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from contemplation to manipulation.
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Abstract

Multi-agent systems (MASs) can be used to model phenomena that can be
decomposed into several interacting agents which exist within an environment.
In particular, they can be used to model human and animal societies, for the
purpose of analysing their properties by computational means. This thesis
is concerned with the automated analysis of a particular kind of such social
models, namely, those based on behaviourist principles, which contrasts with
the more dominant cognitive approaches found in the MAS literature. The
hallmark of behaviourist theories is the emphasis on the definition of behaviour
in terms of the interaction between agents and their environment. In this
manner, not merely reflexive actions, but also learning, drives, and emotions
can be defined. More specifically, in this thesis we introduce a formal agent
architecture (specified with the Z Notation) based on the Behaviour Analysis
theory of B. F. Skinner, and provide a suitable formal notion of environment
(based on the π-calculus process algebra) to bring such agents together as an
MAS.

Simulation is often used to analyse MASs. The techniques involved typically
consist in implementing and then simulating a MAS several times to either
collect statistics or see what happens through animation. However, simula-
tions can be used in a more verification-oriented manner if one considers that
they are actually explorations of large state-spaces. In this thesis we propose
a novel verification technique based on this insight, which consists in simu-
lating a MAS in a guided way in order to check whether some hypothesis
about it holds or not. To this end, we leverage the prominent position that
environments have in the MASs of this thesis: the formal specification of the
environment of a MAS serves to compute the possible evolutions of the MAS
as a transition system, thereby establishing the state-space to be investigated.
In this computation, agents are taken into account by being simulated in order
to determine, at each environmental state, what their actions are. Each simu-
lation execution is a sequence of states in this state-space, which is computed
on-the-fly, as the simulation progresses.

The hypothesis to be investigated, in turn, is given as another transition sys-
tem, called a simulation purpose, which defines the desirable and undesirable
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simulations (e.g., “every time the agent does X, it will do Y later”). It is then
possible to check whether the MAS satisfies the simulation purpose according
to a number of precisely defined notions of satisfiability. Algorithmically, this
corresponds to building a synchronous product of these two transitions sys-
tems (i.e., the MAS’s and the simulation purpose) on-the-fly and using it to
operate a simulator. That is to say, the simulation purpose is used to guide
the simulator, so that only the relevant states are actually simulated. By the
end of such an algorithm, it delivers either a conclusive or an inconclusive
verdict. If conclusive, it becomes known whether the MAS satisfies the sim-
ulation purpose with respect to the observations made during simulations. If
inconclusive, it is possible to perform some adjustments and try again.

In summary, then, in this thesis we provide four novel elements: (i) an agent
architecture; (ii) a formal specification of the environment of these agents,
so that they can be composed into an MAS; (iii) a structure to describe the
property of interest, which we named simulation purpose; and (iv) a technique
to formally analyse the resulting MAS with respect to a simulation purpose.
These elements are implemented in a tool, called Formally Guided Simulator
(FGS). Case studies executable in FGS are provided to illustrate the approach.

Keywords: multi-agent systems, behaviourism, environments, formal meth-
ods, formal verification, simulation, model-based testing.

An extended version of this abstract is given in Section F.1 of Appendix F.



Resumo

Sistemas multi-agentes (SMAs) podem ser usados para modelar fenômenos
que podem ser decompostos em diversos agentes que interagem entre si den-
tro de um ambiente. Em particular, eles podem ser usados para modelar
sociedades humanas e animais, com a finalidade de se analisar as suas pro-
priedades computacionalmente. Esta tese trata da análise automatizada de um
tipo particular de tais modelos sociais, a saber, aqueles baseados em prinćıpios
behavioristas, o que contrasta com as abordagens cognitivas mais dominante
na literatura de SMAs. A principal caracteŕıstica das teorias behaviorista é a
ênfase na definição do comportamento em termos da interação entre agentes
e seu ambiente. Desta forma, não apenas ações reflexivas, mas também de
aprendizado, motivações, e as emoções podem ser definidas. Mais especifica-
mente, nesta tese apresentamos uma arquitetura de agentes formal (especifi-
cada através da Notação Z) baseada na teoria da Análise do Comportamento
de B. F. Skinner, e fornecemos uma noção adequada e formal de ambiente
(com base na álgebra de processos π-calculus) para colocar tais agentes juntos
em um SMA.

Simulações são freqüentemente utilizadas para se analisar SMAs. As téc-
nicas envolvidas tipicamente consistem em simular um SMA diversas vezes,
seja para coletar estat́ısticas, seja para observar o que acontece através da
animações. Contudo, simulações podem ser usadas de forma a pertmitir a
realização de verificações automatizadas do SMA caso sejam entendidas como
explorações de grandes espaços-de-estados. Nesta tese propomos uma técnica
de verificação baseada nessa observação, que consiste em simular um SMA de
uma forma guiada, a fim de se determinar se uma dada hipótese sobre ele é
verdadeira ou não. Para tal fim, tiramos proveito da importância que os am-
bientes têm nesta tese: a especificação formal do ambiente de um SMA serve
para calcular as evoluções posśıveis do SMA como um sistema de transição,
estabelecendo assim o espaço-de-estados a ser investigado. Neste cálculo, os
agentes são levados em conta simulando-os, a fim de determinar, em cada es-
tado do ambiente, quais são suas ações. Cada execução da simulação é uma
seqüência de estados nesse espaço-de-estados, que é calculado em tempo de
execução, conforme a simulação progride.
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A hipótese a ser investigada, por sua vez, é dada como um outro sistema
de transição, chamado propósito de simulação, o qual define as simulações
desejáveis e indesejáveis (e.g., “sempre que o agente fizer X, ele fará Y depois”).
Em seguida, é posśıvel verificar se o SMA satisfaz o propósito de simulação de
acordo com uma série de relações de satisfatibilidade precisamente definidas.
Algoritmicamente, isso corresponde a construir um produto śıncrono desses
dois sistemas de transições (i.e., o do SMA e o do propósito de simulação) em
tempo de execução e usá-lo para operar um simulador. Ou seja, o propósito
de simulação é usado para guiar o simulador, de modo que somente os estados
relevantes sejam efetivamente simulados. Ao terminar, um tal algoritmo pode
fornecer um veredito conclusivo ou inconclusivo. Se conclusivo, descobre-se se
o SMA satisfaz ou não o propósito de simulação com relação às observações
feitas durante as simulações. Se inconclusivo, é posśıvel realizar alguns ajustes
e tentar novamente.

Em resumo, portanto, nesta tese propomos quatro novos elementos: (i) uma
arquitetura de agente, (ii) uma especificação formal do ambiente desses agentes,
de modo que possam ser compostos em um SMA, (iii) uma estrutura para
descrever a propriedade de interesse, a qual chamamos de propósito de simu-
lação, e (iv) uma técnica para se analisar formalmente o SMA resultante com
relação a um propósito de simulação. Esses elementos estão implementados
em uma ferramenta, denominada Simulador Formalmente Guiado (FGS, do
inglês Formally Guided Simulator). Estudos de caso executáveis no FGS são
fornecidos para ilustrar a abordagem.

Palavras-chave: sistemas multi-agentes, comportamentalismo, ambientes,
métodos formais, verificação formal, simulação, teste baseado em modelos.

Uma versão estendida deste resumo é dada na Seção F.2 do Apêndice F.



Résumé

Les systèmes multi-agents (SMA) peuvent être utilisé pour modéliser les phénomènes
qui peuvent être décomposés en plusieurs agents qui interagissent et qui exis-
tent au sein d’un environnement. En particulier, ils peuvent être utilisés pour
modéliser les sociétés humaines et animales, aux fins de l’analyse de leurs
propriétés par des moyens de calcul. Cette thèse est consacrée à l’analyse
automatisée d’un type particulier de ces modèles sociaux, à savoir, celles qui
sont fondées sur les principes comportementalistes, qui contrastent avec les
approches cognitives plus dominante dans la littérature des SMAs. La carac-
téristique des théories comportementalistes est l’accent mis sur la définition
des comportements basée sur l’interaction entre les agents et leur environ-
nement. De cette manière, non seulement des actions réflexives, mais aussi
d’apprentissage, les motivations, et les émotions peuvent être définies. Plus
précisément, dans cette thèse, nous introduisons une architecture formelle
d’agent (spécifiée avec la Notation Z) basée sur la théorie d’analyse com-
portementale de B. F. Skinner, ainsi que une notion appropriée et formelle de
l’environnement (basée sur l’algèbre de processus π-calculus) pour mettre ces
agents ensemble dans un SMA.

La simulation est souvent utilisée pour analyser les SMAs. Les techniques
consistent généralement à simuler le SMA plusieurs fois, soit pour recueillir des
statistiques, soit pour voir ce qui se passe à travers l’animation. Toutefois, les
simulations peuvent être utilisés d’une manière plus orientée vers la vérification
si on considère qu’elles sont en réalité des explorations de grandes espaces
d’états. Dans cette thèse nous proposons une technique de vérification nouvelle
basé sur cette idée, qui consiste à simuler un SMA de manière guidée, afin
de vérifier si quelques hypothèses sur lui sont confirmées ou non. À cette
fin, nous tirons profit de la position privilégiée que les environnements sont
dans les SMAs de cette thèse: la spécification formelle de l’environnement
d’un SMA sert à calculer les évolutions possibles du SMA comme un système
de transition, établissant ainsi l’espace d’états à vérifier. Dans ce calcul, les
agents sont pris en compte en les simulant afin de déterminer, à chaque état de
l’environnement, quelles sont leurs actions. Chaque exécution de la simulation
est une séquence d’états dans cet espace d’états, qui est calculée à la volée, au
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fur et à mesure que la simulation progresse.

L’hypothèse à étudier, à son tour, est donnée comme un autre système de
transition, appelé objectif de simulation, qui définit les simulations désirables
et indésirables (e.g., “chaque fois que l’agent fait X, il fera Y plus tard”). Il
est alors possible de vérifier si le SMA est conforme à l’objectif de simulation
selon un certain nombre de notions de satisfiabilité très précises. Algorith-
miquement, cela correspond à la construction d’un produit synchrone de ces
deux systèmes de transitions (i.e., celui du SMA et l’objectif de simulation)
à la volée et à l’utiliser pour faire fonctionner un simulateur. C’est-à-dire,
l’objectif de simulation est utilisé pour guider le simulateur, de sorte que seuls
les états concernés sont en réalité simulés. À la fin d’un tel algorithme, il
délivre un verdict concluant ou non concluant. Si c’est concluant, il est connu
que le SMA est conforme à l’objectif de simulation par rapport aux obser-
vations qui ont été faites lors des simulations. Si c’est non-concluant, il est
possible d’effectuer quelques ajustements et essayer à nouveau.

En résumé, donc, dans cette thèse nous fournissons quatre nouveaux éléments:
(i) une architecture d’agent; (ii) une spécification formelle de l’environnement
de ces agents, afin qu’ils puissent être composés comme un SMA; (iii) une
structure pour décrire les propriétés d’intérêt, que nous avons nommée objectif
de simulation, et (iv) une technique pour l’analyse formelle du SMA résultant
par rapport à un objectif de simulation. Ces éléments sont mis en œuvre dans
un outil, appelé Simulateur Formellement Guidé (FGS, de l’Anglais Formally
Guided Simulator). Des études de cas exécutables dans FGS sont fournies
pour illustrer l’approche.

Mots-clés: systèmes multi-agents, comportementalisme, environements, méth-
odes formelles, vérification formelle, simulation, test basé sur des modèles.

Une version étendu de ce résumé est donné dans la Section F.3 de l’Annexe
F.
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CHAPTER 1
Introduction

Is there a way to model and analyse human as well as animal societies? This
rather general question, either implicitly or explicitly, has been asked since at
least classical antiquity1. Whole scientific fields, such as economics, psychology
and sociology have been developed to address specific versions of it. In all of
them, though, the difficulties involved are great: not only is it necessary to
somehow make sense of individual organisms, but it is also imperative to
understand their mutual relations; theories must be simple to be manageable,
but not so simple as to be meaningless; variety between individuals must be
taken into account, and yet cannot be considered beyond a point in which
there is nothing but confusion; in the face of complexity, analysis methods
must at the same time be effective and efficient.

Modern computing has given scientists a new set of tools to deal with these
matters. In particular, as long as a theory can be put in the terms of a com-
puter program, it can also be subject to systematic and automated scrutiny
that would otherwise be too tiresome for human beings to pursue. Simplifica-
tions can be made less simple and more accurate because part of the job can
be transferred to a machine. This possibility raises the similar – but funda-
mentally new – question: is there a way to model and analyse human as well
as animal societies through computing? Such is the motivation, in its most
general aspect, that guides us in this thesis. The problems we address here,
then, are steps in this direction.

It is not difficult to see why this new computational problem is distinct from
the old one. Imagine, if you will, that a careful economist surveys his town
and describes, through some complicated set of rules, the idiosyncratic per-
sonalities of each townsman, as well as their relations to each other. How

1For instance, in Plato’s Republic and Aristotle’s Politics.
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1. Introduction

is he to go about analysing this descriptive model? Perhaps he can address
certain questions, such as determining the most influential person by looking
at the individual that has more friends. Nonetheless, questions concerning
how his model will evolve over time quickly become difficult, for the possi-
bilities offered by a sufficiently rich model are staggering. Will there be an
economic depression or not? The answer depends partly on the behaviour of
each individual. If there are many different and complicated individuals that
relate in non-homogeneous ways, it is clear that the possible evolutions of the
model are many, each possibly leading to different conclusions. This requires
explicit – and boring – calculations of how the model will actually evolve.
Without computing machinery, therefore, it is not a practical method. The
traditional, non-computational, solution to such problems is to simplify the
model so that solutions can be calculated more easily. But with computing
one may actually pursue the evolution of complicated models in many differ-
ent circumstances. This brings two new issues: how to describe models so
that their evolutions can be computed, and how to make sense of the wealth
of computed evolutions.

In computer science, questions such as these have been considered in the field
of Multi-Agent Systems. Many situations can be described in terms of inde-
pendent agents which interact within some environment in order to achieve
their aims. For example, not only phenomena related to human societies, but
also those concerning neural tissue and computer networks, different as they
may be, all share this characteristic. A system that can be seen in this way is
called a multi-agent system (MAS)(Weiss, 1999; Wooldridge, 2009).

As the above examples suggest, agents can be either artificial entities (e.g.,
computers, software) or natural ones (e.g., humans, animals). Roughly, in the
former case one is mostly worried about how to implement an agent so that
it is capable of performing certain tasks, whereas in the latter case the focus
is on modelling the behaviour found in nature so that it can be investigated
by computational means. It is this latter possibility that concerns us in this
thesis.

To describe an MAS, one needs specific notions of agents and environments.
With respect to agents, much work has been done in trying to understand
and model so-called intelligent and cognitive agents. These approaches focus
largely on what constitute rational decisions, specially in the case of agents
with limited computing capabilities (e.g., all of us). The Beliefs-Desires-
Intentions (BDI) architecture (Bratman, 1987; Cohen and Levesque, 1990;
Rao and Georgeff, 1995) is a well-known example.

Behaviour of organisms, however, is sometimes better described in different
terms. A dog does not reason that it will die if it does not eat2; rather, it

2Assuming, of course, that dogs cannot foresee their own deaths in the same way that
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has a drive to seek food when hungry. If it has learned that whenever his
master whistles he provides food, the dog will salivate at the sound of the
whistle – without thinking. These observations suggest that a different focus
in agent modelling is possible. This thesis provides such a model, based on the
psychology theory known as Behaviour Analysis (Skinner, 1953), a particular
branch of the behaviourist school of thought. In this theory, the actions of
agents are seen as the result of past stimulation and certain innate parameters
according to behavioural laws. One is not interested in mental qualities such
as the nature of reason, but merely in the prediction and control of behaviour
by means of environmental stimulation. This point of view, though classical
within psychology, is scarce in the MAS literature. As a contribution in this
sense, this thesis introduces the Behaviourist Agent Architecture.

In relation to agents, environments of MASs have received comparatively very
little attention, as the survey of Weyns et al. (2005) points out. The environ-
ment model of Ferber and Müller (1996) is one exception. In this thesis we
propose the Environment Model for Multi-Agent Systems (EMMAS),
which is designed to work with our agent architecture. Since the psychology
theory from which we draw from puts great emphasis in the relation between
agents and their environment, it is clear that this is an important aspect of
our MASs. Furthermore, we shall see that our environments have certain
particular mathematical features that help in their analysis.

The purpose of an MAS model is to be studied so that its properties can be
understood. There are, of course, a number of ways in which this can be ac-
complished, ranging from traditional mathematical approaches (e.g., by using
equations and calculating their properties) to fully automated and exhaustive
formal verification (e.g., by means of Model Checking). The technique to be
employed, however, is not arbitrary, for it both imposes restrictions on how
the MAS model can be specified and defines what kinds of properties can be
investigated. In general, the more details are allowed in a model, the harder it
is to determine its properties. Consider again a model of a society composed
of many different agents, each containing its own independent set of possible
behaviours. We have seen that unless simplifications can be found, a man-
ual mathematical analysis would be too tedious and error prone to be carried
out. On the other hand, automated and exhaustive analyses would also face
severe challenges, for the state-spaces involved can easily become too large.
This is known as the state explosion problem, and is usually caused by the
combinatorial nature of the possible communications between agents.

Nevertheless, it is usually possible to simulate complicated MASs. That is to
say, given an MAS, one may calculate several sequences of states in order to
explore some of its possible behaviours, and thus gain at least some partial

we humans can.
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1. Introduction

knowledge about its properties.3 A technique often employed to this end in-
volves programming the agents and their environment using some general pur-
pose programming language (e.g., Java) and then running the resulting pro-
gram several times and under different circumstances (Gilbert and Bankers,
2002). Since such programming languages allow any computation to be spec-
ified, it follows that very detailed models can be built in this way. In such
works, the analysis method of choice is usually the collection or optimization of
statistics over several simulation runs (e.g., the mean value of a numeric vari-
able over time). Examples of this approach include platforms such as Swarm
(Minar et al., 1996), MASON (Luke et al., 2004) and Repast (North et al.,
2006).

A simulation performed in this manner is typically constrained only by its
initial state. This is quite reasonable if the objective is merely to “see what
happens” to the system under different circumstances of interest. However,
as soon as the objective includes a more sophisticated assessment, this lack
of constraints may become a hindrance. Consider, for example, a situation in
which the objective is to study what happens to an agent when it is, say, hun-
gry. The logical strategy in this case would be to simulate only the situations
in which the agent may indeed become hungry. But since only the initial state
is constrained, the simulation could possibly go constantly through states in
which this is not the case (e.g., because food is often available).

Though they are not usually found on MAS simulations, such constraints over
relevant states are common place in formal verification. They are usually
specified in terms of temporal logic formulas or automata which define the
property of interest and, consequently, the relevant portion of the state-space.
Unfortunately, as we pointed out above, these techniques suffer from efficiency
problems owing to the large size of state-spaces.

To address these problems, in this thesis we propose a way to combine the
strengths of simulation with those of formal verification, thus creating a new
technique to model and verify MASs. Our method consists in systematically
guiding the simulation runs so that only the states relevant for the property of
interest are actually simulated. We call the property being investigated a sim-
ulation purpose, because it defines the purpose of the simulation. During
simulations, for reasons we explain in Section 1.1 below, agents and environ-
ment are used in different ways. The former is implemented (in accordance
with the Behaviourist Agent Architecture), executed and examined as
a black-box with interfaces, whereas the latter – together with a simulation

3Notice that by “simulation” we do not mean the formal relation among two transition
systems, such as what Milner (1999) employs. As we explain, in this thesis a “simulation”
refers – broadly – to an abstract reproduction of some target system by means of a detailed
and executable model, in the same sense that, for instance, Ferber (1999) uses to describe
multiagent simulations.
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Figure 1.1: General architecture of FGS, our proposed tool. The simulator takes two
inputs: (i) an MAS, composed by agent models and an environment specification; (ii)
a simulation purpose to be tested. The simulation purpose specifies the property to
be analysed and is used to guide the simulations (i.e., defines their purpose). The
simulator then produces traces as outputs. In principle, verification can be done at
the simulation runtime level, as well as at the trace level. However, the verification
technique developed in this thesis concerns only runtime analysis, because this allows
the simulations to be controlled in such a way that only the ones relevant to the
specified simulation purpose are actually performed. It is worth to note, though, that
trace level analysis can also be profitably employed for verification of MASs, and some
examples found in the literature are given in Section 2.4.3 of Chapter 2.

purpose – provides the formal elements that are manipulated in a fine grained
manner by the verification algorithms. This method is inspired by the use of
formal test purposes in TGV (Jard and Jéron, 2005), a model-based software
testing approach.

In short, then, in this thesis we provide four novel elements: (i) an agent archi-
tecture; (ii) a formal specification of the environment of these agents, so that
they can be composed into an MAS; (iii) a structure to describe the property
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1. Introduction

of interest, which we named simulation purpose; and (iv) a technique to
formally analyse the resulting MAS with respect to a simulation purpose.
These elements are combined in a tool, called Formally Guided Simulator
(FGS), as shown in Figure 1.1. In Chapter 3 we shall provide a technical
summary of these artefacts and explain in more detail their contribution with
respect to the current state of the art.

The analysis technique we propose is rather general, and as a consequence can
be applied to many kinds of MASs. Nevertheless, we have opted to develop
them in the context of a particularly suitable class of agents and environments
(i.e., behaviourist MASs). As a consequence, the novel contribution of this
thesis is twofold:

• New ways to model both agents and environments based on behaviourist
principles;

• A technique to perform partial, but automated, formal verification in
the MAS thus described.

These are closely related. The technique depends on the possibility of system-
atically exploring an environment, which thus has to be explicitly separated
from agents. But this only makes sense if the phenomena concerning the agents
themselves can be expressed in terms of environmental conditions, which is a
strong point of the behaviourist perspective we adopt to design our agents.

It is important to note that despite the fact that the MASs defined and simu-
lated in this thesis are based on an underlying psychology theory, we have not
attempted to forecast the results of actual empirical experiments (e.g., using
real animals) with them. Such an endeavour would require the consideration
of many other complex issues, such as how to establish an exact match be-
tween real and simulated organisms, and it would also involve validation work
concerning the psychology theory itself, which would be out of our scope. The
approach developed in this thesis aims only at providing an approximation of
actual animal behaviour, so that it can be represented in a computational form,
though in a qualitative and limited manner. As we shall see throughout the
text, our approach allows the investigation of many fundamental issues, such
as the role of environments and agents, the importance of observable events,
and the kinds of questions that can be formulated. Hence, this thesis is a step
towards a more complete understanding of the computational modelling and
analysis of such behavioural phenomena, and it provides an important basis
for further progress. Nonetheless, as a more immediate practical application,
the developments presented here can also be used in circumstances where only
imitation of real behaviour is relevant, such as in games and other forms of
interactive fiction.

8



1.1. Automation of Experiments

1.1 Automation of Experiments

Programs are usually designed in order to accomplish something. That is to
say, they are supposed to obey a specification4. If they indeed do so, they
are deemed correct. Otherwise, they are considered incorrect. Verification,
and formal verification in particular (where one has formal specifications of
the expected behaviour), is thus concerned with determining whether or not
programs satisfy specifications – from which one may infer the correctness of
the program.

However, one may have a slightly different point of view on the matter. In our
case, we use programs to model MASs. From our perspective of modellers,
the MAS is not necessarily supposed to accomplish something, for it is merely
a representation of a certain state of affairs, which may be outside of our
control. In investigating it, we are thus not necessarily concerned with whether
it is doing its job correctly. Indeed, we may very well ignore why the MAS
was designed in the way it was. We just want to discover what it can or
cannot do. To this end, we may also employ a specification. But it is the
specification of a hypothesis to be investigated, and which can be either true
or false. Notice the crucial difference: when verifying a program, the fact that
the specification was violated indicates a problem in the program, and thus
it is always undesirable; however, in our case, the fact that the hypothesis is
violated is not, in principle, an indication of a problem either in the MAS or
in the hypothesis itself. The judgement to be made depends of our objectives
in each particular circumstance. Are we trying to discover some law about
the MAS? In this case, if a hypothesis that represents this law turns out to
be false, it is the hypothesis that is incorrect, not the MAS. Are we trying
to engineer an MAS that obey some law? In this case we have the opposite,
a falsified hypothesis indicates a problem in the MAS. This view is akin to
that found in empirical sciences, in which scientists investigate hypotheses and
make judgements in a similar manner.5 In this respect, the main difference
is that the empirical scientist studies the natural world directly, while we are
concerned with models of nature in the form of MASs.

In an MAS, the description of environments is often much simpler than that
of the agents. When this is the case, we can give a formal model for the
environment and treat the agents therein as black-boxes (which obey certain
interface requirements). As an example, let us consider a model of an online
social network, where several persons exist and can interact with each other
through the features of a website.6 Clearly, the behaviour of each individual

4Even if the specification exists only in the mind of the programmer.
5In particular, the scientific implications of the falsifiability of hypotheses have been

deeply investigated by Popper (1959), to whom we own part of the philosophical position
outlined here.

6Actual examples of such networks currently include popular websites such
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person is likely to be very complex, and if a model is given to them, it is possi-
ble that it will not be a simple one. But the environment, on the other hand,
can be described by some formalism that merely define relations among agents
(e.g., a process algebra such as the π-calculus of Milner, 1999), providing a
much more tractable model. The purely formal manipulations, then, can be
restricted to the environment model.

Notice that this is analogous to an experimental scientist working in his lab-
oratory. The scientist is usually interested in discovering the properties of
some agents, such as animals, chemicals, or elementary particles. He has no
control over the internal mechanism of these agents – that is why experiments
are needed. But he can control everything around them, so that they can
be subject to conditions suitable for their study. These scientific experiments
have some important characteristics:

• Inputs should be given to agents under experimentation;

• Outputs should be collected from these agents;

• Sometimes it is not possible to make some important measurement, and
therefore experiments often yield incomplete knowledge;

• The experiment is designed to either confirm some expectation (a suc-
cess) or refute it (a failure);

• The experiment should last a finite amount of time, since the life of the
scientist is also finite;

• The experiment should be as systematic as possible, though exhaustive-
ness is not required. The important thing is to try as many relevant
situations as possible. In particular, the scientist may control how to
continue the experiment depending on how the agents react;

• The experiment should define a clear course of action from the start;

• The experiment can be a way to find out how to achieve a certain end,
after trying many things. Therefore, it must be performed in a construc-
tive manner, and not merely by deriving a contradiction;

• Absence of a success does not necessarily mean that there is no way to
achieve a desired effect. Hence, it is convenient to know when something
clearly indicates a failure.

as www.facebook.com, www.twitter.com, plus.google.com, www.orkut.com and
www.myspace.com.
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1.2. Notation and other Conventions

A simulation purpose is like such a scientist: it controls the direction of the
simulation and determines whether something constitutes a success or a fail-
ure by following similar principles. An environment model, in turn, is similar
to the experimental setup, with its several instruments and agents. The sim-
ulation purpose interacts with the environment model in order to achieve its
aims. In this sense, hence, our approach can be seen as the automation of
experiments to investigate the properties of an MAS.

1.2 Notation and other Conventions

Notation and other conventions particular to the subject of a chapter are
introduced in the beginning of the relevant chapter itself. Technical terms are
introduced by using this special font , and referred to elsewhere by using this special font

this other special font.

Our general mathematical notation is mostly standard and therefore does not
require presentation. However, it is worth to define the meaning of a few
symbols which do not enjoy such a universal acceptance:

• ¬ P denotes the set {¬ p | p ∈ P}, where P is a set of propositions.

• P(S ) denotes the power set of a set S (i.e., the set of all subsets of S ).

1.3 Thesis Organization

This thesis can be read serially, since chapters are given mostly in the order
in which their content is needed. Exceptions to this order are clearly marked
in the text with the appropriate references.

Very briefly, the content of the chapters are as follows:

Chapter 2 Describes the relevant related work, thus providing an account of
the current state of the art.

Chapter 3 Provides a technical overview of the main elements introduced by
this thesis and compare them to the existing state of the art.

Chapter 4 Contains an in-depth account of the Behaviourist Agent Ar-
chitecture. This architecture is given using the Z Notation, of which a
summary is provided in Appendix D.

Chapter 5 Defines the environment model, EMMAS. The theory devel-
oped here has a close relation to the agents described in Chapter 4:

11



1. Introduction

those agents expect a certain kind of interaction with their environment,
whereas the environment expects a certain kind of agent. Methodologi-
cally, this means that particular kinds of questions (i.e., of behaviourist
nature) can be addressed because both agents and environments sub-
scribe to common principles. Technically, this relation implies in certain
formal requirements on both sides.

Chapter 6 Introduces the annotated transition systems (ATSs) which
are to be subject to verification. After introducing such structures in
their general form, the chapter employs them to provide the semantics of
EMMAS. This allows the reduction of the MASs developed in Chapters
4 and 5 into a structure that can be subject to formal analyses. This
semantics is quite general and is not tied to any particular application
(e.g., simulation).

Chapter 7 Provides a more concrete version of the semantics of EMMAS
(to allow its simulation) and presents the verification technique. Intro-
duces simulation purposes, associated satisfiability relations, mathe-
matical concepts required to perform verification and, finally, the verifi-
cation algorithms themselves.

Chapter 8 Presents FGS, our tool, whose several parts implement our agents,
environments and verification algorithms. This chapter is concerned
with design principles and architectural choices, not with details on how
to run the system, which is covered in Appendix C.

Chapter 9 Provides case studies to illustrate the use of the Behaviourist
Agent Architecture and EMMAS. These are all executed using the
FGS tool. The actual input files to FGS (and the corresponding out-
puts), however, are given only in Appendix B.

Chapter 10 Concludes the thesis by summarizing what has been achieved
and pointing out to further developments that can be made upon what
we have proposed.

A number of appendixes are also provided in the end of the thesis, which are
meant to be used as references whenever further details are needed. Appro-
priate pointers to these appendixes are given whenever relevant.

12



CHAPTER 2
Related Work

Our work draws inspiration and techniques from a number of disciplines. In
this chapter we present these several influences, including the current state of
the art. However, their relation with our own work is not treated here – we
postpone this to Chapter 3, in which a technical summary of our approach
shall make it easier to establish this relation, as it depends on a number of
technicalities.

The relevant works can be broadly collected in four large groups, which cor-
respond to the organization of the present chapter. In Section 2.1 we explore
the area of Autonomous Agents and Multi-Agent Systems. In Section 2.2 we
present the pertinent works in the area of Formal Verification. These are the
main influences upon this thesis. Whatever cannot be classified in one of these
areas is dealt with in Section 2.3. Finally, in Section 2.4 we present works that
combine ideas from these different domains.

2.1 Autonomous Agents and Multi-Agent Systems

The area of Autonomous Agents and Multi-Agent Systems provided the main
motivation for the problems we pose in this thesis. These multi-agent systems
(Weiss, 1999; Ferber, 1999; Wooldridge, 2009), the objects of our study, are
systems composed by agents that exist and interact within an environment.
This of course only makes sense in the light of appropriate accounts of both
agents and environments. Thus, in what follows we examine the most per-
tinent notions for our purposes. Section 2.1.1 presents agents and surveys
related models. Section 2.1.2, in turn, explore environments. Finally, since
this thesis concerns the simulation of MASs, Section 2.1.3 addresses this topic.

13



2. Related Work

2.1.1 Agent Models and Architectures

There is no precise and universally accepted definition of what an agent is.
However, the undisputed characteristics of this concept can be summarized
as follows: an agent is as an entity that exists in an environment and that
interacts with it and other agents in an autonomous way.

This notion, in spite of its intuitive appeal, is all too abstract and informal,
and thus cannot by itself provide the basis of a useful theory. For this reason,
researchers have proposed a number of more precise models in order to define
agents of particular classes. Usually, the objective of such models is to be
general enough so that many agents of interest can be defined with them.
Such general models are often called agent architectures. Wooldridge (2009)
defines an agent architecture as:

A software architecture for autonomous decision making: specifies
the data structures, control flow, and, usually, the methodology
to be used for constructing an agent for a particular task in a
particular environment.

Let us rephrase this and call attention to other relevant points so that we may
have a definition to use in this thesis. In this thesis, an agent architecture
is an abstract, structured and integrated description of a class of agents. It
provides the necessary elements to build particular agents of such a class.

In this section we present several such models and architectures, grouped
according to the main idea or underlying theory that they employ.

2.1.1.1 Rational Agents

In Artificial Intelligence the notion of intelligent or rational agents plays a
large role (Russell and Norvig, 2002). It was McCarthy (1958) who first pro-
posed that programs could be endowed with common sense, establishing the
basis for much of the future research on the topic. To McCarthy, logic could
be used to describe the knowledge of an agent, and then it would be just a
matter of automatically performing deduction in order to produce such intelli-
gent actions. There are, however, two problems with this approach. The first
is that theorem proving turns out to be very expensive computationally. The
second problem is that not all agents one might be interested in follow such
deduction principles to guide their actions. Each of these problems, in turn,
motivated further research.
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2.1.1.2 Practical Reasoning

While, ideally, an intelligent agent should perform perfect logical deductions,
in reality no such perfect being exists. Men and animals alike have limited
resources and must make decisions which are often not optimal. This in-
sight motivated the work on bounded rationality, which aims at determin-
ing how to compute the best answers given a limited amount of resources.
Russell and Subramanian (1995), for instance, show how optimality can be
treated under such limits. Another well-known model built along these lines
can be found in the Beliefs-Desires-Intentions (BDI) approach, originated by
Bratman (1987). In this work, Bratman introduces the notion of practical
rationality and proposes a theoretical explanation to the decision process em-
ployed by limited rational beings such as humans. In particular, he goes on to
show how one can use planning in order to take decisions, and that intentions
play an important role in this process. Further theoretical and computational
development of this approach can be found on Cohen and Levesque (1990) and
Rao and Georgeff (1995). There are a number of implementations of the BDI
model, among which we can cite the PRS (Ingrand et al., 1992) and dMARS
(d’Inverno et al., 1997). Kakas et al. (2008) show a model inspired by BDI,
aiming mainly at solving certain difficulties involved in the implementation
and formal verification of BDI theories.

Agent-oriented programming is an area closely related to these architectures.
It was first proposed by Shoham (1993) as a means of describing general pro-
grams in terms of mentalistic notions. Indeed, the BDI approach offers a suit-
able set of such mentalistic definitions, and as a consequence the languages in
this area largely adopted the BDI approach as their underlying agency model.
AgentSpeak(L) (Rao, 1996) is one such language, and Jason (Bordini et al.,
2007) is one of its modern implementations.

2.1.1.3 Cognitive Psychology

The concept of practical reasoning does not solve the problem that agents need
more than such general logical constraints in order to produce behaviour. In
fact, much of what many real agents do depend on mechanisms much more ad
hoc to their nature. For example, human memory is not just a mathematical
set in which one can put knowledge. Rather, it has a detailed structure,
which makes knowledge retention and retrieval a complex task. The impact of
such idiosyncrasies can be seen by considering an agent that believes in some
proposition, but fails to use it in its reasoning because of problems in the
retrieval of the relevant memory. These discoveries, which came mainly from
Cognitive Psychology (Neisser, 1967), led researchers to try to endow their
agents with the same properties. This cognitive approach produced a number
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of results. Simon (1996) is one of the pioneers on this area and provided many
insights on the computational properties of the human mind. More recent work
includes the SOAR architecture (Laird et al., 1987), which provides a platform
for the development of artificial cognitive agents, and ACT-R (Anderson et al.,
2004), which, in particular, employs functional Magnetic Resonance Imaging
(fMRI) to validate its proposed models.

2.1.1.4 Behaviourism

The approaches we have reviewed so far have in common the fact that they
place great importance on internal, mental, states of agents. Behaviourism
provides a contrasting point of view, by focusing on their external, observable,
behaviour.

To understand what is special about a behaviourist point of view, we must first
examine the history of psychology. By the end of the XIXth century, psychol-
ogy was still a new discipline. Many of its first proponents saw introspection
and other forms of inner knowledge to be paramount to the understanding of
the human mind. However, such an inner knowledge is often unreliable, for
it lacks the objectivity of precise measurement. And it was because of this
fundamental limitation that some psychologists started to go against these
initial ideas in the search of an objective science. Thus, these behaviourists,
as they became known, maintained that psychology should derive its theories
only from the observable and measurable behaviour. A celebrated defence of
these fundamental principles was given by Watson (1913).

The behaviourist tradition produced several important thinkers, from which
Burrhus Frederic Skinner was, perhaps, the most notorious one. Between
the decades of 1930 and 1950 he developed his own kind of behaviourism,
called Behaviour Analysis. The classical exposition of this theory was given
by Skinner (1953), whereas a more modern reference to the area can be found
in Catania (1998). In Behaviour Analysis, an organism is an entity which
receives stimuli from its environment, and produces behavioural responses that
affect this same environment. It is assumed that these behavioural responses
are a function of the stimulation history of the organism, governed by certain
innate mechanisms. Therefore, the central aim of the theory is to establish
how such relations work. That is to say, to discover the laws which allow one
to either control behaviour by means of stimulation or predict behaviour by
considering the organism’s stimulation history.

Organisms are assumed to be constantly seeking pleasure and avoiding pain.
That is to say, their fundamental purpose is the maximization of pleasure and
the minimization of pain during their existence. This search is the basis for
most of the organism’s behavioural responses. And while at first it might
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seem a rather simple motivation, it turns out that it can be used in order to
describe a number of interesting phenomena.

A distinctive feature of the behaviourist tradition is its insistence on the ir-
relevancy of how organisms are really implemented. It maintains that it does
not matter how the mind, the brain or any other organ works, as long as one
can provide abstract laws with predictive power. In this respect, then, it dif-
fers from other psychology schools, which often describe behaviour in terms
of the internal components of organisms. In behaviourism, any such reference
to internal structures must be seen merely as a technical device, which could
be completely substituted if an alternative offering superior predictive capa-
bilities could be found. This does not imply that behaviourism denies the
existence of internal structures responsible for behaviour (e.g., in the brain).
Rather, it merely takes the point of view of an external observer to the limit
by elaborating abstract concepts and laws that relate stimulation to observed
behaviour.

Behaviour Analysis, in particular, offers a rich set of such abstract concepts,
relations and laws. We shall examine them in detail as we formalize them in
Chapter 4, but for the moment we may provide the following summary:

Stimulus (or classical) conditioning. Organisms may learn that a stim-
ulus is followed by another. For example, a dog may be taught that a
whistle is always followed by the provision of food. Hence, the dog may
react to the whistle as if it was the food itself. By such associations, an
organism can build a useful model of its environment.

Classes of behaviour. Behavioural responses are produced according to laws.
Such laws, in turn, can be grouped in different classes of behaviour. Be-
haviour Analysis defines the classes of respondent behaviour and operant
behaviour :

Respondent behaviour Also known as reflexive behaviour, this class
accounts for reflexes, which are innate automatic responses to stim-
uli. Reflexes, then, are integral parts of an organism, and cannot
be neither learned nor unlearned.

Operant behaviour Operant behaviour, on othe other hand, allows
an organism to learn what actions are appropriate to achieve cer-
tain ends. An operant is a learning structure that records which
action may lead to a stimulus, and how this takes place. By rein-
forcing (i.e., rewarding) or punishing an organism’s actions, it may
be taught new operants. With such operants, the organism may
then choose the action that best suits its interests.

Drives. These are innate needs for certain stimuli. The organism may then
be either satiated or deprived with respect to its drives. For example,
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thirst is a drive which is satiated by the provision of water. If no water
is provided, the organism becomes increasingly interested in water.

Emotions. These account for other temporary changes in the organism’s be-
haviour. Each emotion has its own effect, but all of them are fully
characterized by behavioural changes. This is a particularly interesting
feature of Behaviour Analysis, for it contrasts with accounts of emotion
which depend on internal factors (e.g., the reduction of some neurotrans-
mitter in the brain). Depression, for instance, can be characterized by
a generalized reduction of behavioural responses with respect to some
normal level of response.

These elements interact in several ways in order to generate behaviour. For
example, when choosing an appropriate action, the organism will not only use
the laws of some behavioural class, but also the model that he has built of the
environment using stimulus conditioning.

Notice that agents thus defined are different from what is usually called re-
flex agents (e.g., by Russell and Norvig, 2002) or reactive agents (e.g., by
Wooldridge, 2009), whose actions are elicited by stimulation according to very
direct relationships. As we have just seen, Behaviour Analysis does define
reflexes as a behavioural class, but it goes far beyond them, and its value lies
precisely on the richness that is achieved by the several behavioural structures
that it establishes.

Despite the importance of behaviourism within psychology, computational
models of agency based on Behaviour Analysis are scarce in the literature. To
the best of our knowledge, the approach of Touretzky and Saksida (1997) is
the most pertinent one. They propose agents called skinnerbots, which are
endowed with learning capabilities based on classical and operant condition-
ing. Their model is particularly interesting because the learning that results
is capable of synthesizing more complex behavioural phenomena, notably op-
erant chaining (i.e., a sequence of learned actions in which the execution of
an action sets the appropriate conditions for the execution of the next one),
and has also been implemented in robots. However, the proposed model is
more like a particular algorithm for calculating some aspects of classical and
operant conditioning than a general framework for a behavioural agent. The
main formal structure defined is a kind of rule (i.e., A ← B [p]), in which
the first term (i.e., A, a stimulus consequence) is contingent upon the second
one (i.e., B , a conjunction of stimuli and actions) with a probability p. The
approach reduces to developing ways to learn these rules and chaining them.
Despite its qualities, then, this approach is limited to a very particular aspect
of agent behaviour, and it is also unclear how it could be extended or changed,
since no provision is explicit made for this.
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Such an extensibility is specially important because, as McDowell (2004) re-
marks, there is no universally accepted mathematical model that predicts
quantitatively the exact way in which animals compute behavioural responses,
despite the fact that some relations between the overall rate of reinforcement
and the corresponding behaviour are known. McDowell (2004) then provides
its own computational model for this problem and argues that it generates
empirically plausible results. The main characteristic of the method proposed
is that it makes no reference to an utility function being maximized by the
agent. Rather, a genetic algorithm is employed to generate possible operants
a priori, which are then emitted. It is the environment then that selects cor-
rect responses by reinforcing them, and this is used to generate other similar
operants. This work is further extended by McDowell et al. (2006), where it
is shown how this local training can be used to compose operant chains.

There exists a program called Sniffy, the virtual rat which aims at providing an
interactive simulation of a rat for the purpose of teaching classical and operant
conditioning (Alloway, 2005). However, neither the underlying computational
model nor the actual source code are provided, so one cannot understand
precisely how the simulation works. It seems, though, that much of it is hard-
coded for very specific tasks, since, for example, possible actions and stimuli
are all fixed, as are also the experiments that can be conducted. Therefore,
despite being a program, Sniffy does not provide an actual computational
account of behavioural phenomena, but merely a tool for teaching known
concepts in an interactive manner (Jakubow, 2007).

Gaudiano and Phone (1997) propose a particular version of operant condi-
tioning using neural networks intended specifically to allow robots to avoid
obstacles. Naturally, though, this is too specific to constitute a general model
for operant conditioning. Hutchison (2010), on the other hand, claims to have
used neural networks to create a general adaptive autonomous agent that fol-
lows principles of Behaviour Analysis and is capable, in particular, of verbal
behaviour. However, it is not clear exactly what has been accomplished in
this work, since neither technical details nor concrete examples are provided.

Though the Behaviour Analysis perspective to agent modelling is uncommon,
some specific ideas concerning learning by reinforcement, originated on this
behaviourist literature, have been widely employed in Artificial Intelligence
(Russell and Norvig, 2002). In particular, Q-learning theory (Watkins, 1989)
seeks to abstract the notion that an action’s value may change over time ac-
cording to experience, similarly to the operants of Behaviour Analysis. How-
ever, Q-learning formulation assumes a particular calculation strategy when
seeking the optimal action, which is not necessarily employed by agents (e.g.,
for efficiency reasons, or other idiosyncrasies, agents might not perform the
kind of optimization postulated by Q-learning). Furthermore, it is not di-
rected towards obtaining some particular stimulus (i.e., utility is calculated
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over states, not over stimuli).

2.1.1.5 Behaviour-Based Robotics

As some of the previous examples suggested, robotics often employs learning
by reinforcement techniques, and indeed one of its branches is called behaviour-
based robotics (Matarić, 1998). This name is misleading in the context of our
work. Behaviour-based robotics’ emphasis is not on behaviourist psychological
approaches, but on a parallel and decentralized architecture. In such an ar-
chitecture, independent and parallel “behaviours” account for particular goals
and tasks, with the objective of providing real-time decision making necessary
for robots. It originated specially on the subsumption architecture of Brooks
(1986, 1991). Some elements familiar to behaviourists (e.g., reflexes) can be
found in such an approach, though they do not constitute its essence.

Behaviour-based robotics is a biologically inspired approach, but very general,
and therefore bears no direct relationship with the particular behaviourist
theories found on psychology. To make matters worse, agents of this kind
are sometimes referred to as behavioural agents (e.g., Wooldridge, 2009). The
reader should thus be careful to distinguish what concerns this method from
what pertains to behaviourist psychology properly, where the adjective be-
havioural is also widely employed. In this thesis, unless noted otherwise, our
use shall be of the latter kind.

2.1.2 Environments in Multi-Agent Systems

The term“environment”is not used consistently in the MAS literature (Weyns et al.,
2005). Sometimes, it is used to mean the conceptual entity in which the agents
and other objects exist and that allows them to interact; sometimes, it is used
to mean the computational infrastructure that supports the MAS (e.g., a sim-
ulator). We use the term in the former sense in this thesis. In Chapter 5 we
shall give a precise formal notion of our particular kind of environment, but
for the moment this intuitive notion suffices.

In this sense, then, environments are conceptually as important as the agents
themselves. Despite this crucial role, the survey of Weyns et al. (2005) also
points out that not much attention has been given to environments, which
often do not receive detailed technical treatment. For instance, although
Russell and Norvig (2002) present the notion of environments explicitly and
analyse some of their possible properties, they do not develop any sophisti-
cated environment model in the same depth and detail that agent models are
developed. Nonetheless, there exist works that take environments and related
notions as first-class entities and which are particularly relevant to this thesis.
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Ferber and Müller (1996) presents a synchronous model for environment con-
struction. In it, the environment acts as a coordinator which receives influ-
ences from the agents and that generates reactions towards them. In this
manner, first agents act, and then their actions are taken into account by the
environment, thus allowing simultaneous actions to be specified.

Okuyama et al. (2005) defines the Environment Description Language for Multi-
Agent Simulation (ELMS). It allows the specification, in XML, of agent’s
potential actions and perceptions, as well as other resources present in the en-
vironment. Such specifications may carry certain logical preconditions which
must be satisfied, thus constraining their execution. The language also sup-
ports the definition of the structure of the environment as a grid, which can
be used in calculating preconditions or assigning effects (e.g., an action’s effect
might be to change the agent’s position from one grid cell to another). The
simulation itself is performed by combining an environment specification with
agent implementations.

Part of the purpose of an environment is to allow agents to interact. A way
to deal with such interaction is through protocols, which define how messages
must be exchanged between agents. A number of initiatives exists in this
sense. The COOrdination Language (COOL) (Barbuceanu and Fox, 1995) is
an early example of such an approach. In COOL, a protocol is a conversation
represented by a finite state machine (FSM), in which transitions represent
message exchanges based on speech act theory. Each agent must instantiate
such an FSM, which regulates the agent’s individual state in the conversation.
To choose a transition, agents must comply with certain rules, which are part
of the coordination protocol.

A more recent and well-known approach to describing agent interaction is the
AUML sequence diagram (FIPA, 2003), an extension of UML sequence dia-
gram for MASs. However, like UML itself, this is largely an abstract graphical
notation, and lacks both a formal and programming model. The IOM/T lan-
guage (Doi et al., 2005) is a Java-like language designed to allow the actual
programming of such AUML interactions. Quenum et al. (2006) proposes a
similar framework, but designed to emphasize the separation between agents
and their role in protocols, thereby making the protocols generic. This requires
the addition of features, such as the differentiation between agent actions and
messages, to those provided by AUML and variants. Moreover, contrary to
imperative approaches such as IOM/T, Quenum et al. (2006) argue in favour
of a declarative specification language.

The notion of an organization (Ferber, 1999) can be related with environ-
ments. An organization, in this sense, is divided in two parts: the abstract
organizational structure and the concrete organizations. The organizational
structure defines the roles that agents might occupy, independently of the
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actual agents that will eventually fulfil the roles. Roles define powers and
responsibilities, and are related to other roles too. A concrete organization,
in turn, is an actual MAS that fulfils the constraints imposed by an organi-
zational structure. The relation to environments can be established at this
concrete level, since the MAS environment, if represented explicitly, may as
well be subject to organizational constraints. If the environment is not repre-
sented explicitly, the mechanism that allow the agents to interact according to
the organizational structure can be seen as a kind of environment, although
possibly quite an abstract one. MOISE (Hannoun et al., 2000) is an example
of such an organization model.

Finally, it is worth to mention the work done in reasoning involving depen-
dency networks (Sichman et al., 1998). By modelling the capabilities of other
agents and the dependencies among them, an agent can build a network of
dependencies that comprises the whole MAS, thereby creating a model of its
environment in so far as such dependencies are concerned. While this is not
an environment in itself, this kind of social reasoning can be used to operate
in an environment rationally. Social networks such as these in fact present a
general way of modelling and reasoning about societies, which has also been
studied in the sociology area of Social Network Analysis (Wasserman et al.,
1994).

2.1.3 Multi-Agent Based Simulation

In the context of a scientific inquiry, a model is an abstract representation of
a target system, the entity one wishes to study (Frigg and Hartmann, 2009).
Accordingly, in this thesis we are concerned with simulation models. A simu-
lation, in turn, is the execution of such a model by a simulator, which produces
a sequence of simulator states.

Multi-Agent Systems can be used to develop models of interesting situations in
order to analyse their properties. Simulation is often used to perform such an
analysis, and a number of tools are available to this end (Gilbert and Bankers,
2002). These tools usually provide both a programming framework in which
to define agents and a simulation tool to actually perform simulations. This
general architecture was introduced by the SWARM platform (Minar et al.,
1996). More recent examples can be found on the RePast (North et al., 2006)
and MASON (Luke et al., 2004) platforms. Tobias and Hofmann (2004) sur-
vey a number of such platforms and compare them.

Simulation platforms often require the user to program. This, of course, pre-
vents many potential users from employing them. To mitigate this problem,
some tools, such as NetLogo (Wilensky, 1999) and SeSAm (Klugl and Puppe,
1998), have easy of use as an explicit goal
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Multi-Agent models have been used, in particular, to simulate social phenom-
ena. Notably, Epistein and Axtell (1996) explored phenomena such as trade,
war and disease transmission using the Sugarscape platform they developed.
Their objective was to show that these phenomena can be explained by finding
the right simulation rules that generate them.

Many similar studies through simulation have been devised, addressing many
different matters, such as: natural resources management (Briot et al., 2010),
epidemiology (Alam et al., 2009; Bearman et al., 2004; Eubank et al., 2004;
Mysore V. et al., 2005), terrorism (Tsvetovat and Latek, 2009), climate (Downing et al.,
2001; Balbi et al., 2010), crowd behaviour (Henein and White, 2005; Bansal et al.,
2008), opinion formation (Stocker et al., 2001), archaeology (Doran and Palmer,
1995; Dean et al., 2000), economics (McCarthy et al., 2008), crime (Bosse and Gerritsen,
2008), stem cells (d’Inverno and Saunders, 2005) and computer networks (Bhargavan et al.,
2002).

2.2 Formal Verification

The idea of analysing the properties of MASs automatically came mostly from
the broad field of Formal Verification, to which we now turn our attention.
Section 2.2.1 concerns Model Checking, from which we took the idea of system-
atically exploring state-spaces. Section 2.2.2 addresses Model-Based Testing,
an area that combines formal specifications with actual program execution.
Section 2.2.3 presents Runtime Verification, an approach that verifies exe-
cutions of programs, not their specifications. Finally, Section 2.2.4 presents
process algebras, among which we found semantic models useful for verifica-
tion.

2.2.1 Model Checking

In modal logics, a model M for a formula φ is a graph with labelled states
that provides the semantics of φ. Model Checking is a verification method
first proposed by Clarke and Emerson (1981) and Queille and Sifakis (1982)
in which the properties of interest are evaluated directly on the model for a
system, instead of the specification’s syntax. That is to say, instead of trying
to produce a proof, one merely scans a model searching for violations of the
desired formula φ. We denote that some state s of the model M satisfies φ
by writing:

M , s |= φ

In Model Checking, M typically represents some computational system of in-
terest (e.g., a set of computers that communicate through some protocol), and
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φ some property concerning such a system (e.g., that no deadlock occurs). M

can be obtained automatically from higher-level descriptions that specify the
behaviour of the system (i.e., from a program), and φ can be given explicitly
in terms of temporal logics (a kind of modal logic) such as the Computation
Tree Logic (CTL) or the Linear Temporal Logic (LTL). For instance, in LTL
one can formalize the assertion

“It will always be the case that when process p requests resource r, it will
eventually receive it.”

by writing something like

G(p requests r ⇒ F (p receives r))

where G (“G lobally”) and F (“in the Future”) are temporal modalities.

Model Checking has seen considerable progress since its inception. Symbolic
Model Checking (Burch et al., 1990) has made the treatment of large state-
spaces possible by using special data structures (i.e., Binary Decision Dia-
grams) to encode them succinctly. More recently, Bounded Model Checking
(Biere et al., 1999, 2003; Clarke et al., 2001) has profited from the develop-
ments in SAT solvers. This is done by limiting the length of the counterexam-
ples one is searching for, which allows an efficient translation of the resulting
problem to an instance of SAT.

Clarke et al. (1999) and Baier and Katoen (2008) provide long and self-contained
texts covering much of the developments in Model Checking. Finally, Clarke
(2008) gives a historical account of this development.

2.2.2 Model-Based Testing

Software Testing is a form of verification in which a system under test (SUT)
is systematically executed according to test cases in order to identify defects.
Model-Based Testing (MBT) (e.g., Gaudel, 1995; Brinksma and Tretmans,
2001), in turn, is a formal approach to testing which employs mathematical
models of the SUT to generate test cases. This brings two main advantages:

• test cases can be generated automatically from the model;

• test cases can be chosen in such a way that some coverage guarantee can
be given. For instance, if the system is modelled as a control-flow graph,
one can aim at covering all possible execution paths of such a graph.
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A well-known example of such an approach was proposed by Tretmans (2008).
There, the SUT is specified as a labelled transition system, which can be used
to generate test cases. By this method, it is possible to systematically test
whether the SUT conforms to its specification with respect to the so-called
ioco relation.

In order to produce test cases directed for some particular end, one can em-
ploy test purposes. Such test purposes can, in particular, be represented for-
mally. This approach is used on the TGV tool (Jard and Jéron, 2005), where
both test purposes and SUTs are modelled as input-output transition sys-
tems (IOTSs). By performing a special synchronized product between them,
along with other transformations, one gets another smaller automaton from
which test cases can be extracted in order to assess whether the SUT is ioco-
conformant to the specification. By this method, only relevant tests are ex-
ecuted. TGV itself is based on a more general approach to on-the-fly verifi-
cation, which can also be used to perform Model Checking and to determine
bisimulations (Fernandez et al., 1992).

Often, the state-space relevant for testing is very large. For this reason, tech-
niques to partially explore the state-space have been devised. In particular,
the use of statistical methods allows the performance of random testing. As
the name implies, random testing is concerned with generating test cases in a
random way. Randomness can be introduced in a variety of manners, such as
providing random inputs, or performing a random walk on a control graph.
The latter approach is of particular interest because it allows the exploration
of the state-space according to desired statistical criteria. Moreover, formal
approaches often assume the existence of a graph model of the SUT, which
make such random walks a natural choice for their testing.

There are a number of ways in which one can perform a random walk. First,
one can proceed using an uninformed random walk, which simply chooses
randomly between the successors states of the current execution state. This
method, however, produces biased coverages of the graph. To correct this,
Denise et al. (2004) proposed a method in which each possible execution trace
has the same probability of been chosen (i.e., a uniform distribution over
traces). Later improvements of this method allow the uniform selection of
traces in a concurrent system, in which each program has its own, smaller,
control graph (Denise et al., 2008). This allows the uniform analysis of much
larger state spaces.

At last, we consider the area of passive testing (Lee et al., 1997). In passive
testing, checks are performed a posteriori. That is to say, the SUT is not
exercised by test cases; rather, checks are performed on the execution traces
of the SUT’s normal behaviour, and thus have a passive role. Usually, an
automaton represents the property to be tested. It is then just a matter of
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performing language recognition on the traces. This approach, though from a
different community, resembles Runtime Verification in that one has not much
(or none at all) control over the concerned system, and checks are performed
merely by observing its normal behaviour. Passive testing, however, make
such observations after the system has been executed (by examining the logged
traces), whereas Runtime Verification, which we shall now turn our attention
to, focus on runtime observations.

2.2.3 Runtime Verification

Formal Verification techniques are designed to be applied to specifications of
systems so that it can be guaranteed that it conforms to some property of
interest. This, however, is often unfeasible, owing to the large models that
need to be analysed. Runtime Verification (RV) is an alternative to such
usual methods. In RV, instead of proving that the specification of a system
conforms to a property, one merely checks whether the execution of the system
is conformant. Thus, while it cannot guarantee that the system is conformant,
it can at least provide a way to detect and respond to deviations from the
desired behaviour.

Typically, this is achieved using a monitor, which is an extra component that
is added to the system in order to perform the verification. The precise nature
of such monitors vary according to the kind of property to be analysed. It
turns out that linear-time properties are more suitable such an architecture,
and thus most approaches employ some variation of a linear-time logics, such
as Linear Temporal Logic (LTL).

However, the traditional semantics for LTL assumes an infinite execution trace.
Thus, it is unable to cope with cases in which only finite traces are available.
For example, a liveness property such as GFp (i.e., “in the future, p will
always happen again”) cannot be verified because one cannot know whether
p will happen again after a trace terminates. To solve this problem, one may
redefine the semantics of LTL to account for the case in which traces are finite
entities. This approach is followed by Finkbeiner and Sipma (2004), where an
upper-bound (i.e., the trace length) is introduced in the semantics and it is
shown how to build monitors for it. A similar approach is taken by Geilen
(2001), where the technique presented is capable of ensuring certain kinds of
LTL properties.

Another way of solving the problem of finite traces is to modify LTL more
extensively. This is achieved, for instance, by Bauer et al. (2007), where the
Runtime Verification Linear-Temporal Logic (RV-LTL) – a four-valued version
of LTL – is defined, alongside an appropriate monitor. This work is itself
built upon two other modifications of LTL for finite traces, namely, FLTL
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(Lichtenstein et al., 1985) and LTL3 (Bauer et al., 2006).

An even more sophisticated approach can be found on Eagle (Barringer et al.,
2004a; Goldberg and Havelund, 2005), which is a general logic framework
which can be specialized to a number of particular logics. It is designed to
allow the creation of monitors and is implemented as a Java library. An LTL
specialization for Eagle is given by Barringer et al. (2004b).

The RV community also emphasizes practical implementations, and there-
fore a number of software architectures have been designed in order to sup-
port the verification techniques. Monitoring-Oriented Programming (MOP)
(Chen and Roşu, 2007), for instance, is an effort to build a whole paradigm
using monitoring ideas. Using MOP, one can employ a number of different
formalisms to express properties, and the generated monitors can be written
in a number of different programming languages. Java-MOP (Chen and Roşu,
2005) is the version for the Java platform. The MaC architecture (Kim et al.,
2001) follows a similar platform-independence principle, but is tied to its own
particular specification language. Java-MaC is the version for Java of this
general architecture.

2.2.4 Process Algebras

Concurrent systems are notably difficult to design correctly. This has led to
the development of formal approaches to their specification and verification,
among which process algebras have been particularly fruitful. In such a for-
malism, processes are algebraic expressions that model, in an abstract manner,
the communication capabilities of individual systems. By putting such pro-
cesses in parallel, it is possible to assess their combined behaviour, which is
the main source of complications arising in concurrent systems. Examples of
process algebras include ACP (Bergstra and Klop, 1984), CSP (Hoare, 1985),
CCS and π-calculus (Milner, 1999) (see Appendix E for an overview), and
Ambient Calculus (Cardelli and Gordon, 1998).

Besides serving as formalisms for specifications, some of these process alge-
bras have been actually implemented in some form, so that specifications can
actually be executed as programs. Pict (Pierce and Turner, 1997) is an exam-
ple of programming language based on the π-calculus. Peschanski and Hym
(2006) develops the cube-calculus, based on the π-calculus, which is actually
a language designed to run in an interpreter called the CubeVM. JCSP (Lea,
1999) provides a Java framework for the implementation of CSP, so that it
is possible to create Java programs whose communication structures follow a
CSP specification. Applications of JCSP include the works of Oliveira (2005)
and Freitas and Cavalcanti (2006).
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2.2.5 Formal Development

In a formal development approach, one starts with a formal specification of the
system to be created and, through some technique that guarantees correctness,
transforms this specification in either another specification or actual software.
Typically, the formal specification defines the high-level requirements of the
system, without considering implementation details, and is thus more focused
on the abstract properties of the problem to be solved. Another advantage of
proceeding in this manner is that one may, at each formal specification level,
verify whether certain properties hold or not (e.g., by means of logical proofs
or Model Checking), which may be more difficult or even impossible in an
implementation.

The Z Notation (ISO/IEC, 2002; Woodcock and Davies, 1996; Jacky, 1996)
is a well-known formalism for writing such specifications, based on set the-
ory and first-order logic (see Appendix D for an overview of Z). Z is de-
signed for the specification of systems composed of states and transitions
among states, although stateless definitions are also possible. A calculus allows
the composition of more complex specifications out of simpler ones. Circus
(Woodcock and Cavalcanti, 2001) is a related method, which integrates Z with
CSP in order to allow the communication aspects of the system to be more
properly specified. Given such a specification, the question of how to transform
it in correct software arises. A solution is to proceed with formal refinements,
which are transformations that allow one to go from abstract specifications to
less abstract ones, until an implementation is reached. Sampaio et al. (2002)
provides an example of such a refinement technique for Circus. The B Method
(Abrial, 1996) is another approach, based largely on Z notions, but with a fo-
cus on facilitating refinement to executable code.

2.3 Other Influences

2.3.1 Non-Agent Based Simulation Methods

Schruben (2010) points out the simulation modelling and analysis are often
seen as two entirely different activities, and argues that it would be more
productive to design models considering how they are supposed to be analysed.

The Discrete Event System Specification (DEVS) (Zeigler et al., 2000) family
of simulation formalisms provides conceptual frameworks to put simulation
under rigorous definitions. In particular, DEVS defines the notion of experi-
mental frame as an entity which provides inputs to a simulation model and
judges its outputs. For the sake of uniformity, experimental frames can be ex-
pressed with the same formalism used to specify the simulation model itself.

28



2.3. Other Influences

Experiments run in this fashion, though, have no control over the simulation
once it is started, and can only evaluate its final result. This is sufficient to
devise certain optimization techniques, by which several input parameters are
tested in order to find the ones that generate the best output according to
some optimization criteria (Halim and Seck, 2011).

Even though a DEVS model is meant for simulation, it can sometimes be
subject to formal verification through model checking, provided that the model
can be reduced to a particular subset of DEVS such as FD-DEVS (Hwang,
2005). Model-based testing can also be applied (Li et al., 2011).

2.3.2 Software Components

Software components are used in the implementation of our tool, so let us
examine what they are. The fundamental ideas concerning components were
given by McIlroy (1968), in which it was envisioned that software should be
built using reusable parts, much like electronics are built using reusable inte-
grated circuits. To this end, the task of developing software would have to be
divided into two branches. One that would take care of building components
useful in many different situations, and another that would develop the final
software using these reusable components. This way, developers would save
time by not having to rewrite software parts.

These ideas have developed through the years, and today we have a Component-
Based Software Engineering field. Following the contemporary treatment of
the subject found by Szyperski (1999), a software component is characterized
as follows:

• It is an independent unit of deployment. That is, it can be packaged and
transmitted independently of anything else;

• It is a unity of third-party composition. Components are designed to be
reused in unknown applications, built by different people;

• It has no externally observable state. This is just a technical detail
to make sure that the same components will always perform the same
functions;

• It has contractually specified interfaces and explicit context dependencies
only. In other words, one can know what the component requires from
and provides to an application;

• It targets a particular component platform. Components frequently as-
sume the existence of a platform that provides useful services.
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To be used, software components must provide component instances (i.e., ob-
jects that do have an observable state1 and are, thus, useful in particular
applications) and such instances must be composed.

2.4 Formal Approaches to Multi-Agent Systems

Benerecetti et al. (1998) remarks that, in 1998, there were few approaches
to the formal verification of MASs. Since then, however, there has been an
increasing interest in applying formal methods to MASs, including formal
verification techniques. In this section we present the approaches which are
most significant for our own attempt in bringing these areas together.

2.4.1 Formal Specification of Agent Architectures

Some researchers are particularly interested in establishing precise basis in
which to define agents. The SMART framework (d’Inverno and Luck, 2003),
for instance, employs the Z Notation in order to formalize a general theory
of agency. Its aim is to allow any other agency theory to be specified in its
terms, provided that a few minimal obligations are met. One such extension
can be found in da Silva (2005), where a theory of business management is
formalized as a multi-agent system.

Another example is the dMARS system we saw in Section 2.1.1.2, which was
formalized by d’Inverno et al. (1997).

2.4.2 Formal Specification of Environments

Since process algebras (see Section 2.2.4) are designed to model and verify
communications in concurrent systems, it would be natural to employ them
in the specification of MAS environments. Yet, this is seldom done in the
context of MAS simulation. One exception is the work of Wang and Wysk
(2008), which uses a modified π-calculus to express a certain class of agents
and their environments. Another example is the IOM/T language (Doi et al.,
2005), which is used to specify interaction protocols, and whose semantics can
be given using the π-calculus. IOM/T is actually designed to be a textual
representation of AUML sequence diagrams (FIPA, 2003), and the π-calculus
semantics is used to formally demonstrate their equivalence.

As we saw in Section 2.1.2 above, Ferber and Müller (1996) develop a model
to the specification of environments of multi-agent systems. This model can

1Even if, owing to information hiding, only partly or indirectly observable.
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be formalized to some extent by the Block-like Representation of Interactive
Components (BRIC) developed by Ferber (1999). A BRIC specification is
defined by blocks which possess their own behaviour (specified as Petri nets)
and can be connected to each other. In this way, agents and their environment,
as well as the mechanisms of synchronization and message passing that relate
them, can be specified as individual but interconnected blocks.

Although not actually part of the computer science community, it is worth to
note that in the sociology area of Social Network Analysis (Wasserman et al.,
1994), social networks are precisely defined (as graphs), along with properties
of interest (such as the centrality of an individual in a network). All this
is provided using formal definitions, and indeed software that, given a social
network (e.g., as an adjacency matrix), can calculate these properties. Exam-
ples of such software include Pajek (Batagelj and Mrvar, 1998) and UCINet
(Borgatti et al., 2002).

2.4.3 Formal Verification and MAS Simulation

Most approaches to MAS simulation do not employ any form of automated
formal analysis. There are, however, a few notable exceptions. Let us review
them.

Bosse et al. (2009) presents the Temporal Trace Language (TTL), which has
an associated tool, designed to define simulation models (in a sublanguage
called LEADSTO), as well as linear-time properties about such models. The
approach is to execute the simulation model and check whether the resulting
traces obey the specified linear-time properties. An example of this method
is given by Bosse and Gerritsen (2008), where criminal behaviour is modelled,
simulated and analysed. A similar method was given by Mysore V. et al.
(2005), who developed a multi-agent model of food poisoning using the RePast
(North et al., 2006) simulation platform and analysed it by checking the re-
sulting simulation traces with respect to LTL formulas.

Despite the clear possibility, Runtime Verification (see Section 2.2.3) is not
usually applied to simulations. An exception is the network simulator Verisim
(Bhargavan et al., 2002). This tool runs the simulation normally, but checks
linear-time properties as it proceeds using runtime monitors. Indeed, the MaC
architecture (Kim et al., 2001) is employed to implement such monitors.

2.4.4 Model Checking of MAS

While MAS simulation is usually treated in an informal manner, there are a
number of approaches to formally specify and verify MASs (not necessarily
meant for simulation). These, in essence, are merely the application of usual

31



2. Related Work

model checking techniques to particular kinds of formal specifications (i.e.,
specifications of MAS), as we shall see below. Furthermore,
van der Hoek and Wooldridge (2003) note that there is a difficulty in relating
an agent’s program to its formal specification. Indeed, though the pioneer work
of Rao and Georgeff (1993) shows how to model check a BDI-based modal logic
specification, the problem of how to implement such a specification remains.
This is an important gap, since the ultimate objective is to understand the
properties of an actual agent, which must exist as an implementation too.

Benerecetti et al. (1998) attempted to solve this problem by demanding that
one codifies agents in an extension of the input language PROMELA of the
SPIN model checker (Holzmann, 2003). In a more high-level manner, this issue
has also been addressed by devising special purpose programming languages,
which are then translated to the input of a model checker. For example,
MABLE (Wooldridge et al., 2006) is a programming language which, in addi-
tion to usual imperative constructs, adds the possibility of specifying mental
states in accordance to the BDI theory we saw previously (e.g., by specify-
ing an agent’s beliefs). The verification of a MABLE program is achieved by
translating it in PROMELA and using the SPIN model checker. Hence, the
approach reduces to devising a translation scheme to the input accepted by a
traditional model checker.

Similarly, Bordini et al. (2003) have shown that AgentSpeak(F), a (finite state)
subset of the AgentSpeak(L) language to specify BDI agents, is reducible to
PROMELA. Moreover, Bordini et al. (2004) have shown how to reduce these
same agents to Java, in which case verification can be done using the JPF2
model checker (Visser et al., 2003).

MCMAS (Lomuscio et al., 2009) follows a similar approach, but instead of
reducing an MAS program to another formalism, it provides a model checker
that operates directly on the program provided. This is done by increment-
ing existing BDD-based algorithms with procedures for the new epistemic
modalities introduced by the approach (e.g., knowledge). This approach has
been particularly relevant to the analysis of communication protocols among
agents, whose properties can often be expressed more elegantly using the pro-
vided epistemic modalities.
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CHAPTER 3
Contribution of this Thesis

In previous chapters we have seen the motivation and general aspects of our
approach, as well as the works related to it. Let us now turn to its technical
characteristics and show how it compares with the state of the art. In what
follows we present an overview of the main elements introduced by this thesis
and explain how they relate to existing methods, thereby providing both a
detailed account of our scientific contribution and a summary of its technical
content.

This presentation is done by, in each section: (i) summarizing the contents of
a particular chapter, which is specified in the beginning of the section; and
then (ii) comparing our contribution with existing approaches. Chapters that
are not mentioned are of course original as well, but they play a support role
with respect to the ones which are dealt with here (e.g., Chapter 9, which
provides examples of uses of our approach, and thus supports the theory).
Notice that in the present chapter the technical terms are emphasized but
used informally. Their precise definitions are left for their respective chapters.
This is done to avoid introducing unnecessary complications and minutiae at
this point. The interested reader may refer directly to the definition in the
appropriate chapter.

3.1 Agent Architecture

The complete contribution is presented in Chapter 4.
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It is clear that owing to its focus on the organism as a whole (i.e., not on
isolated details of particular internal structures), as seen in Section 2.1.1.4,
Behaviour Analysis incidentally provides a useful basis for a computational
agent architecture. That is to say, a framework with which to define agents
capable of receiving stimuli and performing actions in a rather general manner.

In this thesis we introduce a new agent architecture based on the core elements
of Behaviour Analysis1, which we call the Behaviourist Agent Architec-
ture2. Besides the overall perspective of agent behaviour that it is capable of
providing, this behaviourist theory is valuable to us also for the following rea-
sons: (i) it places great importance on defining and analysing behaviour from
an external point of view, which in the light of the methodology suggested
in Section 1.1 is clearly important; (ii) it is based on an empirical science,
and therefore is capable of modelling many realistic animal phenomena, such
as learning; and (iii) the underlying psychological theory is sufficiently well
defined in order to allow the possibility of a formalization, which is necessary
for a computational implementation. Moreover, its practical usefulness can
arise in the following situations:

• if the agents are to be studied and manipulated using similar techniques
to those allowed by Behaviour Analysis;

• if the agents are actually models of real organisms. In such a case, the
agents can be simulated in order to infer results about the organisms
they model;

• if one believes that copying these natural mechanisms provides more
efficient ways to solve problems.

The architecture gives a computational account of the Behaviour Analytic
elements we presented in Section 2.1.1.4, namely: (i) stimulus conditioning;
(ii) respondent behaviour (i.e., reflexes); (iii) operant behaviour; (iv) drives;
and (v) emotions. Agent behaviour arises from the interaction of these several
parts among themselves as well as with the surrounding environment.

While a direct implementation of such an architecture would in fact be a
formalization (i.e., because the program’s text is written in a formal language),
we chose to write an abstract formalization first to serve as the specification of
the implementation. In this way we were able to separate the theory itself from

1Part of which we published in (da Silva and de Melo, 2007).
2We realize that the word “behaviour” and its variants are quite broad and have many

intuitive meanings. Nevertheless, we have chosen to keep them as technical terms here in
order to remain faithful to the naming conventions usually employed in the behaviourist
literature we draw from. Thus, all of our references to the “behaviour” of agents should be
seen from this perspective, unless explicitly noted otherwise.
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implementation details. This formal specification is written in the Z Notation
(ISO/IEC, 2002; Woodcock and Davies, 1996; Jacky, 1996) and constitutes
the subject of Chapter 4. Its implementation, which we use in the simulations,
is done in Java in a rather straightforward manner. More details about the
implementation are given in Chapter 8, and a reference of the required input
format is provided in Appendix C.

The agent architecture defines an agent as an organism which is capable of
receiving stimuli and providing behavioural responses. These responses can
constitute instances either of reflexive behaviour, or operant behaviour. The
former accounts for actions which are directly elicited by stimulation, whereas
the latter accounts for actions that are emitted autonomously because of pre-
vious learning. Operant behaviour is formed and maintained by reinforcing
actions through pleasant stimuli.

The purpose of an organism is to find pleasant stimuli and avoid unpleasant
ones. This task is complicated by the fact that the utility of stimuli can change
over time, as the organism may learn new relations among them. For example,
a neutral stimulus may become pleasant if the organisms finds out that the
first is always followed by the latter in its environment.

Drives and emotions can regulate behaviour by modifying either the behaviour
emission itself or stimulus utility. Drives formalize the notion that some stimuli
becomes increasingly important to organism while it is deprived of them (e.g.,
thirst is a drive in animals). Emotions specify other behavioural modifications
suitable in particular circumstances (e.g., a frustrated organism becomes more
likely to emit actions carelessly).

As an example of what this architecture can represent, let us consider a be-
haviour analytic description of a typical laboratory experiment that one could
perform on, say, a pigeon. The pigeon is put on a cage, where both a button
and a light bulb are present. Before giving food to the pigeon, and only then,
the experimenter tuns the light on. After some time, the pigeon learns that
light is followed by food. So every time the light is on, the pigeon acts as if the
food has arrived. This is an example of classical conditioning. Moreover, the
pigeon initially does only random actions, because it does not know how its
environment works. But eventually it discovers that by pushing a button, the
light is turned on. This is an example of operant conditioning. By combining
these two conditionings, the pigeon then becomes likely to emit the behaviour
of pushing the button when it wants to eat. Its hunger, in turn, is given by a
drive, which changes the utility of stimuli according to how much the pigeon
has already eaten. Finally, the experimenter might decide that no food shall
be given in association with the light. In this case, the pigeon will be gradually
unconditioned, and the behaviour of pushing the button will be extinct. This
causes frustration on the pigeon.
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The precise meaning of the emphasized terms will be given in Chapter 4, but
for the moment it suffices to note that they provide a relevant vocabulary to
describe the experiment. Remarkably, it is a vocabulary whose expressions are
ultimately defined in terms of externally observable behavioural responses and
stimulation. Take hunger, for instance. It is a drive, which means that it is
defined by the existence of two operations, namely, satiation and deprivation,
with respect to a particular kind of stimulus, in this case food. By depriving
the organism of food, it becomes more likely to emit behaviours that lead
to food. By satiating it, the contrary happens. This is the definition found
on the psychology theory. To make it computational, we add the notion of
stimulus utility, which provides a minimal explanation for the phenomenon:
drives affect the utility of stimuli, which in turn affect behaviour emission.

Since behaviourist principles were largely developed using animals, examples
like the one we gave above abound on the related literature.3 Nevertheless,
the underlying principles that arise from such experiments are applicable to
humans as well. Consider, for example, any interactive website. In this case,
one may well be interested in how often, and under which conditions, some
users will perform some actions. For instance, how often they click on certain
links, use certain features, or which kind of advertisement is more effective.
Because of the abstract nature of such a model, it can be put in behaviourist
terms much like the experiments with, say, pigeons. To the extent that the
user is interacting in this well-defined and abstract space, he can be seen
just as the pigeon in its experimental chamber. We shall see other examples
involving people in Chapter 9.

