
HAL Id: tel-00655731
https://theses.hal.science/tel-00655731v2

Submitted on 9 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introduction of statistics in optimization
Fabien Teytaud

To cite this version:
Fabien Teytaud. Introduction of statistics in optimization. Other [cs.OH]. Université Paris Sud - Paris
XI, 2011. English. �NNT : 2011PA112296�. �tel-00655731v2�

https://theses.hal.science/tel-00655731v2
https://hal.archives-ouvertes.fr

UNIVERSITE PARIS-SUD 11

ÉCOLE DOCTORALE : Informatique
Laboratoire de Recherche en Informatique

Informatique

THÈSE DE DOCTORAT

soutenue le 08/12/2011

par

Fabien TEYTAUD

Introduction of Statistics in Optimization

Directeur de thèse : Marc Schoenauer Directeur de recherche (inria)

Co-directeur de thèse : Olivier Teytaud Chargé de recherche (inria)

Composition du jury :

Président du jury : Abdel Lisser Professeur (Université Paris Sud, France)
Rapporteurs : Damien Ernst Professeur (Université de Liège, Belgique)
 Martin Müller Professeur (Université d’Alberta, Canada)
Examinateurs : Frédéric Saubion Professeur (Université d’Angers, France)
 Liva Ralaivola Professeur (Université d’Aix-Marseille, France)

Thesis : Introduction of statistics in
optimization

Fabien Teytaud

08/12/2011

ii

Contents

I Evolutionary Optimization 5

1 Introduction 9

1.1 Evolutionary Algorithms . 9

1.2 Evolution Strategies . 10

1.2.1 Notions and Definitions 10

1.2.2 Adaptation of the step-size 12

One-fifth rule. 12

Mutative Self-Adaptation. 14

Cumulative Step-Size Adaptation. 15

1.2.3 State of the Art Evolution Strategies 16

The Covariance Matrix Adaptation Evolution Strategy 16

The Covariance Matrix Self-Adaptation Evolution Strategy 18

1.3 Estimation of Distribution Algorithms 19

1.4 Other stochastic optimization algorithms 20

Monte-Carlo Search. 20

Differential Evolution. 20

2 Issues with large population sizes 23

2.1 Introduction . 26

2.1.1 Notations and definitions 26

2.1.2 Real world algorithms analysis 27

One fifth rule. 28

Self-Adaptation. 28

Cumulative Step-Size Adaptation. 30

2.1.3 Experimental analysis 31

2.2 Log(λ) modifications for optimal parallelization 45

2.2.1 New selection ratio . 45

2.2.2 Faster decrease of the step-size with reweighting 58

2.2.3 Estimation of Multivariate Normal Algorithms analysis 60

2.3 Automatic parallelization . 77

iii

CONTENTS

3 Conclusion 81

II Multistage Optimization 85

4 Introduction 89
4.1 Evaluation function . 89
4.2 The game of Go . 90
4.3 The game of Havannah . 92

5 State of the art 97
5.1 Alpha-Beta algorithm . 97
5.2 Bandit Based Monte-Carlo Tree Search 98

5.2.1 Multi-Armed Bandits 99
5.2.2 Monte-Carlo Tree Search 100

Definitions. 100
Algorithm. 100
Modification of the bandit formula. 102
All Moves As First. 103
Rapid Action Value Estimates. 103
Last Good Reply. 104

5.3 Nested Monte-Carlo . 104

6 Contributions 107
6.1 Application to the game of Havannah 107

6.1.1 Bandit Formula . 108
6.1.2 Progressive Widening 109
6.1.3 Rapid Action Value Estimates 110

6.2 Improvement of the default policy 110
6.2.1 poolRave . 111
6.2.2 Contextual Monte-Carlo 115
6.2.3 Decisive Moves . 118

Complexity Analysis. 118
Experiments. 121

6.3 Tuning of the Nested Algorithm 123
6.4 Conclusion . 132

Index 141

Bibliography 141

iv

Acknowledgements

Now my thesis is almost over, I would like to acknowledge many people for
their involvement in my work or in my life during these 3 years. First, I
would like to thank Professor Damien Ernst and Professor Martin Müller for
accepting to review my work and for their great comments. I would like to
also thank Professor Abdel Lisser, Professor Frédéric Saubion and Professor
Liva Ralaivola for accepting to be in my committee.
I will now switch to French, because I would like to thank a lot of French
speakers.

Je voudrais remercier mes directeurs de thèse, Marc Schoenauer et Olivier
Teytaud.
Merci Marc pour avoir accepté de m’encadrer durant cette thèse, mais aussi
pour m’avoir accepté dans l’équipe (Merci à Michèle également). Je tiens tout
particulièrement à remercier Olivier, tout d’abord pour m’avoir fait confiance
en acceptant d’être co-directeur de cette thèse mais aussi pour tous les bons
moments passés ensemble. Le contexte était particulier et difficile, mais tu
as su très bien gérer tout cela. J’ai énormément appris à tes côtés, tant pro-
fessionnellement que sur le plan humain.
Je tiens à remercier également plusieurs membres de l’équipe TAO: Jean-
Baptiste, j’ai tout autant apprécié travailler à tes côtés que jouer aux échecs
avec toi. Merci également d’avoir relu mon manuscrit. Hassen j‘ai été ravi
de partager un bureau avec toi tout ce temps.
Je n’oublie pas non plus les anciens de TAO, avec qui j’ai passé de très bons
moments. Arpad, cela a été un plaisir de travailler avec toi ces dernières
années. Je mentirais si je disais que cela n’avait pas également été un plaisir
de partir en conférence avec toi. Cédric merci pour tes conseils et ces mo-
ments de rire. Raymond, tes conseils ont toujours été très bons, et on se doit
une belle au basket. Romaric et Philippe cela a été un plaisir de faire tous
ces sig ensemble (Romaric, non je ne te remercie pas pour travian).
Un merci particulier à Anne, avec qui tout a commencé. Merci également à
Adrien, Jean-Marc, Jacques, Julien, Ludovic et tous ceux que j’oublie pour

1

CONTENTS

toutes ces grandes discussions au cesfo et tous ces bons moments.
Un merci également au staff du LRI. Vous avez toujours été très serviables et
très réactifs. Un merci à Grid5000 aussi, qui permet de faire des expériences
parallèlles rapidement et efficacement.
Bien sûr, je tiens à remercier chaleureusement ma famille, en particulier, ma
mère Edith et ma soeur Valérie pour leur soutien permanent, à Maud qui
est une des personnes les plus positives et enthousiastes que je connaisse.
Je n’oublie pas mes amis, merci à Mathieu, avec qui j’ai eu la chance de
découvrir la collocation, c’était génial. Merci à Julien, Imad pour tous ces
bons moments.
Et enfin, un énorme merci à ma compagne Audrey, qui, pendant ces années,
et surtout, durant les moments les plus difficiles, a su me donner un soutien
et un réconfort indispensables pour un tel projet.

2

Introduction

In this document, we are interested in Artificial Intelligence (AI). AI is an im-
portant branch of computer-science. We can find a lot of different definitions
of AI. For instance, we can find that AI is the branch of computer-science
making computers behave like humans. This definition is a little simple, but
it is interesting in the sense that if we ask non computer-scientist people to
answer the question ”What is Artificial Intelligence ?”, this may be the most
given definition. A more accurate possible definition, is that an intelligent
agent is an agent able to perceive its environment and able to take actions
that maximize its chance of success.

For a lot of people, the most famous example of success in AI is the 6-
game matches between Gary Kasparov and the program Deep Blue. The
first one was in 1996, and the human player defeated the program 4-2. In
1997, the program won 3.5-2.5, and this second match is considered as the
most spectacular Chess event in history.

However, today, in a lot of problems (including games), computer are
much weaker than humans. This is, in my opinion, one of the main reason
why AI is still so interesting. It is important to be able to improve the level
of computers for different reasons :

• Creating artificial intelligence stronger than humans at some tasks is
interesting at a philosophical level, for understanding what is unique
in humans

• Computers or machines could replace humans for difficult or dangerous
tasks. The main popular examples are army (defuse a mine or a bomb
for instance) or medicine (for instance doing difficult operations).

• Help the human when the decisions to make involve important calcu-
lations.

As we said, an important point in AI is the decision making process. The
agent has to take decisions automatically. This criterion is restrictive, be-
cause with this notion we exclude a lot of algorithms or methods, such as,

3

CONTENTS

for instance, all the methods specialized on a specific field (3D simulations,
computer graphics, flow calculation ...). The decision process is domain de-
pendent here, whereas our problematic is the decision making process in its
independent aspect.

Another important point in computer science, is the raise of parallel struc-
tures. It seems more and more obvious that future of computer is based on
parallel architectures. There are several reasons for this change. The main
reason is that it becomes harder (and really expensive) to build more powerful
processors.

In Section 2, we show how one can adapt some AI algorithms for parallel
machines.

In this document, we are interested in two different types of decision mak-
ing. First, if we take one unique decision, this case is called optimization.
In Section I, we present different optimization algorithms. We are not inter-
ested in Gradient or Hessian based methods, because these methods are too
specific. We study more precisely Evolution Algorithms, which are famous to
be robust and therefore not problem-dependent. Second, if we take several
decisions, this is called multistage optimization. In Section II, we present
different methods dealing with this problem. We are particularly interested
in Monte-Carlo Tree Search algorithms, because these algorithms are known
for being generic.

4

Part I

Evolutionary Optimization

5

First, in Section 1 we introduce some state of the art optimization algo-
rithms and more specifically evolution strategies. In a second part, in Section
2, we present the main problem studied in this section, which is the paral-
lelization of evolution strategies. After that, in Section 3 we discuss and
summarize the different problems ans solutions seen in Section 2.

7

8

Chapter 1

Introduction

First, in Section 1.1, we define what are Evolutionary Algorithms in general.
After that, in Section 1.2 we present more specifically some state of the art
Evolution Strategies. In Section 1.3, we present the Estimation of Distribu-
tion algorithm and finally in Section 1.4 some other stochastic optimization
algorithms which are not used in this thesis.

1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) belong to the family of stochastic optimiza-
tion algorithms. They are biologically inspired algorithms that crudely mimic
reproduction, mutations, recombination and selection. They are modelled
according to Darwin’s evolution theory. Individuals of the population rep-
resent candidate solutions of the optimization problem. A generation is an
iteration of the algorithm (one step of the evolution process), mutations are
represented by random blind variations on individuals. A full process can
be described as follows : under the environment pressure, mutations and
crossovers are applied to the individuals of the population. After a small
number of generations, best individuals emerge from the population. Algo-
rithmically, the fitness is represented by the objective function, the popula-
tion of individuals denotes the set of possible solutions, mutations are blind
random variations and a generation is an iteration of the algorithm. An
evolutionnary algorithm is presented in Figure 1.1. During the initialization
part, a random population of candidate solutions is generated. The eval-
uation of a population consists in computing the fitness function for each
individual of the population. The selection part is the process consisting
in choosing the parents . According to their fitness, individuals among the
population are chosen and biased towards the ones with the best fitness..

9

1. INTRODUCTION

Crossover recombines the parental genes and mutation is a little variation of
an individual in a random way. One iteration of the whole process is called
a generation.

Figure 1.1: Evolutionary algorithm: the process.

1.2 Evolution Strategies

Evolution strategies (ESs) belong to the family of evolutionary algorithms,
they are applied in the continuous case. We note λ the number of individuals
belonging to the population. µ denotes the parent population size, i.e. the
number of individuals in the selected population. First, in Section 1.2.1, we
present the evolution strategies, and then in Section 1.2.2 we present some
state of the art algorithms.

1.2.1 Notions and Definitions

Evolution Strategies have been initially introduced in [Rechenberg, 1973] and
[Schwefel, 1981]. As shown in [Teytaud and Fournier, 2008], according to the

10

1.2. EVOLUTION STRATEGIES

selection process, we can consider four families of algorithms :

• Selection-based non-elitist Evolution Strategies (SB − (µ, λ) − ESs).
In these algorithms, λ individuals are generated and constitute the
population. Then, the µ best candidate individuals from the population
are kept to generate the new population. Here the information needed
is simply the µ points, in particular no ranking is necessary.

• Selection-based elitist Evolution Strategies (SB − (µ + λ)− ESs). In
these algorithms, λ individuals are generated, and the µ best individu-
als of the union between the population and the µ selected individuals
at the previous generation are selected. As for SB − (µ, λ) − ESs we
do not require the full ranking of the individuals.

• Full ranking non-elitist Evolution Strategies (FR−(µ, λ)−ESs). Such
the SB − (µ, λ)− ES, after the generation of the λ individuals, the µ
best individuals from the population are kept to generate the new pop-
ulation except that in this case, we also need to keep the complete rank-
ing of these µ individuals. The complete ranking is necessary because
in some cases the weight of each individual will be rank-dependent.

• Full ranking elitist Evolution Strategies (FR− (µ+ λ)−ESs) can be
defined in the same way. The ranking of the µ best individuals of the
union of the current population and the previous selected set is kept.

When the size of the selected population is larger than 1, recombination
(i.e., the construction of a new parent by mixing selected individuals) can be
applied in order to generate new parents. For fixed values of µ and λ, the two
families using full ranking use more information than the two others. The
expected consequence of this additional cost is that full ranking strategies
should be faster.

In ES, mutations are mainly represented by Gaussian mutations. A par-
ent x generates an offspring y as follows :

y = x+ σN (0, C),

where σ denotes the step-size, N (0, C) denotes the standard multivariate
normal variables with mean 0 and covariance matrix C.

The key point in ESs is the adaptation of the parameters of the process
and in particular the adaptation of the step-size and the adaptation of the
covariance matrix. In the next section, we focus our attention on the critical
step-size σ. We now present in Section 1.2.2 the different possibilities for
adapting this parameter.

11

1. INTRODUCTION

1.2.2 Adaptation of the step-size

One important point in ES is the adaptation of the step-size σ. This adapta-
tion is different from one algorithm to another, and this is this specification
which is used to differentiate the different ESs. It is important to have an
adaptative step-size, because if the step-size is constant and too small w.r.t.
the distance to the optimum, the new individual will be close to the parent
and the progression will be slow. In the other case, if the step-size is constant
and too large w.r.t. the distance to the optimum, the probability that the
new individual be better than its parent will be too small. In this section,
we present different rules for adapting the step-size.

One-fifth rule.

The one-fifth rule has been successfully introduced in [Rechenberg, 1973].
The principle is to increase the step-size if the probability of success p̂ is
greater than 1

5
and to decrease it otherwise. The value 1

5
is an approxima-

tion of the optimal probability of success on the Sphere function and on the
corridor function [Rechenberg, 1971, Rechenberg, 1973]. The probability of
success is the probability that one offspring is better than its parent. Algo-
rithm 1 presents this first method. The update of the step-size σ is done in
lines 14 and 16 in Algorithm 1. Another update of σ found in literature is

σ = K(p̂− 1
5
)

with K a constant greater than 1.

12

1.2. EVOLUTION STRATEGIES

Algorithm 1 One-fifth rule.

1: argument dimension d ∈ IN
2: Initialize σ ∈ IR, y ∈ IRd

3: while Halting criterion not reached do
4: for i← 1 to λ do
5: si ← Ni(0, Id)
6: yi ← y + σsi
7: fi ← f(yi)
8: Sort the individuals by increasing fitness ; f(1) < f(2) . . . < f(λ)
9: Or define the set of the µ best individuals
10: Compute p as the number of successful offsprings divided by λ

(max{i; f(i) < f(y)})

11: savg ← 1
µ

µ∑
i←1

s(i)

12: y′ ← y + σsavg

13: if y′ better than y then
14: y = y′ ; σ = 2σ
15: else
16: y = y′ ; σ = 2−1/4σ

13

1. INTRODUCTION

Mutative Self-Adaptation.

The mutative Self-Adaptation Evolution-Strategy (SA-ES) has been first pro-
posed in [Rechenberg, 1973] and [Schwefel, 1974]. The idea is to mutate the
mutation parameters by working on the assumption that a bad mutation
parameter will not generate a good offspring. If the mutation of the step-size
is bad, then the resulting step-size will be either too large or too small. In
the first case, the probability of having a good offspring is low, and in the
second case, the improvement will be small. The main advantages are its
simplicity and its genericity. Another important point is, as we will see in
Section 2.1.3, that it is more amenable to parallelization than the Cumula-
tive Step-size Adaption or the One-fifth rule. This algorithm is presented in
Algorithm 2.

Algorithm 2 Mutative self-adaptation algorithm. For large population size
τ is usually equal to 1/

√
N ; other tuning of τ can been used (e.g. 1/

√
2N)

which is sometimes found in papers.

argument dimension d ∈ IN
Initialize σavg ∈ IR, y ∈ IRd.
while Halting criterion not reached do
for i = 1..λ do
σi = σavgeτNi(0,1)

zi = σiNi(0, Id)
yi = y + zi
fi = f(yi)

Sort the individuals by increasing fitness; f(1) < f(2) < · · · < f(λ).

zavg = 1
µ

µ∑
i=1

z(i)

σavg = 1
µ

µ∑
i=1

σ(i)

y = y + zavg

14

1.2. EVOLUTION STRATEGIES

Cumulative Step-Size Adaptation.

The last well-known algorithm for choosing the step-size is the
Cumulative Step-size Adaptation (CSA). It was proposed in
[Hansen and Ostermeier, 1996, Hansen and Ostermeier, 2001]. The princi-
ple of this method is to compare the length of the path followed by the
algorithm to the length of the path followed under random selection. If
the path followed by the algorithm is larger than the path under random
selection then the step-size is increased. In the other case, the step-size is
decreased. The detailed algorithm is presented in Algorithm 3.

Algorithm 3 Cumulative step-size adaptation.

argument dimension d ∈ IN
Initialize σ ∈ IR, y ∈ IRd.
while halting criterion not fulfilled do
for i = 1..λ do
si = Ni(0, Id)
yi = y + σsi
fi = f(yi)

Sort the individuals by increasing fitness; f(1) < f(2) < · · · < f(λ).
Or define the set of the µ best individuals

savg = 1
µ

µ∑
i=1

s(i)

y = y + σsavg

pσ = (1− c)pσ +
√

µc(2− c)savg

σ = σ exp[||pσ ||−χd

Dχd
]

In Algorithm 3, χd is approximated by
√
d× (1− 1

4.0×d +
1

21.0×d2), and d

is the dimension. Following [Hansen, 1998], c = 1√
d
and D =

√
d. A main

weakness of this formula is its moderate efficiency, for λ large, as pointed out
in [Beyer and Sendhoff, 2008] and detailed in Section 2.

15

1. INTRODUCTION

1.2.3 State of the Art Evolution Strategies

In this section, we present two state of the art ESs. The first one is the
Covariance Matrix Adaptation Evolution Strategy, presented in Section 1.2.3.
The second ES is the Covariance Matrix Self-Adaptation Evolution Strategy,
presented in Section 1.2.3.

The Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[Hansen and Ostermeier, 2001] is one of the most famous ES. The rule used
for adapting the step-size is CSA (presented in Section 1.2.2, Algorithm 3).
The key point is that the CMA-ES updates a full covariance matrix for the
sample distribution. Consequently, CMA-ES learns all pairwise dependencies
between all parameters. The CMA-ES is presented is Algorithm 4.

Algorithm 4 The Covariance Matrix Adaptation Evolution Strategy. < . >
denotes the recombination. pc = 0, p = 0,

Initialize σ ∈ IR, y ∈ IRd, C = Id.
while Halting criterion not fulfilled do
for i = 1..λ do
si =

√
CNi(0, Id)

yi = y + σsi
fi = f(yi)

y = y + σ < s >w

p =
(
1− 1

τp

)
p+

√
1
τp

(
2− 1

τp

)√
µeff < s >w

C = (1− 1
τc
)C + 1

τc

[
1

µeff
ppT + (1− 1

µeff
) < ssT >

]
pσ = (1− cσ) pσ +

√
cσ(2− cσ)

√
µeff < N(0, Id) >w

σ = σ exp
((
||pc||
χd
− 1

)
· cσ
dσ

)
cσ,dσ and µeff are parameters of the algorithm. The default values of

these parameters are:

• cσ =
µeff+2

d+µeff+3

• dσ = 1 + 2max(0,
√

µeff−1
d+1

− 1)

• µeff = 1∑µ
i=1(w

2
i)

16

1.2. EVOLUTION STRATEGIES

The default value of λ is λ = 4 + ⌊3 + ln(d)⌋ and the default value of µ is
µ = λ

2
.

17

1. INTRODUCTION

The Covariance Matrix Self-Adaptation Evolution Strategy

The Covariance Matrix Self-Adaptation Evolution Strategy (CMSA-ES)
[Beyer and Sendhoff, 2008] is based on the SA algorithm presented previ-
ously. In the CMSA-ES, the routine used to adapt the global step size σ is
the Self-Adaptation one (Section 1.2.2, Algorithm 2). But as for CMA-ES,
here a full covariance matrix is used, in order to learn the shape of the fitness
function. This algorithm is presented in Algorithm 5.

Algorithm 5 Covariance Matrix self-adaptation. τ is equal to 1/
√
d; < . >

represents the recombination. The initial covariance matrix C is the identity
matrix. The time constant τC is equal to 1 + d(d+1)

λ
2

.

Initialize σavg ∈ IR, y ∈ IRd, C.
while Halting criterion not fulfilled do
for i = 1..λ do
σi = σavgeτNi(0,1)

si =
√
CσiNi(0, Id)

zi = σisi
yi = y + zi
fi = f(yi)

Sort the individuals by increasing fitness; f(1) < f(2) < · · · < f(λ).
zavg = 1

µ

∑µ
i=1 z(i)

savg = 1
µ

∑µ
i=1 s(i)

σavg = 1
µ

∑µ
i=1 σ(i)

y = y + zavg

C = (1− 1
τC
)C + 1

τC
< ssT >

18

1.3. ESTIMATION OF DISTRIBUTION ALGORITHMS

1.3 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs)
[Mühlenbein and Paass, 1996, Bosman and Thierens, 2000,
Pelikan et al., 2002] are another well known stochastic optimization al-
gorithms. The principle is to use a probability distribution to represent the
potential solutions. The EDA iteratively estimates the parameters of the
distribution by :

• sampling the domain with the current parametrized distribution

• evaluating the sampled points,

• selecting the best points,

• rebuilding the probability distribution described by these points.

Estimation of Multivariate Normal Algorithm (EMNA)
[Larranaga and Lozano, 2002] belongs to the family of EDA. It is the
case in which we use a Gaussian distribution estimated by maximum
likelihood. This algorithm is presented in Algorithm 6.

Algorithm 6 The EMNA algorithm.

argument dimension d ∈ IN
Initialize σ ∈ IR, y ∈ IRd.
while Halting criterion not reached do
for i = 1..λ do
zi = σNi(0, Id)
yi = y + zi
fi = f(yi)

Sort the individuals by increasing fitness; f(1) < f(2) < · · · < f(λ).
Or define the set of the µ best individuals

zavg = 1
µ

µ∑
i=1

z(i)

σ =

√√√√√ µ∑
i=1

||z(i) − zavg||2

µd

y = y + zavg

19

1. INTRODUCTION

1.4 Other stochastic optimization algorithms

We have seen Evolution algorithms which belong to stochastic algorithms.
We now introduce other stochastic methods. First in Section 1.4 we see
Monte-Carlo Search, and then in Section 1.4 the Differential Evolution algo-
rithm.

Monte-Carlo Search.

Monte-Carlo Search, also known as Pure Random Search [Brooks, 1958], is
one of the simplest optimization algorithms. The process consists in ran-
domly sampling each point in the search space, according to a fixed probabil-
ity distribution and keep the best point so far. This method converges asymp-
totically to the optimum [Zhigljavsky and Zilinskas, 2007]. Indeed, in prac-
tice, the time needed to find the optimum is really long, and increases expo-
nentially with the search space dimension [Zhigljavsky and Zilinskas, 2007].

Differential Evolution.

Differential Evolution (DE) [Price et al., 2005, Price, 1996, Storn, 1996,
Storn and Price, 1995, Storn and Price, 1997], belongs to the family of evolu-
tionary algorithms. As in evolutionary algorithms, a population of candidate
solutions evolves generation after generation. The four main steps are the
same, they consist in initialization, mutation, recombination and selection.
The difference with evolutionary algorithms is in the mutation process. Each
individual, i.e. candidate solution, is represented by d-dimensional vectors.
The initial vectors are randomly generated. At each generation we have :

Px = (xi), i = 1, . . . , λ

xi = (xi,j); j = 1, . . . , d

xi denotes the ith individual).

The mutation step is defined as follows :

vi = xi1 + F (xi2 − xi3), i = 1, . . . , λ

i1,i2 and i3 are indices randomly chosen in the population, i.e. in 1, . . . , λ
and F is a positive constant.

