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EVOLUTIONARY OPTIMIZATION

» Data:

» Search space () (set of possible solutions)

» Objective function (quality criterion)
» Goal :

» Find the best solution (according to the objective function)
> Formally :

» Consider F: Q - R

> Findx € Q/x = ArgMax(F)

» Additional properties
» Black-box optimization
» Continuous (Q c R¥ - Evolution Strategy)
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EVOLUTION STRATEGIES

Initialize vy, o, C
While (we have time)

{
x;=y+ oNi(0,C) fori=1,..,4
Evaluate all offspring x; (compute F(x;) fori =1,...,4)
Update y, o, C

}

Returny

-y € R?represents the current search point
A is the population size
C € R4 4 s the covariance matrix

_ o € R, Is the step-size




EVOLUTION STRATEGIES

Initialize y, o, C
While (we have time)

{
x;=y+ oNi(0,C) fori=1,..,1
Evaluate all offspring x; (compute F(x;) fori=1,...,1)
Update y, o, C

}

Updatingy : y = Z‘ilzlwixl- -2 (M/U,N)-ES




IMPORTANCE OF UPDATING o

Scale invariant : 0 = af|x||

Importance of a dynamic stepsize
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EVOLUTION STRATEGIES

» Covariance matrix : ldentity or diagonal
» 1/5t
» Self-Adaptation (SA)
» Path Length Control (aka CSA)

» Full covariance matrix — self adaptation

State of the art algorithms
» Covariance Matrix Adaptation (CMA)

» Covariance Matrix Self-Adaptation (CMSA)
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ESTIMATION OF MULTIVARIATE NORMAL ALGORITHM
(EMNA)

> EDA : evolution of a parameterized probability distribution
» Sample the domain with the current distribution
» Evaluate the population
» Select the best points
» Update the parameters of the distribution

> EMNA
» Gaussian distribution (o0,C)
» Close to ES
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MOTIVATION FOR PARALLELISM

CMA, Sphere function, f,.,=101%, N=10

Measure of # Evaluations
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FITNESS FUNCTIONS

» Sphere function : x — ||x]|
» Schwefel function : x - Zliv=1(2§-=1xj)2

» A multimodal function : x - };log(|x;]) + cos(xi)

> Minimization
= In all experiments : The lower the better




THEORETICAL BOUNDS

Speedup for p processors :
Sp = T1/Tp

> (1, \)-ES - speedup logarithmic for all A

» (W/u,N)-ES - speedup linear until A<N and then logarithmic




ISSUES WITH LARGE POPULATION SIZES

Current algorithms are far from the theoretical bounds
[Evonum 2009]

Speed-up of SA algorithm, mu = lambda/2 Speed-up of SA algorithm, mu=1

|
Ry

log|[x]|*N/n

5
10

S o i A 1 t T T T
10 10 10 10 10 10 10 10 10 10 10

A A
u=1 : empirically, a better choice than A/2 or A/4 @




CONTRIBUTIONS (1)

> New selection ratio (aka PA) [Evonum 2010]
» A bounded selection ratio

L = min(N,A/4)

» Experiments
» SA, Sphere function, against p=1
» CMSA, Sphere and Schwefel functions, against pu=A/4 @




NEW SELECTION RATIO :
EXPERIMENTAL RESULTS (1)

Speed-up of SA algorithm, N=10

Speed-up of SA algorithm, N=30
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NEW SELECTION RATIO :
EXPERIMENTAL RESULTS (2)

Speed-up of CMSA algorithm, Sphere function, N=3 Speed-up of CMSA algorithm, Schwefel function, N=3
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CONTRIBUTIONS (2)

» Log- A modification [EA 09, PPSN 10]

o € o/ max(1,(log(\)/2)VN)

size :

A faster decrease of the step-
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EXPERIMENTS

> EMNA with
» Faster decrease of o
» Reweighting
» Quasi-Random mutations

» Functions :
» Sphere function
> Multimodal function

> 0o Initializations :
> Tuned
> Not tuned

> All differences statistically significant (with 95% confidence) @




EXPERIMENT RESULTS (1)