3.1.1 Comparison with Other Approaches

We avoid introducing constructs which we do not find necessary for the com-
putational formalization of the original definitions of Behaviour Analysis, thus
upholding its values as much as possible. In particular, though agents thus
defined have state, which is necessary for computation, we do not ascribe usual
mental qualities to them, such as will, belief, intention, knowledge, memory,
and reasoning. This is so because Behaviour Analysis rejects these usual ex-
planations of behaviour, and puts in their place a different set of concepts,
focused on the properties of externally observable events – that is to say,
behavioural responses and stimulation.

In this way, we differentiate our architecture from a number of others. Many
of the fundamental ideas of Artificial Intelligence are related to the view that
human intellect can be understood as an information processing device, much
like a computer (e.g., Simon, 1996). This view finds considerable support

3For a curious one, see Skinner (1948), where it is shown experimentally that some
superstitions can be explained in behaviourist terms.
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on approaches to psychology that seek to identify and analyse these internal
information processing mechanisms. This excludes Behaviour Analysis, but
includes both folk psychology (e.g., as pointed out by Bratman, 1987), as
well as academic branches such as Cognitive Psychology (Neisser, 1967). It
is only natural, then, that many well-known agent architectures, such as the
examples we cited in Section 2.1.1, should be based on similar principles,
that for convenience we shall call mentalistic. These are appropriate in many
cases, but behaviour of humans and other animals alike is often determined
by mechanisms which cannot be effectively presented using such mentalistic
descriptions alone.

Though not incompatible, mentalistic and behaviourist theories are very dif-
ferent. In particular, cognitive approaches treat agents as information pro-
cessing units endowed with certain mental mechanisms, such as memory and
planning capabilities, and try to analyse the properties of such mechanisms
experimentally (e.g., the capacity of working memory as shown by Miller,
1956). Behaviourism, in contrast, seeks mathematical relations between stim-
ulation and behavioural responses without assuming any intermediary mental
mechanism (e.g., the rate of behavioural responses in relation to the rate of
reinforcement as studied by Herrnstein, 1970). Hence, the two perspectives
can be seen as complementary, but with distinct focuses and theories.

To see this more clearly, we may return to the example of the pigeon in a
cage given previously. How could one use mentalistic notions to describe the
experiment with the pigeon? Let us examine some possibilities. If knowledge
is represented explicitly and the agent relies only on reasoning, it would be
necessary to add knowledge concerning the several phenomena involved, which
would state that it is right to make such conditioning, and specify how they
are to be defined, maintained and eventually dissolved. Knowledge for the
regulation of hunger over time, and of the emotional effects of frustration,
would also have to be provided. But then one would be using mental terms
to describe not the knowledge of the agent, but unconscious mechanisms that
regulate its behaviour. And in this case it would be better to describe such
mechanisms directly, instead of relying on an agent’s rational machinery to
deduce their consequences. Conversely, if instead of explicit knowledge one
employed intricate internal cognitive or neural mechanisms, it would possibly
add more complexity than it is required for the description of the observed
phenomenon. For instance, if one knows a mathematical formula capable of
describing how classical conditioning takes place, there is no need to provide
a detailed neural explanation in so far as the simulation of the behaviour is
concerned. In summary, it seems that certain classes of behaviour are better
understood without reference to mental entities, but merely environmental
ones.

It is clear that the modelling of organisms can be done at many points in a
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continuum of abstraction: from the use of disembodied reason (very abstract)
down to the mimicking the physical properties of actual organisms and their
brains (very concrete). Owing to its emphasis in the interface between or-
ganisms and their environments, a behaviour analytic approach provides an
interesting alternative, a middle ground between these two extremes. It is
not, of course, the only possible alternative, but it is one with an established,
distinct and coherent psychological theory, which was created with certain
particular problems in mind, and therefore merits attention. Nonetheless, it
must be be emphasized that our objective is not to dismiss or substitute any
of the existing agency models, mentalistic or otherwise. Rather, our approach
complements existing ideas and allows the study of agent behaviour from a
different point of view, suitable for different purposes.

Computational models for Behaviour Analysis are scarce in the literature, and
none of the existing ones gives a unified account of its main elements, which we
group as follows: (i) stimulus conditioning; (ii) respondent behaviour (i.e., re-
flexes); (iii) operant behaviour; (iv) drives; and (v) emotions. The approaches
that do exist, such as the work of Touretzky and Saksida (1997), focus mostly
on algorithmic aspects of operant conditioning, a form of learning by rein-
forcement. Important as this may be, it is not sufficient as an architectural
basis, which requires a more extensive and structural specification of what
constitutes an agent. It must be extensive because there is great dependency
among the several behavioural phenomena, and to represent one it is often
necessary to represent another. In particular, operant conditioning itself de-
pends on other aspects of the agent, such as drives and emotions. It must
also be structural because it serves as a fundamental basis for both implemen-
tation and further theoretical development. Therefore, its elements must be
organized in such a way that they can be easily identified, analysed, related,
changed and extended – that is to say, highly structured.

Concerning the work of Touretzky and Saksida (1997) specifically, despite its
merits, it is limited in ways our approach is not. No account is given of drives
and emotional behaviour, nor is stimulus utility represented explicitly. Re-
flexes are also not represented. Moreover, the treatment of operant behaviour
itself, though interesting, is limited in some important ways. For instance,
it assumes that reinforcement must be provided in the instant following the
action to be reinforced, whereas it could be a longer delay. It is also unclear
how the model could be extended or changed, since no other structures are
presented. Our approach, in contrast, provides a general framework for agent
modelling which defines several aspects of agent behaviour, shows how they
relate to each other and can also be extended and changed modularly. This
implies, in particular, that different calculations for operant conditioning can
be specified within our architecture.

Extensibility is an important design goal for us. While we provide abstract
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definitions and corresponding refinements, it should be possible to devise al-
ternative refinements. This is possible by the use of the Z Notion, and can
be useful in order to specialize or change the architecture in a systematic
manner. For example, if one wishes to consider a different way of learning
in operant behaviour, it is possible to define it and integrate in the architec-
ture. This flexibility contrasts, for instance, with Q-learning theory (Watkins,
1989), in which a certain learning mechanism is defined and is not supposed
to be changed. Our approach to operant modelling, on the other hand, aims
at being flexible enough so that a wide range of utility calculation strategies
can be defined, and it is designed to model the usual operant contingency
as a triple of antecedent stimuli, action and consequent stimulus. Moreover,
our approach is closely linked to other agent’s aspects, such as its stimuli
processing facilities and its emotional state.

It is also worth to note that McCarthy (2008) has argued that some innate
notions and mechanisms can be useful in complementing an agent’s learning
process. Our approach can be seen under this light, since we provide a number
of supporting mechanisms that the agent uses to guide and structure its learn-
ing. However, instead of relying on theorem proving, as McCarthy suggests,
we define specialized structures for the several mechanisms. We thus avoid
the efficiency complications that might arise from automatic theorem proving.

A number of other specific comparisons can be made. The following points
are particularly relevant:

• The conditioning mechanisms we define, namely, stimulus and operant
conditioning, provide a learning framework suitable for understanding
and acting upon an environment. By structuring the relations between
the observed environment elements, these mechanisms allow the agent to
reuse these experiences in future situations in order to either manipulate
or react properly to the environment. In contrast, rationality-inspired
architectures, such as BDI (Bratman, 1987; Rao and Georgeff, 1995),
do not define the learning mechanisms involved, but merely assume that
learning is performed and its results transformed into beliefs. In other
words, we assume a priori features of the agent’s environment (e.g.,
events that happened together may happen together again in the fu-
ture), and profit from them by defining associate learning mechanisms.
But this also reduces the generality of our approach. In particular,
it is not clear if we could develop a useful agent-oriented programming
(Shoham, 1993) language based on our architecture, although this might
be attempted. To this end, one would have to isolate tasks that a pro-
grammer may wish to accomplish and that find a good representation
using behaviourist notions. Currently, though, our architecture seems
more appropriate for modelling actual organisms, including whatever
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idiosyncrasies they might have.

• Historically, Behaviour Analysis has developed a distinct perspective
and theory on organism behaviour, different from approaches based on
mental mechanisms such as Cognitive Psychology. The Behaviourist
Agent Architecture helps in bringing these differences to computa-
tional agent architectures, in which cognitive approaches, such as SOAR
(Laird et al., 1987) and ACT-R (Anderson et al., 2004), predominate.

• Because our agent architecture is geared towards representing actual an-
imal behaviour, it is more suitable for modelling such behaviour than
approaches that lack similar empirical basis. This feature might be use-
ful, for instance, in modelling and forecasting social behaviour. This kind
of study has already been done using much simpler models of agency.
Epistein and Axtell (1996), for example, employ a kind of cellular au-
tomaton to this end. It would be interesting to undertake similar studies
using behaviourist models instead.

• The structures used to represent conditioning, such as the stimulus
graph, are themselves objects to be studied. Questions might be asked
about how exactly organisms search over these structures, and therefore
the architecture can be refined to reflect actual behaviour more closely.
These structures can be seen as a type of semantic network (Sowa, 1987)
specialized for behaviourist phenomena.

• The several parts of our architecture work with each other in order to
provide the final organism behaviour. For instance, the operant utility
is calculated considering the stimulus utility, which in turn might be
changed by an emotion or a drive. Naturally, this deep relationships are
missing in many approaches that seek to capture only specific parts of
organisms, such as it is usually done in the reinforcement learning area
(Russell and Norvig, 2002), and even in the treatment given to operant
conditioning in the skinnerbots of Touretzky and Saksida (1997). While
there are benefits in such an isolation, it is clear that there is also some
loss if the objective is to model a whole organism, whose behaviour is a
consequence of several interacting mechanisms.

• Moreover, learning by reinforcement techniques, though inspired by be-
haviourism, often restrict themselves to the notions of reinforcement and
punishment without further analysis. Our formalization, however, pro-
vides finer structures to model learning. For instance, we have seen that
both reinforcement and punishment can be subdivided into positive and
negative. And each might have particular characteristics. Negative pun-
ishment, for example, triggers the emotion of depression. Furthermore,
extensions of our architecture may profit from this finer structure in
order to add other characteristics in an equally fine manner.
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• We have shown that drives and emotions can be defined in behaviourist
terms and are relevant to model actual organism behaviour. However,
they are not usually considered by other agent architectures. Even the
few approaches based on behaviourism that we are aware of ignore this.

• Our characteristic employment of an utility function differentiates our
approach from that of McDowell et al. (2006), which explicitly avoids
any similar scheme. Hence, it is not clear whether it is possible to
express drives and emotions in their framework. In any case, they do
not show how to do such a thing.

• Operant utility calculation can be seen as a form of automated planning
(Nau et al., 2004), because it involves the composition of a sequence of
operants in order to achieve a goal (i.e., the best stimulus available).
As such, our architecture could benefit from the research done in this
area. This need for planning is also at the heart of BDI approaches and
related agent-oriented programming languages, such as AgentSpeak(L)
(Rao, 1996).

• Though d’Inverno and Luck (2003) provides an extensible agent theory
based on the Z Notation, we define our own model from scratch. The
reason is that we are interested in specifying very basic mechanisms,
such as the notion of behaviour itself, and in this case the foundation
provided by the SMART framework would not be suitable. Moreover,
in SMART the bound between agents is the goals they share, whereas in
our approach agents can only be related by mutual stimulation, not some
abstract goal. Nevertheless, its use of Z clearly influenced our choice of
a formal notation for agent modelling.

3.2 Environment Model

The complete contribution is presented in Chapter 5.

As we remarked in Section 1.1, the environment of an MAS can be used as a
crucial element in its automated analysis. Because the greater complexity of
interest is often within the agents, which are thus simulated as black-boxes,
simpler and merely coordinating functions can be attributed to their envi-
ronment. These functions, in turn, lend themselves to simple and explicit
formal representations, which is attractive from a formal verification stand-
point. It was with this in mind that we designed the Environment Model
for Multi-Agent Systems (EMMAS)4.

4Part of which we published in (da Silva and de Melo, 2011a).
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EMMAS provides both a suitable coordination mechanism for our behaviourist
agents and a way to specify several possible experimentation scenarios in a suc-
cinct manner. This latter point is particularly distinctive, as it provides the
basis upon which we can perform formal verification.

To achieve this, we employ ideas from process algebra by realising that our
agents can be seen as communicating processes. Indeed, EMMAS itself is
defined on top of the π-calculus process algebra (Milner, 1999). Among other
qualities, π-calculus has a simple operational semantics (i.e., the meaning of
expressions is given by considering a transition system). This means that it is
possible to transform an environment specification into a transition system, in
which runs (i.e., sequences of states and events) denote the possible evolutions
of the environment.

An EMMAS specification defines three aspects of an environment:

• Which agents are present. The agents are seen as black-boxes, and only
a minimal interface is explicit in the specification (i.e., what stimuli each
can receive, and actions each can emit).

• How these agents relate to each other. These relations are given by
defining how the action of an agent is transformed into a stimulus for
another. The environment structure, then, is a social network (in the
sense of Wasserman et al., 1994).

• A number of behaviours of the environment itself, which are specified as
operations.

All of these elements are put in parallel composition in the specification so
that they can interact.

It is mostly through environment behaviours that experimental situations can
be specified in EMMAS. For example, suppose that one wishes to test two
different ways to manipulate a group of agents. One can define an operation
Op1 to account for the first, and another operation Op2 for the second. Then,
to specify that the two are to be experimented with, one requests a non-
deterministic choice in the form of the following composed operation:

Op1 +Op2

During simulation, this means that there are two distinct possible courses of
actions – one employing Op1 and another employing Op2. During verifica-
tion, both of these simulation paths might be examined to ensure that some
property holds in both cases. The mechanism by which such choices are made
can vary, but in this thesis they are defined by the verification algorithms we
provide and which we present later.

42



3.2. Environment Model

Owing to its process algebraic foundation, there are a number of such compo-
sition operators, which can be used in a structurally recursive way to define
intricate operations. Moreover, EMMAS also provides primitive operations
which must be used when building more complex ones. These primitive op-
erations include, for instance, the stimulation of agents and the creation of
new relations between agents. As a further example, consider the following
operation:

((Stimulate(s1, ag) + Stimulate(s2, ag));
(Stimulate(s3, ag) + Stimulate(s4, ag))) ‖
Stimulate(s5, ag)

It defines: (i) that an agent ag be stimulated first by either s1 or s2, and then
by either s3 or s4; but also (ii) that at any moment ag might be stimulated
by s5. As in the previous example, though not as obviously, there exists
a transition system that represents all of the possibilities contained in this
operation.

3.2.1 Comparison with Other Approaches

The ELMS (Okuyama et al., 2005) approach we saw in Section 2.1.2 also
employs the idea of combining environment specifications with agent imple-
mentations to perform simulations. However, there are a number of important
differences. Most crucially, ELMS does not seem designed with formal ver-
ification goals in mind. Thus, differently from our method, no underlying
semantics amenable to formal analyses (e.g., transition systems) is provided
in ELMS. In particular, it is not possible to specify multiple situations via
non-deterministic operators, which hinders its applicability to the specifica-
tion of experimental situations. Furthermore, ELMS’s agents are assumed
to be implemented using AgentSpeak(L)(Rao, 1996), whereas our approach
assumes a different agent architecture, as explained previously.

Ferber and Müller (1996) develops an execution scheme similar to ours for
defining environments, which is formalized by Ferber (1999). However, the
formalism itself is entirely different, as it is based on Petri nets and not on
process algebras. Other important differences are:

• Although Petri nets are used, the environment reactions to agent ac-
tions are actually not given in the Petri net formalism. Rather, any
description language can be used to do so. This presents a difficulty
to formally analyse these reactions. In contrast, our EMMAS is en-
tirely formal, and therefore poses no such difficulty. This restricts what
can be expressed (since it is not an arbitrary description language), but
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allows entirely formal investigations with respect to the environment’s
structure and behaviour.

• The focus of Ferber’s (1999) environments is on the synchronization of
agent influences and environment reactions, as required by the theory
developed by Ferber and Müller (1996). No provision is made for the
concise definition of multiple experiments and situations, which is a main
concern in EMMAS. This arises, in part, from the previous point, since
if the behaviour of environments (beyond synchronization) is not given
explicitly by Ferber’s (1999) formalism, then it is not possible to explore
them systematically.

• Ferber’s (1999) agents are supposed to signal when they are done with
their actions, so that one can determine which group of actions can be
considered simultaneous. EMMAS requires no such thing from the
agents. Rather, all possibilities of simultaneous actions are automati-
cally considered at the semantic level. This arises from our focus on
verification.

• Ferber’s (1999) environment aims at being domain independent, while
EMMAS has no such ambition, and addresses only a class of MASs.

It is also enlightening that Ferber (1999, p. 211) shares one of our main
concerns:

Unfortunately, very little work has been done on modelling envi-
ronments, and details relating to environments are usually lost in
explanations of systems which have implemented them, or indeed
completely buried in the code for their implementation.

Both our contribution and Ferber’s (1999) aim at this problem.

We employ a process algebra to provide the semantics of EMMAS and,
as seen in the previous section, use the Z Notation to specify the agents.
Thus, there are similarities with the Circus (Woodcock and Cavalcanti, 2001)
method, in which the process algebra CSP and Z are combined in a uniform
framework. However, here we use the π-calculus instead of CSP. Moreover,
although the agents are specified in Z, this specification is used mostly as a
guide for implementing them, so that during verification and simulation the
algorithms do not manipulate its internal structures. That is to say, verifica-
tion is achieved by manipulating the structures of the environment, and agents
are considered mostly as black-boxes with interfaces.
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3.3 Transition Systems and Semantics

The complete contribution is presented in Chapter 6.

We saw in the previous section that EMMAS environments can be put in
terms of transition systems. In this thesis we develop a particular kind of
such structures, which we call annotated transition system (ATS). Thus,
a crucial step to formally analyse an MAS in our approach is to translate an
EMMAS specification into an ATS. We do this in two different ways.

The first is by giving a general semantics of EMMAS in terms of an ATS.
This is achieved by considering the operational semantics of π-calculus, which
provides a transition system, and then removing certain undesirable runs. The
resulting ATS provides a rigorous semantics, but is does not include imple-
mentation details that are needed for particular applications – it is an abstract
semantic model, and shows that EMMAS is not limited to simulation appli-
cations.

However, since the technique developed in this thesis is based on the possibility
of simulating an EMMAS specification, it is necessary to provide a more
concrete translation from such a specification to an ATS. This second way of
performing a translation is tied to the simulator and the associated verification
technique, and therefore is considered in Section 3.4.

3.3.1 Comparison with Other Approaches

Transition systems are classical mathematical entities to represent semantics of
concurrent systems. For example, they are used by Milner (1999) to provide
the semantics of both CCS and π-calculus process algebras. Model check-
ing techniques (Baier and Katoen, 2008) employ transition systems as well to
represent the systems to be analysed. Therefore, with respect to transition
systems, our contribution, if any, is merely the definition of a particular kind
of transition system (the ATSs) that groups a number of well-known features
useful in our work, in particular: input and output events, internal events,
labelled transitions and labelled states.

Our significant contribution, though, is the provision of a semantics for our
EMMAS in terms of such transition systems. To our knowledge, it is the only
MAS environment to have such a semantics. The practical importance of this
is that, as we shall see in the next section, such a semantics is fundamental
for the verification technique we develop.
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3.4 Verification Technique

The complete contribution is presented in Chapter 7.

To apply the verification technique developed here, we first need a suitable
ATS to represent the MAS, which can be derived from an EMMAS spec-
ification. As explained previously, the general semantics to be developed in
Chapter 6 does not contemplate the particular needs of the simulator required
for the application of the technique. The problem, essentially, is that there
must be a way to explicitly request, during simulation, that agents change
their current actions and acknowledge changes in environmental stimulation
(i.e., the agents must be updated). This is an implementation issue, and there-
fore we have not included in the general EMMAS semantics. Nevertheless, a
more concrete semantics is given by introducing a new event, called commit,
which works as a signal to make such a request. This produces an ATS whose
runs can be directly interpreted by the simulator. In particular, whenever the
simulator finds a commit event in a run of the ATS, it enforces the update of
the agents. Moreover, this ATS is mathematically well-defined in its entirety,
but its actual construction is done during simulations, as each particular state
becomes relevant - that is, on-the-fly.

One models an MAS in order to study its properties. In this thesis, we propose
a way to do so by formulating hypotheses about the MAS and automatically
checking whether they hold or not (e.g., “every time the agent does X, will it do
Y later?”).5 If a hypothesis does not hold, it means that either the hypothesis
is false or the MAS has not been correctly specified. The judgement to be
made depends on our objectives in each particular circumstance. Are we
trying to discover some law about the MAS? In this case, if a hypothesis that
represents this law turns out to be false, it is the hypothesis that is incorrect,
not the MAS. Are we trying to engineer an MAS that obey some law? In this
case we have the opposite, a falsified hypothesis indicates a problem in the
MAS. This view is akin to that found in empirical sciences, in which scientists
investigate hypotheses and make judgements in a similar manner. In this
respect, the main difference is that the empirical scientist studies the natural
world directly, while we are concerned with models of nature in the form of
MASs.

In this thesis, such a hypothesis is defined by specifying a simulation pur-
pose and a satisfiability relation. If the MAS satisfies the specified simu-
lation purpose with respect to the desired satisfiability relation, then the
hypothesis is corroborated. Otherwise, it is falsified. Formally, a simula-

5We have published part of this technique in (da Silva and de Melo, 2011b).
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Figure 3.1: Verification and simulation elements interaction. Notice, in particular,
the important role that the environment has in relating verification and simulation.
It acts as a coordinator which, on the one hand, formally defines what can be done,
while on the other hand requests actual simulator operations. The environment’s
implementation is provided mainly by a π-calculus simulation library, as explained in
Section 3.5 below.

tion purpose is an ATS subject to further restrictions. In particular, it has
finitely many states and defines two special states, Success and Failure. All
runs that lead to Success denote desirable simulations, whereas all that lead
to Failure denote undesirable ones. Moreover, differently from the ATS that
is automatically and progressively derived from an EMMAS specification,
these simulation purposes must be specified explicitly and a priori.

Simulation purposes not only give criteria for correctness but are also em-
ployed to guide the simulation, so that states irrelevant for the property are
not explored. The verification is achieved by building – on-the-fly – a special
kind of synchronous product (written SP ⊗M) between an ATSM rep- synchronous prod-

uctresenting the MAS of interest and a simulation purpose SP denoting the
property of interest. This synchronous product is itself an ATS, in which
states are of the form (q , s), where q is a state of SP and s is a state ofM.
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A feasible run in this product is a run whose last state (q , s) is such that
q = Success.

This formal construction depends on and influences the behaviour of agents,
which are simulated as black-boxes (but have a known interface). For example,
a transition that states that a certain agent has performed a certain action can
only take place if the agent in question really performed that action (i.e., if the
simulator, after being queried, informs that the agent did so in the simulation).
Conversely, if a transition that specifies that a certain agent receives a certain
stimulus takes place, then it is necessary that the agent really receives the
stimulus (i.e., by requesting the simulator to stimulate it). This interaction
with the simulator is formalized by the provision of an abstract simulator
interface, which can be incorporated in formal definitions and implemented by
the actual simulator. Hence, there is an interplay between the formal analyses
and the simulation. The formal structures provide order to the simulation in
the form of an abstract representation, but they would be pointless without
an actual simulation to put in order in the first place. This close relationship
between these two aspects is a distinguishing feature of the work developed in
this thesis (see Figure 3.1).

This synchronous product can be used in various ways to define whether SP
satisfiesM. In this thesis we define the following such satisfiability relations:

• Feasibility : SP is feasible with respect to M if there is at least oneFeasibility

run in SP⊗M which terminates in a state (q , s) such that q = Success.
There are weak and strong variants of this.

• Refutability : SP is refutable with respect toM if there is at least oneRefutability

run in SP⊗M which terminates in a state (q , s) such that q = Failure.
There are weak and strong variants of this.

• Certainty : SP is certain with respect to M if all runs in SP ⊗MCertainty

terminate in a state (q , s) such that q = Success.

• Impossibility : SP is impossible with respect to M if all runs inImpossibility

SP ⊗M terminate in a state (q , s) such that q = Failure.

Each satisfiability relation is verified by a different, but similar, algorithm.
They all share the following main characteristics:

• They perform a depth-first search on the synchronous product of SP
andM;

• The search has a maximum depth, depthmax ;
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• SP⊗M is computed on-the-fly (i.e., it is not computed a priori ; rather,
at each state, the algorithm calculates the next states necessary to con-
tinue), because M itself is obtained on-the-fly from the π-calculus ex-
pressions present in each of its states. Visited states inM are not marked
as such.

• A simulator interface is assumed to exist. This is used to control the
simulation execution, including the possibility of storing simulator states
and backtracking to them later.

• The algorithm is guaranteed to terminate, and the result is a conclusive
or inconclusive verdict. If conclusive, it becomes known whether the
MAS satisfies the simulation purpose with respect to the observations
made during simulations. If inconclusive, it is possible to perform some
adjustments and try again.

Regarding the complexities of the algorithms, this means that they must be
given mainly in terms of depthmax and the maximum branching factor (i.e., the
maximum number of possible successors of any state), instead of the number
of states and transitions in the complete transition system. Moreover, since
states in M are actually computed from an EMMAS environment speci-
fication, the complexities of these computations must be taken into account
as well. These characteristics lead to many parameters to be accounted for
in the statement of the complexities. The complete development is given in
Chapter 7. In a few words, the complexity in space is polynomial with respect
to the size of the environment and other parameters, and the complexity in
time is exponential with respect to depthmax .

What is important in this technique is that, once given a simulation pur-
pose, it chooses which simulations to execute automatically and in a system-
atic manner, instead of depending on a user to guide and inspect the simulation
manually, thereby exploring the possible simulations more efficiently, even if
inconclusively. Moreover, the algorithms are carefully shown to be correct
according to precise notions of soundness and completeness.

3.4.1 Comparison with Other Approaches

Our approach is largely inspired by TGV (Jard and Jéron, 2005), which we
saw in Section 2.2.2. But we differentiate ourselves fundamentally because our
objective is not the generation of test cases, and in particular we are not tied
to the ioco conformance relation. Indeed, our simulation purpose is itself
the structure that shall determine success or failure of a verification procedure
(i.e., not some a posteriori test cases). As a consequence, different criteria of
success or failure can be given, and then computed on-the-fly. As we saw in
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Section 1.1, a number of particular methodological considerations are at the
heart of these definitions. Moreover, there are also other technical differences,
such as the fact that we use labelled states (and not only transitions), and
that simulation purposes need not be input complete.

Although uncommon, there are works on the verification of simulation traces,
as we have seen in Section 2.4.3, such as that of Bosse et al. (2009). Our
method, however, distinguishes itself mainly by actually guiding the simula-
tion, and not only checking properties over traces a posteriori.

Though quite different, our technique has nevertheless common characteristics
with Model Checking, presented in Section 2.2.1. Most importantly, both
assume the existence of an explicit set of states and transitions to be analysed.
In Model Checking this set is examined exhaustively, so that a conclusive
verdict can always be given, provided that there are enough computational
resources. In our case, by contrast, only a small part of the state-space is
explored (i.e., those that are reached by the simulations performed), and one
can never be sure of having explored every possible state, since agents are
given as black-boxes. Moreover, both methods allow the specification of a
property of interest to be analysed with respect to a system, thus establishing a
difference between the model and the properties of the model. As we have seen,
in Model Checking such a property is typically given in terms of some temporal
logics. In our approach we use simulation purposes instead. By similar
reasons, it is also clear that our approach is distinct from the application of
Model Checking to formal MASs specifications, as surveyed in Section 2.4.4.

The particular case of Bounded Model Checking is also worth commenting.
In this approach, one limits the length of a counterexample run to some con-
stant. In this manner, the problem can be translated to an instance of SAT
and addressed using SAT solvers. In our algorithms, we also limit the runs
we examine to some constant. However, this is done not to allow a trans-
lation to another format such as SAT, but simply because the search in the
synchronous product of a simulation purpose and an ATS must have a
maximum depth. Otherwise, the search could never end, since it is possible
to have infinite branches in the synchronous product.

In our verification algorithms we shall need a preprocessing procedure to cal-
culate shortest distances from a certain vertex in the graph induced by the
specified simulation purpose. To this end, we could use Dijkstra’s algo-
rithm (Cormen et al., 2001). However, the edges in our graph all have weight
1 (i.e., we count hops between a vertex and its successors), which permitted
the development of a more specific algorithm. The reason is that, in this case,
it is not necessary to keep a priority queue with unexplored vertices (ordered
according to their current distances), which needs to be regularly re-ordered to
account for updated entries. It suffices to explore the vertices in a depth-first
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manner.

3.5 Tool Implementation

The complete contribution is presented in Chapter 8.

The theory presented in this thesis has been implemented as a software tool
following the architecture outlined in Figure 1.1. In this respect, there are two
main distinct artefacts:

• The implementation of the agent model;

• The simulation and verification tool itself, FGS.

The implementation of agent model is actually a Java library that can be
used in many different manners, since it is merely a realization of an agency
theory. It allows the creation of Organisms objects, which are initialized by
the provision of an XML6 configuration file. In this file one specifies all that
makes the particular organism unique, such as the stimuli it is capable of
receiving, the actions it can perform, the operants it has already learned, and
so on.

In this thesis, we use these agents to specify MASs subject to simulation and
verification. To this end, we provide the FGS tool, also written in Java, which
takes the following as its main inputs:

• A component repository. Components provide the implementation of
particular kinds of agents or properties. Their instantiations are the
“black-boxes” that are simulated. Our agent model is provided as one
such component. Propositions about these agents (e.g., “stimulus X is
reinforcing to agent Y.”) can also be provided as a special kind of com-
ponent, called properties, whose values are calculated during simulation
as well.

• A scenario description. A scenario is an XML file that specifies the MAS
to be simulated. It defines the agents that are present, as well as the
environment in which they exist. To define an agent, one specifies the
component that implements it and the configuration file to initialize it.
The environment, in turn, can be specified by using tags that map to
EMMAS elements (i.e., the <choice> tag maps to the the + operator).

6Extensible Markup Language.
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• An experiment description. An experiment is an XML file that specifies
what kind of simulation and verification should be done with the given
scenario. Simulation purposes can be defined by explicitly listing
their states, events and transitions.

Since the semantics of EMMAS is given in terms of the π-calculus, we have
implemented a π-calculus simulation library that is used by FGS to simulate
as directly as possible EMMAS specifications. A main advantage of pro-
ceeding in this manner is that modifications and additions to EMMAS can
be more easily implemented. On the other hand, the direct simulation of
π-calculus brings some efficiency issues, which require the implementation of
certain optimizations.

Finally, it is worth to emphasize that, besides its theoretical foundation, FGS is
designed with some practical engineering concerns in mind. In particular, the
fact that it is based on components allows the substitution of agents without
affecting the simulation and verification infrastructure. So, for instance, if
a different agent implementation is devised, it can be immediately employed
with the existing tool using the existing scenarios and experiments.7

3.5.1 Comparison with Other Approaches

The main innovation of FGS, of course, is the implementation of the novel tech-
niques and models introduced in this thesis, which we have already considered.
Apart from that, two other characteristics are noteworthy: the π-calculus sim-
ulation library, and the component-based architecture of the system.

Existing implementations of the π-calculus, such as Pict (Pierce and Turner,
1997) and CubeVM (Peschanski and Hym, 2006), are geared towards using
the π-calculus as a foundation for programming languages. This means that
given a specification (indeed, a program), only one possible execution path
is considered. Since for the purpose of verification it is necessary to be able
to consider all possible executions (at least up to a certain length), these ap-
proaches are insufficient to address our concerns. The π-calculus simulation
library of FGS is designed to fulfil this need. It provides an executable imple-
mentation of the π-calculus which can be used to systematically investigate all
possible executions (up to a certain length). It does that by providing access
to the current state of the underlying transition system of the π-calculus pro-
cess, which can then be used to explicitly calculate the possible successors. A

7An earlier version of this simulation infrastructure was designed exactly to show the
value of a component based approach to multi-agent simulation. We published this result in
(da Silva and de Melo, 2008), but at that time the simulator had not incorporated yet the
MAS models and verification techniques proposed in this thesis.
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number of optimizations are required in order to make this calculation more
efficient.

The architecture of FGS itself, in turn, has certain distinctive features worth
commenting in what relates to its focus on the separation of concerns and
reuse of artefacts (i.e., components, scenarios and experiments).

It is generally acknowledged that it is important to separate the simulator
infrastructure from the models being simulated. Swarm (Minar et al., 1996),
MASON (Luke et al., 2004) and Repast (North et al., 2006), which are pop-
ular multi-agent simulation platforms, try to achieve this by providing both
a framework to program models and a simulation engine to run them. This
helps reuse simulation infrastructure, but does not simplify the reuse of parts
of simulation models in different simulations built by different people.

A new version of Repast, called Repast S (North et al., 2005), is being de-
veloped in order, partly, to address this issue. This new version is similar to
our system in that external Java classes can be arranged together declaratively
(i.e., without Java programming) to compose simulation models. However, we
differ from them in a number of ways. First, the simulation models of Repast
S are mostly restrictions on which components are in the model, while our
models carry information regarding not only the components, but also their
actual instantiation (i.e., we represent a complete state of affairs). Second,
Repast S has a very inclusive definition of component, so that any Java class
can be a component, while we enforce several requirements in order to attain
more semantics. Third, Repast S aims at being a general platform, while we
prefer to adopt a domain-specific approach, which we believe to lead to more
elegant and manageable simulation models, albeit with more limited applica-
tions. Besides the points we shall discuss later, we think that the simplicity
thus achieved is also important in order to make simulators more accessible
to non-programmers, which is one of our objectives.

The idea of a component-based agent simulation environment is also used in
the Quicksilver project (Burse, 2000). In that work, any compiled Java class
can be treated as a component. Some predefined classes of agents are provided
and a special tool allows the user to instantiate classes, connect instances and
run the simulation thus assembled. In this way, agents can be reused in several
simulations. This approach, however, suffers from some problems. Like Repast
S, it relies on a very inclusive definition of component, which implies that such
components do not bring any advantage over normal Java classes. The reuse
technology is in the composition tool that allows arbitrary instances to be
easily connected by the user, but this is not really specific to simulation, nor
does it help in enforcing any special semantics to the underlying classes. Hence,
such a reuse mechanism is mostly a general Java technology, which allows one
to build programs in a different manner. This contrasts with our approach,
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in which components are highly structured entities designed for simulation:
they must implement predefined interfaces, be annotated in special ways and
be deployed to a special location. Furthermore, Quicksilver assumes that the
user has knowledge of Java programming. This makes it inaccessible to non-
programmers, whereas our approach has the contrary goal of facilitating their
access to simulation.

This goal is also shared by NetLogo (Wilensky, 1999), an environment designed
to simplify the creation of simulation models. To this end, a graphical editor
and a set of controls (e.g., buttons, sliders, plotters) are provided in order to
build the simulation front-end, while a special procedural scripting language
(assumed to be easier to learn than a general purpose language such as Java)
can be employed to specify the actual simulation behaviour. The system,
however, does not offer any reuse mechanism beyond copy-and-paste of scripts.

With similar purposes, but in a more sophisticated realization, SeSAm
(Klugl and Puppe, 1998) provides a rich application in which users may cre-
ate agents, setup simulations and run them. Agent creation relies on a base
library of agent properties, which must be used in order to define new agents.
Though simple agents can be built easily with point-and-click interaction,
more advanced ones require the use of a custom scripting language. The cre-
ated agents are then instantiated in order to build one or more simulation
situations, all of which are stored in a model file. SeSAm, however, does
not provide advanced facilities to reuse such agents across different simulation
models. The only way to do so is through importing a model into another,
which amounts to a copy-and-paste technique. On the other hand, program-
mers have the possibility of extending SeSAm through plugins written in Java.
Such plugins allow the definition of new elements that the final user may em-
ploy when building his agents (e.g., new functions to be used when specifying
the behavior of agents). Therefore, SeSAm does provide an interesting reuse
technology, but whose purpose differs from ours, which aims at the easy reuse
of whole agents and other simulation elements.

Finally, in (Okuyama et al., 2005) we find the ELMS markup language, which
bears some similarities to our scenario language in that both describe features
of the simulation environment. However, the objective of ELMS is to restrict
the kinds of entities that exist, while ours is to explicitly define and compose
individual entities. Moreover, ELMS is geared towards agent-oriented pro-
gramming, while our underlying programming paradigm is the more common
object-oriented one.
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3.6 Conclusion

In this chapter we have presented an overview of the main technical contri-
butions of this thesis and related them to existing work. In order to develop
our approach, we build upon a number of ideas from different areas, thereby
integrating them in a coherent framework. To clarify this overall relationship,
Table 3.1 selects some of the most relevant related work discussed here and
summarizes the comparison with our method by describing crucial aspects of
each. From this comparison, it can be seen that our work borrows, integrates,
contrasts with and adds to ideas from disparate sources.
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This thesis Z, π-calculus
(base of EM-

MAS)

ATS Simulation

Purpose

satisfiability

Guided sim-
ulations;
hypothesis
testing

Behaviourist Social net-
works; con-
text for ex-
periments;
dynamic; non-
deterministic

Skinnerbots (Touretzky and Saksida,
1997)

– – – – Behaviourist –

SMART (d’Inverno and Luck, 2003) Z – – – Any goal
oriented

Goal depen-
dencies

BDI architecture (Rao and Georgeff,
1995)

– – – – Practical
reasoning

Dynamic; non-
deterministic

Influences and reactions
(Ferber and Müller, 1996; Ferber,
1999)

Petri nets – – – Any Any syn-
chronous
environment

ELMS Okuyama et al. (2005) – – – Simulation;
animation

BDI-based Grids; reactive
resources

TGV (Jard and Jéron, 2005) – IOLTS ioco confor-
mance

Test case gen-
eration

Reactive
systems

–

TTL (Bosse et al., 2009) TTL Based on pred-
icate logic’s

TTL prop-
erty

Verification of
traces

LEADSTO
specification

LEADSTO
specification

MAS model checking (e.g.,
Wooldridge et al., 2006;
Lomuscio et al., 2009)

Various lan-
guages

Transition
systems; in-
terpreted
systems

Temporal
logic formu-
las

Exhaustive
model check-
ing

BDI-based;
epistemic

–

MAS simulation such as SWARM
(Minar et al., 1996), RePast
(North et al., 2006) and MASON
(Luke et al., 2004)

– – – Simulation;
animation;
statistics com-
pilation; input
optimization

Any Grids; social
networks; dy-
namic

Table 3.1: Comparison of this thesis with some important related works. Columns designate the aspect to be analysed, and lines show
the related works. Only the most relevant references discussed in this chapter are given. A dash (–) indicates that the aspect is not
significantly addressed in the work. From this table, it is clear that the approach proposed in this thesis relates to ideas from very different
areas.
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CHAPTER 4
Behaviourist Agent

Architecture

In this chapter we present the Behaviourist Agent Architecture , the novel Behaviourist
Agent Architec-
ture

agent architecture introduced by this thesis. Its structure follows core princi-
ples of Behaviour Analysis, as presented in Section 2.1.1.4, which we organize
in five classes: (i) stimulus conditioning; (ii) respondent behaviour (i.e., re-
flexes); (iii) operant behaviour; (iv) drives; and (v) emotions.

Despite its many details, one can abstract two themes common to all of them:
adaptation and learning. These concern how environmental stimuli affect the
actions of agents over time. In this way, phenomena pertaining to agents are
closely related to the possibilities offered by an external environment. In this
chapter, however, we focus on agents – the corresponding environments are
addressed in Chapter 5.

We explain the main concepts of our work in an informal manner, but the
architecture itself is given as a formal specification written in the Z Notation.
This provision ensures that the architecture is defined in a precise and com-
positional form. The benefits of precision are evident. But compositionality
should also be valued, for it allows each part of the specification to be exam-
ined and modified separately, and thus allows further progresses to be made
upon it. Indeed, certain parts in our specification, which we call extension
points, are designed to be changed1 in order to allow the experimentation
with variations of particularly important mechanisms (e.g., the computation
of the utilities assigned to stimuli).

1However, since the schema calculus is not monotonic with respect to refinement, special
care must be taken when refining the specification. See Section D.6 of Appendix D.
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The implementation of the specification is given as a Java program. In a com-
plete formal development approach, this Java program should be proved cor-
rect with respect to the Z specification (e.g., by means of formal refinements).
This was not done in this thesis, where the main formal effort has been devoted
to formally guided simulations and the related verification algorithms, which
are proved to be correct. However, the Java implementation of the agent ar-
chitecture follows very closely the structure of its Z specification, which helps
in avoiding errors that could arise in more complex implementation strategies.
In the present chapter only the formal specification is considered. More details
about its implementation are given in Chapter 8.

This chapter is organized as follows. First, in Section 4.1, we comment on
the overall themes of adaptation and learning that permeate the architecture.
In Section 4.2, then, we present our Behaviourist Agent Architecture
specification in great detail, and this is the main contribution of the chapter.
Finally, in Section 4.3 we conclude with some observations. A summary of the
Z Notation is provided in Appendix D.

4.1 Adaptation and Learning

Despite the many specialized parts of the architecture we introduce in this
chapter, there are two main themes that tie them together, namely, that of
adaptation and learning with respect to an environment. It is thus worth to
examine the general features of these two activities before proceeding to the
architecture specification itself.

The agents considered in this chapter:

• exist within an environment that provides them with stimulation and
which receives their actions;

• prefer certain stimuli to others;

• assume that relations exist between their actions and the stimuli that
they receive.

Given these characteristics, adaptation concerns any change in the agent that
is caused by external stimuli. Moreover, since agents have preferences, such
changes often imply in behavioural modifications that make it more likely to
obtain the preferred stimuli. For example, a hungry agent will be more likely
to engage in actions that lead to food. In general, reflexes, emotions and drives
are adaptations.
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Learning is a form of adaptation with certain particularities. First, whatever
is learned, is not present in the agent a priori. Rather, it must be gained
through experience. Second, whatever is learned can be forgotten. That is
to say, something learned is not intrinsic to the agent’s constitution. An
agent cannot learn to be hungry, but it can both learn how to get food and
forget this when it is no longer useful. For learning to work, however, it is
necessary that the agent possesses the predisposition to observe, remember
and eventually forget relations between stimuli and actions. Hence, this is
a priori with respect to learning. In this chapter classical conditioning and
operant behaviour are defined as the main learning mechanisms of organisms.

Adaptation and learning experiences influence each other. For instance, an
agent may know how to get food (through learning), but because it has eaten
too much already, it has no interest in doing so (an adaptation to having
eaten). This brings unity to these experiences, as they affect the agent as a
whole.

All this is associated with an environment with certain characteristics. Clearly,
the environment must be ordered in a way that there is something useful to
learn about it. But perhaps less clear is the fact that this adaptive relation
with the environment can be used to study the agents themselves. If, from
an environmental perspective, one assumes that agents adapt and learn in
particular ways, one is then in a position to manipulate stimulation and ob-
serve the behaviour of agents in order to infer individual as well as collective
agent properties. This close relation between agents and their environment
is inherited from the behaviourist tradition we subscribe to. The reason is
plain: in behaviourist approaches, by definition, organisms are studied solely
by means of stimulation and observation of the resulting actions. That is to
say, by producing an ordered environment that the agents can adapt to and
that reveals the mechanisms used for such an adaptation.

In a psychological setting, as this discussion implies, organisms are black-boxes
and the objective is to discover, through experimentation, the mechanisms
“hidden” therein. In this thesis, however, organisms are simulated, and for
this it is necessary to provide these mechanisms in an executable form. As
explained previously, in this chapter we do this by formalizing central charac-
teristics of the Behaviour Analysis theory as a computable agent architecture.
The corresponding environment, in turn, is the subject of Chapter 5. There,
we shall see how these agents can be manipulated in order to reveal more about
their behaviour, by putting the basic behaviourist mechanisms described here
in motion.
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4.2 Formal Specification

In this section we present our Behaviourist Agent Architecture. It is for-
malized using the Z Notation, which employs logic as part of its specification
language. However, we emphasize that this does not mean that implementa-
tions following a specification should perform automated deductions. Rather,
the logical statements in a Z specification serve only as criteria of correct-
ness. They can be implemented by whatever means are available, as long as
the final product respects the constraints imposed by the specification. This
means that specialized and efficient algorithms can often be provided in an
implementation. Moreover, the specification can be refined by adding further
constraints, which allows one to extend it.

Let us then proceed with a systematic description of an agent’s structures as
defined by our architecture. We divide an agent into several parts, and to
each one we provide the following information:

• The rationale for its existence: it is important to understand why it is
needed before defining it formally.

• The main elements of its formal specification: since the full specification
is quite large, for the sake of readability we show only its main elements
in this chapter. Nevertheless, this gives the reader a comprehensive
understanding of its main features. Furthermore, the full specification is
provided in Appendix A. We reference this appendix whenever we omit
some part of the specification, so that the reader may pursue the details
if he or she so wishes.

• How it could be changed: the specification we provide can be changed
in a number of ways. In particular, certain parts, which we refer to as
extension points, are designed to be specialized (e.g., through refine-extension points

ments). They are important aspects of agent behaviour that one may
wish to modify. These extension points are commented throughout
the text.

These subsystems come together to form an organism, which is the name we
give to agents that follow our specifications. Figure 4.1 presents an overview
diagram of these subsystems and their relations. Formally, an organism is
given by the Organism schema.
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Organism
StimulationSubsystem

RespondingSubsystem

DriveSubsystem

EmotionSubsystem

In the following sections we present each of its constituent parts. But we begin
by presenting some preliminary definitions which will be used throughout this
presentation. And in the last section we show how to group all subsystems’
operations.

4.2.1 Preliminary Definitions

The Z Notation does not provide a built-in manner to treat rational numbers.
Therefore, we have built our own definition of rational numbers on top of the
definitions available for integers. Moreover, our use of rational numbers is
always restricted to a certain interval. Thus, the arithmetic operators that we
define ensure that the upper and lower bound of this interval are respected.
We call magnitudes this bounded kind of rational number, but denote them
by the usual Q symbol.

Q == {q : Z× Z | let a == first q ; b == second q •
b 6= 0 ∧
a div b ≤ 1 ∧
a div b ≥ −1}

There are also positive magnitudes, whose minimum element is neutral.

PositiveQ == {q : Z× Z | let a == first q ; b == second q •
b 6= 0 ∧
a div b ≤ 1 ∧
a div b ≥ 0}

See Appendix A for more details about these elements.

The operators and the relations over magnitudes are denoted by their usual
symbol followed by a subscript. This subscript is merely a technical convention
to differentiate these symbols from the ones concerning integers. Thus, we have
symbols such as +1, ≤1, and =1, whose intuitive meaning should be clear (for
the formal definitions, see Appendix A).

As a convenience, we define special kinds of magnitudes according to their
use in the specification. Hence, Intensity , Correlation and Probability are
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4. Behaviourist Agent Architecture

Figure 4.1: Overview of the main parts that form an organism. Each box denotes one
such part and its main responsibilities. Arrows indicate important relations between
these parts. An arrow from A to B means that A provides something that influences
B .
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all formally magnitudes (see Appendix A), but are used in different manners
throughout the specification.

The passage of time is represented by natural numbers. But we also define
new names for such integers according to their use, and thus we have the
Instant and the Duration types (see Appendix A). Importantly, the time an
organism has access to is based on counting its interactions with an external
environment, and is therefore independent of any global, absolute, clock. The
passage of time, thus, is a function of an organism’s perception of an external
environment, much like its behaviour (see Section 4.2.8 for more details).

Finally, we assume the existence of a random function which is capable of
generating a random magnitude from any given instant (see Appendix A).

4.2.2 Stimulation

As we have seen, stimulation is one of the main concepts in behaviourist
theories. It is only by means of stimulation that an organism can be influenced
by its environment (which includes other agents in the environment). In this
section we will see how stimuli are defined and perceived, how they relate
among themselves, how the organism learns about such relations.

4.2.2.1 Basic Entities

First of all, there is a primitive set of stimuli.

[Stimulus]

Each particular organism will have its own, particular, set. But for the purpose
of this specification, it suffices to have such an abstract set.

Recall that the organism is divided in a number of subsystems. The stimu-
lation subsystem is one of them. It is defined by the StimulationSubsystem
schema, and it holds the data structures relevant for stimulation.
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StimulationSubsystem
StimulationParameters

StimulusImplication

StimulusEquivalence

currentStimuli : PStimulus

pastStimuli : Instant 7→ PStimulus

stimulus status : Stimulus → StimulusStatus

stimulusBeginning : Stimulus 7→ Instant

In particular, the subsystem is parametrized by the StimulationParameters
schema, which isolates some important parameters that vary from organism
to organism. An important parameter concerns the utility that the organism
attaches to stimuli. Some stimuli are naturally pleasant or painful. These are
called primary stimuli, for they have utilities a priori.

StimulationParameters
StimulationHints

Conditioning Ref 1 Parameters

stimuli : PStimulus

primaryStimuli : PStimulus

primary utility : Stimulus 7→ Utility

max delay : Duration

dom primary utility = primaryStimuli

Every stimulus has an associated status information, which records if the
stimulation is beginning, ending, stable or absent.

StimulusStatus ::= Beginning | Ending | Stable | Absent

We call hints the stimuli that “give hints” about the state of the environment
or another organism. The StimulationHints schema accounts for the hints
available to the organism (see Appendix A). These hints are particularly useful
when defining emotions (i.e., for instance, an angry organism will want to cause
harm, and therefore there must be a way for him to detect harm).

Stimuli are delivered to organisms in the form of Stimulation schema, which
carries information about their intensity and status. Moreover, the status is
restricted to the two values that make sense in this context.
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Stimulation
stimulus : Stimulus

intensity : Intensity

status : StimulusStatus

status = Beginning ∨ status = Ending

4.2.2.2 Relations Among Stimuli

Organisms establish relations among stimuli. These relations help them in
understanding their environment, and therefore in achieving their aims. For
example, a dog may be taught that a whistle is always followed by the provision
of food. Once the dog learns this relation, he will start salivating once he
hears the whistle. The principle behind this phenomenon is known as classical
conditioning.

Here we generalize this principle in the form of a relation we call stimulus
implication. It accounts for the cases in which the organism believes that,
given the presence of a certain stimulus, another stimulus will come. We use
a reflexive and transitive order relation plus a sCorrelation function to model
these beliefs. The StimulusImplication schema models this formally.

StimulusImplication
sCauses : P(Stimulus × Stimulus)

sCorrelation : Stimulus × Stimulus 7→ Correlation

∀ s1, s2, s3 : Stimulus •

(s1 sCauses s1) ∧

(((s1 sCauses s2) ∧ (s2 sCauses s3))⇒ (s1 sCauses s3))

∀ s1, s2 : Stimulus | s1 sCauses s2 •

∃ c : Correlation • ((s1, s2) 7→ c) ∈ sCorrelation

Notice that stimulus implication may be regarded as a directed graph (Fig-
ure 4.2), in which vertices represent stimuli and edges are the conditioning
between stimuli. Furthermore, edges might have weight, if the correlation of
the conditioning is to be taken into account.2

Stimulus equivalence captures the notion that, under some circumstances, a
stimulus might be treated as if it is another. We define such a notion as

2Notice that this graph can also be seen as a semantic network (Sowa, 1987), but spe-
cialized for the representation of stimulation phenomena.
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Figure 4.2: An example of stimulus implication represented as a directed graph.

a standard mathematical equivalence relation (i.e., reflexive, symmetric and
transitive). The definition is given in schema StimulusEquivalence using the
previous stimulus relation definition.

StimulusEquivalence
StimulusImplication

equals : P(Stimulus × Stimulus)

∀ s1, s2 : Stimulus •

(s1 equals s2)⇔ (s1 sCauses s2) ∧ (s2 sCauses s1)

∀ s1, s2 : Stimulus | s1 equals s2 •

sCorrelation(s1, s2) = sCorrelation(s2, s1)

As in implication relations, stimulus equivalence may be represented by a
graph (Figure 4.3). But the symmetry in equivalence relations requires the
graph to be undirected.

4.2.2.3 Stimulus Utility

Recall from Section 2.1.1.4 that Behaviour Analysis assumes that the funda-
mental purpose of organisms is the maximization of pleasure and the mini-
mization of pain throughout their lives. An organism, thus, can be thought of
as an agent trying to maximize an utility function. Such a function, in turn,
can be manipulated in a number of ways in order to modify the organism’s
behaviour.

The utility function associates an utility to each stimulus. The Utility type for-
malizes this quantity as a rational number betweenmin utility andmax utility ,
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Figure 4.3: An example of stimulus equivalence represented as an undirected graph.

where the first indicates the greatest pain and the second stands for the great-
est pleasure. There is also a neutral utility element, which accounts for indif-
ference (see Appendix A).

Utility : PQ

Having established the possible relations that hold among stimuli and the
existence of some primary stimuli, it is then possible to define an utility for
any given stimulus. Computationally, this requires the definition of a search
that, for any stimulus s in a stimuli graph (e.g., the one shown in Figure 4.2),
seeks the primary stimuli that s can reach and use their primary utility to
assign an utility to s itself. There are, however, many possible and reasonable
ways of giving such a definition. Thus, we first establish a very general schema,
StimulusUtility .

StimulusUtility
StimulationSubsystem

EmotionSubsystem

DriveSubsystem

sUtility : Stimulus → Utility

Refinements must then be provided. Our own refinement is given by the
StimulusUtility Ref 1 schema, where the utility of a stimulus is defined as the
utility of the best stimulus it can reach by the stimulus implication relation,
but modified according to certain regulators (see Appendix A). These regu-
lators account for the influence of drives and emotions, which we examine in
Sections 4.2.6.2 and 4.2.7.2, respectively.
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The computation of stimulus utility lends itself to different definitions. Differ-
ent organisms may employ different mechanisms, and therefore each concrete
case could be improved by an appropriate refinement of the stimulus utility
we provide. For instance, for efficiency reasons, it might be the case that
a particular search strategy is used when exploring the stimuli graph (e.g.,
depth-first, breadth-first, some kind of bounded search). This is an important
extension point in the agent architecture, since it allows the extension of
the architecture by merely providing a new refinement of StimulusUtility .

4.2.2.4 Stimulus Conditioning

Stimuli that are not primary gain their utility through association to primary
stimuli. In general, this process is known as stimulus conditioning and the
stimulus that has its utility modified is called a conditioned stimulus. Usually,
stimulus conditioning resembles a causal law. That is, a stimulus is condi-
tioned because it seems to cause another.

As a learning process, stimulus conditioning has two fundamental operations.
The first is the conditioning itself, which strengthens the association between
two stimuli. ConditioningOp 1 operation formalizes this. It states that if a
stimulus s1 is followed by a stimulus s2 within a maximum delay, then the pair
(s1, s2) must become part of the stimulus implication relation. If the maximum
delay is not respected, than nothing changes, and this neutral behaviour is
specified by the ConditioningOp 2 schema. (See Appendix A).

T ConditioningOp =̂ ConditioningOp 1 ∨ ConditioningOp 2

The second fundamental operation is the decay of the conditioning, which
happens every time a stimulus is not followed by the expected consequence.
That is to say, once the organism learns that a stimulus s2 follows a stimulus
s1, it expects this to happen. If it does not happen, it loses confidence in this
implication, and consequently the correlation between s1 and s2 is reduced.
Moreover, if this correlation is below a certain minimum, the implication re-
lation between the two stimuli is simply unlearned. This is specified by the
UnconditioningOp 1 operation. If the conditions for such a decay are not met,
nothing changes, and this is defined by UnconditioningOp 2. (See Appendix
A).

T UnconditioningOp =̂ UnconditioningOp 1 ∨ UnconditioningOp 2

These definitions of conditioning and its decay are very general. For instance,
they do not specify at what rate the conditioning should take place. To supply
these details, one must refine these operations. We provide a simple linear
policy refinement to conditioning. That is, a policy given by the following
rules:
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• the correlation grows with discrete increments, which are calculated ev-
ery time the stimuli happen together;

• each increment is inversely proportional to the delay between the two
stimuli. The proportion constant is c.

Conditioning Ref 1 Parameters schema factors out the definition of the condi-
tioning parameters, such as the constant c. ConditioningOp Ref 1 operation,
then, provides a refinement of ConditioningOp 1. Similarly,
UnconditioningOp Ref 1 operation refines UnconditioningOp 1.3 (See Ap-
pendix A).

T UnconditioningOp Ref 1 =̂
UnconditioningOp Ref 1 ∨ UnconditioningOp 2

Clearly, other refinements can be provided. This is another useful extension
point of our agent model.

4.2.2.5 Stimulation

Stimuli may be delivered to or removed from the organism. Once delivered,
the stimuli remain active until they are removed. That is, we assume that
the environment does not signal the presence of stimuli, but only the change
of such a presence. This convention will be useful later on, when modelling
operant behaviour. Once a stimulus is delivered, the organism updates its
properties until it is removed.

This delivery is controlled by three schemas, namely, StimulationUpdateOp 1,
StimulationUpdateOp 2 and StimulationUpdateOp 3, each addressing a dif-
ferent step in the stimulation process (see Appendix A).

T StimulationUpdateOp =̂
StimulationUpdateOp 1 ∨
StimulationUpdateOp 2 ∨
StimulationUpdateOp 3

Once a stimulus is delivered, it becomes part of the set of current stimuli of
schema StimulationSubsystem. The importance of this set of stimuli is in that
it establishes a context for the organism’s actions and observations, which is

3For the sake of illustration, the proof that ConditioningOp is refined
by ConditioningOp Ref 1 is given in Appendix A right after the definition of
ConditioningOp Ref 1. However, the refinements defined in this thesis are all rather
simple, so we do not provide other similar proofs.
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essential to learning processes such as the stimulus conditioning we have just
seen and operant behaviour that is examined in Section 4.2.4.

Each stimulus has an associated StimulusStatus, which changes with time.
For example, a stimulus that originally had the Beginning status must be
changed to the Stable status. This change has also implications for the set of
current stimuli, since an absent stimulus clearly should not be in this set. Since
we have four possible such statuses, this update operation is divided in four
schemas, namely, CurrentStimuliUpdateOp 1, CurrentStimuliUpdateOp 2,
CurrentStimuliUpdateOp 3 and CurrentStimuliUpdateOp 4 (see Appendix A).

T CurrentStimuliUpdateOp =̂
CurrentStimuliUpdateOp 1 ∨
CurrentStimuliUpdateOp 2 ∨
CurrentStimuliUpdateOp 3 ∨
CurrentStimuliUpdateOp 4

Finally, it is necessary to record the stimuli present at the current instant.
This will be important in order to assess the context that a past action has
been performed, and hence determine the most favorable conditions for such
an action. This is achieved in T PastStimuliUpdateOp schema (see Appendix
A).

4.2.2.6 Integration

At every instant, the organism may both receive new stimulation and process
the current stimuli. Hence, concerning stimuli, its main tasks are as follows:

• Apply the T ConditioningOp operation for each new stimulation;

• Apply the T UnconditioningOp operation for each pair of stimuli in the
stimulus implication relation;

• Deliver stimulation by means of the T StimulationUpdateOp operation;

• Update the current stimuli using the T CurrentStimuliUpdateOp oper-
ation;

• Record the current stimuli for later reference using the
T PastStimuliUpdateOp operation.

The schema Organism StimulusProcessing groups all of these tasks together
(see Appendix A).
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4.2.3 General Responding

Behavioural responses constitute the means through which organisms alter
their environments. As such, responses are also the only way we can gain
knowledge about organisms. They are, thus, the counterpart of stimuli.

As we have seen, Behaviour Analysis defines two fundamental classes of be-
haviours, namely, operant behaviour and reflexive behaviour (also known as
respondent behaviour). We can, however, abstract common properties of these
two classes. For example, both classes require primitive actions to be per-
formed and both require a scheduling mechanism.

It is worth to notice that one may imagine other classes of behaviour besides
reflexes and operants. If such classes were defined, they could be integrated in
the responding subsystem by providing structures similar to those for reflexes
and operants. This constitutes a possible way to improve the architecture,
although it would require changes to many schemas (probably refinements
would not suffice), and therefore it would not be a straightforward task.

In this section we present these common features, while in the next two we
explore each behavioural class in its specificities. Here we see what primitive
actions are, what property they have, how behaviours are scheduled, how
conflicts among potential behaviours are solved, and finally how behavioural
responses are managed.

4.2.3.1 Basic Entities

The Responding Subsystem aggregates all definitions of behavioural classes
and also hold the particular behaviour available to the organism. While we
specify the details of operant and respondent behaviour in the next two sec-
tions, the present definitions use them.

The RespondingSubsystem schema imports a number of other schemas, which
we will examine shortly. It also defines the sets operants and reflexes, which
contain the behaviours available to the organism.
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RespondingSubsystem
CurrentBehaviors

CurrentResponses

Actions

ActionHistory

ActionConflict

ActionBaselevel

operants : POperant

reflexes : PReflex

At every instant, the organism may or may not wish to employ a behaviour.
The behaviours which are planned to be performed are defined in the CurrentBehaviors
schema. Notice that this schema contains, in particular, the spontaneous ac-
tions set. This accounts for actions that are to be performed independently of
any reflex or operant. The introduction of such a set, however, is a mere tech-
nicality, for ultimately these spontaneous actions are expected to lead to the
formation of operants according to the consequences that they bring. But be-
fore any such consequence can be perceived by the organism, there must be a
way to specify that certain actions can happen without elicitation (i.e., do not
arise from reflexes) even though they are not associated with any consequence
(i.e., are not operants). Hence, with respect to the present specification, op-
erants should not be confused with spontaneous actions, although informally
one may say that operants are spontaneous (i.e., because they are emitted and
not elicited) much like Skinner (1953) himself does.

CurrentBehaviors
elicited : PReflex

emitted : POperant

spontaneous : PAction

When a behaviour is actually performed, it generates a behavioural response.
These are kept by the CurrentResponses schema, which defines the current
responses and map the pertinent behaviours to them.
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CurrentResponses
responses : PResponse

activeResponses : PResponse

inactiveResponses : PResponse

reflexResponse : Reflex 7→ Response

operantResponse : Operant 7→ Response

spontaneousResponse : Action 7→ Response

reflexElicitationTime : Reflex 7→ Instant

responses = activeResponses ∪ inactiveResponses

activeResponses ∩ inactiveResponses = ∅

ran reflexResponse = responses

ran operantResponse = responses

ran spontaneousResponse = responses

4.2.3.2 Actions

To distinguish behavioural classes (i.e., reflexes and operants) from the actual
behavioural responses, we introduce the concepts of action and response. Ac-
tions are what the organism actually does (e.g., the movement of a muscle
is an action) and responses is how he does it (e.g., for how long, with what
intensity). Actions are primitive concepts, the most fundamental things an
organism can do.

[Action]

Each concrete organism will have its own set of actions. But like for stimuli, it
suffices for the purpose of this specification to have an abstract set of actions
without their particularities.

Actions can either be conflicting or non-conflicting. For instance, if two actions
require different movements from an organism’s muscle at the same time, then
they are conflicting. If, however, the execution of each action is independent,
then they are non-conflicting.

Conflict ::= conflicting | nonconflicting

Action conflicts are, of course, particularities of each organism. Therefore, we
provide a structure to hold this information.
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ActionConflict
conflict : Action × Action → Conflict

Though, in principle, an action can be part of any behavioural class, it is
also necessary to restrict some of them to specific classes. For instance, pupil
movements cannot figure in operant behaviour, since such movements are con-
trolled completely by environmental light variations. On the other hand, some
muscular movements can be triggered either by reflex (e.g., when one, reflex-
ively, removes one’s hands from a hot surface) or operants (e.g., all “voluntary”
movements). At last, there is also the case in which only operant behaviour
can be involved, as in speech. Therefore, we must provide definitions to ac-
count for two classes of actions.

Actions
operantActions : PAction

reflexActions : PAction

Notice that an action can belong to both classes at the same time.

As is detailed in Section 4.2.4, organisms can learn how their actions affect
their environments. Once they know what to expect from a particular ac-
tion, they can repeat such an action when the appropriate conditions arise.
However, if an action has never being performed, organisms cannot know
their consequences. The approach we employ to solve this issue is to assign
a probability, called base level, of spontaneous occurrence to each possible ac-
tion.4 This base level probability is given by the baseLevel function of the
ActionBaselevel schema.

ActionBaselevel
Actions

baseLevel : Action → Probability

∀ a : Action | a ∈ operantActions • baseLevel(a) >1 min probability

∀ a : Action | a ∈ reflexActions ∧ a /∈ operantActions •
baseLevel(a) =1 min probability

Finally, we provide a record of all performed actions. This will be used when
defining operant behaviour later on.

ActionHistory
actionsHistory : Instant 7→ PAction

4Note that such spontaneous occurrences can be seen as a form of curiosity, because the
organism becomes inclined to explore new things for no particular reason other than chance.
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4.2.3.3 Behavioural Responses

A response, captured by the Response schema, is an actual behavioural in-
stance. It is the structure that actually interacts with the environment, a
concrete action. Thus, besides the action to be performed, there must be
also a related duration (i.e., for how long the action will be performed) and
magnitude (i.e., the “vigor” of the response). Moreover, a latency (i.e., a
temporal interval between the response emission and the performance of the
corresponding action) is sometimes required.

Response
action : Action

latency : Duration

duration : Duration

magnitude : Intensity

4.2.3.4 Response Scheduling Operations

Before responses are actually performed, it is necessary to figure out which
operants and reflexes have been triggered. Operant and reflex definitions
provide schemas with the conditions for that, namely, ReflexElicitationCond
and OperantEmissionCond . Moreover, response scheduling must also account
for the spontaneous occurrences of actions, which are defined through the base
level probability associated with each available action.

Operants, reflexes and spontaneous actions that fulfill the conditions are then
scheduled to be realized as responses by putting them in the appropriate sets
of the CurrentBehaviors schema we have seen. This is achieved, respectively,
by the OperantSchedulingOp, ReflexSchedulingOp and BaseLevelSchedulingOp
schemas (see Appendix A).

4.2.3.5 Conflict Resolution Operations

As we have seen, some actions conflict. Hence, when two such actions are
scheduled for execution, a problem arises. To deal with this, a number of
conflict resolution operations are defined. Each such operation provides a
solution for the conflict between two classes of behaviour, and an associated
condition is also defined in order to determine when there is a conflict in the
first place.

Let us consider the particular case of an operant conflicting with another
operant. The condition for this is given by the OperantConflictCond schema.
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OperantConflictCond
ActionConflict

o1, o2 : Operant

conflict(o1.action, o2.action) = conflicting

If two operants conflict, the strategy to be adopted is quite clear: either
the one with greater utility will be chosen or, if both have the same utility,
the choice is arbitrary. This is specified by the OperantConflictResolutionOp
schema, where the content of the removeO set defines the operants that are
to be removed.

OperantConflictResolutionOp
∆CurrentBehaviors

StimulationSubsystem

OperantUtility

ActionConflict

removeO : POperant

∀ o1, o2 : emitted | OperantConflictCond •
(oUtility(o1, currentStimuli) >1 oUtility(o2, currentStimuli)⇒

o2 ∈ removeO) ∧
(oUtility(o1, currentStimuli) =1 oUtility(o2, currentStimuli)⇒

(o1 ∈ removeO) ∨ (o2 ∈ removeO))

Similarly, the following kinds of conflicts may take place:

• A reflex may conflict with another reflex. The condition for this is given
in ReflexConflictCond and its solution in ReflexConflictResolutionOp.
There are, however, many ways in which such a conflict could be solved,
and thus this schema is supposed to be refined. We provide two possible
refinements in ReflexConflictResolutionOp Ref 1 and
ReflexConflictResolutionOp Ref 2 schemas, which use different attributes
of the reflexes in order to determine which should have priority. (See
Appendix A).

• An operant may conflict with a reflex. The condition for this is given by
OperantReflexConflicCond and the solution is given by
OperantReflexConflictResolutionOp (see Appendix A).

• A spontaneous action may conflict with another such action, or a re-
flex or an operant. The conditions and the solutions for this are all
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given in the BaseLevelConflictResolutionOp schema (see Appendix A).
We assume here that such spontaneous occurrences are as relevant as
actions governed by operants. The reason is that both have to do with
understanding the environment, since the former allows the organism to
explore it, while the latter allows the organism to exploit information
thus gained. Reflexes, however, always have priority over spontaneous
actions.

An auxiliary schema, AuxConflictResolutionOp, is also provided to define how
all of these conflict resolution operations work together to change
CurrentBehaviors (see Appendix A).

We can then combine the conflict resolution operations.

ConflictResolutionOp =̂
OperantConflictResolutionOp ∧
ReflexConflictResolutionOp ∧
OperantReflexConflictResolutionOp ∧
BaseLevelConflictResolutionOp ∧
AuxConflictResolutionOp

If we use refinements for some of these operations, we also need to redefine
this composed operation. Since we provide two possible refinements for the
conflict resolution of reflexes, we also provide the corresponding composed
operations ConflictResolutionOp Ref 1 and ConflictResolutionOp Ref 2 (see
Appendix A).

4.2.3.6 Response Emission, Update and Termination Operations

Once behaviours have been selected, it is necessary to transform them into
actual responses. Responses, in turn, are not instantaneous, they have dura-
tion. Thus, they must be updated for some time, until termination conditions
are reached and they cease.

The OperantEmissionOp operation below defines how operants turn into re-
sponses. It states that there must not already be a response associated with
the operant, and then defines that such a response must be created. It also
records when the operant’s action has been performed for future reference.
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OperantEmissionOp
∆ActionHistory

∆CurrentResponses

currentInstant? : Instant

o? : Operant

¬ (∃ rp : Response • operantResponse(o?) = rp)

∃ rp : Response •
rp.action = o?.action ∧
inactiveResponses ′ = inactiveResponses ∪ {rp} ∧
operantResponse ′ = operantResponse ⊕ {o? 7→ rp}

actionsHistory ′(currentInstant?) =
actionsHistory(currentInstant?) ∪ {o?.action}

The elicitation of reflexes and the emission of spontaneous actions follow simi-
lar principles and are captured in ReflexElicitationOp and BaseLevelEmissionOp
schemas, respectively (see Appendix A).

Notice that response emission operations do not constrain some parameters of
the responses. This reflects the fact that there is no universally accepted com-
putational theory capable of calculating the exact quantitative properties of
operant emission (McDowell, 2004). Hence, our architecture does not enforce
any particular view. In fact, one may extend it by providing suitable refine-
ments to perform the initialization of these unconstrained variables according
to specific theories.

Once responses are being performed, they must be updated over time. There
are some cases to consider:

• A response might be inactive owing to its assigned latency. That is
to say, the response is going to be performed, but only after its spec-
ified latency. In this circumstance, we just decrease the latency, to
account for the fact that an instant has passed. This is done by the
InactiveResponseUpdateOp 1 schema, which we show below.

• Once the latency reaches zero, the response can be activated. This is
accomplished in a similar fashion by the InactiveResponseUpdateOp 2
operation (see Appendix A).

• If the response is active, its duration must be decreased, in order to
account for the fact that an instant has passed. This is done by the
ActiveResponseUpdateOp operation (see Appendix A).
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• If none of the above cases hold, then nothing changes, as specified by
NeutralResponseUpdateOp (see Appendix A).

InactiveResponseUpdateOp 1
∆CurrentResponses

∆Response

θResponse ∈ inactiveResponses

θResponse /∈ activeResponses

latency > 0

latency ′ = latency − 1

activeResponses ′ = activeResponses

inactiveResponses ′ = (inactiveResponses \ {θResponse}) ∪ {θResponse ′}

Thus, we reach the following total operation for response update.

T ResponseUpdateOp =̂
InactiveResponseUpdateOp 1 ∨
InactiveResponseUpdateOp 2 ∨
ActiveResponseUpdateOp ∨
NeutralResponseUpdateOp

At last, we must consider how to terminate responses. There are three cases
to consider:

• If the response’s duration has reached zero, it means that it should cease.
This is specified in the ResponseTerminationOp 1 operation below.

• If the behaviour that justified the response is no longer selected for exe-
cution, then the response must cease as well. This situation might arise
during conflict resolutions, when a more important behaviour may take
the place of another. This is specified by the ResponseTerminationOp 2
operation (see Appendix A).

• Finally, if none of these conditions hold, nothing changes, as specified
by
ResponseTerminationOp 3 (see Appendix A).
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ResponseTerminationOp 1
∆CurrentResponses

∆CurrentBehaviors

rp? : Response

rp? ∈ activeResponses

rp?.duration ≤ 0

activeResponses ′ = activeResponses \ {rp?}

inactiveResponses ′ = inactiveResponses \ {rp?}

∀ o : emitted • operantResponse(o) = rp?⇒ o /∈ emitted ′

∀ r : elicited • reflexResponse(r) = rp?⇒ r /∈ elicited ′

∀ a : spontaneous • spontaneousResponse(a) = rp?⇒ a /∈ spontaneous ′

Then, the total operation is as follows.

T ResponseTerminationOp =̂
ResponseTerminationOp 1 ∨
ResponseTerminationOp 2 ∨
ResponseTerminationOp 3

4.2.3.7 Integration

As the previous operations suggest, responding is constituted by four distinct
stages, and for each one we provide an operation to allow its integration in
the organism:

• First, operants, reflexes and spontaneous actions are selected. This is
accomplished by the Organism BehaviorSelection operation (see Ap-
pendix A).

• Then, possible conflicts are solved. This is done by theOrganism ConflicResolution
operation (see Appendix A).

• Next, responses are generated, according to theOrganism ResponseEmission
operation (see Appendix A).

• Finally, responses are updated, until they reach a termination condition.
This is achieved by the Organism ResponseMaintenance operation (see
Appendix A).
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4.2.4 Operant Behaviour

Organisms seek pleasure and avoid pain in an ever changing world. The con-
sequences of their actions change constantly, in such a way that what used
to be an applicable behaviour may no longer be appropriate, and useless ac-
tions may become interesting. Learning is, therefore, a necessary virtue. In
Behaviour Analysis, operant behaviour is the kind of behaviour that accounts
for this.

Because the consequences that organisms seek are always reinforcing, operants
are also known as contingencies of reinforcement. However, by no means rein-
forcing stimuli are the only consequences that matter. It is equally important
to know actions that lead to aversive stimuli in order to avoid them.

In this section we present operants, the relations that might be established
among them, and the several operations that may be performed on them.

4.2.4.1 Basic Entities

An operant records the manner through which a specific stimulus may be
reached. That is, how to operate in the environment in order to obtain some
consequence. Unlike reflexes, operants are not predefined and static entities:
they might be created, modified and destroyed. Each of these possibilities is
given by a different procedure.

The Operant schema is a structure that links an action to a consequence
(i.e., the consequent stimulus). This link models the belief that the ac-
tion, when performed, causes the stimulus. Such a belief, however, varies
in strength. And within the same operant, this strength varies, through the
consequenceContingency function, depending on the stimuli present on the
environment (i.e., the antecedent stimuli). Figure 4.4 depicts this tripartite
structure.

Operant
StimulusUtility

antecedents : P(PStimulus)

action : Action

consequence : Stimulus

consequenceContingency : (PStimulus) 7→ Correlation

sUtility(consequence) 6= neutral utility

dom consequenceContingency = antecedents

83



4. Behaviourist Agent Architecture

Figure 4.4: An operant is composed by possible antecedent stimuli, an action and a
consequent stimulus. In this example, there are three sets of antecedent stimuli. Each
set models a context that the organism encountered previously.

In Behaviour Analysis, an operant class of behaviours is defined by some
shared consequence. To facilitate computation, though, our Operant schema
associates only one action with a stimulus consequence. Two instances of this
schema, then, could have the same consequent stimulus, but different actions.
This allows the independent calculation concerning each particular action. For
instance, it could be that an action has the same consequence that another at
some moment, but this may not last forever. Hence, there must be a way to
learn them separately.5

5The triple of antecedent stimuli, behaviour, and consequent stimulus is sometimes called
a three-term contingency (e.g., by Catania, 1998), thus defining the second term as the op-

erant. In this specification, however, we call this whole triple an operant. For our purposes,
this formalizes the notion more correctly and succinctly, since: (i) the essence of operant be-
haviour is in the consequences of actions (i.e., a mere action with no effect on the organism’s
environment should not be considered an operant); and (ii) once we incorporate a conse-
quence in the definition of what an operant is, there is no need to introduce another entity
to model the contingency, and it is simpler to incorporate the antecedent stimuli (if any)
in the definition of the operant as well. This gives us a single entity, the Operant schema,
that captures the intuitive notion of what an operant is and can be easily used to compute
related behavioural phenomena.
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4.2.4.2 Operant Implication

A single operant holds information about how to obtain a particular stimu-
lus. In order to link operants to several consequent stimuli, it is necessary
to establish how operants relate to each other. We do this with the operant
implication oCauses relation below. It specifies that an operant either directly
causes a stimulus or sets the conditions for another operant to be executed,
which, in turn, lead to other stimuli. The oCorrelation function, in turn, pro-
vides the correlation between an operant and its direct and indirect stimulus
consequences.

OperantImplication
StimulusImplication

Discrimination

oCauses : P(Operant × Stimulus)

oCorrelation : Operant × Stimulus 7→ Correlation

∀ o : Operant • o oCauses o.consequence

∀ o1, o2 : Operant ; S : PStimulus | S discriminatesNonEmpty o2 •

(∀ s : S • o1.consequence sCauses s)⇒

o1 oCauses o2.consequence

dom oCorrelation = oCauses

The crucial element that links different operants in the above schema is the
discrimination relation given in schema Discrimination (see Appendix A). It
establishes that a set of stimuli discriminates an operant if it is present among
the operant’s antecedents.

