S as the probability that the adversary
could correctly guess the value of S in one try, then it is natural to mea-
sure the information leakage by comparing the a priori vulnerability of S
with the a posteriori vulnerability of S after observing O. We consider two
measures of leakage: additive, which is the difference between the a posteri-
ori and a priori vulnerabilities; and multiplicative, which is their quotient
[Smi09, BCP09].

We thus view a protocol or program as a noisy channel, and we calculate
the leakage from the channel matrix and the a priori distribution on S.
But, given an operational specification of a protocol or program, how do
we calculate the parameters of the noisy channel: the sets of inputs and
outputs, the a priori distribution, the channel matrix, and the associated
leakage? These are the main questions we address in this chapter. We focus
on probabilistic automata, whose transitions are labeled with probabilities
and actions, each of which is classified as secret, observable, or internal.

We first consider the simple case in which the secret inputs take place
at the beginning of runs, and their probability is fixed. The interpretation
in terms of noisy channel of this kind of systems is well understood in
literature. The framework of probabilistic automata, however, allows to
represent more general situations. Thanks to the nondeterministic choice,
indeed, we can model the case in which the input distribution is unknown,
or variable. We show that the definition of channel matrix extends smoothly
also to this case. Finally, we turn our attention to the interactive scenario
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in which inputs can occur again after outputs. This case has also been
considered in literature, and there has been an attempt to define the channel
matrix in terms of the probabilities of traces [DJGP02]. However it turns
out that the notion of channel is unsound. Fortunately the leakage is still
well defined, and it can be obtained in the same way as the simple case.

We consider two different approaches to computing the channel matrix.
One uses a system of linear equations as in reachability computations. With
this system of equations one can compute the joint matrix, the matrix of
probabilities of observing both s and o; the channel matrix is trivially de-
rived from this joint matrix. The other approach starts with a 0 channel
matrix, which we call a partial matrix at this point. We iteratively add the
contributions in conditional probabilities of complete paths to this partial
matrix, obtaining, in the limit, the channel matrix itself. We then group
paths with the same secret and the same observable together using ideas
from quantitative counterexample generation, namely by using regular ex-
pressions and strongly connected component analysis. In this way, we can
add the contribution of (infinitely) many paths at the same time to the
partial matrices. This second approach also makes it possible to identify
which parts of a protocol contribute most to the leakage, which is useful
for debugging.

Looking ahead, after reviewing some preliminaries (Section 3.2) we
present restrictions on probabilistic automata to ensure that they have
well-defined and finite channel matrices (Section 3.3). This is followed by
the techniques to calculate the channel matrix efficiently (Section 3.4 and
Section 3.5). We then turn our attention to extensions of our information-
hiding system model. We use nondeterministic choice to model the situa-
tion where the a priori distribution on the secret is unknown (Section 3.6).
Finally, we consider interactive systems, in which secret actions and ob-
servable actions can be interleaved arbitrarily (Section 3.7).
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3.2 Preliminaries

3.2.1 Probabilistic automata

This section recalls some basic notions on probabilistic automata. More
details can be found in [Seg95]. A function µ : Q → [0, 1] is a discrete
probability distribution on a set Q if the support of µ is countable and∑

q∈Q µ(q) = 1. The set of all discrete probability distributions on Q is
denoted by D(Q).

A probabilistic automaton is a quadruple M = (Q,Σ, q̂, α) where Q is
a countable set of states, Σ a finite set of actions, q̂ the initial state, and
α a transition function α : Q → ℘f (D(Σ × Q)). Here ℘f (X) is the set of
all finite subsets of X. If α(q) = ∅ then q is a terminal state. We write
q→µ for µ ∈ α(q), q ∈ Q. Moreover, we write q

a→r for q, r ∈ Q whenever
q→µ and µ(a, r) > 0. A fully probabilistic automaton is a probabilistic
automaton satisfying |α(q)| ≤ 1 for all states. In case α(q) 6= ∅ we will
overload notation and use α(q) to denote the distribution outgoing from q.

A path in a probabilistic automaton is a sequence σ = q0
a1→ q1

a2→ · · ·
where qi ∈ Q, ai ∈ Σ and qi

ai+1→ qi+1. A path can be finite in which case it
ends with a state. A path is complete if it is either infinite or finite ending
in a terminal state. Given a path σ, first(σ) denotes its first state, and
if σ is finite then last(σ) denotes its last state. A cycle is a path σ such
that last(σ) = first(σ). We denote the set of actions occurring in a cycle
as CyclesA(M). Let Pathsq(M) denote the set of all paths, Paths?q(M) the
set of all finite paths, and CPathsq(M) the set of all complete paths of an
automaton M , starting from the state q. We will omit q if q = q̂. Paths are
ordered by the prefix relation, which we denote by ≤. The trace of a path is
the sequence of actions in Σ∗ ∪Σ∞ obtained by removing the states, hence
for the above σ we have trace(σ) = a1a2 . . .. If Σ′ ⊆ Σ, then traceΣ′(σ) is
the projection of trace(σ) on the elements of Σ′. The length of a finite path
σ, denoted by |σ|, is the number of actions in its trace.

Let M(Q,Σ, q̂, α) be a (fully) probabilistic automaton, q ∈ Q a state,
and let σ ∈ Paths?q(M) be a finite path starting in q. The cone generated by
σ is the set of complete paths 〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a



3.2. Preliminaries 73

fully probabilistic automaton M = (Q,Σ, q̂, α) and a state q, we can calcu-
late the probability value, denoted by Pq(σ), of any finite path σ starting in q

as follows: Pq(q) = 1 and Pq(σ
a→ q′) = Pq(σ) µ(a, q′), where last(σ)→ µ.

Let Ωq , CPathsq(M) be the sample space, and let Fq be the smallest
σ-algebra generated by the cones. Then P induces a unique probability
measure on Fq (which we will also denote by Pq) such that Pq(〈σ〉) = Pq(σ)
for every finite path σ starting in q. For q = q̂ we write P instead of Pq̂.

Given a probability space (Ω,F , P ) and two events A,B ∈ F with
P (B) > 0, the conditional probability of A given B, P (A | B), is defined as
P (A ∩B)/P (B).

3.2.2 Noisy Channels

This section briefly recalls the notion of noisy channels from Information
Theory [CT06].

A noisy channel is a tuple C , (X ,Y,P(·|·)) where X = {x1, x2, . . . , xn}
is a finite set of input values, modeling the secrets of the channel, and
Y = {y1, y2, . . . , ym} is a finite set of output values, the observables of the
channel. For xi ∈ X and yj ∈ Y, P(yj |xi) is the conditional probability
of obtaining the output yj given that the input is xi. These conditional
probabilities constitute the so called channel matrix , where P(yj |xi) is the
element at the intersection of the i-th row and the j-th column. For any
input distribution PX on X , PX and the channel matrix determine a joint
probability P∧ on X×Y, and the corresponding marginal probability PY on
Y (and hence a random variable Y ). PX is also called a priori distribution
and it is often denoted by π. The probability of the input given the output
is called a posteriori distribution.

3.2.3 Information leakage

We recall now some notions of information leakage which allow us to quan-
tify the probability of success of a one-try attacker, i.e. an attacker that
tries to obtain the value of the secret in just one guess. In particular, we
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consider Smith’s definition of multiplicative leakage [Smi09]1, and the addi-
tive leakage definition from Braun et al. [BCP09]. We assume given a noisy
channel C = (X ,Y,P(·|·)) and a random variable X on X . The a priori
vulnerability of the secrets in X is the probability of guessing the right se-
cret, defined as V(X) , maxx∈X PX(x). The rationale behind this definition
is that the adversary’s best bet is on the secret with highest probability.

The a posteriori vulnerability of the secrets in X is the probability
of guessing the right secret, after the output has been observed, aver-
aged over the probabilities of the observables. The formal definition is
V(X |Y) ,

∑
y∈Y PY (y) maxx∈X P (x | y). Again, this definition is based on

the principle that the adversary will choose the secret with the highest a
posteriori probability.

Note that, using Bayes theorem, we can write the a posteriori vulner-
ability in terms of the channel matrix and the a priori distribution, or in
terms of the joint probability:

V(X |Y) =
∑
y∈Y

max
x∈X

(P (y |x)PX(x)) =
∑
y∈Y

max
x∈X

P∧(x, y). (3.1)

The multiplicative leakage is then defined as the quotient between the a
posteriori and a priori vulnerabilities, L×(C, PX) , V(X|Y) /V(X). Simi-
larly, the additive leakage is defined as the difference between both vulner-
abilities, L+(C, PX) , V(X|Y)−V(X).

3.3 Information Hiding Systems

To formally analyze the information-hiding properties of protocols and pro-
grams, we propose to model them as a particular kind of probabilistic au-
tomata, which we call Information-Hiding Systems (IHS). Intuitively, an
IHS is a probabilistic automaton in which the actions are divided in three

1The notion proposed by Smith in [Smi09] was given in a (equivalent) logarithmic
form, and called simply leakage. For uniformity’s sake we use here the terminology and
formulation of [BCP09].
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(disjoint) categories: those which are supposed to remain secret (to an ex-
ternal observer), those which are visible, and those which are internal to
the protocol.

First we consider only the case in which the choice of the secret takes
place entirely at the beginning, and is based on a known distribution. Fur-
thermore we focus on fully probabilistic automata. Later in the chapter we
will relax these constraints.

Definition 3.3.1 (Information-Hiding System). An information-hiding sys-
tem (IHS) is a quadruple I = (M,ΣS ,ΣO,Στ ) where M = (Q,Σ, q̂, α) is a
fully probabilistic automaton, Σ = ΣS ∪ ΣO ∪ Στ where ΣS , ΣO, and Στ

are pairwise disjoint sets of secret, observable, and internal actions, and α
satisfies the following restrictions:

1. α(q̂) ∈ D(ΣS ×Q),

2. ∀s ∈ ΣS ∃!q . α(q̂)(s, q) 6= 0,

3. α(q) ∈ D(ΣO ∪ Στ ×Q) for q 6= q̂,

4. CyclesA(M) ⊆ Στ ,

5. P(CPaths(M) ∩ Paths?(M)) = 1.

The first two restrictions are on the initial state and mean that only
secret actions can happen there (1) and each of those actions must have non
null probability and occur only once (2), Restriction 3 forbids secret actions
to happen in the rest of the automaton, and Restriction 4 specifies that only
internal actions can occur inside cycles, this restriction is necessary in order
to make sure that the channel associated to the IHS has finitely many inputs
and outputs. Finally, Restriction 5 means that infinite computations have
probability 0 and therefore we can ignore them.

We now show how to interpret an IHS as a noisy channel. We call
traceΣS (σ) and traceΣO(σ) the secret and observable traces of σ, respec-
tively. For s ∈ Σ∗S , we define [s] , {σ ∈ CPaths(M) | traceΣS (σ) = s};
similarly for o ∈ Σ∗O, we define [o] , {σ ∈ CPaths(M) | traceΣO(σ) = o}.
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Definition 3.3.2. Given an IHS I = (M,ΣS ,ΣO,Στ ), its noisy channel is
(S,O,P), where S , ΣS , O , traceΣO(CPaths(M)), and P(o | s) , P([o] |
[s]). The a priori distribution π ∈ D(S) of I is defined by π(s) , α(q̂)(s, ·).
If C is the noisy channel of I, the multiplicative and additive leakage of I
are naturally defined as

L×(I) , L×(C, π) and L+(I) , L+(C, π).

Example 3.3.3. Crowds [RR98] is a well-known anonymity protocol, in
which a user (called the initiator) wants to send a message to a
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Figure 3.1: Crowds Pro-
tocol

web server without revealing his identity. To
achieve this, he routes the message through a
crowd of users participating in the protocol.
Routing is as follows. In the beginning, the
initiator randomly selects a user (called a for-
warder), possibly himself, and forwards the re-
quest to him. A forwarder performs a probabilis-
tic choice. With probability p (a parameter of
the protocol) he selects a new user and again for-
wards the message. With probability 1− p he
sends the message directly to the server. One
or more users can be corrupted and collaborate
with each other to try to find the identity of the
initiator.

We now show how to model Crowds as an IHS for 2 honest and 1
corrupted user. We assume that the corrupted user immediately forwards
messages to the server, as there is no further information to be gained for
him by bouncing the message back.

Figure 3.1 shows the automaton2. Actions a and b are secret and repre-
sent who initiates the protocol; actions A, B, and U are observable; A and
B represent who forwards the message to the corrupted user; U represents
the fact that the message arrives at the server undetected by the corrupted

2For the sake of simplicity, we allow the initiator of the protocol to send the message
to the server also in the first step of the protocol.
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user. We assume U to be observable to represent the possibility that the
message is made publically available at the server’s site.

The channel associated to this IHS has S = {a, b}, O = {A,B,U}, and
a priori distribution π(a) = 1

3 , π(b) = 2
3 . Its channel matrix is computed in

the next section.

3.4 Reachability analysis approach

This section presents a method to compute the matrix of joint probabilities
P∧ associated to an IHS, defined as

P∧(s, o) , P([s] ∩ [o]) for all s ∈ S and o ∈ O.
We omit the subscript ∧ when no confusion arises. From P∧ we can de-
rive the channel matrix by dividing P∧(s, o) by π(s). The leakage can be
computed directly from P∧, using the second form of the a posteriori vul-
nerability in (4.1).

We write xλq for the probability of the set of paths with trace λ ∈
(ΣS ∪ ΣO)? starting from the state q of M :

xλq , Pq([λ]q),

where [λ]q , {σ ∈ CPathsq(M) | traceΣS∪ΣO(σ) = λ}. The following key
lemma shows the linear relation between the xλq ’s. We assume, w.l.o.g.,
that the IHS has a unique final state qf .

Lemma 3.4.1. Let I = (M,ΣS ,ΣO,Στ ) be an IHS. For all λ ∈ (ΣS∪ΣO)?

and q ∈ Q we have

xεqf = 1,

xλqf = 0 for λ 6= ε,

xεq =
∑

h∈Στ

∑
q′∈succ(q) α(q)(h, q′) · xεq′ for q 6= qf ,

xλq =
∑

q′∈succ(q) α(q)(first(λ), q′) · xtail(λ)
q′

+
∑

h∈Στ
α(q)(h, q′) · xλq′ for λ 6= ε and q 6= qf .

Furthermore, for s ∈ S and o ∈ O we have P([s] ∩ [o]) = xsoq̂ .
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Using this lemma, one can compute joint probabilities by solving the
system of linear equations in the variables xλq ’s. It is possible that the
system has multiple solutions; in that case the required solution is the
minimal one.

Example 3.4.2. Continuing with the Crowds example, we show how to
compute joint probabilities. Note that qf = S. The linear equations from
Lemma 3.4.1 are

xaAinit = 1
3 · xAqa , xAqa = p

3 · xAqa + p
3 · xAqb + p

3 · xεcorr, xAcorr = xAS ,

xbAinit = 2
3 · xAqb , xAqb = p

3 · xAqa + p
3 · xAqb + p

3 · xAcorr, xAS = 0,

xaBinit = 1
3 · xBqa , xBqa = p

3 · xBqa + p
3 · xBqb + p

3 · xBcorr, xBcorr = xBS ,

xbBinit = 2
3 · xBqb , xBqb = p

3 · xBqa
+ p

3 · xBqb + p
3 · xεcorr, xBS = 0,

xaUinit = 1
3 · xUqa , xUqa = p

3 · xUqa + p
3 · xUqb + (1−p) · xεS, xεcorr = xεS,

xbUinit = 2
3 · xUqb , xUqb = p

3 · xUqa + p
3 · xUqb + (1−p) · xεS, xεS = 1.

Let us fix p = 0.9. By solving the system of linear equations we obtain

A B U

a 21
40

9
40

1
4

b 9
40

21
40

1
4

xaAinit = 7
40 , xaBinit = 3

40 , xaUinit = 1
12 ,

xbAinit = 3
20 , xbBinit = 7

20 , xbUinit = 1
6 .

We can now compute the channel matrix by dividing each xsoinit by π(s).
The result is shown in the figure above.

3.4.1 Complexity Analysis

We now analyze the computational complexity for the computation of the
channel matrix of a simple IHS. Note that the only variables (from the
system of equations in Lemma 3.4.1) that are relevant for the computation
of the channel matrix are those xλq for which it is possible to get the trace
λ starting from state q. As a rough overestimate, for each state q, there
are at most |S| · |O| λ’s possible: in the initial state one can have every
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secret and every observable, in the other states no secret is possible and
only a suffix of an observable can occur. This gives at most |Q| · |S| · |O|
variables. Therefore, we can straightforwardly obtain the desired set of
values in O((|Q| · |S| · |O|)3) time (using Gaussian Elimination). Note that
using Strassen’s methods the exponent reduces to 2.807, this consideration
applies to similar results in the rest of the chapter as well.

Because secret actions can happen only at the beginning, the system of
equations has a special form. The variables of the form xsoq̂ only depend
on variables of the form xoq (with varying o and q 6= q̂) and not on each
other. Hence, we can first solve for all variables of the form xoq and then
compute the remaining few of the form xsoq̂ . Required time for the first step

is O((|O| · |Q|)3) and the time for the second step can be ignored.

Finally, in some cases not only do the secret actions happen only at
the beginning of the protocol, but the observable actions happen only at
the end of the protocol, i.e., after taking a transition with an observable
action, the protocol only performs internal actions (this is, for instance,
the case for our model of Crowds). In this case, one might as well enter a
unique terminal state qf after an observable action happens. Then the only
relevant variables are of the form xsoq̂ , xoq, and xεqf ; the xsoq̂ only depends on
the xoq, the xoq only depend on xoq′ (with the same o, but varying q’s) and on
xεqf and xεqf = 1. Again ignoring the variables xsoq̂ for complexity purposes,
the system of equations has a block form with |O| blocks of (at most) |Q|
variables each. Hence the complexity in this case decreases to O(|O| · |Q|3).

3.5 The Iterative Approach

We now propose a different approach to compute channel matrices and
leakage. The idea is to iteratively construct the channel matrix of a system
by adding probabilities of sets of paths containing paths with the same
observable trace o and secret trace s to the (o|s) entry of the matrix.

One reason for this approach is that it allows us to borrow techniques
from quantitative counterexample generation. This includes the possibility
of using or extending counterexample generation tools to compute channel
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matrices or leakage. Another reason for this approach is the relationship
with debugging. If a (specification of a) system has a high leakage, the iter-
ative approach allows us to determine which parts of the system contribute
most to the high leakage, possibly pointing out flaws of the protocol. Fi-
nally, if the system under consideration is very large, the iterative approach
allows us to only approximate the leakage (by not considering all paths, but
only the most relevant ones) under strict guarantees about the accuracy of
the approximation. We will focus on the multiplicative leakage; similar
results can be obtained for the additive case.

3.5.1 Partial matrices

We start by defining a sequence of matrices converging to the channel ma-
trix by adding the probability of complete paths one by one. We also define
partial version of the a posteriori vulnerability and the leakage. Later, we
show how to use techniques from quantitative counterexample generation
to add probabilities of many (maybe infinitely many) complete paths all at
once.

Definition 3.5.1. Let I = (M,ΣS ,ΣO,Στ ) be an IHS, π its a priori dis-
tribution, and σ1, σ2, . . . an enumeration of the set of complete paths of M .
We define the partial matrices Pk : S ×O → [0, 1] as follows

P0(o|s),0, Pk+1(o|s),


Pk(o|s) +

P(〈σk+1〉)
π(s) if traceΣO(σk+1)=o

and traceΣS (σk+1)=s,

Pk(o|s) otherwise.

We define the partial vulnerability Vk
S,O as

∑
o maxs Pk(o|s) · π(s), and the

partial multiplicative leakage Lk×(I) as V k
S,O/maxs π(s).

The following lemma states that partial matrices, a posteriori vulnera-
bility, and leakage converge to the correct values.

Lemma 3.5.2. Let I = (M,ΣS ,ΣO,Στ ) be an IHS. Then
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1. Pk(o|s) ≤ Pk+1(o|s), and limk→∞ Pk(o|s) = P(o|s),

2. V k
S,O ≤ V k+1

S,O , and limk→∞ V
k
S,O = V(S |O),

3. Lk×(I) ≤ Lk+1
× (I), and limk→∞ Lk×(I) = L×(I).

Since rows must sum up to 1, this technique allow us to compute ma-
trices up to given error ε. We now show how to estimate the error in the
approximation of the multiplicative leakage.

Proposition 3.5.1. Let (M,ΣS ,ΣO,Στ ) be an IHS. Then we have

Lk×(I) ≤ L×(I) ≤ Lk×(I) +

|S|∑
i=1

(1− pki ),

where pki denotes the mass probability of the i-th row of Pk, i.e. pki ,∑
o Pk(o|si).

