INTRODUCTION OF STATISTICS IN OPTIMIZATION

Fabien Teytaud
Under the supervision of
Marc Schoenauer and Olivier Teytaud

OUTLINE

- Evolutionary Optimization
 - Problem
 - State Of The Art Algorithms
 - Contributions
- Multistage Optimization
 - > Problem
 - State Of The Art Algorithms
 - Contributions
- > Conclusion

OUTLINE

- Evolutionary Optimization
 - > Problem
 - State Of The Art Algorithms
 - Contributions
- Multistage Optimization
 - > Problem
 - > State Of The Art Algorithms
 - Contributions
- Conclusion

EVOLUTIONARY OPTIMIZATION

- Data :
 - \triangleright Search space Ω (set of possible solutions)
 - Objective function (quality criterion)
- Goal:
 - > Find the best solution (according to the objective function)
- Formally:
 - ightharpoonup Consider $\mathcal{F}:\Omega
 ightharpoonup \mathbb{R}$
 - \rightarrow Find $x^* \in \Omega / x^* = ArgMax(\mathcal{F})$
- Additional properties
 - > Black-box optimization
 - ightharpoonup Continuous ($\Omega \subset \mathbb{R}^N \to \text{Evolution Strategy})$

OUTLINE

- Evolutionary Optimization
 - > Problem
 - > State Of The Art Algorithms
 - Contributions
- Multistage Optimization
 - > Problem
 - State Of The Art Algorithms
 - Contributions
- Conclusion

EVOLUTION STRATEGIES

[RECHENBERG, 73],[SCHWEFEL, 74]

 $y \in \mathbb{R}^d$ represents the current search point λ is the population size $C \in \mathbb{R}^{d^*d}$ is the covariance matrix $\sigma \in \mathbb{R}_+$ is the step-size

EVOLUTION STRATEGIES

```
Initialize y, \sigma, C
While (we have time)
\{ x_i = y + \sigma \, Ni(0,C) \quad \text{for } i = 1, ..., \lambda \\ \text{Evaluate all offspring } x_i \, (\text{compute } \mathcal{F}(x_i) \, \text{for } i = 1, ..., \lambda \, ) \\ \text{Update } y, \, \sigma, \, C \\ \}
Updating \, y: \, y = \sum_{i=1}^{\mu} w_i x_i \quad \Rightarrow \, (\mu/\mu, \lambda) \text{-ES}
```

IMPORTANCE OF UPDATING σ

Scale invariant : $\sigma = \alpha ||x||$

Importance of a dynamic stepsize

EVOLUTION STRATEGIES

- Covariance matrix : Identity or diagonal
 - > 1/5th [Rechenberg, 73]
 - > Self-Adaptation (SA) [Rechenberg, 73], [Schwefel, 74]
 - > Path Length Control (aka CSA) [Hansen & Ostermeier, 96,01]
- Full covariance matrix self adaptation [Schwefel, 81]
 State of the art algorithms
 - Covariance Matrix Adaptation (CMA)
 - > [Hansen & Ostermeier, 01]
 - Covariance Matrix Self-Adaptation (CMSA)
 - > [Beyer & Sendhoff, 08]

ESTIMATION OF MULTIVARIATE NORMAL ALGORITHM (EMNA) [LARRANAGA & LOZANO, 01]

- > EDA: evolution of a parameterized probability distribution
 - Sample the domain with the current distribution
 - Evaluate the population
 - > Select the best points
 - Update the parameters of the distribution
- > EMNA
 - Gaussian distribution (σ,C)
 - Close to ES

OUTLINE

- Evolutionary Optimization
 - > Problem
 - State Of The Art Algorithms
 - Contributions
- Multistage Optimization
 - > Problem
 - > State Of The Art Algorithms
 - Contributions
- Conclusion

MOTIVATION FOR PARALLELISM

CMA, Sphere function, f_{target}=10⁻¹⁰, N=10

 \rightarrow How to efficiently use all λ available processors ?

