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Introduction

In the end of the nineteenth century it seemed that all major physical problems were
understood and the last issues were about to be clari�ed. However, two of the most
remarkable revolutions in physics were just about to happen, namely the formulation
of the theory of relativity and the theory of quantum mechanics. The latter one is so
far still inevitable in describing systems on the small scale. Such small scale systems
can be semiconductor nanostructures or Josephson junctions as well as the ensemble
of nuclei or atoms for example. Important for a study of quantum mechanical laws in
all these cases is the requirement for the ensembles to be su�ciently cold as quantum
e�ects are usually more pronounced at low temperatures.

The adaptability of experimental feasible trapping and cooling schemes to atomic
gases has proven to be advantageous for fundamental studies using ensembles of atoms
and also ions or molecules. For atom gases remarkably low temperatures as low as
some hundreds of picoKelvin (Leanhardt et al., 2003) have been reported. These low
temperatures enable ultra-cold atoms to be model systems to explore quantum e�ects.

But ultra-cold atoms also provide ideal conditions for applications such as quan-
tum computation (Ladd et al., 2010) and quantum simulation of many-body sys-
tems (Bloch, Dalibard, and Zwerger, 2008; Gerritsma et al., 2010). Together with
ions they are the basis of a variety of entangled states that open new and exciting
perspectives for quantum metrology (Roos et al., 2006). Furthermore, neutral atoms
are considered as forefront candidates for sophisticated quantum operations as one
can handily control their interactions (Mandel et al., 2003; Sa�man, Walker, and
Mølmer, 2010; Wilk et al., 2010; Isenhower et al., 2010). They also provide built-in
scalability when placed in optical lattices (Ladd et al., 2010).

However, in the study of ultra-cold many-atom ensembles the focus has so far
rather been directed on a macroscopic regime where the atom gases contain millions
of atoms. The gases can in this case be well described by a mean-�eld approach and
characterized by thermodynamic quantities as the law of large numbers is very close
to be ful�lled (Dalfovo et al., 1999).

Small and dense atom number clouds in optical dipole traps

The last few years have seen a growing interest in the study of mesoscopic systems
consisting of typically a few tens of interacting particles. The properties of these
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systems usually cannot be described by a mean-�eld approach and are already too
complicated to be calculated from the behavior of each individual interacting particle.
These systems can therefore be used to study the applicability of the assumptions of
thermodynamic equilibrium when going to small particle numbers. One interesting
question in this context would be what super�uidity looks like when only a few atoms
are present (Grebenev, Toennies, and Vilesov, 1998).

Dense clouds of ultra-cold atoms provide an ideal test bed to study these meso-
scopic systems. The interactions are well-understood at the two-body level and,
experimentally, one bene�ts from the host of tools developed over the years to in-
vestigate ultra-cold atomic clouds. Recent demonstrations have been achieved using
Bose-Einstein condensates with a few thousand atoms (Orzel et al., 2001; Esteve
et al., 2008) and showed their advantages in producing squeezed and entangled states
as the produced states become more robust to e.g. decoherence with smaller atom
number. For these still rather large numbers of atoms, experiments also show a re-
duction of the atom-number �uctuations in Bose-Einstein condensates in an optical
trap (C.-S. Chuu et al., 2005), in optical lattices (Itah et al., 2010), or in arrays of
magnetic micro-traps (Whitlock, Ockeloen, and Spreeuw, 2010). The reduction of
atom-number �uctuations with respect to the Poissonian case could for example be
useful for atomic interferometry below the standard quantum limit (Wineland et al.,
1994).

The clouds could also be used as a source delivering a given number of atoms,
as was already demonstrated in the single atom case (Schlosser et al., 2001; Förster
et al., 2006; Grünzweig et al., 2010) and in the multi-atom case (McGovern et al.,
2011). However, these loading procedures have been probabilistic, meaning that after
a �xed time interval the number of atoms is not certain. For bosons protocols for
deterministic atom loading in these systems have been proposed using the Rydberg-
blockade (Sa�man and Walker, 2002; Beterov et al., 2011) for example. Also an ex-
traction of atoms from small Bose-Einstein condensates could be possible (Mohring
et al., 2005). Bene�tting from the Pauli principle deterministic loading of atom num-
ber states has been demonstrated for Fermi gases (Serwane et al., 2011).

Also, producing microscopic atom clouds much smaller than the wavelength of
the laser light creates a unique situation for a study of light-induced dipole-dipole
interactions. These interactions are usually of short range and would play an im-
portant role in strongly con�ned atom samples. Furthermore, small atom clouds can
be exploited to investigate collective e�ects such as the excitation blockade where
only one atom in the ensemble can be excited by resonant laser light, thus creating
entangled states such as (|eggg . . .〉+ |gegg . . .〉+ |ggeg . . .〉+ . . .). One consequence
of these states would be the observation of e.g. super-radiance (Gross and Haroche,
1982).
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Figure 1: Going to a mesoscopic atom regime. The mesoscopic regime is characterized
by a small atom number inside the trap.

Using a single aspheric lens to create a microscopic optical dipole trap

The transition from macroscopic to mesoscopic atom ensembles (see Fig. 1) makes
special demands on the geometry of the setup such as a tight trapping con�nement
and a high imaging resolution for example. Various implementations have already
been realized such as arrays of optical tweezers Dumke et al. (2002) or of magnetic
traps Whitlock et al. (2009), double-well potential geometries Albiez et al. (2005)
and optical lattices (e.g. Mandel et al. (2003); Nelson, Li, and Weiss (2007)). Here,
we follow the idea of using a high-numerical lens (Sortais et al., 2007) to produce a
microscopic optical trap for neutral atoms.

This experimental con�guration has been proven to be very fruitful in particular
for quantum information science with single neutral atoms. Since the observation
of single atom loading (Schlosser et al., 2001) a variety of experiments revealed the
high potential of the setup for quantum computation. In this context the controlled
emission of single photons from a single atom has been demonstrated (Darquié et al.,
2005). The interference between photons emitted from two independently trapped
atoms (Beugnon et al., 2006) as well as the scalability of the system has been shown
by the control on the distance between several atoms (Beugnon et al., 2007). Addi-
tionally, the preparation of the atoms in Rydberg states (Urban et al., 2009; Gaëtan
et al., 2009) allowed to control the interaction between the atoms. This enabled the
entanglement of neutral atoms and the realization of a quantum gate (Wilk et al.,
2010; Isenhower et al., 2010). A �rst focus of the presented work are experiments
devoted to this branch of single atom physics that concentrates on the control and
detection of the internal state of the atom.

The experimental con�guration serves in this thesis to go beyond the single atom
regime and study mesoscopic atom clouds containing just a few atoms. This regime
has attracted interest to study ultra-cold atoms in optical lattices where each lattice
site usually contains less than ten atoms in the lowest energy states (DePue et al.,
1999). Our microscopic trap can be considered as one lattice site where it is possible
to manipulate and observe small atom ensembles with high optical resolution. It
o�ers the possibility to observe the atoms individually, not only when the atoms are
con�ned but also when they move or are released from the trap in order to access
out-of-equilibrium properties. The second focus of this work is the study of this
mesoscopic regime and the production of ultra-cold small atom clouds containing
just a few atoms inside the microscopic optical dipole trap.
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Outline of the thesis

The thesis is divided into four parts.

• Part I.We introduce the main theoretical concepts concerning single and many
atom physics. Additionally, we describe our experimental setup and the steps
pursued to load atoms inside the optical dipole trap.

• Part II. In the second part we focus on purely single atom measurements. We
use a single atom to calibrate two independent methods applied to measure the
temperature, which is useful to understand the temperature measurement done
with many atom ensembles. Furthermore, we use the single atom as a quantum
bit and show an e�cient state preparation as well as readout measurement
without losing the atom.

• Part III. The third part focuses on measurements in the range from one to
about 30 atoms. In a �rst experiment, we measure the atom number distribu-
tion inside the dipole trap. A second experiment concentrates on light-assisted
collisions that interfere in the loading process of the microscopic dipole trap.

• Part IV. We discuss our work on microscopic atom clouds containing up to
thousand atoms. We present an e�cient dipole trap loading from a dense sur-
rounding atom reservoir and apply forced evaporation to cool the atom ensemble
to sub µK Kelvin temperatures.



Part I

Theoretical background and

experimental setup
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Theoretical notes on single atoms
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We begin by introducing the most important theoretical concepts which set the
basis in the description of the experiments carried out in the frame of this thesis.
The discussion of speci�c models used to explain the experimental data can be found
along this thesis on the particular subject. In this chapter we focus on theoretical
concepts based on a purely single atom nature. The two aspects we want to deal with
are the atom's internal structure and its behavior in external light or magnetic �elds.
We mention that the presence of other atoms can e�ect the internal atom structure
or the light scattering behavior due to interactions between the atoms. Depending
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on the strength of the interactions the results obtained here may still be applicable
for many atom systems as e.g. in the case of many non-interacting atoms. We will
touch the subject on inter-particle interactions in the next chapter.

1.1 Résumé

Les atomes alcalins comme le rubidium 87 ont une structure interne similaire à celle
de l'atome d'hydrogène. La présence d'un seul électron de valence rend possible
son adressage par des champs externes. La dégénérescence entre les sous-niveaux
Zeeman peut être levée à l'aide d'un champ magnétique statique. Un champ électrique
oscillant permet d'exercer sur l'atome une force de pression de radiation et une force
dipolaire qui varie avec la fréquence de la lumière. La force de pression de radiation
est prépondérante lorsque la lumière est quasi-résonante; elle est basée sur le transfert
d'impulsions entre le champ électromagnétique et l'atome par absorption et émission
de photons. Au contraire, lorsque la lumière est très désaccordée de la transition
atomique, c'est la force dipolaire qui est prépondérante. Dans ce cas, la lumière laser
exerce une force attractive ou répulsive selon que le laser est désaccordé au rouge ou
au bleu de la transition atomique, respectivement. Cette force dipolaire est utilisée
pour piéger les atomes.

1.2 Internal atom structure

The internal structure of rubidium 87 can in principle be described by the time-
independent Schrödinger equation1

(Hkin,p +Hkin,e + U)Ψ =EΨ , (1.1)

with

Hkin,p =−
Z∑
i=1

(
~2∇2

Ri

2mp

)
, Hkin,e =−

Z∑
i=1

(
~2∇2

rei

2me

)
. (1.2)

It considers the kinetic energy of the Z electrons with mass me and protons with
mass mp at positions re and R, respectively2. U represents the potential energy of
the atomic constituents. The atom wave function Ψ({Ri}, {rei}) is the eigenfunction
of the Hamiltonian Hkin + U with the energy E as its eigenvalue.

The main component of the potential U is the Coulomb interaction3 UCoulomb =

1One usually separates time and position coordinates Ψ({Ri}, {ri}, t) = Ψ({Ri}, {ri})e−iEt to
transform the time-dependent equation into the time-independent one.

2Vectors will be written as bold letters. Constants such as Planck's constant ~ are listed in
App. A

3Additionally, we have to take into account the Coulomb potential between the electrons them-
selves.
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∑
ij

Ze2

|Ri−rej| . Most other components are usually smaller and can be treated as per-

turbations

U =UCoulomb + UPertubation . (1.3)

In the following we discuss the main atom structure arising from the Coulomb po-
tential and introduce some important perturbations.

1.3 Main atom structure

The eigenvalue problem 1.1 with the Coulomb potential Hat =Hkin + UCoulomb is
analytically solvable only for the one electron hydrogen atom with Z = 1 (Landau
and Lifshitz, 1981). In this case the time-independent Schrödinger equation can be
solved by separating the center-of-mass Rr = mpR+mere

mpme
from the relative r=R− re

coordinate Ψ(R, re) = Ψ(Rr)Ψ(r). For the relative component it reads in radial
coordinates r= (r, ϑ, ϕ) as:

HatΨ(r) =− ~2

2mrr2

∂

∂r

(
r2 ∂

∂r

)
Ψ(r) +

L2

2m2
r

− e2

4πε0r
Ψ(r) =EΨ(r) , (1.4)

where mr = memp
me+mp

is the reduced mass and L2 =−~2
[

1
sinϑ

∂
∂ϑ

(
sinϑ ∂

∂ϑ

)
+ 1

sin2 ϑ
∂2

∂ϕ2

]
the squared angular momentum. Separating the wave function in radial and angular
parts Ψ(r, ϑ, ϕ) =Rn,l(r)Yl,ml

(ϑ, ϕ) leads to the solution

Rn,l(r) = exp(−κρ)(2ρ)lLn,l(2ρ) , Yl,ml
(ϑ, ϕ) =Pl,ml

(cos(ϑ))
1√
2π

exp(imlϕ)

En =− µZ2e4

(4πε0)22~2n2
=−Ry

Z2

n2
.

(1.5)

Here, Pl,ml
(cos(ϑ)) and Ln,l are the Legendre- and Laguerre-Polynomials, respec-

tively. l (l∈{0, 1, . . . , n}) is the orbital quantum number for which holds L2Yl,m =
~2l(l + 1)Yl,ml

and ml (ml ∈{−l, . . . , l}) is the magnetic quantum number for which
LzYl,m =−i~ ∂

∂ϕ
Yl,ml

= ~mlYl,ml
holds. Ry = 13.6 eV is the Rydberg constant de�ning

the ionization energy as well as the separation between atomic levels with di�erent
n. Energy levels with the same l or ml are degenerate.

Since the Hamiltonian Hat commutes with L2 and Lz we can measure the energy,
total angular momentum and its component in z-direction without uncertainty. For
the Coulomb potential problem, n, l and ml completely describe the internal state
of the atom. All quantum numbers belonging to a complete set that describes an
atomic state are called good quantum numbers. In the Dirac notation the wave func-
tion corresponding to the set of good quantum numbers is denoted as |n, l,ml〉.

Rubidium as an alkali atom has a similar atom structure as the hydrogen atom.
Its physical properties such as the angular momentum or the spin are mainly gov-
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d2 = 5,48· 10-58 C2m2

Figure 1.1: Rubidium level structure. The �ne-structure of rubidium is shown for
the �rst excited levels. The dipole moment d of each level can be calculated by using
the Wigner-Weisskopf formula d2

JJ ′ = |〈J | |er| |J ′〉|2 = 2J′+1
2J+1

3
8π2 ε0~λ3

JJ ′ΓJJ ′ . The red-framed
states are used for our optical transitions.

erned by the valence electron since the angular momentum and spin of the complete
inner shells sum up to zero according to Hund's rules. However, while the result for
the angular wave function Yl,ml

stays valid even for atoms with higher Z the radial
part and the eigenenergies En di�er from the ones of hydrogen. They can only be
calculated numerically using a self-consistent Hartree-Fock approach which takes into
account the Coulomb interaction between protons and electrons as well as electrons
themselves. In any case n, l and ml are still good quantum numbers. We will see in
the following how other interactions, usually much smaller than the Coulomb interac-
tion and thus allowing perturbation theory to be applicable, can change this situation.

1.3.1 Fine structure

The most important interactions that lead to perturbations are caused by the follow-
ing:
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• Spin-orbit coupling. Experimentally the Stern-Gerlach experiment showed
that the electron has two possible spin values, which theoretically follows from
the relativistic Dirac equation. Analog to the orbital momentum L, we can
write for the spin S2Ψs = ~2s(s + 1)Ψs, where s = 1

2
. The spin is associated

to the magnetic moment µ=−gsµB
S
~ , where µB is the Bohr-magneton and

gs≈ 2 the electron g-factor. In the rest frame of the electron it sees the pos-
itive charge of the nucleus orbiting around it. This moving charge creates a
magnetic �eld B proportional to the orbital angular momentum L which the
electron spin can align to. The potential energy stocked in the coupling is
Uso =−µ · B∝−S · L. It depends on the relative orientation between both
vectors. Due to the spin-orbit interaction L2 and Lz do not commute with the
Hamiltonian Hat =Hkin +UCoulomb +Uso and thus n, l,ml are no good quantum
numbers any more. We can show that the total angular momentum J =S +L
now de�nes a set of good quantum numbers. Analog to the orbital momentum
we de�ne J2 |n, J,mJ〉= ~2J(J + 1) |n, J,mJ〉 and J z |n, J,mJ〉= ~mJ |n, J,mJ〉.
We �nd that Uso∝−S ·L=−1

2
(J2 −L2 −S2) and thus the energy correction

in �rst order perturbation theory Eso∝−~2(J(J + 1)− l(l + 1)− s(s + 1)). Here,
the total angular momentum quantum number J only takes quantized values
between |l− s|, · · · , J− 1, J, J + 1, · · · , l + s (Landau and Lifshitz, 1981).

The spin-orbit interaction lifts the degeneracy between levels with the same L.
For example for rubidium, s= 1

2
, the �rst excited level with l = 1 splits into

two levels having J = l− s = 1
2
and J = l + s = 3

2
. Levels with the same J are

however still degenerate. Typical spin-orbit shifts scale as ∼ 10−4 eV and are
much smaller than the Coulomb interaction ∼Ry justifying the perturbation
approach.

• Relativistic e�ects. The kinetic energy has been treated in Eq. 1.2 as Ekin =∑Z
i=1

pi
2

2me
→Hkin =−

∑Z
i=1

~2∇2
rei

2me
. Treating the kinetic energy relativistically

shifts the energy levels and lifts the degeneracy for levels with the same l (Con-
don and Shortley, 1997).

• Quantum-electrodynamic e�ects. Quantum �uctuations of the vacuum
�eld can perturb the Coulomb force that is seen by the electron orbiting around
the nucleus. This perturbation leads to small energy shifts (∼ 10−5 eV) called
Lamb shift that is most striking for energy levels with small n and depends on l
and J (Lamb and Retherford, 1947). For further e�ects see e.g. Messiah (1999).

The �rst energy levels for rubidium 87 are illustrated in Fig. 1.1. Due to the
interactions n, J,mJ become good quantum numbers now. We denoted the levels ac-
cording to the rule n2s+1lJ. All mJ levels are degenerate. We follow the convention
to use for l = 0, 1, 2, ... the letters l = S,P,D, . . .. The ground state of rubidium would
then be written as 52S1/2. The lines indicate single photon transitions that are al-
lowed between the �ne levels. They obey the selection rule ∆J = 0,±1(J = 0= 0) and
∆l =±1. In the following we focus on the red-framed states as their corresponding D1
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mF’=   -3   -2   -1   0   +1  +2  +3

52P3/2

F=252S1/2

mF =  -2   -1    0   +1  +2
F=1
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6,834 GHz
gF=1/2

gF= -1/2

gF=2/3

gF=2/3

1.86 MHz

1.4 MHz

Bz=1Gauss

Figure 1.2: Zeeman sub-structure and magnetic �eld-induced shifts. left) Hyper-
�ne and Zeeman level structure of the D1 and D2 transitions. right) Zeeman level shifts
induced by a static external magnetic �eld along the quantization axis Bz.

(52S1/2→ 52P1/2) and D2 (52S1/2→ 52P3/2) transitions are used for our �uorescence
measurements.

1.3.2 Hyper�ne structure

The �ne levels have a further sub structure referred to as the hyper�ne structure. It
results from a further coupling between the total electron angular momentum J and
the nuclear angular momentum I. For 87Rb the eigenvalue is I = 3

2
. In analogy to the

total electron angular momentum J we introduce a total atomic angular momentum
as F =J+I, whose quantum number lies in |J− I| ≤F≤ J + I. The magnetic �eld of
the coupling again leads to a splitting of each level. For instance, for 52P3/2 we �nd
3
2
− 3

2
= 0≤F≤ 3

2
+ 3

2
= 3 and thus four sublevels with F = 0, 1, 2, 3. The hyper�ne

structure for the D1 and D2 transition levels is sketched on the left of Fig. 1.2. A
more detailed illustration can be found in App. A. The (2F+1) magnetic Zeeman
components arise from di�erent orientations of the electron angular distribution of
the atom wave function introduced as ml in Eq. 1.5. They are all degenerate if no
external �elds are present.

1.4 Atoms in a static external magnetic �eld

In the last section we have seen that the internal magnetic �eld of the atom caused
by the electron movement around the nucleus leads to the �ne-structure of the atom.
Here, we want to describe e�ects that external �elds have on the atom. With an
external magnetic �eld B, the Hamiltonian describing the interaction energy is
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|g

|e1

|e2

ε, ω

HA

Γe2g

Γe1g
UAL

Figure 1.3: Multi level atom in an external light �eld. The atom couples to the
laser �eld as well as to the electro-magnetic vacuum �eld.

H =
µB

~
(gsS + gII + gLL) ·B , (1.6)

gs, gI , gL
4 are the electron spin, nuclear and electron orbit g-factors, respectively (Steck,

2008). In most of our situations the magnetic �eld shifts the energy levels less than
the energy di�erence between the hyper-�ne levels. In this case F as a good quantum
number is preserved. With an external magnetic �eld B, the Hamiltonian in Eq. 1.6
is reduced to

HZeeman =µBgFF ·B , (1.7)

where gF is the hyper�ne g-factor, whose values are shown in the right graph of
Fig. 1.2. Assuming our magnetic �eld to be along the quantization axis z the energy
shift in �rst order perturbation theory is

∆EZeeman =µBgFmFBz . (1.8)

1.5 Light-atom interaction

So far it has been possible to describe the atom with the time-independent Schrödinger
equation as the interactions were of stationary nature. The interaction of the atom
with a light �eld is a dynamic process that is based on the coupling between the atom
and the laser �eld as well as the vacuum �eld. The coupling of the atom with the
laser �eld can lead to absorption and stimulated emission of photons and the coupling
to the vacuum �eld leads to spontaneous emission, see Fig. 1.3.

We consider transitions between atomic states driven by the electric �eld of monochro-
matic laser light

EL(r, t) =
1

2
EL(r)

(
εL(r)e−i(ωLt−kLr) + c.c.

)
. (1.9)

Here, EL is the �eld amplitude, εL(r) the polarization, ωL the frequency and kL = 2π
λL

the wave vector with λL being the wavelength of the light. We are usually dealing

4Their values are listed in App. A
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with high light intensities that make a quantum-mechanical treatment of the light �eld
unnecessary and a classical description favorable. Possible electric dipole transitions
with ∆l =±1 between the states follow the selection rules

∆F = 0 → ∆mF ± 1

∆mF =±1 → ∆mF = ε ,
(1.10)

where ε= {0,−1, 1} corresponds to linear, σ− and σ+ polarizations. In Sec. 5.4.1 we
will use magnetic dipole transitions to drive transitions with ∆l = 0 for which the
theoretical description presented here remains valid.

1.5.1 Interaction Hamiltonian

The Hamiltonian describing the system of one atom interacting with a light �eld is
in principle composed of three terms5

HAL =Hkin + Upot + UL . (1.11)

Here, we neglect the electro-magnetic vacuum �eld HR =
∑

n ~ωnâ+
n ân and its inter-

action with the atom, where â+
n and ân are the creation and annihilation operators

of the mode with energy ~ωn. The three essential terms are:

• Kinetic energy
Hkin =

P 2

2m
(1.12)

We include the kinetic energy of the atom with total mass m, where the atom's
center-of-mass momentum is P .

• Internal energy

Upot =

Ng∑
j=1

~ωgj |gj〉 〈gj|+
Ne∑
l=1

~ωel |el〉 〈el| (1.13)

We consider a set of Ng atomic ground |g1〉 , . . . ,
∣∣gNg〉 and Ne excited states

|e1〉 , . . . , |eNe〉.

• Atom coupling to the laser �eld

We introduce the dipole matrix D(t). The matrix elements are de�ned as

Dgjel(t) = d̃gjel |gj〉 〈el| e
−iδωgjel t

=dgjel |gj〉 〈el| ,
(1.14)

with δωgjel =ωel − ωgj . The dipole matrix elements are dgjel = 〈gj| er |el〉 for
which dgjel =d∗elgj . The atomic dipole corresponding to the transition |gj〉↔ |el〉
is

5We follow the standard treatment that can be found e.g. in Cohen-Tannoudji, Dupont-Roc,
and Grynberg (1988) in a similar way.
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Dgjel(t) =dgjel |gj〉 〈el|+ delgj |el〉 〈gj| . (1.15)

The interaction can then be written as

UL(R, t) =−
Ng∑
j=1

Ne∑
l=1

Dgjel(t) ·EL(R, t)

=−
Ng∑
j=1

Ne∑
l=1

1

2
EL(r)(d̃gjel · εL)(r) |gj〉 〈el| ei((ωL−δωgjel )t−kLr) + h.c.

=

Ng∑
j=1

Ne∑
l=1

1

2
~Ωgjel(r) |gj〉 〈el| ei(ωLt−kLr) + h.c. ,

(1.16)

where R is the position of the atom's center-of-mass and

~Ωgjel(r) =−(dgjel · εL)EL(r) , (1.17)

the Rabi frequency6. We have applied the rotating-wave approximation includ-
ing slow oscillating terms ±(ωL−δωgjel) and neglecting fast ones ±(ωL+δωgjel).
We have also assumed the atom wave packet to have a dimension much smaller
than the laser wavelength λL which allows to evaluate the light �eld at the
position of the atom. This assumption is valid for typical laser-cooled atom
temperatures of ∼ 100 µK for which the thermal de Broglie wavelength λth =

h√
2πmkBT

≈ 20 nm is much smaller than the laser wavelength λ= 780 nm.

1.5.2 Reduction of the dipole matrix

Information about the dipole matrix element dgjel = 〈gj| er |el〉 can be retrieved by
measuring the line width or decay rate Γgjel of that transition. As the decay rates ΓJJ ′

between two �ne structure levels with J and J ′ are essentially independent of the hy-

per�ne states involved we de�ne the matrix elements 〈gj| er |el〉 as
√

2J+1
2J ′+1

〈J | |er| |J ′〉
taking into account their level of degeneracy. The dipole matrix elements are then
related to the decay rate via the Wigner-Weisskopf equation

Γjj′ =
8π2

3ε0~λ3
JJ ′

2J + 1

2J ′ + 1
|〈J | |er| |J ′〉|2 , (1.18)

which can be derived quantum-mechanically from Fermi's golden rule and has a
classical analog in the power radiated from a Hertzian dipole (Loudon, 2000). The
corresponding matrix elements for the hyper�ne levels can be calculated using the
Wigner-Eckart theorem (Brink and Satchler, 1994)

6The double sum
∑Ng
j=1

∑Ne
l=1 contains all possible combinations between a ground and an excited

state that could be driven by a light �eld. The selection rules are taken into account by the Rabi
frequency for which Ωgjel = 0 for not allowed transitions as the dipole matrix element vanishes.
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〈F,mF | er |F ′,mF ′〉=CJ,J ′,I
F,mF ,F ′,mF ′ 〈J | |er| |J

′〉 , (1.19)

For the (52S1/2F = 2→ 52P3/2F′= 2) and (52S1/2F = 2→ 52P3/2F′= 3) transitions the
Clebsch-Gordon coe�cients CJ,J ′,I

F,mF ,F ′,mF ′ are listed in appendix A.

1.5.3 Semi-classical picture of atom-light interaction

The light-atom interaction has two important e�ects on the atom: First, it can change
the internal energy of the atom and second, it can alter the center-of-mass motion
of the atom. The absorption and re-emission of photons leads to changes in velocity
of ∆v= vrec = ~kL

m
due to the recoil momentum of the photon. We can thus assume

the external parameters to vary on time scales as text∼ 1
kL∆v

. The internal evolution
takes place at a rate Γ which leads to tint∼Γ−1. For the D1 and D2 transitions in
rubidium we �nd tint� text where the internal evolution takes place at much shorter
time scales than the external one. In this case it is possible to separate the external
evolution related to Hkin from the internal evolution Upot + UL by using an averaged
atom position in the light �eld's phase kL 〈R〉. In the following we use a semi-
classical description. The external evolution of the atom is treated classically while
the interaction with the laser light �eld is described quantum-mechanically.

1.5.4 Internal atom evolution: Optical Bloch equations

The density matrix

ρ=

Ng∑
j=1

ρgjgj |gj〉 〈gj|+
Ne∑
l=1

ρelel |el〉 〈el|+
Ng∑
j=1

Ne∑
l=1

(
ρgjel |gj〉 〈el|+ ρelgj |el〉 〈gj|

)
(1.20)

contains in its diagonal the probabilities ρgjgj , ρelel for the atom to be in a given
internal ground |gj〉 or excited |el〉 state and in its o�-diagonals the coherence between
di�erent states. As we reduce the atom to the valence electron only, it is here possible
to write the internal density matrix on a one electron basis. In matrix form we can
write

|e1

|ej

Γejgk

|g1 |gNg

. . .

. . . |eNe

. . .

|gk. . .

ρjk

ρkk

Figure 1.4: Internal

structure.

ρ=



ρg1g1 · · · ρg1gNg
ρg1e1 · · · ρg1eNe

...
...

...
...

ρgNg g1 · · · ρgNg gNg ρgNg e1 · · · ρgNg eNe
ρe1g1 · · · ρe1gNg ρe1e1 · · · ρe1eNe
...

...
...

...
ρeNeg1 · · · ρeNegNg ρeNee1 · · · ρeNeeNe


. (1.21)
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The temporal evolution of the density matrix follows from the Liouville equation

ρ̇=
dρ

dt
=− i

~
[H ,ρ] +

∂ρ

∂t
=− i

~
[H ,ρ] +Lloss · ρ , (1.22)

where H is any Hamiltonian in matrix form and Lloss a function acting on ρ repre-
senting the decoherence. The Liouville equation leads to a set of coupled di�erential
equations, see e.g. App. B. For the fast evolving light-atom Hamiltonian parts that
govern the internal evolution Upot+UL from Eq. 1.11 these equations are called optical
Bloch equations.

1.5.5 External atom evolution: Light forces

For the external evolution of the atom we calculate the forces governing the equations
of motion by averaging over the fast oscillating components

〈F (R, t)〉int =−〈∇UL(R, t)〉int

=

〈
Ng∑
j=1

Ne∑
l=1

∇(Dgjel(t) ·EL(R, t)) + h.c.

〉
int

=−1

2
~

Ng∑
j=1

Ne∑
l=1

Tr(ρ(st) |gj〉 〈el|)∇(Ωgjel(R)ei(ωLt−kLr)) + h.c. .

(1.23)

The position of the atom's center-of-mass can be inferred by using Ehrenfest theo-
rem d

dt
〈R〉=

〈
P
m

〉
. We add that a second force resulting from the coupling between

the atom and the vacuum �eld due to spontaneous decay averages out over time
due to the decay into the entire solid angle. The time-averaged transition proba-
bility 〈|gj〉 〈el|〉int =Tr(ρ(st) |gj〉 〈el|) between two states can be calculated using the
stationary solution ρ(st) of the optical Bloch equations and tracing out the density
matrix. Between two states |gj〉 and |el〉 the transition probability

Tr(ρ(st) |gj〉 〈el|) = ρgjel = ρ̃gjele
i(ωLt−kLr) (1.24)

oscillates with the laser �eld7. If we average over one cycle of the laser �eld8

〈F (R, t)〉t =F (R), we obtain

F (R) =−~
Ng∑
j=1

Ne∑
l=1

(
ρ̃gjel + ρ̃elgj

2
∇(Ωgjel(R))−

ρ̃gjel − ρ̃elgj
2i

Ωgjel(R)∇(kLR)

)
.

(1.25)
The force in Eq. 1.23 has two two parts: We start with a discussion of the term which
is proportional to ∇(kLR).

7For a system with one ground and Ne excited states this is shown in App. B.
8Terms with 〈cos(ωLt− kLR) sin(ωLt− kLR)〉t = 0 average to zero while terms with〈

cos2(ωLt− kLR)
〉
t
equal 1

2 .
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1.5.6 Fluorescence scattering

mF’=   -3   -2   -1   0   +1  +2  +3

mF =  -2   -1    0   +1  +2

σ+ polarized
light at Ω

Γ

52P3/2

52S1/2

Figure 1.5: Closed cycling tran-

sition.

In order to obtain an expression for the term
∝∇(kLR) we need to calculate the o�-diagonal
density matrix elements. For many-level atoms
solutions can be quite involved and analytic ex-
pressions unhandy. However, there are situations
in which the rubidium atom can be considered
a two level system. This is the case when σ+-
polarized light near 780 nm will address only the
transition between |g〉=

∣∣52S1/2F = 2,mF = +2
〉

and |e〉=
∣∣52P3/2F′= 3,mF = +3

〉
as shown by the

blue arrow in Fig. 1.5. From |e〉 the atom will al-
ways deexcite back into |g〉 with the decay rate
Γge = Γ and eventually be reexcited by the laser

at a rate Ωge = Ω. For these two states the di�erential equations in the slow-rotating
reference frame9 with ρge = ρ̃gee

i(ωLt−kLR) follow from Eq. 1.22

ρ̇gg = i
Ω

2
(ρ̃ge − ρ̃eg) + Γρee , ρ̇ee = i

Ω

2
(ρ̃eg − ρ̃ge)− Γρee ,

˙̃ρge = i
Ω

2
(ρgg−ρee)− (

Γ

2
+ i∆)ρ̃ge ,

(1.26)

for which the conditions ρgg+ρee = 1 and ρ̃ge = ρ̃∗eg hold. ∆ =ωL−(ωe−ωg) =ωL−δωeg
is the detuning between the laser frequency and the atomic transition. The stationary
ρ̇= 0 solution (Loudon, 2000) is

ρ(st)
gg = 1− ρst,ee , ρ(st)

ee =
1

2

2
(

Ω
Γ

)2

1 + 2
(

Ω
Γ

)2
+ 4

(
∆
Γ

)2 , ρ̃(st)
ge =

iΩ
Γ

+ 2∆Ω
Γ2

1 + 2
(

Ω
Γ

)2
+ 4

(
∆
Γ

)2 .

(1.27)
For the light pressure force we obtain

F pr(R) = ~kLΩ
ρ̃stge − ρ̃steg

2i
= ~kLΓρstee = ~kLR= ~kL

Γ

2

s(R)

1 + s(R) + 4
(

∆
Γ

)2 , (1.28)

where we used

s(R) = 2

(
Ω

Γ

)2

=
IL(R)

Isat
. (1.29)

For the second step we replace Ω by its de�nition in Eq. 1.17 and introduce the laser
intensity IL(R) = 1

2
ε0cEL(R)2 to obtain

Isat =
cε0~2Γ2

4 |εL 〈g| er |e〉|2
= 16.693 W/m2 . (1.30)

9The matrix form of the Hamiltonian and its transformation into the slow-rotating reference
frame are shown in App. B for a generalized situation of one ground and Ne excited states
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For the chosen levels we can replace the matrix element

|〈g| er |e〉|2 =
∣∣〈52S1/2F = 2,mF = +2

∣∣ er ∣∣52P3/2F′= 3,mF = +3
〉∣∣2

=
2J ′ + 1

2J + 1

∣∣∣C1/2,3/2,3/2
2,+2,3,+3 〈J | |er| |J ′〉

∣∣∣2 =
3

8π2

ε0~λ3

Γ

(1.31)

by the Wigner-Weisskopf expression in Eq. 1.18. This �nally leads to

Isat =
2π2~cΓ

3λ3
. (1.32)

The light pressure force is a dissipative force. It is based on the photon absorption
from the laser �eld, see Fig. 1.6. Spontaneous emission does not lead to a net force on
average as the emission goes into the entire solid angle. The force has a Lorentzian

Γa) c)b)

t
v  =v0 v  =v0+vrec v  =v0+vrec

kL

Figure 1.6: Light pressure due

to near-resonance light.

shape centered around the atomic transition
frequency with line width Γ. Its width is given
by the natural line width Γ and is broadened
by the probe laser intensity IL

Isat
. The maximal

photon scattering rate is Γ/2 when the satu-
ration is in�nite s→∞. In this situation the
atom stays in the excited state with probabil-
ity one-half ρee = 1

2
.

1.5.7 Dipole force

The other term of the force ∝∇(Ωgjel(R)) corresponds to the dispersive part. On a
two-level basis this conservative force equals

F dip(R) =−~∆
2
(

Ω
Γ

)2

1 + 2
(

Ω
Γ

)2
+ 4

(
∆
Γ

)2

∇(Ω(R))

Ω(R)
(1.33)

and vanishes for laser frequencies near the atomic transition resonance as it is pro-
portional to ∆ and for plane waves for which ∇Ω(R) = 0. This on the other hand
means that the atom feels the force only for larger detunings. In a classical picture
the electric �eld of the laser leads to an induced dipole moment of the atom which in
turn interacts with the laser �eld.

The large laser detuning of the dipole trap (∆∼ 70− 170 nm in our case) has the
consequence that the probability for the atom to be in the ground rather than the
excited state is high ρgg� ρeiei . This assumption can be used to calculate the force
on a many-level atom. As an example, we calculate the force for a linear laser polar-
ization if the atom is in the ground state |g〉=

∣∣52S1/2F = 2,mF =−2
〉
. If we restrict

ourselves to wavelengths used in our experiment of around 850−950 nm the strongest
coupling is with states (see left graph on Fig. 1.7) |e1〉=

∣∣52P1/2F′= 2,m′F =−2
〉
,

|e2〉=
∣∣52P3/2F′= 2,m′F =−2

〉
and

|e3〉=
∣∣52P3/2F′= 3,m′F =−2

〉
as mF = m′F for a linear polarization. For other higher
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F’=3

F’=2

mF’=   -3    -2     -1    0    +1    +2   +3

52P3/2

52S1/2

∆52P1/2F’=2

∆52P3/2F’=3,mF’=-1

∆52S1/2

π polarized
trap light

unshifted
position

mF’= -3   -2  -1   0   +1 +2  +3

52P3/2

F=252S1/2

π polarized
light

mF =  -2   -1     0  +1  +2
F=1

52P1/2
F’=2
F’=1

F’=1
F’=0

F’=3
F’=2

∆1

∆2

780nm

795nm

Figure 1.7: Light shifts for far-o� resonance detuned π-polarized light. left) Far-
o� resonance detuned laser light can couple di�erent Zeeman sub-levels with each other.
The laser detuning is denoted as ∆1 and ∆2 for the D1 and D2 transition, respectively.
right) We illustrate the light-shift on each Zeeman sub-level of the 52P3/2F′= 2 and F′= 3
hyper�ne levels. All Zeeman sub-levels of 52S1/2 are shifted by the same quantity.

lying levels the coupling becomes much smaller as the detuning increases signi�-
cantly. The Bloch equations for the four level system are a special case of the one
shown in App. B. In steady state we can derive a simple analytical expression by using
ρ

(st)
eiei� ρ

(st)
gg ≈ 1. As the laser does not couple two excited levels we neglect coherence

terms of the form ρ̃eiej in Eq. B.6c and �nd

ρ̃(st)
gei

= i
Ωgei/2

Γgei
2

+ i∆gei

=
Ωgei∆gei/2 + iΩgeiΓ/4

(Γgei/2)2 + ∆2
gei

,
ρ̃

(st)
gei + ρ̃

(st)
eig

2
=

Ωgei

2∆gei

. (1.34)

The total force on the many-level atom then follows as

F dip(R) =−~
3∑
i=1

1

4∆gei

∇(Ω2
gei

(R)) . (1.35)

For a laser frequency much smaller than the atomic transition frequency ∆gei < 0
(red-detuning) the force becomes attractive. The atom moves to the point of highest
laser intensity. For ∆gei > 0 (blue-detuning) the light is repulsive and pushes the atom
away from the point of highest intensity. This dipole force can be used to trap atoms.
In our experiment we use red-detuned light with wavelengths λdip≈ 850− 950 nm to
trap the atom at the point of highest laser intensity. In principle it would also be
possible to trap an atom by using blue-detuned light where it can act as a potential
barrier as it pushes the atom away from the point of highest intensity. In this case the
atom is trapped at a point of no laser intensity and needs to see potential barriers in
all three dimensions. Otherwise it would escape into the direction with no potential
barrier (Puppe et al., 2007).
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Dipole potential and light shift

The dispersive force corresponds to a conservative dipole potential−∇Udip =F dip(R).
For the atom in state 52S1/2F = 2,mF = +2 it equals to

Udip(R) =
~Γ2IL(R)

8Isat

(
1

3∆ge1

+
2

6∆ge2

+
2

6∆ge3

)
=

~Γ2IL(R)

8Isat

(
1

3∆1

+
2

3∆2

)
,

(1.36)

where we set Γ = Γgei for i= 1, 2, 3 as the decay rate is essentially the same for all
hyper�ne levels10. For the D1 transition we use ∆ge1 = ∆1 and for the D2 tran-
sition ∆2 = ∆ge2 ≈∆ge3 . Note that we still apply the rotating wave approxima-
tion ωL − δωgei�ωL + δωgei , which is valid for our dipole trap laser wavelength
850− 950 nm.

The potential energy Udip induced by the π−polarized laser light corresponds
to a shift in the energy levels of the atom ~∆dip. Fig. 1.7 illustrates the e�ect of
the laser light on the energy levels. All Zeeman states of the two hyper�ne ground
states 52S1/2F = 1 and 52S1/2F = 2 are subject to the same light shift. The excited
energy levels are shifted to the opposite direction. While the 52P3/2F′= 2 Zeeman
states are uniformly displaced, we �nd a Zeeman-dependent shift for the 52P3/2F′= 3
levels. Here, the extreme states 52P3/2F′= 3,mf′ =±3 belonging to the closed cycling
transition are not shifted. The state 52P3/2F′= 3,mf′ = 0 experiences the largest
light-shift which is equal to about half of the light-shift of the ground state for large
detunings (Darquié, 2005).

∆52P3/2F′=3,mf′=0 =−Γ2IL(R)

8Isat

(
3

5∆2

)
∆52P3/2F′=3,mf′=±1 =−Γ2IL(R)

8Isat

(
8

15∆2

)
∆52P3/2F′=3,mf′=±2 =−Γ2IL(R)

8Isat

(
1

3∆2

)
∆52P3/2F′=3,mf′=±3 = 0

(1.37)

∆52P3/2F′=2 =−Γ2IL(R)

8Isat

(
1

3∆2

)
(1.38)

∆52S1/2
=

Γ2IL(R)

8Isat

(
1

3∆1

+
2

3∆2

)
(1.39)

The light shifts depend on the trap polarization ε as the light couples di�erent
atomic levels. For the ground state (Grimm, Weidemüller, and Ovchinnikov, 2000) a
formula describing the polarization-dependent light-shift can be derived

10A complete list of the Clebsch-Gordon coe�cients can be found in e.g. Steck (2008).
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∆52S1/2
(ε) =

~Γ2IL(R)

8Isat

(
1− εgFmF

3∆1

+
2 + εgFmF

3∆2

)
. (1.40)

The terms that scale with ε are called vectorial light shifts. As we have seen above,
the dipole potential experienced by the atom depends on its internal state. If the
atom experiences the light �eld of a near-resonant laser its internal state is steadily
altered. In steady state the e�ective dipole potential

Udip(R) = ρ(st)
g Ug(R)− ρ(st)

e Ue(R) (1.41)

takes this fact into account. For instance, if the atom stays on average some time in
the excited state, the dipole potential is e�ectively lower than if it would stay in the
ground state only.

Scattering rate and dipole laser induced Raman transitions

The e�ect of the dipole force on the atom has been derived on the assumption that
the population in the excited states ρeiei is small. Using the result in Eq. 1.34 and
Eq. B.6b we �nd the rate of total number of photons scattered on the atom to be

R=
3∑
i=1

Γρeiei =
Γ3IL(R)

8Isat

∣∣∣∣ 1

3∆2
1

+
2

3∆2
2

∣∣∣∣ . (1.42)

The total scattering rate R is composed of two parts. First, the coherent Rayleigh
scattering RRayleigh does not change the internal state. Second, there is a incoherent
Raman scattering RRaman, in which the atom changes the hyper�ne or Zeeman level
of the ground state 52S1/2 (Beugnon, 2007). The left graph on Fig. 1.8 illustrates the
basic idea behind the scattering processus, between which hold the relationships

R=RRayleigh +RRaman , RRaman/RRayleigh = 2

(
∆2 −∆1

∆2 + 2∆1

)2

,

RRayleigh∝
1

9

(
∆2 + 2∆1

∆1∆2

)2

, RRaman∝
2

9

(
∆2 −∆1

∆1∆2

)2

.

(1.43)

1.5.8 Harmonic dipole potential

The dipole potential is characterized by the form of the laser intensity distribution
IL(r) as can be seen in Eq. 1.36. For Gaussian laser beams the intensity distribution
is

IL(r) =
2P

πwxwy

1

1 +
(

z
zR

)2 e
−2

(
x2

w2
x

+ y2

w2
y

)
/

(
1+

(
z
zR

)2
)
. (1.44)

P is the laser power, wx and wy are the laser beam waists in x and y direction
and zR =πw2/λdip is the Rayleigh length. The maximal intensity IL(0) = 2P

πwxwy
is
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Figure 1.8: Di�erence between Raman and Rayleigh scattering. Gaussian dipole

trap potential left) Rayleigh scattering does not change the internal state of the atom
while Raman scattering changes the internal state. right) Gaussian dipole trap pro�le with
harmonic approximation for an attractive potential.

chosen such that the integrated laser intensity at z= 0 corresponds to the laser power
P =

∫∞
x′=−∞

∫∞
y′=−∞ IL(x′, y′, 0)dx′dy′. We are free to add the constant potential U0 =

−Udip(0)> 0 to Eq. 1.36 in order to shift the origin of the energy scale to the bottom
of the potential (x= y= z= 0) as shown in the right graph of Fig. 1.8. The bottom
part of the dipole trap can be considered to be harmonic,

Uharm(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) . (1.45)

Developing the exponential function in Eq. 1.44 and comparing with Eq. 1.45 gives
expressions for the trap frequencies that completely describe the harmonic trap

ωx =

√
4U0

mw2
x

, ωy =

√
4U0

mw2
y

, ωz =

√
2U0

mz2
R

. (1.46)

The eigenenergies of the harmonic potential are equidistant

Enx,ny ,nz = ~(ωx(
1

2
+ nx) + ωy(

1

2
+ ny) + ωz(

1

2
+ nz)) . (1.47)

A di�erence with the real Gaussian laser trap potential appears for higher energies.
For the real Gaussian potential the energy spacing decreases going to higher energies
and eventually becomes a continuum. In the special case of one atom in the ground
state nx =ny =nz = 0 its wave function is

φ0(r) =
(m
π~

)3/4

(ωxωyωz)
1/4e−

m
2~ (ωxx2+ωyy2+ωzz2)

=
1

π3/4√axayaz
e−(x2/2a2

x+y2/2a2
y+z2/2a2

z) ,
(1.48)

where we used the size of the wave function for i=x, y, z

ai =

√
~
mωi

, (1.49)
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1.6 Conclusion

Alkali atoms such as rubidium 87 are in its internal structure similar to the hydrogen
atom. Due to the completeness of the inner-shell electrons we can uniquely address
the valence electron with external �elds. Static magnetic �elds lift the degeneracy
between the Zeeman levels. Dynamic electric �elds lead to the radiation pressure
force and to the dipole force depending on the light frequency. The �rst prevails for
near-resonance light which excites the atom to higher lying states. Near-resonance
light leads to the radiation pressure force based on the recoil momentum transfer
between the photon �eld and the atom by absorption and emission. The dipole force
dominates for far-o�-resonance laser frequencies so that the excitation to higher levels
is much lower. In this case the laser light exerts an attractive or repulsive force for
red or blue detuned laser light, respectively. This dispersive dipole force will be used
to trap atoms.
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The properties of a physical system containing many atoms are essentially gov-
erned by the interactions between the atoms. The interactions lead to marvelous
e�ects such as the melting of solids to liquids or the condensation of gases to liquids.
These interactions are based on the electro-magnetic force and characterize the col-
lisional behavior between the atoms.

We begin by introducing the theoretical basis which describes the collision pro-
cesses between two atoms. For this we classify collisions being elastic or inelastic.
Elastic collisions are responsible for the redistribution of energy between the atoms
in the gas and can bring the gas to thermal equilibrium. Inelastic collisions gener-
ally lead to loss of both scattering partners from the dipole trap. In the last part
we discuss how we can macroscopically describe the atom gas in a harmonic trap in
thermal equilibrium. Here, we use the grand-canonical ensemble and thermodynamic
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quantities such as atom number, temperature and chemical potential to characterize
the gas.

2.1 Résumé

Quand plusieurs atomes sont présents dans le piège l'interaction entre les atomes peut
changer les caractéristiques introduites dans le dernier chapitre, qui étaient basées
sur un calcul à une seule particule ou plusieurs particules indépendantes. Ici, nous
discuterons les e�ets les plus importants pour nos expériences, notamment les colli-
sions élastiques et inélastiques. Pour les collisions inélastiques nous di�érencierons
entre collisions en présence de lumière et collisions en absence de lumière. Nous in-
troduirons également les propriétés statistiques que seront utilisées pour décrire les
nuages d'atomes dans notre piège optique.

2.2 Scattering theory

The scattering process between two atoms is based on the following idea: The in-
coming atom described as a plane wave with wave vector kat (|kat|= kat) and energy
E=

~2k2
at

2mr
sees the potential of the scattering center in the form of the second atom,

where mr is the reduced mass. One assumes the outgoing atom wave to be composed
of an unscattered part as a plane wave and a radially scattered part as a spherical
wave

Ψ(r, ϑ, ϕ) = eikatz + f(ϑ, ϕ)
eikatr

r
, (2.1)

where f(ϑ, ϕ) is the scattering amplitude. It can be calculated by solving the equiva-
lent Schrödinger equation EΨ(r) = (p2/2mr +U(r))Ψ(r). For an isotropic scattering
center U(r) the associated potential only depends on the radial coordinate r. Analog
to the hydrogen atom problem in Sec. 1.3 we treat the wave function in spherical coor-
dinates Ψ(r) =

∑∞
l=0 AlRl,kat(r)Pl(cosϑ) with summation amplitudes Al. The radial

part Rl,kat(r) then follows from

1

r2

d

dr

(
r2 d

dr
Rl,kat(r)

)
+ (k2

at −
l(l + 1)

r2
− 2mr

~2
U(r))Rl,kat(r) = 0 . (2.2)

The e�ective ground state potential U(r) =UIA(r) +UCF(r) is composed of the inter-
atomic potential UIA(r), usually a repulsive short range Lennard-Jones plus an attrac-
tive longer range van-der-Waals potential UIA(r) =C12/r

12−C6/r
6, and the potential

arising from the centrifugal barrier UCF(r) = ~2l(l+1)
2mrr2 . For l> 0 the centrifugal barrier

can prevent the atoms from colliding if their initial energy is smaller than the height
of the barrier, see Fig. 2.1.

It can be shown (Landau and Lifshitz, 1981) that for the solution of Eq. 2.2
to equal Eq. 2.1 the summation amplitudes obey Al = 1

2kat
(2l + 1)ileiδl(k) and the

scattering amplitude follows as
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U(r) ~ -C6/r6 +          /r2l(l+1)h
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Figure 2.1: Ground state potential with centrifugal barrier. left) Ground state
potential without centrifugal part l = 0 (s-wave scattering). The colliding atoms do not see
any centrifugal barrier. right) An atom with l> 0 does not collide with another atom if its
kinetic energy is lower than the centrifugal barrier EBarrier.

f(ϑ) =
1

2ikat

∞∑
l=0

(2l + 1)(e2iδl(kat) − 1)Pl(cosϑ) , (2.3)

where δl(kat) are the phase shifts of the scattered waves with respect to the incoming
plane wave. For further evaluation we distinguish collisions between identical and
non-identical particles:

• Identical. Fig. 2.2 shows how it is impossible to decide which of the two atoms
are scattered which way. In this case all odd partial waves interfere destruc-
tively while even partial waves interfere constructively. Since we sum over two
scattering amplitudes with scattering angle di�erence π we only integrate over
half of the solid angle. The total scattering cross-section σtot then reads1

σtot =

∫
Ω/2

|f(ϑ) + f(π − ϑ)|2 dΩ = 2π

∫ π/2

0

|f(ϑ) + f(π − ϑ)|2 sin(ϑ)dϑ

=
8π

k2
at

∞∑
l=0
l even

(2l + 1) sin2 δl(kat) .
(2.4)

• Non-identical. The analog treatment can be done for non-identical particles
as encountered e.g. in samples where the atoms are in the same hyper�ne
ground state but occupy di�erent mf Zeeman levels. Here, all partial waves
add up which leads to

σtot =

∫
Ω/2

f(ϑ)2dΩ =
4π

k2
at

∞∑
l=0

(2l + 1) sin2 δl(kat) . (2.5)

1We use the relationship
∫ π

0
P 2

l (cosϑ) sin(ϑ)dϑ= 2/(2l + 1).
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θ π−θ

Figure 2.2: Scattering between two identical particles. We cannot tell which of the
two scattering atoms goes which way after the scattering.