3.5.2 On the computation of partial matrices.

After showing how partial matrices can be used to approximate channel
matrices and leakage we now turn our attention to accelerating the con-
vergence. Adding most likely paths first is an obvious way to increase the
convergence rate. However, since automata with cycles have infinitely many
paths, this (still) gives an infinite amount of path to process. Processing
many paths at once (all having the same observable and secret trace) tack-
les both issues at the same time: it increases the rate of convergence and
can deal with infinitely many paths at the same time,

Interestingly enough, these issues also appear in quantitative counterex-
ample generation. In that area, several techniques have already been pro-
vided to meet the challenges; we show how to apply those techniques in
the current context. We consider two techniques: one is to group paths to-
gether using regular expressions, the other is to group paths together using
strongly connected component analysis.
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Regular expressions. In [Daw05], regular expressions containing prob-
ability values are used to reason about traces in Markov Chains. This idea
is used in [DHK08] in the context of counterexample generation to group
together paths with the same observable behaviour. The regular expression
there are over pairs 〈p, q〉 with p a probability value and q a state, to be able
to track both probabilities and observables. We now use the same idea to
group together paths with the same secret action and the same observable
actions.

We consider regular expressions over triples of the form 〈a, p, q〉 with
p ∈ [0, 1] a probability value, a ∈ Σ an action label and q ∈ Q a state.
Regular expressions represent sets of paths as in [DHK08]. We also take
the probability value of such a regular expression from that article.

Definition 3.5.3. The function val : R(Σ)→ R evaluates regular expres-
sions:

val(ε) , 1, val(r · r′) , val(r)× val(r′),

val(〈a, p, q〉) , p, val(r∗) , 1 if val(r) = 1,

val(r + r′) , val(r) + val(r′), val(r∗) , 1
1−val(r) if val(r) 6= 1.

The idea is to obtain regular expressions representing sets of paths of
M , each regular expression will contribute in the approximation of the
channel matrix and leakage. Several algorithms to translate automata into
regular expressions have been proposed (see [Neu05]). Finally, each term
of the regular expression obtained can be processed separately by adding
the corresponding probabilities [Daw05] to the partial matrix.

As mentioned before, all paths represented by the regular expression
should have the same observable and secret trace in order to be able to add
its probability to a single element of the matrix. To ensure that condition
we request the regular expression to be normal, i.e., of the form r1 + · · ·+rn
with the ri containing no +’s.

We will now describe this approach by an example.

Example 3.5.4. We used JFLAP 7.0 [JFL] to obtain the regular expression
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r , r1 + r2 + · · ·+ r10 equivalent to the automaton in Figure 3.1.

r1 , 〈b, 2
3 , qb〉 · r̂? · 〈B, 0.3, corr〉 · 〈τ, 1,S〉,

r2 , 〈b, 2
3 , qb〉 · r̂? · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉? · 〈A, 0.3, corr〉 · 〈τ, 1,S〉,

r3 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉? · 〈A, 0.3, corr〉 · 〈τ, 1,S〉,

r4 , 〈b, 2
3 , qb〉 · r̂? · 〈U, 0.1,S〉,

r5 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉? · 〈τ, 0.3, qb〉 · r̂? · 〈B, 0.3, corr〉 · 〈τ, 1,S〉,

r6 , 〈b, 2
3 , qb〉 · r̂? · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉? · 〈U, 0.1,S〉,

r7 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉? · 〈U, 0.1,S〉,

r8 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉? · 〈τ, 0.3, qb〉 · r̂? · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉?·

〈A, 0.3, corr〉 · 〈τ, 1,S〉,
r9 , 〈a, 1

3 , qa〉 · 〈τ, 0.3, qa〉? · 〈τ, 0.3, qb〉 · r̂? · 〈U, 0.1,S〉,
r10 , 〈a, 1

3 , qa〉·〈τ, 0.3, qa〉? ·〈τ, 0.3, qb〉·r̂? ·〈τ, 0.3, qa〉·〈τ, 0.3, qa〉? ·〈U, 0.1,S〉,

where r̂ , (〈τ, 0.3, qb〉? ·(〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉? · 〈τ, 0.3, qb〉)?). We also note

val(r1) = 7
20 (b, B), val(r2) = 3

20 (b, A), val(r3) = 1
7 (a,A),

val(r4) = 7
60 (b, U) val(r5) =! 3

40 (a,B), val(r6) = 1
20 (b, U),

val(r7) = 1
21 (a, U), val(r8) = 9

280 (a,A) val(r9) = 1
40 (a, U),

val(r10) = 3
280 (a, U).

where the symbols between brackets denote the secret and observable traces
of each regular expression.

Now we have all the ingredients needed to define partial matrices using
regular expressions.

Definition 3.5.5. Let I = (M,ΣS ,ΣO,Στ ) be an IHS, π its a priori dis-
tribution, and r = r1 +r2 + · · ·+rn a regular expression equivalent to M in
normal form. We define for k = 0, 1, . . . , n the matrices Pk : S×O→ [0, 1]
as follows
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Pk(o|s) =


0 if k = 0,

Pk−1(o|s) + val(rk)
π(s) if k 6= 0 and traceΣO(rk) = o

and traceΣS (rk) = s,

Pk−1(o|s) otherwise.

Note that in the context of Definition 3.5.5, we have Pn = P .

SCC analysis approach. In [ADvR08], paths that only differ in the way
they traverse strongly connected components (SCC’s) are grouped together.
Note that in our case, such paths have the same secret and observable
trace since secret and observable actions cannot occur on cycles. Follow-
ing [ADvR08], we first abstract away the SCC’s, leaving only probabilistic
transitions that go immediately from an entry point of the SCC to an exit
point (called input and output states in [ADvR08]). This abstraction hap-
pens in such a way that the observable behaviour of the automaton does
not change.

Instead of going into technical details (which also involves translating
the work [ADvR08] from Markov Chains to fully probabilistic automata),
we describe the technique by an example.

Example 3.5.6. Figure 3.2 shows the automaton obtained after abstract-
ing SCC. In the following we show the set of complete paths of the automa-
ton, together with their corresponding probabilities and traces

σ1 , init
a−→ qa

A−→ corr
τ−→ S, P(σ1) = 7

40 , (a,A),

σ2 , init
b−→ qb

B−→ corr
τ−→ S, P(σ2) = 7

20 , (b, B),

σ3 , init
a−→ qa

U−→ S, P(σ3) = 1
12 , (a, U),

σ4 , init
b−→ qb

U−→ S, P(σ4) = 1
6 , (b, U),

σ5 , init
a−→ qa

B−→ corr
τ−→ S, P(σ5) = 3

40 , (a,B),

σ6 , init
b−→ qb

A−→ corr
τ−→ S, P(σ6) = 3

20 , (b, A).
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Figure 3.2:
Crowds after the
SCC analysis

Note that the SCC analysis approach groups more
paths together (for instance σ1 group together the same
paths than the regular expressions r3 and r8 in the ex-
amples of this section), as a result channel matrix and
leakage are obtained faster. On the other hand, reg-
ular expressions are more informative providing more
precise feedback.

3.5.3 Identifying high-leakage sources

We now describe how to use the techniques presented
in this section to identify sources of high leakage of the
system. Remember that the a posteriori vulnerability
can be expressed in terms of joint probabilities

V(S | O) =
∑
o

max
s

P([s] ∩ [o]).

This suggests that, in case we want to identify parts of the system generat-
ing high leakage, we should look at the sets of paths [o1]∩ [s1], . . . , [on]∩ [sn]
where {o1, . . . on} = O and si ∈ arg (maxs P([oi] ∩ [s])). In fact, the multi-
plicative leakage is given dividing V(S | O) by V(S), but since V(S) is a
constant value (i.e., it does not depend on the row) it does not play a role
here. Similarly for the additive case.

The techniques presented in this section allow us to obtain such sets
and, furthermore, to partition them in a convenient way with the purpose
of identifying states/parts of the system that contribute the most to its
high probability. Indeed, this is the aim of the counterexample generation
techniques previously presented. For further details on how to debug sets
of paths and why these techniques meet that purpose we refer to [AL08,
DHK08, ADvR08].

Example 3.5.7. To illustrate these ideas, consider the path σ1 of the
previous example; this path has maximum probability for the observable
A. By inspecting the path we find the transition with high probability
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qa
A→ corr. This suggests to the debugger that the corrupted user has an

excessively high probability of intercepting a message from user a in case
he is the initiator.

In case the debugger requires further information on how corrupted
users can intercept messages, the regular expression approach provides
further/more-detailed information. For instance, we obtain further infor-
mation by looking at regular expressions r3 and r8 instead of path σ1 (in
particular it is possible to visualize the different ways the corrupted user can
intercept the message of user a when he is the generator of the message).

3.6 Information Hiding Systems with Variable a
Priori

In Section 3.3 we introduced a notion of IHS in which the distribution over
secrets is fixed. However, when reasoning about security protocols this is
often not the case. In general we may assume that an adversary knows the
distribution over secrets in each particular instance, but the protocol should
not depend on it. In such scenario we want the protocol to be secure, i.e.
ensuring low enough leakage, for every possible distribution over secrets.
This leads to the definition of maximum leakage.

Definition 3.6.1 ([Smi09, BCP09]). Given a noisy channel C = (S,O,P),
we define the maximum multiplicative and additive leakage (respectively)
as

ML×(C) , max
π∈D(S)

L×(C, π), and ML+(C) , max
π∈D(S)

L+(C, π).

In order to model this new scenario where the distribution over secrets may
change, the selection of the secret is modeled as nondeterministic choice. In
this way such a distribution remains undefined in the protocol/automaton.
We still assume that the choice of the secret happens at the beginning, and
that we have only one secret per run. We call such automaton an IHS with
variable a priori.
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Definition 3.6.2. An IHS with variable a priori is a quadruple I = (M,
ΣS ,ΣO,Στ ) where M = (Q,Σ, q̂, α) is a probabilistic automaton, Σ =
ΣS ∪ ΣO ∪ Στ where ΣS , ΣO, and Στ are pairwise disjoint sets of secret,
observable, and internal actions, and α satisfies the following restrictions:

1. α(q̂) ⊆ D(ΣS ×Q),

2. |α(q̂)| = |S| ∧ ∀s ∈ ΣS . ∃ q . π(s, q) = 1, for some π ∈ α(q̂),

3. α(q) ⊆ D(ΣO ∪ Στ ×Q) and |α(q)| ≤ 1, for all q 6= q̂,

4. ∀a ∈ (ΣS ∪ ΣO) . a 6∈ CyclesA(M),

5. ∀q, s ∀π∈α(q̂) . (π(s, q) = 1⇒ P(CPathsq(M) ∩ Paths∗q(M)) = 1).

Restrictions 1, 2 and 3 imply that the secret choice is non deterministic
and happens only at the beginning. Additionally, 3 means that all the other
choices are probabilistic. Restriction 4 ensures that the channel associated
to the IHS has finitely many inputs and outputs. Finally, 5 implies that,
after we have chosen a secret, every computation terminates except for a
set with null probability.

Given an IHS with variable a priori, by fixing the a priori distribution
we can obtain a standard IHS in the obvious way:

Definition 3.6.3. Let I = ((Q,Σ, q̂, α),ΣS ,ΣO,Στ ) be an IHS with vari-
able a priori and π a distribution over S. We define the IHS associated to
(I, π) as Iπ = ((Q,Σ, q̂, α′),ΣS ,ΣO,Στ ) with α′(q) = α(q) for all q 6= q̂
and α′(q̂)(s, ·) = π(s).

The following result says that the conditional probabilities associated
to an IHS with variable a priori are invariant with respect to the a priori
distribution. This is fundamental in order to interpret the IHS as a channel.

Proposition 3.6.1. Let I be an IHS with variable a priori. Then for all
π, π′ ∈ D(S) such that π(s) 6= 0 and π′(s) 6= 0 for all s ∈ S we have that
PIπ = PIπ′ .
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Proof. The secret s appears only once in the tree and only at the beginning
of paths, hence P([s] ∩ [o]) = α′(q̂)(s, ·)Pqs([o]) and P([s]) = α′(q̂)(s, ·).
Therefore P([o] | [s]) = Pqs([o]), where qs is the state after performing s.
While α′(q̂)(s, ·) is different in Iπ and Iπ′ , Pqs([o]) is the same, because it
only depends on the parts of the paths after the choice of the secret.

Note that, although in the previous proposition we exclude input dis-
tributions with zeros, the concepts of vulnerability and leakage also make
sense for these distributions3.

This result implies that we can define the channel matrix of an IHS
I with variable a priori as the channel matrix of Iπ for any π, and we
can compute it, or approximate it, using the same techniques of previous
sections. Similarly we can compute or approximate the leakage for any
given π.

We now turn the attention to the computation of the maximum leakage.
The following result from the literature is crucial for our purposes.

Proposition 3.6.2 ([BCP09]). Given a channel C, we have arg maxπ∈D(S)

L×(C, π) is the uniform distribution, and arg maxπ∈D(S) L+(C, π) is a corner

point distribution, i.e. a distribution π such that π(s) = 1
κ on κ elements

of S, and π(s) = 0 on all the other elements.

As an obvious consequence, we obtain:

Corollary 3.6.3. Given an IHS I with variable a priori, we haveML×(I) =
L×(Iπ), where π is the uniform distribution, and ML+(I) = L+(Iπ′),
where π′ is a corner point distribution.

Corollary 3.6.3 gives us a method to compute the maxima leakages of
I. In the multiplicative case the complexity is the same as for computing
the leakage4. In the additive case we need to find the right corner point,

3We assume that conditional probabilities are extended by continuity on such distri-
butions.

4Actually we can compute it even faster using an observation from [Smi09] which says
that the leakage on the uniform distribution can be obtained simply by summing up the
maximum elements of each column of the channel matrix.
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which can be done by computing the leakages for all corner points and then
comparing them. This method has exponential complexity (in |S|) as the
size of the set of corner points is 2|S|−1. We conjecture that this complexity
is intrinsic, i.e. that the problem is NP-hard5.

3.7 Interactive Information Hiding Systems

We now consider extending the framework to interactive systems, namely to
IHS’s in which the secrets and the observables can alternate in an arbitrary
way. The secret part of a run is then an element of Σ∗S , like the observable
part is an element of Σ∗O. The idea is that such system models an interactive
play between a source of secret information, and a protocol or program that
may produce, each time, some observable in response. Since each choice is
associated to one player of this “game”, it seems natural to impose that in
a choice the actions are either secret or observable/hidden, but not both.

The main novelty and challenge of this extension is that part of the
secrets come after observable events, and may depend on them.

Definition 3.7.1. Interactive IHS’s are defined as IHS’s (Definition 3.3.1),
except that Restrictions 1 to 3 are replaced by α(q) ∈ D(ΣS ×Q)∪D(Σ−
ΣS ×Q).

Example 3.7.2. Consider an Ebay-like auction protocol with one seller
and two possible buyers, one rich and one poor. The seller first publishes
the item he wants to sell, which can be either cheap or expensive. Then the
two buyers start bidding. At the end, the seller looks at the profile of the
bid winner and decides whether to sell the item or cancel the transaction.
Figure 3.7 illustrates the automaton representing the protocol, for certain
given probability distributions.

5Since the publication of the article related to this chapter we have proved that our
conjecture is true. The proof will appear, together with other results, in an extended
version of the article
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Figure 3.3: Ebay Protocol

We assume that the identities of the
buyers are secret, while the price of the
item and the seller’s decision are observ-
able. We ignore for simplicity the in-
ternal actions which are performed dur-
ing the bidding phase. Hence ΣO =
{cheap, expensive, sell, cancel}, Στ = ∅,
S = ΣS = {poor, rich}, and O =
{cheap, expensive} × {sell, cancel}. The distributions on S and O are

defined as usual. For instance we have P([cheap sell]) = P({q0
cheap−→ q1

poor−→
q3

sell−→ q7, q0
cheap−→ q1

rich−→ q3
sell−→ q7}) = 2

3 · 3
5 · 4

5 + 2
3 · 2

5 · 3
4 = 13

25 .

Let us now consider how to model the protocol in terms of a noisy
channel. It would seem natural to define the channel associated to the
protocol as the triple (S,O,P) where P(o | s) = P([o] | [s]) = P([s]∩[o])

P([s]) . This

is, indeed, the approach taken in [DJGP02]. For instance, with the protocol
of Example 3.7.2, we would have:

P([cheap sell] | [poor])=
P([poor]∩[cheap sell])

P([poor])
=

2
3 · 3

5 · 4
5

2
3 · 3

5 + 1
3 · 1

5

=
24

35
. (3.2)

However, it turns out that in the interactive case (in particular when the
secrets are not in the initial phase), it does not make sense to model the
protocol in terms of a channel. At least, not a channel with input S. In
fact, the matrix of a channel is supposed to be invariant with respect to
the input distribution (like in the case of the IHS’s with variable a priori
considered in previous section), and this is not the case here. The following
is a counterexample.

Example 3.7.3. Consider the same protocol as in Example 3.7.2, but
assume now that the distribution over the choice of the buyer is uniform, i.e.
α(q1)(poor, q3) = α(q1)(rich, q4) = α(q2)(poor, q5) = α(q2)(rich, q6) = 1

2 .
Then the conditional probabilities are different than those for Example
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3.7.2. In particular, in contrast to (3.2), we have

P([cheap sell] | [poor]) =
P([poor] ∩ [cheap sell])

P([poor])
=

2
3 · 1

2 · 4
5

2
3 · 1

2 + 1
3 · 1

2

=
8

15
.

The above observation, i.e. the fact that the conditional probabilities
depend on the input distribution, makes it unsound to reason about cer-
tain information-theoretic concepts in the standard way. For instance, the
capacity is defined as the maximum mutual information over all possible in-
put distributions, and the traditional algorithms to compute it are based on
the assumption that the channel matrix remains the same while the input
distribution variates. This does not make sense anymore in the interactive
setting.

However, when the input distribution is fixed, the matrix of the joint
probabilities is well defined as P∧(s, o) = P([s] ∩ [o]), and can be computed
or approximated using the same methods as for simple IHS’s. The a priori
probability and the channel matrix can then be derived in the standard
way:

π(s) =
∑
o

P∧(s, o), P(o | s) =
P∧(s, o)

π(s)
.

Thanks to the formulation (4.1) of the a posteriori vulnerability, the
leakage can be computed directly using the joint probabilities.

Example 3.7.4. Consider the Ebay protocol I presented in Example 3.7.2.
The matrix of the joint probabilities P∧(s, o) is:

cheap sell cheap cancel expensive sell expensive cancel

poor 8
25

2
25

1
25

2
75

rich 1
5

1
15

19
75

1
75

Furthermore π(poor) = 7
15 and π(rich) = 8

15 . Hence we have L×(I) = 51
40

and L+(I) = 11
75 .

We note that our techniques to compute channel matrices and leakage
extend smoothly to the case where secrets are not required to happen at the
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beginning. However, no assumptions can be made about the occurrences
of secrets (they do not need to occur at the beginning anymore). This
increases the complexity of the reachability technique to O((|S| · |O| · |Q|)3).
On the other hand, complexity bounds for the iterative approach remain
the same.

3.8 Related Work

To the best of our knowledge, this is the first work dealing with the effi-
cient computation of channel matrices and leakage. However, for the simple
scenario, channel matrices can be computed using standard model check-
ing techniques. Chatzikokolakis et al. [CPP08a] have used Prism [PRI] to
model Crowds as a Markov Chain and compute its channel matrix. Each
conditional probability P(o|s) is computed as the probability of reaching
a state where o holds starting from the state where s holds. Since for the
simple version of IHS’s secrets occur only once and before observables (as
in Crowds), such a reachability probability equals P(o|s). This procedure
leads to O(|S| · |O| · |Q|3) time complexity to compute the channel matrix,
where Q is the space state of the Markov Chain.

Note that the complexity is expressed in terms of the space state of a
Markov Chain instead of automaton. Since Markov Chains do not carry
information in transitions they have a larger state space than an equivalent

a b

ac ae bc be

a b

c e

Figure 3.4: Automaton
vs Markov Chain

automaton. Figure 3.4 illustrates this: to model
the automaton (left hand side) we need to en-
code the information in its transitions into states
of the Markov Chain (right hand side). There-
fore, the probability of seeing observation a and
then c in the automaton can be computed as the
probability of reaching the state ac. The Markov
Chain used for modeling Crowds (in our two hon-
est and one corrupted user configuration) has 27
states.

For this reason we conjecture that our complexity O(|O| · |Q|3) is a
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considerable improvement over the one on Markov Chains O(|S| · |O| · |Q|3).
With respect to the interactive scenario, standard model checking tech-

niques do not extend because multiple occurrences of the same secret are
allowed (for instance in our Ebay example, P(cheap sell|rich) cannot be
derived from reachability probabilities from the two different states of the
automaton where rich holds).





Chapter 4

Information Hiding in
Probabilistic Concurrent
Systems

In this chapter we study the problem of information hiding in
systems characterized by the coexistence of randomization and
concurrency. Anonymity and Information Flow are examples
of this notion. It is well known that the presence of nondeter-
minism, due to the possible interleavings and interactions of the
parallel components, can cause unintended information leaks.
The most established approach to solve this problem is to fix the
strategy of the scheduler beforehand. In this work, we propose
a milder restriction on the schedulers, and we define the notion
of strong (probabilistic) information hiding under various no-
tions of observables. Furthermore, we propose a method, based
on the notion of automorphism, to verify that a system satisfies
the property of strong information hiding, namely strong ano-
nymity or non-interference, depending on the context. Through
the chapter, we use the canonical example of the Dining Cryp-
tographers to illustrate our ideas and techniques.

