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EVOLUTIONARY OPTIMIZATION 

 Data : 
 Search space Ω (set of possible solutions) 

 Objective function (quality criterion) 

 Goal : 
 Find the best solution (according to the objective function) 

 Formally : 
 Consider  ℱ ∶  Ω →  ℝ 

 Find 𝑥
∗
 ∈  Ω / 𝑥

∗
 = 𝐴𝑟𝑔𝑀𝑎𝑥(ℱ) 

 

 Additional properties 
 Black-box optimization 

 Continuous (Ω ⊂ ℝ𝑁   Evolution Strategy) 

4 



OUTLINE 

 

 Evolutionary Optimization 
 Problem 

 State Of The Art Algorithms 

 Contributions 

 Multistage Optimization 
 Problem 

 State Of The Art Algorithms 

 Contributions 

 Conclusion 

5 



EVOLUTION STRATEGIES 
[RECHENBERG, 73],[SCHWEFEL, 74] 

Initialize y, σ, C 

While (we have time) 

{ 
 𝑥𝑖 = 𝑦 +  𝜎 𝑁𝑖 0, 𝐶     for 𝑖 = 1,… , 𝜆 

 Evaluate  all  offspring  𝑥𝑖 (compute ℱ(𝑥𝑖) for 𝑖 = 1,… , 𝜆 ) 

 Update 𝑦, σ, C 

} 

Return y 

 

      𝑦 ∈  ℝ𝑑 represents the current search point 

      𝜆 is the population size 

      𝐶 ∈ ℝ𝑑 ∗ 𝑑 is the covariance matrix 

       𝜎 ∈ ℝ+ is the step-size       
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EVOLUTION STRATEGIES 

Initialize y, σ, C 

While (we have time) 

{ 
 𝑥𝑖 = 𝑦 +  𝜎 𝑁𝑖 0, 𝐶     for 𝑖 = 1, … , 𝜆 

 Evaluate  all  offspring  𝑥𝑖 (compute ℱ(𝑥𝑖) for 𝑖 = 1, … , 𝜆 ) 

 Update 𝒚, σ, C 

} 

 

𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑦 ∶  𝑦 =  𝑤𝑖𝑥𝑖
𝜇
𝑖=1      (µ/µ,λ)-ES  
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IMPORTANCE OF UPDATING 𝜎 

Scale invariant : σ =  α||𝑥|| 
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EVOLUTION STRATEGIES 

 Covariance matrix : Identity or diagonal 
 1/5th [Rechenberg, 73] 

 Self-Adaptation (SA) [Rechenberg, 73], [Schwefel, 74] 

 Path Length Control (aka CSA) [Hansen & Ostermeier, 96,01] 

 Full covariance matrix – self adaptation [Schwefel, 81] 

    State of the art algorithms 
 Covariance Matrix Adaptation (CMA)  

 [Hansen & Ostermeier, 01] 

 Covariance Matrix Self-Adaptation (CMSA) 
 [Beyer & Sendhoff, 08] 
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ESTIMATION OF MULTIVARIATE NORMAL ALGORITHM 

(EMNA) [LARRANAGA & LOZANO, 01] 

 EDA : evolution of a parameterized probability distribution 

 Sample the domain with the current distribution 

 Evaluate the population 

 Select the best points 

 Update the parameters of the distribution 

 EMNA 

 Gaussian distribution (σ,C) 

 Close to ES 
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MOTIVATION FOR PARALLELISM 

CMA, Sphere function, ftarget=10-10, N=10 

 

 

 

 

 

 

 

 

 

 

 How to efficiently use all λ available processors ? 12 



FITNESS FUNCTIONS 

 Sphere function : 𝑥 → ||𝑥|| 

 Schwefel function : 𝑥 →    𝑥𝑗
𝑖
𝑗=1

2𝑁
𝑖=1  

 A multimodal function : 𝑥 →  log 𝑥𝑖 + cos (
1

𝑥
𝑖

)𝑖  

 

 Minimization  

 In all experiments : The lower the better 
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THEORETICAL BOUNDS 

Speedup for p processors :  

 Sp = T1
Tp
  

 

 

 (1, λ)-ES      speedup logarithmic for all λ 

 