2.2.1 Elastic collisions

The atoms in our dipole trap usually have temperatures below one milliKelvin so
that s-wave scattering with l = 0 plays the dominant role (left of Fig. 2.1). The
elastic collision is governed by a van der Waals potential U(r) =−C6/r

6, where C6 is
a constant. One usually models this potential as a box potential

U(r) =

{
−U for r <R

0 for r≥R . (2.6)

For this potential and low energies k→ 0 we �nd sin2 δ0(kat)∝ k2
at and the elastic

collision rate for non-identical particles can be written as

σel = 4πa2 , a=− lim
kat→0

δ0(kat)

kat
, (2.7)

The scattering length for rubidium 87 has been measured to be a= 5.24 nm (Marte
et al., 2002). It is responsible for a redistribution of energy, see thermalization process
in Sec. 2.3.1, between the atoms at a rate given by

γel =nσelv=n8πa2v , (2.8)

where n is the atom density and v=
√

8kBT
πmr

=
√

16kBT
πm

the mean velocity of the reduced
mass of the atom pair.

2.2.2 Inelastic collisions in the absence of light

We will consider inelastic loss due to one-, two- and three-body collisions, for which
the collision loss rates are γ, β and L, respectively. The collision-induced atom loss2

leads to a decrease in atom density over time as

dn

dt
=−γn− βn2 − Ln3 . (2.9)

Using �uorescence imaging we do not measure the density directly but infer it by
measuring the atom number N and the physical volume V occupied by the atoms.

2Elastic collisions also lead to atom loss but will not be considered here.
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The number of trapped atoms N inside the dipole trap varies over time as

dN

dt
=−γN − β′N2 − L′N3 , (2.10)

where γ, β′ and L′ are the associated loss constants3. They are related to the loss
rates by

β= β′V , L=L′V 2 . (2.11)

Working with low atom numbers there exists a phenomenological equation describing
the atom loss

dN

dt
=−γN − β′N(N − 1)− L′N(N − 1)(N − 2) . (2.12)

The scattering cross-section σinel for two-body collisions can be inferred by using

β= vσinel . (2.13)

Theoretically it can in principle be calculated using the framework in Sec. 2.2. How-
ever, one needs to include the internal structure of the atom to properly describe the
inelasticity of the scattering process (Sakurai, 1993).

One-body

The one-body loss rate γ does not depend on the number of rubidium atoms inside
the dipole trap. It is typically due to collisions with the background gas. There
are mainly two types of collisions. The �rst is due to collisions between a trapped
rubidium atom and another rubidium atom coming from the rubidium source. The
second is due to collisions with hydrogen molecules H2 that make up the major part
of the residual vacuum pressure. Assuming the arriving atoms to be in their ground
state the van-der-Waals U(r) =−C6/r

6 interaction describes the scattering process.
As the background gas atoms are at room temperature (300 K) the scattering process
can be described classically. The energy passed to the trapped atom during a collision
is usually much higher than typical trap depths of around 1 mK. The scattering rate
has been calculated to be σ= 295 Å2 for Rb−H2 and σ= 2500 Å2 for Rb−Rb (Bali
et al., 1999). This leads to loss rates γ/np = 4.9 · 10−9 cm3s−1 for Rb − H2 and
γ/np = 6.3 · 10−9 cm3s−1 for Rb−Rb, where np is the density of the background gas.
A measure of the rate γ and a discussion about other one-body loss sources that do
not depend on collisions with the background gas is given in Ch. 5.3.

Two-body

In contrary to one-body loss the two-body loss depends on the number of rubidium
atoms inside the trap. Without any near-resonant light present the main two-body
loss is given by hyper�ne-changing collisions. This collision occurs between two atoms

3We discuss the limitations of this equation in Sec. 8.5 and App. D in the particular case of
two-body losses.
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in di�erent hyper�ne states 52S1/2F = 1 and 52S1/2F = 2. During the collision a spin-
�ip can occur where the atom in 52S1/2F = 2 ends up in 52S1/2F = 1. The amount
of energy released in such a collision corresponds to the ground state splitting of
6.8 GHz and about 100 times higher than typical trap depths of 1 mK or several
tens of MHz. The loss rate for thermal clouds with a mixture of Zeeman levels is of
the order of β= 10−11 cm3s−1 (Gensemer et al., 1997, 2000). It can be avoided by
preparing all atoms in the F = 1 manifold. Trap-induced Raman transition however
lead to a population in F = 2 and subsequent spin-�ip collisions (see Sec. 9.3.4).

Three-body

Three-body recombination creates molecules that are e.g. responsible for the conden-
sation of a gas to a solid. They become important for densities of ∼ 1015 cm−3 which
can be reached in our microscopic dipole trap. Typical loss rates for rubidium 87 are
on the order of ∼ 10−29cm6s−1 (Burt et al., 1997; Söding et al., 1999). The scattering
cross-section for three-body collisions is usually hard to calculate. For ultra-cold atom
gases an intuition on the process has been given by Fedichev, Reynolds, and Shlyap-
nikov (1996), who show under certain hypothesis a dependence of the loss rate L on
the fourth power of the elastic scattering length a. We will measure the three-body
loss rate in our dipole trap in Ch. 10.

2.2.3 Inelastic collisions in the presence of light

The scattering potential between two atoms in their ground state 52S1/2 is a van der
Waals V (r) =−C6/r

6 potential. In the presence of light one has to treat the case
where the atom pair absorbs a photon and excites into 52S1/2 + 52P. In this case the
potential is of dipolar nature U(r) =−C3/r

3 =−3~Γ/4(kr)3, where k= 2π/λ with
λ∼ 780 nm. Depending on the frequency of the excitation or probe laser one can
distinguish three cases.

Radiative escape collisions

0 r

U
(r

)

RERFS

∆E~U}

hωL

15nm

R0

1.
8 

eV

0.5 eV

SS

SP1/2  + P1/2S

SP3/2  + P3/2S

Figure 2.3: Light-assisted collision.

We focus on the case where the probe
laser is near resonance with the level
52P3/2 and neglect the hyper�ne struc-
ture. The formalism is the same for
an excitation into 52P1/2. In this situ-
ation the atom pair in 52S1/2 + 52S1/2

denoted as |SS〉 can be excited into
52S1/2 + 52P3/2 denoted as 4

∣∣SP3/2

〉
+∣∣P3/2S

〉
. The two atoms accelerate

towards each other due to the dipo-
lar potential curve which has a longer

4There also exists a repulsive potential curve corresponding to the eigenstate
∣∣SP3/2

〉
−
∣∣P3/2S

〉
that we do not consider here.
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range than the van der Waals potential, see Fig. 2.3. The acceleration takes place
until the excited atom pair emits the photon and both atoms see the short range
van der Waals potential. If the gain in kinetic energy is greater than the trap depth
U the atom pair is expelled from the trap. Assuming the atom to be excited at a
distance R0 from its partner it must at least accelerate until it reaches the escape
radius kRE ∼

(
−~Γ

U

)1/3
to gain enough energy. For a trap depth of e.g. 50 MHz

we �nd RE ∼ 60 nm. If it emits the photon before reaching RE it stays trapped.
Also, the probability to pass RE once, bounce o� the potential barrier and pass
RE a second time to leave the escape region is here negligibly small in contrast to
magneto-optical traps for example. We follow the approach introduced by Gallagher
and Pritchard5 (Gallagher and Pritchard, 1989).

We assume the atom to have initially zero kinetic energy. The probability to
survive the distance R0RE without emitting the photon is

γsurv = exp(−2Γt(R0)) , (2.14)

where 2Γ corresponds to the lifetime of the excited atom pair and t(R0) is the time
the atom needs to reach RE starting from R0. The �ight time can be calculated

t(R0) =

√
mr

2

∫ R0

RE

dr√
~Γ

(kr)3 − ~Γ
(kR0)3

(2.15)

where we used U = ~Γ
(kRE)3 − ~Γ

(kR0)3 . The probability per time to be excited follows
from Eq. 1.27 and can be written as

PE(R0) = Γρ(st)
ee =

IL
~ωL

3λ2

2π

1

1 + IL
Isat

+
(

∆
Γ

+ 1
(kR0)3

)2 . (2.16)

In this equation we used the fact that the atomic transition frequency depends on the
position as ωL − ωA(r) =ωL − (ωA − Γ

(kr)3 ) = ∆ + Γ
(kr)3 . The probability to be excited

and pass the escape radius RE equals the loss rate β

β=
1

2

∫ ∞
0

4πR2
0PE(R0) exp(−2Γt(R0))dR0 . (2.17)

For typical values of the trap depth 3 mK and the excitation laser saturation s= 0.5
resonant with the atom in free space we �nd a collision loss rate β= 1.1 ·10−10cm3s−1.
The deexcitation of the atom pair can lead to an energy release � 1 K which results
in the loss of both atoms. We measure the radiative escape in Ch. 9.

The described situation is a case for which the laws derived on a single atom basis
in the last chapter cannot be simply applied to many atom samples. If one atom is
excited by resonant laser light the excited level of N other atoms inside a sphere of
λ/2π are shifted by V/~∼Γ due to the shape of the excited potential curve. The
probability for them to scatter photons is much reduced in this case which inhibits a

5Other more accurate but also more complex approaches have been developed, see e.g. Weiner
et al. (1999).
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simple scaling of the photon scattering rate Rtot =NRsingle. This excitation blockade
could be used to study e.g. super-radiance e�ects (Gross and Haroche, 1982).

Fine changing collisions

For the radiative escape mentioned above we focused on an atom pair to be excited
into the state 52S1/2 + 52P3/2. Rubidium 87 has a second �ne level, namely 52P1/2.
As shown in Fig. 2.3 it happens that both dipolar potential curves cross at a dis-
tance RFC . The atom pair excited into 52S1/2 + 52P3/2 can change the �ne level into
52S1/2 + 52P1/2 at RFS. If it deexcites into 52S1/2 + 52S1/2 it can gain kinetic energies
as high is the level spacing between the P states of 15 nm corresponding to ∼ 170 K
even if r�RFS . For rubidium 87 RFS is on the order of 0.8 nm. This loss can the-
oretically be described analog to radiative escape and becomes important for far-o�
red-detuned lasers. For near-resonance laser light the atom usually deexcites back
into the ground state before reaching RFS so that no �ne-changing process occurs.

Photoassociation

0 r

U
(r

)

hωL

RC

SP3/2  + P3/2S

SS

SP3/2     P3/2S

Figure 2.4: Photoassociation of

two rubidium atoms to bound

molecular state.

Photo association is the mechanism where the
atom pair absorbs a photon and excites to a
bound molecular state. The atom pair is initially
in its ground state. The photon can now couple
the two ground state atoms to a bound molecular
state if the photon energy ~ωL corresponds to a
bound molecular state energy (Jones et al., 2007)
at the Condon point RC , . 15Å for rubidium, see
Fig. 2.4. The production of molecules leads to
the loss of the atom pair as the molecules' deex-
citation releases energies much greater than typ-
ical trap depths. Experimental measurements for
a thermal rubidium gas shows a clear excitation

spectrum between ∼ 800 nm and ∼ 860 nm (Miller, Cline, and Heinzen, 1993). For
our many atom experiments we work at a dipole trap wavelength of 945 nm to avoid
any photoassociation loss. Fig. 2.4 also shows the existence of a repulsive potential
curve which does not have any bound molecular states.

2.3 Atoms in a harmonic dipole trap

During an elastic collision the participants exchange energy in such a way that on
average the total energy is partitioned equally on both participants. In an ensemble
of many atoms elastic collisions lead to a redistribution of energy between all atoms.
For our �nite trap depth U0 this redistribution of energy comes along with a loss of
atoms as atoms with energy E >U0 are not trapped any more. The gas thermalizes
by losing the hottest atoms while cold atoms remain trapped. The total energy of
the gas decreases until the gas reaches its equilibrium. With increasing total energy
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of the gas higher energy levels in the harmonic trap are occupied. We work in the
grand-canonical ensemble and distinguish between three regimes: The thermal regime
in which many high lying energy levels are occupied and the atoms can be described
classically; The quasi-degenerate regime where the lower energy levels are occupied
and the condensed regime where a macroscopic population of the ground state is
present.

2.3.1 Atoms in thermal equilibrium

The probability for an energy level inside the trap to be occupied is given by the
phase-space distribution function f(E). Considering s-wave collisions it can be shown
by using the Boltzmann transport equation (Luiten, Reynolds, and Walraven, 1996)
that the phase-space distribution function in thermal equilibrium for a �nite trap U0

is a truncated Boltzmann distribution

fth(E) = e−E/kBT θ(U0 − E) , (2.18)

where θ(x) is the Heaviside step function with θ(x) = 1 for x≥ 0. In the classical case
the position and momentum change continuously and the total energy is E(r,p) =
p2/2m+ Uharm(r) with the harmonic potential given in Eq. 1.45. The atom density
n follows from

n(r) =
n0

Vp

∫
fth(E)dp=n0e

−m(ω2
xx

2+ω2
yy

2+ω2
zz

2)/2kBT , (2.19)

where n0 is the peak density and Vp = (2πmkBT )3/2 the normalization volume. The
peak density is given by

n0 =N/V =N/((2π)3/2σxσyσz) with σi =

√
kBT

mω2
i

, (2.20)

where the number of atoms N follows from

N =
n0

Vp

∫ ∫
fth(E(r,p))drdp=N

∫
Ds(E)fth(E)dE . (2.21)

In the last step we assumed that the phase-space distribution of the atoms only
depends on the energy so that we can transform the position and momentum integrals
into one integral over the total energy using the energy density of statesDs(E). Ds(E)
is a measure of how many possibilities there are for r,p to obtain a �xed total energy
E(r,p). For a harmonic potential the density of states can be calculated with Eq. 1.45
to be

Ds(E) =
1

V · Vp

∫ ∫
δ(E − Uharm(r)− p2/2m)drdp=

1

2(kT )3
E2 . (2.22)

It can handily be used to calculate the internal energy for example
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Eint =

∫
EDs(E)f(E)dE= 3NkBT . (2.23)

Figure 2.5 shows the truncated Boltzmann distribution times the energy density
of states Ds(E)fth(E) for two di�erent temperatures. For temperatures kBT .U0 a
signi�cant part of the distribution has an energy higher than U0. All atoms belonging
to this part are lost from the trap as their energy is greater than the trap depth. For
high temperatures we also need to question the harmonic approximation which is
only valid for the bottom of the trap. As the hot atoms are lost the gas rethermalizes

210-1-2

U0

0

x/wx

E

Ds(E)fth(E)

∝ωxx2

kBT   U0

kBT  U0~

Figure 2.5: Boltzmann distribution in a

harmonic dipole trap.

and ends up with a colder temperature
until the equilibrium regime is reached.
In optical traps this regime has been
found to be reached for η=U0/kBT &
10 as the thermalization process usu-
ally becomes very slow beyond this
point (Adams et al., 1995). At these
lower temperatures the truncated part
of the Boltzmann distribution can be
neglected. Our Gaussian dipole trap
can then be considered to be harmonic
and the here derived quantities are
valid.

2.3.2 Atoms in a quasi degenerate regime

As the gas reaches a critical temperature TC the ground state of the trapping potential
starts to populate macroscopically. In this still thermal regime we use a semi-classical
approach. For the phase-space distribution function we use a Bose-Einstein distribu-
tion

fBE(E) =
1

e(E−µ)/kBT − 1
, (2.24)

where µ is the chemical potential. For the total energy we still use the classical
expression E(r,p) =p2/2m+Uharm(r) with r and p varying discretely now and �nd
for the density and the atom number (see e.g. Dalfovo et al. (1999))

n(r) =
∑
p

fBE(E(r,p)) =
∑
p

∞∑
l=1

e−(E(r,p)−µ)l/kBT

=
1

h3

∞∑
l=1

∫
e−(E(r,p)−µ)l/kBTdp=λ−3

th g3/2(e(µ−Uharm(r))/kBT )

(2.25)
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N =
∑
r,p

fBE(E(r,p)) =
1

h3

∫ ∫
fBE(E(r,p))drdp

=

∫
Dsc
s (E)fBE(E)dE= g3(eµ/kBT )

(
kBT

~ω̄

)3

,

(2.26)

where gk(z) =
∑

l
zl

lk
and ω̄= (ωxωyωz)

1/3. In a �rst step the sum over r,p can be
transformed into an integral assuming that each combination of r,p occupies a volume
of h3 in phase-space. The volume is assumed to be small enough for the passage from
the discrete sum to the continuous integral to be justi�ed. It is also based on the
assumption that the level spacing ~ω̄ becomes much smaller for N→∞. In order
to transform the space and momentum integral into an energy integral as has been
done in the classical case we introduce in a second step the phase-space density in
the semi-classical picture

Dsc
s (E) =

1

h3

∫ ∫
δ(E − Uharm(r)− p2/2m)drdp=

1

2~3ωxωyωz
E2 . (2.27)

2.3.3 Atoms in a Bose-Einstein condensate
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Figure 2.6: The condensed gas has a

macroscopic ground state population.

As the temperature decreases for a given
N , the gas condenses and the ground
state becomes macroscopically popu-
lated. In this case we need to treat the
total energy quantum-mechanically. For
s-wave scattering lengths much smaller
than the typical distance between the
atoms, the gas can be described by us-
ing the Gross-Pitaevskii equation (see
e.g. Dalfovo et al. (1999))

i~
∂

∂t
Φ(r, t) =−~2∇2

2m
Φ(r, t) + Udip(r)Φ +

4π~2a

m
|Φ(r, t)|2 Φ(r, t) . (2.28)

The time dependence of the function Φ(r, t) = Φ(r)e−iµt can be separated by using
the chemical potential, in analogy to the separation of time and position coordinates
for the hydrogen atom in Sec. 1.2. We can distinguish two cases: One where the
potential energy is dominant and a second where the s-wave scattering interaction is
dominant.

Ideal free Bose gas

If the potential energy becomes more dominant than the interaction energy, atoms can
be considered to behave as free particles. In this case we can neglect the interaction
term in Eq. 2.28. Most atoms N0 are in the ground state. Their atom wave function
Φ(r) =

√
Nφ0(r) is just the harmonic oscillator result given in Eq. 1.48 with µ=
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1
2
~(ωx + ωy + ωz). It corresponds to a Gaussian density pro�le n(r) = |Φ(r)|2 with

spatial dimensions ai given in Eq. 1.49. Further quantities can be calculated analog
to the previous case but using the quantum-mechanical energies for the harmonic
oscillator from Eq. 1.47. For the atom number N we �nd

N −N0 =
∑

nx,ny ,nz 6=0

fBE(E(nx,ny ,nz)) =
∑

nx,ny ,nz 6=0

1

e~(ωxnx+ωyny+ωznz)/kBT − 1

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

1

e~(ωxnx+ωyny+ωznz)/kBT − 1
dnxdnydnz

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∞∑
l=1

e−~(ωxnx+ωyny+ωznz)l/kBT

l
dnxdnydnz

= g3(1)

(
kBT

~ω̄

)3

,

(2.29)

where we separate out the condensed fraction N0 in the ground state. The same result
can again be obtained by transforming the integrals over the occupation number into
one integral over the energy

∫∞
0

Dscs (E)dE

eE/kBT−1
. We note that the result is identical to the

one obtained in the semi-classical calculation in Eq. 2.26 setting µ= 0. The transition
temperature is de�ned as the temperature at which there is not yet any markable
occupation in the ground state N0∼ 0 so that

kBTC = g3(1)−1/3~ω̄N1/3 = 0.94~ω̄N1/3 . (2.30)

In combination with Eq. 2.29 we �nd the relationship

N0

N
= 1−

(
T

TC

)3

. (2.31)

Eq. 2.30 can also be written as

1.202 =N

(
~ω̄
kBTC

)3

= ρ(TC) . (2.32)

The quantity ρ is called the phase-space density. At the critical temperature TC it
roughly equals one and indicates the set in of condensation. It can be shown that it
is equivalent to 2.61 =n0λ

3
th, where n0 is the peak density of a quasi-degenerate gas.

Interacting Bose gas

In this case known as the Thomas-Fermi limit we can neglect the kinetic energy
in Eq. 2.28. The atomic wave functions and eigenenergies can only be calculated
numerically. For the density however we can directly solve the equation for |Φ|2

n(r) =N |Φ|2∝Nmax
(
µ− Udip(r)

4π~2a/m
, 0

)
∝ N

ax,cay,caz,c
max

(
1− x2

a2
x,c

− y2

a2
y,c

− z2

a2
z,c

, 0

)
,

(2.33)
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Figure 2.7: Finite size e�ect on BEC

phase transition. Fraction of atoms in
the Bose-Einstein condensate versus tem-
perature of the atom sample. We com-
pare the phase transition for three di�erent
situations: Thermodynamical limit N→∞
(black line), N = 100 (blue dashed) andN =
10 (red dots).
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where ai,c =
√

2µ
mω2

i
for i=x, y, z. Eq. 2.32 can also be used to describe the onset of

condensation for the interacting gas.

2.3.4 Finite size e�ects

Our experiments are carried out with ensembles containing only a few hundred atoms.
The question in this case is if a grand canonical ensemble and the transformation from
a sum to an integral done in Eq. 2.25, Eq. 2.26 and Eq. 2.29 are still justi�ed. We can
numerically solve the sum instead of integrating the equation and study the e�ect of
the �nite size of the system (Grossmann and Holthaus, 1995). Fig. 2.7 shows how
the BEC transition changes going from the thermodynamical limit N→∞ according
to Eq. 2.31 to �nite N . We observe a smearing out of the phase transition which
becomes remarkable for atom numbers as small as N ∼ 100 (Ketterle and van Druten,
1996b; Haugerud, Haugset, and Ravndal, 1997).

2.4 Conclusion

The properties of atom gases are governed by the interactions between the atoms
and characterize their collision behavior. Elastic collisions manifest themselves as a
redistribution of the internal energy between the atoms. Inelastic collisions lead to
an increase of kinetic energy and a subsequent loss of both collision partners from
the trap.

Depending on the internal energy of the atoms the occupation distribution of the
energy levels of a harmonic trap changes. For high temperatures at which higher lying
energy states are occupied the occupation distribution inside the trap can be described
by a Boltzmann distribution. When the atoms reach lower lying levels the levels are
occupied according to a Bose-Einstein distribution. At very low temperatures the
inset of Bose-Einstein condensation leads to a macroscopically populated ground
state. The phase transition governing this condensation smears out when going to
small atom numbers.
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This chapter introduces the main experimental stages that rubidium atoms ini-
tially present as a solid go through to end up trapped inside our microscopic dipole
trap in form of a dilute gas. The key tool of this process is laser cooling that can be
applied to decrease the temperature of atomic gases many orders of magnitude down
to typically a few micro Kelvins. We start by reviewing the main idea on which the
experimental setup is based on. Afterwards, we discuss the experimental realization
and focus on the trap loading process.
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Figure 3.1: Principle of trap loading and laser cooling. a) x cross-section of the
dipole trap potential. b) Principle of laser cooling based on the Doppler-shift, photon
absorption and reemission processes.

3.1 Résumé

La partie principale de notre dispositif expérimental est une lentille asphérique qui
permet de focaliser le laser de piégeage dipolaire au niveau de ∼ 1 µm. Il est possible
de charger le piège dans deux régimes di�érents: l'un dans lequel un atome et un
seul peut être piégé, et l'autre dans lequel en moyenne plusieurs atomes peuvent être
chargés.

3.2 Naive view of dipole trap loading via laser cool-
ing

There are two main requirements to be ful�lled in order to load an optical dipole
trap. First, we need to create a reservoir of atoms around the dipole trap from which
they are attracted by the dispersive dipole force discussed in Sec. 1.5.7. The dipole
force creates a conservative potential with depth U0 (Fig. 3.1 a)). Atoms with total
energy E >U0 falling into the potential well will subsequently exit, leaving their total
energy unchanged. As a second requirement we therefore need a friction force to slow
down the atoms that entered the trap until their total energy is smaller than the trap
depth E <U0.

Both requisites can beautifully be ful�lled using the technique of laser cooling pro-
posed in the seventies (Hansch and Schawlow, 1975; Wineland and Dehmelt, 1975).
The idea behind the cooling principle is illustrated in Fig. 3.1 b) and relies on the
dissipative force discussed in Sec. 1.5.6. Consider an atom with an initial velocity vi.
Counter propagating photons that are resonant with the atom at rest ν0 would be
absorbed if the atom was not moving. The moving atom on the other hand sees the
photons blue shifted due to the Doppler-shift ∆νDoppler. Depending on the frequency
shift the probability of the photons to be absorbed by the moving atom can be much
reduced according to Eq. 1.28 (Fig. 3.1 b,i)). One can now detune the laser frequency
to the red (to lower frequencies νred<ν0) such that photons become resonant with
the atom in its moving frame. The atom can now absorb the photon and it loses
one photon energy hνred in kinetic energy and reduces its momentum by ~krec. In
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exchange the atom is transferred to the excited level (Fig. 3.1 b,ii)). Eventually the
excited atom spontaneously decays emitting a photon with higher frequency in a ran-
dom direction (Fig. 3.1 b,iii)). Averaging over many cycles and emission directions
in the entire solid angle the atom's kinetic energy can be signi�cantly reduced. It
can be shown that the atom's energy is reduced by ∼Erec per cycle on average (Foot,
2005). The crucial point for laser cooling to work is therefore that the cooling laser
frequency is smaller than the atom's rest resonance frequency.

We now describe our experimental setup, which is based on these ideas of laser
cooling and is at the heart of loading our dipole trap from a reservoir of laser cooled
atoms.

3.3 Experimental realization

The experimental system is qualitatively illustrated in Fig. 3.2. The vacuum chamber
is divided into two parts. The part on the left contains a small solid sample of
rubidium, which can be heated by some heating wires winded around the oven. With
increasing temperature more rubidium atoms evaporate from the solid sample and
increase the pressure in this part of the chamber. The increase in pressure leads
to a beam of atoms passing through a di�erential pumping into the second part
of the vacuum chamber. All laser frequencies are chosen to address transitions in
87Rb. 85Rb atoms in the atom beam will not be addressed by the laser light. We
use a Zeeman slower to initially slow down a part of 87Rb in the atom beam. A
fraction of these slowed 87Rb atoms is then trapped using a typical optical molasses or
magneto-optical trap (MOT) con�guration with six counter-propagating laser beams
near resonance at 780 nm. The created atom cloud (∼ 150 µK) serves as an atom
reservoir from which the dipole trap can be loaded. The dipole trap consists of a
far-o� red-detuned (850.λtrap. 950 nm) laser beam focused into the atomic vapor
using an aspheric lens (NA= 0.5) that is placed inside the vacuum chamber. The
high numeric aperture allows to focus laser beams with wavelengths around 850 nm
down to waists of ∼ 1 µm. The dipole laser light creates an attractive potential and
pulls atoms from the laser-cooled atom cloud to the point of highest laser intensity.
We can prove the existence of atoms inside the optical dipole trap by imaging their
�uorescence light onto a CCD camera and an avalanche photodiode. This is done by
illuminating the atoms with near resonant light at 780 nm and collecting the scattered
photons with the same aspheric lens. After the lens, the �uorescence light at 780 nm
is separated from the dipole trap laser light by using a dichroic mirror. After this
mirror the light is split by a polarizing beam splitter (PBS). One path leads onto a
light intensi�er used to amplify incoming photons before the CCD camera. The other
path leads to a single mode �ber, which directs the photons onto an avalanche photo
diode (APD) operating in single photon counting mode.

In the following we give some detailed information on the essential parts of
the setup such as the laser system, the oven, the Zeeman slower, the optical mo-
lasses/MOT and the imaging system.
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Figure 3.2: Experimental setup. In a �rst step 87Rb atoms are slowed down to about
1 K using the Zeeman slowing technique. The atoms are further cooled to around 150 µK
using standard 3D laser-cooling techniques. A dipole trap laser, whose frequency is far-o�
red detuned to the Rb transition at 780 nm, is focused by an aspheric lens into this atom
cloud. The same lens is used to image the �uorescence light emitted by the atoms onto a
CCD camera and an avalanche photodiode.

3.3.1 Laser System

All laser beams used in the experiment can be categorized in three classes. The �rst
class contains all beams coming from a laser diode that is frequency-locked onto the
crossover transition F = 2→F′= 1× 3 at 780 nm for 87Rb by using standard Doppler-
free saturation spectroscopy1. Acousto-optical modulators (AOM) can then be used
to shift from the crossover to the atomic transitions, i.e. 52S1/2F = 2→ 52P3/2F′= 2
(pumper) or 52S1/2F = 2→ 52P3/2F′= 3 (MOT, probe, Zeeman). A second class con-
tains all repumper beams. The repumper laser diode is locked onto the crossover
transition F = 1→F′= 1× 2 (MOT repumper, probe repumper, Zeeman repumper).
AOMs are again used to shift the laser frequency to the transition 52S1/2F = 1→
52P3/2F′= 2. Finally, we group all lasers that are used to create the optical dipole
trap. Due to the large detuning with respect to the rubidium transition frequencies,
a frequency-lock is not necessary as small drifts in frequency have negligible in�uence
on the atom.

All laser beams are prepared in a similar way: Directly after the laser output an
optical isolator is used to suppress possible back re�ections into the laser that could
otherwise lead to multi-mode behavior. Acousto-optical modulators (AOM) are then
used to shift the laser frequency to its �nal value. Depending on the frequency the
beam is more or less deviated from its original path after the AOM (see Fig. 3.3
a)). The deviated beam is coupled into an optical �ber and directed to the vacuum
chamber. Switching o� the AOM, the laser beam passes the AOM straight. It is
thus decoupled from the optical �ber which permits to switch on and o� the laser

1The diode laser is locked on a crossover transition as its signal is much higher than normal
transition signals.
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class Laser type λ/nm Pout/mW Used as
1 Cavity grating 780 150 optical molasses/ MOT

stabilized diode laser Probe
(Toptica DL100) Zeeman

Pumper
2 Cavity grating 780 120 Rep. MOT

stabilized diode laser Rep. probe
(Toptica DL100) Rep. Zeeman

3 Free diode laser 850 250 dipole trap
Free diode laser 945 300 dipole trap

Verdi 532 6000 pump laser for TiSa
TiSa cavity ring laser 850− 950 700− 200 dipole trap

Table 3.1: Laser system parameters. .
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Figure 3.3: Optical laser beam path. Typical preparation of laser beams before they
are sent into the vacuum chamber. a) Single pass AOM setup serves as a rapid optical
switch: When the AOM is switched o�, the laser beam follows the dashed line and is not
coupled into the �ber. b) In the double pass con�guration a curved mirror retro-re�ects the
laser beam into the AOM even for di�erent de�ection angles α. The light is therefore not
decoupled from the optical �ber if the frequency is slightly changed.

beam very fast (∼ 100 ns from 10 %→ 90 %). For the MOT and the probe beams
a double path AOM setup is used (see Fig. 3.3 b)). In this con�guration the beam
is retro-re�ected after the AOM and passes the AOM a second time. A λ/4-plate is
used to turn the beam's polarization and to separate the returning beam from the
incoming one by using a polarizing beam splitter (PBS). The advantage of this setup
is that it is now possible to change the frequency over a range of ∼ 50 MHz without
having the laser beam decoupled from the optical �ber. This allows frequency scans
with small intensity variations.

3.3.2 Oven and vacuum chamber setup

Approximately 1 g of rubidium (85Rb+87Rb) is provided in a small glass ampoule.
Just before being placed inside the vacuum chamber one end of the ampoule is broken
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o� to ensure that the rubidium can leak out. At room temperature the sample is in
a solid phase. It is placed inside a vacuum tube directly connected to the left side
of the vacuum chamber according to the illustration in Fig. 3.4. Depending on the
temperature of the oven Toven a certain quantity of atoms evaporates from the sample
and creates a vapor inside the tube. The temperature can be varied by heating wires
tied around the tube, in which the solid sample has been placed. While heating the
sample we make sure that the upper part of the tube is also heated at least above the
rubidium melting temperature Ttube> 38.9◦C to avoid clogging of the tube. Atoms of
the vapor start to leak into the �rst chamber. The �ux of atoms Fl1 leaking out of
the tube can be estimated via

Fl1 =
1

4
nvA , (3.1)

where n= P
kBToven

is the atomic density inside the tube, v=
√

8kBT
πm

is the average

Boltzmann velocity andA=π
(
dtube

2

)2
the aperture of the tube with dtube = 5 mm (Ram-

sey, 1990). We used the ideal gas law with the Boltzmann constant kB and the
atomic mass m. P is the vapor pressure, which can be estimated using the law
P (T )≈ 10(9.318−4040/T ) (Steck, 2008). For oven temperatures of Toven = 273 + 120 K
we �nd a �ux of Fl1 = 3 · 1016 s−1 just after the hole. The atoms spreading into
the �rst chamber create a residual vapor. An ion pump is used to keep this residual
pressure at typically ∼ 10−10 mbar. Additionally, a �nger with a copper surface inside
this part of the chamber is cooled via thermal contact with a reservoir of liquid nitro-
gen at 77 K on the outside. This leads to absorption of some rubidium atoms of the
atom vapor and helps to avoid a rapid saturation of the ion pump. The part of the
vacuum chamber containing the oven is separated from the part where the actual ma-
nipulation of the rubidium atoms takes place by the Zeeman slower tube with length
lZee = 70 cm and diameter dZee = 2rZee = 15 mm. This leads to ultra-high vacuum
conditions ∼ 10−11 mbar on the right side of the vacuum system. The lower pres-
sure corresponds to a much lower residual gas in this part of the chamber and reduces
e.g. the rate at which the atoms in the dipole trap undergo background gas collisions.

The higher vacuum pressure due to the Zeeman slower tube is at the expense of
the atomic �ux. After the tube the atom �ux Fl2 goes into the solid angle Ωα =
π
4
α2 = π

4
(dZee/lZee)

2. We use

Fl2 =Fl1
Ωα

4π
. (3.2)

to estimate the net �ux of atoms arriving at the dipole trap and �nd a reduction of
nearly a factor 105 to Fl2 = 8.8 · 1011 s−1. The velocity probability distribution of the
atoms in the atomic beam follows the distribution m2

2(kBToven)2v
3 exp

(
− mv2

2kBToven

)
. The

average velocity for Toven∼ 400 K is 368 m/s (right side of Fig. 3.4). The capture range
of typical optical molasses is of the order of one Kelvin corresponding to ∼ 16 m/s
which means that only a small fraction of ∼ 10−5 atoms are e�ectively used for its
production. To increase the fraction of captured atoms we use the Zeeman slower
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Figure 3.4: Rubidium oven and velocity distribution. left) Sketch of the �rst part
of the vacuum chamber with the rubidium oven. right) Velocity distribution of the atoms
passing the di�erential pumping into the ultra-high vacuum chamber at 400 K.

technique explained in the next paragraph.

3.3.3 Zeeman slower

The Zeeman slower (Phillips and Metcalf, 1982) is based on the laser cooling prin-
ciple introduced in Sec. 3.2. It is used in our experiment to slow down a fraction
of the atoms coming from the oven. To do so we counter propagate to the atomic
beam in x-direction a σ+ polarized laser beam. The laser is ∆νred =−133 MHz
red-detuned from the vacuum transition frequency ν0 of 52S1/2F = 2→ 52P3/2F′= 3,
i.e. νred = ν0 + ∆νred = ν0 − 133 MHz and is unchanged throughout the slowing pro-
cess. Additionally, a repumper laser is superimposed to bring all atoms that de-
excite from 52P3/2F′= 3 to 52S1/2F = 1 back into 52S1/2F = 2. Due to the circular
polarization of the laser the atoms will quickly be pumped into the closed transi-
tion 52S1/2F = 2,mF = +2→ 52P3/2F′= 3,m′F = +3. The Doppler shift for atoms at
vx,i' 300 m

s
is ∆νDoppler,i =−vx,i

λ
=−385 MHz. In order for the laser frequency to be

resonant with the atom one introduces an additional level shift induced by an external
magnetic �eld of ∆νB,i = ∆νred−∆νDoppler,i = 252 MHz, see left side of Fig. 3.5. This
Zeeman shift for F = 2,mF = +2→F′= 3,m′F = +3 in �rst order follows from Eq. 1.8
and equals ∆νB/B= 1.4 MHz/Gauss. This means that to be resonant with the atom
at 300 m/s we need a magnetic �eld along the laser direction of Bi = 180 Gauss.

Nevertheless, there is one di�culty that has to be dealt with. If the atom is
slowed down only 10 m/s, the reduced Doppler shift drives the resonance further
away from the laser frequency by ∼ 2 Γ/2π. The cooling process becomes less e�cient
since less photons are absorbed and it eventually stops. The main idea is now to
adjust the magnetic �eld along the atom's direction of propagation x such that the
laser stays on resonance with the Doppler-shifted atomic transition for velocities
ranging from 300 m/s to 5 m/s. For 5 m/s the maximal Doppler shift is Γ/2π,
so that the atom stays resonant with the laser even if further cooled. To derive
the dependence of the magnetic �eld on the position of the atom x we assume that
the atom loses on average one recoil momentum krec per photon absorption event
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Figure 3.5: Zeeman slower principle. left) 87Rb levels considered in the Zeeman slower.
right) Theoretical magnetic �eld (black line) versus the position inside the Zeeman tube.
Two arrays of solenoids are adjusted to create a magnetic �eld (red and blue line) that
matches the theoretically calculated �eld.

along the propagation direction x. On resonance the absorption and reemission take
place at a rate Γ

2
s

1+s
depending on the laser saturation s. The atom thus decelerates

according to a= vrec
Γ
2

s
1+s

. The position and velocity of the atom follow the equations
of motion vf = vi − at and x= vit− 1

2
at2. Replacing t in the second equation we can

calculate the length x=L=
v2
i−v2

f

2a
≈ v2

i

2a
(vi� vf ) over which the magnetic �eld has to

be varied. In our case we �nd L= 54 cm assuming2 s∼ 3. For the resonance condition
∆νB = ∆νred −∆νDoppler to be ful�lled the magnetic �eld has to vary as

B(x) =
h

µB∆gFmF

(∆νred −∆νDoppler) =
1

µB

(
∆νred +

vi
λ

√
1− x/L

)
, (3.3)

where we use ∆(gFmF) = gF′=3mF′ − gF=2mF = 1. In our case we use two arrays of
six solenoids to reproduce the theoretical curve shown as the black curve on the
right of Fig. 3.5. The �rst array consists of six consecutive solenoids each having
a length of (11.1, 9.8, 8.6, 7.3, 6, 4.7) cm with (330, 250, 180, 105, 60, 25) windings. It
follows the resonance until the Doppler-shift equals the laser frequency detuning
∆νred − ∆νDoppler = 0. After this point the magnetic �eld has to switch direction.
The second array of solenoids is therefore built in reverse. The coil lengths are
(2, 1.6, 1.3, 0.9, 0.5, 0.2) cm and each coil has (2, 10, 20, 30, 80, 100) windings. The
magnetic �eld created by the �rst (red) and second (blue) array are shown on the
right side of Fig. 3.5.

We introduced the cooling principle with one atom having initially a �xed veloc-
ity vi' 300 m/s. The situation is slightly more complex when there is a distribution
of many velocity classes present. On the right side of Fig. 3.4 we show the velocity
distribution of the atomic beam at 400 K with a mean velocity 368 m/s. We adjusted
the magnetic �eld to slow down all atoms with an initial velocity vi = 300 m/s. All
atoms with higher velocity cannot be slowed down since higher magnetic �elds would
be needed. The capture range of the slower is thus �xed at 300 m/s. Atoms initially

2Although the laser beam has an intensity well above s= 3, we cannot ensure that this is the
saturation actually seen by the atom due to alignment error etc.. We therefore take a saturation of
s∼ 3 to not overestimate the real saturation of the atom.
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being in the lower tail of the Boltzmann distribution v < vi do not see the laser light
in the beginning. But they become resonant with the laser light at a point along x at
which the di�erence between their Doppler-shift and magnetic Zeeman shift equals
again the laser frequency. All atoms having velocities smaller than vi are thus slowed
down as well (33 % of entire velocity distribution). The �nal velocity in x direction is
close to zero and limited by the laser light di�usion. The Doppler-temperature in 1D
is TD = ~Γ

2kB
= 137 µK corresponding to an average velocity of 0.2 m/s. We note that

a detailed measurement of these values has not been done so far on this experiment.

We end this paragraph with some remarks. The Zeeman slower cools the atoms in
one dimension, namely along x whereas the photon emission in the solid angle leads
to a transverse heating of the beam. The transverse root-mean-square (rms) velocity

after having passed the slower is ∆v= vrec

√
Nph

3
(Jo�e et al., 1993) and depends on

the number of scattered laser photons Nph. In our case we �nd Nph≈ vi
vrec

= 51000 and
consequently a transverse rms velocity of 0.8 m/s. This heating results in a radial
rms deviation of the beam by ∆r= 2

3
vrec

Γ
N

3/2
ph = 1.2 mm.

3.3.4 Optical molasses and magneto-optical trap

The Zeeman slower is able to reduce the velocity of the atoms in the beam largely
below 10 m/s but does not con�ne or trap atoms. In this paragraph we brie�y discuss
how a magneto-optical trap can be used to create an atom reservoir which the dipole
trap can be loaded from. Depending on how many atoms we want to load into the
dipole trap we work in two con�gurations: For a low atom number ∼ 10 we use an
optical molasses while for higher atom numbers we use a magneto-optical trap (MOT)
as it leads to higher densities in the atom reservoir.

Optical molasses

To con�ne the atoms slowed down by the Zeeman slower in three dimensions we su-
perimpose on the dipole trap three pairs of counter-propagating laser beams having
opposite polarization (σ+−σ−) in all three spatial dimensions (Fig. 3.6 a)). The pair
of beams in z-direction are orthogonal to the pair of beams in the x− y plane. Both
pair of beams in the x − y plane enclose an angle of ∼ 50◦ with each other. Larger
angles are not possible due to the large NA aspheric lens that would otherwise clip
the laser beams. The laser beam waist is with w= 2σmol = 2 mm relatively small and
also limited by the mechanical mount of the aspheric lens. The laser frequency is kept
�xed at ∆νMOT =−3.5Γ to the cycling transition. The laser power is ∼ 2 mW per
beam which results in an atom saturation of s∼ 100. A repumper laser is additionally
superimposed with all six beams to bring atoms that fall into the 52S1/2F = 1 man-
ifold back into 52S1/2F

′= 2. It has the same waist and a laser saturation of s∼ 30.
The rather high saturation parameters increase the volume of the atom reservoir as
atoms away from the center of the beams by 2σmol still see a saturation s∼ 1. This
helps for the alignment of the reservoir around the optical dipole trap and improves
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Figure 3.6: Magneto-optical trap (MOT). left) Experimental MOT con�guration.
right) Principle of a MOT for an atom with three Zeeman levels.

the atom loading into the dipole trap.

The con�guration described above leads to a cooling in 3D, where temperatures
around the Doppler limit TD = ~Γ

2kB
(TD∼ 145 µK for rubidium) can be reached. It

was experimentally shown that this Doppler limit can be passed and Sub-Doppler
temperatures can be obtained (Lett et al., 1988). The explanation of this phenomenon
is referred to as polarization gradient cooling (Dalibard and Cohen-Tannoudji, 1989).
It works best when the magnetic �eld is well-compensated in the molasses region.

We want to add two remarks: First, for the chosen laser detuning atoms initially
not faster than 16 m/s can be con�ned with this con�guration. We calculate that the
Zeeman slower increases the fraction of atoms captured by the molasses out of the
atomic beam by a factor ∼ 7 · 104 to 33 %. It accelerates the loading of the molasses
and thus the duty cycle of the experiment. Second, the molasses has a cooling but
no trapping e�ect. There is no force pulling the atoms back into the center of the
molasses after they have been slowed down. The next section will show how such a
restoring force can be created.

Magneto-optical trap

Our magneto-optical trap con�guration consists of an optical molasses combined with
a magnetic �eld gradient, as shown in Fig. 3.6 b). It leads to a restoring force. The
force is simply the radiation pressure force which this time depends on the position
of the atom. The position dependence can be created using a pair of coils operating
in anti-Helmholtz con�guration. This creates a magnetic �eld that is approximately
linear around the center and induces a Zeeman shift of the level. If the atom is now
on the right with positive magnetic �eld it will be resonant only with the σ− laser
which pushes the atom to the left. The contrary works for the atom on the left so
that e�ectively a force pointing to the center of the MOT has been created. The
restoring force helps to increase the atom cloud density.

The magnetic �eld is created by two coils in anti-Helmholtz geometry with R=
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Figure 3.7: Imaging of a dark spot into the Zeeman beam. The lenses L1 and L2

have focal lengths of f ′1 = 750 mm and f ′2 = 750 mm, respectively.

8.5 cm. Each coil has n= 81 windings and can support up to 10 A. To create the
MOT we operate the current in the coils at 4.5 A. This leads to magnetic gradients
of ∼ 5 Gauss/cm in the center of the trap. We use a CCD camera to measure the
MOT �uorescence. Knowing the collection e�ciency and photon scattering rate of
the atoms (Γ/2) we deduce about 107 atoms in the MOT, which has a nearly Gaus-
sian shape with rms width of 330 µm. This corresponds to a peak atom density on
the order of 1010 cm−3 that is mainly limited by the small laser beam waists. The
actual MOT density around the dipole trap can only be vaguely inferred since we do
not have a precise enough diagnostic to measure the position of the dipole trap with
respect to the MOT.

The MOT needs to be aligned with the Zeeman beam to ensure an e�cient loading
of the MOT. In our setup this is done by aligning the six MOT beams on the axis of the
Zeeman slower. The Zeeman slowed atoms thus arrive directly into the cross-section of
all MOT beams. Since the Zeeman laser passes right through the MOT the radiation
force pushes the MOT towards the Zeeman slower. To avoid any perturbation of the
Zeeman laser on the MOT we image a dark spot onto the position of the MOT. The
dark spot has a diameter of ∼ 1 mm and is imaged onto the MOT as illustrated in
Fig 3.7. While this leads to no Zeeman light illuminating the MOT center light still
passes into the Zeeman slower and slows down the atoms inside the slower.

3.3.5 Dipole trap and imaging system

The center part of the imaging system is the aspheric lens. The lens has a diameter
D= 8 mm and a focal length f ′= 8 mm, which leads to a collection solid angle
of Ω/4π= 0.067 and a numerical aperture of NA= 0.5. The working distance is
5.71 mm. This property permits to focus laser beams at 850 nm down to a spot size
of 1 µm FWHM (Sortais et al., 2007). We use the same lens to image the �uorescence
light coming from the atoms onto an APD and a light-intensi�ed CCD camera 3.

3A discussion of the light intensi�er is given in Ch. 4
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Figure 3.8: Micro trap beam path and imaging system. a) Beam path of the micro
trap laser between the optical �ber and the aspheric lens. The calculated axial magni�cation
is gx = 1/g2

y = 1/4.22. b) Imaging system used to collect atom �uorescence by the aspheric
lens and detect it on a CCD and APD. The calculated radial magni�cation is gy = 26± 2.

Dipole trap setup

A PBS before the vacuum chamber is used to independently produce two dipole traps
at the same time into the vacuum chamber. One trap has a waist of ∼ 1 µm while
the second is slightly bigger with a waist of 3.8 µm. The small trap created by the
strongly focused laser beam will be referred to as the micro trap in the following. We
refer to the bigger trap as the macro trap.

Micro trap

The optical path for the micro trap after the optical �ber is shown in Fig. 3.8 a). To
create spot sizes of 1 µm we have to illuminate the lens with a nearly collimated laser
beam. Coming out of the optical �ber, the Gaussian laser beam passes a triplet lens
(f ′= 60 mm), which focuses the beam onto the aspheric lens. After the triplet lens
we use a PBS to superimpose the micro trap with the macro trap. The beam then
passes the vacuum chamber window and impinges on the aspheric lens. We pursue
the calculations for a trap wavelength of λdip = 850 nm.

The laser beam before the lens has a Gaussian shape with a waist of wi = 3.6 mm.
The lens diameter is D= 8 mm so that we unavoidably cut o� the outer part of the
Gaussian beam. It is therefore not certain that the laser beam after the lens will
still have a Gaussian shape. The radial �eld E(r) resulting from the conjugation of
the incident dipole trap beam Ei(r)∝ exp−r2/w2

i by the lens can in the far �eld be
calculated from

E(r, z) =
−i
λdipz

e
ikdipr

2

2z eikdipz
∫ 2π

0

∫ D/2

0

Ei(ρ)e
−
ikdipρ

2

2f ′ e
ikdipρ

2

2z e
ikdipρr cos(θ)

z ρdρdθ , (3.4)

with kdip = 2π/λdip. At the focal point z= f ′ we �nd

E(r, f ′) =
−i
kdipf ′

e
ikdipr

2

2f ′ eikdipf
′
∫ D/2

0

Ei(ρ)J0

(
kdipρr

f ′

)
ρdρ , (3.5)

where J0 is the Bessel function. The normalized intensity I(r) = |E(r, f ′)/E(0, f ′)|2
(red line) is shown in Fig. 3.9 and is in good agreement with a Gaussian �t (dashed
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Figure 3.9: Micro trap pro�le. left) The normalized intensity created by the dipole
trap in the focal plane of the aspheric lens. right) A zoom onto the wings of the pro�le
shows the presence of Airy rings. These are very small and have a height of only ∼ 3 · 10−3.

black line). A zoom on the side of the curve (right image in Fig. 3.9) reveals small
di�erences between the actual intensity pro�le and a Gaussian shape. These di�er-
ences are mainly due to the presence of Airy rings. The height of the �rst Airy ring
with respect to the center peak is ∼ 3 · 10−3 and can safely be neglected.

Macro trap

The macro trap has a beam waist of wM,i = 0.57 mm before the lens. This is much
smaller than the diameter of the lens so that the beam is not clipped. We deduce a
waist of the macro trap after the lens of w=λdipf

′/(πwM,i) = 3.8 µm.