4.2.4.3 Operant Utility

Operants have utilities, since they lead to stimuli. That is to say, operants
gain their usefulness owing to the stimuli they allow an organism to reach.

As it happens with stimulus utility, there are several ways to define operant
utility. Thus, the OperantUtility schema below, merely defines that an utility
function oUtility exists. This function takes an operant and a set of stimuli in
order attribute an utility to the operant. This set of stimuli, as it is explained
below, is actually the current stimuli that the organism is subject to.
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OperantUtility
StimulusUtility

OperantImplication

oUtility : (Operant × PStimulus)→ Utility

Refinements can now be provided. We give one such refinement, the
OperantUtility Ref 1 schema (see Appendix A), which defines that the utility
of an operant is calculated as:

• a neutral or positive utility given by the maximum stimulus utility that
the operant can reach through the operant implication relation, provided
that there are no reachable stimuli with negative utility;

• a negative utility given by the minimum stimulus utility that the operant
can reach, if indeed there is at least one stimulus with negative utility;

• the neutral utility, if none of the previous cases hold.

In other words, the utility of an operant o is defined by considering which
sequence of operants starting in o leads to the best stimulus, provided that
no harmful stimuli can be reached in the same way. It is, therefore, a way
of performing planning using the fact that one operant may set the necessary
antecedents of another. However, it is a planning subject to constant re-
evaluation, since the operants in which it depends may change at any instant.

If one has more knowledge about the organism being modeled, or if one merely
wishes to experiment with different search strategies, one may define different
refinements for this utility. In particular, it is interesting to note that our
own refinement is an idealized one: the organism seeks the best solution.
In practice, though, this is possibly an inefficient strategy. Hence, one may
wonder what kind of approximations could be employed in order to improve
this.

4.2.4.4 Fundamental Operations

Operants, being flexible units of learning, are subject to many operations.
Most of these operations, however, share some characteristics, to be found in
the OperantFormationOp or OperantOp schemas (see Appendix A). The for-
mer takes care of creating new operants, while the later accounts for operants
that already exists.
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Operant formation arises continuously. Every action that is followed by a
stimulus presentation can, under certain timing restrictions, give birth to an
operant, which records the contingency between the action and the stimulus.

At first, however, these are very weak contingencies. But an organism’s oper-
ants are constantly being modified as well, and this will ensure that recently
created operants evolve appropriately. If the recently detected contingencies
never arise again, the organism interprets them as accidents and not as laws
to be learned. On the other hand, if the contingencies keep coming up, the
associated operants increase in strength.

When the correlations between an action and a consequent stimulus in an
operant become too low, the operant loses its usefulness. Hence, it must be
eliminated. This is accomplished by the OperantEliminationOp 1 operation.
A neutral complement to this is also provided in OperantEliminationOp 2.
(See Appendix A).

It is then possible to form the total operation TOperantEliminationOp.

T OperantEliminationOp =̂
OperantEliminationOp 1 ∨
OperantEliminationOp 2

OperantOp can be further refined into four operations:

• Discrimination. Operant discrimination happens when a new set of an-
tecedent stimuli is learned. That is, when a new environmental condition
regarding an operant is found, a discrimination process takes place in
order to incorporate this new knowledge. This process is formalized by
the DiscriminationOp schema below.

• Operant conditioning. Operant conditioning takes place when a known
environmental condition is met and the operant’s stimulus consequence
is reached. In this case, the contingency that links the action and the
stimulus is strengthened. In other words, when the operant success-
fully leads to a stimulus, it becomes stronger. This is specified in the
OperantConditioningOp schema (see Appendix A).

• Operant extinction. If some known environmental condition is found but
the stimulus consequence is not reached, the relation of contingency is
weakened, as specified in the ExtinctionOp schema (see Appendix A).
This extinction operation also gives rise to an emotion called frustration.
A frustrated organism becomes more likely to explore new possibilities,
since his knowledge of the world has been proven to be incomplete. We
examine this emotion in Section 4.2.7.
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• As a technical matter, a neutral operation is also provided in schema
NeutralOp, so that the fact that sometimes no change takes place be-
comes explicit (see Appendix A).

DiscriminationOp
OperantOp

discriminativeStimuli? /∈ dom consequenceContingency

consequence? sCauses consequence

consequence? /∈ discriminativeStimuli?

dom consequenceContingency ′ =
dom consequenceContingency ∪ {discriminativeStimuli?}

consequenceContingency ′(discriminativeStimuli?) >1 min correlation

At this point it should already be clear that operant behaviour endows an agent
with learning capabilities. Similarly to the process of stimulus conditioning we
saw in Section 4.2.2.4, the above operations allow the organism to modify its
representation of how its environment work. Here, however, instead of relating
stimuli to other stimuli, one is concerned with how actions relate to stimuli.
This relation is subject to change based on how the environment responds to
the organism’s actions, and thus constitutes a way of learning about such an
environment.

The above four operations are grouped as the FundamentalOperantOp.

FundamentalOperantOp =̂
DiscriminationOp ∨
OperantConditioningOp ∨
ExtinctionOp ∨
NeutralOp

As the name suggests, this combined operation will serve as the basis of more
detailed operations. This basis accounts for the learning that takes place, but
the behavioural modifications that happen go beyond this. For a complete
mechanism, it is necessary to qualify the experience as a reinforcement or
a punishment, because each case may bring different consequences, such as
different emotional responses.

4.2.4.5 Reinforcement and Punishment Operations

Reinforcement and punishment play a large role in Behaviour Analysis, for
they are the main behavioural modification mechanisms. It is therefore worth
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to define such operations separately and in detail.

An operant is reinforced if the received stimulation is pleasant and associated
with the operant’s consequence. The purpose of reinforcement is to strengthen
the relation between an action and a pleasant consequence.

Positive reinforcement accounts for the particular case in which pleasure comes
from the provision of a pleasant stimulus.

PositiveReinforcement
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) >1 neutral utility

stimulus status(consequence?) = Beginning

Notice that the above schema is not an operation. It merely states a condi-
tion for positive reinforcement. Recall that we have two types of operations
concerning operants. The first deals with existing operants, and the other ac-
counts for new operants. Hence, in order to turn positive reinforcement into ac-
tual operations, we group the condition above with both FundamentalOperantOp
and OperantFormationOp.

PositiveReinforcementOp 1 =̂
FundamentalOperantOp ∧
PositiveReinforcement

PositiveReinforcementOp 2 =̂
OperantFormationOp ∧
PositiveReinforcement

Reinforcement has a complementary negative form. Negative reinforcement
takes place when pleasure arises from the removal of a painful stimulus, instead
of the provision of a pleasant one.

NegativeReinforcement
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) <1 neutral utility

stimulus status(consequence?) = Ending

Again, we provide two operations to account for negative reinforcement.
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NegativeReinforcementOp 1 =̂
FundamentalOperantOp ∧
NegativeReinforcement

NegativeReinforcementOp 2 =̂
OperantFormationOp ∧
NegativeReinforcement

Let us now define punishment operations. An operant is punished when the
received stimulation is undesirable. It teaches the organism that an action,
which was previously neutral or beneficial, is becoming harmful.

Positive punishment accounts for the particular case in which pain comes from
the provision of a painful stimulus.

PositivePunishment
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) <1 neutral utility

stimulus status(consequence?) = Beginning

And the related operations are as follows.

PositivePunishmentOp 1 =̂
FundamentalOperantOp ∧
PositivePunishment ∧
StartAngerOp

PositivePunishmentOp 2 =̂
OperantFormationOp ∧
PositivePunishment ∧
StartAngerOp

Notice that besides the positive punishment condition, we also add StartAngerOp,
which specifies that the anger emotion will be generated. Anger takes place
as a mechanism of defense, putting the organism in an aggressive state. We
explain what this means in Section 4.2.7.

Negative punishment, in turn, takes place when pain arises from the removal
of a pleasant stimulus.
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NegativePunishment
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) >1 neutral utility

stimulus status(consequence?) = Ending

The related operations are below. Notice that, again, there is an emotional
response associated. The organism becomes depressive if pleasant stimuli are
removed. This will be explained in Section 4.2.7.

NegativePunishmentOp 1 =̂
FundamentalOperantOp ∧
NegativePunishment ∧
StartDepressionOp

NegativePunishmentOp 2 =̂
OperantFormationOp ∧
NegativePunishment ∧
StartDepressionOp

In a number of occasions, neither reinforcement nor punishment takes place.
The conditions for this are formalized in NeutralReinforcementOp 1 and
NeutralReinforcementOp 2 (see Appendix A).

At last, we combine all previous operations in order to account for all possible
cases of stimulus influence on an operant.

T OperantOp =̂
PositiveReinforcementOp 1 ∨ NegativeReinforcementOp 1 ∨
PositivePunishmentOp 1 ∨ NegativePunishmentOp 1 ∨
NeutralReinforcementOp 1

T OperantFormationOp =̂
PositiveReinforcementOp 2 ∨ NegativeReinforcementOp 2 ∨
PositivePunishmentOp 2 ∨ NegativePunishmentOp 2 ∨
NeutralReinforcementOp 2

4.2.4.6 Emission Condition

An operant is to be emitted if it is relevant in the current state of affairs, if
its utility is more than neutral and if other operants associated to the same
action also have such an utility. The reason for this latter restriction is that
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operants may have the same action, which at different times resulted in differ-
ent consequences. Hence, it is necessary to make sure that an operant’s action
is not considered harmful in the context of another operant.

OperantEmissionCond
RespondingSubsystem

StimulationSubsystem

OperantUtility

Discrimination

o : Operant

currentStimuli discriminates o

oUtility(o, currentStimuli) >1 neutral utility

∀ x : operants |
x 6= o ∧ currentStimuli discriminates x ∧ x .action = o.action •

oUtility(x , currentStimuli) ≥1 neutral utility

4.2.4.7 Integration

Three operations are necessary in order to integrate operants to the organism:

• It is necessary to apply the T OperantFormationOp operation consider-
ing the actions that have taken place in the recent past (defined by the
max delay constant). This ensures that an action that was performed
previously has a chance of becoming an operant. This procedure is given
in the Organism OperantFormationOp schema (see Appendix A).

• Similarly, it is necessary to apply the T OperantOp operation consid-
ering these same actions that took place in the recent past, so that the
corresponding operants (if any) may me modified appropriately. This is
achieved by the Organism OperantOp schema (see Appendix A).

• Finally, it is necessary to apply T OperantEliminationOp to each oper-
ant available to the organism in order to eliminate the useless ones (see
Appendix A).

4.2.5 Respondent Behaviour

Respondent behaviour (also known as reflexes or reflexive behaviour) is the
simplest kind of behaviour that an organism possess. A reflex is, essentially, a
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Figure 4.5: A reflex is composed by an antecedent stimulus and an action.

reliable causal relation between a stimulus and an action (see Figure 4.5). That
is, the presence of the stimulus triggers, with high probability, the emission of
the action.

While reflexes may adapt to account for, say, excessive stimulation, they are
not learning structures. Organisms are born with predefined reflexes, which
remain the same throughout their lives.

In this section we will see what constitutes a reflex, how it can be adjusted
over time, and how it may be triggered.

4.2.5.1 Basic Entities

The Reflex schema defines a reflex as an antecedent stimulus which causes
an action to be performed. The remaining variables account for the several
properties of this causal relation:

• threshold defines the minimum intensity of the stimulation that causes
the reflex to be triggered.

• elicitation defines the probability of the action to be actually performed
after the stimulation threshold has been reached.

• magnitude specifies the intensity of the behavioural response when the
action is performed.

• duration determines for how long the action will be performed.

• latency determines a duration prior to the action performance.

All of these variables change their values as time goes by, but they are always
kept within lower and upper bounds.
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Reflex
Actions

ReflexParameters

antecedent : Stimulus

action : Action

threshold : Intensity

elicitation : Probability

magnitude : Intensity

duration : Duration

latency : Duration

action ∈ reflexActions

min elicitation ≤1 elicitation ≤1 max elicitation

min magnitude ≤1 magnitude ≤1 max magnitude

min duration ≤ duration ≤ max duration

min latency ≤ latency ≤ max latency

min threshold ≤1 threshold ≤1 max threshold

These bounds, as well as the functions to modify the related variables, are
given as parameters in the ReflexParameters schema (see Appendix A). This
schema defines a number of functions, but do not specify their form. The
reason is that each reflex may be adjusted differently (e.g., in the case of an
animal model, because the underlying organs to realize the reflexes have dif-
ferent properties). Hence, one may experiment with many different functions
(e.g., linear, exponential).

4.2.5.2 Operations

Although reflexes are innate to the organism, and therefore cannot be neither
learned nor unlearned, it is still possible to modify them. This is useful, for in-
stance, in order to account for the fact that a reflexive response uses resources,
and thus successive responses may have different properties (e.g., the magni-
tude of the response may get increasingly weaker). The ReflexAdjustmentOp
operation provides a way to adjust a given reflex according to the difference
between the instant of the current reflex elicitation and the instant in which
the reflex was used for the last time. That is to say, according to the time
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that the organism did not employ that reflex (see Appendix A). To do so,
this operation uses the functions found on the ReflexParameter schema of the
reflex being adjusted, which assign a new value for the variables according to
the elapsed time and their previous value.

4.2.5.3 Elicitation Condition

When a reflex is used, we say that it has been elicited. The ReflexElicitationCond
schema gives the conditions for reflex elicitation. One of these conditions is
that the intensity of the stimulation must be greater than or equal to the
threshold parameter of the reflex. The other condition, which is somewhat
more subtle, is that the stimulus that triggers the reflex must be related to the
antecedent stimulus of the reflex by the stimulus implication relation. That
is to say, any stimulus that the organism believes to cause the antecedent ,
including antecedent itself, may elicit the reflex.

ReflexElicitationCond
StimulusImplication

r : Reflex

s : Stimulus

i : Intensity

s sCauses (r .antecedent)

(r .threshold) ≤1 i

4.2.6 Drives

In order to stay alive, organisms constantly consume environmental resources.
For instance, water, food, air, and so on. Clearly, the utility of these resources
must vary over time. An animal that has just drank a lot of water most likely
will not be thirsty. On the other hand, an animal that has not drank anything
for a day or two will do anything for water.

The mechanisms that control these variations are called drives. A drive can be
thought as an appetite for a particular stimulus. The longer one stays without
this stimulus, the stronger the appetite for it will be. Conversely, the more
one has of the stimulus, the less one will want it.

In this section we see what constitutes a drive, how it relates with the envi-
ronmental stimuli, and how it affects the organism’s behaviour.
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4.2.6.1 Basic Entities

An organism has a set activeDrives of drives which form its Drive Subsystem.
While individual drives will suffer alterations, none is ever added nor removed
from the set. Each organism has a predefined set of drives that accompany
him during his existence.

DriveSubsystem
activeDrives : PDrive

Drives are defined by the schema Drive. A drive aims at motivating the
organism to find the stimuli contained in its desires set. The intensity of this
motivation is given by the drive’s importance, which is a utility that vary
over time within a minimum and a maximum value. The deprivation function
modifies this importance when the organism is deprived from obtaining the
stimuli in desires. Conversely, the satiation function modifies this importance
when the organisms manages to reach such stimuli.

Drive
importance : Utility

desires : PStimulus

deprivation : Utility → Utility

satiation : Utility → Utility

maxImportance,minImportance : Utility

importance ≥1 minImportance

importance ≤1 maxImportance

∀ u : Utility • deprivation(u) ≥1 u

∀ u : Utility • satiation(u) ≤1 u

Drives depend strongly on the functions used to calculate the rate of satia-
tion and deprivation. Therefore, one should consider which function is more
suitable for each drive (e.g., linear, exponential). Our only restriction is the
monotonicity requirement. Here, then, is another extension point of the
model.

4.2.6.2 Stimulus Regulation

Drives work by modifying the way that the organisms perceive the utility
of stimuli. The mechanism to do so is given by the StimulusDriveRegulator

96



4.2. Formal Specification

schema, where the function driveRegulator is defined (see Appendix A). This
function is used by the Stimulation Subsystem in order modify the organism’s
utility function. To do so, the function takes a stimulus and a initial utility
as arguments. Then, it adds the influence of each drive to this initial utility.
The specified stimulus is used to discover whether the drive is applicable (i.e.,
whether it is in its desires set). The resulting utility is then returned to
the Stimulation Subsystem, which is then used as the utility to be currently
attributed to the specified stimulus stimulus.

4.2.6.3 Operations

The DriveOp schema abstracts the common properties of satiation and depri-
vation operations (see Appendix A). It merely states that the stimuli to be
considered must have a Stable status.

A drive’s importance can be modified through operations of satiation and
deprivation. Satiation happens when the organism is given a desired stimuli
set.

SatiationOp
DriveOp

desires ⊆ present

importance ′ = satiation(importance)

On the other hand, deprivation takes place when the given stimulus is not
desired.

DeprivationOp
DriveOp

¬ (desires ⊆ present)

importance ′ = deprivation(importance)

These two operations can then be combined into a total one.

T DriveOp =̂ SatiationOp ∨ DeprivationOp

4.2.6.4 Integration

At every instant, the organism is given a new set of stimulations. Then, for
each drive, the Organism DrivesUpdate operation (see Appendix A) applies
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the T DriveOp operation, which allows the drive to assess the current stimu-
lations. That is, it makes sure every drive gets an opportunity to be satiated
or deprived.

4.2.7 Emotions

Emotions are usually thought of as subjective and private events. Still, one
can usually guess what a person is feeling by watching her behaviour. Aggres-
siveness, for instance, usually indicates a state of anger.

From a behaviourist point of view, though, private events are only relevant to
the extent that they produce observable behaviour. So aggressiveness is not
just a consequence of anger in a behaviourist theory; rather, it is taken to be
anger itself.

In the present work, an emotion is defined as a temporary modification in
operant behaviour that is not explained by the organism’s drives. The purpose
of emotions is to fine tune the organism’s behaviour to match the needs of a
given situation. “Pure” operant behaviour would only record the relations
among actions and stimuli. However, the fact that sometimes actions must
be, for example, specially vigorous (e.g., when fighting an opponent), would
not be captured. “Pure” stimuli conditioning would be incapable of modifying
the utility of primary reinforcers. And that might be exactly what is required
sometimes, in order to explain certain kinds of behaviour (e.g., depression).
Similarly to what we have seen for drives, there are clever ways to insert such
fine tunning in the framework we have developed so far.

However, differently from what we did for drives, emotions are not defined in
a very general manner. They encompass any behavioural modification, and
therefore we cannot provide a single mechanism to account for all possible
emotions. Hence, in our framework, an emotion must be defined mostly in-
dividually, although some general properties are established. For this reason,
we have provided only three emotions, chosen mostly because they serve as
good examples of what it means to formalize an emotion using our framework.
Clearly, then, it would be possible to improve this subsystem by the addition
of other emotions. To do so, it would suffice to create similar schemas to the
ones we provide. This is another important extension point of our model.

4.2.7.1 Basic Entities

The Emotional Subsystem is given by the EmotionSubsystem schema, which
holds information regarding the organism’s current emotional state.
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EmotionSubsystem
anger : Anger

depression : Depression

frustration : Frustration

Each emotion can be either active or inactive. This will determine whether
the emotion influences or not the organism’s behaviour.

EmotionStatus ::= Active | Inactive

The Emotion schema defines the general properties that every emotion must
have. However, in itself this schema is not an emotion.

Emotion
status : EmotionStatus

intensity : Intensity

duration : Duration

The effect of an emotion is specified by how it affects stimuli processing and be-
havioural response emission. For each of these regulation mechanisms, we pro-
vide an appropriate regulation function, within the UtilityRegulatorEmotion
and
ProbabilityRegulatorEmotion schemas.

UtilityRegulatorEmotion
Emotion

utilityChange : Intensity → Utility

ProbabilityRegulatorEmotion
Emotion

probabilityChange : Intensity → Probability

We can now define the three emotions we provide, Anger , Depression and
Frustration.

Anger
UtilityRegulatorEmotion
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Depression
UtilityRegulatorEmotion

Frustration
ProbabilityRegulatorEmotion

4.2.7.2 Stimulus Regulation

Much like drives, some emotions exert their influence by modifying how the
organism perceives the utility of stimuli. This regulation mechanism is defined
by the
StimulusEmotionalRegulator schema, which provides the emotionalRegulator
function (see Appendix A).

This regulation mechanism depends on two emotions, namely, depression and
anger. Thus, for each one, a regulator is provided in theDepressionRegulator 1
and AngerRegulator 1 schemas. When the emotions are inactive, their effect is
neutral, as specified in DepressionRegulator 2 and AngerRegulator 2 schemas.
(See Appendix A).

These two possibilities for depression and anger are put together in the
DepressionRegulator and AngerRegulator schemas, respectively.

DepressionRegulator =̂ DepressionRegulator 1 ∨ DepressionRegulator 2

AngerRegulator =̂ AngerRegulator 1 ∨ AngerRegulator 2

Depression regulation causes any stimulus utility to be reduced by the intensity
of the depression. This implies that the organism will behave less, because
stimuli that used to be desirable become either less desirable or even aversive.

Anger regulation, in turn, increases the utility of stimuli which indicates that
harm has been caused to either the environment or another agent. The stimuli
that indicate this can be found on the StimulationHints schema we saw in
Section 4.2.2. For example, the sight of blood could be defined as one such
stimulus. By this method, the organism becomes more inclined in behave in a
way that brings such stimuli (i.e., by performing operants whose consequences
are among these stimuli).

4.2.7.3 Response Regulation

We have just seen that some emotions can be defined according to the effects
that they have on the perception of stimuli. However, some emotions cannot
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be defined in this way, because they modify behaviour more directly. The
ResponseEmotionalRegulator schema defines the responseRegulator function,
which take as input an action and a the probability of spontaneously emitting
such an action (see Appendix A). By modifying this probability, it is possible
to interfere directly with an organism’s behaviour.

As an example of such an emotion, our specification defines frustration as a
generalized increase of spontaneous behaviour. This captures the ordinary
notion of frustration, which is a response to a situation in which actions do
not produce their expected outcome. As a result, the organism becomes more
inclined to perform arbitrary actions in order to check whether any of them
is useful.

Again, the formal definition of the emotion is divided in a schema that defines
these effects, FrustrationRegulator 1, and another schema,
FrustrationRegulator 2, which accounts for the case in which the emotion is
inactive (see Appendix A). We can then compose the complete frustration
regulator.

FrustrationRegulator =̂ FrustrationRegulator 1 ∨ FrustrationRegulator 2

4.2.7.4 Operations

The operations concerning emotions are very simple and deal only with their
start, maintenance and termination. For each emotion, thus, three operations
are defined6:

• Start operations. When an emotion starts, it is necessary to set its status
to Active, and attribute it a duration and an intensity. These operations
are provided by StartDepressionOp, StartAngerOp and StartFrustrationOp
schemas (see Appendix A).

• Maintenance operations. Once an emotion is active, it may be up-
dated. This update consists in reducing its remaining duration, to ac-
count for the time that has passed. These operations are provided by
UpdateDepressionOp, UpdateAngerOp andUpdateFrustrationOp schemas
(see Appendix A).

• Termination operations. Finally, when an emotion reaches a duration
less than or equal to zero, it must be terminated by setting its status
to Inactive. This is achieved by EndDepressionOp, EndAngerOp and
EndFrustrationOp schemas (see Appendix A).

6It would be better to define only three operations that could work for all the emotions.
However, this is not possible because of limitations on the Z Notation (i.e., there is no
polymorphism). We are thus forced to define new operations for each particular emotion.
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Notice that while our maintenance operations merely decrement the remaining
duration, one can think of other modifications they could perform. For exam-
ple, they could decrease the emotion’s intensity according to some function.
This, then, is another way in which our model can be customized.

4.2.7.5 Integration

The Emotion Subsystem is integrated in the organism by the
Organism EmotionUpdate operation, which merely applies update or termi-
nation operations (see Appendix A). To start an emotion, however, the appro-
priate start operation has to be called directly, which we did in Section 4.2.4
when defining punishment and reinforcement.

Notice that since each emotion is rather unique, it follows that its starting
points are also idiosyncratic. Hence, if one wishes to add new emotions to our
framework, it would also be necessary to add starting points elsewhere in the
organism.

4.2.8 Subsystems Integration

We have seen that each subsystem provides a number of operations to allow
their integration with the rest of the organism. These operations assume that
time advances in a discrete manner, and often require the specification of a
current instant. To group them together, then, we specify a data structure,
Simulator , and an overall operation called SimulatorIterationOp. This oper-
ation advances time, applies the integration operations, deliver stimuli and
collect responses.

Simulator
Organism

currentInstant : Instant
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SimulatorIterationOp
∆Simulator

Organism ConflicResolution

Organism ResponseMaintenance

Organism OperantEliminationOp

Organism DrivesUpdate

Organism EmotionUpdate

stimulations? : PStimulation

responses! : PResponse

currentInstant ′ = currentInstant + 1

∃Organism StimulusProcessing • currentInstant? = currentInstant

∃Organism BehaviorSelection •
currentInstant? = currentInstant ∧ responses! = activeResponses

∃Organism ResponseEmission • currentInstant? = currentInstant

∃Organism OperantOp • currentInstant? = currentInstant

∃Organism OperantFormationOp • currentInstant? = currentInstant

These schemas are not part of what constitutes an agent. Rather, they specify
how an actual simulator should interact with an agent. The environment is
represented in this interaction by the variables stimulations? and responses!.
The former collects the stimulations coming from the environment to a par-
ticular organism, and the latter specifies the behavioural responses of this or-
ganism being delivered to the environment, both in the current instant. There
is, therefore, merely an interface to the surrounding environment – which is
all that is required to simulate an environment with its several agents, as we
shall see in Chapter 5.

Moreover, the passage of time as perceived by the organism is subjective.
From the point of view of the organism, time is perceived to advance at each
interaction with the environment, and it is this subjective time counting that
is taken in account. This provision makes it possible for the organism to
make internal calculations based on the passage of time without having to
be told the actual, universal and absolute time, which is not available from
the EMMAS environments of Chapter 5. Of course, if a global clock was
available, then the internal time counting of the organism could be made to
match such a clock, but that is not a requirement.

103



4. Behaviourist Agent Architecture

4.3 Conclusion

Any mathematical formalization of a domain not strictly mathematical is
bound to make certain choices (e.g., to solve textual ambiguities) and in-
troduce new technicalities in order to mechanize as much as possible of the
informal and original meaning. It is also difficult to capture all relevant phe-
nomena under one unified mathematical theory, since the details necessary for
such an unification might not be present in the original informal theory. Our
formalization, then, is subject to similar problems. Nevertheless, we have tried
to minimize any such idiosyncrasies so that the final result can be regarded as
a sensible interpretation of Behaviour Analysis. In particular, though it can-
not account for all possible behavioural phenomena found on the literature,
it is capable of modelling many of them, and in such a way that they relate
to each other in a coherent whole. Indeed, it is largely because of this coher-
ence that our formalization is suitable as an agent architecture, since it allows
different mechanisms to operate together in creating several aspects that con-
tribute to an interesting agent (e.g., a certain autonomy, learning capabilities,
interaction with the environment).

Despite the complexities of our architecture, its elements are all ultimately
given in terms of stimuli and behavioural responses. As a consequence, an
agent’s behaviour is always either controllable or at least observable in this
approach. Hence, much more power is available to the environment where the
agent is located (e.g., a laboratory), for the agent’s state can be easily charac-
terized by external events alone. This is a distinctive feature of behaviourist
approaches, and should be true in any such behaviourist architecture.

The behaviourist view of agency that we presented brings a reversed perspec-
tive on agents – let us see why. Usually, agents are defined by their internal
elements and their relations. Thus, for instance, the question of whether the
agent performs correct deductions is important in such cases. But by making
stimuli and behaviour prominent, and defining everything else in their terms,
we effectively shift the questions that can be asked about such agents. We are
not worried about, say, knowledge and correct reasoning, but by predicting
and controlling behaviour. This emphasizes the relation that the agent has
with its environment, and creates new possibilities therein. For example, one
may consider sophisticated ways in which the environment may influence its
agents in order to achieve certain results of interest. This shall become clear
in Chapter 5.

104



CHAPTER 5
Environment Model for

Multi-Agent Systems

Environments account for the medium through which agents may interact.
In this chapter we develop an environment model that has a social network
structure in which nodes are agents, and the links between them are defined
by the capabilities that agents have to act upon each other. Furthermore,
these environments are more than a network structure, as they may change
dynamically, either spontaneously or as a reaction to an agent’s actions. These
design choices arise from the agent model given in Chapter 4, which suggests a
number of desirable features from an environment that brings them together.
For instance, we place great importance on the possibility of performing exper-
iments of different kinds, and of responding to agent’s actions in appropriate
ways. Our approach achieves this by the environment behaviours it de-
fines. Moreover, interaction can be treated by abstracting physical properties
(e.g., spacial position) away and dealing only with relationships, which we
do by adopting a social network structure and environment operations to
modify it.

We provide a simple formal framework in which to define such environments so
that they can be subject to automated analyses procedures. A mathematical
model is provided, which we call the Environment Model for Multi-Agent
Systems (EMMAS), and its semantics is given in terms of the π-calculus Environment

Model for Multi-
Agent Systems
(EMMAS)

process algebra (see Appendix E for an overview of π-calculus).

Process algebras are typically employed to describe concurrent systems. They
are good at succinctly describing behaviours relevant to inter-process commu-
nication. The particular choice of π-calculus as a theoretical foundation is
motivated by some of its features, which together make it a distinguished for-
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malism among existing such algebras. First, it takes communication through
channels as a primitive notion, which makes it a natural choice for repre-
senting networks. Second, it allows for dynamic modification, which makes
the creation and destruction of connections between agents possible. Third,
it provides a convenient representation for broadcast behaviour through its
replication operator. Finally, it has few operators and a simple operational
semantics.

The semantics of EMMAS is actually given in two stages, by considering: (i)
a syntactical translation of EMMAS into π-calculus expressions; (ii) a math-
ematical foundation which relates π-calculus events to the stimuli and actions
of agents in a transition system. The π-calculus translation of (i), through its
operational semantics (Definition E.5), provides an over-approximation of the
desired behaviour1, which is then made precise using the restrictions provided
by (ii). By this method, we are able to build a transition system that defines
the possible states and transitions for any particular environment specifica-
tion. In the present chapter, however, we only provide (i). Stage (ii) is left for
Chapter 6, because it requires a number of new definitions concerning tran-
sition systems, which are better understood if isolated in a chapter of their
own.

The semantics thus achieved is general and is not tied to any particular ap-
plication, not even simulation. For the purposes of the verification technique,
however, it will be necessary to carry out stage (ii) in a slightly more specific
manner, so that the result can be used in a simulator. This is explained in
more detail and accomplished in Chapter 7, which also presents the verification
technique itself.

We purposefully treat agents as black-boxes in EMMAS, because it is not
necessary to expose their internal structure in order to manipulate them from
an environmental perspective. As we saw in Section 4.1, this arises directly
from the behaviourist tradition we use as inspiration. However, there must
be a way to interface the agents with their environment. This is achieved
through the assumption that agents receive stimuli as input and that they
output actions, as explained in Chapter 4. Moreover, communication between
agents is also mediated by the environment.

This view of the agents as black-boxes does not mean that the Behaviourist
Agent Architecture given in Chapter 4 is irrelevant. Rather, it only means
that its purpose is to allow the simulated agents to behave in ways such that
the environment defined in the present chapter can fruitfully interact with
them. That is to say, while the internal mechanisms of agents are not rep-
resented explicitly in EMMAS, they are necessary to actually simulate and

1That is to say, an approximation that contains all the desired behaviours, but also some
undesired ones.
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verify it. Indeed, as argued in Section 1.1, it is because this separation of en-
vironments and agents can be done that the technique presented in this thesis
is practical. The role of environments is to be amenable to systematic analy-
ses, whereas the purpose of agents is to implement, as completely as possible,
individual behavioural phenomena, with no particular commitment to being
amenable to internal formal analyses. It is only the external, observable, ac-
tions of agents, as reflected in an environment, that one may analyse by this
method.

A few remarks on notation are in order before proceeding:

• We have omitted π-calculus input and output parameters when such
parameters are not relevant (e.g., we write a instead of a〈x 〉 if x is not
used later).

• For the sake of readability, some elements are coloured in a different
manner. This will be clear from their use, but let us quickly summarize
what these colours are for each kind of element: semantic definitions;
expressions, sets and logical formulas used by EMMAS; and the [ ]π
translation function used to convert EMMAS expressions in π-calculus
introduced by Definition 5.1.

This chapter is organized as follows. In Section 5.1 we explain in more detail
the role of environments in the overall approach. The environment model
itself is presented in Section 5.2. It is designed to be small, which implies that
convenience constructs are left out. Yet, it provides the basic elements with
which such conveniences can be built, and thus in Section 5.3 we provide some
such conveniences. The reason for this twofold division is to facilitate both
the mathematical treatment of the model (i.e., because it is kept small) and
the addition of new convenience constructs beyond those we provide here (i.e.,
because the fundamental rules to respect are few). At last, in Section 5.4 we
make some concluding remarks. As already remarked above, an overview of
π-calculus is given in Appendix E.

5.1 The Role of Environments

Though environments are often ignored in the design of MAS (Weyns et al.,
2005), they play a crucial role in our approach. In Section 1.1 of Chapter 1, we
saw that it can be useful to see the environment as a simpler, more tractable,
entity than the agents that inhabit it. In our approach, this intuition is made
concrete by the following main points:
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• The Behaviourist Agent Architecture presented in Chapter 4 is
only meaningful if there is an environment to provide it with stimuli
and receive its actions. In particular, an agent can only interact with
another agent if there is an environment to transform the actions of one
into stimuli for the other.

• The environments can be translated into a representation of the MAS
in terms of a transition system, which is required by the verification
technique presented in Chapter 7. That is to say, the environment defines
the state-space that the verification algorithms shall explore.

These characteristics are, of course, very related. It is precisely because the
environment defines the possible communications with and between agents
that it can provide a representation of all possible behaviours of the MAS.

This does not mean that one may know a priori, just by the structure of
the environment, exactly how a simulation of an MAS will progress. While
all possibilities are known, the actual sequence of states to be produced by a
simulation will depend on the internal mechanisms of the agents, which are not
available to the environment. In other words, the interaction between agents
and their environment is essential in order to have an actual simulation.

It is also worth to consider the methodological implications of having the en-
vironment in such a prominent position. As we remarked in Chapter 4, the
agent architecture follows a behaviourist approach, which puts great emphasis
on defining behaviours in terms of their effects and dependencies upon an en-
vironment. This means that problems concerning such agents are invariably
formulated in terms of environmental properties. For example, if one is inter-
ested in teaching a certain behaviour to an agent, the solution will be given
in environmental terms: how the environment should reinforce the agent, or
how the environment should connect agents so that one may interfere in the
behaviours of the other. Therefore, the environment is a fundamental part of
the very questions which our theory and technology address.

5.2 Environment Model

EMMAS is a mathematical framework that can be used to specify environ-
ments for multi-agent systems. In order to give its semantics, we have chosen
to translate its constructs to the π-calculus process algebra, which provide
simpler elements, with an already established semantics. Such a translation is
achieved by using a translation function to map constructs of EMMAS into
π-calculus (i.e., a construct C is translated to [C ]π).

Definition 5.1 (Translation function). The translation function [ ]π mapstranslation func-
tion

108



5.2. Environment Model

constructs of EMMAS into π-calculus expressions.

The full definition of this function is given as new constructs are introduced.

The constructs of EMMAS can be divided into structures and environment
operations. The former define the elements that exist and how they interact.
The later account for the manipulation of these structures.

The text below is organized as follows. Section 5.2.1 defines the fundamental
π-calculus events upon which the formalization is built. Section 5.2.2 estab-
lishes what is an operation, which is an important concept used to define the
model. Finally, Section 5.2.3 describes the structures of the model itself.

5.2.1 Underlying Elementary π-Calculus Events

A π-calculus specification can be divided into two parts. First, and most
fundamentally, it is necessary to specify the set of events that are particular
to that specification. Second, it is necessary to specify processes built using
those events. In this section we account for this first part.

Input and output events are all made from basic names. Hence, we first
formally define a set of names in order to have the corresponding events. The
definition below establishes such names, and Table 5.1 presents an informal
description of the events that arise. The formal description of their meaning,
however, shall be given later on, in Sections 6.2.2 and 7.1, by defining the
possible transitions associated with each name.

Definition 5.2 (Environment Names). The environment names are de- environment
namesfined by the following set:

ENames = {emitna , stop
n
a , beginning

n
s , stable

n
s , absent

n
s ,

destroys,ma,n , ccn, done |
a ∈ Actions, s ∈ Stimuli ,m,n ∈ AgentIDs}

The sets Actions, Stimuli and AgentIDs shall be introduced in Definition 6.5.
For the moment, it suffices to note that they represent all possible actions,
stimuli and agents in an environment, respectively. In this way, these environ-
ment names are tied to particular actions, stimuli and agents. Nevertheless,
they are atomic entities from the point of view of π-calculus, even though they
are denoted here with subscripts and superscripts. This writing style is merely
for readability’s sake.

With these names, we now establish the set of events relevant to EMMAS.

Definition 5.3 (Environment Events). The environment events are de- environment
eventsfined by the following set:
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EEvents = {e〈x 〉, e(x ) | e, x ∈ ENames} ∪ {τ}

As a technicality, it is sometimes convenient to be able to translate π-calculus
processes and events using the [ ]π function. The result of such a translation
is, of course, the process or event itself. Thus we extend the domain of [ ]π to
include π-calculus and give the following definition.

Definition 5.4. Let P be an arbitrary π-calculus process or prefix. Then,

[P ]π = P

A corollary of this definition is that the [ ]π function is idempotent (i.e.,
[[C ]π]π = [C ]π).

Event Informal description

Agent to environment

emitna Agent identified by n performs action a.

stopna Agent identified by n stops performing action a.

Environment to agent

beginningns Delivery of stimulus s to the agent identified by n is begin-
ning.

stablens Delivery of stimulus s to the agent identified by n is stable.

endingns Delivery of stimulus s to the agent identified by n is ending.

absentns Delivery of stimulus s to the agent identified by n becomes
absent.

Environment to environment

destroys,ma,n Requests the destruction of an action transformer that con-
verts action a from agent identified by n into stimulus s
accepted by the agent identified by m.

ccn Requests the creation of a new action transformer.

done Signals that an operation has terminated.

Table 5.1: Informal description of events, divided in three categories according to
their origin and destination. The corresponding output or input events not shown
merely allow the ones described to work properly.

5.2.2 Environment Operations

In order to exhibit dynamic behaviour, the environment depends on environ-
ment operations to modify its structures.

Definition 5.5 (Environment Operation). An environment operation isenvironment oper-
ation any π-calculus process such that:
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• its names belong to the set ENames;

• in the corresponding LTS, for all transitions of the form P
l
֌ 0, it must

be the case that l = done (i.e., the operation signals its termination
using the done prefix).

The second condition is particularly important because it allows the sequential
composition of operations, as described in Section 5.3.1 later on. It states that
whenever the processes is reduced to the primitive Nil process (denoted by 0),
it must be the case that the done prefix preceded it. In this manner, other
operations can detect the termination (i.e., by specifying a done prefix to
synchronize with done).

Of course such an abstract definition of environment operations cannot be
used directly. Nevertheless, it suffices to define the basic model for environ-
ments. Concrete environment operations are given in Section 5.3.2.

Because the Z Notation used in Chapter 4 has its own notion of operation,
for consistency we must name the operations of EMMAS differently, and we
have opted for calling them environment operations. Nonetheless, for con-
venience, we refer to these environment operations merely as operations
in the remainder of the present chapter, as well as in the rest of the thesis
whenever it is clear from context that the subject is EMMAS.

5.2.3 Environment Structures

The environment is the central structure of specifications. It defines which
agents are present, how they are initially connected, and what dynamic be-
haviours exist in the environment itself.

Definition 5.6 (Environment). An environment is a tuple 〈AG ,AT ,EB〉 environment

such that:

• AG = {ag1 . . . agl} is a set of agent profiles;

• AT = {t1 . . . tm} is a set of action transformers;

• EB = {eb1 . . . ebn} is a set of operations, referred to as environment
behaviours. environment

behaviours

Moreover, let {en1, . . . , eno} = ENames. Then the corresponding π-calculus
expression for the environment is defined as:
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[〈AG ,AT ,EB〉]π = (ν en1, . . . , eno)
([ag1]π | [ag2]π | . . . | [agl ]π |
[t1]π | [t2]π | . . . | [tm ]π |
[eb1]π | [eb2]π | . . . | [ebn ]π |
!NewAT

where

NewAT = ccn(emit , stop, absent , beginning , stable, ending , destroy).
T (emit , stop, absent , beginning , stable, ending , destroy)

and T is given in Definition 5.8.

This definition merits a few comments. First, all names from ENames are
restricted to the environment. Second, the set of action transformers pro-
vide the network structure that connects the agents. Third, the environment
behaviours, as the name implies, specifies behaviours that belong to the en-
vironment itself. This is useful to model reactions to agent’s actions, as well
as to capture ways in which the environment may evolve. In the first case
the behaviour is specified as an environment response (Definition 5.19 below),
while in the second case the behaviour is simply an EMMAS operation. Fi-
nally, the component NewAT allows the creation of new action transformers.
In order to do so, it receives a message ccn (“create connection”), whose pa-
rameters initialize the rest of the expression. To see this more clearly, suppose
that NewAT is in parallel composition as follows:

ccn〈emitna , stop
n
a , absent

m
s , beginningms , stablems , endingms , destroys,ma,n 〉 | NewAT

Then ccn will react with ccn in NewAT , and the resulting expression will be
the following:

T (emitna , stop
n
a , absent

m
s , beginningms , stablems , endingms , destroys,ma,n )

This expression corresponds to the definition of an action transformer, which
is introduced in Definition 5.8, and specify how an action emitted by an agent
is received as a stimulus by another agent. Furthermore, in the environment
definition there is a parallel replication operator on !NewAT to ensure that
the creation of action transformers can happen as many times as needed to
produce reactions2, owing to the following structural congruence rule:

2It can be observed from the π-calculus operational semantics given in Appendix E that
because all environment names are restricted, the only way for the system to progress is
by performing reactions by the application of the COM rule. Moreover, the rule STRUCT

together with the structural congruence relation ensures that COM will be applied as long
as there are ccn events to react with NewAT .
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!NewAT ≡ NewAT |!NewAT

Environments exist in order to allow agents to interact. As we remarked
earlier, the internal structure of these agents, as complex as it may be, is
mostly irrelevant to their interaction model. Thus, we have abstracted it
away as much as possible. What is left are the interfaces that allow agents to
interact with each other and with the environment itself, which we call agent
profiles. Hence, we have the following definition.

Definition 5.7 (Agent Profile). An agent profile is a triple 〈n,S ,A〉 such agent profile

that:

• n ∈ AgentIDs is a unique identifier for the agent;

• A = {a1 . . . ai} ⊆ Actions is a set of actions;

• S = {s1 . . . sj } ⊆ Stimuli is a set of stimuli.

Moreover,

[〈n,S ,A〉]π = ([Act(a1,n)]π | [Act(a2,n)]π | . . . | [Act(ai ,n)]π) |
([Stim(s1,n)]π | [Stim(s2,n)]π | . . . | [Stim(sj ,n)]π)

such that, for all a ∈ A and s ∈ S, we have:

[Act(a,n)]π =!(emitna .stop
n
a )

[Stim(s,n)]π = piStim(beginningns , stable
n
s , ending

n
s , absent

n
s )

where

piStim(beginning , stable, ending , absent) =
beginning .stable.ending .absent .piStim(beginning , stable, ending , absent)

This definition states that agents have several components, each responsible
for controlling one particular action or stimulus. Act(a,n) defines that the
agent identified by n can start emitting an action a and can then stop such
emission. The replication operator (!) ensures that this sequence can be carried
out an unbounded number of times. Stim(s,n), in turn, defines that the agent
identified by n can be stimulated by s, and that this stimulation follows four
steps. The recursive call ensures that this stimulation sequence can start again
as soon as it finishes the last step. These definitions reflect the assumptions
about the agent model we consider (Chapter 4).
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The relations among agents in EMMAS are given in the form of a social
network. This means that the physical positions of agents are not taken into
account; rather, only the relationships between agents are represented, thus
inducing a graph in which the vertices are agents and the edges denote pos-
sible interactions between them. In this manner, modelling and analysis can
be focused on the logical properties of their interaction, and ignore physical
details (e.g., it does not matter that agent ag1 is 3 meters away from ag2 if
one is concerned merely about specifying that ag1 can hear what ag2 says).

Given the behaviourist point of view that we adopt, these relationships are
modelled by defining how the actions of an agent are transformed in stimuli for
other agents. Their interaction, thus, is based on stimulation. Formally, this
is represented by action transformers, which define how a particular action
of an agent is perceived as a particular stimulus by another agent. Action
transformers are not static: they can be created and destroyed dynamically.
The importance of this is twofold. First, it allows the specification of phenom-
ena in which the relation among agents change as they age. Second, it allows
specification of several possible network structures for the same environment
(i.e., the description of a class of social networks, and not one particular so-
cial network). This latter possibility can be used to determine, through the
verification algorithms we shall introduce in Chapter 7, whether any of these
possible network structures satisfy some property of interest.

Definition 5.8 (Action Transformer). An action transformer is a tupleaction trans-
former 〈ag1, a, s, ag2〉 such that:

• ag1 is an agent profile 〈n,S1,A1〉;

• ag2 is an agent profile 〈m,S2,A2〉;

• a is an action such that a ∈ A1;

• s is a stimulus such that s ∈ S2;

Moreover, the corresponding π-calculus expression for the action transformer
is defined as:

[〈ag1, a, s, ag2〉]π =
T (emitna , stop

n
a , absent

m
s , beginningms , stablems , endingms , destroys,ma,n )

where

T (emit , stop, absent , beginning , stable, ending , destroy) =

(

Normal behaviour
︷ ︸︸ ︷

emit .beginning .stable.stop.ending .absent .T (emit , stop, absent , beginning , stable, ending , destroy))
+
destroy
︸ ︷︷ ︸

To destroy
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The above definition can be divided in two parts. First, there is its normal
behaviour, which merely defines the correct sequence through which an action
is transformed in a stimulus. Once such a sequence is completed, a recursive
call to the process definition restarts the action transformer. Second, there is
the part that allows the transformer to be destroyed. By performing destroy ,
the action transformer disappears, since this event is not followed by anything.

Providing an intermediate structure such as the action transformer between
the agents instead of allowing a direct communication is useful because an
agent’s actions may have other effects besides stimulation. In particular, the
environment can also respond to such actions in custom ways. This can be
done by specifying environment response operations as part of the envi-
ronment behaviours (see Section 5.3.2.3).

5.3 Convenience Elements and Operations

So far we have defined the bare minimum for describing environments so that
they can be formally analysed. Clearly, though, more constructs are necessary
in order to make such specifications. For example, we defined what is an op-
eration in general, but we have not presented any particular operation. In the
present section, then, we provide a number of convenience elements that can
be used to build concrete EMMAS models. Section 5.3.1 gives operators that
can be used to build more complex operations from simpler ones. Section
5.3.2 presents core operations that accomplish basic tasks. Section 5.3.3 and
Section 5.3.4 define, respectively, some core sets and predicates. Section 5.3.5
provides some useful quantifiers. Finally, Section 5.3.6 employs all of these
elements in order to define some complex operations.

5.3.1 Composition Operators

In order to build complex operations on top of the basic ones, it is useful
to define composition operators. Some of these can be mapped directly to
π-calculus operators, but others require more sophistication.

Definition 5.9 (Sequential Composition). Let Op1 and Op2 be operations.
Then their sequential composition is also an operation and is written as: sequential compo-

sition

Op1; Op2

Moreover,
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[Op1; Op2]π = (ν start)[Op1]π{start/done} | start .[Op2]π

The above translation aims at accounting for the intuition that Op1 must
take place before Op2. However, we cannot translate Op1; Op2 immediatly
as [Op1]π.[Op2]π, because in general π-calculus would not allow the resulting
syntax (e.g., (P+Q).R would not be a valid expression). Therefore, we adapt
the suggestion offered by Milner (1999) (in Example 5.27), which works as
follows. We assume that every operation signals its own termination using the
done event. Then, when composing Op1 and Op2, we: (i) create a new event,
start ; (ii) rename the done event in Op1 to start ; (iii) make start guard Op2;
(iv) put the two resulting processes in parallel. By this construction, the only
way that Op2 can be performed is after start is performed, which can only
happen when Op1 terminates.

Definition 5.10 (Sequence). Let Op be an operation and n be an integer
such that n ≥ 1. Then a sequence of n compositions of Op is defined as:sequence

Seq(Op,n) =

{
Op; Seq(Op,n − 1) n > 1
Op n = 1

Definition 5.11 (Unbounded Sequence). Let Op an operation. Then an
unbounded sequence of compositions of Op is defined as:unbounded se-

quence
Forever(Op) = Op; Forever(Op)

The translation of these two kinds of sequences to π-calculus follows, of course,
from the translation of the sequential composition operator.

Definition 5.12 (Choice). Let Op1 and Op2 be operations. Then their com-
position as a choice is also an operation and is written as:choice

Op1 +Op2

Moreover,

[Op1 +Op2]π = [Op1]π + [Op2]π

Definition 5.13 (Parallel Composition). Let Op1 and Op2 be operations.
Then their parallel composition is also an operation and is written as:parallel composi-

tion
Op1 ‖ Op2

Moreover,

[Op1 ‖ Op2]π = (ν start)[Op1]π{start/done} |
[Op2]π{start/done} |
start .start .done
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The translation for the parallel composition is not straightforward because
it is necessary to ensure that done is sent only once in the composed operation.
That is to say, the parallel composition of 2 operations is an operation itself,
and it only terminates when each of its components terminates. If this care
is not taken, later sequential compositions will not work as expected. This
definition ensures the correct translation by: (i) creating a new name, start ,
restricted to the composition; (ii) renaming done to start in Op1 and Op2;
(iii) creating a new component that waits for 2 start events before sending
one done. By this construction, the only way that a done event can be sent
is by first producing 2 start events, which can only happen if each operation
terminates individually.

5.3.2 Core Operations

We can now provide a core of operations upon which others can be built.
Below we present them according to their purpose.

5.3.2.1 Agent Stimulation Operations

The following operations are provided to control the stimulation of agents.

Definition 5.14 (Begin stimulation operation). Let ag = 〈n,S ,A〉 be an
agent profile, and s ∈ S be a stimulus. Then the begin stimulation opera- begin stimulation

tion is writen as:

BeginStimulation(s, ag)

Moreover,

[BeginStimulation(s, ag)]π = beginningns .stable
n
s .done

Definition 5.15 (End stimulation operation). Let ag = 〈n,S ,A〉 be an agent
profile, and s ∈ S be a stimulus. Then the end stimulation operation is end stimulation

writen as:

EndStimulation(s, ag)

Moreover,

[EndStimulation(s, ag)]π = endingns .absent
n
s .done

Definition 5.16 (Stimulate operation). Let ag = 〈n,S ,A〉 be an agent profile,
and s ∈ S be a stimulus. Then the stimulate operation is defined as: stimulate

Stimulate(s, ag) = BeginStimulation(s, ag); EndStimulation(s, ag)
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5.3.2.2 Action Transformers Operations

The following operations are provided to manipulate action transformers.

Definition 5.17 (Create action transformer operation). Let ag1 = 〈n,S1,A1〉
be an agent profile, ag2 = 〈m,S2,A2〉 be another agent profile, a ∈ A1 be an
action, and s ∈ S2 be a stimulus. Then the create action transformercreate action

transformer operation is writen as:

Create(ag1, a, s, ag2)

Moreover,

[Create(ag1, a, s, ag2)]π = ccn〈emitna , stop
n
a , absent

m
s , beginningms ,

stablems , endingms , destroys,ma,n 〉.done

In the above definition, ccn is crafted to react with the component NewAT
given in Definition 5.6. Since operations will ultimately be put together with
parallel composition in the environment, it follows that the Create(ag1, a, s, ag2)
operation will be able to react with NewAT and originate a new action trans-
former.

Definition 5.18 (Destroy action transformer operation). Let ag1 = 〈n,S1,A1〉
be an agent profile, ag2 = 〈m,S2,A2〉 be another agent profile, a ∈ A1 be an
action, and s ∈ S2 be a stimulus. Then the destroy action transformerdestroy action

transformer operation is written as:

Destroy(n, a, s,m)

Moreover,

[Destroy(n, a, s,m)]π = destroys,ma,n .done

5.3.2.3 Environment Response Operations

As we remarked earlier, besides transforming an action of an agent into stimuli
for other agents, the environment itself can also react to such actions. This is
achieved by environment response operations, which may define a custom
operation for each action of each agent.

Definition 5.19 (Environment Response). Let 〈n,S ,A〉 be an agent profile,
a ∈ A an action and Op an operation. Then the environment responseenvironment

response function ER() for these elements is defined as follows:

ER(a, ag ,Op) = Forever(Emit(a, ag); Op; Stop(a, ag))
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Where:

[Emit(a, ag)]π = emitna .done

[Stop(a, ag)]π = stopna .done

As an example of such an environment response, we may cite the classical no-
tion of reinforcement from behaviourist psychology. When an agent performs
a desirable action, the environment may be designed so that the agent re-
ceives a reward in order to reinforce this behaviour. This relation between the
agent’s action and an associate reward can be elegantly modelled in a process
algebraic way according to the above definition of environment response.

5.3.2.4 Do Nothing Operation

At last, it is also convenient to define a standard operation to state that
nothing should be performed. This can be used in a number of ways, such as
delaying (in a sequential composition) the performance of another opera-
tion, serving as place holders in an incomplete model, or stating conditions in
the form of environment responses without defining any particular effects.
This last possibility has a particularly important technical purpose, since only
the actions that are used somehow in the environment are taken in account
in the final semantic model. The reason is that in this way only the actions
relevant to an environment are taken in account, thereby making its analysis
more efficient.

Definition 5.20 (Do Nothing Operation). The do nothing operation is do nothing opera-
tiondenoted by

NOP

Moreover, the corresponding π-calculus expression is as follows:

[NOP ]π = done

5.3.3 Sets

Certain sets of elements are particularly useful for modelling.

Definition 5.21. Let X be any set, S ⊆ Stimuli , A ⊆ Actions, ag = 〈n,S ,A〉
be an agent profile, i , j be natural numbers and I ⊆ AgentIDs. Then we have
the following special sets:

• ∅: The empty set.
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• P(X ): The set of all subsets of X (i.e., its power set).

• canReceive(n) = S

• canEmit(n) = A

• i ..j = {k | i ≤ k ≤ j}.

• 〈I ,S ,A〉 = {〈id ,S ,A〉 | id ∈ I }

The 〈I ,S ,A〉 construction allows the concise specification of large sets of sim-
ilar agents. It is especially useful if the agent identifiers are natural numbers,
because in this case it can be used in association with the i ..j construction.
For example, if we know that agent identified by 1 up to 100 are all similar,
we can specify all of their profiles at once by writing 〈1..100,S ,A〉.

Composite sets can be obtained by the usual operators of ∪ (union), ∩ (inter-
section) and \ (subtraction).

5.3.4 Predicates and Logical Formulas

Primitive predicates are necessary to specify conditions. Below we define
relevant predicates for EMMAS.

Definition 5.22. Let X be a set, ag1 = 〈n,S1,A1〉 and ag2 = 〈m,S2,A2〉 be
agent profiles, a ∈ A1 be an action and s ∈ S1 be a stimulus. Then we have
the following predicates:

• isConnected(ag1, a, s, ag2): True if, and only if, there exists an action
transformer that takes action a from agent ag1 and transforms it in
stimulus s delivered to agent ag2.

• ag1 = ag2: True if, and only if, n = m.

• ag1 6= ag2: True if, and only if, n 6= m.

Formulas can be obtained by using the usual logical connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction) and → (implication).

5.3.5 Quantification

In order to succinctly express arbitrary number either of choices or of concur-
rent execution, it is convenient to define two special quantification operators.
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Given a set of possible parameters and a parameterized expression, these op-
erators generate a new expression that corresponds to a composition of the
several instantiations that the given expression might have with respect to the
specified set of possible parameters.

Definition 5.23 (Universal quantification with sum). Let Y be a finite set,
Exp() be an arbitrary expression, and Formula be a logic formula that is obeyed
by the elements y1, y2, . . . yn ∈ Y . Then the universal quantification with
sum is defined as: universal quan-

tification with
sum∀+ y : Y | Formula • Exp(y) = Exp(y1) + Exp(y2) + . . .+ Exp(yn)

Definition 5.24 (Universal quantification with parallel composition). Let Y
be a finite set, Exp() be an arbitrary expression, and Formula be a logic for-
mula that is obeyed by the elements y1, y2, . . . yn ∈ Y . Then the universal
quantification with parallel composition is defined as: universal quan-

tification with
parallel composi-
tion

∀| y : Y | Formula • Exp(y) = Exp(y1) ‖ Exp(y2) ‖ . . . ‖ Exp(yn)

5.3.6 Complex Operations

Using the elements defined above, it is possible to create a number of other
convenience operations. There are many possibilities for such operations. Be-
low we give some examples that seem useful. We employ polymorphism where
appropriate to avoid creating new names and to show possible variations of
an operation.

Let S ⊆ Stimuli be a set of stimuli, s ∈ Stimuli be a stimulus, A ⊆ Actions
be a set of actions, and AG , AG1 and AG2 be sets of agent profiles. Then
we have the following operations.

Stimulate several agents. A stimulus is delivered to the agents.

Stimulate(s,AG) = ∀| ag : AG | s ∈ canReceive(ag)•

Stimulate(s, ag)

Stimulate several agents with several stimuli. Several stimuli are deliv-
ered to the agents.

Stimulate(S ,AG) = ∀| s : S • Stimulate(s,A)

Connect two sets of agents. Allows the creation of action transformers
between two specified sets of agents using the specified sets of actions
and stimuli. This does not mandate that the action transformers should
actually be created. Rather, it specifies that it is possible for them to be
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created. This allows one to consider all the possibilities of connections
between the two sets.

Connect(AG1,AG2,A,S ) = ∀| ag1 : AG1 • ∀| ag2 : AG2•

∀| a : A • ∀| s : S |

AG1 ∩AG2 = ∅ ∧
a ∈ canEmit(ag1) ∧
s ∈ canReceive(ag2)•
Create(ag1, a, s, ag2)

Connect agents in set. Similarly, allows the creation of action transformers
between the agents of a specified set using the specified sets of actions
and stimuli.

Connect(AG ,A,S ) = ∀| ag1 : AG • ∀| ag2 : AG•

∀| a : A • ∀| s : S |

ag1 6= ag2 ∧
a ∈ canEmit(ag1) ∧
s ∈ canReceive(ag2)•
Create(ag1, a, s, ag2)

Disconnect agent in a set. Destroys the action transformers between the
agents in the specified set.

Disconnect(AG) = ∀| ag1 : AG • ∀| ag2 : AG•

∀| a : canEmit(ag1)•

∀| s : canReceive(ag2) |

ag1 6= ag2 ∧ isConnected(ag1, a, s, ag2)•
Destroy(ag1, a, s, ag2)

5.4 Conclusion

In this chapter we presented EMMAS, a model of environments for multi-
agent systems. The proposed environments have both structural and opera-
tional aspects. That is to say, they represent certain structures, which can then
be changed by certain operations. These operations serve to two purposes.
First, they provide a way to specify behaviours of the environments themselves
(e.g., environment responses to the actions of agents). Second, they allow the
succinct specification of several possible scenarios for an environment (e.g.,
several possible ways of stimulating agents). This latter possibility is one of
the great advantages offered by the use of a process algebra as a semantic basis
(e.g., an algebraic expression a + b defines the non-deterministic possibility of
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either a or b), and to the best of our knowledge renders our approach unique
insofar as environments for MASs are concerned.

EMMAS is also distinctive in that it is designed to work with the Be-
haviourist Agent Architecture developed in Chapter 4. As seen in that
chapter, the agents strongly depend on an external environment, since prob-
lems dealing with them must be specified in terms of the stimulation they
receive (from an environment) and the actions they produce (to an environ-
ment). In the present chapter we have seen how this can be accomplished,
for instance, with the operations given in Section 5.3.2 which provide ways
to manipulate stimulation. In Chapter 9 we shall see concrete application
examples.

In our implementation, an EMMAS specification is provided as a XML de-
scription. This practical aspect is presented in Chapter 8, and a reference of
the input format is given in Appendix C.

The semantics of EMMAS is given in two stages. First, its elements are trans-
lated to π-calculus expressions. This was accomplished in this chapter. The
second stage consists in computing the semantics of such π-calculus expres-
sions in terms of transition systems. This is crucial, because the verification
algorithms we develop later on will operate on such transition systems, and
not on π-calculus expressions. However, this second stage is described in the
next chapter. The reason for this is simple: transition systems constitute a
formalism in their own right, and at a different level of abstraction. We have
therefore put them in a chapter of their own, in which we present these struc-
tures in their general form and then use them to produce the final semantics
of EMMAS.
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Formal Analysis and Verification
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CHAPTER 6
Transition Systems and

Semantics

Formal verification requires formal structures to operate on. This chapter
introduces such structures as the underlying semantics of the MASs to be
investigated. We first present, in Section 6.1, the notion of annotated tran-
sition systems (ATSs), the formal structures to be operated on. In Section
6.2, then, we employ these transition systems to give the semantics of EM-
MAS, the environment model presented in Chapter 5. This is achieved by
considering the π-calculus translation provided in Chapter 5, and employing
the π-calculus operational semantics and certain constraints to build an ATS
that defines the possible evolutions of an environment. Although an EMMAS
specification is syntactically finite, the corresponding ATS that gives its se-
mantics possibly has infinitely many states. This semantics is independent of
any particular application, and in particular is not restricted to simulations
– it is a general semantics. For the purpose of simulation and the related
verification technique, it will have to be modified. The main reason is that
to perform simulations efficiently it will be necessary to make the semantics
more concrete. But since this is an implementation concern, this provision is
left for Chapter 7. Finally, Section 6.3 concludes the chapter.

6.1 Annotated Transition Systems

While there may be many ways to specify the systems and their properties
(e.g., programming languages, process algebras, logic), it is convenient to have
a simple and canonical representation to serve as their common underlying
semantic model. Here, we define and employ annotated transition systems
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(ATSs) to this end, which are nothing but transition systems with labels given
to both states and transitions.

The ATS definition is very similar to what is merely called a transition system
by Baier and Katoen (2008). We think, however, that it is worth to emphasize
that it is a special kind of transition system, in order to avoid confusion. In
particular, an ATS is not what is usually called a labelled transition system
(LTS). In an LTS, states are not labelled, the set of events may be infinite
(Milner, 1999, p. 16). In the ATSs, by contrast, states may be labelled (i.e.,
“annotated”, as we say, to avoid confusion) and the set of events is finite.

In an ATS, events play a central role, and are further divided into input
events and output events. The former represent events that may be con-
trolled by the verification procedure (i.e., may be given as an input to the
simulator), and the latter events that cannot (e.g., because they are the out-
put of some internal – and uncontrollable – behaviour of the simulator). Two
special events are also provided. First, the internal event (τ) denotes an
event that takes place but whose precise identity is not known.1 Second, the
other event (�) represents an event that, given a state s, matches any in-
put or output event e, provided that e is not part of a transition leaving
s. That is to say, the other event is a convenience to allow the specification
of a default transition for the events that are not explicitly mentioned in any
given state. Such a default transition, moreover, simplifies calculations during
verification, since only one event must be considered instead of a set of several
events. The following definition establishes all these possible kinds of events.

Definition 6.1 (Events). Let N be a primitive set of names. An event isevent

one of the following:

• an input event , denoted by ?n for some n ∈ N .input event

• an output event , denoted2 by !n for some n ∈ N .output event

• the internal event , denoted by τ , such that τ /∈ N .internal event

• the other event , denoted by �, such that � /∈ N .other event

An ATS is then defined as follows.

Definition 6.2 (Annotated Transition System). An annotated transition
system (ATS) is a tuple 〈S ,E ,P ,→,L, s0〉 such that:annotated transi-

tion system (ATS)

• S is the set of primitive states.states

1This concerns our ATSs, but note that the π-calculus itself defines such an internal
event as well.

2Not to be confused with the replication operator of the π-calculus.
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• E is the finite set of events.

• P is the finite set of primitive propositions.

• →: S × E × S is the transition relation.

• For any s ∈ S and e ∈ E, there are only finitely many s ′ ∈ S such that
s

e
→ s ′ (i.e., finite branching).

• L : S 7→ P(P ∪ ¬ P) is the labelling function of states.3

• For all s ∈ S and all p ∈ P, if p ∈ L(s), then ¬ p 6∈ L(s) (i.e., the
labelling function is consistent).

• s0 ∈ S is the initial state.

The labelling function associates literals4, and not merely propositions, to the
states. This allows the specification that some propositions are known to be
false in a state (i.e., ¬ p), but also that other propositions are not known (i.e.,
in case neither p nor ¬ p are assigned to the state). This last possibility is
convenient for modelling situations in which the truth value of a proposition
cannot be assessed, as it may happen in experimental situations.

Thus, an ATS represents some system that has several states, each one pos-
sessing a number of attributes, and a number of transition choices. The sys-
tem progresses by choosing, at every state, a transition that leads to another
state through some event. Given an ATS, any such particular sequence of
its events and states is called a run.

Definition 6.3 (Run). Let 〈S ,E ,P ,→,L, s0〉 be an ATS, e0, e1, . . . , en ∈ E
and s0, s1, . . . , sn ∈ S. Then the sequence

(s0, e0, s1, e1, . . . , sn−1, en−1, sn)

is a a run of the ATS. Let us denote this sequence by σ. Then its length, run

denoted by | σ |, is n + 1. Moreover, we also denote σ by σ′.en−1.sn , where σ′

corresponds to the subrun (s0, . . . , sn−1). subrun

The set of all possible runs of an ATS can also be defined.

Definition 6.4 (runs() Function). Let M be an ATS. Then the set of all
runs ofM is denoted by:

runs(M)

3As indicated in Section 1.2, by P(P ∪ ¬ P) we mean the power set of (P ∪ ¬ P) (i.e.,
the set of all subsets of (P ∪ ¬ P)), and by ¬ P we mean the set {¬ p | p ∈ P}.

4For any proposition p, its associate literal l is defined either by l = p or l = ¬ p. In the
former case, we say it is a positive literal, whereas in the latter we say it is a negative literal.

129



6. Transition Systems and Semantics

s0

{y}

s1

{x , y}

s2

{x}
s3

{x}

. . .

s4

{x}

. . .
s5

{x , y}

s6

{z}
. . .

?a ?b

?c

!d
?e

!f

Figure 6.1: Examples of an ATS. Transitions are annotated with events (i.e., ?a,
?b, ?c, ?e, !f , !d) and states are annotated with literals (i.e., x , y , z ). The dots
(. . .) denote that the ATS continues beyond the states shown (it may have infinitely
many states).

6.2 EMMAS Semantics

As seen in Chapter 5, the semantics of EMMAS is given in two main steps.
First, a translation from the elements of EMMAS to π-calculus expressions
is provided, and this was done in that chapter. The second step consists in
using the π-calculus operational semantics, as well as some other restrictions
we introduce, in order to transform these π-calculus expressions into transi-
tion systems – more precisely, into ATSs. In this section we accomplish this
latter step. Section 6.2.1 presents some preliminary structures. Building on
these elements, Section 6.2.2 presents the actual construction of the transition
systems.

6.2.1 Preliminary Definitions

The model must have a way to effectively interact with the agents of an MAS.
Agents may trigger events that have a meaning in the environment spec-
ification (e.g., the performance of an action). Conversely, the environment
specification may request the performance of an operation (e.g., to stimu-
late an agent). We fulfil such requirements by providing both a vocabulary
in which a few primitives are defined and a definition for what constitutes
an environment status with respect to these primitives. These definitions
emanate from the agent model provided in Chapter 4, and can be seen as
interfaces that allow an environment to communicate with its agents.

Definition 6.5 (Vocabulary). A vocabulary is a tuplevocabulary

〈Stimuli ,Actions,AgentIDs,Propositions〉
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such that:

• Stimuli is a finite set of stimuli;

• Actions is a finite set of actions;

• AgentIDs is a finite set of agent identifiers;

• Propositions is a finite set of atomic propositions.

The sets Stimuli , Actions, AgentIDs and Propositions define, respectively, all
available stimuli, actions, agent identifiers and atomic propositions. These are
sets containing primitive, unstructured, elements.

Moreover, the sets Stimuli and Actions must reflect the actual agents being
considered. In Chapter 4 we saw that the agents interact with their envi-
ronment by means of stimuli (see p. 65) and actions (see p. 75) – but each
agent can, in principle, adopt different stimuli and actions. Therefore, the
sets Stimuli and Actions introduced here must contain the stimuli and ac-
tions adopted by each agent.

The environment status, in turn, describes the dynamic connection between
the agents of Chapter 4 and the environment described in the present chapter:
the actual values of the functions defined therein reflect the state of the agents,
which can (and normally will) change as the MAS evolves.5

Definition 6.6 (Environment Status). An environment status is a tuple environment sta-
tus

〈Stimulation,Response,Literals〉

such that:

• Stimulation : AgentIDs × Stimuli → {Beginning ,Stable,Ending ,Absent};

• Response : AgentIDs × Actions → {Emitting ,NotEmitting};

• Literals ⊆ Propositions ∪ ¬ Propositions.

The Stimulation function gives the stimulation of a particular agent by a
particular stimulus. Agent stimulation is not an instantaneous operation. As
defined in Chapter 4, the agents differentiate the beginning, the stable phase,

5From the semantic point of view considered in the present chapter, these functions are
merely given (i.e., they are assumed to exist). How they are actually computed is a topic
pertaining to the implementation of the simulator, to be seen in Chapter 8.
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the ending, and the absence of a particular stimulation. Hence, we provide
the appropriate elements in the function’s range.

The Response function keeps track of the actions being emitted by the agents.
In accordance with the agent architecture, we assume that actions begin and
end instantaneously, and therefore we define only two elements in the func-
tion’s range.

Finally, the Literals set contains propositions and their negations. This allows
the specification of more general constraints that are not immediately related
to stimulation or behavioural responses.

6.2.2 Building the Transition System

Given an environment Env , we build an environment ATS in two steps.
First, we consider the transition system induced by [Env ]π and show how to
transform it into an ATS whose states are each annotated with an environ-
ment status (Definition 6.6). Then, we subject the resulting ATS to some
restrictions concerning its possible runs, thereby obtaining the environment
ATS, which describes all the legal evolutions of the MAS.

6.2.2.1 Step 1: From the π-calculus LTS to the Unrestricted
Environment ATS

In order to obtain the desired behaviour, we had to restrict most π-calculus
names on the environment (Definition 5.6). For instance, this ensured that
emitna prefix would only take place if its counterpart emitna was available else-
where in the environment, by means of the COM rule of the π-calculus oper-
ational semantics (Definition E.5). However, in the corresponding π-calculus
LTS, this reaction, like any other, appears merely as an internal prefix (i.e.,
the τ prefix). While this provides the correct structure to the LTS, it also
hides the causes of such transitions. This poses a problem, since in most sit-
uations we would like to know which events led to the transitions that took
place.

A solution to this issue is to merely transform each such τ prefix into an
appropriate input or output event for the ATSs, as described in Chapter
7. To differentiate these events from the π-calculus prefixes, we denote them
by ?n (input) and !n (output), where n is some name. Sometimes, however,
the underlying input and output prefixes are not useful, because they pertain
only to the internal machinery of the environment, and in such cases we leave
the τ prefix in place. All of this is formalized by the following econv function,
which takes π-calculus prefixes and map them to the appropriate events.
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Definition 6.7 (Event Conversion Function). Let Proc1 and Proc2 be π-
calculus processes, l a π-calculus event, a, x and y arbitrary names, and ֌

the transition relation induced by the π-calculus operational semantics (Defi-

nition E.5) such that Proc1
l
֌ Proc2. Then the event conversion function event conversion

functioneconv is defined by the following rules:

• If l = τ , and it was obtained in Proc1 by the internal reaction of some
a j
i (x ) and a j

i 〈y〉 such that a ∈ {emit , stop}, then econv(Proc1, l ,Proc2) =

?a j
i ;

• If l = τ , and it was obtained in Proc1 by the internal reaction of some
a j
i (x ) and a j

i 〈y〉 such that a ∈ {absent , beginning , stable, ending}, then

econv(Proc1, l ,Proc2) =!a j
i ;

• If l = τ and none of the previous cases hold, then econv(Proc1, l ,Proc2) =
τ as well;

In the above definition, the first rule defines that prefixes pertaining to agent
action shall be input events in the ATS. This means that the event shall be
given by some external source as an input. The second rule, in turn, defines
that all prefixes concerning stimulation are transformed in output events.
That is to say, such events are to be given to some external receptor. We
shall see in Chapter 7 that the external source and receptor, in this thesis, is
the simulator which controls the agents. At that point it will be clear that
this difference between output and input is fundamental, since in one case the
simulation may always proceed, whereas in the other case it depends on a
condition which is not certain to be fulfilled.

The states of the original π-calculus LTS must also be augmented with con-
textual information relevant to the ATS. Thus, besides the original π-calculus
process, the state will also contain an environment status tuple that we
saw earlier, resulting in the following form.

Definition 6.8 (Environment State). Let Env be an environment and Proc
be a π-calculus process obtained by applying π-calculus operational semantics
rules to [Env ]π. Moreover, let 〈Stimulation,Response,Literals〉 be an envi-
ronment status. Then an environment state is defined as the following environment state

pair:

(Proc, 〈Stimulation,Response,Literals〉)

By this construction, at any point of the ATS we shall be able to know
both what is the current situation of the agents in so far as the environment is
concerned (because of the added environment status) and what are the possible
changes from that point (because of the π-calculus operational semantics).
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At last, given a method of obtaining the relevant events, and the form of the
environment states, we now define the unrestricted environment ATS
inductively.

Definition 6.9 (Unrestricted Environment ATS). Let Env be an environ-
ment (Definition 5.6), and let ֌ be the transition relation induced by the
π-calculus operational semantics (Definition E.5). Then the unrestricted
environment ATS 〈S ,E ,P ,→,L, s0〉 is such that:unrestricted envi-

ronment ATS

• P = Propositions;

• S and → are constructed inductively as follows:

– Initial state. s0 = ([Env ]π, es) ∈ S, where
es = 〈Stimulation,Response,Literals〉 such that L(s0) = Literals
and for all a ∈ Actions, s ∈ Stimuli , and n ∈ AgentIDs we have
Stimulation(n, s) = Absent and Response(n, a) = NotEmitting.

– Other states and transitions.
If s1 = (Proc1, 〈Stimulation1,Response1,Literals1〉) ∈ S,
then s2 = (Proc2, 〈Stimulation2,Response2,Literals2〉) ∈ S, s1

e
→

s2, e ∈ E and L(s2) = Literals2 if and only if:

∗ There exists a π-calculus event l such that Proc1
l
֌ Proc2 and

e = econv(Proc1, l ,Proc2);

∗ Stimulation2 is defined with respect to Proc2 according to Def-
inition 6.11.

This definition can be summarized as follows. The ATS has an initial state,
which is made of the π-calculus process of some environment, as well as an
environment status that says that all actions are not being emitted, and
that all stimuli are absent in every agent. From this initial state we begin
the construction of the remaining (reachable) states and of the transition
relation. This is accomplished by using the π-calculus operational semantics to
know the available transitions at any given state, and augment the reachable
states with environment status. This procedure is repeated to every new
state introduced until there are no new transitions possible.

To proceed with this construction, we need a number of definitions. Let us
begin by providing a way to observe the internal transitions of an environment,
which is a fundamental capability that we need before proceeding. As seen in
Definition 5.6, an environment’s π-calculus process has a number of restrictions
that would prevent such observations (i.e., the transitions would be internal
to the process and not discernible in the LTS). It is, however, possible to
characterize these restrictions syntactically, and thus we may provide a simple
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method to remove them when needed. This is accomplished by the following
environment unrestriction function unr .

Definition 6.10 (Environment Unrestriction Function). Let P and Q be π-
calculus processes such that

P = (ν en1, . . . , eno)Q

where {en1, . . . , eno} = ENames. Then the environment unrestriction
function is defined as unr(P) = Q. environment unre-

striction function

We may now define the Stimulation function present in each state as follows.

Definition 6.11 (Stimulation). Let (Proc, 〈Stimulation,Response,Literals〉)
be an environment state. Moreover, let→ be the transition relation induced
by the π-calculus operational semantics. Then, for all s ∈ Stimuli and n ∈
AgentIDs, we have:

Stimulation(n, s) =





Absent if ∃P ′such that unr(P)
beginningns→ P ′

Beginning if ∃P ′such that unr(P)
stablens→ P ′

Stable if ∃P ′such that unr(P)
endingns→ P ′

Ending if ∃P ′such that unr(P)
absentns→ P ′

The Stimulation definition establishes the status of a particular stimulation
based on the order that stimulations must change (see Definition 5.7). For
instance, if a process is capable of receiving a beginningns event, it must be
the case that stimulus s is currently absent in agent identified by n. The
Stimulation function, therefore, merely gives a way of reading the π-calculus
LTS in order to have this information explicitly for every agent and stimulus
in any given process.