95
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4.1 Introduction

The problem of information hiding consists in trying to prevent the adver-
sary to infer confidential information from the observables. Instances of
this issue are Anonymity and Information Flow. In both fields there is a
growing interest in the quantitative aspects of the problem, see for instance
[HO05, BP05, ZB05, CHM05a, CHM05b, Mal07, MC08, BCP08, CMS09,
CPP08a, CPP08b, Smi09]. This is justified by the fact that often we have
some a priori knowledge about the likelihood of the various secrets (which
we can usually express in terms of a probability distribution), and by the
fact that protocols often use randomized actions to obfuscate the link be-
tween secret and observable, like in the case of the anonymity protocols of
DC Nets [Cha88], Crowds [RR98], Onion Routing [SGR97], and Freenet
[CSWH00].

In a concurrent setting, like in the case of multi-agent systems, there
is also another source of uncertainty, which derives from the fact that the
various entities may interleave and interact in ways that are usually un-
predictable, either because they depend on factors that are too complex to
analyze, or because (in the case of specifications) they are implementation-
dependent.

The formal analysis of systems which exhibit probabilistic and nonde-
terministic behavior usually involves the use of so-called schedulers, which
are functions that, for each path, select only one possible (probabilistic)
transition, thus delivering a purely probabilistic execution tree, where each
event has a precise probability.

In the area of security, there is the problem that secret choices, like all
choices, give rise to different paths. On the other hand, the decision of the
scheduler may influence the observable behavior of the system. Therefore
the security properties are usually violated if we admit as schedulers all
possible functions of the paths: certain schedulers induce a dependence of
the observables on the secrets, and protocols which would not leak secret
information when running in “real” systems (where the scheduling devices
cannot “see” the internal secrets of the components and therefore cannot
depend on them), do leak secret information under this more permissive
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notion of scheduler. This is a well known problem for which various solu-
tions have already been proposed [CCK+06a, CCK+06b, CP10, CNP09].
We will come back to these in the “Related work” section.

4.1.1 Contribution

We now list the main contribution of this chapter:

• We define a class of partial-information schedulers (which we call ad-
missible), schedulers in this class are a restricted version of standard
(full-information) schedulers. The restriction is rather flexible and has
strong structural properties, thus facilitating the reasoning about se-
curity properties. In short, our systems consist of parallel components
with certain restrictions on the secret choices and nondeterministic
choices. The scheduler selects the next component (or components,
in case of synchronization) for the subsequent step independently of
the secret choices. We then formalize the notion of quantitative in-
formation flow, or degree of anonymity, using this restricted notion
of scheduler.

• We propose alternative definitions to the property of strong anony-
mity defined in [BP05]. Our proposal differs from the original defi-
nition in two aspects: (1) the system should be strongly anonymous
for all admissible schedulers instead of all schedulers (which is a very
strong condition, never satisfied in practice), (2) we consider several
variants of adversaries, namely (in increasing level of power): external
adversaries, internal adversaries, and adversaries in collusion with the
scheduler (in a Dolev-Yao fashion). Additionally, we use admissible
schedulers to extend the notions of multiplicative and additive leak-
age (proposed in [Smi09] and [BCP09] respectively) to the case of a
concurrent system.

• We propose a sufficient technique to prove probabilistic strong ano-
nymity, and probabilistic noninterference, based on automorphisms.
The idea is the following: In the purely nondeterministic setting, the
strong anonymity of a system is often proved (or defined) as follows:
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take two users A and B and a trace in which user A is ‘the culprit’.
Now find a trace that looks the same to the adversary, but in which
user B is ‘the culprit’ [HO05, GHvRP05, MVdV04, HK07c]. This
new trace is often most easily obtained by switching the behavior of
A and B. Non-interference can be proved in the same way (where A
and B are high information and the trace is the low information).

In this work, we make this technique explicit for anonymity in systems
where probability and nondeterminism coexist, and we need to cope
with the restrictions on the schedulers. We formalize the notion of
switching behaviors by using automorphism (it is possible to switch
the behavior of A and B if there exist an automorphism between
them) and then show that the existence of an automorphism implies
strong anonymity.

• We illustrate the problem with full-information schedulers in security,
our solution providing admissible schedulers, and the application of
our prove technique by means of the well known Dining Cryptogra-
phers anonymity protocol.

4.2 Preliminaries

In this section we gather preliminary notions and results related to prob-
abilistic automata [SL95, Seg95], information theory [CT06], and informa-
tion leakage [Smi09, BCP09].

4.2.1 Probabilistic automata

A function µ : Q → [0, 1] is a discrete probability distribution on a set Q
if
∑

q∈Q µ(q) = 1. The set of all discrete probability distributions on Q is
denoted by D(Q).

A probabilistic automaton is a quadruple M = (Q,Σ, q̂, θ) where Q is a
countable set of states, Σ a finite set of actions, q̂ the initial state, and θ
a transition function θ : Q → P(D(Σ × Q)). Here P(X) is the set of all
subsets of X.
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If θ(q) = ∅, then q is a terminal state. We write q→µ for µ ∈ θ(q), q ∈
Q. Moreover, we write q

a→r for q, r ∈ Q whenever q→µ and µ(a, r) > 0. A
fully probabilistic automaton is a probabilistic automaton satisfying |θ(q)| ≤
1 for all states. In case θ(q) 6= ∅ in a fully probabilistic automaton, we will
overload notation and use θ(q) to denote the distribution outgoing from q.

A path in a probabilistic automaton is a sequence σ = q0
a1→ q1

a2→ · · · where
qi ∈ Q, ai ∈ Σ and qi

ai+1→ qi+1. A path can be finite in which case it ends
with a state. A path is complete if it is either infinite or finite ending in
a terminal state. Given a path σ, first(σ) denotes its first state, and if σ
is finite then last(σ) denotes its last state. A cycle is a path σ such that
last(σ) = first(σ). Let Pathsq(M) denote the set of all paths, Paths?q(M)
the set of all finite paths, and CPathsq(M) the set of all complete paths of
an automaton M , starting from the state q. We will omit q if q = q̂. Paths
are ordered by the prefix relation, which we denote by ≤. The trace of a
path is the sequence of actions in Σ∗∪Σ∞ obtained by removing the states,
hence for the above path σ we have trace(σ) = a1a2 . . .. If Σ′ ⊆ Σ, then
traceΣ′(σ) is the projection of trace(σ) on the elements of Σ′.

Let M = (Q,Σ, q̂, θ) be a (fully) probabilistic automaton, q ∈ Q a state,
and let σ ∈ Paths?q(M) be a finite path starting in q. The cone generated by
σ is the set of complete paths 〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a
fully probabilistic automaton M = (Q,Σ, q̂, θ) and a state q, we can calcu-
late the probability value, denoted by Pq(σ), of any finite path σ starting in q

as follows: Pq(q) = 1 and Pq(σ
a→ q′) = Pq(σ) µ(a, q′), where last(σ)→ µ.

Let Ωq , CPathsq(M) be the sample space, and let Fq be the smallest
σ-algebra generated by the cones. Then Pq induces a unique probability
measure on Fq (which we will also denote by Pq) such that Pq(〈σ〉) = Pq(σ)
for every finite path σ starting in q. For q = q̂ we write P instead of Pq̂.

A (full-information) scheduler for a probabilistic automaton M is a
function ζ : Paths?(M) → (D(Σ × Q) ∪ {⊥}) such that for all finite paths
σ, if θ(last(σ)) 6= ∅ then ζ(σ) ∈ θ(last(σ)), and ζ(σ) = ⊥ otherwise. Hence,
a scheduler ζ selects one of the available transitions in each state, and
determines therefore a fully probabilistic automaton, obtained by pruning
from M the alternatives that are not chosen by ζ. Note that a scheduler is
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history dependent since it can take different decisions for the same state s
according to the past evolution of the system.

4.2.2 Noisy Channels

This section briefly recalls the notion of noisy channels from Information
Theory [CT06].

A noisy channel is a tuple C , (X ,Y, P (·|·)) where X = {x1, x2, . . . , xn}
is a finite set of input values, modeling the secrets of the channel, and
Y = {y1, y2, . . . , ym} is a finite set of output values, the observables of the
channel. For xi ∈ X and yj ∈ Y, P(yj |xi) is the conditional probability
of obtaining the output yj given that the input is xi. These conditional
probabilities constitute the so called channel matrix, where P(yj |xi) is the
element at the intersection of the i-th row and the j-th column. For any
input distribution PX on X , PX and the channel matrix determine a joint
probability P∧ on X×Y, and the corresponding marginal probability PY on
Y (and hence a random variable Y ). PX is also called a priori distribution
and it is often denoted by π. The probability of the input given the output
is called a posteriori distribution.

4.2.3 Information leakage

We recall here the definitions of multiplicative leakage proposed in [Smi09],
and of additive leakage proposed in [BCP09]1. We assume given a noisy
channel C = (X ,Y, P (·|·)) and a random variable X on X . The a priori
vulnerability of the secrets in X is the probability of guessing the right
secret, defined as V(X) , maxx∈X PX(x). The rationale behind this defi-
nition is that the adversary’s best bet is on the secret with highest prob-
ability. The a posteriori vulnerability of the secrets in X is the probabil-
ity of guessing the right secret, after the output has been observed, av-
eraged over the probabilities of the observables. The formal definition is

1The notion proposed by Smith in [Smi09] was given in a (equivalent) logarithmic
form, and called simply leakage. For uniformity sake we use here the terminology and
formulation of [BCP09].
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V(X |Y) ,
∑

y∈Y PY (y) maxx∈X P (x | y). Again, this definition is based on
the principle that the adversary will choose the secret with the highest a
posteriori probability.

Note that, using Bayes theorem, we can write the a posteriori vulner-
ability in terms of the channel matrix and the a priori distribution, or in
terms of the joint probability:

V(X |Y)=
∑
y∈Y

max
x∈X

(P (y |x)PX(x))=
∑
y∈Y

max
x∈X

P∧(x, y).

The multiplicative leakage is L×(C, PX) , V(X|Y)
V(X) whereas the additive

leakage is L+(C, PX) , V(X|Y)−V(X).

4.2.4 Dining Cryptographers

This problem, described by Chaum in [Cha88], involves a situation in which
three cryptographers are dining together. At the end of the dinner, each of
them is secretly informed by a central agency (master) whether he should
pay the bill, or not. So, either the master will pay, or one of the cryptogra-
phers will be asked to pay. The cryptographers (or some external observer)
would like to find out whether the payer is one of them or the master.
However, if the payer is one of them, they also wish to maintain anonymity
over the identity of the payer.

A possible solution to this problem, described in [Cha88], is that each
cryptographer tosses a coin, which is visible to himself and his neighbor
to the left. Each cryptographer observes the two coins that he can see
and announces agree or disagree. If a cryptographer is not paying, he will
announce agree if the two sides are the same and disagree if they are not.
The paying cryptographer will say the opposite. It can be proved that if the
number of disagrees is even, then the master is paying; otherwise, one of the
cryptographers is paying. Furthermore, in case one of the cryptographers is
paying, neither an external observer nor the other two cryptographers can
identify, from their individual information, who exactly is paying (provided
that the coins are fair). The Dining Cryptographers (DC) will be a running
example through the chapter.
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Figure 4.1: Chaum’s system for the Dining Cryptographers ([Cha88])

4.3 Systems

In this section we describe the kind of systems we are dealing with. We
start by introducing a variant of probabilistic automata, that we call tagged
probabilistic automata (TPA). These systems are parallel compositions of
purely probabilistic processes, that we call components. They are equipped
with a unique identifier, that we call tag, or label, of the component. Note
that, because of the restriction that the components are fully determinis-
tic, nondeterminism is generated only from the interleaving of the parallel
components. Furthermore, because of the uniqueness of the tags, each tran-
sition from a node is associated to a different tag / pair of two tags (one in
case only one component makes a step, and two in case of a synchronization
step among two components).

4.3.1 Tagged Probabilistic Automata

We now formalize the notion of TPA.

Definition 4.3.1. A tagged probabilistic automaton (TPA) is a tuple (Q,
L,Σ, q̂, θ), where
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• Q is a set of states,

• L is a set of tags, or labels,

• Σ is a set of actions,

• q̂ ∈ Q is the initial state,

• θ : Q→ P(L×D(Σ×Q)) is a transition function.

with the additional requirement that for every q ∈ Q and every ` ∈ L there
is at most one µ ∈ D(Σ×Q) such that (`, µ) ∈ θ(q).

A path for a TPA is a sequence σ = q0
l1,a1−→ q1

l2,a2−→ q2 · · · . In this way,
the process with identifier li induces the system to move from qi−1 to qi
performing the action ai, and it does so with probability µli(ai, qi), where
µli is the distribution associated to the choice made by the component li.
Finite paths and complete paths are defined in a similar manner.

In a TPA, the scheduler’s choice is determined by the choice of the tag.
We will use enab(q) to denote the tags of the components that are enabled
to make a transition. Namely,

enab(q) , {` ∈ L | ∃µ∈D(Σ×Q) : (`, µ) ∈ θ(q)} (4.1)

We assume that the scheduler is forced to select a component among
those which are enabled, i.e., that the execution does not stop unless all
components are blocked (suspended or terminated). This is in line with the
spirit of process algebra, and also with the tradition of Markov Decision
Processes, but contrasts with that of the Probabilistic Automata of Lynch
and Segala [SL95]. However, the results in this chapter do not depend on
this assumption; we could as well allow schedulers which decide to terminate
the execution even though there are transitions which are possible from the
last state.

Definition 4.3.2. A scheduler for a TPA M = (Q,L,Σ, q̂, θ) is a func-
tion ζ : Paths?(M) → (L ∪ {⊥}) such that for all finite paths σ, ζ(σ) ∈
enab(last(σ)) if enab(last(σ)) 6= ∅ and ζ(σ) = ⊥ otherwise.
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4.3.2 Components

To specify the components we use a sort of probabilistic version of CCS [Mil89,
Mil99]. We assume a set of secret actions ΣS with elements s, s1, s2, · · · , and
a disjoint set of observable actions ΣO with elements a, a1, a2, · · · . Further-
more we have communication actions of the form c(x) (receive x on channel
c, where x is a formal parameter), or c̄〈v〉 (send v on channel c, where v
is a value on some domain V ). Sometimes we need only to synchronize
without transmitting any value, in which case we will use simply c and c̄.
We denote the set of channel names by C.

A component q is specified by the following grammar:

Components

q ::= 0 termination
| a.q observable prefix
| ∑

i pi : qi blind choice
| ∑

i pi : si.qi secret choice
| if x = v then q1 else q2 conditional
| A process call

Observables

a ::= c | c̄ simple synchronization
| c(x) | c̄〈v〉 synchronization and communication

The pi, in the blind and secret choices, represents the probability of
the i-th branch and must satisfy 0 ≤ pi ≤ 1 and

∑
i pi = 1. When no

confusion arises, we use simply + for a binary choice. The process call A
is a simple process identifier. For each of them, we assume a corresponding

unique process declaration of the form A
def
= q. The idea is that, whenever

A is executed, it triggers the execution of q. Note that q can contain A or
another process identifier, which means that our language allows (mutual)
recursion.
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Note that each component contains only probabilistic and sequential
constructs. In particular, there is no internal parallelism. Hence each com-
ponent corresponds to a purely probabilistic automaton (apart from the
input nondeterminism, which disappears in the definition of a system), as
described by the operational semantics below. The main reason to dismiss
the use of internal parallelism is verification: as mentioned in the Intro-
duction we will present a proof technique for the different definitions of
anonymity proposed in this work. This result would not be possible with-
out such restriction on the components (see Example 4.6.4).

For an extension of this framework allowing the use of internal par-
allelism we refer to [AAPvR10]. There, the authors combine global non-
determinism (arising from the interleaving of the components) and local
nondeterminism (arising from the internal parallelism of the components).
The authors use such (extended) framework for a different purpose than
ours, namely to define a notion of equivalence suitable for security analysis.
No verification mechanisms are provided in [AAPvR10].

Components’ semantics: The operational semantics consists of probabilistic
transitions of the form q→µ where q ∈ Q is a process, and µ ∈ D(Σ×Q) is
a distribution on actions and processes. They are specified by the following
rules:

PRF1
v ∈ V

c(x).q → δ(c(v), q[v/x])

PRF2
a.q → δ(a, q)

if a 6= c(x)

INT ∑
i pi : qi → ◦

∑
i pi · δ(τ, qi)

SECR ∑
i pi : si.qi → ◦∑i pi · δ(si, qi)
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CND1
if v = v then q1 else q2 → δ(τ, q1)

CND2
v 6= v′

if v = v′ then q1 else q2 → δ(τ, q2)

CALL
q → µ

A→ µ
if A , q

◦∑i pi · µi is the distribution µ such that µ(x) =
∑

i piµi(x). We use δ(x)
to represent the delta of Dirac, which assigns probability 1 to x. The silent
action, τ , is a special action different from all the observable and the secret
actions. q[v/x] stands for the process q in which any occurrence of x has
been replaced by v. To shorten the notation, in the examples throughout
the chapter, we omit writing explicit termination, i.e., we omit the symbol
0 at the end of a term.

4.3.3 Systems

A system consists of n processes (components) in parallel, restricted at the
top-level on the set of channel names C:

(C) q1 ‖ q2 ‖ · · · ‖ qn.

The restriction on C enforces synchronization (and possibly communica-
tion) on the channel names belonging to C, in accordance with the CCS
spirit. Since C is the set of all channels, all of them are forced to syn-
chronize. This is to eliminate, at the level of systems, the nondeterminism
generated by the rule for the receive prefix, PRF1.

Systems’ semantics: The semantics of a system gives rise to a TPA, where
the states are terms representing systems during their evolution. A transi-

tion now is of the form q
`→ µ where µ ∈ (D(Σ × Q)) and ` ∈ L is either
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the identifier of the component which makes the move, or a two-element
set of identifiers representing the two partners of a synchronization. The
following two rules provide the operational semantics rules in the case of
interleaving and synchronisation/communication, respectively.

Interleaving If aj 6∈ C

qi → ◦
∑

j pj · δ(aj , qij)

(C) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn i→ ◦∑j pj · δ(aj , (C) q1 ‖ · · · ‖ qij ‖ · · · ‖ qn)

where i indicates the tag of the component making the step.

Synchronization/Communication

qi → δ(c̄〈v〉, q′i) qj → δ(c(v), q′j)

(C) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn
{i,j}−→ δ(τ, (C) q1 ‖ · · · ‖ q′i ‖ · · · ‖ q′j ‖ · · · ‖ qn)

here {i, j} is the tag indicating that the components making the step are

i and j. For simplicity we write
i,j−→ instead of

{i,j}−→. The rule for synchro-
nization without communication is similar, the only difference is that we do
not have 〈v〉 and (v) in the actions. Note that c can only be an observable
action (neither a secret nor τ), by the assumption that channel names can
only be observable actions.

We note that both interleaving and synchronization rules generate non-
determinism. The only other source of nondeterminism is PRF1, the rule
for a receive prefix c(x). However the latter is not real nondeterminism:
it is introduced in the semantics of the components but it disappears in
the semantics of the systems, given that the channel c is restricted at the
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top-level. In fact the restriction enforces communication, and when com-
munication takes place, only the branch corresponding to the actual value v
transmitted by the corresponding send action is maintained, all the others
disappear.

Proposition 4.3.3. The operational semantics of a system is a TPA with
the following characteristics:

(a) Every step q
`→ µ is either

a blind choice: µ = ◦∑i pi · δ(τ, qi), or

a secret choice: µ = ◦∑i pi · δ(si, qi), or

a delta of Dirac: µ = δ(α, q′) with α ∈ ΣO or α = τ .

(b) If q
`→ µ and q

`→ µ′ then µ = µ′.

Proof. For (a) , we have that the rules for the components and the rule
for synchronization / communication can only produce blind choices, se-
cret choices, or deltas of Dirac. Furthermore, because of the restriction on
all channels, the transitions at the system level cannot contain communi-
cation actions. Finally, observe that the interleaving rule maintains these
properties.

As for (b), we know that at the component level, the only source of
nondeterminism is PRF1, the rule for a receive prefix c(x). At the sys-
tem level, this action is forced to synchronize with a corresponding send
action, and, in a component, there can be only one such action available
at a time. Hence the tag determines the value to be sent, which in turn
determines the selection of exactly one branch in the receiving process.
The only other sources of nondeterminism are the interleaving and the syn-
chronization/communication rules, and they induce a different tag for each
alternative.

Example 4.3.1. We now present the components for the Dining Cryptog-
raphers using the introduced syntax. They correspond to Figure 4.1 and
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to the automata depicted in Figure 4.3. As announced before, we omit the
symbol 0 for explicit termination at the end of each term. The secret ac-
tions si represent the choice of the payer. The operators ⊕,	 represent the
sum modulo 2 and the difference modulo 2, respectively. The test i == n
returns 1 (true) if i = n, and 0 otherwise. The set of restricted channel
names is C ={c0,0, c0,1, c1,1, c1,2, c2,0, c2,2,m0,m1,m2}.