Detection of the atom �uorescence

In all experiments we use the �uorescence technique to visualize the atoms that are
trapped inside the optical dipole trap. The �uorescence can be induced by using
the molasses and repumper molasses lasers. Also, we can use the in z-direction
σ+ − σ− counter-propagating probe and repumper probe laser beams (see Fig. 3.2).
For the molasses and probe lasers the �uorescence is induced on the 52S1/2F = 2→
52P3/2F′= 3 transition. The repumper laser stays on resonance with the atom vac-
uum transition 52S1/2F = 1→ 52P3/2F′= 2 for all experiments while the molasses and
probe laser frequency can be frequency shifted around the 52S1/2F = 2→ 52P3/2F′= 3
transition using to the double path AOM setup (see Fig. 3.3 b)). The induced �u-
orescence photons are partially collected by the aspheric lens. They are separated
from the dipole trap light using a dichroic mirror. Afterwards they pass an optical
bandpass �lter centered at 780 nm with a bandwidth of 10 nm. The light is then
divided into two paths. One leads to a single-mode �ber that is connected to an
APD and the other goes to a light-intensi�ed CCD camera. The proportion of light
going in each path can be tuned using a λ/2-plate and is set to4 ∼ 50 %. The optical
imaging path is illustrated on the right side of Fig. 3.8. We align the imaging system
such that light coming from the dipole trap center is directly imaged onto the CCD

4The �uorescence light coming from the atoms has been measured to be elliptically polarized.
The percentage of light in each path can be changed between 50 % − 50 % and 20 % − 80 % by
turning the λ/2-plate.
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Loss cause E�ciency/ %
Solid angle 6.7
Optics 90

Dichroic mirror 90
Filter 70
PBS 50/50 (+95)

APD single-mode �ber coupling 60± 20
APD quantum e�ciency 50

Light intensi�er in front CCD camera 10± 1

Table 3.2: Detection e�ciency budget for light at 780 nm.

camera and at the same time is coupled into the APD �ber. We will discuss a detailed
calibration of the imaging system in part II.

Detection e�ciency

All elements that in�uence the �uorescence collection e�ciency η of our imaging
system are listed in Table 3.2. The solid angle covered by the aspheric lens is 6.7 %
of the whole solid angle. All glass surfaces due to mirrors, vacuum chamber etc. make
up 90 % of the transmission. The dichroic mirror has a transmission at 780 nm of
90 % and the �lter to further reduce light components di�erent from 780 nm has a
transmission of 70 %. Up to the PBS separating the �uorescence to the CCD camera
and the APD we capture 3.8 % of the total amount of �uorescence emitted from the
center of the dipole trap. The measurement of the detection e�ciency of the APD is
given in Ch. 7. We �nd APD detection e�ciencies of 0.6± 0.2 % which is typical of
systems using high numerical aperture lenses (Darquié et al., 2005) (see Sec. 7.4.3).
For the intensi�ed CCD camera we calculate 1.9 ± 1 · 10−3 which is experimentally
con�rmed in Sec. 6.2.2 and Sec. 8.3.3.

3.4 Dipole trap loading

The last step to single atoms or small atomic ensembles trapped inside the dipole
trap is the implementation of an e�cient loading. The number of atoms attracted by
the laser light obviously increases with the surrounding atom density. The density
around the focal point can experimentally be changed by varying e.g. the tempera-
ture of the oven, the MOT laser intensities or the MOT magnetic �eld gradient. The
number of atoms entering the dipole trap per second is referred to as the loading
rate R. It depends on many factors, most importantly the MOT density around the
trap and the e�ciency of the Doppler cooling mechanism. Without cooling the atoms
would just see a conservative potential and not stay inside the trap. The loading rate
R would then be zero5.

5We neglect self trapping mechanisms such as collisions between two or more atoms that could
remove enough energy from an entering atom to be trapped.
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The number of atoms that can maximally be loaded into the trap is limited by the
trap losses. Of all loss mechanisms described in Sec. 2.2 we limit ourselves to the two
most important loss mechanisms that govern the dipole trap loading from a MOT:
One-body losses and light-assisted collisions induced two-body losses. Including the
loading rate R into Eq. 2.12 the number of trapped atoms N follows

dN

dt
=R− γN − β′N(N − 1) . (3.6)

Note that in this equation N cannot be strictly associated with the mean number of
atoms N̄ (see Sec. 8.5 and App. D). It can however be used to obtain an approximation
of the mean-value (�rst order moment) of the atom number. For the stationary case
dN
dt

= 0 we can distinguish between two regimes: The single and the multi atom regime.

3.4.1 Single atom regime

For all single atom experiments presented in this thesis the atom is directly loaded
from the optical molasses. To work in the single atom regime we usually reduce the
loading rate R� γ by switching o� the Zeeman and repumper Zeeman beams. Ad-
ditionally the temperature of the oven is held between room temperature and ∼ 90◦C
in order to reduce the atomic �ux from the oven. During the single atom loading the
dipole trap depth is U/kB∼ 3 mK (U/h∼ 60 MHz). It happens that while an atom
enters the dipole trap it is also Doppler cooled inside the trap by the molasses light.
During this process the atom steadily scatters photons that are partially captured
by the aspheric lens and coupled to the single-mode �ber connected to the APD.
Light coming from surrounding molasses atoms is much less coupled to the �ber and
contributes to the background level.

Let us estimate if a clear di�erence can be made between light coming from an
atom in the center of the dipole trap and the surrounding atom reservoir. We assume
the atom to scatter with s∼ 50 (see below) inside the trap of 60 MHz. Near the bot-
tom of the trap the atom sees a total laser detuning6 ∼ 13.5Γ and therefore �uoresces
at the rate Γ

2
50

1+50+4·13.52 ∼Γ/40 = 1 · 106 photons/s. We estimate the number of de-
tected photons during a detection time of 1 ms to be on average 5 photon/ms knowing
the detection e�ciency to be 0.6 %. Assuming a Poisson distribution for the detection
process the signal is subject to ∆sig =

√
5∼ 2.2 photon/ms �uctuations. Having esti-

mated the signal contribution we need to consider the noise contributions next. We
measure a constant background noise contribution of typically ∆bkgd∼ 1 photon/ms
which is mainly due to APD dark counts and the residual molasses �uorescence. The
total noise is thus ∆bkgd =

√
∆2
sig + ∆2

bkgd∼ 2.4/ms. This leads to a signal-to-noise

ratio (SNR) of only 2.1 which would make it di�cult to distinguish between the
real atom �uorescence and the background contributions. A possible solution is to

6The detuning is composed of the light shift induced by the dipole trap and the initial red
detuning −3.5Γ of the molasses laser.
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integrate the �uorescence over a su�ciently longer time interval. If we increase the
integration period by a factor 10 to 10 ms we �nd a background noise amplitude of√

10∼ 3 photon/10 ms and a signal of 50 ± 7 photon/10 ms. We �nd a SNR of 6.6
which should allow a reliable detection of a single atom.

The estimations made above are roughly con�rmed by measuring the molasses
laser-induced atom �uorescence (left in Fig. 3.10), where each data point is the ac-
cumulation of 10 ms �uorescence integration. In the single atom regime we observe
characteristic �uorescence steps on the APD, which can be explained by the following
mechanisms. Each time an atom enters the trap, its scattered light is coupled to the
�ber and detected by the APD. In this case we detect ∼ 50 photons during the 10 ms
integration period which corresponds to the previously made estimations. We note
that the di�erence in calculated molasses laser saturation s= 100 and the observed
case s∼ 50 is due to the fact, that the trap is not well centered on the molasses and
hence does not see the entire molasses laser intensity.

If a second atom enters the trap light-assisted collisions can lead to a gain in
kinetic energy much greater than the trap depth and both atoms are immediately7

ejected. The loss of the atoms manifests itself in a drop of the �uorescence signal to
the background level (here ∼ 5 photons/10 ms). After a while the next atom enters
the trap and the procedure repeats itself. This leads to the characteristic single atom
steps on the APD. The experimental evidence of single atom loading into an optical
dipole trap has been �rst shown in 2002 (Schlosser, Reymond, and Grangier, 2002).
It is remarkable that in this situation the atom number distribution inside the trap
is sub-Poissonian (∆N2/N = 0.5) as only zero or one atom is present with nearly
50 % chance. This sub-Poissonian behavior completely relies on the two-body loss
as one-body loss alone leads to Poissonian loading. Poissonian loading (∆N2/N = 1)
could be reached for loading rates R much smaller than the one-body loss γ. In this
case the probability to have two atoms inside the trap is negligibly small. The steady
state atom number Nst = R

γ
� 1 follows from Eq. 3.6 neglecting the two-body loss

term8

Triggered single atom loading

Observing the single atom steps implies a loading rate smaller than 1/10ms = 100 s−1.
In this case the atom stays long enough in the trap to detect a su�cient amount of
photons in order to decide on its presence. In practice we trigger on a single atom
if the �uorescence level of three consecutive time bins with 10 ms duration is higher
than ∼ 50 % of the single atom �uorescence signal. For the case shown in Fig. 3.10
the trigger threshold would be set to ∼ 25 photons/10 ms. If the trigger condition is
ful�lled we know that a single atom is inside the trap (N=1,∆N = 0). In this case we
can switch o� the molasses laser beams and avoid the fast loss of the atom due to a

7Two atoms stay inside the trap for ∼ 1 ms, see Sec. 9
8Further details are discussed in Sec. 8.5.
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Figure 3.10: Atom and MOT �uorescence on the APD. left) The molasses-induced
single atom �uorescence shows characteristic intensity jumps between ∼ 5 and ∼ 45 photon
counts/10 ms over time. Each data point is averaged over 10 ms. right) Starting the MOT
loading at t= 1 s the �uorescence shows an exponential increase over time. The loading
time is 1.3 s after which the �uorescence level can reach values 100 times higher than for
the single atom.

light-assisted collision with another atom. Switching o� the molasses light helps in
two ways. First, it leads to a loading rate R= 0 so no further atoms enter the trap.
Second, since no light is present, no collisions assisted by this light can be triggered.

There are however several reasons for which the triggering is not 100 % e�cient.
We could imagine that during the three 10 ms trigger bins, we detect by chance most
of the photons during the �rst half of the 5 ms. Just afterwards a second atom enters
and leads to the loss of both atoms. The trigger condition in this case is still ful�lled
but no atom is trapped. We measure a probability for this to happen of ∼ 0.6 %
(Toven = 90◦). It can be reduced by decreasing the loading rate R at the expense of
the experimental duty cycle, which is usually on the order of 2 Hz.

The energy distribution of a single atom inside the dipole trap is a thermal
Maxwell-Boltzmann distribution9 (see Sec. 2.3.1) which has been experimentally
shown by Tuchendler et al. (2008). From a theoretical point of view it can be shown
that the molasses cooling can be described by a Fokker-Planck equation, which in
a linearized form is solved by a Gaussian distribution corresponding to a thermal
energy distribution (Parkins and Zoller, 1992).

Single atom detection

To check whether the single atom is still present in the dipole trap, we switch on again
the molasses laser beams. The atom begins to be Doppler cooled while scattering
photons. We can now check if the �uorescence level still exceeds the level set for
triggering. If this is the case we know that the atom is present, otherwise it has been
lost. In the experiment we use two time bins of 10 ms over which the �uorescence
level must be higher than the trigger threshold.

9We assume the atom to be in higher energy levels of the harmonic trap.
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Figure 3.11: Beyond the single atom

regime. For low trap loading rates in
the beginning we observe the single atom
steps. With increasing loading the �uo-
rescence rises without showing a two step
characteristic anywhere. Each point is the
�uorescence integration over 10 ms.
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3.4.2 Multi atom regime

The second regime is governed by a high loading rate R for which it is more probable
to have more than one atom inside the trap. Light-assisted collisions are then much
more likely to occur than one-body losses. If we neglect one-body losses in this case
we �nd a steady state atom number Nst∼

√
R
β′ using Eq. 3.6. It is an equilibrium

based on the fact that the loss due to light-assisted collisions is compensated by new
atoms loaded into the trap.

To reach this regime we need to increase the loading rate R which is usually done
by increasing the oven temperature to ∼ 120◦C. Additionally, we load the trap from
the MOT which itself is loaded by the Zeeman slower. On the APD we see an expo-
nential increase in detected �uorescence photons when switching on the MOT beams
(right in Fig. 3.10). The rising time of the �uorescence signal is 1.3 s and determines
together with the length of the experimental sequence the duty cycle of the exper-
iment. However, the loading time of the MOT highly depends on the alignment of
the MOT laser beams which are subject to change over time. In this example the
�uorescence level is ∼ 100 times higher than the single atom level. It is composed of
the �uorescence coming from the atoms inside the dipole trap and the background
�uorescence coming from the atoms inside the MOT.

For all many-atoms experiments presented in this thesis we trigger on this �u-
orescence level. For example, if we set a trigger level of 2000 photons/10 ms, each
sequence is launched when the �uorescence reaches this threshold. Assuming a MOT
density proportional to the observed �uorescence this triggering procedure ensures a
roughly stable atom loading rate R for each sequence. However, we measure that the
atom number inside the dipole trap �uctuates (∆N 6= 0) and shows a sub-Poissonian
behavior as in the single-atom case (see Sec. 8.5).

Why is the multi-atom loading probabilistic?

Triggering on a �xed �uorescence level does not lead to a �xed number of atoms
inside the dipole trap. In fact, only the average number of atoms can roughly be
�xed in this way. To understand this point we look at a very slow dipole trap loading
rate as shown in Fig. 3.11. In the beginning we see the single atom steps as before.
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After about two seconds the loading increases and with it the �uorescence level starts
to rise. We do not observe any double or higher order steps that would correspond
to two or more atoms inside the trap. There are two main reasons for this. Firstly,
the ine�cient photon detection of our setup or the rapidity of the loading and loss
processes inhibit such an observation. As the �uorescence has to be averaged over
10 ms to clearly see the single atom steps, we lose all information on the processes at
shorter timescales. Consequently, we do not know how many atoms entered and left
the dipole trap during the 10 ms time bin when the loading rate is much higher than
100 Hz. We measure an averaged �uorescence rate resulting from atoms entering and
leaving the trap at timescales much shorter than 10 ms. In this case the APD signal
cannot be used to deterministically trigger on a �xed atom number. Secondly because
the height of the steps itself decreases due to light-induced dipole-dipole interactions
that shift and broaden the atomic line (Morice, Castin, and Dalibard, 1995). Due to
the random nature of the two-body losses during the loading this procedure leads to
�uctuations in the number of trapped atoms from shot to shot (∆N2 6= 0).

There are however some possibilities to deterministically load many atoms inside
the dipole trap. One is based on using a bigger dipole trap to reduce the light-assisted
collision rate and detect enough photons to decide how many atoms are trapped (Frese
et al., 2000). Another is using a laser tuned to the repulsive dipolar potential which
can also slow down the atom loss rate signi�cantly (McGovern et al., 2011). However,
it is di�cult to apply the methods for atom numbers higher than ∼ 5.

Improved dipole trap loading

To increase the number of atoms loaded into the dipole trap we apply a MOT com-
pression phase. After the trigger on the APD �uorescence level the frequency of the
MOT laser beams is tuned from −3.5 Γ to −10 Γ during 20 ms. This leads to a
compression of the MOT and an increased density (Petrich et al., 1994) around the
dipole trap10. Due to the increasing detuning the molasses laser beam power reduces
by a factor ∼ 10 due to the decoupling from the optical �ber.

Additionally to the compression, we switched o� the repumper laser after 15 ms
in order to limit the number of atoms in level 52S1/2,F = 2 to ∼ 10 %. A signi�cant
fraction of atoms in 52S1/2,F = 2 would otherwise lead to atom losses due to inelastic
spin-changing collisions. On the other hand it does not decrease signi�cantly the
atom number loaded into the dipole trap.

3.5 Conclusion

The center piece of the setup is the aspheric lens which permits to focus the optical
dipole trap down to microscopic sizes around 1 µm. It is possible to operate in two
di�erent regimes: One in which a single atom can be trapped and a second in which

10Other techniques to increase the density are discussed in Sec. 10.2.
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many atoms can be loaded into the trap. In the case with many atoms inside the
dipole trap only the average number of trapped atoms is controlled on our experiment.
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Our experiment highly bene�ts from the use of a charge-coupled device (CCD)
camera. Working with small atom numbers and typically low light signals the pres-
ence of several noise sources can inhibit a reliable detection, in particular the detection
of single photons. There are however some approaches that can overcome the few
problems of ordinary CCD technology. Promising devices are EMCCDs, where an
electron multiplier (EM) register is used to amplify the single photon signal. Here,
typical noise sources can be overcome to a great extent but still a�ect the detection
of very low light levels (Tulloch and Dhillon, 2010). The EMCCD technology has
recently been adopted in an experiment where single photons emitted by an atom
cloud were detected (Bücker et al., 2009).

In our experiment we use a di�erent approach. We place a light intensi�er before
the CCD camera (ICCD). This largely intensi�es single photon events above all CCD
noise levels. The intensi�er can additionally be used as a fast and e�cient shutter
and allows very short exposure times. Its disadvantages lie in the low quantum
e�ciency that is usually less than the one of EMCCDs as well as the rather high
noise generation. Here, we describe the characterization of our light intensi�er, which
is necessary for a reliable use in practice as well as for understanding our atomic
�uorescence signals. First, we study its single-photon response and will later focus
on the use with higher light intensities.
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Figure 4.1: Experimental ICCD

setup. Photons arriving on the intensi�er
unit are converted into electrons, which
are accelerated towards a double stage
microchannel plate. Inside the plate
avalanche electron multiplication occurs.
The electrons are then accelerated towards
a phosphor screen. The phosphor screen
is imaged with a 1 : 1 relay lens onto the
CCD camera. The photons coming from
the phosphor screen create a spot with a
Gaussian pro�le on the CCD camera.
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We inform the reader that this chapter is very technical and relies on many ideas
developed for astronomical applications.

4.1 Résumé

Notre système d'imagerie utilise une caméra CCD et un intensi�cateur de lumière
qui a une sensibilité au niveau du photon unique, et permet d'ampli�er le rapport
signal sur bruit. Nous présentons une analyse de notre système d'imagerie qui servira
de calibration pour les expériences e�ectuées dans ce travail de thèse. Ce chapitre
présente un algorithme permettant de compter les événements photoniques détectés
sur la caméra CCD. Il présente également la mesure et la compréhension théorique
de la réponse de l'intensi�cateur, notamment son e�cacité quantique et sa linéarité.

4.2 ICCD Setup

The ICCD setup is brie�y shown in Fig. 4.1. It consists of a light intensi�er (Hama-
matsu C9016-22) used to amplify single photon events above the noise sources of
our CCD camera (Princeton Instruments, Pixis 1024, 16bit, 13 µm pixel size). The
CCD noise can be assumed to be white and mainly due to the read-out process (see
Fig. 4.2). All other noise sources such as clock induced charges are assumed to be
much smaller than the read-out noise and contribute a small fraction to the measured
value1 σRO = 6 adu/pixel. The dark current noise can be neglected by operating the
CCD chip at2 −70◦C. Photons arriving onto the input window of the intensi�er are
converted into electrons that are accelerated towards a double stage microchannel
plate where they create avalanche electrons. Leaving the microchannel plates the
electron avalanches are further accelerated onto a phosphor screen where they pro-

11 adu (analog-to-digital unit) corresponds to the digitization step of the analog signal acquired
by the CCD camera. For all measurements the electron-to-adu conversion factor is 1 e−/adu.

2The dark count of the CCD being ∼ 0.001 adu/pixel/s is negligible for the parameters of our
experiments. The CCD camera does however have a constant dark current o�set of some hundreds
of adu depending on several aspects such as the exposure time and the size of the readout region.
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Figure 4.2: CCD noise characteristics. Cross-section through a CCD image of 100 ×
100 pixels without any incoming photon event. The noise distribution has a Gaussian shape
with a rms width of 5.6 adu. It comprises clock induced charges as well as read-out noise.
A constant dark current o�set of 622 adu has been subtracted.

duce a shower of photons. The phosphor screen is imaged with a 1 : 1 magni�cation
onto the CCD camera using a relay lens (Nikon A4539). The acceleration gain voltage
applied between the input window and the microchannel plates can be varied linearly
from 1000 to 1800 V to increase the light ampli�cation by turning a potentiometer.
The gain voltage can also be reversed to inhibit electron multiplication. We refer to
the gain as it was set on the potentiometer, 0 corresponding to 1000 V and 10 to
1800 V, respectively3.

We operate the intensi�er in a gated mode where it is possible to reverse the
internal gain voltage by applying a standard TTL trigger pulse. With no trigger
applied, the gain voltage stays in reverse and the intensi�er inhibits avalanche cre-
ation. It thus prevents photons from falling onto the CCD chip. Applying a trigger
pulse switches the internal voltage and enables electron multiplication. Hence, the
intensi�er can not only serve as a photon multiplicator but also as a fast switch as
the voltage can be quickly reversed within 5 ns to disable photon multiplication with
a repetition rate of 20 kHz.

Here, we focus on analyzing the photon ampli�cation characteristics of the intensi-
�er at a single photon level. To detect some well-separated single photon spots on the
CCD camera we open the intensi�er for a time of 1 ms. The intensi�er is exposed to
a dim light of a 780 nm laser source, which power can be varied to adjust the average
number of incoming photons on the CCD camera. The background light level is held
much smaller than the laser light so that spurious photon events are negligible. The
image size of the CCD camera is �xed to ROI = 300× 300 pixels over which the illu-
mination is homogeneous. Each time the intensi�er is switched o� we subsequently
read out the CCD camera and obtain one image. We repeat the sequence to obtain
some hundred images in order to have su�cient statistics. A typical image for gain

3The intensi�er is in use for about four years at the time of this analysis. We do not exclude
that the measured values are subject to variations with age.
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Figure 4.3: Image showing photon events for a gain of 8. A typical image showing
photon events for a gain 8. The region of interest corresponding to the image size is ROI =
300× 300 pixels. The average number of events per image is N̄events∼ 240. Looking at the
cross-sections of one event we see that the event is well �tted by a Gaussian function (blue
dashed line) with a rms width of σ= 1.2± 0.2 pixel.

8 is shown in Fig. 4.3 for which we detect ∼ 250 events per image on average. Each
event consists of a photon shower coming from the phosphor screen and imaged onto
the CCD camera. We want to characterize the shower of photons, in particular its
distribution in space and height. To do so we use the following counting algorithm.

4.3 Counting algorithm

To only count real photon events we set a counting threshold of ε= 6σRO = 36 adu/pixel.
All peaks under this threshold cannot be assured to be real events but can also be due
to read-out noise for example. So we only restrict the analysis to events higher than
this threshold. We �rst look at the spatial distribution and discuss the amplitude
distribution in Sec. 4.4. Analyzing several hundreds of distinct isolated events above
the counting threshold ε, we �nd that the spot on the CCD and associated with a
detected photon, the point spread function (PSF), agrees very well with a Gaussian
distribution Hk0,l0G(k−k0, l− l0) + const with Hk0,l0 the height of the center pixel �t

and G(k, l) = exp
(
−k2+l2

2σ2

)
a Gaussian shape function (see Fig. 4.3). We measure an

average rms width σ= 1.2±0.2 pixel which does not signi�cantly depend on the gain
(see Tab. 4.1). All events show a small asymmetry between the k and l dimension of
∼ 8 %. Note also that by imaging a sharp edge onto the intensi�er we �nd that the
rms width of the e�ective PSF of 1.9± 0.3 pixel is larger than the single event PSF
by ∼ 50 % (see Sec. 4.6).

To measure the amplitude distribution we count all events per image and save
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Figure 4.4: Counting procedure. In
part a) we illustrate a section of the CCD
array centered around one photon event at
(k0, l0) = (0, 0). The arrows indicate some
pairs of pixels that are compared in the
counting algorithm to erase this photon
event in order to avoid its double count-
ing. The dashed red line indicates a possible
EROI region (see text) with d= 2 around
the center peak. Part b) shows a one-
dimensional cut in the k= 0 plane (high-
lighted in gray in part a)). Going away
from the center peak 3©, the values will de-
crease unless another peak 4© is present. All
peaks like 2© below the counting threshold
ε= 6σRO are not counted. False events such
as 1© can be �ltered using the �sharp� value
(see text).

the information on their amplitude. To avoid a bias in the overall result we need to
make sure that no event is counted more than once. We use the following counting
algorithm to avoid double counting:

1. Search for the pixel with the highest adu value on the CCD camera. If there is a
pixel higher than the counting threshold ε, it represents the center of a photon
event (Pixel (0,0) in Fig. 4.4 a) corresponding to 3© in Fig. 4.4 b)). Otherwise
no further events are detected and the search is �nished. Events such as 2© are
below the threshold and are not counted.

2. To avoid double counting, pixels that belong to the same event need to be put
to zero (or below the counting threshold ε). To do so we de�ne an event region
of interest (EROI), i.e. a square region around the center of an event with side
length 2d+ 1 pixel (d depends on the gain and is calibrated below. Its value is
given in Tab. 4.1). We now apply the following procedure to decide if a pixel
belongs to an event: Moving away from the center pixel we always compare
pairs of pixels indicated by the arrows in Fig. 4.4 a) and set the value of the
outer pixel to zero if its value is not higher than the inner one. A higher value
of the outer pixel is usually a signature of another event so that it cannot be
put to zero a priori. We illustrate these steps by looking on a section of a CCD
chip with some photon events. Let us focus on the pixel row k= 0 in Fig. 4.4
a) which cut is shown in part b). We set pixel (0,1) to zero (or below ε) since
it is necessarily smaller than the center peak (0,0) and move one pixel further
out. Pixel (0,2) can also be put to zero since it is smaller than pixel (0,1). The
situation changes on pixel (0,4) which is higher than (0,3) by an amount of η.
Pixel (0,4) is therefore not set to zero and is counted as a new event in the next
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Figure 4.5: Example of non-Gaussian events. left) A Gaussian �t (with �xed rms
width σ= 1.2 pixel) of a thin event yields a lower peak height H0,0 than the real pixel value
Hk0,l0 <D(k0, l0). For such peaks the �sharp� value is usually greater than one. right) A
small �sharp� value 0.�sharp�� 1 can be found for events that are somewhat broader than
the Gaussian function.

search. The number of pixels d we need to move outward from the center peak
in each direction depends on the gain and is given in Tab. 4.1.

3. Start again at step one.

Having found a set of possible photon events by using the counting algorithm we
make further use of a procedure developed in astronomy to �lter out false photon
events (Stetson, 1987; Hroch, 1999). The �ltering relies on the assumption that
possible false photon events will deviate from the symmetric Gaussian shape measured
above. Figure 4.5 shows how false events could look like and that a Gaussian �t does
not reproduce the shape of the event.

In order to measure the deviation from a Gaussian �t, we �rst estimate the am-
plitude Hk0,l0 of each found event. One could do so by �tting a Gaussian function to
the event to extract the height. This however can be a time-consuming task when
dealing with many thousand events. But even if no �tting procedure is applied one
can still estimate the height very fast by the method of linear least squares (Stetson,
1987)

Hk0,l0 =

u∑
k,l=−u

G(k, l)D(k0 + k, l0 + l)− 1

n

u∑
k,l=−u

G(k, l)
u∑

k,l=−u

D(k0 + k, l0 + l)

u∑
k,l=−u

G(k, l)2 − (
u∑

k,l=−u

G(k, l))2/n

,

(4.1)
whereD(k, l) is the actual value of pixel (k, l) andG(k, l) the Gaussian function. Each
sum

∑u
k,l=−u is evaluated over a square with side length 2u + 1 pixel and centered

around the event peak center (k0, l0). The number of total pixels inside this square is
denoted as n= (2u + 1)2. Next, we calculate the di�erence between the value of the
center pixel D(k0, l0) and the average value of all surrounding pixels in the square

I0 =D(k0, l0)− (
u∑

k,l=−u

D(k0 + k, l0 + l)−D(k0, l0))/((2u+ 1)2 − 1) . (4.2)
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The so called �sharp� value is de�ned as �sharp�= I0/Hk0,l0 and can be used to char-
acterize the deviation of events from a Gaussian shape. For events that are thinner
than the typical Gaussian intensi�er response with rms width σ= 1.2 pixel (see left
graph in Fig. 4.5 or event 1© in Fig. 4.4 b)) we �nd I0∼D(k0, l0) since the sur-
rounding pixels have small values. The estimated height Hk0,l0 is smaller than the
center pixel value Hk0,l0 <D(k0, l0) so that the �sharp� value takes on values above
one (�sharp�& 1). For larger events (see right graph in Fig. 4.5) on the other hand it
takes on values close to zero (0.�sharp�� 1) (Hroch, 1999). The acceptance range
for the �sharp� values for which an event is declared a false event is discussed below.

Another quantity to rule out false events is based on the measurement of their
symmetry. If an event is asymmetric above a certain degree we say that it is not a
real photon event. To measure the symmetry of an event we calculate the so-called
�round� value �round�= 2hy−hx

hy+hx
. Here, hx, hy are calculated the same way as Hk0,l0 but

by using one-dimensional Gaussian distributions exp
(
− k2

2σ2

)
and exp

(
− l2

2σ2

)
for G in

Eq. 4.1. The parameter gives an intuition about the symmetry of the event. Totally
symmetric events have �round�= 0. The more asymmetric the event the higher the
absolute value of the �round� value. For Gaussian events the �round� value lies in the
interval between −2 and 2. The highest possible asymmetry of a Gaussian event is
indicated by �round�=±2. A criteria for which degree of asymmetry an event should
be considered a false event is given below.

Counting algorithm calibration

For a calibration of the counting algorithm we need to set the most e�cient values
for d, u and the acceptance ranges of the �sharp� and �round� values for which an
event is declared to be a true one. In the following we categorize all events found by
the algorithm described above into three groups:

• Group 1. The �rst group consists of all counted events. With a certain
probability some of these events are false events and need to be distinguished
from real ones.

• Group 2. A �rst �ltering can be done by using the �sharp� and �round� values.
All events that survive the �ltering process make up the second group of events.

• Group 3. A di�culty arises in crowded images, in which some events can over-
lap. Here, one peak can have several neighbors that can a�ect the calculation
of the �sharp� and �round� values. We build up a third group of events namely
those that do not have any neighbors inside a certain area around their center.
We choose this area to be the EROI (see below).

We experimentally evaluate the size of the EROI ((2d+1)2) in order to fully erase
every event in each direction. We analyze the same set of images several times for
increasing d and look at all counted events. For e.g. d= 0 only the center part of an
event is erased and the surrounding is then counted as other additional events. For
increasing d more and more of the event is being erased and less counts are being
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Figure 4.6: �Sharp� and �round� values for gain 9. left) We plot the dependence of
the �sharp� parameter on the peak amplitude, where we use an area of 3× 3 (u= 1) pixels
around the peak center for the calculation. Isolated events are highlighted as red crosses.
right) We show the same for the �round� parameter using a 7× 7 (u= 3) pixels around the
peak center.

registered. Tab. 4.1 shows the value of d for which no new counts are registered
ensuring that each event is fully erased. Double counting of the same event can thus
be avoided. In the algorithm presented here the value of d is �xed for each gain and
used for all events.

We now use all events (group 1) and all isolated events (group 3), those with
no neighbor inside the EROI, to set the acceptance sets for the �sharp� and �round�
values and the conditions for u. Let us begin by looking how the values depend on the
amplitude of the events. Fig. 4.6 shows this dependence using for the �sharp� value
u= 1 i.e. a square of 3× 3 pixels around each center pixel k0, l0 and for the �round�
value u= 3. We observe that the values obtained for isolated events (black crosses)
spread much less than when using all events (red circles), in particular for small peak
heights. As we will see in the next section these small peaks accumulate around
bigger events and are false events not originating from real photons. If we assume
that all isolated events stem from real photons which we do not want to �lter we can
set the �sharp� and �round� conditions by minimizing the number of �ltered isolated
events (group 3) while maximizing the number of �ltered events taking all events into
account (group 1). Doing so we �nd optimized values for declaring an event false if
�sharp�< 0.2 or �sharp�> 1 keeping u= 1 and �round�<−1.5 or �round�> 1.5 keeping
u= 3.

Isolated events (black crosses) ful�ll the �sharp� and �round� conditions ∼ 98 %
of the time. This also supports the assumption of a Gaussian event shape of the
intensi�er response that was checked by �tting isolated events with Gaussian distri-
butions as described above. Taking all events (red circles) we �lter ∼ (9, 11, 12, 18) %
for gains of (6, 7, 8, 9), respectively, namely those events whose �sharp� or �round�
value (or both of them) exceeds the tolerance boundaries indicating that their shape
deviates from a Gaussian. Note that the �sharp� value can become negative and the
�round� value can pass its boundaries �round�<−2 or �round�> 2. This is only com-
patible with negative estimated heights which can occur when small events lie very
close to bigger ones. As we will see these small events need to be �ltered which can
e�ciently be done using the �sharp� and �round� values.
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Gain σx, σy/pixel d/pixel g/adu ∆g/adu κ/%
6 1.3± 0.2, 1.2± 0.1 3 40± 0.1 40 60± 0.2
7 1.3± 0.1, 1.2± 0.2 4 136± 0.4 136 23± 0.1
8 1.3± 0.2, 1.2± 0.2 5 369± 25 265 6.5± 0.7
9 1.3± 0.2, 1.2± 0.3 6 822± 45 560 1.8± 0.3

Table 4.1: Intensi�er characteristics. The table summarizes the typical characteristics
of the intensi�er unit. The photon events with rms widths σx, σy are totally erased by
setting the values of all pixels within a square of side length 2d+1 pixels centered around the
center pixel to zero. The average g and the standard deviation ∆g of the event distribution
increases with intensi�er gain. This decreases the probability κ for photon events to be
below the counting threshold ε= 6σRO = 36 adu/pixel.

The advantage of this algorithm is that it is easily implemented and fast in ana-
lyzing images since no elaborated �tting procedures with several �t parameters are
involved. Information such as the number of events, their positions and their ampli-
tudes are quickly obtained. It works very well for images with a constant background
on which the nearly Gaussian events are fairly well separated4. For the images used
for this characterization this is given as we use images for which the probability of
having two events within a radius of 2σ is estimated to be much below 1 %. This
estimation relies on a calculation of the density of events ρevents =π(2σ)2N̄events/ROI
per image. ρ2

events is an estimator of the probability for two events to overlap in a
region of 2σ. We veri�ed our results with a second algorithm, where the images
are pre-processed by convolution with the PSF as proposed in the DAOPHOT algo-
rithm (Stetson, 1987). We essentially obtain the same results mostly due to the fact
that the PSF can be well described by a Gaussian distribution and the images are
not crowded.

There are several drawbacks to our algorithm. It is not capable to distinguish
between events that are separated by less than 2σ. Additionally, all events inside the
EROI of other bigger events that do not clearly rise in the wings of the bigger event
are missed. Erasing pixels belonging to an event is done by comparing only two pixels
each time. This can be problematic for small peak heights since here the result can
be a�ected by the readout noise. Furthermore, for a given gain, the EROI is held
�xed for all events in the image. Ideally it should be adapted to each individual event
as their height and therefore the number of pixels belonging to the event vary.

4.4 Response distribution

We now discuss the characterization of the event height distribution. To model the
probability to detect an event with a certain height we use the model developed by
Matsuo et.al. (Matsuo, Teich, and Saleh, 1985) for electron multiplication processes5.

4If this is not the case the much more complex DAOPHOT algorithm commonly used in astro-
nomical application could be used instead Stetson (1987)

5Knowing that the events are of Gaussian shape and having measured the average width we could
also infer the volume of the events instead. We veri�ed that there exists no speci�c correlations
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Figure 4.7: Peak histogram for gain 6 and 9. Amplitude distributions for a gain of
left) 6 and right) 9 for isolated events (group 3). The data for gain 9 is binned by 15. The
black line corresponds to the theoretical prediction. All events smaller than the threshold ε
are not counted.

Ideally every photon impinging on the intensi�er creates one electron. Each electron
is accelerated and creates secondary electrons which themselves create other electrons
leading to an avalanche. Working at low light levels for single photon sensitive mea-
surements we assume these avalanches to be well separated and thus independent
of each other. Each electron has a chance P of creating a secondary electron when
colliding with the walls of the intensi�er microchannel plate. As this probability de-
pends on the electron's velocity it can be varied by setting the electron acceleration
in form of the intensi�er gain voltage. Assuming that the electron undergoes r col-
lisions, one can derive a recursive set of equations describing the probability p(x) of
having a certain number of electrons x at the end of the avalanche process

pr(x) = (1− P )pr−1(x)+

P
x∑
k=0

pr−1(x− k)pr−1(k), x, r≥ 1

pr(0) = 0, r≥ 1

p0(x) = δ1,x .

(4.3)

The last line states that the probability for one electron to exit the multiplication
stage is one if no collision with the walls occurs6. For small probabilities P and high
number of collisions r the result of the recursive algorithm can be approximated by
an exponential function (Basden, Hani�, and Mackay, 2003)

p(x) = g−1 exp(g−1x) . (4.4)

Here, g= 〈x〉= (1 +P )r is the average and also the standard deviation ∆g= g of the
amplitude distribution. We will describe the actual observed event height distribution
on the CCD with the electron distribution p(x) leaving the microchannel plates.
Both are proportional but not identical for two reasons. First, the phosphor screen
transforming electrons into photons is not 100 % e�cient but it can be assumed to

between width and amplitude that could bias the volume calculation in such a case.
6We neglect the fact of any electron absorption by the walls.
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Figure 4.8: Intensi�er gain and beginning of histograms for gain 9. left) g is
plotted for di�erent intensi�er gains. The intensi�er response is clearly nonlinear. right)
Initial part of the events histogram for gain 9 in Fig. 4.7. We compare the distributions for
isolated (red circles), post-selected (blue squares) and all (black triangles) events for small
amplitudes.

be linear for small light intensities (compare Sec. 4.6). Further, the total photon
number leaving the phosphor screen is a factor 0.9−1∼ 1.1 higher than observed on
the CCD, since the CCD quantum e�ciency over the band of wavelengths emitted
by the phosphor screen around 550 nm is about 90 %.

Fig. 4.7 shows the measured normalized event amplitude distribution for gains 6
and 9, respectively. Not to be biased by neighbors, only isolated events from group 3
have been considered for these data. For a gain of 6 the exponential law of Eq. 4.4 �ts
the data very well. Here, the probability to produce a secondary electron can safely
be assumed to be small so that Eq. 4.4 works well. For a gain of 9, the distribution
clearly di�ers from an exponential law. Here, the probability P for second electron
generation cannot be assumed to be small any more. We therefore have to use the
recursive algorithm to model the data. Being limited by computational power we run
the algorithm for a number of r= 9 collisions. Even for P = 1 this could simulate
the data only up to peak heights of x≤ 2r = 512. In order to compare the theory to
the data which go up to x∼ 3000 for a gain of 9, we scale the theoretical result to
higher x. The multiplication factor g is inversely proportional to x for small gains
as is directly seen on Eq. 4.4. We assume that this is still true for slightly higher
multiplication factors. We �nd qualitative good agreement between the data and the
theory.

For higher gains, where the exponential �t does not work, we extract the mean
value of the amplitude distribution by using g= 〈x〉=

∑
xp(x) and its variance by

using ∆g2 =
∑
x2p(x)−〈x〉2 (see Tab. 4.1). The photon multiplication behaves non-

linearly with the applied gain as can be seen on the left of Fig. 4.8. For a gain of 6
for example we �nd a multiplication factor of 40 ± 0.1, which is enough to enhance
the single photon signal above the CCD noise. The Fano-factor ∆g2/g (= 1 for a
Poisson distribution) stays largely above one for all gains and emphasizes a super-
Poissonian characteristic. Due to the limited intensi�er ampli�cation a percentage
of photon events κ listed in Tab. 4.1 stays below the counting threshold ε and leads
to an underestimation of photon counts. The percentage of missed events decreases
with increasing gain.
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Figure 4.9: Position correla-

tion function. The image shows
the center part of the position cor-
relation function G2(k, l) when all
photon events are counted. Cross-
sections through the center are
plotted on each side (black trian-
gles). By using the �sharp� and
�round� values we can e�ciently
�lter out false events. The posi-
tion correlation function becomes
more homogeneous, as shown on
the cross-sections (blue squares).
G2(k, l) = 0 for |k|, |l|< 2σ since
the algorithm cannot distinguish
between two or more events in this
region.
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So far we focused on isolated events only. Our images are not crowded so that
the amplitude distribution analysis of all events from group 1 should be essentially
the same. As can be seen on the right of Fig. 4.8, this is not entirely true and a
clear discrepancy is visible for small peak heights. There seems to be many more
small events when taking into account all events (black triangles) than after counting
isolated events (red circles) only. To �nd out where these small events stem from, we
take a look at the spatial distribution of all events on the CCD. Fig. 4.9 shows the
G2(k, l) =

∑
i,j,i6=j

δ(k− (k0,i−k0,j))δ(l− (l0,i− l0,j)) position correlation function, where

each index of the sum i, j goes over all events with their center position k0,i/j, l0,i/j.
Although the illumination can be assumed homogeneous over the intensi�er region,
we see that the events tend to accumulate (black triangles in cross sections of Fig. 4.9).
Analyzing the accumulation of peaks we �nd that small events have a tendency to lie
close to bigger ones. We attribute this behavior partially to the nature of our counting
algorithm as well as to the structure of the microchannel plates where avalanches
have a �nite probability of separating themselves into side avalanches. These side
avalanches are not necessarily Gaussian. In fact, by using the post-selection via
the �sharp� and �round� values, we e�ciently �lter out these false events (group 2)
as indicated by the blue squares in the cross-sections. This is also visible in the
distribution of �ltered events (blue squares) in Fig. 4.7. The number of small events
is signi�cantly reduced using the �ltering procedure. However, there remains some
false events that have a Gaussian shape comparable to the one of real events and
seem to be indistinguishable from them. They lead to an overestimation of the real
number of photon events by < 1 %. It can be estimated by comparing the number of
counted neighbors with the theoretical number obtained by evaluating the probability
to have two or more events inside the same EROI.
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4.5 Intensi�er noise

Auto-generated events are a considerable source noise. While there are essentially
no events on our timescales (several minutes) when the intensi�er is closed and the
internal electron-acceleration voltage is in reverse the situation changes when we
open the intensi�er. Here, we can distinguish between two operating regimes. The
�rst regime is a static regime where the intensi�er is opened once for a certain time
during which impinging photons can be multiplied. Even if there is no light falling
onto the intensi�er7, there are some photon events auto-generated by the intensi�er.
We open the intensi�er for 2 min after which many such auto-generated events form
a uniform background on the CCD camera. We then read out the CCD and �nd
an auto-generation rate of Rauto = (8, 29, 87, 243) adu/pixel/s for gains of (6, 7, 8, 9),
respectively8. Knowing the average height g of a photon event we can infer the number
of photon events auto-generated to be Rauto/g= (0.2, 0.2, 0.24, 0.3) events/pixel/s for
gains of (6, 7, 8, 9), respectively.

The second regime is the dynamic regime where we open the intensi�er 60000
times for 1 ms during a total of 2 min. We measure the same noise generation rate
as found in the static regime. However, we �nd an increase of the noise generation in
the dynamic regime when the time interval during which the intensi�er is switched
o� is much larger than 1 ms. This has for example been observed in the experiment
presented in Ch. 8. In that experiment we detect 84 events on the CCD (ROI =
100×100 pixel) when the intensi�er at gain 9 is opened for 20 µs and the sequence is
repeated 200 times at a rate of around 1 Hz (see Sec. 8.3.4). This translates in a noise
generation of 2.1 events/pixel/s, a factor ∼ 7 higher than the static noise generation.
The noise generation is therefore mainly due to a dynamic e�ect such as the voltage
reversing process for example.

We end this section with two remarks. First, we �nd that the auto-generated
events are indistinguishable from real events and the response histogram containing
only auto-generated events does not signi�cantly deviate from the histogram when
real photons are impinging on the intensi�er. Post-selection is therefore no con-
siderable option. However, to obtain the average real number of photon events in
counting experiments one can independently measure these auto-generated events
by taking a background image. Subsequently, one subtracts the average number of
auto-generated events from the average number of all events. Second, we measured
the auto-generation rates in the morning, after the intensi�er has been switched o�
over night, and in the evening having used the intensi�er for measurements during
the day. We �nd a decrease in the noise level during typical days of ∼ 10 % due to
gain ageing of the microchannel plates.

Signal-to-noise ratio in single-photon mode

The ampli�cation of single photon events above the CCD read-out noise leads to an
increase of the signal-to-noise ratio (SNR) compared to using a CCD camera only.

7We cover the front of the intensi�er with a black cap to avoid any light falling onto the cathode.
8Here, we assume the static noise generation rate to be constant in time.
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We de�ne for the single-photon counting mode

SNRSP =
#N

#B
, (4.5)

where #N is the number of photon events detected on the CCD and having come
from the observed scatterer and #B takes into account the number of background
events visible on the CCD. Background events originate e.g. from intensi�er auto-
generated events or photons coming from some background light and not from the
observed scatterer. More sophisticated SNR can be used (Tulloch and Dhillon, 2010;
Tubbs, 2003) but here the essential is captured by this simple formula.

If we use only a CCD camera we will not be able to observe any individual single
photon event due to the read-out noise of the camera exceeding the photon response.
This means that #N = 0 and SNRSP = 0 for CCDs. Using the intensi�er on the other
hand we can observe single photon events on the CCD camera and the gain in SNR,
nomatter what the background level #B, is in�nite with respect to the case where
only the CCD camera has been used. Besides, the intensi�er acts as an e�cient
shutter which is the second reason why we use the light intensi�er. For example,
measuring the atom number distribution inside the dipole trap (see Ch. 8) would
have been impossible without the use of the intensi�er.

4.6 Multiphoton detection

So far we focused on the photon ampli�cation characteristics of the intensi�er at the
single-photon level. Nonlinear e�ects of the intensi�er are negligible in this regime.
We now turn to the case of the multiphoton response.

Intensi�er quantum e�ciency

For convenience we use the laser beam at 780 nm coupled into the trap laser �ber as
shown on the left in Fig. 4.10. A small part of the laser beam (∼ 10 %) is re�ected
by the dichroic mirror and passes the aspheric lenses. After the vacuum chamber the
beam is retro-re�ected and returns into the chamber. It again passes the two lenses
and the dichroic mirror before it reaches the intensi�er. The laser beam has a waist
of 15.2± 3µm at the entrance of the intensi�er. We open the intensi�er for τ = 2 µs
and subsequently read out the CCD camera once. We vary the power of the laser
beam PL and evaluate the number of photons received by the CCD camera knowing
that each integrated photon event contains 2πσxσyg∼ 8± 3 · 103 adu·pixel2 for gain
9, as mentioned above. The right side of Fig. 4.10 shows the detected photons as a
function of the total incident photon number, which is calculated via Nin = PLτ/hν.
The quantum e�ciency of the intensi�er is evaluated from the slope of the linear
dependence to be 10± 1 % at 780 nm.
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Figure 4.10: Intensi�er e�ciency and nonlinearity. left) Setup for the determination
of the intensi�er e�ciency and its nonlinearity. The laser beam at 780 nm is retro re�ected
after it passed through the two aspherical lenses, and is then directed towards the intensi�er.
right) Dependence of the number of detected photons by the CCD camera versus the number
of photons impinging onto the intensi�er. The intensi�er quantum e�ciency corresponds to
the slope and is equal to 10± 1 %.

Intensi�er nonlinearity

The last data point at 2600 incident photons corresponding to ∼ 330 pW however
starts to deviate slightly from the linear behavior and indicates the onset of nonlin-
earity. We want to have a clearer signature of the nonlinearity. To do so, we change
the position of the laser �ber coupler x1 and thus the laser beam rms width inci-
dent on the intensi�er. This way we vary the light intensity on the intensi�er whilst
keeping the laser power constant. For incident photon �uxes below the nonlinearity
threshold (28 and 280 photons during 2 µs), we observe no change in the total de-
tected power indicating that the intensi�er is linear in this regime (see left side in
Fig. 4.11). When increasing the intensity above the threshold we reach the nonlinear
regime where we see a drop in the detected power when the beam is maximally fo-
cused. The laser beam waist at the intensi�er is shown on the right side in Fig. 4.11.
The dashed line is a guide to the eye and is used to estimate the axial magni�cation
gx between the �ber and the aspheric lens. Assuming a perfect symmetric system we
�nd g−2

x = 4.5 ± 0.3, which is compatible with the result in Sec. 3.3.5. Our imaging
system does not allow to reduce the rms width of the laser incident onto the intensi-
�er to less than 15.2 ± 3µm. Taking 330 pW for the nonlinearity threshold we �nd
a threshold intensity of 0.23± 0.04 W/m2 at 780 nm. To estimate how many atoms
can be imaged onto the ICCD without being in the nonlinear regime we assume the
trapped atoms to scatter at Γ/2 and estimated the detection e�ciency up to the in-
tensi�er to be 2 % (Sec. 3.3.5). For probe pulses with a duration 2 µs, the nonlinear
behavior (2600 photons on a surface smaller than the resolution limit of our imaging
system) becomes important for 3400 atoms in the trap. We usually work with atom



72 Chapter 4: Light intensi�er calibration

300

200

100

0

D
et

ec
te

d 
ph

ot
on

s

-400 -200 0 200 400

Position of fiber x1 (µm)

 28 ph.
 280 ph.
 2600 ph.

10
8
6
4
2
0

R
M

S 
w

id
th

 (
pi

xe
l)

-400 -200 0 200 400

Position of fiber x1 (µm)

 28 ph.
 280 ph.
 2600 ph.

Figure 4.11: Intensi�er nonlinearity. left) Dependence of the detected power on the
CCD camera versus the laser �ber coupler position x1 for three di�erent incident photon
number of 28, 280 and 2600 photons during 2 µs. right) Laser beam waist as it appears
on the CCD camera versus the �ber coupler position. The dashed line corresponds to the
expected defocus.

numbers smaller than 3000 so that the nonlinearity does not play a role9.

Intensi�er e�ective PSF

We saw that the PSF of single events has a Gaussian shape with rms width of around
1.3 pixel. In the multi photon case we measure the PSF by imaging the sharp edge
of a pinhole onto the intensi�er using the light of the MOT as a uniform illumination
source at 780 nm. The cross-section of the pinhole in the object plane is illustrated
on the left of Fig. 4.12. A �t of the edge to the erf-function yields the rms width
of the e�ective PSF. The imaged pinhole has a radius of ∼ 50 pixels corresponding
to 50 · 13 = 650 µm and is placed on axis10. When moving the pinhole out of the
object plane (x2 = 0) the edge smears out as can be seen on the right of Fig. 4.12.
A parabolic �t yields the minimum resolution of the intensi�er 1.9± 0.3 pixel. This
rms width of the e�ective PSF of 1.9 ± 0.3 pixel exceeds the PSF of a single event
∼ 1.3 pixel. The increase in the PSF for multiphoton illumination indicates that
consecutive photons arriving on the exact same spot on the intensi�er can be slightly
deviated by the microchannel plate structure, maybe due to high voltage �uctuations.
This also leads to an uncertainty on the actual position of the photon event.

Signal-to-noise ratio in multiphoton detection

With the amplitude distribution and the noise characteristics at hand, we can cal-
culate the SNR using the intensi�er in the multiphoton regime. The SNR is usually
written in the form

SNRMP =
FQt√

(∆F 2 + ∆B2)Qt+ ∆R2
autot+ σ2

RO

, (4.6)

9For higher atom numbers one could for example use longer cloud expansion times which increases
the intensi�er surface the �uorescence photons fall on.

10The biconvex lens with f = 75 mm,NA= 0.1 adds a negligible part of 1.22λ
2NA

0.35
13 µm = 0.13 pixel

to the di�raction. The universal factor 0.35 is used to transform the airy function width into a
Gaussian rms width and originates by �tting a Gaussian to an Airy function as shown in Fig. 3.9.
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Figure 4.12: Intensi�er resolution. left) Cross section of the edge as it appears on the
CCD camera with the erf-function used as a �t in red. The rms width of the erf-function,
corresponds to the e�ective PSF. right) Dependence of the rms width versus the distance
x2 of the sharp edge with respect to object plane. At the minimum the edge is conjugated
with the intensi�er and has a rms width of 1.9± 0.3 pixel.

where F,∆F 2,∆B2, t represent the mean photon �ux on the CCD camera, its vari-
ance, the variance of the background �ux and the integration time, respectively.
∆Rauto takes into account the noise introduced by the auto-generation event rate of
the intensi�er. Furthermore we introduce Q as the quantum e�ciency of the de-
vice. In order to evaluate the impact of the intensi�er on the SNR, we calculate
the SNR in a concrete case for which we consider a constant incident photon �ux
Fin = 100 adu/pixel/s. Assuming B= ∆B= 0, we obtain a SNRMP of 7.3 in the ab-
sence of the intensi�er (we take Q= 78 % at 780 nm, and ∆Rauto = 0, and the incident
photon �ux to have a Poissonian distribution Π(x, F ) (∆F 2 =F )).