FITNESS FUNCTIONS

- > Sphere function : $x \rightarrow ||x||$
- > Schwefel function : $x \rightarrow \sum_{i=1}^{N} (\sum_{j=1}^{i} x_j)^2$
- ► A multimodal function : $x \to \sum_i \log(|x_i|) + \cos(\frac{1}{x_i})$
- Minimization
- → In all experiments : The lower the better

THEORETICAL BOUNDS

Speedup for p processors :

$$S_p = T_1/T_p$$

- \rightarrow (1, λ)-ES \rightarrow speedup logarithmic for all λ
- \rightarrow (µ/µ, λ)-ES \rightarrow speedup linear until λ <N and then logarithmic

[Teytaud & Fournier, 10]

ISSUES WITH LARGE POPULATION SIZES

Current algorithms are far from the theoretical bounds [Evonum 2009]

 μ =1 : empirically, a better choice than λ /2 or λ /4

CONTRIBUTIONS (1)

- New selection ratio (aka PA) [Evonum 2010]
 - > A bounded selection ratio

$$\mu = \min(N, \lambda/4)$$

- > Experiments
 - SA, Sphere function, against μ=1
 - \triangleright CMSA, Sphere and Schwefel functions, against $\mu=\lambda/4$

New selection ratio: EXPERIMENTAL RESULTS (1)

New selection ratio: EXPERIMENTAL RESULTS (2)

CONTRIBUTIONS (2)

► Log- λ modification [EA 09, PPSN 10] A faster decrease of the step-size : $\sigma \leftarrow \sigma / \max(1,(\log(\lambda)/2)^{1/N})$ With :

EXPERIMENTS

- > EMNA with
 - Faster decrease of σ
 - Reweighting
 - Quasi-Random mutations
- > Functions:
 - Sphere function
 - Multimodal function
- \triangleright σ initializations:
 - Tuned
 - Not tuned
- > All differences statistically significant (with 95% confidence)

EXPERIMENT RESULTS (1)

- Sphere function
- Initial σ tuned

Baseline	+QR	+ weight	$+\log(\lambda)$ -Modif
			(IEMNA)
-0.345	-1.252	-1.743	-2.103
-1.967	-2.086	-2.022	-2.713
-2.050	-2.089	-2.112	-3.004
-2.080	-2.101	-2.061	-3.190
-2.103	-2.188	-2.111	-3.434
-0.697	-2.299	-2.277	-2.398
-2.330	-2.392	-2.282	-3.047
-2.340	-2.404	-2.293	-3.302
-2.369	-2.443	-2.320	-3.519
-2.404	-2.476	-2.367	-3.726
-0.749	-2.541	-2.397	-2.578
-2.543	-2.627	-2.443	-3.271
-2.601	-2.658	-2.480	-3.547
-2.642	-2.717	-2.519	-3.764
-1.330	-2.885	-2.677	-2.730
-2.790	-2.858	-2.622	-3.488
-2.828	-2.908	-2.673	-3.750
-2.886	-2.964	-2.718	-3.975
	-0.345 -1.967 -2.050 -2.080 -2.103 -0.697 -2.330 -2.340 -2.369 -2.404 -0.749 -2.543 -2.601 -2.642 -1.330 -2.790 -2.828	-0.345 -1.252 -1.967 -2.086 -2.050 -2.089 -2.080 -2.101 -2.103 -2.188 -0.697 -2.299 -2.330 -2.392 -2.340 -2.404 -2.369 -2.443 -2.404 -2.476 -0.749 -2.541 -2.543 -2.627 -2.601 -2.658 -2.642 -2.717 -1.330 -2.885 -2.790 -2.858 -2.828 -2.908	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

EXPERIMENT RESULTS (2)

Multimodal function

Initial σ tuned

\ /				
Dimension,	Baseline	+QR	+ weight	$+\log(\lambda)$ -Modif
lambda				(IEMNA)
2,20	-0.709	-1.301	-1.105	-0.529
2,60	-1.139	-1.181	-0.655	-1.157
2,200	-1.104	-1.074	-0.402	-0.822
2,600	-1.100	-1.133	-0.119	-0.534
2,2000	-1.124	-1.146	-0.124	-0.210
2,6000	-1.144	-1.162	-0.173	-0.181
3,30	-0.971	-1.332	-0.799	-0.537
3,90	-1.231	-1.229	-0.481	-0.619
3,300	-1.210	-1.243	-0.178	-0.233
3,900	-1.240	-1.252	-0.181	-0.179
3,3000	-1.269	-1.307	0.081	-0.031
4,40	-1.204	-1.388	-0.713	-0.858
4,120	-1.357	-1.353	-0.344	-0.480
4,400	-1.352	-1.368	-0.205	-0.183
4,1200	-1.389	-1.427	0.224	0.093
5,50	-1.359	-1.520	-0.702	-0.445
5,150	-1.477	-1.503	-0.351	-0.391
5,500	-1.495	-1.518	-0.145	-0.161
5,1500	-1.539	-1.579	0.726	0.715

