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EVOLUTIONARY OPTIMIZATION 

 Data : 
 Search space Ω (set of possible solutions) 

 Objective function (quality criterion) 

 Goal : 
 Find the best solution (according to the objective function) 

 Formally : 
 Consider  ℱ ∶  Ω →  ℝ 

 Find 𝑥
∗
 ∈  Ω / 𝑥

∗
 = 𝐴𝑟𝑔𝑀𝑎𝑥(ℱ) 

 

 Additional properties 
 Black-box optimization 

 Continuous (Ω ⊂ ℝ𝑁   Evolution Strategy) 
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EVOLUTION STRATEGIES 
[RECHENBERG, 73],[SCHWEFEL, 74] 

Initialize y, σ, C 

While (we have time) 

{ 
 𝑥𝑖 = 𝑦 +  𝜎 𝑁𝑖 0, 𝐶     for 𝑖 = 1,… , 𝜆 

 Evaluate  all  offspring  𝑥𝑖 (compute ℱ(𝑥𝑖) for 𝑖 = 1,… , 𝜆 ) 

 Update 𝑦, σ, C 

} 

Return y 

 

      𝑦 ∈  ℝ𝑑 represents the current search point 

      𝜆 is the population size 

      𝐶 ∈ ℝ𝑑 ∗ 𝑑 is the covariance matrix 

       𝜎 ∈ ℝ+ is the step-size       
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EVOLUTION STRATEGIES 

Initialize y, σ, C 

While (we have time) 

{ 
 𝑥𝑖 = 𝑦 +  𝜎 𝑁𝑖 0, 𝐶     for 𝑖 = 1, … , 𝜆 

 Evaluate  all  offspring  𝑥𝑖 (compute ℱ(𝑥𝑖) for 𝑖 = 1, … , 𝜆 ) 

 Update 𝒚, σ, C 

} 

 

𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑦 ∶  𝑦 =  𝑤𝑖𝑥𝑖
𝜇
𝑖=1      (µ/µ,λ)-ES  
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IMPORTANCE OF UPDATING 𝜎 

Scale invariant : σ =  α||𝑥|| 
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EVOLUTION STRATEGIES 

 Covariance matrix : Identity or diagonal 
 1/5th [Rechenberg, 73] 

 Self-Adaptation (SA) [Rechenberg, 73], [Schwefel, 74] 

 Path Length Control (aka CSA) [Hansen & Ostermeier, 96,01] 

 Full covariance matrix – self adaptation [Schwefel, 81] 

    State of the art algorithms 
 Covariance Matrix Adaptation (CMA)  

 [Hansen & Ostermeier, 01] 

 Covariance Matrix Self-Adaptation (CMSA) 
 [Beyer & Sendhoff, 08] 
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ESTIMATION OF MULTIVARIATE NORMAL ALGORITHM 

(EMNA) [LARRANAGA & LOZANO, 01] 

 EDA : evolution of a parameterized probability distribution 

 Sample the domain with the current distribution 

 Evaluate the population 

 Select the best points 

 Update the parameters of the distribution 

 EMNA 

 Gaussian distribution (σ,C) 

 Close to ES 

 

10 



OUTLINE 

 

 Evolutionary Optimization 
 Problem 

 State Of The Art Algorithms 

 Contributions 

 Multistage Optimization 
 Problem 

 State Of The Art Algorithms 

 Contributions 

 Conclusion 

11 



MOTIVATION FOR PARALLELISM 

CMA, Sphere function, ftarget=10-10, N=10 

 

 

 

 

 

 

 

 

 

 

 How to efficiently use all λ available processors ? 12 



FITNESS FUNCTIONS 

 Sphere function : 𝑥 → ||𝑥|| 

 Schwefel function : 𝑥 →    𝑥𝑗
𝑖
𝑗=1

2𝑁
𝑖=1  

 A multimodal function : 𝑥 →  log 𝑥𝑖 + cos (
1

𝑥
𝑖

)𝑖  

 

 Minimization  

 In all experiments : The lower the better 
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THEORETICAL BOUNDS 

Speedup for p processors :  