On the other hand, both the Response function and the Literals set are as-
sumed as given. In Chapter 7 we will see that the simulator provides their
values according to the current simulation state. Thus, we do not need to
formally define them here. However, Response imposes some constraints on
the ATS, which we must specify and take into account.

6.2.2.2 Step 2: From the Unrestricted Environment ATS to the
Environment ATS

The unrestricted environment ATS we have obtained so far is an over-
approximation of the desired ATS. It contains runs which are not supposed to
be part of the model. For instance, if an agent identified by n is still emitting
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an action a, it cannot be the case that the event ?stopna takes place, since
this would indicate that the agent is not emitting the action (a contradiction).
Such problems arise because the relation between the π-calculus specification
and the contextual information about the agents (i.e., the functions in an
environment status) has not yet been considered. To handle this issue,
the following constraints are used to prune the unrestricted environment
ATS.

Definition 6.12 (Transitions Constraints). Let
s1 = (P1, 〈Stimulation1,Response1,Literals1〉) and s2 be states of an ATS
〈S ,E ,P ,→,L, s0〉. Then the transition s1

e
→ s2 is forbidden if one of the

cases hold:

• There exists a ∈ Actions and n ∈ AgentIDs such that:

– Response1(n, a) = Emitting;

– e =?stopna .

• There exists a ∈ Actions and n ∈ AgentIDs such that:

– Response1(n, a) = NotEmitting;

– e =?emitna .

• There exists a ∈ Actions and n ∈ AgentIDs such that:

– Response1(n, a) = Emitting;

– Response2(n, a) = NotEmitting;

– there exists an s ′ ∈ S such that s1
?emitna→ s ′.

• There exists a ∈ Actions and n ∈ AgentIDs such that:

– Response1(n, a) = NotEmitting;

– Response2(n, a) = Emitting;

– there exists an s ′ ∈ S such that s1
?stopn

a→ s ′.

The first constraint asserts that if an agent identified by n is emitting an
action a, then it cannot produce the ?stopna event to proceed to a new state.
Conversely, the second constraint states that if the agent is not emitting such
an action, then it cannot produce the ?emitna event. The third constraint
asserts that if the agent is emitting the action in a given state, and it proceeds
to a state in which it might no longer emitting such an action, then it must
not be the case that some process was still ready to receive that action (i.e.,
by producing the input event ?emitna ). This means that it can only stop

136



6.3. Conclusion

emitting an action when the action has already produced all of its effects.
The final constraint is the counterpart for stopping an emission. Hence, if an
agent is not emitting some action, and then it start emitting it, it must not
be the case that some process was still ready to receive the stop signal (i.e.,
by producing the input event ?stopna ).

With such restrictions in place, we may now proceed to the definition of the
final Environment ATS.

Definition 6.13 (Environment ATS). LetM be an unrestricted environ-
ment ATS (Definition 6.9). Then the environment ATS M′ is equal to environment ATS

M pruned according to transition constraints (Definition 6.12).

This environment ATS possibly has infinitely many states, since there
could be evolutions of the MAS that always result in new states. This arises
because the underlying π-calculus process may contain recursive definitions
and the use of the replication operator that ensure that the transition system
can always move into a new state.

6.3 Conclusion

We have seen in this chapter a special kind of transition system which we
have called ATS. Using such structures, we managed to provide the seman-
tics of EMMAS. We have therefore reduced the problem of analysing the
environment of an MAS to the one of analysing an ATS.

The semantics given, however, is not geared towards any particular application
of the MAS being modelled – it is a general semantics. In particular, details
necessary for the simulation of an EMMAS environment are not present.
This shows that EMMAS is capable of representing MASs independently of
their implementation (e.g., as a simulation), which is a desirable feature, and
for this reason we have proceeded in this way. Nevertheless, for the purposes of
the verification technique, it will be necessary to introduce new characteristics
in the semantics. Accordingly, we have left this provision for Chapter 7, which
is also where the verification technique is presented.
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CHAPTER 7
Verification Technique

In this chapter we present our approach to the formal verification of the multi-
agent systems composed by the agents and environments described in previous
chapters. In Section 1.1 of Chapter 1 we saw that in this thesis we view
verification as a means of performing experiments in an automated way. This
means that given a system modelM and a property SP, we determine whether
M satisfies SP in a number of precise senses that we introduce. Notably, there
is a sense in which the satisfaction of SP provides the instructions of how to
bring it about, in the spirit of the experimental perspective we take (i.e., by
showing how to construct a successful experiment out of several possibilities).
All this is accomplished by algorithms that perform on-the-fly explorations in
M.

Formally, M is an annotated transition system (ATS) (possibly with
infinitely many states ) and SP is a simulation purpose . The former
represents an EMMAS environment, while the latter is introduced in the
present chapter – but for the moment it suffices noting that it is a finite ATS
subject to certain extra restrictions. Verification is achieved by considering
the synchronous product of these two transition systems. The algorithms
perform depth-first searches on this synchronous product, which is built
on-the-fly. These searches are limited to a maximum depth depthmax , since
there might be branches of infinite length in the search tree.

These characteristics lead to many parameters to be accounted for in the
statement of the complexities. In a few words, the complexity in space is
polynomial with respect to the size of the environment and other parameters,
and the complexity in time is exponential with respect to depthmax . The
complete development of these calculations is provided in Section 7.6 of this
chapter.
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The technique described here is designed to work with the EMMAS environ-
ments, whose semantics was given in Chapter 6. However, in order to simulate
(a precondition for verification) such environments, it is necessary to introduce
certain implementation considerations in their semantics. Since this concerns
the particular application of EMMAS to simulation, and not its general role
with respect to MASs, we address this issue in this chapter as well.

We divide the presentation as follows. First, in Section 7.1 we explain the
necessity and make the required adjustments in the semantics of EMMAS so
that the resulting ATS can be used for simulations. In Section 7.2, we define
precisely what simulation purposes are. In Section 7.3, we present a syn-
chronous product that provides the basis for verification. Then, in Section
7.4 we define the satisfiability relations of interest. Based on these, in Section
7.5 we provide the verification algorithms themselves, and explain informally
how they work. More rigorous analyses concerning soundness, completeness
and worst-case complexities are given in Section 7.6. We finish with some
concluding remarks in Section 7.7. Actual execution of these algorithms is
postponed until Chapter 9.

7.1 Making the Environment ATS Suitable for
Simulation and Verification

The semantics we provided to EMMAS in Chapter 6 is sufficient to describe
all the relevant evolutions of any given environment, in the form of an ATS,
without making reference to implementation details. In particular, this ab-
stract model does not define precisely how a simulation based on EMMAS
should be carried out. However, since the verification technique is based on the
possibility of simulating an MAS, it is necessary, before proceeding, to make
the semantics provided there more concrete so that each run in the final ATS
corresponds to something that can be directly and efficiently simulated.

The problem lies in how the simulator is supposed to interact with the agents
while obeying the restrictions imposed by Definition 6.12. These restrictions
forbid certain transitions from happening by employing both preconditions
(i.e., what must be true in the current state ) and postconditions (i.e., what
must be true in the next state ). During simulations, the preconditions can
be assessed merely by examining the current simulation state. But the post-
conditions can only be known after the transition is simulated. If after this it
is found that the postconditions are violated, then it is necessary to backtrack
to the previous state and try another transition. Clearly, it would be more
efficient to have a way to be sure a priori that the postconditions will hold,
instead of having to test them and backtrack if needed.
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The restrictions given by Definition 6.12 are closely related to the behaviour of
the agents. In particular, the postconditions are given in terms of what actions
are being emitted or not emitted by agents (i.e., the value of Response2(n, a)
for a given agent identifier n and an action a). Hence, the satisfaction of such
postconditions is related to how the agents emit and stop emitting actions.

In Chapter 4 we saw that the agents must be periodically updated so that:
(i) they may receive new stimulation from the environment; and (ii) they may
provide new behavioural responses to the environment. Crucially, (ii) implies
that any change with respect to the actions an agent is emitting depends on
the execution of such an update. Therefore, it is possible to anticipate whether
postconditions will hold or not, provided that one knows the appropriate mo-
ments to perform the updates.

However, in the unrestricted environment ATS given in Chapter 6, this
information is not present. Thus, to prune it according to the constraints of
Definition 6.12, it is necessary to employ the inefficient strategy of simulating
a next state and backtracking if necessary. To see this more clearly, consider
the following possible run in such an unrestricted environment ATS:

s1
!beginning0u→ s2

!beginning0v→ s3
?emit0a→ s4

where s1, s2, s3 and s4 are states , and !beginning0u , !beginning
0
v and ?emit0a de-

note events relative to an agent identified by 0, stimuli u and v and an action a
(i.e., stimulation and action events concerning an agent). Let us further sup-
pose that the current state is s3 = (P3, 〈Stimulation3,Response3,Literals3〉)
and that Response3(0, a) = Emitting . The question is whether
s4 = (P4, 〈Stimulation4,Response3,Literals4〉) is a legal state . According to
Definition 6.12, it will be an illegal state if Response4(0, a) = NotEmitting
(i.e., if the action was being emitted and suddenly it is no longer being emit-
ted). However, since s4 has not yet been reached in the simulation, it is not
possible to know the valuation of Response4(0, a). Therefore, it is necessary

to simulate the transition s3
?emit0a→ s4 to obtain this valuation and if indeed

Response4(0, a) = NotEmitting , then the transition is considered illegal and it
is necessary to backtrack to state s3.

To address this issue, here we introduce a new event (called commit) to
signal when agents should both observe environmental events and provide
behaviours to the environment (i.e., when agents perform their update). Every
time the simulator encounters this event on a run, it executes the update
cycles of all agents. Furthermore, these updates can only happen in virtue of
such a commit event. If we apply this idea to the run given above, we would
get one or more runs containing the new commit event. For instance, the
following run defines that all events take place and only then the agent is
updated:
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s1
!beginning0u→ s2

!beginning0v→ s3
?emit0a→ s4

!commit
→ s ′

In this case, we can be sure that Response4(0, a) = Emitting (and therefore
that s4 is a legal state ) simply because the agent can only change the actions
it is emitting after a commit event. Thus, since Response3(0, a) = Emitting ,
and there is no commit between s3 and s4, it must be the case that Response4(0, a) = Emitting .

Similarly, the following run would also be legal:

s1
!beginning0u→ s2

!commit
→ s ′

!beginning0v→ s3
?emit0a→ s4

In this run, like in the previous one, the agent cannot stop emitting the action
when reaching state s4. However, in contrast with the previous run, stimulus
u and v are not taken in account by the agent at the same time. Rather,
first u is delivered, then the agent process it (because of the commit event),
and then v is delivered. This shows that besides facilitating the enforcement
of constraints, the presence of the commit event also makes it explicit the
difference between stimuli that are perceived simultaneously from those which
are not.

The position of the commit event in runsmust obey restrictions. So, contrary
to the previous runs, the following one would be illegal:

s1
!beginning0u→ s2

!beginning0v→ s3
!commit
→ s ′

?emit0a→ s4

In this case, it would be possible that the agent stops emitting a in s ′ (since
a commit allows such a change), but an ?emit0a event still takes place imme-
diately after, which would be a clear inconsistency. Therefore, this run is not
allowed.

The important point here is that it is possible, from any state , to determine
whether the commit event may happen next or not, without simulating the
transition. In this manner, it is also possible to avoid the problem of having to
simulate a successor state in order to determine its legality in a run. In this
section we show how to do this. Essentially, we need to constrain what may
happen between two consecutive commits, which can be done by examining
the events that have already taken place.

The events that happen between any such pair of consecutive commits can
be regarded as simultaneous as far as the agents are concerned, since they are
indeed perceived simultaneously. Nonetheless, this does not imply that the
events actually happened at the same time, nor would such an implication
be important: what matters is the order of events and how they are observed.

This strategy works under two assumptions: (i) the existence of a global
entity capable of enforcing the commit event upon all agents (i.e., request
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their updates as described above); and (ii) that the time between any two
consecutive commit events is greater than the time that it takes to execute the
events between them. The first assumption is met easily since the simulator
is such a global entity. The second assumption, however, imposes a limitation
on the kinds of MASs that can be considered, but allows the application of
the technique developed in this thesis. In making such an assumption we are
able to ignore time as an absolute and numeric entity, and regard merely the
order of events . It would be possible, of course, to consider more complex
temporal representations (e.g. continuous time, events of variable and long
duration), but this would introduce further problems that would be out of the
scope of the present work.

Let us now see precisely how this new commit event must be introduced and
how it leads to a new and more concrete (i.e., more specific to an application)
ATS. We follow a similar procedure to that which we used to get from an
environment to an environment ATS in Section 6.2.2. The difference here
is that we define a new π-calculus prefix, commit , and take it into account
when building the relevant transition systems. Given some environment, the
introduction of this new prefix is accomplished by defining a corresponding
concrete environment process as follows.

Definition 7.1 (Concrete Environment Process). Let Env be an environ-
ment (Definition 5.6). Then the following π-calculus expression

[Env ]π |!commit

is a concrete environment process. concrete environ-
ment process

The remaining transformations are also divided in two steps, analogous to
those of Section 6.2.2.

7.1.1 Step 1: From the Concrete Environment Process LTS to
the Unrestricted Environment ATS

First, we must adapt the event conversion function (Definition 6.7) to
account for the newly introduced commit π-calculus prefix. To do so, we
merely add a fourth rule to the three that we already had.

Definition 7.2 (Concrete Event Conversion Function). Let Proc1 and Proc2
be π-calculus processes, l a π-calculus event, a, x and y arbitrary names,
and ֌ the transition relation induced by the π-calculus operational seman-

tics (Definition E.5) such that Proc1
l
֌ Proc2. Then the concrete event

conversion function econvc is defined by the following rules: concrete event
conversion func-
tion143
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• If l = τ , and it was obtained in Proc1 by the internal reaction of some
a(x )ji and a j

i 〈y〉 such that a ∈ {emit , stop}, then econvc(Proc1, l ,Proc2) =

?a j
i ;

• If l = τ , and it was obtained in Proc1 by the internal reaction of some
a j
i (x ) and a j

i 〈y〉 such that a ∈ {absent , beginning , stable, ending}, then

econvc(Proc1, l ,Proc2) =!a j
i ;

• If l = τ and none of the previous cases hold, then econvc(Proc1, l ,Proc2) =
τ as well;

• If l = commit〈x 〉, then econvc(Proc1, l ,Proc2) =!commit.

The states of the final ATS will be very similar as well, the only difference
is that they are induced from a concrete environment process.

Definition 7.3 (Concrete Environment State). Let Env be an environment
and Proc be a π-calculus process obtained by applying π-calculus operational
semantics rules to the corresponding concrete environment process. More-
over, let 〈Stimulation,Response,Literals〉 be an environment status. Then
an concrete environment state is defined as the following pair:concrete environ-

ment state
(Proc, 〈Stimulation,Response,Literals〉)

The Concrete Unrestricted Environment ATS is obtained in almost the
same manner of Unrestricted Environment ATS (Definition 7.4), the dif-
ference being that now the initial state is calculated using a synchronous
environment process.

Definition 7.4 (Concrete Unrestricted Environment ATS). Let Env be an
environment (Definition 5.6), and let ֌ be the transition relation induced
by the π-calculus operational semantics (Definition E.5). Then the concrete
unrestricted environment ATS 〈S ,E ,P ,→,L, s0〉 is such that:concrete unre-

stricted environ-
ment ATS

• P = Propositions;

• S and → are constructed inductively as follows:

– Initial state. s0 = ([Env ]π |!commit , es) ∈ S, where
es = 〈Stimulation,Response,Literals〉 such that L(s0) = Literals
and for all a ∈ Actions, s ∈ Stimuli , and n ∈ AgentIDs we have
Stimulation(n, s) = Absent and Response(n, a) = NotEmitting.

– Other states and transitions.
If s1 = (Proc1, 〈Stimulation1,Response1,Literals1〉) ∈ S,
then s2 = (Proc2, 〈Stimulation2,Response2,Literals2〉) ∈ S, s1

e
→

s2, e ∈ E and L(s2) = Literals2 if and only if:
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∗ There exists a π-calculus event l such that Proc1
l
֌ Proc2 and

e = econvc(Proc1, l ,Proc2);

∗ Stimulation2 is defined with respect to Proc2 according to Def-
inition 6.11.

7.1.2 Step 2: From the Concrete Unrestricted Environment ATS
to the Concrete Environment ATS

This second step brings some more substantial differences with respect to the
construction of Section 6.2.2. The reason is that the newly introduced commit
event requires special constraints to be imposed on the ATS.

The first set of special constraints is similar to those of Definition 6.12. How-
ever, here the presence of the !commit event is used to calculate the third
and the fourth constraint.

Definition 7.5 (Local Transition Constraints). Let
s1 = (P1, 〈Stimulation1,Response1,Literals1〉) and s2 be states of an ATS
〈S ,E ,P ,→,L, s0〉. Then the transition s1

e
→ s2 is forbidden if one of the

cases hold:

• There exists a ∈ Actions and n ∈ AgentIDs such that:

– Response1(n, a) = Emitting;

– e =?stopna .

• There exists a ∈ Actions and n ∈ AgentIDs such that:

– Response1(n, a) = NotEmitting;

– e =?emitna .

• There exists a ∈ Actions and n ∈ AgentIDs such that:

– Response1(n, a) = Emitting;

– e =!commit.

– there exists an s ′ ∈ S such that s1
?emitna→ s ′.

• There exists a ∈ Actions and n ∈ AgentIDs such that:

– Response1(n, a) = NotEmitting;

– e =!commit.

– there exists an s ′ ∈ S such that s1
?stopn

a→ s ′.
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In addition to these local restrictions, we must also introduce some run con-
straints in order to limit what may happen between two !commit events . By
this provision, we ensure that events that must be processed separately by
the agents are properly handled (i.e., because agents only update their internal
state after the !commit event). These constraints are actually new, and had
nothing equivalent in Section 6.2.2.

Definition 7.6 (Run Constraints). Let M = 〈S ,E ,P ,→,L, s0〉 be an ATS,
{s0, s1, s2, . . . , sn} ⊆ S a subset of its states , and {e1, e2, . . . , en−2} ⊆ E a
subset of its events such that the run

s0
!commit
→ s1

e1→ s2
e2→ . . .

en−2
→ sn−1

!commit
→ sn

is defined and for all 1 ≤ i ≤ n − 2, we have that ei 6=!commit. Moreover,
for all 0 ≤ i ≤ n, let si = (Pi , 〈Stimulationi ,Responsei ,Literalsi〉) be an
environment state. Then, this run is forbidden if one of the following
cases hold:

• There exist 1 ≤ i , j ≤ n − 2, s ∈ Stimuli and id ∈ AgentIDs such that:

– i 6= j ;

– ei ∈ {!beginning
id
s , !stable ids , !ending ids , !absent idcrs};

– ej ∈ {!beginning
id
s , !stable ids , !ending ids , !absent ids }.

• There exist 1 ≤ i , j ≤ n − 2, a ∈ Actions and id ∈ AgentIDs such that:

– i 6= j ;

– ei ∈ {?emit ida , ?stopida };

– ej ∈ {?emit ida , ?stopida }.

• There exist 1 ≤ i , j ≤ n − 1 such that Responsei 6= Responsej .

The first constraint ensures that only one stimulation event concerning a
particular agent and stimulus can take place between commit events . This
allows the agent to process such events correctly, that is to say, one per
commit signal. The second constraint is analogous, but concerns an agent’s
actions. Finally, the third constraint defines that the agents must not change
their choice of actions before the next !commit event.

Finally, we arrive at the ATS that is subject to simulation and verification.

Definition 7.7 (Concrete Environment ATS). Let M be a concrete unre-
stricted environment ATS (Definition 7.4). Then the Concrete Envi-
ronment ATS M′ is equal to M subject to local (Definition 7.5) and runConcrete Envi-

ronment ATS (Definition 7.6) constraints.
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Like the environment ATS of Definition 6.13, and for the same reasons, this
concrete environment ATS possibly has infinitely many states.

7.2 Simulation Purposes

The simulation purposes developed in this thesis are adapted from the no-
tion of formal test purposes of Jard and Jéron (2005). As we saw in Section
3.4.1, what we reuse here is mainly the idea of employing a transition system
to specify the relevant paths in another transition system, which allows the
partial exploration of the latter. However, whereas Jard and Jéron (2005) are
interested in using this partial exploration to generate test cases, a simula-
tion purpose is used to select the simulation paths and check the relevant
satisfiability criteria during the exploration itself. It thus provides a way to
specify the relevant simulation runs.

A simulation purpose is an ATS subject to a number of restrictions. In
particular, it defines states to indicate either success or failure of the verifica-
tion procedure, and requires that, from every other state, one of these must
be reachable. Intuitively, it can be seen as a specification of desirable and
undesirable simulation runs. Each possible path in a simulation purpose
terminating in either success or failure defines one such run. Formally, we
have the following.

Definition 7.8 (Simulation Purpose). A simulation purpose (SP) is an simulation pur-
poseATS 〈Q ,E ,P ,❀,L, q0〉 such that:

(i) Q is finite.

(ii) Success ∈ Q is the verdict state to indicate success.

(iii) Failure ∈ Q is the verdict state to indicate failure.

(iv) L(q0) = L(Success) = L(Failure) = ∅.

(v) For every q ∈ Q, if there are q ′, q ′′ ∈ Q and e ∈ E such that q
e
❀ q ′ and

q
e
❀ q ′′, then q ′ = q ′′ (i.e., the system is deterministic).

(vi) For every q ∈ Q, there exists a run from q to either Success or Failure.

These restrictions merit a few comments. First, requirement (iv) specifies
that L(q0) = ∅, which ensures that the initial state can always synchronize
with the initial state of another ATS. This is a way to guide the simulation
from the start. Second, condition (v) ensures that there are no two identi-
cal event paths such that one leads to Success and another to Failure. For
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example, if non-deterministic transitions were allowed, we could have both
the run (s0, e0, s1, e1,Success) and (s0, e0, s1, e1,Failure), which is inconsis-
tent (i.e., because identical situations must have identical verdicts). That this
works is shown in Proposition 7.1. Finally, restriction (vi) ensures that every
state can, in principle, lead to a verdict. Nevertheless, an inconclusive ver-
dict might be issued owing to the presence of cycles and the finite nature of
simulation runs.

A visual depiction of both a general ATS and a simulation purpose is given
in Figure 7.1.
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Figure 7.1: Examples of: M, an ATS; and SP, a simulation purpose. Transitions
are annotated with events (i.e., ?a, ?b, ?c, ?d , ?e, ?f , !a, !b, !c, !d , !e, !f ) and states
are annotated with literals (i.e., x , y , z ). The Success state is denoted by the green
double circle, while the Failure state is denoted by the red double square. The dots
(. . .) denote thatM continues beyond the states shown (it may have infinitely many
states ).

7.3 Synchronous Product of an ATS and a SP

The idea that a simulation purpose can guide what runs to generate in
another ATS is formalized by the notion of synchronization . Since both
events and states contain relevant information for this guidance, a particular
definition for each case is first required. With respect to events , it is also
necessary to introduce a notion of complementarity between events , which
allows their synchronization.

Definition 7.9 (Complementary Event). Let e be an event. Then its com-
plementary event , denoted by eC , is defined ascomplementary

event
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eC =





!n if e =?n
?n if e =!n
τ if e = τ
� if e = �

Definition 7.10 (Event Synchronization). Let SP = 〈Q ,Esp ,Psp ,❀,Lsp , q0〉
be a simulation purpose, and M = 〈S ,E ,P ,→,L, s0〉 be an ATS. More-
over, let

q1
e1
❀ q2 be a transition from SP; and

s1
e2→ s2 be a transition fromM.

Then we define that events e1 and e2 synchronize if, and only if, one of the synchronize

following cases holds:

• e1 =?n and e2 =!n for some name n; or

• e1 =!n and e2 =?n for some name n; or

• e1 = � and there is no q ′ ∈ Q such that q1
eC
2
❀ q ′; or

• e1 = e2 = τ .

Moreover, we denote the fact that e1 and e2 synchronize by

e1 ⊲⊳ e2

The synchronization of states does not require a similar notion of complemen-
tarity. Its sole purpose is to check whether the state being considered has, or
has not, a required set of propositions. The appropriate notion, therefore, is
that of set inclusion.

Definition 7.11 (State Synchronization). Let SP = 〈Q ,Esp ,Psp ,❀,Lsp , q0〉
be a simulation purpose, and M = 〈S ,E ,P ,→,L, s0〉 be an ATS. More-
over, let q ∈ Q be a state from SP and s ∈ S be a state from M. Then we
define that q and s synchronize if, and only if, synchronize

Lsp(q) ⊆ L(s)

Moreover, we denote the fact that q and s synchronize by

q ⊲⊳ s
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We may then specify the overall synchronous product , which, by synchro-
nizing events and states , selects only the runs relevant for the simulation
purpose. The result of such a product, then, is an ATS that contains only
the relevant runs.

Definition 7.12 (Synchronous Product of a Simulation Purpose and an
ATS). Let SP = 〈Q ,Esp ,Psp ,❀,Lsp , q0〉 be a simulation purpose, and M =
〈S ,E ,P ,→,L, s0〉 be an Environment ATS. Then their synchronous prod-
uct , denoted assynchronous prod-

uct

SP ⊗M

is an ATSM′ = 〈S ′,E ′,P ′,→′,L′, s ′0〉 such that:

• E ′ = E;

• P ′ = P;

• S ′ and →′ are constructed inductively as follows:

– Initial state. s ′0 = (q0, s0) ∈ S ′ and L′(s ′0) = L(s0).

– Other states and transitions. Built using the following rule1:

q
e1
❀ q ′ s

e2→ s ′ (q , s) ∈ S ′ e1 ⊲⊳ e2 s ′ ⊲⊳ q ′

(q , s)
e2

→′ (q ′, s ′)
SYNCH

• If (q ′, s ′) ∈ S ′, then L′((q ′, s ′)) = L(s ′)

This product defines the search space relevant for the algorithms. For this
reason, we may refer to it as if it was completely computed. Nevertheless,
algorithmically it can be built on-the-fly , and we profit from this in order to
perform verification.

We refer to runs of synchronous products as synchronous runs.

Definition 7.13 (Synchronous Run). A run in a synchronous product is
called a synchronous run .synchronous run

In the example of Figure 7.1, the only such synchronous run is the following:

((q0, s0), ?a, (q1, s1), ?b, (q2, s2), !d , (Success, s4))

This can be seen by examining Figure 7.2.

1As seen in Definitions 7.10 and 7.11, a ⊲⊳ b means that a and b synchronize.
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Figure 7.2: Only the shaded runs in the ATSM and the simulation purpose SP
can synchronize.

7.4 Satisfiability Relations

Given an ATS M and a simulation purpose SP, one is interested in
whether M satisfies SP. There are a number of ways in which such satis-
faction can be defined, and we call each one a satisfiability relation.

To begin with, we may be interested in whether the simulation purpose
is capable of conducting to a state of either success or failure. This is to
be interpreted as the possibility of constructing an experiment, which can be
used as evidence either in favour or against some hypothesis. This can be done
in either a weak manner or a strong manner. In the weak manner, at each
step in the experiment one is concerned only with the possibility of proceeding
to a next desirable step, without forbidding other courses of action. In the
strong manner, on the other hand, at each step in the experiment one may
forbid certain actions, so that if they are possible the step is considered useless.
These notions are formalized as follows.

Definition 7.14 (Feasibility). Let SP be a simulation purpose, M be an
ATS and R ⊆ runs(SP ⊗M). Then we define that:

• SP is weakly feasible with respect to M and R if, and only if, there weakly feasible

exists a synchronous run (called weakly feasible run) r ∈ R such weakly feasible
runthat its last state (q , s) is such that q = Success. Otherwise, we call it

weakly unfeasible; weakly unfeasible

• SP is strongly feasible with respect toM and R if, and only if, there strongly feasible

exists a synchronous run (called strongly feasible run) r ∈ R such strongly feasible
runthat: (i) its last state (q , s) is such that q = Success; and (ii) there is
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no r ′ ∈ R such that it has a common state (q ′, s ′) with r and (q ′, s ′)
e
❀

(Failure, s ′′) is in r ′, for some e and s ′′. Otherwise, we call it strongly
unfeasible.strongly unfeasi-

ble

Moreover, if one of the two cases above hold, we say that SP is feasible withfeasible

respect toM, and the corresponding run is called feasible run .feasible run

Definition 7.15 (Refutability). Let SP be a simulation purpose,M be an
ATS and R ⊆ runs(SP ⊗M). Then we define that:

• SP is weakly refutable with respect toM and R if, and only if, thereweakly refutable

exists a synchronous run (called weakly refutable run) r ∈ R suchweakly refutable
run that its last state (q , s) is such that q = Failure. Otherwise, we call it

weakly irrefutable;weakly ir-
refutable

• SP is strongly refutable with respect toM if, and only if, there existsstrongly
refutable a synchronous run (called strongly refutable run) r ∈ R such that:
strongly
refutable run (i) its last state (q , s) is such that q = Failure; and (ii) ii) there is no

r ′ ∈ R such that it has a common state (q ′, s ′) with r and (q ′, s ′)
e
❀

(Success, s ′′) is in r ′, for some e and s ′′. Otherwise, we call it strongly
irrefutable.strongly ir-

refutable

Moreover, if one of the two cases above hold, we say that SP is refutablerefutable

with respect toM, and the corresponding run is called refutable run .refutable run

In the above definitions, the set R of runs to consider is left as a parameter
because the notions of feasibility and refutability are applicable even in the
case where not all possible runs (i.e., runs(SP ⊗M)) can be known. Later
in this chapter we show how this can be used to perform verifications with
respect to the incomplete observations obtained through a simulator.

A simulation purpose can be both feasible and refutable with respect to
the same ATS. In such a case, it merely means that there are experiments
that lead to different verdicts, which is not a contradiction2.

It might be interesting, though, to know whether all the experiments that
follow from a simulation purpose lead to the same verdict . In this case,
we are interested in establishing that all courses of action are either acceptable
or unacceptable. This can be useful, for instance, if the simulation purpose
is to model a protocol to be followed, and which, therefore, should always lead
to some desirable state.

2In contrast, as remarked earlier, a contradiction would follow if the same experiment
was to lead to different verdicts. But owing to the definition of simulation purposes, this
can never happen, as we show in Proposition 7.1 below.
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Definition 7.16 (Certainty). Let SP be a simulation purpose, M be an
ATS and R ⊆ runs(SP ⊗ M). Then we define that SP is certain with certain

respect toM if, and only if, every run in R terminates in a state (q , s) such
that q = Success.

Definition 7.17 (Impossibility). Let SP be a simulation purpose, M be
an ATS and R ⊆ runs(SP ⊗M). Then we define that SP is impossible impossible

with respect toM if, and only if, every run in R terminates in a state (q , s)
such that q = Failure.

Clearly, a simulation purpose only has value if it is capable of reaching some
of its terminal states . Depending on the structure of the ATS to be verified,
this might not happen in their synchronous product. In such a case the
simulation purpose is incapable of providing information about the ATS.
Therefore, there is an important notion of informativeness that we wish to
attain.

Definition 7.18 (Informativeness). Let SP be a simulation purpose and
M be an ATS. Then we define that SP is informative with respect to M informative

if, and only if, it is either feasible or refutable. Otherwise, SP is said to
be uninformative. uninformative

We claimed in Section 7.2 that simulation purposes avoid non-determinism
in order to provide consistent verdicts. We now carefully justify this.

Proposition 7.1 (Consistency). Let SP be a simulation purpose, M be
an ATS and Prod = SP ⊗M. Moreover, let t1 and t2 be runs of Prod which
share a subrun t and an event e such that

• t1 = t .e.(q1n , s
1
n)

• t2 = t .e.(q2n , s
2
n)

Then, we have that q1n = q2n .

Proof. Let n − 1 be the length of subrun t , and (qn−1, sn−1) be its last
state. By hypothesis, (qn−1, sn−1)

e
→ (q1n , s

1
n) is a transition in Prod . Then,

because of the determinism requirement on simulation purposes, it follows
that there exists exactly one transition in SP from qn−1 using the event e,
namely, qn−1

e
❀ q1n . Therefore, if (qn−1, sn−1)

e
→ (q2n , s

2
n) is also a transition

in Prod , it must be the case that it arises from the synchronization with
same transition in SP, which implies that q1n = q2n .

This result does not depend on determinism concerningM, but only SP.
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7.5 Verification Algorithms

The satisfiability relations presented in the previous section can be verified by
analysing the synchronous product given by Definition 7.12. The required
algorithms, moreover, are all very similar: they all consist in a depth-first
search on this product. For this reason, we first present and analyse extensively
the algorithm for checking feasibility (Algorithm 1). By a trivial modification
of the input, the same algorithm can be used to check refutability. We
then define the algorithm for checking certainty (Algorithm 2), which is very
similar to Algorithm 1, but do require some subtle adjustments. Again, by a
trivial modification of the input, Algorithm 2 can also be used to check the
remaining impossibility relation. It is therefore only necessary to provide
these two algorithms to verify all the satisfiability relations defined previously.
Both algorithms require the existence of a simulator interface to interact with,
so we begin by introducing it.

7.5.1 Simulator Interface

Before we proceed to the verification algorithms themselves, it is necessary
to introduce a way for them to access the simulation infrastructure. We do
this here by specifying a number of operations that the simulator must make
available to the verification algorithms. This means that any simulator that
provides this interface can be used to implement the verification technique
presented in this chapter.

The required simulator interface is composed by the following operations:

• GoToState(sim): Makes the simulation execution return to the specified
simulation state sim, which must have taken place previously.

• CurrentState(): Returns the current simulation state.

• ScheduleStep(e): Schedules the specified event e for simulation.

• Step(): Requests that all scheduled events get simulated.

• isCommitEvent(e): Checks whether e is an event that serves as a signal
of when it is appropriate to call the Step() operation. Such an event
can be thought of as a clock used by the simulator. If the simulator does
not employ any such special event, then this operation always returns
true.

• Successors(ATS, s): Calculates the finite set of all transitions in the
specified ATS that can be simulated and that have the state s as their
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origin. This operation is necessary to allow the on-the-fly construction
of ATS.

7.5.2 Feasibility Verification

Algorithm 1 implements feasibility verification. Besides the simulator oper-
ations described above, it also assumes that the following simple elements are
available:

• CanSynch(q
f
❀ q ′, s

g
→ s ′): Checks whether the two specified transitions

can synchronize according to Definition 7.12.

• depthmax : The maximum depth allowed in the search tree. Note that
since simulations are always finite (i.e., they must stop at some point),
we can assume that depthmax is finite.

• max int: A very large integer (in most common programming lan-
guages, this can be the maximum integer available, thus the name),
which is used to indicate distances that can be considered as infinite. It
is assumed that in a simulation purpose all shortest paths from any
state to verdict states are less than max int.

The remaining procedures required for the algorithm are given explicitly after
it.

A careful and detailed investigation of the correctness and the complexities of
Algorithm 1 is provided in Section 7.6. Before proceeding to this, however, let
us explore more informally how the algorithm works and the related issues.

How the Algorithm Works First of all, a preprocessing of the simulation
purpose is required. This consists in calculating how far from Success, the
desired verdict state, each of the states in the simulation purpose is. By
this provision, we are able to take the shortest route from any given simula-
tion purpose state towards Success. The importance of such a route is that
it avoids cycles whenever possible, which is crucial to prevent the algorithm
from entering in infinite loops later on. For every simulation purpose state
q , then, its distance to the desired verdict state is stored in dist [q ]. How-
ever, if one is checking strong feasibility, dist [Failure] is set to −1, so that
later the algorithm will always find a successor that leads to Failure before
any other successor (in order to discard it promptly, and thereby respect the
strong variant of feasibility).

Once this preprocessing is complete, the algorithm performs a depth-first
search on the synchronous product SP ⊗ M. The central structure to
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Algorithm 1: On-the-fly verification of feasibility

Input: A simulation purpose SP = 〈Q ,Esp ,Psp ,❀,Lsp , q0〉, the
initial state s0 of an ATSM and a variant ∈ {weak , strong}.

Output: SUCCESS and a feasible run; FAILURE; or INCONCLUSIVE.
1 dist [ ] := Preprocess(SP, Success);
2 if variant = strong then dist [Failure] = −1;
3 let SynchStack be an empty stack;
4 let sim0 := CurrentState() ;
5 let Unexplored0 := Successors(SP, q0);
6 Push (q0, s0,nil,nil, sim0,Unexplored0, 0) on SynchStack ;
7 let verdict := FAILURE;
8 while SynchStack 6= ∅ do
9 Peek (q , s, e, p, sim,Unexplored , depth) from SynchStack ;

10 let progress := false;
11 while Unexplored 6= ∅ ∧ progress = false ∧ depth < depthmax do

12 q
f
❀ q ′ := RemoveBest(Unexplored, dist [ ]);

13 let depth ′ := depth + 1;
14 let Succs := Successors(M, s);
15 while Succs 6= ∅ do

16 Remove some s
g
→ s ′ from Succs;

17 GoToState(sim);
18 ScheduleStep(g);
19 if isCommitEvent(g) then
20 Step();

21 if CanSynch(q
f
❀ q ′, s

g
→ s ′) then

22 if q ′ = Failure ∧ variant = strong then
23 Pop from SynchStack ;
24 progress := true;
25 Succs := ∅;

26 else
27 sim ′ := CurrentState();
28 unexplored ′ := Successors(SP, q ′);
29 Push (q ′, s ′, g , q , sim ′, unexplored ′, depth ′) on

SynchStack ;
30 progress := true;

31 if q ′ = Success then
32 return SUCCESS and BuildRun(SynchStack, q ′,

depth ′);

33 if depth ≥ depthmax then verdict := INCONCLUSIVE;
34 if progress = false then Pop from SynchStack ;

35 return verdict ;
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Procedure Preprocess(SP, v)

Input: A simulation purpose SP = 〈Q ,E ,P ,❀,L, q0〉 and a
verdict state v .

Output: A function dist : Q −→ Z such that, for every q ∈ Q , dist [q ]
is the minimal distance between q and v .

1 let visited [ ] be a map from states to boolean values;
2 let dist [ ] be a map from states to either integers or nil;
3 foreach q ∈ Q do
4 visited [q ] := false;
5 dist [q ] := nil;

6 PreprocessAux(SP, q0, v , dist [ ], visited [ ]);
7 foreach q ∈ Q do
8 visited [q ] := false;

9 PreprocessAux(SP, q0, v , dist [ ], visited [ ]);
10 return dist [ ];

achieve this is the stack SynchStack . Every time a successful synchroniza-
tion between a transition in SP and one inM is reached, information about
it is pushed on this stack. The pushed information is a tuple containing the
following items:

• The state q of SP that synchronized.

• The state s ofM that synchronized.

• The event e of M that synchronized. This will be used later to
calculate a synchronous run.

• The state p of SP that came immediately before the one that has been
synchronized (i.e., p

e
❀ q). Again, this will be used later to calculate

a run.

• The state of the simulation, sim, which can be extracted from the sim-
ulator using the CurrentState() function.

• The set of transitions starting at q (i.e., Unexplored = Successors(SP,
q)) which have not been explored yet.

• The depth in the search tree.

In the beginning, we assume that the initial states of both transition systems
synchronize and push the relevant initial information on SynchStack . There-
after, while there is any tuple on the stack, the algorithm will systematically
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Procedure PreprocessAux(SP, source, v , dist , visited)

Input: A simulation purpose SP = 〈Q ,E ,P ,❀,L, q0〉, a
source ∈ Q , a map dist [ ], a map visited [ ] and a verdict state
v .

1 visited [source] = true;
2 if source = v then
3 dist [source] := 0;

4 else
5 let min := nil;
6 if Successors(SP, source)= ∅ then
7 min := max int ;

8 else

9 foreach source
f
❀ q ′ do

10 if visited [q ′] = false then
11 PreprocessAux(SP, q ′, v , dist [ ], visited [ ]);

12 if dist [q ′] 6= nil then
13 if min = nil then
14 min := dist [q ′]

15 else if dist [q ′] < min then
16 min := dist [q ′];

17 if min 6= nil ∧ min 6= max int then
18 min := min + 1;

19 dist [source] := min;

Procedure RemoveBest(Unexplored , dist)

Input: A set Unexplored of transitions of a simulation purpose and
a map dist [] from of states to integers.

Output: A transition in Unexplored .
1 let q

e
❀ q ′ ∈ Unexplored such that there is no q

e
❀ q ′′ ∈ Unexplored

with dist [q ′′] < dist [q ′];

2 return q
e
❀ q ′
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Procedure BuildRun(SynchStack, q∗, depth∗)

Input: A search stack SynchStack , the last simulation purpose
state q∗ to include in the run to be built, and the depth
depth∗ of this state.

Output: A synchronous run.
1 let Run be a list initially empty;
2 while SynchStack 6= ∅ do
3 Pop (q ′, s ′, f , q , sim,Unexplored , depth) from SynchStack ;
4 if q ′ = q∗ ∧ depth∗ = depth then
5 Put (q ′, s ′) at the beginning of Run;
6 Put f at the beginning of Run;
7 q∗ := q ;
8 depth∗ := depth∗ − 1;

9 return Run;

examine it. It peeks the topmost tuple, (q , s, e, p, sim,Unexplored , depth), and
access its Unexplored set. These are simulation purpose transitions begin-
ning in q which have not yet been considered at this point. The algorithm will
examine each of these transitions while: (i) no synchronization is possible
(i.e., the variable progress is false); and (ii) the search depth is below some
maximum limit depthmax . In case (i), the rationale is that we wish to proceed
with the next synchronized state as soon as possible, so once we find a
synchronization, we move towards it. If that turns out to be unsuccessful,
the set Unexplored will still hold further options for later use. In case (ii), we
are merely taking into account the fact that there are situations in which the
algorithm could potentially go into an infinite depth. For instance, SP could
contain a cycle that is always taken because no other synchronizations are
possible starting from the beginning of this cycle. The depth limit provides
an upper-bound in such cases, and forces the search to try other paths which
might lead to a feasible run, instead an infinite path.

In each iteration of this while loop, the algorithm selects the best transition

q
f
❀ q ′ available in Unexplored . This selection employs the preprocessing

of the simulation purpose, and merely selects the transition that is closer

to the goal. That is to say, q ′ is such that there is no q
f
❀ q ′′ such that

dist [q ′′] < dist [q ′]. As we remarked above, this is intended to guide the search
through the shortest path in order to avoid cycles whenever possible. Once
such a transition is chosen, we may examine all possible transitions of M
starting at s, the current synchronized state.

At this point, the simulator interface will be of importance. For each such
transition s

g
→ s ′, we have to instruct the simulator to go to the simulation
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state sim in the peeked tuple. This simulation state holds the configuration
of the structures internal to the simulator that correspond to the transition
system state s. The algorithm may then request that the event g be sched-
uled. Then, if the event turns out to be a commit event, the simulator is
instructed to perform one simulation step, which implies in delivering all the
scheduled events . This will put the simulator into a new state, which will

correspond to s ′ in M. Then we may check whether q
f
❀ q ′ and s

g
→ s ′ can

synchronize. If it is possible, then q ′ is Success, Failure or another state in
Q . In the first case we have found the feasible run we were looking for and
we are done. The second case only matters if we are checking the strong vari-
ant of feasibility, in which case we must discard the current synchronization
state (by popping it from SynchStack and going to the next one) because it
has led to a Failure and thus according to the definition of strong feasibility
cannot be part of the strong feasible run. In the the third case, we merely
push the current (q ′, s ′, g , q , sim ′, unexplored ′, depth ′) tuple on SynchStack for
later analysis and signal that the search can move on by setting progress to
true.

If the algorithm abandons a search branch because its depth is greater or equal
to depthmax , the verdict in case of failure is set to be INCONCLUSIVE, since it
is possible that there was a feasible run with length greater than depthmax +
1 that was not explored. Moreover, it is possible that after examining all
transitions in Unexplored , none synchronized (i.e., the variable progress is
still set to false). If this happens, the tuple is popped from SynchStack
because by then we are sure that no feasible run will require it.

At last, if SynchStack becomes empty, it means that no run in SP up to
depthmax leads to a feasible run. So we return a verdict which will be FAILURE
if depthmax was never reached, or INCONCLUSIVE otherwise.

How the Algorithm Handles Cycles We have just said that a preprocessing
of SP is required in order to deal with its cyclic paths. By this provision, we
are able to determine at any state of SP which successor is closer to Success,
the desired verdict state. Since any cyclic path from a state is longer than
an acyclic one from the same state, this suffices to avoid cycles whenever
possible. That said, let us see how this minimum distance is calculated by
Preprocess().

The calculation is divided between the main Preprocess() procedure and
the auxiliary PreprocessAux() procedure. Indeed, Preprocess() merely:
(i) initializes two maps, visited [ ] and dist [ ], which stores whether a state has
been visited and the distance from a state to the desired verdict, respectively;
and (ii) call PreprocessAux() twice. In the first call, all the acyclic paths are
examined and have the corresponding dist [ ] values set. In the second call,
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using this partial dist [ ], PreprocessAux() is then capable of computing the
distances for the states in cyclic paths as well.

PreprocessAux() is a function that for a given source state recursively ex-
amines all of its successor states q ′ to determine which one is closer to the
desired verdict state v . Once the closer successor q∗ is found, the function
merely sets dist [source] := dist [q∗]+1. The recursion base takes place in three
situations. First, when the source being examined is actually the verdict state
v , and therefore its distance is 0. Second, if the source being considered has
no successors, and thus cannot get to v , which implies that dist [source] is
infinite. And third, when all successors of source have already being visited.

In the latter case it means that the procedure has found a cycle. Moreover, be-
cause of the recursive nature of the procedure, none of these successors q ′ will
have their dist [q ′] set yet, so that dist [source] remains nil, which indicates that
source is in a cycle. However, when Preprocess() calls PreprocessAux() a
second time, these dist [q ′] will be set, so that even in the case in which source
is in a cycle, we are able to assign it a distance. This distance, indeed, is
nothing but the sum of an acyclic path and the length of the corresponding
cycle. That is to say, for any source located in a cyclic path, the procedure
assign it the shortest distance considering a way to get out of the cycle. Since
by Definition 7.8 there is always an acyclic path towards a verdict state, it
is always possible to calculate this distance. This does not prevent Algorithm
1 from taking such a cycle infinitely, but merely provides guidance to avoid it
whenever possible.

Hints on Termination The complete treatment concerning termination is
given in Section 7.6.3. Let us nonetheless give some hints on this matter here.
The termination of Algorithm 1 depends on whether SP is cyclic. If it is
not, termination is always guaranteed because only finitely many states of
SP are visited during the depth-first search (i.e., no previously visited state
of SP would be revisited). However, if there are cycles in SP, it would in
principle be possible that infinitely many states were to be visited (since the
same state in SP could synchronize infinitely many times with states in
M), which of course would compromise termination.

In such a cyclic case, the crucial factor that determines termination is the
value of depthmax . Since depthmax is assumed to be finite (i.e., the search is
bounded), termination is guaranteed, because: (i) there are only finite many
paths in SP of length depthmax ; and (ii) each such path is used only once. If
the search was not bounded in this manner, such a guarantee could not be
given. But as explained previously, by their very nature simulations must be
finite, so the assumption of a bounded search is actually necessary.
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Hints on Complexity The exact analysis of the complexities is provided in
Section 7.6.5. Here it suffices to say that the complexity in space is polynomial
with respect to the size of the environment, depthmax and other parameters,
and the complexity in time is exponential with respect to depthmax . This
exponential complexity in time arises from the fact that the algorithm do not
keep track of the visited states ofM.

7.5.3 Refutability Verification

To verify refutability, one must look for a run leading to Failure instead of a
run leading to Success. Therefore, it suffices to swap the Success and Failure
states in the simulation purpose and then apply Algorithm 1.

7.5.4 Certainty Verification

The verification of certainty can be achieved by a slightly modified version
of Algorithm 1. Like for refutability, it should search for the Failure state.
However, when it does find it, the final verdict is FAILURE, because by Def-
inition 7.16 there should be no run leading to Failiure. Moreover, for every

visited transition q
f
❀ q ′ of SP, there must be a synchronizable s

g
→ s ′. Oth-

erwise, there would be a terminal state (q ′, s ′) such that q ′ 6= Success, which
is forbidden by Definition 7.16. Finally, when the outer loop terminates, the
verdict to be returned is either SUCCESS or INCONCLUSIVE (in case the search
depth reached the maximum allowed), because no counter-examples have been
found. Algorithm 2 below incorporates these changes. The complexities re-
main the same, because these modifications do not change the arguments used
to calculate them.

7.5.5 Impossibility Verification

To verify impossibility, one must find that all runs in the synchronous
product lead to Failure. It suffices then to swap the Success and Failure
states in the simulation purpose and then apply Algorithm 2. This is
similar to the verification of refutability, which can be accomplished by Al-
gorithm 1 through such a swap.

7.6 Analysis of the Algorithms

Let us now provide a more rigorous account of whether the algorithms are cor-
rect, and of how much resources they employ. To this end, we investigate their
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Algorithm 2: On-the-fly verification of certainty

Input: A simulation purpose SP = 〈Q ,Esp ,Psp ,❀,Lsp , q0〉 and the
initial state s0 of an ATSM.

Output: SUCCESS; FAILURE and a refutable run; or INCONCLUSIVE.
1 dist [ ] := Preprocess(SP, Success);
2 let SynchStack be an empty stack;
3 let sim0 := CurrentState() ;
4 let Unexplored0 := Successors(SP, q0);
5 Push (q0, s0,nil,nil, sim0,Unexplored0, 0) on SynchStack ;
6 let verdict := SUCCESS;
7 while SynchStack 6= ∅ do
8 Peek (q , s, e, p, sim,Unexplored , depth) from SynchStack ;
9 while Unexplored 6= ∅ ∧ depth < depthmax do

10 q
f
❀ q ′ := RemoveBest(Unexplored, dist [ ]);

11 let depth ′ := depth + 1;
12 let progress := false;
13 let Succs := Successors(M, s);
14 while Succs 6= ∅ do

15 Remove some s
g
→ s ′ from Succs;

16 GoToState(sim);
17 ScheduleStep(g);
18 if isCommitEvent(g) then
19 Step();

20 if CanSynch(q
f
❀ q ′, s

g
→ s ′) then

21 sim ′ := CurrentState();
22 unexplored ′ := Successors(SP, q ′);
23 Push (q ′, s ′, g , q , sim ′, unexplored ′, depth ′) on SynchStack ;
24 progress := true;
25 if q ′ = Failure then
26 return FAILURE and BuildRun(SynchStack, q’,

depth’);

27 if progress = false then
28 return FAILURE and BuildRun(SynchStack, q, depth);

29 if depth ≥ depthmax then verdict := INCONCLUSIVE;
30 Peek (q , s, e, p, sim,Unexplored , depth) from SynchStack ;
31 if Unexplored = ∅ then Pop from SynchStack ;

32 return verdict ;
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soundness, completeness (notions which must be defined) and worst-case com-
plexities. Although the detailed arguments presented in this section are not
formal proofs, we have nonetheless organized them in a typical mathematical
fashion, by separating the arguments in definitions, propositions and auxiliary
lemmas. The proofs given should be understood as careful justifications.

As noted in the previous section, the presented algorithms are very similar
to each other. Owing to this, here we provide a detailed analysis only of
Algorithm 1, and then we explain how Algorithm 2 differs.

To reason about soundness and completeness, it is first necessary to establish
two things: what entities are to be evaluated; and what is the standard against
which this evaluation is to be made. In this thesis, the entities to be evaluated
are Algorithms 1 and 2, and ideally the standard to be used would be the
synchronous product SP⊗M that arises from a simulation purpose SP
and a concrete environment ATSM. That is to say, an algorithm would
be considered: sound if whenever it issues a SUCCESS or FAILURE verdict, the
desired satisfiability relation holds or does not hold, respectively, in relation
to runs(SP ⊗M); and complete if whenever the desired satisfiability relation
holds or does not hold with respect to runs(SP ⊗M), it issues a SUCCESS or
FAILURE verdict.

However, this ideal standard is very strong for the problems considered in this
thesis, which are based on finite simulations on the presence of evolving and
autonomous agent behaviour. Thus, this ideal notion of completeness is out of
the scope of the technique considered here. The same is true for soundness, for
the fact that certain outcomes cannot be observed influences the evaluation of
satisfiability relations of interest. These issues are inherent to the verification
of the satisfiability relations with respect to EMMAS environments by
means of simulations, and not particular to the algorithmic solutions given in
the present chapter.

This difficulty can be addressed in three ways: (i) by removing the autonomy
and adaptation capabilities of the agents; (ii) by making the properties to be
verified independent of the actions of the agents; or (iii) by using a weaker
standard for soundness and completeness. Option (i) is discarded, because
autonomy and adaptation, even though they bring a number of problems, are
fundamental characteristics of the agents that this thesis is concerned with.
Option (ii) is also discarded, because questions about the actions of agents
are essential to the verification of MASs – otherwise, the agents would be
irrelevant, and there would be no MAS in the first place. Thus we are left
with option (iii).

Let us then introduce the notions of observational soundness and obser-
vational completeness. To do so, it is first necessary to define the notion
of observed runs.
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Definition 7.19 (runsAobs() Function). Let T S be an ATS, and A an algo-
rithm. Then the set of observed runs of A is denoted by runsAobs(T S) and observed runs

such that:

runsAobs(T S) ⊆ runs(T S)

This denotes the set of the actually encountered runs, among all possible
runs.

Definition 7.20 (Observational Soundness). Let SP be a simulation pur-
pose and M be a concrete environment ATS. Then an algorithm is ob-
servationally sound if whenever it issues: observationally

sound

• a SUCCESS verdict, the desired satisfiability relation holds in relation to
runsAobs(SP ⊗M);

• a FAILURE verdict, the desired satisfiability relation does not hold in re-
lation to runsAobs(SP ⊗M), even if the observed runs could be made
longer;

• an INCONCLUSIVE verdict, the desired satisfiability relation does not hold
in relation to runsAobs(SP⊗M), but it could perhaps hold if the observed
runs could be made longer.

Definition 7.21 (Observational Completeness). Let SP be a simulation
purpose,M be a concrete environment ATS and l the maximum length of
runs in runsAobs(SP⊗M). Then an algorithm is observationally complete
up to l if whenever the desired satisfiability relation holds or does not hold with observationally

complete up torespect to runsAobs(SP ⊗M), it issues a SUCCESS, FAILURE or INCONCLUSIVE

verdict.

Each particular simulation execution provides a certain number of observations
concerning the actions of the agents. Since one cannot know what all the
possible observations are, the next best thing is to be sound and complete
with respect to the observations made. The INCONCLUSIVE verdict is added
to account for the case in which a mere extension of the observations could
have sufficed to find a run of interest.

Algorithms 1 and 2 are designed with this goal in mind. They systematically
investigate all the possible runs that arise from the observations made in
the course of exploring the concrete environment ATS up to a certain
length. In fact, both Algorithms 1 and 2 are observationally sound, are
observationally complete, and terminate. It turns out, moreover, that
when Algorithm 1 outputs a SUCCESS verdict, this verdict is also sound in the
ideal sense, not only the observational one. The same is true with respect
to the FAILURE verdict for Algorithm 2.

165



7. Verification Technique

These results are shown to be true in Section 7.6.1 (completeness), Section
7.6.2 (soundness) and Section 7.6.3 (termination). In Section 7.6.4 these sev-
eral analyses are grouped in order to establish the correctness of the algo-
rithms. The worst-case complexities, in turn, are provided in Section 7.6.5.
In all of the analyses below, definitions, lemmas and propositions are given in
the order that they are needed (i.e., bottom-up).

7.6.1 Justification of Completeness

There are two problems that hinders the completeness of the algorithms. The
first is that the search tree may have branches of infinite length, which forces
the imposition of a maximum depth to guarantee termination, and that is why
the INCONCLUSIVE verdict exists. The second is that the search can only be
made with respect to observed synchronous runs, which may not contain
all the relevant synchronous runs. Nevertheless, both algorithms are still
observationally complete up to depthmax +1. This is carefully stated and
proved below.

7.6.1.1 Justification of Completeness of Algorithm 1

Proposition 7.2 (Observational Completeness of Algorithm 1 up to depthmax+1).
If there are feasible runs of length less than or equal to depthmax + 1 in
runs1obs(SP⊗M) (i.e., feasibility holds with respect to the observed runs),
Algorithm 1 will find a minimal length one among them and return the verdict
SUCCESS.

Proof. Let n be the length of an arbitrary minimal length feasible run such
that n ≤ depthmax + 1. We prove by induction on n that the algorithm will
find some feasible run t such that | t |= n.

Base (n = 2): Since the initialization phase of the algorithm pushes

one tuple on SynchStack , and q0
f
❀ Success ∈ Successors(SP, q0) for some

event f (because, by hypothesis, t is feasible), it follows that line 12 is reached.
By the construction of RemoveBest, it always removes the transition which
composes the shortest path to Success, or a transition that leads to Failure
(in the case of strong feasibility). But in this case we are assuming that the

feasible run exists, so the transition chosen is q0
f
❀ Success. Finally, since

by Definition 7.11 Success synchronizes with any s ′, it follows that the if block
of line 31 is reached. Therefore, the run t = ((q0, s0), f , (Success, s

′)) is found
and returned together with the SUCCESS verdict in line 32. And t is minimal
because there is no feasible run of shorter length, as any run must contain
at least a0 and Success.
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Induction Hypothesis: Let σ be a subrun.
If t = σ.(p, s).e.(q , s ′).f .(Success, s ′′) is a feasible run of minimal length,
then r = σ.(p, s).e.(Success, s ′) would have been a minimal length feasible

run if the transition p
eC
❀ Success was added to SP.

Inductive Step (n > 2): By the inductive hypothesis, there could be
a minimal length feasible run r = σ.(p, s).e.(Success, s ′) such that t =
σ.(p, s).e.(q , s ′).f .(Success, s ′′) for events e and f , and states (p, s) and
(q , s ′), if SP was properly modified. This r could be obtained when the if
block of line 31 was reached. In the present case, however, q ′ 6= Success, and
as a consequence the algorithm continues running from that point on. Since
progress = true, the while loop (lines 11 – 32) will not iterate again, and
execution continues from line 8. The algorithm has just pushed a tuple on
SynchStack , so it is not empty. Indeed, because of line 9, this tuple will be
immediately analysed by the while loop (lines 11 – 32). As in the induction
basis, since RemoveBest picks the transition that leads to the shortest path

to Success, it follows that there is an event f such that q
f
❀ Success will be

chosen, and therefore the if block of line 31 will execute and return a feasible
run together with the SUCCESS verdict. Moreover, since | t |=| r | +1 and by
hypothesis r was of minimal length, it follows that t is of minimal length.

7.6.1.2 Justification of Completeness of Algorithm 2

Proposition 7.3 (Observational Completeness of Algorithm 2 up to depthmax+1).
If there are synchronous runs of maximal length less than or equal to depthmax+
1 in runs1obs(SP ⊗M) such that in their last state (q , s), q 6= Success (i.e.,
certainty does not hold with respect to the observed runs), then Algorithm
2 will find the shortest among them and return the verdict FAILURE.

Proof. Follows by a proof similar to that of Proposition 7.2. There are two dif-
ferences: (i) Algorithm 2 is searching for the Failure verdict, and not Success;
(ii) if no further synchronization is possible at some point, this suffices to
provide a run whose last state (q , s) is such that q 6= Success.

7.6.2 Justification of Soundness

In what follows we investigate the soundness properties of Algorithms 1 and
2. This requires first the consideration of the auxiliary procedures that they
employ.
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7.6.2.1 Justification of Correctness of Auxiliary Procedures

The verification algorithms depend on an important auxiliary procedure for
their initialization, Preprocess(), and therefore we investigate its correct-
ness3 first.

To begin, some auxiliary lemmas are required.

Lemma 7.1 (Correctness of PreprocessAux() for Acyclic Paths). Let SP =
〈Q ,E ,P ,❀,L, q0〉 be a simulation purpose, source ∈ Q, and v a verdict
state. Moreover, for every q ∈ Q, let the following initial conditions hold:
dist [q ] = nil and visited [q ] = false. Then, after the execution of Preproces-

sAux(SP, source, v, dist [ ], visited [ ]) we have that for every p ∈ Q that is
part of an acyclic path of SP, dist [p] will be the minimal distance between p
and v.

Proof. The proof is by induction on the possible distances towards v , denoted
by n.

Base (n = 0): This can only be the case if source = v , which is a (trivial)
acyclic path, and in which case the algorithm will correctly attribute 0 to
dist [source] in line 3.

Induction Hypothesis: Let n be the minimal distance from source to v . Then,
if source is in an acyclic path, there exists a successor q ′ such that n >
dist [q ′] ∈ N after executing PreprocessAux(SP, q ′, v , dist [ ], visited [ ]).

Inductive Step(n > 0): If source has no successors, it cannot possibly reach
v . Hence, dist [source] is made infinite in lines 7 and 19. On the other hand,
if there are successors, then each such successor q ′ that has not yet been
visited will be recursively subject to PreprocessAux() in line 11. By the
induction hypothesis, this implies that if dist [q ′] ∈ N, then dist [q ′] is the
minimal distance from q ′ to v . Lines 12 – 16, in turn, select the minimal
distance among all such successors and store it in min. Since the distance from
source to any of its successors q ′ is 1, dist [source] clearly must be min + 1,
provided that min could be calculated at all (i.e., min 6= nil). Thus, line 19
correctly attributes the minimal distance to dist [source], if it can be calculated.
If, however, min = nil, it means, again by the induction hypothesis, that no
successor of source is in an acyclic path, and therefore neither is source. So
there is no need to attribute a number to dist [source].

3The division of correctness in soundness and completeness only makes sense if there is
something external to the algorithms to used as a standard. The auxiliary procedures require
no such standard, and therefore we refer to the fact that they work as specified merely as
correctness.
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Lemma 7.2 (Correctness of PreprocessAux() for Cyclic Paths). Let SP =
〈Q ,E ,P ,❀,L, q0〉 be a simulation purpose, source ∈ Q, and v a verdict
state. Moreover, for every p ∈ Q such that p is in an acyclic path of SP,
let the following initial conditions hold: dist [p] 6= nil and visited [p] = false.
Then, after the execution of PreprocessAux(SP, source, v, dist [ ], visited [ ]),
we have that for every q ∈ Q, dist [q ] will be the minimal distance between q
and v.

Proof. The proof is similar to that of Lemma 7.1. The only difference is that,
in the inductive step, we know by hypothesis that for all q ∈ Q in acyclic
paths, dist [q ] ∈ Z. Thus, the only states that remain without an assigned
distance are in a cycle. But every cycle eventually reaches a state q ′ of an
acyclic path, so that now there is always a successor q ′ to source such that
dist [q ′] 6= nil in line 12. Thus, even in the cyclic case, a distance is now
assigned to source.

We thus have the following proposition.

Proposition 7.4 (Correctness of Preprocess()). Let SP = 〈Q ,E ,P ,❀
,L, q0〉 be a simulation purpose and v a verdict state. Then Prepro-

cess(SP, v) returns a function

dist : Q −→ Z

such that, for every q ∈ Q, dist [q ] is the minimal distance between q and v.

Proof. Preprocess() calls PreprocessAux() twice. In the first time, by
Lemma 7.1, dist [q ] is correctly defined to all q ∈ Q that belong to an acyclic
path of SP. In the second time, by Lemma 7.2, dist [p] is correctly defined for
the remaining p ∈ Q that belong to cyclic paths of SP.

The correctness of the BuildRun() auxiliary procedure will be assessed later,
when it becomes necessary. Finally, we note that there is nothing to prove
with respect to the RemoveBest() auxiliary procedure, since its very definition
has the property that is used in later proofs (i.e., the capability of selecting
the successor marked with a minimal distance).

7.6.2.2 Justification of Soundness of Algorithm 1

Observational Soundness of Algorithm 1 (for Weak Feasibility) The
contents of the SynchStack stack of the algorithm is central to this analy-
sis, so let us introduce a related concept and invariant now.
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Definition 7.22 (runmax ). Let SynchStack be non-empty and as built by Al-
gorithms 1. Then, runmax (SynchStack) is a non-empty synchronous run of
maximal length stored in SynchStack.

Definition 7.23 (Main Invariant). If SynchStack is non-empty, then a non-
empty synchronous run runmax (SynchStack) can always be extracted from
it.

To show the observational soundness of Algorithm 1 for weak feasibility,
a number of auxiliary lemmas must be given first. Let us begin by those
concerning the invariants of the algorithm.

Lemma 7.3 (Inner While Loop Invariant Maintenance). Let
t = runmax (SynchStack) immediately before the inner while loop of lines 15 –

32, (q , s) its last element, q
f
❀ q ′ a transition in SP and t ′ = runmax (SynchStack)

during the loop. Then this loops maintains the following invariant: t ′ exists
and either | t ′ |=| t | or | t ′ |=| t | +1.

Proof. The only place within the inner while loop in which runmax (SynchStack)
is modified is in the if block of lines 21 – 32. This block is only executed if

q
f
❀ q ′ synchronize s

g
→ s ′. By hypothesis, (q , s) is the last element of t .

Therefore, the synchronization of these transitions imply that t ′ = t .f .(q ′, s ′),
which clearly is a synchronous run. Since the pushing of this synchroniza-
tion is the only modification performed to SynchStack , it follows indeed that
t ′ = runmax (SynchStack) exists and that | t ′ |=| t | (when the if block is not
executed) or | t ′ |=| t | +1 (when the if block is executed).

Lemma 7.4 (Middle While Loop Invariant Maintenance). Let
t = runmax (SynchStack) immediately before the while loop of lines 11 – 32,
(q , s) its last state, and t ′ = runmax (SynchStack) during the loop. Then this
loop maintains one of the following statements true:

• | t ′ |=| t | +1 and progress = true.

• | t ′ |=| t |, progress = false and SynchStack is not modified.

Proof. SynchStack is only modified in the inner while loop of lines 15 – 32,
and therefore by Lemma 7.3 we immediately have the desired result.

Lemma 7.5 (Main Invariant Maintenance). The outer-most while loop of
lines 8 – 34 maintains Main Invariant.

Proof. By hypothesis, Main Invariant holds in the beginning of the loop.
SynchStack is not changed (only examined) until the while loop of lines 11
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– 32. By Lemma 7.4, this loop guarantees that after its execution t =
runmax (SynchStack) will either have its length increased by 1 or remain the
same. In the first case, SynchStack is not changed further after this loop, since
Lemma 7.4 guarantees that progress = true. Therefore, runmax (SynchStack)
is the same as before. In the latter case, though, the same Lemma guarantees
that progress = false and thus SynchStack has its top-most element popped
in line 34. This implies in runmax (SynchStack) being a different run, t ′, such
that | t ′ |=| t | or | t ′ |=| t | −1. But in both cases it exists, and therefore
Main Invariant is maintained.

It is also necessary to show that the algorithm not only maintains the Main
Invariant, but also establishes it in its initialization.

Lemma 7.6 (Initialization). The algorithm initialization (lines 1 – 7) estab-
lishes Main Invariant.

Proof. SynchStack begins as an empty stack. Since q0, by Definition 7.8, is
not labelled, it follows by Definition 7.11 that it synchronizes with s0. Indeed,
q0 and s0 are synchronized and pushed on the previously empty SynchStack .
Hence, after the initialization we have that runmax (SynchStack) = ((q0, s0)).

The last two lemmas guarantee correct results, provided that the algorithm
terminates.

Lemma 7.7 (Construction of runmax by BuildRun()). Let SynchStack be
non-empty and as built by Algorithms 1 or 2. Then procedure BuildRun()

can build runmax (SynchStack).

Proof. BuildRun()merely starts at the top of SynchStack and proceeds down-
wards in such a way that at every iteration a new element is added to the
beginning of the run. This new element is chosen to be one whose depth is
exactly one less than than the previously examined element, and which is, by
construction of SynchStack (line 29 of Algorithm 1, line 23 of Algorithm 2),
an antecedent of this previously examined element. Therefore when the stack
becomes empty, the procedure returns a synchronous run.

Lemma 7.8 (Correct Result Upon Termination). Whenever the algorithm
terminates, it returns the correct result.

Proof. There are only two lines in which the algorithm returns, namely, 32
and 35.

When line 32 is executed, by Lemma 7.3 we have that the last element of
runmax (SynchStack) is q ′, which by line 31 must be SUCCESS. Therefore,
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runmax (SynchStack) is actually a feasible run and by Lemma 7.7 it will
be correctly built by BuildRun(). Hence, the returned values are correct.

Concerning line 35, clearly it can only be reached if no feasible run of length
less than or equal to depthmax + 1 was found. Because of Proposition 7.2,
this means that there is no such run, and therefore the result must be either
INCONCLUSIVE or FAILURE.

If at some point it was not possible to synchronize t = runmax (SynchStack)
because | t |= depthmax + 1, then clearly there could be some run of length
greater than depthmax + 1 that was not examined, and therefore the result in
this case must be INCONCLUSIVE. Indeed, in such a case, line 33 would have
set verdic = INCONCLUSIVE permanently, and therefore the returned result
would be correct. On the other hand, if this situation did not arise, then it is
plain that there is no possibility of finding a feasible run of any length, and
therefore the default setting verdict = FAILURE is correct.

Finally, we provide the proposition that guarantees the observational sound-
ness Algorithm 1 for weak feasibility.

Proposition 7.5 (Observational Soundness of Algorithm 1 for Weak Feasi-
bility). If Algorithm 1 terminates when checking weak feasibility, then one
of the cases is true:

• It returns both SUCCESS and a weak feasible run t ∈ runs1obs(SP⊗M)
such that | t |≤ depthmax + 1. Weak feasibility holds with respect to
runs1obs(SP ⊗M).

• It returns FAILURE and there is no weak feasible run in runs1obs(SP ⊗
M). Weak feasibility does not hold with respect to runs1obs(SP ⊗M),
and no extension of the runs therein would change this.

• It returns INCONCLUSIVE and there is no weak feasible run in
runs1obs(SP ⊗ M). Weak feasibility does not hold with respect to
runs1obs(SP ⊗ M), but an extension of the runs therein could change
this.

Proof. The algorithm is divided in an initialization part (lines 1 – 7), an
outer-most loop (lines 8 – 34) and a last return statement (line 35). It suffices
then to prove: (i) that Main Invariant holds during the entire execution of the
algorithm, and in particular during the outer-most loop; (ii) that this invariant
is established in the initialization part, before the outer-most loop; and (iii)
that if the algorithms terminates, its output complies with what is required
by the proposition. Let us begin by (i) and (ii):
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Initialization. By Lemma, 7.6, the initialization part establishes Main
Invariant.

Invariant Maintenance. By Lemma 7.5, the outer-most loop maintains
Main Invariant. Moreover, the last return statement (line 35) clearly
does not violate it.

Finally, by Lemma 7.8 we have that upon termination it returns the correct
result. This establishes (iii).

Observational Soundness of Algorithm 1 (for Strong Feasibility) The
observational soundness with respect to strong feasibility follows from
the fact that it suffices to eliminate elements that have transitions that lead
to Failure from the search stack in order to verify this stronger variant. This
merely strengthens the Main Invariant used to prove Proposition 7.5, by en-
suring that the synchronous runs in the search stack are all strong feasible
runs, and thus a similar result holds.

Proposition 7.6 (Observational Soundness of Algorithm 1 for Strong Fea-
sibility). If Algorithm 1 terminates when checking strong feasibility, then
one of the cases is true:

• It returns both SUCCESS and a strong feasible run t ∈ runs1obs(SP ⊗
M) such that | t |≤ depthmax +1. Strong feasibility holds with respect
to runs1obs(SP ⊗M).

• It returns FAILURE and there is no strong feasible run in runs1obs(SP⊗
M). Strong feasibility does not hold with respect to runs1obs(SP⊗M),
and no extension of the runs therein would change this.

• It returns INCONCLUSIVE and there is no strong feasible run in
runs1obs(SP ⊗ M). Strong feasibility does not hold with respect to
runs1obs(SP ⊗ M), but an extension of the runs therein could change
this.

Proof. It suffices to show in what the algorithm changes when checking strong
feasibility, and how these changes affect the proof of of Proposition 7.5.
When checking strong feasibility, the only difference with respect to weak
feasibility is that Algorithm 1 will set dist [Failure] = −1 (line 2) and, po-
tentially, execute lines 22 – 25.

The only effect of setting dist [Failure] = −1 is that RemoveBest() will always

return first a q
f
❀ Failure if one exists, since by construction no other q ′ can
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be such that dist [q ′] ≤ dist [Failure]. This implies that if during an iteration

of the while loop of line 11 there exists a q
f
❀ Failure and a s

g
→ s ′ that

synchronize, the first call to CanSynch will return true and lines 22 – 25 will
be executed.

This execution will: pop SynchStack , thus eliminating (q , s) from the syn-
chronous run; and set progress and Succ in such a way that the algorithm will
proceed to the beginning of the outer while in line 8, without performing any
further iteration of the other inner while loops, thus effectively ignoring (q , s)
and its successors. So whatever synchronous run is stored in SynchStack ,
none of its elements can contain a transition to some (Failure, s ′) state. This
implies that if the algorithm finds a weakly feasible run, it will actually be
a strong feasible run.

Finally, since the modifications induced by strong feasibility are very limited
and do not compromise the proof of Proposition 7.5, it follows that similar
guarantees hold for strong feasibility verification, but with the difference
that they concern strong feasible runs instead of weak feasible runs.

Special Case of SUCCESS Verdict in Algorithm 1 As remarked before, the
soundness analysis of Algorithm 1 can be strengthened with respect to the
SUCCESS verdict.

Proposition 7.7 (Soundness of Algorithm 1 with respect to SUCCESS). If
Algorithm 1 ever outputs a SUCCESS verdict, SP is feasible with respect to
M and runs(SP ⊗M).

Proof. Algorithm 1 outputs a SUCCESS if, and only if, it finds a feasible
run r . Since no further observations can change the fact that r exists in
runs(SP⊗M), it follows that SP is indeed feasible with respect toM, since
otherwise Definition 7.14 would be violated.

7.6.2.3 Justification of Soundness of Algorithm 2

Observational Soundness of Algorithm 2 Algorithm 2 is merely a slightly
modified version of Algorithm 1, which, instead of searching for a feasible
run, searches for a run which is not feasible. Hence, the properties and proofs
concerning both algorithms are very similar. Below we analyse Algorithm
2 in the light of the proofs already given to Algorithm 1. In this way we
avoid repeating most of what has already been said, and instead focus on the
important differences that must be stressed.

Proposition 7.8 (Observational Soundness of Algorithm 2). Algorithm 2
terminates and one of the following cases is true:
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• It returns SUCCESS, and all runs of maximal length in runs2obs(SP⊗M)
terminate in some state (Success, s). Certainty holds with respect to
runs2obs(SP⊗M), and no extension of the observed runs therein would
change this.

• It returns both FAILURE and a run of maximal length in runs2obs(SP⊗M)
such that it terminates either in a state without a verdict or in some
state (Failure, s). Certainty does not hold with respect to runs2obs(SP⊗
M).

• It returns INCONCLUSIVE. Certainty does not hold with respect to
runs2obs(SP ⊗M), but an extension of the observed runs therein could
change this.

Proof. Both Algorithm 2 and Algorithm 1 are searching for a kind of run.
The proof follows by observing the few points in which they differ, from which
we can put the former in terms of the latter and then use Proposition 7.5 to
show that the former is sound as well.

By construction, the differences are the following:

• In line 26, Algorithm 2 finds a run that terminates in some state
(Failure, s), whereas in the equivalent place of Algorithm 1 a state
(Success, s) is found. Since Algorithm 1 indeed finds such a state if
it exists, if follows that Algorithm 2 will also find the state it is search-
ing for if it exists. This establishes that it correctly returns FAILURE and
an associated run.

• In line 28, Algorithm 2 reaches some state (q , s) such that q 6= Success
and q 6= Failure, which is indicated by progress = false. In Algorithm
1, such a state merely indicates that it is time to try another path in
the synchronous product, and thus a check for it is located in line
11. However, in Algorithm 2 this state does indicate a result, that is to
say, the fact that there is a run which terminates in a state that has no
verdict, an undesirable condition. Like in the point above, then, in this
case the algorithm also correctly returns FAILURE and a related run.

• In lines 30 – 31, Algorithm 2 pops from SynchStack only after examining
all the contents of the topmost Unexplored set. This is similar to what
Algorithm 1 does, which pops only if progress = false after trying all
elements in Unexplored . The difference is that in Algorithm 2 all ele-
ments of Unexplored are expected to synchronize, and thus it suffices to
check whether Unexplored is empty after the analysis to pop it, whereas
in Algorithm 1 it may be the case that Unexplored is not empty and at
the same time synchronization is no longer possible.
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• If the search does not go beyond the depth depthmax and none of the
other conditions for FAILURE are met, it means that all runs of the syn-
chronous product terminate in some state (Success, s). Algorithm 2
correctly reports this by setting verdict = SUCCESS in line 6, which under
these conditions remain unmodified until line 32, when it is returned.

Special Case of FAILURE Verdict in Algorithm 2 As remarked before, the
soundness analysis of Algorithm 2 can be strengthened with respect to the
FAILURE verdict.