Master , p : m0〈0〉 .m1〈0〉 .m2〈0〉+ (1− p) :
∑2

i=0 pi : si .

m0〈i == 0〉 .m1〈i == 1〉 .m2〈i == 2〉
Crypti , mi(pay) . ci,i(coin1) . ci,i⊕1(coin2) . outi〈pay ⊕ coin1 ⊕ coin2〉
Coini , 0.5 : c̄i,i〈0〉 . c̄i	1,i〈0〉 + 0.5 : c̄i,i〈1〉 . c̄i	1,i〈1〉

System , (C ) Master ‖∏2
i=0 Crypti ‖

∏2
i=0 Coini

Figure 4.2: Dining Cryptographers CCS

The operation pay ⊕ coin1 ⊕ coin2 in Figure 4.2 is syntactic sugar, it
can be defined using the if-then-else operator. Note that, in this way, if
a cryptographer is not paying (pay = 0), then he announces 0 if the two
coins are the same (agree) and 1 if they are not (disagree).

4.4 Admissible Schedulers

We now introduce the class of admissible schedulers.
Standard (full-information) schedulers have access to all the informa-

tion about the system and its components, and in particular the secret
choices. Hence, such schedulers can leak secrets by making their decisions
depend on the secret choice of the system. This is the case with the Dining
Cryptographers protocol of Section 4.2.4: among all possible schedulers for
the protocol, there are several that leak the identity of the payer. In fact
the scheduler has the freedom to decide the order of the announcements
of the cryptographers (interleaving), so a scheduler could choose to let the
payer announce lastly. In this way, the attacker learns the identity of the
payer simply by looking at the interleaving of the announcements.
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Master
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��•
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��•
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•
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xx•
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•
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��
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outi(0) ""

•

outi(1)||•

Figure 4.3: Dining Cryptographers Automata

4.4.1 The screens intuition

Let us first describe admissible schedulers informally. As mentioned in the
introduction, admissible schedulers can base their decisions only on partial
information about the evolution of the system, in particular admissible
schedulers cannot base their decisions on information concerned with the
internal behavior of components (such as secret choices).

We follow the subsequent intuition: admissible schedulers are entities
that have access to a screen with buttons, where each button represents
one (current) available option. At each point of the execution the sched-
uler decides the next step among the available options (by pressing the
corresponding button). Then the output (if any) of the selected compo-
nent becomes available to the scheduler and the screen is refreshed with
the new available options (the ones corresponding to the system after mak-



4.4. Admissible Schedulers 111

ing the selected step). We impose that the scheduler can base its decisions
only on such information, namely: the screens and outputs he has seen up
to that point of the execution (and, of course, the decisions he has made).

Example 4.4.1. Consider S , ({c1, c2}) r‖q‖ t, where

r , 0.5 : s1.c1.c2 + 0.5 : s2.c1.c2,

q , c1.(0.5 : a1 + 0.5 : b1), t , c2.(0.5 : a2 + 0.5 : b2).

Figure 4.4 shows the sequence of screens corresponding to a particular
sequence of choices taken by the scheduler2. Interleaving and communica-
tion options are represented by yellow and red buttons, respectively. An
arrow between two screens represents the transition from one to the other
(produced by the scheduler pressing a button), additionally, the decision
taken by the scheduler and corresponding outputs are depicted above each
arrow.

Figure 4.4: Screens intuition

Note that this system has exactly the same problem as the DC pro-
tocol: a full-information scheduler could reveal the secret by basing the
interleaving order (q first or t first) on the secret choice of the component
r. However, the same does not hold anymore for admissible schedulers (the
scheduler cannot deduce the secret choice by just looking at the screens
and outputs). This is also the case for the DC protocol, i.e., admissible
schedulers cannot leak the secret of the protocol.

2The transitions from screens 4 and 5 represent 2 steps each (for simplicity we omit
the τ -steps generated by blind choices)
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4.4.2 The formalization

Before formally defining admissible schedulers we need to formalize the
ingredients of the screens intuition. The buttons on the screen (available
options) are the enabled options given by the function enab (see (4.1) in
Section 4.3.1), the decision made by the scheduler is the tag of the selected
enabled option, observable actions are obtained by sifting the secret actions
to the schedulers by means of the following function:

sift(α) ,

{
α if α ∈ ΣO ∪ {τ},
τ if α ∈ ΣS .

The partial information of a certain evolution of the system is given by the
map t defined as follows.

Definition 4.4.1. Let q̂
`1,α1−→ · · · `n,αn−→ qn+1 be a finite path of the system,

then we define t as:

t
(
q̂
`1,α1−→ · · · `n,αn−→ qn+1

)
,

(enab(q̂), `1, sift(α1)) · · · (enab(qn), `n, sift(αn)) · enab(qn+1).

Finally, we have all the ingredients needed to define admissible sched-
ulers.

Definition 4.4.2 (Admissible schedulers). A scheduler ζ is admissible if
for all σ, σ′ ∈ Paths?

t(σ) = t(σ′) implies ζ(σ) = ζ(σ′).

In this way, admissible schedulers are forced to take the same decisions
on paths that they cannot tell apart. Note that this is a restriction on the
original definition of (full-information) schedulers where t is the identity
map over finite paths (and consequently the scheduler is free to choose
differently).

In the kind of systems we consider (the TPAs) the only source of nonde-
terminism are the interleaving and interactions of the parallel components.
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Consequently, in a TPA the notion of scheduler is quite simple: its role, in-
deed, is to select, at each step, the component or pair of components which
will perform the next transition. In addition, the TPA model allows us to
express in a simple way the notion of admissibility: in fact the transitions
available in the last state of σ are determined by the set of components en-
abled in the last state of σ, and t(σ) gives (among other information) such
set. Therefore t(σ) = t(σ′) implies that the last states of σ and σ′ have the
same possible transitions, hence it is possible to require that ζ(σ) = ζ(σ′)
without being too restrictive or too permissive. In more general systems,
where the sources of nondeterminism can be arbitrary, it is difficult to im-
pose that the scheduler“does not depend on the secret choices”, because
different secret choices in general may give rise to states with different sets
of transitions, and it is unclear whether such difference should be ruled
out as “inadmissible”, or should be considered as part of what a “real”
scheduler can detect.

4.5 Information-hiding properties in presence of
nondeterminism

In this section we revise the standard definition of information flow and
anonymity in our framework of controlled nondeterminism.

We first consider the notion of adversary. We consider three possible
notions of adversaries, increasingly more powerful.

4.5.1 Adversaries

External adversaries: Clearly, an adversary should be able, by definition,
to see at least the observable actions. For an adversary external to the
system S, it is natural to assume that these are also the only actions that
he is supposed to see. Therefore, we define the observation domain, for an
external adversary, as the set of the (finite) sequences of observable actions,
namely:

Oe , Σ∗O.



114 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

Correspondingly, we need a function te : Paths?(S)→ Oe that extracts the
observables from the executions:

te

(
q0

`1,α1−→ · · · `n,αn−→ qn+1

)
,sieve(α1) · · · sieve(αn)

where

sieve(α) ,

{
α if α ∈ ΣO,

ε if α ∈ ΣS ∪ {τ}.
Internal adversaries: An internal adversary may be able to see, besides
the observables, also the intearleaving and synchronizations of the various
components, i.e. which component(s) are active, at each step of the execu-
tion. Hence it is natural to define the observation domain, for an internal
adversary, as the sequence of pairs of observable action and tag (i.e. the
identifier(s) of the active component(s)), namely:

Oi , (L× (ΣO ∪ {τ}))∗.

Correspondingly, we need a function ti : Paths?(S) → Oi that extracts the
observables from the executions:

ti

(
q0

`1,α1−→ · · · `n,αn−→ qn+1

)
, (`1, sieve(α1)) · · · (`n, sieve(αn)).

Note that in this definition we could have equivalently used sift instead
than sieve.

Adversaries in collusion with the scheduler: Finally, we consider the case
in which the adversary is in collusion with the scheduler, or possibly the
adversary is the scheduler. To illustrate the difference between this kind of
adversaries and internal adversaries, consider the scheduler of an operating
system. In such scenario an internal adversary is able to see which process
has been scheduled to run next (process in the “running state”) whereas an
adversary in collusion with the scheduler can see as much as the scheduler,
thus being able to see (in addition) which processes are in the “ready state”
and which processes are in the “waiting / blocked” state. We will show
later that such additional information does not help the adversary to leak
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information (see Proposition 4.5.9). The observation domain of adversaries
in collusion with the scheduler coincides with the one of the scheduler:

Os , (P(L)× L× (ΣO ∪ {τ}))∗.

The corresponding function

ts : Paths?(S)→ Os

is defined as the one of the scheduler, i.e. ts = t.

4.5.2 Information leakage

In Information Flow and Anonymity there is a converging consensus for
formalizing the notion of leakage as the difference or the ratio between the
a priori uncertainty that the adversary has about the secret, and the a pos-
teriori uncertainty, that is, the residual uncertainty of the adversary once
it has seen the outcome of the computation. The uncertainty can be mea-
sured in different ways. One popular approach is the information-theoretic
one, according to which the system is seen as a noisy channel between the
secret inputs and the observable output, and uncertainty corresponds to the
Shannon entropy of the system (see preliminaries – Section 4.2). In this
approach, the leakage is represented by the so-called mutual information,
which expresses the correlation between the input and the output.

The above approach, however, has been recently criticized by Smith
[Smi09], who has argued that Shannon entropy is not suitable to represent
the security threats in the typical case in which the adversary is interested
in figuring out the secret in one-try attempt,
and he has proposed to use Rényi’s min entropy instead, or equivalently,
the average probability of succeeding. This leads to interpret the uncer-
tainty in terms of the notion of vulnerability defined in the preliminaries
(Section 4.2). The corresponding notion of leakage, in the pure probabilistic
case, has been investigated in [Smi09] (multiplicative case) and in [BCP09]
(additive case).
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Here we adopt the vulnerability-based approach to define the notion of
leakage in our probabilistic and nondeterministic context. The Shannon-
entropy-based approach could be extended to our context as well, because
in both cases we only need to specify how to determine the conditional
probabilities which constitute the channel matrix, and the marginal prob-
abilities that constitute the input and the output distribution.

We will denote by S the random variable associated to the set of secrets
S = ΣS , and by Ox the random variables associated to the set of observables
Ox, where x ∈ {e, i, s}. So, Ox represents the observation domains for the
various kinds of adversaries defined above.

As mentioned before, our results require some structural properties for
the system: we assume that there is a single component in the system con-
taining a secret choice and this component contains a single secret choice.
This hypothesis is general enough to allow expressing protocols like the
Dining Cryptographers, Crowds, voting protocols, etc., where the secret is
chosen only once.

Assumption 4.5.1. A system contains exactly one component with a syn-
tactic occurrence of a secret choice, and such a choice does not occur in the
scope of a recursive call.

Note that the assumption implies that the choice appears exactly once
in the operational semantics of the component. It would be possible to re-
lax the assumption and allow more than one secret choice in a component,
as long as there are no observable actions between the secret choices. For
the sake of simplicity in this paper we impose the more restrictive require-
ment. As a consequence, we have that the operational semantics of systems
satisfies the following property:

Proposition 4.5.2. If q
`→ µ and q′

`′→ µ′ are both secret choices, then
` = `′ and there exist pi’s, qi’s and q′i’s such that:

µ = �
∑
i

pi · δ(si, qi) and µ′ = �
∑
i

pi · δ(si, q′i)

i.e., µ and µ′ differ only for the continuation states.
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Proof. Because of Assumption 4.5.1, there is only one component that can
generate a secret choice, and it generates only one such choice. Due to
the different possible interleavings, this choice can appear as an outgoing
transition in more than one state of the TPA, but the probabilities are
always the same, because the interleaving rule does not change them.

Given a system, each scheduler ζ determines a fully probabilistic au-
tomaton, and, as a consequence, the probabilities

Pζ (s, o) , Pζ
(⋃{

〈σ〉 | σ ∈ Paths?(S), tx(σ) = o, secr(σ) = s
})

for each secret s ∈ S and observable o ∈ Ox, where x ∈ {e, i, s}. Here secr
is the map from paths to their secret action. From these we can derive, in
standard ways, the marginal probabilities Pζ (s), Pζ (o), and the conditional
probabilities Pζ (o | s).

Every scheduler leads to a (generally different) noisy channel, whose
matrix is determined by the conditional probabilities as follows:

Definition 4.5.3. Let x ∈ {e, i, s}. Given a system and a scheduler ζ, the
corresponding channel matrix Cx

ζ has rows indexed by s ∈ S and columns
indexed by o ∈ Ox. The value in (s, o) is given by

Pζ (o | s) , Pζ (s, o)

Pζ (s)
.

Given a scheduler ζ, the multiplicative leakage can be defined as L×(Cx
ζ , Pζ),

while the additive leakage can be defined as L+(Cx
ζ , Pζ) where Pζ is the a

priori distribution on the set of secrets (see preliminaries, Section 4.2).
However, we want a notion of leakage independent from the scheduler, and
therefore it is natural to consider the worst case over all possible admissible
schedulers.

Definition 4.5.4 (x-leakage). Let x ∈ {e, i, s}. Given a system, the multi-
plicative leakage is defined as

MLx
× , max

ζ∈Adm
L×(Cx

ζ , Pζ),
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while the additive leakage is defined as

MLx
+ , max

ζ∈Adm
L+(Cx

ζ , Pζ),

where Adm is the class of admissible schedulers defined in the previous
section.

We have that the classes of observables e, i, and s determine an increas-
ing degree of leakage:

Proposition 4.5.5. Given a system, for the multiplicative leakage we have

1. For every scheduler ζ, L×(Ce
ζ , Pζ) ≤ L×(Ci

ζ , Pζ) ≤ L×(Cs
ζ , Pζ)

2. MLe
× ≤MLi

× ≤MLs
×

Similarly for the additive leakage.

Proof.

1. The property follows immediately from the fact that the domain Oe

is an abstraction of Oi, and Oi is an abstraction of Os.

2. Immediate from previous point and from the definition of MLx
× and

MLx
+.

4.5.3 Strong anonymity (revised)

We consider now the situation in which the leakage is the minimum for all
possible admissible schedules. In the purely probabilistic case, we know that
the minimum possible multiplicative leakage is 1, and the minimum possible
additive one is 0. We also know that this is the case for all possible input
distributions if and only if the capacity of the channel matrix is 0, which
corresponds to the case in which the rows of the matrix are all the same.
This corresponds to the notion of strong probabilistic anonymity defined
in [BP05]. In the framework of information flow, it would correspond to
probabilistic non-interference. Still in [BP05], the authors considered also
the extension of this notion in presence of nondeterminism, and required
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the condition to hold under all possible schedulers. This is too strong in
practice, as we have argued in the introduction: in most cases we can build
a scheduler that leaks the secret by changing the interleaving order. We
therefore tune this notion by requiring the condition to hold only under the
admissible schedulers.

Definition 4.5.6 (x-strongly anonymous). Let x ∈ {e, i, s}. We say that a
system is x-strongly-anonymous if for all admissible schedulers ζ we have

Pζ (o | s1) = Pζ (o | s2)

for all s1, s2 ∈ ΣS , and o ∈ Ox.

The following corollary is an immediate consequence of Proposition 4.5.5.

Corollary 4.5.7.

1. If a system is s-strongly-anonymous, then it is also i-strongly-anonymous.

2. If a system is i-strongly-anonymous, then it is also e-strongly-anonymous.

The converse of point (2), in the previous corollary, does not hold, as
shown by the following example:

Example 4.5.8. Consider the system S , ({c1, c2}) P ||Q ||T where

P , (0.5 : s1 . c1) + (0.5 : s2 . c2) Q , c1 . o T , c2 . o

It is easy to check that S is e-strongly anonymous but not i-strongly
anonymous, showing that (as expected) internal adversaries can “distin-
guish more” than external adversaries.

On the contrary, for point (1) of Corollary 4.5.7, also the other direction
holds:

Proposition 4.5.9. A system is s-strongly-anonymous if and only if it is
i-strongly-anonymous.
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Proof. Corollary 4.5.7 ensures the only-if part. For the if part, we proceed
by contradiction. Assume that the system is i-strongly-anonymous but
that Pζ (o | s1) 6= Pζ (o | s2) for some admissible scheduler ζ and observable
o ∈ Os. Let o = (enab(q̂), `1, sift(α1)) · · · (enab(qn), `n, sift(αn)) and let o′

be the projection of o on Oi, i.e. o′ = (`1, sift(α1)) · · · (`n, sift(αn)). Since
the system is i-strongly-anonymous, Pζ (o′ | s1) = Pζ (o′ | s2), which means
that the difference in probability with respect to o must be due to at least
one of the sets of enabled processes. Let us consider the first set L in o
which exhibits a difference in the probabilities, and let o′′ be the prefix of
o up to the tuple containing L. Since the probabilities are determined by
the distributions on the probabilistic choices which occur in the individual
components, the probability of each ` ∈ L to be available (given the trace
o′′) is independent of the other labels in L. At least one such ` must
therefore have a different probability, given the trace o′′, depending on
whether the secret choice was s1 or s2. And, because of the assumption on
L, we can replace the conditioning on trace o′′ with the conditioning on the
projection o′′′ of o′′ on Oi. Consider now an admissible scheduler ζ ′ that
acts like ζ up to o′′, and then selects ` if and only if it is available. Since
the probability that ` is not available depends on the choice of s1 or s2, we
have Pζ (o′′′ | s1) 6= Pζ (o′′′ | s2), which contradicts the hypothesis that the
system is i-strongly-anonymous.

Intuitively, this result means that an s-adversary can leak information
if and only if an i-adversary can leak information or, in other words, s-
adversaries are as powerful as i-adversaries (even when the former can ob-
serve more information).

4.6 Verifying strong anonymity: a proof technique
based on automorphisms

As mentioned in the introduction, several problems involving restricted
schedulers have been shown undecidable (including computing maximum
/ minimum probabilities for the case of standard model checking [GD07,
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Gir09]). These results are discouraging in the aim to find algorithms for
verifying strong anonymity/non-interference using our notion of admissible
schedulers (and most definitions based on restricted schedulers). Despite
the fact that the problem seems to be undecidable in general, in this sec-
tion we present a sufficient (but not necessary) anonymity proof technique:
we show that the existence of automorphisms between each pair of secrets
implies strong anonymity. We conclude this section illustrating the appli-
cability of our proof technique by means of the DC protocol, i.e., we prove
that the protocol does not leak information by constructing automorphisms
between pairs of cryptographers. It is worth mentioning that our proof tech-
nique is general enough to be used for the analysis of information leakage
of a broad family of protocols, namely any protocol that can be modeled
in our framework.

4.6.1 The proof technique

In practice proving anonymity often happens in the following way. Given a
trace in which user A is the ‘culprit’, we construct an observationally equiv-
alent trace in which user B is the ‘culprit’ [HO05, GHvRP05, MVdV04,
HK07c]. This new trace is typically obtained by ‘switching’ the behavior of
users A and B. We formalize this idea by using the notion of automorphism,
cf. e.g. [Rut00].

Definition 4.6.1 (Automorphism). Given a TPA (Q,L,Σ, q̂, θ) we say that
a bijection f : Q→ Q is an automorphism if it satisfies f(q̂) = q̂ and

q
`→ �
∑
i

pi · δ(αi, qi)⇐⇒ f(q)
`→ �
∑
i

pi · δ(αi, f(qi)).

In order to prove anonymity it is sufficient to prove that the behaviors
of any two ’culprits’ can be exchanged without the adversary noticing. We
will express this by means of the existence of automorphisms that exchange
a given pair of secret si and sj .

Before presenting the main theorem of this section we need to introduce
one last definition. Let S = (C) q1|| · · · || qn be a system and M its corre-
sponding TPA. We define Mτ as the automaton obtained after “hiding” all
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the secret actions of M . The idea is to replace every occurrence of a secret
s in M by the silent action τ . Note that this can be formalized by replacing
the secret choice by a blind choice in the corresponding component qi of
the system S.

We now formalize the relation between automorphisms and strong ano-
nymity. We will first show that the existence of automorphisms exchanging
pairs of secrets implies s-strong anonymity (Theorem 4.6.2). Then, we will
show that the converse does not hold, i.e. s-strongly-anonymous systems
are not necessarily automorphic (Example 4.6.3).

Theorem 4.6.2. Let S be a system satisfying Assumption 4.5.1 and M its
tagged probabilistic automaton. If for every pair of secrets si, sj ∈ ΣS there
exists an automorphism f of Mτ such that for any state q we have

q
`,si−→M q′ =⇒ f(q)

`,sj−→M f(q′), (4.2)

then S is s-strongly-anonymous.

Proof. Assume that for every pair of secrets si, sj we have an automorphism
f satisfying the hypothesis of the theorem. We have to show that, for every
admissible scheduler ζ we have:

∀ o∈Os : Pζ (o | s1) = Pζ (o | s2) .

We start by observing that for si, by Proposition 4.5.2, there exists a
unique pi such that, for all transitions q

l→ µ, if µ is a (probabilistic) secret
choice, then µ(si,−) = pi. Similarly for sj , there exists a unique pj such
that µ(sj ,−) = pj for all secret choices µ.