The recombination step defines a new vector ui. A parameter, called
crossover probability (Cr), determines the amount of information taken by
vi. Formally :

20

1.4. OTHER STOCHASTIC OPTIMIZATION ALGORITHMS

ui,j =

{
vi,j with probability Cr and

xi,j with probability 1-Cr

The selection step is deterministic, the candidate ui replaces xi if it is better.
Formally,

xi =

{
ui if f(ui) ≤ f(xi)

xi otherwise

21

1. INTRODUCTION

22

Chapter 2

Issues with large population
sizes

In this chapter we are interested by the case of large population sizes. The
motivation behind the study of this particular case is that it is often said that
evolutionary algorithms are well suitable for parallelization. In evolutionary
algorithm, a population of candidate solutions evolves. Nowadays, the
architecture of computers is changing, to become more and more parallel.
Generally, in optimization problems, the critical step of the whole process (in
term of time) is the evaluation of a candidate solution. With a large number
of processors available, a natural and simple parallelization of evolutionary
algorithms is to evaluate one candidate solution per processor. With this
simple parallelization, the population size corresponds to the number of
available processors. Generally in Optimization, the number of evaluations
needed to reach a certain target fitness is measured [Hansen et al., 2009]. In
this study, we are interested in measuring the number of iterations needed
to reach a target function instead of the number of evaluations. The reason
is simply that we consider that at each generation (i.e. iteration), the λ
evaluations are done in parallel, then, if we increase the population size, the
number of evaluations needed to reach a target fitness will also increase, but
the number of iterations needed to reach the same target will decrease.

Let us take an example with the last version of CMA (Algorithm 4).
The fitness function is the Sphere function (defined in Table 2.1), the target
fitness is fixed to 10−10 and the dimension is 10. Results are plotted in
Figure 2.1.

23

2. ISSUES WITH LARGE POPULATION SIZES

Figure 2.1: Top: measure of the number of evaluations as a function of λ.
Bottom: measure of the number of iterations as a function of λ.

24

In this study, our goal is to measure the parallel performances (called
the wall-clock time) of evolutionary algorithms, and not to minimize the
number of evaluations (called the computational cost).

First, in Section 2.1 we study the behavior of evolutionary algorithms in
the case of large population sizes, and we see that the results are far worse
than what we could expect. In Section 2.2 we propose different solutions to
solve this problem of large population size. Finally, in Section 2.3 we present
an automatic parallelization of evolution strategies.

25

2. ISSUES WITH LARGE POPULATION SIZES

2.1 Introduction

2.1.1 Notations and definitions

Complexity bounds are here expressed with convergence ratio. Following
[Fournier and Teytaud, 2011] the convergence ratio is defined as :

CRϵ =
logN(ϵ)

dnϵ

where

• nϵ is the number of iterations necessary for ensuring, that with proba-
bility at least 1

2
, the algorithm estimates the location of the optimum

with a precision ϵ. The constant 1
2
is arbitrary and similar results have

been found with a confidence 1− δ (δ > 0).

• d is the dimension.

• N(ϵ) corresponds to the 2ϵ-packing number, i.e. the maximum number
k such that there exist k points in the domain with pairwise distance
2ϵ.

A faster algorithm means a larger convergence ratio. Usually, the conver-
gence rate is define as :

− log(convergence rate) = lim
ϵ→0

CRϵ

According to O. Teytaud, S. Gelly in [Teytaud and Gelly, 2006] and
O.Teytaud and H. Fournier in [Fournier and Teytaud, 2011], the advantage
of using the convergence ratio over the convergence rate is that the speed-up
between two algorithms corresponds to the ratio between their convergence
ratios, and the number of iterations for reaching a given precision is propor-
tional to the inverse of the convergence ratio.

H. Fournier and O. Teytaud have recently shown a several theoretical
bounds for ESs [Fournier and Teytaud, 2011], from which we will retain :

• For (µ/µ, λ)− ES the optimal speed-up is linear for λ < d. For larger
values of λ the speed-up becomes logarithmic as a function of λ.

• For (1, λ)− ES the speed-up is logarithmic as a function of λ.

It is important to bear in mind that (µ/µ, λ) − ES corresponds to an
evolution strategy with a population size λ and a selected population size of

26

2.1. INTRODUCTION

µ, and the parent used to create the next population is the average of the
individuals belonging to the selected population. (1, λ)−ES is an evolution
strategy with a population λ and a selected population size of 1, i.e. µ equals
to 1 (the best individual in the population is the new parent).

Let us define the different objective functions used in this chapter. The
first objective function is the Sphere function, which is a well-known test
function in optimization. The second and third ones are the Schwefel El-
lipsoid and the Cigar functions, for which the adaptation of the covariance
matrix is helpful. The last one is the Rosenbrock function which requires, due
to its shape, continuous changes of the covariance matrix. These functions
are presented in Table 2.1.

Name Objective function

Sphere f(y) =
d∑

i=1

y2i

Schwefel f(y) =
d∑

i=1

(
i∑

j=1

yi)
2

Cigar f(y) = y21 + 10000×
d∑

i=2

y2i

Rosenbrock f(y) =
d∑

i=1

(100(y2i − yi+1)
2 + (yi − 1)2)

Table 2.1: : Objective functions considered in this chapter.

We now present that many real-world algorithms are far from these the-
oretical bounds. In Section 2.1.2, we show that the one-fifth rule, the self-
adaptation algorithm and the cumulative step-size adaptation algorithm do
not reach the optimal speed-up. In Section 2.1.3, we see experimentally that
the speed-up of real world algorithms is far from the theoretical bounds.

2.1.2 Real world algorithms do not all reach the opti-
mal speed-up

In this section, we show that the one-fifth rule (Algorithm 1), the Self-
Adaptation algorithm (Algorithm 2) and the Cumulative Step-Size Adapta-
tion algorithm (Algorithm 3) do not reach the optimal speed-up when the
population becomes large but a bounded speed-up, i.e. in O(1) as λ → ∞.
As said previously, the optimal speed-up is log(λ) for λ→∞. The results on

27

2. ISSUES WITH LARGE POPULATION SIZES

this section have been published in the paper [Teytaud and Teytaud, 2010b].

We define η∗ = σn+1

σn
(η∗ depends on n, but we consider a fixed value of

n here and therefore we drop this dependency in the notation η∗). η∗ small
means that σ decreases quickly and η∗ close to 1 means a slow decrease. The
important point is that the convergence rate is lower bounded by η∗. Hence,
η∗ = Ω(1) implies that the speed-up can not be Θ(log(λ)). This is the key
point for showing that many Real-World algorithms do not reach the optimal
speed-up.

One fifth rule.

The one-fifth rule has been introduced in Section 1.2.2. The one-fifth rule can
be applied in different manners to (µ/µ, λ) algorithms. Consider p̂ equal to
the ratio between (i) the number of generated individuals with fitness better
than the center of the Gaussian generating the offspring (ii) the number of
generated individuals; 0 ≤ p̂ ≤ 1. A first possible implementation of the
one-fifth rule is

p̂ ≤ 1/5⇒ η∗ = K1 ∈]0, 1[and p̂ > 1/5⇒ η∗ = K2 > 1 (2.1)

and a second version is η∗ = K
(p̂−1/5)
3 for some K3 > 1. (2.2)

Proposition 1: For the one-fifth rule, implemented as in Eq. 2.1 or in
Eq. 2.2, there exists a constant C > −∞ such that E log(σn+1

σn
) > C.

Proof: In the first case (Eq. 2.1, we see that η∗ ≥ K1 > 0; and in

the second case, η∗ ≥ K
−1/5
3 > 0; in both cases, η∗ is lower bounded by a

positive constant; log(η∗) is therefore lower bounded by a constant > −∞.
The proposition is proved. Therefore, we have shown that with the one-fifth
rule, the convergence ratio (and therefore the convergence rate) is O(1) (as
λ→∞).

Self-Adaptation.

The proof of the limited speed-up for SA requires the following lemma.
Lemma: The expected logarithm of the average (arithmetic or geomet-

ric average) of the µ smallest of λ independent standard log-normal random
variables, with µ

λ
→ k > 0 and µ > 0, is lower bounded by some constant

> −∞. More formally, if N(1), . . . , N(λ) are sorted realizations of standard
independent Gaussian variables, and L(i) is exp(N(i)), then

inf
λ>0

E log
1

µ

µ∑
i=1

exp(N(i)) > −∞ and inf
λ>0

E
1

µ

µ∑
i=1

N(i) > −∞.

28

2.1. INTRODUCTION

Proof: Define N1, . . . , Nλ realizations of standard independent Gaussian
variables (with mean 0 and variance 1). Define Li = exp(Ni). Following
usual notations in evolutionary computation, consider indices (1), . . . , (λ)
such that L(1), ..., L(λ) are these independent log-normal standard random
variables, sorted in non-decreasing order.

With probability 1, all the Ni are distinct; we therefore suppose without
loss of generality that they are all distinct in calculus below. Then (we show
that result for the arithmetic average, as the case of the geometric average
is in fact simpler),

E

[
log

1

µ

∑
i≤µ

exp(Ni)

]

≥ E

[
1

µ

∑
i≤µ

N(i)

]
(as exp is convex and log is non-decreasing)

=
(
E[N(1)] + E[N(2)] + E[N(3)] + ...+ E[N(µ)]

)
/µ

(as expectation and summation commute)

= E [N |{(1) ≤ µ}]
= E

[
N |{N1 ≤ N(µ)}

]
−→

λ→∞ CV ARµ/λ(N) thanks to [Chen, 2008, Theorem 1] (2.3)

> −∞.

CV ARα is the conditional value at risk, i.e. the average of the α first quan-
tiles, obviously finite for the Gaussian distribution; the convergence in line
2.3 is the convergence of the empirical CVAR to its asymptotic value, estab-
lished in [Chen, 2008] in a general setting including this one. This concludes
the proof.

Proposition 2. Consider a SA algorithm in which σn+1 is the aver-
age (geometric or arithmetic average) of σn × L1, σn × L2, . . . , σn × Lλ, for
L1, . . . , Lλ as in the lemma above. Then, there exists some C > −∞ such
that E log(σn+1

σn
) > C.

Remark: Rescaling the Ni by any constant (equivalently, Li = exp(kNi)
for some k > 0) does not change the result.

Proof: Consider a Self-Adaptation algorithm. In such algorithms, the
new step-size is the average (arithmetic or geometric average) of selected step-
sizes. Each mutation of a step-size is log-normal, we consider the mean of the
µ selected mutation, which is lower bounded by the mean of the µ individuals
with smallest step-sizes. Therefore, E log(η∗) ≥ E logmeani≤µ exp(Ni) (in

29

2. ISSUES WITH LARGE POPULATION SIZES

the arithmetic case, the other case is similar); the latter quantity is lower
bounded by the lemma above and this concludes the proof.

Therefore, the lemma shows that the convergence ratio of (µ, λ)-ES with
self-adaptation is bounded (O(1)) as λ→∞.

Cumulative Step-Size Adaptation.

Now we show that Cumulative Step-size Adaptation (CSA) (presented in
Section 1.2.2) does not reach optimal speed-up log(λ). We (classically) for-
malize an iteration of CSA in dimension d as follows:

wi ≥ 0,

µ∑
i=1

wi = 1 (2.4)

µeff =
1∑µ

i=1(w
2
i)

(2.5)

χd > 0 , ||pc|| ≥ 0 (2.6)

dσ = 1 + 2max(0,

√
µeff − 1

d+ 1
− 1) (2.7)

cσ =
µeff + 2

d+ µeff + 3
(2.8)

σn+1 = σn exp

((
||pc||
χd

− 1

)
· cσ
dσ

)
.

(||.|| does not have to be a norm, we just need Eq. 2.6). These assumptions,
or equivalent variants of them, to the best of our knowledge, hold in all
current implementations of CSA. We then show the following

Proposition 3. For any dimension d, there exists C > 0 such that, for
any λ, η∗n = σn+1

σn
≥ C.

Proof: We write η∗ as follows:

η∗ =
σn+1

σn

= exp

(
(
||pc||
χd

− 1) · cσ
dσ

)
. (2.9)

Eq. 2.4 and Eq. 2.5 imply ∀µ, µeff ≥ 1. (2.10)

Eq. 2.10 and Eq. 2.8 lead to
3

d+ 4
≤ cσ ≤ 1. (2.11)

Eq. 2.7 leads to dσ ≥ 1. (2.12)

30

2.1. INTRODUCTION

By assumptions 2.6,
||pc||
χd

− 1 ≥ −1. (2.13)

Eq. 2.9 and Eq. 2.13 lead to η∗ ≥ exp(− cσ
dσ

). (2.14)

Finally Eq. 2.11, Eq. 2.12 and Eq. 2.14 give η∗ ≥ exp(−1) (2.15)

which yields the expected result.
This proposition shows that η∗ ≥ exp(−1); this implies that CR ≤ 1, i.e.

for cumulative step-size adaptation the speed-up is O(1) for λ→∞.

2.1.3 Experimental analysis

In this section, we compare three step-size adaptation rules in the particular
case on large population sizes. The first rule is the SA algorithm, define in
Algorithm 2, the second rule is the CSA algorithm defined in Algorithm 3
and the last one is an EDA algorithm as defined in Algorithm 6.

These results have been published in [Teytaud and Teytaud, 2009b].
We have done our experiments on three different objective functions. The

objective functions are the Sphere function, the Schwefel function and the
cigar function. These functions are defined in Table 2.1. The first experiment
confirms the superiority of SA over CSA when the population is large. This
superiority has been first shown in [Beyer and Sendhoff, 2008]. In this ex-
periment, Beyer and Sendhoff show the superiority of the Covariance Matrix
Self-Adaptation Algorithm (presented in Section 1.2.3, Algorithm 5) against
the Covariance Matrix Adaptation algorithm (presented in Section 1.2.3, Al-
gorithm 4).

In our experiments, we measure the numbers of iterations needed to reach
a halting criterion as a function of the dimensionality. The halting criterion
is fixed and equals to fstop = 10−10. These experiments are presented in
Figure 2.2 for λ = 8, Figure 2.3 for λ = 4× d and Figure 2.4 for λ = 4× d2.

The second set of experiments is the measure of d × log(||x − x∗||)/n
as a function of λ, where: d is the dimensionality; x is the best point in
the last λ offspring; x∗ is the optimum (x∗ = 0 for our test functions); n
is the number of iterations before the halting criterion is met. Each run is
performed until f(x) < 10e−50. For the sake of statistical significance each
point is the average of 300 independent runs.

In these experiments, we compare SA-ES, CSA-ES and an EMNA algo-
rithm as define in Algorithm 6. The EMNA algorithm is called SSA (standing
for Statistical Step-size Algorithm) in our experiments. Results are presented

31

2. ISSUES WITH LARGE POPULATION SIZES

0
10

1
10

2
10

1
10

2
10

3
10

4
10

λ = 8

d

#g
en

er
at

io
ns

CSA
SA

Figure 2.2: Results for λ = 8. Performance of CSA and SA on the Sphere
function (number of iterations before f(x) < 10−10) depending on the di-
mensionality. In these experiments, µ = 1

4
λ.

in Figure 2.5 and Figure 2.6 for µ = λ/2, Figure 2.7 and Figure 2.8 for
µ = λ/4, and Figures 2.9 and Figure 2.10 for µ = 1.

32

2.1. INTRODUCTION

0
10

1
10

2
10

1
10

2
10

3
10

λ = 4δ

d

#g
en

er
at

io
ns

CSA
SA

Figure 2.3: Results for λ = 4 × d. Performance of CSA and SA on the
Sphere function (number of iterations before f(x) < 10−10) depending on
the dimensionality. In these experiments, µ = 1

4
λ.

33

2. ISSUES WITH LARGE POPULATION SIZES

0
10

1
10

2
10

1
10

2
10

3
10

λ = 4δδ

d

#g
en

er
at

io
ns

CSA
SA

Figure 2.4: Results for λ = 4 × d2. Performance of CSA and SA on the
Sphere function (number of iterations before f(x) < 10−10) depending on
the dimensionality. In these experiments, µ = 1

4
λ.

34

2.1. INTRODUCTION

0 20 40 60 80 100 120 140 160 180 200
−1.50

−1.00

−0.50

−0.00

d=3

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA
SSA

0 20 40 60 80 100 120 140 160 180 200
−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

d=10

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA
SSA

Figure 2.5: Log of distance to the optimum when the halting criterion
(f(x) < 10e−50) is met, normalized by the dimension and the number of
iterations. Results for µ = λ/2, on the Sphere function in dimension 3 (Top)
and dimension 10 (Bottom). In all cases, SSA is the best rule for λ large.

35

2. ISSUES WITH LARGE POPULATION SIZES

0 50 100 150 200 250 300 350 400
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

d=30

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA

SA

SSA

0 200 400 600 800 1000 1200 1400 1600 1800
−6

−5

−4

−3

−2

−1

−0

d=100

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA

SA

SSA

Figure 2.6: Log of distance to the optimum when the halting criterion (f(x) <
10e−50) is met, normalized by the dimension and the number of iterations.
Results for µ = λ/2, on the Sphere function in dimension 30 (Top) and
dimension 100 (Bottom). In all cases, SSA is the best rule for λ large.

36

2.1. INTRODUCTION

0 20 40 60 80 100 120 140 160
−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

d=3

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA
SSA

0 20 40 60 80 100 120 140 160
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

d=10

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA
SSA

Figure 2.7: Results for µ = λ/4 on the Sphere function in dimensions 3 (Top)
and 10 (Bottom). All methods are better than for µ = λ/2. In all cases, SSA
is the best rule for λ large.

37

2. ISSUES WITH LARGE POPULATION SIZES

0 50 100 150 200 250 300 350 400
−6

−5

−4

−3

−2

−1

0

1

d=30

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA
SSA

0 100 200 300 400 500 600 700 800
−10

−8

−6

−4

−2

0

2

d=100

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA
SSA

Figure 2.8: Results for µ = λ/4 on the Sphere function in dimensions 30
(Top) and 100 (Bottom). All methods are better than for µ = λ/2. In all
cases, SSA is the best rule for λ large.

38

2.1. INTRODUCTION

0 20 40 60 80 100 120 140 160
−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

d=3

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA

0 20 40 60 80 100 120 140 160
−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

d=10

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA

Figure 2.9: Results for µ = 1 on the Sphere function in dimensions 3 (Top)
and 10 (Bottom). SSA is not presented as it does not make sense for µ = 1.
As shown by this figure (compared to µ = 1

4
and µ = 1

2
), µ = 1 is quite weak

for large dimension and the absence of SSA version for that case is therefore
not a trouble.

39

2. ISSUES WITH LARGE POPULATION SIZES

0 50 100 150 200 250 300
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

d=30

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA

0 50 100 150 200 250 300
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

d=100

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

CSA
SA

Figure 2.10: Results for µ = 1 on the Sphere function in dimension 30 (Top)
and 100 (Bottom). SSA is not presented as it does not make sense for µ = 1.
As shown by this figure (compared to µ = 1

4
and µ = 1

2
), µ = 1 is quite weak

for large dimension and the absence of SSA version for that case is therefore
not a trouble.

40

2.1. INTRODUCTION

All these experiments have been done with simple algorithm without co-
variance matrix (the covariance matrix is represented by the identity matrix).
We now repeat these experiments with the same algorithms but with the ad-
dition of a diagonal covariance matrix. This form of covariance matrix is
intermediate between the full matrix and the matrix proportional to iden-
tity. It has been pointed out in [Ros and Hansen, 2008] that this separable
version is in many cases faster than the complete covariance matrix. We
have in this case to determine one step-size per axis. Figures 2.11 and 2.12
present the results of these experiments. We can see that

• On the Schwefel function, the results are the same as those on the
Sphere function.

• On the Cigar function, the results are not as similar as the results on
the Sphere function, but are not too far. Even on this ill-conditioned
function, the EMNA algorithm gives good results.

In all these experiments two main results can be given.
First, we can note the superiority of EMNA algorithm when the population
size becomes large. The advantages of EMNA are multiple. It is :

• very simple,

• fully-portable to the full-covariance matrix case,

• computationally cheap,

• highly intuitive,

• parameter-free (only classical parameters µ and λ),

• efficient for large population sizes.

It provides a speed-up of 100% (over mutative self-adaptation, which is
already much better than CSA) on the Sphere function for d = 3, decreasing
to 33% for d = 10 and 25% for d = 100 (in the case λ = 150). SA and
CSA adaptation-rules use, as covariance matrix, a combination of an old
covariance matrix and a new estimate based on the current population - in
EMNA, we only keep the second term as λ large simplifies the problem.
Second, we show that the anisotropic version works in the sense that the
convergence rate on the Sphere was recovered with the Schwefel and the Cigar
function. The anisotropic version of the algorithm is the algorithm with a
diagonal covariance matrix, i.e. there is one step-size per axis (the covariance

41

2. ISSUES WITH LARGE POPULATION SIZES

matrix in the isotropic version of the algorithm, presented in Algorithm 6 is
the identity matrix).

Some by-products of our results are now pointed out, and compared with
theoretical results from [Teytaud and Fournier, 2008]:

• The higher the dimensionality, the better the speed-up for (µ/µ, λ)-
algorithms; [Beyer, 2001] has shown the linear speed-up as a function
of λ as long as λ << d, and [Fournier and Teytaud, 2011] has proved
that the speed-up is linear until λ of the same order of the dimension.
Roughly, a number of processors linear as a function of the dimension
is efficient. This is visible on our experimental results (Figures 2.5, 2.6,
2.7 and 2.8).

• Also, (1, λ) algorithms (case µ = 1) have a less-than-linear (logarith-
mic) speed-up as a function of λ. This is visible in our experimental
results (Figures 2.9 and 2.10). This is also consistent with [Beyer, 2001]
and [Teytaud and Fournier, 2008].

• On the Schwefel function, the results of the anisotropic version of the
algorithm are the same as in the case of the Sphere function. The
isotropic algorithms have, in this framework, a result close to 0 (i.e.
much worse). Therefore, the anisotropic step-size adaptation works for
this moderately ill-conditioned function.

• On the Cigar function, the results are not exactly the same as those of
the Sphere function, but almost; even on this much more ill-conditioned
function, the anisotropic SSA works.

42

2.1. INTRODUCTION

0 100 200 300 400 500 600 700 800
−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

d=3

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

sphere, isotropic

Cigar anisotropic

Schwefel anisotropic

0 100 200 300 400 500 600 700 800
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

d=10

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

sphere, isotropic

Cigar anisotropic

Schwefel anisotropic

Figure 2.11: Results of the anisotropic version of the SSA algorithm in di-
mensions 3 (Top) and 10 (Bottom).

43

2. ISSUES WITH LARGE POPULATION SIZES

0 100 200 300 400 500 600 700 800
−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

d=30

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

sphere, isotropic

Cigar anisotropic

Schwefel anisotropic

0 100 200 300 400 500 600 700 800
−8

−7

−6

−5

−4

−3

−2

−1

0

1

d=100

λ

lo
g(

||x
||)

*d
/#

ite
ra

tio
ns

sphere, isotropic

Cigar anisotropic

Schwefel anisotropic

Figure 2.12: Results of the anisotropic version of the SSA algorithm in di-
mensions 30 (Top) and 100 (Bottom). It has, on ill-conditioned functions,
nearly the same performance as the isotropic version on the Sphere function,
in particular in high dimension.

44

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

2.2 Log(λ) modifications for optimal paral-

lelization

As seen in the Section 2.1, there is a discrepancy between theory and practice.
In this section we propose some modifications in order to improve the existing
algorithm in case of large population size to solve this discrepancy. The first
modification, in Section 2.2.1, is based on the adjustment of the selection
ratio. The second modification, presented in Section 2.2.2 is a faster decrease
of the step-size. We see, that in order to have a maximal benefit of this last
modification, it is necessary to have a specific reweighting.

2.2.1 New selection ratio

The results of this section have been published in [Teytaud, 2010].
In this work, we compare a modified version of the SA algorithm, with

the standard version (as defined in Algorithm 2. The modification of the
SA algorithm consists in an adjustment of the selection ratio. In this new
version the number of selected points µ is equal to the minimum between
the dimensionality and the population size divided by 4. Formally, in that
case, µ = min(d, λ

4
). Intuitively, we want µ = d for λ large, and λ/4 for

small value of the population size.

Before seeing the comparison between the standard version of the SA
algorithm and the new one, we study the discrepancy between theory and
practice, and in particular the importance of the choice of the selection ratio.
The objective functions used for our experiments are the Sphere function,
the Schwefel function and the Rosenbrock function. These functions are
described in Table 2.1.

In section 2.1 and originally in [Fournier and Teytaud, 2011], several the-
oretical bounds have been proved. In particular, the speed-up should be
Θ(log(λ)) with a (µ/µ, λ)-ES. In practice (i.e. with usual parametrizations
of the algorithm), the SA-ES does not reach that speed-up, as demonstrated
in Figure 2.13.