» Sphere function

> Initial o tuned

Dimension, | Baseline | +QR | + weight | +log(\)-Modif
lambda (IEMNA)
2,20 -0.345 | -1.252 | -1.743 -2.103
2,60 -1.967 |-2.086 | -2.022 -2.713
2,200 -2.050 |-2.089 | -2.112 -3.004
2,600 -2.080 |-2.101| -2.061 -3.190
2,2000 -2.103 | -2.188 | -2.111 -3.434
3,30 -0.697 |-2.299 | -2.277 -2.398
3,90 -2.330 |-2.392 | -2.282 -3.047
3,300 -2.340 | -2.404 | -2.293 -3.302
3,900 -2.369 | -2.443 | -2.320 -3.519
3.3000 -2.404 | -2.476 | -2.367 -3.726
4,40 -0.749 | -2.541| -2.397 -2.578
4,120 -2.543 | -2.627 | -2.443 -3.271
4,400 -2.601 | -2.658 | -2.480 -3.547
4,1200 -2.642 | -2.717 | -2.519 -3.764
5,50 -1.330 | -2.885| -2.677 -2.730
5,150 -2.790 | -2.858 | -2.622 -3.488
5,500 -2.828 |-2.908 | -2.673 -3.750
5,1500 -2.886 |-2.964 | -2.718 -3.975




EXPERIMENT RESULTS (2)

» Multimodal function

> Initial o tuned

Dimension, | Baseline | +QR | + weight | +log(A)-Modif
lambda (IEMNA)
2.20 -0.709 |-1.301| -1.105 -0.529
2,60 -1.139 | -1.181| -0.655 -1.157
2,200 -1.104 | -1.074 | -0.402 -0.822
2,600 -1.100 |-1.133| -0.119 -0.534
2.2000 -1.124 | -1.146 | -0.124 -0.210
2,6000 -1.144 | -1.162| -0.173 -0.181
3.30 -0.971 | -1.332| -0.799 -0.537
3.90 -1.231 | -1.229 | -0.481 -0.619
3,300 -1.210 |-1.243 | -0.178 -0.233
3,900 -1.240 | -1.252| -0.181 -0.179
3,3000 -1.269 | -1.307 | 0.081 -0.031
4.40 -1.204 |-1.388 | -0.713 -0.858
4,120 -1.357 | -1.353 | -0.344 -0.480
4,400 -1.352 | -1.368 | -0.205 -0.183
4.1200 -1.389 | -1.427 | 0.224 0.093
5,50 -1.359 | -1.520| -0.702 -0.445
5,150 -1.477 | -1.503 | -0.351 -0.391
5,500 -1.495 | -1.518 | -0.145 -0.161
5,1500 -1.539 | -1.579 | 0.726 0.715




EXPERIMENT RESULTS (3)

» Sphere function

> Initial o not tuned

Dimension, | Baseline | +QR | 4+ weight | +log(A)-Modif
lambda (IEMNA)
2,20 -0.000 |-0.001| -0.001 -0.001
2,60 -0.001 |-0.001| -0.014 -0.005
2,200 -0.001 |-0.001| -1.501 -2.106
2,600 -0.001 |-0.001| -1.748 -2.640
2,2000 -0.001 |-0.001| -1.853 -2.952
3,30 -0.001 |-0.001| -0.003 -0.002
3,90 -0.002 |-0.003| -0.165 -0.096
3,300 -0.003 |-0.003| -1.821 -2.437
3,900 -0.003 |-0.003 | -1.995 -2.945
4.40 -0.002 |-0.003| -0.005 -0.004
4,120 -0.004 |-0.004| -0.395 -0.508
4,400 -0.004 |-0.005| -1.970 -2.693
4,1200 -0.005 |-0.005| -2.131 -3.086
5,50 -0.003 |-0.004| -0.007 -0.008
5,150 -0.005 |-0.006 | -0.609 -0.779
5,500 -0.006 |-0.007| -2.087 -2.786
5,1500 -0.007 |-0.007| -2.288 -3.250




DISCUSSION

> New selection ratio (W/A)
» Positive improvement
> NoO new parameter
» Better as A increases
» Faster decrease of o
» Improved the speed-up of EMNA
» Can be dangerous if no proper reweighting/initialization
» (Quasi-random always good)
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PROBLEM

» Making decisions in an environment which is
» Discrete
» Fully observable
» With finite horizon
» Reward at the end
» With a large number of states

» Goal : Find the best decision for each state




GAMES

> Why games ?
» Well-designed
» Simple and practical

» Which games ?
» GO
» Havannah
» Goals
» Improving the algorithm
» Keeping the generality
of the algorithm

wowweoe 5ERLREGRENEE
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STATE OF THE ART ALGORITHMS

> Two-player games
» Min-Max
» Alpha-Beta
» Monte-Carlo Tree Search

» One-player games
» Dynamic programming
» Nested Monte-Carlo




MONTE-CARLO TREE SEARCH (MCTS)