Let us now recall the definition of Pζ (o | s):

Pζ (o | s) , Pζ (o ∧ s)
Pζ (s)

where Pζ (o ∧ s) , Pζ ({π∈CPaths | ts(π)=o ∧ secr(π) = s}) with secr(π)
being the (either empty or singleton) sequence of secret actions of π, and
Pζ (s) , Pζ ({π∈CPaths | secr(π) = s}) .
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Note that, since a secret appears at most once on a complete path, we have:

Pζ (si) = Pζ
(
{π `,si−→ σ ∈ CPaths | π, σ}

)
=
∑
π
`,si−→qi∈Paths?

Pζ
(
π

`,si−→ qi

)
=
∑
last(π)

`→µ
µ secret choice

Pζ (π) · pi

and analogously

Pζ (sj) = Pζ
(
{π `,sj−→ σ ∈ CPaths | π, σ}

)
=
∑
π
`,sj−→qj∈Paths?

Pζ
(
π

`,sj−→ qj

)
=
∑
last(π)

`→µ
µ secret choice

Pζ (π) · pj

Let us now consider Pζ (o | si) and Pζ (o | sj). We have:

Pζ (o ∧ si) = Pζ
({
π

`,si−→ σ ∈ CPaths | ts(π `,si−→ σ) = o
})

=
∑
π

last(π)
`→µ

µ secret choice

Pζ (π) · pi ·
∑
σ

π
`,si−→σ∈Paths?

ts(π
`,si−→σ)=o∧last(te(σ))6=τ

Pζ (σ)

again using that a secret appears at most once on a complete path. More-
over, note that we have overloaded the notation Pζ by using it for different
measures when writing Pζ (σ), since σ need not start in the initial state q̂.
Analogously we have:

Pζ (o ∧ sj) = Pζ
({

π
`,sj−→ σ ∈ CPaths | ts(π

`,sj−→ σ) = o

})
=
∑
π

last(π)
`→µ

µ secret choice

Pζ (π) · pj ·
∑
σ

π
`,sj−→σ∈Paths?

ts(π
`,sj−→σ)=o∧last(te(σ)) 6=τ

Pζ (σ)
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Therefore, we derive

Pζ (o | si) =

∑
π

last(π)
`→µ

µ secret choice

∑
σ

π
`,si−→σ∈Paths?

ts(π
`,si−→σ)=o∧last(te(σ)) 6=τ

Pζ (π) · Pζ (σ)

∑
last(π)

`→µ
µ secret choice

Pζ (π)
(4.3)

Pζ (o | sj) =

∑
π

last(π)
`→µ

µ secret choice

∑
σ

π
`,sj−→σ∈Paths?

ts(π
`,sj−→σ)=o∧last(te(σ)) 6=τ

Pζ (π) · Pζ (σ)

∑
last(π)

`→µ
µ secret choice

Pζ (π)
(4.4)

Observe that the denominators of both formulae (4.3) and (4.4) are the
same. Also note that, since f is an automorphism, for every path π, f(π)
obtained by replacing each state in π with its image under f is also a
path. Moreover, since f satisfies (4.2), for every path π

`,si−→ σ we have that
f(π)

`,sj−→ f(σ) is also a path. Furthermore f induces a bijection between
the sets

{(π, σ) | last(π)
`′→ µ s.t. µ secret choice, π

`,si−→ σ ∈ Paths?

ts(π
`,si−→ σ) = o, last(te(σ)) 6= τ }, and

{(π, σ) | last(π)
`′→ µ s.t. µ secret choice, π

`,sj−→ σ ∈ Paths?

ts(π
`,sj−→ σ) = o, last(te(σ)) 6= τ }

given by (π, σ)↔ (f(π), f(σ)).
Finally, since ζ is admissible, ts(π) = ts(f(π)), and f is an automor-

phism, it is easy to prove by induction that Pζ (π) = Pζ (f(π)). Similarly,
Pζ (σ) = Pζ (f(σ)). Hence the numerators of (4.3) and (4.4) coincide which
concludes the proof.
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Note that, since s-strong anonymity implies i-strong anonymity and e-
strong anonymity, the existence of such an automorphism implies all the
notions of strong anonymity presented in this work. We now proceed to
show that the converse does not hold, i.e. strongly anonymous systems are
not necessarily automorphic.

Example 4.6.3. Consider the following (single component) system

0.5 : s1.(0.5 : (p : a+ (1−p) : b) + 0.5 : ((1−p) : a+ p : b))
+

0.5 : s2.(0.5 : (q : a+ (1−q) : b) + 0.5 : ((1−q) : a+ q : b))

It is easy to see that such system is s-strongly-anonymous, however if p 6= q
and p 6= 1− q there does not exist an automorphism for the pair of secrets
(s1, s2).

The following example demonstrates that our proof technique does not
carry over to systems whose components admit internal parallelism.

Example 4.6.4. Consider S , ({c1, c2}) r‖q‖ t, where

r , 0.5 : s1.c1 + 0.5 : s2.c2, q , c1.(a | b), t , c2.(a | b).

where q1|q2 represents the parallel composition of q1 and q2. It is easy to
show that there exists an automorphism for s1 and s2. However, admissible
schedulers are able to leak such secrets. This is due to the fact that compo-
nent r synchronizes with q and t on different channels, thus a scheduler of
S is not restricted to select the same transitions on the branches associated
to s1 and s2 (remember that schedulers can observe synchronization).

We now show that the definition of x-strong-anonymity is independent
of the particular distribution over secrets, i.e., if a system is x-strongly-
anonymous for a particular distribution over secrets, then it is x-strongly-
anonymous for all distributions over secrets. This result is useful because
it allows us to prove systems to be strongly anonymous even when their
distribution over secrets is not known.
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Theorem 4.6.5. Consider a system S = (C) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn. Let
qi be the component which contains the secret choice, and assume that it is
of the form

∑
j pj : sj . qj. Consider now the system S′ = (C) q1 ‖ · · · ‖

q′i ‖ · · · ‖ qn, where q′i is identical to qi except for the secret choice, which
is replaced by

∑
j p
′
j : sj . qj. Then we have that:

1. For every si, sj there is an automorphism on S satisfying the assump-
tion of Theorem 4.6.2 if and only if the same holds for S′.

2. S is x-strongly-anonymous if and only if S′ is x-strongly-anonymous.

Note: 1) does not imply 2), because in principle neither S not S′ may have
the automorphism, and still one of the two could be strongly anonymous.

Proof. We note that the PAs generated by S and S′ coincide except for the
probability distribution on the secret choices. Since the definition of auto-
morphism and the assumption of Theorem 4.6.2 do not depend on these
probability distributions, (1) is immediate. As for (2), we observe that x-
strong anonymity only depends on the conditional probabilities Pζ (o | s).
By looking at the proof of Theorem 4.6.2, we can see that in the com-
putation of Pζ (o | s) the probabilities on the secret choices (i.e. the pj ’s)
are eliminated. Namely Pζ (o | s) does not depend on the pj ’s, which means
that the value of the pj ’s has no influence on whether the system is x-strong
anonymous or not.

4.6.2 An Application: Dining Cryptographers

Now we show how to apply the proof technique presented in this section to
the Dining Cryptographers protocol. Concretely, we show that there exists
an automorphism f exchanging the behavior of the Crypt0 and Crypt1; by
symmetry, the same holds for the other two combinations.

Consider the automorphisms of Master and Coin1 indicated in Figure
4.5. The states that are not explicitly mapped (by a dotted arrow) are
mapped to themselves.
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Figure 4.5: Automorphism between Crypt0 and Crypt1

Also consider the identity automorphism on Crypti (for i = 0, 1, 2) and
on Coini (for i = 0, 2). It is easy to check that the product of these seven
automorphisms is an automorphism for Crypt0 and Crypt1.

4.7 Related Work

The problem of the full-information scheduler has already been extensively
investigated in literature. The works [CCK+06a] and [CCK+06b] consider
probabilistic automata and introduce a restriction on the scheduler to the
purpose of making them suitable to applications in security. Their ap-
proach is based on dividing the actions of each component of the system
in equivalence classes (tasks). The order of execution of different tasks is
decided in advance by a so-called task scheduler. The remaining nondeter-
minism within a task is resolved by a second scheduler, which models the
standard adversarial scheduler of the cryptographic community. This sec-
ond entity has limited knowledge about the other components: it sees only
the information that they communicate during execution. Their notion of
task scheduler is similar to our notion of admissible scheduler, but more
restricted since the strategy of the task scheduler is decided entirely before
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the execution of the system.
Another work along these lines is [dAHJ01], which uses partitions on

the state-space to obtain partial-information schedulers. However that work
considers a synchronous parallel composition, so the setting is rather dif-
ferent from ours.

The works in [CP10, CNP09] are similar to ours in spirit, but in a sense
dual from a technical point of view. Instead of defining a restriction on the
class of schedulers, they provide a way to specify that a choice is transparent
to the scheduler. They achieve this by introducing labels in process terms,
used to represent both the states of the execution tree and the next action or
step to be scheduled. They make two states indistinguishable to schedulers,
and hence the choice between them private, by associating to them the same
label. Furthermore, their “equivalence classes” (schedulable actions with
the same label) can change dynamically, because the same action can be
associated to different labels during the execution.

In [AAPvR10] we have extended the framework presented in this work
(by allowing internal nondeterminism and adding a second type of scheduler
to resolve it) with the aim of investigating angelic vs demonic nondetermin-
ism in equivalence-based properties.

The fact that full-information schedulers are unrealistic has also been
observed in fields other than security. With the aim to cope with gen-
eral properties (not only those concerning security), first attempts used
restricted schedulers in order to obtain rules for compositional reason-
ing [dAHJ01]. The justification for those restricted schedulers is the same
as for ours, namely, that not all information is available to all entities in
the system. Later on, it was shown that model checking is undecidable in
its general form for the kind of restricted schedulers presented in [dAHJ01].
See [GD07] and, more recently, [Gir09].

Finally, to the best of our knowledge, this is the first work using auto-
morphisms as a sound proof technique (in our case to prove strong anony-
mity and non-interference). The closest line of work we are aware of is in
the field of model checking. There, isomorphisms can be used to identify
symmetries in the system, and such symmetries can then be exploited to
alleviate the state space explosion (see for instance [KNP06]).



Chapter 5

Significant Diagnostic
Counterexample Generation

In this chapter, we present a novel technique for counterexam-
ple generation in probabilistic model checking of Markov Chains
and Markov Decision Processes. (Finite) paths in counterexam-
ples are grouped together in witnesses that are likely to provide
similar debugging information to the user. We list five prop-
erties that witnesses should satisfy in order to be useful as de-
bugging aid: similarity, accuracy, originality, significance, and
finiteness. Our witnesses contain paths that behave similarly
outside strongly connected components. Then, we show how to
compute these witnesses by reducing the problem of generating
counterexamples for general properties over Markov Decision
Processes, in several steps, to the easy problem of generating
counterexamples for reachability properties over acyclic Markov
Chains.

129
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5.1 Introduction

Model checking is an automated technique that, given a finite-state model
of a system and a property stated in an appropriate logical formalism,
systematically checks the validity of this property. Model checking is a
general approach and is applied in areas like hardware verification and
software engineering.

Nowadays, the interaction geometry of distributed systems and network
protocols calls for probabilistic, or more generally, quantitative estimates
of, e.g., performance and cost measures. Randomized algorithms are in-
creasingly utilized to achieve high performance at the cost of obtaining
correct answers only with high probability. For all this, there is a wide
range of models and applications in computer science requiring quantita-
tive analysis. Probabilistic model checking allows to check whether or not
a probabilistic property is satisfied in a given model, e.g., “Is every message
sent successfully received with probability greater or equal than 0.99?”.

A major strength of model checking is the possibility of generating di-
agnostic information in case the property is violated. This diagnostic in-
formation is provided through a counterexample showing an execution of
the model that invalidates the property under verification. Besides the
immediate feedback in model checking, counterexamples are also used in
abstraction-refinement techniques [CGJ+00], and provide the foundations
for schedule derivation (see, e.g., [BLR05, Feh02]).

Although counterexample generation was studied from the very begin-
ning in most model checking techniques, this has not been the case for
probabilistic model checking. Only recently [AHL05, And06, AL06, HK07a,
HK07b, AL09] attention was drawn to this subject,fifteen years after the
first studies on probabilistic model checking. Contrarily to other model
checking techniques, counterexamples in this setting are not given by a
single execution path. Instead, they are sets of executions of the system
satisfying a certain undesired property whose probability mass is higher
than a given bound. Since counterexamples are used as a diagnostic tool,
previous works on counterexamples have presented them as sets of finite
paths with probability large enough. We refer to these sets as represen-
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tative counterexamples. Elements of representative counterexamples with
high probability have been considered the most informative since they con-
tribute mostly to the property refutation.

A challenge in counterexample generation for probabilistic model check-
ing is that (1) representative counterexamples are very large (often infinite),
(2) many of its elements have very low probability (which implies that they
are very distant from the counterexample), and (3) that elements can be
extremely similar to each other (consequently providing similar diagnos-
tic information). Even worse, (4) sometimes the finite paths with highest
probability do not indicate the most likely violation of the property under
consideration.

For example, look at the Markov Chain D in Figure 5.1. The property
D |=≤0.5

♦ψ stating that execution reaches a state satisfying ψ (i.e., reaches
s3 or s4) with probability lower or equal than 0.5 is violated (since the
probability of reaching ψ is 1). The left hand side of table in Figure 5.2
lists finite paths reaching ψ ranked according to their probability. Note
that finite paths with highest probability take the left branch in the sys-
tem, whereas the right branch in itself has higher probability, illustrating
Problem 4. To adjust the model so that it does satisfy the property (bug
fixing), it is not sufficient to modify the left hand side of the system alone;
no matter how one changes the left hand side, the probability of reaching ψ
remains at least 0.6. Furthermore, the first six finite paths provide similar
diagnostic information: they just make extra loops in s1. This is an exam-
ple of Problem 3. Additionally, the probability of every single finite path
is far below the bound 0.5, making it unclear if a particular path is impor-
tant; see Problem 2 above. Finally, the (unique) counterexample for the
property D |=<1 ♦ψ consists of infinitely many finite paths (namely all finite
paths of D); see Problem 1. To overcome these problems, we partition a
representative counterexample into sets of finite paths that follow a similar
pattern. We call these sets witnesses. To ensure that witnesses provide
valuable diagnostic information, we desire that the set of witnesses that
form a counterexample satisfies several properties: two different witnesses
should provide different diagnostic information (solving Problem 3) and el-
ements of a single witness should provide similar diagnostic information,
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s0

s1 s2

s3

ψ

s4

ψ

0,5 0,99

0,4 0,6

0,5 0,01

Figure 5.1: Markov Chain

Single paths Witnesses

Rank F. Path Prob Witness Mass

1 s0(s1)1s3 0.2 [s0s2s4] 0.6
2 s0(s1)2s3 0.1 [s0s1s3] 0.4
3 s0(s1)3s3 0.05
4 s0(s1)4s3 0.025
5 s0(s1)5s3 0.0125
6 s0(s1)6s3 0.00625
7 s0(s2)1s4 0.006
8 s0(s2)2s4 0.0059
9 s0(s2)3s4 0.0058
...

...
...

Figure 5.2: Comparison Table

as a consequence witnesses have a high probability mass (solving Problems
2 and 4), and the number of witnesses of a representative counterexample
should be finite (solving Problem 1).

In our setting, witnesses consist of paths that behave the same outside
strongly connected components. In the example of Figure 5.1, there are
two witnesses: the set of all finite paths going right, represented by [s0s2s4]
whose probability (mass) is 0.6, and the set of all finite paths going left,
represented by [s0s1s3] with probability (mass) 0.4.

In this chapter, we show how to obtain such sets of witnesses for bounded
probabilistic LTL properties on Markov Decision Processes (MDP). In
fact, we first show how to reduce this problem to finding witnesses for up-
per bounded probabilistic reachability properties on discrete time Markov
Chains (MCs). The major technical matters lie on this last problem to
which most of the chapter is devoted.

In a nutshell, the process to find witnesses for the violation of D |=≤p ♦ψ,
with D being an MC, is as follows. We first eliminate from the original MC
all the “uninteresting” parts. This proceeds as the first steps of the model
checking process: make absorbing all states satisfying ψ, and all states that
cannot reach ψ, obtaining a new MC Dψ. Next reduce this last MC to an
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acyclic MC Ac(Dψ) in which all strongly connected components have been
conveniently abstracted with a single probabilistic transition. The original
and the acyclic MCs are related by a mapping that, to each finite path in
Ac(Dψ) (that we call rail), assigns a set of finite paths behaving similarly
in D (that we call torrent). This map preserves the probability of reaching
ψ and hence relates counterexamples in Ac(Dψ) to counterexamples in D.
Finally, counterexamples in Ac(Dψ) are computed by reducing the problem
to a k shortest path problem, as in [HK07a]. Because Ac(Dψ) is acyclic,
the complexity is lower than the corresponding problem in [HK07a].

It is worth mentioning that our technique can also be applied to pCTL
formulas without nested path quantifiers.

Looking ahead, Section 5.2 presents the necessary background on Markov
Chains (MC), Markov Decision Processes (MDP), and Linear Temporal
Logic (LTL). Section 5.3 presents the definition of counterexamples and
discusses the reduction from general LTL formulas to upper bounded prob-
abilistic reachability properties, and the extraction of the maximizing MC
in an MDP. Section 5.4 discusses desired properties of counterexamples. In
Sections 5.5 and 5.6 we introduce the fundamentals on rails and torrents,
the reduction of the original MC to the acyclic one, and our notion of signif-
icant diagnostic counterexamples. Section 5.7 then presents the techniques
to actually compute counterexamples. In Section 5.8 we discuss related
work and give final conclusions.

5.2 Preliminaries

We now recall the notions of Markov Decision Processes, Markov Chains,
and Linear Temporal Logic.

5.2.1 Markov Decision Processes

Markov Decision Processes (MDPs) constitute a formalism that combines
nondeterministic and probabilistic choices. They are an important model
in corporate finance, supply chain optimization, system verification and
optimization. There are many slightly different variants of this formalism



134 Chapter 5. Significant Diagnostic Counterexample Generation

such as action-labeled MDPs [Bel57, FV97], probabilistic automata [SL95,
SdV04]; we work with the state-labeled MDPs from [BdA95].

Definition 5.2.1. Let S be a finite set. A probability distribution on S is
a function p : S → [0, 1] such that

∑
s∈S p(s) = 1. We denote the set of

all probability distributions on S by Distr(S). Additionally, we define the
Dirac distribution on an element s ∈ S as 1s, i.e., 1s(s) = 1 and 1s(t) = 0
for all t ∈ S \ {s}.
Definition 5.2.2. A Markov Decision Process (MDP) is a quadrupleM =
(S, s0, L, τ), where

• S is the finite state space;

• s0 ∈ S is the initial state;

• L is a labeling function that associates to each state s ∈ S a set L(s)
of propositional variables that are valid in s;

• τ : S → ℘(Distr(S)) is a function that associates to each s ∈ S a
non-empty and finite subset of Distr(S) of probability distributions.

Definition 5.2.3. LetM = (S, s0, τ, L) be an MDP. We define a successor
relation δ ⊆ S × S by δ , {(s, t)|∃π ∈ τ(s) . π(t) > 0} and for each state
s∈S we define the sets

Paths(M, s) , {t0t1t2 . . . ∈ Sω|t0 = s ∧ ∀n ∈ N . δ(tn, tn+1)} and

Paths?(M, s) , {t0t1 . . . tn ∈ S?|t0 = s ∧ ∀ 0 ≤ i < n . δ(tn, tn+1)}

of paths of D and finite paths of D respectively beginning at s. We usually
omit M from the notation; we also abbreviate Paths(M, s0) as Paths(M)
and Paths?(M, s0) as Paths?(M). For ω ∈ Paths(s), we write the (n+1)-st
state of ω as ωn. As usual, we let Bs ⊆ ℘(Paths(s)) be the Borel σ-algebra on
the cones 〈t0 . . . tn〉 , {ω ∈ Paths(s)|ω0 = t0 ∧ . . .∧ωn = tn}. Additionally,
for a set of finite paths Λ ⊆ Paths?(s), we define 〈Λ〉 , ⋃σ∈Λ〈σ〉.

Figure 5.3 shows an MDP. Absorbing states (i.e., states s with τ(s) =
{1s}) are represented by double lines. This MDP features a single nonde-
terministic decision, to be made in state s0, namely π1 and π2.
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Figure 5.3: Markov Decision Process

Definition 5.2.4. Let M = (S, s0, τ, L) be an MDP, s ∈ S and A ⊆ S.
We define the sets of paths and finite paths reaching A from s as

Reach(M, s,A) , {ω ∈ Paths(M, s) | ∃i≥0.ωi ∈ A} and

Reach?(M, s,A) , {σ ∈ Paths?(M, s) | last(σ) ∈ A ∧ ∀i≤|σ|−1.σi 6∈ A}

respectively. Note that Reach?(M, s,A) consists of those finite paths σ
starting on s reaching A exactly once, at the end of the execution. It is
easy to check that these sets are prefix free, i.e. contain finite paths such
that none of them is a prefix of another one.