45

2. ISSUES WITH LARGE POPULATION SIZES

0
10

1
10

2
10

3
10

4
10

5
10

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of SA algorithm, mu = lambda/4

Lambda

lo
g|

|x
||*

N
/n

d=3
d=10
d=30

0
10

1
10

2
10

3
10

4
10

5
10

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of SA algorithm, mu = lambda/2

Lambda

lo
g|

|x
||*

N
/n

d=3
d=10
d=30

Figure 2.13: Speed-up of the Self-Adaptation algorithm as a function of
λ, on the Sphere function. For this experiment, the initial step size is 1,
the initial point is (1, . . . , 1) and the fitness function to hit is 10−10. Top
(µ = λ

4
) and bottom (µ = λ

2
) do not show a logarithmic speedup whatever

the dimensionality.

46

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

0
10

1
10

2
10

3
10

4
10

5
10

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of SA algorithm, mu=1

Lambda

lo
g|

|x
||*

N
/n

d=3
d=10
d=30

Figure 2.14: Speed-up of the Self-Adaptation algorithm as a function of λ,
on the Sphere function for µ = 1. The initial step size is 1, the initial point
is (1, . . . , 1) and the fitness function to hit is 10−10.

47

2. ISSUES WITH LARGE POPULATION SIZES

In Figures 2.13 and 2.14, we can note that the selection ratio µ is a cru-
cial parameter for characterizing the behaviour of the SA algorithm. Unless
µ = 1, the speed-up reaches a plateau when λ is very large (Figure 2.13).
µ = λ

2
is never a good choice whatever the population size, and if the pop-

ulation size becomes really large, the speedup tends to a constant. Figures
2.13 and 2.14 shows that in dimension 10, µ = λ

4
is better than µ = 1 up to a

population size of 200. In dimension 30, µ = λ
4
is also a good choice, in par-

ticular if the population size is smaller than 6400. The main problem is that
the convergence rate tends to a constant (depending on the dimensionality)
for large population sizes; theoretical results suggest it should be possible to
reach better speed-up. As previously said, in [Teytaud and Fournier, 2008],
it is shown that for (µ/µ, λ)-ES algorithms the convergence rate should be
linear as a function of λ if the population size is smaller than the dimension,
for a correctly tuned algorithm. If the population is larger than the dimen-
sion the speed-up should be Θ(log(λ)), here again in the case of an algorithm
correctly tuned.
(1, λ)-ES only shows a logarithmic convergence rate as a function of λ, which
suggests that this is the best choice when the population size is large.

48

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

0
10

1
10

2
10

3
10

4
10

5
10

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of SA algorithm, d=3

Lambda

lo
g|

|x
||*

d/
n

SA
modified SA

Figure 2.15: This figure shows the convergence rate on the Sphere function for
the Self-Adaptation algorithm and for the modified version of this algorithm.
In the modified self adaptation algorithm, the selection ratio is chosen equals
to µ = min(d, λ/4). For the standard self adaptation algorithm, we have
chosen the best selection ratio for large population size (µ = 1). Results are
obtained for dimension 3, and are really close, simply because in that case,
the selection ratio of both versions of the algorithm is almost the same (due
to the small dimensionality).

49

2. ISSUES WITH LARGE POPULATION SIZES

0
10

1
10

2
10

3
10

4
10

5
10

−7

−6

−5

−4

−3

−2

−1

−0

Speed−up of SA algorithm, d=10

Lambda

lo
g|

|x
||*

d/
n

SA
Modified SA

0
10

1
10

2
10

3
10

4
10

5
10

−12

−10

−8

−6

−4

−2

−0

Speed−up of SA algorithm, d=30

Lambda

lo
g|

|x
||*

d/
n

SA
Modified SA

Figure 2.16: Same results as for Figure 2.15 but for dimensions 10 and 30.
The modified self-adaptation algorithm outperforms the standard version.

50

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

We now compare two SA algorithms, the standard one (defined in Algo-
rithm 2), and a new one, with a new selection ratio : µ = min(d, λ

4
).

In Figures 2.15 and 2.16 we show that we can improve the convergence
rate by using a simple rule for the selection ratio. Experiments have been
done on the Sphere function. The initial point is (1, . . . , 1) and the initial
step size is 1. The target fitness function is fstop = 10−10. In this figure, we
compare the Self-Adaptation algorithm with µ = 1 and a modified version
of this algorithm. We have chosen µ = 1 for the comparison because it is
the best choice for the SA algorithm for λ large, as shown in previous section.

In dimension 3, both convergence rates are very close, because the value
of the selection ratio of the Self-Adaptation algorithm and of the modified
Self-Adaptation algorithm are close to each other.

In dimension 10, the modified version of the Self-Adaptation algorithm
outperforms the standard version. We also have a logarithmic convergence
rate as predicted by the theory. For a population size of 12800 we have a
speedup of 41% over the Self-Adaptation algorithm with µ = 1.

In dimension 30 finally, we have a very large improvement. We have a
logarithmic convergence rate, as a function of the population size, and the
speed-up reaches of 114% for a population size of 12800. In this case, for
small population size, the convergence rate is also slightly better than µ = 1.

We now experiment with the Covariance Self-Adaptation Evolution Strat-
egy, first introduced in [Beyer and Sendhoff, 2008], and considered as state
of the art algorithm for large population sizes. This algorithm has been
presented in Algorithm 5.

Following the recommendations in [Beyer and Sendhoff, 2008] for the tun-
ing of the CMSA-ES algorithm, a selection ratio µ/λ equals to 1/4 should
be used. In this section, we experiment the CMSA evolution strategy with
two different selection ratios: the recommended µ = λ/4, and our modified
version µ = min(d, λ/4) as above.

In our experiments, we have considered different dimensionalities, d =
3, 10, 30. We have compared different selection ratios for different popu-
lation sizes, specially large population sizes. Each point the y-axis is the
average of 60 independent runs. The plots represent the convergence rate.
We plot d×log||y||

number of Iterations
as a function of the population size. Choosing

to measure the convergence rate (instead of the number of iterations as in
[Beyer and Sendhoff, 2008]) is here justified by the fact that we know the the-
oretical limits of this criterion (up to a constant factor), and we know that

51

2. ISSUES WITH LARGE POPULATION SIZES

many usual algorithms have only a bounded speed-up; we want to emphasize
this.

Figures 2.17 and 2.18 shows that using a bad selection ratio can be harm-
ful, especially for large population size. Even for not so large population size
(e.g. λ = 20) using the selection ratio µ = min(d, λ/4) is a good choice. The
best speed-ups are reached for large population sizes, more precisely we ob-
tains a speed-up of 136% for the Sphere function and 139% for the Schwefel
function for a population size equals to 10000 (more than twice faster in both
cases), and 146% for the Rosenbrock function for a population size of 5000.

52

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

0
10

1
10

2
10

3
10

4
10

−16

−14

−12

−10

−8

−6

−4

−2

−0

Speed−up of CMSA algorithm, Sphere function, d=3

Lambda

lo
g|

|x
||*

d/
n

mu=lambda/4

mu=d

mu=lambda/4

mu=d

0
10

1
10

2
10

3
10

4
10

−20

−15

−10

−5

−0

Speed−up of CMSA algorithm, Schwefel function, d=3

Lambda

lo
g|

|x
||*

d/
n

mu=lambda/4

mu=d

Figure 2.17: Results of the CMSA evolution strategy in dimension 3 for
the Sphere function (Top) and the Schwefel function (Bottom). Conver-
gence rate for the standard selection ratio (µ = λ/4) and the new selection
ratio (µ = min(d, λ/4)) are plotted. Choosing a selection ratio equals to
µ = min(d, λ/4) is good choice on both functions. We reach a logarithmic
speedup.

53

2. ISSUES WITH LARGE POPULATION SIZES

0
10

1
10

2
10

3
10

4
10

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of CMSA algorithm, Rosenbrock function, d=3

Lambda

lo
g|

|x
||*

d/
n

mu=lambda/4

mu=d

Figure 2.18: Results of the CMSA evolution strategy in dimension 3 for the
Rosenbrock function. Convergence rate for the standard selection ratio (µ =
λ/4) and the new selection ratio (µ = min(d, λ/4)) are plotted. Choosing a
selection ratio equals to µ = min(d, λ/4) improves the algorithm.

54

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

In Figure 2.19 we experiments the Sphere function and the Schwefel func-
tion in dimension 10. The largest population size for this experiment is 800.
Speedup of 37% is reached for the Sphere function and 41% for the Schwefel
function for a population size of 400.

1
10

2
10

3
10

−9

−8

−7

−6

−5

−4

−3

Speed−up of CMSA algorithm, Sphere function, d=10

Lambda

lo
g|

|x
||*

d/
n

mu=lambda/4

mu=d

1
10

2
10

3
10

−10

−9

−8

−7

−6

−5

−4

−3

Speed−up of CMSA algorithm, Schwefel function, d=10

Lambda

lo
g|

|x
||*

d/
n

mu=lambda/4

mu=d

Figure 2.19: Results of the CMSA evolution strategy in dimension 10 for
the Sphere function (Top) and the Schwefel function (Bottom). Convergence
rate for the standard selection ratio (µ = λ/4) and the new selection ratio
(µ = min(d, λ/4)) are plotted.

55

2. ISSUES WITH LARGE POPULATION SIZES

In Figure 2.20, we reproduce the experiments as previously, but in bigger
dimensionality, 30. Results are similar, and we reach a speedup of 44% for
the Sphere function and 34% for the Schwefel function for λ = 800.

2
10

3
10

−13

−12

−11

−10

−9

−8

−7

−6

Speed−up of CMSA algorithm, Sphere function, d=30

Lambda

lo
g|

|x
||*

d/
n

mu=lambda/4

mu=d

2
10

3
10

−11

−10

−9

−8

−7

−6

−5

−4

Speed−up of CMSA algorithm, Schwefel function, d=30

Lambda

lo
g|

|x
||*

d/
n

mu=lambda/4

mu=d

Figure 2.20: Results of the CMSA evolution strategy in dimension 3 for the
Sphere function (Top) and the Schwefel function (Bottom). Convergence
rate for the standard selection ratio (µ = λ/4) and the new selection ratio
(µ = min(d, λ/4)) are plotted.

56

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

To summarize, in this section we proposed a new rule for the selected
population size µ = min(d, λ/4). This rule is a simple modification, and has
very good results for the CMSA evolution strategy. We can seemingly reach
a logarithmic speed-up with this rule, which is consistent with the theoretical
bounds.

We have first shown that the current version of the Self Adaptation rule
only reaches the theoretical speedup (logarithmic as a function of λ) when
the selection ratio is equal to µ

λ
= 1

λ
, i.e. µ = 1.

A selection ratio of 1
2
or 1

4
is better at first view, but it’s indeed harmful

when the population size λ is large enough (larger than the dimension).
Then, we have shown that having µ = min(d, λ/4) could lead to a very

good speedup, better than both µ = 1 and µ = λ/4 or µ = λ/2. Finally,
we experiment the same rule on the CMSA algorithm (section 2.4), which is
known to be a good evolution strategy when the population size is large.

Based of this idea of working on the selected population size, in
[Jebalia and Auger, 2011], M. Jebalia and A. Auger have computed, with
Monte-Carlo simulations the optimal values for µ on the Sphere function.
They suggest that µ should monotonously increase in λ. They also confirm
that, with their optimal choice for µ, the logarithmic speed-up behaviour of
the ES. Indeed, experimentally their results are really close to our results,
i.e. with the rule µ = min(d, λ/4).

57

2. ISSUES WITH LARGE POPULATION SIZES

2.2.2 Faster decrease of the step-size with reweighting

The results of this section have been published in
[Teytaud and Teytaud, 2010b].

In this section, we propose a modification, based of the idea of having
a faster decrease of the step-size. We call such a modification, a log(λ)-
modification. We study the CMA-ES algorithm. This algorithm is, for many
people, the state of the art algorithm for evolutionary strategies for sequential
setting. We propose to add this line in CMA-ES :

σ =
σ

max(1, (ζλ)1/d)
.

We have seen that the CSA algorithm does not reach the optimal speed-
up. This bad behavior has been pointed out in Section 2.1.2. This for-
mula avoids this bad behavior, and experimentally, improves the results.
The fitness function considered here is the Sphere function (defined in table
2.1). We consider f as the best fitness found by the algorithm after a fixed

number of evaluations. We report the mean of d·log(f)
#evaluations

and the mean of

log(f) in Table 2.2. The number of function evaluations is 100d2. Following
[Beyer and Sendhoff, 2008], we experiment two sizes of population, λ = 8d
and λ = 8d2. If the dimension is small (2) we almost have a speed-up of
2 independently of the size of the population. However, if the dimension
becomes larger (10 or 30) we have a good speed-up only if the size of the
population is large (λ = 8d2). The results are positive, but not very good,
and CMA with this correction is still far from the efficiency of CMSA or
EMNA for large population size; we guess however that improvements of our
formula above are possible, and also we guess that modifying the rule for
computing the new parent should be adapted for λ large. The CMA-ES has
a lot of parameters, as seen in Algorithm 4. All these parameters have been
studied and tuned for sequential setting and therefore with a small popu-
lation size (the default population size in CMA is λ = 4 + ⌊3 + log(d)⌋).
When one parameter is modified, the resulting behavior of the algorithm is
hard to determine, because, the modified parameter can have influence on
others. In section 2.1.2, the superiority of EMNA for large population sizes
has been pointed out, then, for these reasons we investigate more deeply the
log(λ)-modification on the EMNA algorithm (Section 2.2.3).

58

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

λ CMA CMA with the log(λ)-correction
Dimension 2

8× d -0.100±0.001 -0.177±0.001
8× d2 -0.0741±0.0009 -0.134±0.001

Dimension 10
8× d -0.0338±6e-05 -0.0389±0.0001
8× d2 -0.00971±6e-05 -0.0174±0.0001

Dimension 30
8× d -0.0107±1e-05 -0.0118±2e-05
8× d2 -0.00188±1e-05 -0.00370±1.e-05

Table 2.2: Comparison between CMA and CMA with log(λ)-correction in
various dimensions. The maximum number of function evaluations is 400 (in
dimension 2), 10 000 (in dimension 10) and 90 000 (in dimension 30), and the
constant ζ involved in the log(λ)-correction (Eq. 2.2.2) is 0.41/2 in dimension
2, 1 in dimension 10, 1.31/30 in dimension 30.

59

2. ISSUES WITH LARGE POPULATION SIZES

2.2.3 Analysis of Estimation of Multivariate Normal
Algorithms in case of large population size

The results of this work have been published in
[Teytaud and Teytaud, 2009c] and [Teytaud and Teytaud, 2009a].

EMNA (Estimation of Multivariate Normal Algorithm), a widely known
EDA (Estimation of Distribution Algorithms) is very efficient for parallel
optimization. This result has been presented in Section 2.1, and in particular,
it was shown that, for large population size λ, it outperforms SA-ES, which
itself outperforms CSA-ES.

However, a detailed look at plots in Section 2.1.3, and more precisely at
Figures 2.5, 2.6, 2.7 and 2.8, shows that the speed-up, as a function of λ,
seemingly stagnates in EMNA for λ very large. This is not consistent with
theoretical bounds in [Teytaud and Fournier, 2008]: the speed-up, for a well
designed algorithm, should increase to infinity, linearly for small values of
λ and then logarithmically, but never stop at a constant. By the way, the
speed-up of SA-ES is seemingly still increasing when the speed-up of EMNA
stagnates; this suggests that for λ larger than in previous works, the robust
SA-ES might indeed be faster than EMNA.

We here first analyze the reasons why the speed-up of EMNA stagnates
for λ large. We see that this is due to a bias/variance dilemma. The
bias/variance dilemma is as follows. When x is an estimate of x∗, the
bias/variance decomposition states that:

E(x− x∗)2 = E ((x− Ex) + (Ex− x∗))2 = E(x− Ex)2︸ ︷︷ ︸
variance

+E (Ex− x∗)2︸ ︷︷ ︸
squared bias

We now see that, when using a specific reweighting for the EMNA al-
gorithm, the bias disappears (the right hand side term is zero in Equation
2.2.3). Interestingly, when the bias is removed, then the following traditional
statistical tricks for reducing variance become much more efficient (as bias is
removed, reducing the variance decreases the error to zero!). The statistical
tricks for reducing variance studied in this work are :

• use of quasi-random numbers, as in [Teytaud and Fournier, 2008];

• use of λ large, i.e. parallel case.

In this section, we define a version of EMNA including:

• reweighting as in [Teytaud and Teytaud, 2009c]

• quasi-random mutations as in [Teytaud, 2008b]

60

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

• a modification of the step-size adaptation rule based on
[Teytaud and Teytaud, 2010b].

Now, we discuss precisely the three weaknesses of EMNA (or, more gen-
erally, of evolutionary algorithms based on random sampling and averages)
which are tackled in this work: the weighting issue, the limited behavior for
λ large, and the possible redundancies of the random mutations.

The weighting issue.
The American election of 1936 is famous for the error, in a very impor-

tant moment of American history [Andersen, 1979], in the poll organized by
the Literary Digest [lit, 1936], in spite of a huge sampling. More precisely,
10 million questionnaires have been mailed to readers and potential readers
and over two million were returned. The Literary Digest, which had cor-
rectly predicted the winner of the last 5 elections, announced in its October
31 issue that Landon would be the winner with 370 electoral votes. The
cause of this mistake is believed to be due to improper sampling: more Re-
publicans subscribed to the Literary Digest than Democrats, and were thus
more likely to vote for Landon than Roosevelt. Whereas Roosevelt finally got
61 % of votes, the Literary Digest predicted a comfortable win for Landon.
This mistake by the Literary Digest proved to be devastating to the maga-
zine’s credibility, and in fact the magazine went out of existence within a few
months of the election. That same year, George Gallup, an advertising exec-
utive who had begun a scientific poll, predicted that Roosevelt would win the
election, based on a quota sample of 50,000 people. He also predicted that
the Literary Digest would mis-predict the results. His correct predictions
made public opinion polling a critical element of elections for journalists and
indeed for politicians. The Gallup Poll would become a staple of future pres-
idential elections, and remains one of the most prominent election polling
organizations to this day.

Estimation of Distribution Algorithms are similar to polls: they are based
on samplings. However, the reweighting has not been experimented or ana-
lyzed in this context, this section is based on this idea.

We here focus on EMNA, presented in Algorithm 6. This is not the
only EDA, but it is an efficient one. Nevertheless, the reweighting technique
emphasized here can be used for all algorithms which involve averaging or
parameter estimation on a sample.

There are several advantages in EDA; simplicity, nearly parameter free,
and better than SA and CSA evolution strategies for large lambda. How-
ever, an issue is premature convergence [Shapiro, 2005, Grahl et al., 2006,
Liu and Teng, 2008, Posik, 2008] : for example, with a Gaussian EDA, if the
initial point is too far from the target (formally, if the squared distance to the

61

2. ISSUES WITH LARGE POPULATION SIZES

optimum divided by the initial variance is too large), then the EDA might
have premature convergence.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3 4 5

Gaussian offspring
selection level set
Selected offspring

Center of offspring

Unweighted average

Weighted average

Optimum

Figure 2.21: Illustration of the requirement of weighting. A Gaussian off-
spring (200 samples) is generated. The best individuals are selected. Their
unweighted average is biased towards the center of the distribution. The
weighted average, following [Teytaud and Teytaud, 2009c], is much better.

The Gaussian distribution induces a bias towards the center of the
offspring, regardless of the selection. The reweighting idea proposed in
[Teytaud and Teytaud, 2009c] is to reweight offsprings proportionally to the
inverse of the Gaussian density, in order to correct this bias. The idea of
this reweighting is illustrated in Figure 2.21. We study the weighting trouble
because it is important for our bias/variance decomposition. We use this
reweighting modification in the sequel, as it is necessary for removing the
bias: thereafter, we can work efficiently on the variance.

Some important papers around reweighting are [Arnold, 2006,
Arnold and Van Wart, 2008]; however, their goal is different: they choose
weights for improving the convergence rates of ES for fixed values of λ, and
in order to take into account the position of unselected points. Maybe their

62

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

reweighting can be combined to the reweighting by inverse density proposed
here.

Limited behavior for large population sizes.
Another issue in EMNA, whenever we use reweighting, is that the con-

vergence rate converges to a fixed constant when λ goes to infinity. This
is because, as a function of λ, the step-size does not decrease to 0. More
formally, with e.g. µ = λ/4, and for a given parent xn and step-size σn,

lim
λ→∞

σn+1 = std(first quartile of the offspring generated at iteration n)

(2.16)
where std is the standard deviation of a set of points. This is definitely not
reasonable: when λ runs to infinity, the optimum is estimated more and more
precisely (at least now, as we have removed the bias by reweighting), and
therefore σ should get smaller and smaller so that the search is more focused.
Therefore, we might want to ensure that

lim
λ→∞

σn+1 = 0. (2.17)

With Eq. 2.17 instead of Eq. 2.16, we focus the search on the most important
part. A question is then: to which extent should we force σn+1/σn to decrease
to 0 ? We empirically choose the following formula:

σ ← σ/max(1, (log(λ)/2)1/d) (2.18)

where d is the dimension. This formula is probably too conservative and
should be tuned carefully, but this is sufficient as a proof of concept as
illustrated in later results. This will be done just after the classical EMNA
estimate of the step-size; see Algorithm 6.

We here investigate the case of λ large. This is the case in which the
problem consists in focusing the search more strongly than with standard
values of λ, whilst avoiding premature convergence. In [Dong and Yao, 2008],
the interested reader can find the reverse point of view: how to evaluate the
Gaussian distribution (in particular when it includes a full covariance matrix
and not only the diagonal case) properly in spite of the finiteness of λ.

Possibly redundant mutations. Random points can lead to
a lot of redundancies among mutations. Therefore, many im-
proved ways of generating more uniform points have been devel-
oped in the literature [Niederreiter, 1992, L’Ecuyer and Lemieux, 2005,
Vandewoestyne and Cools, 2006]. It was shown in [Teytaud, 2008b] that in
many cases using quasi-random sequences instead of random sequences pro-
vides big improvements, and that there is almost no case in which it is harm-
ful. We do not present quasi-random points instead of random points here.

63

2. ISSUES WITH LARGE POPULATION SIZES

A detailed presentation of using quasi-random sequences in an evolutionary
context can be found in [Teytaud and Gelly, 2007].

Please note that quasi-random sequences are not intended to change the
distribution. We consider Gaussian distributions only. But as well as one can
use random Gaussian numbers, one can use quasi-random Gaussian numbers
- the distribution is the same, we just take care of avoiding unlucky (redun-
dant) cases when we use quasi-random sequences.

Improving EMNA.
We want to combine three improvements. The first one is the use of

reweighting [Teytaud and Teytaud, 2009c]. This is a very simple and efficient
modification against premature convergence. It is implemented as follows:
when computing the new parent and/or the new covariance matrix and/or
the new stepsize, give a weight to each selected individual: this weight is
inversely proportional to the density of the Gaussian distribution used for
sampling individuals (see Algorithm 7 below) and Section 2.2.3 for more
details. The second one is the use of quasi-random numbers. We refer to
[Niederreiter, 1992, L’Ecuyer and Lemieux, 2005, Teytaud, 2008b] for more
information around quasi-random numbers. It is just important to note that
there exists quasi-random numbers as well as pseudo-random numbers, and
they have some nice uniformity properties, and they provide improvements
in continuous evolutionary algorithms. The third one is as simple as the two
previous ones: after having estimated the step-size as in the classical EMNA,
just divide it by max(1, (log(λ)/2)1/d). The justification of this modification
is discussed in 2.2.2. Our version including these 3 improvements is presented
in Algorithm 7.

64

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

Algorithm 7 Our improved version of EMNA (IEMNA), with quasi-random
mutations, reweighting, faster decrease of step-size.

Initialize σ ∈ IR, y ∈ IRd.
while Halting criterion not fulfilled do
for l = 1..λ do
pl = σ ×QRNl(0, Id) // quasi-random Gaussian vector
[Teytaud, 2008b]
wl = 1/d(pl) where d is the Gaussian density
[Teytaud and Teytaud, 2009c]
zl = σpl
yl = y + zl
fl = f(yl)

Sort the individuals by increasing fitness; f(1) < f(2) < · · · < f(λ).
s =

∑µ
i=1w(i)

Renormalize for all i ≤ µ, w(i) ← w(i)/s

zavg =

µ∑
i=1

w(i)z(i)

σ =

√√√√√ µ∑
i=1

w(i)||z(i) − zavg||2

d

σ = σ/max((log(λ)/2)1/d, 1)
y = y + zavg

65

2. ISSUES WITH LARGE POPULATION SIZES

Experimental results.
All experiments below are based on EMNA (Algorithm 6) and

IEMNA (Algorithm 7), and intermediate versions with only part
of the improvements proposed in IEMNA. EMNA is the baseline
from [Larranaga and Lozano, 2002]. EMNA+QR is EMNA, plus the
quasi-random mutations as in [Teytaud and Gelly, 2007, Teytaud, 2008b].
EMNA+QR+reweighting is EMNA+QR, plus the reweighting as in
[Teytaud and Teytaud, 2009c] (see the reweighting formula in Algorithm 7).
IEMNA is EMNA+QR+reweighting+LB; this is the complete improved ver-
sion in Algorithm 7. We perform our experiments with anisotropic Gaussians,
with diagonal covariance matrix (i.e. one step-size per axis).