Proposition 7.9 (Soundness of Algorithm 2 with respect to FAILURE). If
Algorithm 2 ever outputs a FAILURE verdict, SP is not certain with respect
toM and runs(SP ⊗M).

Proof. Algorithm 2 outputs a FAILURE if, and only if, it finds an unfeasible
run r before reaching the maximum search depth. Since no further observa-
tions can change the fact that r exists in runs(SP ⊗M), it follows that SP
cannot be certain with respect toM, since otherwise Definition 7.16 would
be violated.

7.6.3 Justification of Termination

Both algorithms terminate, as the following results show.

7.6.3.1 Justification of Termination of Algorithm 1

The following auxiliary lemma is necessary before showing that the algorithm
terminates. It argues that, by the construction of the algorithm, similar tuples
used in the search can only be pushed a finite amount of times on the search
stack.

Lemma 7.9 (Finite Consideration). Let (q , s, e, p, sim,Unexplored , depth) be
an arbitrary tuple on SynchStack of Algorithm 1 at an arbitrary point of its
execution. Then, only a finite amount of tuples with the same q, s, e, p,
Unexplored and depth can be pushed on SynchStack (let us call this the prop-
erty of being finitely considered).

Proof. By induction on depth.

Base (depth = 0): Because of line 13, depth ′ is always greater than 0 in the
outer-most while loop. Thus, the only time in which such a tuple can be
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pushed is in line 6, which is clearly executed only once, and therefore makes
it finitely considered.

Induction Hypothesis: The tuples (q , s, e, p, sim,Unexplored , depth − 1) are
finitely considered.

Inductive Step (depth > 0): Take a tuple
tup = (q ′, s ′, f , q , sim ′, unexplored ′, depth) from SynchStack . It was either
pushed on SynchStack after examining some tuple (in line 29) or resulted
from a removal of an element from the set of unexplored transitions in a tuple
already in SynchStack (in line 12).

Suppose that tup was pushed on SynchStack . Then there is a tuple tuppre
of depth k = depth − 1 that was peeked to generate tup. tuppre can only be
peeked once in line 9, because in line 12 one of its components is permanently
modified (i.e., a transition is removed from its set of unexplored transitions).
So once tuppre is peeked, tup is calculated and pushed on SynchStack once.
Since by hypothesis tuples marked with depth k = depth − 1 are finitely
considered, this can only be repeated a finite amount of times. Moreover, by
construction, if there are other tup′pre 6= tuppre that can be used to generate
tup, the only difference in tup′pre with respect to tuppre has to be the state s
ofM. But because of the finite branching ofM, there are only finitely many
such states up to depth − 1, so in all tup can only be pushed on SynchStack
a finite amount of times, and is therefore finitely considered.

Suppose, on the other hand, that tup was obtained by reducing the set of
unexplored transitions of another tuple already on SynchStack . In this case,
clearly unexplored ′ 6= Successors(SP, q ′). But tuples of depth greater than
zero can be pushed only in in line 29, in which by construction the equality
unexplored ′ = Successors(SP, q ′) must hold. So tup has never been pushed
on SynchStack , and thus is finitely considered.

The following proposition can now be proved.

Proposition 7.10 (Termination of Algorithm 1). Algorithm 1 terminates.

Proof. Termination follows from the fact that each state of SP is examined
only a finite amount of times, after which either a feasible run is found and
the algorithm terminates, or synchronizations are no longer possible and thus
SynchStack becomes empty, thereby achieving termination as well. The former
case arises if indeed there are feasible runs, because by Proposition 7.2 one of
them will be found, and since this implies the execution of the return statement
in line 32, the algorithm terminates. The latter case, however, require some
more analysis.
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Since the number of states in SP is finite, the possible search depths are finite
(for depthmax is finite), and the amount of events are also finite, there are
only finitely many events g , sets of unexplored ′ and natural numbers depth ′

to be considered in line 29. Furthermore, although M may have an infinite
number of states, for any finite depth there is a corresponding finite amount of
reachable states s ′ (and thus of simulation states sim ′), owing to the property
of finite branching of ATSs. So there are only finitely many tuples to be
considered in in line 29. Moreover, by Lemma 7.9 all pushed tuples are finitely
considered, which implies that each of these finitely many tuples can be pushed
on SynchStack at most a finite amount of times. Hence, the size of SynchStack
is bounded by a finite quantity.

Every time a tuple (q , s, e, p, sim,Unexplored , depth) is chosen in line 9,
Unexplored can only decrease, since the only statement that modifies it is the
call to RemoveBest() of line 12. So for any set Unexplored , it will decrease
until it reaches size 0 and is popped. That this will indeed happen follows
from these cases for the guard in line 11:

• If Unexplored = ∅, we have that progress = false, and in line 34 the
tuple will be popped.

• If Unexplored 6= ∅, but depth ≥ depthmax , it will be again the case that
progress = false and in line 34 the tuple will be popped.

• Otherwise, the while loop begins and RemoveBest() of line 12 is exe-
cuted, thereby reducing its size.

Now, since there can be only finitely many tuples on SynchStack , and that
each is guaranteed to be popped eventually, it follows that the outermost
while loop eventually terminates, thus establishing that the algorithm itself
terminates.

7.6.3.2 Justification of Termination of Algorithm 2

A similar result holds for Algorithm 2.

Proposition 7.11 (Termination of Algorithm 2). Algorithm 2 terminates.

Proof. Similar to the proof of Proposition 7.10, but taking in account the
fact that Algorithm 2 is searching for a refutable run, and not a feasible
run.
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7.6.4 Justification of Correctness

Based on the results shown, we can now formalize their correctness with the
following propositions.

Proposition 7.12 (Correctness of Algorithm 1). Algorithm 1:

• is observationally sound for both weak and strong feasibility;

• is observationally complete up to depthmax + 1 for both weak and
strong feasibility;

• gives a sound verdict in the classical sense (i.e., with respect to runs(SP⊗
M)) whenever it outputs the SUCCESS verdict;

• terminates.

Proof. Follows directly from Propositions 7.5, 7.6, 7.7, 7.2 and 7.10.

Proposition 7.13 (Correctness of Algorithm 2). Algorithm 2:

• is observationally sound;

• is observationally complete up to depthmax + 1;

• gives a sound verdict in the classical sense (i.e., with respect to runs(SP⊗
M)) whenever it outputs the FAILURE verdict;

• terminates.

Proof. Follows directly from Propositions 7.8, 7.9, 7.3 and 7.11.

7.6.5 Justification of Worst-Case Complexities

Let us now provide the exact worst-case complexities of the auxiliary proce-
dures and of the verification algorithms themselves. Owing to their similarity,
Algorithms 1 and 2 actually have the same such complexities, and this follows
from the same proof.

Worst-Case Complexities of Auxiliary Procedures

Lemma 7.10 (Worst-Case Time Complexity of Preprocess()). Let SP =
〈Q ,E ,P ,❀,L, q0〉 be a simulation purpose. Then Preprocess() runs in
O(| Q |2) time.
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Proof. In Preprocess() itself, it is clear that each state in Q must be vis-
ited twice for initializations, and that the rest of the running time is given by
two invocations of the PreprocessAux() subprocedure. Because to each such
state initialization a constant amount of operations is performed, these initial-
izations together take time proportional to m0 = 2· | Q |. PreprocessAux(),
in turn, will recursively visit each state in Q accessible from q0, which in the
worst case are all the states of Q . In each such visit, a state source is spec-
ified, all of its successors q ′ may be examined in order to determine whether
they have or have not been visited yet, and a maximum constant amount of
other operations are performed, without taking in account the recursive call.
Since in the worst case there may be | Q | successors, each such visit to a
state takes time proportional to m1 =| Q |,

In considering the successors q ′, two cases may arise. If q ′ has already been
visited, then visited [q ′] = true (because this is the first thing Preproces-

sAux() sets when visiting a state), and no recursive call happens. On the
other hand, if q ′ has not been visited, then visited [q ′] = false and a recursive
call to PreprocessAux() takes place in line 11. Since in each visit the state
is marked as visited, there can be at most | Q | such recursive calls, hence at
most m2 =| Q | +1 visited states (counting the initial visit of q0).

Therefore, in all, Preprocess() has a time complexity of O(m0+2ṁ1 ·m2) =
O(2· | Q | +2· | Q | · | Q |) = O(| Q |2).

Lemma 7.11 (Worst-Case Space Complexity of Preprocess()). Let SP =
〈Q ,E ,P ,❀,L, q0〉 be a simulation purpose. Then Preprocess() consumes
O(| Q |) memory.

Proof. This follows from two observations:

• The only data structures employed, dist [] and visited [], each consumes
memory proportional to | Q | by construction. This can be seen by
noticing that in these data structures only elements of Q are used as
keys, and only numeric or boolean elements are used as values;

• The recursive calls of line 11 of PreprocessAux() cannot induce a call
stack larger than | Q |, since each state is visited at most once.

Therefore, in all, O(2· | Q |) = O(| Q |) space is used.

Worst-Case Complexities of Algorithms 1 and 2 The complexities of Al-
gorithms 1 and 2 must be given considering the fact that they perform a
depth-first search on a transition system with possibly infinitely many states
that is built on-the-fly (i.e., SP ⊗M), without keeping track of the visited
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states, and only up to a maximum depth (i.e., depthmax ). This means that
the complexities must be given mainly in terms of depthmax and the maxi-
mum branching factor (i.e., the maximum number of possible successors of
any state).

Moreover, since states in M are actually related to an EMMAS environ-
ment, the complexities of processing such environments must be taken in
account as well. This is done by considering the size of environments, accord-
ing to the following definition.

Definition 7.24 (Environment Size). Let Env = 〈AG ,AT ,EB〉 be an envi-
ronment. Then its environment size is defined as the sum of: environment size

•
∑

ag∈AG | ag | (i.e., the sum of the sizes of each agent profile in
AG). The size | ag | of each agent profile ag = 〈id ,S ,A〉 is defined as
| S | + | A |;

• | AT |;

•
∑

Op∈EB | Op | (i.e., the sum of the sizes of each operation in EB).
The size | Op | of each operation Op is defined recursively as follows:

| Op | =





∑k
i=1 | Opi | if Op can be decomposed in k > 1

operations;
1 otherwise.

This definition establishes the environment size as the amount of primitive
elements in it. In particular, operations are first decomposed in the simplest
possible sub-operations, which are then counted. An advantage of this defi-
nition is that each of the counted elements has a translation to π-calculus with
length bounded by a constant, so that the length of the final π-calculus ex-
pression representing the environment is proportional to the environment
size.

The simulation purpose SP should also be taken in account in calculations,
since its size is not fixed.

The maximum branching factor of SP ⊗M is calculated taking into account
both the environment size and SP, as follows.

Proposition 7.14 (Branching Factor). Let Env be an environment, and n
its environment size. Then the branching factor (i.e., the maximum number
of possible successors of any state) of SP ⊗M is O(| Q | · | Esp | ·n

2).

Proof. Take an arbitrary state (q , s) of SP ⊗M. Let us first consider the

number of possible transitions q
f
❀ q ′ in SP. Certainly this number is less than
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or equal to | Q | · | Esp |, which corresponds to all possible such transitions
from q .

Let us now consider the number of possible transitions s
g
→ s ′ in M. Each

such transition is calculated by applying the π-calculus operational semantics
to the π-calculus process [Env ]π of state s that represents the environment.
By construction, there are no more than n components in parallel in [Env ]π.
Thus, the COM rule of the π-calculus operational semantics will generate no
more than n2 successors to [Env ]π. Since no other rule can generate more
successors than this, it follows that the number of successors is bounded by
c · n2, for some constant c. Hence, the number of possible s

g
→ s ′ in M

transitions is also bounded by c · n2.

Let us suppose the worst case and consider that at (q , s) each q
f
❀ q ′ in SP

synchronizes with all s
g
→ s ′ in M. Then the maximum branching factor is

bounded by | Q | · | Esp | ·c · n
2, and thus is O(| Q | · | Esp | ·n

2).

It is now possible to give the complexities in space and time.

Proposition 7.15 (Worst-Case Space Complexity of Algorithms 1 and 2).
Let Env be an environment, n its environment size, andM be the corre-
sponding ATS. Then, in the worst case, Algorithms 1 and 2 consume O(| Q |
· | Esp | ·n

3 · depthmax ) space.

Proof. Since the algorithm performs a depth-first search in a graph that is
built on-the-fly and only up to a maximum depth (i.e., depthmax ), it follows
that the space complexity is given by the maximum size that the search stack
may attain. This size, in turn, is given by the amount and size of elements
that are put on the stack at each depth. The amount of these elements is no
more than the maximum branching factor b, since it is a depth-first search.
And the size of each element is proportional to n, since all that these elements
contain is proportional to the current state of the environment. Hence, the
size of the search stack is less than or equal to c1 · b · n · depthmax , for some
constant c1.

By Proposition 7.14, b ≤ c2· | Q | · | Esp | ·n
2, for some constant c2. Therefore,

the size of the search stack is bounded by c1 ·c2· | Q | · | Esp | ·n
2 ·n ·depthmax ,

hence O(| Q | · | Esp | ·n
3 · depthmax ).

Proposition 7.16 (Worst-Case Time Complexity of Algorithm 1). Let SP =
〈Q ,Esp ,Psp ,❀,Lsp , q0〉 be a simulation purpose, M = 〈S ,E ,P ,→,L, s0〉
an ATS, and b =| Q | · | Esp | ·n

2. Then, in the worst case, Algorithms 1
and 2 have O(bdepthmax ) running time.

Proof. At each new depth reached by the search, no more than b elements are
put on the search stack, where b is the maximum branching factor. Since in
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the worst case all elements reached up to a maximum depth (i.e., depthmax )
will be examined, it follows that the total quantity of examined elements is
bounded by c · bdepthmax , for some constant c. This results in O(bdepthmax )
running time.

7.7 Conclusion

In this chapter we have seen how to make an EMMAS environment suit-
able for simulation and how to check whether the resulting ATS (describing a
system of interest) satisfies a simulation purpose (describing a property of
interest) in a number of different and precisely defined senses. In this way, the
method operates on formal structures in order to verify something – it is thus
a formal verification approach. Nevertheless, there is a crucial counterpoint
to this formal aspect: the ATS under verification is, itself, representing the
results of a simulation, whose internal details are not available for the verifica-
tion procedure, and therefore, from an algorithmic perspective, can be seen as
not formal. Verification and simulation interact by means of a simulator inter-
face, which provides the required elements for the construction of transition
systems, but do not reveal how they were generated.

This interplay between verification and simulation is a distinctive feature of
our approach to the analysis of simulations. The required simulator interface is
simple to implement: in essence, it merely requires that (i) simulations proceed
from state to state by discrete events; and that (ii) simulation states may be
saved and restored. The technique, therefore, has clear practical applications.

From a theoretical perspective, an interesting result concerns the analysis of
soundness and completeness. Owing the autonomy of agents and the transition
systems with possibly infinitely many states , it is not possible to guarantee
that all relevant runs are simulated, and thus solutions to the verification of
the proposed satisfiability relations are inherently incomplete, and sometimes
unsound. This is a limitation present in the problem itself, and not a particular
issue of the algorithms given.

To handle these difficulties, we found it necessary to introduce weaker notions
of soundness and completeness, namely, observational soundness and ob-
servational completeness. The intuition behind them is that although it is
not possible to have access to all the relevant information for the verification,
it is possible to use all the observed information in a systematic and exhaus-
tive way, thus issuing a verdict which is as accurate as possible with respect to
what can be observed. Accordingly, the provided algorithms are designed to
be at least observationally sound and complete (Propositions 7.12 and
7.13).
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Methods based in simulation in general do not offer similar guarantees. Our
contribution is in providing both a framework to reason about such matters
and algorithms to perform simulations in automated manner so that certain
guarantees may be given. All this is in line with the methodological and
philosophical outlook presented in Section 1.1 of Chapter 1.

The proposed satisfiability relations are not the only possible ones: one could
create new such relations, whose verification could be accomplished in a similar
manner. The ones we provide were partly chosen because they help to answer
questions that arise in the examples we shall see in Chapter 9. It is therefore
possible that different examples could inspire different such relations.

At last, it is worth to emphasize that the proposed verification framework is
not limited to EMMAS. It was developed to address the concerns of EM-
MAS, but ATSs are general formal structures to represent states and transi-
tions, and agent autonomy is a general property of MASs. Therefore, anything
that can be formalized in such terms can employ the technique. This is an
unexpected but fortunate consequence of our efforts.
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CHAPTER 8
Simulator Implementation

We have so far presented the theoretical aspects of the technique developed
in this thesis. Let us now proceed to their actual implementation. In this
chapter we present our tool, called Formally Guided Simulator (FGS), which
we have developed as a proof-of-concept implementation of our method. FGS
is a component-oriented simulator, and as such it is necessary to provide com-
ponents in order to have a functioning system: simulations are built using
software components, among which there are agent components. The Be-
haviourist Agent Architecture has been implemented as one such compo-
nent.

To be able to simulate EMMAS specifications, we developed a π-calculus
simulation library. FGS loads such a specification and converts it to π-calculus,
which is readily implemented by instantiating elements from this library.

In this chapter our focus is on the general design principles that we applied,
the architectural choices that we have made, as well as on certain specific
optimizations important in an implementation like ours. Details of the source
code itself are avoided as much as possible, since they have no exceptional
scientific or engineering importance.

The text is organized as follows. In Section 8.1 we present the general software
architecture1 underlying FGS, through which agents and environments can be
defined, and verifications can be requested and carried out. Then, in Section
8.2 we explain how a simulation is actually executed given this design. In
Section 8.3 we provide an account of the Behaviourist Agent Architecture

1Software architecture is not to be confused with agent architecture. The latter is a kind
of the former. Here we are referring to the architecture of the tool, not the agent architecture
given in Chapter 4.
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implementation and of how it is used as an FGS component. The π-calculus
simulation library, in turn, is considered in Section 8.4. Finally, Section 8.5
concludes. Since our discussion here is concerned with tool design and not with
how to use it, the actual input format and commands necessary to execute
FGS are left for Appendix C.

8.1 Architecture of FGS

The technique of verification presented in this thesis depends on the possi-
bility of separating agents from their environment. The former are given as
black-boxes, the latter is defined as a formal specification. The technique then
consists in formulating simulation experiments that can be automatically car-
ried out by systematically exploring the formal environment specification. In
our software architecture, we realize these elements through the following main
entities:

• Software components. Agents are implemented as software components
that obey certain conventions.

• Scenarios definitions. Agents and properties about them are initialized
and composed in an environment by specifying scenarios.

• Experiments definitions. Verification and simulation procedures are re-
quested by specifying experiments.

Given these artefacts, we have the following dependencies. First, components
for a particular domain must be created. Then, particular scenarios for this
domain can be formulated. Finally, experimentation and analysis can be car-
ried out using these scenarios. Thus, we have a layered structure as shown in
Figure 8.1.

This is a rather general architecture, and is not restricted to the particular
kinds of agents and environments considered in this thesis. However, in FGS
we have provided specific components and specialized the definitions of scenar-
ios and experiments to account for our particular needs. Thus a component
that implements the Behaviourist Agent Architecture (see Section 8.3)
is provided, as well as the possibility of specifying EMMAS-based scenarios
and experiments concerning verification using simulation purposes.

In what follows we examine the main features of components, scenarios and
experiments as used in FGS.
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Figure 8.1: The dependencies between the several methodological concerns (in el-
lipses) and the artefacts that address them (in rectangles). Each layer has its partic-
ular worries and goals. EMMAS specifications are given within scenarios, whereas
simulation purposes are provided by experiments. The Behaviourist Agent Ar-
chitecture is implemented as a component.

8.1.1 Components

Our components represent very specific entities. We define two kinds of com-
ponents, namely:

• Agent components, which account for the simulated agents. The agent
profiles of EMMAS provide the interfaces of such components, so that
they can be represented and used in environments;

• Property components, which define what can be locally (i.e., at each MAS
global state) measured and calculated concerning the agents. These are
used to compute the annotations (i.e., literals) present in each state in
an ATS during simulations.

An agent component defines a particular kind of agent. That is, it defines
how such an agent behaves and what parameters it has. In a simulation, one
must instantiate agent components in order to have actual agents. All of the
instances of a particular component will behave similarly, varying only accord-
ing to the parameters specified during instantiation. Property components are
analogous. The set of all components is called the components repository.
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8.1.2 Scenarios

In order to be used, components must be instantiated in particular scenarios.
Scenarios define which instances must be created (i.e., agents and properties
about them), and how they are composed in an environment, thus specifying
an MAS. They are also reusable assets, because they can be frequently used
in distinct situations (e.g., different people might want to study a scenario
in different manners) and may not be cheap to produce (e.g., because the
information needed to create them is hard to obtain). Therefore, scenarios
must be kept in separate files, allowing their storage and sharing.

In FGS, a scenario is specified as a XML file, in which in particular an EM-
MAS specification can be given in XML format as well. See Appendix C for
an explanation of the input format, and Appendix B for actual examples of
scenario files.

8.1.3 Experiments

It is not sufficient to have a description of an interesting scenario. It is also
necessary to be able to do something useful with it. To this end, experi-
ments provide strategies to explore them. Moreover, experiments should be
performed in order to answer, automatically, particular questions about sce-
narios, instead of just “watching” the simulation unfolds. In this thesis, the
relevant strategy is the one in which one may specify a simulation purpose
and check whether it is satisfiable with respect to the specified MAS.

The same scenario can be used to perform different experiments. And the
same experiment, or a slightly modified version, can be performed in different
scenarios. Thus, experiment definitions should also be specified in separate
files.

In FGS, an experiment is specified as a XML file, in which a simulation
purpose can be described, along with the desired satisfiability relation. See
Appendix C for an explanation of the input format, and Appendix B for actual
examples of experiment files.

8.2 Simulation Execution and Analysis

To request the simulation and verification of an MAS, three kinds of XML
files must be provided to FGS:

• One or more parametrizations to the agents present. These parametriza-
tions are used to instantiate the implementation of the Behaviourist
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Agent Architecture;

• One scenario description;

• One experiment description.

Once FGS is invoked, it first uses the scenario description to instantiate the
Behavioural Agent Architecture, so that the relevant agents become avail-
able to the simulator. It then transforms the EMMAS specification provided
in the scenario description in a π-calculus expression. This expression is imple-
mented directly by instantiating classes from the π-calculus simulation library
according to the implementation of the translation function. This corre-
sponds to the initial state of the MAS to be simulated.

FGS then reads the experiment description in order to obtain the simula-
tion purpose and the satisfiability relation to be checked. The simulation
purpose is implemented trivially, since its structure is very simple. The sat-
isfiability relation, in turn, determines which verification algorithm should be
used.

After all this has been done, FGS merely executes the requested verification
algorithm. To calculate the next states in the ATS implementation, it uses
the π-calculus operational semantics rules which are implemented in the π-
calculus library. A few optimizations are used in the π-calculus implementa-
tion, so that this computation is more efficient (e.g., expressions are balanced
trees, and the results of applying the operational semantic rules are cached
for later reuse whenever possible). The state of the agents are changed and
inspected by manipulating the objects that instantiate them. This informa-
tion added to states , and used to apply the relevant constraints. Finally, the
property components specified in the scenario description are also simulated
and the resulting values are used to annotate the states with literals.

As seen in Chapter 7, there is a special commit event which signals that
agents should receive stimulation and provide behavioural responses. This is
implemented by FGS as follows. Events are stored as they are found in a
run of the ATS, but are not delivered to the agents. When a commit event
is found, then the stored events are delivered to the relevant agents, and they
may also change whether they are emitting or not emitting their actions.

If the appropriate options have been set, FGS will output information about
every synchronization made in the synchronous product, which allows the
visualization of the simulations. When the algorithm terminates, the verdict
is shown, and a run is displayed as well if relevant (e.g., the feasible run
that led to Success).
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8.3 Behaviourist Agent Architecture Component

The Behaviourist Agent Architecture specified in Chapter 4 is imple-
mented in Java. For most of the schemas in the specification, we provide a
class that implements it. The objective of such a strategy is to allow an easy
correspondence between the implementation and its specification. Besides
reducing the chance of introducing errors in the implementation, this also
allows modifications in the specifications to be implemented quickly. This
is an important point because the architecture is designed to be extensible,
and therefore it is convenient that such extensions can be easily integrated
in the implementation. A disadvantage of this approach, however, is that
the specification structure is not necessarily the most efficient implementa-
tion structure. For example, in the specification many operation schemas are
defined by putting together several other operation schemas by means of the
schema calculus. This division is maintained in the implementation, where
each schema has its own class, although it would be more efficient if they were
all implemented in only one class.

In order to instantiate an agent, it suffices to create a new Organism object and
initialize it with a special kind of XML file, in which several agent parameters
must be defined (e.g., the stimuli it recognizes, the actions it can perform, the
reflexes). Appendix C provides a complete description of the required XML
format.

This implementation is independent of FGS. However, to be used in FGS, it
is wrapped in another class, the OrganismComponent, which implements the
component interfaces required by FGS. In this manner, the agent implemen-
tation is integrated in the simulation and verification algorithms implemented
by FGS.

8.4 π-Calculus Simulation Library

The π-calculus process algebra, as we have already pointed out, is a formal-
ism for specification and verification of concurrent systems. Moreover, much
like the λ-calculus for sequential computation, it is particularly suitable for
theoretical analysis, since it is composed of few elements and notions. For
example, since there are few basic operators, there are also few cases to prove
whenever one wishes to establish new properties about the calculus. Never-
theless, it can also be used to implement concurrent systems. In this case, an
important advantage also comes from the fact that there are few operators,
for any implementation can be reduced to implementing them. Furthermore,
since any such implementation inherits the theoretical properties of the cal-
culus, it follows that programs thus built will by definition be able to express

192



8.4. π-Calculus Simulation Library

a number of important concurrency notions, as well as be subject to certain
forms of formal verification.

The environment model we described in Chapter 5 is largely given in terms of
π-calculus, owing to its good theoretical properties. This motivated us to go
one step further and actually implement a simulator for the π-calculus, so that
the simulation of environments can be carried out directly from their formal
definitions. This is provided as a library, which in turn is used by FGS.

This π-calculus simulation library is implemented in as a direct manner as
possible, as follows:

• Each possible π-calculus processes is given a Java class, which holds ref-
erences to classes implementing its sub-processes. A complete π-calculus
processes, then, is implemented as a tree structure.

• Each rule in the π-calculus operational semantics is also implemented as
a Java class. Processes hold references to the rules that apply to them.
Once one asks for the successors of a given process, the rules associated
with it are applied. This is done in a recursive manner, analogously to
the definition of the π-calculus operational semantics.

There are a number of efficiency issues which are particular to π-calculus
implementation, and which therefore have no treatment on a theoretical level.
These issues require special optimizations to be made, and, if anything, these
are the real contribution of such an implementation. Let us then turn to them.

8.4.1 Optimizations

Most of the optimizations below do not change the calculus in any way, but
only make efficient choices regarding the many possible ways to implement
theoretical features. Therefore, most of them do not significantly compromise
the correctness of the implementation. The only exception to this is the custom
process presented in Section 8.4.1.4. But for the sake of correctness, as well
as other matters to be seen in that section, we have not implemented this
particular idea, and thus it is left as a mere possibility which do not affect the
π-calculus simulation library. Let us now present each optimization technique
and the problems that they address.

8.4.1.1 Caching

In order to build an LTS for a π-calculus process, it is necessary to calculate
its successors. As we have explained, this is achieved by a recursive applica-
tion of the calculus’ operational semantics rules. In principle, then, whenever
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such successors are required, they can be computed in this fashion. However,
once computed, they are guaranteed to do not change unless a substitution is
applied to them. Therefore, it is possible to cache (i.e., record for latter use)
the successors of any π-calculus process after their first computation, so that
when they are needed again their computation is avoided.

Since a process is recursively composed by sub-processes, this caching is an
excellent optimization, for without it the whole specification (which is one big
process) would be constantly subject to successor calculation when in reality
only a fraction of it actually needs re-computation.

Our implementation is simple and as follows. Each process keeps a cache of
successors which is calculated in the first time that successors are requested.
Later, this cache is returned. However, if the process is requested to perform a
substitution and this substitution actually changes something, then the cache
is cleared so that the successors can be recomputed in the next time that they
are requested. This is necessary because some successors may change after
the substitution.

8.4.1.2 Expression Simplification

In π-calculus, processes are composed of subproceses through operators. The
only primitive process that exists is 0 (i.e., the Nil process). This special
process signals a state in which nothing more can be done, and therefore it is
incapable of interacting with any other process.

Now consider a system composed of several processes in parallel, such as this:

P1 | P2 | P3 | P4 | P5 | P6 | P7

Since every Pi process contains at least one reference to the Nil process, it
follows that it may be the case that many such references eventually appear in
the composition after several applications of the operational semantics rules.
For instance, at some point the parallel composition may be reduced to the
following:

P1 | 0 | P3 | P4 | 0 | 0 | 0

Owing to the fact that the Nil process is inert, in principle one could leave the
parallel composition as it is. However, in an implementation these references
consume resources, which can become a hindrance if their quantity increases
too much. To avoid this, we simplify the parallel composition, removing all
such useless Nil processes. In the above example, this would result in the
following shorter process:
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P1 | P3 | P4

This optimization is particularly important for the implementation of EM-
MAS because it employs the replication operator frequently in processes with
few events. For example, the following process is always a parallel component
in the generated π-calculus process of an EMMAS specification destined to
simulation (see Definition 7.1):

!(commit .0)

By structural congruence, this is equivalent to the following:

commit .0 |!(commit .0)

Which produces the commit event and leaves us with:

0 |!(commit .0)

Which is the kind of expression the optimization discussed here aims at sim-
plifying. Since during simulations many of these commit events will be gen-
erated, it is clear that there would be a very large accumulation of useless Nil
processes if the optimization was not applied.

8.4.1.3 Balanced Expression Structure

Most operators in π-calculus are binary, and therefore they induce a binary
tree to represent expressions. A naive implementation could build an unbal-
anced binary tree, in which one of the branches is much deeper than the others.
For instance, consider an unbalanced representation of the process

P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8

such as the following:
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+

P1 +

P2 +

P3 +

P4 +

P5 +

P6 +

P7 P8

This would imply that any modification in the lower nodes of the tree would
affect almost all other preceding nodes, since the latter use the former to
calculate their successors. This problem can be solved by simply balancing the
tree, so that the tree’s structure reflects the actual computational dependencies
and avoids unnecessary recalculations. In the example just considered, the
following balanced representation could be used:

+

+

+

P1 P2

+

P3 P4

+

+

P5 P6

+

P7 P8

Notice the difference with respect to the tree’s height. In fact, we can prove
that there is a logarithmic decrease in the height by transforming a perfectly
unbalanced tree (i.e., one in which there is as much unbalance as possible)
into a perfectly balanced one (i.e., one in which there is as much balance as
possible).

Proposition 8.1. Let T be a perfectly unbalanced binary tree with n nodes
and height h. Let T ′ be the perfectly balanced version of T , with height h ′.
Then either h ′ = lg(h + 1) or h ′ = lg(h + 2).

Proof. Clearly, h = n − 1, hence n = h + 1. In T ′, owing to the balance im-
posed, at each level of the tree there are two sub-trees with the same structure
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(except for the lack of one node, if x is odd). So if n is even, it follows that:

n = 2h
′

h + 1 = 2h
′

lg(h + 1) = h ′

On the other hand, if n is odd, we have that:

n = 2h
′

− 1

h + 1 = 2h
′

− 1

h + 2 = 2h
′

lg(h + 2) = h ′

Therefore, either h ′ = lg(h + 1) or h ′ = lg(h + 2).

8.4.1.4 Custom Processes

It is possible to extend the framework with new kinds of primitive processes.
This allows the possibility of implementing what was originally a complex
π-calculus expressions as merely a primitive process, by providing both such
an implementation and a corresponding operational semantic rule. In this
manner more efficient calculations can be achieved. This possibility, however,
has two related main disadvantages: it creates the problem of proving that
the new implementation corresponds its original π-calculus definition; and as
a consequence, it makes it difficult to modify the original π-calculus definition
if necessary, for any such modification would require one to make sure that
the modified implementation is still correct. It is also not a general solution,
since any new complex expression, to take advantage of this, would have to be
individually implemented. For these reasons we chose not to use such custom
processes, though they offer a potential way of optimizing the technique.

8.5 Conclusion

In this chapter we have seen how the approach is actually implemented. There
are three main implementation artefacts involved. Most importantly, the sim-
ulator itself, which we call FGS. But to work with the MASs developed in
this thesis, FGS requires two other things: a component that implements the
Behaviourist Agent Architecture; and a π-calculus simulation library to
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implement EMMAS specifications. All of these were considered in the chap-
ter.

In this thesis, our main formal effort has been devoted to the technique of
formally guided simulations and the related verification algorithms, which are
proved to be correct with respect to precisely defined notions of soundness
and completeness (in Section 7.6). However, we have not proved that the
implementation (in Java) of the various formal definitions, transformations
and algorithms are correct as well. Nevertheless, since by construction these
implementations follow their formal counterparts closely, they are likely to be
correct.

An important consequence of decoupling the agent architecture implementa-
tion from the simulator, in the form of external components, is that one may
try different architectures, or different implementations of the same architec-
ture, without changing the simulator. This allows one to consider several
possible agent implementations, which could be developed independently of
each other. Such a feature is important in a tool designed for experimenta-
tion, since one way to experiment with an MAS is to consider variations of the
agents under experimentation. Moreover, the Behaviour Agent Architec-
ture itself is designed to be extended, so it is desirable that its implementation
can be easily extended as well.

The idea of implementing the π-calculus directly in order to account for EM-
MAS has both positive and negative aspects. The positive aspect is that such
an approach makes modifications to the EMMAS model quite easy to imple-
ment: it suffices to provide a π-calculus translation for the modification, which
is trivially implemented by instantiating elements of the π-calculus simulation
library. However, a naive implementation of π-calculus is bound to suffer from
efficiency problems, for there are a number of algorithmic issues that are not
addressed in the calculus’ formal definition. This requires optimizations to
be performed. And therein lies the negative aspect. The π-calculus is very
expressive, but very fine-grained as well, so translations from one high-level
concept of EMMAS usually require several π-calculus elements. Ultimately,
one gets a π-calculus process that is much larger than the original EMMAS
specification. A more direct implementation of EMMAS would be more in
this respect, although this would possibly undermine the flexibility gained by
using the π-calculus. In this thesis we have opted for this flexibility, but one
may consider other implementation strategies.
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Case Studies

In this chapter we present some concrete case studies to illustrate the approach
proposed in this thesis. Each one is given with:

• an informal introduction;

• parametrizations of the Behaviourist Agent Architecture;

• the EMMAS specification;

• the simulation purpose to be checked;

• the results of executing FGS.

The input files to FGS, as well as its output, are not provided in this chapter,
but can be found in Appendix B. Here we focus our attention on the most
important aspects of the models themselves, and not on input notation, which
is rather verbose (see Appendix C for a description of the input format).

The case studies show the kinds of problems that the Behaviourist Agent
Architecture and EMMAS are capable of modelling. Given the distinc-
tive behaviourist point of view adopted, these problems differ considerably
from those typically used in the MAS literature (e.g., auctions). Here we are
concerned with how environmental stimulation can influence the behaviour of
agents endowed with specific adaptation and learning mechanisms. These case
studies are partly inspired by the literature on behaviourist psychology, but
add innovations that arise from our particular computational approach. For
instance, the fact that agents in EMMAS are related by a social network is
the basis for specifying experiments in which multiple such networks can be
simulated.
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Moreover, each case study highlights a particular set of features of the ap-
proach. In this way, we show that our method has a certain generality in so
far as it is able to express different circumstances in a uniform manner.

The experiments were executed in the Ubuntu 10.04 Desktop operating sys-
tem (a GNU/Linux distribution), using a machine with an Intel Core 2 Duo
processor (2.26 GHz) and 4 GB of RAM. The OpenJDK implementation of
Java 6 was employed.

The case studies are divided in two groups. Section 9.1 presents those con-
cerning isolated agents, while Section 9.2 provides multi-agent ones. We thus
show how our approach is relevant in both circumstances. To conclude, Sec-
tion 9.3 summarises and analyses the findings we obtained through all of the
examples.

9.1 Single Agent Examples

Experiments with isolated agents are the means by which much of behavioural
psychology is developed. Indeed, perhaps its most memorable instrument is
the operant conditioning chamber (also known as the Skinner box ), a cage in
which an organism, such as a rat or a pigeon, can be put in order to undergo
experimentation (Catania, 1998). The box allows the experimenter to provide
stimulation (e.g., lights, food), and the subject animal to perform certain
actions (e.g., push a lever), all of which can be recorded for later analysis.
By this method, it is possible to study the animal’s behaviour under several
circumstances, as well as to teach certain behaviours to it.

In this section we consider a similar idea, but in a more abstract version. In-
stead of a box, we have any EMMAS environment such that only one agent
is present. And instead of a human operator, we use simulation purposes
to conduct the experiments.

The following examples model some classical phenomena that can be studied
through behavioural means. In this way, they also illustrate the connection be-
tween our technology and the underlying psychological approach that inspired
it.

9.1.1 Pavlovian Dog: Classical Conditioning

Classical conditioning consists in teaching an organism that a certain desired
stimulus happens after another, initially neutral, stimulus. The neutral stim-
ulus thus becomes a conditioned stimulus. It is a phenomenon also known as
Pavlovian conditioning, since it was discovered by Ivan Pavlov, a Nobel prize
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winner physiologist active from late XIXth to early XXth century. Pavlov
performed experiments on dogs in order to discover this principle.

Let us then model such a dog using our agent architecture. We include the el-
ements necessary for performing a classical conditioning experiment, but also
elements that are not at all necessary. This is done for the sake of illustra-
tion, in order to show that an agent can be made rather complex, and that,
nevertheless, we are able to experiment with the subset of its behaviours that
we are interested in. The practical importance of this is that elements that
in principle are not subject to experimentation can interfere with those that
are, and when modelling an organism one may face such situations. Hence,
our method must be able to deal with it.

9.1.1.1 Agent Parameters

First, we need an instance of an organism.

dog : Organism

Before the experiment, the dog must have the following elements defined:

• Unconditioned stimulus. A stimulus that is desired by the organism. For
Pavlov’s experiments, some kind of food. We also specify other stimuli
to render the dog more complex.

food , injection,neutral , bark sound : Stimulus

dog .primaryStimuli = {food , injection,neutral , bark sound}

dog .primary utility(food) = 0.91

dog .primary utility(injection) = −0.6

dog .primary utility(neutral) = neutral utility

dog .primary utility(bark sound) = 0.1

dog .max delay = 100

dog .c = 0.5

dog .pleasureHints = {food}

dog .painHints = {veterinary}

1We write rational numbers without fractions for readability, but formally we would have
to specify a pair of integers (a, b).
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• Conditioned stimulus. A stimulus that, initially, has no effect over the
organism. For instance, the sound of a bell, a whistle and a veterinary.

bell ,whistle, veterinary : Stimulus

• Actions. Pavlov would measure the salivation of the dog in order to
asses whether the presented stimulus had any effect. We thus model
this action, but also other actions that are available to the dog.

salivate, bark , sit , push lever : Action

dog .operantActions = {bark , sit , push lever}

dog .reflexActions = {salivate, bark}

dog .baseLevel(salivate) = 0.0

dog .baseLevel(bark) = 0.2

dog .baseLevel(sit) = 0.1

dog .baseLevel(push lever) = 0.0

• Salivation reflex. The dog has a salivation reflex that has food as its
antecedent.

salivation : Reflex

dog .reflexes = {salivation}

salivation.antecedent = food

salivation.action = salivate

• Operants. Pavlov’s experiments did not deal with operant behaviour,
a notion that would only come to light later. However, we may here
introduce some operants in order to make the example more interesting
and show how classical conditioning interacts with them. So let us sup-
pose that the dog has some previous operant learning. First, it knows
that push lever leads to bell (we will see that the environment complies
with this). Second, let us make the dog aware that its bark results in a
bark sound it can hear.

o1, o2 : Operant

dog .operants = {o1, o2}

o1.antecedents = {∅}

o1.action = push lever

o1.consequence = bell

o1.consequenceContingency = {(∅, 0.9)}
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o2.antecedents = {∅}

o2.action = bark

o2.consequence = bark sound

o2.consequenceContingency = {(∅, 0.9)}

This gives us an agent suitable to experimentation.

9.1.1.2 EMMAS Specification

We first need to define an agent profile to the dog.

S = {food , bell ,whistle, injection, veterinary ,neutral , bark sound}
A = {salivate, bark , sit , push lever}
dog = 〈0,S ,A〉

Since there is only one dog in the example, the set of agents AG is a singleton.

AG = {dog}

For the same reason, there are no communication with other agents.

AT = ∅

It is in the environment behaviours that most of the environment’s structure
lies.

eb1 = ER(salivate, dog ,NOP)
eb2 = ER(bark , dog ,NOP)
eb3 = ER(push lever , dog ,Stimulate(bell , dog))
eb4 = (Stimulate(bell , dog); Stimulate(food , dog))+

(Stimulate(whistle, dog); Stimulate(food , dog))
EB = {eb1, eb2, eb3, eb4}

Let us comment on the role of each of these:

• eb1 and eb2 define environment behaviours that react to the actions
of salivate and bark , respectively. However, the reaction is merely a
do nothing operation. The reason is that only the actions that are
relevant for the environment are visible to the simulator. By specifying
eb1 and eb2 in this way, we ensure that salivate and bark will be visible.
These actions have no particular consequence in this environment, but
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will be relevant later, when we specify the simulation purpose to be
checked. This is also a way to reuse the same agent profile in different
environments, since in each such environment one may select the
relevant actions and stimuli for the agent.

• eb3, on the other hand, is an environment behaviour that actually
does something. Whenever the dog pushes a lever, it gets stimulated
with the sound of a bell. This can be understood as an apparatus present
available for the dog’s manipulation. If eventually the utility of bell
becomes positive and the dog learns that push lever leads to bell , it will
become more likely to perform push lever . This is an example of how
the structure of the environment can be closely related to an agent’s
learning mechanisms.

• eb4 has a more experimental role. It defines two alternative ways in
which the environment can manipulate the dog. In the first case, the
bell stimulus is delivered, and later the food stimulus. In the second
case, the whistle stimulus is delivered, and later the food stimulus. The
objective of both is to try to condition either bell or whistle to food , a
primary stimulus. The reason why these two alternatives are given here,
and not merely one, is that the environment must express a range of
possibilities. The actual experiments to be performed will be defined
later by a simulation purpose, which will guide the choices among all
the possibilities offered by the environment.

Given all that, we at last define the environment.

〈AG ,AT ,EB〉

9.1.1.3 Simulation Purpose

Let us now define a simulation purpose that can perform some experiments
in the dog in order to show its classical conditioning capabilities. We begin
by defining everything except the transitions.

Q = {q0, q1, q2, q3, q4, q5, q6, q7,
q8, q9, q10, q11, q12,Success,Failure}

E = {emit0salivate , stop
0
salivate , emit0pushlever , beginning

0
food , stable

0
food ,

beginning0whistle , stable
0
whistle , beginning

0
bell , stable

0
bell , ending

0
bell ,

absent0bell}
P = {}
L = {}

The interesting thing now is to define, through the possible transitions, the
experiments to perform. We will define two such experiments.
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❀= {(q0, beginning
0
whistle , q1), (q1,�, q1), (q1, stable

0
whistle , q3),

(q3,�, q3), (q3, beginning
0
food , q4), (q4,�, q4),

(q4, stable
0
food , q4), (q4, emit0salivate , q4), (q4, beginning

0
whistle ,Failure),

(q4, stop
0
salivate , q5), (q5,�, q5), (q5, beginning

0
whistle , q6),

(q6,�, q6), (q6, emit0salivate ,Success),

(q0, beginning
0
bell , q10), (q10, stable

0
bell , q10), (q10, ending

0
bell , q10),

(q10, absent
0
bell , q10), (q10,�, q10), (q10, beginning

0
whistle ,Failure),

(q10, beginning
0
food , q12), (q12,�, q12), (q12, emit0pushlever ,Success)}

The first experiment consists in stimulating the dog with whistle, then giving
it food later, and finally stimulating it again with whistle to check whether
it emits a salivate action. If it does, it means that whistle was successfully
conditioned to food .

In the second experiment we condition bell , instead of whistle, to food . It is
assumed that the dog has an operant that states that push lever leads to bell .
The experiment, then, consists in checking whether push lever is emitted by
the dog, which shows how stimulus conditioning influences operant behaviour.

With all this we have the simulation purpose.

〈Q ,E ,P ,❀,L, q0〉

9.1.1.4 Result

FGS verified in two seconds that the simulation purpose is indeed weakly
feasible. It outputed the verdict and a feasible run. In an abbreviated
form, this corresponds to the following:

Simulation Purpose Verification strategy

======================================================

Result = SUCCESS

Running time = 2s

Run found:

[depth = 0] State (in SP): initial

[depth = 1] Events synch’d: <?beginning[agentId = 0]_[Stimulus type=’bell’],

!beginning[agentId = 0]_[Stimulus type=’bell’]>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 2] Events synch’d: <(*)other,

!commit>;

(...)

[depth = 29] Events synch’d: <!emit[agentId = 0]_[Action type=’push_lever’],

?emit[agentId = 0]_[Action type=’push_lever’]>;
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State annotations synch’d: <[], []> State (in SP): success

Result = SUCCESS

Running time = 2s

Finished.

The complete feasible run is given in Appendix B. In the next examples we
do not show the actual output, since they are all similar to the above, but
they can be found in Appendix B as well.

9.1.2 Worker: Operant Chaining

An operant is a learning unit that associates an action to a consequence.
Often, though, the desired consequence might need a series of different actions.
Because each action requires an operant, we call this operant chaining. This
method consists in reinforcing actions in the appropriate order, so that the
performance of one action sets the antecedents for the next one.

To see how this can be modelled, let us consider a worker. In many cases,
the worker has no interest in his job. Rather, he works in order to be able to
make money. And money itself has only value because it can be used to buy
pleasant things, like food.

More than one operant is required to model how the worker acquires what
he truly enjoys. In this example, we provide a worker with several operants
that form a chain. The environment, in turn, is designed to make sure the
chain is maintained. That is to say, every action is rewarded with the stimulus
necessary for the next operant in the chain. The simulation purpose then
merely checks that the chain is actually executed, by verifying that actions
are emitted in the appropriate order.

9.1.2.1 Agent Parameters

Let us define a worker.

worker : Organism

The relevant parametrizations for this example are the following:

• Food stimulus. Ultimately, the worker wants to have food.
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food : Stimulus

worker .primaryStimuli = {food}

• Money stimulus. Money will be used to buy this food, but in itself has
no utility.

money : Stimulus

• Work place stimulus. The work place has several characteristic features
(e.g., forms, colors, sounds). However, for our modelling, it suffices to
abstract all of these features and define a single stimulus that correspond
to the perception of being in the work place.

workPlace : Stimulus

• Home stimulus. Similarly, the worker’s home is synthesized in a single
stimulus.

home : Stimulus

• Work action. This is the action that the employer wishes the agent to
perform.

work : Action

• Buy food action. This is the action that will lead to actual pleasure.

buyFood : Action

• Wake up early action. This will be required in order to work properly.

wakeUpEarly : Action

• Operants. We need one operant for each action above.

worker .operants = {wakeUpEarlyO ,workO , buyFoodO}

• Wake up early operant. Notice that home is a required antecedent stim-
ulus. Once the action wakeUpEarly is performed, our simplified envi-
ronment defines that the worker reaches the workPlace stimulus.

wakeUpEarlyO : Operant

wakeUpEarlyO .antecedents = {{home}}

wakeUpEarlyO .action = wakeUpEarly

wakeUpEarlyO .consequence = workPlace

wakeUpEarlyO .consequenceContingency = {({home}, 0.9)}
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• Work operant. Notice that the workPlace is the consequent of the pre-
vious operant and a required antecedent for the workO operant below.
That is to say, one operant has set the opportunity to do another, and
that’s why they are chained. The workO operant below, in turn, will
cause the worker to acquire money .

workO : Operant

workO .antecedents = {{workPlace}}

workO .action = work

workO .consequence = money

workO .consequenceContingency = {({workPlace}, 0.9)}

• Buy food operant. Finally, because of the money acquired with the
previous operant, it is possible to buy food.

buyFoodO : Operant

workO .antecedents = {{money}}

workO .action = buyFood

workO .consequence = food

workO .consequenceContingency = {({money}, 0.9)}

9.1.2.2 EMMAS Specification

This chain depends on the environment reinforcing the several operants. For
example, if the worker no longer receives money after his work, he will even-
tually stop working and the chain will be broken. And by the same token,
the chain could be extended by reinforcing other actions in a similar pattern
before providing the money stimulus.

The following defines the agent profile of the worker.

S = {food ,money , home,work place}
A = {work , buy food ,wake up early}
worker = 〈0,S ,A〉
AG = {worker}

Since the agent is alone, there are no action transformers.

AT = ∅
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The environment behaviours, in turn, are designed to start and maintain
the operant chain.

eb1 = Stimulate(home,worker)
eb2 = ER(wake up early ,worker ,Stimulate(work place,worker))
eb3 = ER(work ,worker ,Stimulate(money ,worker))
eb4 = ER(buy food ,worker ,Stimulate(food ,worker))
EB = {eb1, eb2, eb3, eb4}

Let us comment on these:

• eb1 merely puts the agent in an initial state (i.e., his home) so that the
initial condition for the chain may hold.

• eb2 and eb3 define environment responses, which rewards each oper-
ant in the chain with the stimulus required for the next operant.

• eb4 defines an environment response that delivers the primary stim-
ulus sought by the agent (i.e., food).

This gives us the environment.

〈AG ,AT ,EB〉

9.1.2.3 Simulation Purpose

Let us build a simulation purpose to exercise the operant chain. We first
need the states and events related to the operants to be performed.

Q = {q0, q1, q2, q3,Success,Failure}
E = {?beginning0home , !emit0wake up early , !emit0work , !emit0buy food}

P = {}
L = {}

The transition then require that the three actions (i.e., wake up early , work ,
buy food) be performed in order.

❀= {(q0,�, q0), (q0, ?beginning
0
home , q1),

(q1,�, q1), (q1, !emit0wake up early , q2),

(q2,�, q2), (q2, !emit0work , q3),
(q3,�, q3), (q3, !emit0buy food ,Success)}

We thus have the simulation purpose.

〈Q ,E ,P ,❀,L, q0〉
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9.1.2.4 Result

FGS checked in one second that the simulation purpose is indeed weakly
feasible.

9.2 Multi-Agent Examples

Though isolated agent experiments provide the basis for the analysis of be-
haviour, it is ultimately agents within a social context that one wishes to
study, since in practice organism always interact. In this section, then, we
consider examples of such social interaction that can be modelled using our
approach.

9.2.1 Violent Child: Behaviour Elimination Through
Reinforcement

It is often the case that one wishes to eliminate some operant behaviour. An
obvious way to do it is to punish the agent when it performs such an operant.
But punishment has its own undesirable consequences, such as the emotional
influence that it brings.

Interestingly, there is an alternate way of eliminating operants, by using rein-
forcement instead. This approach consists in reinforcing some other behaviour
which: (i) is something desirable; and (ii) is in conflict with the operant to
be eliminated (i.e., the agent cannot perform both at the same time). By this
method, one both avoids the problems with punishment and create a new and
valuable behaviour.

As an example, let us consider a child who often misbehaves by beating her
dog. She does so because she finds the resulting dog’s scream amusing. This
child, moreover, sometimes do caress the dog, albeit rarely.

Clearly, one cannot beat and caress the dog at the same time, since these
actions depend on the same mechanism (i.e., the child’s hand). So to eliminate
the behaviour of beating the dog, we reinforce the action of caress. If the
reinforcement is more pleasant to the child than the dog’s scream, then the
behaviour is successfully changed.

We model both the child and the dog. Their environment can provide some
candy, which is reinforcing to the child. By means of a simulation purpose,
we guide the simulations so that the child only gets the candy when performing
the caress action. The simulation purpose, to be feasible, also requires the
beating behaviour to disappear.
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9.2.1.1 Agents Parameters

Let us begin by modelling the child as follows:

• Stimuli. We assume that this child enjoys receiving candy, as well as
hearing the dog’s scream. But for the technique to work, we will assume
that the child actually prefers the candy.

child : Organism

candy , scream sound : Stimulus

child .primaryStimuli = {candy , scream sound}

child .primary utility(candy) = 0.6

child .primary utility(scream sound) = 0.2

child .max delay = 100

child .c = 0.5

child .pleasureHints = {}

child .painHints = {scream sound}

• Actions. The actions, in turn, are as follows. It is specially important to
state that they are conflicting and that they may happen spontaneously.

caress, beat : Action

child .operantActions = {caress, beat}

child .reflexActions = {}

child .conflict(caress, beat) = conflicting

child .baseLevel(caress) = 0.2

child .baseLevel(beat) = 0.0

• Operants. Finally, let us assume the child already knows that when she
beats the dog, it will scream.

o1 : Operant

child .operants = {o1}

o1.antecedents = {∅}

o1.action = beat

o1.consequence = scream sound

o1.consequenceContingency = {(∅, 0.9)}
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• Drive. The child periodically gets tired of hearing the dog’s scream.
This is modelled as a drive.

d : Drive

child .activeDrives = {d}

d .desires = {scream sound}

d .importance = 0.0

d .maxImportance = 0.0

d .minImportance = −1.0

The dog, in turn, is modelled as follows:

• Stimuli. Both of the relevant stimuli for the dog are primary, but one is
unpleasant, whereas the other is pleasant.

dog : Organism

punch, caress : Stimulus

dog .primaryStimuli = {punch, caress}

dog .primary utility(punch) = −0.5

dog .primary utility(caress) = 0.5

dog .max delay = 100

dog .c = 0.5

dog .pleasureHints = {}

dog .painHints = {}

• Actions. The dog can scream in pain or wag its tail when happy. More-
over, to make the example more complex, the dog also barks sponta-
neously.

bark , scream,wag tail : Action

dog .operantActions = {bark ,wag tail}

dog .reflexActions = {scream,wag tail}

dog .baseLevel(bark) = 0.01

dog .baseLevel(scream) = 0.0

dog .baseLevel(wag tail) = 0.0
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• Reflexes. The dog has two reflexes, one to model the fact that it can
complain when it receives a punch, and the other to model that it wags
its tail when caressed.

complain, enjoy : Reflex

dog .reflexes = {complain, enjoy}

complain.antecedent = punch

complain.action = scream

enjoy .antecedent = caress

enjoy .action = wag tail

9.2.1.2 EMMAS Specification

Profiles are needed for the child and the dog.

Sc = {candy , scream sound ,neutral}
Ac = {beat , caress}
Sd = {punch, caress}
Ad = {bark , scream,wag tail}
child = 〈0,Sc ,Ac〉
dog = 〈1,Sd ,Ad 〉
AG = {child , dog}

We must specify how the actions of the agents affect each other. For this
example, it suffices to allow the child to both punch and caress the dog, and
allow the dog to scream to the child.

AT = {
〈child , beat , punch, dog〉, 〈child , caress, caress, dog〉,
〈dog , scream, scream sound , child〉
}

The environment allows an experimenter to give as many candies to the child
as desired. This does not mean that an unbounded amount of candy will be
effectively given to the child, but simply that it is possible to do so. This shows
how an environment can provide a kind of instrument (in this case, a candy
dispenser) that is later put to use (i.e., by means of a simulation purpose and
the related verification technique). Moreover, the environment also allows the
provision of a neutral stimulus, which can be used as a discriminative stimulus
when teaching new behaviours.
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eb1 = Forever(Stimulate(candy , child))
eb2 = Forever(Stimulate(neutral , child))
EB = {eb1, eb2}

We thus have the following environment.

〈AG ,AT ,EB〉

9.2.1.3 Simulation Purpose

In order to guide properly the simulation, we use several states and events.
We also employ a proposition to check whether the child really likes candy,
for otherwise the procedure cannot possibly work.

Q = {qi | 0 ≤ i ≤ 47} ∪ {Success,Failure}
P = {LikesCandy}
L = {(q1, {LikesCandy})}
E = {emit0beat , stop

0
beat , emit0caress , stop

0
caress ,

beginning0candy , stable
0
candy , ending

0
candy , absent

0
candy ,

beginning0neutral , stable
0
neutral , ending

0
neutral , absent

0
neutral ,

beginning0scream sound , stable
0
scream sound , ending

0
scream sound ,

absent0scream sound , emit1scream , stop1scream , beginning1caress ,
stable1caress , ending

1
caress , absent

1
caress , beginning

1
punch ,

stable1punch , ending
1
punch , absent

1
punch}

The procedure to adopt is the following sequence:

1. let the child beat the dog. This involves a number of events, such as
the beating action, the punch perceived by the dog, and the resulting
scream. Because the desire to hear the scream is regulated by a drive,
the child will get tired of beating the dog;

2. wait for a caress and reward it;

3. make sure that the child is no longer beating the dog, nor the dog is
feeling the previous punch, and in the process define any new beating as
a leading to Failure;

4. wait for the next caress action, which indicates that although the child
had time to recover the wish to hear screams, it now prefers to caress
the dog instead.

This corresponds to the following set of transitions.
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❀= {(q0, beginning
0
neutral , q1), (q1, ?commit , q1), (q1, emit0beat , q3),

(q3, ?commit , q4), (q4, beginning
1
punch , q5), (q5, ?commit , q6),

(q6, stable
1
punch , q7), (q7, stable

0
neutral , q8), (q8, ?commit , q9),

(q9, ?commit , q10), (q10, emit1scream , q11), (q11, beginning
0
screamsound

, q12),

(q12, ?commit , q13), (q13, stable
0
screamsound

, q14), (q14, ?commit , q14),

(q14, stop
1
scream , q15), (q15, ?commit , q16), (q16, ending

0
screamsound

, q17),

(q17, ?commit , q18), (q18, absent
0
screamsound

, q19), (q19, ?commit , q20),

(q20, emit0caress , q21), (q21, beginning
1
caress , q22), (q22, ?commit , q23),

(q23, stable
1
caress , q24), (q24, ?commit , q24), (q24, stop

0
caress , q25),

(q25, beginning
0
candy , q26), (q26, ending

1
caress , q27), (q27, ?commit , q28),

(q28, absent
1
caress , q29), (q29, stable

0
candy , q30), (q30, ?commit , q31),

(q31, τ, q32),

(q32, ending
0
candy , q33), (q33, ?commit , q34),

(q33, emit0beat ,Failure),
(q34, stop

0
beat , q35), (q34, emit0beat ,Failure),

(q35, ending
1
punch , q36), (q35, emit0beat ,Failure),

(q36, ?commit , q37),
(q36, emit0beat ,Failure),
(q37, absent

1
punch , q38), (q37, emit0beat ,Failure),

(q38, ?commit , q39), (q38, emit0beat ,Failure), (q39,�, q40),
(q39, emit0beat ,Failure),
(q40,�, q41), (q37, emit0beat ,Failure),
(q41,�, q42), (q41, emit0beat ,Failure),

(q42, emit0caress ,Success)
}

This gives us the simulation purpose.

〈Q ,E ,P ,❀,L, q0〉

9.2.1.4 Result

FGS verified in four seconds that the simulation purpose is strongly fea-
sible. The strong variant is used because we wish to assert that it is not even
possible at a certain point for the event emit0beat to take place (which leads to
Failure).
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9.2.2 Factory: Rearranging a Social Network

Many tasks require the cooperation of several individuals. The modern factory,
with its assembly line, is an example of this. The main aspect in such a factory
is, of course, the division of labour according to the technical requirements of
the product being built. This we do not address here. We wish, here, to show
a different dimension to this problem, namely, that of social interaction.

The factory owner would like workers to be replaceable commodities. However,
this is not quite the case. Workers may, for instance, have a hard time working
with certain others. They may be lazy, or uninterested. They might or might
not have better things to think about. All this influences in their productive
behaviour, and therefore is important.

In this example we assume the existence of a certain set of workers and man-
agers. We wish to discover how to setup an assembly line so that work actually
gets done.

9.2.2.1 Agents Parameters

In this example we consider the following agents.

m1,m2 : Organism

w1,w2,w3 : Organism

Since the specification of each individual agent takes considerable space, in
this example we show explicitly only one agent of each kind to be considered
(i.e., managers and workers).

Let us begin by the managers:

• Stimuli. Managers only receive money.

money : Stimulus

m1.primaryStimuli = {money}

m1.primary utility(money) = 0.9

m1.max delay = 10

m1.c = 0.5

m1.pleasureHints = {money}

m1.painHints = {}
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• Actions. The job of a manager is to give orders.

order work : Action

m1.operantActions = {order work}

m1.reflexActions = {}

m1.baseLevel(order work) = 0.0

• Operants. Managers have already learned that their work is rewarded.

o1, o2 : Operant

m1.operants = {o1}

o1.antecedents = {∅}

o1.action = order work

o1.consequence = money

o1.consequenceContingency = {(∅, 1.0)}

o2.antecedents = {∅}

o2.action = order work

o2.consequence = money

o2.consequenceContingency = {(∅, 1.0)}

Workers, in turn, are specified as follows.

• Stimuli. In an assembly line, each worker’s output is the input for the
next one. In this example we abstract the nature of the object being
manufactured, and define different “work products” to represent the in-
termediary and final stages of the object. Besides working, the workers
may hear others’ speeches, and may also have some food.

food : Stimulus

work product0,work product1,work product2,work product3 : Stimulus

speech1, speech2, speech3 : Stimulus
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w1.primaryStimuli = {money , food}

w1.primary utility(money) = 0.9

w1.primary utility(food) = 0.7

w1.max delay = 10

w1.c = 0.5

w1.pleasureHints = {money}

w1.painHints = {}

• Actions. Workers can work in several parts of the assembly line, and to
each part a different kind of work is required. They may also chat.

work1,work2,work3 : Action

chat1, chat2, chat3 : Action

w1.operantActions = {work1,work2,work3, chat1, chat2, chat3}

w1.reflexActions = {}

w1.baseLevel(work1) = 0.0

w1.baseLevel(work2) = 0.0

w1.baseLevel(work3) = 0.0

w1.baseLevel(chat1) = 0.3

w1.baseLevel(chat2) = 0.3

w1.baseLevel(chat3) = 0.3

w1.conflict(work1, chat1) = conflicting

w1.conflict(work1, chat2) = conflicting

w1.conflict(work1, chat3) = conflicting

w1.conflict(work2, chat1) = conflicting

w1.conflict(work2, chat2) = conflicting

w1.conflict(work2, chat3) = conflicting

w1.conflict(work3, chat1) = conflicting

w1.conflict(work3, chat2) = conflicting

w1.conflict(work3, chat3) = conflicting
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• Operants. Workers know that given a certain input, if they perform the
right kind of work, they are going to get paid.

o11 , o
1
2 , o

1
3 : Operant

w1.operants = {o11 , o
1
2 , o

1
3}

o11 .antecedents = {{work product0}}

o11 .action = work1

o11 .consequence = money

o11 .consequenceContingency = {({work product0}, 1.0)}

o21 .antecedents = {{work product1}}

o21 .action = work2

o21 .consequence = money

o21 .consequenceContingency = {({work product1}, 1.0)}

o11 .antecedents = {{work product2}}

o11 .action = work3

o11 .consequence = money

o11 .consequenceContingency = {({work product2}, 1.0)}

9.2.2.2 EMMAS Specification

As we have seen, there are two types of agents: managers and workers. While
each agent has a different behaviour, the agent profiles of each type share
the same actions and stimuli. Below, m1 and m2 are possible managers, and
w1, w2 and w3 are workers.

Sm = {money}
Am = {order work}
Sw = {money ,work product0,work product1,work product2,

work product3, conversation1, conversation2}
Aw = {work1,work2,work3, chat1, chat2}
m1 = 〈0,Sm ,Am〉
m2 = 〈1,Sm ,Am〉
w1 = 〈11,Sw ,Aw 〉
w2 = 〈12,Sw ,Aw 〉
w3 = 〈13,Sw ,Aw 〉
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We thus have the following agents.

AG = {m1,m2,w1,w2,w3}

The communication among the agents is determined during the simulations,
so initially there are no action transformers.

AT = ∅

To specify the environment’s behaviours, we first define a set comprising of
only workers.

W = {w1,w2,w3}

The behaviours are then as follows.

eb1 = ER(order work ,m1,Stimulate(money ,m1))
eb2 = ER(order work ,m2,Stimulate(money ,m2))
eb3 = ER(work3,w1,Stimulate(money ,m1) ‖ Stimulate(money ,m2) ‖

Stimulate(money ,w1) ‖ Stimulate(money ,w2) ‖ Stimulate(money ,w3))
eb4 = ER(work3,w2,Stimulate(money ,m1) ‖ Stimulate(money ,m2) ‖

Stimulate(money ,w1) ‖ Stimulate(money ,w2) ‖ Stimulate(money ,w3))
eb5 = ER(work3,w3,Stimulate(money ,m1) ‖ Stimulate(money ,m2) ‖

Stimulate(money ,w1) ‖ Stimulate(money ,w2) ‖ Stimulate(money ,w3))
eb6 = ∀+ x : W • ∀+ y : W | x 6= y • ∀+ z : W | z 6= x ∧ z 6= y•

(Create(m1, order work ,work product0, x )+
Create(m2, order work ,work product0, x ));
Create(x ,work1,work product1, y);
Create(y ,work2,work product2, z );
Create(x , chat1, conversation1, y);
Create(y , chat1, conversation1, x );
Create(y , chat1, conversation1, z );
Create(z , chat1, conversation1, y)

EB = {eb1, eb2, eb3, eb4, eb5, eb6}

Let us comment on them:

• eb1 and eb2 define that the managers are paid for performing their work.
This ensures that they keep doing it, for otherwise the associated operant
would be extinct (i.e., unlearned).

• eb3, eb4 and eb5 define that when the action work3 is performed by one
of the agents, everyone gets paid. That is to say, the final step in the
production results in a reward for everyone that participated, and not
just the last agent in the assembly line.
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• eb6 is a succinct way of specifying many possible configurations of the
communications between the agents. It defines that only one manager
will be chosen, and that later any of the possible sequences of three
workers constitutes the assembly line. Besides passing work products to
each other, the workers can also chat if they are adjacent. By expanding
this definition, we get several choices, among which the three first could
look like this:

((Create(m1, order work ,work product0,w1)+
Create(m2, order work ,work product0,w1));
Create(w1,work1,work product1,w2);
Create(w2,work2,work product2,w3);
Create(w1, chat1, conversation1,w2);
Create(w2, chat1, conversation1,w1);
Create(w2, chat1, conversation1,w3);
Create(w3, chat1, conversation1,w2))
+
((Create(m1, order work ,work product0,w2)+
Create(m2, order work ,work product0,w2));
Create(w2,work1,work product1,w1);
Create(w2,work2,work product2,w3);
Create(w2, chat1, conversation1,w1);
Create(w1, chat1, conversation1,w2);
Create(w1, chat1, conversation1,w3);
Create(w3, chat1, conversation1,w1))
+
((Create(m1, order work ,work product0,w3)+
Create(m2, order work ,work product0,w3));
Create(w3,work1,work product1,w1);
Create(w1,work2,work product2,w2);
Create(w3, chat1, conversation1,w1);
Create(w1, chat1, conversation1,w3);
Create(w1, chat1, conversation1,w2);
Create(w2, chat1, conversation1,w1))
+ . . .

This highlights one of the important features of our modelling approach:
the definition of several situations of interest in a short form.2

2Our implementation, FGS, does not currently support the ∀
+

quantifier, because we
have implemented only composition and core operations of EMMAS, the basis on which
the others are defined. Therefore, in the XML input file for this example, we have manually
expanded the quantifier. Nonetheless, it is of course possible to add the quantifier directly
to the XML notation of FGS (and perform the corresponding expansion automatically) in
future versions.
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Given all that, we at last define the environment.

〈AG ,AT ,EB〉

9.2.2.3 Simulation Purpose

We have the following sets of states and events, and no labelling in the
states.

Q = {qi | 19 ≤ i ≤ 40} ∪ {q0,Success,Failure}
E = {beginning11work product 0, beginning

11
work product 1, beginning

11
work product 2,

beginning12work product 0, beginning
12
work product 1, beginning

12
work product 2,

beginning13work product 0, beginning
13
work product 1, beginning

13
work product 2,

emit0order work , emit1order work , emit11work 3, emit12work 3,
emit13work 3}

P = {}
L = {}

Let us now specify transitions defining that the following (abstract) sequence
takes place:

1. establish a social network configuration. The creation of each new ac-
tion transformer generates a τ (internal) event, so we look for as
many of them as necessary;

2. a manager must give the initial work order;

3. the order arrives to some agent;

4. some worker is defined as the first in the assembly line. We abstract
which one by merely specifying the � (other) event. In a feasible run,
this will synchronize with some emit iwork 1 of some agent i . A number
of !commit events are required in order to ensure that the action is
properly accounted for;

5. the partial product gets to some next worker;

6. some worker is defined as the second in the assembly line, similarly to
the one defined as the first;

7. the partial product gets to some next worker;

8. some worker is defined as the third (and last) in the assembly line,
similarly to the ones defined as first and second. However, the result
of this agent’s action is Success.
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This corresponds to the following set of transitions.

❀= {(q0, τ, q19), (q19, τ, q19),

(q19, emit0order work , q20), (q19, emit1order work , q20),

(q20, beginning
11
work product 0, q21), (q20, beginning

12
work product 0, q21),

(q20, beginning
13
work product 0, q21),

(q21, ?commit , q22), (q22,�, q26),
(q22, ?commit , q23), (q23,�, q26), (q23, ?commit , q24),
(q24,�, q26), (q24, ?commit , q25), (q25,�, q26),

(q26, beginning
12
work product 1, q27), (q26, beginning

11
work product 1, q27),

(q26, beginning
13
work product 1, q27),

(q27, ?commit , q28), (q28,�, q32), (q28, ?commit , q29),
(q29,�, q32), (q29, ?commit , q30), (q30,�, q32),
(q30, ?commit , q31), (q31,�, q32),

(q32, beginning
13
work product 2, q33),

(q32, beginning
11
work product 2, q33), (q32, beginning

12
work product 2, q33),

(q33, ?commit , q34), (q34, emit13work 3,Success),
(q34, emit11work 3,Success), (q34, emit12work 3,Success),
(q34, ?commit , q35), (q35, emit13work 3,Success),
(q34, emit11work 3,Success), (q34, emit12work 3,Success),
(q35, ?commit , q36), (q36, emit13work 3,Success),
(q36, emit11work 3,Success), (q36, emit12work 3,Success),
(q36, ?commit , q37), (q37, emit13work 3,Success),
(q37, emit11work 3,Success), (q37, emit12work 3,Success)
}

In this sequence of transitions many things are abstracted. In particular, the
simulation purpose does not define the order of the assembly line. It merely
stipulates that some of the agents must occupy each position. It is during
the verification that several configurations will be simulated, and one that is
capable of really leading to Success is chosen. For instance, if two adjacent
workers prefer to chat than to work, no work gets done in the assembly line,
and therefore such a configuration would not lead to a feasible run.

We thus have the simulation purpose.

〈Q ,E ,P ,❀,L, q0〉
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9.2.2.4 Result

FGS took 47 seconds to verify weak feasibility. Part of this time is spent
in backtracking from configurations that do not lead to Success, and recon-
figuring the network to try again. This happens because we have setup two
agents that prefer to chat than to work, so when they are placed in adjacent
positions no work gets done.

Moreover, FGS took one second to check that the same simulation purpose
is not certain. The reason is that it allows a network configuration in which
only one action transformer is created, which of course cannot lead to
Success, and therefore violates a requirement for certainty to hold.

9.2.3 School Children: From Chaos to Order

Social behaviour is nothing but the composition of individual behaviour. In
this example we explore this idea by imagining a class of misbehaving school
children put under the coordination of a teacher. The task can be complicated
by the fact that children can respond differently to the same stimuli, may
live in different environments, and may socialize with each other in a non-
homogeneous manner. For instance, a child that has a television available at
home may well do less of his or her homework than another child that has no
such distraction available. On the other hand, an elevated interest in learning,
which we assume to be a rather personal trait, may be sufficient to compensate
for this.

The central idea to put order in this chaotic classroom is to allow the teacher to
reward and punish students according to their behaviour (e.g., whether they
have done their homework). This strategy, however, may not be sufficient.
For example, even an interested child may take more pleasure in playing with
certain others, provided that such friends are reachable. The simulation, then,
helps in uncovering these less direct interferences. Indeed, since one can define
an arbitrary topology to the social network, specify different traits for the
kids, and provide each with different environmental possibilities, it does seem
difficult to imagine a priori what the result of the teacher’s action will be.

There are many behaviours one may wish the children to have. In this exam-
ple we limit ourselves to checking whether they do their assigned homework,
despite distractions and competing interests, provided that they are aware of
the rewards involved.

9.2.3.1 Agents Parameters

In this example we consider a teacher and some children.
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t : Organism

c1, c2, c3 : Organism

We give the parameters for the teacher and one of the children, since the other
are very similar.

The teacher is parametrized as follows:

• Stimuli. The teacher can perceive whether each student has individually
done his or her homework, as well as whether he or she is annoying other
students. Of course, the teacher is paid too.

money : Stimulus

homework1, homework2, homework3 : Stimulus

see annoying1, see annoying2, see annoying3 : Stimulus

t .primaryStimuli = {money}

t .primary utility(money) = 0.9

t .max delay = 10

t .c = 0.5

• Actions. The teacher can assign homework to the class, as well as reward
and punish students individually.

assign homework : Action

reward1, reward2, reward3 : Action

punish1, punish2, punish3 : Action

t .operantActions = {assign homework , reward1, reward2, reward3,
punish1, punish2, punish3}

t .reflexActions = {}

t .baseLevel(assign homework) = 0.6

t .baseLevel(reward1) = 0.0

t .baseLevel(reward2) = 0.0

t .baseLevel(reward3) = 0.0

t .baseLevel(punish1) = 0.0

t .baseLevel(punish2) = 0.0

t .baseLevel(punish3) = 0.0
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• Operants. The teacher knows that in doing her job she gets compen-
sated. This includes not only assigning homework to students, but also
rewarding and punishing them according to what they do.

ot1, o
t
2, o

t
3, o

t
4, o

t
5, o

t
6, o

t
7 : Operant

t .operants = {ot1, o
t
2, o

t
3, o

t
4, o

t
5, o

t
6, o

t
7}

ot1.antecedents = {∅}

ot1.action = assign homework

ot1.consequence = money

ot1.consequenceContingency = {(∅, 1.0)}

ot2.antecedents = {{homework1}}

ot2.action = reward1

ot2.consequence = money

ot2.consequenceContingency = {({homework1}, 1.0)}

ot3.antecedents = {{homework2}}

ot3.action = reward2

ot3.consequence = money

ot3.consequenceContingency = {({homework2}, 1.0)}

ot4.antecedents = {{homework3}}

ot4.action = reward3

ot4.consequence = money

ot4.consequenceContingency = {({homework3}, 1.0)}

ot5.antecedents = {{see annoying1}}

ot5.action = punish1

ot5.consequence = money

ot5.consequenceContingency = {({see annoying1}, 1.0)}
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ot6.antecedents = {{see annoying2}}

ot6.action = punish2

ot6.consequence = money

ot6.consequenceContingency = {({see annoying2}, 1.0)}

ot7.antecedents = {{see annoying3}}

ot7.action = punish3

ot7.consequence = money

ot7.consequenceContingency = {({see annoying3}, 1.0)}

A typical child, in turn, is described as follows:

• Stimuli. A number of stimuli are available to children. Some of them
are related to their studies (e.g., prize, homework), and others to their
everyday life (e.g., provocation, tv).

prize, disapproval , homework , provocation : Stimulus

information, tv , cry sound ,neutral : Stimulus

c1.primaryStimuli = {prize, disapproval , provocation,
information, tv , cry sound ,neutral}

c1.primary utility(prize) = 0.5

c1.primary utility(disapproval) = −0.2

c1.primary utility(provocation) = −0.4

c1.primary utility(information) = 0.8

c1.primary utility(tv) = 0.6

c1.primary utility(cry sound) = 0.3

c1.primary utility(neutral) = 0.0

c1.max delay = 10

c1.c = 0.5

• Actions. A child can do their homework, study, annoy others, watch tv,
cry, or just let the time pass.
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do homework , study , annoy ,watch tv , cry , idle : Action

c1.operantActions = {do homework , study , annoy ,watch tv , cry , idle}

c1.reflexActions = {annoy}

c1.baseLevel(do homework) = 0.0

c1.baseLevel(study) = 0.3

c1.baseLevel(annoy) = 0.0

c1.baseLevel(watch tv) = 0.1

c1.baseLevel(cry) = 0.0

c1.baseLevel(idle) = 0.0

c1.conflict(study ,watch tv) = conflicting

c1.conflict(do homework ,watch tv) = conflicting

c1.conflict(study , annoy) = conflicting

c1.conflict(do homework , annoy) = conflicting

• Operants. The child know a few things. First, doing nothing is boring.
Second, doing homework is rewarded. Third, annoying other children
makes them cry.

oc11 , oc12 , oc13 : Operant

c1.operants = {oc11 , oc12 , oc13 }

oc11 .antecedents = {∅}

oc11 .action = idle

oc11 .consequence = neutral

oc11 .consequenceContingency = {(∅, 1.0)}

oc12 .antecedents = {{homework}}

oc12 .action = do homework

oc12 .consequence = prize

oc12 .consequenceContingency = {({homework}, 1.0)}

228



9.2. Multi-Agent Examples

oc13 .antecedents = {∅}

oc13 .action = annoy

oc13 .consequence = cry sound

oc13 .consequenceContingency = {(∅, 1.0)}

• Reflexes. Finally, the child has a reflex that elicits crying whenever the
child suffers provocation.

revolt : Reflex

c1.reflexes = {revolt}

revolt .antecedent = provocation

revolt .action = cry

9.2.3.2 EMMAS Specification

In this example we have again two types of agents, namely, a teacher (denoted
by t) and the children (denoted by c1, c2, c3). The teacher has an agent
pŕofile that allows him to provide homework, prizes, and rewards to students,
as well as to receive money as payment from the school. The children, in turn,
can perceive the relevant stimuli and perform the necessary actions to interact
with such a teacher, but are also capable of interacting both among themselves
and with other elements (e.g., television).