5.2.2 Schedulers

Schedulers (also called strategies, adversaries, or policies) resolve the non-
deterministic choices in an MDP [PZ93, Var85, BdA95].

Definition 5.2.5. Let M = (S, s0, τ, L) be an MDP. A scheduler η on
M is a function from Paths?(M) to Distr(℘(Distr(S))) such that for all
σ ∈ Paths?(M) we have η(σ) ∈ Distr(τ(last(σ))). We denote the set of all
schedulers on M by Sch(M).
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Note that our schedulers are randomized, i.e., in a finite path σ a sched-
uler chooses an element of τ(last(σ)) probabilistically. Under a scheduler
η, the probability that the next state reached after the path σ is t, equals∑

π∈τ(last(σ)) η(σ)(π) · π(t). In this way, a scheduler induces a probability
measure on Bs as usual.

Definition 5.2.6. Let M = (S, s0, τ, L) be an MDP and η a scheduler on
M. We define the probability measure Pη as the unique measure on Bs0
such that for all s0s1 . . . sn ∈ Paths?(M)

Pη(〈s0s1 . . . sn〉) =
n−1∏
i=0

∑
π∈τ(si)

η(s0s1 . . . si)(π) · π(si+1).

We now recall the notions of deterministic and memoryless schedulers.

Definition 5.2.7. Let M be an MDP and η a scheduler on M. We say
that η is deterministic if η(σ)(πi) is either 0 or 1 for all πi ∈ τ(last(σ)) and
all σ ∈ Paths?(M). We say that a scheduler is memoryless if for all finite
paths σ1, σ2 of M with last(σ1) = last(σ2) we have η(σ1) = η(σ2).

Definition 5.2.8. Let M be an MDP and ∆ ∈ Bs0 . Then the maximal
probability P+ and minimal probability P− of ∆ are defined by

P+(∆) , sup
η∈Sch(M)

Pη(∆) and P−(∆) , inf
η∈Sch(M)

Pη(∆).

A scheduler that attains P+(∆) or P−(∆) is called a maximizing or mini-
mizing scheduler respectively.

5.2.3 Markov Chains

A (discrete time) Markov Chain is an MDP associating exactly one prob-
ability distribution to each state. In this way nondeterministic choices are
no longer allowed.

Definition 5.2.9 (Markov Chain ). Let M = (S, s0, τ, L) be an MDP. If
|τ(s)| = 1 for all s ∈ S, then we say that M is a Markov Chain (MC).
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In order to simplify notation we represent probabilistic transitions on
MCs by means of a probabilistic matrix P instead of τ . Additionally, we
denote by PD,s the probability measure induced by a MC D with initial
state s and we abbreviate PD,s0 as PD .

5.2.4 Linear Temporal Logic

Linear temporal logic (LTL) [MP91] is a modal temporal logic with modal-
ities referring to time. In LTL is possible to encode formulas about the
future of paths: a condition will eventually be true, a condition will be true
until another fact becomes true, etc.

Definition 5.2.10. LTL is built up from the set of propositional variables
V, the logical connectives ¬, ∧, and a temporal modal operator by the
following grammar:

φ ::= V | ¬φ | φ ∧ φ | φUφ.

Using these operators we define ∨,→,♦, and � in the standard way.

Definition 5.2.11. Let M = (S, s0, τ, L) be an MDP. We define satisfia-
bility for paths ω in M, propositional variables v ∈ V, and LTL formulas
φ, γ inductively by

ω |=M v ⇔ v ∈ L(ω0) ω |=M φ ∧ γ ⇔ ω |=M φ and ω |=M γ
ω |=M ¬φ ⇔ not(ω |=M φ) ω |=M φUγ ⇔ ∃i≥0.ω↓i |=M γ and

∀0≤j<i.ω↓j |=M φ

where ω↓i is the i-th suffix of ω. When confusion is unlikely, we omit the
subscript M on the satisfiability relation.

Definition 5.2.12. Let M be an MDP. We define the language SatM(φ)
associated to an LTL formula φ as the set of paths satisfying φ, i.e. SatM(φ)
, {ω ∈ Paths(M) | ω |= φ}. Here we also generally omit the subscript M.

We now define satisfiability of an LTL formula φ on an MDPM. We say
thatM satisfies φ with probability at most p (M |=≤p φ) if the probability
of getting an execution satisfying φ is at most p.
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Definition 5.2.13. Let M be an MDP, φ an LTL formula and p ∈ [0, 1].
We define |=≤p and |=≥p by

M |=≤p φ⇔ P+(Sat(φ)) ≤ p,
M |=≥p φ⇔ P−(Sat(φ)) ≥ p.

We define M |=<p φ and M |=>p φ in a similar way. In case the MDP
is fully probabilistic, i.e., an MC, the satisfiability problem is reduced to
M |=./p φ⇔ PM(Sat(φ)) ./ p, where ./∈ {<,≤, >,≥}.

5.3 Counterexamples

In this section, we define what counterexamples are and how the problem of
finding counterexamples to a general LTL property over Markov Decision
Processes reduces to finding counterexamples to reachability problems over
Markov Chains.

Definition 5.3.1 (Counterexamples). Let M be an MDP and φ an LTL
formula. A counterexample to M |=≤p φ is a measurable set C ⊆ Sat(φ)
such that P+(C) > p. Counterexamples to M |=<p φ are defined similarly.

Counterexamples toM |=>p φ andM |=≥p φ cannot be defined straight-
forwardly as it is always possible to find a set C ⊆ Sat(φ) such that
P−(C) ≤ p or P−(C) < p, note that the empty set trivially satisfies it.
Therefore, the best way to find counterexamples to lower bounded proba-
bilities is to find counterexamples to the dual properties M |=<1−p¬φ and
M |=≤1−p¬φ. That is, while for upper bounded probabilities, a counterex-
ample is a set of paths satisfying the property with mass probability beyond
the bound, for lower bounded probabilities the counterexample is a set of
paths that does not satisfy the property with sufficient probability.

Example 5.3.1. 5.3.1 Consider the MDP M of Figure 5.4 and the LTL
formula ♦v. It is easy to check that M 6|=<1 ♦v. The set C = Sat(♦v) =
{ρ∈Paths(s0)|∃i≥0.ρ= s0(s1)i(s4)ω} ∪ {ρ∈Paths(s0)|∃i≥0.ρ= s0(s3)i(s5)ω}
is a counterexample. Note that Pη(C) = 1 where η is any deterministic
scheduler on M satisfying η(s0) = π1.
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LTL formulas are actually checked by
reducing the model checking problem to
a reachability problem [dAKM97]. For
checking upper bounded probabilities, the
LTL formula is translated into an equiv-
alent deterministic Rabin automaton and
composed with the MDP under verifica-
tion. On the obtained MDP, the set of
states forming accepting end components
(SCC that traps accepting conditions with
probability 1) are identified. The maxi-
mum probability of the LTL property on
the original MDP is the same as the max-
imum probability of reaching a state of an
accepting end component in the final MDP. Hence, from now on we will fo-
cus on counterexamples to properties of the formM |=≤p ♦ψ orM |=<p ♦ψ,
where ψ is a propositional formula, i.e., a formula without temporal oper-
ators.

In the following, it will be useful to identify the set of states in which a
propositional property is valid.

Definition 5.3.2. Let M be an MDP. We define the state language
SatM(ψ) associated to a propositional formula ψ as the set of states sat-
isfying ψ, i.e., SatM(ψ) , {s ∈ S | s |= ψ}, where |= has the obvious
satisfaction meaning for states. As usual, we generally omit the subscript
M.

We will show now that, in order to find a counterexample to a property
in an MDP with respect to an upper bound, it suffices to find a counterex-
ample for the MC induced by the maximizing scheduler. The maximizing
scheduler turns out to be deterministic and memoryless [BdA95]; conse-
quently the induced Markov Chain can be easily extracted from the MDP
as follows.

Definition 5.3.3. LetM = (S, s0, τ, L) be an MDP and η a deterministic
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memoryless scheduler. Then we define the MC induced by η as Mη =
(S, s0,Pη, L) where Pη(s, t) = (η(s))(t) for all s, t ∈ S.

Now we state that finding counterexamples to upper bounded proba-
bilistic reachability LTL properties on MDPs can be reduced to finding
counterexamples to upper bounded probabilistic reachability LTL proper-
ties on MCs.

Theorem 5.3.4. Let M be an MDP, ψ a propositional formula and p ∈
[0, 1]. Then, there is a maximizing (deterministic memoryless) scheduler η
such that M |=≤p ♦ψ ⇔ Mη |=≤p ♦ψ. Moreover, if C is a counterexample
to Mη |=≤p ♦ψ then C is also a counterexample to M |=≤p ♦ψ.

Note that η can be computed by solving a linear minimization problem
[BdA95]. See Section 5.7.1.

5.4 Representative Counterexamples, Partitions
and Witnesses

The notion of counterexample from Definition 5.3.1 is very broad: just an
arbitrary (measurable) set of paths with high enough mass probability. To
be useful as a debugging tool (and in fact to be able to present the coun-
terexample to a user), we need counterexamples with specific properties.
We will partition counterexamples (or rather, representative counterexam-
ples) in witnesses and list five informal properties that we consider valuable
in order to increase the quality of witnesses as a debugging tool.

We first note that for reachability properties it is sufficient to consider
counterexamples that consist of finite paths.

Definition 5.4.1 (Representative counterexamples). Let M be an MDP,
ψ a propositional formula and p ∈ [0, 1]. A representative counterexample
to M |=≤p ♦ψ is a set C ⊆ Reach?(M, Sat(ψ)) such that P+(〈C〉) > p.
We denote the set of all representative counterexamples to M |=≤p ♦ψ by
R(M, p, ψ).
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Observation 5.4.1. LetM be an MDP, ψ a propositional formula and p ∈
[0, 1]. If C is a representative counterexample to M |=≤p ♦ψ, then 〈C〉 is a
counterexample toM |=≤p ♦ψ. Furthermore, there exists a counterexample
toM |=≤p ♦ψ if and only if there exists a representative counterexample to
M |=≤p ♦ψ.

Following [HK07a], we present the notions of minimum counterexample,
strongest evidence and most indicative counterexamples.

Definition 5.4.2 (Minimum counterexample). LetD be an MC, ψ a propo-
sitional formula and p ∈ [0, 1]. We say that C ∈ R(D, p, ψ) is a minimum
counterexample if |C| ≤ |C′|, for all C′ ∈ R(D, p, ψ).

Definition 5.4.3 (Strongest evidence). Let D be an MC, ψ a proposi-
tional formula and p ∈ [0, 1]. A strongest evidence to D 6|=≤p ♦ψ is a
finite path σ ∈ Reach?(D,Sat(ψ)) such that PD(〈σ〉) ≥ PD(〈ρ〉), for all
ρ ∈ Reach?(D,Sat(ψ)).

Definition 5.4.4 (Most indicative counterexample). Let D be an MC, ψ
a propositional formula and p ∈ [0, 1]. We call C ∈ R(D, p, ψ) a most
indicative counterexample if it is minimum and PD(〈C〉) ≥ PD(〈C′〉), for all
minimum counterexamples C′ ∈ R(D, p, ψ).

Unfortunately, very often most indicative counterexamples are very
large (even infinite), many of its elements have insignificant measure and el-
ements can be extremely similar to each other (consequently providing the
same diagnostic information). Even worse, sometimes the finite paths with
highest probability do not exhibit the way in which the system accumu-
lates higher probability to reach the undesired property (and consequently
where an error occurs with higher probability). For these reasons, we are
of the opinion that representative counterexamples are still too general in
order to be useful as feedback information. We approach this problem by
refining a representative counterexample into sets of finite paths following
a “similarity” criteria (introduced in Section 5.5). These sets are called
witnesses of the counterexample.
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Recall that a set Y of nonempty sets is a partition of X if the elements of
Y cover X and are pairwise disjoint. We define counterexample partitions
in the following way.

Definition 5.4.5 (Counterexample partitions and witnesses). Let M be
an MDP, ψ a propositional formula, p ∈ [0, 1], and C a representative coun-
terexample toM |=≤p ♦ψ. A counterexample partition WC is a partition of
C. We call the elements of WC witnesses.

Since not every partition generates useful witnesses (from the debugging
perspective), we now state five informal properties that we consider valuable
in order to improve the diagnostic information provided by witnesses. In
Section 5.7 we show how to partition the representative counterexample in
order to obtain witnesses satisfying most of these properties.

Similarity: Elements of a witness should provide similar debugging
information.

Accuracy: Witnesses with higher probability should exhibit evolu-
tions of the system with higher probability of containing errors.

Originality: Different witnesses should provide different debugging
information.

Significance: Witnesses should be as closed to the counterexample
as possible (their mass probability should be as closed as possible to
the bound p).

Finiteness: The number of witnesses of a counterexample partition
should be finite.

5.5 Rails and Torrents

As argued before we consider that representative counterexamples are ex-
cessively general to be useful as feedback information. Therefore, we group
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finite paths of a representative counterexample in witnesses if they are “sim-
ilar enough”. We will consider finite paths that behave the same outside
SCCs of the system as providing similar feedback information.

In order to formalize this idea, we first reduce the original MC D to
an acyclic MC preserving reachability probabilities. We do so by removing
all SCCs K of D keeping just input states of K. In this way, we get a new
acyclic MC denoted by Ac(D). The probability matrix of the Markov Chain
relates input states of each SCC to its output states with the reachability
probability between these states inD. Secondly, we establish a map between
finite paths σ in Ac(D) (rails) and sets of paths Wσ in D (torrents). Each
torrent contains finite paths that are similar, i.e., behave the same outside
SCCs. We conclude the section showing that the probability of σ is equal
to the mass probability of Wσ.

Reduction to Acyclic Markov Chains

Consider an MC D = (S, s0,P, L). Recall that a subset K ⊆ S is called
strongly connected if for every s, t ∈ K there is a finite path from s to t.
Additionally K is called a strongly connected component (SCC) if it is a
maximally (with respect to ⊆) strongly connected subset of S.

Note that every state is a member of exactly one SCC of D; even those
states that are not involved in cycles, since the trivial finite path s connects
s to itself. We call trivial strongly connected components to the SCCs con-
taining absorbing states or states not involved in cycles (note that trivial
SCCs are composed by one single state). From now on we let SCC? be the
set of non trivial strongly connected components of an MC.

A Markov Chain is called acyclic if it contains only trivial SCCs. Note
that an acyclic Markov Chain still has absorbing states.

Definition 5.5.1 (Input and Output states). Let D = (S, s0,P, L) be an
MC. Then, for each SCC? K of D, we define the sets InpK ⊆ S of all states in
K that have an incoming transition from a state outside of K and OutK ⊆ S
of all states outside of K that have an incoming transition from a state of
K in the following way
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InpK , {t ∈ K | ∃ s ∈ S \ K .P(s, t) > 0},
OutK , {s ∈ S \ K | ∃ t ∈ K .P(t, s) > 0}.

We also define for each SCC? K an MC related to K as DK , (K∪OutK, sK,
PK, LK) where sK is any state in InpK, LK(s) , L(s), and PK(s, t) is equal
to P(s, t) if s ∈ K and equal to 1s otherwise. Additionally, for every state
s involved in non trivial SCCs we define SCC+

s as DK, where K is the SCC?

of D such that s ∈ K.

Now we are able to define an acyclic MC Ac(D) related to D.

Definition 5.5.2. Let D = (S, s0,P, L) be a MC. We define Ac(D) ,
(S′, s0,P ′, L′) where

• S′ ,
Scom︷ ︸︸ ︷

S \
⋃

K∈SCC?
K
⋃ Sinp︷ ︸︸ ︷⋃

K∈SCC?
InpK,

• L′ , L|S′ ,

• P ′(s, t) ,


P(s, t) if s ∈ Scom,
PD,s(Reach(SCC+

s , s, {t})) if s ∈ Sinp ∧ t ∈ OutSCC+
s
,

1s if s ∈ Sinp ∧ OutSCC+
s

= ∅,
0 otherwise.

Note that Ac(D) is indeed acyclic.

Example 5.5.1. Consider the MC D of Figure 5.5(a). The strongly con-
nected components of D are K1 , {s1, s3, s4, s7}, K2 , {s5, s6, s8} and the
singletons {s0}, {s2}, {s9}, {s10}, {s11}, {s12}, {s13}, and {s14}. The input
states of K1 are InpK1

= {s1} and its output states are OutK1 = {s9, s10}.
For K2, InpK2

= {s5, s6} and OutK2 = {s11, s14}. The reduced acyclic MC
of D is shown in Figure 5.5(b).
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Figure 5.5:

Rails and Torrents

We now relate (finite) paths in Ac(D) (rails) to sets of paths in D (torrents).

Definition 5.5.3 (Rails). LetD be an MC. A finite path σ ∈ Paths?(Ac(D))
will be called a rail of D.

Consider a rail σ, i.e., a finite path of Ac(D). We will use σ to represent
those paths ω of D that behave “similar to” σ outside SCCs of D. Naively,
this means that σ is a subsequence of ω. There are two technical subtleties
to deal with: every input state in σ must be the first state in its SCC in ω
(freshness) and every SCC visited by ω must be also visited by σ (inertia)
(see Definition 5.5.5). We need these extra conditions to make sure that no
path ω behaves “similar to” two distinct rails (see Lemma 5.5.7).

Recall that given a finite sequence σ and a (possible infinite) sequence
ω, we say that σ is a subsequence of ω, denoted by σ v ω, if and only if there
exists a strictly increasing function f : {0, 1, . . . , |σ|−1} → {0, 1, . . . , |ω|−1}
such that ∀0≤i<|σ|.σi = ωf(i). If ω is an infinite sequence, we interpret the
codomain of f as N. In case f is such a function we write σ vf ω.

Definition 5.5.4. Let D = (S, s0,P, L) be an MC. On S we consider the
equivalence relation ∼D satisfying s ∼D t if and only if s and t are in the
same strongly connected component. Again, we usually omit the subscript
D from the notation.
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The following definition refines the notion of subsequence, taking care
of the two technical subtleties noted above.

Definition 5.5.5. Let D = (S, s0,P, L) be an MC, ω a (finite) path of D,
and σ ∈ Paths?(Ac(D)) a finite path of Ac(D). Then we write σ � ω if
there exists f : {0, 1, . . . , |σ| − 1} → N such that σ vf ω and

∀0≤j<f(i) : ωf(i) 6∼ ωj ; for all i = 0, 1, . . . |σ| − 1, {Freshness property}
∀f(i)<j<f(i+1) : ωf(i) ∼ ωj ; for all i = 0, 1, . . . |σ| − 2. {Inertia property}

In case f is such a function we write σ �f ω.

Example 5.5.2. Let D = (S, s0,P, L) be the MC of Figure 5.5(a) and
take σ = s0s2s6s14. Then for all i ∈ N we have σ �fi ωi where ωi =
s0s2s6(s5s8s6)is14 and fi(0) , 0, fi(1) , 1, fi(2) , 2, and fi(3) , 3 + 3i.
Additionally, σ 6� s0s2s5s8s6s14 since for all f satisfying σ vf s0s2s5s8s6s14

we must have f(2) = 5; this implies that f does not satisfy the freshness
property. Finally, note that σ 6� s0s2s6s11s14 since for all f satisfying
σ vf s0s2s6s11s14 we must have f(2) = 2; this implies that f does not
satisfy the inertia property.

We now give the formal definition of torrents.

Definition 5.5.6 (Torrents). Let D = (S, s0,P, L) be an MC and σ a
sequence of states in S. We define the function Torr by

Torr(D, σ) , {ω ∈ Paths(D) | σ � ω}.

We call Torr(D, σ) the torrent associated to σ.

We now show that torrents are disjoint (Lemma 5.5.7) and that the
probability of a rail is equal to the probability of its associated torrent
(Theorem 5.5.10). For this last result, we first show that torrents can be
represented as the disjoint union of cones of finite paths. We call these
finite paths generators of the torrent (Definition 5.5.8).
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Lemma 5.5.7. Let D be an MC. For every σ, ρ ∈ Paths?(Ac(D)) we have

σ 6= ρ⇒ Torr(D, σ) ∩ Torr(D, ρ) = ∅.

Definition 5.5.8 (Torrent Generators). Let D be an MC. Then we define
for every rail σ ∈ Paths?(Ac(D)) the set

TorrGen(D, σ) , {ρ ∈ Paths?(D) | ∃f : σ �f ρ ∧ f(|σ| − 1) = |ρ| − 1}.

In the example from the Introduction (see Figure 5.1), s0s1s3 and s0s2s4

are rails. Their associated torrents are, respectively, {s0s
n
1s
ω
3 | n ∈ N∗} and

{s0s
n
2s
ω
4 | n ∈ N∗} (note that s3 and s4 are absorbing states), i.e. the paths

going left and the paths going right. The generators of the first torrent are
{s0s

n
1s3 | n ∈ N∗} and similarly for the second torrent.

Lemma 5.5.9. Let D be an MC and σ ∈ Paths?(Ac(D)) a rail of D. Then
we have

Torr(D, σ) =
⊎

ρ∈TorrGen(D,σ)

〈ρ〉.