» Recent developments

» Numerous applications
» Active learning
» Non-linear optimization
» Feature selection
» Planning

» Games
> GO,
» Havannah (First use [ACG 2010])




MONTE-CARLO TREE SEARCH (MCTS)

» Principle
» Construction of an imbalance subtree of possible futures
» Evaluation through Monte-Carlo simulations
» Use of a bandit formula to bias the subtree

» 3 main steps
» Descent in the subtree
» Evaluation of the leaves
» Growth and update of the subtree




MONTE-CARLO TREE SEARCH (MCTS)

ﬁ ¢ Tree Policy
A

9.

Default Policy




MONTE-CARLO TREE SEARCH (MCTS)
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Default Policy




MONTE-CARLO TREE SEARCH (MCTS)
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MONTE-CARLO TREE SEARCH (MCTS)

A

Tree Policy
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Default Policy




MONTE-CARLO TREE SEARCH (MCTS)

» Tree policy :
» UCBI1 formula

log T
Ti

~ X, : Empirical average reward for move i

» T : Total number of trials

> T; : Number of trials for move i

> play arm i that maximizes X, + p

» Default policy :
» Monte-Carlo simulation
» —> Random choice until the end




MONTE-CARLO TREE SEARCH (MCTS)

Exploitation




MONTE-CARLO TREE SEARCH (MCTS)

Exploration




MONTE-CARLO TREE SEARCH (MCTS)

> Pros
> Efficient
» Evaluation function not needed
» Generic
» Anytime
» Cons
» Can we do better than pure Monte-Carlo ?

— Improving the default policy
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CONTRIBUTIONS

» 3 generic rules
» poolRave
[ACG 2011]
» Contextual Monte-Carlo
[EvoGames 2010]
» Decisive moves and anti-decisive moves
[CIG 2010]




RAPID ACTION VALUE ESTIMATE (RAVE)

» Keep for each node n and each move | :

the number of wins and losses where |1 has
been played after n

» Compute a score Vgaye(l)
empirical score when i has been played after n

> RAVE scores are biased but have a small variance
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POOLRAVE

» Based on Rapid Action Value Estimation (RAVE)

» Use RAVE values for biasing the next Monte-Carlo
simulations

» Compute a pool of good moves according to RAVE

» When a decision has to be made in the default policy,
- Play a move in the pool with probability p
- Play a random move with probability 1-p




CONTEXTUAL MONTE-CARLO (CMC)

» Keep for each node n and for each moves Aand B :

The number of wins and losses where A and B have been
played after n by the current player

» Compute a score Vg c(A,B) :

empirical score when A and B have been played after n by
the current player

» If B is the last move played by the current player
» Find the move A which maximizes V,,c(A,B)

- Play A with probability p
- Play a random move with probability 1-p




DECISIVE MOVES AND ANTI-DECISIVE MOVES

» Decisive moves (exist in many games):.
» If you have a winning move, play it.

» Anti-decisive moves (exit if you can cancel a winning

move of the opponent only by playing it):
» If your opponent has a winning move and you have none,
play its winning move (in order to avoid a loss).




RESULTS ON THE GAME OF HAVANNAH

Improvement # of simulations Best score against the baseline

poolRave 1000 54.3240.46%
10000 54.4540.75%
20000 54.4240.89%

CMC 1000 57%

DM 1000 95.9+1.5%

DM-+ADM 1000 85+1.4%

9




DISCUSSION

» All rules are generic.

» A small but significative improvement

» All rules have been tested for the game of Havannah

» The poolRave rule works also in the game of Go (MoGo):

» Without expert knowledge : 62.7%
» With expert knowledge : 51.7%

» Unfortunately when the number of simulations increases,
the effectiveness of DM and ADM is smaller
» 1 second per move : 80%
» 30 seconds per move : 50%
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CONCLUSION AND PERSPECTIVES

» Evolutionary Optimization
» Clear improvements for efficient use of large number of processors
» Test on more algorithms and on more functions
» Hybridization with speculative parallelization

» Multistage optimization
» Generic improvements of the default policy
» Comparison with (recent) existing methods :
» Last Reply
» N-grams
» Propagate decisive moves
» Not presented works
» Nested algorithm for solving TSPTW [EvoTranslog 2011]
» A cognitive science perspective (random positions in Go, blind Go) [CIG 2011]
» Using QR restarts and decreasing o for multimodal optimization [EA 2011]
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