Case with good initialization.
We experiment IEMNA (Algorithm 7) with initial step-size σ = 1 on

each axis, and x0 = (1, 1, . . . , 1). The number of generations is 50. The
negative convergence rate, estimated by d log(||x50||/||x0||)/50 (with d the
dimension), is presented in Table 2.3 for the Sphere function x 7→ ||x||,
Table 2.4 for x 7→

∑
i log(|xi|) + cos(1/xi), Table 2.5 for the cigar function

x 7→
∑

i(10
4)ix2

i . “QR” denotes the use of quasi-random mutations, “weight”
the use of reweighting, “LB” the use of step-size decreasing as in section 2.2.2
(σ ← σ/max((log(λ)/2)1/d, 1)). The results clearly show (i) the success of
QR (always better than the baseline), (ii) the success of LB for λ large in the
reweighted case, (iii) the poor performance of reweighting, which moderately
but constantly decreases the performance. Result (iii) can be explained by
the fact that we are in a case in which premature convergence is unlikely -
we reproduce the experiments with a poor initialization of σ = 0.01 in the
following section in order to clarify this idea.

66

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

Table 2.3: Experiments on the Sphere function. Numbers are the negative
convergence rates (the lower the better). Each modification is validated or
invalidated separately (p-values are for EMNA+QR versus the initial EMNA
(Algorithm 6); then EMNA+QR+weighting against EMNA+QR; and finally
the complete new version EMNA+QR+LB+reweighting as in Algorithm 7)
against EMNA+QR+weighting. We see that IEMNA provides by far the
best results.

Dimension, Baseline +QR + weight +LB P-value P-value P-value
lambda (IEMNA) for QR for weight for LB
2,20 -0.345 -1.252 -1.743 -2.103 0 3.894e-07 0
2,60 -1.967 -2.086 -2.022 -2.713 0.001 1 0
2,200 -2.050 -2.089 -2.112 -3.004 0 3.308e-14 0
2,600 -2.080 -2.101 -2.061 -3.190 4.447e-08 1 0
2,2000 -2.103 -2.188 -2.111 -3.434 0 1 0
3,30 -0.697 -2.299 -2.277 -2.398 0 0.636 0.03
3,90 -2.330 -2.392 -2.282 -3.047 1.588e-13 1 0
3,300 -2.340 -2.404 -2.293 -3.302 0 1 0
3,900 -2.369 -2.443 -2.320 -3.519 0 1 0
3,3000 -2.404 -2.476 -2.367 -3.726 0 1 0
4,40 -0.749 -2.541 -2.397 -2.578 0 0.998 0.03
4,120 -2.543 -2.627 -2.443 -3.271 0 1 0
4,400 -2.601 -2.658 -2.480 -3.547 0 1 0
4,1200 -2.642 -2.717 -2.519 -3.764 0 1 0
5,50 -1.330 -2.885 -2.677 -2.730 0 1 0.31
5,150 -2.790 -2.858 -2.622 -3.488 0 1 0
5,500 -2.828 -2.908 -2.673 -3.750 0 1 0
5,1500 -2.886 -2.964 -2.718 -3.975 0 1 0

67

2. ISSUES WITH LARGE POPULATION SIZES

Table 2.4: Experiments on the multimodal function (see text). The lower,
the better (as previous figures and following the definition of negative con-
vergence rate in the text). QR is the only stable and efficient modification
here.

Dimension, Baseline +QR + weight +LB P-value P-value P-value
lambda (IEMNA) for QR for weight for LB
2,20 -0.709 -1.301 -1.105 -0.529 0 1 1
2,60 -1.139 -1.181 -0.655 -1.157 2.315e-07 1 0
2,200 -1.104 -1.074 -0.402 -0.822 1 1 0
2,600 -1.100 -1.133 -0.119 -0.534 0 1 0
2,2000 -1.124 -1.146 -0.124 -0.210 3.187e-09 1 0
2,6000 -1.144 -1.162 -0.173 -0.181 7.199e-11 1 0
3,30 -0.971 -1.332 -0.799 -0.537 1.721e-09 1 1.00
3,90 -1.231 -1.229 -0.481 -0.619 0.559 1 0.00
3,300 -1.210 -1.243 -0.178 -0.233 1.415e-05 1 0.00
3,900 -1.240 -1.252 -0.181 -0.179 0.031 1 0.61
3,3000 -1.269 -1.307 0.081 -0.031 6.342e-12 1 0.01
4,40 -1.204 -1.388 -0.713 -0.858 6.262e-06 1 0.01
4,120 -1.357 -1.353 -0.344 -0.480 0.624 1 0.00
4,400 -1.352 -1.368 -0.205 -0.183 0.013 1 0.98
4,1200 -1.389 -1.427 0.224 0.093 7.638e-10 1 0.01
5,50 -1.359 -1.520 -0.702 -0.445 0.000 1 1.00
5,150 -1.477 -1.503 -0.351 -0.391 0.010 1 0.05
5,500 -1.495 -1.518 -0.145 -0.161 0.001 1 0.34
5,1500 -1.539 -1.579 0.726 0.715 2.300e-08 1 0.37

We also show graphically the negative convergence rate (defined as in
previous tables) in Fig. 2.22 in the case of the Sphere function.

68

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

Table 2.5: Experiments on the cigar function (see text). The number are neg-
ative convergence rates as defined in the text; the lower, the better. IEMNA
is clearly the best algorithm here.

Dimension, Baseline +QR + weight +LB P-value P-value P-value
lambda (IEMNA) for QR for weight for LB
2,20 -0.222 -1.833 -1.885 -0.758 0 0.024 1
2,60 -1.774 -1.954 -1.950 -2.734 0.002 0.796 0
2,200 -1.919 -2.003 -1.967 -2.834 0.016 1 0
2,600 -2.014 -2.060 -1.994 -3.075 1.064e-12 1 0
2,2000 -2.015 -2.059 -2.023 -3.371 0 1 0
2,6000 -2.047 -2.122 -2.019 -3.476 0 1 0
3,30 -0.209 -1.397 -1.643 -1.096 0 0.055 1.00
3,90 -1.586 -2.127 -2.018 -2.686 1.056e-07 1 0
3,300 -2.067 -2.143 -1.998 -2.905 7.749e-14 1 0
3,900 -2.106 -2.176 -2.025 -3.084 3.609e-08 1 0
3,3000 -2.157 -2.232 -2.070 -3.288 9.525e-12 1 0
4,40 -0.192 -1.071 -1.353 -1.469 2.635e-13 0.027 0.23
4,120 -1.391 -2.043 -1.842 -2.498 9.712e-11 1 0
4,400 -1.982 -2.095 -1.853 -2.719 0.001 1 0
4,1200 -2.072 -2.154 -1.855 -2.894 5.221e-10 1 0
5,50 -0.103 -0.787 -0.426 -0.566 1.607e-12 0.996 0.16
5,150 -1.034 -1.922 -1.579 -2.212 0 1 0
5,500 -1.798 -1.941 -1.527 -2.356 1.642e-05 1 0
5,1500 -1.936 -2.040 -1.603 -2.520 2.829e-06 1 0

69

2. ISSUES WITH LARGE POPULATION SIZES

Case with poor initialization
We now reproduce the experiments, comparing EMNA (Algorithm 6) and

our improved version IEMNA (Algorithm 7), but in a different setting. Now,
σ is initialized at a small value 0.01. Results are presented in Tables 2.6,
2.7, 2.8. QR is still always efficient (or has no effect). We clearly see that,
now, with risk of premature convergence, reweighting is very efficient; on the
other hand, LB is less efficient. We reproduce graphically in Fig. 2.24 the
same results for the Sphere function; we see that only EMNA+QR+weight
is nearly as efficient as IEMNA, and that these two algorithms (the only
difference between them is that LB is used in IEMNA) are the only algorithms
with non negligible convergence rates (all other algorithms have convergence
rates nearly zero).

70

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

-3

-2.5

-2

-1.5

0 500 1000 1500 2000

co
nv

 r
at

e
(d

im
 2

)

lambda

with QR
with QR+weight+LB

-3.5

-3

-2.5

-2

-1.5

0 500 1000 1500 2000 2500 3000

co
nv

 r
at

e
(d

im
 3

)

lambda

with QR
with QR+weight+LB

-3.5

-3

-2.5

-2

-1.5

0 200 400 600 800 1000 1200

co
nv

 r
at

e
(d

im
 4

)

lambda

with QR
with QR+weight+LB

-3.5

-3

-2.5

-2

-1.5

0 200 400 600 800 100012001400

co
nv

 r
at

e
(d

im
 5

)

lambda

with QR
with QR+weight+LB

Figure 2.22: Synthesis of the performance of LB in the case
of the Sphere.Convergence rate of EMNA with QR mutations (as in
[Teytaud and Gelly, 2007, Teytaud, 2008b]), which provide the state of the
art convergence rates for EMNA with λ large before this work, and con-
vergence rates of IEMNA=EMNA+QR + reweighting + LB (Algorithm 7).
The improvement is very clear for λ large. This is not in the case with poor
initialization; with poor initialization (see text), results are much more im-
pressive for reweighting (which avoids premature convergence, as shown in
[Teytaud and Teytaud, 2009c]), but in that case LB would be harmful (LB
makes it more difficult to recover from the bad initialization).

71

2. ISSUES WITH LARGE POPULATION SIZES

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

3 4 5 6 7 8

co
nv

. r
at

e
(d

im
 2

)

log(lambda)

EMNA
EMNA+QR

IEMNA

-3

-2.5

-2

-1.5

-1

-0.5

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

co
nv

. r
at

e
(d

im
 3

)

log(lambda)

EMNA
EMNA+QR

IEMNA

-2.5

-2

-1.5

-1

-0.5

4 4.5 5 5.5 6 6.5 7

co
nv

. r
at

e
(d

im
 4

)

log(lambda)

EMNA
EMNA+QR

IEMNA

-2.5

-2

-1.5

-1

-0.5

4 4.5 5 5.5 6 6.5 7

co
nv

. r
at

e
(d

im
 5

)

log(lambda)

EMNA
EMNA+QR

IEMNA

Figure 2.23: Results on the cigar function. Convergence rates for
EMNA, EMNA+QR, IEMNA (the smaller, the better). For small values
of λ, EMNA+QR already provides a great improvement over QR; but for
λ large, only IEMNA makes a huge difference. This is due to the fact that
when bias is removed (by reweighting) and step-sizes are reduced accord-
ingly (by LB), then variance is the main term, and variance is reduced by
QR mutations.

72

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

-3

-2.5

-2

-1.5

-1

-0.5

0

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

co
nv

. r
at

e
(d

im
 2

)

log(lambda)

EMNA
EMNA+QR

EMNA+QR+reweighting
IEMNA

-3

-2.5

-2

-1.5

-1

-0.5

0

3.5 4 4.5 5 5.5 6 6.5
co

nv
. r

at
e

(d
im

 3
)

log(lambda)

EMNA
EMNA+QR

EMNA+QR+reweighting
IEMNA

-3

-2.5

-2

-1.5

-1

-0.5

0

4 4.5 5 5.5 6 6.5 7

co
nv

. r
at

e
(d

im
 4

)

log(lambda)

EMNA
EMNA+QR

EMNA+QR+reweighting
IEMNA

-3

-2.5

-2

-1.5

-1

-0.5

0

4 4.5 5 5.5 6 6.5 7

co
nv

. r
at

e
(d

im
 5

)

log(lambda)

EMNA
EMNA+QR

EMNA+QR+reweighting
IEMNA

Figure 2.24: Results on the Sphere function. Conver-
gence rates for EMNA, EMNA+QR, EMNA+QR+reweighting, and
IEMNA=EMNA+QR+LB+reweighting, with very small initial step size.
The smaller, the better the result. EMNA, EMNA+QR have convergence
rate nearly 0. The main important tool here is reweighting, but IEMNA
still improves the results over EMNA+QR+reweighting.

73

2. ISSUES WITH LARGE POPULATION SIZES

Table 2.6: Experiments on the Sphere function with small initial step-size.
The lower the number, the better the result: EMNA+QR+LB+reweighting
is usually the best algorithm for λ large enough; for λ small,
EMNA+QR+reweighting is stronger - LB is only efficient for λ large, in
particular with too small initial step-size. Each modification is validated
(p-values are for EMNA+QR versus the initial EMNA (Algorithm 6); then
EMNA+QR+LB against EMNA+QR; and finally the complete new version
EMNA+QR+LB+reweighting as in Algorithm 7) in this case with small
initial step-size (i.e. we test the robustness against premature convergence.).

Dimension, Baseline +QR + weight +LB P-value P-value P-value
lambda (IEMNA) for QR for weight for LB
2,20 -0.000 -0.001 -0.001 -0.001 2.204e-05 0 1
2,60 -0.001 -0.001 -0.014 -0.005 0.000 0 1
2,200 -0.001 -0.001 -1.501 -2.106 5.588e-12 0 0
2,600 -0.001 -0.001 -1.748 -2.640 0.009 0 0
2,2000 -0.001 -0.001 -1.853 -2.952 0.002 0 0
3,30 -0.001 -0.001 -0.003 -0.002 1.056e-06 0 1
3,90 -0.002 -0.003 -0.165 -0.096 6.729e-12 7.252e-11 1.00
3,300 -0.003 -0.003 -1.821 -2.437 0.001 0 0
3,900 -0.003 -0.003 -1.995 -2.945 0.006 0 0
4,40 -0.002 -0.003 -0.005 -0.004 4.436e-11 0 1.00
4,120 -0.004 -0.004 -0.395 -0.508 4.912e-11 5.747e-11 0.13
4,400 -0.004 -0.005 -1.970 -2.693 1.701e-11 0 0
4,1200 -0.005 -0.005 -2.131 -3.086 5.772e-07 0 0
5,50 -0.003 -0.004 -0.007 -0.008 1.042e-08 0 0.04
5,150 -0.005 -0.006 -0.609 -0.779 0 0 0.08
5,500 -0.006 -0.007 -2.087 -2.786 0 0 0
5,1500 -0.007 -0.007 -2.288 -3.250 0.046 0 0

74

2.2. LOG(λ) MODIFICATIONS FOR OPTIMAL PARALLELIZATION

Table 2.7: Experiments on the multimodal function (see text) with small
initial step-size (i.e. we test the robustness against premature convergence).
Numbers are the negative convergence rates; the lower the better. LB is not
efficient in this case in which we have a risk of poor local minima.

Dimension, Baseline +QR + weight +LB P-value P-value P-value
lambda (IEMNA) for QR for weight for LB
2,20 -0.001 -0.001 -0.001 -0.001 0.032 0 1
2,60 -0.001 -0.001 -0.018 -0.006 7.251e-11 0 1
2,200 -0.001 -0.001 -0.250 -0.693 0.014 0 0
2,600 -0.001 -0.001 -0.240 -0.312 3.719e-05 0 0.01
2,2000 -0.001 -0.001 -0.154 -0.053 0.038 0 1
3,30 -0.001 -0.002 -0.003 -0.002 0.002 0 1
3,90 -0.002 -0.003 -0.109 -0.144 0 0 0.036
3,300 -0.003 -0.003 -0.191 -0.210 2.797e-09 0 0.02
3,900 -0.003 -0.003 -0.177 -0.168 3.195e-08 0 0.89
4,40 -0.002 -0.003 -0.006 -0.005 0.016 0 1.00
4,120 -0.004 -0.004 -0.240 -0.227 1.265e-14 0 0.70
4,400 -0.004 -0.005 -0.219 -0.202 0 0 0.962
4,1200 -0.005 -0.005 -0.200 -0.202 0.034 0 0.44
5,50 -0.004 -0.004 -0.008 -0.007 0.000 0 0.81
5,150 -0.005 -0.006 -0.281 -0.231 0 0 0.984
5,500 -0.007 -0.007 -0.211 -0.192 8.039e-12 0 0.89
5,1500 -0.007 -0.007 -0.024 -0.002 0.000 0.273 0.71

75

2. ISSUES WITH LARGE POPULATION SIZES

Table 2.8: Experiments on the cigar function (see text) with small initial step-
size (i.e. we test the robustness against premature convergence). Numbers
are the negative convergence rates; the lower the better. QR clearly works as
usual; other modifications are unstable of harmful (this should be different
for λ larger).

Dimension, Baseline +QR + weight +LB P-value P-value P-value
lambda (IEMNA) for QR for weight for LB
2,20 -0.000 -0.000 -0.000 -0.000 0.062 8.180e-12 1
2,60 -0.000 -0.001 -0.015 -0.012 3.657e-11 0 1
2,200 -0.001 -0.001 -0.016 -0.016 0.112 0 0.97
2,600 -0.001 -0.001 -0.017 -0.017 0.009 0 1.00
2,2000 -0.001 -0.001 -0.006 -0.020 0.205 0 0
3,30 -0.000 -0.000 -0.000 -0.000 0.030 0.961 1.00
3,90 -0.001 -0.001 -0.033 -0.033 0.003 0 0.47
3,300 -0.001 -0.001 -0.035 -0.036 0.000 0 0.00
3,900 -0.001 -0.001 -0.009 -0.026 0.385 0.028 0.00
4,40 -0.000 -0.000 -0.000 6.412e-05 0.108 0.999 0.89
4,120 -0.001 -0.001 0.011 0.019 0.000 0.927 0.73
4,400 -0.001 -0.001 0.070 0.111 0.082 1 1.00
4,1200 -0.001 -0.001 0.230 0.165 9.548e-05 1 0.00
5,50 -0.000 -0.001 0.000 0.000 0.075 1 0.06
5,150 -0.001 -0.001 0.167 0.173 0.125 1 0.61
5,500 -0.001 -0.001 0.518 0.512 0.000 1 0.41
5,1500 -0.001 -0.001 0.799 0.782 0.752 1 0.22

76

2.3. AUTOMATIC PARALLELIZATION

2.3 Automatic parallelization

In previous sections, we have studied and analyzed known algorithms in the
case of parallelization. Another idea to study is the case of automatic par-
allelization. Automatic parallelization refers to the conversion of sequential
code into parallel code. The goal of automatic parallelization is to relieve
the programmer from the tedious implementation task. A solution (in some
cases) for automatic parallelization of an algorithm consists in developing
the tree of possible futures, to compute separately all branches, and then to
discard bad (non chosen) branches. This is a form of speculative paralleliza-
tion [Calder and Reinman, 2000]. We here show that this simple approach
can be applied to EAs. We have to introduce a somehow tedious formaliza-
tion; this is necessary for the mathematical formalization of our proofs. As
already pointed out in [Teytaud and Gelly, 2006], most EAs can be rewritten
as follows:

(xO1,O2

nλ+1 , . . . , x
O1,O2

(n+1)λ) = O1(θ, In) (generation) (2.19)

∀i ∈ [[nλ+ 1, (n+ 1)λ]], yi = f(xO1,O2

i) (fitness) (2.20)

gO1,O2
n = g(ynλ+1, . . . , y(n+1)λ) (selection) (2.21)

In+1 = O2(In, θ, g
O1,O2
n), (update) (2.22)

for some fixed O1, O2, I0, some random variable θ, and g with values in a set
of cardinality K, where:

• I0 is the initial state and In is the internal state at iteration n;

• θ is the random seed;

• gO1,O2 is the information used by the algorithm, typically in our case
the indices of the selected points (and possibly their ranking in the FR
case);

• xO1,O2

k is the kth visited point and yk is its fitness value (yk should,
theoretically, be indexed with O1, O2 as well);

• (O1, O2) is the optimization algorithm, with:

– O1 is the function generating the new population (as a function
of the random seed and of the internal state);

– O2 is the function updating the internal state as a function of the
random seed and of the extracted information g.

77

2. ISSUES WITH LARGE POPULATION SIZES

(note that gO1,O2
n and xO1,O2

n both depend on θ and f ; we drop the indices for
the sake of clarity.) We term such an optimization algorithm a λ-optimization
algorithm; this means that λ fitness values are computed at each iteration.
The optimization algorithm is defined by O1, O2, I0, θ; in cases of interest
(below) we use the same θ and the same I0 for all algorithms and therefore
only keep the dependency in O1 and O2 in notations. In EAs, gn has values
in a discrete domain; typically, either gn has values in the set of the finitely
many possible ranking of the individuals; or gn has values in the finite set of
possible vectors of ranked indices of selected individuals. gn is in both cases
the only information that the algorithm extracts from the fitness function.
In the FR case and µ = λ, for example gn is (sign(ynλ+i − ynλ+j)(i,j)∈[[1,λ]]2)
where sign(t) = 1 for t ≥ 0 and sign(t) = −1 otherwise. In the SB case for
(µ, λ)-ES, the formulation is a bit more tedious:

gn = {I = {i1, . . . , iµ} ⊂ [[1, λ]]µ;Card I = µ and

k ∈ I ∧ k′ ∈ [[1, λ]] \ I ⇒ ynλ+k ≤ ynλ+k′}.

An important property is that the set of possible values for gn has cardi-
nality K <∞; K can be bounded as follows:

• (µ, λ)-ES (evolution strategies) with equal weights; then K ≤
λ!/(µ!(λ− µ)!);

• (µ, λ)-ES with weights depending on the rank; then K ≤ λ!/(λ− µ)!;

• (1 + λ)-ES; then K ≤ λ+ 1;

• (1, λ)-ES; then K ≤ λ.

K is termed the branching factor of the algorithm. The branch-
ing factor, and bounds on the branching factor, have been used in
[Teytaud and Fournier, 2008] for proving theoretical lower bounds of evo-
lution strategies; we use it here for proving lower bounds on the paralleliza-
tion of EAs; the lower the branching factor, the better the speed-up. We say
that a λ′-optimization algorithm O′1, O

′
2 simulates a λ-optimization algorithm

O1, O2 with speed-up D if and only if

∀θ, ∀n ≥ 0, ∀i ∈ [[1, λ]], x
O′

1,O
′
2

nλ′+i = xO1,O2
nDλ+i. (2.23)

θ is the random seed; it is removed of indices for short as discussed above,
rigorously all the x’s depend on it. We now show how we can automatically
build O′, which is equivalent to O, but with λ′ > λ evaluations at the same
time and a known speed-up.

78

2.3. AUTOMATIC PARALLELIZATION

Theorem 1. (Automatic parallelization of EAs and tightness of the
log(λ) speed-up.) Consider a λ-optimization algorithm (O1, O2) as in Eqs
2.19-2.22 with branching factor K, and consider λ′ such that for some D ≥ 1:

λ
KD − 1

K − 1
= λ′. (2.24)

Then, there is a λ′-optimization algorithm which simulates (O1, O2) with
speed-up D.

Remark: The speed-up is therefore

D =
log(1 + λ′

λ
(K − 1))

log(K)
. (2.25)

Proof: We are going to describe a λ′-optimization algorithm O′1, O
′
2, built

from O1, O2, and we will show Eq. 2.23 for all n ≥ 0, θ, f . We do it by
induction on n; we assume that it is true for n− 1 (unless n = 0), and show
it for n ≥ 0.

Consider the set of possible gO1,O2

nD+i for i ∈ [[0, D − 1]], i.e.

{gO1,O2

nD , gO1,O2

nD+1 , g
O1,O2

nD+2 , . . . g
O1,O2

nD+D−1}

over all fitness functions f and for a fixed value of θ. It has cardinality
bounded above by KD.

Therefore, the set of points possibly visited during steps nD, . . . , nD +
D − 1 is bounded above by λ times the number of possible gO1,O2

i for i ∈
[[nD, nD+D−1]]; it is therefore bounded above by λ(1+K1+ · · ·+KD−1) =
λ(KD − 1)/(K − 1).

So, if

λ(1 +K1 + · · ·+KD−1) = λ(KD − 1)/(K − 1) = λ′, (2.26)

the algorithm O′1, O
′
2 which:

• computes all the possible gO1,O2
(n−1)λ+i for i ∈ [[1, D]];

• evaluates the fitness functions at all corresponding points of the domain
(this is O′1);

• and simulates the behavior of O1, O2 with these fitness values (this is
O′2)

has the following properties:

• it is a λ′-optimization algorithm;

79

2. ISSUES WITH LARGE POPULATION SIZES

• it simulates O1, O2 with speed-up D.