St = {money , homework1, homework2, homework3, see annoying1,
see annoying2, see annoying3}

At = {assign homework , reward1, reward2, reward3, punish1,
punish2, punish3}

Sc = {prize, disapproval , homework , provocation, information,
tv , cry sound ,neutral}

Ac = {do homework , study , annoy ,watch tv , cry , idle}
t = 〈0,St ,At〉
c1 = 〈1,Sc ,Ac〉
c2 = 〈2,Sc ,Ac〉
c3 = 〈3,Sc ,Ac〉

We thus have the following agents.

AG = {t , c1, c2, c3}

Owing to the authority of the teacher, and to the configuration of the class,
there is a fixed social network that allows the agents to interact in several
ways.
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AT = {〈t , reward1, prize, c1〉, 〈t , reward2, prize, c2〉, 〈t , reward3, prize, c3〉,

〈t , punish1, disapproval , c1〉, 〈t , punish2, disapproval , c2〉,
〈t , punish3, disapproval , c3〉,

〈t , assign homework , homework , c1〉, 〈t , assign homework , homework , c2〉,
〈t , assign homework , homework , c3〉,

〈c1, do homework , homework , t〉, 〈c2, do homework , homework , t〉,
〈c3, do homework , homework , t〉,

〈c1, annoy , provocation, c2〉, 〈c2, annoy , provocation, c1〉,
〈c1, annoy , provocation, c3〉, 〈c3, annoy , provocation, c1〉,
〈c2, annoy , provocation, c3〉, 〈c3, annoy , provocation, c2〉,

〈c1, annoy , see annoying1, t〉, 〈c2, annoy , see annoying2, t〉,
〈c3, annoy , see annoying3, t〉,

〈c1, cry , cry sound , t〉, 〈c1, cry , cry sound , c2〉,
〈c1, cry , cry sound , c3〉,
〈c2, cry , cry sound , t〉, 〈c2, cry , cry sound , c1〉,
〈c2, cry , cry sound , c3〉,
〈c3, cry , cry sound , t〉, 〈c3, cry , cry sound , c1〉,
〈c3, cry , cry sound , c2〉}

The intuitive meaning of these several action transformers can be grasped
from their definition. Nonetheless, let us comment on some of them:

• 〈t , reward1, prize, c1〉 specifies that the teacher has the power to reward
student c1 with a prize. Other similar action transformers specify
other powers with respect to the children, such as the power to punish
and assign homework. These are formalizations of the social norm that
dictates that the teacher has a certain authority over the students.

• 〈c1, annoy , provocation, c2〉 specifies that the child c1 can annoy c2, an
act that is perceived as a provocation. This does not mean that c1 will
annoy c2, but only that it has the possibility of doing so. This can be
the case, for example, if c1 and c2 sit close to one another in the class.
However, EMMAS abstracts any such physical location properties, and
preserves only the logical relation between the agents.

• 〈c1, annoy , see annoying1, t〉 specifies that whenever c1 annoys another
child, the teacher will observe it. This is an example of how the same
action can have more than one kind of consequence (i.e., annoy another
child and allow the teacher to see this).
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This social network allows teachers and children interact, which is already a
source of behaviours for the MAS. Nevertheless, we can enrich the MAS further
by specifying other environment behaviours to interact with the agents.

eb1 = ER(study , c1,Stimulate(information, c1))
eb2 = ER(study , c2,Stimulate(information, c2))
eb3 = ER(study , c3,Stimulate(information, c3))
eb4 = ER(watch tv , c1,Stimulate(tv , c1))
eb5 = ER(watch tv , c2,Stimulate(tv , c2))
eb6 = ER(watch tv , c3,Stimulate(tv , c3))
EB = {eb1, eb2, eb3, eb4, eb5, eb6}

These behaviours allow students to either study or waste time in watching
television. This gives an opportunity for the children to procrastinate their
homework. During simulation, this might interfere in the observed behaviours,
and thus either allow or prevent the satisfaction of a simulation purpose.

We thus have the environment.

〈AG ,AT ,EB〉

9.2.3.3 Simulation Purpose

Let us build a simulation purpose to check whether homework is being
done. To this end, the most important is to define the relevant events.

Q = {q0, q1, q2, q3,Success,Failure}
E = {!emit0assign homework , !emit1do homework

!emit2do homework , !emit3do homework}
P = {}
L = {}

The transitions, in turn, are as follows. First we require the teacher to assign
some homework. Then anything can happen, but in the end we require that
at least one of the students actually do the homework.

❀= {(q0,�, q0),
(q0, !emit0assign homework , q1), (q1,�, q1),

(q1, !emit1do homework ,Success), (q1, !emit2do homework ,Success),
(q1, !emit3do homework ,Success)}

Thus we have the simulation purpose.

〈Q ,E ,P ,❀,L, q0〉
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9.2.3.4 Result

FGS took six seconds to check weak feasibility. In the feasible run found,
it determined that at least agent identified by 1 did its assigned homework.
In the process of doing so other events took place, such as children annoying
each other and crying. These, however, did not prevent that agent from doing
the homework.

9.2.4 Online Social Networks: Spreading a Message

We have so far investigated MASs in which the relationships among agents
are an abstraction of what happens in the physical world. It is interesting
then to consider now an example in which these abstract relations are already
present in the object we wish to model. Such is the case in communications
through the Internet, where interactions are necessarily mediated by network
connections. Let us then consider a fictitious but truthful application, an on-
line social network, which is nothing but a website where users may register
themselves and interact with other registered users.3 From a modelling per-
spective, the advantage of such an application is in its complete description
of the underlying social network. So we can easily imagine that the applica-
tion’s owner may well use this information to model and simulate the network
in order to learn more about it, or test certain interventions before applying
them to the real network.

In this example, for simplicity, we consider an online social network for philoso-
phers. In this manner we can model some typical philosophers and the things
they enjoy doing, such as talking about philosophy (obviously), complaining
about sophists or buying books. Once such a network is in place, we can then
investigate its properties, such as whether the actions of an agent can affect
the behaviour of agents which are not directly related to it (i.e., how actions
propagate in the network). More specifically, we consider how advertisements
displayed on the website affect agents which are not directly exposed to them.

9.2.4.1 Agents Parameters

The agents in this example are all similar to one another, so let us model
explicitly only one of them here.

p1 : Organism

3Actual examples of such networks currently include popular websites such
as www.facebook.com, www.twitter.com, plus.google.com, www.orkut.com and
www.myspace.com.
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The relevant parameters are as follows:

• Stimuli. Philosophers can understand philosophy and sophisms, the first
being delightful and the later hateful. They also enjoy books and jokes.
Money is valued, but not much. Advertisement are valued because they
normally relate to books in the website. Finally, virtual points dis-
tributed by the website only have value because they can be exchanged
for real money.

philosophy , sophism, book , joke,money , ad1 : Stimulus

p1.primaryStimuli = {philosophy , sophism, book , joke,money}

p1.primary utility(philosophy) = 1.0

p1.primary utility(sophism) = −1.0

p1.primary utility(book) = 0.7

p1.primary utility(joke) = 0.6

p1.primary utility(money) = 0.3

ad1 p1.sCauses book

points p1.sCauses money

p1.max delay = 100

p1.c = 0.5

• Actions. There are two kinds of actions in this model. First, actions
having to do with being a philosopher: writing philosophy, telling jokes
and complaining. Second, actions related to operating the website, which
are reduced merely to forwarding an advertisement to friends and buying
what is advertised.

tell joke,write philosophy , complain, forward ad1, buy ad1 : Action
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p1.operantActions = {tell joke,write philosophy , complain,
forward ad1, buy ad1}

p1.reflexActions = {complain}

p1.baseLevel(tell joke) = 0.01

p1.baseLevel(write philosophy) = 0.3

p1.baseLevel(complain) = 0.0

p1.baseLevel(forward ad1) = 0.0

p1.baseLevel(buy ad1) = 0.0

p1.conflict(tell joke, buy ad1) = conflicting

• Operants. The philosopher has learned previously that when forwarding
and advertisement, he is rewarded with virtual points, which can be
exchanged for real money later. This information is captured in an
operant. The stimulus ad1 must be present in order to be forwarded, so it
is defined as a required antecedent. The action is defined as forward ad1,
and the consequence is points.

op11 : Operant

p1.operants = {op11 }

op11 .antecedents = {{ad1}}

op11 .action = forward ad1

op11 .consequence = points

op11 .consequenceContingency = {({ad1}, 1.0)}

• Reflexes. Philosophers instinctively complain when reading sophisms.

revolt : Reflex

p1.reflexes = {revolt}

revolt .antecedent = sophism

revolt .action = complain

9.2.4.2 EMMAS Specification

Let us begin by defining a few philosophers to populate the website.
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S = {philosophy , sophism, book , joke,money , ad1, points}
A = {tell joke,write philosophy , complain, forward ad1, buy ad1}
p0 = 〈0,S ,A〉
p1 = 〈1,S ,A〉
p2 = 〈2,S ,A〉
p3 = 〈3,S ,A〉
p4 = 〈4,S ,A〉
AG = {p0, p1, p2, p3, p4}

The relations between agents are established by the actions they are capa-
ble of performing to each other. In a website this can be made much more
concrete, since the user interface can define explicitly the available actions.
The simple interface here allow the philosophers to forward ads and buy the
related product, tell jokes and write philosophy to other agents.

AT = {
〈p0, forward ad1, ad1, p1〉, 〈p0, forward ad1, ad1, p2〉,
〈p2, forward ad1, ad1, p3〉,

〈p0, tell joke, joke, p0〉, 〈p1, tell joke, joke, p1〉,
〈p2, tell joke, joke, p2〉, 〈p3, tell joke, joke, p3〉,

〈p0, tell joke, joke, p4〉, 〈p1, tell joke, joke, p4〉,
〈p2, tell joke, joke, p4〉, 〈p3, tell joke, joke, p4〉,

〈p0,write philosophy , philosophy , p1〉, 〈p1,write philosophy , philosophy , p0〉,
〈p0,write philosophy , philosophy , p2〉, 〈p2,write philosophy , philosophy , p0〉,
〈p2,write philosophy , philosophy , p3〉, 〈p3,write philosophy , philosophy , p2〉,

〈p0, buy ad1, book , p0〉, 〈p1, buy ad1, book , p1〉,
〈p2, buy ad1, book , p2〉, 〈p3, buy ad1, book , p3〉
〈p4, buy ad1, book , p4〉

}

Let us comment on some representative action transformers:

• 〈p0, forward ad1, ad1, p1〉: defines that to forward an advertisement to
p1 means to stimulate p1 with the advertisement.

• 〈p0, tell joke, joke, p4〉 and 〈p0,write philosophy , philosophy , p1〉: these
represent the capability that p1 has of sending messages to other agents
(p4 and p1).
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• p4 only receives joke, but does not send tell joke. This models the
fact that p4 subscribes to the jokes of others, but does not publish any
himself.

• 〈p1, buy ad1, book , p1〉: this models the fact that the action of buying
results in a book to the buyer. This exemplifies the possibility of causing
something to oneself.

The environment behaviours in this example are concerned with the adver-
tisement infrastructure.

eb1 = BeginStimulation(ad1, p0)+
BeginStimulation(ad1, p1)+
BeginStimulation(ad1, p2)+
BeginStimulation(ad1, p3)+
BeginStimulation(ad1, p4)

eb2 = ER(forward ad1, p0,Stimulate(points, p0))
eb3 = ER(forward ad1, p1,Stimulate(points, p1))
eb4 = ER(forward ad1, p2,Stimulate(points, p2))
eb5 = ER(forward ad1, p3,Stimulate(points, p3))
eb6 = ER(forward ad1, p4,Stimulate(points, p4))
EB = {eb1, eb2, eb3, eb4, eb5, eb6}

Let us examine these behaviours:

• eb1 defines that the advertisement can be delivered to one of the agents.
The objective in doing so is to see how an ad delivered to a particular
agent reaches others.

• eb2, eb3, eb4, eb5 and eb6 define, for each concerned agent, that a
forward ad1 action is rewarded with points, a virtual currency that has
value because it can be exchanged for real money. That is to say, agents
have an incentive to forward advertisements.

We thus have the environment.

〈AG ,AT ,EB〉

9.2.4.3 Simulation Purpose

This simulation purpose is concerned with checking whether an advertise-
ment delivered to one agent can somehow cause another agent to buy the ad-
vertised product. This shows how events can propagate in the social network.
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To this end, it is first necessary to define the relevant events for advertising
and buying.

Q = {q0, q1, q2, q3, q4, q5, q6, q7,
q8, q9, q10, q11,Success,Failure}

E = {beginning0ad1 , beginning
1
ad1

, beginning2ad1 , beginning
3
ad1

,

emit0forward ad1
, emit2forward ad1

, emit3buy ad1
}

P = {}
L = {}

With that we define the transitions. First the advertisement is delivered to
an agent, which then forward it to others. The simulation is guided through
some main points until the agent identified by 3 buys the advertised product.

❀= {(q0, beginning
0
ad1

, q1), (q1,�, q1), (q1, emit0forward ad1
, q2),

(q2,�, q2), (q2, beginning
2
ad1

, q3), (q2,�, q2),

(q3, emit2forward ad1
, q4), (q3,�, q3), (q4, beginning

3
ad1

, q5),

(q4,�, q4), (q5, emit3buy ad1
,Success), (q5,�, q5)

}

This gives us the simulation purpose.

〈Q ,E ,P ,❀,L, q0〉

9.2.4.4 Result

FGS verified in 30 seconds that the simulation purpose is weakly feasible.
In the corresponding feasible run, we can see that an advertisement originally
delivered to agent p0 was eventually passed to agent p3. In the course of
verification, many irrelevant events were found (but promptly ignored), which
explains the long time that it took to finish.

9.3 Conclusion

In this chapter we have seen concrete application examples of the approach
proposed in this thesis. For each one, we have given an intuitive explanation
of its importance, the corresponding formal specification and the result of
running FGS.

Each example addresses different requirements, such as whether one or more
agents are concerned and whether the communications between them are fixed
or not. The objective of this variety is to show that our approach is sufficiently
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general to express different situations in a uniform way. The importance of
uniformity is that it allows the reuse of all underlying theory and technology,
and therefore frees the user from having to come up with ad hoc solutions for
individual cases. For instance, in the examples in which the communications
between agents are fixed, one could devise an ad hoc solution to represent
such an environment instead of using EMMAS. However, such a solution
would imply in losing access to all the theory and tools that assume an EM-
MAS environment. Indeed, by modelling the situation of interest using the
agents and environments described in this thesis, as well as asking questions
through simulation purposes, one can then use the associated simulation
and verification technology, which would be unavailable otherwise.

There are, of course, legitimate reasons why one would avoid using our mod-
elling elements. First, they may not provide some required feature (e.g., the
explicit numeric representation of time in the environment). Second, it may
be more efficient to implement specific solutions instead of reusing our the-
ory, since one can then optimize the implementation with no regard for other
possible uses. Our method has a certain domain of application, and within it
strives to provide a general approach, but this imposes such trade-offs.

The verification technique employs the specified simulation purposes to
guide the simulation only through relevant simulation states. This means
that the more details are present in a simulation purpose, the quicker the
verification will be. The case studies showed that the actual level of detail
required for a successful verification can vary. In some cases, such as the school
from Section 9.2.3, an apparently complex situation may required only a simple
simulation purpose. In other cases, such as the behaviour elimination from
Section 9.2.1, a seemingly simple situation may demand a lengthy simulation
purpose. The reason for such discrepancies is simply that each MAS has
different subtleties concerning the interaction of its several elements, which
can be independent of the quantity of the elements involved. The more such
subtleties must be mastered, the more restrictive (and long) a simulation
purpose gets. In practice, we have found that if a verification takes too
long, one may make the simulation purpose employed more restrictive and
try again. Furthermore, an unfeasible simulation purpose may become
feasible if only minor adjustments are made (e.g., leaving enough !commit
events to allow an action to be properly accounted for by the environment
and other agents). Hence, the construction of a simulation purpose can
also be done incrementally, by experimenting with successive variants.

The examples also showed that the approach can be used to model the MASs
themselves at different levels of detail. For instance, one can assign fine grained
actions to an agent, such as beating a dog, but also coarse and abstract actions
such as to work. Thus, despite being based on the study of detailed actions
of organisms (e.g., the pecking of birds), the behaviourist concepts we employ
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are actually suitable to a broader class of modelling problems. It remains to
study, however, how to properly relate several different abstraction levels of
behaviour that could exist in the same MAS. In this respect, we have merely
seen that individual operants may be chained in order to compose a more
complex behaviour (in Section 9.1.2). We have not, however, provided any
means by which the same operant could somehow be decomposed in finer
behaviours. This is an interesting topic for future research, as it could allow
the modelling of shaping (i.e., the gradual modification of a behaviour towards
some desired form).

Finally, property components (which assign propositions to the simulation
states) were less necessary in modelling than we had anticipated. The rea-
son is that in a behaviourist framework most phenomena of interest can be
determined by observing the interaction of agents with their environment,
and therefore can be accounted for by events. Nonetheless, by providing
such propositions, it is possible to determine such information in a more di-
rect manner. In the example of Section 9.2.1, for instance, we define the
LikesCandy proposition, which determines immediately whether the agent ac-
tually likes candy, instead of setting up an experiment to test the reinforcing
power of candy. In practice, this might be used to model preferences declared
by agents (e.g., in the example just mentioned, the child may have verbally
revealed her preference for candy).
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CHAPTER 10
Conclusion

In this thesis we have considered the broad problem of studying human and
animal societies through computation. We have proposed a particular solu-
tion, in the form of a novel manner to model and analyse multi-agent systems.
With respect to modelling, we presented a new agent architecture and an en-
vironment model. These are intended to provide a behaviourist account of
MASs, which contrasts with more cognitive-oriented approaches. Our envi-
ronments, in particular, are designed to facilitate experimentation with agents,
in the spirit of the behaviourist tradition in psychology. Concerning analysis,
we developed a new method, which combines ideas of both simulation and
verification into a new technique. Together with the experimentation features
of our environments, this technique provides a way to systematically explore
possible simulations and check whether desired properties, in the form of sim-
ulation purposes, hold or not. To illustrate the capabilities and limitations
of all this, we have developed a number of examples too. A tool, called FGS,
has been implemented in order to give support to the approach.

In previous chapters we have already considered the immediate consequences
and merits of the several elements that form our approach. Let us now take a
wider view of our developments, and venture also in how they can be carried
out further.

The Behaviourist Agent Architecture described in Chapter 4, while suit-
able for use as it is, can be subject to a number of improvements. As we
have pointed out throughout the text, it offers a basis on which researchers
may create their own mechanisms. This might be useful, for instance, if one
wishes to specialize the architecture for a particular kind of agent, whose
properties are better understood. It would also be interesting to augment
the architecture with other psychological phenomena that can be given in
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behavioural terms. For instance, to make the notion of schedules of reinforce-
ment (Ferster and Skinner, 1957) explicit would be an important progress. It
would also be important to incorporate the capability of shaping behaviours,
by which the same behaviour is progressively modified until it reaches a final
desired form.1

In its purely formal aspects, a significant improvement would consists in con-
sidering first-order actions and stimuli. This would allow the establishment of
relations between predicates, independently of their variables. For example,
the organism could learn that, for every x , Push(x ) implies in SeeMoving(x ).
This would allow learning to be generalized, and not confined to particular
values of x , as it is now. From a psychological point of view, though, this raises
a number of questions concerning the inductive capabilities of organisms, and
therefore it is not clear how to best use this formal device. For instance,
how many particular observations of different x are required to establish the
general rule?

Architecturally, yet another change may be useful. Our agents follow a be-
haviourist theory in order to learn about and interact with their environments.
Behaviourism, however, says nothing about their internal physiology. As far
as psychology is concerned, this allows the separation of concerns between
behavioural problems and physiological ones. But behaviour may have physi-
ological consequences. For example, if an organism acts in such a way that it
contracts a virus, then it may very well get sick and transmit the virus to other
organisms. Sickness may imply in reduced behaviour (much like depression),
and transmission may be carried out by specific behaviours. Such an interac-
tion between behaviour and other aspects of an organism could be achieved
by adding layers in the agent architecture, so that a behavioural layer could
somehow communicate with a physiological layer, perhaps among others. An
improvement like this would allow the consideration of problems involving
both aspects, such as epidemiology questions, which depend partly on the be-
haviour of agents, and partly on their internal susceptibility to disease. The
difficulty would be in establishing the relations between these several layers.

EMMAS, the environment model introduced in Chapter 5, has been designed
from the start to work with the Behaviourist Agent Architecture. How-
ever, it may be possible to adapt it to other agent architectures. For instance,
the division of stimulation in four stages (i.e., absent, beginning, stable, end-
ing) is very particular to the Behaviourist Agent Architecture, so per-
haps it could suffice to change this (e.g., by reducing the phases merely to
two: absent and present) in order to make it compatible with others, specially
reactive architectures. Another example would consist in making the stim-

1This is distinct from operant chaining, a process by which a sequence of different be-
haviours is learned as the consequences of one operant establishes the required antecedents
of the next (thus “chaining” them together).
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uli non-primitive entities. Such a modification could be useful to cognitive
architectures, since they usually require the exchange of structured messages
between agents, which could impose further constraints on the possible evolu-
tions of the MAS. However that may be, a successful adaptation to other agent
architectures would bring with itself the possibility of applying the verification
technique presented in this thesis.

Although the proposed approach is in principle capable of modelling and
analysing large MASs, we have not investigated deeply the related scalability
issues that may arise. Notably, as remarked in Chapter 8, each EMMAS
environment is translated into a quite large π-calculus expression, which in
practice brings a number of efficiency problems. We implemented a few op-
timizations to partly address this matter, it is likely that more can be done,
but it is unclear to what extent such optimizations can scale. One may also
wonder how easy or hard it is in general to specify a large MAS using the
modelling elements given in the thesis (e.g., agent profiles, action trans-
formers). However, if it turns out that the provided elements are insufficient
to conveniently write certain large specifications, the problem could probably
be addressed by providing a new set of higher-level specification elements,
with an automatic mapping to the ones provided in the thesis. For instance, if
one wishes to describe a random social network with respect to certain agents,
stimuli and actions, an algorithm could be provided to translate such an ab-
stract requirement into a set of action transformers of EMMAS. With
respect to the scalability of the verification technique itself, it may be possible
to parallelize the algorithms given. In principle, one could explore different
parts of the synchronous product (e.g., disjoint subtrees) at the same time.

Finally, it is interesting to note that the verification method proposed may
not be limited to simulations. The simulator interface provided in Section
7.5.1 could be adapted so that it interacts with the actual world, not a sim-
ulator. All the ideas concerning automated experiments could then be used
to perform actual empirical experiments. So instead of, say, experimenting
with a simulation of an online community, one could perform experiments in a
real online community, provided that the user interface was properly adapted.
The main problem to do such things is that, contrary to simulations, states
of the actual world cannot be stored at one point and restored later. So the
algorithms that we provided would have to be either changed to avoid this, or
the states of the actual world would have to be partitioned into equivalence
classes, so that one can at least return to an equivalent state.
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APPENDIX A
Full Agent Specification

This appendix provides the full formal specification of the Behaviour Agent
Architecture presented in Chapter 4. To facilitate consultation, the sections
below follow the same structure found on Section 4.2 of that chapter.

A.1 Formal Specification of Agent Behaviour

Organism
StimulationSubsystem

RespondingSubsystem

DriveSubsystem

EmotionSubsystem

A.1.1 Preliminary Definitions

A.1.1.1 Magnitude

Q == {q : Z× Z | let a == first q ; b == second q •
b 6= 0 ∧
a div b ≤ 1 ∧
a div b ≥ −1}

247



A. Full Agent Specification

PositiveQ == {q : Z× Z | let a == first q ; b == second q •
b 6= 0 ∧
a div b ≤ 1 ∧
a div b ≥ 0}

max q : Q

neutral q : Q

min q : Q

max q = (1, 1)

neutral q = (0, 1)

min q = (−1, 1)

A.1.1.2 Intensity, Correlation and Probability

Intensity == PositiveQ

Correlation == PositiveQ

Probability == PositiveQ

max intensity == max q

min intensity == neutral q

max correlation == max q

min correlation == neutral q

max probability == max q

min probability == neutral q

A.1.1.3 Equality of Magnitudes

=1 : P(Q ×Q)

∀ p, q : Q •
let a == first p; b == second p; c == first q ; d == second q •

p =1 q ⇔ a ∗ d = b ∗ c

248



A.1. Formal Specification of Agent Behaviour

A.1.1.4 Order Relations of Magnitudes

≤1 : P(Q ×Q)

∀ p, q : Q •
let a == first p; b == second p; c == first q ; d == second q •

p ≤1 q ⇔
(b ∗ d > 0 ∧ a ∗ d ≤ b ∗ c) ∨
(b ∗ d < 0 ∧ a ∗ d ≥ b ∗ c)

<1 : P(Q ×Q)

∀ p, q : Q •
p <1 q ⇔ (p ≤1 q ∧ (¬ (p =1 q)))

≥1 : P(Q ×Q)

∀ p, q : Q •
p ≥1 q ⇔ ¬ (p <1 q)

>1 : P(Q ×Q)

∀ p, q : Q •
p >1 q ⇔ (p ≥1 q ∧ (¬ (p =1 q)))

A.1.1.5 Magnitude Operators

+1 : (PositiveQ × PositiveQ)→ PositiveQ

+2 : (Q ×Q)→ Q

∀ p, q : PositiveQ •
let a == first p; b == second p; c == first q ; d == second q •

let sum == (a ∗ d + c ∗ b, b ∗ d) •
sum ≤1 max q ∧ sum ≥1 neutral q ⇒ p +1 q = sum ∧
sum <1 neutral q ⇒ p +1 q = neutral q ∧
sum >1 max q ⇒ p +1 q = max q

∀ p, q : Q •
let a == first p; b == second p; c == first q ; d == second q •

let sum == (a ∗ d + c ∗ b, b ∗ d) •
sum ≤1 max q ∧ sum ≥1 min q ⇒ p +2 q = sum ∧
sum <1 min q ⇒ p +2 q = min q ∧
sum >1 max q ⇒ p +2 q = max q
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−1 : (PositiveQ × PositiveQ)→ PositiveQ

−2 : (Q ×Q)→ Q

∀ p, q : PositiveQ •
let a == first p; b == second p; c == first q ; d == second q •

let sub == (a ∗ d − c ∗ b, b ∗ d) •
sub <1 neutral q ⇒ p −1 q = neutral q ∧
sub ≥1 neutral q ∧ sub ≤1 max q ⇒ p −1 q = sub ∧
sub >1 max q ⇒ p −1 q = max q

∀ p, q : Q •
let a == first p; b == second p; c == first q ; d == second q •

let sub == (a ∗ d − c ∗ b, b ∗ d) •
sub <1 min q ⇒ p −2 q = min q ∧
sub ≥1 min q ∧ sub ≤1 max q ⇒ p −2 q = sub ∧
sub >1 max q ⇒ p −2 q = max q

∗1 : (PositiveQ × PositiveQ)→ PositiveQ

∗2 : (Q ×Q)→ Q

∀ p, q : PositiveQ •
let a == first p; b == second p; c == first q ; d == second q •

let mult == (a ∗ c, b ∗ d) •
mult <1 neutral q ⇒ p ∗1 q = neutral q ∧
mult >1 max q ⇒ p ∗1 q = max q ∧
mult ≥1 neutral q ∧ mult ≤1 max q ⇒ p ∗1 q = mult

∀ p, q : Q •
let a == first p; b == second p; c == first q ; d == second q •

let mult == (a ∗ c, b ∗ d) •
mult <1 min q ⇒ p ∗2 q = min q ∧
mult >1 max q ⇒ p ∗2 q = max q ∧
mult ≥1 min q ∧ mult ≤1 max q ⇒ p ∗2 q = mult
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div1 : (PositiveQ × PositiveQ) 7→ PositiveQ

div2 : (Q ×Q) 7→ Q

∀ p, q : PositiveQ •
let a == first p; b == second p; c == first q ; d == second q •

c 6= 0 ∧ (let divi == (a ∗ d , b ∗ c) •
divi <1 neutral q ⇒ div1(p, q) = neutral q ∧
divi >1 max q ⇒ div1(p, q) = max q ∧
divi ≥1 neutral q ∧ divi ≤1 max q ⇒ div1(p, q) = divi)

∀ p, q : Q •
let a == first p; b == second p; c == first q ; d == second q •

c 6= 0 ∧ (let divi == (a ∗ d , b ∗ c) •
divi <1 min q ⇒ div2(p, q) = min q ∧
divi >1 max q ⇒ div2(p, q) = max q ∧
divi ≥1 min q ∧ divi ≤1 max q ⇒ div2(p, q) = divi)

A.1.1.6 Random Numbers

random : Instant → Q

A.1.1.7 Time

Instant == N

Duration == N

A.1.2 Stimulation

A.1.2.1 Basic Entities

[Stimulus]

StimulationSubsystem
StimulationParameters

StimulusImplication

StimulusEquivalence

currentStimuli : PStimulus

pastStimuli : Instant 7→ PStimulus

stimulus status : Stimulus → StimulusStatus

stimulusBeginning : Stimulus 7→ Instant
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StimulationParameters
StimulationHints

Conditioning Ref 1 Parameters

stimuli : PStimulus

primaryStimuli : PStimulus

primary utility : Stimulus 7→ Utility

max delay : Duration

dom primary utility = primaryStimuli

StimulusStatus ::= Beginning | Ending | Stable | Absent

StimulationHints
pleasureHints : PStimulus

painHints : PStimulus

pleasureHints ∩ painHints = ∅

Stimulation
stimulus : Stimulus

intensity : Intensity

status : StimulusStatus

status = Beginning ∨ status = Ending

A.1.2.2 Relations Among Stimuli

StimulusImplication
sCauses : P(Stimulus × Stimulus)

sCorrelation : Stimulus × Stimulus 7→ Correlation

∀ s1, s2, s3 : Stimulus •

(s1 sCauses s1) ∧

(((s1 sCauses s2) ∧ (s2 sCauses s3))⇒ (s1 sCauses s3))

∀ s1, s2 : Stimulus | s1 sCauses s2 •

∃ c : Correlation • ((s1, s2) 7→ c) ∈ sCorrelation
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StimulusEquivalence
StimulusImplication

equals : P(Stimulus × Stimulus)

∀ s1, s2 : Stimulus •

(s1 equals s2)⇔ (s1 sCauses s2) ∧ (s2 sCauses s1)

∀ s1, s2 : Stimulus | s1 equals s2 •

sCorrelation(s1, s2) = sCorrelation(s2, s1)

A.1.2.3 Stimulus Utility

Utility : PQ

max utility : Utility

neutral utility : Utility

min utility : Utility

max utility = max q

neutral utility = neutral q

min utility = min q

∀ u : Utility • (u ≥1 min utility) ∧ (u ≤1 max utility)

(neutral utility ≥1 min utility) ∧ (neutral utility ≤1 max utility)

StimulusUtility
StimulationSubsystem

EmotionSubsystem

DriveSubsystem

sUtility : Stimulus → Utility

StimulusUtility Ref 1
StimulusUtilityBase

StimulusEmotionalRegulator

StimulusDriveRegulator

∀ s : Stimulus •
sUtility(s) = driveRegulator(s, emotionalRegulator(s, base(s)))
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StimulusUtilityBase
StimulusUtility

StimulusImplication

base : Stimulus → Utility

∀ s : Stimulus •
(∃ p : primaryStimuli •

base(s) = primary utility(p) ∧
(∀ q : primaryStimuli | s sCauses q •

primary utility(p) ≥1 primary utility(q) ∧
(s sCauses p))) ∨

(∀ p : primaryStimuli •
¬ (s sCauses p) ∧
sUtility(s) = neutral utility)

A.1.2.4 Stimulus Conditioning

ConditioningOp 1
∆StimulusImplication

StimulationParameters

s1? : Stimulus

s2? : Stimulus

delay? : Duration

delay? ≤ max delay

sCauses ′ = sCauses ⊕ {s1? 7→ s2?}

(s1? sCauses s2?) ∧ sCorrelation(s1?, s2?) <1 max correlation ⇒
sCorrelation ′(s1?, s2?) >1 sCorrelation(s1?, s2?)

(s1? sCauses s2?) ∧ sCorrelation(s1?, s2?) = max correlation ⇒
sCorrelation ′(s1?, s2?) = sCorrelation(s1?, s2?)

¬ (s1? sCauses s2?)⇒
sCorrelation ′(s1?, s2?) ≥1 min correlation
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ConditioningOp 2
ΞStimulusImplication

StimulationParameters

delay? : Duration

delay? > max delay

T ConditioningOp =̂ ConditioningOp 1 ∨ ConditioningOp 2

UnconditioningOp 1
∆StimulusImplication

StimulationSubsystem

s1? : Stimulus

s2? : Stimulus

currentInstant? : Instant

s1? ∈ pastStimuli(currentInstant?−max delay) ∧
¬ (∃ t : Instant | currentInstant?−max delay < t ≤ currentInstant? •

s2? ∈ pastStimuli(t))

s1? sCauses s2?

sCorrelation ′(s1?, s2?) ≤1 sCorrelation(s1?, s2?)

sCorrelation ′(s1?, s2?) ≤1 min correlation ⇒
sCauses ′ = sCauses \ {s1? 7→ s2?}

UnconditioningOp 2
ΞStimulusImplication

StimulationSubsystem

s1? : Stimulus

s2? : Stimulus

currentInstant? : Instant

¬ (s1? ∈ pastStimuli(currentInstant?−max delay) ∧
¬ (∃ t : Instant | currentInstant?−max delay < t ≤ currentInstant? •

s2? ∈ pastStimuli(t))) ∨
¬ (s1? sCauses s2?)
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T UnconditioningOp =̂ UnconditioningOp 1 ∨ UnconditioningOp 2

Conditioning Ref 1 Parameters
c : Correlation

increment : Correlation

delay? : Duration

let q == (delay?, 1) • increment = div1(c, q)

ConditioningOp Ref 1
∆StimulusImplication

StimulationParameters

s1? : Stimulus

s2? : Stimulus

delay? : Duration

Conditioning Ref 1 Parameters

delay? ≤ max delay

sCauses ′ = sCauses ⊕ {s1? 7→ s2?}

sCorrelation ′(s1?, s2?) = sCorrelation(s1?, s2?) +1 increment

Proposition A.1. ConditioningOp is refined by ConditioningOp Ref 1.

Proof. From Definition D.1, there are two predicates that must be satisfied to
prove the operation’s refinement.

First, we must show that

∀StimulusImplication; s1?, s2? : Stimulus; delay? : Duration •
pre(ConditioningOp)⇒ pre(ConditioningOp Ref 1)

This follows immediately from the fact that both have same pre-condition,
namely, delay? ≤ max delay .

Second, we must show that

∀StimulusImplication; StimulusImplication ′; s1?, s2? : Stimulus;
delay? : Duration •
pre(ConditioningOp) ∧ ConditioningOp Ref 1⇒ ConditioningOp
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Intuitively, this holds because the result of the +1 operator is bounded by
max correlation, so incrementing the correlation using it actually results in
what is defined by ConditioningOp (e.g., the correlation’s value may remain
the same). Mathematically, we have the following proof.1

1 pre(ConditioningOp) ∧
ConditioningOp Ref 1 [Assumption]

1.1 (s1? sCauses s2?) ∧
sCorrelation(s1?, s2?) <1 max correlation [Assumption]

1.1.1 sCorrelation(s1?, s2?) <1 max correlation [∧ elimination using
step 1.1]

1.1.2 sCorrelation(s1?, s2?) <1 max q [Definition of
max correlation]

1.1.3 sum =
(first sCorrelation(s1?, s2?) ∗ second increment+
first increment ∗ second sCorrelation(s1?, s2?),
second sCorrelation(s1?, s2?) ∗ second increment) [Definition of +1]

1.1.4 sum ≥1 sCorrelation(s1?, s2?) [increment is
positive]

1.1.5 sum ≥1 neutral q [Definition of
Correlation]

1.1.6 (sum ≤1 max q) ∨ (sum >1 max q) [Excluded middle]
1.1.7 sum ≤1 max q [Assumption]
1.1.7.1 sum ≤1 max q ∧ sum ≥1 neutral q [∧ introduction

using steps 1.1.7
and 1.1.5]

1.1.7.2 sCorrelation ′(s1?, s2?) = sum [Definition of +1

and ConditioningOp Ref 1,
and step 1.1.3]

1.1.7.3 sCorrelation ′(s1?, s2?) >1 sCorrelation(s1?, s2?) [Steps 1.1.7.2
and 1.1.4]

1.1.8 sum >1 max q [Assumption]
1.1.8.1 sCorrelation ′(s1?, s2?) = max q [Definition of +1

and ConditioningOp Ref 1]
1.1.8.2 sCorrelation ′(s1?, s2?) >1 sCorrelation(s1?, s2?) [Steps 1.1.8.1

and 1.1.2]
1.1.9 sCorrelation ′(s1?, s2?) >1 sCorrelation(s1?, s2?) [∨ elimination

using steps 1.1.6,
1.1.7.3 and 1.1.8.2]

1.2 (s1? sCauses s2?) ∧
sCorrelation(s1?, s2?) <1 max correlation ⇒
sCorrelation ′(s1?, s2?) >1 sCorrelation(s1?, s2?) [⇒ introduction

using steps 1.1
and 1.1.9]

1.3 (s1? sCauses s2?) ∧
sCorrelation(s1?, s2?) = max correlation [Assumption]

1.3.1 sCorrelation(s1?, s2?) = max correlation [∧ elimination]
1.3.2 sCorrelation(s1?, s2?) = max q [Definition of

1For greater readability, this proof is presented in a manner similar to Fitch-style proofs:
each line is a numbered step, followed by a proposition and a justification for that proposition;
indentation and nested numbering are used to show that lines are under an assumption.
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max correlation]
1.3.3 sum =

(first sCorrelation(s1?, s2?) ∗ second increment+
first increment ∗ second sCorrelation(s1?, s2?),
second sCorrelation(s1?, s2?) ∗ second increment) [Definition of +1]

1.3.4 sum ≥1 sCorrelation(s1?, s2?) [increment is positive]
1.3.5 sum ≥1 max q [Steps 1.3.2 and

1.3.4]
1.3.6 (sum ≤1 max q) ∨ (sum >1 max q) [Excluded middle]
1.3.7 sum ≤1 max q [Assumption]
1.3.7.1 sum ≤1 max q ∧ sum ≥1 neutral q [∧ introduction

using steps 1.3.7
and 1.3.5]

1.3.7.2 sCorrelation ′(s1?, s2?) = sum [Definition of +1

and ConditioningOp Ref 1,
and step 1.3.3]

1.3.7.3 sum ≤1 max q [∧ elimination
in step 1.3.7.1]

1.3.7.4 sum ≥1 max q ∧ sum ≤1 max q [Steps 1.3.7
and 1.3.7.3]

1.3.7.5 sum = max q [Step 1.3.7.4]
1.3.7.6 sCorrelation ′(s1?, s2?) = sCorrelation(s1?, s2?) [Steps 1.3.7.2

and 1.3.4]
1.3.8 sum >1 max q [Assumption]
1.3.8.1 sCorrelation ′(s1?, s2?) = max q [Definition of +1

and ConditioningOp Ref 1]
1.3.8.2 sCorrelation ′(s1?, s2?) = sCorrelation(s1?, s2?) [Steps 1.3.8.1

and 1.3.2]
1.3.9 sCorrelation ′(s1?, s2?) = sCorrelation(s1?, s2?) [∨ elimination

using steps 1.3.6,
1.3.7.3 and 1.3.8.2]

1.4 (s1? sCauses s2?) ∧
sCorrelation(s1?, s2?) = max correlation ⇒
sCorrelation ′(s1?, s2?) = sCorrelation(s1?, s2?) [⇒ introduction

using steps 1.3
and 1.3.9]

1.5 ¬ (s1? sCauses s2?) [Assumption]
1.5.1 sCorrelation(s1?, s2?) ≥1 min correlation [Definition of

Correlation]
1.5.2 sum =

(first sCorrelation(s1?, s2?) ∗ second increment+
first increment ∗ second sCorrelation(s1?, s2?),
second sCorrelation(s1?, s2?) ∗ second increment) [Definition of +1]

1.5.3 sum ≥1 sCorrelation(s1?, s2?) [increment is
positive]

1.5.4 sum ≥1 min q [Definition of
Correlation]

1.5.5 sCorrelation ′(s1?, s2?) = sum ∨
sCorrelation ′(s1?, s2?) = netural q ∨
sCorrelation ′(s1?, s2?) = max q [Definition of +1]

1.5.6 sCorrelation ′(s1?, s2?) ≥1 min q ∨
sCorrelation ′(s1?, s2?) = netural q ∨
sCorrelation ′(s1?, s2?) = max q [Steps 1.5.4
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and 1.5.5]
1.5.7 sCorrelation ′(s1?, s2?) ≥1 min q [Definitions of min q ,

neutral q and
max q and
step 1.5.6]

1.5.8 sCorrelation ′(s1?, s2?) ≥1 min correlation [Definition of
min correlation]

1.6 ¬ (s1? sCauses s2?) ⇒
sCorrelation ′(s1?, s2?) ≥1 min correlation [⇒ introduction

using steps 1.5
and 1.5.8]

1.7 ((s1? sCauses s2?) ∧
sCorrelation(s1?, s2?) <1 max correlation ⇒
sCorrelation ′(s1?, s2?) >1 sCorrelation(s1?, s2?)) ∧
((s1? sCauses s2?) ∧
sCorrelation(s1?, s2?) = max correlation ⇒
sCorrelation ′(s1?, s2?) = sCorrelation(s1?, s2?)) ∧
(¬ (s1? sCauses s2?) ⇒
sCorrelation ′(s1?, s2?) ≥1 min correlation) [∧ introduction

using steps 1.2,
1.4 and 1.6]

1.8 delay? ≤ max delay ∧
sCauses ′ = sCauses ⊕ {s1? 7→ s2?} [Definition of

ConditioningOp Ref 1
assumed in step 1]

1.9 ConditioningOp [Steps 1.7 and 1.8]
2 pre(ConditioningOp) ∧ ConditioningOp Ref 1 ⇒

ConditioningOp [⇒ introduction
using steps 1
and 1.9]

T ConditioningOp Ref 1 =̂ ConditioningOp Ref 1 ∨ ConditioningOp 2

UnconditioningOp Ref 1
UnconditioningOp 1

Conditioning Ref 1 Parameters

sCorrelation ′(s1?, s2?) = sCorrelation(s1?, s2?)−1 increment

T UnconditioningOp Ref 1 =̂ UnconditioningOp Ref 1 ∨ UnconditioningOp 2

A.1.2.5 Stimulation
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StimulationUpdateOp 1
∆StimulationSubsystem

currentInstant? : Instant

stimulation? : Stimulation

stimulation?.status = Beginning

currentStimuli ′ = currentStimuli ∪ {stimulation?.stimulus}

stimulus status ′ = stimulus status⊕
{stimulation?.stimulus 7→ Beginning}

stimulusBeginning ′ = stimulusBeginning⊕
{stimulation?.stimulus 7→ currentInstant?}

StimulationUpdateOp 2
∆StimulationSubsystem

stimulation? : Stimulation

stimulation?.status = Ending

currentStimuli ′ = currentStimuli

stimulus status ′ = stimulus status⊕
{stimulation?.stimulus 7→ Ending}

stimulusBeginning ′ = stimulusBeginning

StimulationUpdateOp 3
∆StimulationSubsystem

stimulation? : Stimulation

stimulation?.status = Stable ∨ stimulation?.status = Absent

currentStimuli ′ = currentStimuli

stimulus status ′ = stimulus status⊕
{stimulation?.stimulus 7→ stimulation?.status}

stimulusBeginning ′ = stimulusBeginning

T StimulationUpdateOp =̂
StimulationUpdateOp 1 ∨
StimulationUpdateOp 2 ∨
StimulationUpdateOp 3
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CurrentStimuliUpdateOp 1
∆StimulationSubsystem

s? : Stimulus

stimulus status(s?) = Beginning

stimulus status ′(s?) = Stable

currentStimuli ′ = currentStimuli

CurrentStimuliUpdateOp 2
∆StimulationSubsystem

s? : Stimulus

stimulus status(s?) = Stable

stimulus status ′(s?) = Stable

currentStimuli ′ = currentStimuli

CurrentStimuliUpdateOp 3
∆StimulationSubsystem

s? : Stimulus

stimulus status(s?) = Ending

stimulus status ′(s?) = Absent

currentStimuli ′ = currentStimuli \ {s?}

CurrentStimuliUpdateOp 4
∆StimulationSubsystem

s? : Stimulus

stimulus status(s?) = Absent

stimulus status ′(s?) = Absent

currentStimuli ′ = currentStimuli

T CurrentStimuliUpdateOp =̂
CurrentStimuliUpdateOp 1 ∨
CurrentStimuliUpdateOp 2 ∨
CurrentStimuliUpdateOp 3 ∨
CurrentStimuliUpdateOp 4
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T PastStimuliUpdateOp
∆StimulationSubsystem

currentInstant? : Instant

pastStimuli ′ = pastStimuli ⊕ {currentInstant? 7→ currentStimuli}

A.1.2.6 Integration

Organism StimulusProcessing
∆Organism

stimulations? : PStimulation

currentInstant? : Instant

∀ st : stimulations? | st .status = Beginning •
∀ s : Stimulus | s ∈ dom stimulusBeginning ∧

stimulusBeginning(s) ≥ currentInstant?−max delay •
∃T ConditioningOp Ref 1 •

s1? = s ∧
s2? = st .stimulus ∧
delay? = currentInstant?− stimulusBeginning(s)

∀ cause : sCauses •
let s1 == first cause; s2 == second cause •

∃T UnconditioningOp Ref 1 •
s1? = s1 ∧
s2? = s2

∀ st : stimulations? •
∃T StimulationUpdateOp •

stimulation? = st

∀ s : currentStimuli •
∃T CurrentStimuliUpdateOp •

s? = s

T PastStimuliUpdateOp

A.1.3 General Responding

A.1.3.1 Basic Entities
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RespondingSubsystem
CurrentBehaviors

CurrentResponses

Actions

ActionHistory

ActionConflict

ActionBaselevel

operants : POperant

reflexes : PReflex

CurrentBehaviors
elicited : PReflex

emitted : POperant

spontaneous : PAction

CurrentResponses
responses : PResponse

activeResponses : PResponse

inactiveResponses : PResponse

reflexResponse : Reflex 7→ Response

operantResponse : Operant 7→ Response

spontaneousResponse : Action 7→ Response

reflexElicitationTime : Reflex 7→ Instant

responses = activeResponses ∪ inactiveResponses

activeResponses ∩ inactiveResponses = ∅

ran reflexResponse = responses

ran operantResponse = responses

ran spontaneousResponse = responses

A.1.3.2 Actions

[Action]
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Conflict ::= conflicting | nonconflicting

ActionConflict
conflict : Action × Action → Conflict

Actions
operantActions : PAction

reflexActions : PAction

ActionBaselevel
Actions

baseLevel : Action → Probability

∀ a : Action | a ∈ operantActions • baseLevel(a) >1 min probability

∀ a : Action | a ∈ reflexActions ∧ a /∈ operantActions •
baseLevel(a) =1 min probability

ActionHistory
actionsHistory : Instant 7→ PAction

A.1.3.3 Behavioural Responses

Response
action : Action

latency : Duration

duration : Duration

magnitude : Intensity

A.1.3.4 Response Scheduling Operations
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ReflexSchedulingOp
∆CurrentBehaviors

RespondingSubsystem

StimulationSubsystem

s? : Stimulus

i? : Intensity

∀ r : reflexes •
(∃ReflexElicitationCond • s = s? ∧ i = i?)⇒ r ∈ elicited ′

elicited ⊆ elicited ′

OperantSchedulingOp
∆CurrentBehaviors

RespondingSubsystem

StimulationSubsystem

OperantUtility

∀ o : operants •
OperantEmissionCond ⇒ o ∈ emitted ′

emitted ⊆ emitted ′

BaseLevelSchedulingOp
∆CurrentBehaviors

RespondingSubsystem

ResponseEmotionalRegulator

t? : Instant

∀ a : operantActions •
responseRegulator(a, baseLevel(a)) ≥1 random(t?)
⇒ a ∈ spontaneous ′

spontaneous ⊆ spontaneous ′

A.1.3.5 Conflict Resolution Operations
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OperantConflictCond
ActionConflict

o1, o2 : Operant

conflict(o1.action, o2.action) = conflicting

OperantConflictResolutionOp
∆CurrentBehaviors

StimulationSubsystem

OperantUtility

ActionConflict

removeO : POperant

∀ o1, o2 : emitted | OperantConflictCond •
(oUtility(o1, currentStimuli) >1 oUtility(o2, currentStimuli)⇒

o2 ∈ removeO) ∧
(oUtility(o1, currentStimuli) =1 oUtility(o2, currentStimuli)⇒

(o1 ∈ removeO) ∨ (o2 ∈ removeO))

ReflexConflictCond
ActionConflict

r1, r2 : Reflex

conflict(r1.action, r2.action) = conflicting

ReflexConflictResolutionOp
∆CurrentBehaviors

removeR : PReflex

∀ r1, r2 : elicited | ReflexConflictCond •
(r1 ∈ removeR) ∨ (r2 ∈ removeR)

ReflexConflictResolutionOp Ref 1
ReflexConflictResolutionOp

∀ r1, r2 : elicited | ReflexConflictCond •
(r1.magnitude ≥1 r2.magnitude ⇒ r2 ∈ removeR) ∧
(r1.magnitude <1 r2.magnitude ⇒ r1 ∈ removeR)
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ReflexConflictResolutionOp Ref 2
ReflexConflictResolutionOp

∀ r1, r2 : elicited | ReflexConflictCond •
(r1.latency ≥ r2.latency ⇒ r1 ∈ removeR) ∧
(r1.latency < r2.latency ⇒ r2 ∈ removeR)

OperantReflexConflicCond
ActionConflict

o : Operant

r : Reflex

conflict(o.action, r .action) = conflicting

OperantReflexConflictResolutionOp
∆CurrentBehaviors

ActionConflict

removeO : POperant

removeR : PReflex

∀ o : emitted ; r : elicited | OperantReflexConflicCond •
(r ∈ removeR) ∨ (o ∈ removeO)
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BaseLevelConflictResolutionOp
∆CurrentBehaviors

ActionConflict

removeO : POperant

removeR : PReflex

removeA : PAction

∀ o : emitted ; a : spontaneous | o.action = a •
a ∈ removeA

∀ o : emitted ; a : spontaneous | conflict(o.action, a) = conflicting •
(a ∈ removeA) ∨ (o ∈ removeO)

∀ r : elicited ; a : spontaneous |
r .action = a ∨ conflict(r .action, a) = conflicting •

a ∈ removeA

∀ a1, a2 : spontaneous | conflict(a1, a2) = conflicting •
(a1 ∈ removeA) ∨ (a2 ∈ removeA)
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AuxConflictResolutionOp
∆CurrentBehaviors

ActionConflict

removeO : POperant

removeR : PReflex

removeA : PAction

removeO ⊆ emitted

removeR ⊆ elicited

removeA ⊆ spontaneous

∀ o1 : emitted •
((¬ (∃ o2 : emitted • OperantConflictCond)) ∧
(¬ (∃ r : elicited • (let o == o1 • OperantReflexConflictCond))) ∧
(¬ (∃ a : spontaneous • conflict(o1.action, a) = conflicting)))⇒
(o1 /∈ removeO)

∀ r1 : elicited •
((¬ (∃ r2 : elicited • ReflexConflictCond)) ∧
(¬ (∃ o : emitted • (let r = r1 • OperantReflexConflictCond))) ∧
(¬ (∃ a : spontaneous • r1.action = a ∨ conflict(r1.action, a) = conflicting)))⇒
(r1 /∈ removeR)

∀ a1 : spontaneous •
((¬ (∃ a2 : spontaneous • conflict(a1, a2) = conflicting)) ∧
(¬ (∃ o : emitted • o.action = a1 ∨ conflict(o.action, a1) = conflicting)) ∧
(¬ (∃ r : elicited • r .action = a ∨ conflict(r .action, a) = conflicting)))⇒
(a1 /∈ removeA)

emitted ′ = emitted \ removeO

elicited ′ = elicited \ removeR

spontaneous ′ = spontaneous \ removeA

ConflictResolutionOp =̂
OperantConflictResolutionOp ∧
ReflexConflictResolutionOp ∧
OperantReflexConflictResolutionOp ∧
BaseLevelConflictResolutionOp ∧
AuxConflictResolutionOp

269



A. Full Agent Specification

ConflictResolutionOp Ref 1 =̂
OperantConflictResolutionOp ∧
ReflexConflictResolutionOp Ref 1 ∧
OperantReflexConflictResolutionOp ∧
BaseLevelConflictResolutionOp ∧
AuxConflictResolutionOp

ConflictResolutionOp Ref 2 =̂
OperantConflictResolutionOp ∧
ReflexConflictResolutionOp Ref 2 ∧
OperantReflexConflictResolutionOp ∧
BaseLevelConflictResolutionOp ∧
AuxConflictResolutionOp

A.1.3.6 Response Emission, Update and Termination Operations

OperantEmissionOp
∆ActionHistory

∆CurrentResponses

currentInstant? : Instant

o? : Operant

¬ (∃ rp : Response • operantResponse(o?) = rp)

∃ rp : Response •
rp.action = o?.action ∧
inactiveResponses ′ = inactiveResponses ∪ {rp} ∧
operantResponse ′ = operantResponse ⊕ {o? 7→ rp}

actionsHistory ′(currentInstant?) =
actionsHistory(currentInstant?) ∪ {o?.action}
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ReflexElicitationOp
∆ActionHistory

∆CurrentResponses

currentInstant? : Instant

r? : Reflex

¬ (∃ rp : Response • reflexResponse(r?) = rp)

∃ rp : Response •
rp.action = r?.action ∧
rp.latency = r?.latency ∧
rp.duration = r?.duration ∧
rp.magnitude = r?.magnitude ∧
inactiveResponses ′ = inactiveResponses ∪ {rp} ∧
reflexResponse ′ = reflexResponse ⊕ {r? 7→ rp}

∃ReflexAdjustmentOp •
θReflex = r? ∧
t1? = reflexElicitationTime(r?) ∧ t2? = currentInstant?

reflexElicitationTime ′ = reflexElicitationTime ⊕ {r? 7→ currentInstant?}

actionsHistory ′(currentInstant?) =
actionsHistory(currentInstant?) ∪ {r?.action}

BaseLevelEmissionOp
∆ActionHistory

∆CurrentResponses

currentInstant? : Instant

a? : Action

¬ (∃ rp : Response • spontaneousResponse(a?) = rp)

∃ rp : Response •
inactiveResponses ′ = inactiveResponses ∪ {rp} ∧
rp.action = a?

actionsHistory ′(currentInstant?) =
actionsHistory(currentInstant?) ∪ {a?}
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InactiveResponseUpdateOp 1
∆CurrentResponses

∆Response

θResponse ∈ inactiveResponses

θResponse /∈ activeResponses

latency > 0

latency ′ = latency − 1

activeResponses ′ = activeResponses

inactiveResponses ′ = (inactiveResponses \ {θResponse}) ∪ {θResponse ′}

InactiveResponseUpdateOp 2
∆CurrentResponses

∆Response

θResponse ∈ inactiveResponses

θResponse /∈ activeResponses

latency ≤ 0

activeResponses ′ = activeResponses ∪ {θResponse ′}

inactiveResponses ′ = inactiveResponses \ {θResponse}

ActiveResponseUpdateOp
∆CurrentResponses

∆Response

θResponse /∈ inactiveResponses

θResponse ∈ activeResponses

duration ′ = duration − 1

activeResponses ′ = (activeResponses \ {θResponse}) ∪ {θResponse ′}

inactiveResponses ′ = inactiveResponses
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NeutralResponseUpdateOp
ΞCurrentResponses

ΞResponse

(θResponse /∈ inactiveResponses ∧ θResponse /∈ activeResponses) ∨
(θResponse ∈ inactiveResponses ∧ θResponse ∈ activeResponses)

T ResponseUpdateOp =̂
InactiveResponseUpdateOp 1 ∨
InactiveResponseUpdateOp 2 ∨
ActiveResponseUpdateOp ∨
NeutralResponseUpdateOp

ResponseTerminationOp 1
∆CurrentResponses

∆CurrentBehaviors

rp? : Response

rp? ∈ activeResponses

rp?.duration ≤ 0

activeResponses ′ = activeResponses \ {rp?}

inactiveResponses ′ = inactiveResponses \ {rp?}

∀ o : emitted • operantResponse(o) = rp?⇒ o /∈ emitted ′

∀ r : elicited • reflexResponse(r) = rp?⇒ r /∈ elicited ′

∀ a : spontaneous • spontaneousResponse(a) = rp?⇒ a /∈ spontaneous ′
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ResponseTerminationOp 2
∆CurrentResponses

ΞCurrentBehaviors

rp? : Response

rp? ∈ activeResponses

¬ (∃ r : elicited • reflexResponse(r) = rp?)

¬ (∃ o : emitted • operantResponse(o) = rp?)

¬ (∃ a : spontaneous • spontaneousResponse(a) = rp?)

activeResponses ′ = activeResponses \ {rp?}

inactiveResponses ′ = inactiveResponses \ {rp?}

ResponseTerminationOp 3
ΞCurrentResponses

ΞCurrentBehaviors

rp? : Response

rp?.duration > 0

(∃ r : elicited • reflexResponse(r) = rp?) ∨
(∃ o : emitted • operantResponse(o) = rp?) ∨
(∃ a : spontaneous • spontaneousResponse(a) = rp?)

T ResponseTerminationOp =̂
ResponseTerminationOp 1 ∨
ResponseTerminationOp 2 ∨
ResponseTerminationOp 3

A.1.3.7 Integration
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Organism BehaviorSelection
∆Organism

OperantSchedulingOp

stimulations? : PStimulation

currentInstant? : Instant

∀ st : stimulations? | st .status = Beginning •
∃ReflexSchedulingOp •

s? = st .stimulus ∧ i? = st .intensity

∃BaseLevelSchedulingOp • t? = currentInstant?

Organism ConflicResolution
∆Organism

ConflictResolutionOp Ref 1

Organism ResponseEmission
∆Organism

currentInstant? : Instant

∀ o : emitted •
∃OperantEmissionOp • o? = o

∀ r : elicited •
∃ReflexElicitationOp • r? = r

∀ a : spontaneous •
∃BaseLevelEmissionOp • a? = a

Organism ResponseMaintenance
∆Organism

∀ rp : responses •
∃T ResponseUpdateOp • θResponse = rp

∀ rp : responses •
∃T ResponseTerminationOp • rp? = rp

A.1.4 Operant Behaviour

A.1.4.1 Basic Entities
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Operant
StimulusUtility

antecedents : P(PStimulus)

action : Action

consequence : Stimulus

consequenceContingency : (PStimulus) 7→ Correlation

sUtility(consequence) 6= neutral utility

dom consequenceContingency = antecedents

A.1.4.2 Operant Implication

OperantImplication
StimulusImplication

Discrimination

oCauses : P(Operant × Stimulus)

oCorrelation : Operant × Stimulus 7→ Correlation

∀ o : Operant • o oCauses o.consequence

∀ o1, o2 : Operant ; S : PStimulus | S discriminatesNonEmpty o2 •

(∀ s : S • o1.consequence sCauses s)⇒

o1 oCauses o2.consequence

dom oCorrelation = oCauses

Discrimination
discriminates : P(PStimulus ×Operant)

discriminatesNonEmpty : P(PStimulus ×Operant)

∀S : PStimulus; o : Operant •

S discriminates o ⇔ (∃A : o.antecedents • A ⊆ S )

∀S : PStimulus; o : Operant •

S discriminatesNonEmpty o ⇔

(∃A : o.antecedents | A 6= ∅ • A ⊆ S )
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A.1.4.3 Operant Utility

OperantUtility
StimulusUtility

OperantImplication

oUtility : (Operant × PStimulus)→ Utility

OperantUtility Ref 1
OperantUtility

Discrimination

∀ o : Operant ; S : PStimulus •
(∃ s : Stimulus |

S discriminates o ∧ o oCauses s •
oUtility(o,S ) = sUtility(s) ∧
(((∀ s ′ : Stimulus |

(S discriminates o ∧ o oCauses s ′) •
sUtility(s ′) ≥1 neutral utility ∧
sUtility(s) ≥1 sUtility(s

′)) ∧
sUtility(s) ≥1 neutral utility) ∨
((∀ s ′ : Stimulus |

(S discriminates o ∧ o oCauses s ′) •
sUtility(s) ≤1 sUtility(s

′)) ∧
sUtility(s) <1 neutral utility)) ∨

((¬ (∃ s : Stimulus •
S discriminates o ∧ o oCauses s)) ∧

(oUtility(o,S ) = neutral utility))

A.1.4.4 Fundamental Operations
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OperantOp
∆Operant

∆EmotionSubsystem

OperantUtility

discriminativeStimuli? : PStimulus

consequence? : Stimulus

action? : Action

delay? : Duration

action? = action

delay? ≤ max delay

OperantFormationOp
StimulationParameters

∆EmotionSubsystem

action? : Action

consequence? : Stimulus

discriminativeStimuli? : PStimulus

delay? : Duration

new ! : Operant

delay? ≤ max delay

discriminativeStimuli? 6= ∅

consequence? /∈ discriminativeStimuli?

new !.antecedents = {discriminativeStimuli?}

new !.consequence = consequence?

new !.action = action?

domnew !.consequenceContingency = {discriminativeStimuli?}
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OperantEliminationOp 1
∆RespondingSubsystem

operant? : Operant

¬ (∃ c : Correlation | c ∈ ran operant?.consequenceContingency •
c ≥1 min correlation)

operants ′ = operants \ {operant?}

OperantEliminationOp 2
ΞRespondingSubsystem

operant? : Operant

∃ c : Correlation | c ∈ ran operant?.consequenceContingency •
c ≥1 min correlation

T OperantEliminationOp =̂
OperantEliminationOp 1 ∨
OperantEliminationOp 2

DiscriminationOp
OperantOp

discriminativeStimuli? /∈ dom consequenceContingency

consequence? sCauses consequence

consequence? /∈ discriminativeStimuli?

dom consequenceContingency ′ =
dom consequenceContingency ∪ {discriminativeStimuli?}

consequenceContingency ′(discriminativeStimuli?) >1 min correlation

OperantConditioningOp
OperantOp

discriminativeStimuli? ∈ dom consequenceContingency

consequence? sCauses consequence

consequenceContingency ′(discriminativeStimuli?)
≥1 consequenceContingency(discriminativeStimuli?)
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ExtinctionOp
OperantOp

StartFrustrationOp

discriminativeStimuli? ∈ dom consequenceContingency

¬ (consequence? sCauses consequence)

consequenceContingency ′(discriminativeStimuli?)
≤1 consequenceContingency(discriminativeStimuli?)

NeutralOp
OperantOp

discriminativeStimuli? /∈ dom consequenceContingency

¬ (consequence? sCauses consequence)

consequenceContingency ′(discriminativeStimuli?)
= consequenceContingency(discriminativeStimuli?)

FundamentalOperantOp =̂
DiscriminationOp ∨
OperantConditioningOp ∨
ExtinctionOp ∨
NeutralOp

A.1.4.5 Reinforcement and Punishment Operations

PositiveReinforcement
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) >1 neutral utility

stimulus status(consequence?) = Beginning

PositiveReinforcementOp 1 =̂
FundamentalOperantOp ∧
PositiveReinforcement

PositiveReinforcementOp 2 =̂
OperantFormationOp ∧
PositiveReinforcement
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NegativeReinforcement
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) <1 neutral utility

stimulus status(consequence?) = Ending

NegativeReinforcementOp 1 =̂
FundamentalOperantOp ∧
NegativeReinforcement

NegativeReinforcementOp 2 =̂
OperantFormationOp ∧
NegativeReinforcement

PositivePunishment
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) <1 neutral utility

stimulus status(consequence?) = Beginning

PositivePunishmentOp 1 =̂
FundamentalOperantOp ∧
PositivePunishment ∧
StartAngerOp

PositivePunishmentOp 2 =̂
OperantFormationOp ∧
PositivePunishment ∧
StartAngerOp

NegativePunishment
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) >1 neutral utility

stimulus status(consequence?) = Ending
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NegativePunishmentOp 1 =̂
FundamentalOperantOp ∧
NegativePunishment ∧
StartDepressionOp

NegativePunishmentOp 2 =̂
OperantFormationOp ∧
NegativePunishment ∧
StartDepressionOp

NeutralReinforcementOp 1
ΞOperant

ΞEmotionSubsystem

StimulationParameters

StimulusUtility

consequence? : Stimulus

delay? : Duration

action? : Action

sUtility(consequence?) = neutral utility ∨
delay? > max delay ∨
action? 6= action

NeutralReinforcementOp 2
ΞEmotionSubsystem

StimulationParameters

StimulusUtility

consequence? : Stimulus

discriminativeStimuli? : PStimulus

delay? : Duration

sUtility(consequence?) = neutral utility ∨
delay? > max delay ∨
discriminativeStimuli? = ∅
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T OperantOp =̂
PositiveReinforcementOp 1 ∨ NegativeReinforcementOp 1 ∨
PositivePunishmentOp 1 ∨ NegativePunishmentOp 1 ∨
NeutralReinforcementOp 1

T OperantFormationOp =̂
PositiveReinforcementOp 2 ∨ NegativeReinforcementOp 2 ∨
PositivePunishmentOp 2 ∨ NegativePunishmentOp 2 ∨
NeutralReinforcementOp 2

A.1.4.6 Emission Condition

OperantEmissionCond
RespondingSubsystem

StimulationSubsystem

OperantUtility

Discrimination

o : Operant

currentStimuli discriminates o

oUtility(o, currentStimuli) >1 neutral utility

∀ x : operants |
x 6= o ∧ currentStimuli discriminates x ∧ x .action = o.action •

oUtility(x , currentStimuli) ≥1 neutral utility

A.1.4.7 Integration
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Organism OperantOp
∆Organism

stimulations? : PStimulation

currentInstant? : Instant

∀ t : Instant | currentInstant? > t ≥ currentInstant?−max delay ∧ t ≥ 0 •
∀ a : Action | a ∈ actionsHistory(t) •

∀ o : operants | o.action = a •
∀ st : stimulations? | st .status 6= Absent •
∃T OperantOp •

discriminativeStimuli? = pastStimuli(t) ∧
consequence? = st .stimulus ∧
action? = a ∧
delay? = currentInstant?− t

Organism OperantFormationOp
∆Organism

stimulations? : PStimulation

currentInstant? : Instant

∀ t : Instant | currentInstant? > t ≥ currentInstant?−max delay ∧ t ≥ 0 •
∀ a : Action | a ∈ actionsHistory(t) •

∀ st : stimulations? | st .status 6= Absent •
∃T OperantFormationOp •

discriminativeStimuli? = pastStimuli(t) ∧
consequence? = st .stimulus ∧
action? = a ∧
delay? = currentInstant?− t ∧
new ! ∈ operants ′

Organism OperantEliminationOp
∆Organism

∀ o : operants •
∃T OperantEliminationOp • operant? = o

A.1.5 Respondent Behaviour

A.1.5.1 Basic Entities
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Reflex
Actions

ReflexParameters

antecedent : Stimulus

action : Action

threshold : Intensity

elicitation : Probability

magnitude : Intensity

duration : Duration

latency : Duration

action ∈ reflexActions

min elicitation ≤1 elicitation ≤1 max elicitation

min magnitude ≤1 magnitude ≤1 max magnitude

min duration ≤ duration ≤ max duration

min latency ≤ latency ≤ max latency

min threshold ≤1 threshold ≤1 max threshold
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ReflexParameters
delta elicitation : Probability × Instant × Instant → Probability

delta magnitude : Intensity × Instant × Instant → Intensity

delta duration : Duration × Instant × Instant → Duration

delta latency : Duration × Instant × Instant → Duration

delta threshold : Intensity × Instant × Instant → Intensity

max elicitation : Probability

min elicitation : Probability

max magnitude : Intensity

min magnitude : Intensity

max duration : Duration

min duration : Duration

max latency : Duration

min latency : Duration

max threshold : Intensity

min threshold : Intensity

∀ t1, t2 : Instant ; p : Probability ; i1, i2 : Intensity ; d : Duration •
min elicitation ≤1 delta elicitation(p, t1, t2) ≤1 max elicitation ∧
min magnitude ≤1 delta magnitude(i1, t1, t2) ≤1 max magnitude ∧
min duration ≤ delta duration(d , t1, t2) ≤ max duration ∧
min latency ≤ delta latency(d , t1, t2) ≤ max latency ∧
min threshold ≤1 delta threshold(i2, t1, t2) ≤1 max threshold

A.1.5.2 Operations
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ReflexAdjustmentOp
∆Reflex

t1? : Instant

t2? : Instant

elicitation ′ = delta elicitation(elicitation, t1?, t2?)

magnitude ′ = delta magnitude(magnitude, t1?, t2?)

duration ′ = delta duration(duration, t1?, t2?)

latency ′ = delta latency(latency , t1?, t2?)

θReflexParameters ′ = θReflexParameters

antecedent ′ = antecedent

action ′ = action

A.1.5.3 Elicitation Condition

ReflexElicitationCond
StimulusImplication

r : Reflex

s : Stimulus

i : Intensity

s sCauses (r .antecedent)

(r .threshold) ≤1 i

A.1.6 Drives

A.1.6.1 Basic Entities

DriveSubsystem
activeDrives : PDrive
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Drive
importance : Utility

desires : PStimulus

deprivation : Utility → Utility

satiation : Utility → Utility

maxImportance,minImportance : Utility

importance ≥1 minImportance

importance ≤1 maxImportance

∀ u : Utility • deprivation(u) ≥1 u

∀ u : Utility • satiation(u) ≤1 u

A.1.6.2 Stimulus Regulation

StimulusDriveRegulator
DriveSubsystem

driveRegulator : (Stimulus × Utility)→ Utility

∀ s : Stimulus; u : Utility •
driveRegulator(s, u) = u +2 f (s,neutral utility , activeDrives)

f : (Stimulus × Utility × (PDrive))→ Utility

∀ s : Stimulus; u : Utility ; ds : PDrive | ds = ∅ •
f (s, u, ds) = neutral utility

∀ s : Stimulus; u : Utility ; ds : PDrive | ds 6= ∅ •
∃ d : ds •

(s ∈ d .desires ⇒ f (s, u, ds) =
u +2 d .importance +2 f (s, u, ds \ {d})) ∧

(s /∈ d .desires ⇒ f (s, u, ds) =
f (s, u, ds \ {d}))

A.1.6.3 Operations
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DriveOp
∆Drive

stimulations? : PStimulation

present : PStimulus

present = { s : Stimulus |
(∃ st : stimulations? •

st .stimulus = s ∧ st .status = Stable) }

desires ′ = desires

deprivation ′ = deprivation

satiation ′ = satiation

SatiationOp
DriveOp

desires ⊆ present

importance ′ = satiation(importance)

DeprivationOp
DriveOp

¬ (desires ⊆ present)

importance ′ = deprivation(importance)

T DriveOp =̂ SatiationOp ∨ DeprivationOp

A.1.6.4 Integration

Organism DrivesUpdate
∆Organism

stimulations? : PStimulation

∀ d : activeDrives •
∃T DriveOp • θDrive = d

A.1.7 Emotions

A.1.7.1 Basic Entities
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EmotionSubsystem
anger : Anger

depression : Depression

frustration : Frustration

EmotionStatus ::= Active | Inactive

Emotion
status : EmotionStatus

intensity : Intensity

duration : Duration

UtilityRegulatorEmotion
Emotion

utilityChange : Intensity → Utility

ProbabilityRegulatorEmotion
Emotion

probabilityChange : Intensity → Probability

Anger
UtilityRegulatorEmotion

Depression
UtilityRegulatorEmotion

Frustration
ProbabilityRegulatorEmotion

A.1.7.2 Stimulus Regulation
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StimulusEmotionalRegulator
DepressionRegulator

AngerRegulator

emotionalRegulator : (Stimulus × Utility)→ Utility

∀ s : Stimulus; u : Utility •
emotionalRegulator(s, u) =

angerRegulator(s, depressionRegulator(s, u))

DepressionRegulator 1
EmotionSubsystem

depressionRegulator : (Stimulus × Utility)→ Utility

depression.status = Active

∀ s : Stimulus; u : Utility •
depressionRegulator(s, u) =

u +2 depression.utilityChange(depression.intensity)

DepressionRegulator 2
EmotionSubsystem

depressionRegulator : (Stimulus × Utility)→ Utility

depression.status = Inactive

∀ s : Stimulus; u : Utility •
depressionRegulator(s, u) = u

DepressionRegulator =̂ DepressionRegulator 1 ∨ DepressionRegulator 2

AngerRegulator 1
EmotionSubsystem

StimulationHints

angerRegulator : (Stimulus × Utility)→ Utility

anger .status = Active

∀ s : Stimulus; u : Utility | s ∈ painHints •
angerRegulator(s, u) = u +2 anger .utilityChange(anger .intensity)

∀ s : Stimulus; u : Utility | s /∈ painHints •
angerRegulator(s, u) = u
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AngerRegulator 2
EmotionSubsystem

angerRegulator : (Stimulus × Utility)→ Utility

anger .status = Inactive

∀ s : Stimulus; u : Utility •
angerRegulator(s, u) = u

AngerRegulator =̂ AngerRegulator 1 ∨ AngerRegulator 2

A.1.7.3 Response Regulation

ResponseEmotionalRegulator
FrustrationRegulator

responseRegulator : (Action × Probability)→ Probability

∀ a : Action; p : Probability •
responseRegulator(a, p) =

frustrationRegulator(a, p)

FrustrationRegulator 1
EmotionSubsystem

frustrationRegulator : (Action × Probability)→ Probability

frustration.status = Active

∀ a : Action; p : Probability •
frustrationRegulator(a, p) =

p +1 frustration.probabilityChange(frustration.intensity)

FrustrationRegulator 2
EmotionSubsystem

frustrationRegulator : (Action × Probability)→ Probability

frustration.status = Inactive

∀ a : Action; p : Probability •
frustrationRegulator(a, p) = p

FrustrationRegulator =̂ FrustrationRegulator 1 ∨ FrustrationRegulator 2
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A.1.7.4 Operations

StartDepressionOp
∆EmotionSubsystem

intensity? : Intensity

duration? : Duration

depression ′.status = Active

depression ′.intensity = intensity?

depression ′.duration = duration?

anger ′ = anger

frustration ′ = frustration

StartAngerOp
∆EmotionSubsystem

intensity? : Intensity

duration? : Duration

anger ′.status = Active

anger ′.intensity = intensity?

anger ′.duration = duration?

depression ′ = depression

frustration ′ = frustration

StartFrustrationOp
∆EmotionSubsystem

intensity? : Intensity

duration? : Duration

frustration ′.status = Active

frustration ′.intensity = intensity?

frustration ′.duration = duration?

anger ′ = anger

depression ′ = depression
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UpdateDepressionOp
∆EmotionSubsystem

depression.duration > 0

depression ′.duration = depression.duration − 1

anger ′ = anger

frustration ′ = frustration

UpdateAngerOp
∆EmotionSubsystem

anger .duration > 0

anger ′.duration = anger .duration − 1

depression ′ = depression

frustration ′ = frustration

UpdateFrustrationOp
∆EmotionSubsystem

frustration.duration > 0

frustration ′.duration = frustration.duration − 1

anger ′ = anger

depression ′ = depression

EndDepressionOp
∆EmotionSubsystem

depression.duration ≤ 0

depression ′.status = Inactive

anger ′ = anger

frustration ′ = frustration
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EndAngerOp
∆EmotionSubsystem

anger .duration ≤ 0

anger ′.status = Inactive

depression ′ = depression

frustration ′ = frustration

EndFrustrationOp
∆EmotionSubsystem

frustration.duration ≤ 0

frustration ′.status = Inactive

anger ′ = anger

depression ′ = depression

A.1.7.5 Integration

Organism EmotionUpdate
∆Organism

UpdateDepressionOp ∨ EndDepressionOp

UpdateAngerOp ∨ EndAngerOp

UpdateFrustrationOp ∨ EndFrustrationOp

A.1.8 Subsystems Integration

A.1.8.1 Simulator

Simulator
Organism

currentInstant : Instant

A.1.8.2 Initial State
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Init
Simulator

currentInstant = 0

A.1.8.3 Simulator Iteration Operation

SimulatorIterationOp
∆Simulator

Organism ConflicResolution

Organism ResponseMaintenance

Organism OperantEliminationOp

Organism DrivesUpdate

Organism EmotionUpdate

stimulations? : PStimulation

responses! : PResponse

currentInstant ′ = currentInstant + 1

∃Organism StimulusProcessing • currentInstant? = currentInstant

∃Organism BehaviorSelection •
currentInstant? = currentInstant ∧ responses! = activeResponses

∃Organism ResponseEmission • currentInstant? = currentInstant

∃Organism OperantOp • currentInstant? = currentInstant

∃Organism OperantFormationOp • currentInstant? = currentInstant
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APPENDIX B
Input Files and Tool Output for

the Case Studies

This appendix contains actual XML input files to FGS, which correspond to
the examples presented in Chapter 9, as well as the related FGS output. For
each example, the following files are provided:

• One ore more parametrizations to the agents present in the example.
These parametrizations are used to instantiate the implementation of
the Behaviourist Agent Architecture;

• One scenario description, in which the agents are declared to exist, and
the EMMAS specification is provided;

• One experiment description, in which a simulation purpose and the
satisfiability relation to be checked are specified;

• The output of FGS, which includes the verdict, the time it took to apply
the algorithm and a synchronous run.