Proof. The proof is by cases on the length of σ. We prove the result for the
cases on which σ is of the form σts, with t an input state and s an output
state, the other cases are simpler. In order to proof this lemma, we define
(for each σst of the above form) the following set of finite paths

∆σts , {ρ tail(π) | ρ ∈ TorrGen(σt) and π ∈ Paths?(SCC+
t , t, {s})} (5.1)

Checking that Torr(D, σ) =
⊎
ρ∈∆σts

〈ρ〉 is straightforward. We now
focus on proving that

∆σst = TorrGen(D, σ). (5.2)

For that purpose we need the following two observations.

Observation 5.5.3. Let D be a MC. Since Ac(D) is acyclic we have
σi 6∼ σj for every σ ∈ Paths?(Ac(D)) and i 6= j (with the exception of
absorbing states).
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Observation 5.5.4. Let σ, ω and f be such that σ �f ω. Then ∀i : ∃j :
ωi ∼ σj . This follows from σ vf ω and the inertia property.

We now proceed to prove that ∆σst = TorrGen(D, σ).

( ⊇ ) Let ρ0ρ1 · · · ρk ∈ TorrGen(σts) and nt the lowest subindex of ρ
such that ρnt = t. Take ρ , ρ0ρ1 · · · ρnt and π , ρnt · · · ρk (Note that
ρ0ρ1 · · · ρk = ρ tail(π)). In order to prove that ρ0ρ1 · · · ρk ∈ ∆σts we need to
prove that

(1) ρ ∈ TorrGen(σt), and

(2) π ∈ Paths?(SCC+
t , t, {s}).

(1) Let f be such that σts �f ρ0ρ1 · · · ρk and f(|σts| − 1) = k. Take
g : {0, 1, . . . , |σt| − 1} → N be the restriction of f . It is easy to check
that σt �g ρ. Additionally f(|σt| − 1) = nt (otherwise f would not
satisfy the freshness property for i = |σt| − 1). Then, by definition of
g, we have g(|σt| − 1) = nt.

(2) It is clear that π is a path from t to s. Therefore we only have to show
that every state of π is in SCC+

t . By definition of SCC+
t , π0 = t ∈

SCC+
t and s ∈ SCC+

t since s ∈ OutSCC+
t

. Additionally, since f satisfies

inertia property we have that ∀f(|σt|−1)<j<f(|σts|−1) : ρf(|σt|−1) ∼ ρj ,

since f(|σt| − 1) = nt and π , ρnt · · · ρk we have ∀0<j<|π|−1 : t ∼ πj
proving that πj ∈ SCC+

t for j ∈ {1, · · · , |π| − 2}.

( ⊆ ) Take ρ ∈ TorrGen(σt) and tail(π) ∈ Paths?(SCC+
t , t, {s}). In order

to prove that ρ tail(π) ∈ TorrGen(σts) we need to show that there exists a
function g such that:

(1) σts �g ρ tail(π),

(2) g(|σts| − 1) = |ρ tail(π)| − 1.

Since ρ ∈ TorrGen(σt) we know that there exists f be such that σt �f ρ
and f(|σt| − 1) = |ρ| − 1. We define g : {0, 1, . . . , |σts| − 1} → {0, 1, . . . ,
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|ρ tail(π)| − 1} by

g(i) ,

{
f(i) if i < |σts| − 1,
|ρ tail(π)| − 1 if i = |σts| − 1.

(1) It is easy to check that σts vg ρ tail(π). Now we will show that g
satisfies Freshness and Inertia properties.

Freshness property: We need to show that for all 0 ≤ i < |σts| we have
∀0≤j<g(i) : ρ tail(π)g(i) 6∼ ρ tail(π)j . For the cases i ∈ {0, . . . , |σt| − 1}
this holds since σt �f ρ and definition of g.

Consider i = |σts| − 1, in this case we have to prove ∀0≤j<|ρ tail(π)|−1 :
ρ tail(π)|ρ tail(π)|−1) 6∼ ρ tail(π)j or equivalently ∀0≤j<|ρ tail(π)|−1 : s 6∼
ρ tail(π)j .

Case j ∈ {|ρ|, . . . |ρ tail(π)| − 1}.
From π ∈ Paths?(SCC+

t , t, {s}) and s ∈ Out+

SCC+
t

it is easy to see

∀0≤j<| tail(π)|−1 : s 6∼ tail(π)j
Case j ∈ {0, . . . , |ρ| − 1}.

From σts ∈ Paths?(Ac(D)) and Observation 5.5.3 we have that
∀0≤j<|σt|−1 : s 6∼ σtj . Additionally, σt �f ρ and definition of
g and Observation 5.5.4 imply ∀0≤j<|ρ| : s 6∼ ρj or equivalently
∀0≤j<|ρ| : s 6∼ ρ tail(π)j .

Inertia property: Since π ∈ Paths?(SCC+
t , t, {s}) we have ∀0≤j<|π|−1 :

t ∼ πj which implies that ∀|ρ|−1<j<|ρ tail(π)|−1 : ρ tail(π)|ρ|−1 ∼ ρ tail(π)j
or equivalently ∀g(|σ|−1)<j<g(|σs|−1) : ρ tail(π)g(|ρ|−1) ∼ ρ tail(π)j show-
ing that g satisfies the inertia property.

(2) Follows from the definition of g.

Theorem 5.5.10. Let D be an MC. Then for every rail σ ∈ Paths?(Ac(D))
we have

P
Ac(D)

(〈σ〉) = PD(Torr(D, σ)).
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Proof. By induction on the structure of σ.

Base Case: Note that PAc(D)(〈s0〉) = PAc(D)(Paths(Ac(D), s0)) = 1 , and

similarly 1 = PD(Paths(D, s0)) = PD(Torr(s0)).

Inductive Step: Let t be such that last(σ) = t. Suppose that t ∈ SCom and
denote by Ac(P) to the probability matrix of Ac(D). Then

PAc(D)(〈σs〉)
= PAc(D)(〈σ〉) · Ac(P)(t, s)

= PD(Torr(σ)) · P(t, s)
{Inductive Hypothesis and definition of P}

= PD(
⊎
ρ∈TorrGen(σ)〈ρ〉) · P(t, s) {Lem. 5.5.9}

=
∑

ρ∈TorrGen(σ) PD(〈ρ〉) · PD(〈ts〉)
=

∑
ρ∈TorrGen(σ) PD(〈ρ tail(ts)〉)

=
∑

ρ∈TorrGen(σs) PD(〈ρ〉)
= PD(

⊎
ρ∈TorrGen(σs)〈ρ〉)

= PD(Torr(σs)) {Lem. 5.5.9}
Now suppose that t ∈ SInp, then

P
Ac(D)

(〈σs〉)
= P

Ac(D)
(〈σ〉) · Ac(P)(t, s)

= PD(Torr(σ)) · Ac(P)(t, s) {HI}
= PD(

⊎
ρ∈TorrGen(σ)〈ρ〉) · Ac(P)(t, s) {Lem. 5.5.9}

=
(∑

ρ∈TorrGen(σ) PD(〈ρ〉)
)
· Ac(P)(t, s)

=
∑

ρ∈TorrGen(σ) PD(〈ρ〉) · PD,t(Paths(SCC+
t , t, {s}))

{By definition of Ac(P) and distributivity}
=

∑
ρ∈TorrGen(σ) PD(〈ρ〉) ·∑π∈Paths?(SCC+

t ,t,{s})
PD,t(〈π〉)

=
∑

ρ∈TorrGen(σ),π∈Paths?(SCC+
t ,t,{s})

PD(〈ρ tail(π)〉) {Dfn. P}
=

∑
ρ∈∆σs

PD(〈ρ〉) {(5.1)}
=

∑
ρ∈TorrGen(σs) PD(〈ρ〉) {(5.2)}

= PD(
⊎
ρ∈TorrGen(σs)〈ρ〉)

= PD(Torr(σs))
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5.6 Significant Diagnostic Counterexamples

So far we have formalized the notion of paths behaving similarly (i.e., be-
having the same outside SCCs) in an MC D by removing all SCC of D, ob-
taining Ac(D). A representative counterexample to Ac(D) |=≤p ♦ψ gives rise
to a representative counterexample to D |=≤p ♦ψ in the following way: for
every finite path σ in the representative counterexample to Ac(D) |=≤p ♦ψ
the set TorrGen(D, σ) is a witness, then we obtain the desired representative
counterexample to D |=≤p ♦ψ by taking the union of these witnesses.

Before giving a formal definition, there is still one technical issue to
resolve: we need to be sure that by removing SCCs we are not discarding
useful information. Because torrents are built from rails, we need to make
sure that when we discard SCCs, we do not discard rails that reach ψ.

We achieve this by first making states satisfying ψ absorbing. Addi-
tionally, we make absorbing states from which it is not possible to reach ψ.
Note that this does not affect counterexamples.

Definition 5.6.1. Let D = (S, s0,P, L) be an MC and ψ a propositional
formula. We define the MC Dψ , (S, s0,Pψ, L), with

Pψ(s, t) ,


1 if s 6∈ Sat♦(ψ) ∧ s = t,
1 if s ∈ Sat(ψ) ∧ s = t,
P(s, t) if s ∈ Sat♦(ψ)− Sat(ψ),
0 otherwise,

where Sat♦(ψ) , {s ∈ S | PD,s(Reach(D, s,Sat(ψ))) > 0} is the set of states
reaching ψ in D.

The following theorem shows the relation between paths, finite paths,
and probabilities of D, Dψ, and Ac(Dψ). Most importantly, the probability
of a rail σ (in Ac(Dψ)) is equal to the probability of its associated torrent
(in D) (item 5 below) and the probability of ♦ψ is not affected by reducing
D to Ac(Dψ) (item 6 below).

Note that a rail σ is always a finite path in Ac(Dψ), but that we can
talk about its associated torrent Torr(Dψ, σ) in Dψ and about its associated
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torrent Torr(D, σ) in D. The former exists for technical convenience; it is
the latter that we are ultimately interested in. The following theorem also
shows that for our purposes, viz. the definition of the generators of the
torrent and the probability of the torrent, there is no difference (items 3
and 4 below).

Corollary 5.6.1. Let D = (S, s0,P, L) be an MC and ψ a propositional
formula. Then for every σ ∈ Paths?(Dψ)

1. Reach?(Dψ, s0, Sat(ψ)) = Reach?(D, s0,Sat(ψ)),

2. PDψ (〈σ〉) = PD(〈σ〉),

3. TorrGen(Dψ, σ) = TorrGen(D, σ),

4. PDψ (Torr(Dψ, σ)) = PD(Torr(D, σ)),

5. P
Ac(Dψ)

(〈σ〉) = PD(Torr(D, σ)),

6. Ac(Dψ) |=≤p ♦ψ if and only if D |=≤p ♦ψ, for any p ∈ [0, 1].

Definition 5.6.2 (Torrent-Counterexamples). Let D = (S, s0,P, L) be an
MC, ψ a propositional formula, and p ∈ [0, 1] such that D 6|=≤p ♦ψ. Let C
be a representative counterexample to Ac(Dψ) |=≤p ♦ψ. We define the set

TorRepCount(C) , {TorrGen(D, σ) | σ ∈ C}.

We call the set TorRepCount(C) a torrent-counterexample of C. Note that
this set is a partition of a representative counterexample to D |=≤p ♦ψ. Ad-
ditionally, we denote byRt(D, p, ψ) to the set of all torrent-counterexamples
to D |=≤p ♦ψ, i.e., {TorRepCount(C) | C ∈ R(Ac(D), p, ψ)}.

Theorem 5.6.3. Let D = (S, s0,P, L) be an MC, ψ a propositional for-
mula, and p ∈ [0, 1] such that D 6|=≤p ♦ψ. Take C a representative counterex-
ample to Ac(Dψ) |=≤p ♦ψ. Then the set of finite paths

⊎
W∈TorRepCount(C)W

is a representative counterexample to D |=≤p ♦ψ.
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Note that for each σ ∈ C we get a witness TorrGen(D, σ). Also note that
the number of rails is finite, so there are also only finitely many witnesses.

Following [HK07a], we extend the notions of minimum counterexamples
and strongest evidence.

Definition 5.6.4 (Minimum torrent-counterexample). Let D be an MC,
ψ a propositional formula and p ∈ [0, 1]. We say that Ct ∈ Rt(D, p, ψ) is a
minimum torrent-counterexample if |Ct| ≤ |C′t|, for all C′t ∈ Rt(D, p, ψ).

Definition 5.6.5 (Strongest torrent-evidence). Let D be an MC, ψ a
propositional formula and p ∈ [0, 1]. A strongest torrent-evidence toD 6|=≤p ♦ψ
is a torrent Torr(D, σ) such that σ ∈ Paths?(Ac(Dψ)) and PD(Torr(D, σ))
≥ PD(Torr(D, ρ)) for all ρ ∈ Paths?(Ac(Dψ)).

Now we define our notion of significant diagnostic counterexamples. It
is the generalization of most indicative counterexample from [HK07a] to
our setting.

Definition 5.6.6 (Most indicative torrent-counterexample). Let D be an
MC, ψ a propositional formula and p ∈ [0, 1]. We say that Ct ∈ Rt(D, p, ψ)
is a most indicative torrent-counterexample if it is a minimum torrent-
counterexample and P(

⋃
T∈Ct〈T 〉) ≥ P(

⋃
T∈C′t
〈T 〉) for all minimum torrent-

counterexamples C′t ∈ Rt(D, p, ψ).

Note that in our setting, as in [HK07a], a minimal torrent-counterexample
C consists of the |C| strongest torrent-evidences.

By Theorem 5.6.3 it is possible to obtain strongest torrent-evidence and
most indicative torrent-counterexamples of an MC D by obtaining strongest
evidence and most indicative counterexamples of Ac(Dψ) respectively.

5.7 Computing Counterexamples

In this section we show how to compute most indicative torrent-counterexamples.
We also discuss what information to present to the user: how to present
witnesses and how to deal with overly large strongly connected components.
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5.7.1 Maximizing Schedulers

The calculation of the maximal probability on a reachability problem can
be performed by solving a linear minimization problem [BdA95, dA97].
This minimization problem is defined on a system of inequalities that has a
variable xi for each different state si and an inequality

∑
j π(sj) ·xj ≤ xi for

each distribution π ∈ τ(si). The maximizing (deterministic memoryless)
scheduler η can be easily extracted out of such system of inequalities after
obtaining the solution. If p0, . . . , pn are the values that minimize

∑
i xi in

the previous system, then η is such that, for all si, η(si) = π whenever∑
j π(sj) · pj = pi. In the following we denote Psi [♦ψ] , xi.

5.7.2 Computing most indicative torrent-counterexamples

We divide the computation of most indicative torrent-counterexamples to
M |=≤p ♦ψ in three stages: pre-processing, SCC analysis, and searching.

Pre-processing stage. We first modify the original MC D by making
all states in Sat(ψ) ∪ S \ Sat♦(ψ) absorbing. In this way we obtain the MC
Dψ from Definition 5.6.1. Note that we do not have to spend additional
computational resources to compute this set, since Sat♦(ψ) = {s ∈ S |
Ps[♦ψ] > 0} and hence all required data is already available from the LTL
model checking phase.

SCC analysis stage. We remove all SCCs K of Dψ keeping just input
states of K, getting the acyclic MC Ac(Dψ) according to Definition 5.5.2.

To compute this, we first need to find the SCCs of Dψ. There exists sev-
eral well known algorithms to achieve this: Kosaraju’s, Tarjan’s, Gabow’s
algorithms (among others). We also have to compute the reachability prob-
ability from input states to output states of every SCC. This can be done
by using steady-state analysis techniques [Cas93].

Searching stage. To find most indicative torrent-counterexamples in D,
we find most indicative counterexamples in Ac(Dψ). For this we use the
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same approach as [HK07a], turning the MC into a weighted digraph to
replace the problem of finding the finite path with highest probability by a
shortest path problem. The nodes of the digraph are the states of the MC
and there is an edge between s and t if P(s, t) > 0. The weight of such an
edge is − log(P(s, t)).

Finding the most indicative counterexample in Ac(Dψ) is now reduced
to finding k shortest paths. As explained in [HK07a], our algorithm has to
compute k on the fly. Eppstein’s algorithm [Epp98] produces the k shortest
paths in general in O(m+n log n+k), where m is the number of nodes and
n the number of edges. In our case, since Ac(Dψ) is acyclic, the complexity
decreases to O(m+ k).

5.7.3 Debugging issues

Representative finite paths. What we have computed so far is a most
indicative counterexample to Ac(Dψ) |=≤p ♦ψ. This is a finite set of rails,
i.e., a finite set of paths in Ac(Dψ). Each of these paths σ represents a
witness TorrGen(D, σ). Note that this witness itself has usually infinitely
many elements.

In practice, one has to display a witness to the user. The obvious way
would be to show the user the rail σ. This, however, may be confusing to
the user as σ is not a finite path of the original Markov Decision Process.
Instead of presenting the user with σ, we therefore show the user the finite
path of TorrGen(D, σ) with highest probability.

Definition 5.7.1. Let D be an MC, and σ ∈ Paths?(Ac(Dψ)) a rail of D.
We define the representant of Torr(D, σ) as

repTorr (D, σ) = repTorr

 ⊎
ρ∈TorrGen(D,σ)

〈ρ〉

 , arg max
ρ∈TorrGen(D,σ)

P(〈ρ〉)

Note that given repTorr (D, σ) one can easily recover σ. Therefore, no
information is lost by presenting torrents as one of its generators instead of
as a rail.
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Figure 5.6:

Expanding SCC. Note that in the Preprocessing
stage, we reduced the size of many SCCs of the system
(and likely even completely removed some) by making
states in Sat(ψ)∪S \Sat♦(ψ) absorbing. However, It is
possible that the system still contains some very large
strongly connected components. In that case, a single
witness could have a very large probability mass and
one could argue that the information presented to the user is not detailed
enough. For instance, consider the Markov Chain of Figure 5.6 in which
there is a single large SCC with input state t and output state u.

The most indicative torrent-counterexample to the property D |=≤0.9
♦ψ

is simply {TorrGen(stu)}, i.e., a single witness with probability mass 1 asso-
ciated to the rail stu. Although this may seem uninformative, we argue that
it is more informative than listing several paths of the form st · · ·u with
probability summing up to, say, 0.91. Our single witness counterexample
suggests that the outgoing transition to a state not reaching ψ was simply
forgotten in the design; the listing of paths still allows the possibility that
one of the probabilities in the whole system is simply wrong.

Nevertheless, if the user needs more information to tackle bugs inside
SCCs, note that there is more information available at this point. In par-
ticular, for every strongly connected component K, every input state s of K
(even for every state in K), and every output state t of K, the probability
of reaching t from s is already available from the computation of Ac(Dψ)
during the SCC analysis stage of Section 5.7.2.

5.8 Related Work

Recently, some work has been done on counterexample generation tech-
niques for different variants of probabilistic models (Discrete Markov Chains
and Continue Markov Chains ) [AHL05, AL06, HK07a, HK07b]. In our ter-
minology, these works consider witnesses consisting of a single finite path.
We have already discussed in the Introduction that the single path ap-
proach does not meet the properties of accuracy, originality, significance,



5.8. Related Work 157

and finiteness.
Instead, our witness/torrent approach provides a high level of abstrac-

tion of a counterexample. By grouping together finite paths that behave
the same outside strongly connected components in a single witness, we
can achieve these properties to a higher extent. Behaving the same outside
strongly connected components is a reasonable way of formalizing the con-
cept of providing similar debugging information. This grouping also makes
witnesses significantly different from each other: each witness comes from
a different rail and each rail provides a different way to reach the undesired
property. Then each witness provides original information. Of course, our
witnesses are more significant than single finite paths, because they are
sets of finite paths. This also gives us more accuracy than the approach
with single finite paths, as a collection of finite paths behaving the same
and reaching an undesired condition with high probability is more likely to
show how the system reaches this condition than just a single path. Finally,
because there is a finite number of rails, there is also a finite number of
witnesses.

Another key difference of our work with respect to previous ones is
that our technique allows us to generate counterexamples for probabilistic
systems with nondeterminism. However, an independent and concurrent
study of counterexample generation for MDPs was carried out by Aljazzar
and Leue [AL09]. There, the authors consider generating counterexamples
for a fragment of pCTL, namely upper bounded formulas without nested
temporal operators. The authors present three methods for generating
counterexamples and study conditions under which these methods are suit-
able.

More recently, Schmalz et al. also investigated quantitative counterex-
ample generation for LTL formulas [SVV09]. In qualitative probabilistic
model checking, a counterexample is presented as a pair (α, γ), where α
and γ are finite words such that all paths that extend α and have infinitely
many occurrences of γ violate the property under consideration. In quan-
titative probabilistic model checking, a counterexample is presented as a
pair (W,R), where W is a set of such finite words α and R is a set of such
finite words γ.
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Similar SCC reduction techniques to the one presented in this paper
have been studied for different purposes. In [lGM02], the authors focus on
the problem of software testing. They use Markov chains to model soft-
ware behaviour and SCC analysis to decompose the state space of large
Markov chains. More recently, Ábrahám et al. presented a model checker
for Markov chains based on the detection and abstraction of strongly con-
nected components [ÁJW+10]. Their algorithm has the advantage of of-
fering abstract counterexamples, which can be interactively refined by the
user.