EXPERIMENT RESULTS (3)

- Sphere function
- > Initial σ not tuned

Dagalina	0.70		
Baseline	+QR	+ weight	$+\log(\lambda)$ -Modif
			(IEMNA)
-0.000	-0.001	-0.001	-0.001
-0.001	-0.001	-0.014	-0.005
-0.001	-0.001	-1.501	-2.106
-0.001	-0.001	-1.748	-2.640
-0.001	-0.001	-1.853	-2.952
-0.001	-0.001	-0.003	-0.002
-0.002	-0.003	-0.165	-0.096
-0.003	-0.003	-1.821	-2.437
-0.003	-0.003	-1.995	-2.945
-0.002	-0.003	-0.005	-0.004
-0.004	-0.004	-0.395	-0.508
-0.004	-0.005	-1.970	-2.693
-0.005	-0.005	-2.131	-3.086
-0.003	-0.004	-0.007	-0.008
-0.005	-0.006	-0.609	-0.779
-0.006	-0.007	-2.087	-2.786
-0.007	-0.007	-2.288	-3.250
	-0.000 -0.001 -0.001 -0.001 -0.001 -0.002 -0.003 -0.003 -0.002 -0.004 -0.004 -0.005 -0.003 -0.005 -0.006	-0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.003 -0.003 -0.003 -0.003 -0.003 -0.004 -0.004 -0.004 -0.005 -0.005 -0.005 -0.005 -0.006 -0.006 -0.007	-0.000 -0.001 -0.001 -0.001 -0.001 -0.014 -0.001 -0.001 -1.501 -0.001 -0.001 -1.748 -0.001 -0.001 -1.853 -0.001 -0.001 -0.003 -0.002 -0.003 -0.165 -0.003 -0.003 -1.821 -0.003 -0.003 -1.995 -0.002 -0.003 -0.005 -0.004 -0.004 -0.395 -0.004 -0.004 -0.395 -0.005 -0.005 -2.131 -0.003 -0.004 -0.007 -0.005 -0.006 -0.609 -0.006 -0.007 -2.087

DISCUSSION

- New selection ratio (μ/λ)
 - Positive improvement
 - No new parameter
 - > Better as λ increases
- > Faster decrease of σ
 - Improved the speed-up of EMNA
 - Can be dangerous if no proper reweighting/initialization
 - (Quasi-random always good)

OUTLINE

- Evolutionary Optimization
 - Problem
 - State Of The Art Algorithms
 - Contributions
- Multistage Optimization
 - > Problem
 - > State Of The Art Algorithms
 - Contributions
- Conclusion

PROBLEM

- Making decisions in an environment which is
 - Discrete
 - > Fully observable
 - With finite horizon
 - Reward at the end
 - With a large number of states
- Goal: Find the best decision for each state

GAMES

- Why games ?
 - Well-designed
 - Simple and practical
- Which games ?
 - > Go
 - Havannah
- Goals
 - Improving the algorithm
 - Keeping the generality of the algorithm

OUTLINE

- Evolutionary Optimization
 - Problem
 - State Of The Art Algorithms
 - Contributions
- Multistage Optimization
 - Problem
 - > State Of The Art Algorithms
 - Contributions
- Conclusion

STATE OF THE ART ALGORITHMS

- Two-player games
 - Min-Max
 - > Alpha-Beta
 - Monte-Carlo Tree Search
- One-player games
 - Dynamic programming
 - Nested Monte-Carlo

Recent developments

[Coulom 06], [Chaslot et al., 06], [Kocsis and Szepesvari, 06]

- Numerous applications
 - Active learning [Rolet et al.,09]
 - Non-linear optimization [Auger & Teytaud, 10]
 - Feature selection [Gaudel & Sebag, 09]
 - Planning [Xie et al.,11]
 - Games
 - > Go,
 - Havannah (First use [ACG 2010])
 - **>** ...