 (µ/µ,λ)-ES    speedup linear until λ<N and then logarithmic  

 

[Teytaud & Fournier, 10] 
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ISSUES WITH LARGE POPULATION SIZES 

Current algorithms are far from the theoretical bounds 
[Evonum 2009] 

 

 

 

 

 

 

 

                    λ                                                            λ 

µ=1 : empirically, a better choice than λ/2 or λ/4 
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CONTRIBUTIONS (1) 

 

 New selection ratio (aka PA) [Evonum 2010] 

 A bounded selection ratio 

  µ = min(N,λ/4) 

 
 Experiments 

 SA, Sphere function, against µ=1 

 CMSA, Sphere and Schwefel functions, against µ=λ/4 
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NEW SELECTION RATIO : 

EXPERIMENTAL RESULTS (1) 

 

 

 

 

 

  

  λ          λ 
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NEW SELECTION RATIO : 

EXPERIMENTAL RESULTS (2) 

 

 

 

 

 

 

 

 

    λ              λ 
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CONTRIBUTIONS (2) 

 Log- λ modification [EA 09, PPSN 10] 

A faster decrease of the step-size :   σ  σ / max(1,(log(λ)/2)1/N) 

With : 

        Reweighting [GECCO 09]         +         Quasi-Random mutations 

        (weight=1/density of distribution)                                 [Teytaud, 08] 
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EXPERIMENTS 

 EMNA with 
 Faster decrease of σ 

 Reweighting 

 Quasi-Random mutations 

 

 Functions : 
 Sphere function 

 Multimodal function 

 

 σ  initializations : 
 Tuned 

 Not tuned 

 

 All differences statistically significant (with 95% confidence) 
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EXPERIMENT RESULTS (1) 
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 Sphere function 

 

 Initial σ tuned 

 

 



EXPERIMENT RESULTS (2) 
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 Multimodal function 

 

 Initial σ tuned 

 

 

 



EXPERIMENT RESULTS (3) 
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 Sphere function 

 

 Initial σ not tuned 

 

 



DISCUSSION 

 New selection ratio  (µ/λ) 

 Positive improvement 

 No new parameter 

 Better as λ increases 

 Faster decrease of σ 

 Improved the speed-up of EMNA 

 Can be dangerous if no proper reweighting/initialization 

 (Quasi-random always good) 

24 



OUTLINE 

 

 Evolutionary Optimization 
 Problem 

 State Of The Art Algorithms 

 Contributions 

 Multistage Optimization 
 Problem 

 State Of The Art Algorithms 

 Contributions 

 Conclusion 

25 



PROBLEM 

 Making decisions in an environment which is 

 Discrete 

 Fully observable 

 With finite horizon 

 Reward at the end 

 With a large number of states 

 Goal : Find the best decision for each state 
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GAMES 

 Why games ? 
 Well-designed 

 Simple and practical 

 Which games ? 
 Go 

 Havannah 

 Goals 
 Improving the algorithm 

 Keeping the generality 

           of the algorithm 
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STATE OF THE ART ALGORITHMS 

 Two-player games 

 Min-Max 

 Alpha-Beta 

 Monte-Carlo Tree Search 

 One-player games 

 Dynamic programming 

 Nested Monte-Carlo 
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MONTE-CARLO TREE SEARCH (MCTS) 

 Recent developments 
[Coulom 06], [Chaslot et al., 06], [Kocsis and Szepesvari, 06] 

 Numerous applications 

 Active learning [Rolet et al.,09] 

 Non-linear optimization [Auger & Teytaud, 10] 

 Feature selection [Gaudel & Sebag, 09] 

 Planning [Xie et al.,11] 

 Games  

 Go,  

 Havannah (First use [ACG 2010])  

  …  
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MONTE-CARLO TREE SEARCH (MCTS) 

 

 Principle 
 Construction of an imbalance subtree of possible futures 

 Evaluation through Monte-Carlo simulations 

 Use of a bandit formula to bias the subtree 

 