 Sp = T1
Tp
  

 

 

 (1, λ)-ES      speedup logarithmic for all λ 

 

 (µ/µ,λ)-ES    speedup linear until λ<N and then logarithmic  

 

[Teytaud & Fournier, 10] 
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ISSUES WITH LARGE POPULATION SIZES 

Current algorithms are far from the theoretical bounds 
[Evonum 2009] 

 

 

 

 

 

 

 

                    λ                                                            λ 

µ=1 : empirically, a better choice than λ/2 or λ/4 
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CONTRIBUTIONS (1) 

 

 New selection ratio (aka PA) [Evonum 2010] 

 A bounded selection ratio 

  µ = min(N,λ/4) 

 
 Experiments 

 SA, Sphere function, against µ=1 

 CMSA, Sphere and Schwefel functions, against µ=λ/4 
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NEW SELECTION RATIO : 

EXPERIMENTAL RESULTS (1) 

 

 

 

 

 

  

  λ          λ 
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NEW SELECTION RATIO : 

EXPERIMENTAL RESULTS (2) 

 

 

 

 

 

 

 

 

    λ              λ 
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CONTRIBUTIONS (2) 

 Log- λ modification [EA 09, PPSN 10] 

A faster decrease of the step-size :   σ  σ / max(1,(log(λ)/2)1/N) 

With : 

        Reweighting [GECCO 09]         +         Quasi-Random mutations 

        (weight=1/density of distribution)                                 [Teytaud, 08] 
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EXPERIMENTS 

 EMNA with 
 Faster decrease of σ 

 Reweighting 

 Quasi-Random mutations 

 

 Functions : 
 Sphere function 

 Multimodal function 

 

 σ  initializations : 
 Tuned 

 Not tuned 

 

 All differences statistically significant (with 95% confidence) 
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EXPERIMENT RESULTS (1) 
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 Sphere function 

 

 Initial σ tuned 

 

 



EXPERIMENT RESULTS (2) 
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 Multimodal function 

 

 Initial σ tuned 

 

 

 



EXPERIMENT RESULTS (3) 
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 Sphere function 

 

 Initial σ not tuned 

 

 



DISCUSSION 

 New selection ratio  (µ/λ) 

 Positive improvement 

 No new parameter 

 Better as λ increases 

 Faster decrease of σ 

 Improved the speed-up of EMNA 

 Can be dangerous if no proper reweighting/initialization 

 (Quasi-random always good) 
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PROBLEM 

 Making decisions in an environment which is 

 Discrete 

 Fully observable 

 With finite horizon 

 Reward at the end 

 With a large number of states 

 Goal : Find the best decision for each state 
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GAMES 

 Why games ? 
 Well-designed 

 Simple and practical 

 Which games ? 
 Go 

 Havannah 

 Goals 
 Improving the algorithm 

 Keeping the generality 

           of the algorithm 
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STATE OF THE ART ALGORITHMS 

 Two-player games 

 Min-Max 

 Alpha-Beta 

 Monte-Carlo Tree Search 

 One-player games 

 Dynamic programming 

 Nested Monte-Carlo 
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MONTE-CARLO TREE SEARCH (MCTS) 

 Recent developments 
[Coulom 06], [Chaslot et al., 06], [Kocsis and Szepesvari, 06] 

 Numerous applications 

 Active learning [Rolet et al.,09] 

 Non-linear optimization [Auger & Teytaud, 10] 

 Feature selection [Gaudel & Sebag, 09] 

 Planning [Xie et al.,11] 

 Games  

 Go,  

 Havannah (First use [ACG 2010])  

  …  
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MONTE-CARLO TREE SEARCH (MCTS) 

 

 Principle 
 Construction of an imbalance subtree of possible futures 

 Evaluation through Monte-Carlo simulations 

 Use of a bandit formula to bias the subtree 

 

 3 main steps 
 Descent in the subtree 

 Evaluation of the leaves 

 Growth and update of the subtree 
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MONTE-CARLO TREE SEARCH (MCTS) 
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MONTE-CARLO TREE SEARCH (MCTS) 
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MONTE-CARLO TREE SEARCH (MCTS) 
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MONTE-CARLO TREE SEARCH (MCTS) 