Principle

- Construction of an imbalance subtree of possible futures
- Evaluation through Monte-Carlo simulations
- Use of a bandit formula to bias the subtree

> 3 main steps

- Descent in the subtree
- Evaluation of the leaves
- > Growth and update of the subtree

- Tree policy :
 - UCB1 formula [Auer et al., 02]
 - > play arm i that maximizes $\widehat{X}_i + p \sqrt{\frac{\log T}{T_i}}$
 - $> \widehat{X}_i$: Empirical average reward for move i
 - > T: Total number of trials
 - $> T_i : Number of trials for move i$
- Default policy :
 - Monte-Carlo simulation
 - > > Random choice until the end

MONTE-CARLO TREE SEARCH (MCTS)

MONTE-CARLO TREE SEARCH (MCTS)

MONTE-CARLO TREE SEARCH (MCTS)

- > Pros
 - Efficient
 - Evaluation function not needed
 - Generic
 - Anytime
- Cons
 - > Can we do better than pure Monte-Carlo?

Improving the default policy

OUTLINE

- Evolutionary Optimization
 - Problem
 - State Of The Art Algorithms
 - Contributions
- Multistage Optimization
 - > Problem
 - State Of The Art Algorithms
 - > Contributions
- Conclusion

CONTRIBUTIONS

- > 3 generic rules
 - poolRave

[ACG 2011]

Contextual Monte-Carlo

[EvoGames 2010]

Decisive moves and anti-decisive moves

[CIG 2010]

RAPID ACTION VALUE ESTIMATE (RAVE)

[GELLY & SYLVER,07]

Keep for each node n and each move i: the number of wins and losses where i has been played after n

Compute a score V_{RAVE}(i): empirical score when i has been played after n

> RAVE scores are biased but have a small variance

RAVE

POOLRAVE

- Based on Rapid Action Value Estimation (RAVE)
- Use RAVE values for biasing the next Monte-Carlo simulations
 - Compute a pool of good moves according to RAVE
 - When a decision has to be made in the default policy,
 - Play a move in the pool with probability p
 - Play a random move with probability 1-p

CONTEXTUAL MONTE-CARLO (CMC)

- Keep for each node n and for each moves A and B:
 The number of wins and losses where A and B have been played after n by the current player
- Compute a score V_{CMC}(A,B) :

empirical score when A and B have been played after n by the current player

- If B is the last move played by the current player
- \triangleright Find the move A which maximizes $V_{CMC}(A,B)$
 - Play A with probability p
 - Play a random move with probability 1-p

DECISIVE MOVES AND ANTI-DECISIVE MOVES

- Decisive moves (exist in many games):
 - > If you have a winning move, play it.
- Anti-decisive moves (exit if you can cancel a winning move of the opponent only by playing it):
 - If your opponent has a winning move and you have none, play its winning move (in order to avoid a loss).

RESULTS ON THE GAME OF HAVANNAH

Improvement	# of simulations	Best score against the baseline
poolRave	1000	$54.32 \pm 0.46\%$
	10000	$54.45 \pm 0.75\%$
	20000	$54.42 \pm 0.89\%$
CMC	1000	57%
$\overline{\mathrm{DM}}$	1000	$95.9 \pm 1.5\%$
DM+ADM	1000	$85 \pm 1.4\%$

DISCUSSION

- All rules are generic.
- > A small but significative improvement
- All rules have been tested for the game of Havannah
- The poolRave rule works also in the game of Go (MoGo):
 - Without expert knowledge: 62.7%
 - With expert knowledge: 51.7%
- Unfortunately when the number of simulations increases, the effectiveness of DM and ADM is smaller
 - > 1 second per move : 80%
 - > 30 seconds per move : 50%

OUTLINE

- Evolutionary Optimization
 - Problem
 - State Of The Art Algorithms
 - Contributions
- Multistage Optimization
 - > Problem
 - > State Of The Art Algorithms
 - Contributions
- > Conclusion

CONCLUSION AND PERSPECTIVES

Evolutionary Optimization

- > Clear improvements for efficient use of large number of processors
- > Test on more algorithms and on more functions
- Hybridization with speculative parallelization [Gardner et al, 10]

Multistage optimization

- Generic improvements of the default policy
- Comparison with (recent) existing methods:
 - Last Reply [Drake, 09]
 - N-grams [Stankiewicz et al, 11]
- Propagate decisive moves

Not presented works

- Nested algorithm for solving TSPTW [EvoTranslog 2011]
- A cognitive science perspective (random positions in Go, blind Go) [CIG 2011]
- Using QR restarts and decreasing σ for multimodal optimization [EA 2011]

Thank you