The proof is complete.
The main weakness of this automatic parallelization is its application in

continuous domains. If we use standard algorithms, to have a good speed-up
the number of processors necessary will be far from reasonable. For instance,
let us take two states of the art algorithms: CMA (Algorithm 4) and EMNA
(Algorithm 6) in two dimensions: d = 2 and d = 10. The latest formulas to
compute λ and µ in CMA are :

λ = 4 + ⌊3 ∗ log(d)⌋

µ =
λ

2

CMA uses weights depending on the rank, so the branching factor K is ≤
λ!/(λ − µ)! and EMNA uses equal weights, so K is ≤ λ!/(µ!(λ − µ)!). We
compute the speed-up by using the formula 2.25. In order to have a speed-
up 2, in dimension 2 we need for CMA 726 processors and for EMNA 126
processors. For having a speed-up of 2, in dimension 10, we need for CMA
302410 processors and for EMNA 2530 processors. We can easily see that
these numbers are not reasonable, especially if the dimension is not small. If
we want a speed-up greater than two, we will need a number of processors
even larger.

80

Chapter 3

Conclusion

The main point of this section was the study of evolutionary algorithm
in case of parallelization. We consider that the parallelization consists in
simply sending one individual per processor. It is then, somehow intuitive
to consider the case of large population sizes. In a first part, we have shown
that many real world algorithms do not reach the optimal bounds found
in [Fournier and Teytaud, 2011]. It has been first shown theoretically in
Section 2.1.2, and then experimentally in Section 2.1.3. In this Section
(Section 2.1.3) we show two results:
First, we confirm the superiority of SA-ES over CSA-ES.
Second, we also show the better behaviour of EMNA against SA-ES (and
consequently CSA-ES) in case of large population.

In a second part, in Section 2.2, several methods for improving ESs in
case of large population sizes are presented, in order to reach the theoretical
bounds. First, a new selection ratio rule (µ = min(d, λ/4)) has been
proposed in Section 2.2.1. This rule is a simple modification, and has
very good results for the SA and the CMSA evolution strategies. We can
seemingly reach a logarithmic speed-up with this rule, which is consistent
with the theoretical bounds. A selection ratio of 1/2 or 1/4 is better at first
view, but it is indeed harmful when the population size λ is large enough
(larger than the dimension). Using a selection ratio of µ = min(d, λ/4) could
lead to a very good speedup, better than both with µ = 1 and with µ = λ/4
or µ = λ/2.

Another proposed improvement is the faster decrease of the step-size σ,
the log(λ)-modification. This has been presented in Section 2.2.2. With
this modification, we have shown that the famous CMA-ES reaches the
theoretical bounds on the Sphere function. This modification is also simple

81

3. CONCLUSION

to implement, such as the modification based on the modification of the
selection ratio.

In Section 2.2.3, we proposed a new version of the EMNA algorithm. This
new version consists in adding a reweighting rule, quasi-random mutations
and faster decrease of the step-size. Thanks to a proper bias/variance de-
composition, we have emphasized the reasons for some troubles in EMNA:
premature convergence as emphasized in [Teytaud and Teytaud, 2009c], and
the poor speed-up for λ very large. Thanks to this understanding, we could
apply classical statistical techniques: reweighting and quasi-random. Also,
thanks to these good estimates, the log(λ)-modification, reducing the step-
size, leads to improve convergence rates. Results show that using sound
bias/variance principles, we can improve Estimation of Distribution Algo-
rithms. All suggested modifications are simple and quite general. The im-
provements for λ = 20, d = 2 can reach 700 % for EMNA+QR over EMNA,
500 % for IEMNA over EMNA, and replace premature convergence by real
convergence for small step-sizes (thanks to reweighting). For λ very large,
the speed-up seemingly goes to infinity; we guess that a more carefully tuned
formula for the step-size adaptation should provide much better results.

Quasi-random (QR) is for sure easier in continuous domains (not neces-
sarily for monomodal EDA - quasi-random numbers can be used for many
distributions as explained in e.g. [Teytaud and Gelly, 2007]), but they can
also be experimented in discrete cases (this is, however, not straightforward).
We confirm here results from previous publications, in the case of EMNA and
different fitness functions. Interestingly, quasi-random seemingly comes as a
free lunch and sometimes very strongly improves the result.

Reweighting can be used in all algorithms based on empirical distribu-
tions. The sample of selected points can be replaced by the corresponding
sample of weighted selected points, for most (if not all) EDA, both in dis-
crete and continuous domains. This makes sense also for evolution strategies.
Importantly, reweighting is not a free lunch - as shown in Table 2.4, there
are cases in which reweighting is harmful. On the other hand, it’s the only
efficient tool against premature convergence.

The fact that the step-size should decrease faster than the standard de-
viation of selected points when λ increases is also quite general. A simple
and different way of developing this idea is to reduce µ, based on the same
idea presented in Section 2.2.1 - perhaps this would have the same effect.
Decreasing the step-size according to lower bounds (LB) is not a free lunch:
it is possibly harmful in particular for moderate values of λ and when there
is a risk of premature convergence.

As a summary of this work:

82

• Quasi-random mutations improve the results. The improvement can be
moderate or huge, depending on the framework - almost always at least
a few percents (with also decreased variance of performance), and up
to 800 % improvement for λ = 10d for the cigar function in dimension
d or 300 % on the Sphere function for λ = 10d.

• Reweighting performs very well against premature convergence; on the
other hand, it decreases the performance for cases in which the initial-
ization avoids premature convergence.

• The log(λ)-modification (forced decrease of the step-size for λ large)
performs incredibly well when there is no risk of premature convergence.
On the other hand, it can of course (as it decreases σ!) be harmful when
there can be premature convergence. The main limitation of this work
is that we only tested our ideas on EMNA, for a small set of fitness
functions and small dimensions, and especially for λ not too small. It
has been shown in previous papers that QR mutations are efficient in
many other cases [Teytaud and Gelly, 2007, Teytaud, 2008b].

In Section 2.3, we proposed an automatically parallelization of ES. This
parallelization is based on speculative parallelization. As we have seen, the
main weakness of this automatic parallelization is its application in contin-
uous domains. This kind of parallelization is only efficient in discrete cases
or in small dimensions with (1 + λ)-ES or (1, λ)-ES. If we do not have such
conditions, it is better to use our log(λ) modifications in case of large popu-
lations. Another possibility when we have a large number of processors (P)
is to use a hybrid algorithm between speculative parallelization and classi-
cal algorithms. This hybrid algorithm is simply a classical algorithm (with
λ processors) but the P − λ inactive processors are used in order to do
speculative parallelization. If we choose a branch already computed by the
speculative parallelization, then the algorithm is faster; if we choose another
branch we have the same speed as the classical algorithm. This idea has
been presented in [Gardner et al., 2011] for the Particle Swarm Algorithm
[Kennedy and Eberhart, 1995].

83

3. CONCLUSION

84

Part II

Multistage Optimization

85

In this part, we first introduce some important notions around games and
algorithms used in games (Chapter 4). Then, in Chapter 5 we present the
state of the art algorithms for tree exploration, including Monte-Carlo Tree
Search algorithms. In Chapter 6, we see our contributions to the Monte-Carlo
Tree Search algorithm.

87

88

Chapter 4

Introduction

First, in Section 4.1 we define the notion of evaluation function, that will
be useful throughout this chapter. After this, in Section 4.2, we present the
game of Go, which is now established as a standard benchmark for tree search
algorithms. In Section 4.3, we present the game of Havannah, a recent game,
known to be really difficult for computers.

4.1 Evaluation function

In games, an evaluation function is a function used to estimate the value of
a situation. For instance, for the game of Chess, it is easy to build a crude
evaluation function :

eval(s) = (P − P ′) + 3(N −N ′ +B −B′)

+ 5(R−R′) + 9(Q−Q′) + 200(K −K ′)

− 0.5(D −D′ + S − S ′ + I − I ′)

+ 0.1(M −M ′)

where P,N,B,R,Q,K are respectively the number of White pawns, knights,
bishops, rooks, queens and kings, D the number of doubled White pawns,
S the number of backward White pawns, I the number of isolated White
pawns and M the mobility of the White player (measured, for instance, as
the number of possible moves). Primed letters correspond to the same repre-
sentation but for the Black player. s corresponds to a situation, i.e. a position
of a game. Such a symmetric evaluation function has been first presented in
[Shannon, 1950]. For some game, it is not possible to build such a function.
For instance, for the game of Go and the game of Havannah, the first pro-
grams playing these games were based on an evaluation function; however,

89

4. INTRODUCTION

these programs programs quickly became outperformed by programs which
were not based on evaluation functions, because of the imprecision of the
evaluation function. The reasons why it is difficult for these games to build
an evaluation function are several. First, obviously, there is no information
based on the material on the board. In the game of Go, the number of stones
is not a valuable information, and in the game of Havannah the number of
stones is the same for both players. Second, the meaning of a move can be
really deep and complex, even for a human. For example, it may be possible
to capture some enemy stones by strengthening the opponent’s stones else-
where. In the game of Go there is an important notion which is the influence,
and this is really difficult to measure, because this is not directly visible on
the board, and it can depend on the position in its entirely.
The important thing is that if there is no evaluation function available, then
we can not directly have a score for a position. Alpha-Beta algorithms,
presented in Section 5.1 can not be used in that case. Monte-Carlo based
algorithms, presented in Section 5.2 can handle such constraints, because the
evaluation is done differently.

4.2 The game of Go

The game of Go is an ancient Asian two-player (Black and White) board
game. It is mainly played on two different sizes, 9x9 and 19x19, but some-
times games are played on an intermediate size 13x13. The size represents
the number of location of each side. For instance, in 19x19, there are 361
possible locations. Rules are quite simple and consist in the following. Each
player puts a stone in an empty intersection on the board. Black player
starts. Two definitions are important to well understand a game: A group
is a connected (horizontally or vertically) set of stones of the same color. A
liberty is an empty intersection next to a group. When a group has no more
liberties, it is removed from the board. A dead stone is a stone on the board
which will be captured by the opponent whatever its owner does. At the end
of the game, after both players have passed consecutively, the dead stones are
removed from the board. The score is counted for each player. The player
with the higher score has won. The score for the black player (resp. white)
is the sum of the number of black (resp. white) stones on the board, plus
the number of empty intersections which belong to the black player (resp.
white), i.e. the intersections which are surrounded by black stones (resp.
white stones). As example of game is shown in Figure 4.1.

The game of Go, as in many board games, the first player has an advan-
tage. To compensate this advantage, the second player gets a certain number

90

4.2. THE GAME OF GO

Figure 4.1: Example of a 19x19 game of Go between MoGo a top Go-program
and Chou-Hsun Chou a top-player. For instance, the B16 white group is a
group of 11 stones and has 6 liberties.

of compensation points, called komi.

Handicap rule is used to offset the strength difference between two players
of different ranks. A game with X handicap is therefore a game for which
the second player allows the first player to put X stones on the board before
playing himself.

This game is much harder than the game of Chess, and is now a main chal-
lenge for computers. A complexity study has been done in Go. On the 319x19

possible board positions, only 1.196% are legal positions, so the maximum
legal game positions is 2.08168199382x10170 [Tromp and Farnebäck, 2007].
The average branching factor is about 200. This means that, on average,
a player has approximately 200 legal moves at his disposal at each turn
(whereas for the game of Chess, the average branching factor is about 35).
In 1998, a strong amateur (6 dans) was able to win against Many Faces of
Go which was at this time the best Go program with 29 handicap stones
for the computer [Müller, 2002]. With new algorithms, this gap has been
considerably reduce, and MoGo, a top Go program won in 2009 against a
9D professional, Chou-Hsun Chou, with only 7 handicap stones for the com-
puter [Rimmel et al., 2010]. There are still a lot of difficulties remaining in

91

4. INTRODUCTION

the game of Go. One of these difficulties, is the problem of semeais. A semeai
is a situation where each side has to capture the opponent’s group in order
to save its own group. A position with a semeai is presented in Figure 4.2.

In Section 5.2 we present these new algorithms. The main reason for
the difficulty of the game of Go for computers is that there is no evaluation
function.

4.3 The game of Havannah

The game of Havannah is another two-player board game with complete infor-
mation. It is a recent game, invented by Christian Freeling [Freeling, 2003].
This game is played on an hexagonal board of hexagonal locations with dif-
ferent sizes. Small sizes are 4 or 5 cells per side, and largest sizes are 8 or
10 cells per side. Rules are much simpler than for the game of Go and are
as follows. Each player puts a stone alternatively in an empty location. The
white player starts. If there is no more empty cell on the board and if no
player has won yet, then the result is a draw. Such situations are very rare.
To win a game, a player has to realize one of these three shapes:

• A ring, which is a connected string of stones around one or more cells.
The surrounded cells can be empty or not, occupied by black or white
stones.

• A bridge, which is a connected string of stones between two of the six
corners.

• A fork, which is a connected string of stones between three of the six
sides. Corner locations do not belong to any side.

An example of game is presented in Figure 4.3 and examples of the three
winning shapes are shown in Figure 4.4. The game of Havannah is a nice
challenge for computers because only few patterns and expert knowledge are
known. The total number of possible positions is large. A large bound is 271!
in size 10, but no complexity study has been done yet, in order to reduce this
number. As for the game of Go, it is difficult to build an evaluation function
for this game.

92

4.3. THE GAME OF HAVANNAH

Figure 4.2: Example of a 19x19 position with a semeai. The black group
J5 is alive if the black player is able to kill the white group M5. The white
group M5 is alive if the white player is able to kill the black group J5. This
is an easy example for human players, because the number of locations to
fill is the same for both players. The player to play will therefore win this
semeai.

93

4. INTRODUCTION

Figure 4.3: Example of a game of Havannah in size 8. In this position, Black
wins because White can not do anything to avoid Black to be connected to
three sides (and then to win with a fork).

94

4.3. THE GAME OF HAVANNAH

Figure 4.4: Top-Left: a won by ring for Black. Top-Right: a won by bridge
for White. Bottom: a won by fork for White.

95

4. INTRODUCTION

96

Chapter 5

State of the art

In this Chapter we present state of the art algorithms for tree exploration.
First in Section 5.1 the Alpha-Beta algorithm. In Section 5.2 we present
bandit based Monte-Carlo tree search methods. In Section 5.3 we present
the Nested Algorithm.

5.1 Alpha-Beta algorithm

Alpha-Beta algorithm is a refinement of the classical Minimax algorithm.
The Minimax algorithm is used for two-player zero sum games. Let d be the
depth of the algorithm. The principle is to build the complete tree of the
possible future states until depth d. In this algorithm an evaluation function
is needed and called when the algorithm reaches a leaf. One player (noted
player Max) tries to maximize the return score (given by the evaluation func-
tion) whereas the other player (noted Min) tries to minimize it. Algorithm
8 presents the pseudo-code of the Minimax algorithm.

Algorithm 8 Minimax algorithm.

arguments node n, depth d
if n is terminal or d = 0 then
return evaluation of n

else
α← −∞
for each child c of n do
α← max(α,−minimax(c, d− 1))

return α

The most famous improvement of the Minimax algorithm is called
Alpha-Beta [Shannon, 1950] and its theoretical analysis can be found in

97

5. STATE OF THE ART

[Knuth and Moore, 1975]. The principle is to prune branches of the tree
that can not influence the final result. In order to do so, we need to main-
tain the minimum score that Max can obtain (α) and the maximum score
that Min can obtain (β). If β becomes less than or equal to α then we do
not need to explore further. The Alpha-Beta algorithm always returns the
same answer than the Minimax algorithm. Pseudo-code for this algorithm is
presented in Algorithm 9.

Figure 5.1 [Rimmel, 2009], shows a tree representation for the Minimax
algorithm and the Alpha-Beta improvement.

Algorithm 9 Alpha-Beta algorithm.

arguments node n, depth d, α, β
if n is terminal or d = 0 then
return evaluation of n

else
α← −∞
for each child c of n do
α← max(α,−alphabeta(c, d− 1,−β,−α))
if β ≤ α then
break

return α

Figure 5.1: Left: tree representation of the Minimax algorithm. Right: tree
representation of the Alpha-Beta algorithm. Crosses show the pruning done
by the Alpha-Beta improvement.

5.2 Bandit Based Monte-Carlo Tree Search

Bandit Based Monte-Carlo Tree Search algorithms are based on an incre-
mental construction of a tree representing the possible future states. To do

98

5.2. BANDIT BASED MONTE-CARLO TREE SEARCH

this construction, a bandit formula and Monte-Carlo simulations are used.
First, we present multi-armed bandits in Section 5.2.1 and the Monte-Carlo
Tree Search algorithm in section 5.2.2.

5.2.1 Multi-Armed Bandits

A k-armed bandit problem, in the usual stochastic framework (other frame-
works, in particular the adversarial case, exist), is defined by the following
elements:

• A finite set of arms J = {1, . . . , k} is given.

• When pulled, each arm j ∈ J generates a reward r, whose value is an
unknown random variable Xj; the expectation of Xj is denoted µj.

• At each time step t ∈ {1, 2, . . . }, the algorithm chooses jt ∈ J depend-
ing on (j1, . . . , jt−1) and (r1, . . . , rt−1), and gets a reward rt, which is
an independent realization of Xjt .

The goal is to minimize the so-called regret. Let Tj(n) the number of
times an arm has been selected during the first n steps. The regret after n
steps is defined by

µ∗n−
n∑

j=1

µjE[Tj(n)] where µ∗ = max
1≤i≤n

µi.

[Auer et al., 2002] achieve a logarithmic regret (it has been proved that
this is the best obtainable regret in [Lai and Robbins, 1985]) independently
of the Xj with the following algorithm: first, try one time each arm; then,
at each step, select the arm j that maximizes

x̄j +

√
2ln(n)

nj

. (5.1)

x̄j is the average reward for the arm j (until now). nj is the number of
times the arm j has been selected so far. n =

∑
j nj is the overall number of

trials so far. This formula consists in choosing at each step the arm that has
the highest Upper Confidence Bound (UCB). It is called the UCB formula.
The first part of the formula is called the exploitation part, and the second
part of the formula is called the exploration part.

99

5. STATE OF THE ART

5.2.2 Monte-Carlo Tree Search

First, in Section 5.2.2 we define two functions which are frequently used
in this part. In Section 5.2.2 we present the Monte-Carlo Tree Search and
eventually some improvements of this algorithm in Sections 5.2.2, 5.2.2 and
5.2.2.

Definitions.

Before presenting the Monte-Carlo Tree Search algorithm we first introduce
two functions. The first one is the function mc(s) which plays a random
move from the situation s, i.e., the action is chosen randomly according to a
uniform distribution and returns the new position.

The second one is the function result(s) which returns the score of the
final situation s taken as argument.

In this section, we note f → s the move which leads from a node f
to a node s (f is the father and s the child node corresponding to move
m = f → s).

Algorithm.

Monte-Carlo tree Search (MCTS) has first been introduced
in [Coulom, 2006] and the UCT version was proposed in
[Kocsis and Szepesvari, 2006]. The main idea in MCTS algorithms is
to construct a highly imbalanced partial game tree T̂ , in order to focus on
and explore deeper the most interesting parts of the complete tree T and
avoid constructing less interesting parts. The MCTS algorithm is presented
in Algorithm 10 and illustrated on Figure 5.2.

Some statistics are attached to each node present in the tree, generally
consisting in the number of simulations which have passed through this node,
and the number of these simulations which are a win.

The construction of the tree T̂ is done incrementally and consists in three
parts: descent, evaluation and growth.

Descent. The descent in T̂ is done by considering that selecting a new
node is equivalent to a k-armed bandit problem. In each node s of the tree,
the following information are stored:

• ns: the total number of times the node s has been selected.

• x̄s: the average reward for the node s.

100

5.2. BANDIT BASED MONTE-CARLO TREE SEARCH

Figure 5.2: Illustration of the Monte-Carlo Tree Search algorithm. The De-
scent part consists in choosing a new node according to a bandit formula.
The evaluation policy appears when we reach a situation outside the Tree. In
the simplest case, the evaluation is done by doing a Monte-Carlo simulation.

The formula to select a new node s′ is based on the UCB formula 5.1. Let
Cs be the set of child of the node s:

s′ ← argmax
j∈Cs

[
x̄j +

√
2ln(ns)

nj

]
Once a new node has been selected, the same principle is repeated until we
reach a situation S outside T̂ .
We call tree policy the policy for taking decision inside the tree (i.e. using
the bandit formula 5.1 here).

Evaluation. At the end of the descent part, we have reached a situation
S outside T̂ . Now there is no more information available to take a decision;
we can not, as in the tree, use the bandit formula. As we are not at a leaf
of T , we can not directly have a result for S. Instead, we use a Monte-Carlo
simulation to have a value for S. The Monte-Carlo simulation is done by
selecting a new node (a child of S) using the heuristic function mc(S) and
this process is repeated until a final situation is reached. mc(S) returns one
element of CS based on a uniform distribution. In section 6.2, we see that
better distributions than the uniform distribution are possible. The policy
used for taking a decision where the situation is outside of the tree is called
the default policy or the Monte-Carlo part. The basic default policy is a
random policy.

Growth. In the growth step, we add the node S to T̂ . In some imple-
mentations, the node S is added to the node only after a finite fixed number
of simulations instead of just 1. The goal of this trick is to keep in memory
only nodes that are relevant.

101

5. STATE OF THE ART

After adding S to T̂ , we update the information in S and in all the
situations encountered during the descent with the value obtained with the
Monte-Carlo evaluation (the numbers of wins and the numbers of losses are
updated), so that x̄s and ns are known for all s in T̂ .

Algorithm 10 MCTS(s).

argument node s
Initialization of T̂ , n, x̄
while there is some time left do
s′ ← s
Initialization of game
//DESCENT
while s′ in T̂ and s′ not terminal do

s′ ← argmax
j∈Cs′

[x̄j +
√

2ln(ns′)
nj

]

game← game+ s′

S ← s′

//EVALUATION
while s′ is not terminal do
s′ ← mc(s′)

r = result(s′) {//Function defined in Section 5.2.2}
//GROWTH
T̂ ← T̂ + S
for each s in game do
ns ← ns + 1
x̄s ← (x̄s∗(ns−1)+r)

ns

Modification of the bandit formula.

A very simple but important improvement is the tuning of a parameter in
the bandit formula proposed in 5.1. It is important to have such a parameter
in this formula because the trade-off between exploration and exploitation is
application-dependant. With this control parameter the new formula is now
:

x̄j + α×

√
2ln(n)

nj

. (5.2)

x̄j is the average empirical reward for arm j, nj is the number of times
the arm j has been selected so far, n is the overall number of trials so far,

102

5.2. BANDIT BASED MONTE-CARLO TREE SEARCH

α the control parameter previously defined. A related improvement (scaling
with the standard deviation) has been proposed in [Audibert et al., 2008].

All Moves As First.

All Move As First (AMAF) was initially introduced in [Bruegmann, 1993].

We can define the number of AMAF wins as the number of won simula-
tions such that f has been encountered and m has been played after situation
f by the player to play in f (but not necessarily in f !). Similarly, we can
define the AMAF losses.

Rapid Action Value Estimates.

Rapid Action Value Estimates (RAVE) is a very efficient and generic im-
provement. Is was introduced in [Gelly and Silver, 2007].

The AMAF wins and AMAF losses numbers are termed RAVE wins and
RAVE losses when they are used in MCTS.

The principle is to store, for each node s with father f ,

• the number of wins (won simulations encountering s - this is exactly
the number of won simulations playing the move m in f);

• the number of losses (lost simulations playing m in f);

• the number of AMAF wins.

• the number of AMAF losses.

The percentage of wins established with RAVE values instead of standard
wins and losses is noted x̄RAV E

f,s . The total number of games starting from f
and in which f → s has been played is noted nRAV E

f,s . This number is much
bigger than ns ; therefore it is usually said that RAVE has lower variance
(but larger bias)

From the definition, we see that RAVE values are biased; a move might
be considered as good or bad (according to x̄f,s) just because it is good or
bad later in the game.

Nonetheless, RAVE values are very efficient in guiding the search: each
Monte-Carlo simulation updates many RAVE values per node on its path,
whereas it updates only one standard win/loss value in standard MCTS.
Thanks to this larger amount of statistical data, RAVE values are known to
be more biased but to have less variance.

103

5. STATE OF THE ART

Those RAVE values are used to modify the bandit formula 5.1 used in
the descent part of the algorithm. The new formula to chose a new node s′

from the node s is given bellow; let Cs be the set of child of the node s.

s′ ← argmax
j∈Cs

(1− β)x̄j + βx̄RAVE
s,j +

√
2 ln(ns)

nj

(5.3)

β is a parameter that tends to 0 with the number of simulations n and
which is close to 1 when n is small. When the number of simulations is small,
the RAVE term has a larger weight in order to benefit from the low variance.
When the number of simulations gets high, the RAVE term becomes small
in order to avoid the bias.

Last Good Reply.

This improvement has been proposed in [Drake, 2009]. This improvement
is generic (it can be used for many applications) and appears in the default
policy.