Using the intensi�er in front of the CCD camera, we have to take into consideration
the ampli�cation factor of the intensi�er as well as the auto-generation rate. Let us
�rst concentrate on the ampli�cation of the intensi�er. The ampli�cation leads to
a larger signal and a larger noise on the signal. We �rst calculate the signal being
the mean �ux of photons after the intensi�er and detected on the CCD. We use
the intensi�er distribution p(x, g,∆g) from Sec. 4.4 where we include the �rst two
moments, namely the mean g and the rms value ∆g of the single-photon intensi�er
response distribution as parameters. When y photons impinge on the intensi�er these
moments scale approximately as y · g and √y ·∆g in the linear intensi�er regime. As
the number of photons y impinging on the intensi�er follow a Poissonian distribution
Π(y, F ) we calculate the mean photon �ux after the intensi�er Fint by convoluting
both distributions

Fint =
∞∑
x=0

∞∑
y=0

x · Π(y, F )p(x, y · g,√y ·∆g) =
∞∑
y=0

Π(y, F ) · y · g=F · g . (4.7)

As expected we �nd that the mean photon �ux after the intensi�er is just the mean
incoming photon �ux multiplied by the intensi�er ampli�cation. For gain 9 and
including the quantum e�ciency of the CCD camera this gives a mean �ux Fint =
100 · g∼ 8 · 104 adu/pixel/s. For the noise of the ampli�ed signal we calculate the
variance ∆F 2

int of the �ux after the intensi�er
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∆F 2
int =

∞∑
x=0

∞∑
y=0

x2 · Π(y, F )p(x, y · g,√y ·∆g)− F 2
int

=
∞∑
y=0

Π(y, F )
[
y ·∆g2 + y2 · g2

]
− F 2

int

=F ·∆g2 + F · g2 + F 2 · g2 − (F · g)2 =F (∆g2 + g2) .

(4.8)

The �uctuations on the detected photon signal are much larger than a Poisson dis-
tribution due to the large statistical spread (∆g2) of the intensi�er response. This
introduces an additional noise referred to as the multiplication noise (Hollenhorst,
1990).

We now come to the second implication when using the intensi�er namely the
presence of auto-generated noise. It has been measured in Sec. 4.5 and can be im-
plemented in Eq. 4.6 by using ∆R2

auto =Rauto∆g
2/g. For gain 9 we �nd ∆R2

auto =
93 · 103adu2/pixel2/s. As a �nal result the intensi�er leads to a worse signal-to-noise
ratio of SNRMP = 2.6 compared to the case where only the CCD is used.

The lower SNR for intensi�ed cameras is a standard problem for astronomers (Tul-
loch and Dhillon, 2010; Tubbs, 2003) and could in our case render the observation
of small Bose-Einstein condensates di�cult, as the condensed and thermal velocity
distribution are very similar (see Sec. 11.5) and the intensi�er noise is much larger
than typical Poissonian noise for CCD cameras. On the other hand the intensi�er is
crucial for the detection of single photons which is impossible using a CCD camera
only (see Sec. 4.5).

4.7 Conclusion

In this chapter we discussed in detail the characterization of the light intensi�er unit
in the single and multi photon regime. It is a useful device to enhance the single
photon response above the CCD camera noise levels. It furthermore serves as an
e�cient shutter even for high repetition rate applications. Its disadvantages lie in the
low e�ciency that is usually less than the one of CCDs or EMCCDs and the rather
high noise generation. Our image analysis is based on a counting algorithm that is fast
and e�cient when the background is �at and when the events are well separated. The
photon response distribution is well reproduced by the theoretical model based on the
description of avalanche processes. We showed that the intensi�er has a tendency to
produce neighboring peaks which lead to a small overestimation (∼ 1 %) of counted
photon events.
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A single atom inside the optical dipole trap is the ideal object to characterize and
calibrate our experimental setup (Darquié, 2005; Beugnon, 2007). In this chapter we
discuss some of the experiments that we pursued to retrieve information about quan-
tities such as the depth of the optical dipole trap, residual magnetic �elds, collision
rate with the background gas etc..

5.1 Résumé

Ce chapitre explique comment nous utilisons un atome unique pour sonder son envi-
ronnement (mesure de la profondeur du piège dipolaire, mesure du champ magnétique
résiduel ... etc) et mesurer le taux de collisions avec le gaz résiduel dans la chambre
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Figure 5.1: Single atom spectroscopy of the cycling transition

52S1/2F=2,mF =±2↔52P3/2F
′=3,m′F =±3. a) The probe frequency is scanned

around the transition 52S1/2F = 2,mF =±2↔ 52P3/2F′= 3,m′F =±3 which undergoes a
light shift induced by the dipole trap light. b) The sequence begins at t= 0 when the single
atom is loaded. At that point the molasses and molasses repumper lasers are switched
o� during the entire sequence with length tSeq = 40 ms. The trap power is ramped from
initially P0 = 21.5 mW to a variable �nal value Pf in ∼ 3 ms. The probe laser is held at
s∼ 0.3 and is scanned in frequency over a range of 80 MHz during 1 ms. Finally, the trap
power is switched back to its initial value.

ultra-vide. La série d'expériences présentées dans ce chapitre montre les possibilités
comme les limites de notre système et constitue la base pour les travaux suivants.

5.2 Characterization of the optical dipole trap

Important properties about the dipole trap can be inferred by the following three
experiments.

5.2.1 Measurement of trap depth

The trapping laser light induces a light-shift on the atom that shifts the transition
frequencies between the ground and the excited states (see Sec. 1.5.7). Measuring the
transition frequency can be used to infer the light shift seen by the atom and thus
the depth of the trapping potential U . We want to pursue spectroscopy of the closed
cycling transitions 52S1/2F = 2,mF =±2↔ 52P3/2F′= 3,m′F =±3 (see Sec. 1.5.6) for
which only the ground state experiences a light shift ∆52S1/2

given in Eq. 1.39 and
illustrated in Fig. 5.1 a). We use the counter-propagating σ+ − σ− probe laser to
drive simultaneously both transitions.

The experimental sequence is illustrated in Fig. 5.1 b). A single atom is trapped
in our dipole trap at 945 nm having a power of P0 = 21.5 mW. It is adiabatically
(
√
P/kBT ∼

√
U/kBT = const) ramped to its �nal value in 3 ms. It is then illuminated

by the counter-propagating probe laser for 1 ms; during this time the frequency of
the probe laser is scanned over 80 MHz. If the frequency becomes resonant with the
light-shifted atom during the scan photons are scattered by the atom and detected on
the APD. In the end we ramp back the trap power to its initial value P0 and switch
on the MOT light to trigger on the next atom. The sequence is repeated about 500
times.
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Figure 5.2: Single atom light shifted transition spectra. left) Detected photon counts
versus the probe laser frequency for di�erent trap depths corresponding to laser powers of
2.3, 7, 15, 21.5 mW (triangles, crosses, squares, circles) for a trap at 945 nm. The spectra
are �tted by a lorentzian pro�le. right) Center position (blue circles) equivalent to the light
shift ∆52S1/2

and width (red squares) of the lorentzian �t of the spectra versus the trap

depth. The linear �t of the position through the origin has a slope of 2.52±0.02 MHz/mW.

Typical spectra for di�erent trap powers are shown on the left of Fig. 5.2. The
spectra are well-�tted by a lorentzian function according to Eq. 1.28. To estimate
the trap depth we need to take into account possible biases:

• Residual magnetic �elds. External magnetic �elds shift the transition fre-
quency according to Eq. 1.8. In the presence of residual magnetic �elds we
would measure a biased transition frequency and therefore a biased trap depth.
Our magnetic �elds are compensated to ∼ 50 kHz (see Sec. 5.4.1) so that its
in�uence can safely be neglected.

• Finite atom temperature. The initial trap depth U0 corresponds to the
maximal value at the bottom of the trap which the atom sees when it is at
position (x, y, z) = 0 according to Fig. 1.8. But atoms with high temperatures
explore not only the bottom of the trap. The measured trap depth is then a
result averaged over a range of positions each corresponding to a di�erent light
shift and thus also a di�erent trap depth.

We can estimate the temperature bias by calculating the probability for the
atom to see a certain light shift. The light shift experienced by an atom only
depends on its position and thus its potential energy and not on e.g. its ve-
locity. Taking the potential energy probability fth(Epot(r)) to be a Boltzmann
distribution in Eq. 2.18 (see Sec. 3.4.1) and using the equality mentioned in
Sec. 2.3.1

1

V

∫
fth(Epot(r))dr=

∫
Ds(Epot)fth(Epot)dEpot (5.1)

we solve for the density of states Ds(Epot)

Ds(Epot) =
2√

π(kBT )3

√
Epot . (5.2)
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Fig. 5.3 shows the light-shift distribution Ds(δ)fth(δ) for temperatures of 0 µK,
50 µK and 300 µK. For 0 µK we �nd the lorentzian of the Eq. 1.28 centered
around U0/h. For higher temperatures the lorentzian pro�le is convoluted
by the light-shift distribution. The convolution shifts the center position by
~δshift = 3

2
kBT and broadens the line.

For this measurement here, the atom temperature has been measured to be1

T = 50 µK for a trap power of P0 = 21.5 mW. This corresponds to a peak shift of
δshift/2π= 1.6 MHz. The actual trap depth is therefore 1.6 MHz deeper than mea-
sured. On the right side of Fig. 5.2 we show the corrected center position of the
lorentzian peak as a measure of the light shift ∆52S1/2

depending on the trap power.
A linear �t �xed at the origin leads to a slope of 2.52 ± 0.02 MHz/mW which cor-
responds to trap depths of 0.12 mK/mW. The initial trap depth for P0 = 21.5 mW
corresponding to a light shift of ∆52S1/2

= 54 MHz is thus U0/kB = 2.6 mK. Assuming
a Gaussian trapping laser pro�le and using formula Eq. 1.39 and Eq. 1.44 we can
evaluate the product of the beam waists in x and y direction √wxwy = 1.04 µm.

The width of the lorentzian pro�les is 8 ± 2 MHz on average and slightly higher
than the natural line width Γ/2π∼ 6 MHz. The broadening can partially be explained
by the probe laser saturation s∼ 0.3 which leads to a broadening of ∼ 1 MHz for 0 µK.
An additional broadening is due to the temperature. For 50 µK it increases the width
to ∼ 7.8 MHz. This broadening should however decrease for lower trap depths as the
temperature is adiabatically lowered to ∼ 15 µK for 2.3 mW. We do not observe
any notable decrease in width which could be due to heating by the probe laser for
example. Another source of broadening can be attributed to the probe laser line
width2 ∼ 700 kHz.

5.2.2 Measurement of oscillation frequencies

We also measured the oscillation frequency of the single atom inside the dipole trap
to obtain an estimate of the individual waists wx and wy. The idea (Engler et al.,

1The measurement of the single atom temperature inside the dipole trap is discussed in Ch. 6.
2The laser line width has been estimated to be ∼ 700 kHz by measuring the width of the beat

note between two identical laser beams.
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Figure 5.4: Idea of measuring the trap frequencies. a) The atom's total energy is in
form of potential energy. b) After one forth oscillation it converts the potential energy into
kinetic one. c) The atom reaches another point where its total energy corresponds to the
potential energy.

2000) is illustrated in Fig. 5.4. At position rP the atom has reached its maximal
potential energy and has therefore zero velocity. If at this point the trap is switched
o� for a short duration t2 the atom does not move (zero kinetic energy) and should
stay trapped when switching back on the trap. If we wait for ∆t= (n+ 1

4
)tosc, where

tosc is the time to undergo one half oscillation and n= 0, 1, 2, . . ., the atom is at po-
sition rE and has totally converted its potential into kinetic energy. If at this point
the trap is switched o� for t2 it escapes the trap region quickly and the probability
to lose the atom is highest. At times ∆t= (n + 1

2
)tosc the situation corresponds to

∆t=ntosc since the kinetic energy equals zero again. By measuring the recapture
rate of the atom while varying ∆t we should observe oscillations proportional to tosc,
which yields the trap frequency ν = 1/(2tosc).

At each position ri the atom's velocity vi is de�ned by the total energy of the
atom E= 3kBT . Over many realizations the combination of (ri,vi) has a Gaussian
distribution in phase space as mentioned in Sec. 2.3.1 for a thermal distribution.
Averaging over many di�erent initial positions and velocities corresponding to oscil-
lations having the same frequency but di�erent phases would lead to a smearing of
the averaged �nal result. It can be shown that by switching o� the trap for a usually
short duration t1 one can reduce all possible combinations (ri,vi) to those having all
the same phase (Sortais et al., 2007).

The left side of Fig. 5.5 shows the experimental sequence. We trap a single atom
at a trap depth of U0/kB = 2.6 mK. We switch o� the trap a �rst time for t1 = 2 µs to
adjust the atom's phase creating a monopolar mode. We then let the atom oscillate
for ∆t and switch o� the trap again for t2 = 8 µs to check if the atom is at the bottom
of the trap with high kinetic energy (atom is lost) or if it has maximal potential energy
(atom stays trapped). The trap is switched on again and the molasses beams are used
to check if the atom is still present.

On the right side of Fig. 5.5 we show the observed oscillation. We �t the data by
the function3 f(t) = z + a sin(2πν ′xt+ φ1) + b sin(2πν ′yt+ φ2), and obtain νx = ν ′x/2 =

3We checked the validity of the function to extract the oscillation frequencies by comparing to
the result of a Monte-Carlo simulation.



5.2 Characterization of the optical dipole trap 81

t

Molasses

U0

t=0

tSeq

t1 ∆t

Dipole Trap

t2

1.0
0.9
0.8
0.7
0.6
0.5

R
ec

ap
tu

re
 p

ro
ba

bi
lit

y

403020100

∆t (µs) 

Figure 5.5: Oscillation frequency measurement. left) We illustrate the experimental
sequence applied to measure the trap oscillation frequency. A �rst pulse t1 = 2 µs adjusts
the atom's phase. After the oscillating time ∆t we leave the atom a short period t2 = 8 µs
to leave the region of the trap if its kinetic energy is su�cient. The time between the
atom trigger and the atom detection is tSeq = 40 ms. right) The graph shows the recapture
probability depending on the oscillation time ∆t. The �t (black line) leads to frequencies
2νx = 184± 1 kHz and 2νy = 274± 2 kHz.

92 kHz and νy = ν ′y/2 = 137 kHz. We incorporate a factor two due to the fact that
the atom swings back and forth and is lost twice during one oscillation period. Pos-
sible heating e�ects coming into play while adjusting the phase for example can bias
the measurement and are di�cult to estimate. On the other hand the ratio of the
frequencies νx/νy = 1.5 should be una�ected by a possible heating. Together with the
result of the last section √wxwy = 1.04 µm we can calculate waists of wx = 0.9 µm
and wy = 1.3 µm for the x and y directions.

For the dipole trap at 850 nm we �nd a more cylindrical beam with νx/νy = 1.1.
This is probably due to a better alignment of the dipole trap laser on the aspheric
lens. For a beam waist of wx∼wy = 1 µm we deduce a Rayleigh length of 3.6 µm.
The oscillation frequency along this axis is much lower (νz = 30 kHz) and cannot be
measured by this technique due to dephasing and atom loss at longer time scales.

5.2.3 Trap-induced Raman transitions between the hyper�ne

ground states

We want to measure the spontaneous Raman transition rate induced by the trap
light as described in Sec. 1.5.7 as it can lead to a change of the hyper�ne ground
state (Cline et al., 1994). The experimental sequence to do so is shown in Fig. 5.6 a).
We trap a single atom in the dipole trap at 850 nm with U0/kB = 2.7 mK and prepare
it in one of the two hyper�ne ground states for which the atom has a temperature of
150 µK. If we leave only the molasses repumper beams on for 4 ms after the trigger
at t= 0 we can pump the atom into 52S1/2F = 2 with nearly 100 % e�ciency. If on
the other hand we leave the molasses laser beams on and switch o� the molasses
repumper beams for 4 ms we prepare the atom in 52S1/2F = 1. Subsequently, the
trap is adiabatically ramped to its �nal value Uf/kB = 9.9 mK and left there for thold.
The atom temperature has changed from 150 µK to 290 µK. During this time the
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Figure 5.6: �push-out� technique using to measure trap light induced Raman

transitions. a) The graph shows the experimental sequence. A single atom is trapped in
the 850 nm dipole trap at U0/kB = 2.7 mK. The trap is adiabatically ramped to Uf/kB =
9.9 mK in 3 ms and left at this value for thold. The push out is applied at a trap depth of
Ulow/kB = 0.29 mK for 500 µs. Finally, the presence of the atom is checked by switching
on the molasses lasers at the initial trap depth U0/kB = 2.7 mK. b) The uni-directional σ+

�push-out� laser with s∼ 5 drives the closed cycling transition 52S1/2F = 2→ 52P3/2F′= 3.
If the atom is in state 52S1/2F = 2 it will scatter photons and will be heated out of the trap.
An atom in state 52S1/2F = 1 is not driven by the �push-out� laser and stays trapped.

Raman transitions induced by the trap light can lead to a change of the hyper�ne
ground state. If for example the atom is initially prepared in 52S1/2F = 1 it can be
pumped during thold into 52S1/2F = 2. In order to measure in which hyper�ne state
the atom is we apply a �push-out� pulse. After the �push-out� laser we switch back
on the molasses and molasses repumper lasers to check if the atom is still present.

The �push-out� technique based on the state-selective loss of the atom when it is
illuminated by a resonant laser can be used to do a state-selective measurement (Kuhr
et al., 2003; Yavuz et al., 2006; Jones et al., 2007). The principle is shown in Fig. 5.6
b). We use the σ+ probe beam as an uni-directional �push-out� laser at high satura-
tion s∼ 5. The laser drives the cycling transition between levels 52S1/2F = 2,mF = +2
and 52P3/2F′= 3,m′F = +3. If the atom is initially prepared in any Zeeman state in
52S1/2F = 1 it does not scatter any photons and stays trapped. Independent of the
initial Zeeman state an atom in 52S1/2F = 2 will quickly be pumped into the cycling
transition, scatters photons and will be heated out of the trap. The recapture rate
therefore tells us how many atoms were in which hyper�ne state. It is important to
note that the repumper probe laser is switched o� for the �push-out� to work. For
some applications however a lossless state detection is favorable. A lossless detection
scheme is described in Ch. 7.

To improve the e�ciency of the �push-out� technique it is best to work at a low
trap depth Ulow/kB = 0.29 mK for which less photons need to be scattered in order for
the atom to be lost. Also the di�erence in di�erential light shifts between the excited
levels can be held smaller than Γ/2π so that the �push-out� laser is resonant with all
transitions between any two Zeeman states. The �push-out� laser frequency is ad-
justed to the trap induced light shift of 6 MHz to stay in resonance with the trapped
atom. At this trap depth the atom needs to scatter Ulow/2Erec∼ 800 photons, where
Erec = 3.78 kHz is the recoil energy at 780 nm. At full saturation this takes 42 µs
which is largely covered by the length of the 500 µs pulse. Nevertheless, we measure
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Figure 5.7: Measurement of the trap-

light induced Raman transitions. The
single atom recapture rate is measured ver-
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the trap induces hyper�ne changing Ra-
man transitions. A �t is used to extract
the Raman transition rates for an initial
preparation in 52S1/2F = 1 (blue circles) and
52S1/2F = 2 (red squares).

small detection errors of ∼ 0.1 % which can be due to improper laser polarizations.
In this case there is a chance that the atom is depumped into 52S1/2F = 1 during
the �push-out� pulse. The atom stops scattering photons and stays trapped although
having been prepared in state 52S1/2F = 2. We want to add that a uni-directional
beam such as the �push-out� creates a radiation force on the atom4.

Fig. 5.7 shows the experimental data. If the atom is initially prepared in state
52S1/2F = 1, it is recaptured since the �push-out� beam does not lead to any heating.
For longer holding times we see an increasing loss due to Raman transitions from
52S1/2F = 1 into 52S1/2F = 2. To extract a transition rate we set up the following rate
equations

ṖF1 =−RRamanPF1 +
3

5
RRamanPF2

ṖF2 =−3

5
RRamanPF2 +RRamanPF1 ,

(5.3)

where we de�ne PF1 and PF2 to be the probability to be in state 52S1/2F = 1 and
52S1/2F = 2, respectively. RRaman is the Raman transition rate introduced in Eq. 1.43.
The factor 3

5
takes into account the number of degenerate Zeeman levels per hyper�ne

state. The equations are solved by

PF1 =
1

8

(
3 + 5 exp(−8

5
RRamant)

)
, PF2 =

5

8

(
1− exp(−8

5
RRamant)

)
. (5.4)

Fitting the function to the data, we extract RRaman = 3.2 ± 0.3 s−1 and RRaman =
2.9 ± 0.3 s−1 for the atom initially prepared in 52S1/2F = 1 and 52S1/2F = 2, respec-
tively. The theoretical value is calculated from the set of equations 1.43. At 290 µK
the average light-shift that the atom feels is ∼ 9.6 mK for which the Raman rate
equals RRaman = 3.5 s−1 which roughly agrees with the measured values. Note, that
for long times the population PF1 tends to the calculated �nal value of 3

8
.

Trap-induced Raman transitions can hamper proper state preparation over longer
time intervals. Additionally, it can lead to two-body spin-�ip losses (see Sec. 2.2.2)
even if all atoms are initially prepared in hyper�ne state F = 1. One solution to lower

4Radiation pressure leads to an e�ective trap depth that is smaller than Ulow as will be discussed
in Sec. 7.2.2
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the Raman transition rate is to choose a further red-detuned dipole trap as the rate
decreases according to Eq. 1.43. In our case we reduce the Raman rate by a factor
∼ 10 by using a trap at 945 nm rather than 850 nm.

5.3 Lifetime of a single atom inside the dipole trap

Another important quantity is the lifetime of a single atom inside the dipole trap.
There are several loss mechanisms that could explain the single atom losses:

• Background gas collisions. Collisions with the background gas as mentioned
in Sec. 2.2.2 can be one cause of the trap loss. They show an exponential
decrease at a rate γ.

• Trap power and frequency �uctuations. Fluctuations of the trap power or
frequency at frequencies that are multiples of twice the radial or axial trapping
frequency 2ν can lead to parametric heating of the atom (Savard, O'Hara, and
Thomas, 1997). This loss origin can be excluded as power �uctuations are ∼ 5 %
and we measured that the frequency of the power �uctuations does not have
any notable components oscillating at any multiple of the trapping frequencies.

• Trap laser light absorption. Even at far-o� detuned optical dipole traps
the atom does scatter some trap laser photons with rate R as described in
Sec. 1.5.7. Every photon absorbed from the trap light and emitted in a random
direction leads to an increase of the atom's total energy by two photon recoil
energies 2Erec. We assume the atom to have a thermal distributionDs(E)fth(E)
inside the trap which is completely de�ned by the atom's temperature T (see
Sec. 2.3.1). We further assume that the temperature increases linearly with
each absorption and emission process as T (t) =T0 + αt, T0 being the initial
temperature and α= 2ErecR being the heating rate. All atoms that belong to
the energy tail of the distribution with an energy higher than the trap depth U0

are lost as shown in Fig. 2.5. The probability for the atoms to still be trapped
can be calculated by integrating the energy distribution

P (t) =

∫ U0

0

Ds(E)fth(E)dE= 1−

[
1 +

U0

kBT (t)
+

1

2

(
U0

kBT (t)

)2
]

exp
− U0
kBT (t) ,

(5.5)

To measure the single atom life time we use the experimental sequence illustrated
on the left of Fig. 5.8. We start by trapping a single atom inside the U0/kB = 2.7 mK
deep dipole trap. Its temperature is measured to be T0 = 150 µK initially. We leave
the atom in the dark for a time thold and check if the atom is still there afterwards.
Over 100 repetitions we build up the recapture probability depending on the holding
time thold, which is shown on the right of Fig. 5.8. The loss is partially due to collisions
with the background gas ∝ exp(−γt) and partially due to Rayleigh scattering of the
trap light P (t) given in Eq. 5.5. We �t the function Ptot =P (t) exp(−γt) to the data
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Figure 5.8: Single atom trap lifetime. left) At t= 0 we trigger on a single atom in a
dipole trap with wavelength 850 nm and a trap depth U0/kB = 2.7 mK. After the holding
time thold we check if the atom is still trapped. right) Recapture probability versus holding
time. We repeat the measurement for two di�erent oven temperatures 64◦C and 124◦C and
�nd lifetimes of τ = 1/γ= 36 s and τ = 24 s, respectively.

and obtain the collision rate γ= 42±3 ·10−3s−1 and a heating rate of α= 11±8 µK/s
for an oven temperature of 124◦C.

The heating rate α= 11±8 µK/s corresponds to a total of ∼ 30 photons/s that are
absorbed. The theoretical value of R= 70 photons/s is about a factor 2 higher and
can be explained by the sensitivity of α to slight changes in the initial �t parameters
as can be seen on the high error given for α.

For the background gas at room temperature 300 K we �nd a collision rate
γ∼ 10−3s−1 for Rb and hydrogen given in Sec. 2.2.2, for which the density for the
measured vacuum pressure of 10−11 mbar can be calculated as mentioned in Sec. 3.3.2.
The measured values are about a factor 10 higher than calculated. This could be ex-
plained due to a bias measurement of the vacuum pressure or additional background
collisions with atoms coming from the atomic beam. We �nd an indication for these
types of collisions by decreasing the oven temperature from 124◦C to 64◦C, for which
the atomic �ux is divided by a factor ∼ 50. Nevertheless we �nd a collision rate of
γ= 28 ± 4 · 10−3s−1 for the same α, which is only about twice as low as for 124◦C.
The atom beam coming from the oven does therefore only have a small e�ect on the
trap lifetime of the atom.

5.4 Hyper�ne-level spectroscopy for magnetic �eld
compensation

We use hyper�ne-level spectroscopy to compensate our residual magnetic �eld inside
the vacuum chamber. The idea is based on the following: The Zeeman levels of
the two hyper�ne ground states 52S1/2F = 1 and 52S1/2F = 2 can be coupled by using
micro wave (MW) transitions. Note that only the magnetic �eld of the MW radiation
drives the transitions with ∆l = 0 (see Sec. 1.5). By scanning the MW transition
frequency we can resolve distinct resonances each belonging to one pair of Zeeman
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Figure 5.9: Hyper�ne-level micro wave spectroscopy. left) To drive the hyper�ne
transitions we use an antenna as a microwave emitter at 6.8 GHz about r= 12 cm above the
atom outside the vacuum chamber. Two fast switches (10 ns) are used in series to obtain
80 dB attenuation. middle) Level scheme of 87Rb with the displacement of the hyper�ne
levels in an external magnetic �eld B. right) The molasses beams are used to detect and
prepare a single atom in the state 52S1/2F = 1 as well as check if it still there in the end of the
sequence. Just after its preparation the trap is adiabatically lowered from U0/kB = 2.7 µK
to Ulow/kB = 0.3 µK. The MW pulse is used to pump the atom into the 52S1/2F = 2 state
depending on the magnetic �eld set by the compensation coils. The �push-out� pulse is used
to discriminate the hyper�ne level.

states. For the atom in 52S1/2F = 1,mF = 0 there are three possible transitions that
can be driven leading to 52S1/2F = 2,mF =−1, mF = 0 and mF = +1 for a σ−, π or
σ+ polarization as illustrated on the left side of Fig. 5.9. The transition frequencies
depend on the external magnetic �eld (see Sec. 1.4). We can now adjust the magnetic
compensation �eld such that all Zeeman levels belonging to the same hyper�ne level
are degenerate. In this case there is no residual magnetic �eld left and the transition
frequency between any two Zeeman states is the same.

The setup for the MW generation is shown on the left of Fig. 5.9. The micro wave
(MW) frequency is delivered by a MW generator around ν = 6.835 GHz to drive the
hyper�ne-level transition 52S1/2F = 1→ 52S1/2F = 2 in 87Rb. We control two fast MW
switches (2 ns) placed in series and each one having 40 dB attenuation to e�ciently
turn on and o� the MW. Between the switches and the antenna we use a 33 dB
ampli�er to reach a power of ∼ 30 dBm in the antenna. The antenna has a length
of d= λ

4
= c

4ν
∼ 1.1 cm and is placed outside the vacuum chamber about r= 12 cm

above the position of the atom. It has a metallic back plate attached to redirect
some of the power onto the atoms that would otherwise be emitted in the opposite
direction. Note that the geometry of the antenna supports a linear MW polarization.
Re�ections inside the vacuum chamber as well as a missing quantization axis however
create a mix of circular and linear components seen by the atom.

To measure the hyper�ne transition frequencies we follow the experimental se-
quence illustrated on the right of Fig. 5.9. We trap a single atom in our optical
tweezer at 850 nm with trap depth U0/kB = 2.7 mK and prepare it in the 52S1/2F = 1
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ground state by illuminating it for 4 ms with the MOT lasers only and leaving the
repumper MOT lasers switched o�. In this case we do not know in which Zeeman
sublevel the atom is �nally prepared. We will see that on average all sublevels are
populated with approximately equal probability. We then ramp down the dipole trap
during ∼ 3 ms to Ulow/kB∼ 0.3 mK (1 mW) in order for the �push-out� laser to ef-
�ciently discriminate between the occupation of the hyper�ne level, see Sec. 5.2.3.
Before the �push-out� laser we apply a MW pulse for ∆t to drive any transition be-
tween two Zeeman states belonging to di�erent hyper�ne levels. Having prepared the
atom initially in 52S1/2F = 1, we �nd recapture rates of close to 100 % if the MW
frequency is not on resonance with any transition. If however the MW is on resonance
the atom can be transferred into 52S1/2F = 2 with high e�ciency. In this case the
�push-out� leads to the loss of the atom.

We �rst calibrate the power in the antenna in order to estimate the length of
the MW transfer pulse ∆t. MW powers of up to Pmax = 30 dBm can be reached

corresponding to a current in the cable of I0 =
√

2
R
Pmax = 0.2 A for a resistance of

R= 50 Ohm. To measure the magnetic �eld created by the MW at a distance of 12 cm
away from the antenna we use a square antenna as receiver. It has a side length of
5 mm and thus shorter than λ/4 to avoid that destructive interference in�uences the
measurement. In the far �eld (r�λ) the averaged magnetic �eld radiated by an
antenna of length l= 2d is described by

〈B〉= 1√
2

I0 sin(θ)

2ε0cr

l

λ
, (5.6)

where θ is the angle formed by one end of the antenna, its center and the receiver.
According to this equation the antenna should be able to create a MW-induced
magnetic �eld of 〈B〉= 52 mGauss. Experimentally however, we measure a power
received by the receiver antenna of 0± 1 dBm, which corresponds to a magnetic �eld
of 〈B〉= 3 mGauss. It is about one order of magnitude smaller than theoretically
estimated and probably due to bad impedance matching. We take the measured value
and calculate the corresponding MW pulse length to e�ciently change the hyper�ne
level population. The pulse length is given by τ =π/Ω with the Rabi frequency
Ω. We �nd Ω/2π= 0.7 MHz/Gauss · 3 · 10−3 Gauss = 2.1 kHz for the magnetic �eld
〈B〉= 3 mGauss, where gF = 0.7 MHz/Gauss is the Landé factor, and thus a pulse
length of 238 µs.

MW transitions with mF = 0→mF = 0

In the beginning we scanned the RF frequency around the clock frequency ν0 =
6834682.611 kHz. Here we should be able to drive the F = 1,mF = 0→F = 2,mF = 0
transition, which depends on the magnetic �eld in second order as 575.15 Hz/Gauss2

and is therefore much less sensitive to a residual �eld. Estimating the residual mag-
netic �eld to be on the order of one Gauss this transition is much easier to �nd as it
only shifts by 575 Hz and therefore stays inside the power broadened line width of
∼Ω/2π. On the left of Fig. 5.10 the transition encountered around ν0 is shown, for
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Figure 5.10: MW induced hyper�ne transition F=1,mF =0→F=2,mF =0. left)
Dependence of the single atom recapture rate on the MW frequency for a MW pulse duration
of 350 µs. The black line is a �t to the hyper�ne transition spectral line. right) Dependence
of the single atom recapture rate on the MW pulse duration for a MW frequency of ν0 =
6.834682 GHz.

which we optimized the MW pulse length to ∆t= 350 µs. The pulse length is con-
�rmed by a second measurement for which we �x the frequency to ν0 = 6.834682 GHz
and vary the length of the MW pulse ∆t. On the right of Fig. 5.10 we see that the
minimal recapture rate is reached for ∆t∼ 350 µs. We note a drop of only ∼ 30 %.
The reason lies in the fact that only about one third of the atoms are initially in
the F = 1,mF = 0 state. The other two thirds are prepared in F = 1,mF =−1 and
F = 1,mF = +1 which for the chosen MW frequency would only be coupled to the
F = 2 states for a perfectly compensated magnetic �eld.

To understand the data we model the MW transitions in analog to the dipolar
transitions in Sec. 1.5.4 by using the density matrix approach. The MW couples two
hyper�ne states g, e which is a special case of App. B. The Hamiltonian H and the
decoherence part Lρ are taken to be

ρ=

(
ρgg ρge
ρeg ρee

)
, H =

(
0 Ω

2
Ω
2
−∆

)
, Lρ=

(
0 −γρge

−γρeg 0

)
,

where Ω is the Rabi frequency of the coupling between levels g, e. It is directly
proportional to the power of the MW as explained above. ∆ is the detuning between
the MW frequency and the resonance frequency of the g, e transition. The diagonal
entries of the decoherence part are zero, since the lifetime of g≡ 52S1/2F′= 2 can be
assumed to be in�nite for all practical purposes described here. The o�-diagonal
terms γ describe the dephasing of the coherence. An intuitive and easy solution can
be found for a dephasing rate γ= 0 for which the transition probability yields

PF=1→F=2 = ρee =
Ω2

Ω2 + ∆2
sin2

(√
Ω2 + ∆2

t

2

)
. (5.7)

For the transition 52S1/2F = 1,mF = 0→ 52S1/2F = 2,mF = 0, the dephasing due to
residual magnetic �elds can be assumed to be small since this transition is only
sensitive to magnetic �elds in second order. A �t of Eq. 5.7 to the frequency spec-
trum gives a Rabi frequency of Ω/2π= 1.96 ± 0.2 kHz and a center frequency of
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Figure 5.11: Hyper�ne transition F=1mF =0→F=2mF = +1 and

F=1mF = +1→F=2mF =0. left) Recapture rate versus MW frequency (MHz).
For a unknown mix of σ+ and σ− MW radiation this transition line corresponds to the
two transitions F = 1mF = 0→F = 2mF = +1 and F = 1mF = +1→F = 2mF = 0. right)
Dependence of the recapture rate on the MW pulse duration for a MW frequency
ν0 = 6.834730 GHz.

6834681.9 ± 0.6 kHz. Compared to the reference value ν0 the line is shifted by not
more than 1.31 kHz. This corresponds to a static residual magnetic �eld of only
48 mGauss. This value has to be taken with care since the MW generator has an
uncertainty of 5 Hz and possibly a non negligible bias 10 years after its last calibra-
tion. Fitting the Rabi oscillation on the right of Fig. 5.10 by Eq. 5.7 we extract the
Rabi frequency Ω/2π= 1.5 ± 0.1 kHz which is slightly smaller than the �rst value.
The measured Rabi frequency also agrees with the value estimated earlier by using
the receiver antenna. Note that observing the Rabi oscillation without observable
damping after three cycles justi�es the use of a nearly zero dephasing rate γ∼ 0.

MW transitions including mF 6= 0

Knowing the Rabi frequency for the linear polarization permits to search for the
next linear transition F = 1,mF = +1→F = 2,mF = +1. We set the MW pulse to
∆t= 350 ms and scan the MW in steps of 3 kHz to �nd the next transition without
missing it. We �nd it at 6.835378 GHz for which the frequency di�erence with respect
to the �rst transition line is ∆ν = 696 kHz. We look for other transitions at multi-
ples of ∆ν and �nd all other possible transitions at ν0 ± 3∆ν, ν0 ± 2∆ν, ν0 ± 1∆ν.
We conclude that the found transition at ν0 + ∆ν corresponds to a combination of
F = 1,mF = 0→F = 2,mF = +1 and F = 1,mF = +1→F = 2,mF = 0 for σ+/σ− polar-
ization. The frequency di�erence of ∆ν = 696 kHz then corresponds to a residual
magnetic �eld of ∼ 1 Gauss. Resolving all these transitions also proves that the MW
pulses contain all polarizations.

The left graph in Fig. 5.11 shows the transition F = 1mF = 0→F = 2mF = +1 and
F = 1mF = +1→F = 2mF = 0. We notice that the line is much larger than the previ-
ous one which could be due to a much higher Rabi frequency or a dephasing γ� 0. To
measure the Rabi frequency we again measure the Rabi oscillations and �nd a quick
suppression of the coherence as can be seen on the right of Fig. 5.11. The broadening
of the transition is therefore due to dephasing. This is not very surprising as the Zee-
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Figure 5.12: Magnetic �eld compen-

sation. Dependence of the position of the
F = 1,mF = 0→F = 2,mF = +1 transition on
the current in the compensation coils x, y, z.
Near the minimum we �t a parabola to ex-
tract the points of perfect �eld cancelation.
Far away from the minimum we observe a lin-
ear dependence.

man considered levels F = 2,mF = +1/F = 1,mF = +1 depend on a residual magnetic
�eld in �rst order 0.7 MHz/Gauss now. Comparing both data sets with a theoretical
curve (black curve) obtained by solving the Bloch equations numerically we extract
a Rabi frequency of Ω/2π= 1.5 kHz and a dephasing rate of γ/2π= 3 kHz due to
�uctuations of the magnetic �eld (∼ 1 mGauss) for example. The Rabi frequency is
slightly smaller for this σ+ or σ− transition than for a linear polarization. For this
transition we therefore have to work with a MW pulse length of 666 µs.

5.4.1 Compensating residual magnetic �elds

The compensation coils in the three directions x, y, z (see Fig. 3.2) can now be used
to compensate residual �elds and level out all Zeeman hyper�ne levels. We stick with
the F = 1,mF = 0→F = 2,mF = +1/F = 1,mF = +1→F = 2,mF = 0 transition which
shifts with the magnetic �eld as 0.7 MHz/Gauss. We change the current in the coils,
which changes the magnetic �eld and thus the splitting between the hyper�ne Zeeman
levels, and follow the new position of the transition. The position depends on the
magnetic �eld as the absolute value of the B-�eld vector B=

√
B2
x +B2

y +B2
z . For

e.g. the z-direction we observe that far away from the minimum, the position changes
linearly with the current. In this regime we can calibrate the compensation coils and
�nd a slope of 540 kHz/A which corresponds to 0.77 Gauss/A. The geometry of the
coils allows a calculation of the magnetic �eld inside the vacuum chamber. The coils
with n= 16 windings have a square shape with a length and width of a= 17 cm. The
distance between them is L= 16 cm. Using the Biot-Savart law, we �nd a magnetic
�eld for one coil

B(z) =
µ0

2π

nIa2

(
(
a
2

)2
+ z2)(a

2

2
+ z2)

1
2

, (5.8)
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Figure 5.13: MOT coil calibration. left) Dependence of the number of detected pho-
tons on the probe frequency around the F = 2,mF = +2→F′= 3,m′F = +3 transition. The
dependence is shown for a current of 0, 1, 2, 3, 4.5 A (from right to left) in the MOT coils.
right) Center position and width of the atomic distribution versus the MOT current.

where µ0 is the vacuum magnetic permeability. The equation is valid for positions
on the z-axis passing both square coils in their center. We assume the atom to be
on axis at z= 0 which corresponds to the center between both coils. Both coils can
thus be found at z=±L/2 with respect to the atom. The total magnetic �eld on the
atom is then calculated to be Btot/I = [B(−L/2) + B(L/2)]/I = 0.94 Gauss/A and
slightly higher than measured.

We �nd the same behavior for the x and y direction. We �nish by measuring
the position around the minimum of the magnetic �eld to make sure that we have
found the global minimum. The residual shift of ≈ 50 kHz corresponding to a residual
magnetic �eld Bres≈ 70 mGauss could be explained by a dynamic rotating magnetic
�eld which can not be compensated with our static compensation coil setup. The
actual source of the residual �eld could not be identi�ed so far. Nevertheless, the
compensation directly resulted in a sub-Doppler temperature of the single atom of
35 µK directly after it is loaded from the melasses, see Sec. 9.2.

5.4.2 Calibration of the MOT coils magnetic �eld

We want to calibrate the MOT coil pair that is aligned in z-direction and which are
not limited to 1.54 Gauss as the compensation coils. To calibrate the MOT coils we
do spectroscopy on the cycling transition 52S1/2F = 2→ 52P3/2F′= 3 as performed to
measure the trap depth in Sec. 5.2.1. We apply the same sequence and measure how
the transition shifts when varying the magnetic �eld. Note that we now use a σ+

polarized uni-directional probe with s∼ 0.4.

The atomic distributions can be seen on the left of Fig. 5.13. With 0 A in the
MOT coils the atom distribution is shifted by 55 MHz due to the light shift induced
by the dipole trap. The shift due to the residual magnetic �eld is negligible here.
We see how the distribution center moves to lower frequencies with higher MOT coil
currents. The line width of 8.5 MHz does not change with the MOT coil current
and is again slightly larger than the natural line width of 6.1 MHz. We show on the
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right side of Fig. 5.13 that the position of the distribution varies linearly with the
coil current. A �t shows a variation of −11.7 ± 0.02 MHz/A which corresponds to
−8.36 Gauss/A. We again estimate the magnetic �eld using the Biot-Savart law. For
round coils the equation is

B(z) =
µB

2

nIR2

(R2 + z2)
3
2

. (5.9)

The MOT coils are placed in Helmholtz geometry and have a diameter of R= 8.5 cm.
The distance between the coils is therefore also R= 8.5 cm. Each coil consist of n= 81
windings and can carry up to 10 A. We calculate a magnetic �eld of −8.5 Gauss/A,
which is again slightly larger than the measured value of −8.36 Gauss/A.

5.5 Conclusion

This chapter concentrated on a detailed study of important experimental parameters.
We discussed a characterization of the optical dipole trap and measured quantities
such as the trap lifetime limited by collisions with the background gas. Furthermore,
we compensated residual magnetic �elds by doing MW hyper�ne spectroscopy. The
compensation yields a calibration of the magnetic �eld coils. These measurements
are all based on the detection of a single atom by using the APD. The next chapter
will show how the CCD camera can also be used to detect single atoms and measure
quantities such as its temperature for example.
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This chapter describes two independent techniques that can be used to measure
the temperature of a single atom inside the optical dipole trap. The �rst technique
relies on the CCD camera where we perform �uorescence imaging of the atom after its
release from the trap. The time-of-�ight expansion of the atomic spatial density dis-
tribution is observed by accumulating many single atom images. The position of the
atom is revealed with a spatial resolution close to 1 µm by a single photon event, in-
duced by a short resonant probe. The expansion yields a measure of the temperature
of a single atom. It is in very good agreement with a second independent technique
which is based on a release-and-recapture method. The atom is released from the
dipole trap and eventually recaptured after a variable period of time depending on
its initial energy. We reconstruct the recapture rate as a measure of the temperature
by repeating the sequence and checking the presence of the atom each time. Here,
the atom detection relies on the APD and is therefore not a�ected by any bias of
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the imaging system which would a�ect the result of the time-of-�ight �uorescence
integration method.

The comparison of both methods provides a way of eliminating any possible bias
on the imaging system. This calibration is useful for experiments where we study
the behavior of a cloud of a few tens or hundreds of cold atoms held in the trap
(see part IV). In this regime the cloud can be very dense and light scattering of
near-resonant light used for diagnostic purposes may exhibit a collective behavior
(see e.g. (Sokolov et al., 2009)). It is therefore important to understand the optical
response of the imaging system in the single atom case to interpret the images in the
multi-atom regime where collective e�ects may come into play. Moreover, because the
atoms can be illuminated right after their release from the dipole trap, our method
allows us to explore the properties of the momentum distribution of such a gas in the
near-�eld regime.

6.1 Résumé

Nous avons réalisé l'imagerie de �uorescence d'un atome en vol libre, en accumulant
de nombreuses images contenant un événement photonique unique correspondant à
un seul atome. Nous avons utilisé la technique de temps de vol pour mesurer la
température de l'atome après extinction du piège optique. Cette mesure de la tem-
pérature a été con�rmée par une méthode indépendante basée sur une technique de
lâcher-recapture (Fuhrmanek et al., 2010b). La grande ouverture numérique de notre
système d'imagerie et le con�nement extrême des atomes dans le piège permettent
une haute résolution spatiale de l'ordre de ∼ 1 µm. Le faible niveau de bruit de notre
système d'imagerie donne des images montrant ∼ 150 atomes avec un très bon rap-
port signal sur bruit (∼ 20). Ces mesures ont été e�ectuées dans des conditions où le
mouvement des atomes au cours de l'éclairage par la sonde peut être complètement
négligé. Nous avons ainsi obtenu une caractérisation très précise de notre système
d'imagerie. En�n, les mesures et l'analyse présentées dans ce chapitre fournissent
une calibration utile pour les expériences de temps de vol à plusieurs atomes (cf.
chapitres suivants), où les interactions atomiques joueront un rôle central.

6.2 Single-atom temperature measurement by using
time-of-�ight imaging

Time-of-�ight imaging of ultra-cold atomic gases in expansion is a common way to
study their properties. It provides a direct measurement of the momentum distri-
bution and is therefore routinely used to extract the temperature of cold thermal
samples (Lett et al., 1988). It can also give access to spatial density or momentum
correlations in atomic ensembles. While �uorescence imaging is widely used in ex-
periments to detect single trapped atoms ,(Schlosser et al., 2001; Kuhr et al., 2001;
Nelson, Li, and Weiss, 2007), and sometimes spatially resolve them (Sortais et al.,
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2007; Miroschnychenko et al., 2006; Bakr et al., 2009), �uorescence imaging of freely
propagating single atoms has been demonstrated only recently (Bücker et al., 2009).
In that experiment, cold atoms are released from a trap and fall under the gravity
through a sheet of light, which is imaged on an intensi�ed CCD camera using e�-
cient collection optics. The presence of an atom is revealed by an individual spot
corresponding to the detection of many �uorescence induced photons. The detection
e�ciency of a single atom is close to unity and the spatial resolution (. 10 µm) is set
by the motion of the atom in the light sheet.

In our setup we can follow a complementary approach where we perform time-of-
�ight �uorescence imaging of a single Rb atom in free space, based on single photon
detection, with a spatial resolution of ∼ 1 µm. A single atom is �rst trapped in
a microscopic dipole trap and then released in free space where it evolves with its
initial velocity. To detect the atom and locate it with the best accuracy possible,
we illuminate it with a very short pulse of resonant light and collect the �uores-
cence on an image intensi�er followed by a CCD camera. The presence of the atom
is revealed by a single photon event. We repeat the experiment until the spatial
distribution of the atom is reconstructed with a su�cient signal-to-noise ratio; the
accumulation of successive single atom images yields an average result that exhibits
the same features as would a single experiment with many non-interacting atoms.
Average images recorded for increasing time-of-�ights allow us to measure the root
mean square (abbreviated rms) velocity of the atomic expansion, and thus the tem-
perature of a single atom. This method allows to measure temperatures over a wide
range (∼ 50nK-∼ 10K).

6.2.1 Requirements for time-of-�ight imaging of a single atom

The principle of a time-of-�ight experiment is to measure the position of atoms after
a period of free expansion. From the rms positions of the atoms, one extracts the
rms velocity σv of the atoms. We measure the position of the atom by illuminating
it with resonant laser light and collecting its �uorescence. This method requires that
the position of the atom changes by less than the resolution of the imaging system
during the light pulse. The imaging system is di�raction limited with a resolution
σdiff = 0.5 µm. This imposes a pulse duration of τ <σdiff/σv. Typically, for a rubidium
atom at the Doppler temperature (TDoppler' 150 µK), this yields probe pulses as short
as 4 µs. For a collection e�ciency of ∼ 1 % and a scattering rate R≈Γ/2' 2 ·107 s−1,
the number of detected photons per pixel would approach unity in single shot, which
is well below the capabilities of the CCD camera.

We solve this issue by inserting the light intensi�er described in Ch. 4 in front of
the CCD camera. The intensi�er acts as a fast shutter (opened during the probe pulse
only), and ampli�es a single photon event to a level about two orders of magnitude
above the noise level of the CCD camera, see Ch. 4. Using this intensi�er, the presence
of one atom is revealed by one single photon event (the case of detecting more than
one photon emitted by a single atom during the probe pulse is very unlikely).
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Figure 6.1: Time-of-�ight sequence.

Time sequence for a time-of-�ight experi-
ment. Note that the time axis is not drawn
to scale. The loading sequence lasts ∼ 1 s,
while the adiabatic cooling, time-of-�ight,
and probing sequences are much shorter.
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6.2.2 Experimental sequence and results

The experimental sequence is summarized in Fig. 6.1. It starts with loading and
cooling a single atom in the U0/kB∼ 2.2 mK deep dipole trap at 850 nm. The mo-
lasses cooling beams are switched o� immediately upon detection of the atom. The
single atom is kept in the dipole trap for an extra 30 ms where the trapped atom can
be further cooled by adiabatically (

√
U/T = const) ramping down the trap depth to

Ulow. We also use this 30 ms interval to let the atoms in the molasses spread out,
with all cooling beams having been switched o�. This precaution is taken in order
to minimize light scattered by the background molasses during the subsequent probe
pulse.

After the single atom is trapped and cooled, the dipole trap is switched o� and
the single atom time-of-�ight experiment takes place. We let the single atom �y
for a variable time ttof and then illuminate it by a 2 µs pulse of probe light. We
use the counter-propagating (to avoid radiation pressure force) probe and repumper
probe laser (see Sec. 3.3.5). The saturation parameter of the probe light is s∼ 1 for
each beam. At the same time, the intensi�er is switched on for 2 µs and the probe-
induced �uorescence is collected by the intensi�ed CCD camera. The loading sequence
is then started again, in order to prepare for the next time-of-�ight experiment.
The acquisition of one image for a given time-of-�ight is performed by repeating
the experimental sequence described above, with a cycle rate of ∼ 0.5 − 2 s−1 and
accumulating the total �uorescence light on the CCD. When a su�cient number of
photons have been detected (typically 100), the CCD chip is read out and the image
is displayed. Note that, for each sequence, the CCD receives light only during the 2 µs
the intensi�er is on. In this way the intensi�er also serves as a fast switch, preventing
stray light from reaching the CCD during the cooling and trapping phases.