 Tree policy :  
 UCB1 formula [Auer et al., 02] 

 play arm i that maximizes 𝑋𝑖
 + 𝑝 

log 𝑇

𝑇
𝑖

 

 𝑋𝑖
  : Empirical average reward for move i 

 𝑇  : Total number of trials 

 𝑇𝑖  : Number of trials for move i 

 

 Default policy : 
 Monte-Carlo simulation 

  Random choice until the end 
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MONTE-CARLO TREE SEARCH (MCTS) 

5

7
+ 𝑝 ∗

log (10)

7
 

Exploitation 
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MONTE-CARLO TREE SEARCH (MCTS) 

5

7
+ 𝑝 ∗

log (10)

7
 

Exploration 
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MONTE-CARLO TREE SEARCH (MCTS) 

 Pros 

 Efficient 

 Evaluation function not needed 

 Generic 

 Anytime 

 Cons  

 Can we do better than pure Monte-Carlo ? 

 

Improving the default policy 
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CONTRIBUTIONS 

 

 3 generic rules 

 poolRave  

 [ACG 2011] 

 Contextual Monte-Carlo 

 [EvoGames 2010] 

 Decisive moves and anti-decisive moves  

 [CIG 2010] 
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RAPID ACTION VALUE ESTIMATE (RAVE) 
[GELLY & SYLVER,07] 

 Keep for each node n and each move i : 

           the number of wins and losses where i has                  

 been played after n 

 

 Compute a score VRAVE(i) :  

           empirical score when i has been played after n 

 

 RAVE scores are biased but have a small variance 
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RAVE 
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POOLRAVE 

 Based on Rapid Action Value Estimation (RAVE) 

 

 Use RAVE values for biasing the next Monte-Carlo 

simulations 

 Compute a pool of good moves according to RAVE 

 When a decision has to be made in the default policy,  

 - Play a move in the pool with probability p 

 - Play a random move with probability 1-p 
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CONTEXTUAL MONTE-CARLO (CMC) 

 Keep for each node n and for each moves A and B : 

 The number of wins and losses where A and B have been    

 played after n by the current player 

 Compute a score VCMC(A,B) :  

 empirical score when A and B have been played after n by 

 the current player  

 

 If B is the last move played by the current player 

 Find the move A which maximizes VCMC(A,B) 

 - Play A with probability p 

 - Play a random move with probability 1-p 
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DECISIVE MOVES AND ANTI-DECISIVE MOVES 

 

 Decisive moves (exist in many games): 

 If you have a winning move, play it. 

 

 Anti-decisive moves (exit if you can cancel a winning 

 move of the opponent only by playing it): 

 If your opponent has a winning move and you have none, 

 play its winning move (in order to avoid a loss). 
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RESULTS ON THE GAME OF HAVANNAH 
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DISCUSSION 

 All rules are generic. 

 A small but significative improvement 

 All rules have been tested for the game of Havannah 

 The poolRave rule works also in the game of Go (MoGo): 

 Without expert knowledge : 62.7% 

 With expert knowledge : 51.7% 

 Unfortunately when the number of simulations increases, 

the effectiveness of DM and ADM is smaller 

 1 second per move : 80%  

 30 seconds per move : 50%  
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CONCLUSION AND PERSPECTIVES 

 Evolutionary Optimization 
 Clear improvements for efficient use of large number of processors 

 Test on more algorithms and on more functions 

 Hybridization with speculative parallelization [Gardner et al, 10] 

 Multistage optimization 
 Generic improvements of the default policy 

 Comparison with (recent) existing methods : 
 Last Reply [Drake, 09] 

 N-grams [Stankiewicz et al, 11] 

 Propagate decisive moves  

 Not presented works  

   Nested algorithm for solving TSPTW [EvoTranslog 2011] 

 A cognitive science perspective (random positions in Go, blind Go) [CIG 2011] 

 Using QR restarts and decreasing σ for multimodal optimization [EA 2011] 
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