During a simulation, if the Black player replies action b to action a of
the White player and if the simulation is a win for Black then for the next
simulation, it seems reasonable for Black to play b if White tries action a,
even if it is not in the same state. If the action b is not possible for Black
at that time, then Black simply chooses the action according to the default
policy (i.e. using the function mc() in that case).

The Last Good Reply (LR) requires only a small amount of memory as
each player only needs to maintain the last successful reply for each action.

5.3 Nested Monte-Carlo

The Nested Monte-Carlo (NMC) algorithm is an algorithm introduced in
[Cazenave, 2009]. This algorithm is recursive and each level calls the lower
level in order to determine which action has to be selected. The lowest level
of the NMC algorithm, i.e. the level 0 is a Monte-Carlo simulation, in other
words, each action is randomly chosen according to a uniform distribution
until a final situation is reached. This corresponds to the function mc. More
precisely, in each position, a NMC search of level l performs a NMC of
level l − 1 for each possible action and then select the one with the best
score. For instance, a NMC search of level 1 does a Monte-Carlo simulation
(corresponding to a NMC of level 0) for each possible action and selects the
action with the highest score. Tristan Cazenave shows in [Cazenave, 2009],
that the NMC algorithm can be easily improved by keeping in memory the

104

5.3. NESTED MONTE-CARLO

best sequence of actions found so far. It is useful when a future nested search
gives worse results than the best sequence. This algorithm is presented in
Algorithm 11.

Algorithm 11 Nested.

arguments node s, level l
bestscore← −1
while not end of the game do
if l = 0 then
move← argmaxm(result(mc(play(position,m))))

else
move← argmaxm(nested(play(position,m), l − 1))

if currentscore > bestscore then
bestscore← currentscore
bestsequence← currentsequence

bestmove← move of bestsequence
position← play(position, bestmove)

105

5. STATE OF THE ART

106

Chapter 6

Contributions

In this Chapter, we argue the generality of the Monte-Carlo Tree Search
algorithm. In order to show this generality, we test the Monte-Carlo Tree
Search algorithm on the game of Havannah, presented in Section 4.3. Differ-
ent improvements of the Monte-Carlo tree Search, known to be efficient in
the game of Go, are tested. This is presented in Section 6.1. Regarding to
this result, we think that it is important to preserve this generality. Then, in
Section 6.2, we present 3 generic improvements of the default policy of the
Monte-Carlo Tree Search algorithm.

In Section 6.3, we present the use of evolutionary algorithms, presented
in Section 1.1 for tuning the Nested algorithm (Algorithm 11), and we point
out that this approach can be efficient on this application thanks to heuristics
and a good tuning.

6.1 Application to the game of Havannah

As seen in Section 4.3 the game of Havannah is recent. Consequently, only a
few programs playing Havannah exist, but it emerges more and more as a new
challenge for computers. Programs were using Alpha-Beta algorithms first.
Since [Teytaud and Teytaud, 2010a] UCT algorithms have been successfully
introduced and are now used by all Havannah programs. The results of this
section have been published in this paper. In this work the goal is to test
the generality of UCT by experimenting it in the game of Havannah. We
try different improvements of UCT known to be good in the game of Go.

107

6. CONTRIBUTIONS

Kbernstein Score against Hoeffding’s formula 6.1

0.000 0.439 ± 0.015
0.001 0.582 ± 0.012
0.010 0.652 ± 0.006
0.030 0.646 ± 0.005
0.100 0.578 ± 0.010
0.250 0.503 ± 0.011

Table 6.1: The first value 0.25 corresponds to Hoeffding’s bound except that
the second term is added. Experiments are performed with 1000 simulations
per move, with size 5. We tried to experiment values below 0.01 for Kbernstein

but with poor results.

6.1.1 Bandit Formula

First, we experimentally tune, by self-play, the bandit formula 5.2, and found
for the constant α the value

√
0.125. The new bandit equation is then :

x̄j +

√
0.25× ln(2 + n)

nj

. (6.1)

The added constant 2+ is here for avoiding special case for 0.
The exploration part is based on the result of the Hoeffding’s bound.

An improvement of the exploration part consists in using the variance of
the rewards of the arms. If the variance for an arm is low, then it takes
less iterations to know that this arm is not optimal. To use the variance
a possibility is to use the Bernstein’s bound instead of Hoeffding’s bound
[Audibert et al., 2006, Mnih et al., 2008]. Then, we experiment this new ex-
ploration term. The resulting exploration term is then:

x̄j+

√
4Kbernsteinx̄j(1− x̄j) log(2 + n)

nj

(6.2)

+
3
√
2Kbernstein log(2 + n)

nj

. (6.3)

Here again, the added constants 2+ are here for avoiding special cases for
0. This term is smaller for moves with small variance (and this whatever
score(d)).

We tested several values of Kbernstein, results are presented in table 6.1.

108

6.1. APPLICATION TO THE GAME OF HAVANNAH

However, when the number of simulations becomes larger the Formula
using Hoeffding’s bound (Formula 6.1) performs better [Lorentz, 2011].

6.1.2 Progressive Widening

With progressive widening [Coulom, 2007, Chaslot et al., 2007,
Wang et al., 2008], we first rank the legal moves at a situation s ac-
cording to some heuristic: the moves are then renamed 1, 2, . . . ,n, with
i < j if move i is preferred to move j for the heuristic. Then, at the mth

simulation of a node, all moves with index larger than f(m) have a score
equal to −∞ (i.e. are discarded), with f some non-decreasing mapping
from IN to IN. It was shown in [Wang et al., 2008] that this can work even

with random ranking, with f(m) = ⌊Kpwm
1
4 ⌋ for some constant Kpw. In

[Coulom, 2007] it was shown that f(m) = ⌊Kpwm
1
3.4 ⌋ for some constant

Kpw performs well in the case of Go, with a pattern-based heuristic for
move ranking. The algorithm proposed in [Chaslot et al., 2007] and now
used also in MoGo is a bit different: an exploration term depending on a
pattern-based heuristic and decreasing logarithmically with the number of
simulations of this move is added to the score. In that case, for a move d
the bandit formula is:

x̂d +
H(d)

log(2 +m)

with H the pattern-based heuristic function.

In the case of Havannah, we do not have such heuristics. We decided to
use heuristic-free progressive widening, as it was shown in [Wang et al., 2008]
that an improvement can be provided even if no heuristic is available (i.e.
the order is arbitrary). This idea of using progressive widening without
heuristic is a bit counter-intuitive. However, consider for instance, a node
of a tree which is explored 50 times only (this certainly happens for many
nodes deep in the tree). If there are 50 legal moves at this node, if you use
the standard UCB formula, then the 50 simulations will be distributed on the
50 legal moves (one simulation for each legal move). Meanwhile, progressive
widening will sample a few moves only, e.g. 4 moves, and sample much more
the best of these 4 moves - this may be better than taking the average of
all moves as an evaluation function. We experimented with 500 simulations
per move, size 5, various constants P and Q for the progressive widening
f(m) = Q⌊mP ⌋. Results are presented in Table 6.2. These experiments were
performed with the exploration formula given in Eq. 6.1. We tested various
other parameters for Q and P , without any significant improvement.

109

6. CONTRIBUTIONS

Q,P Success rate against no prog. widening

1, 0.7 0,496986 ± 0.014942
1, 0.8 0.51 ± 0.0235833
1, 0.9 0.50 ± 0.0145172

4, 0.4 0,500454 ± 0.0134803
4, 0.7 0.49 ± 0.0181818
4, 0.9 0,485101 ± 0.0172619

Table 6.2: Experiment of using progressive widening in the game of Havan-
nah.

6.1.3 Rapid Action Value Estimates

In formula 5.3 we have defined the parameter β which controls the trade-off
between the UCB score and the RAVE score. We use the following formula
for defining β:

β =
R

R + n

For small number of simulations (1000) α = 0 is the best constant. This
was also pointed out in [Lee et al., 2009] for the game of Go. We then tested
larger numbers of simulations, i.e. 30 000 simulations per move. Disappoint-
ingly but consistently with [Lee et al., 2009], we had to change the coefficients
in order to get positive results, whereas the tuning of UCT is seemingly less
dependent on the number of simulations per move. The fifth line in Table
6.3 corresponds to the configuration empirically chosen for 1000 simulations
per move; its results are disappointing, almost equivalent to UCT, for these
experiments with 30 000 simulations per move. The sixth line in Table 6.3
uses the same exploration constant as UCT, but it’s seemingly too much.
Then, the following lines of Table 6.3, using a weaker exploration and a small
value of R, gets better results. [Lee et al., 2009] points out that, with big
simulation times, α = 0 was better, but an exploration bonus depending on
patterns was used instead.

As a conclusion, for large numbers of simulations, RAVE is not as efficient
as for small number of simulations. (when compared to UCT).

6.2 Improvement of the default policy

In this section, we propose several methods to improve the default MCTS
policy. A main weakness of MCTS is that choosing the right Monte-Carlo

110

6.2. IMPROVEMENT OF THE DEFAULT POLICY

size R α number of simulations success rate against no rave
5 50 0 1000 95.33% ± 0.01 %
5 50 0.05 1000 60.46% ± 2.9 %
5 50 0.25 1000 47.26% ± 4.0 %

8 50 0 1000 100% on 1347 runs

5 5 0.02 30 000 0.61 ± 0.06
5 20 0.02 30 000 0.66 ± 0.03
5 50 0 30 000 0.53 ± 0.02
5 50 0.02 30 000 0.60 ± 0.03
5 50 0.05 30 000 0.60 ± 0.02
5 50 0.25 30 000 0.47 ± 0.04

Table 6.3: Experiment of the RAVE improvement of the game of Havannah
for sizes 5 and 8. α is the constant parameter defined in formula 5.2. R is
the RAVE constant defined in 6.1.3.

formula (mc(.) in Alg. 10) is very difficult. All the improvements proposed
here are aimed at being generic, and consequently are independent of the ap-
plication. We have seen in Section 5.2.2 the Last Good Reply improvement
which is also a generic improvement of the default policy. Improving the
MCTS algorithm with expert knowledge or domain-dependant knowledge
is really important because these enhancements are in general very efficient,
then the resulting algorithms are far better. However, having generic im-
provements is really important simply because it improves the general be-
havior of the algorithm. In all this section, we present generic improvements
of the default policy. We first present a modification of the default policy
based on the RAVE improvement in Section 6.2.1. In Section 6.2.2 we present
an improvement based on multiple overlapping tiles and in Section 6.2.3 the
”check mate in one” improvement.

6.2.1 poolRave

As said in Section 5.2.2, RAVE is a generic improvement of the tree pol-
icy. Here, we propose the ”poolRave” modification. This modification is a
generic way to improve the default policy of the MCTS algorithm. The re-
sults of this modification have been presented in [Rimmel et al., 2011b]. The
modification here is really simple and is as follows:

• build a pool of the k best moves according to the RAVE values.

111

6. CONTRIBUTIONS

• choose one move m in this pool.

• with a probability p, play m, otherwise use mc(s).

The RAVE values are those of the last node with at least 50 simulations.
This improvement is very simple to implement if the RAVE improvement is
already implemented. Two parameters are needed. The first one is k which
defines the number of moves contained in the pool. The second parameter is
the probability p of playing a move from the pool instead of a regular move.
Such a probability is crucial because it is very important to limit the bias
introduced by the Monte-Carlo part and then to keep diversity during the
simulations.

The MCTS algorithm with the ”poolRave” modification is presented in
Algorithm 12.

The generality of this approach is demonstrated by experimenting this
modification on two different applications: the classical application to the
game of Go, and the interesting case of Havannah in which far less expertise
is known.

We measure the success rate of our program with the new ”poolRave”
modification against the baseline version of our bot. We have experimented
different numbers of simulations in order to see the robustness of our modi-
fication.

Results on the game of Havannah are shown in table 6.4. The best results
are obtained with p = 1

2
and a pool size of 10, for which we have a success

rate of 54.3% for 1000 simulations and 54.5% for 10000 simulations. With
the same set of parameters, for 20000 simulations we have 54.4%, so for the
game of Havannah this improvement seems to be independent of the number
of simulations.

We experiment this modification in the top Go-programMoGo. The prob-
ability p of using the modification is useful in order to preserve the diversity
of the simulations. In MoGo, the diversity of the simulations is ensured by
the fillboard modification [Chaslot et al., 2010]. This modification is simple:
a location is randomly chosen on the board. If all the surrounding locations
are empty then the move is played. If the move is not played (i.e. all the
surrounding locations were not empty), a new location is randomly chosen
and test. This process is repeated N times. Because of this behaviour, for
the poolRave improvement, the probability p is set to 1, i.e. we always play
a poolRave move when such a move exists.

The experiments are performed by making the original version of MoGo
play against the version with the modification on 9x9 games with 1000 sim-
ulations per move.

112

6.2. IMPROVEMENT OF THE DEFAULT POLICY

Algorithm 12 RMCTS(s), including the poolRave modification.

Initialization of T̂ , n, x̄, nRAV E, x̄RAV E

while there is some time left do
s′ ← s
Initialization of game, simulation
//DESCENT//
while s′ in T̂ and s′ not terminal do

s′ ← argmax
j∈Cs′

[x̄j + αx̄RAVE
s′,j +

√
2ln(ns′)

nj
]

game← game+ s′

S = s′

//EVALUATION//
//beginning of the poolRave modification //
s′′ ← last visited node in the tree with at least 50 simulations
while s′ is not terminal do
if Random < p then
s′ ←one of the k moves with best RAVE value in s′′

/* this move is randomly and uniformly selected */
else
s′ ← mc(s′)

simulation← simulation+ s′

//end of the poolRave modification //
//without poolRave, just s′ ← mc(s′)//
r = result(s′)
//GROWTH//
T̂ ← T̂ + S
for each s in game do
ns ← ns + 1
x̄s ← (x̄s∗(ns−1)+r)

ns

for each s′ in simulation do
nRAVE
s,s′ ← nRAVE

s,s′ + 1

x̄RAVE
s,s′ ←

x̄RAVE
s,s′ ∗(nRAVE

s,s′ −1)+r

nRAVE
s,s′

113

6. CONTRIBUTIONS

of simulations p Size of the pool Success rate against the baseline

1000 1/2 5 52.7±0.62%
1000 1/4 10 53.19±0.68%
1000 1/2 10 54.32±0.46%
1000 3/4 10 53.34±0.85%
1000 1 10 52.42±0.70%
1000 1/4 20 52.13±0.55%
1000 1/2 20 52.51±0.54%
1000 3/4 20 52.9±0.34%
1000 1 20 53.2±0.8%

10000 1/2 10 54.45±0.75%
20000 1/2 10 54.42±0.89%

Table 6.4: Success rate of the poolRave modification for the game of Havan-
nah. The baseline is the same program without the poolRave modification.

Size of the pool Success rate against the baseline

5 54.2±1.7%
10 58.7±0.6%
20 62.7±0.9%
30 62.7±1.4%
60 59.1±1.8%

Table 6.5: Success rate of the poolRave modification for the game of Go. The
baseline is the code without the poolRave modification. For this experiment,
no expert-knowledge is used in the Monte-Carlo part.

In the case of the game of Go, we obtain up to 51.7 ± 0.5% of victory.
The improvement is statistically significant but not very important. The
reason is that Monte-Carlo simulations in our program MoGo possess exten-
sive domain knowledge thanks to patterns. In order to measure the effect
of our modification on application where no knowledge is available, we run
more experiments with a version of MoGo without pattern. The results are
presented on table 6.5.

When the size of the pool is too large or not large enough, the modification
is not as efficient. When using the good compromise for the size (20 in the
case of MoGo for 9x9 go), we obtain 62.7± 0.9% of victory.

114

6.2. IMPROVEMENT OF THE DEFAULT POLICY

It is also interesting to note that when we increase the number of simu-
lations par move, we obtain slightly better results. For example, with 10000
simulations per move, we obtain 64.4± 0.4% of victory.

We presented a first generic way of improving the Monte-Carlo simula-
tions in the Monte-Carlo Tree Search algorithm. This method is based on
already existing values (the RAVE values) and is easy to implement.

We show two different applications where this improvement was success-
ful: the game of Havannah and the game of Go. On the game of Havannah,
we achieve 54.3% of victory against the baseline. On the game of Go, we
achieve 51.7% of victory against the version without modification. Having a
significant improvement in this case is a very good result, because in the pro-
gram MoGo the default policy (with expert knowledge) is hard to improve.
Moreover, without the domain specific knowledge, we obtain up to 62.7% of
victory.

6.2.2 Contextual Monte-Carlo

The results of this section have been published in the paper
[Rimmel and Teytaud, 2010]. In Section 6.2.1 we used statistics per move.
In this section, we want to learn more complex patterns by using statistical
information about pairs of moves. The idea is somehow similar to the last
good reply improvement, presented in Section 5.2.2, except that for the Con-
textual Monte-Carlo improvement we keep statistics for each pair of moves
and not only the last good answer. Let us define a tile Lc(a1, a2) as the set
of simulations where actions a1 and a2 have been played by player c. We
can compute the empirical reward Vc(a1, a2) for Lc(a1, a2) based on previous
simulations. We are interested in tiles which have a high reward (greater
than a threshold B). If the last move of the player c is b,then with a proba-
bility p, we choose the action a which maximizes Vc(a, b) if this move is still
available. The idea is simply that if we notice that we can often reach a good
situation after two actions, then we want to force the choice of the second
one if the first one has already been played. The role of the probability p
here is the same as it was in Section 6.2.1, which is to keep diversity between
simulations. We call this improvement Contextual Monte-Carlo (CMC), the
resulting algorithm is presented in Algorithm 13. The CMC modification is
presented in Algorithm 13, line 14.

We have tested the effect of contextual Monte Carlo simulations on the
game of Havannah. We experiment our Havannah program with the CMC
improvement against the same player without this improvement. The exper-
iments are done with 1000 simulations per move for each player. Results are
shown in Figures 6.1 and 6.2. We study the impact of the two parameters

115

6. CONTRIBUTIONS

Algorithm 13 MCTS(s) with Contextual Monte-Carlo.

1: Initialization of T̂ , x̂, n, x̂CMC , nCMC

2: while there is some time left do
3: s′ ← s
4: Initialization of game, simulation
5: //DESCENT//
6: while s′ in T̂ and s′ not terminal do

7: s′ ← argmax
j∈Cs′

[x̄j +
√

2ln(ns′)
nj

]

8: game← game+ s′

9: S = s′

10: //EVALUATION//
11: //beginning of the CMC modification //
12: while s′ is not terminal do
13: if Random < p then
14: s← play(s, argmax

a∈Es

S(x̂CMC(a, b)))

15: else
16: s′ ← mc(s′)
17: simulation← simulation+ s′

18: //end of the CMC modification //
19: r = result(s′)
20: //GROWTH//
21: T̂ ← T̂ + S
22: for each s in game do
23: ns ← ns + 1
24: x̄s ← (x̄s∗(ns−1)+r)

ns

25: for each (P (a1), P (a2)) in s′, P being one player do
26: nCMC(a1, a2)← nCMC(a1, a2) + 1
27: x̂CMC(a1, a2)← (1− 1

nCMC(a1,a2)
)x̂CMC(a1, a2) +

r
nCMC(a1,a2)

116

6.2. IMPROVEMENT OF THE DEFAULT POLICY

prob in 6.2 and B in 6.1.

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0.59

 0 20 40 60 80 100

B

Success rate for CMC version against standard version
Success rate (%)

Success rate for CMC

Figure 6.1: Winning percentage for the CMC version against the basic version
as a function of B with prob = 35%.

On Figure 6.1 we show the effect of changing B for a fixed value of prob
(75%). The winning percentage starts at 56% for B = 0 and is stable until
B = 60 where it starts going down to 50% for B = 100. When B is too high,
CMC is used less often and therefore the results are worse. When B is low,
it means that we select the best tile even if all the possible tiles have a bad
average reward. It seems that this is never worst than playing randomly. In
the following, we use B = 0.

On Figure 6.2 we modify the value of prob while keeping B fixed (0%).
When prob is too high, the diversity of the Monte Carlo simulations is not
preserved and the results are worse. On the other hand, if prob is too low,
the modification has not enough effect. There is a compromise between this
two properties.

First, we see that the utilization of CMC is efficient. It leads to 57% of
victory against the base version for prob = 35 and B = 0.

117

6. CONTRIBUTIONS

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0.59

 0 10 20 30 40 50 60 70

p

Success rate for CMC version against standard version
Success rate (%)

Success rate for CMC

Figure 6.2: Winning percentage for the CMC version against the basic version
with B = 0.

6.2.3 Decisive Moves

We here present the results published in the paper
[Teytaud and Teytaud, 2010c]. For this modification, we use moves
which conclude the game. We call such moves ”decisive moves” but notion
of ”check mate in 1 move” can be found in literature. A decisive move is
a winning move, a move which directly leads to a win. An anti-decisive
move is a move which avoid a decisive move by the opponent one step later.
On the one hand this improvement is generic because we do not need any
knowledge on the application, we just have to know that this kind of moves
exists, but on the other hand, it is true that this kind of moves can only
be applied on application on which such moves exist. For instance, for the
game of Go, there is no winning move so this modification can not be used.

We first discuss the computational cost of decisive moves, and in the
second part experiment such moves on the game of Havannah.

Complexity Analysis.

Our complexity analysis probably holds for several connection games. How-
ever, we restrict here to the game of Havannah simply because we experiment
this modification on the game of Havannah.

We present the data structures needed for our complexity analysis.

118

6.2. IMPROVEMENT OF THE DEFAULT POLICY

• For each location l, we keep as information in the state d for time step
t the following d(l):

– the color of the stone on this location, if any;

– if there is a stone, a group number; connected stones have the
same group number;

– the time steps u ≤ t at which this information d(l) has changed; we
see below why this list has size O(log(T)); the group information
and the connections for all stones in the neighborhood of l are
kept in memory for each of these time steps.

• For each group, we maintain:

– the list of edges/corners to which this group is connected (in Hex,
corners are useless, and only some edges are necessary), and the
timestep at which it was connected;

– the number of stones in the group;

– the location of one stone in this group.

• At each move, all the above information is updated. The O(T log(T))
overall complexity in the update is due to the following: when k groups
are connected, then the local information should be changed for the
k − 1 smallest groups and not for the biggest group (see Figure 6.3).
This implies that each local information is updated at most O(log(T))
times because the size of the group, in case of local update, is at least
multiplied by 2.

Checking a win in O(1) is easy by checking connections of groups modified
by the current move (for fork and bridge) and by checking local information
for cycles:

• a win by fork occurs if the new group is connected to 3 edges;

• a win by bridge occurs if the new group is connected to 2 corners;

• a win by cycle occurs when a stone connects two stones of the same
group, at least under some local conditions which are fast to check
locally.

Under conditions above, we can:

• initialize the state (O(T));

119

6. CONTRIBUTIONS

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Figure 6.3: An example of sequence of Θ(T) moves for one of the players
whose cost highly depends on the detailed implementation. The important
feature of this sequence of moves are (i) it can be extended to any size of
board (ii) the size of the group increases by 1 at each move of the player.
In this case, if the biggest group has its information updated at each new
connection, then the total cost is Θ(T 2); whereas if the smallest group is
updated, the total cost is Θ(T) for this sequence of moves, and Θ(T log(T))
in all cases. Randomly choosing between modifying the 1-stone group and
the big group has the same expected cost Θ(T 2) as the choice of always
modifying the big group (up to a factor of 2).

• T times,

– randomly choose a move (cumulated cost O(T));

– update the state (cumulated cost O(T log(T)));

– check if this is a win (cumulated cost O(T) - exit the loop in this
case).

therefore we can perform one random simulation in time O(T log(T)). The
strength of this data structure is that we can switch to decisive moves with
no additional cost (up to a constant factor). This is performed as follows:

• initialize the state (O(T));

120

6.2. IMPROVEMENT OF THE DEFAULT POLICY

• T times,

– randomly choose a move (cumulated cost O(T));

– update the state (cumulated cost O(T log(T)));

– check if this is a win (cumulated cost O(T)) (exit the loop in this
case).

• let firstWin =time step at which the above game was won (+∞ in
case of draw).

• let winner =the player who has won.

• for each time location l, (O(T) times)

– for each time step t (there are at most O(log(T)) such time steps
by assumption on the data structure) at which dt.s(l) has changed,
(O(log(T)) times)

∗ check if dt.s(l) was legal and a win for the player p to play at
time step t; (O(1))

∗ if yes, if t < firstWin then winner = p and firstWin = t;
(O(1))

∗ check if dt+1.s(l) was legal and a win for the player p to play
at time step t+ 1; (O(1))

∗ if yes, if t+ 1 < firstWin then winner = p and firstWin =
t+ 1. (O(1))

The overall cost is O(T log(T)). We point out the following elements:

• The algorithm above consists in playing a complete game with the
default policy, and then, check if it was possible to win earlier for one
of the players. This is sufficient for the proof, but maybe it is much
faster (at least from a constant) to check this during the simulation.