Each section of this appendix correspond to an example of Chapter 9. Nonethe-
less, the files shown here may be somewhat more up-to-date than the formal
specifications given there.

B.1 Pavlovian Dog

B.1.1 Agent
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1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >

6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints>

10 <stimulus id="0" />

11 </pleasure -hints>

12 <pain -hints>

13 <stimulus id="4" />

14 </pain -hints>

15 </stimulation -hints>

16

17 <stimuli >

18 <stimulus id="0" name="food" primary="true"

utility="0.9" />

19 <stimulus id="1" name="bell" />

20 <stimulus id="2" name="whistle" />

21 <stimulus id="3" name="injection" primary="true"

utility=" -0.6" />

22 <stimulus id="4" name="veterinary" primary="false"

/>

23 <stimulus id="5" name="neutral" primary="true"

utility="0.0" />

24 <stimulus id="6" name="bark_sound" primary="true"

utility="0.1" />

25 </stimuli >

26

27 <max -delay value="100" />

28

29 </stimulation -parameters >

30

31 <conditioning -parameters >

32 <c value="0.5"/>

33 </conditioning -parameters >

34

35 <stimulus -implication >

36

37 </stimulus -implication >

38 </stimulation -subsystem >

39

40

41 <responding -subsystem >

42

43 <actions >
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44 <action id="0" name="salivate" base -level="0.0"

operant="false" reflex="true" />

45 <action id="1" name="bark" base -level="0.2" operant=

"true" reflex="true" />

46 <action id="2" name="sit" base -level="0.1" operant="

true" reflex="true" />

47 <action id="3" name="push_lever" base -level="0.0"

operant="true" reflex="true" />

48 </actions >

49

50 <action -conflict />

51

52 <operants >

53

54 <operant >

55 <antecedents >

56 <antecedent contingency="0.9"/>

57 </antecedents >

58 <action id="3"/> <!-- push_lever -->

59 <consequence id="1"/> <!-- bell -->

60 </operant >

61

62 <operant >

63 <antecedents >

64 <antecedent contingency="0.9"/>

65 </antecedents >

66 <action id="1"/> <!-- bark -->

67 <consequence id="6"/> <!-- bark_sound -->

68 </operant >

69

70 </operants >

71

72

73 <reflexes >

74 <reflex >

75 <reflex -parameters >

76 <max -elicitation value="1.0" />

77 <min -elicitation value="0.9" />

78 <max -strength value="1.0" />

79 <min -strength value="0.5" />

80 <max -duration value="10" />

81 <min -duration value="2" />

82 <max -latency value="10" />

83 <min -latency value="1" />

84 <max -threshold value="0.1" />

85 <min -threshold value="0.3" />

86 </reflex -parameters >

87 <antecedent -stimulus id="0" />

88 <action id="0" />
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89 <threshold value="0.3" />

90 <elicitation value="1.0" />

91 <strength value="1.0" />

92 <duration value="2" />

93 <latency value="1" />

94 </reflex >

95 </reflexes >

96

97 </responding -subsystem >

98

99 <drive -subsystem >

100 <drives/>

101 </drive -subsystem >

102

103 <emotion -subsystem >

104 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

105 <depression status="INACTIVE" intensity="0.0" duration

="0" />

106 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

107 </emotion -subsystem >

108

109 </organism >

B.1.2 Scenario

1 <?xml version="1.0"?>

2

3 <scenario name="EMMAS dog training"

4 description="A dog trainment environment.">

5

6 <agent component -id="organism.OrganismComponent" id="0"

name="Dog">

7 <initializer file="dog.agent.xml"/>

8 </agent>

9

10 <emmas >

11

12 <action -transformers >

13 <!-- The dog is alone. -->

14 </action -transformers >

15

16 <behaviors >

17

18 <behavior >

19 <environment -response agent -id="0" action="

salivate">

20 <nop/>
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21 </environment -response >

22 </behavior >

23

24

25 <behavior >

26 <environment -response agent -id="0" action="bark">

27 <nop/>

28 </environment -response >

29 </behavior >

30

31

32 <!-- Pushing a lever generates a bell sound -->

33 <behavior >

34 <environment -response agent -id="0" action="

push_lever">

35 <stimulate stimulus="bell" agent -id="0" />

36 </environment -response >

37 </behavior >

38

39

40 <!-- Experiments that can be performed -->

41 <behavior >

42 <choice >

43 <sequential -composition ><stimulate stimulus="

bell" agent -id="0" /><stimulate stimulus="

food" agent -id="0" /></sequential -composition

>

44 <sequential -composition ><stimulate stimulus="

whistle" agent -id="0" /><stimulate stimulus="

food" agent -id="0" /><stimulate stimulus="

whistle" agent -id="0" /></sequential -

composition >

45 </choice >

46 </behavior >

47

48 </behaviors >

49 </emmas>

50

51 </scenario >

B.1.3 Experiment

1 <?xml version="1.0"?>

2

3 <experiment name="Dog training program" description="A

training program for dogs." >

4

5 <simulation -purpose -verification relation="feasibility">

6
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7 <states >

8 <state id="initial"/>

9 <state id="1"/>

10 <state id="2"/>

11 <state id="3"/>

12 <state id="4"/>

13 <state id="5"/>

14 <state id="6"/>

15 <state id="7"/>

16 <state id="8"/>

17 <state id="9"/>

18 <state id="10"/>

19 <state id="11"/>

20 <state id="12"/>

21 </states >

22

23 <events >

24 <emmas -event id="!emit_salivate" type="output" name=

"emit" action="salivate" agent -id="0"/>

25 <emmas -event id="!stop_salivate" type="output" name=

"stop" action="salivate" agent -id="0"/>

26 <emmas -event id="!emit_push_lever" type="output"

name="emit" action="push_lever" agent -id="0"/>

27 <emmas -event id="?beg_food" type="input" name="

beginning" stimulus="food" agent -id="0"/>

28 <emmas -event id="?sta_food" type="input" name="

stable" stimulus="food" agent -id="0"/>

29

30 <emmas -event id="?beg_whistle" type="input" name="

beginning" stimulus="whistle" agent -id="0"/>

31 <emmas -event id="?sta_whistle" type="input" name="

stable" stimulus="whistle" agent -id="0"/>

32

33 <emmas -event id="?beg_bell" type="input" name="

beginning" stimulus="bell" agent -id="0"/>

34 <emmas -event id="?sta_bell" type="input" name="

stable" stimulus="bell" agent -id="0"/>

35 <emmas -event id="?end_bell" type="input" name="

ending" stimulus="bell" agent -id="0"/>

36 <emmas -event id="?abs_bell" type="input" name="

absent" stimulus="bell" agent -id="0"/>

37 </events >

38

39

40 <!-- Two ways of training the dog , one of them must

work. -->

41 <transitions >

42
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43 <!-- Try to condition food upon whistle and check

whether it worked. -->

44 <transition state -id1="initial" event -id="?

beg_whistle" state -id2="1"/>

45 <transition state -id1="1" event -id="other" state -id2

="1"/>

46 <transition state -id1="1" event -id="?sta_whistle"

state -id2="3"/>

47 <transition state -id1="3" event -id="other" state -id2

="3"/>

48 <transition state -id1="3" event -id="?beg_food" state

-id2="4"/>

49 <transition state -id1="4" event -id="other" state -id2

="4"/>

50 <transition state -id1="4" event -id="?sta_food" state

-id2="4"/>

51 <transition state -id1="4" event -id="!emit_salivate"

state -id2="4"/>

52 <transition state -id1="4" event -id="?beg_whistle"

state -id2="failure"/>

53 <transition state -id1="4" event -id="!stop_salivate"

state -id2="5"/> <!-- make sure it is done -->

54 <transition state -id1="5" event -id="other" state -id2

="5"/>

55 <transition state -id1="5" event -id="?beg_whistle"

state -id2="6"/>

56 <transition state -id1="6" event -id="other" state -id2

="6"/>

57 <transition state -id1="6" event -id="!emit_salivate"

state -id2="success"/> <!-- the whistle alone

managed to trigger salivation -->

58

59

60 <!-- Condition food upon bell and check whether the

dog knows how to sound the bell. -->

61 <transition state -id1="initial" event -id="?beg_bell"

state -id2="10"/>

62 <transition state -id1="10" event -id="?sta_bell"

state -id2="10"/>

63 <transition state -id1="10" event -id="?end_bell"

state -id2="10"/>

64 <transition state -id1="10" event -id="?abs_bell"

state -id2="10"/>

65 <transition state -id1="10" event -id="other" state -

id2="10"/>

66 <transition state -id1="10" event -id="?beg_whistle"

state -id2="failure"/>

67 <transition state -id1="10" event -id="?beg_food"

state -id2="12"/>
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68 <transition state -id1="12" event -id="other" state -

id2="12"/>

69 <transition state -id1="12" event -id="!

emit_push_lever" state -id2="success"/>

70

71

72 </transitions >

73

74 </simulation -purpose -verification >

75

76 </experiment >

B.1.4 Result

Simulation Purpose Verification strategy

======================================================

Result = SUCCESS

Running time = 2s

Run found:

[depth = 0] State (in SP): initial

[depth = 1] Events synch’d: <?beginning[agentId = 0]_[Stimulus type=’bell’],

!beginning[agentId = 0]_[Stimulus type=’bell’]>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 2] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 3] Events synch’d: <?stable[agentId = 0]_[Stimulus type=’bell’],

!stable[agentId = 0]_[Stimulus type=’bell’]>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 4] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 5] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’bark’]>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 6] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 7] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 8] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 9] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 10] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 11] Events synch’d: <(*)other,
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?stop[agentId = 0]_[Action type=’bark’]>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 12] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 13] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 14] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 15] Events synch’d: <?ending[agentId = 0]_[Stimulus type=’bell’],

!ending[agentId = 0]_[Stimulus type=’bell’]>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 16] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’bark’]>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 17] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 18] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 19] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 20] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 21] Events synch’d: <?absent[agentId = 0]_[Stimulus type=’bell’],

!absent[agentId = 0]_[Stimulus type=’bell’]>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 22] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 23] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 24] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 25] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 10

[depth = 26] Events synch’d: <?beginning[agentId = 0]_[Stimulus type=’food’],

!beginning[agentId = 0]_[Stimulus type=’food’]>;

State annotations synch’d: <[], []> State (in SP): 12

[depth = 27] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’salivate’]>;

State annotations synch’d: <[], []> State (in SP): 12

[depth = 28] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 12

[depth = 29] Events synch’d: <!emit[agentId = 0]_[Action type=’push_lever’],
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?emit[agentId = 0]_[Action type=’push_lever’]>;

State annotations synch’d: <[], []> State (in SP): success

Result = SUCCESS

Running time = 2s

Finished.

B.2 Worker

B.2.1 Agent

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >

6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints>

10 <stimulus id="0" />

11 </pleasure -hints>

12 <pain -hints>

13 </pain -hints>

14 </stimulation -hints>

15

16 <stimuli >

17 <stimulus id="0" name="food" primary="true"

utility="0.9" />

18 <stimulus id="1" name="money" />

19 <stimulus id="2" name="work_place" />

20 <stimulus id="3" name="home" />

21 </stimuli >

22

23 <max -delay value="10" />

24

25 </stimulation -parameters >

26

27 <conditioning -parameters >

28 <c value="0.5"/>

29 </conditioning -parameters >

30

31 <stimulus -implication >

32
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33 </stimulus -implication >

34 </stimulation -subsystem >

35

36

37 <responding -subsystem >

38

39 <actions >

40 <action id="0" name="work" base -level="0.0" operant=

"true" reflex="false" />

41 <action id="1" name="buy_food" base -level="0.0"

operant="true" reflex="false" />

42 <action id="2" name="wakeup_early" base -level="0.0"

operant="true" reflex="true" />

43 </actions >

44

45 <action -conflict />

46

47 <operants >

48

49 <!-- Wake up and go to work -->

50 <operant >

51 <antecedents >

52 <antecedent contingency="0.9">

53 <stimulus id="3"/>

54 </antecedent >

55 </antecedents >

56 <action id="2"/>

57 <consequence id="2"/>

58 </operant >

59

60 <!-- Work -->

61 <operant >

62 <antecedents >

63 <antecedent contingency="1.0">

64 <stimulus id="2"/>

65 </antecedent >

66 </antecedents >

67 <action id="0"/>

68 <consequence id="1"/>

69 </operant >

70

71 <!-- Buy food -->

72 <operant >

73 <antecedents >

74 <antecedent contingency="1.0">

75 <stimulus id="1"/>

76 </antecedent >

77 </antecedents >

78 <action id="1"/>
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79 <consequence id="0"/>

80 </operant >

81

82 </operants >

83

84 <reflexes/>

85

86 </responding -subsystem >

87

88 <drive -subsystem >

89 <drives >

90

91 <drive>

92 <importance value="0.0"/>

93 <max -importance value="1.0"/>

94 <min -importance value=" -1.0"/>

95 <desires >

96 <stimulus id="0" />

97 </desires >

98 </drive >

99

100 </drives >

101 </drive -subsystem >

102

103 <emotion -subsystem >

104 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

105 <depression status="INACTIVE" intensity="0.0" duration

="0" />

106 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

107 </emotion -subsystem >

108

109 </organism >

B.2.2 Scenario

1 <?xml version="1.0"?>

2 <scenario name="EMMAS worker"

3 description="En example of operant chaining.

">

4

5

6 <agent component -id="organism.OrganismComponent" id="0"

name="Worker">

7 <initializer file="worker.agent.xml"/>

8 </agent>

9

10 <emmas >
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11

12 <action -transformers >

13 <!-- The worker is alone. -->

14 </action -transformers >

15

16 <behaviors >

17

18 <!-- The agent begin in his home -->

19 <behavior >

20 <stimulate stimulus="home" agent -id="0" />

21 </behavior >

22

23 <!-- Reinforce the first operant in the chain -->

24 <behavior >

25 <environment -response agent -id="0" action="

wakeup_early">

26 <stimulate stimulus="work_place" agent -id="0" />

27 </environment -response >

28 </behavior >

29

30

31 <!-- Reinforce the second operant in the chain -->

32 <behavior >

33 <environment -response agent -id="0" action="work">

34 <stimulate stimulus="money" agent -id="0" />

35 </environment -response >

36 </behavior >

37

38

39 <!-- Reinforce the third operant in the chain -->

40 <behavior >

41 <environment -response agent -id="0" action="

buy_food">

42 <stimulate stimulus="food" agent -id="0" />

43 </environment -response >

44 </behavior >

45

46

47 </behaviors >

48

49 </emmas>

50

51 </scenario >

B.2.3 Experiment

1 <?xml version="1.0"?>

2
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3 <experiment name="Operant chaining mainenance" description

="An operant chaining mantenaince program for workers."

>

4

5 <simulation -purpose -verification relation="feasibility">

6

7 <states >

8 <state id="initial"/>

9 <state id="1"/>

10 <state id="2"/>

11 <state id="3"/>

12 </states >

13

14 <events >

15 <emmas -event id="?beg_home" type="input" name="

beginning" stimulus="home" agent -id="0"/>

16

17 <emmas -event id="!emit_wakeup_early" type="output"

name="emit" action="wakeup_early" agent -id="0"/>

18 <emmas -event id="!emit_work" type="output" name="

emit" action="work" agent -id="0"/>

19 <emmas -event id="!emit_buy_food" type="output" name=

"emit" action="buy_food" agent -id="0"/>

20 </events >

21

22 <transitions >

23 <!-- Walk the agent through the chain -->

24

25 <transition state -id1="initial" event -id="other"

state -id2="initial"/>

26 <transition state -id1="initial" event -id="?beg_home

" state -id2="1"/>

27

28 <transition state -id1="1" event -id="other" state -

id2="1"/>

29 <transition state -id1="1" event -id="!

emit_wakeup_early" state -id2="2"/>

30

31 <transition state -id1="2" event -id="other" state -

id2="2"/>

32 <transition state -id1="2" event -id="!emit_work"

state -id2="3"/>

33

34 <transition state -id1="3" event -id="other" state -

id2="3"/>

35 <transition state -id1="3" event -id="!emit_buy_food"

state -id2="success"/>

36 </transitions >

37
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38 </simulation -purpose -verification >

39

40 </experiment >

B.2.4 Result

Simulation Purpose Verification strategy

======================================================

Result = SUCCESS

Running time = 1s

Run found:

[depth = 0] State (in SP): initial

[depth = 1] Events synch’d: <?beginning[agentId = 0]_[Stimulus type=’home’],

!beginning[agentId = 0]_[Stimulus type=’home’]>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 2] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 3] Events synch’d: <!emit[agentId = 0]_[Action type=’wakeup_early’],

?emit[agentId = 0]_[Action type=’wakeup_early’]>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 4] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 5] Events synch’d: <(*)other,

!beginning[agentId = 0]_[Stimulus type=’work_place’]>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 6] Events synch’d: <(*)other,

!stable[agentId = 0]_[Stimulus type=’home’]>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 7] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 8] Events synch’d: <!emit[agentId = 0]_[Action type=’work’],

?emit[agentId = 0]_[Action type=’work’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 9] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 10] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 11] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 12] Events synch’d: <(*)other,

!beginning[agentId = 0]_[Stimulus type=’money’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 13] Events synch’d: <(*)other,

!stable[agentId = 0]_[Stimulus type=’work_place’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 14] Events synch’d: <(*)other,

311



B. Input Files and Tool Output for the Case Studies

!commit>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 15] Events synch’d: <!emit[agentId = 0]_[Action type=’buy_food’],

?emit[agentId = 0]_[Action type=’buy_food’]>;

State annotations synch’d: <[], []> State (in SP): success

Result = SUCCESS

Running time = 1s

Finished.

B.3 Violent Child

B.3.1 Agents

Child The child whose behaviour must be modified.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >

6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints >

10 <stimulus id="5" />

11 </pleasure -hints>

12 <pain -hints>

13 <stimulus id="3" />

14 <stimulus id="4" />

15 </pain -hints>

16 </stimulation -hints>

17

18 <stimuli >

19 <stimulus id="0" name="praise" primary="true"

utility="0.5" />

20 <stimulus id="1" name="candy" primary="true"

utility="0.9" />

21 <stimulus id="2" name="punch" primary="true"

utility=" -0.6" />

22 <stimulus id="3" name="scream_sound" primary="true

" utility="0.2"/>

23 <stimulus id="4" name="cry_sound" primary="true"

utility="0.2" />
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24 <stimulus id="5" name="neutral"/>

25 </stimuli >

26

27 <max -delay value="10" />

28

29 </stimulation -parameters >

30

31 <conditioning -parameters >

32 <c value="0.5"/>

33 </conditioning -parameters >

34

35 <stimulus -implication >

36

37 </stimulus -implication >

38 </stimulation -subsystem >

39

40

41 <responding -subsystem >

42

43 <actions >

44 <action id="0" name="beat" base -level="0.0" operant=

"true" reflex="true" />

45 <action id="1" name="caress" base -level="0.2"

operant="true" reflex="true" />

46 </actions >

47

48

49 <action -conflict >

50 <conflict id1="0" id2="1"/>

51 <conflict id1="0" id2="2"/>

52 </action -conflict >

53

54 <operants >

55 <operant >

56 <antecedents >

57 <antecedent contingency="0.9"/>

58 </antecedents >

59 <action id="0"/> <!-- beat -->

60 <consequence id="3"/> <!-- scream_sound -->

61 </operant >

62

63 </operants >

64

65

66 <reflexes >

67

68 </reflexes >

69

70 </responding -subsystem >
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71

72 <drive -subsystem >

73 <drives >

74

75 <drive>

76 <importance value="0.0"/>

77 <max -importance value="0.0"/>

78 <min -importance value=" -1.0"/>

79 <desires >

80 <stimulus id="3" />

81 </desires >

82 </drive >

83

84

85 </drives >

86 </drive -subsystem >

87

88 <emotion -subsystem >

89 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

90 <depression status="INACTIVE" intensity="0.0" duration

="0" />

91 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

92 </emotion -subsystem >

93

94 </organism >

Dog The dog that suffers the child’s misbehaviour.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >

6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints >

10 <stimulus id="0" />

11 </pleasure -hints>

12 <pain -hints>

13 <stimulus id="4" />

14 </pain -hints>

15 </stimulation -hints>

16

17 <stimuli >

18 <stimulus id="0" name="food" primary="true"

utility="0.9" />
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19 <stimulus id="1" name="bell" />

20 <stimulus id="2" name="whistle" />

21 <stimulus id="3" name="injection" primary="true"

utility=" -0.6" />

22 <stimulus id="4" name="veterinary" primary="false"

/>

23 <stimulus id="5" name="neutral" primary="true"

utility="0.0" />

24 <stimulus id="6" name="bark_sound" primary="true"

utility="0.1" />

25 <stimulus id="7" name="punch" primary="true"

utility=" -0.5" />

26 <stimulus id="8" name="caress" primary="true"

utility="0.6" />

27 </stimuli >

28

29 <max -delay value="100" />

30

31 </stimulation -parameters >

32

33 <conditioning -parameters >

34 <c value="0.5"/>

35 </conditioning -parameters >

36

37 <stimulus -implication >

38

39 </stimulus -implication >

40 </stimulation -subsystem >

41

42

43 <responding -subsystem >

44

45 <actions >

46 <action id="0" name="salivate" base -level="0.0"

operant="false" reflex="true" />

47 <action id="1" name="bark" base -level="0.2" operant=

"true" reflex="true" />

48 <action id="2" name="sit" base -level="0.1" operant="

true" reflex="true" />

49 <action id="3" name="push_lever" base -level="0.0"

operant="true" reflex="true" />

50 <action id="4" name="scream" base -level="0.0"

operant="true" reflex="true" />

51 </actions >

52

53 <action -conflict />

54

55 <operants >

56
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57 <operant >

58 <antecedents >

59 <antecedent contingency="0.9"/>

60 </antecedents >

61 <action id="3"/> <!-- push_lever -->

62 <consequence id="1"/> <!-- bell -->

63 </operant >

64

65 <operant >

66 <antecedents >

67 <antecedent contingency="0.9"/>

68 </antecedents >

69 <action id="1"/> <!-- bark -->

70 <consequence id="6"/> <!-- bark_sound -->

71 </operant >

72

73 </operants >

74

75

76 <reflexes >

77

78 When fed , the dog salivates.

79 <reflex >

80 <reflex -parameters >

81 <max -elicitation value="1.0" />

82 <min -elicitation value="0.9" />

83 <max -strength value="1.0" />

84 <min -strength value="0.5" />

85 <max -duration value="10" />

86 <min -duration value="2" />

87 <max -latency value="10" />

88 <min -latency value="1" />

89 <max -threshold value="0.1" />

90 <min -threshold value="0.3" />

91 </reflex -parameters >

92 <antecedent -stimulus id="0" />

93 <action id="0" />

94 <threshold value="0.3" />

95 <elicitation value="1.0" />

96 <strength value="1.0" />

97 <duration value="10" />

98 <latency value="2" />

99 </reflex >

100

101

102 When punched , the dog screams.

103 <reflex >

104 <reflex -parameters >

105 <max -elicitation value="1.0" />
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106 <min -elicitation value="0.9" />

107 <max -strength value="1.0" />

108 <min -strength value="0.5" />

109 <max -duration value="10" />

110 <min -duration value="2" />

111 <max -latency value="10" />

112 <min -latency value="1" />

113 <max -threshold value="0.1" />

114 <min -threshold value="0.3" />

115 </reflex -parameters >

116 <antecedent -stimulus id="7" />

117 <action id="4" />

118 <threshold value="0.3" />

119 <elicitation value="1.0" />

120 <strength value="1.0" />

121 <duration value="10" />

122 <latency value="2" />

123 </reflex >

124

125

126 </reflexes >

127

128 </responding -subsystem >

129

130 <drive -subsystem >

131 <drives/>

132 </drive -subsystem >

133

134 <emotion -subsystem >

135 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

136 <depression status="INACTIVE" intensity="0.0" duration

="0" />

137 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

138 </emotion -subsystem >

139

140 </organism >

B.3.2 Scenario

1 <?xml version="1.0"?>

2

3 <scenario name="EMMAS violent child"

4 description="An example of how to change the

behaviour of a problem child.">

5

6
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7 <!-- Organisms -->

8 <agent component -id="organism.OrganismComponent" id="0"

name="Child">

9 <initializer file="child.agent.xml"/>

10 </agent>

11

12 <agent component -id="organism.OrganismComponent" id="1"

name="Dog">

13 <initializer file="dog.agent.xml"/>

14 </agent>

15

16 <!-- A property that inspects whether the child likes

candy -->

17 <property component -id = "organism.

StimulusUtilityProperty" id="0" name="LikesCandy">

18 <primitive -parameter name="TargetStimulus" value="

candy" />

19 <primitive -parameter name="TargetValue" value="0.1" />

20

21 <agent -target id="0" />

22 </property >

23

24

25

26 <emmas >

27

28 <action -transformers >

29 <action -transformer agent -id1="0" action="beat"

stimulus="punch" agent -id2="1"/>

30 <action -transformer agent -id1="0" action="caress"

stimulus="caress" agent -id2="1"/>

31 <action -transformer agent -id1="1" action="scream"

stimulus="scream_sound" agent -id2="0"/>

32 </action -transformers >

33

34 <behaviors >

35

36 <!-- Candy dispenser (we can give as much candy as

we like to the child). -->

37 <behavior >

38 <unbounded -sequence ><stimulate stimulus="candy"

agent -id="0" /></unbounded -sequence >

39 </behavior >

40

41 <!-- A neutral background can always be provided.

-->

42 <behavior >

43 <unbounded -sequence ><stimulate stimulus="neutral"

agent -id="0" /></unbounded -sequence >
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44 </behavior >

45

46 </behaviors >

47

48 </emmas>

49

50 </scenario >

B.3.3 Experiment

1 <?xml version="1.0"?>

2

3 <experiment name="Behaviour elimination"

4 description="Eliminates undesirable behaviours

by reinforcement instead of punishment." >

5

6 <simulation -purpose -verification relation="strong

feasibility">

7

8 <states >

9 <state id="initial"/>

10

11 <!-- Requires that this state must be annotated with

the specified literal -->

12 <state id="1">

13 <literal proposition="LikesCandy" type="positive"/>

14 </state>

15

16 <state id="2"/> <state id="3"/> <state id="4"/>

<state id="5"/> <state id="6"/> <state id="7

"/>

17 <state id="8"/> <state id="9"/> <state id="10"/>

<state id="11"/> <state id="12"/> <state id=

"13"/>

18 <state id="14"/> <state id="15"/> <state id="16"/

> <state id="17"/> <state id="18"/> <state

id="19"/>

19 <state id="20"/> <state id="21"/> <state id="22"/

> <state id="23"/> <state id="24"/> <state

id="25"/>

20 <state id="26"/> <state id="27"/> <state id="28"/

> <state id="29"/> <state id="30"/> <state

id="31"/>

21 <state id="32"/> <state id="33"/> <state id="34"/

> <state id="35"/> <state id="36"/> <state

id="37"/>

22 <state id="38"/> <state id="39"/> <state id="40"/

> <state id="41"/> <state id="42"/> <state

id="43"/>
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23 <state id="44"/> <state id="45"/> <state id="46"/

> <state id="47"/> <state id="50"/>

24 </states >

25

26 <events >

27 <!-- Child events -->

28 <emmas -event id="!emit_beat_0" type="output" name="

emit" action="beat" agent -id="0"/>

29 <emmas -event id="!stop_beat_0" type="output" name="

stop" action="beat" agent -id="0"/>

30 <emmas -event id="!emit_caress_0" type="output" name=

"emit" action="caress" agent -id="0"/>

31 <emmas -event id="!stop_caress_0" type="output" name=

"stop" action="caress" agent -id="0"/>

32 <emmas -event id="?beg_candy_0" type="input" name="

beginning" stimulus="candy" agent -id="0"/>

33 <emmas -event id="?sta_candy_0" type="input" name="

stable" stimulus="candy" agent -id="0"/>

34 <emmas -event id="?end_candy_0" type="input" name="

ending" stimulus="candy" agent -id="0"/>

35 <emmas -event id="?abs_candy_0" type="input" name="

absent" stimulus="candy" agent -id="0"/>

36 <emmas -event id="?beg_neutral_0" type="input" name="

beginning" stimulus="neutral" agent -id="0"/>

37 <emmas -event id="?sta_neutral_0" type="input" name="

stable" stimulus="neutral" agent -id="0"/>

38 <emmas -event id="?end_neutral_0" type="input" name="

ending" stimulus="neutral" agent -id="0"/>

39 <emmas -event id="?abs_neutral_0" type="input" name="

absent" stimulus="neutral" agent -id="0"/>

40 <emmas -event id="?beg_scream_sound_0" type="input"

name="beginning" stimulus="scream_sound" agent -id

="0"/>

41 <emmas -event id="?sta_scream_sound_0" type="input"

name="stable" stimulus="scream_sound" agent -id="0

"/>

42 <emmas -event id="?end_scream_sound_0" type="input"

name="ending" stimulus="scream_sound" agent -id="0

"/>

43 <emmas -event id="?abs_scream_sound_0" type="input"

name="absent" stimulus="scream_sound" agent -id="0

"/>

44

45 <!-- Dog events -->

46 <emmas -event id="!emit_scream_1" type="output" name=

"emit" action="scream" agent -id="1"/>

47 <emmas -event id="!stop_scream_1" type="output" name=

"stop" action="scream" agent -id="1"/>
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48 <emmas -event id="?beg_caress_1" type="input" name="

beginning" stimulus="caress" agent -id="1"/>

49 <emmas -event id="?sta_caress_1" type="input" name="

stable" stimulus="caress" agent -id="1"/>

50 <emmas -event id="?end_caress_1" type="input" name="

ending" stimulus="caress" agent -id="1"/>

51 <emmas -event id="?abs_caress_1" type="input" name="

absent" stimulus="caress" agent -id="1"/>

52 <emmas -event id="?beg_punch_1" type="input" name="

beginning" stimulus="punch" agent -id="1"/>

53 <emmas -event id="?sta_punch_1" type="input" name="

stable" stimulus="punch" agent -id="1"/>

54 <emmas -event id="?end_punch_1" type="input" name="

ending" stimulus="punch" agent -id="1"/>

55 <emmas -event id="?abs_punch_1" type="input" name="

absent" stimulus="punch" agent -id="1"/>

56

57 </events >

58

59

60 <transitions >

61

62 <!-- Let the child beat the dog and (temporarily)

get tired of it -->

63 <transition state -id1="initial" event -id="?

beg_neutral_0" state -id2="1"/> <!-- Establish a

discriminative stimulus -->

64 <transition state -id1="1" event -id="?commit" state -

id2="1"/> <!-- Loop here -->

65 <transition state -id1="1" event -id="!emit_beat_0"

state -id2="3"/>

66 <transition state -id1="3" event -id="?commit" state -

id2="4"/>

67 <transition state -id1="4" event -id="?beg_punch_1"

state -id2="5"/>

68 <transition state -id1="5" event -id="?commit" state -

id2="6"/>

69 <transition state -id1="6" event -id="?sta_punch_1"

state -id2="7"/>

70 <transition state -id1="7" event -id="?sta_neutral_0"

state -id2="8"/>

71 <transition state -id1="8" event -id="?commit" state -

id2="9"/>

72 <transition state -id1="9" event -id="?commit" state -

id2="10"/>

73 <transition state -id1="10" event -id="!emit_scream_1"

state -id2="11"/>

74 <transition state -id1="11" event -id="?

beg_scream_sound_0" state -id2="12"/>
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75 <transition state -id1="12" event -id="?commit" state -

id2="13"/>

76 <transition state -id1="13" event -id="?

sta_scream_sound_0" state -id2="14"/>

77

78

79 <transition state -id1="14" event -id="?commit" state -

id2="14"/> <!-- Loop here -->

80 <transition state -id1="14" event -id="!stop_scream_1"

state -id2="15"/>

81

82 <transition state -id1="15" event -id="?commit" state -

id2="16"/>

83 <transition state -id1="16" event -id="?

end_scream_sound_0" state -id2="17"/>

84 <transition state -id1="17" event -id="?commit" state -

id2="18"/>

85 <transition state -id1="18" event -id="?

abs_scream_sound_0" state -id2="19"/>

86 <transition state -id1="19" event -id="?commit" state -

id2="20"/>

87

88 <!-- Reward an eventual caress with candy -->

89 <transition state -id1="20" event -id="!emit_caress_0"

state -id2="21"/>

90

91 <transition state -id1="21" event -id="?beg_caress_1"

state -id2="22"/>

92

93 <transition state -id1="22" event -id="?commit" state -

id2="23"/>

94 <transition state -id1="23" event -id="?sta_caress_1"

state -id2="24"/>

95 <transition state -id1="24" event -id="?commit" state -

id2="24"/>

96

97 <transition state -id1="24" event -id="!stop_caress_0"

state -id2="25"/>

98 <transition state -id1="25" event -id="?beg_candy_0"

state -id2="26"/>

99

100

101 <transition state -id1="26" event -id="?end_caress_1"

state -id2="27"/>

102 <transition state -id1="27" event -id="?commit" state -

id2="28"/>

103 <transition state -id1="28" event -id="?abs_caress_1"

state -id2="29"/>

104
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105 <transition state -id1="29" event -id="?sta_candy_0"

state -id2="30"/>

106 <transition state -id1="30" event -id="?commit" state -

id2="31"/>

107 <transition state -id1="31" event -id="internal" state -

id2="32"/>

108

109 <!-- Make sure that the child is no longer beating

the dog. To do this , we

110 assume the use of the strong feasibility

relation. -->

111 <transition state -id1="32" event -id="?end_candy_0"

state -id2="33"/>

112 <transition state -id1="33" event -id="?commit" state -

id2="34"/>

113 <transition state -id1="33" event -id="!emit_beat_0"

state -id2="failure"/>

114 <transition state -id1="34" event -id="!stop_beat_0"

state -id2="35"/>

115 <transition state -id1="34" event -id="!emit_beat_0"

state -id2="failure"/>

116 <transition state -id1="35" event -id="?end_punch_1"

state -id2="36"/>

117 <transition state -id1="35" event -id="!emit_beat_0"

state -id2="failure"/>

118 <transition state -id1="36" event -id="?commit" state -

id2="37"/>

119 <transition state -id1="36" event -id="!emit_beat_0"

state -id2="failure"/>

120 <transition state -id1="37" event -id="?abs_punch_1"

state -id2="38"/>

121 <transition state -id1="37" event -id="!emit_beat_0"

state -id2="failure"/>

122 <transition state -id1="38" event -id="?commit" state -

id2="39"/>

123 <transition state -id1="38" event -id="!emit_beat_0"

state -id2="failure"/>

124 <transition state -id1="39" event -id="other" state -id2

="40"/>

125 <transition state -id1="39" event -id="!emit_beat_0"

state -id2="failure"/>

126 <transition state -id1="40" event -id="other" state -id2

="41"/>

127 <transition state -id1="37" event -id="!emit_beat_0"

state -id2="failure"/>

128 <transition state -id1="41" event -id="other" state -id2

="42"/>

129 <transition state -id1="41" event -id="!emit_beat_0"

state -id2="failure"/>
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130

131 <!-- If after all this trials no beating took place ,

and later a caress happens ,

132 it means that the beating behaviour has been

successfully eliminated -->

133 <transition state -id1="42" event -id="!emit_caress_0"

state -id2="success"/>

134 </transitions >

135

136

137 </simulation -purpose -verification >

138

139 </experiment >

B.3.4 Result

Simulation Purpose Verification strategy (group = GROUP_0)

======================================================

Result = SUCCESS

Running time = 4s

Run found:

[depth = 0] State (in SP): initial

[depth = 1] Events synch’d: <?beginning[agentId = 0]_[Stimulus type=’neutral’],

!beginning[agentId = 0]_[Stimulus type=’neutral’]>;

State annotations synch’d: <[LikesCandy], [LikesCandy]> State (in SP): 1

[depth = 2] Events synch’d: <!emit[agentId = 0]_[Action type=’beat’],

?emit[agentId = 0]_[Action type=’beat’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 3

[depth = 3] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 4

[depth = 4] Events synch’d: <?beginning[agentId = 1]_[Stimulus type=’punch’],

!beginning[agentId = 1]_[Stimulus type=’punch’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 5

[depth = 5] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 6

[depth = 6] Events synch’d: <?stable[agentId = 1]_[Stimulus type=’punch’],

!stable[agentId = 1]_[Stimulus type=’punch’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 7

[depth = 7] Events synch’d: <?stable[agentId = 0]_[Stimulus type=’neutral’],

!stable[agentId = 0]_[Stimulus type=’neutral’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 8

[depth = 8] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 9

[depth = 9] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 10

[depth = 10] Events synch’d: <!emit[agentId = 1]_[Action type=’scream’],

?emit[agentId = 1]_[Action type=’scream’]>;
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State annotations synch’d: <[], [LikesCandy]> State (in SP): 11

[depth = 11] Events synch’d: <?beginning[agentId = 0]_[Stimulus type=’scream_sound’],

!beginning[agentId = 0]_[Stimulus type=’scream_sound’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 12

[depth = 12] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 13

[depth = 13] Events synch’d: <?stable[agentId = 0]_[Stimulus type=’scream_sound’],

!stable[agentId = 0]_[Stimulus type=’scream_sound’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 14] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 15] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 16] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 17] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 18] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 19] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 20] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 21] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 22] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 23] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 24] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 14

[depth = 25] Events synch’d: <!stop[agentId = 1]_[Action type=’scream’],

?stop[agentId = 1]_[Action type=’scream’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 15

[depth = 26] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 16

[depth = 27] Events synch’d: <?ending[agentId = 0]_[Stimulus type=’scream_sound’],

!ending[agentId = 0]_[Stimulus type=’scream_sound’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 17

[depth = 28] Events synch’d: <?commit,

!commit>;
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State annotations synch’d: <[], [LikesCandy]> State (in SP): 18

[depth = 29] Events synch’d: <?absent[agentId = 0]_[Stimulus type=’scream_sound’],

!absent[agentId = 0]_[Stimulus type=’scream_sound’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 19

[depth = 30] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 20

[depth = 31] Events synch’d: <!emit[agentId = 0]_[Action type=’caress’],

?emit[agentId = 0]_[Action type=’caress’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 21

[depth = 32] Events synch’d: <?beginning[agentId = 1]_[Stimulus type=’caress’],

!beginning[agentId = 1]_[Stimulus type=’caress’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 22

[depth = 33] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 23

[depth = 34] Events synch’d: <?stable[agentId = 1]_[Stimulus type=’caress’],

!stable[agentId = 1]_[Stimulus type=’caress’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 24

[depth = 35] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 24

[depth = 36] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 24

[depth = 37] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 24

[depth = 38] Events synch’d: <!stop[agentId = 0]_[Action type=’caress’],

?stop[agentId = 0]_[Action type=’caress’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 25

[depth = 39] Events synch’d: <?beginning[agentId = 0]_[Stimulus type=’candy’],

!beginning[agentId = 0]_[Stimulus type=’candy’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 26

[depth = 40] Events synch’d: <?ending[agentId = 1]_[Stimulus type=’caress’],

!ending[agentId = 1]_[Stimulus type=’caress’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 27

[depth = 41] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 28

[depth = 42] Events synch’d: <?absent[agentId = 1]_[Stimulus type=’caress’],

!absent[agentId = 1]_[Stimulus type=’caress’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 29

[depth = 43] Events synch’d: <?stable[agentId = 0]_[Stimulus type=’candy’],

!stable[agentId = 0]_[Stimulus type=’candy’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 30

[depth = 44] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 31

[depth = 45] Events synch’d: <internal,

TAU>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 32

[depth = 46] Events synch’d: <?ending[agentId = 0]_[Stimulus type=’candy’],

!ending[agentId = 0]_[Stimulus type=’candy’]>;
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State annotations synch’d: <[], [LikesCandy]> State (in SP): 33

[depth = 47] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 34

[depth = 48] Events synch’d: <!stop[agentId = 0]_[Action type=’beat’],

?stop[agentId = 0]_[Action type=’beat’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 35

[depth = 49] Events synch’d: <?ending[agentId = 1]_[Stimulus type=’punch’],

!ending[agentId = 1]_[Stimulus type=’punch’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 36

[depth = 50] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 37

[depth = 51] Events synch’d: <?absent[agentId = 1]_[Stimulus type=’punch’],

!absent[agentId = 1]_[Stimulus type=’punch’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 38

[depth = 52] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 39

[depth = 53] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 40

[depth = 54] Events synch’d: <(*)other,

!absent[agentId = 0]_[Stimulus type=’candy’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 41

[depth = 55] Events synch’d: <(*)other,

!ending[agentId = 0]_[Stimulus type=’neutral’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): 42

[depth = 56] Events synch’d: <!emit[agentId = 0]_[Action type=’caress’],

?emit[agentId = 0]_[Action type=’caress’]>;

State annotations synch’d: <[], [LikesCandy]> State (in SP): success

Result = SUCCESS

Running time = 4s

Finished.

B.4 Factory

B.4.1 Agents

Manager Type 1 One of the possible managers.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >
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6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints>

10 </pleasure -hints>

11 <pain -hints>

12 </pain -hints>

13 </stimulation -hints>

14

15 <stimuli >

16 <stimulus id="0" name="money" primary="true"

utility="0.7" />

17 </stimuli >

18

19 <max -delay value="10" />

20

21 </stimulation -parameters >

22

23 <conditioning -parameters >

24 <c value="0.5"/>

25 </conditioning -parameters >

26

27 <stimulus -implication >

28

29 <!--

30 <cause id1 ="2" id2 ="3" correlation ="1.0" />

31 -->

32

33 </stimulus -implication >

34 </stimulation -subsystem >

35

36

37 <responding -subsystem >

38

39 <actions >

40 <action id="0" name="order_work" base -level="0.0"

operant="true" reflex="true" />

41 </actions >

42

43 <action -conflict/>

44

45 <operants >

46

47 <operant >

48 <antecedents >

49 <antecedent contingency="1.0"/>

50 </antecedents >

51 <action id="0"/>

52 <consequence id="0"/>
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53 </operant >

54

55 </operants >

56

57

58

59 <reflexes/>

60

61 </responding -subsystem >

62

63 <drive -subsystem >

64 <drives >

65

66 <!-- Money is periodically needed -->

67 <drive>

68 <importance value="0.0"/>

69 <max -importance value="1.0"/>

70 <min -importance value=" -1.0"/>

71 <desires >

72 <stimulus id="0" />

73 </desires >

74 </drive >

75

76 </drives >

77 </drive -subsystem >

78

79 <emotion -subsystem >

80 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

81 <depression status="INACTIVE" intensity="0.0" duration

="0" />

82 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

83 </emotion -subsystem >

84

85 </organism >

Manager Type 2 The other manager, who is depressed.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >

6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints>

10 </pleasure -hints>
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11 <pain -hints>

12 </pain -hints>

13 </stimulation -hints>

14

15 <stimuli >

16 <stimulus id="0" name="money" primary="true"

utility="0.5" />

17 </stimuli >

18

19 <max -delay value="10" />

20

21 </stimulation -parameters >

22

23 <conditioning -parameters >

24 <c value="0.5"/>

25 </conditioning -parameters >

26

27 <stimulus -implication/>

28

29 </stimulation -subsystem >

30

31 <responding -subsystem >

32

33 <actions >

34 <action id="0" name="order_work" base -level="0.0"

operant="true" reflex="true" />

35 </actions >

36

37

38 <action -conflict >

39

40 </action -conflict >

41

42 <operants >

43

44 <operant >

45 <antecedents >

46 <antecedent contingency="1.0"/>

47 </antecedents >

48 <action id="0"/>

49 <consequence id="0"/>

50 </operant >

51

52 </operants >

53

54 <reflexes/>

55

56 </responding -subsystem >

57
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58 <drive -subsystem >

59 <drives >

60

61 <!-- Money is periodically needed -->

62 <drive>

63 <importance value="0.0"/>

64 <max -importance value="1.0"/>

65 <min -importance value=" -1.0"/>

66 <desires >

67 <stimulus id="0" />

68 </desires >

69 </drive >

70

71 </drives >

72 </drive -subsystem >

73

74

75 <emotion -subsystem >

76 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

77 <depression status="ACTIVE" intensity="1.0" duration="

20" /> <!-- Depressed -->

78 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

79 </emotion -subsystem >

80

81 </organism >

Worker Type 1 A worker that does not enjoy chatting.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3

4 <organism >

5

6 <stimulation -subsystem >

7

8 <stimulation -parameters >

9 <stimulation -hints>

10 <pleasure -hints >

11 </pleasure -hints>

12 <pain -hints>

13 </pain -hints>

14 </stimulation -hints>

15

16 <stimuli >

17

18 <stimulus id="0" name="money" primary="true"

utility="0.7" />
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19

20 <stimulus id="1" name="work_product_0" primary="

false" />

21 <stimulus id="2" name="work_product_1" primary="

false" />

22 <stimulus id="3" name="work_product_2" primary="

false" />

23 <stimulus id="4" name="work_product_3" primary="

false" />

24

25 <stimulus id="5" name="conversation_1" primary="

false"/>

26 <stimulus id="6" name="conversation_2" primary="

false" />

27

28

29 <stimulus id="20" name="food" primary="true"

utility="0.6"/>

30

31 </stimuli >

32

33

34 <max -delay value="10" />

35

36

37 </stimulation -parameters >

38

39 <conditioning -parameters >

40 <c value="0.5"/>

41 </conditioning -parameters >

42

43 <stimulus -implication >

44

45

46 </stimulus -implication >

47 </stimulation -subsystem >

48

49

50

51 <responding -subsystem >

52

53 <actions >

54

55 <action id="0" name="work_1" base -level="0.0"

operant="true" reflex="true" />

56 <action id="1" name="work_2" base -level="0.0"

operant="true" reflex="true" />

57 <action id="2" name="work_3" base -level="0.0"

operant="true" reflex="true" />
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58

59 <action id="3" name="chat_1" base -level="0.3"

operant="true" reflex="true" />

60 <action id="4" name="chat_2" base -level="0.3"

operant="true" reflex="true" />

61 <action id="5" name="chat_3" base -level="0.3"

operant="true" reflex="true" />

62

63

64 </actions >

65

66

67 <action -conflict >

68

69 <!-- Either one works or one chats -->

70 <conflict id1="0" id2="3"/>

71 <conflict id1="0" id2="4"/>

72 <conflict id1="0" id2="5"/>

73

74 <conflict id1="1" id2="3"/>

75 <conflict id1="1" id2="4"/>

76 <conflict id1="1" id2="5"/>

77

78 <conflict id1="2" id2="3"/>

79 <conflict id1="2" id2="4"/>

80 <conflict id1="2" id2="5"/>

81

82 </action -conflict >

83

84 <operants >

85

86

87 <operant >

88 <antecedents >

89 <antecedent contingency="1.0">

90 <stimulus id="1"/>

91 </antecedent >

92 </antecedents >

93 <action id="0"/>

94 <consequence id="0"/>

95 </operant >

96

97 <operant >

98 <antecedents >

99 <antecedent contingency="1.0">

100 <stimulus id="2"/>

101 </antecedent >

102 </antecedents >

103 <action id="1"/>
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104 <consequence id="0"/>

105 </operant >

106

107

108 <operant >

109 <antecedents >

110 <antecedent contingency="1.0">

111 <stimulus id="3"/>

112 </antecedent >

113 </antecedents >

114 <action id="2"/>

115 <consequence id="0"/>

116 </operant >

117

118 </operants >

119

120

121

122 <reflexes/>

123

124 </responding -subsystem >

125

126 <drive -subsystem >

127 <drives >

128

129 <!-- Money is periodically needed -->

130 <drive>

131 <importance value="0.0"/>

132 <max -importance value="1.0"/>

133 <min -importance value=" -1.0"/>

134 <desires >

135 <stimulus id="0" />

136 </desires >

137 </drive >

138

139 </drives >

140 </drive -subsystem >

141

142

143 <emotion -subsystem >

144 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

145 <depression status="INACTIVE" intensity="0.0" duration

="0" />

146 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

147 </emotion -subsystem >

148

149 </organism >
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Worker Type 2 A worker that enjoys chatting very much.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >

6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints>

10 </pleasure -hints>

11 <pain -hints>

12 </pain -hints>

13 </stimulation -hints>

14

15 <stimuli >

16

17 <stimulus id="0" name="money" primary="true"

utility="0.5" />

18

19 <stimulus id="1" name="work_product_0" primary="

false" />

20 <stimulus id="2" name="work_product_1" primary="

false" />

21 <stimulus id="3" name="work_product_2" primary="

false" />

22 <stimulus id="4" name="work_product_3" primary="

false" />

23

24 <stimulus id="5" name="conversation_1" primary="

true" utility="0.8" />

25 <stimulus id="6" name="conversation_2" primary="

true" utility="0.8" />

26

27 <stimulus id="20" name="food" primary="true"

utility="0.5"/>

28

29 </stimuli >

30

31 <max -delay value="10" />

32

33 </stimulation -parameters >

34

35 <conditioning -parameters >

36 <c value="0.5"/>

37 </conditioning -parameters >

38

39 <stimulus -implication >

40
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41

42 </stimulus -implication >

43 </stimulation -subsystem >

44

45

46

47 <responding -subsystem >

48

49 <actions >

50

51 <action id="0" name="work_1" base -level="0.0"

operant="true" reflex="true" />

52 <action id="1" name="work_2" base -level="0.0"

operant="true" reflex="true" />

53 <action id="2" name="work_3" base -level="0.0"

operant="true" reflex="true" />

54

55 <action id="3" name="chat_1" base -level="0.3"

operant="true" reflex="true" />

56 <action id="4" name="chat_2" base -level="0.3"

operant="true" reflex="true" />

57 <action id="5" name="chat_3" base -level="0.3"

operant="true" reflex="true" />

58

59 </actions >

60

61

62 <action -conflict >

63

64 <!-- Either one works or one chats -->

65 <conflict id1="0" id2="3"/>

66 <conflict id1="0" id2="4"/>

67 <conflict id1="0" id2="5"/>

68

69 <conflict id1="1" id2="3"/>

70 <conflict id1="1" id2="4"/>

71 <conflict id1="1" id2="5"/>

72

73 <conflict id1="2" id2="3"/>

74 <conflict id1="2" id2="4"/>

75 <conflict id1="2" id2="5"/>

76

77 </action -conflict >

78

79 <operants >

80

81 <!--

82 Each work product requires a different action ,

which is rewarded with money
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83 -->

84

85 <operant >

86 <antecedents >

87 <antecedent contingency="1.0">

88 <stimulus id="1"/>

89 </antecedent >

90 </antecedents >

91 <action id="0"/>

92 <consequence id="0"/>

93 </operant >

94

95 <operant >

96 <antecedents >

97 <antecedent contingency="1.0">

98 <stimulus id="2"/>

99 </antecedent >

100 </antecedents >

101 <action id="1"/>

102 <consequence id="0"/>

103 </operant >

104

105

106 <operant >

107 <antecedents >

108 <antecedent contingency="1.0">

109 <stimulus id="3"/>

110 </antecedent >

111 </antecedents >

112 <action id="2"/>

113 <consequence id="0"/>

114 </operant >

115

116

117

118

119 <!-- When dealing with a particular kind of work ,

this agent knows that

120 a good conversation is possible. -->

121 <operant >

122 <antecedents >

123 <antecedent contingency="1.0">

124 <stimulus id="2"/>

125 </antecedent >

126 </antecedents >

127 <action id="3"/> <!-- chat_1 -->

128 <consequence id="5"/> <!-- conversation_1 -->

129 </operant >

130

337



B. Input Files and Tool Output for the Case Studies

131 </operants >

132

133

134

135 <reflexes/>

136

137 </responding -subsystem >

138

139

140 <drive -subsystem >

141 <drives >

142

143 <!-- Money is periodically needed -->

144 <drive>

145 <importance value="0.0"/>

146 <max -importance value="1.0"/>

147 <min -importance value=" -1.0"/>

148 <desires >

149 <stimulus id="0" />

150 </desires >

151 </drive >

152

153 </drives >

154 </drive -subsystem >

155

156

157 <emotion -subsystem >

158 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

159 <depression status="INACTIVE" intensity="0.0" duration

="0" />

160 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

161 </emotion -subsystem >

162

163 </organism >

B.4.2 Scenario

1 <?xml version="1.0"?>

2 <scenario name="EMMAS Factory Example"

3 description="A factory where workers should

maximize production.">

4

5

6 <!-- Managers -->

7 <agent component -id="organism.OrganismComponent" id="0"

name="Manager 1">
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8 <initializer file="manager1.agent.xml"/>

9 </agent>

10

11 <agent component -id="organism.OrganismComponent" id="1"

name="Manager 2">

12 <initializer file="manager2.agent.xml"/>

13 </agent>

14

15 <!-- Workers -->

16 <agent component -id="organism.OrganismComponent" id="11"

name="Worker 1">

17 <initializer file="worker2.agent.xml"/>

18 </agent>

19

20 <agent component -id="organism.OrganismComponent" id="12"

name="Worker 2">

21 <initializer file="worker2.agent.xml"/>

22 </agent>

23

24 <agent component -id="organism.OrganismComponent" id="

13" name="Worker 3">

25 <initializer file="worker1.agent.xml"/>

26 </agent>

27

28

29 <emmas>

30

31 <action -transformers >

32 <!-- Initially , no connections. (They ’ll be built

later , see the behaviors below.) -->

33 </action -transformers >

34

35 <behaviors >

36

37

38 <!-- When the product is finished by some agent (

through the ’work3 ’ action),

39 everyone is rewarded. -->

40

41 <behavior >

42 <environment -response agent -id="11" action="work_3

">

43 <parallel >

44 <stimulate stimulus="money" agent -id="11" />

45 <stimulate stimulus="money" agent -id="12" />

46 <stimulate stimulus="money" agent -id="13" />

47 <stimulate stimulus="money" agent -id="0" />

48 <stimulate stimulus="money" agent -id="1" />

49 </parallel >
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50 </environment -response >

51 </behavior >

52

53 <behavior >

54 <environment -response agent -id="12" action="work_3

">

55 <parallel >

56 <stimulate stimulus="money" agent -id="11" />

57 <stimulate stimulus="money" agent -id="12" />

58 <stimulate stimulus="money" agent -id="13" />

59 <stimulate stimulus="money" agent -id="0" />

60 <stimulate stimulus="money" agent -id="1" />

61 </parallel >

62 </environment -response >

63 </behavior >

64

65 <behavior >

66 <environment -response agent -id="13" action="work_3

">

67 <parallel >

68 <stimulate stimulus="money" agent -id="11" />

69 <stimulate stimulus="money" agent -id="12" />

70 <stimulate stimulus="money" agent -id="13" />

71 <stimulate stimulus="money" agent -id="0" />

72 <stimulate stimulus="money" agent -id="1" />

73 </parallel >

74 </environment -response >

75 </behavior >

76

77

78 <behavior >

79

80 <!-- There are several ways to setup the company.

-->

81

82 <choice >

83

84 <sequential -composition >

85 <choice >

86 <create agent -id1="0" action="order_work"

stimulus="work_product_0" agent -id2 = "13

" />

87 <create agent -id1="1" action="order_work"

stimulus="work_product_0" agent -id2 = "13

" />

88 </choice >

89

90 <create agent -id1="13" action="work_1"

stimulus="work_product_1" agent -id2 = "12"

340



B.4. Factory

/>

91 <create agent -id1="12" action="work_2"

stimulus="work_product_2" agent -id2 = "11"

/>

92

93 <create agent -id1="13" action="chat_1"

stimulus="conversation_1" agent -id2 = "12"

/>

94 <create agent -id1="12" action="chat_1"

stimulus="conversation_1" agent -id2 = "13"

/>

95

96 <create agent -id1="12" action="chat_1"

stimulus="conversation_1" agent -id2 = "11"

/>

97 <create agent -id1="11" action="chat_1"

stimulus="conversation_1" agent -id2 = "12"

/>

98

99 </sequential -composition >

100

101

102 <sequential -composition >

103 <choice >

104 <create agent -id1="0" action="order_work"

stimulus="work_product_0" agent -id2 = "11

" />

105 <create agent -id1="1" action="order_work"

stimulus="work_product_0" agent -id2 = "11

" />

106 </choice >

107

108 <create agent -id1="11" action="work_1"

stimulus="work_product_1" agent -id2 = "12"

/>

109 <create agent -id1="12" action="work_2"

stimulus="work_product_2" agent -id2 = "13"

/>

110

111 <create agent -id1="11" action="chat_1"

stimulus="conversation_1" agent -id2 = "12"

/>

112 <create agent -id1="12" action="chat_1"

stimulus="conversation_1" agent -id2 = "11"

/>

113

114 <create agent -id1="12" action="chat_1"

stimulus="conversation_1" agent -id2 = "13"

/>
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115 <create agent -id1="13" action="chat_1"

stimulus="conversation_1" agent -id2 = "12"

/>

116

117 </sequential -composition >

118

119

120 <sequential -composition >

121

122 <choice >

123 <create agent -id1="0" action="order_work"

stimulus="work_product_0" agent -id2 = "11

" />

124 <create agent -id1="1" action="order_work"

stimulus="work_product_0" agent -id2 = "11

" />

125 </choice >

126

127 <create agent -id1="11" action="work_1"

stimulus="work_product_1" agent -id2 = "13"

/>

128 <create agent -id1="13" action="work_2"

stimulus="work_product_2" agent -id2 = "12"

/>

129

130 <create agent -id1="11" action="chat_1"

stimulus="conversation_1" agent -id2 = "13"

/>

131 <create agent -id1="13" action="chat_1"

stimulus="conversation_1" agent -id2 = "11"

/>

132

133 <create agent -id1="13" action="chat_1"

stimulus="conversation_1" agent -id2 = "12"

/>

134 <create agent -id1="12" action="chat_1"

stimulus="conversation_1" agent -id2 = "13"

/>

135

136 </sequential -composition >

137

138

139

140 <sequential -composition >

141 <choice >

142 <create agent -id1="0" action="order_work"

stimulus="work_product_0" agent -id2 = "12

" />
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143 <create agent -id1="1" action="order_work"

stimulus="work_product_0" agent -id2 = "12

" />

144 </choice >

145

146 <create agent -id1="12" action="work_1"

stimulus="work_product_1" agent -id2 = "11"

/>

147 <create agent -id1="11" action="work_2"

stimulus="work_product_2" agent -id2 = "13"

/>

148

149 <create agent -id1="12" action="chat_1"

stimulus="conversation_1" agent -id2 = "11"

/>

150 <create agent -id1="11" action="chat_1"

stimulus="conversation_1" agent -id2 = "12"

/>

151

152 <create agent -id1="11" action="chat_1"

stimulus="conversation_1" agent -id2 = "13"

/>

153 <create agent -id1="13" action="chat_1"

stimulus="conversation_1" agent -id2 = "11"

/>

154 </sequential -composition >

155

156

157 <sequential -composition >

158 <choice >

159 <create agent -id1="0" action="order_work"

stimulus="work_product_0" agent -id2 = "12

" />

160 <create agent -id1="1" action="order_work"

stimulus="work_product_0" agent -id2 = "12

" />

161 </choice >

162

163 <create agent -id1="12" action="work_1"

stimulus="work_product_1" agent -id2 = "13"

/>

164 <create agent -id1="13" action="work_2"

stimulus="work_product_2" agent -id2 = "11"

/>

165

166 <create agent -id1="12" action="chat_1"

stimulus="conversation_1" agent -id2 = "13"

/>
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167 <create agent -id1="13" action="chat_1"

stimulus="conversation_1" agent -id2 = "12"

/>

168

169 <create agent -id1="13" action="chat_1"

stimulus="conversation_1" agent -id2 = "11"

/>

170 <create agent -id1="11" action="chat_1"

stimulus="conversation_1" agent -id2 = "13"

/>

171

172 </sequential -composition >

173

174

175 <sequential -composition >

176 <choice >

177 <create agent -id1="0" action="order_work"

stimulus="work_product_0" agent -id2 = "13

" />

178 <create agent -id1="1" action="order_work"

stimulus="work_product_0" agent -id2 = "13

" />

179 </choice >

180

181 <create agent -id1="13" action="work_1"

stimulus="work_product_1" agent -id2 = "11"

/>

182 <create agent -id1="11" action="work_2"

stimulus="work_product_2" agent -id2 = "12"

/>

183

184 <create agent -id1="13" action="chat_1"

stimulus="conversation_1" agent -id2 = "11"

/>

185 <create agent -id1="11" action="chat_1"

stimulus="conversation_1" agent -id2 = "13"

/>

186

187 <create agent -id1="11" action="chat_1"

stimulus="conversation_1" agent -id2 = "12"

/>

188 <create agent -id1="12" action="chat_1"

stimulus="conversation_1" agent -id2 = "11"

/>

189

190 </sequential -composition >

191

192 </choice >

193 </behavior >
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194

195 </behaviors >

196

197 </emmas>

198 </scenario >

B.4.3 Experiment

1 <?xml version="1.0"?>

2

3 <experiment name="Factory assembly" description="Seeks the

best factory configuration." >

4

5 <!-- A simulation purpose verification -->

6 <simulation -purpose -verification relation="feasibility">

7

8 <states >

9 <state id="initial"/> <state id="1"/> <state id="2"

/> <state id="3"/> <state id="4"/> <state id="5

"/>

10 <state id="6"/> <state id="7"/> <state id="8"/>

<state id="9"/> <state id="10"/> <state id="

11"/>

11 <state id="12"/> <state id="13"/> <state id="14"/>

<state id="15"/> <state id="16"/> <state id="17

"/>

12 <state id="18"/> <state id="19"/> <state id="20"/>

<state id="21"/> <state id="22"/> <state id="23

"/>

13 <state id="24"/> <state id="25"/> <state id="26"/>

<state id="27"/> <state id="28"/> <state id="29

"/>

14 <state id="30"/> <state id="31"/> <state id="32"/>

<state id="33"/> <state id="34"/> <state id="35

"/>

15 <state id="36"/> <state id="37"/> <state id="38"/>

<state id="39"/> <state id="40"/>

16 </states >

17

18 <events >

19 <emmas -event id="?beg_workproduct0_ag11" type="input

" name="beginning" stimulus="work_product_0"

agent -id="11"/>

20 <emmas -event id="?beg_workproduct1_ag11" type="input

" name="beginning" stimulus="work_product_1"

agent -id="11"/>

21 <emmas -event id="?beg_workproduct2_ag11" type="input

" name="beginning" stimulus="work_product_2"

agent -id="11"/>
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22 <emmas -event id="?beg_workproduct0_ag12" type="input

" name="beginning" stimulus="work_product_0"

agent -id="12"/>

23 <emmas -event id="?beg_workproduct1_ag12" type="input

" name="beginning" stimulus="work_product_1"

agent -id="12"/>

24 <emmas -event id="?beg_workproduct2_ag12" type="input

" name="beginning" stimulus="work_product_2"

agent -id="12"/>

25 <emmas -event id="?beg_workproduct0_ag13" type="input

" name="beginning" stimulus="work_product_0"

agent -id="13"/>

26 <emmas -event id="?beg_workproduct1_ag13" type="input

" name="beginning" stimulus="work_product_1"

agent -id="13"/>

27 <emmas -event id="?beg_workproduct2_ag13" type="input

" name="beginning" stimulus="work_product_2"

agent -id="13"/>

28

29 <emmas -event id="!emit_orderwork0_ag0" type="output"

name="emit" action="order_work" agent -id="0"/>

30 <emmas -event id="!emit_orderwork0_ag1" type="output"

name="emit" action="order_work" agent -id="1"/>

31

32 <emmas -event id="!emit_work3_ag11" type="output"

name="emit" action="work_3" agent -id="11"/>

33 <emmas -event id="!emit_work3_ag12" type="output"

name="emit" action="work_3" agent -id="12"/>

34 <emmas -event id="!emit_work3_ag13" type="output"

name="emit" action="work_3" agent -id="13"/>

35 </events >

36

37

38

39 <transitions >

40

41 <!-- There are several ways of building the company ’s

assembly line.

42 The following transitions specify that the

assembly line must

43 be built and that it must go through a number of

phases.

44 The exact events that accomplish this will be

found during verification.

45

46 For the sake of illustration , some things are

left concrete ("do this event"), and others

47 abstract ("do any event such that X"). The more

concrete , the easier

346



B.4. Factory

48 it is to perform the verification (but the harder

it is to write the

49 simulation purpose).

50 -->

51

52

53

54 <!-- Establish a network configuration. Each new

connection generates an ’internal ’ event ,

55 so we look for as many of them as necessary. -->

56 <transition state -id1="initial" event -id="internal"

state -id2="19"/>

57 <transition state -id1="19" event -id="internal" state -

id2="19"/>

58

59

60 <!-- A manager must give the initial work order -->

61 <transition state -id1="19" event -id="!

emit_orderwork0_ag0" state -id2="20"/>

62 <transition state -id1="19" event -id="!

emit_orderwork0_ag1" state -id2="20"/>

63

64

65 <!-- The order arrives to some agent. -->

66 <transition state -id1="20" event -id="?

beg_workproduct0_ag11" state -id2="21"/>

67 <transition state -id1="20" event -id="?

beg_workproduct0_ag12" state -id2="21"/>

68 <transition state -id1="20" event -id="?

beg_workproduct0_ag13" state -id2="21"/>

69

70 <!-- Some worker will be the first in the assembly

line. Here we abstract which one by

71 merely specifying the ’other ’ event. In a

feasible trace , this

72 will synchronize with some ’emit ’ of some agent

(e.g., ’!emit_work1_ag11 ’). -->

73 <transition state -id1="21" event -id="?commit" state -

id2="22"/>

74 <transition state -id1="22" event -id="other" state -id2

="26"/>

75 <transition state -id1="22" event -id="?commit" state -

id2="23"/>

76 <transition state -id1="23" event -id="other" state -id2

="26"/>

77 <transition state -id1="23" event -id="?commit" state -

id2="24"/>

78 <transition state -id1="24" event -id="other" state -id2

="26"/>
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79 <transition state -id1="24" event -id="?commit" state -

id2="25"/>

80 <transition state -id1="25" event -id="other" state -id2

="26"/>

81

82 <!-- The partial product gets to the next worker. -->

83 <transition state -id1="26" event -id="?

beg_workproduct1_ag12" state -id2="27"/>

84 <transition state -id1="26" event -id="?

beg_workproduct1_ag11" state -id2="27"/>

85 <transition state -id1="26" event -id="?

beg_workproduct1_ag13" state -id2="27"/>

86

87 <!-- Some worker will be the second in the assembly

line. Here we abstract which one by

88 merely specifying the ’other ’ event. In a

feasible trace , this

89 will synchronize with some ’emit ’ of some agent.

-->

90 <transition state -id1="27" event -id="?commit" state -

id2="28"/>

91 <transition state -id1="28" event -id="other" state -id2

="32"/>

92 <transition state -id1="28" event -id="?commit" state -

id2="29"/>

93 <transition state -id1="29" event -id="other" state -id2

="32"/>

94 <transition state -id1="29" event -id="?commit" state -

id2="30"/>

95 <transition state -id1="30" event -id="other" state -id2

="32"/>

96 <transition state -id1="30" event -id="?commit" state -

id2="31"/>

97 <transition state -id1="31" event -id="other" state -id2

="32"/>

98

99 <!-- The partial product gets to the next worker. -->

100 <transition state -id1="32" event -id="?

beg_workproduct2_ag13" state -id2="33"/>

101 <transition state -id1="32" event -id="?

beg_workproduct2_ag11" state -id2="33"/>

102 <transition state -id1="32" event -id="?

beg_workproduct2_ag12" state -id2="33"/>

103

104 <!-- Some worker will be the third (and last) in the

assembly line. Here we

105 so not abstract which event corresponds to this.

Notice the difference

106 w.r.t. the previous assembly line positions. -->
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107 <transition state -id1="33" event -id="?commit" state -

id2="34"/>

108 <transition state -id1="34" event -id="!emit_work3_ag13

" state -id2="success"/>

109 <transition state -id1="34" event -id="!emit_work3_ag11

" state -id2="success"/>

110 <transition state -id1="34" event -id="!emit_work3_ag12

" state -id2="success"/>

111 <transition state -id1="34" event -id="?commit" state -

id2="35"/>

112 <transition state -id1="35" event -id="!emit_work3_ag13

" state -id2="success"/>

113 <transition state -id1="34" event -id="!emit_work3_ag11

" state -id2="success"/>

114 <transition state -id1="34" event -id="!emit_work3_ag12

" state -id2="success"/>

115 <transition state -id1="35" event -id="?commit" state -

id2="36"/>

116 <transition state -id1="36" event -id="!emit_work3_ag13

" state -id2="success"/>

117 <transition state -id1="36" event -id="!emit_work3_ag11

" state -id2="success"/>

118 <transition state -id1="36" event -id="!emit_work3_ag12

" state -id2="success"/>

119 <transition state -id1="36" event -id="?commit" state -

id2="37"/>

120 <transition state -id1="37" event -id="!emit_work3_ag13

" state -id2="success"/>

121 <transition state -id1="37" event -id="!emit_work3_ag11

" state -id2="success"/>

122 <transition state -id1="37" event -id="!emit_work3_ag12

" state -id2="success"/>

123

124 </transitions >

125

126 </simulation -purpose -verification >

127

128 </experiment >

B.4.4 Result

Weak feasibility Result of weak feasibility verification.

Simulation Purpose Verification strategy

======================================================

Result = SUCCESS

Running time = 47s

Run found:
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[depth = 0] State (in SP): initial

[depth = 1] Events synch’d: <internal,

TAU>;

State annotations synch’d: <[], []> State (in SP): 19

[depth = 2] Events synch’d: <internal,

TAU>;

State annotations synch’d: <[], []> State (in SP): 19

[depth = 3] Events synch’d: <internal,

TAU>;

State annotations synch’d: <[], []> State (in SP): 19

[depth = 4] Events synch’d: <internal,

TAU>;

State annotations synch’d: <[], []> State (in SP): 19

[depth = 5] Events synch’d: <internal,

TAU>;

State annotations synch’d: <[], []> State (in SP): 19

[depth = 6] Events synch’d: <internal,

TAU>;

State annotations synch’d: <[], []> State (in SP): 19

[depth = 7] Events synch’d: <!emit[agentId = 0]_[Action type=’order_work’],

?emit[agentId = 0]_[Action type=’order_work’]>;

State annotations synch’d: <[], []> State (in SP): 20

[depth = 8] Events synch’d: <?beginning[agentId = 11]_[Stimulus type=’work_product_0’],

!beginning[agentId = 11]_[Stimulus type=’work_product_0’]>;

State annotations synch’d: <[], []> State (in SP): 21

[depth = 9] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 22

[depth = 10] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 23

[depth = 11] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 24

[depth = 12] Events synch’d: <(*)other,

?emit[agentId = 11]_[Action type=’work_1’]>;

State annotations synch’d: <[], []> State (in SP): 26

[depth = 13] Events synch’d: <?beginning[agentId = 13]_[Stimulus type=’work_product_1’],

!beginning[agentId = 13]_[Stimulus type=’work_product_1’]>;

State annotations synch’d: <[], []> State (in SP): 27

[depth = 14] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 28

[depth = 15] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 29

[depth = 16] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 30

[depth = 17] Events synch’d: <(*)other,

?emit[agentId = 13]_[Action type=’work_2’]>;

State annotations synch’d: <[], []> State (in SP): 32

[depth = 18] Events synch’d: <?beginning[agentId = 12]_[Stimulus type=’work_product_2’],

!beginning[agentId = 12]_[Stimulus type=’work_product_2’]>;
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State annotations synch’d: <[], []> State (in SP): 33

[depth = 19] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 34

[depth = 20] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 35

[depth = 21] Events synch’d: <?commit,

!commit>;

State annotations synch’d: <[], []> State (in SP): 36

[depth = 22] Events synch’d: <!emit[agentId = 12]_[Action type=’work_3’],

?emit[agentId = 12]_[Action type=’work_3’]>;

State annotations synch’d: <[], []> State (in SP): success

Result = SUCCESS

Running time = 47s

Finished.

Certainty Result of certainty verification.

Simulation Purpose Verification strategy

======================================================

Result = FAILURE

Running time = 1s

Run found:

[depth = 0] State (in SP): initial

[depth = 1] Events synch’d: <internal,

TAU>;

State annotations synch’d: <[], []> State (in SP): 19

Result = FAILURE

Running time = 1s

Finished.