Figure 6.2 shows typical images taken for time-of-�ights as long as 50 µs. The
longer the time-of-�ight, the lower the peak signal, and the larger the number of
accumulations required. For a measured rms size σ' 1 µm (corresponding to the
time-of-�ight tTOF = 1 µs of image i)), we perform ∼ 3400 sequences, correspond-
ing to 3400 single trapped atoms, and detect 150 photons (this number of photons
is extracted from an independent calibration of the intensi�er response to a single
photon event, see Ch. 4). This means that the probability to detect a single atom
in a single realization of the experiment is 4.4 · 10−2 when using a 2 µs-probe. At
R= Γ/2 this corresponds to a detection e�ciency 2.2 · 10−3 and is well explained
by the collection e�ciency of 3.8 % up to the PBS of Table 3.2, the PBS transmis-
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Figure 6.2: Single-atom images in a time-of-�ight measurement. Results of a
typical single atom time-of-�ight experiment. The atom is released from a trap with depth
U ∼ 0.08mK. The rms size of the �cloud� is plotted versus the time-of-�ight of the single
atom after it is released from the dipole trap. The dashed line is a �t to the data (diamonds),
using Eq. (6.1). The solid black line is the result from a Monte-Carlo simulation described
in the text. We show a typical error bar (for ttof = 1µs) obtained by repeating the same
experiment several times. Insets show images and associated cross-sections of the data for
three particular time-of-�ights. Each image results from the detection of a large number
of successively trapped single atoms. The rms size of the cloud is thus the rms position
of a single atom after a given time-of-�ight. Image i) corresponds to 3400 sequences and
150 detected photons, and therefore 150 detected atoms. Image iii) corresponds to 12000
accumulations and 520 detected atoms.

sion of 50 % (Sec. 3.3.5) and the quantum e�ciency of the intensi�er photocathode
(ηintensifier∼ 10 %) (see Sec. 4.6).

The images are well �tted by a 2D Gaussian model, for which we extract the rms
width in pixel. The rms size in the plane of the atoms can be evaluated considering
that each pixel has a size of 13 µm and the radial magni�cation of the imaging system
is ∼ 26 ± 2. One pixel therefore corresponds to 0.5 µm. Within the error bars the
images possess symmetry of revolution. We plot the rms size σ of the expanding
�cloud" along one axis versus the time-of-�ight ttof . We �t the data shown in Fig. 6.2
by the general form

σ(tTOF) =
√
σ(0)2 + σ2

vt
2
tof , (6.1)

that gives the rms position of a particle after a time-of-�ight ttof when the initial
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E�ect rms size (µm)
Intensi�er 0.9± 0.2
Di�raction (σdiff) 0.5± 0.1
Atomic thermal distribution (σ⊥(0)) 0.3
Depth of focus (σ‖(0)) 0.1
Atomic displacement during τ (στ,thermal) 0.04
Atomic random walk (στ,scatter) 0.02
Quadratic sum 1.1± 0.2

Table 6.1: Spatial resolution budget of our system, when the light source is a single atom
with temperature T = 20 µK illuminated by a probe pulse with duration τ = 2 µs (see text).
The rms size of the global response is the quadratic sum of the di�erent rms contributions.

position and the velocity are taken from distributions with standard deviations σ(0)
and σv. We �nd σ(0) = 1.1 ± 0.1 µm and σv = 45 ± 2mm.s−1. The energy distribu-
tion of a single atom in the trap being a thermal Maxwell Boltzmann distribution
(Sec. 3.4.1) this translates into a temperature T =mσ2

v/kB = 21± 2 µK.

Let us now compare the result for σ(0) to the expected rms radial position of an
atom in equilibrium and trapped in a harmonic potential with depth U and transverse
size w0 (at 1/e2), i.e.

σ⊥(0) =

√
kBT

mω2
⊥
, (6.2)

where ω⊥ is the radial oscillation frequency of the atom in the trap. With ω⊥ ∼ 2π ·
26 kHz and T = 20 µK, we �nd σ⊥(0) = 0.3 µm, below the di�raction limit of the
imaging system. Taking the latter into account, we should thus expect a rms size of
0.6 µm at null time-of-�ight, i.e. a factor 1.8 below the actual data (0.5 µm).

6.2.3 Spatial resolution of our imaging system

In order to understand the size at ttof = 0, we investigated experimentally the e�ects
that contribute to the loss in resolution of our imaging system and lead to the mea-
sured value σ(0). These e�ects are listed in Table 6.1 and sum up quadratically to
yield a value of 1.1 µm, in agreement with the measure of σ(0) obtained in Sec. 6.2.2.

The dominant contribution comes from the loss of resolution of the imaging sys-
tem due to the intensi�er as described in Sec. 4. The second largest contribution
comes from the di�raction limit of the imaging optics, which is due to the numerical
aperture of the aspheric lens, and was tested by removing the intensi�er and illu-
minating a trapped atom for 100 ms. In this case, the atom acts as a point source
for the imaging system and the associated response on the CCD is well �tted by a
Gaussian shape with a size σdiff = 0.5± 0.1 µm.

The thermal distribution contributes for 0.3 µm due to the transverse size of the
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Figure 6.3: Measuring the depth of focus by using a single atom. left) The
simulated position distribution (red circles) for an atom at 150 µK and a defocus of 4 µm
has a rms width of 1.19 µm in agreement with the result of Eq. 6.3. Although a Gaussian �t
(blue line) deviates from the simulated result we extract a very close rms value of 1.39 µm.
right) The measured rms size (red circles) is shown for di�erent defocus. It agrees with a
Monte-Carlo simulation (blue dotted line) taking into account the longitudinal pro�le of the
thermal distribution (grey �lled curve) with a width σ‖(0) = 1.6 µm. Also shown: Analytical
result for the defocus using Eq. 6.3 (dashed green line).

distribution σ⊥(0), and 0.1 µm due to the e�ect of depth of focus associated to the
longitudinal size of the distribution σ‖(0). We measured this e�ect of the depth of
focus by imaging a single trapped atom for various positions of the trap along the
optical axis of the imaging system. The right plot in Fig. 6.3 shows the rms size of
a Gaussian �t to the data, although for large values of the defocus δz they slightly
deviate from a Gaussian (left plot in Fig. 6.3). The results tend asymptotically to
the expected rms value σdefocus of a disc with uniform intensity and radius δz tanα

σdefocus =
1

2
δz · tanα , (6.3)

where α is related to the numerical aperture by sinα= NA. For large values of the
defocus, the main contribution comes from the depth of focus, which scales linearly
with the defocus according to Eq. 6.3 (dashed green line)1.

Furthermore, we analyze the contribution of the movement of the atom during
the probe pulse. Firstly, the photons scattering by the probe induces a random walk
of the atom, leading to a rms position in the plane perpendicular to the probe beam

στ,scatter =
1

3
vrec

√
R τ 3/2 , (6.4)

where vrec is the recoil velocity, R is the spontaneous emission rate, and τ is the
duration of the probe pulse (Jo�e et al., 1993). Secondly, the atom moves during the
probe pulse due to the thermal velocity. The accumulated position distribution for a
radially symmetric cloud can be calculated by

1The measurement can also be used to measure the axial magni�cation of the micro trap laser
between the �ber and its focal point in the plane of the atom. Moving the �ber by 120 µm we displace
the atom by 4 µm resulting in an axial magni�cation of g−2

x = 5.5 comparable to the theoretical result
in Sec. 3.3.5.
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Figure 6.4: Probe-laser e�ect on the position distribution. left) Simulated (red
circles) pro�le of position distribution of a single atom at 150 µK and a probe length of
20 µs. The theoretical result of Eq. 6.5 (black dots) has a rms of 0.9 µm. A Gaussian
�t (blue line) with an rms of 0.2 µm is also shown. right) rms size of an imaged single
atom, versus the duration of the probe pulse. The data (red circles) are in good agreement
with the simulation results (blue dotted line). Also shown : analytical rms contributions of
Eq. 6.4 (dotted green line) and of Eq. 6.6 (dashed line).

P (r)∝
∫ t2

t1

1

σ2
⊥ + σ2

vt
2

exp

(
−1

2

r2

σ2
⊥ + σ2

vt
2

)
dt . (6.5)

The left image in Fig. 6.4 shows a simulated position distribution for τ = t2 − t1∼
t2 = 20 µs that is very well reproduced by Eq. 6.5. An analytical calculation of the
associated rms displacement yields

στ,thermal =σv τ/
√

3 (6.6)

Both contributions (6.4) and (6.6) broaden the image of a single atom when the du-
ration of the probe τ is increased. We tested this e�ect by increasing τ up to 30 µs,
as shown on the right of Fig. 6.4. Although negligible for 2 µs probe pulses and
atoms at 150 µK (as is the case in Fig. 6.4), this e�ect alone would be comparable to
the intensi�er response if we were using pulses as long as 20 µs in the perspective of
scattering more photons per shot and thus detect single atoms with a larger e�ciency.

We con�rmed the analysis above by a Monte-Carlo simulation that takes into
account all the e�ects mentioned above. It reproduces accurately our experimental
data (see Fig. 6.3 and Fig. 6.4). Here, the simulation indicates a signi�cant deviation
from a Gaussian shape for long probe durations or large values of the defocus as shown
on the left images in Fig. 6.4 and Fig. 6.3, respectively. This is also the reason why
the contribution of Eq. 6.6) is larger than both experimental and simulated results
for long probe durations in Fig. 6.4. Because of the presence of noise in our imaging
system, see Sec. 6.2.5, we did not consistently observe signi�cant deviations on the
real images and could not calculate any reliable value for the rms size of the images.
We thus �tted our images with a Gaussian model and compared it to a Gaussian �t
of our simulation. The discrepancy between the analytical expression Eq. 6.6 and the
results in Fig. 6.4 is an indication of the error that we make by doing so. Note also
that we have not included in the model the potential e�ect of the cooling of the atom
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Figure 6.5: Time-of-�ight measure-

ment of a single atom. We show
the time-of-�ight measurements with corre-
sponding simulation for two di�erent tem-
peratures: T = 20 ± 2 µK (blue diamonds)
and T = 150 ± 16 µK (red circles). The
dashed lines (respectively blue and red)
show the results of Eq. 6.1 for the same tem-
peratures and σ0 =σ⊥(0).

by the counter-propagating probe beams.

6.2.4 Temperature results

We now come back to the temperature result obtained by �tting the data using
Eq. 6.1. Among all the e�ects that degrade the resolution, the depth of focus is the
only one that varies with the time-of-�ight as the atom can �y in the direction parallel
to the optical axis. Therefore, Eq. 6.1 is not strictly valid in our case. We now use
the Monte Carlo simulation mentioned above to �t the data shown in Fig. 6.2. The
starting point of this simulation is a thermal distribution with a temperature that we
adjust in order to reproduce the data. We �nd T = 20± 2 µK. Not surprisingly, this
result is in good agreement with the rough analysis mentioned in Sec. 6.2.2, since the
e�ect of the depth of focus is small.

Fig 6.5 also shows a measurement for a higher temperature T ∼ 150 µK, achieved
by leaving the dipole trap depth unchanged after loading it with a single atom. This
detection method is therefore applicable over a large range of temperatures with no
anticipated limitation in the low temperature range. We note that although Eq. 6.1
is not applicable for short time-of-�ights, we can however use it for expanded clouds
where the size varies linearly with time as σ∼σvt and is independent of the initial
value. Here, only the defocus in�uences the result. By using the analysis of the last
section we �nd that we overestimate the temperature by ∼ 20 % using Eq. 6.1.

6.2.5 Analysis of the noise of the imaging system

We now address the issue of the noise of our imaging system. The peak signal in
the time-of-�ight image shown in Fig. 6.2(i) is 30600 adu in 1 pixel and corresponds
to the detection of ∼ 150 single atoms after 3400 shots of 2 µs probe pulses. Nor-
malized to one shot, the mean peak signal is thus 9 adu in 1 pixel. This should be
compared to the background noise, which results from three contributions shown in
Fig. 6.6: read-out noise from the CCD camera, a background noise contribution from
the probe light, and a background noise contribution from spurious light (other than
probe light).

We have measured the read-out noise of the CCD camera and found 12 adu in one
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image. This noise is independent of the number of shots Nseq performed to acquire
the image, since the CCD is read out only once after the probe pulses have illumi-
nated the atom and the associated scattered light has fallen on the CCD. Normalized
to one shot, the read-out noise of the CCD thus scales as 12 adu/Nseq. By contrast,
the contributions, per shot, of the probe light and spurious light, scale as 1/

√
Nseq.

The three contributions were measured independently and add up quadratically to
yield the data shown in Fig. 6.6. The signal to noise ratio is by far limited by the
probe light contribution, which is due in part to scattering by atoms of the Rb beam
intersecting the trapping region, and in part to scattering by the optics mounts under
vacuum. We decrease this noise contribution by reducing the waist of the probe beam
from 6 mm to 1 mm in all following experiments. A noise calibration for the smaller
probe waist is described in Sec. 8.3.4.

Figure 6.6 allows us to extract the number of sequences necessary to reach a given
signal-to-noise ratio. As explained at the end of Sec. 6.2.2, the probability to detect
one photon (and therefore one atom) in single shot is 4.4 · 10−2 using a 2 µs-duration
probe, meaning that 23 shots are necessary to detect on average one photon. For
a time-of-�ight image to be correctly �tted, we have found that we need typically
100 detected photons, which implies 2300 sequences. For instance, in the case of
the image shown in Fig. 6.2(i), the signal to noise ratio is ∼ 20, while it is ∼ 9 for
Fig. 6.2(iii).

6.3 Measuring the temperature by using a release-
and-recapture method

We use the release-recapture technique to cross check the temperature measurements
done by the time-of-�ight �uorescence integration method. It has been introduced by
measuring the temperature of a molasses (Lett et al., 1988) and can easily be applied
to a single atom. The experimental sequence is shown on the left of Figure 6.7. We
work in the exact same conditions as for the time-of-�ight measurement to allow for
comparison. The method uses the APD to detect the presence or the absence of
the atom in the trap after release for a variable time trel. Averaging over typically
200 sequences we reconstruct the recapture rate depending on the release time. It
is based on the idea that hotter atoms leave the trap region faster than colder ones
during the release time. The results obtained by the release-and-recapture method are
shown on the right of Fig. 6.7. A �t using a Monte-Carlo simulation (Darquié, 2005;
Beugnon, 2007; Tuchendler et al., 2008) to the data yields a temperature T = 19±2 µK
and 149 ± 15 µK for an atom in a trap depth of Ulow/kB =U0/kB∼ 2.2 mK and
Ulow/kB∼ 0.08 mK, respectively, and is in good agreement with the results of the
time-of-�ight method. The agreement is also a con�rmation of the calculated radial
magni�cation 26± 2 of our imaging system.
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Figure 6.6: Image noise contributions. Noise contributions, normalized to one shot,
of our imaging system, versus the number of shots performed to acquire an image. The
total rms noise (solid lines) is the quadratic sum of three contributions that were measured
independently : the CCD read-out noise (red dash dotted line) and the background contri-
butions due to spurious light (red dotted line) and probe light (dashed lines). The latter
is larger when the atomic beam is switched on (case (2): black dashed line) than when
it is o� (case (1): red dashed line), due to the scattering by atoms of the atomic beam
intersecting the probe beam. In both cases, the quadratic sum of the three contributions
is in good agreement with the measured rms values of the total noise (black triangles and
red circles, respectively). The peak signal, normalized to one shot (blue horizontal lines)
is shown for two values of the time-of-�ight, tTOF = 1 µs and tTOF = 50 µs, corresponding
to images shown in �gure 6.2(i) and (iii). The vertical dashed line indicates the minimum
number of shots required to detect one atom.

6.4 Conclusion

We have performed �uorescence imaging of a single atom in free �ight by accumu-
lating many images containing a single photon event corresponding to a single atom.
We used this time-of-�ight technique to measure the temperature of the atom after
release from the optical dipole trap. This temperature measurement was con�rmed
by an independent method based on a release-and-recapture technique (Fuhrmanek
et al., 2010b). The large numerical aperture of our imaging system and the extreme
con�nement of the atoms in the trap allow a high spatial resolution on the order
of ∼ 1 µm. The low noise level of our imaging system yields images showing ∼ 150
atoms with a very good signal to noise ratio (∼ 20). These measurements have been
performed in conditions where the atomic motion during the probe pulse can be com-
pletely neglected (see table 6.1). We thus obtained a very accurate characterization
of the optical performance of our system. Finally, the measurements and the analysis
presented provide a calibration of our imaging system for time-of-�ight experiments
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Figure 6.7: Release-and-recapture measurement of a single atom. left) Experi-
mental sequence used for the release-recapture method. A single atom is trapped and cooled
in the dipole trap U0. After adiabatic lowering to Ulow the trap is switched o� for trel. The
trap depth is then ramped back up to U0 and we check for the presence of the atom. right)
Release-and-recapture measurements of a single atom for the same loading and cooling pa-
rameters as in Fig. 6.5. The �t (lines) yields T = 19± 2 µK and 149± 15 µK (data points
are in blue squares and red circles, respectively).

where many atoms are con�ned in a microscopic dipole trap, and where interactions
may play a central role.
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In Sec. 5.2.3 we discussed the �push-out� technique to measure the hyper�ne state
of an atom. Although this technique has been proved to be e�cient and quantum pro-
jection limited (Jones et al., 2007), it does not discriminate between detection-induced
losses from any other unwanted losses1. In this chapter we describe the implementa-
tion of a state detection that relies on a �uorescence measurement (Wineland et al.,
1980) without losing of the atom. The idea is the following: We identify a bright and

1This has been a major di�culty for calculating the entanglement �delities using single neutral
Rydberg atoms (Wilk et al., 2010; Isenhower et al., 2010)
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a dark state to each hyper�ne ground state. The bright state is coupled to an excited
state by a closed optical transition. The signature of the bright state population is
the emission of �uorescence light by the atom when it is illuminated by a probe laser
tuned to this transition. The signature of the dark state population, on the contrary,
is the absence of �uorescence due to the large hyper�ne splitting of 6.8 GHz. As this
method relies on photon scattering, the energy of the probed atom or ion increases
with the number of recoils. In the case of e.g. ions, trap depths of several thousands
of Kelvins are typical, leading to a very e�cient state detection with a negligible loss
probability. There, detection �delities as high as 99.99 % have been reported (Myer-
son et al., 2008).

However, the detection technique mentioned above, when applied to neutral atoms,
is hampered by the small trap depth, typically lower than a few milliKelvins. The
heating induced by the probe laser leads more easily to the loss of the atom before
one can collect enough photons to decide in which state the atom is. One way to im-
plement lossless and yet e�cient detection is to place the trapped atom in an optical
cavity. Thanks to the Purcell e�ect, the �uorescence rate is enhanced in the cavity
mode such that enough �uorescence photons can now be collected without losing the
atom. Recently, two experiments demonstrated the state selective detection of a sin-
gle atom using an optical cavity with reported �delities larger than 99.4 % (Bochmann
et al., 2010; Gehr et al., 2010).

In our setup we can simply make use of our aspheric lens with a high numerical
aperture to e�ciently collect the �uorescence emitted by an atom trapped in an opti-
cal dipole trap, without the need for a cavity. We follow this route and demonstrate a
single-shot detection of the internal state of a rubidium 87 atom trapped in an optical
tweezer. The �delity of this state selective detection method is 98.6 % in 1.5 ms and
the probability to lose the atom during the detection is less than 2 %. Similar results
have been found by Gibbons et al. (2011).

The bright state used in our experiment is the hyper�ne Zeeman state |↑〉=
|5S1/2, F = 2,mF = +2〉. It is coupled to the excited state |e〉= |5P3/2, F

′= 3,m′F =
+3〉 by a closed transition at λ= 780 nm. The advantage of using a closed transition
is that no depumping into other states, e.g. dark states, takes place. The dark state
can be any Zeeman state of the (5S1/2, F = 1) manifold, including |↓〉= |5S1/2, F =
1,mF = +1〉 2. It is separated from the bright state by ∼ 6.835 GHz. Let us estimate
the feasibility of the state detection, using probe light tuned to the transition between
|↑〉 and |e〉. To do so, we consider an atom prepared at the bottom of our dipole trap
at 850 nm in state |↑〉 and we estimate the number of absorption-spontaneous emis-
sion cycles that elevate the energy of the atom by an amount equal to the trap depth
U . For U/kB = 2 mK (typical value for our experiment), this number is on the order
of U/2Er∼ 5000 (Er = ~2k2

2m
is the recoil energy induced by a photon with a wave vec-

2The states |↓〉 and |↑〉 are commonly used as qubit states and can be manipulated by micro-
waves (Kuhr et al., 2003) or Raman lasers (Yavuz et al., 2006).
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tor k= 2π/λ, m is the mass of the atom). This number puts constraints on the probe
light parameters in order to detect the atom without losing it. Taking for the satura-
tion parameter s= I/Isat = 0.1 and for the probe duration ∆t= 1 ms yields a number
of scattered photons Γ

2
s

1+s
∆t∼ 2000 during the probe pulse, below the 5000 photons

calculated above. Using an imaging system with a detection e�ciency of 0.6 % (see
Sec. 3.3.5), one thus expects to detect ∼ 11 �uorescence photons in 1 ms. As our noise
level is well below 1 photon during this time, the bright state |↑〉 should be identi�ed
unambiguously. Based on this estimation we implement this method on a single atom.

The �rst step is to prepare the atom in the qubit states |↓〉 and |↑〉. The prepa-
ration procedure will be described in the next section. In a second step we want to
focus in more detail on the approximation made above that justi�es a reliable state
read-out without loosing the atom (see Sec. 7.3). Finally, Sec. 7.4 focuses on the
read-out of the state and the measure of its �delity.

7.1 Résumé

Nous avons mis en place une lecture de l'état interne d'un atome unique piégé dans
la pince optique sans perte d'atome. Cette méthode est basée sur la détection de la
�uorescence induite par la sonde. La �délité de la détection de l'état atomique est
actuellement de 98.6 % sur un coup, avec des améliorations techniques possibles à
l'avenir. Combinée à notre capacité à contrôler e�cacement les états internes des
atomes (Jones et al., 2007; Wilk et al., 2010), cette détection d'état non-destructive
complète notre boîte à outils pour l'ingénierie quantique. En outre, l'absence de
perte d'atome évite le rechargement de l'atome après chaque mesure, améliorant
ainsi le rapport cyclique de nos expériences. Elle évite également des corrections
a posteriori lors de l'exécution d'opérations quantiques sur un ensemble de qubits
d'atomes neutres (Fuhrmanek et al., 2011).

7.2 State preparation by optical pumping

We want to distinguish between the preparation into a hyper�ne level and a spe-
ci�c Zeeman sub-level as their e�ciency measurements rely on di�erent experimental
techniques.

7.2.1 Hyper�ne state preparation

We measure the �delity of the preparation in 5S1/2,F = 2 or 5S1/2,F = 1 by using the
�push-out� technique introduced in Sec. 5.2.3. The preparation sequence is shown
in Fig. 7.1. We load a single atom in a U0/kB = 2.7 mK deep trap and ramp down
the trap to Ulow/kB = 0.3 mK corresponding to a light shift of ∼ 6 MHz. During the
entire sequence the compensation coil currents are set such that the residual magnetic
�eld is minimized to ∼ 70 mGauss as described in Sec. 5.4.1. In this con�guration
the atom is sub-Doppler cooled to 35 µK. It corresponds to the kBT

hν
∼ 4th vibrational
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Figure 7.1: Single atom hyper�ne

state preparation sequence. We load
a single atom in a trap with U0/kB =
2.7 mK and adiabatically ramp it down to
Ulow/kB = 0.3 mK. Here, we prepare the
atom in the state a) 5S1/2,F = 2 by using
the repumper probe laser or b) 5S1/2,F = 1
by using the pumper laser.

t
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3ms

Dipole trap
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b) Pumper
a) Repumper

1ms1ms

level of the trap with its radial oscillation frequency being ν = 162 kHz. We now
distinguish between the preparation in a) 5S1/2,F = 2 and b) 5S1/2,F = 1:

• a)5S1/2,F = 2 We use the uni-directional σ+ repumper probe laser to pump the
atom into 5S1/2,F = 2. If the atom is initially in 5S1/2,F = 1 the atom scatters
on average 2 photons before it is pumped into 5S1/2,F = 2. The probability for
the atom to scatter less than two photons for a repumper probe time of only 1 µs
is already as low as 10−3 for a laser saturation of s∼ 2. Once in 5S1/2,F = 2 the
atom does not scatter laser photons any more and remains in the trap unheated.
We can therefore choose our repumping interval much larger (1 ms) to increase
the preparation probability without extra heating. Afterwards the �push-out�
is used to detect the atom hyper�ne state. Finally, we ramp back up the dipole
trap power to U0 and check if the atom is still present by using the molasses
beams. We �nd a hyper�ne state preparation e�ciency of 99.97 %, obtained
by recapturing 2 atoms after 6000 cycles3.

• b)5S1/2,F = 1 We use the uni-directional σ+ pumper laser for 1 ms to prepare
the atom into 5S1/2,F = 1. The pumper laser is on resonance with the 6 MHz
light-shifted transition 5S1/2,F = 2→ 5P3/2,F

′= 2 with saturation s∼ 0.1. If
the atom is initially in 5S1/2, F = 2 the atom scatters on average 2 photons to
be pumped into 5S1/2,F = 1. We again use the �push-out� beam to detect the
atom hyper�ne state and �nd preparation e�ciencies similar to case a).

The �push-out� technique is insensitive to the preparation of a particular Zeeman
state. The next section will show how the preparation in state |↑〉= |5S1/2, F =
2,mF = +2〉 is achieved.

7.2.2 Zeeman state preparation

Figure 7.2 illustrates the preparation into state |↑〉. As before we prepare the atom
in a trap with Ulow/kB = 0.3 mK and a residual magnetic �eld Bres = 70 mGauss.
Here, we illuminate the atom with the preparation lasers, i.e. the uni-directional σ+

repumper probe and pumper laser, for a time tpump. Initially we do not know in which

3There is a very small probability (< 1 %) that an atom is lost before the �push-out� pulse is
applied, which would lead to an overestimation of the preparation e�ciency by < 10−5.
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Figure 7.2: Single atom optical pumping sequence. left) Experimental sequence used
to prepare a single atom in the state 5S1/2F = 2,mF = +2. right) Rb level scheme under a
magnetic bias �eld Bz =−1 Gauss. The pumper laser drives the atom into state |↑〉. The
linear trap polarization points in z-direction and is thus parallel to the magnetic bias �eld.

state the atom has been prepared. The repumping laser is necessary in case the atom
was initially in one of the 52S1/2F = 1 Zeeman states. The pumping laser is necessary
to pump the atom into the state 52S1/2F = 2,mF = +2. Assuming the atom having
been prepared in the 52S1/2F = 2,mf =−2 state it only takes ∼ 20 photons to pump
it into 52S1/2F = 2,mf = +2 with e�ciencies of 99.999 %, which can be calculated by
solving the rate equations as given in App. C. For a pumping laser saturation s∼ 0.1
we estimate tprep∼ 20 µs for the preparation. In a perfect situation the atom would
then be pumped into |↑〉 and would stop scattering more photons even if the laser
pulse exceeds 20 µs. In this case the atom would stay unheated in |↑〉 resulting in a
recapture rate ∼ 100 %. There are however several experimental issues for which this
is never entirely the case and a drop in the recapture rate can be observed:

• Improper quantization axis A quantization axis which is not parallel with
the preparation laser leads to a improper laser polarization seen by the atom. If
the preparation laser polarization is not properly σ+ polarized, the atom keeps
scattering photons since it is never really pumped into the dark state |↑〉. We
can therefore impose a quantization axis by applying a bias magnetic �eld Bdir

parallel to the preparation laser in z-direction.

• Residual magnetic �eld Figure 7.3 shows the e�ect of a residual magnetic
�eld Bres,⊥ that is perpendicular to the preparation laser direction. This mag-
netic �eld depumps an atom prepared in state mF = +2 into mF = +1 at the
rate of the Larmor frequency ΩB = gFmFµB

~ Bres,⊥. The depumping leads to a
heating of the atom since it continues to scatter photons from the pump laser
�eld as it is never well prepared in the dark state mF = +2. A bias magnetic
�eld Bdir can help here, too. It reduces the depumping rate thanks to the
introduced Zeeman level shift ∆∝Bdir as explained below.

In order to estimate the e�ciency of the preparation in themF = +2 Zeeman state,
we calibrate our bias magnetic �eld and analyze the residual heating rate induced by
the preparation lasers.
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Figure 7.3: Preparation laser heating

due to magnetic depumping. We show
the main Zeeman sub-levels that participate
in the state preparation using the σ+ pump-
ing laser. A residual magnetic �eld perpen-
dicular to the pumping laser leads to a cou-
pling ΩB between the ground Zeeman levels,
which have an energy di�erence ∆ induced
by the bias magnetic �eld.

σ+

52S1/2F=2 mF= +1 

52P3/2F’=2,mF’=+2
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ΩΒ

Pumper

Calibration of the magnetic �eld director

The �rst experiment in this context is a �ne tuning of the pumper frequency. The
magnetic �eld stays at Bres and the preparation laser length at tprep = 2 ms. Fig-
ure 7.4 shows the recapture rate as a function of the pump laser frequency driving
the 52S1/2F = 2→ 52P3/2F′= 2 transition. If the laser is resonant with the transition
the atom keeps scattering photons and is heated out of the trap. The line has a
width of ∼Γ/2π as expected for a cold trapped atom and is shifted by ∼ 4 MHz with
respect to the vacuum transition frequency, here taken to be 0 MHz. The shift is due
to the dipole-trap induced light shift and is slightly smaller than the expected 6 MHz
for a trap depth of 0.3 mK. The discrepancy could be due to the acoustic optical
modulator that is working at the edge of its radio frequency bandwidth. This is also
the reason why we did not scan the transition line entirely.

We continue by adjusting the bias magnetic �eld strength Bdir. On the left side
of Fig. 7.5 we change the �nal value of the bias magnetic �eld Bdir using the z−coils
and measure the single atom recapture rate. It is very low for no bias �eld in the
z−direction. Here, a residual magnetic �eld perpendicular to the z-direction leads to
a mixing of the Zeeman sub-levels and an inhibits the preparation of a proper dark
state. Increasing the magnetic �eld we observe a sharp rise of the recapture rate
which already levels o� for very small bias �elds of Bdir∼ 0.2 Gauss. For higher �elds
the atom is more e�ciently pumped into the dark state and scatters less photons. It
is therefore less likely to lose the atom in this situation.

For a theoretical description we restrict ourselves to states g≡ 52S1/2F = 2,mF = +1
and e≡ 52P3/2F′= 2,mF′ = +2 to be coupled by the residual magnetic �eld (in anal-
ogy to the micro-wave spectroscopy in Sec. 5.4). The Rabi frequency ΩB corre-

Figure 7.4: Pump laser transition.

Single atom recapture rate versus the
pumping laser frequency driving the
5S1/2F = 2→ 5P3/2F′= 2 transition. A
lorentzian �t (black line) reveals a width
of ∼Γ at a ∼ 4 MHz light-shifted position.
The scan is cut to the left due to limitations
of the AOM.
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Figure 7.5: Single atom state preparation. left) Single atom recapture rate versus
the magnetic �eld imposed by the z-compensation (blue circles) coils for a duration of the
pumper pulse of 2 ms. The black line is a lorentzian �t. right) Dependence of the recapture
rate versus the duration of the pumper pulse for a bias magnetic �eld Bdir =−1 Gauss. The
black line is a �t of Eq. 5.5.

sponds to the Larmor frequency in this case and the level shift ∆ is the Zeeman
level shift imposed by the bias �eld Bdir (see Sec. 1.4). We �t Eq. 5.7 and �nd
ΩB/2π= 39 kHz corresponding to a residual magnetic �eld perpendicular to the z-
direction Bres,⊥= 56±9 mGauss, which is very close to the value measured in Sec. 5.4
of Bres = 70 mGauss. This means that ∼ 20 % of the residual magnetic �eld is actu-
ally along z, which corresponds to an angle of cos−1

(
56
70

)
∼ 38◦ that the B-�eld vector

forms with the x− y plane (see Fig. 3.2).

We want to work at a bias �eld much higher than 0.2 Gauss but not too high
to avoid that the bias �eld shifts the Zeeman sub-levels out of resonance with the
preparation lasers. We choose for the bias �eld Bdir =−1 Gauss for which the Zeeman
shift is still smaller than the atomic line width Γ/2π and the lasers stay on resonance
with the trapped atom.

Preparation laser heating rate

In order to measure the heating rate we do the following experiment. We change the
preparation pulse length tprep and measure the recapture probability shown on the
right side of Fig. 7.5 for a bias magnetic �eld Bdir =−1 Gauss. We use the model
introduced in Sec. 5.3 to extract the heating rate α. A �t of Eq. 5.5 illustrated by the
black line on the right side of Fig. 7.5 yields α= 2.5 ± 1 µK/ms and the trap depth
Ulow/kB = 0.21±0.07 mK, the initial atom temperature being a constraint parameter
of the �t at T0∼ 11 µK. The extracted trap depth is lower than the expected value
Ulow/kB = 0.3 mK obtained by measuring the trap laser power. This is due to the
radiation force e�ect induced by the uni-directional preparation laser in Eq. 1.28.
Fig. 7.6 shows how the original trap pro�le with depth Ulow/kB = 0.3 mK is inclined
due to the radiation pressure force and results in an e�ectively lower trap Ulow/kB =
0.15 mK. This value agrees with the �t result.

The measured heating rate can be used to estimate the population Π in states
other than F = 2,mF = +2. We �nd ΠF=2mF 6=+2 = α

2Erec
Γ
2

s
1+s

= 0.4±0.2 % with a pump-
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Figure 7.6: E�ective trap depth due

to radiation pressure. In the absence of
any near-resonant light the 0.3 mK deep
trap has a Gaussian shape (black dashed
curve). Resonant light at e.g. s∼ 0.1 cre-
ates a radiation force on the atom which
produces a tilted Gaussian pro�le (red
curve) with an e�ectively smaller trap depth
0.15 mK.
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ing laser saturation parameter of s∼ 0.1. The preparation e�ciency into the state
|↑〉 is therefore 99.6± 0.2 %.

Note that the measured value agrees within the error bar with the theoretical
result of Eq. 5.7. There, we calculate a population in F = 2,mF 6= +2 of 0.3 % for a
bias magnetic �eld of Bdir =−1 Gauss and a residual magnetic �eld perpendicular to
the z-axis of 55 mGauss.

7.3 Understanding the lossless state read-out

Fig. 7.7 shows the preparation procedure as it is used in the following. We always
work with a single atom in a trap Ulow/kB = 0.3 mK at 11 µK. The repumper laser
is switched on for 1.6 ms to ensure a proper preparation in F = 2 as discussed in
Sec. 7.2.1. 1 ms after switching on the repumper laser, the pumper laser is used for
500 µs to pump the atoms into |↑〉, while the magnetic �eld is Bdir =−1 Gauss. On
the right side of Fig. 7.5 we see that for 500 µs the atom stays still trapped with
a high probability. On the other hand it is su�cient for a proper preparation as
the atom only needs to scatter photons during 20 µs on average to be pumped into
|↑〉. After the preparation we can change the trap depth to Uf and probe the closed
transition |↑〉↔ |e〉 (see Fig. 1.5). The state read-out must be performed by using
the probe laser to conserve a hyper�ne-sensitive result. No repumper laser should be
used here, otherwise we would lose all information on the initial state since we would
detect photons no matter which state the atom has been prepared in.

Figure 7.7: State |↑〉 preparation and

read-out sequence. A single atom is
prepared in a Ulow/kB = 0.3 mK deep trap
with a temperature of 11 µK by adiabatic
lowering from U0/kB = 2.7 mK in ∼ 3 ms.
The 1.6 ms repumper pulse is superim-
posed on a 500 µs long pumping pulse
(s∼ 0.1) for preparation. The read-out is
done at trap depth Uf by using the probe
laser. Finally, we check for the presence of
the atom.
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Figure 7.8: Atom heating due to probe laser. left) Single atom recapture probability
versus the probe duration tprobe. The atom is in a trap of Uf/kB = 1.7 mK (Uf/h= 36 MHz)
and heated by the probe laser with s∼ 0.3 and frequencies 10, 35, 50 MHz (green circles, red
squares, blue triangles) blue detuned with respect to the vacuum resonance. A �t of Eq. 5.5
allows to extract the heating rates α= 0.02±0.005, 1.6±0.6, 0.2±0.1 mK/ms, respectively.
right) The heating rate α is shown versus the probe detuning δ. A lorentzian �t (Eq. 7.1)
has a width of 8±2 MHz and slightly broader than the natural line width Γ/2π. The center
is at 35.6± 0.1 MHz and corresponds to the light shift Uf/h.

There are two di�culties in detecting the prepared state without losing the atom.
First, we need to make sure that we detect enough photons before the atom is lost.
In the introduction we estimated that our collection e�ciency is high enough to ful�ll
this requirement. Second, using the probe laser only, we need to make sure that the
atom cycles in the closed transition and is not depumped into the F = 1 manifold
before or during the readout. In the next section we will take a look at the atom loss
due to the probe heating and we will then address the depumping rate.

7.3.1 Probe-induced atom loss

We choose a trap depth of Uf/kB = 1.7 mK and study the heating process of the
atom inside the trap illuminated by our uni-directional probe laser. We also use the
repumper probe laser to avoid depumping into the F = 1 manifold. Depending on
the length of the probe interval the recapture rate of the atom changes as can be seen
on the left side of Fig. 7.8. Here, we measure the single atom loss for several probe
laser frequencies keeping its saturation constant s∼ 0.3.

We again use Eq. 5.5 to model the data on the left of Fig. 7.8 and extract the
heating rate α considering that the probe laser leads to an e�ective trap depth smaller
than 1.7 mK due to radiation pressure. On resonance for example it decreases the
trap depth to 1.3 mK. The heating rate α= 2ErecR is proportional to the �uorescence
rate

R=
Γ

2

s

1 + s+ 4
(
δ−Uf/~

Γ

)2 , (7.1)

which has a lorentzian pro�le (see Eq. 1.28). A �t with �xed saturation s= 0.3 yields
a width of 8.5 ± 0.3 MHz again slightly larger than Γ due to the �nite temperature
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and high saturation parameter. The peak is at 35.7±0.1 MHz and is compatible with
the trap depth Uf/kB = 1.7 mK (Uf/h= 36 MHz). The peak height 1.6± 0.6 mK/ms
is explained by 2Erec

Γ
2

s
1+s

= 1.6 mK/ms.

7.3.2 How closed is the closed transition?

The closed transition is not completely closed due to the residual magnetic �elds,
improper light polarization and trap-light induced Raman transitions. During or
before the read-out interval this can lead to a change in hyper�ne level and a loss of
information. Let us estimate these contributions.

Raman transitions

The trap-induced Raman transitions have been discussed in Sec. 1.5.7. If a Raman
transition occurs between the state preparation and read-out we would measure the
bright (dark) state although it has been prepared in the dark (bright) one. We can
minimize the Raman transition rate by decreasing the time between preparation and
read-out pulses between which we only apply a linear adiabatic ramp from Ulow/kB =
0.3 mK to Uf . For a trap depth Uf/kB = 1.7 mK the ramp has a duration of 3.5 ms.
For typical probe time length tprobe of 1 ms the depump rate from |↑〉 into |↓〉 is
∼ 0.1 % by using Eq. 1.43.

Probe-induced depumping

Due to the large but �nite level spacing between F ′= 2 and F ′= 3 of 266 MHz there
is a small probability s

1+s+4(266/6)2 ∼ 10−5 (s∼ 0.1) to be excited into 52P3/2F′= 2 by
the probe laser if the atom is in any Zeeman sub-level 52S1/2F = 2 except |↑〉. From
the excited state 52P3/2F′= 2 it deexcites into 52S1/2F = 1 with 50 % chance and does
not scatter any probe photons.

We want to estimate the depump rate. No matter in which Zeeman sub-states of
52S1/2F = 2 the atom is initially prepared in, it quickly cycles into the closed tran-
sition due to the σ+ polarization of the probe laser. We assume the atom to be in
|↑〉 during the probe interval (probe with s∼ 0.1) with the same probability 99.6 %
as during the preparation interval (pumper with s∼ 0.1). This can be justi�ed by
the fact that the probe laser beam has the same polarization characteristics as the
pumper laser beam as they pass the exact same optics. Overall the probe-induced
depump rate from |↑〉 into |↓〉 is estimated to be ∼ 10−5 · 0.5 · 0.004 = 2 · 10−8 and is
therefore negligible.

Experimentally we can get an indication of the low depump rate into the dark
state by monitoring the scattered photons emitted by the single atom during the probe
read-out pulse. After the preparation process the trap is ramped to Uf/kB = 3 mK
and the atom is illuminated with the unidirectional probe for 3 ms. The probe fre-
quency is set to 70 MHz to be resonant with the trapped atom. We perform two
measurements where we compare the detected �uorescence in two situations: In the
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Figure 7.9: Probe-induced depump

probability. Fluorescence of a single atom
averaged over 500 sequences with two dif-
ferent probe pulse powers of 0.05 Isat and
0.1 Isat. The black curves correspond to the
�uorescence when the repumper probe laser
is additionally switched on. The recapture
rate over 500 sequences is 99 % and 70 %,
respectively.

�rst case we use the probe laser only. Once depumped into |↓〉 the atom stops �uo-
rescing and we detect a decrease of the �uorescence over time. In a second scenario
we additionally use the repumper probe laser in which case a depumping into |↓〉
should not lead to any decrease of the �uorescence.

Figure 7.9 shows the �uorescence detected by the APD averaged over 500 se-
quences. For a probe intensity s= 0.05 the �uorescence level stays constant and the
atom is not heated out of the trap, which is also indicated by the recapture rate which
we measure to be 99 %. Adding the repumper laser does not change the amount of
detected �uorescence. This means that the atom seems to stay in the cycling transi-
tion throughout the probing interval without being depumped into |↓〉. For a higher
probe intensity 0.1 Isat the �uorescence is initially about twice as high but quickly
decreases. The decrease can be attributed to the heating and subsequent loss of the
atom due to the scattering process. This reasoning would be supported by the recap-
ture rate which decreases to 70 %. A second e�ect for a decreasing �uorescence may
be the changing light shift. In the deep trap the atom will be heated by the probe
laser. The hot atom will quickly be driven out of resonance with the probe due to
the light shift which changes with temperature via the atomic motion. Again we do
not have any indication for a depumping into |↓〉 since almost the same �uorescence
is observed using the repumper probe laser in parallel with the probe.

The result for s= 0.05 shows that the atom can scatter at least 1500 photons
without being depumped in the state 52S1/2F = 1. And even for s= 0.1, corresponding
to 3900 photons scattered, the atom does not seem to be considerably depumped in
the state 52S1/2F = 1 either. This measurement is unfortunately not sensitive enough
to measure the depump probability precisely. It gives however an intuition that
the �uorescence is not much in�uenced by a possible depumping. A more accurate
measurement could be done by applying the �push-out� technique after the probe
interval.

7.4 State detection of a single atom

We now want to measure the �delity of the state read-out, i.e. the detection e�ciency
of the atom in state |↑〉 and |↓〉. This can be done by measuring the detected photon
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Figure 7.10: Detected photon distribution. left) Histogram of the photon detection
probability versus the number of detected photons when the atom is in |↑〉 (red bars) or |↓〉
(blue bars) for a trap depth of 0.3 mK, a probe pulse length of 0.75 ms and s∼ 0.01. The
black dashed line is a Poissonian �t to the data. right) Same situation as on the left but
for an atom in a 1.7 mK trap, a duration of the probe pulse of 1.5 ms and s∼ 0.06. The
sequence is repeated 10000 times. The red �t is a simulation taking into account shot-to-shot
�uctuations of the dipole trap.

distributions of the atom when it is in the dark or bright state. We measure both
distributions for several trap depths Uf/kB = (0.3; 0.4; 0.9; 1.3; 1.7) mK and maximize
the collected �uorescence for the atom in the bright state |↑〉 allowing a maximal
atom loss of 2 %. Note that in addition to the probe induced losses, we measure an
atom loss probability of 1 % intrinsic to our set up, due to errors when testing for
the presence of the atom at the beginning and at the end of the sequence (0.6 %,
see Sec. 3.4.1) and to the vacuum limited lifetime τ = 24 s (see Sec. 5.3) of the single
atom in the dipole trap (0.4 %). In the results presented below we post-select the
experiments where the atom is present at the end of the sequence.

Optimized values are found for the probe length τ = (0.7; 0.75; 1; 1.25; 1.5) ms,
saturation parameter s= (1; 2; 4; 5; 6) · 10−2 with ±30 % uncertainty and the probe
frequency close to resonance with the atom for each trap depth. The low saturation
is also chosen to avoid radiation pressure e�ects. We add that the detected �uores-
cence is constant over the probe interval as shown in Fig. 7.9 for s= 0.1. Fig. 7.10
shows the detected photon distributions for two di�erent trap depths 0.3 mK (left
image) and 1.7 mK (right image) averaged over several thousand sequences. If the
atom is prepared in the F = 1 manifold including state |↓〉 we mainly detect APD
dark counts. This clearly changes for a preparation in state |↑〉. The distribution now
contains APD dark counts and the probe-induced �uorescence photon counts. For
smaller trap depths the di�erence between both distributions is less clear since we
are limited by a faster atom loss. We will now analyze the distributions in more detail.

7.4.1 Form of the distributions

The dark distributions are well �tted by a Poissonian law. This is supported by
calculating the Fano factor (∆n)2/n, which equals to one for a Poissonian distribu-
tion. Figure 7.11 shows the calculated Fano factors for varying trap depth. While
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Figure 7.11: Fano factor. Fano factor
of the bright (red squares) and dark (blue
circles) distribution versus the trap depth.
The background Fano factor is close to one
and compatible with a Poissonian distribu-
tion. For the bright distribution it increases
linearly indicating a broadening for higher
trap depths.

the dark distribution is clearly Poissonian type (∼ 1) the bright one di�ers from a
Poisson distribution for higher trap depths. The Fano factor indicates a broadening
which increases linearly with increasing trap depth to ∼ 1.5> 1 for 1.7 mK. It is due
to �uctuations of the dipole trap of < 10 %. We develop a simulation taking into
account these �uctuations by summing many Poisson distributions with mean values
proportional to the scattering rate R given in Eq. 7.1. The scattering rate R de-
pends on the trap power and shifts the atomic resonance frequency due to the light
shift. For each summand we choose a di�erent light-shift according to a Gaussian law
around a mean value Uf/h with a rms width of 10 % of the mean. The normalized
sum reproduces well the distribution for 1.7 mK in Fig. 7.10 (red solid curve on bright
state distribution).

7.4.2 Dark level distribution and background contribution

The background level is composed of several sources:

• APD dark counts The APD dark count rate is measured over a period of
10 sec to be 130± 5 counts/sec.

• Background light There is a probability to detect photons scattered by the
background gas atoms, by the probe laser di�used inside the vacuum chamber
or ambient light sources. On the left side of Fig. 7.12 we see however that this
contribution is negligible as it is indistinguishable from the APD.

• Poor atom preparation The atom preparation into the dark state is not per-
fect and trap-induced Raman transitions can pump the atom from the dark into
the bright state. On the right picture of Fig. 7.12 we compare the background
distribution with the one where the atom has been prepared in the dark state.
Both distributions are not distinguishable from each other which shows that a
poor atom preparation has a negligible contribution.

7.4.3 Bright level distribution

On the left side of Fig. 7.13 the mean detected photon number is shown as a function
of the trap depth. The deeper the trap the more photons can be scattered by the
atom before being heated out of the trap. The dependence is linear which supports



118 Chapter 7: Lossless state detection of a single trapped atom

1.0
0.8
0.6
0.4
0.2
0.0

Pr
ob

ab
ili

ty

43210

n

 APD dark counts
 Entire background
 APD dark counts fit
 Entire background fit

1.0
0.8
0.6
0.4
0.2
0.0

Pr
ob

ab
ili

ty

43210

n

 APD dark counts
 Atom in F=1
 APD dark counts fit
 Atom in F=1 fit

Figure 7.12: APD background levels. left) The distribution of all background contri-
butions (red squares) and APD dark counts only (blue circles) are shown. The mean values
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the APD dark counts emphasizes the Poissonian character of the background counts. right)
The background level on the APD is compared to the distribution obtained for the atom
prepared in the dark state 52S1/2F = 1.

10
8
6
4
2
0

<
n>

1.51.00.50.0

Trap Depth (mK)

4000

3000

2000

1000

0Ph
ot

on
s 

sc
at

te
re

d

1.51.00.50.0

Trap Depth (mK)

Figure 7.13: Mean detected photon number and probe frequency. left) Mean
detected photon number versus the trap depth. A linear �t gives a slope of 5.3 ±
0.1 photons/mK. right) Dependence of the number of scattered photons by the atom (red
squares) on the trap depth. For comparison, the number of photons Uf/(2Erec) that can
maximally be scattered by the atom before being heated out of the trap is shown as blue
circles.

the assumption that the heating process is entirely due to photon scattering. A linear
�t to the mean value has a slope of 5.3± 0.1 photons/mK.

We can use this measurement to estimate the detection e�ciency η of the APD
imaging system. For probe pulses with a length τ , the mean number of photons 〈n〉
scattered by the atom is Rτ . The number of photons detected by the APD can then
be written as

〈n〉= ηRτ . (7.2)

The result at e.g. 1.3 mK with s= 0.05 and τ = 1.25 ms yields 5.2 photons/mK and
is compatible with the measurement taking a detection e�ciency of η= 0.6. It is also
in agreement with the independent measurement of the detection e�ciency discussed
in Sec. 3.3.5. Up to the separation PBS of Table 3.2 the detection e�ciency is 3.8 %.
The PBS with 50 %, the APD �ber coupling 60± 20 % and APD quantum e�ciency
50 % lead to η= 0.6± 0.2 %.
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Figure 7.14: Probe laser frequency.

We plot the probe laser detuning δ versus
the trap depth. For each trap depth the
probe laser frequency needs to be adjusted
to stay on resonance with the light-shifted
atom. The linear �t through the origin has
a slope of 18.6±0.4 MHz/mK and indicates
that the probe laser is slightly red-detuned
with the light-shifted atom, see text.

The number of photons actually scattered by the atom corresponds to the mean
value <n> divided by the detection e�ciency η. It is plotted as a function of the
trap depth on the right side of Fig. 7.13 (red squares). Additionally, the calculated
number of photons that can maximally be scattered by the atom inside the trap
before being lost Uf/(2Erec) is shown as blue circles. We see that we scatter only
half as many photons on the atom as it should theoretically be possible to ensure a
lossless state detection. We note that for the trap depth of 1.7 mK the atom cycles
almost 2000 photons. As discussed at the end of Sec. 7.3.2 a depumping into level
|↓〉 is not expected for these low numbers of scattered photons.

On Fig. 7.14 the optimized probe detuning δ is shown depending on the trap depth.
We observe a linear dependence with a slope of 18.6±0.4 MHz/mK. For a probe laser
on resonance with the atom we would expect the slope to be kB/h= 20.8 MHz/mK.
The probe laser is therefore slightly red-detuned with the atoms at the bottom of the
trap.

7.4.4 State detection �delity

In order to characterize the performance of the state detection we use the state
readout �delity F de�ned in (Myerson et al., 2008):

F = 1− 1

2
(εB + εD) , (7.3)

where εB is the fraction of experiments in which an atom prepared in the bright state
is detected to be dark and, conversely, εD is the fraction of experiments where an
atom prepared in the dark state is found to be bright. To calculate these quantities
we de�ne a threshold nc on the number of detected photons. We consider that an
experiment where more (resp. less) than nc photons are detected during the probe
pulse corresponds to an atom prepared in the bright (resp. dark) state. We calculate
the errors εB and εD using

εB =
nc∑
n=0

PB(n) and εD =
∞∑

n=nc+1

PD(n) . (7.4)
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Figure 7.15: Cut o� parameter nc. left) Dependence of the state detection �delity on
the cut o� parameter nc for the photons detected by atoms in a 1.4 mK trap depth and a
probe pulse length of 1.5 ms. right) Cut o� parameter nc,min that minimizes the read-out
error versus the dipole trap depth.