Finally, the problem of presenting counterexamples as single paths has
also been observed by Han, Katoen, and Damman [DHK08, HKD09]. There,
the authors propose to use regular expressions to group paths together.
Thus, in the same way that we group together paths behaving the same
outside SCC, they group together paths associated to the same regular ex-
pression.

For a more extensive survey on quantitative counterexample generation
for (both discrete and continuous time) Markov chains we refer the reader
to chapters 3, 4, and 5 of [Han09].



Chapter 6

Interactive Systems and
Equivalences for Security

In this overview chapter we briefly discuss extensions to the
frameworks presented in Chapters 3 and 41. First, we consider
the case in which secrets and observables interact (in contrast
with the situation in Chapter 3), and show that it is still possi-
ble to define an information-theoretic notion of leakage, provided
that we consider a more complex notion of channel, known in
literature as channel with memory and feedback. Second, we
extend the systems proposed in Chapter 4 by allowing nondeter-
minism also internally to the components. Correspondingly, we
define a richer notion of admissible scheduler suitable and we
use it for defining notion of process equivalences relating to non-
determinism in a more flexible way than the standard ones in
the literature. In particular, we use these equivalences for defin-
ing notions of anonymity robust with respect to implementation
refinement.

1For more information about the topics discussed in this chapter we refer the reader
to [AAP10a, AAP11, AAP10b, AAPvR10].

159
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6.1 Interactive Information Flow

In this section we discuss the applicability of the information-theoretic
approach to interactive systems. These systems were already considered
in [DJGP02]. In that paper the authors proposed to define the matrix
elements P(b | a) as the measure of the traces with (secret, observable)-
projection (a, b), divided by the measure of the trace with secret projection
a. This follows the definition of conditional probability in terms of joint
and marginal probability. However, this approach does not lead to an
information-theoretic channel. In fact, (by definition) a channel should be
invariant with respect to the input distribution and such construction is
not (as shown by Example 3.7.3).

In [AAP10a] and more recently in [AAP11], we consider an extension
of the theory of channels which makes the information-theoretic approach
applicable also the case of interactive systems. It turns out that a richer
notion of channel, known in Information Theory as channels with memory
and feedback, serves our purposes. The dependence of inputs on previous
outputs corresponds to feedback, and the dependence of outputs on previ-
ous inputs and outputs corresponds to memory.

Let us explain more in detail the difference with the classical approach.
In non-interactive systems, since the secrets always precede the observables,
it is possible to group the sequence of secrets (and observables) in a single
secret (respectively. observable) string. If we consider only one activation
of the system, or if each use of the system is independent from the other,
then we can model it as a discrete classical channel (memoryless, and with-
out feedback) from a single input string to a single output string. When
we have interactive systems, however, inputs and outputs may interleave
and influence each other. Considering some sort of feedback in the channel
is a way to capture this richer behavior. Secrets have a causal influence on
observables via the channel, and, in the presence of interactivity, observ-
ables have a causal influence on secrets via the feedback. This alternating
mutual influence between inputs and outputs can be modeled by repeated
uses of the channels. However, each time the channel is used it represents
a different state of the computation, and the conditional probabilities of
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observables on secrets can depend on this state. The addition of memory
to the model allows expressing the dependency of the channel matrix on
such a state (which, as we will see, can also be represented by the history
of inputs and outputs).

Recent results in Information Theory [TM09] have shown that, in chan-
nels with memory and feedback, the transmission rate does not correspond
to the maximum mutual information (capacity), but rather to the maxi-
mum of the so-called directed information. Intuitively, this is due to the
fact that mutual information expresses the correlation between the input
and the output, and therefore it includes feedback. However, the feedback,
i.e the way the output influences the next input, should not be considered
part of the information transmitted. Directed information is essentially
mutual information minus the dependence of the next input on previous
output. We propose to adopt directed information and the corresponding
notion of directed capacity to represent leakage.

Our extension is a generalization of the classical model, in the sense
that it can represent both interactive and non-interactive systems. One
important feature of the classical approach is that the choice of secrets is
seen as external to the system, i.e. determined by the environment. This
implies that the probability distribution on the secrets (input distribution)
constitutes the a priori knowledge and does not count as leakage. In order
to encompass the classical approach, in our extended model we should
preserve this principle, and the most natural way is to consider the secret
choices, at every stage of the computation, as external. Their probability
distributions, which are now in general conditional probability distributions
(depending on the history of secrets and observables) should be considered
as part of the external knowledge, and should not be counted as leakage.

A second contribution of [AAP10a] and [AAP11] is the proof that the
channel capacity is a continuous function of the Kantorovich metric on in-
teractive systems. This was pointed out also in [DJGP02], however their
construction does not work in our case due to the fact (as far as we under-
stand) it assumes that the probability of a secret action (in any point of
the computation) is different from 0. This assumption is not guaranteed in
our case and therefore we had to come out with a different reasoning. The
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fact that our proof does not need this assumption shows that the intuition
of [DJGP02] concerning the continuity of capacity is valid in general.

6.1.1 Applications

Interactive systems can be found in a variety of disparate areas such as game
theory, auction protocols, and zero-knowledge proofs. We now present two
examples of interactive systems.

• In the area of auction protocols, consider the cocaine auction protocol
[SA99]. The auction is organized as a succession of rounds of bidding.
Round i starts with the seller announcing the bid price bi for that
round. Buyers have t seconds to make an offer (i.e. to say yes,
meaning “I am willing to buy at the current bid price bi”). As soon
as one buyer says yes, he becomes the winner wi of that round and
a new round begins. If nobody says anything for t seconds, round i
is concluded by timeout and the auction is won by the winner wi−1

of the previous round. The identities of the buyers in each round
constitute the input of the channel, whereas the bid prices constitute
the output of the channel. Note that inputs and outputs alternate
so the system is interactive. It is also easy to see that inputs depend
on past outputs (feedback): the identity of the winner of each round
depends on the previous bid prices. Furthermore, outputs depend on
the previous inputs (memory): (in some scenarios) the bid price of
round i may depend on the identity of previous winners. For more
details on the modeling of this protocol using channels with memory
and feedback see [AAP11].

• In the area of game theory, consider the classic prisoner’s dilemma
(the present formulation is due to Albert W. Tucker [Pou92], but it
was originally devised by Merrill Flood and Melvin Dresher in 1950).
Two suspects are arrested by the police. The police have insufficient
evidence for a conviction, and, having separated both prisoners, visit
each of them to offer the same deal. If one testifies (defects from the
other) for the prosecution against the other and the other remains
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silent (cooperates with the other), the betrayer goes free and the silent
accomplice receives the full 10-year sentence. If both remain silent,
both prisoners are sentenced to only six months in jail for a minor
charge. If each betrays the other, each receives a five-year sentence.
Each prisoner must choose to betray the other or to remain silent.
Each one is assured that the other would not know about the betrayal
before the end of the investigation. In the iterated prisoner’s dilemma,
the game is played repeatedly. Thus each player has an opportunity
to punish the other player for previous non-cooperative play. In this
case the strategy (cooperate or defect) of each player is the input of
the channel and the sentence is the output. Once again, it is easy
to see that the system is interactive: inputs and outputs alternate.
Furthermore, inputs depend on previous outputs (the strategy depend
on the past sentences) and outputs depend on previous inputs (the
sentence of the suspects depend on their declarations - cooperate or
defect).

6.2 Nondeterminism and Information Flow

The noise of channel matrices, i.e. the similarity between the rows of
the channel matrix, helps preventing the inference of the secret from the
observables. In practice noise is created by using randomization, see for
instance the DCNet [Cha88] and the Crowds [RR98] protocols.

In the literature about the foundations of Computer Security, however,
the quantitative aspects are often abstracted away, and probabilistic be-
havior is replaced by nondeterministic behavior. Correspondingly, there
have been various approaches in which information-hiding properties are
expressed in terms of equivalences based on nondeterminism, especially in
a concurrent setting. For instance, [SS96] defines anonymity as follows2: A
protocol S is anonymous if, for every pair of culprits a and b, S[a/x] and
S[b/x] produce the same observable traces. A similar definition is given in
[AG99] for secrecy, with the difference that S[a/x] and S[b/x] are required to

2The actual definition of [SS96] is more complicated, but the spirit is the same.
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be bisimilar. In [DKR09], an electoral system S preserves the confidential-
ity of the vote if for any voters v and w, the observable behavior of S is the
same if we swap the votes of v and w. Namely, S[a/v |b /w] ∼ S[b/v |a /w],
where ∼ represents bisimilarity.

These proposals are based on the implicit assumption that all the non-
deterministic executions present in the specification of S will always be pos-
sible under every implementation of S. Or at least, that the adversary will
believe so. In concurrency, however, as argued in [CNP09], nondeterminism
has a rather different meaning: if a specification S contains some nonde-
terministic alternatives, typically it is because we want to abstract from
specific implementations, such as the scheduling policy. A specification is
considered correct, with respect to some property, if every alternative satis-
fies the property. Correspondingly, an implementation is considered correct
if all executions are among those possible in the specification, i.e. if the
implementation is a refinement of the specification. There is no expecta-
tion that the implementation will actually make possible all the alternatives
indicated by the specification.

We argue that the use of nondeterminism in concurrency corresponds
to a demonic view: the scheduler, i.e. the entity that will decide which
alternative to select, may try to choose the worst alternative. Hence we
need to make sure that “all alternatives are good”, i.e. satisfy the intended
property. In the above mentioned approaches to the formalization of se-
curity properties, on the contrary, the interpretation of nondeterminism is
angelic: the scheduler is expected to actually help the protocol to confuse
the adversary and thus protect the secret information.

There is another issue, orthogonal to the angelic/demonic dichotomy,
but relevant for the achievement of security properties: the scheduler should
not be able to make its choices dependent on the secret, or else nearly every
protocol would be insecure, i.e. the scheduler would always be able to leak
the secret to an external observer (for instance by producing different inter-
leavings of the observables, depending on the secret). This remark has been
made several times already, and several approaches have been proposed to
cope with the problem of the “almighty” scheduler (aka omniscient, clair-
voyant, etc.), see for example [CCK+06a, GD07, CNP09, APvRS11, CP10].
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The risk of a naive use of nondeterminism to specify a security property,
is not only that it may rely on an implicit assumption that the scheduler
behaves angelically, but also that it is clairvoyant, i.e. that it peeks at the
secrets (that it is not supposed to be able to see) to achieve its angelic
strategy.

Consider the following system, in a CCS-like syntax:

S
def
= (c, out)(A ‖ Corr ‖ H1 ‖ H2),

with A
def
= c〈sec〉 ,Corr

def
= c(s).out〈s〉, H1

def
= c(s).out〈a〉, H2

def
= c(s).out〈b〉

and where ‖ is the parallel operator, c〈sec〉 is a process that sends sec on
channel c, c(s).P is a process that receives s on channel c and then continues
as P , and (c, out) is the restriction operator, enforcing synchronization on
c and out . In this example, sec represents a secret information.

It is easy to see that we have S [a/sec] ∼ S
[
b/sec

]
. Note that, in order to

simulate the third branch in S [a/sec], the process S
[
b/sec

]
needs to select

its first branch. Viceversa, in order to simulate the third branch in S
[
b/sec

]
,

the process S [a/sec] needs to select its second branch. This means that, in
order to achieve bisimulation, the scheduler needs to know the secret, and
change its choice accordingly.

This example shows a system that intuitively is not secure, because
the third component, Corr , reveals whatever secret it receives. However,
according to the equivalence-based notions of security discussed above, it
is secure. But it is secure thanks to a scheduler that angelically helps
the system to protect the secret, and it does so by making its choices
dependent on the secret! In our opinion these assumptions on the scheduler
are excessively strong.

In a recent work [AAPvR10] we address the above issue by defining
a framework in which it is possible to combine both angelic and demonic
nondeterminism in a setting in which also probabilistic behavior may be
present, and in a context in which the scheduler is restricted (i.e. not
clairvoyant). We propose safe versions of typical equivalence relations
(traces and bisimulation), and we show how to use them to characterize
information-hiding properties.





Chapter 7

Conclusion

In this chapter we summarize the main contributions of this
thesis and discuss further directions.

7.1 Contributions

The goal of this thesis is to develop a formal framework for specifying, ana-
lyzing and verifying anonymity protocols and, more in general, information
hiding protocols.

As discussed in the Introduction, conditional probabilities are a key
concept in assessing the degree of information protection. In Chapter 2, we
have extended the probabilistic temporal logic pCTL to cpCTL, in which
it is possible to express conditional probabilities. We have also proved
that optimal scheduling decisions can always be reached by a deterministic
and semi history-independent scheduler. This fundamental result, allowed
us to define an algorithm to verify cpCTL formulas. Our algorithm first
reduces the MDP to an acyclic MDP and then computes optimal conditional
probabilities in the acyclic MDP. In addition, we have defined a notion
of counterexample for conditional formulas and sketched an algorithm for
counterexample generation.

We then turned our attention to more practical grounds. In Chapter
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3, we have addressed the problem of computing the information leakage of
a system in an efficient way. We have proposed two methods: one based
on reachability techniques and the other based on quantitative counterex-
ample generation. In addition, we have shown that when the automaton
is interactive it is not possible to define its channel in the standard way.
An intriguing problem is how to extend the notion of channel so to capture
the dynamic nature of interaction. In Chapter 6 we have briefly discussed
how to solve this problem by using more complex information theoretic
channels, namely channels with history and feedback.

In Chapter 4, we have attacked a well known problem of concurrent
information-hiding protocols, namely full-information scheduling. To over-
come this problem, we have defined a class of partial-information schedulers
which can only base their decisions on the information that they have avail-
able. In particular they cannot base their decisions on the internal behavior
of the components. We have used admissible schedulers to resolve nonde-
terminism in a realistic way, and to revise some anonymity definitions from
the literature. In addition, we have presented a technique to prove the var-
ious definitions of anonymity proposed in the chapter. This is particularly
interesting considering that many problems related to restricted schedulers
have been shown to be undecidable. We have illustrated the applicability of
our proof technique by proving that the well-known DC protocol is anony-
mous when considering admissible schedulers, in contrast to the situation
when considering full-information schedulers.

The last major contribution of this thesis is a novel technique for rep-
resenting and computing counterexamples for nondeterministic and prob-
abilistic systems. In Chapter 5, we have shown how to carefully partition
a counterexample in sets of paths. These sets are intended to provide in-
formation related to the violation of the property under consideration, so
we call them witnesses. Five properties that witnesses should satisfy (in
order to provide significant debugging information) are identified in this
chapter. The key contribution of this chapter is a technique based on
strongly connected component analysis that makes it possible to partition
counterexamples into witnesses satisfying the desired properties.
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7.2 Further directions

There are several ways of extending the work presented in this thesis.

As we have shown in Chapter 2, the most important issue when com-
puting conditional probabilities is that optimizing schedulers are not de-
termined by the local structure of the system. As a consequence, it is not
possible to reduce the problem of verifying cpCTL to a linear optimization
problem (as it is the case with pCTL). A natural question arising from this
observation, is whether the problem of model checking conditional proba-
bilities is inherently exponential or not. We believe that it is; however we
are of the idea that it is also possible to find suitable restrictions (either
to the formulas or to the systems under consideration) that would make it
possible to model check conditional probabilities in polynomial time.

In a more practical matter, counterexample generation for probabilistic
model checking is nowadays a very hot topic for which several applications
in the most diverse areas have been identified. During the last few years,
many techniques have been proposed for different flavours of logics and
models. However, to the best of our knowledge, no practical tool to au-
tomatically generate quantitative counterexamples has been implemented.
We believe that such a practical tool could be a significant contribution
to the field. More concretely, we believe that a tool implementing the
regular-expression and k-shortest path techniques introduced by Han et al.
in combination with the SCC analysis techniques presented in this thesis
would be of great value.

In Chapter 2, we have made a connection between quantitative coun-
terexample generation and information leakage computation. Thanks to
this connection, such a tool would also allow us to compute / approximate
leakage of large scale protocols. Furthermore, it would make it possible to
investigate in more depth how the debugging information provided by the
tool can be used to identify flaws of the protocol causing high leakage.

Finally, as for most definitions of partial-information schedulers from
the literature, our notions of admissible schedulers may raise undecidability
issues. Thus, it would be interesting to investigate whether the notions of
anonymity proposed in Chapter 4 are actually verifiable (remember that
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the proof technique we proposed is sufficient but not necessary). Another
interesting direction for future work is to adapt well known isomorphism-
checking algorithms and tolls to our setting in order to automatically verify
some anonymity properties.
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Samenvatting

Terwijl we het digitale tijdperk ingaan zijn er immer groeiende zorgen
over de hoeveelheid digitale data die over ons verzameld wordt. Websites
houden vaak het browse-gedrag van mensen bij, ziektenkostenverzekeraars
verzamelen medische gegegevens en smartphones en navigatiesystemen ver-
sturen informatie die het mogelijk maakt de fysieke locatie van hun gebruik-
ers te bepalen. Hierdoor staan anonimiteit, en privacy in het algemeen,
steeds meer op het spel. Anonimiteitsprotocollen proberen iets tegen deze
tendens te doen door anonieme communicatie over het Internet mogelijk
te maken. Om de correctheid van dergelijke protocollen, die vaak extreem
complex zijn, te garanderen, is een degelijk framework vereist waarin anon-
imiteitseigenschappen kunnen worden uitgedrukt en geanalyseerd. Formele
methoden voorzien in een verzameling wiskundige technieken die het mo-
gelijk maken anonimiteitseigenschappen rigoreus te specificeren en te ver-
ifiëren.

Dit proefschrift gaat over de grondslagen van formele methoden voor
toepassingen in computerbeveiliging en in het bijzonder anonimiteit. Con-
creet, we ontwikkelen frameworks om anonimiteitseigenschappen te specifi-
ceren en algoritmen om ze te verifiëren. Omdat in de praktijk anonimiteit-
sprotocollen altijd wat informatie lekken, leggen we de focus op quanti-
tatieve eigenschappen die de mate van gelekte informatie van een protocol
beschrijven.

We beginnen het onderzoek naar anonimiteit vanuit de basis, namelijk
voorwaardelijke kansen. Dit zijn de sleutelingrediënten van de meeste quan-
titatieve anonimiteitsprotocollen. In Hoofdstuk 2 prenteren we cpCTL,
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de eerste temporele logica waarin voorwaardelijke kansen kunnen worden
uitgedrukt. We presenteren ook een algoritme om cpCTL formules te ver-
ifiëren met een modelchecker. Samen met een modelchecker maakt deze
logica het mogelijk om quantitatieve anomimiteitseigenschappen van com-
plexe systemen waarin zowel probabilistisch als nondeterministisch gedrag
voorkomt te specificeren en verifiëren.

Vervolgens gaan we meer de praktijk in: de constructie van algorit-
men die de mate van het lekken van informatie meten. Om preciezer te
zijn, Hoofdstuk 3 beschrijft polynomiale algoritmen om de (informatie-
theoretische) information leakage te quantificeren voor verscheidene soorten
volledig probabilistische protocllen (d.w.z., protocollen zonder nondeter-
ministisch gedrag). The technieken uit dit hoofdstuk zijn de eerste die
het mogelijk maken de informatie leakage voor interactieve protocollen te
berekenen.

In Hoofdstuk 4 behandelen we een bekend probleem in gedistribueerde
anonimiteitsprotocollen, namelijk schedulers met volledige informatie. Om
dit probleem op te lossen stellen we een alternatieve definitie van sched-
uler voor, samen met nieuwe definities voor anonomiteit (variërend met
de capaciteiten van de aanvaller) en herzien de bekende definitie van sterke
anonimiteit uit de literatuur. Bovendien laten we een techniek zien waarmee
gecontroleerd kan worden of een gedistribueerd protocol aan enkele van deze
definities voldoet.

In Hoofdstuk 5 laten we op tegenvoorbeelden gebaseerde technieken zien
die het mogelijk maken complexe systemen te debuggen. Dit maakt het mo-
gelijk fouten in security protocollen op te sporen. Tenslotte, in Hoofdstuk
6, beschrijven we kort uitbreidingen van de frameworks en technieken uit
Hoofdstukken 3 en 4.
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N. Trčka. Silent Steps in Transi-
tion Systems and Markov Chains.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2007-10

J.A.R. Noppen. Imperfect In-
formation in Software Development
Processes. Faculty of Electrical



Engineering, Mathematics & Com-
puter Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical
Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System
Behaviour in Time. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Im-
proving the Quality of Modeling: A
Series of Empirical Studies about
the UML. Faculty of Mathemat-
ics and Computer Science, TU/e.
2007-14

T. van der Storm. Component-
based Configuration, Integration
and Delivery. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evo-
lution of Software Architectures.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TUD. 2007-16

A.H.J. Mathijssen. Logical Cal-
culi for Reasoning with Binding.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-17

D. Jarnikov. QoS framework
for Video Streaming in Home Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2007-18

M. A. Abam. New Data Struc-
tures and Algorithms for Mobile
Data. Faculty of Mathematics and
Computer Science, TU/e. 2007-19

W. Pieters. La Volonté Machi-
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