• We do not prove that it’s not possible to reach T log ∗(T) with deci-
sive moves in Hex or Havannah; just, we have not found better than
T log(T).

Experiments.

Let us introduce the notion of anti-decisive moves. If the opponent p′ has a
winning move m′, then the player p has to play it. Using decisive moves plus
antidecisive moves is simple: if the player p is to play, if m is a winning move,

121

6. CONTRIBUTIONS

then p plays m and wins, else, if the opponent p′ has a winning move m′ then
p has to play m′ to avoid a loss. We perform experiments on Havannah.
Please note that we do not implemented the complete data structure above,
but some simpler tools which are slower but have the advantage of covering
anti-decisive moves as well. We have no proof of complexity for our imple-
mentation and no proof that the T log(T) can be reached for anti-decisive
moves.

We implement the decisive moves and anti-decisive moves in our Havan-
nah program for measuring the corresponding improvement. We can see in
Table 6.6 that adding decisive moves can lead to big improvements; the mod-
ification scales well in the sense that it becomes more and more effective as
the number of simulations per move increases.

Number of 100 250 500 1000
simulations

DM 98.6% 99.1% 97.8% 95.9%
vs BL ±1.8% ±1.1% 1.6% ±1.5%

DM + ADM 80.1% 81.3% 82.4 85%
vs BL ±1.2% 2% ±1.7% ±1.4%

DM + ADM 49.3% 56.1% 66.6% 78.1%
vs DM ±1.5% ±1.9% ±1.9% ±1.1%

Table 6.6: Success rates of decisive moves. BL is the baseline (no decisive
moves). DM corresponds to BL plus the ”decisive moves” (if there exists a
winning move then it is played). DM + ADM, is the DM version of our bot,
plus the ”antidecisive moves” improvement: in that case, if player p is to
play, if p has a winning move m then p plays m; else, if the opponent has a
winning move m′, then p plays m′.

Unfortunately, this improvement becomes less efficient when the number
of simulations becomes really large. For instance, if we use 3 seconds per
move, our program with decisive moves and antidecisive moves, is very good
(80% of success rate) but when we have 30 seconds per move (approximately
1 000 000 of simulations) the success rate falls to a value close to 50%.

122

6.3. TUNING OF THE NESTED ALGORITHM

6.3 Tuning of the Nested Algorithm

In this section, we present the use of evolutionary algorithms for tuning the
Nested Monte-Carlo algorithm for solving the traveling salesman problem
with time windows.

The results of this section have been published in [Rimmel et al., 2011a].
The traveling salesman problem is a difficult optimization problem and is

used as a benchmark for several optimization algorithms. In this section we
tackle the problem of optimizing the Traveling Salesman Problem with Time
Windows (tsptw). For solving this problem, we combine a nested Monte-
Carlo algorithm [Cazenave, 2009] and an evolutionary algorithm. With this
system, the important point is that we have to optimize a function which is
noisy and where the evaluation is not the score on average but the best score
among a certain number of runs. When the noise is uniform on the whole
function, optimizing for the mean or for the min is equivalent, so we focus on
problems where the noise is non uniform. We show on an artificial problem
that having a fitness function during the optimization that is different from
the one we want to optimize can improve the convergence rate. We then use
this principle to optimize the parameters of a nested Monte-Carlo algorithm
for the tsptw.

We have chosen to use Evolution-Strategies (ES [Rechenberg, 1973]) for
the optimization part. These algorithms are known to be simple and robust.
See [Rechenberg, 1973, Beyer, 2001] or Section I for more details on ES in
general.

For this work, we use (µ/µ, λ)-ES. We have chosen the Self-Adaptation
Evolution Strategy (SA-ES) for the optimization of our problem. See Section
1.2.2 for more details about the Self-Adaptation Evolution Strategy.

We first do experiment on an artificial problem. We have chosen to opti-
mize the noisy sphere function.

The noisy sphere is a classical artificial problem for optimization exper-
iments [Jebalia and Auger, 2008, Jebalia et al., 2010]. However, here, the
noise function is original. The noise is Gaussian and non uniform. We use 5
dimensions.

Formally, the noisy sphere function used in our experiment is defined as
the following:

f(y) =
N∑
i=1

(y2i +N(0, (2yi)
2)).

This noisy sphere has been designed such that the optimum according to the
mean is different from the optimum according to the mean plus variance. It
is represented on the top-left of figure 6.4.

123

6. CONTRIBUTIONS

Figure 6.4: Representation of our noisy sphere function.

The evaluation function eval(f(y)) is the min over 1000 runs of f with
parameters y. We optimize the expectation of this function:

eval(f(y)) = min(f i(y), i = 1..1000),

f i being the i-th run of f .
During the optimization, we use a fitness function to evaluate an indi-

vidual. Usually, people use the same function for the fitness function and
for the evaluation function. However, we see that the function that we want
to optimize is very unstable. For this reason, we propose to use a fitness
function that can be different from the evaluation function.

The 3 fitness functions that we use are:

• bestn(f(y)) = min(f i(y), i = 1..n)

• meann(f(y)) =
∑n

i=1 f
i(y)

n

• kbestk,n(f(y)) =
∑k

i=1 f
i(y)

k
with f 1(y) < f 2(y) < ... < fk(y) < ... <

fn(y)

As the fitness function used during the optimization is not the same as
the evaluation function, we compute for each generation the score of the
best individual according to the evaluation function. This function is noisy,
so the true score of an individual is the average over NbEval runs of the
evaluation function. This is very costly in number of evaluations but this
true score is only used to show that the algorithm converges and is only used
for the noisy sphere.

In the experiments, we used k = 5 for kbest and NbEval = 100.
We compare bestn, meann and kbest5,n for different values of n.
We compute the true score of the best individual in function of the number

of the generation. Every curve is the average over 30 runs.

124

6.3. TUNING OF THE NESTED ALGORITHM

The results are given on Figure 6.5.
We see that in all cases, the convergence is slower with best than with

mean and kbest. However, the final value is always better for best. This
is because best is the fitness function the most similar to the evaluation
function.

For high values of n, the convergence is equivalent for kbest and mean.
Furthermore, the final value is better for kbest than for mean. This implies
that for high value of n, it is always better to use kbest instead of mean.

For small values of n, kbest converges more slowly thanmean but achieves
a better final value.

As a conclusion, the choice of the fitness function should depend on the
need of the user. If the speed of the convergence is important, one can use
mean or kbest depending on n. If the final value is important, best is the
function to use.

We now see if the conclusions we obtained on an artificial problem are
still valid when we optimize difficult problems.

We now focus on the tsptw problem. First, we describe the problem.
Then, we present the nested Monte-Carlo algorithm. Finally, we show the re-
sults we obtain when we optimize the parameters of the algorithm on tsptw.

The traveling salesman problem is an important logistic problem. It is
used to represent the problem of finding an efficient route to visit a certain
number of customers, starting and finishing at a depot. The version with
time windows adds the difficulty that each customer has to be visited within a
given period of time. The goal is to minimize the length of the travel. tsptw
is an NP-hard problem and even finding a feasible solution is NP-complete
[Savelsbergh, 1985]. Early works [Christofides et al., 1981, Baker, 1983] were
based on branch-and-bound. Later, Dumas et al. used a method based
on Dynamic programming [Dumas et al., 1995]. More recently, methods
based on constraints programming have been proposed [Pesant et al., 1998,
Focacci et al., 2002].

Algorithms based on heuristics have also been considered [Solomon, 1987,
Gendreau et al., 1998].

Finally, [López-Ibáñez and Blum, 2010] provides a comprehensive survey
of the most efficient methods to solve the tsptw and proposes a new algo-
rithm based on ant colonies that achieves very good results. They provide a
clear environment to compare algorithms on a set of problems that we used
in this work.

The tsp can be described as follow. Let G be an undirected complete
graph. G = (N,A) where N = 0, 1, ..., n is a set of nodes and A = N ∗N is
the set of edges between the nodes. The node 0 represents the depot. The
n other nodes represent customers. A cost function c : A → IR is given.

125

6. CONTRIBUTIONS

For instance, it represents the distance between 2 customers. A solution
to this problem is a sequence of nodes P = (p0, p1, ..., pn) where p0 = 0
and (p1, ..., pn) is a permutation of [1, N]. Set Pn+1=0, then, the goal is to
minimize the function

cost(P) =
n∑

k=0

c(apk,pk+1
). (6.4)

In the version with time windows, each customer i is associated with a
time interval [ei, li]. The customer must not be served before ei or after li. It
is allowed to arrive at a node i before ei but the departure time becomes ei.

Let dpk be the departure time from node pk. Then dpk = max(rpk , epk)
where rpk is the arrival time at node pk.

The function to minimize is 6.4 but a set of constraints must now be
satisfied. Let Ω(P) be the number of windows constraints violated by tour P.
The optimization of f must be done while satisfying the following constraints

∀pk, rpk < lpk ,

and
rpk+1

= max(rpk , epk) + c(apk,pk+1
).

With the addition of the constraints, the problem becomes much more
complicated and classical algorithms used for tsp are not efficient any more.
That is why we use Nested Monte-Carlo that has been presented in Section
5.3.

It is possible to improve the performance of NMC by modifying the
Monte-Carlo simulations. An efficient way is to select actions based on heuris-
tics instead of a uniform distribution. However, some randomness must be
kept in order to preserve the diversity of the simulations.

To do that, we use a Boltzmann softmax policy. This policy is defined by
the probability πθ(p, a) of choosing the action a in a position p:

πθ(p, a) =
eϕ(p,a)

T θ∑
b e

ϕ(p,b)T θ
,

where ϕ(p, a) is a vector of features and θ is a vector of feature weights.
The features we use are the heuristics described in [Solomon, 1987]:

• the distance to the last node: h1(p, a) = c(d, a)

• the amount of time necessary to wait if a is selected because of the
beginning of its time window: h2(p, a) = max(0, ea − (Tp + c(d, a)))

126

6.3. TUNING OF THE NESTED ALGORITHM

• the amount of time left until the end of the time window of a if a is
selected: h3(p, a) = max(0, la − (Tp + c(d, a)))

where d is the last node selected in position p, Tp is the time used to arrive
in situation p, ea is the beginning of the time window for action a, la is the
end of the time window for the action a and c(d, a) is the travel cost between
d and a.

The values of the heuristic are normalized before being used.

The values that we will optimize are the values from the vector θ (the
feature weights).

We use the set of problems given in [Potvin and Bengio, 1996].

As we have 3 different heuristics, the dimension of the optimization prob-
lem is 3.

We define NMC(y), the function that associates a set of parameters y to
the permutation obtained by a run of the NMC algorithm, with parameters
y on a particular problem.

The NMC algorithm can generate permutations with some windows con-
straints violated; the score Tcost(p) of a permutation p is the penalized travel
cost.

Tcost(p) = cost(p) + 106 ∗ Ω(p),

cost(p) is the cost of the travel p and Ω(p) the number of violated con-
straints.

106 is a constant high enough for the algorithm to first optimize Ω(p) and
then cost(p).

The exact equation of the function f that will be use is the following:

f(y) = Tcost(NMC(y)).

As the end of the evaluation, we want to obtain a NMC algorithm that
we will launch for a longer period of time in order to obtain one good score
on a problem. So the evaluation function should be the min on this period of
time. As this period of time is not known and a large period of time would
be too time-consuming, we arbitrarily choose a time of 1 second to estimate
the true score of an individual.

The evaluation function eval(f(y)) is the min over r runs of f with pa-
rameters y. r being the amount of runs that can be done in 1 second. It
means that we want to optimize the expectation of this function:

eval(f(y)) = min
1s

(f(y)).

127

6. CONTRIBUTIONS

As for the sphere problem, we use 3 different fitness functions instead of
the evaluation function: meann, kbestn and bestn. In the experiments, we
use n = 100.

We use a nested algorithm of level 2.
The first experiments are done on the problem rc206.3 which contains 25

nodes.
In this experiment we compare best100, kbest100 and mean100. As in all

this work, the population size λ is equal to 12 and the selected population
size µ is 3, and σ = 1. The initial parameters are [1, 1, 1] and the stopping
criterion of the evolution-strategy is 15 iterations. Results are the average of
three independent runs.

Iterations BEST KBEST MEAN

1 2.7574e+06 2.4007e+06 2.3674e+06
2 5.7322e+04 3.8398e+05 1.9397e+05
3 7.2796e004 1.6397e+05 618.22
4 5.7274e+04 612.60 606.68
5 2.4393e+05 601.15 604.10
6 598.76 596.02 602.96
7 599.65 596.19 603.69
8 598.26 594.81 600.79
9 596.98 591.64 602.54
10 595.13 590.30 600.14
11 590.62 591.38 600.68
12 593.43 589.87 599.63
13 594.88 590.47 599.24
14 590.60 589.54 597.58
15 589.07 590.07 599.73

Table 6.7: Evolution of the true score on the problem rc206.3.

There are many differences between the initial parameters and optimized
parameters in term of performances. This shows that optimizing the param-
eters is really important in order to obtain good performance.

Results are similar as in the case of our noisy sphere function. best100
reaches the best score, but converges slowly. mean100 has the fastest conver-
gence, but finds the worst final score. As expected, kbest100 is a compromise
between the two previous fitness, with a nice convergence speed and is able
to find a score really close to the best. For this reason, we have chosen to
use kbest for the other problems.

We launched the optimization algorithm on all problems from the set
in [Potvin and Bengio, 1996]. We compare the best score we obtained on
each problem with our algorithm and the current best known score from the
literature. The results are presented in table 6.8. We provide the Relative
Percentage Deviation (RPD): 100 ∗ (value− bestknown)/bestknown.

There are many differences between one set of parameters optimized on

128

6.3. TUNING OF THE NESTED ALGORITHM

one problem and one set of parameters optimized on an other problem. So,
the optimization has to be done on each problem.

We perform as good as the state of the art for all problems with less than
29 nodes. We find at least one correct solution for each problem. When
the number of nodes increases, this is not a trivial task. For problems more
difficult with a higher number of nodes, we don’t do as well as the best score.
However, we still manage to find a solution close to the current best one and
did this with little domain knowledge.

129

6. CONTRIBUTIONS

Figure 6.5: Evolution of the true score as a function of the iterations with
n = 10 (Top), n = 100 (Middle) and n = 300 (Bottom).

130

6.3. TUNING OF THE NESTED ALGORITHM

Problem n
State of NMC

RPD
the art score

rc206.1 4 117.85 117.85 0
rc207.4 6 119.64 119.64 0
rc202.2 14 304.14 304.14 0
rc205.1 14 343.21 343.21 0
rc203.4 15 314.29 314.29 0
rc203.1 19 453.48 453.48 0
rc201.1 20 444.54 444.54 0
rc204.3 24 455.03 455.03 0
rc206.3 25 574.42 574.42 0
rc201.2 26 711.54 711.54 0
rc201.4 26 793.64 793.64 0
rc205.2 27 755.93 755.93 0
rc202.4 28 793.03 793.03 0
rc205.4 28 760.47 760.47 0
rc202.3 29 837.72 837.72 0
rc208.2 29 533.78 536.04 0.42
rc207.2 31 701.25 707.74 0.93
rc201.3 32 790.61 790.61 0
rc204.2 33 662.16 675.33 1.99
rc202.1 33 771.78 776.47 0.61
rc203.2 33 784.16 784.16 0
rc207.3 33 682.40 687.58 0.76
rc207.1 34 732.68 743.29 1.45
rc205.3 35 825.06 828.27 0.39
rc208.3 36 634.44 641.17 1.06
rc203.3 37 817.53 837.72 2.47
rc206.2 37 828.06 839.18 1.34
rc206.4 38 831.67 859.07 3.29
rc208.1 38 789.25 797.89 1.09
rc204.1 46 868.76 899.79 3.57

Table 6.8: Results on all problems from the set from Potvin and Ben-
gio [Potvin and Bengio, 1996]. First Column is the problem, second
column the number of nodes, third column the best score found in
[López-Ibáñez and Blum, 2010], fourth column the best score found by the
NMC algorithm and fifth column it the RPD. The problems where we find
the best solutions are in bold. We can see that for almost all problems with
our simple algorithm we can find the best score.

131

6. CONTRIBUTIONS

6.4 Conclusion

MCTS are now well established as state of the art algorithms for observable
problems with high dimensions. In Section 5.2, we have presented differ-
ent works done on these algorithms. In Section 6.1, we have successfully
introduced MCTS algorithms to the game of Havannah. We can clearly vali-
date, in the case of the game of Havannah, the efficiency of some well known
techniques, showing the generality of the MCTS approach. Essentially:

• The efficiency of Bernstein’s formula, in front of Hoeffding’s formula,
is clear (up to 65%). Unfortunately, this efficiency reduces when the
number of simulations becomes larger.

• The constant success rate of UCT with 2k simulations per move, against
UCT with k simulations per move, nearly holds in the case of Havannah
(nearly 75%, whereas it is usually around 63% for MCTS in the game of
Go [Gelly et al., 2008]). However, this ratio becomes smaller when the
number of simulations becomes larger. A large number of simulations
reduces the variance but not the bias, that is why this ratio decrease
to 50% with large number of simulations. This is a limitation of the
parallelization of MCTS algorithms.

• The efficiency of the RAVE heuristic is clearly validated. The main
strength is that the efficiency increases with the size, reaching 100 %
on 1347 games in size 8. On the other hand, RAVE becomes less
efficient, and requires tuning, when the number of simulations per move
increases.

• Progressive widening, in spite of the fact that it was shown in
[Coulom, 2007, Wang et al., 2008] that it works even without heuris-
tic, is not significant for us. In the case of Go, progressive widen-
ing was shown very efficient in implementations based on patterns
[Coulom, 2007, Chaslot et al., 2007].

In Section 6.2, we present three different techniques in order to improve
the default policy of MCTS algorithms in a generic way. We strongly believe
that the next step in improving the MCTS algorithm will be reached by
finding an efficient way of modifying the Monte-Carlo simulations depending
on the context.
The first method is called ”poolRave” and is presented in Section 6.2.1.
This method is based on already existing values (the RAVE values) and is
easy to implement.
In order to show the generality of this improvement, we tried it on two

132

6.4. CONCLUSION

different applications: the game of Havannah and the game of Go. On the
game of Havannah, we achieve 54.3% of victory against the version without
the modification. On the game of Go, we achieve only 51.7% of victory
against the version without modification. However, on the version of our Go
program without domain specific knowledge, we obtain up to 62.7% of vic-
tory. So we can say that the integration of this method in MCTS is successful.

The second method is called ”Contextual Monte-Carlo” and is presented
in Section 6.2.2.
This improvement is based on the modification of the default policy by using a
reward function learned on a tiling of the space of MC simulations. It achieves
very good results for the game of Havannah with a winning percentage of
57% against the version without CMC. It is, for the moment, tested only in
the case of one example of two-player game. An immediate perspective of
this work is to experiment CMC on other problems. It is possible to try a
different choice of tiling. We proposed a successful specific one but others
can surely be found as we used only a small part of the information contained
in this space. We really believe that this kind of improvement is the next
step in order to solve specific problems in the game of Go. If we look at
semeai (Section 4.2 and Figure 4.2), the problems for solving it are several.
First, we have to detect all the locations involved in the semeai, and second,
to play in these locations in the right order. Trying to solve this problem
by simply increasing the number of simulations is not reasonable (because
the number of simulations needed is too large), then we think that the CMC
improvement could be really helpful if we increase the number of actions per
tile.

The last generic improvement is presented in Section 6.2.3 and is called
”decisive moves”. This is a generic modification in the sense that it does
not use any expert-knowledge but only a feature of some problems. Unfortu-
nately, this improvement can not be used on all problems, but only on those
where a ”check mate in one” action is available. We have shown that (i)
decisive moves have a small computational overhead (ii) they provide a big
improvement in efficiency.

Anti-decisive moves might have a bigger overhead, but they are nonethe-
less very efficient as well even with fixed time per move. A main lesson,
consistent with previous works in Go, is that having simulations with a bet-
ter scaling as a function of the computational power, is usually a good idea
whenever these simulations are more expensive.

The main limitation of this modification is that it becomes less efficient
when the number of simulations becomes (really) large.

133

6. CONTRIBUTIONS

Improvement # of simulations Best score against the baseline

poolRave 1000 54.32±0.46%
10000 54.45±0.75%
20000 54.42±0.89%

CMC 1000 57%

DM 1000 95.9±1.5%
DM+ADM 1000 85±1.4%

Table 6.9: Summary of the improvements of the default policy on the game
of Havannah. poolRave is the modification presented in Section 6.2.1, CMC
is the Contextual Monte-Carlo, presented in Section 6.2.2. DM stands for
Decisive Moves, and ADM is Anti-Decisive Moves. DM and ADM have been
presented in section 6.2.3.

Extending decisive moves to moves which provide a sure win within M
moves, or establishing that this is definitely too expensive, would be an
interesting further work. We have just shown that for M = 1, this is not
so expensive if we have a relevant data structure (the cost of a simulation
of length O(T) on a board of size O(T) is O(Tlog(T)) for many connection
games).

Decisive moves naturally lead to proved situations, in which the result
of the game is known and fixed; it would be natural to modify the UCB
formula in order to reduce the uncertainty term (to 0 possibly) when all
children moves are proved, and to propagate the information up in the tree.
To the best of our knowledge, there’s no work around this in the published
literature and this might extend UCT to cases in which perfect play can be
reached by exact solving.

A summary of the efficiency of these methods can be found in Table 6.9

In Section 6.3 we present the tuning of the Nested Monte-Carlo algorithm.
In this work we used a new method for solving the TSPTW problem based on
the optimization of a nested Monte-Carlo algorithm with the Self-Adaptation
algorithm. This algorithm is known for its robustness. The only adaptation
of the nested algorithm to the TSPTW was to add 3 heuristics. Even in
this case, for all the problems with less than 29 nodes, we were able to
reach state of the art solutions with small computation times. However, a
clear limitation of our algorithm is to deal with a large number of nodes.
A solution could be to prune some moves at the higher level of the nested
algorithm. Another solution could be to add new heuristics. In this case,
because of the higher dimensionality, we will try other evolution algorithms

134

6.4. CONCLUSION

and increase the population size. A natural choice is the Covariance Matrix
Self-Adaptation algorithm [Beyer and Sendhoff, 2008], known to be robust
and good for large population sizes. Adding covariance and allowing large
population sizes should increase the speed of the convergence.

135

6. CONTRIBUTIONS

136

Conclusion

137

6.4. CONCLUSION

This thesis covers two important fields of optimization. The first one
is the study of Evolution Strategies in a parallel context. The second one
concerns the improvement of multistage optimization algorithms.

Regarding the study of Evolution Strategies in a parallel context, we
have first demonstrated that the implementation of the current Evolution
Strategies is not adapted to parallelization with a large number of nodes. In
order to solve this issue, we proposed several rules. We hope to have asked
the good questions. However, a lot of works is still necessary in order to
well understand and adapt current algorithms to the special case of large
population sizes. A summary of our results can be found in Chapter 3.
It should be noted that, during this work, we only looked at unimodal
functions. A possible approach for multimodal optimization is the use of
some restart strategy [Auger and Hansen, 2005]. This technique can be
extended to the parallel case, by simply doing the restarts (and then the
searches) in parallel, as suggested in [Schoenauer et al., 2011]. There is no
doubt that parallelization is an important part of the future in optimization.

In the second part of this thesis, we have worked on Monte-Carlo Tree
Search algorithms. The generality of these techniques is now well established,
and they are not only used in games but also in planning [Xie et al., 2011], ac-
tive learning [Rolet et al., 2009], feature selection [Gaudel and Sebag, 2009],
or within industrial applications, like the automatic generation of libraries
for linear transform [De Mesmay et al., 2009]. They become more and more
visible in these fields, because they are efficient in front of the dimensionality
and they do not require any expert knowledge.
Adding expert knowledge is nevertheless possible, and can improve the re-
sults of the algorithm. However, in the present work, we focused on adding
generic improvements, in order to keep the generality of MCTS algorithms.
A summary of the proposed improvements can be found in Section 6.4.
Many interesting works remain to be done, for instance adapting these meth-
ods to partially observable applications. Another issue is that, in order to be
able to apply these methods, a decision model is needed, and an interesting
further development will be to adapt these methods to model-free applica-
tions. Works on performing Monte-Carlo simulations without any model
have been recently published [Fonteneau et al., 2011], and extending this to
MCTS methods is a very important, but difficult, task.

139

6. CONTRIBUTIONS

140

Bibliography

[lit, 1936] (1936). Literary digest.

[Akiyama et al., 2010] Akiyama, H., Komiya, K., and Kotani, Y. (2010).
Nested Monte-Carlo Search with AMAF Heuristic. In 2010 International
Conference on Technologies and Applications of Artificial Intelligence,
pages 172–176. IEEE.