The left side of Fig. 7.15 shows the readout error ε= 1
2
(εB + εD) versus the threshold

nc, for the same set of data (Uf/kB = 1.7 mK) as shown on the right side of Fig. 7.10.
The curve shows a minimum for nc = 2. From the data in Fig. 7.15, we extract a
minimal readout error of 1.2 % (obtained for nc = 2) i.e. a state detection �delity
F = 98.8 %. We repeated the same experiment 6 times over several days and found
an average �delity F = 98.6± 0.2 % (the error bar is statistical).

We can now study the dependence of the �delity on the trap depth. We note that
for each trap depth a di�erent nc minimizes the error as can be seen on the right
side of Fig. 7.15. Obviously the cut o� changes discretely with the distributions.
Fig. 7.16 shows the minimal read-out error versus the trap depth. Large values of
the trap depth allow us to increase the probe durations to detect more photons.
The black line is the simulated result (black line). For the model we use Eq. 7.3
where we assume the bright and dark distributions to be Poissonian. The mean of
the bright state distribution is taken to be the mean scattered photon number which
increases with the trap depth as shown in Fig. 7.13. For the dark state distribution we
assume a mean value increasing with time due to the dark counts as 0.13 counts/ms.
Furthermore we assume the cut o� parameter nc to behave as shown in Fig. 7.15.
We �nd good agreement between our data and the model for low trap depths for
which the assumption of Poissonian distribution is valid. For higher trap depths the
distributions become super-Poisson (see Sec. 7.4.1) leading to a discrepancy between
the data and the model. The model in this case indicates the ideal case with no
broadening of the distribution. The dips in the black curve are a result of these
discrete jumps of the cut o� parameter nc when going to higher trap depths.

7.4.5 Error budget

We discuss the factors that limit our state detection �delity to 98.6 % and explore
the possibilities for improvement. The main contribution to the error budget (see
Tab. 7.1) comes from the dark counts of our avalanche photodiode and is∼ 1 %. Using
commercially available photodiodes with a lower dark count rate of 25 s−1 (Bochmann
et al., 2010) would readily bring this error contribution down to 0.3 %. A small
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Figure 7.16: State detection �delity.

Dependence of the read-out error on the
trap depth. As the trap depth increases
we can scatter more photons without losing
the atom (The atom loss is held constant
at 2 %). The black line corresponds to a
theoretical model described in the text.

contribution to the error budget comes from the above mentioned imperfect state
preparation in |↑〉 (0.03 %). O�-resonant Raman transitions induced by the dipole
trap light after the preparation phase also contribute for ∼ 0.1 % as they mimic a
bad state preparation by coupling the F = 1 and F = 2 levels, see Sec. 7.3.2. As this
contribution scales approximately as ∆−4 (∆ is the trap laser frequency detuning
with respect to the �uorescence transitions), we estimate that using a trapping laser
with a larger wavelength while maintaining the same trap depth would e�ciently
reduce this error. The remaining contribution, which is presently 0.27 %, comes
mainly from the small number of detected photons 〈nB〉 and hence to a non negligible
value for PB(n≤nc). This error will be harder to reduce as it implies improving the
collection e�ciency on our setup. A small part of the 0.27 % (< 0.1 %) comes from
the impurity of the polarization of the probe laser, leading to optical pumping in the
F = 1 manifold.

Source of error Contribution
Detector dark counts 1 %
Detection ine�ciency 0.27 %
Raman transitions 0.1 %

Imperfect preparation 0.03 %
Total error 1.4 %

Table 7.1: Error budget of our lossless state detection.

7.5 Conclusion

We have implemented a lossless internal state readout of a single atom trapped in the
optical tweezer. This method is based on the collection of the probe-induced �uores-
cence. The �delity of the state detection is presently 98.6 % in single shot, with room
for technical improvements in the future. Combined with our ability to e�ciently
control the internal states of single atoms (Jones et al., 2007; Wilk et al., 2010),
this non-destructive state detection completes our toolbox for quantum engineering.
Furthermore, the absence of atom loss prevents the reloading of the atom after each
measurement, thus improving the duty cycle of the experiments. It also avoids post-
detection corrections when performing quantum operations on a set of neutral atom
qubits (Fuhrmanek et al., 2011). A demonstration of a possible quantum-projection
noise limitation could be for example done by applying the lossless state detection to
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measure Rabi oscillations as discussed in Jones et al. (2007).
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Going to many atoms
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So far we concentrated on single atom measurements which served to a great
extent as a calibration of our experimental setup. For many atom clouds inside the
dipole trap we need to implement techniques to measure their characteristics, too.
Most important are the measurement of the atom ensemble temperature and the
number of atoms. The temperature can be measured e.g. by using the time-of-�ight
or release-recapture method (see Ch. 6). Here, we focus on two methods that can
independently be used to measure the atom number inside the dipole trap. The
�rst method is analogous to the �uorescence integration measurement used to image
a single atom in Sec. 6.2.2. The second method relies on the measurement of the
atom number distribution by using single photon counting. Both methods lead to
the average number of atoms inside the dipole trap.
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8.1 Résumé

Nous avons mis en ÷uvre deux méthodes qui sont capables de mesurer le nombre
moyen d'atomes chargés dans le piège optique. La méthode par intégration de �uo-
rescence est analogue à la mesure par temps de vol décrite dans le Ch. 6 où nous accu-
mulons la �uorescence au cours de nombreuses répétitions. La méthode par comptage
d'atomes est basée sur la détection, au niveau du photon unique, des événements de
�uorescence di�usés par les atomes lorsqu'ils subissent une marche aléatoire dans la
lumière résonante de la sonde. Cette méthode peut être utilisée pour reconstruire
la distribution du nombre d'atomes piégés (Fuhrmanek et al., 2010a) et révéle un
caractère sub-Poissonien dans le micro piège, même en présence de plusieurs atomes.
La méthode permet en outre d'étudier des ensembles d'atomes mésoscopiques, non
seulement lorsque les atomes sont con�nés par un potentiel de piégeage, mais aussi
quand ils se déplacent ou sont libérés du piège, a�n d'accéder aux propriétés hors
équilibre.

8.2 Fluorescence integration method

This method consists in illuminating the cloud of freely propagating atoms by a
2 µs probe pulse, and accumulating the �uorescence detected on the CCD over many
realizations of the experiment. The sequence is similar to the one shown in Fig. 6.1.
Once the trap is loaded, either with exactly one atom, or with N atoms, we switch
o� the cooling and repumping lasers and wait an additional 30 ms before switching
o� the dipole trap. This waiting period allows enough time for the atoms of the
magneto-optical trap to leave the observation region, otherwise they would strongly
contribute to the signal observed with the intensi�er. We then switch o� the dipole
trap (in ∼ 200 ns) and, after a time of �ight of the atoms of 1 µs in free space,
we turn on the resonant probe laser, while gating the intensi�er (at gain 9). We
use the σ+ − σ− counter-propagating probe (s∼ 5) and repumper probe (s∼ 0.5)
lasers. Finally, the CCD camera is read out once after all repetitions of the sequence
are realized. As explained in 6.2.2, after typically several hundreds repetitions of
the experiment, the image shows a nearly Gaussian distribution, reconstructed from
many individual detected events (see Fig. 8.1). We perform this experiment in the
multi-atom regime and then in the single-atom regime for which the �uorescence
scattering rates are Rtot =NRsingle and Rsingle, respectively. We use the latter to
extract the number of atoms N in the multi-atom regime, by calculating the ratio of
the integrated �uorescence values N =Rtot/Rsingle obtained in the two regimes1.

Nevertheless, special care must be taken when the number of interacting particles
involved is small. For instance, when using �uorescence imaging the small number of
atoms combined with the low collection e�ciency makes it hard to collect more than
a few photons per realization of the experiment, therefore preventing the reliable
extraction of the number of atoms in single shot. To circumvent this problem, a

1This approach requires all atoms to scatter at the same rate Rsingle, which is not necessarily the
case for interacting atoms, see Sec. 2.2.3 and 10.3.1.
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Figure 8.1: Image of a cloud contain-

ing 5.3 atoms on average. Result of the
accumulation of 600 �uorescence images ob-
tained with an average number of N̄ = 5.3
atoms released from the micro trap. After a
1 µs time of �ight the atoms are illuminated
by a 2 µs probe and repumper probe pulse.
The CCD camera is read out once after all
accumulations are �nished. The width of
the distribution of ∼ 2 µm is extracted from
a 2D-Gaussian �t (blue) to the data cross-
sections (red). 100 µm
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method was recently demonstrated (Bücker et al., 2009) where freely propagating
atoms fall through a sheet of resonant light leading to the detection of many photons
per atom. The method described below goes in that direction.

8.3 Measurement of the atom number distribution
in an optical tweezer using single photon count-
ing

This method relies on single-photon counting which experimental realization is sim-
ilar to the integration method: We release the cloud of cold atoms from the dipole
trap and let them expand in a resonant light probe for long probe times of several
10 µs. The atoms di�use in the probe in a Brownian motion and emit photons.
Some of the photons are collected by our imaging system and impinge on an image
intensi�er where we count them. After one shot we observe well separated single
photon events on the CCD, which in contrast to the integration method is read out
after each realization. By repeating the experiment several times and recording the
counting results, we reconstruct the distribution of the number of detected photons.
We can again work with exactly one atom, or with a cloud of up to a few tens of
atoms. In this way we perform a calibration of the number of detected photon events
when a single atom is trapped. In contrast to the integration method we can use the
calibration to determine the atom number distribution inside the dipole trap.

8.3.1 Experimental procedure and �uorescence images

The experimental sequence is the same as for the integration method. During the
1 µs time of �ight in free space, the atoms start separating from each other. Then
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Figure 8.2: Photon events on CCD

image. Figure (a) is an image taken
for a 40µs-illumination period of a sin-
gle atom. The region of interest has a
size of 50 µm×50 µm in the plane of
the atoms. Figure (b) shows an image
(100 µm×100 µm) in which about 8 atoms
were released from the trap and illuminated
with a 20 µs probe pulse.

they walk randomly in the light probe and scatter photons at a rate Rsingle∼Γ/2'
2× 107 s−1. Some of the scattered photons are collected on the image intensi�er and
impinge on the CCD at di�erent positions due to the random walk of the atom in the
probe light 2. The total number n of detected events is proportional to the number
of atoms N on average. After each sequence we read out the CCD camera, which
lasts ∼ 500ms, while launching the next loading sequence.

The images shown in Fig. 8.2(a) and (b) were obtained after a single realization of
the experimental sequence. Figure 8.2(a) corresponds to the time of �ight of a single
atom (T ∼ 150 µK) moving randomly in the probe light. Figure 8.2(b) corresponds to
the time of �ight of about 8 initially trapped atoms at T ∼ 1 mK. In both cases, the
detected photons correspond to a large extent to photons being scattered by the atom
and detected by the intensi�er and, to a smaller extent, to photons due to spurious
laser light or self-induced charges generated inside the intensi�er (see more details
below). This fact leads us to adjust the size of the region of interest to the measured
temperature of the atom(s): for a time of �ight of duration ∆t, we choose a square
with side dimension bigger than ∼ 4σv∆t, where σv =

√
kBT/m. This choice leads

to a negligible probability of missing an atomic event, while reducing the number of
background events, which are uniformly distributed on the CCD.

We note that using an image intensi�er is crucial for the experiment because it
enables our imaging system to detect single photon events. In the absence of the
intensi�er, single photon events have an amplitude lower than the noise of the CCD
camera alone (6e−/pixel). The intensi�er ampli�es a single photon event to an average
amplitude of 822e−/pixel at gain 9, well above this noise level (Sec. 4.4).

8.3.2 Procedure for analyzing the images

In order to count the number of events detected on the CCD camera, one has to
decide what one calls an event. In order to do so, we apply the counting algorithm
described in Sec. 4.3 and recall some important issues:

2The detected photon events are distributed around the geometrical images of the atoms ac-
cording to the point spread function of the imaging system, which includes di�raction, residual
aberrations and defocus due to the spatial distribution of the atoms. Given the size of the tweezer
and the temperature of the atoms, the aberrations and the defocus are negligible. The collection
e�ciency therefore does not depend on the position of the atoms.
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Firstly, we know the amplitude distribution of single-photon events recorded by
the intensi�er followed by the CCD camera (see Sec. 4.4). Using this distribution,
we �nd that about 1 % of the events have a peak amplitude smaller than 6σCCD for
an intensi�er gain 9. Our counting procedure thereby does not underestimate the
number of events by more than 1 %. Secondly, we have measured the probability of
counting only one event when actually two events impinge on the detector within a
separation range corresponding to the full width at half maximum of an individual
event. This probability is maximum at the center of the image, where the density
of atoms is maximum, and is for example 2.5 % for 9 atoms released from the mi-
croscopic dipole trap with a temperature T ∼ 150 µK (see Sec. 8.3.5). In this case,
the number of atoms is thus underestimated by less than 2.5 %. This second source
of bias scales quadratically with the number of atoms N , all other parameters being
kept constant. Note, however, that this bias can be easily maintained to a low level
by letting the atomic cloud expand for more than 1 µs before sending the probe light,
as this bias varies approximately as N2/σ4

0 (σ0 is the size of the cloud when we switch
the probe light on)3. As an example, for our micro trap and typical parameters,
this e�ect can be maintained below the 1 % level up to N ∼ 1100 atoms, the only
limit being the size of our CCD detector (1024×1024 pixels, pixel side length 13 µm).

Finally, we observed that a few events with a large amplitude are surrounded by
one (sometimes two) less intense companion peaks, which are indistinguishable from
real events, and which we attribute to second order ampli�cation processes in the
intensi�er micro-channel plates. We evaluated the fraction of such multi-events and
found that by taking into account the companion events we overestimate the number
of real events by no more than4 6 %.

8.3.3 Calibration using a single atom

The �rst step of the calibration of the imaging system as a counting device was to
measure the histogram of the number of background events in one image when no
atom is trapped in the dipole trap. The histogram is shown in Fig. 8.3, which results
from the analysis of 200 images of the background. The probe pulse duration was
∆t= 30 µs. The data are well �tted by a Poisson distribution with average n̄bg = 0.7.

In a second step, we repeated the same experiment with exactly one atom trapped
in the dipole trap. In particular, the probe duration was the same as above (∆t=
30 µs). As the detection e�ciency is small and corresponds to a random collection
of photons, we also expect a Poisson distribution for the number of detected photons
emitted by the atom. In this case, the distribution of detected events, including the
background events, is a Poisson distribution with a mean value:

n̄single = n̄at + n̄bg . (8.1)

3This bias actually decreases faster than 1/σ4
0 due to the depth of focus e�ect.

4In the results presented below we did not use the �sharp� and �round� parameters (see Ch. 4).
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Figure 8.3: Single atom photon event distribution and its calibration. left) Prob-
ability distribution of the number of detected events in one image. The probe duration is
30 µs. Red diamonds: background events (no atom present in the trap). Blue circles: total
number of detected events (including background events) when the dipole trap is �lled with
exactly one atom. In both cases, the probability p to measure a given number a counts
in one image is deduced by analyzing 200 images. The error bar on each data point is
calculated by

√
p(1− p)/200, which we tested by repeatability measurements. A Poisson

distribution �ts the data very well in both cases (dotted lines). right) Average number of
detected photons after scattering by a single atom with temperature 16 µK (blue circles)
or 150 µK (red diamonds), versus the duration of the atom illumination by the probe light.
Linear �ts to the data (dashed lines) yield a photon detection rate Rd = 57200 ± 3100 s−1

for 16 µK and Rd = 61800± 2400 s−1 for 150 µK.

The experimental distribution is shown in Fig. 8.3, together with a �t by a Poisson
distribution. We obtain a good agreement for n̄single = 2.5. This yields an average
number of detected photons, emitted by one atom, of n̄at = 1.8.

Finally, we tested the linearity of our counting system with the duration of the
probe pulse. The results are shown in Fig. 8.3, where we plot the average number of
detected events due to scattering by a single atom, n̄at, obtained after subtraction of
the average number of background events. We �rst performed the experiment with a
single atom with a temperature T ∼ 150 µK and observed a linear dependency of n̄at

with the duration of the probe illumination. A linear �t to the data yields a photon
detection rate, for one atom released from the trap, of Rd = 57200± 3100 s−1 (the
error bar is from the �t). Knowing the detection e�ciency of the imaging system
(∼ 3 · 10−3), see Sec. 3.3.5, we deduce a scattering rate of 1.9 · 107 s−1, in agreement
with the value calculated for the parameters of our probe.

In order to further test the linearity of our counting system, we also performed
the same measurement for an atom adiabatically cooled down to 16 µK (Tuchendler
et al., 2008). In this case, the detected events tend to accumulate on a smaller area
on the I-CCD, due to the smaller velocity of the atom (the time of �ight of the
atom is maintained constant and equal to 1 µs with respect to the previous case at
T ∼ 150 µK). In spite of the increase in the surface density of detected events, we
were still able to discriminate between individual events and found the same linear
dependency as above, with a photon detection rate of 61800± 2400 s−1.

To conclude, we detect on average n̄at = 1.1 photons scattered by a single atom for
a probe duration ∆t= 20 µs. This value will serve as a calibration in the experiments
described below, where the average number of atoms is the unknown.
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Figure 8.4: Fluctuations of total event number. left) We plot the total number of
events detected over 200 sequences. The measurement is repeated six times over a period
of two weeks. Half of all 467 ± 70 events (black diamonds) coming from a single atom
illuminated for 20 µs come from the background 254± 73 (blue triangles). The background
is composed of spurious light 16± 3 (green circles), auto-generated intensi�er events 84± 8
(red squares) and scattered photons from the background gas. right) We compare the
atom number extracted by a time-of-�ight integration measurement and the atom counting
method for a single atom over the same series of six measurements. On average the time-
of-�ight �uorescence corresponds to 1.07 ± 0.13 atoms and the atom counting method to
1.1± 0.1 atoms.

8.3.4 Fluctuations and repeatability

In order to evaluate the noise sources that a�ect the counting measurement we re-
peated two measurements six times over a period of two weeks. The �rst measurement
was based on the atom counting method of a single atom for which we chose a probe
laser length of 20 µs. The left plot in Fig. 8.4 shows the results. Over 200 sequences
we measured 467± 70 events when the atom is loaded. Without atom we measured
254±73. The normalized di�erence between both numbers equals the average number
of detected photons per atom n̄at = 1.1 as mentioned above. The background events
have three di�erent origins: The largest contribution comes from light scattered by
the atoms of the atomic beam that cross the region of observation (61 %). It can be
improved by decreasing the oven temperature at the expense of a lower experimental
duty cycle and less atoms loaded into the trap. The second largest contribution comes
from self-induced events generated by the gated intensi�er when the high voltage is
switched on and o� (33 % of the counts, see Sec. 4.5); �nally, a smaller contribution
comes from scattering of the probe beams on the surfaces inside the vacuum chamber
and ambient light (6 %).

The second measurement that was repeated was the �uorescence integration of
Sec. 8.2 on a single atom using a probe of 2 µs. The accumulated �uorescence
over 2000 sequences is normalized as follows. First, we divide it by the �uorescence
of a Gaussian photon event intensi�ed on the CCD camera at gain 9 (∼ 8 ± 3 ·
103 adu·pixel2, see Sec. 4.6). Doing so we �nd that on average 0.11 ± 0.4 photons
impinge on the CCD camera per sequence. Next, we divide it Γ/2·0.003·2 µs, i.e. the
�uorescence rate multiplied by the detection e�ciency of the imaging system and the
duration of the probe pulse. We thus extract the average number of atoms inside the
trap to be 1±0.4. The right plot in Fig. 8.4 compares the two measurement techniques



8.3 Measurement of the atom number distribution in an optical tweezer

using single photon counting 131

0.30

0.20

0.10

0.00

Pr
ob

ab
ili

ty

2520151050
Number of events in Image

Figure 8.5: Event histogram for ∼ 6
atoms on average. Probability distribu-
tion of the number of detected events when
the dipole trap is �lled with 6.3 atoms on
average (blue circles). It is well �tted by
Eq. 8.2 for a probe duration of 20 µs corre-
sponding to an average number of detected
photons scattered per atom n̄at = 1.1. The
background distribution (red diamonds) is
of Poisson type (n̄bg = 2.1).

and shows that both techniques are compatible with having loaded a single atom into
the trap. We note that the experimental �uctuations on the �uorescence integration
of a single atom are 11 % and much less than the 40 % above, which originate from
the uncertainty on the �uorescence of the intensi�ed Gaussian photon events.

8.3.5 Atom number distribution in the multi-atom regime

We now operate in the regime where more than one atom are loaded in the dipole
trap. We repeat the same experimental procedure and extract the histogram of the
number of detected events for a probe duration ∆t= 20 µs. Figure 8.5 shows the
histogram of the background events as well as the probability distribution of the
total number of detected events (including the background events) when about 6.3
atoms are loaded in the dipole trap of ∼ 15 mK on average. The background gives an
average number of events n̄bg = 2.1, larger than in Sec. 8.3.3, as we needed to increase
the �ux of the atomic beam in order to load more than one atom in the trap.

To �t the distribution of events in the multi-atom regime, we consider the distri-
bution of the number of atoms N in the dipole trap, PN(N̄), with N̄ =

∑∞
N=0NPN

the mean atom number. The probability to detect n photon events is then given by
the composed law (Schlosser, Reymond, and Grangier, 2002):

p(n) =
∞∑
N=0

PN(N̄)× Π(n,N × n̄at + n̄bg) (8.2)

with Π(n, α) the Poisson distribution of mean α. Even in the case when PN(N̄) is a
Poisson law, the distribution p(n) is not Poissonian. Nevertheless, for any distribution
PN(N̄), the mean value of this composed law is given by:

n̄multi = N̄ × n̄at + n̄bg . (8.3)

A direct calculation of the mean of the data shown in Fig. 8.5 yields n̄multi = 9. Taking
into account that the probe duration has been chosen to detect n̄at = 1.1 events per
atom and that n̄bg = 2.1, equation (8.3) yields an average number of atoms N̄ = 6.3.
Taking a Poisson distribution for PN(N̄), a �t of the data by the composed law (8.2)
leads to the same result. The result of the �t is shown in Fig 8.5.
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Figure 8.6: Comparison between the

�uorescence integration and atom

counting method. The average number of
atoms N̄ obtained by direct counting (verti-
cal) is compared to the number extracted by
�uorescence integration (horizontal). The
experiments were performed in two con�gu-
rations: with a microscopic dipole trap (red
diamonds, w= 1 µm) or with a larger dipole
trap (blue dots, waist w= 3.8 µm). A linear
�t through the origin has a slope of 1.1±0.1.
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8.4 Comparison with �uorescence integration

We check that the average number of atoms extracted by the counting method is
consistent with the number of atoms extracted by the �uorescence integration method
described in the beginning. The comparison between the two results was done in two
trap con�gurations that we now describe. As already explained, a signi�cant fraction
of the background events come from photons being scattered when the atomic beam
interacts with the probe light. To minimize this e�ect, we decreased the �ux of the
beam by reducing the temperature of the oven. This is at the expense of the loading
rate of the dipole trap: in this �rst con�guration, we could not load more than ∼ 10
atoms in the micro trap. In order to calibrate our detection scheme with a larger
number of atoms, we use the macro trap with a larger waist w= 3.8 µm. In this second
con�guration, the atomic density is smaller and the light-assisted collisions limit the
number of atoms to a larger value than in the microscopic dipole trap (Kuppens
et al., 2000), typically 30. The results of the experiment are shown in Fig. 8.6 where
we plot the average number of atoms obtained from the counting method versus the
average number of atoms obtained by �uorescence integration. The numbers of atoms
obtained by the two methods are compatible : a linear �t to the data yields a slope of
1.1±0.1 which is compatible with 1, as the statistical uncertainty on the slope is 0.05
and we evaluate the bias uncertainties attached to each method to less than 6 % for
the counting method, and 11 % for the integrated-�uorescence based method. The
compatibility also shows that interaction between the atoms, which can be neglected
when applying the atom counting method, are neither playing a role when using the
integration method in this case.

8.5 Sub-Poissonian dipole trap loading

We now discuss the Poissonian assumption mentioned above for the atom number
distribution PN(N̄). For a single atom the loading is clearly sub-Poissonian as dis-
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Figure 8.7: Sub-Poissonian dipole trap loading. left) We show the Fano factor
versus the number of atoms in the micro (red triangles) and macro (blue squares) trap. A
theoretical model (black dotted line) with γ= 0.2 s−1 and β′= 0.5 ms−1 is compared to the
micro trap data. right) Numerically calculated probability (red curve) to have a certain
number of atoms in the micro trap (γ= 0, β′= 1 ms−1, R= 1000 ms−1). A Monte-Carlo
simulation (blue squares) yields the same distribution with ∆N2/N̄ = 0.73. Black dotted
line: Poissonian �t of the numerically calculated sub-Poissonian distribution.

cussed in Sec. 3.4.1. We want to see if this is also true when loading more than
one atom and extract from the data the variance of the number of detected events,
∆n2

multi =n2
multi − n̄2

multi. This variance is related to the variance of the number of
atoms ∆N2 by the following expression, calculated using the probability p(n) of
equation (8.2), and valid for any distribution PN(N̄):

∆n2
multi = n̄2

at ×∆N2 + n̄multi . (8.4)

Taking again n̄at = 1.1, we �nd for the data of e.g. Fig. 8.5 a ratio ∆N2/N̄ = 0.86±
0.13 (the error bar is statistical). The left side of Fig. 8.7 shows the Fano factor
(∆N2/N̄) versus the number of atoms in the micro or macro trap. For the micro trap
the average Fano factor of all measurements is 0.72 ± 0.13, which clearly indicates
a sub-Poissonian behavior ∆N2/N̄ < 15. The macro trap shows a monotonously
decreasing Fano factor, which becomes slightly sub-Poissonian for N̄ > 15. For low
atom numbers it is even super-Poissonian probably due to trap power �uctuations.

8.5.1 Theoretical considerations on the atom number distri-

bution

In order to model the atom number distribution we set up di�erential equations that
describe the evolution of PN(t) with time t. To do so we calculate the probabilities
for an atom to enter or leave the trap during the time interval τ . The probability
for an atom to enter the trap during τ is Rτ with R being the loading rate. We will
further di�erentiate between one- and two-body losses.

5Note that any kind of �uctuations on the trap depth, loading rate etc. broadens the actual
distribution and would lead to Poissonian or super-Poissonian distributions. This reinforces our
statement of sub-Poissonian dipole trap loading even for N̄ > 1.
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One-body loss

The probability during τ to undergo a one-body loss is−NṖ (t)/P (t)τ (see Sec. 9.3.2),
which for an exponential loss P (t) =N(t)/N0 = exp(−γt) becomes Nγτ with γ being
the one-body loss constant. It corresponds to the probability for one atom to undergo
a loss γτ during time τ multiplied by the number of atoms in the sample N . We
derive the probability to have N atoms inside the trap at instant t+ τ to be

PN(t+ τ) =PN(t)(1−Rτ)(1−Nγτ) + PN−1(t)Rτ(1− (N − 1)γτ)+

PN+1(t)(1−Rτ)(N + 1)γτ + PN(t)(Rτ)(Nγτ) + . . . .
(8.5)

The �rst term describes the probability to have already N atoms inside the trap at
time t and neither loading another atom (1 − Rτ) nor losing one (1 − Nγτ) during
τ . The second term represents the case having N − 1 atoms at time t and loading
one atom into the trap Rτ without losing one (1 − (N − 1)γτ) during τ . The next
terms are build up analogously. It is then straight forward to derive the di�erential
equations for one-body loss in the limit τ→ 0 and taking only �rst order terms in τ

∂P0(t)

∂t
=−RP0(t) + γP1(t) , N = 0 (8.6a)

∂PN(t)

∂t
=− (R +Nγ)PN(t) +RPN−1(t) + (N + 1)γPN+1(t) , N ≥ 1 . (8.6b)

Considering Eq. 8.6 we �nd a Poisson distribution PN(t→∞) = (R/γ)N

N !
exp(−R/γ) in

steady state6 by solving the set of equations recursively and imposing the normal-
ization

∑∞
N=0 PN = 1. Replacing N by N + 1 in Eq. 8.6b, multiplying it by N and

subsequently summing N from 0 to ∞ on both sides yields

˙̄N =R− γN̄ . (8.7)

Here, we explicitly used for the mean value N̄ =
∑∞

N=0 NPN and ˙̄N =
∑∞

N=0 NṖN .
Eq. 8.7 is equivalent to Eq. 3.6 neglecting two-body losses and identifying N as the
average atom number N̄ . In steady state we �nd a Poissonian distribution with mean
N̄st =R/γ.

Two-body loss

The probability to undergo a two-body loss is N(N−1)
2

β′τ , where β′ is the two-body
loss constant. The two-body loss probability corresponds to the number of atom pairs
N(N−1)

2
multiplied by the probability β′τ to lose one pair during time τ . Di�erential

equations in the case for one- plus two-body loss can be derived from a set of equations
similar to Eq. 8.5, which has been set up for one-body loss only

6With the steady state solution in hand one can also derive an analytical solution for the general

case PN (t) =
(Rγ (1−e−γt))

N

N ! exp
(
−Rγ (1− e−γt)

)
.
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Figure 8.8: Explanation of sub-Poissonian atom number distribution. left) We
show the Fano factor versus the number of atoms and the loading rate R calculated by using
a Monte-Carlo method (red squares) and the numerical solution of the set of di�erential
equations (black dotted line). We �x the values for γ= 0.2 s−1 and β′= 0.5 ms−1. right)
The Poissonian distribution (blue) can lead to a sub-Poisson distribution in the presence
of two-body loss. For two-body loss it is more probable to eject atom pairs at the high
probability tail.

∂P0(t)

∂t
=−RP0(t) + γP1(t) + β′)P2(t) , N = 0 (8.8a)

∂PN(t)

∂t
=− (R +Nγ +

N(N − 1)

2
β′)PN(t) +RPN−1(t)+

(N + 1)γPN+1(t) +
(N + 2)(N + 1)

2
β′PN+2(t) , N ≥ 1 . (8.8b)

Note that Eq. 8.8 and the probability to have N atoms inside the trap PN(t) at time
t is the basis of Eq. 3.6 (see App. D).

Considering two-body loss the equation can be solved numerically. In order to
calculate the in�nite set of equations 8.8 we restrict ourselves to the �rst Nmax equa-
tions and make sure that higher populations PN>Nmax become negligibly small. In the
case of the micro trap data in Fig. 8.7 we compare the data with the numerical result
for γ= 0.2 s−1 and β′= 0.5 ms−1 (Nmax∼ 100). The one-body loss is chosen very
small and mainly due to light scattering from the molasses lasers and background gas
collisions. The two-body loss rate is chosen as measured in Sec. 9.2.

The distribution is Poisson for very low average atom numbers. Here, the loading
rate is so small that the probability to have two atoms inside the trap and a two-body
loss to occur is negligibly small. Following Eq. 8.6 we then �nd a Poisson distribution
in steady state. The onset of two-body collisions for an increasing loading rate governs
the single atom regime with the lowest Fano factor ∆N2/N̄ = 0.5. For even higher
loading rates and thus higher atom numbers the distribution stays sub-Poissonian.
Such a distribution is shown on the right side of Fig. 8.7. We check the result
obtained by numerically solving the set of di�erential equations and by performing a
Monte-Carlo simulation which will be described in Sec. 9.3.2. Fig. 8.8 compares the
Fano-factor calculated by the two methods and shows that both methods agree well.

The Fano factor converges to ∆N2/N̄ ∼ 0.75 = 3/4 in agreement with our mea-
surements in the micro trap. This factor also arises from an analytical stochastic
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treatment involving the Fokker-Planck equation (van Kampen, 2007) which further-
more reveals that the atom number distribution in steady state has a Gaussian shape.
Note that the Fano factor in the limit of large atom number does neither depend on
the origin of two-body inelastic collision (light-assisted collisions, hyper�ne chang-
ing collisions etc.) nor on its loss constant β′. It depends however on the type of
inelastic collision, i.e. two-, three-, or higher order body collisions. A general expres-
sion for the Fano factor can be found using the analytical treatment of van Kampen
(2007). If a loading process competes with ρ-body inelastic collisions the Fano factor

in steady-state behaves as 1
2

(
1 + 1

ρ

)
. In the absence of atom loading the atom num-

ber distribution is narrower than in the case where atom loading is present and the
Fano factor becomes ρ/ (2ρ− 1). For three-body inelastic collisions in the absence
of a loading process this has experimentally been shown by Whitlock, Ockeloen, and
Spreeuw (2010).

Analog to the one-body loss case we can derive (see App. D)

˙̄N =R− γN̄ − β′
(
N2 − N̄

)
=R− γN̄ − β′N̄(N̄ − 1)− β′∆N2 , (8.9)

with the variance ∆N2 =N2 − N̄2. Note that in contrast to one-body losses Eq. 8.9
is not equivalent to Eq. 3.6 by simply replacing N by N̄ in Eq. 3.6 due to the extra
term containing the variance ∆N2 (see discussion in App. D).

An intuitive explanation of sub-Poissonian loading can be given by looking at the
right graph in Fig. 8.8. Two-body loss leads to the ejection of both collision partners.
The probability for a loss to occur increases with increasing atom number. This
means that the higher atom number side of the distribution is decreased much faster
than the lower atom number side. This can lead to a narrowing of the atom number
distribution and thus a sub-Poissonian character. Such a sub-Poissonian character as
observed here could be useful for atomic interferometry below the standard quantum
limit (Wineland et al., 1994) as mentioned earlier.

8.6 Conclusion

We have implemented two methods that are capable of measuring the average num-
ber of atoms loaded into the optical dipole trap. The �uorescence integration method
is analogous to the time-of-�ight measurement in Ch. 6 where we accumulate atom
�uorescence over many repetitions. The atom counting method is based on the de-
tection, at the single photon level, of �uorescence events scattered by the atoms
when they undergo a random walk in the resonant probe light. It can be used to re-
construct the loaded atom number distribution (Fuhrmanek et al., 2010a) revealing a
sub-Poissonian micro trap loading behavior even when passing the single-atom regime
and going to many atoms. The method additionally allows to study mesoscopic atom
ensembles, not only when the atoms are con�ned by a trapping potential but also
when they move or are released from the trap in order to access out-of-equilibrium
properties.
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Light-assisted collisions play an important role in our experiment for several rea-
sons: First, they govern the loading process described by Eq. 3.6 and �x together
with the loading rate R the average number of atoms in the dipole trap. In this
context they are also responsible for sub-Poissonian single atom loading.

Second, they hamper Doppler cooling of atom ensembles as observed for a single
atom in the microscopic dipole trap U ∼ 3 mK. We discuss this observation in Sec. 9.2.

Third, important properties such as the temperature (Sec. 6) or the atom number
(Sec. 8) are measured using near-resonant light. Being interested in the study of very
dense atomic clouds (density > 1014 at/cm−3) light-assisted collisions can prevent a
reliable measurement.

Finally, light-assisted collisions may introduce fundamental di�erences in the light
scattering process when dealing with small atom samples in contrast to single atoms
or non-interacting gases. Collective e�ects such as the excitation blockade mentioned
in Sec. 2.2.3 may come into play.

In this chapter we focus on the measurement of light-assisted collisions in the
micro trap triggered by the presence of near-resonant light for which radiative escape
(see Sec. 2.2.3) is the dominant loss channel. In a �rst step we will discuss the major
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implications of light-assisted collisions on the trap loading process and we will present
a detailed study of the collision rates later on.

9.1 Résumé

Nous présentons dans ce chapitre une série de mesure des collisions assistées par la lu-
mière dans un piège dipolaire microscopique, lorsque l'échantillon atomique est excité
par une sonde quasi-résonante. Nous avons mesurés des taux étonnamment élevés
de pertes à deux corps. Nous avons également constaté une dépendance du taux de
collision avec le nombre d'atomes piégés, non expliquée à ce jour. Ce comportement
peut être une signature d'e�ets collectifs liées à la petite taille du nuage atomique, qui
est de l'ordre de la longueur d'onde de la lumière de la sonde. D'autres études expéri-
mentales et des e�orts théoriques importants sont nécessaires a�n de comprendre nos
résultats. Toutefois, le taux élevé de pertes induites par la lumière quasi-résonante
implique de trouver de nouvelles techniques a�n de charger le micro-piège de manière
e�cace en l'absence de lumière quasi-résonante (cf.chapitre suivant).

9.2 Trap loading in the presence of near-resonant
light

The optimized experimental sequence to directly load atoms into the dipole trap by
using the molasses or MOT has been described in Sec. 3.4. Here, we want to discuss
some important properties of the trapped atom samples such as its temperature and
the maximal number of atoms.

Temperature of loaded sample

We have seen in part II that the single atom temperature inside the dipole trap
of ∼ 3 mK right after the loading process usually lies within the typical range of
Doppler ~Γ

2kB
= 145µK and sub-Doppler temperatures. For compensated magnetic

�elds (70 mGauss) we obtain sub-Doppler temperatures as low as ∼ 35 µK by directly
loading the atom from the molasses and without further detunings of the molasses
frequency as done by Tuchendler et al. (2008). It has been experimentally veri�ed
by using the release-and-recapture method on a single atom shown on the left side
of Fig. 9.1. To investigate if this is still true when loading more than one atom into
the trap we apply the same experimental sequence as for a single atom (see Sec. 3.4).
The loading rate R into the U0/kB∼ 3 mK deep micro trap at 850 nm is varied
with the atom �ux from the oven. The right graph in Fig. 9.1 shows the ensemble
temperature depending on the atom number 30 ms after being loaded into the trap.
The temperature has been measured by a time-of-�ight method described on a single
atom basis in Sec. 6.2. Already for 1.5 atoms on average the sub-Doppler temperature
of 35 µK increases to 144 µK. Going to four atoms it increases again by a factor 3 and
reaches its maximum at ∼ 520 µK for eight atoms. For even higher atom numbers
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Figure 9.1: Atom number dependent temperature. left) We compare the tempera-
ture of a single atom loaded into a 2.7 mK deep dipole trap for compensated (red squares)
and uncompensated (blue circles) magnetic �elds. A simulation leads to temperatures of
150 µK and 35 µK for uncompensated and compensated magnetic �elds, respectively. right)
We show the ensemble temperature versus the loaded atom number. The atom number is
changed by varying the oven temperature for a �xed trap depth of ∼ 3 mK.

a) b)

U0/kBT~3mK

T~35µK
T~500µK

3,5ΓMOT lasers

U0/ h ~10Γ

Figure 9.2: Atom cooling inside the dipole trap. a) A single atom can be laser-
cooled to the bottom of the trap U0. Temperatures as low as 35 µK have been measured for
U0/kB = 2.7 mK. b) Cooling of many atoms is hampered by light-assisted collisions. Before
being cooled to the bottom of the trap both atoms are ejected from the trap.

the temperature decreases slightly due to higher atomic densities. Higher densities
lead to a faster thermalization of the gas during the 30 ms interval (see Sec. 2.3.1)
which on long time scales results in η=U0/kBT ∼ 10 (see below).

One way to think about this behavior is that atom pairs are lost from the trap
due to light-assisted collisions before being cooled to the bottom of the trap (U0/kB∼
3 mK) as it would be the case for a single atom (see Fig. 9.2). The trap depth
corresponds to U0/~∼ 10Γ and the MOT lasers are 3.5Γ red-detuned to the atom
transition in free space (see Sec. 3.4.1). We therefore assume the atom to see an
average laser detuning of 3.5 + 10/2 = 8.5 Γ. The time for the atom to be MOT-laser
cooled to the bottom of the trap would be tcool = ~

Erec

1+s+4(8.5)2

s
∼ 1.7 ms, where we

used the estimated MOT laser saturation intensity s∼ 50. If during that time another
atom enters, both can be ejected from the trap due to light-assisted collisions. The
atoms do not have time to reach the bottom of the trap before they are ejected from
the trap resulting in a much higher temperature than reached with a single atom.
Knowing that this is the case we estimate the two-body loss rate to be higher than
t−1
cool.

Radiative escape induced by the loading beams prevents the atom sample to have



140 Chapter 9: Light-assisted collisions

the same initial temperature as a single atom. Note that thermalization in the absence
of any near-resonant light can reduce the temperature and leads to atom sample tem-
peratures of around Tth∼U0/kB/10 = 300 µK. Beyond this point the thermalization
practically stops as mentioned earlier.

Atom number of loaded sample

Light-assisted collisions not only limit the initial temperature but also the total num-
ber of atoms to Nst∼

√
R
β′ according to Eq. 3.6. To estimate the number of atoms

that can maximally be loaded into the trap we start by measuring β′. We work
in a regime where three atoms are initially trapped and illuminate the atom cloud
with the six molasses beams for a variable time1. The atoms have a temperature
of ∼ 390 µK in a U0/kB = 2.6 mK deep trap. Fig. 9.3 shows how the atom number
quickly decreases and �attens at 0.55±0.05 after ∼ 5 ms. The initial decay has a rate
of β′∼ 0.5 ms−1 extracted using the simulation of Sec. 9.3.2. It is completely due to
two-body loss for two reasons. First, we verify that one-body loss is not important
by loading a single atom and illuminating it the same way as the many atom sample.
The scaled single atom result (black circles) shows no signi�cant decay over the �rst
50 ms assuring that one-body loss is negligible.

Second, the reason for the plateau at one-half is due to the nature of two-body
loss and a second strong indication for this loss to be dominant in the beginning. For
an odd number of atoms, the two-body losses expel all but one atom while for an
even number of atoms all atoms are expelled. The one atom that is eventually left in
the trap is then lost due to one-body loss at a much longer time scale (∼ 1 − 24 s),
governed by molasses laser heating and collisions with the background gas. Besides
the long lifetime, an indication of single atom preparation is also the temperature of
the atom sample which becomes sub-Doppler ∼ 40 µK again after ∼ 5 ms.

The height of the plateau of 0.55 ± 0.05 also gives information about the atom
number distribution inside the trap. If we would have loaded a completely sub-
Poissonian distribution with N̄ = 3 and ∆N = 0 (δ-distribution) we would always
measure one atom in the end since always exactly one atom pair is expelled from
the trap. The height of the plateau would then be equal to one. For a perfectly
Poissonian distribution on the other hand we expect it to be one-half. For the sub-
Poissonian atom distribution with ∆N2/N̄ = 0.7 as found in Sec. 8.5 the actual value
lies very close to one-half and is in good agreement with the measured value. Note
that here the two-body losses are at the heart of sub-Poissonian single atom loading
as described in Sec.3.4.1: 50 % of the time one atom is present, 50 % of the time zero
atoms are present.

Having extracted the loss constant β′ associated to molasses loading we can now
estimate the expected average atom number Nst∼

√
R
β′ that can maximally be loaded

into the trap. We assume our trap loading rate R∼n0wxzRv̄ to be the product of the
MOT density n0, the trap waist in radial and the Rayleigh length in axial direction

1A detailed description of the experimental sequence is given in Sec. 9.3
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Figure 9.3: MOT-induced two-body

loss. Atom number versus excitation light
duration for which the MOT lasers have
been used. The collisional loss rate β′=
0.5 ms−1 is extracted from a simulation.
The black circles indicate the one-body
losses.

wx, zR and the thermal velocity v̄=
√

8kBT
πm

(Kuppens et al., 2000). For typical MOT

densities n0∼ 1010 cm−3 (Sec. 3.3.4) at the Doppler temperature T = 150 µK and
wx∼ 1 µm, zR∼ 4 µm we �nd R∼ 7 · 103at/s and estimate a maximal atom number

Nst∼
√

R
β′ = 4 in steady state. This is much smaller to the actual measured maximal

atom number of ∼ 100 (see Ch. 10) measured by using the compressed MOT (see
Sec. 3.4.2). This incompatibility could be explained by the fact that β′, which has
been measured in a con�guration with constant MOT beam frequency, decreases
when loading the trap in the compressed MOT phase, during which the frequency of
the MOT beams is varied. It could also arise from an underestimation of the loading
rate of the micro trap from the MOT due to an increased MOT density during the
compressed MOT phase.

9.3 Measurement of light-assisted collisions

The basic idea of the measurement of light-assisted collisions is the following: We
illuminate trapped atoms with near-resonant light and monitor the atom loss over
time. The atom number decay can have two principal causes:

• One-body loss. The trapped atoms scatter laser photons which leads to
a heating and subsequent loss of atoms. The heating rate can be uniquely
measured using a single atom as described in Sec. 7.3.1 since no two-body losses
are present. The experimental sequence for these measurements is shown on the
left of Fig. 9.4. We trap a single atom in our 850 nm trap with U0/kB = 2.7 mK.
Subsequently, the trap depth is ramped to Uf and illuminated by the probe
laser. Finally, the trap is ramped back to its initial value where we check for
the presence of the atom. The recapture rate as a function of illumination
duration is a measure of the heating rate α. The lifetime of the atom when no
near-resonant light is present is ∼ 24 s (see Sec. 5.3). Any faster loss can then
be attributed to light scattering from the probe laser.

• Two-body loss. In samples with many atoms light-assisted collisions can also
lead to atom loss. This loss mainly has a two-body nature. A direct measure-
ment cannot always be done since heating due to photon scattering is always
present as well. We will show that there are parameter regimes for which the
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Figure 9.4: Single and many atom experimental sequences. left) We prepare a
single atom in a Uf deep dipole trap. Afterwards the atom is illuminated by near-resonant
light for a variable period of time tprobe. The sequence is repeated 200 times to build up the
recapture rate. right) We prepare ∼ 3 atoms in a Uf deep trap by adiabatically ramping
from 20 mK in 30 ms. The atoms then thermalize for 50 ms and are afterwards illuminated
by near-resonant probe light. Afterwards we switch o� the trap to measure the atom number
with a 10 µs probe and repumper pulse on resonance with the atom.

one-body loss rate can be held smaller than the two-body one enabling an un-
biased measurement of the two-body loss rate. The experimental sequence for
the measurement is shown on the right of Fig. 9.4. We load the dipole trap at
U0/kB = 20 mK and adiabatically ramp it down to its �nal value Uf . After the
ramp we wait for 50 ms for the gas to thermalize. It is then illuminated by the
probe laser for a variable time period tprobe. Subsequently, we switch o� the
trap and measure the atom number after a 1 µs time of �ight. We apply the
�uorescence integration method using the probe and repumper probe at reso-
nance for 10 µs (see Sec. 8.2). The loading procedure prepares about 90 % of the
atoms in 52S1/2F = 1 without control on their Zeeman state. Without any near-
resonant light present the lifetime of the atoms is about ∼ 200 ms (measured in
Sec. 9.3.3) due to hyper�ne spin-relaxation two-body losses (Sec. 2.2.2). The
atom number can be assumed constant over typical time scales of light-induced
losses measured here.

The near-resonant light is provided by the counter-propagating (to avoid radiation
pressure) σ+ − σ− probe and repumper probe laser. The repumper laser with s∼ 5
stays on resonance with the atom vacuum transition. A magnetic �eld of ∼ 1 Gauss
comprises a 45◦ angle with the probe laser z-direction and de�nes the quantization
axis. This leads to a nearly isotropic probe laser polarization seen by the atom2. We
study the collision rates over a wide range of probe and trap parameters by applying
the following procedure to distinguish between one- and two-body losses: For a given
set of probe and trap parameters we �rst measure the heating rate α of the probe
laser on a single atom (Sec. 9.3.1). For the same parameters3 we then perform the
measurement with more than one atom (Sec. 9.3.2). Since both loss mechanisms

2Note that the magnetic bias �eld introduces radiation pressure even for balanced counter-
propagating lasers. The e�ective imbalance has a small e�ect . 10 % on the actual trap depth.

3The only parameter which cannot be adjusted is the temperature which is usually higher for an
atom ensemble than for the single atom. We will discuss the e�ect of a di�erent temperature later
on.
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compete in this case, we �t the obtained curve by a numerical simulation. In this
model the two-body loss rate β′ is the only free parameter while the one-body loss
rate α is constrained by the single-atom result.

9.3.1 Single atom losses

Typical loss curves for a single atom obtained by varying the probe laser duration
and measuring the recapture rate have been shown in Fig. 7.8. We again �t Eq. 5.5
to the data whilst keeping the trap depth Uf constant and allowing the temperature
to vary by no more than 10 %. The left and right side of Fig. 9.5 show the extracted
heating rates α (blue circles) versus the probe laser detuning for Uf/kB = 0.9 mK and
Uf/kB = 1.8 mK, respectively. The probe laser saturation was constant s∼ 0.5.

For Uf/kB = 1.8 mK we also plot the data (red squares) of Fig. 7.8, for which the
magnetic �eld was aligned with the probe laser (z-direction). This led to a proper
σ+-polarization of the probe laser and constrained the laser �eld to drive the closed
transition 52S1/2F = 2,mF = +2↔ 52P3/2F′= 3,m′F = +3 only. The dashed �t of the
data (red squares) is a Lorentzian (Eq. 7.1) with width ∼ 8 MHz slightly larger than
the natural line width due to temperature broadening.

We see that the curve is much broader when using an isotropic probe laser polariza-
tion containing all polarizations ε. Also, the form does not resemble a Lorentzian any
more. This is due to the fact that for isotropic light probe laser photons are absorbed
between all light-shifted Zeeman states 52S1/2F = 2↔ 52P3/2F′= 3 as illustrated in
Fig. 1.7. The Zeeman states for e.g. F ′= 3,mF ′ = 0 is much more light-shifted than
the Zeeman states belonging to the closed transition F ′= 3,mF ′ =±3 leading to a
larger absorption and thus heating spectrum. A second important broadening e�ect
is the �nite temperature of the atom as discussed above. The onset of probe heating
appears in both cases when the probe laser detuning starts to reach the trap depth
Uf/kB = 0.9 mK (Uf/h= 18 MHz) and Uf/kB = 1.8 mK (Uf/h= 36 MHz).

For a proper treatment of an isotropic probe one needs to solve the optical Bloch
equations in Sec. 1.5.4 taking into account all Zeeman levels. Here, we want to
simplify the problem by neglecting all non-diagonal elements corresponding to the
coherence parts. The set of equations is called rate equations and leads to the steady
state populations of each Zeeman level ΠmF for given probe and trap parameters as
shown in App. C. Analogous to Sec 7.3.1 we can calculate the heating rate as

α= 2Erec
Γ

2

∑
mF

ΠmF

∑
ε

C
′1/2,3/2,3/2
2,mF ,3,mF+ε

s

1 + s+ 4
(

∆mF′
Γ

)2 . (9.1)

It contains all possible combinations to excite the atom from any ground Zeeman
level into an excited one. We only sum over the ground Zeeman states since the pop-
ulation in the excited states is very small

∑
mF ′ ΠmF ′ ∼ 0 due to the low probe satu-

ration. ∆mF′ = δ − (∆52S1/2
−∆52P3/2F′=3,mF′ ) is the di�erence between the probe fre-

quency and the atom transition frequency between the light-shifted ground (Eq. 1.39)
and excited states4 (Eq. 1.37), as illustrated in the �gure in App. C. Note that the

4For the states mF′ =±3 belonging to the cycling transition we simply �nd ∆mF ′=±3 = δ−Uf/~
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Figure 9.5: Probe-induced atom heating. left) Heating rate α (blue circles) versus the
probe laser detuning νprobe (s∼ 0.5) for a single atom having a temperature of 100 µK in a
Uf/kB = 0.9 mK (Uf/h= 18 MHz) deep trap. The rate equations result (black line) �ts the
data well. For a higher temperature of 200 µK the rate equations result (red dashed line)
slightly broadens and shifts to lower probe frequencies. right) We plot the measured heating
rate for a single atom at 200 µK in a trap of depth Uf/kB = 1.8 mK (Uf/h= 36 MHz) when
illuminated by isotropic probe light (blue circles) and for changing probe frequency. Again
the result of the rate equations (black line) reproduces the data. We also show the measured
data for a σ+-polarized probe (red squares). Here, the lorentzian function of Eq. 7.1 (dashed
line) explains the data. The probe saturation is kept constant at s∼ 0.5.

weights on each sum are normalized
∑

mF
ΠmF ∼ 1 and

∑
εC

′1/2,3/2,3/2
2,mF ,3,mF+ε = 1, where

we used the normalized Clebsch-Gordon coe�cients C
′1/2,3/2,3/2
2,mF ,3,mF+ε =C

1/2,3/2,3/2
2,mF ,3,mF+ε/W

with W =
∑

εC
1/2,3/2,3/2
2,mF ,3,mF+ε. Additionally, we convolute the heating rate with the po-

sition distribution of the atom inside the trap to account for temperature-dependent
broadening as introduced in Sec. 5.2.1. The black line in Fig. 9.5 corresponds to the
result of the rate equations and generally reproduces the measured data. To indicate
the broadening due to higher atom temperatures we show the calculated result for
Uf/kB = 0.9 mK and an atom temperature of 200 µK which is twice as high as the
measured temperature of 100 µK. The higher temperature result is shifted to smaller
detunings and deviates from the measured values slightly.