 3 main steps 
 Descent in the subtree 

 Evaluation of the leaves 

 Growth and update of the subtree 
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MONTE-CARLO TREE SEARCH (MCTS) 
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MONTE-CARLO TREE SEARCH (MCTS) 
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MONTE-CARLO TREE SEARCH (MCTS) 
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MONTE-CARLO TREE SEARCH (MCTS) 
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MONTE-CARLO TREE SEARCH (MCTS) 

 Tree policy :  
 UCB1 formula [Auer et al., 02] 

 play arm i that maximizes 𝑋𝑖
 + 𝑝 

log 𝑇

𝑇
𝑖

 

 𝑋𝑖
  : Empirical average reward for move i 

 𝑇  : Total number of trials 

 𝑇𝑖  : Number of trials for move i 

 

 Default policy : 
 Monte-Carlo simulation 

  Random choice until the end 
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MONTE-CARLO TREE SEARCH (MCTS) 

5

7
+ 𝑝 ∗

log (10)

7
 

Exploitation 
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MONTE-CARLO TREE SEARCH (MCTS) 

5

7
+ 𝑝 ∗

log (10)

7
 

Exploration 
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MONTE-CARLO TREE SEARCH (MCTS) 

 Pros 

 Efficient 

 Evaluation function not needed 

 Generic 

 Anytime 

 Cons  

 Can we do better than pure Monte-Carlo ? 

 

Improving the default policy 
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CONTRIBUTIONS 

 

 3 generic rules 

 poolRave  

 [ACG 2011] 

 Contextual Monte-Carlo 

 [EvoGames 2010] 

 Decisive moves and anti-decisive moves  

 [CIG 2010] 

41 



RAPID ACTION VALUE ESTIMATE (RAVE) 
[GELLY & SYLVER,07] 

 Keep for each node n and each move i : 

           the number of wins and losses where i has                  

 been played after n 

 

 Compute a score VRAVE(i) :  

           empirical score when i has been played after n 

 

 RAVE scores are biased but have a small variance 
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RAVE 
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POOLRAVE 

 Based on Rapid Action Value Estimation (RAVE) 

 

 Use RAVE values for biasing the next Monte-Carlo 

simulations 

 Compute a pool of good moves according to RAVE 

 When a decision has to be made in the default policy,  

 - Play a move in the pool with probability p 

 - Play a random move with probability 1-p 
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CONTEXTUAL MONTE-CARLO (CMC) 

 Keep for each node n and for each moves A and B : 

 The number of wins and losses where A and B have been    

 played after n by the current player 

 Compute a score VCMC(A,B) :  

 empirical score when A and B have been played after n by 

 the current player  

 

 If B is the last move played by the current player 

 Find the move A which maximizes VCMC(A,B) 

 - Play A with probability p 

 - Play a random move with probability 1-p 
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DECISIVE MOVES AND ANTI-DECISIVE MOVES 

 

 Decisive moves (exist in many games): 

 If you have a winning move, play it. 

 

 Anti-decisive moves (exit if you can cancel a winning 

 move of the opponent only by playing it): 

 If your opponent has a winning move and you have none, 

 play its winning move (in order to avoid a loss). 

46 



RESULTS ON THE GAME OF HAVANNAH 
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DISCUSSION 

 All rules are generic. 

 A small but significative improvement 

 All rules have been tested for the game of Havannah 

 The poolRave rule works also in the game of Go (MoGo): 

 Without expert knowledge : 62.7% 

 With expert knowledge : 51.7% 

 Unfortunately when the number of simulations increases, 

the effectiveness of DM and ADM is smaller 

 1 second per move : 80%  

 30 seconds per move : 50%  
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CONCLUSION AND PERSPECTIVES 

 Evolutionary Optimization 
 Clear improvements for efficient use of large number of processors 

 Test on more algorithms and on more functions 

 Hybridization with speculative parallelization [Gardner et al, 10] 

 Multistage optimization 
 Generic improvements of the default policy 

 Comparison with (recent) existing methods : 
 Last Reply [Drake, 09] 

 N-grams [Stankiewicz et al, 11] 

 Propagate decisive moves  

 Not presented works  

   Nested algorithm for solving TSPTW [EvoTranslog 2011] 

 A cognitive science perspective (random positions in Go, blind Go) [CIG 2011] 

 Using QR restarts and decreasing σ for multimodal optimization [EA 2011] 
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Thank you 
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