[Andersen, 1979] Andersen, K. (1979). The creation of a Democratic major-
ity, 1928-1936. University of Chicago Press.

[Arnold, 2006] Arnold, D. (2006). Weighted multirecombination evolution
strategies. Theoretical computer science, 361(1):18–37.

[Arnold and Van Wart, 2008] Arnold, D. and Van Wart, D. (2008). Cumu-
lative step length adaptation for evolution strategies using negative recom-
bination weights. Applications of Evolutionary Computing, pages 545–554.

[Audibert et al., 2008] Audibert, J., Munos, R., and Szepesvári, C. (2008).
Variance estimates and exploration function in multi-armed bandit. Re-
search report, pages 07–31.

[Audibert et al., 2006] Audibert, J.-Y., Munos, R., and Szepesvari, C.
(2006). Use of variance estimation in the multi-armed bandit problem.
In NIPS 2006 Workshop on On-line Trading of Exploration and Exploita-
tion.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Machine Learning,
47(2/3):235–256.

[Auger and Hansen, 2005] Auger, A. and Hansen, N. (2005). A restart cma
evolution strategy with increasing population size. In Proceedings of the
IEEE Congress on Evolutionary Computation, volume 2, pages 1769–1776,
Piscataway, NJ, USA. IEEE Press.

141

BIBLIOGRAPHY

[Auger et al., 2005] Auger, A., Jebalia, M., and Teytaud, O. (2005). XSE:
quasi-random mutations for evolution strategies. In Proceedings of Evolu-
tionary Algorithms, page 12.

[Baker, 1983] Baker, E. (1983). An exact algorithm for the time-constrained
traveling salesman problem. Operations Research, 31(5):938–945.

[Beyer, 2001] Beyer, H. (2001). The theory of evolution strategies. Springer
Verlag.

[Beyer and Sendhoff, 2008] Beyer, H. and Sendhoff, B. (2008). Covariance
Matrix Adaptation Revisited–The CMSA Evolution Strategy. Parallel
Problem Solving from Nature–PPSN X, pages 123–132.

[Bishop, 1995] Bishop, C. (1995). Neural networks for pattern recognition.
Oxford university press.

[Bosman and Thierens, 2000] Bosman, P. and Thierens, D. (2000). Expand-
ing from discrete to continuous estimation of distribution algorithms: The
id\ mathbbe e a. In Parallel Problem Solving from Nature PPSN VI, pages
767–776. Springer.

[Brooks, 1958] Brooks, S. (1958). A discussion of random methods for seek-
ing maxima. Operations Research, 6(2):244–251.

[Broyden, 1970] Broyden, C. (1970). The convergence of a class of double-
rank minimization algorithms 1. general considerations. IMA Journal of
Applied Mathematics, 6(1):76.

[Bruegmann, 1993] Bruegmann, B. (1993). Monte-carlo Go (unpublished
draft http://www.althofer.de/bruegmann-montecarlogo.pdf).

[Calder and Reinman, 2000] Calder, B. and Reinman, G. (2000). A compar-
ative survey of load speculation architectures. Journal of Instruction-Level
Parallelism, 2:1–39.

[Cazenave, 2009] Cazenave, T. (2009). Nested Monte-Carlo search. In IJ-
CAI, pages 456–461.

[Chaslot et al., 2010] Chaslot, G., Fiter, C., Hoock, J., Rimmel, A., and
Teytaud, O. (2010). Adding expert knowledge and exploration in Monte-
Carlo Tree Search. Advances in Computer Games, pages 1–13.

142

BIBLIOGRAPHY

[Chaslot et al., 2009] Chaslot, G., Hoock, J., Teytaud, F., and Teytaud, O.
(2009). On the huge benefit of quasi-random mutations for multimodal
optimization with application to grid-based tuning of neurocontrollers.

[Chaslot et al., 2007] Chaslot, G., Winands, M., Uiterwijk, J., van den
Herik, H., and Bouzy, B. (2007). Progressive strategies for monte-carlo
tree search. In Wang, P. et al., editors, Proceedings of the 10th Joint
Conference on Information Sciences (JCIS 2007), pages 655–661. World
Scientific Publishing Co. Pte. Ltd.

[Chen, 2008] Chen, S. (2008). Nonparametric estimation of expected short-
fall. Journal of financial econometrics, 6(1):87.

[Christofides et al., 1981] Christofides, N., Mingozzi, A., and Toth, P.
(1981). State-space relaxation procedures for the computation of bounds
to routing problems. Networks, 11(2):145–164.

[Coulom, 2006] Coulom, R. (2006). Efficient selectivity and backup oper-
ators in monte-carlo tree search. In Proceedings of the 5th international
conference on Computers and games, pages 72–83. Springer-Verlag.

[Coulom, 2007] Coulom, R. (2007). Computing elo ratings of move patterns
in the game of go. ICGA Journal, 30(4):198–208.

[De Mesmay et al., 2009] De Mesmay, F., Rimmel, A., Voronenko, Y., and
P
”uschel, M. (2009). Bandit-based optimization on graphs with applica-
tion to library performance tuning. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 729–736. ACM.

[Devroye et al., 1996] Devroye, L., Gy
”orfi, L., and Lugosi, G. (1996). A probabilistic theory of pattern recogni-
tion. Springer Verlag.

[Dong and Yao, 2008] Dong, W. and Yao, X. (2008). Unified eigen analy-
sis on multivariate gaussian based estimation of distribution algorithms.
Information Sciences, 178(15):3000–3023.

[Drake, 2009] Drake, P. (2009). The Last-Good-Reply Policy for Monte-
Carlo Go. ICGA Journal, 32(4):221–227.

[Dumas et al., 1995] Dumas, Y., Desrosiers, J., Gelinas, E., and Solomon,
M. (1995). An optimal algorithm for the traveling salesman problem with
time windows. Operations Research, 43(2):367–371.

143

BIBLIOGRAPHY

[Efron and Tibshirani, 1993] Efron, B. and Tibshirani, R. (1993). An intro-
duction to the bootstrap, volume 57. Chapman & Hall/CRC.

[Fletcher, 1970] Fletcher, R. (1970). A new approach to variable metric al-
gorithms. The Computer Journal, 13(3):317.

[Focacci et al., 2002] Focacci, F., Lodi, A., and Milano, M. (2002). A hy-
brid exact algorithm for the tsptw. INFORMS Journal on Computing,
14(4):403–417.

[Fonteneau et al., 2011] Fonteneau, R., Murphy, S., Wehenkel, L., and Ernst,
D. (2011). Estimation monte carlo sans modèle de politiques de décision.
Revue d’Intelligence Artificielle, 25.

[Fournier and Teytaud, 2011] Fournier, H. and Teytaud, O. (2011). Lower
Bounds for Comparison Based Evolution Strategies using VC-dimension
and Sign Patterns. Algorithmica, pages 1–22.

[Freeling, 2003] Freeling, C. (2003). Introducing Havannah. In Abstract
Games, volume 14, page 14.

[Fukumizu and Amari, 2000] Fukumizu, K. and Amari, S. (2000). Local
minima and plateaus in hierarchical structures of multilayer perceptrons.
Neural Networks, 13(3):317–327.

[Galil and Italiano, 1991] Galil, Z. and Italiano, G. (1991). Data structures
and algorithms for disjoint set union problems. ACM Computing Surveys
(CSUR), 23(3):319–344.

[Gardner et al., 2011] Gardner, M., McNabb, A., and Seppi, K. (2011). Spec-
ulative evaluation in particle swarm optimization. Parallel Problem Solving
from Nature–PPSN XI, pages 61–70.

[Gaudel and Sebag, 2009] Gaudel, R. and Sebag, M. (2009). Feature selec-
tion as a one-player game. In Proceedings of the second NIPS Workshop
on Optimization for Machine Learning, OPT. Citeseer.

[Gelly et al., 2008] Gelly, S., Hoock, J. B., Rimmel, A., Teytaud, O., and
Kalemkarian, Y. (2008). The parallelization of monte-carlo planning. In
Proceedings of the International Conference on Informatics in Control,
Automation and Robotics (ICINCO 2008), pages 198–203.

[Gelly and Silver, 2007] Gelly, S. and Silver, D. (2007). Combining online
and offline knowledge in UCT. In ICML ’07: Proceedings of the 24th

144

BIBLIOGRAPHY

international conference on Machine learning, pages 273–280, New York,
NY, USA. ACM Press.

[Gendreau et al., 1998] Gendreau, M., Hertz, A., Laporte, G., and Stan, M.
(1998). A generalized insertion heuristic for the traveling salesman problem
with time windows. Operations Research, 46(3):330–335.

[Goldfarb, 1970] Goldfarb, D. (1970). A family of variable metric methods
derived by variational means. Mathematics of Computation, 24(109):23–
26.

[Grahl et al., 2006] Grahl, J., Bosman, P., and Rothlauf, F. (2006). The
correlation-triggered adaptive variance scaling idea. In Proceedings of the
8th annual conference on Genetic and evolutionary computation, pages
397–404. ACM.

[Hansen, 1998] Hansen, N. (1998). Verallgemeinerte individuelle Schrittweit-
enregelung in der Evolutionsstrategie. Mensch & Buch Verlag, Berlin.

[Hansen et al., 2009] Hansen, N., Auger, A., Finck, S., and Ros, R. (2009).
Real-parameter black-box optimization benchmarking 2009: Experimental
setup. Technical report, Citeseer.

[Hansen and Ostermeier, 1996] Hansen, N. and Ostermeier, A. (1996).
Adapting arbitrary normal mutation distributions in evolution strategies:
The covariance matrix adaptation. In Evolutionary Computation, 1996.,
Proceedings of IEEE International Conference on, pages 312–317. IEEE.

[Hansen and Ostermeier, 2001] Hansen, N. and Ostermeier, A. (2001). Com-
pletely derandomized self-adaptation in evolution strategies. Evolutionary
computation, 9(2):159–195.

[Jebalia and Auger, 2008] Jebalia, M. and Auger, A. (2008). On multiplica-
tive noise models for stochastic search. In et a.l., G. R., editor, Conference
on Parallel Problem Solving from Nature (PPSN X), volume 5199, pages
52–61, Berlin, Heidelberg. Springer Verlag.

[Jebalia and Auger, 2011] Jebalia, M. and Auger, A. (2011). Log-linear con-
vergence of the scale-invariant (µ/µ w, λ)-es and optimal µ for interme-
diate recombination for large population sizes. Parallel Problem Solving
from Nature–PPSN XI, pages 52–62.

[Jebalia et al., 2010] Jebalia, M., Auger, A., and Hansen, N. (2010). Log-
linear convergence and divergence of the scale-invariant (1+1)-es in noisy
environments. Algorithmica, pages 1–36. online first.

145

BIBLIOGRAPHY

[Kennedy and Eberhart, 1995] Kennedy, J. and Eberhart, R. (1995). Par-
ticle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE
International Conference on, volume 4, pages 1942–1948. IEEE.

[Kimura and Matsumura, 2005] Kimura, S. and Matsumura, K. (2005). Ge-
netic algorithms using low-discrepancy sequences. In Proceedings of the
2005 conference on Genetic and evolutionary computation, pages 1341–
1346. ACM.

[Kloetzer et al., 2007] Kloetzer, J., Iida, H., and Bouzy, B. (2007). The
Monte-Carlo Approach in Amazons. In Proceedings of the Computer
Games Workshop, pages 185–192. Citeseer.

[Knuth and Moore, 1975] Knuth, D. E. and Moore, R. W. (1975). An anal-
ysis of alpha-beta pruning* 1. Artificial intelligence, 6(4):293–326.

[Kocsis and Szepesvari, 2006] Kocsis, L. and Szepesvari, C. (2006). Bandit-
based monte-carlo planning. In European Conference on Machine Learning
2006, pages 282–293.

[Korpaas et al., 2003] Korpaas, M., Holen, A., and Hildrum, R. (2003). Op-
eration and sizing of energy storage for wind power plants in a market
system. International Journal of Electrical Power & Energy Systems,
25(8):599–606.

[Lai and Robbins, 1985] Lai, T. and Robbins, H. (1985). Asymptotically
efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4–
22.

[Larranaga and Lozano, 2002] Larranaga, P. and Lozano, J. (2002). Estima-
tion of distribution algorithms: A new tool for evolutionary computation,
volume 2. Springer Netherlands.

[Lee et al., 2009] Lee, C., Wang, M., Chaslot, G., Hoock, J., Rimmel, A.,
Teytaud, O., Tsai, S., Hsu, S., and Hong, T. (2009). The computa-
tional intelligence of MoGo revealed in Taiwan’s computer Go tourna-
ments. Computational Intelligence and AI in Games, IEEE Transactions
on, 1(1):73–89.

[Liu and Teng, 2008] Liu, J. and Teng, H. (2008). Model learning and vari-
ance control in continuous edas using pca. In Innovative Computing Infor-
mation and Control, 2008. ICICIC’08. 3rd International Conference on,
pages 555–555. IEEE.

146

BIBLIOGRAPHY

[López-Ibáñez and Blum, 2010] López-Ibáñez, M. and Blum, C. (2010).
Beam-ACO for the travelling salesman problem with time windows. Com-
puters & OR, 37(9):1570–1583.

[Lorentz, 2011] Lorentz, R. (2011). Improving Monte–Carlo Tree Search in
Havannah. Computers and Games, pages 105–115.

[Lunacek et al., 2008] Lunacek, M., Whitley, D., and Sutton, A. (2008).
The impact of global structure on search. Parallel Problem Solving from
Nature–PPSN X, pages 498–507.

[L’Ecuyer and Lemieux, 2005] L’Ecuyer, P. and Lemieux, C. (2005). Recent
advances in randomized quasi-monte carlo methods. Modeling uncertainty,
pages 419–474.

[Mnih et al., 2008] Mnih, V., Szepesvári, C., and Audibert, J. (2008). Em-
pirical bernstein stopping. In Proceedings of the 25th international confer-
ence on Machine learning, pages 672–679. ACM.

[Mühlenbein and Paass, 1996] Mühlenbein, H. and Paass, G. (1996). From
recombination of genes to the estimation of distributions I. Binary param-
eters. Parallel Problem Solving from Nature—PPSN IV, pages 178–187.

[Müller, 2002] Müller, M. (2002). Computer go. Artificial Intelligence, 134(1-
2):145–179.

[Niederreiter, 1992] Niederreiter, H. (1992). Quasi-monte carlo methods.

[Owen, 2003] Owen, A. (2003). Quasi-monte carlo sampling. Monte Carlo
Ray Tracing: Siggraph, pages 69–88.

[Pelikan et al., 2002] Pelikan, M., Goldberg, D., and Lobo, F. (2002). A
survey of optimization by building and using probabilistic models. Com-
putational optimization and applications, 21(1):5–20.

[Pesant et al., 1998] Pesant, G., Gendreau, M., Potvin, J., and Rousseau, J.
(1998). An exact constraint logic programming algorithm for the traveling
salesman problem with time windows. Transportation Science, 32(1):12–
29.

[Posik, 2008] Posik, P. (2008). Preventing premature convergence in a simple
eda via global step size setting. Parallel Problem Solving from Nature–
PPSN X, 5199:549–558.

147

BIBLIOGRAPHY

[Potvin and Bengio, 1996] Potvin, J. and Bengio, S. (1996). The vehicle
routing problem with time windows part II: genetic search. INFORMS
journal on Computing, 8(2):165.

[Price, 1996] Price, K. (1996). Differential evolution: a fast and simple
numerical optimizer. In Fuzzy Information Processing Society, 1996.
NAFIPS. 1996 Biennial Conference of the North American, pages 524–
527. IEEE.

[Price et al., 2005] Price, K., Storn, R., and Lampinen, J. (2005). Differen-
tial evolution: a practical approach to global optimization. Springer Verlag.

[Quante et al., 2009] Quante, R., Fleischmann, M., and Meyr, H. (2009).
A stochastic dynamic programming approach to revenue management in
a make-to-stock production system. ERIM Report Series Reference No.
ERS-2009-015-LIS.

[Rechenberg, 1971] Rechenberg, I. (1971). Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologischen Evolution. Dr.-Ing.
PhD thesis, Thesis, Technical University of Berlin, Department of Process
Engineering.

[Rechenberg, 1973] Rechenberg, I. (1973). Evolutionsstrategie: Opti-
mierung technischer Systeme nach Prinzipien der biologischen Evolution,
Fromman-Holzboog. Stuttgart. German.

[Rimmel, 2009] Rimmel, A. (2009). Thesis: Improvements and Evaluation
of the Monte-Carlo Tree Search Algorithm.

[Rimmel and Teytaud, 2010] Rimmel, A. and Teytaud, F. (2010). Multiple
Overlapping Tiles for Contextual Monte Carlo Tree Search. Applications
of Evolutionary Computation, pages 201–210.

[Rimmel et al., 2011a] Rimmel, A., Teytaud, F., and Cazenave, T. (2011a).
Optimization of the nested monte-carlo algorithm on the traveling sales-
man problem with time windows. Applications of Evolutionary Computa-
tion, pages 501–510.

[Rimmel et al., 2011b] Rimmel, A., Teytaud, F., and Teytaud, O. (2011b).
Biasing Monte-Carlo simulations through RAVE values. Computers and
Games, pages 59–68.

[Rimmel et al., 2010] Rimmel, A., Teytaud, O., Lee, C.-S., Yen, S.-J., Wang,
M.-H., and Tsai, S.-R. (2010). Current Frontiers in Computer Go. IEEE

148

BIBLIOGRAPHY

Transactions on Computational Intelligence and Artificial Intelligence in
Games, page in press.

[Rolet et al., 2009] Rolet, P., Sebag, M., and Teytaud, O. (2009). Optimal
active learning through billiards and upper confidence trees in continous
domains. In Proceedings of the ECML conference, pages 302–317.

[Ros and Hansen, 2008] Ros, R. and Hansen, N. (2008). A simple modi-
fication in cma-es achieving linear time and space complexity. Parallel
Problem Solving from Nature–PPSN X, pages 296–305.

[Savelsbergh, 1985] Savelsbergh, M. (1985). Local search in routing problems
with time windows. Annals of Operations Research, 4(1):285–305.

[Schoenauer et al., 2011] Schoenauer, M., Teytaud, F., Teytaud, O., et al.
(2011). A rigorous runtime analysis for quasi-random restarts and de-
creasing stepsize.

[Schwefel, 1974] Schwefel, H. (1974). Adaptive Mechanismen in der biologis-
chen Evolution und ihr Einfluß auf die Evolutionsgeschwindigkeit. Interner
Bericht der Arbeitsgruppe Bionik und Evolutionstechnik am Institut f
”ur Mess-und Regelungstechnik Re, 215(3).

[Schwefel, 1981] Schwefel, H. (1981). Numerical optimization of computer
models.

[Shanno et al., 1970] Shanno, D. et al. (1970). Conditioning of quasi-
newton methods for function minimization. Mathematics of computation,
24(111):647–656.

[Shannon, 1950] Shannon, C. E. (1950). XXII. Programming a computer for
playing chess. Philosophical Magazine (Series 7), 41(314):256–275.

[Shapiro, 2005] Shapiro, J. (2005). Drift and scaling in estimation of distri-
bution algorithms. Evolutionary computation, 13(1):99–123.

[Siu et al., 2001] Siu, T., Nash, G., and Shawwash, Z. (2001). A practical
hydro, dynamic unit commitment and loading model. Power Systems,
IEEE Transactions on, 16(2):301–306.

[Sloan and Wozniakowski, 1998] Sloan, I. and Wozniakowski, H. (1998).
When are quasi-monte carlo algorithms efficient for high dimensional in-
tegrals? Journal of Complexity, 14(1):1–33.

149

BIBLIOGRAPHY

[Sobol, 1979] Sobol, I. (1979). On the systematic search in a hypercube.
SIAM Journal on Numerical Analysis, 16(5):790–793.

[Solomon, 1987] Solomon, M. (1987). Algorithms for the vehicle routing and
scheduling problems with time window constraints. Operations Research,
35(2):254–265.

[Storn, 1996] Storn, R. (1996). On the usage of differential evolution for
function optimization. In Fuzzy Information Processing Society, 1996.
NAFIPS. 1996 Biennial Conference of the North American, pages 519–
523. IEEE.

[Storn and Price, 1995] Storn, R. and Price, K. (1995). Differential
evolution-a simple and efficient adaptive scheme for global optimization
over continuous spaces. INTERNATIONAL COMPUTER SCIENCE
INSTITUTE-PUBLICATIONS-TR.

[Storn and Price, 1997] Storn, R. and Price, K. (1997). Differential
evolution–a simple and efficient heuristic for global optimization over con-
tinuous spaces. Journal of global optimization, 11(4):341–359.

[Teytaud, 2010] Teytaud, F. (2010). A new selection ratio for large popula-
tion sizes. Applications of Evolutionary Computation, pages 452–460.

[Teytaud and Teytaud, 2009a] Teytaud, F. and Teytaud, O. (2009a). Bias
and variance in continuous eda.

[Teytaud and Teytaud, 2009b] Teytaud, F. and Teytaud, O. (2009b). On
the parallel speed-up of estimation of multivariate normal algorithm and
evolution strategies. Applications of Evolutionary Computing, pages 655–
664.

[Teytaud and Teytaud, 2009c] Teytaud, F. and Teytaud, O. (2009c). Why
one must use reweighting in estimation of distribution algorithms. In Pro-
ceedings of the 11th Annual conference on Genetic and evolutionary com-
putation, pages 453–460. ACM.

[Teytaud and Teytaud, 2010a] Teytaud, F. and Teytaud, O. (2010a). Creat-
ing an Upper-Confidence-Tree program for Havannah. Advances in Com-
puter Games, pages 65–74.

[Teytaud and Teytaud, 2010b] Teytaud, F. and Teytaud, O. (2010b).
Log(lambda) modifications for optimal parallelism. In PPSN (1), pages
254–263.

150

BIBLIOGRAPHY

[Teytaud and Teytaud, 2010c] Teytaud, F. and Teytaud, O. (2010c). On the
huge benefit of decisive moves in Monte-Carlo Tree Search algorithms. In
Computational Intelligence and Games (CIG), 2010 IEEE Symposium on,
pages 359–364. IEEE.

[Teytaud, 2008a] Teytaud, O. (2008a). Conditioning, halting criteria and
choosing lambda. In Artificial Evolution, pages 196–206. Springer.

[Teytaud, 2008b] Teytaud, O. (2008b). When does quasi-random work?
Parallel Problem Solving from Nature–PPSN X, pages 325–336.

[Teytaud and Fournier, 2008] Teytaud, O. and Fournier, H. (2008). Lower
bounds for evolution strategies using VC-dimension. Parallel Problem Solv-
ing from Nature–PPSN X, pages 102–111.

[Teytaud and Gelly, 2006] Teytaud, O. and Gelly, S. (2006). General lower
bounds for evolutionary algorithms. Parallel Problem Solving from Nature-
PPSN IX, pages 21–31.

[Teytaud and Gelly, 2007] Teytaud, O. and Gelly, S. (2007). DCMA: yet
another derandomization in covariance-matrix-adaptation. In Proceedings
of the 9th annual conference on Genetic and evolutionary computation,
pages 955–963. ACM.

[Teytaud et al., 2006] Teytaud, O., Gelly, S., and Mary, J. (2006). On the
ultimate convergence rates for isotropic algorithms and the best choices
among various forms of isotropy. Parallel Problem Solving from Nature-
PPSN IX, pages 32–41.

[Tromp and Farnebäck, 2007] Tromp, J. and Farnebäck, G. (2007). Combi-
natorics of go. Computers and Games, pages 84–99.

[Van der Vaart and Wellner, 1996] Van der Vaart, A. and Wellner, J. (1996).
Weak convergence and empirical processes. Springer Verlag.

[Vandewoestyne and Cools, 2006] Vandewoestyne, B. and Cools, R. (2006).
Good permutations for deterministic scrambled halton sequences in terms
of l2-discrepancy. Journal of computational and applied mathematics,
189(1-2):341–361.

[Wang et al., 2008] Wang, Y., Audibert, J., and Munos, R. (2008). Algo-
rithms for infinitely many-armed bandits. Advances in Neural Information
Processing Systems, 21.

151

BIBLIOGRAPHY

[Xie et al., 2011] Xie, F., Nakhost, H., and Müller, M. (2011). A local monte
carlo tree search approach in deterministic planning.

[Yakowitz et al., 1978] Yakowitz, S., Krimmel, J., and Szidarovszky, F.
(1978). Weighted monte carlo integration. SIAM Journal on Numerical
Analysis, 15(6):1289–1300.

[Zhigljavsky and Zilinskas, 2007] Zhigljavsky, A. and Zilinskas, A. (2007).
Stochastic global optimization. Springer.

152

	Modele_page_de_titre_UPS11
	VA_TEYTAUD_FABIEN_08122011