9.3.2 Two-body losses

We now repeat the same measurements using three atoms on average instead. The
left graph in Fig. 9.6 shows one example decay curve for three atoms on average
compared to the case of a single atom for a trap depth of Uf/kB = 1.8 mK and the
probe detuning δ/2π= 10 MHz. While the single atom stays trapped for over 10 ms,
this is no longer true when several atoms are simultaneously in the trap. In the multi-
atom case light-assisted collisions lead to a rapid loss of the atoms. We see that a
one-body loss process (exponential decay, dashed green curve) does not describe the
data correctly as the loss is now mainly of two-body nature. Note that the atom
number decays to zero and does not level o� as when using the molasses lasers. The
reason is that the probe lasers do not Doppler-cool the atom in all three dimensions
leading to a higher heating than the molasses beams.

In order to extract the two-body loss constant β′, we start from the phenomeno-
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logical equation 2.12 ruling the variation of the number of atoms N(t) in the presence
of one- and two-body losses:

dN(t)

dt
=−γ(t)N(t)− 2β′

N(t)(N(t)− 1)

2
. (9.2)

In this equation, the two-body loss rate is proportional to the number of atom pairs
N(N −1)/2. The factor 2 in front of the two-body term stems from the fact that one
collision between a pair of atoms leads to the loss of the two atoms, as the energy
released is usually on the order of hundreds of milliKelvin, much larger than the trap
depth. The one-body loss rate γ(t) accounts for the heating that eventually leads to
the loss of the atoms. It is related to the probability P1(t) in Eq. 5.5 to lose the atom
through γ(t) =−Ṗ1(t)/P1(t).

Equation 9.2 with no one-body loss (γ= 0)

dN(t)

dt
=−2β′

N(t)(N(t)− 1)

2
. (9.3)

has the analytical solution

N(t) =
N0 exp β′t

1−N0 +N0 exp β′t
(9.4)

and allows the number of atoms to vary continuously. For larger atom number Eq. 9.2
can be simpli�ed to

dN(t)

dt
=−γ(t)N(t)− 2β′

N(t)2

2
, (9.5)

which has the solution for γ= 0

N(t) =
N0

1 +N0β′t
. (9.6)

The half lifetime is in this case given by N0β
′.

In our case however, the small atom number (∼ 3) requires a discrete treatment
of the atom number. It makes the use of Eq. 9.4 impossible to �t the data even in
cases for which the one-body loss is negligibly small. For example Eq. 9.4 leads to
a constant steady state atom number of 1 which clearly disagrees with the observed
value. Also, N(t) cannot be directly associated with the actual measured average
atom number N̄ , as discussed in Sec. 8.5. We can account for the discretization and
the average mean atom number and extract β′ by numerically solving Eq. 8.8 or by
using a Monte-Carlo simulation.

Monte-Carlo simulation

The starting point of the algorithm is to pick up an initial number of atoms N out
of a Poissonian distribution with mean N̄ . The simulation routine evolves this atom
number by time steps ∆t. At each step we calculate the probability for atom i out of
N(t) atoms to be lost between t and t+∆t. For one-body loss this probability can be
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Figure 9.6: Atom loss curves due to one- and two-body loss. Average atom number
(red squares) that remains in the Uf/kB = 1.8 mK deep dipole trap after illumination of the
probe laser with s∼ 0.5 for a duration t. The single atom result (black circles) is also shown
with Eq. 5.5 as a �t. left) The probe laser detuning is δ/2π= 10 MHz and red-detuned to
the by 36 MHz light-shifted atomic transition. The simulation result (blue line) yielding
β′= 0.6 ± 0.1ms−1 and an exponential �t (green dashed line) are compared. right) The
probe laser detuning is δ/2π= 40 MHz and nearly on resonance with the atom. Here, only
the upper-bound value can be given for β′< 0.1± 0.08ms−1.

derived as follows. The left graph in Fig. 9.7 shows how (N(t)−N(t+ ∆t))/N(t) =
1−N(t+ ∆t)/N(t) corresponds to the relative atom loss during the interval ∆t. We
also know the probability P (t) =N(t)/N0 for the fraction N(t)/N0 of atoms to be
left inside the trap after time t. We then �nd the probability for one atom to be
lost during ∆t to be 1−N(t+ ∆t)/N(t) = 1− P (t+ ∆t)/P (t) which we can Taylor
expand to −Ṗ (t)/P (t)∆t. The probability for a one-body loss to occur in the N(t)
atom ensemble is therefore

χ1 =−N(t)Ṗ1(t)/P1(t)∆t , (9.7)

where P1(t) is the recapture probability given by Eq. 5.5. Note that χ1≥ 0 as P1(t) is
a monotonically decreasing function and thus Ṗ1(t)< 0. The probability to lose one
atom pair by a two-body light-assisted collision per time interval ∆t is given by:

χ2 = β′
N(t)(N(t)− 1)

2
∆t . (9.8)

Here N(t)(N(t)−1)
2

corresponds to the number of atom pairs in the atom ensemble (see
Sec. 8.5).

These probabilities χ1 and χ2 allow us to set up the composed probabilities for
each of the following three measurement outcomes to happen after the time interval
∆t: First, the probability for no losses to occur is Pno = (1 − χ1)(1 − χ2). Second,
the probability that only a one-body loss happens is Pone =χ1(1− χ2). The same is
true for, third, the probability that a two-body loss takes place Ptwo =χ2(1 − χ1).
All other possible outcomes are proportional to ∆tk with k > 1. Their contributions
are held small by ful�lling the condition χ1, χ2� 1 . Note, that in this case the sum
Pno + Pone + Ptwo∼ 1.

At each step we just need to choose a random number ξ from a uniform distri-
bution between 0 and 1 to decide between the three outcomes as illustrated on the
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Figure 9.7: Simulation procedure. left) Atom number N(t) versus time. During the
time step ∆t the atom number decreases from N(t) to N(t + ∆t). right) The decision of
how to proceed with the atom depends on which case the random number ξ falls in. One-
and two-body as well as no loss are possible outcomes, each having probabilities Pone, Ptwo

and Pno.

right graph in Fig. 9.7. If, e.g., the random number is smaller than Pno, we choose
the atoms to stay in the trap. If the random number is bigger than Pno but smaller
than Pno + Pone, the atoms undergo a one-body loss and we decrease N by one. The
last possibility arises for a random number greater than Pno + Pone but smaller than
Pno + Pone + Ptwo = 1 in which case a two-body loss leads to a decrease of the atom
number N by two. We then move forward in time steps ∆t until no atom is left.
The routine is repeated typically 200 times to average out any numerical noise. Each
time we pick the initial atom number out of a Poissonian distribution with mean N̄ .
We also check that the Monte-Carlo simulation gives the same results as numerically
integrating the di�erential equations Eq. 8.8.

We �t the loss curve by this simulation to extract β′. The one-body loss rate as
measured on a single atom can be used to constrain χ1. This is possible as the single
atom measurement has been carried out for the same set of parameters. Attention has
to be payed to a possible di�erence in temperature for single atom and many atoms
which can result in di�erent heating rates as seen in the last section. In the simulation
we therefore use the calculated result for which the single atom temperature has been
adjusted to the many atom one. For the data at Uf/kB = 1.8 mK discussed above
we �nd β′= 0.6± 0.1 ms−1 with an atom ensemble temperature of 292 µK, which is
slightly higher than the single atom temperature measured to be 200 µK.

Regimes of one- and two-body loss

The example loss curve on the left of Fig. 9.6 showed one example with a two-body
loss much faster than the one-body loss. In this case the probe detuning at 10 MHz is
red-detuned with respect to the light-shifted atom transition (Uf/h∼ 36 MHz). On
the right of Fig. 9.6 we show an example for which the probe laser at 40 MHz is close
to resonance with the atom inside the trap. Here, the decay is the same for a single
atom and for three atoms on average. It is dominated by the probe heating measured
on a single atom. In these situations we can only extract an upper-bound value for
β′, which in this case is β′< 0.1± 0.08 ms−1.

Fig. 9.8 compares the inverse half-maximum decay time of the initial atom number
between a single atom and three atoms for di�erent probe detunings and trap depths
Uf/kB = 0.9 mK and Uf/kB = 1.8 mK. We note that the numerically extracted inverse
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Figure 9.8: Half life time dependent on the probe frequency. We compare the
inverse half lifetime of a single atom (red squares) and of three atoms (blue circles) versus
the probe detuning for a �xed probe saturation s∼ 0.5. The black dotted line is the single
atom result adjusted to the many atom ensemble temperature. The trap depth is left)
0.9 mK and right) 1.8 mK.

half lifetime for the many atom case agree within ∼ 20 % with N(0)β′ as the inverse
half lifetime of Eq. 9.6. Although Eq. 9.6 is not completely valid in our case it seems
however to be close to the inverse half lifetime which we extract numerically.

We see that two-body losses become dominant for probe detunings smaller than
the light-shifted atom transition frequency of 18 MHz for Uf/kB = 0.9 mK and 36 MHz
for Uf/kB = 1.8 mK. The probe laser is red-detuned with the atom in this case.
For values of the probe detuning on resonance or larger than the light-shifted atom
transition, i.e. for an e�ectively blue-detuned probe, one-body loss due to probe laser
heating becomes the dominant loss channel. The measured one-body rates cannot be
directly compared to the two-body rates as the single atom temperature is di�erent
to the one measured with three atoms on average. We show the calculated one-
body rates for which the single atom temperatures have been adjusted to the multi-
atom temperatures 198 µK and 292 µK for Uf/kB = 0.9 mK and Uf/kB = 1.8 mK,
respectively. A small shift to lower probe detunings is observable for the one-body
loss rates. For the simulation we therefore use the temperature-adjusted calculated
one-body loss rates although the di�erence does not a�ect any conclusions made in
the following.

Calculation of the two-body loss rate β

In order to calculate the two-body loss rate β= β′V , we need to know the vol-
ume V occupied by the cloud (see Eq. 2.11). In our experiment, the direct mea-
surement of the in-situ density is hard as the size of the cloud is smaller than
the di�raction limit of the imaging system and we have to rely on a calculation.
We assume thermal equilibrium at the temperature T0 before the excitation. In
this case V = (2πkBT0

mω̄2 )3/2 (see Sec. 2.3.1). In thermal equilibrium the density has
a Gaussian shape and the two-body loss rate follows from the loss constant as5

5When transforming n(r) =−βn(r)2 into N =−β′N2 by assuming a thermal and thus Gaussian
density pro�le n(r), we �nd the conversion factor 2

√
2.
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Figure 9.9: Probe frequency and intensity dependence of β. left) We show the
dependence of β on the probe detuning for di�erent trap depths Uf/kB = 0.9 mK (Uf/h=
18 MHz) (blue triangles), 1.8 mK (36 MHz) (green circles) and 2.6 mK (55 MHz) (black
diamonds). The probe saturation is constant s∼ 0.5. The dotted black line is the result from
the Gallagher-Pritchard model and the dashed line is the Langevin limit (see text). right) β
versus the probe saturation parameter. The probe frequency is 10 MHz for Uf/kB = 0.9 mK
(blue squares) and Uf/kB = 1.8 mK (green triangles).

β= 2
√

2β′V . Under this assumption we calculate V and �nd the peak atomic densi-
ties n0 = (2.7, 4.3, 5.1)·1012 cm−3 for trap depths Uf/kB = (0.9; 1.8; 2.6) mK and initial
temperatures (198, 292, 391)± (60, 88, 117) µK. We also assume that V remains con-
stant during the decay, which implies that the temperature of the sample is constant
during the laser excitation. Clearly this assumption cannot be true for the entire
range of the excitation parameters, as the in�uence of the heating is comparable to
the light-assisted loss when the probe is close to the atomic resonance. However, the
assumption is true for the largest value of the two-body loss rate, as in this regime
the heating becomes negligible (see Fig. 9.8). As an example, for the data of the left
graph in Fig. 9.6 the temperature of the cloud varies by only ∼ 0.3 % during the �rst
10 ms of the decay. In this case we have checked that by allowing the volume to vary
does not change signi�cantly (< 1 %) the value of β.

Under the assumption of thermal equilibrium, we calculate the two-body loss rate
β from the measured β′ for various excitation parameters. Its dependence on the
probe detuning δ is summarized on the left of Fig. 9.9 for three di�erent trap depths.
The right side of Fig. 9.9 shows the variation of β with the saturation parameter s
for a detuning δ/2π= 10 MHz for two trap depths.

9.3.3 Discussion of the results

The general feature of light-assisted collisions can be understood using a semi-classical
picture, such as the one proposed by Gallagher and Pritchard discussed in Sec. 2.2.3.
Near-resonant light excites a pair of atoms from the ground state 5S1/2 (neglecting the
hyper�ne structure) to the molecular, attractive, potential curve 5S1/2+5P3/2. There,
two mechanisms can lead to atom loss. The �rst one, called �ne-structure changing
collisions, consists in the pair of atoms to change from the molecular potential curve
5S1/2 + 5P3/2 to 5S1/2 + 5P1/2 before it decays back to the ground state. In this
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process the pair of atoms gains ∼ 170 K of kinetic energy and therefore escapes the
trap. In the second mechanism, called radiative escape, the atoms are accelerated
along the attractive 5S1/2 + 5P3/2 potential curve and decay back to the ground state
molecular curve 5S1/2 + 5S1/2 having gained a kinetic energy larger than the depth
of the trap. The average time to decay back can be approximated by half the atomic
lifetime (Γ−1 = 26 ns) (Weiner et al., 1999). In our case where the excitation is nearly
resonant, the atoms are excited at long interatomic distance and therefore decay
back to the ground state before reaching the region where �ne-structure changing
collisions occur. The dominant loss mechanism should therefore be radiative escape.
Also, hyper�ne-structure changing collisions are negligible in the presence of near-
resonant light since their loss rates βHF∼ 10−11 cm3s−1 (Gensemer et al., 2000) are
much lower than the loss rates observed in our case. We note however that this model,
as well as more developed ones (Weiner et al., 1999) ignore the hyper�ne structure in
the excited state, an assumption probably inaccurate in our experiment. We are not
aware of any theoretical prediction for the light-assisted loss rate in our conditions of
a low trap depth and a near-resonant excitation.

The result from the Gallagher/Pritchard model of Eq. 2.17 in Sec. 2.2.3 is exem-
plary shown for 0.9 mK (dotted black curve) on the left graph of Fig. 9.9 and does
not reproduce the data. The general behavior of the data can however be understood.
Starting with a very blue detuned laser (see Fig. 9.10) the excitation probability and
consequently the loss of the atom is small. The further we tune the laser on resonance
with the transition, the more photons the atom scatters, which increases the proba-
bility to deexcite in the escape region and therefore also the loss rate. Note that in
this region one-body loss dominates and only an upper-bound value for the loss rate
can be given. Passing the transition to the red a tradeo� between several mechanisms
governs the losses. First, less photons are scattered when the probe detuning becomes
o� resonant. On the other hand the excitation takes place closer to the escape radius
so that the loss rate increases even further. For further red-detuned frequencies the
excitation probability decreases signi�cantly. This is due to the probe laser becoming
further o� resonant. Additionally, the excitation probability decreases as the excita-
tion occurs at interatomic distances much smaller than typical interatomic distances
between two atoms. This leads to a decrease in the loss rate.

The Gallagher/Pritchard model captures the main evolution of the loss rate β
with varying probe saturation s for 1.8 mK on the right graph of Fig. 9.9 (dotted
black curve). The measured loss rate mainly follows the dependence β∝ s

1+s
but is

again much larger than predicted by the model.
The �rst striking feature observed in Fig. 9.9 lies in the strong dependence of the

two-body loss rate on the trap depth. A variation of a factor 3 in the trap depth leads
to a 20-fold increase in β. The shift of the resonances is due to the di�erent light
shifts experienced by the atom. Even more remarkably, the measured loss rates can
be extremely large, much higher than any predictions we could �nd in the literature.
The theoretical maximum collision rate of the light-assisted collision is given by the
Langevin limit (Julienne and Vigué, 1991). This Langevin cross-section is obtained
from Eq. 2.5 by setting all partial waves l≤ lmax contributing to the collision to one
sin2 δl(kat) = 1. For a given collision energy E this yields
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σLangevin =
4π~2

2mE
(lmax + 1)2 . (9.9)

For the case of the resonant dipole-dipole interaction considered here, the potential 6

when the pair of atoms is excited is V (r) =−3~Γ/4(kr)3 (see Sec. 2.2.3). We calculate
lmax by imposing two conditions. The �rst one is that the center of kinetic energy E
of the center of mass must be larger than the height of the centrifugal barrier for the
collision to take place at short inter-atomic distance. This condition yields

lmax(lmax + 1) =

(
35(~Γ)2E

83E3
rec

) 1
3

, (9.10)

with Erec = ~2k2/2m the recoil energy. For a collision energy E= 3kBT/2, we �nd a
Langevin collision rate according to Eq. 2.13

βL = 2π

(
λ

2π

)2
(

27

2

(
~Γ

kBT

)2
) 1

3

v̄ , (9.11)

with the average velocity of the center of mass of the atoms v̄=
√

16kBT
πm

. For a typical

temperature T = 0.3 mK we �nd βL∼ 8.6 · 10−8 cm3s−1. The second condition is the
following: Julienne and Vigué (1991) show that for the range of temperatures explored
in our case, lmax is calculated by imposing that the height of the centrifugal barrier in
the S+S potential is small enough to allow a pair of atoms with energy E to be excited
before they reach their minimal approach distance, i.e. lmax(lmax + 1)~2/(mr2

ex) =E.
This yields σLangevin = 4πr2

ex, where krex = (−3Γ/4∆)
1
3 , is the interatomic distance at

which the atom pair can be excited. The Langevin collision rate is in this case

βL′ = 4π

(
λ

2π

)2(
− 3Γ

4∆

) 2
3

v̄ , (9.12)

6We note that in our setup, the size of the trap (∼ 1 µm) is small enough to in�uence the
interaction between the atoms at distances on the order of a few λ/2π.
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which in contrast to the �rst rate βL depends on the laser detuning ∆. The bounding
Langevin collision rate is then given by min(βL, βL′). For atoms at T = 0.3 mK in
a U/~= 18 MHz trap both are indicated on the left of Fig. 9.9 (black dashed line).
We see how βL′ becomes the bounding rate when the laser frequency is smaller than
δ/2π≤ (U −

√
1/3kBT )/h= 14.6 MHz. As both limits do not depend on the probe

saturation s we �nd a constant limit when varying the probe saturation as shown on
the right graph of Fig. 9.9. In this case the probe detuning is set to δ/2π= 10 MHz,
for which βL′ ∼ 5 · 10−8 cm3s−1 is the limiting collision rate. With increasing probe
saturation we see that our measured values reach this limit. It is quite surprising
since usually, the survival probability to reach the escape region is small for alkalis.
The two-body loss rate is then smaller than the Langevin limit by one or two orders
of magnitude (Julienne and Vigué, 1991). We suspect that it is the small trapping
volume that leads to this fact.

We compare our �ndings to the results already published by several groups. Kup-
pens et al. (2000) operate a dipole trap of 26 µm waist, with depth and temperature
comparable to ours. The spatial density is also in the 1012 cm−3 range, but with more
than 106 atoms. They measure β′ in the presence of near-resonant light in the range
of β′= 10−5−10−4 s−1 from which they extract a light-assisted two-body collision rate
β∼ 10−9 cm3s−1, about one order of magnitude smaller than in our case. Kulatunga,
Blum, and Olek (2010) work in a dipole trap with a waist of 5 µm. The trap depth,
temperature, and densities are also comparable to ours. They measure two-body
constants as large as β′∼ 10−2 s−1, still small with respect to our results, but larger
than the Kuppens' one, probably due to the smaller trapping volume. Estimating
the volume in their case assuming thermal equilibrium, we �nd that this corresponds
to β∼ 10−11 cm3s−1.

Finally, Schlosser, Reymond, and Grangier (2002) explain the loading of at most
one atom in their sub-micrometer size dipole trap taking β′∼ 1000 s−1. Estimating
the volume either assuming a one-atom thermal distribution or taking reference Kup-
pens et al. (2000), we �nd a two-body loss rate as high as β∼ 3 · 10−9 cm3s−1, not
surprisingly as large as what we measure here. The comparison between these results
tends to suggest that the sub-micrometer size of the potential may play a role in the
collision, as for example the size of the trap is not negligible with respect to the range
of the dipole interaction between the atoms.

9.3.4 Assumption of thermal equilibrium

The large values of β could also be explained by an overestimation of the volume
or underestimation of the density. In order to estimate independently the density,
we have measured the rate of the ground-state collisions (see Sec. 2.2.2) between
trapped atoms in our sample in the absence of resonant light. The atom losses result
from the hyper�ne changing collisions between the F = 1 and the F = 2 atoms, which
release ∼ 300 mK of kinetic energy. The losses should stop when all F = 2 atoms have
undergone a collision. Due to spontaneous trap-induced Raman transitions however
(rate 0.7 s−1, see Sec. 1.5.7), a fraction of the atoms is steadily transferred to the
F = 2 manifold. A steady state population of F = 2 atoms builds up as a compromise
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Figure 9.11: Hyper�ne changing col-

lisions. We show the atom number ver-
sus the holding time at a �xed trap depth
of 1.8 mK. The atoms have an initial tem-
perature of 400 µK. The 10 % population
in F = 2 as well as the trap-induced Raman
transitions lead to a constant loss due to hy-
per�ne changing collisions. A �t of Eq. 9.4
yields a loss constant β′dark = 1s−1.

between the Raman pumping and the collision hyper�ne changing losses.
Figure 9.11 shows the atom number as a function of the waiting time in the

dark. We start from 12 atoms on average in a 1.8 mK deep trap at a temperature of
∼ 400 µK and measured the remaining average number of atoms for various holding
times in the trap. We �t the data by a two-body loss process of the form Ṅ =
−β′darkN(N − 1) (Eq. 9.4) and extract β′dark. By assuming a thermal volume V =
(2πkBT0

mω̄2 )3/2 we �nd the loss rate βdark = 2
√

2β′darkV = 3± 1 · 10−12 cm3s−1. Gensemer
et al. (2000) have measured the rate for the hyper�ne changing collisions, which
varies rapidly with the temperature. At our temperature this rate is around βHF =
3 · 10−11 cm3s−1. The ratio between βdark and βHF is 0.1 and corresponds to the
fraction of atoms in the F = 2 level ΠF=2. We measure ΠF=2∼ 10 % of the atoms
in F = 2 by taking a time-of-�ight image leaving the repumper probe laser switched
o� which proves the compatibility of the results. Also, this fraction is compatible
with a rate equation model taking into account the spontaneous Raman scattering
(see Sec. 5.2.3) and the collision hyper�ne changing loss. It therefore seems that the
assumption of a thermal volume without the presence of near-resonant light is valid
in our case.

However, it may be possible that during the excitation period in the presence
of near-resonant light, the density changes and is not constant as assumed in the
simulation:

• Decrease in density. An increase of the volume V would lead to an even
larger value of β. We found two sources for an increase of the volume. First,
probe laser photon scattering can lead to an increase in temperature and thus
in volume. For the highest loss rates however a temperature increase due to
probe laser photon scattering is small as mentioned in Sec. 9.3.2. Second, the
density of the few atom cloud is about n0 = 3 · 1012 cm−3 and the mean free
path of a resonant photon is 1/(n0σL)∼ 1.1 µm, with σL∼ 3λ2/2π the cross-
section for the absorption of laser light, much larger than the size of the cloud.
We therefore do not expect any in�uence of photon re-absorption or radiation
pressure to decrease the density either.

• Increase in density. We do not have any realistic mechanism to explain an
increase of the density. The attractive dipole force 9k~Γ/4(kr)4 seems too weak
to pull the atoms together. This however is hard to verify experimentally.



154 Chapter 9: Light-assisted collisions

Figure 9.12: Atom number de-

pendent loss rate constant in a

Uf/kB =0.9 mK deep trap. Loss
rate constant β′ versus the average
atom number. The probe saturation
is s= 0.5 and the probe laser detuning
is δ/2π= 10 MHz. The loss rate con-
stants are all extracted by applying the
simulation.
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9.3.5 Evidence of collective behavior

In this section, we investigate the behavior of the loss rate with respect to the number
of atoms in the trap. For this measurement the trap depth is Uf = 0.9 mK, the
saturation of the excitation light is s∼ 0.5 and the probe laser detuning is δ/2π=
10 MHz. We vary the average number of atoms in the trap by adjusting the MOT
trigger level as mentioned in Sec. 3.4. This allows us to vary the number of atoms
in the trap from 3 to 33 on average. We maintain the temperature, and thus the
thermal volume roughly constant. It decreases from 192 µK down to 140 µK going
from 3 to 33 atoms due to a faster free evaporation process. Fig. 9.12 shows the
two-body loss constant β′ as a function of the initial average atom number. We
observe a very strong and unexpected dependence of this loss rate with respect to
the number of atoms: β′ varies by almost two orders of magnitude when the average
atom number varies from 3 to 33. We have checked that the global dependence of β′

on the probe frequency does not change as the number of atoms varies. This means
that the plotted loss constants always correspond to the peak values for Uf = 0.9 mK
for any number of atoms. In the following we discuss some possible mechanisms that
could lead to a decrease of the two-body loss rate β′ with increasing atom number.

Photon re-absorption and radiation pressure

Following the approach outlined in reference Walker, Sesko, and Wieman (1990), we
estimate the density nmax of the cloud in the dipole trap, for which re-absorption
should become important, to be

nmax =
c ·m · ω̄2

2σL(σR − σL)sIsat
, (9.13)

where σL = (3λ2/2π) 1
1+s

is the cross-section for absorption of the laser light and σR the
cross-section for the absorption of the scattered light, whose ratio σR/σL is estimated
in Steane, Chowdhury, and Foot (1992). We �nd for our trap parameters σR/σL−1∼
0.5 which leads to nmax = 6 · 1014cm−3. This density is a factor 10 larger than our
highest atom density for 33 atoms of around 4·1013 cm3 assuming thermal equilibrium.
This means that re-absorption of photons should not play a signi�cant role during
the excitation of the atoms. This result is also supported by calculating the optical
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thickness of the sample.

Optically thick sample

In a second scenario, the relative decrease of the two-body loss rate with increasing
atom number comes from an increasing optical thickness of the sample. As the
optical thickness becomes higher, the atoms at the center of the cloud see a lower
intensity, and therefore have a lower probability to be excited. As the two-body
loss rate β depends on the intensity (see Fig. 9.9), the loss rate of the atoms at the
center of the cloud will be lower. We have calculated for our densest sample (N = 33,
n= 4 · 1013 cm−3, T0 = 165 µK) a resonant optical thickness along the propagation of
the excitation laser of OD =n0σLσ⊥= 0.3. This means that the saturation parameter
at the center of the cloud is only 1 − exp(−OD)∼ 26 % smaller than in the outer
shell. According to Fig. 9.9 a change of ∼ 26 % results in a change in β by not more
than a factor 1−2 which is far away from explaining a decrease of more than a factor
10.

The low optical thickness also rules out a rather fancy scenario: It could be that
the red-shifted photon emitted by the atom excited to the molecular attractive curve
is re-absorbed by another atom pair having the right inter particle distance to be
excited and to undergo a light-assisted collision. In this scenario, the absorption
of only one photon from the laser beams by an atom pair is enough to trigger an
avalanche of two-body collisions. It seems to us however that this mechanism would
only increase the light-induced loss rate rather than decrease it as observed.

Super-radiance e�ects

Another mechanism involves the resonant dipole-dipole interaction between the atoms
induced by the near-resonant excitation light. The dipole-dipole interaction between
two atoms has a magnitude (Weiner et al., 1999)

V (r)∼ ~Γ

(kr)3
. (9.14)

If the average distance between the atoms is smaller than 1/k=λ/2π, the strength
of the dipole-dipole interaction is larger than the line width of the transition (see
Sec. 2.2.3). In this regime, each pair of atoms has a di�erent resonance frequency.
The excitation laser can only excite a fraction of the pairs, thus reducing the two-
body loss rate. This situation is reminiscent of the Rydberg blockade observed in
atomic ensembles (Urban et al., 2009; Gaëtan et al., 2009). However, for our largest
density of 4 · 1013 at/cm3, the average inter atomic distance is 2.4 · λ/2π and the
dipole-dipole interaction seems too weak to explain our �ndings.

Breakdown of two-body collision assumption

Finally, the observed dependence of the loss rate could also mean a breakdown of
the two-body collision approach. Two scenarios are possible. In the �rst one the
losses are not dominated by two-body collisions but instead by three or more body
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Figure 9.13: Comparison between

two- and three-body light-assisted col-

lisions. Atom number (red squares) versus
duration of probe pulse for Uf/kB = 0.9 mK,
δ/2π= 10 MHz and s∼ 0.5. A two- (black
line) and three-body (blue dotted line) sim-
ulation �t are compared.
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processes for increasing atom numbers. We simulated the data by using a three-body
loss process and could not make a clear di�erence between two- and three-body losses
as shown in Fig. 9.13. In any case we could not �nd any theoretical prediction for
three-body light-assisted collisions.

In the second scenario, a single two-body event triggers the expulsion of more
than two atoms. This would be the case if the sample was collisionally thick: the two
atoms with large kinetic energy after the spontaneous decay collide with neighboring
atoms and expel them from the trap. Although it is not clear what cross section to
use to calculate the collisional rate when the kinetic energy of the energetic atoms
corresponds to ≥ 0.1 K, we take the largest cross-section possible, that is the s-wave
cross section. The mean free path of an atom is then ∼ 80 µm, much larger than the
size of the cloud. It does not seem that this scenario is likely either.

The conclusion of this section is that we do not have any satisfactory model to
explain the dependence of the loss rate with the number of atoms.

9.4 Conclusion

As a conclusion, we have presented a series of measurement of light-assisted collisions
in a microscopic dipole trap, when the sample is excited by a near-resonant probe.
We have found surprisingly large two-body loss rates, not reported so far, to the best
of our knowledge. We have also found an intriguing dependency of the collisional rate
with the number of trapped atoms. This behavior may be a signature of collective
e�ects due to the small size of the atomic cloud, on the order of the wavelength of
the probing light. Further experimental studies and signi�cant theoretical e�orts are
needed in order to understand our �ndings. However, the high loss rates induced by
near-resonant light imply new techniques to more e�ciently load the micro trap other
than by using the molasses. We will present such a technique in the next chapter.



Part IV

Many atom experiments



Chapter 10

Using the micro trap as a dimple

Contents

10.1 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.2 Free evaporation in the micro and macro trap . . . . . . 159

10.3 Using the micro trap in a dimple con�guration . . . . . 161

10.3.1 Probing dense atom clouds . . . . . . . . . . . . . . . . . . 162

10.3.2 Three-body losses in the dense atom cloud . . . . . . . . . . 164

10.4 Characterizing the atom transfer to the dimple trap . . 165

10.4.1 Measuring the transfer time . . . . . . . . . . . . . . . . . . 166

10.4.2 Atom transfer model . . . . . . . . . . . . . . . . . . . . . . 167

10.4.3 Trap depth dependence of the atom transfer . . . . . . . . . 168

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

So far we concentrated on measurements with single atoms or very small atom
clouds N < 10. The next two chapters will focus on the use of the micro trap in a
regime of up to 1000 atoms. The high number of atoms is crucial for forced evapora-
tion experiments reaching ultra-cold and degenerate atom clouds. The last chapter
already indicated some limitations that light-assisted collisions impose on the micro
trap loading from the molasses or MOT. We will �rst show the limitations on the
number of atoms that can maximally be loaded into the trap and thus motivate the
use of another loading technique for the micro trap. Afterwards we describe the
technique of using the micro trap in a dimple con�guration.

10.1 Résumé

Le chargement du micro-piège directement à partir du MOT est très a�ectée par les
collisions assistées par la lumière. Elles conduisent à une perte d'atomes et à une tem-
pérature élevée. Nous contournons ce problème en utilisant un piège macroscopique
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Figure 10.1: Free evaporation in micro and macro trap. We show the evolution of
the average atom number N and temperature T of the atom ensemble loaded directly from
the MOT into the left) 2.7 mK deep micro and right) 1.4 mK deep macro trap. The black
solid and dotted curves are a simulation described in the text.

comme réservoir d'atomes. Les atomes sont transférés du macro-piège au micro-piège
par collisions élastiques en l'absence de toute lumière proche de résonance. Le nom-
bre d'atomes ainsi chargés dans le micro-piège est augmenté d'un ordre de grandeur
par rapport au cas du chargement direct par le MOT. La température obtenue est
également inférieure.

10.2 Free evaporation in the micro and macro trap

We load the micro (945 nm, wx∼ 1 µm) and macro (850 nm, wx∼ 3.8 µm) trap
directly from the MOT as described in Sec. 3.4 and measure the number of atoms
N and temperature T as a function of the time the atoms are held in the trap after
the loading. For all following measurements we apply the �uorescence integration
method discussed in Sec. 8.2 to count the atom number. If not otherwise written
the probe (s∼ 5) and repumper probe illuminate the free-�ying atoms on resonance
for 2 µs. The temperature is measured by using the time-of-�ight method (Sec. 6.2).
For the trap depths used here (< 3 mK) we achieve to prepare 97 % of all atoms
in the 52S1/2F = 1 ground state. Additionally the micro trap at 945 nm reduces the
Raman-induced hyper�ne transitions with respect to the macro trap at 850 nm by
a factor ∼ 10. Spin-changing collisions therefore do not play a role in the following
experiments.

Fig. 10.1 shows the results for the 2.7 mK deep micro trap (left side) and 1.4 mK
deep macro trap (right side). While the micro trap can only be loaded with maximally
100 atoms the macro trap contains up to 2500 atoms1. The steady-state atom number

1The loaded atom number depends on the MOT alignment and the atom �ux from the oven.
Here, we operate the oven at T ∼ 115◦C.



160 Chapter 10: Using the micro trap as a dimple

in both cases follows from Eq. 3.6 and is given by Nst∼
√

R
β′ =

√
R·V
β
. The loading

rate R scales with w · zR∝w3 (w=waist of the trap laser at the focus, zR =Rayleigh
length) while the atom volume inside the trap scales as V ∝w4. Assuming β to be
constant we expect an increase of the atom number of ∼ (wmacro/wmicro)3.5∼ 90, a
factor 3.5 larger than measured. This could be due to the di�erent trap depth as the
micro trap is almost twice as deep as the macro trap or a higher β for smaller trap
sizes.

Leaving the atoms in the trap without any other light present we see a loss of
atoms coming along with a decrease in temperature. This behavior is typical for a
thermalization process due to elastic collisions introduced in Sec.2.2.1. For the micro
trap the thermalization stagnates after 200− 300 ms. The temperature decreases by
almost a factor two to 200 µK at the expense of a decrease in number of atoms. The
stationary regime corresponds to η=U/TkB∼ 13.5 according to Sec. 2.3.1. Here, the
thermal atom density is n0 = 2 · 1014 cm−3 and the phase-space density from Eq. 2.32
around ρ= 10−4 far away from the degenerate regime of < 1. The elastic collision
rate γel = 1.5 · 104 s−1 is strikingly high due to the high trap frequencies. Again we
�nd that light-assisted collisions not only limit the initial atom number but also their
temperature to values three times larger than the Doppler-limit for a single atom. For
the macro trap we �nd a density n0 = 2 · 1013 cm−3 and a calculated elastic collision
rate of γel = 1 ·103 s−1. Due to the larger trapping volume the values are smaller than
for the micro trap.

To model the evaporation process we follow the procedure by Luiten, Reynolds,
and Walraven (1996) and numerically solve the equations

Ṫ =
Ėev − µṄ

C
, Ṅ =−n2

0σelv̄e
−ηVev , (10.1)

where v̄=
√

8kBT
πm

is the average thermal velocity, µ the chemical potential and C =

(∂E/∂T )N is the heat capacity. The e�ective evaporation volume and the change of
internal energy

Vev =
λ3
th

kBT

∫ U

0

Ds(E)
[
(U − E − kBT )e−E/kBT + kBTe

−η] dE ,

Ėev =

∫ ∞
U

EDs(E)ḟ(E)dE ,

(10.2)

with the density of states Ds(E) and the Boltzmann distribution function f(E) are
similar to the quantities in Sec. 2.3. The basic idea is that hot atoms carry away
energy leaving behind colder atoms with a lower internal energy. The black curves in
Fig. 10.1 correspond to the solution of the Eq. 10.1. For the micro trap we �nd good
agreement for the evolution of the number of atoms but a theoretically faster expected
decrease in temperature. The deviation could be due to the fact that the micro trap
is completely �lled with atoms from the MOT in which case the harmonic limit (see
Sec. 1.5.8) is not valid any more. Also, atoms in the axial direction where the trap has
a Lorentzian shape need much more time than predicted to undergo elastic collisions
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and to thermalize. We �nd an even larger deviation between experiment and theory
for the macro trap (black curve). Using again the numerical result of Eq. 10.1 we
�t the macro trap data for an e�ective elastic collision rate 5 times smaller than
expected (dotted black curve).

High initial temperatures as well as rather low atom numbers ∼ 100 that are
limited by light-assisted collisions are unfavorable on the way to ultra-cold and dense
samples as well as small Bose-Einstein condensates (see below). There are however
some possibilities to reduce light-assisted collisions in order to increase the atom
number and decrease the temperature when loading the micro trap directly from the
MOT. One makes use of the repulsive dipolar potential in the excited state in which
case one avoids an increase in kinetic energy due to the attractive potential in the
excited state (Dürr, Miller, and Wieman, 2000). In another approach one loads the
dipole trap by using a so called dark-SPOT (Ketterle et al., 1993). We also want to
mention a technique of a time-averaged trap that has been applied to increase the
atom number by a factor two (Ahmadi, Timmons, and Summy, 2005). Here however,
we discuss another approach by using the macro trap as an atom reservoir from which
the micro trap can be loaded in the absence of any near-resonant light.

10.3 Using the micro trap in a dimple con�guration

The results presented so far show that a loading of the micro trap from the MOT is
hampered by light-assisted collisions. A widely used technique to go around this is
to use the macro trap as an atom reservoir for the micro trap. The idea is to load
the macro trap from the MOT. The MOT is then switched o� and the micro trap,
which is superimposed onto the macro trap, is switched on. Atoms initially inside
the macro trap will eventually go into the micro trap without being subject to near-
resonant light. For the atoms to stay inside the micro trap we need a dissipative force
which has so far been created by the near-resonant light. Now, elastic collisions with
the atoms already inside the micro trap will lead to a loss of energy for the entering
atoms.

We expect a higher steady state atom number Nst∼
√

R
β′ inside the micro trap

due to two reasons. First, the loading in the absence of any near-resonant light avoids
the atom loss due to light-assisted collisions, thus decreasing β′. Second, the density
of the atom reservoir surrounding the micro trap is a factor 1000 larger when using
the macro trap instead of the MOT with density nMOT ' 1010 cm−3. This increases
the loading rate as it is proportional to the surrounding atom reservoir density.

Depending on the relative position of both traps we study the number of atoms
loaded from the macro into the micro trap. We load the Umacro/kB = 1.4 mK deep
macro trap from the MOT with about 2500 atoms (see experimental sequence in
Fig. 10.3). After having switched o� the MOT we suddenly switch on the Umicro/kB =
2.7 mK deep micro trap and wait for ttransfer = 300 ms for the transfer to be realized.
We then switch o� the macro trap and wait for 50 ms after which all atoms in the
macro trap have �own away. Finally, we switch o� the micro trap to measure the
number of atoms after 50 µs of free �ight by using a 2 µs probe and repumper probe
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Figure 10.2: Position dependent macro-micro trap atom transfer. left) Number
of atoms in the micro trap (2.7 mK) versus the relative position between both traps. A
Gaussian �t (black curve) yields a rms width of 3.3 ± 0.3 µm. right) Trap pro�le for a
combination of the 1.4 mK deep macro and 2.7 mK deep micro trap displaced by 3 µm from
each other.
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Figure 10.3: Time-of-�ight measurement of a dense cloud. left) Experimental
sequence for loading the Umicro/kB = 2.7 mK deep micro trap from the Umacro/kB = 1.4 mK
deep macro trap reservoir. Both traps overlap in time for ttransfer = 300 ms. We switch o�
the micro trap thold = 50 ms afterwards to measure the atom number and temperature in a
time-of-�ight experiment. right) We plot the atom number N (red squares) and rms width
(blue triangles) of the atom sample versus free �ight time. The atom �uorescence is induced
by a 2 µs probe pulse. The solid and dashed black curves are theoretical models explained
in the text.

pulse. The graph on the left in Fig. 10.2 shows the number of atoms inside the
micro trap versus the relative position between both traps. When both traps are
superimposed the atom number reaches 300, three times as high as by using the
MOT to load from. We �t the form of the decrease with a Gaussian function and
�nd a rms width of 3.3±0.3 µm. The graph on the right in Fig. 10.2 shows the radial
pro�le of the trap for a �xed distance of 3 µm between the micro and the macro trap.
Increasing the distance lowers signi�cantly the transfer e�ciency.

10.3.1 Probing dense atom clouds

Loading the micro trap from the macro trap can lead to high atom densities in the
micro trap. A �rst indication is the enhancement in the number of atoms with respect
to the loading from the MOT. Special care has to be taken when probing dense clouds
with near-resonant light, as collective e�ects (see Sec. 9.3.5) can bias the measurement
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of the temperature or the number of atoms.
The graph on the right in Fig. 10.3 shows a typical time-of-�ight measurement to

extract the temperature T and atom number N using the probe laser at resonance
(s∼ 3). A �rst striking feature is the increasing number of atoms for longer times of
�ight. The number of atoms is actuallyN ∼ 260, measured at the largest time-of-�ight
of 50 µs. For the measured temperature and number of atoms N ∼ 260 we �nd an
atom density exceeding n0 = 1015 cm−3. The optical thickness along the laser propa-
gation in this case is initially OD=n0σLσ⊥= 11� 1 with σL = (3λ2/2π) 1

1+s
showing

that not all atoms can scatter light at Γ/2, thus biasing the �uorescence integra-
tion method. For increasing time of �ight t the density n0(t) = (2π)3/2N/(σ2

⊥(t)σ‖(t))

quickly decreases as the size of the atom cloud increases as σ‖(t) =
√
σ2
‖ + (vt)2 and

σ⊥(t) =
√
σ2
⊥ + (vt)2 according to Eq. 6.1. This leads to a decrease of the optical

thickness as OD(t)∝N/(σ⊥(t)σ‖(t)). The function N exp(−OD(t)) with the maxi-
mal number of atoms N = 250 is comparable to the data for the atom number only
for longer �ight times (t∼ 15 µs). For shorter time-of-�ights we detect much more
�uorescence than it should be the case theoretically and we thus overestimate the
initial optical density. This could for example be explained by radiation pressure,
which quickly (∼µs for our parameters) increases the initial size of the cloud (see
below). This rapid increase in volume leads to a quick decrease in density and a much
lower optical thickness, thus detecting more �uorescence.

A second striking feature is the initial rms width of 1.3 ± 0.1 µm exceeding the
expected resolution limit σres = 1.1 µm (Sec. 6.2.3). We attribute the explosion of the
dense cloud to radiation pressure. Considering a radial acceleration due to radiation
pressure, the measured rms width would be

√
σ2
res + σ2

rp, where σrp is the average rms
position of the accelerated atom during the probe pulse due to radiation pressure.
We estimate σrp following Steane, Chowdhury, and Foot (1992) and assume a radially
symmetric cloud. For full-saturating (s∼ 3) resonant light the radial force acting on
atom j is

Fj(rj) =mr̈j =

∫
ω

∫
rl

~k
Γ

2

σR

4π |rj − rl|2
n(rl) , (10.3)

where n(r) is the atom density of Eq. 2.19 and σR∼ (3λ2/2π) 1
1+s

the cross-section for
the absorption of the scattered light. According to Gauss's law this can be written
as

∇rFj(r) = ~k
Γ

2
σRn(r) . (10.4)

We now numerically2 solve the equation of motion F (r) =mr̈ for an atom initially at
the rms position σ⊥∼ 150 nm (Eq. 6.2) associated to a temperature of 250± 50 µK,
which we measure by �tting Eq. 6.1 to the rms width and accounting for a 20 % e�ect

2For a spherical symmetric Gaussian density distribution n(r) the radiation pressure force in

Eq. 10.4 has the analytical solution F (r) =N ~kΓσL
2
√

2π
3

 1
r2

√
π
2 Erf

(
r√

2σ⊥(t)

)
−

exp

(
− r2

2σ2⊥(t)

)
rσ⊥(t)

.
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Figure 10.4: Time-of-�ight vs release and recapture method for dense clouds.

left) We show the evolution of the atom cloud rms width with the time in free �ight. A
�t of Eq. 6.1 yields 87.5 ± 5 µK. right) We plot the atom recapture probability versus the
release time. A Monte-Carlo simulation to �t the data yields a temperature 80± 10 µK.

due to the depth of focus (Sec. 6.2.4). After the probe duration of 2 µs the atom
has moved to 1.3 µm taking into account that the density decreases as well during
the probe pulse. The rms position averaged over the pulse duration is therefore
σrp∼ 0.65 µm leading to an overall rms width of

√
σ2
res + σ2

rp = 1.3 µm compatible
with the measured result3. The radiation pressure does not a�ect the rms width of
expanded clouds and does therefore not bias the temperature measurement.

We check that the temperature measurement with the time-of-�ight method gives
a reliable result by comparing it to the release-recapture technique introduced in
Sec. 6.3. Figure 10.4 shows the two methods for an atom cloud in a 1.2 mK deep
micro trap. We again �t Eq. 6.1 to the data and �nd 87.5 ± 5 µK. Again note
the initial cloud size σ(0) = 1.6 µm exceeding the resolution limit due to radiation
pressure. This result is compared to the one of the release-recapture technique. We
�t the data by using the Monte-Carlo simulation already applied to the single atom
measurements and �nd 80±10 µK, which nicely agrees with the time-of-�ight result.
We assume here that the atoms are independent so that the ensemble average in the
many atom case is equivalent to repeating the simulation using a single atom.

Considering these observations we always measure the number of atoms for long
time of �ights, for which the cloud is su�ciently dilute and all atoms scatter photons
at the same rate. For these dilute clouds the temperature measurement is not biased
by e.g. radiation pressure e�ects either.

10.3.2 Three-body losses in the dense atom cloud

We saw that it takes∼ 250 ms to reach the thermodynamic equilibrium around 250µK
when loading the micro trap from the MOT. Furthermore it leads to a reduction in
atom number from initially ∼ 100 to ∼ 50. Loading the micro from the macro trap
not only boosts the number of atoms in the micro trap to nearly 300 but also sets their
temperature close to the thermal equilibrium temperature U0/kB/10∼ 250 µK. Note
that this avoids a loss of atoms due to free evaporation. Being at thermal equilibrium

3Besides the radiation pressure there exists an attenuation force which compresses the cloud (Dal-
ibard, 1988). Since we do not observe any compression we assume this force to be negligible.
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Figure 10.5: Three body loss rate. left) We plot the number of atoms N (red squares)
and temperature T (blue triangles) versus the holding time in the micro trap. A two-body
(dashed black line) and three-body (solid black line) �t are compared to the data. right)
We plot the di�erence between the data and the two-body (red squares) and three-body
(blue circles) �t result versus the holding time.

and having prepared 97 % of the atoms in the F = 1 ground state we would thus expect
the lifetime of the atoms to be limited by background gas collisions. Figure 10.5
nevertheless shows that atoms are lost from the trap at a high rate. At our high
densities of n0 = 1015 cm−3 the loss could be due to three-body recombination.

To extract the loss rates we �t the data with the three-body loss function

N(t) =
N0√

1 + 2L′ ·N2
0 · t

(10.5)

resulting from solving Eq. 2.10 with γ= β′= 0 to the data. We �nd L′= 1.8 ·10−4 s−1.
Assuming a constant thermal volume4 this converts to the loss rate L= 3

√
3L′V 2 =

4 ± 3 · 10−29 cm6s−1 comparable to the value found by Burt et al. (1997). The
agreement between our measurement and Burt et al. (1997) supports the assumption
of three-body loss although it is di�cult in our case to exclude a two-body loss. The
graph on the right in Fig. 10.5 shows the deviation of the �t from the data for a
two- and three-body model. Here, the �rst 200 ms show a better �tting result for
a three-body model of Eq. 10.5. For longer holding times the deviations for both
models are similar.

10.4 Characterizing the atom transfer to the dimple
trap

The transfer of atoms from the macro to the micro trap depends on many parameters.
In the following we explore its dependence on the transfer time ttransfer, the micro
Umicro and macro Umacro trap depths5. To do so we apply the experimental sequence

4The temperature and thus the volume are assumed to be constant. However, free evaporation
decreases the temperature from 250 µK to 200 µK, thus slightly changing the volume of the cloud
in the beginning.

5The micro trap waist is w0 = 1.5 µm for these experiments. The reason for going to a larger
trap waist is discussed in the next chapter.
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Figure 10.6: Position dependent macro to micro trap atom transfer. left top)
Experimental sequence used to align the micro onto the macro trap. We start by loading
the macro trap from the MOT for 20 ms. We switch o� the macro trap after the transfer
time ttransfer. We then measure the atoms inside the micro trap thold after switching o� the
macro trap by illuminating the atoms in free �ight with a 2 µs probe pulse. left bottom)
The macro trap serves as an atom reservoir from which the micro trap is loaded at a rate
R. Atoms in the micro trap are evaporated back into the macro trap (Ṅev) or they are lost
due to three-body recombination (L′N3

micro). right) We show the number of atoms in the
micro trap Nmicro (red squares) and their temperature (blue triangles) versus the transfer
time ttransfer. The theoretical result (black curve) discussed in the text is used to �t the
number of transferred atoms.

shown on the upper graph on the left in Fig. 10.6. We start at t= 0 by loading
the superimposed macro and micro trap using the MOT for 20 ms. In fact, for the
optimized transfer parameters we do not �nd any signi�cant di�erence whether we
switch on the micro trap before or after having loaded the macro trap from the MOT.
The MOT is then switched o� and the transfer takes place. After the transfer time
ttransfer the macro trap is switched o�. We then wait for thold = 50 ms to let the atoms
of the macro trap �y away so that only atoms remaining in the micro trap are left.
The number of atoms is measured after a time-of-�ight of typically ttof = 80 µs which
is enough for the atom cloud to be su�ciently dilute. It is then illuminated by a 2 µs
probe and repumper probe pulse. The induced �uorescence is detected on the CCD
camera.

10.4.1 Measuring the transfer time

We �rst study the dynamics for the micro trap loading. On the right side of Fig. 10.6
we show how the number of atoms Nmicro and their temperature Tmicro inside the
micro trap vary as the transfer time ttransfer is changed. In this particular case the
Umacro/kB = 1.4 mK deep macro trap was loaded with 1500 atoms and was super-
imposed by the Umicro/kB = 1.2 mK deep micro trap. The atom number inside the
micro trap increases sharply by a factor 5 to ∼ 500 during the �rst 100 ms. It then
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decreases slowly by 20 % over the next 600 ms mainly due to three-body losses. Note
that the maximal atom transfer e�ciency here is 500/1500 = 33 %.

The variation in temperature on the other hand is much less pronounced. It is
due to the thermalization of the gas. Its value is set by the depth of the micro trap
as the thermalization process leads to T ∼Umicro/kB/10 (see Sec. 10.2). We will now
describe the model used to describe the atom transfer between the macro and micro
trap.

10.4.2 Atom transfer model

We set up a model to describe the evolution of the atom number in both traps.
The temperature is considered to be constant during the process. As can be seen in
Fig. 10.6 the temperature Tmicro of the micro trap atoms Nmicro is nearly constant
during the loading process. The same is true for the temperature of the atoms in the
macro trap Tmacro considering Fig. 10.1. We therefore believe that the assumption of
constant temperature is not completely unreasonable6. The model is based on the
following rate equations

Ṅmacro =−R + Ṅev , Ṅmicro =R− Ṅev − L′N3
micro . (10.6)

It treats the loading rate R from the macro into the micro trap, the rate at which
atoms evaporate from the micro back into the macro trap as well as three-body loss
from the micro trap. We discuss each process illustrated on the bottom left graph of
Fig. 10.6 in the following:

• Loading rate R.We follow the idea outlined in Kuppens et al. (2000) to derive
an equation of the loading rate R. The number of atoms passing a certain area
per unit time is n0,macrov̄, where n0,macro is the atom density in the macro trap
and v̄ is the average thermal velocity (see Sec. 10.2). We assume entering
atoms to be su�ciently slowed down due to elastic collisions with the micro

trap having a Gaussian density pro�le nmicro∝ exp
(
− r2

2σ2
⊥

)
exp

(
− z2

2σ2
‖

)
. The

entering atoms therefore need to cross the surface A enclosing the cigar with axis
σ⊥ and σ‖ inside which they undergo elastic collisions. Furthermore, we assume
that atoms from the macro reservoir that enter the micro trap are trapped in
the micro trap when they collide at least once on average with an atom inside
the micro trap7. The probability for one collision Ptrap =σeln0,micro(σ2

⊥σ‖)
1/3 can

be estimated assuming s-wave collisions. The �nal loading rate then reads

R=
1

4
n0,macrov̄APtrap . (10.7)

• Free evaporation Ṅev. The evaporation rate Ṅev from atoms of the micro into
the macro trap is taken directly from Eq. 10.1. We assume that all evaporating

6The temperature measurement is taken thold = 50 ms after the macro trap has been switched
o�. During this time free evaporation leads to a slightly (∼ 20 %) lower temperature as present.

7Note that the micro trap is initially �lled with ∼ 100 atoms.
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atoms are not lost but rather caught by the macro trap potential. We neglect
free evaporation of the macro trap atoms as the atom transfer process typically
takes place on much faster time scales than the free evaporation process from
the macro trap.

• Three-body loss. The three body loss L′N3
micro becomes important only for

the micro trap where the atom densities can reach ∼ 1015 cm−3. Here we use
the value for L′ measured in Sec. 10.3.2.

To �t the data we set all parameters to their measured values, especially the
atom temperatures Tmacro and Tmicro. However, to obtain satisfactory results we
needed to do two changes. First, the optimized value of the loading rate R is a factor
∼ 10 smaller than expected from Eq. 10.7 for our parameters R= 2 · 105 s−1. We
attribute this to the fact that the actual trap is not harmonic and that this induces
a lower elastic collision rate than expected in our case. This is actually the same
argument as encountered in Sec. 10.2, which led to a slower evaporation time in the
macro trap. Second, the calculated atom transfer e�ciency is a factor 1.5 higher
than measured due to the following: We measure the atom number thold = 50 ms
after the transfer during which atoms are lost due to free evaporation and three-body
losses. Considering these variations the model does well reproduce the atom number
evolution in the micro trap as shown by the black curve in Fig. 10.6.

There are other possibilities to model the trap loading from an atom reservoir. One
possibility to qualitatively better model the data would imply a numerical simulation
as e.g. done for a crossed dipole trap on a single-particle basis by Schulz et al. (2007).
Another approach emphasizes on thermodynamic properties such as e.g. entropy and
energy of an adiabatic (Stamper-Kurn et al., 1998) and diabatic (Comparat et al.,
2006) trap loading process.

10.4.3 Trap depth dependence of the atom transfer

We now �x the transfer time to ttransfer = 220 ms and vary the macro and micro
trap depths. The left graph of Fig. 10.7 shows the micro trap atom number and
temperature versus the macro trap depth Umacro while the micro trap depth is held
constant at Umicro/kB = 1.2 mK. The atom number increase for macro trap depths
below 1 mK is a result of an increasing atom number in the macro trap8 and an
increasing loading rate R. For macro trap depths exceeding ∼ 1 mK the atom number
stagnates. This is due to the fact that with increasing atom number in the micro trap,
also an increasing number of atoms evaporates back into the macro trap. Additionally,
three-body losses start to limit the total number of atoms inside the micro trap. The
competition of these processes with an increasing loading rate leads to a saturation
of the atom number in equilibrium. The temperature of the atoms in the micro trap
is constant at Tmicro∼Umicro/kB/10∼ 115 µK and imposed by the depth of the micro
trap as already observed in the previous sections.

8We check experimentally that the atom number varies linearly with the trap depth.
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Figure 10.7: Macro-micro trap atom transfer depending on macro and micro

trap depth. We plot the number of atoms (red squares) inside the micro trap and the atom
temperature (blue circles) versus the left) macro trap depth Umacro (keeping Umicro/kB =
1.2 mK �xed) and right) and micro trap depth Umicro (keeping Umacro/kB = 1.4 mK �xed).
The measured atom number is compared to the theoretical result (black curve) of the model
described in the text. For these measurements the macro and micro trap have been super-
imposed for ttransfer = 220 ms and the micro trap has been switched of thold = 50 ms after
the macro trap.

We repeat the measurements changing the micro trap depth Umicro by keeping the
macro trap depth �xed at Umacro/kB = 1.4 mK. The right graph of Fig. 10.7 again
shows the micro trap atom number and temperature versus the micro trap depth
Umicro. The best atom transfer is obtained for micro trap depths around 1.2 mK. With
lower trap depths less atoms can be held inside the micro trap region. This lowers the
elastic collision probability and the atom transfer decreases. For higher trap depths
the transfer should increase due to higher atom densities inside the micro trap. Elastic
collisions on the other hand become less e�ective as the scattering cross-section may
decrease due to higher partial waves participating in the collision process. The model
does not take this into account and the atom number saturates at ∼ 500 due to three-
body losses. The temperature of the atoms in the micro trap increases linearly from
70 µK at 0.58 mK to 130 µK at 1.3 mK. Again the temperature is imposed by the
depth of the micro trap where we con�rm the dependence Tmicro∼Umicro/kB/10.

10.5 Conclusion

Loading the micro trap directly from the MOT is highly a�ected by light-assisted
collisions. They lead to a loss of atoms and a high temperature. We circumvent these
collisions by using the macro trap as an atom reservoir. Atoms pass from there into
the micro trap region and are trapped due to elastic collisions in the absence of any
near-resonant light. This increases the number of atoms as well as it leads to a lower
temperature than if loaded by the MOT.
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We saw in the last chapter that we are able to produce small (N < 1000) and
dense atom clouds in the microscopic dipole trap with temperatures around 100 µK.
In order to further cool the gas to reach ultra-cold temperatures and the degenerate
regime we apply the technique of evaporative cooling. We will �rst introduce the
principle of evaporative cooling and try to elaborate e�cient initial conditions for
the cooling process. Afterwards, we present the preliminary results towards small
Bose-Einstein condensates and discuss the di�culties in their observation.

11.1 Résumé

Les résultats présentés dans ce chapitre montrent que la production de petits con-
densats de Bose-Einstein contenant environ 10 atomes dans un piège dipolaire mi-
croscopique est possible. Nous avons créé de petits nuages d'atomes ultra-froids
T ∼ 100 nK atteignant des densités dans l'espace des phases de l'ordre de l'unité.
Jusqu'à présent, une signature claire de la condensation dans ce régime particulier
n'a pas été observée. La poursuite de l'évaporation pour encore augmenter la densité
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dans l'espace des phases a été di�cile en raison du nombre limité d'atomes présents
dans le piège. L'utilisation d'une technique d'évaporation accélérée maintenant la
fréquence d'oscillation du piège constante devrait permettre d'améliorer cette limita-
tion.

11.2 Principle of evaporative cooling

Evaporative cooling has been the main ingredient for the realization of Bose-Einstein
condensates. A review on the evaporative cooling can be found in e.g. Ketterle and
van Druten (1996a). Here, we just want to outline the basic principle and discuss
some important theoretical aspects. Figure 11.1 shows a typical forced evaporation
cycle. We start with an atom cloud in thermal equilibrium η=Ui/kBTi� 1 inside
a dipole trap which energy distribution is of Boltzmann type (see Sec. 2.3.1). If we
lower the trap depth to Uf atoms belonging to the high energy tail of the distribution
leave the trap. The remaining cold atoms thermalize until approximately the same
η=U/kBT is established. But the gain in temperature of Ti/T =Ui/U is at the
expense of an atom loss. If we assume that during the lowering process the gas stays
in thermal equilibrium with kBT �U and η= const it can be shown (O'Hara et al.,
2001) that the �nal atom number N evolves as

N

Ni

=

(
U

Ui

)3/[2(η′−3)]

=

(
T

Ti

)3/[2(η′−3)]

, (11.1)

where we use η′= η + η−5
η−4

. For the atom density n∝N(~ω̄)3/(kBT )3/2∝Nη3/2

(Eq. 2.19), the elastic collision rate γel =σelnv̄ (Eq. 2.8) and the phase space density
ρ=N(~ω̄)3/(kBT )3 (Eq. 2.32) follow equivalent relationships

n

ni
=
N

Ni

,
γel
γel,i

=

(
U

Ui

)η′/[2(η′−3)]

ρ

ρi
=

(
Ui
U

)3(η′−4)/[2(η′−3)]

=

(
Ni

N

)η′−4

,

(11.2)

considering that the trap oscillation frequency decreases with the trap depth as
ω∝
√
U . However, the equations do not tell anything about the dynamics of the

evaporation process. Intuitively it is clear that the dynamics are governed by the
elastic collision rate as indicated in Eq. 10.1. Under the constraint that η stays
constant during the ramping, the trapping potential depends on time as

U(t)

Ui
=

(
1 +

t

τev

)−2(η′−3)/η′

with
1

τev
=

2

3
η′(η − 4) exp(−η)γel,i . (11.3)

This equation can be used to derive the time dependence of any other variable as we
expressed them as a function of U(t)/Ui in Eq. 11.1 or 11.2.

Let us use typical values for the micro trap when loaded directly from the MOT
(see Sec. 10.2). We prepared 50 atoms at Ui = 2.7 mK with η∼ 10 resulting in a
peak atom density n0 = 2 · 1014 cm−3 and an elastic collision rate σel = 1.4 · 104 s−1.
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Figure 11.1: Evaporative cooling. a) The atoms occupy the trap energy levels according
to a Boltzmann distribution for temperatures Ti� 0. Lowering the trap depth from Ui to
U all atoms belonging to the grey shaded part of the distribution are lost and colder atoms
remain trapped. After thermalization, the temperature of the gas is lowered to T =Ti ·U/Ui.
b) A possibility to lower the e�ective trap depth without changing the oscillation frequency.

According to these equations a phase space density of one would be reached in 3 s by
lowering the trap depth by a factor 700 and �nishing with ∼ 10 atoms at ∼ 400 nK.
The atom density n drops by a factor 3 and the elastic collisions rate σel by ∼ 120.
These estimations show up two major di�culties: First, the large drop in the elastic
collision rate slows down the evaporation as the elastic collision rate de�nes the speed
of this process. Here, we �nd an evaporation time of 3 s allowing any loss processes
to further reduce the atom number. Second, the BEC would contain about 10 atoms
only. Any losses would lead to even less atoms and smaller densities slowing down
the BEC production time even more (Miesner et al., 1998). In the next section we
will discuss these issues.

11.3 Optimizing the evaporative cooling process

In our case it is di�cult to say what initial parameters are best for evaporative cooling.
This becomes clear from the following considerations: Eq. 11.2 indicates that the
higher the initial phase-space density ρi the less we have to lower the potential and
the faster the evaporation process will be. To increase ρi we can load more atoms
into the trap as it is proportional to the number of atoms ρi∝Ni. It also varies
with the temperature as ρi∝T−3

i so that is seems more e�cient to reduce the initial
temperature than to increase the number of atoms. Lower temperatures are possible
for lower initial trap depths Ui as in thermal equilibrium kBTi =Ui/η with η∼ 10. A
lower trap depth however has a major drawback: We cannot neglect the fact that
we are working with low atom numbers Ni� 1000. It is therefore not possible to
arbitrarily reduce the trap depth to minimize the temperature because this would
lead to a signi�cant reduction of the number of atoms. And a lack of atoms results in
the termination of the evaporation process. We will discuss three possible approaches
to improve the evaporative cooling scheme.
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11.3.1 Going to a 1.5 micrometer trap waist

We need to avoid any atom losses that are faster than or comparable to the evapo-
ration time. We brie�y discuss possible e�ects of one-, two- and three-body losses.

• One-body loss We know that the one-body loss decay due to background gas
collisions is ∼ 1/24 s−1 (see Sec. 5.3), much longer than typical evaporation
times.

• Two-body loss We avoid hyper�ne changing collisions by preparing 97 % of
all atoms in the F = 1 ground state. Trap-induced Raman transitions are as
low as 0.1 s−1 for the U/kB = 2.7 mK deep trap at 945 nm. On the other hand
Zeeman-changing collisions can also lead to losses. The energy released in a
collision depends on the Zeeman shift, which is proportional to the residual
magnetic �eld according to Eq. 1.8. These collisions may become important
when the trap depth is on the order of the released energy, which is 2.4 µK for
our residual magnetic �eld of 70 mGauss. But typical loss rates are estimated to
be very low βZeeman = 10−17 cm3s−1 (Hensler et al., 2003) and this loss therefore
negligible in our case.

• Three-body loss The high three-body collision rate measured in Sec. 10.3.2
can be hazardous for a further forced evaporation (Sebby-Strabley et al., 2005)
towards ultra-cold and degenerate atom samples as it can lead to rapid atom
loss and anti-evaporation (Comparat et al., 2006). We can lower the probability
of three-body recombination by increasing the trap waist from w0 = 1 µm to
w0 = 1.5 µm. We do so by clipping the trap laser before the aspheric lens1. As
the density scales as w−4

0 with the trap waist we expect a decrease in density by
a factor 5 whilst keeping η and the number of atoms constant. The larger trap
waist and lower density is at the expense of a lower elastic collision rate (γel∝
w−4

0 ) which increases the evaporation time. In the absence of losses however
this does not put any restriction on the evaporative cooling.

11.3.2 Evaporative cooling keeping the oscillation frequency

�xed

One can evaporate atoms from an optical dipole trap by keeping the oscillation fre-
quency ω constant. This can be done by following Hung et al. (2008). The dipole
trap potential is deformed by a magnetic or optical force gradient resulting in an
e�ective trap depth Ueff <Ui as illustrated on the right of Fig. 11.1. The curvature
at the bottom of the trap and thus the oscillation frequency ω stays constant what-
ever the magnetic or optical force gradient. The atom density n0∝ω3 as well as the
elastic collision rate γel∝ω3 do therefore not decrease due to a decreasing oscillation

1Note that the clipping of the trap beam does increase the height of the Airy rings with respect
to the center peak by a factor ∼ 4 (see Sec. 3.3.5). But the optical potential created by the Airy
rings is still too small to be considerable for trapping atoms that could disturb the main center trap.
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Figure 11.2: Optimized micro trap

loading from macro trap reservoir. We
plot the number of atoms N (red squares)
and temperature T (blue triangles) versus
the holding time in the micro trap with
depth Umicro/kB = 1.2 mK. The decrease in
the number of atoms is due to free evapo-
ration as well as three-body losses. A nu-
merical result (black curve) taking into ac-
count both e�ects reproduces the data well.
Without three-body losses the atom num-
ber would not decrease as rapidly (dashed
black curve).
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frequency when lowering the potential for evaporation. This could help to decrease
the evaporation times and increase the �nal condensate atom number.

So far a force gradient has not been implemented. A magnetic gradient would not
be favorable in our case since a potential di�erence of only ∼ 10 µK applied over our
trap of ∼ 2 µm diameter already requires magnetic �elds of ∼ 5 T/cm. This demands
the use of optical �elds to create the force gradient.

11.3.3 Maximizing the initial phase-space density

As the loss processes can be su�ciently reduced, we decided to optimize the initial
phase-space density for the evaporation starting point. Note that even in the larger
trap three-body losses can be present when the densities clearly pass 1014 cm−3. We
increase the phase-space density by loading the micro from the macro reservoir as
explained in Sec. 10.3. We scan the parameter space by varying the micro Umicro

and macro Umacro trap depths as well as the transfer time ttransfer. We maximized the
initial phase-space density for Umicro/kB = 1.2 mK and Umacro/kB = 1.4 mK together
with a transfer time ttrans = 220 ms.

Figure 11.2 shows the evolution of the number of atoms N and of the temperature
T directly after the trap is loaded. Initially we measure Ni = 650 ± 25 atoms at
Ti = 150 µK which results in a peak atomic density ni = 3 · 1014 cm−3 and a phase-
space density ρ= 10−3. The atom loss seen here is partially due to free evaporation
of the gas as indicated by the initial decrease in temperature and partially due to
losses. A simulation taking into account both e�ects yields the three-body loss rate
L= 3±2·10−29 cm6s−1 in agreement with the previously measured value in Sec. 10.3.2.
Without three-body loss the atom number evolution is expected to take the form of
the black dashed line.

Under these initial conditions we would achieve a phase-space density of one in
∼ 0.5 s by applying the scaling laws. The gas would then contain ∼ 140 atoms at a
temperature of 560 nK. However, due to the increased atom number there are still
three-body losses present but at a much reduced rate as compared to Fig. 10.5 due to
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Figure 11.3: Experimental sequence and ramp for forced evaporation. left) The
micro trap at 1.2 mK is directly loaded from the macro trap during ttransfer = 220 ms. After
50 ms of free evaporation its trap depth is lowered in a sequence of linear ramps each having
a length of tr,i. The atoms are then left to thermalize during typically thold = 200 ms before
measuring the number of atoms and temperature. right) We plot the micro trap depth
Umicro versus the forced evaporation time tevap. The ramp is built up of several linear ramps
with decreasing slope (Here in lin-log scale). The theoretical result of Eq. 11.3 is shown
(black dashed curve).

the lower density. These lower three-body losses do not a�ect the evaporative cooling
for two reasons. First, the loss rate is acceptable for an evaporation time of only
∼ 0.5 s and second, during forced evaporation the trap depth is quickly (factor 10 in
∼ 50 ms) lowered in the beginning. This decreases the density and thus makes the
losses due to three-body recombination negligible.

11.4 Evaporation results

We pursue evaporation ramps as it is usually done to obtain all-optical BECs (Barrett,
Sauer, and Chapman, 2001) by lowering the dipole trap power. We choose the starting
point of the forced evaporation 50 ms after the 1.2 mK deep micro trap has been
loaded from the macro reservoir as indicated in the experimental sequence in Fig. 11.3.
This ensures the atoms to be thermalized as shown in Fig. 11.2. We �nd Ni = 530
atoms at Ti = 120 µK (see Fig. 11.2) with η= 10. The peak density is ni = 3·1014 cm−3

and the phase-space density reads ρ= 2 · 10−3.

Evaporation ramps

With the initial values in hand we can calculate the theoretical form of the evaporation
ramp given by Eq. 11.3 and shown on the right graph of Fig. 11.3 (black dashed curve).
A phase-space density of unity is reached after ramping down the trap depth by a
factor ∼ 300 to ∼ 4 µK over ∼ 0.7 s. We want to approximate the optimal form by
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Figure 11.4: Trapping frequency and

ramp length versus the trap depth.

top) We show the length of the evapora-
tion ramp pieces tr (red squares) versus the
micro trap depth. bottom) The radial trap
oscillation frequency ωx/2π (blue triangles)
is also shown versus the micro trap depth.
The decreasing trap depth lowers the oscil-
lation frequency and requires longer evapo-
ration ramps.
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linearly ramping down the trap depths by factors of 5 − 10. We vary the length
of the ramps to maximize the phase-space density ρ. The phase-space density ρ as
well as all other quantities such as the atomic density or the elastic collision rate for
example are deduced from the measured number of atoms N and their temperature
T assuming a thermal energy distribution.

A typical optimized ramp is also shown in Fig. 11.3 (red curve). It shows one
disadvantage of lowering the trapping potential for forced evaporation as the oscilla-
tion frequency shown in Fig. 11.4 decreases, too. The decreasing oscillation frequency
leads to a lower elastic collision rate and requires longer ramps for the gas to evap-
orate to thermal equilibrium. The increasing ramp lengths for smaller trap depths
are also shown in Fig. 11.4. Taking one series of ramps from 1.2 mK to, successively
∼ 120 µK, ∼ 12 µK, and �nally ∼ 1.2 µK takes about 0.9 s of total evaporation time.
It is longer than the theoretical estimated length of ∼ 0.7 s which we can explain in
the following.

We �nd that η does not stay constant during the ramp but decreases by a factor
∼ 2 when dividing the trap by a factor 10. The result is that the implemented ramp
is less e�cient than theoretically predicted in the sense that the temperature after
the ramp is two times higher than expected. We studied the behavior of smaller dis-
cretization steps (factors of 2−5) and found no signi�cant di�erence of this behavior.
We conclude that ramping down the trap by a factor of up to 10 does not deteriorate
the evaporation e�ciency and is not the reason for an increasing η. The increase of η
has not unambiguously been identi�ed but could be due to a heating introduced by
�uctuations of the trap laser for example. It could also be due to the Lorentzian trap
shape in axial direction as it already led to a lower thermalization rate as discussed
in Sec. 10.2. And lower thermalization rates lead to higher temperatures as the gas
needs more time to attend thermal equilibrium.

General results of forced evaporative cooling

The number of atoms as well as the temperature are measured thold = 200 ms after
the ramps are �nished as illustrated in Fig. 11.3 to reestablish thermal equilibrium
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Figure 11.5: Forced evaporation results. We plot the number of atomsN (red squares),
the temperature T (blue triangles), η (green diamonds), the atom peak density n0 (red cir-
les), the elastic collisions rate γel (blue stars) and the phase space density ρ (green downward
triangles) versus the micro trap depth.

with η∼ 10. All images are well-�tted by a 2D-Gaussian model. This is in particular
the case for ultra-cold atom clouds in the quasi-degenerate regime, which pro�les are
di�erent to Gaussians and are described by Eq. 2.25.

The main results are summarized in Fig. 11.5. The data are compared to the
scaling laws of Eqs. 11.1 and 11.2 by using the function

x

xi
=

(
U

Ui

)αx
, (11.4)

where x is replaced by the considered quantity. We �x the initial trap depth to
Ui/kB = 1.2 mK and extract the exponent αx. When ramping down the trap depth we
see that the number of atoms N and the temperature T decrease. The �t yields αN =
0.42± 0.03 and αT = 1.02± 0.05 for the atom number and temperature, respectively.
The scaling laws in Eq. 11.1 predict 0.35 and 1 assuming η= 8 indicating a slightly
faster atom loss than expected.

The decrease in atom number and temperature lead overall to a decrease of the
peak density n0 and elastic collision rate γel but an increase of the phase-space density
ρ. We extract the exponents αn0 = 0.44±0.07, αγel = 0.83±0.02 and αρ =−0.9±0.05
and compare them to the theoretical result 0.35, 0.85 and −1.15, respectively. Again
we �nd a faster drop in density than expected which goes along with the faster loss
of atoms as mentioned above. The exponent for the elastic collision rate is in good
agreement with the theory. On the other hand we �nd a less rapid increase in phase-
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g

Figure 11.6: Raw images of cold atom cloud. We show raw images of an ultra-
cold atom cloud containing 8 atoms on average. The cloud is imaged using the probe and
repumper probe laser for 10µs with s∼ 5 after a time of �ight of a) 100 µs and b) 2 ms.
The cross-sections (red lines) are �tted by using a Gaussian model (blue lines). For long
time of �ights gravity leads to a shift of the atom cloud center.

space density than calculated. Note that for the values N , n0 and γel the measured
values start to deviate from the linear dependence for lower trap powers. This can be
an indication of Zeeman-changing collisions or an actually smaller trap depth due to
gravity. We calculate the e�ect of gravity for a trap depth of 1.2 µK to be ∼ 20 %.

Ultra-cold small atom clouds

The evaporation sequence leads to ultra-cold atom samples containing ∼ 10 atoms.
Figure 11.6 shows typical images taken in time of �ight after a) 100 µs and b) 2 ms.
For time-of-�ight images as long as 2 ms gravity leads to a displacement of the cloud.
The extracted rms width of the cloud is shown versus the time of �ight on the left side
of Fig. 11.7 from which we extract a temperature of 80±24 nK. For such long time of
�ights the cloud signi�cantly shifts away from the center position due to gravity. The
z-position of the cloud is plotted as a function of time on the right graph in Fig. 11.7.
We �t the function z=−1

2
g · t2 to the data and �nd g= 10.1± 0.3 m/s2 compatible

with Newton's heritage within the error bar. The slightly elevated measured result
implies an underestimation of the transverse magni�cation of our imaging system as
calibrated in Ch. 6 by 2− 3 %.

For the shown images the cloud containing N = 10± 3 atoms has a temperature
of T = 80± 24 nK in a 0.7 µK deep trap. The peak density is n0 = 6± 2 · 1012 cm−3

and the phase-space density ρ= 1.8± 1.2. The measured phase-space density passes
unity and indicates that we reached the quasi-degenerate or even degenerate regime.

To check whether the ultra-cold cloud is in the degenerate regime we tried to
observe a clear signature of condensation such as a double-structure or an ellipticity
in the cloud expansion (Dalfovo et al., 1999). So far we did not observe any clear
signature of condensation (see Fig. 11.6 b)) maybe due to the following reasons:
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Figure 11.7: Time-of-�ight experiment with an ultra-cold atom cloud. left) We
plot the rms width of the cloud dependent of the �ight time. We extract a temperature of
T = 80 ± 24 nK. right) The cloud center position in z−direction is shown versus the �ight
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2 to the data and extract an earth acceleration of

g= 10.1± 0.3 m/s2.

First, the calculated phase-space density relies on the measured values for the atom
number and the temperature. It is possible that the calibrations done in Ch. 8 and
Ch. 6 are inaccurate. Second, there are indications for a saturation of the phase-
space density for dense atom clouds in tight traps (Sebby-Strabley et al., 2005).
Although it is not clear what mechanism prevents a condensation in this case we
do not believe this limitation to be present in our case since our ultra-cold atom
cloud has rather low atomic densities 1012 − 1013 cm−3. Third, we work in a single
focused dipole trap. Most other groups creating all-optical BECs work in crossed
dipole traps (Barrett, Sauer, and Chapman, 2001; Kinoshita, Wenger, and Weiss,
2005; Hung et al., 2008; Clément et al., 2009). There are however a few BECs
that were also produced in single focused laser beams so that our con�guration does
not seem to put any constraint on the production of BECs (Gericke et al., 2007).
Fourth, it is possible that the resonant light inducing the atom �uorescence at full
saturation (s∼ 5) does destroy the condensate. The study in Ch. 6 however shows
that short probe pulses < 10 µs should not a�ect the atom distribution, especially
when dealing with dilute atom clouds after long time of �ights. Fifth, the results
are still preliminary and a more detailed study is necessary. For example, we would
need to advance to even smaller trap depths and thus lower temperatures in order to
reach higher phase-space densities. At this point a further evaporation is limited by
the small atom number keeping in mind that a possible condensate would be divided
into three Zeeman sublevels mF = (−1, 0,+1) decreasing the number of atoms per
Zeeman state to N/3 on average. Further increasing the waist of the trapping beam
or implementing the techniques mentioned in Sec. 10.2 could help to increase the
initial atom number. Finally, the observation of such a small condensate is quite
delicate which will be the subject of the next section.

11.5 Observing small Bose-Einstein condensates

There are many ways of distinguishing thermal and condensed atom clouds. We want
to discuss a few techniques in the context of small atom clouds where the small number
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of atoms can put major constraints on their application. The following calculations
are performed for a non-interacting gas as the interaction energy is calculated to be
much smaller than the potential energy in Eq. 2.28. The condensed cloud then has a
Gaussian pro�le given by Eq. 1.48.

Observing the BEC double structure

The onset of the degenerate regime is characterized by a macroscopic atom occu-
pation of the trap ground state. In a time-of-�ight experiment the condensed frac-

tion expands with velocity v=
√

~ω̄
m
. A thermal gas however expands with velocity

v=
√

kBTC
m

for a temperature close to the condensation threshold TC . For long time
of �ights the rms width of the cloud is given by σ= v · t and the ratio between the

thermal and condensed cloud size follows as
√

kBTC
~ω̄ . We replace TC by the value

from Eq. 2.30 and obtain
√

0.94N1/3∼ 1.4 for N = 10 atoms. A double structure is
therefore much less pronounced as for high atom number BECs.

To get an intuition about typical cloud pro�les we use a sum of two Gaussians,
one for the thermal and the other for the condensed part, to model the overall shape.
Figure 11.8 a) shows an example of a cross-section of a partially condensed cloud with
80 atoms in the ground and 80 in higher states. The ratio between both rms widths
is ∼ 2. Even in this case, where the ratio is larger than 1.4 (obtained for N = 10) the
overall result can hardly be distinguished from a single Gaussian curve (red dashed
line).

Anisotropic expansion

A markable di�erence between the thermal and condensed part is their expansion
characteristic. Looking from the side the atom cloud initially has a radially symmetric
cigar shape2. The condensed part does expand with a direction-dependent velocity

vi =
√

~ωi
m

with i∈ (x, y, z). The cloud con�ned in the radial directions x or y therefore
expands with a velocity greater than in the axial direction z. After long time of
�ights the ratio between the rms widths becomes vi/vj =

√
ωi
ωj

=
√

wj
wi

by using the

result from Eq. 1.46. This leads to an inversion of the cigar and clearly identi�es
the condensed fraction from a thermal one for long time of �ights as a thermal gas

expands uniformly in all directions with the same velocity v=
√

kBT
m

(see Fig. 11.8

b)). The rms width ratio for the axial z and radial (x or y) directions is
√

zR
wx,y

= 2.2

in our case and should be clearly visible. Unfortunately our setup does not allow to
image the trap from the side. We can only image the radial directions onto the CCD
camera for which the rms ratio is close to one. One could however introduce a radial
ellipticity on the trap to apply this technique.

2We would not be able to image the initial cigar-shape position distribution since the atom cloud
is smaller than the imaging resolution of 1.1 µm.
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Figure 11.8: Observing small BECs. a) We show the cross-section (blue curve) of an
image corresponding to an atom cloud with 50 % of all (160) atoms in the ground state.
The result is the sum of two Gaussian distributions having a rms width ratio of ∼ 2. b)
Initially the trapped cloud has a cigar shape. In a time-of-�ight expansion i) a thermal
cloud expands isotropically while ii) a condensed cloud inverses its axes and keeps a �xed
axes ratio at long time of �ights. c) Gravity can tilt the potential and lead to unbound
energy states. This could be used to probe the occupation number.

Comparing losses of thermal and condensed gas

Another signature for a condensed gas can be found in the loss characteristics. For
n-body loss, the decay rate is reduced by a factor 1/n! if the atoms are degenerate.
It comes from the fact that the probability to be at the same position for n atoms
is n! less likely for a condensed gas than for a thermal gas due to its higher-order
coherence properties. This has been experimentally observed by Burt et al. (1997).
This technique however requires an accurate measurement technique for the atom
density. Although the number of atoms can be precisely measured, their volume can
only be deduced indirectly by assuming thermal equilibrium for example (see Ch. 9).

Measuring the energy level occupation probability

For a single atom (Tuchendler et al., 2008) as well as for many atom systems (Brantut
et al., 2008) an indirect measurement of the energy distribution has been performed.
It may be possible to apply similar techniques to measure the occupation number of
the trap vibrational levels and distinguish between a thermal and condensed energy
distribution. Figure 11.8 c) shows how tilting the dipole trap leads to unbound
energy states. Any atoms occupying this state are then spilled from the trap and
lost. Measuring the losses from the dipole trap depending on the trap depth could be
used as a measure of the occupation probability (Serwane et al., 2011). In analogy to
tilting the trap depth also Raman transitions between trapped and untrapped states
could be used to measure the occupation probability.

11.6 Conclusion

The results presented in this chapter show that the production of small Bose-Einstein
condensates containing about 10 atoms in a microscopic dipole trap is feasible. We
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created small ultra-cold atom clouds T ∼ 100 nK reaching phase-space densities above
unity. So far a clear signature of condensation has not been observed also because it
is not completely evident in which way one could prove the existence of a condensate
in such a particular con�guration. A further evaporation to go to even higher phase-
space densities has been di�cult due to the limited number of atoms present inside
the trap. Using an accelerated evaporation technique by keeping the trap oscillation
frequency constant or loading more atoms inside the trap will certainly improve this
limitation.



General conclusion and perspectives

The work presented in this thesis reveals the versatility of the introduced experimental
setup. The high numerical aperture aspheric lens can be used to create microscopic
optical dipole traps which can operate in two distinct regimes: A single atom regime
where exactly one atom is loaded into the trap and a many atom regime where up to
1000 atoms are loaded on average. The high imaging resolution of the lens allows the
imaging of a single atom and is also helpful for the study of the small atom samples.
Together both regimes o�er unique possibilities to study mesoscopic systems contain-
ing only a few tens of interacting atoms. Furthermore, they provide ideal conditions
for quantum information science using neutral atoms.

In this context we demonstrated in this thesis the use of a single atom as a quan-
tum bit. Preparation �delities of 99.97 % and read-out �delities of 98.6 % were
measured without losing the atom. The results further motivate the use of neutral
atoms as candidates for quantum computing. Single atoms also manifest their capa-
bilities as a calibration tool that we use to measure important quantities such as the
trap depth, trap lifetime and residual magnetic �elds.

It became apparent in this thesis that the direct comparison of single atom and
many atom measurements is particularly powerful. This led to understand the time-
of-�ight temperature measurements of many atoms, which are biased when inter-
actions between the atoms become important. Also, a precise measurement of the
atom number distribution inside the dipole trap was possible using the comparison
of single and many atom results. In this context the demonstration of sub-Poissonian
trap loading even for atom numbers exceeding the single atom regime is remarkable.
The sub-Poissonian regime is identi�ed to originate from two-body light-assisted col-
lisions. A deeper analysis of the collision process reveals extremely high collision rates
close to the Langevin limit for only three trapped atoms on average. Again a com-
parison of the single from the many atom losses allowed to unambiguously identify
the two-body loss nature.

The microscopic dipole trap con�guration also allowed to study dense ultra-cold
atom gases. Up to thousands of atoms were loaded into the microscopic trap by
using a superimposed larger optical dipole trap as atom reservoir. This produces
highly dense atom clouds that are subject to fast three-body recombination losses.
Forced evaporation was then applied to cool down the dense sample to nano Kelvin



184 General conclusion and perspectives

temperatures. We achieved phase-space densities exceeding unity for atom ensembles
containing ten atoms on average. The observation of Bose-Einstein condensation is
in this case complicated by the small atom number, which also prevents further evap-
oration to even higher phase-space densities.

This work sets the beginning for a study of the mesoscopic atom ensembles. The
control over the atoms' internal degrees together with the possibility to cool small
atom samples close to degeneracy opens new ways for the study of a variety of physical
phenomena. The study of small atom clouds has so far not been intensi�ed but bears
interesting features as the breakdown of the thermodynamic limit for small atom
numbers for example. Reaching a degenerate gas with only ten atoms could be used
to measure the smearing out of the condensation phase transition. Also, the study
of atom ensembles much smaller than the wavelength of the laser light used for their
manipulation is possible. Interesting collective e�ects such as super-radiance or the
dipole-dipole interaction blockade in small atom ensembles is now within reach.
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Appendix A

Physical properties of rubidium 87

A short summary of the most important de�nitions and physical properties of rubid-
ium 87 are listed below. More information can be found in Ref. (Steck, 2008).
ε0 8.854 18 · 10−12 As/Vm vacuum permittivity
µ0 4π · 10−7 H/m vacuum permeability
c0 2.997 92 · 108 m/s speed of light in the vacuum
e 1.602 189 2 · 10−19 C electron charge
h 6.626 068 96 · 10−34 Js Planck's constant
kB 1.380 6504 · 10−23 J/K Boltzmann's constant
µB h 1.399 624 604 · 10−19 MHz/Gauss Bohr magneton
m 1.443 160 · 10−25 kg mass of rubidium 87
λ1 794.978 nm Wavelength for 52S1/2↔ 52P1/2

λ, λ2 780.245 nm Wavelength for 52S1/2↔ 52P3/2

Γ 2π · 6.066 MHz 5P3/2↔ 5S1/2 decay rate
ω1 2π · c/λ1 = 377.107 463 THz 52S1/2↔ 52P1/2 frequency
ω2 2π · c/λ2 = 384.230 484 THz 52S1/2↔ 52P3/2 frequency
ω̄ (ωxωyωz)

1/3 geometric average of trap frequencies
∆1 ωdip − ω1 trap laser detuning
∆2 ωdip − ω2 trap laser detuning
k 2π/λ wave number of probe laser
vrec ~k/m= 5.8845 m/s recoil velocity due to probe laser
Erec 1/2mv2

rec/h= 3.78 kHz recoil energy due to probe laser
gI 0.000 559 141 nuclear g-factor
gS 2.002 319 electron spin g-factor
gL 0.999 994 electron orbital g-factor
Isat 16.693 W/m2 Saturation intensity of

52S1/2F = 2,mF =±2↔
52P3/2F′= 3,mF′ =±3

λth
h√

2πmkBT
thermal de Broglie wavelength

ρ nλ3
th phase-space density

Table A.1: Physical constants, rubidium 87 properties and de�nitions used along
this thesis.
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Figure A.1: Rubidium D2 transition (52S1/2→ 52P1/2). Hyper�ne structure of the
rubidium ground state 52S1/2 and the excited state 52P1/2 with its magnetic components
mF .
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Figure A.2: Rubidium D2 transition (52S1/2→ 52P3/2). Hyper�ne structure of the
rubidium ground state 52S1/2 and the excited state 52P3/2 with its magnetic components
mF .
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Appendix B

Optical Bloch equations for one

ground and Ne excited states

We calculate the optical Bloch equations for the four level system, comprised of the
ground state |g〉 and Ne excited states |e1〉 , . . . , |eNe〉. The density matrix reads

ρ=


ρgg ρge1 · · · ρgeNe
ρe1g ρe1e1 · · · ρe1eNe
...

...
. . .

...
ρeNeg ρeNee1 · · · ρeNeeNe

 . (B.1)

Electrical dipole transitions between the ground and each excited state |ej〉 are driven
by a light �eld ∝ ei(ωjt−kjr). Between two excited levels the dipole matrix element is
zero so that the Hamiltonian in matrix form can be written as

H =


~ωg 1

2
~Ωge1e

(iω1t−k1r) · · · 1
2
~ΩgeNe

ei(ωNe t−kNer)

1
2
~Ωge1e

−i(ω1t−k1r) ~ωe1 0 0
... 0

. . . 0
1
2
~ΩgeNe

e−i(ωNe t−kNer) 0 0 ~ωeNe

 (B.2)

with real Rabi frequencies Ωgei = Ω∗gei and the loss part as

Lloss · ρ=


∑Ne

j=1 Γejejρejej −Γge1
2
ρge1 · · · −Γge3

2
ρge3

−Γe1g
2
ρe1g −Γe1e1ρe1e1 · · · −Γe1eNe

2
ρe1eNe

...
...

. . .
...

−ΓeNeg

2
ρeNeg −ΓeNee1

2
ρeNee1 · · · −ΓeNeeNeρeNeeNe

 . (B.3)

For the density matrix
∑Ne

j=1 ρejej = 1 − ρgg and ρjl = ρ∗lj with j 6= l hold. The di�er-
ential equations resulting from the Liouville equation have the form
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ρ̇gg = i

Ne∑
j=1

Ωgej

2

(
e−i(ωjt−kjr)ρgej − ei(ωjt−kjr)ρejg

)
+

Ne∑
l=1

Γelelρelel

ρ̇ejej = i
Ωgej

2

(
ei(ωjt−kjr)ρejg − e−i(ωjt−kjr)ρgej

)
− Γejejρejej

ρ̇gej =−
(

Γgej
2

+ i(ωg − ωej)
)
ρgej + i

Ωgej

2

(
ei(ωjt−kjr)ρgg − ei(ωjt−kjr)ρejej

)
− i

Ne∑
l=1
l 6=j

Ωgel

2
ei(ωlt−klr)ρelej

ρ̇ejel
j<l

=−
(

Γejel
2

+ i
(
ωej − ωel

))
ρejel − i

Ωgej

2

(
e−i(ωjt−kjr)ρgel − ei(ωjt−kjr)ρejg

)
(B.4)

with ρ̇∗ejel = ρ̇elej . We can transform the matrices in the slow-rotating reference frame

ρgej = ρ̃geje
i(ωjt−kjr) , ρejel = ρ̃ejele

i((ωl−ωj)t−(kl−kj)r) (B.5)

and obtain

ρ̇gg = i
Ne∑
l=1

Ωgel

2
(ρ̃gel − ρ̃elg) +

Ne∑
l=1

Γelelρelel (B.6a)

ρ̇ejej =−i
Ωgej

2

(
ρ̃gej − ρ̃ejg

)
− Γejejρejej (B.6b)

˙̃ρgej =−
(

Γgej
2

+ i∆gej

)
ρ̃gej + i

Ωgej

2

(
ρgg − ρejej

)
− i

Ne∑
l=1
l 6=j

Ωgel

2
ρ̃elej (B.6c)

˙̃ρejel
j<l

=−
(

Γejel
2

+ i
(
∆l −∆gej

))
ρ̃ejel + i

Ωgej

2

(
ρ̃gel − ρ̃ejg

)
, (B.6d)

where we use ∆gej =ωj −
(
ωej − ωg

)
=ωj − δωejg as the detuning between the laser

and the atomic resonance. The transformed matrices then read

ρ=


ρgg ρ̃ge1 ρ̃ge2 ρ̃geNe
ρ̃e1g ρe1e1 ρ̃e1e2 ρ̃e1eNe
...

...
. . .

...
ρ̃eNeg ρ̃eNee1 . . . ρeNeeNe

 , H =


0 1

2
~Ωge1 · · · 1

2
~ΩgeNe

1
2
~Ωge1 −~∆ge1 0 0
... 0

. . . 0
1
2
~ΩgeNe

0 0 −~∆geNe

 ,

Llossρ=


∑Ne

j=1 Γejejρejej −Γge1
2
ρ̃ge1 · · · −ΓgeNe

2
ρ̃geNe

−Γe1g
2
ρ̃e1g −Γe1e1ρe1e1 · · · −Γe1eNe

2
ρ̃e1eNe

...
...

. . .
...

−ΓeNeg

2
ρ̃eNeg −ΓeNee1

2
ρ̃eNee1 · · · −ΓeNeeNeρeNeeNe

 .

(B.7)
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Rate equations

We set up the rate equations that can be solved to obtain the Zeeman level pop-
ulations ΠmF in 52S1/2F = 2 and ΠmF ′ in 52P3/2F′= 3, respectively, see Fig. C.1.
The coupling from 52S1/2F = 2,mF to 52P3/2F′= 3,mF′ is denoted as FmF→mF ′ =

s

1+s+4

(
∆mF′

Γ

)2 . Here, s is the probe saturation and ∆mF′ = δ−(∆52S1/2
−∆52P3/2F′=3,mF′ )

the di�erence between probe detuning and the light shifted atom transition. The coef-
�cients as weights on the populations are the Clebsch-Gordon coe�cients in Fig. A.3.

mF’=     -3                -2                -1                 0                +1               +2              +3

mF=       -2                 -1                 0                +1                +2    
52S1/2F=2

52P3/2F’=3

∆mF’
ΠmF’=+2

ΠmF=+1

FmF=-1→mF’=-2

Figure C.1: O�-resonant probe laser driving the transition

52S1/2F =2→ 52P3/2F
′ =3. The probe laser (blue arrow) drives any transition

between 52S1/2F = 2→ 52P3/2F′= 3 with coupling FmF→mF ′ and alters the population
in each level ΠmF . Its frequency detuning with respect to a certain Zeeman level
52P3/2F′= 3mF′ is denoted as ∆mF′ .
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Appendix D

Sub-Poissonian dipole trap loading

We concentrate on two-body losses and will set γ= 0 in Eq. 8.8b. We replace N by
N + 1 and �nd

∂PN+1(t)

∂t
=− (R +

N(N + 1)

2
β′)PN+1(t) +RPN(t)+

(N + 3)(N + 2)

2
β′PN+3(t) .

(D.1)

Multiplying this equation by N and subsequently summing N from 0 to ∞ on both
sides yields

˙̄N =R− β′
(
N2 − N̄

)
=R− β′N̄(N̄ − 1)− β′∆N2 , (D.2)

where the mean value is N̄ =
∑∞

N=0NPN and the variance is ∆N2 =N2 − N̄2. This
equation resembles Eq. 9.2 (γ= 0), if taking the average value of Eq. 9.2. Note that
both equations do not match if we associate N in Eq. 9.2 to be the mean atom
number N̄ inside the trap, because of the additional term −β′∆N2. This term is
responsible for describing the width of the atom distribution and thus describes if
its type is Poissonian, sub-Poissonian or super-Poissonian. The term can however
be neglected when calculating the average number of atoms as we will see now by
considering three special cases:

• ∆N2 = N̄ This case corresponds to a Poissonian distribution and leads to

˙̄N =R− β′N̄2 , (D.3)

equivalent to Eq. 3.6 in the large atom number regime (N(N − 1)→N2) and
neglecting one-body losses (γ= 0) if additionally we assume N in Eq. 3.6 to
be the mean atom number N̄ . The average atom number in steady state is
N̄st =

√
R/β′.

• ∆N2 = 0 This case corresponds to the maximally sub-Poissonian distribution
and leads to
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˙̄N =R− β′N̄(N̄ − 1) , (D.4)

equivalent to Eq. 3.6 with γ= 0 and associating N in Eq. 3.6 with the mean
atom number N̄ . The average atom number in steady state is N̄st = 1/2 +√

1/4 +R/β′ and converges to N̄st =
√
R/β′ for R/β′� 1/4 (large atom num-

bers), the average value found in the Poisson case.

• ∆N2 = 3/4N̄ This case corresponds to the distribution that has been calcu-
lated numerically (or by means of a Monte-Carlo simulation). It is also the
value that is closest to the in Sec. 8.5 measured one. An analytical derivation
of the factor 3/4 can be found following the approach in van Kampen (2007).

The atom number evolves in this case as

˙̄N =R− β′N̄(N̄ − 1

4
) . (D.5)

The average atom number in steady state is N̄st = 1/2 +
√
R/β′ − 1/2 and also

converges for R/β′� 1/2 to N̄st =
√
R/β′, the value found in the Poisson case.

The calculations show that the average atom number depends on the variance of
the atom distribution ∆N2. Note that Eq. D.3, D.4 and D.5 can be used to model the
evolution of the average atom number N̄ in the limit R/β′� 0 (large atom numbers),
for which they yield the same result. This is due to the fact that the equations do not
signi�cantly depend on the width of the distribution ∆N2 for R/β′� 0. However,
the equations do not give any information about the form of the distributions.
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Résumé

Cette thèse traite de la manipulation d'atomes de rubidium 87 piégés dans un piège optique
dipolaire microscopique. Les expériences sont réalisées dans divers régimes de chargement
du piège allant d'un atome unique à quelques milliers d'atomes en moyenne.

Le régime à un seul atome permet de calibrer le dispositif expérimental. Nous utilisons
l'atome unique comme bit quantique dont nous pouvons préparer et lire l'état avec une
e�cacité de 99.97 % et 98.6 %, respectivement. Lorsque plusieurs atomes sont chargés
dans le piège microscopique, nous observons une distribution sub-Poissonienne du nombre
d'atomes, liée aux collisions assistées par la présence de lumière quasi résonante. Une étude
de ces collisions dans notre cas particulier (piège microscopique) révèle des taux de pertes
extrêmement élevés, proches de la limite théorique de Langevin. En�n, nous montrons que
le chargement du piège microscopique avec plusieurs atomes est plus e�cace lorsque nous
superposons sur ce piège un deuxième piège, macroscopique, qui joue le rôle de réservoir
d'atomes. Ce réservoir permet de charger le micro-piège à partir du macro-piège en l'absence
de lumière quasi résonante et donc d'éviter les collisions assistées par la lumière.

Le chargement du micro-piège à partir du macro-piège conduit à des conditions initiales
optimales pour l'évaporation forcée dans la perspective d'atteindre la condensation de Bose-
Einstein avec seulement une dizaine d'atomes. Après évaporation du gaz nous atteignons
des densités dans l'espace des phases proches du régime de dégénérescence.

Mots-clés: physique atomique, information quantique, atomes uniques, systèmes méso-

scopiques, pinces optiques, condensation de Bose-Einstein, collisions assistées par la lumière,

piège dipolaire

Summary

This thesis focuses on the manipulation of rubidium 87 atoms in a microscopic optical dipole
trap. The experiments are performed in various regimes where the number of atoms in the
microscopic trap ranges from exactly one atom to several thousands on average.

The single atom regime allows us to calibrate the experimental setup. We use it as a
quantum bit, which state we can prepare and read out with e�ciencies of 99.97 % and 98.6 %,
respectively. When several atoms are loaded in the microscopic trap we observe a sub-
Poissonian distribution of the number of atoms due to light-assisted collisions in the presence
of near-resonant light. A study of these collisions in our particular case (microscopic trap)
reveals extremely high loss rates approaching the theoretical Langevin limit. Finally, we
demonstrate that the loading of the microscopic trap is more e�cient when we superimpose
on this trap a second macroscopic trap, which we use as an atom reservoir. This reservoir
allows us to load the micro trap from the macro trap in the absence of any near-resonant
light, thus avoiding light-assisted collisions.

The loading of the micro trap from the macro trap leads to optimal initial conditions for
forced evaporation towards Bose-Einstein condensation with about ten atoms only. After
evaporation we reach phase-space densities approaching the degenerate regime.

Key words: atomic physics, quantum information, single atoms, mesoscopic systems,

optical tweezers, Bose-Einstein condensation, light-assisted collisions, dipole trap
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