B.5 School Children

B.5.1 Agents

Teacher The school teacher.
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1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >

6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints>

10 </pleasure -hints>

11 <pain -hints>

12 </pain -hints>

13 </stimulation -hints>

14

15 <stimuli >

16

17 <stimulus id="0" name="money" primary="true"

utility="0.7" />

18

19 <stimulus id="1" name="homework_1" primary="false"

/>

20 <stimulus id="2" name="homework_2" primary="false"

/>

21 <stimulus id="3" name="homework_3" primary="false"

/>

22

23 <stimulus id="4" name="see_annoying_1" primary="

false" />

24 <stimulus id="5" name="see_annoying_2" primary="

false" />

25 <stimulus id="6" name="see_annoying_3" primary="

false" />

26

27 </stimuli >

28

29 <max -delay value="10" />

30

31 </stimulation -parameters >

32

33 <conditioning -parameters >

34 <c value="0.5"/>

35 </conditioning -parameters >

36

37 <stimulus -implication/>

38

39 </stimulation -subsystem >

40

41 <responding -subsystem >

42
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43 <actions >

44 <action id="0" name="assign_homework" base -level="

0.6" operant="true" reflex="false" />

45

46 <action id="1" name="reward_1" base -level="0.0"

operant="true" reflex="true" />

47 <action id="2" name="reward_2" base -level="0.0"

operant="true" reflex="true" />

48 <action id="3" name="reward_3" base -level="0.0"

operant="true" reflex="true" />

49

50 <action id="4" name="punish_1" base -level="0.0"

operant="true" reflex="true" />

51 <action id="5" name="punish_2" base -level="0.0"

operant="true" reflex="true" />

52 <action id="6" name="punish_3" base -level="0.0"

operant="true" reflex="true" />

53 </actions >

54

55 <action -conflict/>

56

57 <operants >

58

59 <!-- The teacher has learned she will be paid when

she performs her job properly. -->

60

61 <operant >

62 <antecedents >

63 <antecedent contingency="1.0"/>

64 </antecedents >

65 <action id="0"/>

66 <consequence id="0"/>

67 </operant >

68

69 <operant >

70 <antecedents >

71 <antecedent contingency="1.0">

72 <stimulus id="1"/>

73 </antecedent >

74 </antecedents >

75 <action id="1"/>

76 <consequence id="0"/>

77 </operant >

78

79

80 <operant >

81 <antecedents >

82 <antecedent contingency="1.0">

83 <stimulus id="2"/>
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84 </antecedent >

85 </antecedents >

86 <action id="2"/>

87 <consequence id="0"/>

88 </operant >

89

90 <operant >

91 <antecedents >

92 <antecedent contingency="1.0">

93 <stimulus id="3"/>

94 </antecedent >

95 </antecedents >

96 <action id="3"/>

97 <consequence id="0"/>

98 </operant >

99

100

101 <operant >

102 <antecedents >

103 <antecedent contingency="1.0">

104 <stimulus id="4"/>

105 </antecedent >

106 </antecedents >

107 <action id="4"/>

108 <consequence id="0"/>

109 </operant >

110

111

112 <operant >

113 <antecedents >

114 <antecedent contingency="1.0">

115 <stimulus id="5"/>

116 </antecedent >

117 </antecedents >

118 <action id="5"/>

119 <consequence id="0"/>

120 </operant >

121

122

123 <operant >

124 <antecedents >

125 <antecedent contingency="1.0">

126 <stimulus id="6"/>

127 </antecedent >

128 </antecedents >

129 <action id="6"/>

130 <consequence id="0"/>

131 </operant >

132 </operants >
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133

134 <reflexes/>

135 </responding -subsystem >

136

137 <drive -subsystem >

138 <drives >

139

140 <!-- Money is periodically needed -->

141 <drive>

142 <importance value="0.0"/>

143 <max -importance value="1.0"/>

144 <min -importance value=" -1.0"/>

145 <desires >

146 <stimulus id="0" />

147 </desires >

148 </drive >

149

150 </drives >

151 </drive -subsystem >

152

153 <emotion -subsystem >

154 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

155 <depression status="INACTIVE" intensity="0.0" duration

="0" />

156 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

157 </emotion -subsystem >

158

159 </organism >

Student Parameters for the students.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <organism >

4

5 <stimulation -subsystem >

6

7 <stimulation -parameters >

8 <stimulation -hints>

9 <pleasure -hints>

10 </pleasure -hints>

11 <pain -hints>

12 </pain -hints>

13 </stimulation -hints>

14

15 <stimuli >
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16 <stimulus id="0" name="prize" primary="true"

utility="0.5" />

17 <stimulus id="1" name="disapproval" primary="true"

utility=" -0.2" />

18 <stimulus id="2" name="homework" primary="false" /

>

19 <stimulus id="3" name="provocation" primary="true"

utility=" -0.4" />

20 <stimulus id="4" name="information" primary="true"

utility="0.8" />

21 <stimulus id="5" name="tv" primary="true" utility=

"0.6" />

22 <stimulus id="6" name="cry_sound" primary="true"

utility="0.3" />

23 <stimulus id="7" name="neutral" primary="true"

utility="0.0" />

24 </stimuli >

25

26 <max -delay value="10" />

27

28 </stimulation -parameters >

29

30 <conditioning -parameters >

31 <c value="0.5"/>

32 </conditioning -parameters >

33

34 <stimulus -implication/>

35

36 </stimulation -subsystem >

37

38 <responding -subsystem >

39

40 <actions >

41 <action id="0" name="do_homework" base -level="0.0"

operant="true" reflex="false" />

42 <action id="1" name="study" base -level="0.3" operant

="true" reflex="false" />

43 <action id="2" name="annoy" base -level="0.0" operant

="true" reflex="true" />

44 <action id="3" name="watch_tv" base -level="0.1"

operant="true" reflex="false" />

45 <action id="4" name="cry" base -level="0.0" operant="

true" reflex="false" />

46 <action id="5" name="idle" base -level="0.0" operant=

"true" reflex="false" />

47 </actions >

48

49 <action -conflict >

50 <conflict id1="1" id2="3"/>
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51 <conflict id1="0" id2="3"/>

52 <conflict id1="1" id2="2"/>

53 <conflict id1="0" id2="2"/>

54 </action -conflict >

55

56 <operants >

57

58 <!-- To idle is quite boring. -->

59 <operant >

60 <antecedents >

61 <antecedent contingency="1.0"/>

62 </antecedents >

63 <action id="5"/>

64 <consequence id="7"/>

65 </operant >

66

67

68 <!-- Doing the homework is rewarded. -->

69 <operant >

70 <antecedents >

71 <antecedent contingency="1.0">

72 <stimulus id="2"/>

73 </antecedent >

74 </antecedents >

75 <action id="0"/>

76 <consequence id="0"/>

77 </operant >

78

79

80 <!-- Annoying other children makes them cry. -->

81 <operant >

82 <antecedents >

83 <antecedent contingency="1.0"/>

84 </antecedents >

85 <action id="2"/>

86 <consequence id="6"/>

87 </operant >

88

89 </operants >

90

91 <reflexes >

92

93 <!-- A provocation elicits crying. -->

94 <reflex >

95

96 <reflex -parameters >

97 <max -elicitation value="1.0" />

98 <min -elicitation value="0.9" />

99 <max -strength value="1.0" />
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100 <min -strength value="0.5" />

101 <max -duration value="10" />

102 <min -duration value="2" />

103 <max -latency value="10" />

104 <min -latency value="1" />

105 <max -threshold value="0.3" />

106 <min -threshold value="0.1" />

107 </reflex -parameters >

108

109 <antecedent -stimulus id="3" />

110 <action id="4" />

111 <threshold value="0.3" />

112 <elicitation value="1.0" />

113 <strength value="1.0" />

114 <duration value="30" />

115 <latency value="1" />

116 </reflex >

117 </reflexes >

118

119 </responding -subsystem >

120

121 <drive -subsystem >

122 <drives/>

123 </drive -subsystem >

124

125 <emotion -subsystem >

126 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

127 <depression status="INACTIVE" intensity="0.0" duration

="0" />

128 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

129 </emotion -subsystem >

130

131 </organism >

B.5.2 Scenario

1 <?xml version="1.0"?>

2 <scenario name="EMMAS School children example"

3 description="A class of misbehaving children

.">

4

5

6 <agent component -id="organism.OrganismComponent" id="0"

name="Organism 0">

7 <initializer file="teacher.agent.xml"/>

8 </agent>
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9

10 <agent component -id="organism.OrganismComponent" id="1"

name="Organism 1">

11 <initializer file="child.agent.xml"/>

12 </agent>

13

14 <agent component -id="organism.OrganismComponent" id="2"

name="Organism 2">

15 <initializer file="child.agent.xml"/>

16 </agent>

17

18 <agent component -id="organism.OrganismComponent" id="3"

name="Organism 3">

19 <initializer file="child.agent.xml"/>

20 </agent>

21

22

23 <emmas>

24

25

26 <action -transformers >

27

28 <!-- Teacher can punish any student. -->

29 <action -transformer agent -id1="0" action="punish_1"

stimulus="disapproval" agent -id2="1"/>

30 <action -transformer agent -id1="0" action="punish_2"

stimulus="disapproval" agent -id2="2"/>

31 <action -transformer agent -id1="0" action="punish_3"

stimulus="disapproval" agent -id2="3"/>

32

33

34 <!-- Teacher can reward any student (e.g., for doing

their homework). -->

35 <action -transformer agent -id1="0" action="reward_1"

stimulus="prize" agent -id2="1"/>

36 <action -transformer agent -id1="0" action="reward_2"

stimulus="prize" agent -id2="2"/>

37 <action -transformer agent -id1="0" action="reward_3"

stimulus="prize" agent -id2="3"/>

38

39

40 <!-- Teachers can assign homework. -->

41 <action -transformer agent -id1="0" action="

assign_homework" stimulus="homework" agent -id2="1

"/>

42 <action -transformer agent -id1="0" action="

assign_homework" stimulus="homework" agent -id2="2

"/>
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43 <action -transformer agent -id1="0" action="

assign_homework" stimulus="homework" agent -id2="3

"/>

44

45

46 <!-- Students can do and deliver their homework. -->

47 <action -transformer agent -id1="1" action="

do_homework" stimulus="homework_1" agent -id2="0"/

>

48 <action -transformer agent -id1="2" action="

dd_homework" stimulus="homework_2" agent -id2="0"/

>

49 <action -transformer agent -id1="3" action="

do_homework" stimulus="homework_3" agent -id2="0"/

>

50

51

52 <!-- Students can annoy each other , according to who

they have access to. -->

53 <action -transformer agent -id1="1" action="annoy"

stimulus="provocation" agent -id2="2"/>

54 <action -transformer agent -id1="2" action="annoy"

stimulus="provocation" agent -id2="1"/>

55 <action -transformer agent -id1="1" action="annoy"

stimulus="provocation" agent -id2="3"/>

56 <action -transformer agent -id1="3" action="annoy"

stimulus="provocation" agent -id2="1"/>

57 <action -transformer agent -id1="2" action="annoy"

stimulus="provocation" agent -id2="3"/>

58 <action -transformer agent -id1="3" action="annoy"

stimulus="provocation" agent -id2="2"/>

59

60

61 <!-- Teacher can see students annoying each other.

-->

62 <action -transformer agent -id1="1" action="annoy"

stimulus="see_annoying_1" agent -id2="0"/>

63 <action -transformer agent -id1="2" action="annoy"

stimulus="see_annoying_2" agent -id2="0"/>

64 <action -transformer agent -id1="3" action="annoy"

stimulus="see_annoying_3" agent -id2="0"/>

65

66

67 <!-- When an agent cries , everybody listens. -->

68 <action -transformer agent -id1="1" action="cry"

stimulus="cry_sound" agent -id2="0"/>

69 <action -transformer agent -id1="1" action="cry"

stimulus="cry_sound" agent -id2="2"/>
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70 <action -transformer agent -id1="1" action="cry"

stimulus="cry_sound" agent -id2="3"/>

71

72 <action -transformer agent -id1="2" action="cry"

stimulus="cry_sound" agent -id2="0"/>

73 <action -transformer agent -id1="2" action="cry"

stimulus="cry_sound" agent -id2="1"/>

74 <action -transformer agent -id1="2" action="cry"

stimulus="cry_sound" agent -id2="3"/>

75

76 <action -transformer agent -id1="3" action="cry"

stimulus="cry_sound" agent -id2="0"/>

77 <action -transformer agent -id1="3" action="cry"

stimulus="cry_sound" agent -id2="1"/>

78 <action -transformer agent -id1="3" action="cry"

stimulus="cry_sound" agent -id2="2"/>

79

80 </action -transformers >

81

82

83 <behaviors >

84

85 <!-- Students can study. -->

86 <behavior >

87 <environment -response agent -id="1" action="study">

88 <stimulate stimulus="information" agent -id="1" /

>

89 </environment -response >

90 </behavior >

91

92 <behavior >

93 <environment -response agent -id="2" action="study">

94 <stimulate stimulus="information" agent -id="2" /

>

95 </environment -response >

96 </behavior >

97

98

99 <behavior >

100 <environment -response agent -id="3" action="study">

101 <stimulate stimulus="information" agent -id="3" /

>

102 </environment -response >

103 </behavior >

104

105

106 <!-- Distractions are always be available to bother

the students. -->

107 <behavior >
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108 <environment -response agent -id="1" action="

watch_tv">

109 <stimulate stimulus="tv" agent -id="1" />

110 </environment -response >

111 </behavior >

112

113 <behavior >

114 <environment -response agent -id="2" action="

watch_tv">

115 <stimulate stimulus="tv" agent -id="2" />

116 </environment -response >

117 </behavior >

118

119 <behavior >

120 <environment -response agent -id="3" action="

watch_tv">

121 <stimulate stimulus="tv" agent -id="3" />

122 </environment -response >

123 </behavior >

124

125 </behaviors >

126 </emmas>

127

128 </scenario >

B.5.3 Experiment

1 <?xml version="1.0"?>

2

3 <experiment name="School children verification"

4 description="Checks whether children do their

homework." >

5

6 <simulation -purpose -verification relation="feasibility">

7

8 <states >

9 <state id="initial"/>

10 <state id="1"/>

11 </states >

12

13 <events >

14 <emmas -event id="!emit_assign_homework" type="output

" name="emit" action="assign_homework" agent -id="

0"/>

15

16 <emmas -event id="!emit_annoy_ag3" type="output" name

="emit" action="annoy" agent -id="3"/>

17
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18 <emmas -event id="!emit_do_homework_ag1" type="output

" name="emit" action="do_homework" agent -id="1"/>

19 <emmas -event id="!emit_do_homework_ag2" type="output

" name="emit" action="do_homework" agent -id="2"/>

20 <emmas -event id="!emit_do_homework_ag3" type="output

" name="emit" action="do_homework" agent -id="3"/>

21 </events >

22

23

24 <transitions >

25

26 <!-- Anything can happen for some time. -->

27 <transition state -id1="initial" event -id="other"

state -id2="initial"/>

28 <transition state -id1="initial" event -id="!

emit_assign_homework" state -id2="1"/>

29

30 <transition state -id1="1" event -id="other" state -id2

="1"/>

31

32 <!-- We wish that at least some of the children will

eventually do homework. -->

33 <transition state -id1="1" event -id="!

emit_do_homework_ag1" state -id2="success"/>

34 <transition state -id1="1" event -id="!

emit_do_homework_ag2" state -id2="success"/>

35 <transition state -id1="1" event -id="!

emit_do_homework_ag3" state -id2="success"/>

36

37

38 </transitions >

39

40 </simulation -purpose -verification >

41

42 </experiment >

B.5.4 Result

Simulation Purpose Verification strategy

======================================================

Result = SUCCESS

Running time = 6s

Run found:

[depth = 0] State (in SP): initial

[depth = 1] Events synch’d: <(*)other,

?emit[agentId = 2]_[Action type=’annoy’]>;

State annotations synch’d: <[], []> State (in SP): initial

[depth = 2] Events synch’d: <(*)other,

!beginning[agentId = 3]_[Stimulus type=’provocation’]>;
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State annotations synch’d: <[], []> State (in SP): initial

[depth = 3] Events synch’d: <(*)other,

?emit[agentId = 3]_[Action type=’cry’]>;

State annotations synch’d: <[], []> State (in SP): initial

[depth = 4] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): initial

[depth = 5] Events synch’d: <!emit[agentId = 0]_[Action type=’assign_homework’],

?emit[agentId = 0]_[Action type=’assign_homework’]>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 6] Events synch’d: <(*)other,

?emit[agentId = 1]_[Action type=’annoy’]>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 7] Events synch’d: <(*)other,

?emit[agentId = 3]_[Action type=’annoy’]>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 8] Events synch’d: <(*)other,

!beginning[agentId = 1]_[Stimulus type=’homework’]>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 9] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 10] Events synch’d: <!emit[agentId = 1]_[Action type=’do_homework’],

?emit[agentId = 1]_[Action type=’do_homework’]>;

State annotations synch’d: <[], []> State (in SP): success

Result = SUCCESS

Running time = 6s

Finished.

B.6 Online Social Network

B.6.1 Agents

Philosopher Type 1 One type of philosopher, who has already read too
much and is tired of such an activity.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3

4 <organism >

5

6 <stimulation -subsystem >

7

8 <stimulation -parameters >

9 <stimulation -hints>
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10 <pleasure -hints >

11 <stimulus id="0" />

12 </pleasure -hints>

13 <pain -hints>

14 </pain -hints>

15 </stimulation -hints>

16

17 <stimuli >

18 <!-- Philosophers enjoy wine with moderation -->

19 <stimulus id="0" name="wine" primary="true"

utility="0.4" />

20

21 <!-- Philosophers love Philosophy , obviously -->

22 <stimulus id="1" name="s_verbal_philosophy"

primary="true" utility="1.0"/>

23

24 <stimulus id="2" name="s_verbal_sophisms" />

25

26 <!-- Philosophers detest ignorance -->

27 <stimulus id="3" name="s_verbal_ignorance" primary

="true" utility=" -1.0"/>

28

29 <!-- In principle , Philosophers do not fear death

-->

30 <stimulus id="4" name="s_verbal_death" />

31

32 <!-- Philosophers clearly like books -->

33 <stimulus id="5" name="books" primary="true"

utility="0.7"/>

34

35 <stimulus id="6" name="s_verbal_joke" primary="

true" utility="0.6"/>

36

37 <stimulus id="7" name="s_money" primary="true"

utility="0.3"/>

38

39 <stimulus id="8" name="s_ad_1" />

40

41 <!-- Virtual points that can be exchanged for

money -->

42 <stimulus id="9" name="points" />

43 </stimuli >

44

45

46 <!-- Philosophers have a long memory for causal

relations -->

47 <max -delay value="100" />

48

49
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50 </stimulation -parameters >

51

52 <conditioning -parameters >

53 <c value="0.05 "/>

54 </conditioning -parameters >

55

56

57 <stimulus -implication >

58

59 <!-- Philosophers consider sophisms as ignorance

-->

60 <cause id1="2" id2="3" correlation="1.0" />

61

62 <!-- Death often reminds Philosophers of their

Philosophy -->

63 <cause id1="4" id2="1" correlation="0.5" />

64

65 <!-- Advertisements are normally related to books.

-->

66 <cause id1="8" id2="5" correlation="0.5" />

67

68

69 <!-- Virtual points can be redeemed as real money

-->

70 <cause id1="9" id2="7" correlation="1.0" />

71

72 </stimulus -implication >

73 </stimulation -subsystem >

74

75 <responding -subsystem >

76

77 <actions >

78

79 <!-- Contrary to popular belief , true Philosophers

like jokes -->

80 <action id="0" name="a_verbal_joke" base -level="0.01

" operant="true" reflex="true" />

81

82 <!-- Philosophers often talk about Philosophy for no

good reason! -->

83 <action id="1" name="a_verbal_philosophy" base -level

="0.3" operant="true" reflex="true" />

84

85 <!-- Philosophers do not complain on their own very

much -->

86 <action id="2" name="a_verbal_complaint" base -level=

"0.01" operant="true" reflex="true" />

87
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88 <action id="3" name="a_forward_ad_1" base -level="0.0

" operant="true" reflex="true" />

89

90 <action id="4" name="a_buy_ad_1" base -level="0.0"

operant="true" reflex="true" />

91

92 </actions >

93

94 <action -conflict >

95 <conflict id1="0" id2="4"/>

96 </action -conflict >

97

98 <operants >

99

100 <!-- Philosophers amuse themselves with their own

jokes -->

101 <operant >

102 <antecedents >

103 <antecedent contingency="1.0"/>

104 </antecedents >

105 <action id="0"/>

106 <consequence id="6"/>

107 </operant >

108

109 <!-- "To fight ignorance , nature gave us reason ."

-->

110 <operant >

111 <antecedents >

112 <antecedent contingency="0.9">

113 <stimulus id="3"/>

114 </antecedent >

115 </antecedents >

116 <action id="1"/>

117 <consequence id="1"/>

118 </operant >

119

120

121 <!-- Ad 1 forwarding operant -->

122 <operant >

123 <antecedents >

124 <antecedent contingency="1.0">

125 <stimulus id="8"/>

126 </antecedent >

127 </antecedents >

128 <action id="3"/>

129 <consequence id="9"/>

130 </operant >

131
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132 <!-- Ad 1 shopping operant. We are assuming that Ad

1 is about books. -->

133 <operant >

134 <antecedents >

135 <antecedent contingency="1.0">

136 <stimulus id="8"/>

137 </antecedent >

138 </antecedents >

139 <action id="4"/>

140 <consequence id="5"/>

141 </operant >

142

143 </operants >

144

145

146 <reflexes >

147

148 <!-- Wine make Philosophers prone to telling jokes

-->

149 <reflex >

150

151 <reflex -parameters >

152 <max -elicitation value="1.0" />

153 <min -elicitation value="0.9" />

154 <max -strength value="1.0" />

155 <min -strength value="0.5" />

156 <max -duration value="10" />

157 <min -duration value="2" />

158 <max -latency value="10" />

159 <min -latency value="1" />

160 <max -threshold value="0.3" />

161 <min -threshold value="0.1" />

162 </reflex -parameters >

163

164 <antecedent -stimulus id="0" />

165 <action id="0" />

166 <threshold value="0.3" />

167 <elicitation value="1.0" />

168 <strength value="1.0" />

169 <duration value="30" />

170 <latency value="1" />

171 </reflex >

172

173 <!-- Ignorance makes Philosophers complain -->

174 <reflex >

175

176 <reflex -parameters >

177 <max -elicitation value="1.0" />

178 <min -elicitation value="0.9" />
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179 <max -strength value="1.0" />

180 <min -strength value="0.5" />

181 <max -duration value="10" />

182 <min -duration value="2" />

183 <max -latency value="10" />

184 <min -latency value="1" />

185 <max -threshold value="0.3" />

186 <min -threshold value="0.1" />

187 </reflex -parameters >

188

189 <antecedent -stimulus id="3" />

190 <action id="2" />

191 <threshold value="0.3" />

192 <elicitation value="1.0" />

193 <strength value="1.0" />

194 <duration value="10" />

195 <latency value="1" />

196 </reflex >

197

198 </reflexes >

199

200 </responding -subsystem >

201

202

203 <drive -subsystem >

204 <drives >

205

206

207 <!-- Philosophers must drink some wine from time to

time. -->

208 <drive>

209 <importance value="0.0"/>

210 <max -importance value="1.0"/>

211 <min -importance value=" -1.0"/>

212 <desires >

213 <stimulus id="0" />

214 </desires >

215 </drive >

216

217

218 <!-- Philosophers sometimes get tired of reading

books , because they need

219 time to absorb knowledge. -->

220 <drive>

221 <importance value=" -0.5"/>

222 <max -importance value="1.0"/>

223 <min -importance value=" -0.5"/>

224 <desires >

225 <stimulus id="5" />
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226 </desires >

227 </drive >

228

229 </drives >

230 </drive -subsystem >

231

232

233

234 <emotion -subsystem >

235 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

236 <depression status="INACTIVE" intensity="0.0" duration

="0" />

237 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

238 </emotion -subsystem >

239

240 </organism >

Philosopher Type 2 Another type of philosopher, who is not tired of read-
ing.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3

4 <organism >

5

6 <stimulation -subsystem >

7

8 <stimulation -parameters >

9 <stimulation -hints>

10 <pleasure -hints>

11 <stimulus id="0" />

12 </pleasure -hints>

13 <pain -hints>

14 </pain -hints>

15 </stimulation -hints>

16

17 <stimuli >

18 <!-- Philosophers enjoy wine with moderation -->

19 <stimulus id="0" name="wine" primary="true"

utility="0.4" />

20

21 <!-- Philosophers love Philosophy , obviously -->

22 <stimulus id="1" name="s_verbal_philosophy"

primary="true" utility="1.0"/>

23

24 <stimulus id="2" name="s_verbal_sophisms" />
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25

26 <!-- Philosophers detest ignorance -->

27 <stimulus id="3" name="s_verbal_ignorance" primary

="true" utility=" -1.0"/>

28

29 <!-- In principle , Philosophers do not fear death

-->

30 <stimulus id="4" name="s_verbal_death" />

31

32 <!-- Philosophers clearly like books -->

33 <stimulus id="5" name="books" primary="true"

utility="0.7"/>

34

35 <stimulus id="6" name="s_verbal_joke" primary="

true" utility="0.6"/>

36

37 <stimulus id="7" name="s_money" primary="true"

utility="0.3"/>

38

39 <stimulus id="8" name="s_ad_1" />

40

41 <!-- Virtual points that can be exchanged for

money -->

42 <stimulus id="9" name="points" />

43 </stimuli >

44

45

46 <!-- Philosophers have a long memory for causal

relations -->

47 <max -delay value="100" />

48

49

50 </stimulation -parameters >

51

52 <conditioning -parameters >

53 <c value="0.05 "/>

54 </conditioning -parameters >

55

56

57 <stimulus -implication >

58

59 <!-- Philosophers consider sophisms as ignorance

-->

60 <cause id1="2" id2="3" correlation="1.0" />

61

62 <!-- Death often reminds Philosophers of their

Philosophy -->

63 <cause id1="4" id2="1" correlation="0.5" />

64

371



B. Input Files and Tool Output for the Case Studies

65 <!-- Advertisements are normally related to books.

-->

66 <cause id1="8" id2="5" correlation="0.5" />

67

68

69 <!-- Virtual points can be redeemed as real money

-->

70 <cause id1="9" id2="7" correlation="1.0" />

71

72 </stimulus -implication >

73 </stimulation -subsystem >

74

75

76

77 <responding -subsystem >

78

79 <actions >

80

81 <!-- Contrary to popular belief , true Philosophers

like jokes -->

82 <action id="0" name="a_verbal_joke" base -level="0.01

" operant="true" reflex="true" />

83

84 <!-- Philosophers often talk about Philosophy for no

good reason! -->

85 <action id="1" name="a_verbal_philosophy" base -level

="0.3" operant="true" reflex="true" />

86

87 <!-- Philosophers do not complain on their own very

much -->

88 <action id="2" name="a_verbal_complaint" base -level=

"0.01" operant="true" reflex="true" />

89

90 <action id="3" name="a_forward_ad_1" base -level="0.0

" operant="true" reflex="true" />

91

92 <action id="4" name="a_buy_ad_1" base -level="0.0"

operant="true" reflex="true" />

93

94 </actions >

95

96 <action -conflict >

97 <conflict id1="0" id2="4"/>

98 </action -conflict >

99

100 <operants >

101

102 <!-- Philosophers amuse themselves with their own

jokes -->
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103 <operant >

104 <antecedents >

105 <antecedent contingency="1.0"/>

106 </antecedents >

107 <action id="0"/>

108 <consequence id="6"/>

109 </operant >

110

111 <!-- "To fight ignorance , nature gave us reason ."

-->

112 <operant >

113 <antecedents >

114 <antecedent contingency="0.9">

115 <stimulus id="3"/>

116 </antecedent >

117 </antecedents >

118 <action id="1"/>

119 <consequence id="1"/>

120 </operant >

121

122

123 <!-- Ad 1 forwarding operant -->

124 <operant >

125 <antecedents >

126 <antecedent contingency="1.0">

127 <stimulus id="8"/>

128 </antecedent >

129 </antecedents >

130 <action id="3"/>

131 <consequence id="9"/>

132 </operant >

133

134 <!-- Ad 1 shopping operant. We are assuming that Ad

1 is about books. -->

135 <operant >

136 <antecedents >

137 <antecedent contingency="1.0">

138 <stimulus id="8"/>

139 </antecedent >

140 </antecedents >

141 <action id="4"/>

142 <consequence id="5"/>

143 </operant >

144

145 </operants >

146

147

148 <reflexes >

149

373



B. Input Files and Tool Output for the Case Studies

150 <!-- Wine make Philosophers prone to telling jokes

-->

151 <reflex >

152

153 <reflex -parameters >

154 <max -elicitation value="1.0" />

155 <min -elicitation value="0.9" />

156 <max -strength value="1.0" />

157 <min -strength value="0.5" />

158 <max -duration value="10" />

159 <min -duration value="2" />

160 <max -latency value="10" />

161 <min -latency value="1" />

162 <max -threshold value="0.3" />

163 <min -threshold value="0.1" />

164 </reflex -parameters >

165

166 <antecedent -stimulus id="0" />

167 <action id="0" />

168 <threshold value="0.3" />

169 <elicitation value="1.0" />

170 <strength value="1.0" />

171 <duration value="30" />

172 <latency value="1" />

173 </reflex >

174

175 <!-- Ignorance makes Philosophers complain -->

176 <reflex >

177

178 <reflex -parameters >

179 <max -elicitation value="1.0" />

180 <min -elicitation value="0.9" />

181 <max -strength value="1.0" />

182 <min -strength value="0.5" />

183 <max -duration value="10" />

184 <min -duration value="2" />

185 <max -latency value="10" />

186 <min -latency value="1" />

187 <max -threshold value="0.3" />

188 <min -threshold value="0.1" />

189 </reflex -parameters >

190

191 <antecedent -stimulus id="3" />

192 <action id="2" />

193 <threshold value="0.3" />

194 <elicitation value="1.0" />

195 <strength value="1.0" />

196 <duration value="10" />

197 <latency value="1" />
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198 </reflex >

199

200 </reflexes >

201

202 </responding -subsystem >

203

204

205

206

207

208 <drive -subsystem >

209 <drives >

210

211

212 <!-- Philosophers must drink some wine from time to

time. -->

213 <drive>

214 <importance value="0.0"/>

215 <max -importance value="1.0"/>

216 <min -importance value=" -1.0"/>

217 <desires >

218 <stimulus id="0" />

219 </desires >

220 </drive >

221

222

223 <!-- Philosophers sometimes get tired of reading

books , because they need

224 time to absorb knowledge. -->

225 <drive>

226 <importance value="0.0"/>

227 <max -importance value="1.0"/>

228 <min -importance value=" -0.5"/>

229 <desires >

230 <stimulus id="5" />

231 </desires >

232 </drive >

233

234 </drives >

235 </drive -subsystem >

236

237

238

239 <emotion -subsystem >

240 <anger status="INACTIVE" intensity="0.0" duration="0"

/>

241 <depression status="INACTIVE" intensity="0.0" duration

="0" />
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242 <frustration status="INACTIVE" intensity="0.0"

duration="0" />

243 </emotion -subsystem >

244

245 </organism >

B.6.2 Scenario

1 <?xml version="1.0"?>

2 <scenario name="EMMAS Online Social Network Example"

3 description="An online social network.">

4

5

6 <!-- Organisms -->

7 <agent component -id="organism.OrganismComponent" id="0"

name="Philosopher 0">

8 <initializer file="philosopher1.agent.xml"/>

9 </agent>

10

11 <agent component -id="organism.OrganismComponent" id="1"

name="Philosopher 1">

12 <initializer file="philosopher1.agent.xml"/>

13 </agent>

14

15 <agent component -id="organism.OrganismComponent" id="2"

name="Philosopher 2">

16 <initializer file="philosopher1.agent.xml"/>

17 </agent>

18

19 <agent component -id="organism.OrganismComponent" id="3"

name="Philosopher 3">

20 <initializer file="philosopher2.agent.xml"/>

21 </agent>

22

23 <agent component -id="organism.OrganismComponent" id="4"

name="Philosopher 4">

24 <initializer file="philosopher1.agent.xml"/>

25 </agent>

26

27

28 <emmas >

29

30 <action -transformers >

31

32 <!-- Message forwarding -->

33 <action -transformer agent -id1="0" action="

a_forward_ad_1" stimulus="s_ad_1" agent -id2="1"/>
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34 <action -transformer agent -id1="0" action="

a_forward_ad_1" stimulus="s_ad_1" agent -id2="2"/>

35 <action -transformer agent -id1="2" action="

a_forward_ad_1" stimulus="s_ad_1" agent -id2="3"/>

36

37 <!-- Agents listen to their own jokes -->

38 <action -transformer agent -id1="0" action="

a_verbal_joke" stimulus="s_verbal_joke" agent -id2

="0"/>

39 <action -transformer agent -id1="1" action="

a_verbal_joke" stimulus="s_verbal_joke" agent -id2

="1"/>

40 <action -transformer agent -id1="2" action="

a_verbal_joke" stimulus="s_verbal_joke" agent -id2

="2"/>

41 <action -transformer agent -id1="3" action="

a_verbal_joke" stimulus="s_verbal_joke" agent -id2

="3"/>

42

43 <!-- Agent 4 listen to all jokes -->

44 <action -transformer agent -id1="0" action="

a_verbal_joke" stimulus="s_verbal_joke" agent -id2

="4"/>

45 <action -transformer agent -id1="1" action="

a_verbal_joke" stimulus="s_verbal_joke" agent -id2

="4"/>

46 <action -transformer agent -id1="2" action="

a_verbal_joke" stimulus="s_verbal_joke" agent -id2

="4"/>

47 <action -transformer agent -id1="3" action="

a_verbal_joke" stimulus="s_verbal_joke" agent -id2

="4"/>

48

49

50 <!-- Some agents exchange philosophy -->

51 <action -transformer agent -id1="0" action="

a_verbal_philosophy" stimulus="

s_verbal_philosophy" agent -id2="1"/>

52 <action -transformer agent -id1="1" action="

a_verbal_philosophy" stimulus="

s_verbal_philosophy" agent -id2="0"/>

53

54 <action -transformer agent -id1="0" action="

a_verbal_philosophy" stimulus="

s_verbal_philosophy" agent -id2="2"/>

55 <action -transformer agent -id1="2" action="

a_verbal_philosophy" stimulus="

s_verbal_philosophy" agent -id2="0"/>

56
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57 <action -transformer agent -id1="2" action="

a_verbal_philosophy" stimulus="

s_verbal_philosophy" agent -id2="3"/>

58 <action -transformer agent -id1="3" action="

a_verbal_philosophy" stimulus="

s_verbal_philosophy" agent -id2="2"/>

59

60 <!-- Agents get what they buy -->

61 <action -transformer agent -id1="0" action="a_buy_ad_1

" stimulus="books" agent -id2="0"/>

62 <action -transformer agent -id1="1" action="a_buy_ad_1

" stimulus="books" agent -id2="1"/>

63 <action -transformer agent -id1="2" action="a_buy_ad_1

" stimulus="books" agent -id2="2"/>

64 <action -transformer agent -id1="3" action="a_buy_ad_1

" stimulus="books" agent -id2="3"/>

65 <action -transformer agent -id1="4" action="a_buy_ad_1

" stimulus="books" agent -id2="4"/>

66

67 </action -transformers >

68

69

70

71 <behaviors >

72

73

74 <!-- The advertisement engine can choose among

agents -->

75 <behavior >

76 <choice >

77 <begin -stimulation stimulus="s_ad_1" agent -id="0

" />

78 <begin -stimulation stimulus="s_ad_1" agent -id="1

" />

79 <begin -stimulation stimulus="s_ad_1" agent -id="2

" />

80 <begin -stimulation stimulus="s_ad_1" agent -id="3

" />

81 <begin -stimulation stimulus="s_ad_1" agent -id="4

" />

82 </choice >

83 </behavior >

84

85

86 <!--

87 Message forwarding is rewarded with virtual

points.

88 -->

89

378



B.6. Online Social Network

90 <behavior >

91 <environment -response agent -id="0" action="

a_forward_ad_1">

92 <stimulate stimulus="points" agent -id="0" />

93 </environment -response >

94 </behavior >

95

96 <behavior >

97 <environment -response agent -id="1" action="

a_forward_ad_1">

98 <stimulate stimulus="points" agent -id="1" />

99 </environment -response >

100 </behavior >

101

102 <behavior >

103 <environment -response agent -id="2" action="

a_forward_ad_1">

104 <stimulate stimulus="points" agent -id="2" />

105 </environment -response >

106 </behavior >

107

108 <behavior >

109 <environment -response agent -id="3" action="

a_forward_ad_1">

110 <stimulate stimulus="points" agent -id="3" />

111 </environment -response >

112 </behavior >

113

114 <behavior >

115 <environment -response agent -id="4" action="

a_forward_ad_1">

116 <stimulate stimulus="points" agent -id="4" />

117 </environment -response >

118 </behavior >

119

120 </behaviors >

121

122 </emmas>

123

124

125 </scenario >

B.6.3 Experiment

1 <?xml version="1.0"?>

2

3 <experiment name="Simulation Purpose test"

4 description="A simple test for the simulation

purpose verification strategy." >
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5

6 <simulation -purpose -verification relation="feasibility">

7

8 <states >

9 <state id="initial"/> <state id="1"/> <state id="2"

/> <state id="3"/> <state id="4"/> <state id="

5"/>

10 <state id="6"/> <state id="7"/> <state id="8"/> <

state id="9"/> <state id="10"/> <state id="11"/>

11 </states >

12

13

14 <events >

15 <emmas -event id="?beg_ad1_0" type="input" name="

beginning" stimulus="s_ad_1" agent -id="0"/>

16 <emmas -event id="?beg_ad1_1" type="input" name="

beginning" stimulus="s_ad_1" agent -id="1"/>

17 <emmas -event id="?beg_ad1_2" type="input" name="

beginning" stimulus="s_ad_1" agent -id="2"/>

18 <emmas -event id="?beg_ad1_3" type="input" name="

beginning" stimulus="s_ad_1" agent -id="3"/>

19 <emmas -event id="!emit_forward1_0" type="output" name

="emit" action="a_forward_ad_1" agent -id="0"/>

20 <emmas -event id="!emit_forward1_2" type="output" name

="emit" action="a_forward_ad_1" agent -id="2"/>

21 <emmas -event id="!emit_buy1_3" type="output" name="

emit" action="a_buy_ad_1" agent -id="3"/>

22 </events >

23

24

25 <transitions >

26

27 <!-- Advertise to agent 0 -->

28 <transition state -id1="initial" event -id="?beg_ad1_0"

state -id2="1"/>

29 <transition state -id1="1" event -id="other" state -id2=

"1"/>

30

31 <!-- As soon as possible , agent 0 forwards the ad to

its friends -->

32 <transition state -id1="1" event -id="!emit_forward1_0"

state -id2="2"/>

33 <transition state -id1="2" event -id="other" state -id2=

"2"/>

34

35 <!-- We are interested in agent 2 receiving this

forwarded ad -->

36 <transition state -id1="2" event -id="?beg_ad1_2" state

-id2="3"/>
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37 <transition state -id1="2" event -id="other" state -id2=

"2"/>

38

39

40 <!-- Agent 2 should as well forward the ad -->

41 <transition state -id1="3" event -id="!emit_forward1_2"

state -id2="4"/>

42 <transition state -id1="3" event -id="other" state -id2=

"3"/>

43

44 <!-- Agent 3 receives the ad -->

45 <transition state -id1="4" event -id="?beg_ad1_3" state

-id2="5"/>

46 <transition state -id1="4" event -id="other" state -id2=

"4"/>

47

48 <!-- Agent 3 buys the product -->

49 <transition state -id1="5" event -id="!emit_buy1_3"

state -id2="success"/>

50 <transition state -id1="5" event -id="other" state -id2=

"5"/>

51

52 </transitions >

53

54 </simulation -purpose -verification >

55

56 </experiment >

B.6.4 Result

Simulation Purpose Verification strategy

======================================================

Result = SUCCESS

Running time = 30s

Run found:

[depth = 0] State (in SP): initial

[depth = 1] Events synch’d: <?beginning[agentId = 0]_[Stimulus type=’s_ad_1’],

!beginning[agentId = 0]_[Stimulus type=’s_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 2] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 1

[depth = 3] Events synch’d: <!emit[agentId = 0]_[Action type=’a_forward_ad_1’],

?emit[agentId = 0]_[Action type=’a_forward_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 4] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 5] Events synch’d: <(*)other,
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?emit[agentId = 3]_[Action type=’a_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 6] Events synch’d: <(*)other,

!stable[agentId = 0]_[Stimulus type=’s_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 7] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’a_forward_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 2

[depth = 8] Events synch’d: <?beginning[agentId = 2]_[Stimulus type=’s_ad_1’],

!beginning[agentId = 2]_[Stimulus type=’s_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 9] Events synch’d: <(*)other,

!beginning[agentId = 3]_[Stimulus type=’s_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 10] Events synch’d: <(*)other,

?emit[agentId = 2]_[Action type=’a_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 11] Events synch’d: <(*)other,

?emit[agentId = 1]_[Action type=’a_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 12] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’a_verbal_philosophy’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 13] Events synch’d: <(*)other,

?emit[agentId = 3]_[Action type=’a_verbal_philosophy’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 14] Events synch’d: <(*)other,

!beginning[agentId = 1]_[Stimulus type=’s_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 15] Events synch’d: <(*)other,

!beginning[agentId = 1]_[Stimulus type=’s_verbal_philosophy’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 16] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’a_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 17] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 3

[depth = 18] Events synch’d: <!emit[agentId = 2]_[Action type=’a_forward_ad_1’],

?emit[agentId = 2]_[Action type=’a_forward_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 19] Events synch’d: <(*)other,

?emit[agentId = 1]_[Action type=’a_forward_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 20] Events synch’d: <(*)other,

!beginning[agentId = 4]_[Stimulus type=’s_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 21] Events synch’d: <(*)other,

!stable[agentId = 1]_[Stimulus type=’s_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 22] Events synch’d: <(*)other,

?emit[agentId = 3]_[Action type=’a_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 23] Events synch’d: <(*)other,
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!beginning[agentId = 0]_[Stimulus type=’s_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 24] Events synch’d: <(*)other,

?emit[agentId = 1]_[Action type=’a_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 25] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 26] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’a_forward_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 27] Events synch’d: <(*)other,

!beginning[agentId = 1]_[Stimulus type=’points’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 28] Events synch’d: <(*)other,

!stable[agentId = 3]_[Stimulus type=’s_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 29] Events synch’d: <(*)other,

?emit[agentId = 2]_[Action type=’a_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 30] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 31] Events synch’d: <(*)other,

TAU>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 32] Events synch’d: <(*)other,

?emit[agentId = 2]_[Action type=’a_forward_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 4

[depth = 33] Events synch’d: <?beginning[agentId = 3]_[Stimulus type=’s_ad_1’],

!beginning[agentId = 3]_[Stimulus type=’s_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 34] Events synch’d: <(*)other,

!beginning[agentId = 2]_[Stimulus type=’s_verbal_philosophy’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 35] Events synch’d: <(*)other,

!beginning[agentId = 2]_[Stimulus type=’s_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 36] Events synch’d: <(*)other,

!stable[agentId = 1]_[Stimulus type=’points’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 37] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’a_verbal_philosophy’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 38] Events synch’d: <(*)other,

?emit[agentId = 2]_[Action type=’a_verbal_philosophy’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 39] Events synch’d: <(*)other,

?emit[agentId = 0]_[Action type=’a_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 40] Events synch’d: <(*)other,

!stable[agentId = 0]_[Stimulus type=’s_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 41] Events synch’d: <(*)other,
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!beginning[agentId = 1]_[Stimulus type=’s_verbal_joke’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 42] Events synch’d: <(*)other,

!stable[agentId = 1]_[Stimulus type=’s_verbal_philosophy’]>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 43] Events synch’d: <(*)other,

!commit>;

State annotations synch’d: <[], []> State (in SP): 5

[depth = 44] Events synch’d: <!emit[agentId = 3]_[Action type=’a_buy_ad_1’],

?emit[agentId = 3]_[Action type=’a_buy_ad_1’]>;

State annotations synch’d: <[], []> State (in SP): success

Result = SUCCESS

Running time = 30s

Finished.

384



APPENDIX C
Simulator Input Format and

Parameters

FGS is a command-line tool. To execute it, it is necessary to specify certain
input files, as well as to give certain parameters as arguments to the tool.
In Section C.1 we present the relevant input format, and in Section C.2 we
explain the tool’s parameters.

C.1 Input Format

The inputs are all given as XML files. There are three kinds of such files,
namely:

• Instantiation of the Behaviourist Agent Architecture. The implementa-
tion of Behaviourist Agent Architecture takes several parameters
in order to create a concrete agent.

• Scenarios definitions. Declares which agents are present, and define the
EMMAS model to use.

• Experiments definitions. Defines the simulation and verification strategy
to execute, including the simulation purposes to use.

The examples provided in Chapter 9 should be enough to allow one to learn
how to specify these inputs. Nevertheless, for the sake of completeness, in
what follows we document the three types of XML format. We do so by
listing the required XML elements and providing an example. For readability,
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each format is broken in several parts, and each part is explained individually.
A mark of (...) in the examples indicates that a part of the XML has been
suppressed because it is shown in a later example. This documentation is
sufficient to relate the theoretical concepts seen in the thesis to their actual
implementation. Features that go beyond the scope of the thesis (e.g., for
experimental purposes) are not presented.

C.1.1 Behaviourist Agent Architecture

The parametrization of the Behaviourist Agent Architecture is closely
related to its formal Z specification, presented in Chapter 4. Each XML
element corresponds to some Z specification element, which is made more
concrete (i.e., particular to an agent).

<organism> Organisms are composed of four subsystems, which must all
be parametrized.

1 <organism >

2 <stimulation -subsystem > (...) </stimulation -subsystem >

3 <responding -subsystem > (...) </responding -subsystem >

4 <drive -subsystem > (...) </drive -subsystem >

5 <emotion -subsystem > (...) </emotion -subsystem >

6 </organism >

<stimulation-subsystem> The stimulation subsystem definition consists of
the following sub-parts:

• A list <pleasure-hints> of stimuli that signals pleasure in another
agent.

• A list <pain-hints> of stimuli that signals pain in another agent.

• A list <stimuli> containing all the stimuli recognized by the agent.

• A constant <max-delay/> that determines the maximum delay between
one stimulus and another in order to classical conditioning to take place.

• A constant <c/> used by stimulus conditioning.

• A list <stimulus-implication> of relations between stimuli that are
initially in a stimulus implication relation. Each element <cause/> indi-
cates that stimulus identified by id1 implies stimulus identified by id2

with a correlation of correlation.
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1 <stimulation -subsystem >

2 <stimulation -parameters >

3 <stimulation -hints>

4

5 <pleasure -hints >

6 <stimulus id="0"/>

7 <stimulus id="1"/>

8 </pleasure -hints>

9

10 <pain -hints>

11 <stimulus id="2"/>

12 <stimulus id="3"/>

13 </pain -hints>

14

15 </stimulation -hints>

16

17 <stimuli >

18

19 <stimulus id="0" name="some_stimulus" primary="true"

utility="0.5" />

20 <stimulus id="1" name="another_stimulus" />

21 <!-- Other <stimulus/> -->

22

23 </stimuli >

24

25 <max -delay value="10" />

26

27 </stimulation -parameters >

28

29 <conditioning -parameters >

30 <c value="0.5"/>

31 </conditioning -parameters >

32

33 <stimulus -implication >

34 <cause id1="0" id2="1" correlation="1.0" />

35 <cause id1="1" id2="2" correlation="0.5" />

36 </stimulus -implication >

37

38 </stimulation -subsystem >

<responding-subsystem> The responding subsystem parametrization is
composed of the following sub-parts:

• A list <actions> of actions. For each <action>, one must specify: an
identifier unique among actions, its name, its base level probability of
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occurrence, whether it can be used in an operant, and whether it can be
used in a reflex.

• A list <action-conflict> of conflicts between actions. Each element
<conflict> must specify the identifier of two actions.

• A list <operants> of operants initially known by the agents.

• A list <reflexes> of reflexes.

1 <responding -subsystem >

2

3 <actions >

4 <action id="0" name="action_0" base -level="0.0" operant=

"true" reflex="false" />

5 <action id="1" name="action_1" base -level="0.3" operant=

"true" reflex="false" />

6 <action id="2" name="action_2" base -level="0.3" operant=

"true" reflex="false" />

7 </actions >

8

9 <action -conflict >

10 <conflict id1="1" id2="0"/>

11 <conflict id1="2" id2="1"/>

12 </action -conflict >

13

14 <operants > (...) </operants >

15 <reflexes > (...) </reflexes >

16

17 </responding -subsystem >

<operants> Zero or more <operant> must be specified. Each <operant>

must define:

• A list <antecedents> of lists<antecedent> of stimuli. Each such <an-

tecedent>must specify a correlation contingency. Moreover, each such
element may be either empty or contain references to stimuli identified
by id.

• A reference <action> to an action identified by id.

• A reference <consequence> to a stimulus identified by id.

1 <operants >

2

3 <operant >

388



C.1. Input Format

4 <antecedents >

5 <antecedent contingency="1.0"/>

6 </antecedents >

7 <action id="5"/>

8 <consequence id="7"/>

9 </operant >

10

11

12 <operant >

13 <antecedents >

14 <antecedent contingency="1.0">

15 <stimulus id="0"/>

16 <stimulus id="2"/>

17 </antecedent >

18 </antecedents >

19 <action id="0"/>

20 <consequence id="0"/>

21 </operant >

22

23 </operants >

<reflexes> Zero or more <reflex> must be specified. Each <reflex> must
define:

• A list <reflex-parameters> with several parameters.

• A reference <antecedent-stimulus/> to a stimulus identified by id.

• An reference <action/> to an action identified by id.

• An element <threshold/> specifying an initial value for the threshold
parameter.

• An element <elicitation/> specifying an initial value for the elicita-
tion parameter.

• An element <strength/> specifying an initial value for the strength
parameter.

• An element <duration/> specifying an initial value for the duration
parameter.

• An element <latency/> specifying an initial value for the latency pa-
rameter.
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1 <reflexes >

2

3 <reflex >

4 <reflex -parameters >

5 <max -elicitation value="1.0" />

6 <min -elicitation value="0.9" />

7 <max -strength value="1.0" />

8 <min -strength value="0.5" />

9 <max -duration value="10" />

10 <min -duration value="2" />

11 <max -latency value="10" />

12 <min -latency value="1" />

13 <max -threshold value="0.3" />

14 <min -threshold value="0.1" />

15 </reflex -parameters >

16

17 <antecedent -stimulus id="3" />

18 <action id="4" />

19 <threshold value="0.3" />

20 <elicitation value="1.0" />

21 <strength value="1.0" />

22 <duration value="30" />

23 <latency value="1" />

24 </reflex >

25

26 </reflexes >

<drive-subsystem> Zero or more <drive>must be specified. Each <drive>
must define:

• An <importance> specifying an initial value.

• A <max-importance> specifying a maximum value.

• A <min-importance> specifying a minimum value.

• A list <desires> of references to stimuli, each identified by an id.

1 <drive -subsystem >

2 <drives >

3 <drive>

4 <importance value="0.0"/>

5 <max -importance value="0.5"/>

6 <min -importance value=" -1.0"/>

7 <desires >

8 <stimulus id="0" />
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9 </desires >

10 </drive>

11 <!-- Other <drive ></drive > -->

12 </drives >

13 </drive -subsystem >

<emotion-subsystem> Exactly three emotions must be specified: anger,
depression and frustration. Each one has the same kind of attributes:

• A status, which must be either ACTIVE or INACTIVE.

• An intensity magnitude.

• A duration natural number.

1 <emotion -subsystem >

2 <anger status="INACTIVE" intensity="0.0" duration="0" />

3 <depression status="INACTIVE" intensity="0.0" duration="0

" />

4 <frustration status="INACTIVE" intensity="0.0" duration="

0" />

5 </emotion -subsystem >

C.1.2 Scenarios

Scenarios define the elements available to the simulation. This includes agents,
properties to be measured regarding them, as well as the environment itself,
given as an EMMAS specification.

<scenario> A scenario specify the agents that exist, the properties to be
measured (from which propositions about the MAS can be derived), and the
EMMAS specification.

1 <scenario name="Some name" description="More information

about the scenario comes here.">

2

3 <!-- Agents -->

4 (...)

5

6 <!-- Properties -->

7 (...)

8

9 <!-- Environment -->
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10 <emmas> (...) </emmas>

11

12 </scenario >

<agent> Each agent is defined by an <agent> element, which must:

• Define the attribute component-id, which is the full name (including
packages) of the class that implement the agent. In this thesis, we are
using the organism.OrganismComponent class, which is the component
that implements the Behaviourist Agent Architecture.

• Define the attribute id, which must be a unique natural number to
identify the agent.

• Define the attribute name, with a user friendly name for the agent.

• Contain as a child a XML element that shall be used to initialize the
agent component when instantiating it. It is also possible (and prefer-
able) to include a XML file containing this element through the <ini-

tializer> element, which takes a file attribute. This attribute must
contain the name of a XML file that is in the same folder as the scenario
file.

1 <agent component -id="organism.OrganismComponent" id="0"

name="Organism 0">

2 <initializer file="agent1.xml"/>

3 </agent >

4

5 <agent component -id="organism.OrganismComponent" id="1"

name="Organism 1">

6 <initializer file="agent2.xml"/>

7 </agent >

<property> Properties are used to calculate propositions during simulations.
They must be declared to exist to be taken in account. For each property, one
must:

• Define the component-id attribute, which is the full name (including
packages) of the class that implement the property.

• Define the attribute id, which must be a unique natural number to
identify the property.
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• Define the attribute name, with a user friendly name for the property.

• Specify as children either one <environment-target /> element, or a
series of <agent-target/> elements. In the former case, the property
uses the environment itself to be calculated, whereas in the later it uses
the agents to this end. Each reference <agent-target/> must specify
the id of an agent.

• Specify as children zero or more <primitive-parameter /> elements,
with attributes name and value, to configure the property.

1 <property component -id = "organism.StimulusUtilityProperty

" id="0" name="LikesCandy">

2 <primitive -parameter name="TargetStimulus" value="candy"

/>

3 <primitive -parameter name="TargetValue" value="0.1" />

4

5 <agent -target id="0" />

6 </property >

<emmas> An EMMAS specification is composed of a list of action trans-
formers and a list of environment behaviours. Each <behavior>must contain
one child environment operation element.

1 <emmas>

2 <action -transformers > (...) </action -transformers >

3

4 <behaviors >

5 <!-- Zero or more <behavior > -->

6 <behavior > (...) </behavior >

7 <behavior > (...) </behavior >

8 </behaviors >

9 </emmas>

<action-transformers> Defines zero or more <action-transformer>. Each
<action-transformer> must define the following attributes:

• agent-id1: the identifier of the agent that performs the action.

• action: the name of an action. The possible action names are given by
the specification of the agents, and correspond to the names of actions
defined therein.
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• stimulus: the name of a stimulus. The possible stimulus names are
given by the specification of the agents, and correspond to the names of
stimuli defined therein.

• agent-id2, the identifier of the agent that receives the stimulus.

1 <action -transformers >

2 <action -transformer agent -id1="0" action="punish_1"

stimulus="disapproval" agent -id2="1"/>

3 <action -transformer agent -id1="0" action="punish_2"

stimulus="disapproval" agent -id2="2"/>

4 <action -transformer agent -id1="0" action="punish_3"

stimulus="disapproval" agent -id2="3"/>

5 </action -transformers >

Environment Operations All composition and core operations described
in Chapter 5 are implemented and can be used. In the present version of FGS,
quantifiers and complex operations must be manually expanded in order to
be converted in these composition and core operations.

Let stimulus be an attribute that takes as its value the name of a stimulus,
action be an attribute that takes as its value the name of an action, and
agent-id, agent-id1 and agent-id2 be agent identifiers. Then the following
are the core operations that are not composed of other operations:

• <begin-stimulation stimulus="bell" agent-id="0" />: Implements
BeginStimulation(s, ag).

• <end-stimulation stimulus="bell" agent-id="0" />: Implements
EndStimulation(s, ag).

• <stimulate stimulus="bell" agent-id="0" />: Implements
Stimulate(s, ag).

• <create agent-id1="0" action="a" stimulus="s" agent-id2 = "13"

/>: Implements Create(ag1, a, s, ag2).

• <destroy agent-id1="0" action="a" stimulus="s" agent-id2 = "13"

/>: Implements Destroy(n, a, s,m).

• <nop/>: Implements NOP .

Environment responses are given by specifying <environment-response>

elements which must:
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• Define the attribute agent-id that indicates the agent identifier whose
actions should be considered.

• Define the attribute action that indicates the name of the action to be
considered.

• Define one operation as a child element.

1 <environment -response agent -id="1" action="watch_tv">

2 (...)

3 </environment -response >

Composition operations, in turn, are as follows:

• <parallel> (...) </parallel>: Implements parallel composition.
Must contain two or more children operations.

• <choice> (...) </choice>: Implements choice. Must contain two
or more children operations.

• <sequential-composition> (...) </sequential-composition>: Im-
plements sequential composition. Must contain two or more children
operations.

• <sequence times = "2"> (...) </sequence>: Implements sequence.
Must define an attribute times with a natural number, and contain one
child operation.

• <unbounded-sequence> (...) </unbounded-sequence>: Implements
unbounded sequence. Must contain one child operation.

C.1.3 Experiments

An experiment specify how the simulation should be conducted. In this thesis,
we are concerned with the verification of satisfiability relations pertaining to
simulation purposes.

<experiment> The experiment should contain one or more
<simulation-purpose-verification> elements, describing the verification
to be performed and containing a simulation purpose 〈Q ,E ,P ,❀,L, q0〉.
Each such element must:

• Specify a relation attribute containing the name of the satisfiability
relation to use.
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• Contain a child list <states> that defines the set Q of states.

• Contain a child list <events> that defines the set E of events.

• Contain a child list <transitions> that defines the relation ❀ of tran-
sitions.

1 <experiment name="Some name" description="Some more

descriptive text." >

2

3 <simulation -purpose -verification relation="feasibility">

4 <states > (...) </states >

5 <events > (...) </events >

6 <transitions > (...) </transitions >

7 </simulation -purpose -verification >

8

9 </experiment >

<states> Contains one or more <state> elements. Each such element must:

• Define an attribute id with a unique identifier. There is a reserved
identifier, initial, which must be used to designate q0 (i.e., the initial
state).

• Zero or more child <literal> elements. Each such element must define
a type attribute, which is either positive or negative, and a propo-

sition attribute, which contains the name of a proposition.

1 <states >

2 <state id="initial"/>

3 <state id="1"/>

4 <literal type="negative" proposition="P"/>

5 <literal type="positive" proposition="Q"/>

6 </state >

7 <state id="second"/>

8 <state id="3rd"/>

9 </states >

<events> Zero or more <emmas-event/> elements must be specified. Each
one must specify the following attributes:

• id: a unique identifier.

• type: either input or output.
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• name: one of the following: emit, stop, beginning, stable, ending,
absent.

• agent-id: the identifier of the agent concerned with the event.

1 <events >

2 <emmas -event id="!emit_beat_ag0" type="output" name="emit

" action="beat" agent -id="0"/>

3 <emmas -event id="!stop_beat_ag0" type="output" name="stop

" action="beat" agent -id="0"/>

4 <emmas -event id="?begin_candy_ag0" type="input" name="

beginning" stimulus="candy" agent -id="0"/>

5 <emmas -event id="?stable_candy_ag0" type="input" name="

stable" stimulus="candy" agent -id="0"/>

6 <emmas -event id="?ending_candy_ag0" type="input" name="

ending" stimulus="candy" agent -id="0"/>

7 <emmas -event id="?absent_candy_ag0" type="input" name="

absent" stimulus="candy" agent -id="0"/>

8 </events >

<transitions> One or more <transition/> elements must be specified. Each
one must specify the following attributes:

• state-id1: the identifier of a previously defined state.

• event-id: either the identifier of a previously defined event, or a one of
the following pre-defined events: other (i.e., �) or tau (i.e., τ).

• state-id2: the identifier of a previously defined state.

1 <transitions >

2 <transition state -id1="initial" event -id="other" state -

id2="initial"/>

3 <transition state -id1="initial" event -id="!

emit_caress_ag0" state -id2="1"/>

4 <transition state -id1="1" event -id="?begin_candy_ag0"

state -id2="2"/>

5 <transition state -id1="2" event -id="other" state -id2="2"/

>

6

7 <transition state -id1="2" event -id="!emit_caress_ag0"

state -id2="3"/>

8 <transition state -id1="3" event -id="?begin_candy_ag0"

state -id2="4"/>

9 <transition state -id1="4" event -id="other" state -id2="4"/

>

10 </transitions >
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C.2 Parameters

There are mandatory and optional parameters. The mandatory are the fol-
lowing two:

• -s FILE: Specifies that FGS should use the specified FILE as the scenario
definition.

• -e FILE: Specifies that FGS should use the specified FILE as the exper-
iment definition.

The optional parameters are as follows:

• -verbose L: Specifies how much output is produced. In FGS, each
output message has an associated importance. This option defines that
only the messages with importance greater than or equal to L are to
be shown. L is an integer between 0 (least important) and 4 (most
important).

• -max-depth D: Defines the maximum depth D allowed during the depth-
first construction of the synchronous product used in the verification
algorithms. D is a positive integer.

• -dont-randomize: By default, FGS chooses uniformly at random be-
tween non-deterministic alternatives. If present, this option eliminates
this randomization.

• -max-synch-steps S: Defines the maximum amount S of synchroniza-
tions to be tried during the verification algorithms. If this parameter is
not specified, no such limit is imposed.

• -debug: Allows debug output to be shown.

• -version: Displays information about the version of FGS.

• -help: Displays a list of possible parameters.
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APPENDIX D
Z Notation Overview

The Z Notation (ISO/IEC, 2002; Woodcock and Davies, 1996; Jacky, 1996)
is a formal method based on set theory and first-order logic. This means
that a number of operations over sets are assumed to exist, and first-order
logic is used to write invariants. Z is designed for the specification of systems
composed of states and transitions among states, although stateless definitions
are also possible. It provides a calculus that allow the composition of complex
specifications out of simple ones. Moreover, it has a characteristic associated
visual convention that aims at facilitating the reading of specifications.

In this appendix we briefly present the main elements of the Z Notation, paying
special attention to the ones we actually employ in our specification.

D.1 Types, Functions and Predicates

Z provides some primitive elements with which to define variables and invari-
ants. Table D.1 presents some of the most important ones.

D.2 Stateless Definitions

Axiomatic definitions allow us to define global variables with associated in-
variants. For instance, a monotonically increasing function f could be defined
as follows.

f : Z→ Z

∀ x : Z • f (x ) > x
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Types

Z The set of integers.

N The set of natural numbers.

[X ] Defines X as a primitive set.

PX The power set of X .

X × Y The cross product of sets X and Y .

X → Y A function with domain X and range Y .

X 7→ Y A partial function with domain X and
range Y .

Functions

dom f The domain of function f .

ran f The range of function f .

a div b The division of integer a by integer b.

∗, +, − The usual arithmetical operations of mul-
tiplication, sum and subtraction, respec-
tively.

X \Y The set X minus the set Y .

∪, ∩ Set union and intersection, respectively.

X ⊕ Y Assumes X and Y to be binary relations
and results in a binary relation that con-
tains: all pairs of set X whose first ele-
ment is not a first element in any pair in
Y ; plus all pairs of Y (i.e., pairs in Y
override pairs in X ).

θS A tuple of values corresponding to the vari-
ables of schema S .

Predicates

x R y (x , y) is in the relation R.

∀ x1 : Xn , . . . , xn : Xn | F • P For all x1, . . . , xn of types X1, . . . ,Xn such
that F holds, it must be the case that P
holds as well.

∃ x1 : Xn , . . . , xn : Xn | F • P There exists some x1, . . . , xn of types
X1, . . . ,Xn such that F holds, and for
which P holds as well.

<, ≤, =, 6=, ≥, > The usual comparison predicates among
integers.

∈, ⊂, ⊆ The usual set containment predicates.

∧, ∨, ¬ , ⇒, ⇔ The usual logical connectives.

Table D.1: Some important types, functions and predicates of the Z Notation.
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Enumerations are convenient ways of specifying finite domains. For example,
the Error enumeration below defines two possible kinds of error.

Error ::= IllegalInput | OutOfMemory

D.3 State Schemas

In Z, states are specified using schemas. A schema has three main parts:

• A name;

• Variables declarations;

• Invariants over the variables.

For instance, to define a positive number we could specify a schema PositiveNumber
with a variable x , of type Z (i.e., an integer), and an invariant that specifies
that x must be greater than zero, as follows.

PositiveNumber
x : Z

x > 0

A schema, then, is a tuple of variables whose elements must obey certain
restrictions. A schema can also import other schemas. By so doing, the
schema gains all the variables and the invariants of the imported schemas.
For instance, to specify a positive and even number, we could import the
schema we have just defined and add the parity invariant, as follows.

PositiveEvenNumber
PositiveNumber

∃ k : Z • x = 2 ∗ k

This is equivalent to the following schema.

PositiveEvenNumber
x : Z

x > 0

∃ k : Z • x = 2 ∗ k
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We can also employ a schema as a type. For example, to define a triple of
different positive numbers, we could have this schema:

PositiveTriple
a : PositiveNumber

b : PositiveNumber

c : PositiveNumber

a.x 6= b.x

b.x 6= c.x

c.x 6= a.x

Notice how we selected the x variable of each schema in order to state the
invariants.

D.4 Operation Schemas

Schemas can also describe transitions between states, which in Z we call op-
erations. In order to do so, there are some conventions that the schema must
follow. Thus, besides the basic structure that we described for states, an
operation also presents the following characteristics:

• A declaration of which schemas are undergoing a transition;

• Input variables are followed by a question mark (e.g., x?) and output
variables are followed by an exclamation mark (e.g., x !);

• Variables before the transition are denoted by their usual names, while
variables after the transition are denoted by their names followed by a
prime (e.g., x ′).

Consider the following operation, which increases the value of a positive num-
ber.
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PositiveIncrementOp
∆PositiveNumber

increment? : Z

sum! : Z

increment? > 0

x ′ = x + increment?

sum! = x ′

The ∆PositiveNumber declaration states that this is an operation that changes
the value of a PositiveNumber state schema. The increment? variable is an
input. There is an associated invariant that requires this input to be positive.
This is called a pre-condition, because it is something that must be true before
the operation is applied. The effect of the operation, in turn, is given by post-
conditions. In this case, the post-conditions state that the value of x after the
operation will be the previous value plus the increment. Finally, an invariant
states that the output variable sum! will also hold the new value of x .

D.5 Schema Calculus

It is possible to compose complex schemas out of simple ones by using the
schema calculus, which provide a number of logical operators for this. For
example, let us specify what happens when the pre-condition for the operation
PositiveIncrementOp fails.

PositiveIncrementOpError
∆PositiveNumber

increment? : Z

error ! : Error

increment? ≤ 0

x ′ = x

error ! = IllegalInput

This merely states that if the increment specified is less than or equal to zero,
an error is generated and the value of x is not changed. We can then compose
the two operations using the disjunction connective of the schema calculus.

T PositiveIncrementOp =̂ PositiveIncrementOp ∨ PositiveIncrementOpError
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This states that either one operation or the other will take place. Notice that
their preconditions are complementary. This means that every possible case
for the input variable has been considered. Operations that have this property
are called total (thus the “T ” prefix). Whenever possible, it is interesting to
have such total operations.

Other connectives of the schema calculus include the usual logical connectives,
such as conjunction (∧), implication (⇒), and negation (¬ ).

D.6 Refinement

Specifications can be written at various levels of abstraction. The more ab-
stract a specification is, the less restrictions it imposes, and the more choices
an implementer has. Given a specification, it is possible to make a more
concrete one by adding new restrictions to it, but in a way that the original
specification still holds. Such a concrete specification is called a refinement of
the original one. More formally, a predicate C refines a predicate A if, and
only if, C implies A (Jacky, 1996).

When refining stateless definitions or state schemas without changing their
variables, this simple definition suffices. However, in Z two more specialized
kinds of refinements exist, namely, operation and data refinement. The former
is concerned with making schema operations more precise, and the latter aims
at making abstract data types more concrete by transforming variables in
more detailed data structures (e.g., in order to find a suitable programming
construct for implementation). In this thesis, of these two kinds we only
employ operation refinement, thus here we only consider it.

Following Spivey (1992), for an operation Cop to refine an operation Aop two
things are required. First, whenever the pre-conditions of Aop are true, the
pre-conditions of Cop must be true as well. That is to say, Cop must be
applicable at least in the same situations in which Aop is applicable, but it
may also be applicable in other cases. Second, if the pre-conditions of Aop

hold and Cop is applied, then at least the post-conditions specified by Aop

must hold (besides any extra post-conditions defined by Cop). In other words,
whenever both operations are applicable, Cop can have more effects than Aop ,
but not less.

Definition D.1 (Operation Refinement). Let Cop and Aop be schema op-
erations over state State, with inputs x1? : X1, . . . , xm? : Xm and outputs
y1! : Y1, . . . , yn ! : Yn . Then Cop refines Aop if, and only if, the following
conditions hold:

• ∀State; x1? : X1; . . . ; xm? : Xm • pre(Aop)⇒ pre(Cop)
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• ∀State; State ′; x1? : X1; . . . ; xm? : Xm ; y1! : Y1; . . . ; yn ! : Yn •
pre(Aop) ∧ Cop ⇒ Aop

where pre(Op) denotes the pre-conditions of operation schema Op.

In the previous section we saw how the schema calculus can be used to decom-
pose a specification in simpler parts. However, it is important to note that
the schema calculus has a serious limitation: it is not monotonic with respect
to refinement. That is to say, if two schemas (e.g., A and B) are connected
in a schema calculus expression (e.g., A ∧ B), it cannot be guaranteed that
refinements of these schemas (e.g., Aref and Bref ) can be used to refine the
expression (e.g., it may be the case that A ∧ B is not refined by Aref ∧ Bref ).
Therefore, one must be specially careful when refining Z specifications that
employ the schema calculus (Groves, 2002).
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APPENDIX E
π-calculus Overview

This appendix presents a brief account of the π-calculus . Our objective is
not to teach the calculus, but merely to quickly recall the notions that we
employ to accomplish our work. The definitions we present are adapted from
Parrow (2001), which the reader might also find useful as an introduction to
the calculus.

The π-calculus is a process algebra designed to model interaction and mobility
of processes1. To do so, it provides an algebraic language in which to write
such processes, as well as a mathematical framework that interprets them in
terms of Labeled Transition Systems (LTS). Let us then begin by defining
what an LTS is.

Definition E.1 (Labelled Transition System). A labeled transition system is
a tuple 〈S ,L,→〉 such that:

• S is a set of states;

• L is a set of labels;

• →∈ S × L× S is a transition relation.

Moreover, let s1, s2 ∈ S and l ∈ L. Then, if 〈s1, l , s2〉 ∈→, we also denote this

fact by writing s1
l
→ s2. The opposite fact, in turn, is denoted by ¬ (s1

l
→ s2).

1In the literature, π-calculus processes are often called “agents”. We avoid using this
terminology in order to do not confuse it with our own notion of agents.
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Processes are written by using names to create prefixes and by using several
operators to combine such prefixes. These prefixes represent events2.

Definition E.2 (π-calculus Process). Let a, x , y, x1, . . . , xn and y1, . . . , yn
be names. Then a π-calculus process is an expression defined by the following
syntax.

Prefixes
α ::= a〈x 〉 Output

a(x ) Input
τ Internal

Processes
P ::= 0 Nil

α.P Prefix
P + P Choice
P | P Parallel composition
(νx )P Restriction
[x = y ]P Match
[x 6= y ]P Mismatch
!P Parallel replication
A(y1, . . . , yn) Identifier

Definitions
A(x1, . . . , xn) = P Process definition (i 6= j ⇒ xi 6= xj )

Given a a process P , we denote the set of its bound names by bn(P), and of
its free names by fn(P). Moreover, we denote by Pπ the set of all processes.

Names often need to change over the course of a process execution. This is
achieved using substitution functions.

Definition E.3 (Substitution Function). Let x1, . . . , xn and y1, . . . , yn be names,
and P be a process. Then a substitution function

{x1, . . . , xn/y1, . . . , yn}

maps process P into P ′, such that in P ′:

• For all yi ∈ fn(P), xi will substitute yi in P ′;

• Alpha-conversion is performed in order to prevent that xi ∈ bn(P ′).

Moreover, we denote the application of the substitution function on P as:

P{x1, . . . , xn/y1, . . . , yn}

2In the literature, such events are often called “actions”. Again, we avoid using this
terminology in order to prevent confusion with our own notion of actions.

408



It is often the case that processes which are syntactically different should have
the same behavior. To model this, the calculus provides a structural congru-
ence relation, which defines equivalences that can be determined by syntax
alone. This is useful, in particular, to fully define the replication operator.

Definition E.4 (π-calculus Structural Congruence). Let P, Q and R be ar-
bitrary π-calculus processes. Then the structural congruence relation ≡ is the
smallest relation that satisfies the following axioms.

• If P and Q are variants by alpha-conversion, then P ≡ Q

• P | Q ≡ Q | P, (P | Q) | R ≡ P | (Q | R), P | 0 ≡ P

• P +Q ≡ Q + P, (P +Q) + R ≡ P + (Q + R), P + 0 ≡ P

• !P ≡ P |!P

• Scope extension laws:

– (νx )0 ≡ 0

– (ν x )(P | Q) ≡ P | (ν x )Q if x /∈ fn(P)

– (ν x )(P +Q) ≡ P + (ν x )Q if x /∈ fn(P)

– (ν x )(ν y)P ≡ (ν y)(ν x )P

– (ν x )[u = v ]P ≡ [u = v ](ν x )P if x 6= u and x 6= v

– (ν x )[u 6= v ]P ≡ [u 6= v ](ν x )P if x 6= u and x 6= v

The behaviour of processes is given by an operational semantics. That is to say,
a number of rules that define how algebraic expressions should be translated
to LTSs.

Definition E.5 (π-calculus Operational Semantics). Let P, P ′, Q and Q ′

be processes, α be a prefix, and a, x and u be names. Then the operational
semantics of the π-calculus is given by the following rules.

P ′ ≡ P P
α
→ Q Q ′ ≡ Q

P ′ α
→ Q ′

STRUCT
α.P

α
→ P

PREFIX

P
α
→ P ′

P +Q
α
→ P ′

SUM
P

α
→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q
α
→ P ′ | Q

PAR

P
a(x)
→ P ′ Q

a〈u〉
→ Q ′

P | Q
τ
→ P ′{u/x} | Q ′

COM
P

α
→ P ′ x /∈ α

(νx )P
α
→ (νx )P ′

RES

P
a(x)
→ P ′ a 6= x

(νx )P
aνx
→ P ′

OPEN P
α
→ P ′

[x = x ]P
α
→ P ′

MATCH

P
α
→ P ′ x 6= y

[x 6= y ]P
α
→ P ′

MISMATCH
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E. π-calculus Overview

Notice that on all of these definitions, prefixes can have only one parameter. It
is possible, however, to have prefixes with multiple parameters (the so called
polyadic π-calculus) and define them in terms of these simple ones. It is this
polyadic notation that we use in this thesis.
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APPENDIX F
Extended Abstracts

This appendix contains longer versions of the thesis’ abstracts in English, in
Portuguese and in French.

F.1 Extended Abstract

Multi-Agent Systems (MASs) can be used to model phenomena that can be
decomposed into several interacting agents, which exist within an environ-
ment. In particular, they can be used to model human and animal societies,
for the purpose of analysing their properties by computational means. This
thesis addresses the problem of automated analysis of a particular kind of such
social models, namely, those based on behaviourist principles, which contrasts
with the more dominant cognitive approaches found in the MAS literature.
The hallmark of behaviourist theories is the emphasis on the definition of
behaviour in terms of the interaction between agents and their environment.
In this manner, not merely reflexive actions, but also learning, drives, and
emotions can be defined. The thesis proposes a verification technique that
investigates such MASs by means of guided simulations. This is achieved by
modelling the evolutions of an MAS as a transition system (implicitly), and the
property to be verified as another transition system (explicitly). The former
is derived (on-the-fly) from a formal specification of the MAS’s environment.
The latter, which we call a simulation purpose , is used both to verify the simulation pur-

poseproperty and to guide the simulation. In this way, only the states that are
relevant for the property in question are actually simulated. Algorithmically,
this corresponds to building a synchronous product of these two transitions
systems on-the-fly and using it to operate a simulator. Figure F.1 shows the
most important elements of the proposed approach. In what follows we sum-
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F. Extended Abstracts

Figure F.1: Verification and simulation elements interaction. Notice, in particular,
the important role that the environment has in relating verification and simulation.
It acts as a coordinator which, on the one hand, formally defines what can be done,
while on the other hand requests actual simulator operations.

marize the several parts of this work, taking special care to show how one goes
from informal ideas to formalizations, and then to the actual implementation.

Agents

To describe an MAS, one needs specific notions of agents and environments.
With respect to agents, much work has been done in trying to understand
and model so-called intelligent and cognitive agents. These approaches focus
largely on what constitute rational decisions, specially in the case of agents
with limited computing capabilities (e.g., all of us). The Beliefs-Desires-
Intentions (BDI) architecture (Bratman, 1987; Cohen and Levesque, 1990;
Rao and Georgeff, 1995) is a well-known example.

Behaviour of organisms, however, is sometimes better described in different
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F.1. Extended Abstract

terms. A dog does not reason that it will die if it does not eat1; rather, it
has a drive to seek food when hungry. If it has learned that whenever his
master whistles he provides food, the dog will salivate at the sound of the
whistle – without thinking. These observations suggest that a different focus
in agent modelling is possible. In this thesis we consider such a model, based
on the psychology theory known as Behaviour Analysis (Skinner, 1953). In
this theory, the actions of agents are seen as the result of past stimulation and
certain innate parameters according to behavioural laws. The focus is not in
mental qualities such as the nature of reason, but merely in the prediction
and control of behaviour by means of environmental stimulation. This point
of view, though classical within psychology, is scarce in MAS literature. As
a contribution in this sense, this thesis introduces the Behaviourist Agent
Architecture . Behaviourist

Agent Architec-
tureThis architecture defines the main parts of agents so that they comply with

such behaviourist principles. Its structure follows core principles of Behaviour
Analysis, which we organize in five classes: (i) stimulus conditioning; (ii)
respondent behaviour (i.e., reflexes); (iii) operant behaviour; (iv) drives; and
(v) emotions. These elements work in a coherent manner in order to allow
adaptive and learning behaviour.

The Z Notation is used to formalize the architecture. This provision ensures
that it is defined in a precise and compositional form. The benefits of precision
are evident. But compositionality should also be valued, for it allows each part
of the specification to be examined and modified separately, and thus allows
further progresses to be made upon it. Indeed, thanks to the possibility of
refining Z specifications, one may add new refinements to the architecture in
order to specialize it.

The architecture is implemented in Java. In order to instantiate an agent, it
suffices to create a new Organism object and initialize it with a special kind of
XML file, in which several agent parameters must be defined (e.g., the stimuli
it recognizes, the actions it can perform, the reflexes).

In a complete formal development approach, this Java program should be
proved correct with respect to the Z specification (e.g., by means of formal
refinements). This was not done in this thesis, where the main formal effort
has been devoted to formally guided simulations and the related verification
algorithms, which are carefully shown to be correct. However, the Java im-
plementation of the agent architecture follows very closely the structure of its
Z specification, and thus it is likely to be correct.

1Assuming, of course, that dogs cannot foresee their own deaths in the same way that
we humans can.
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F. Extended Abstracts

Environments

In comparison with agents, environments of MASs have received compara-
tively very little attention, as the survey of Weyns et al. (2005) points out.
The environment model of Ferber and Müller (1996) is one exception. In this
thesis we propose the Environment Model for Multi-Agent Systems
(EMMAS), which is designed to work with the Behaviourist Agent Ar-Environment

Model for Multi-
Agent Systems
(EMMAS)

chitecture . Since the psychology theory from which we draw from puts great

Behaviourist
Agent Architec-
ture

emphasis in the relation between agents and their environment, this is a quite
important aspect of the MASs being considered.

In EMMAS, agents are represented by agent profiles. Such a profile assigns

agent profiles an identifier to an agent and defines the stimuli it recognizes as well as the
actions it can emit. This provides the necessary information to define an
EMMAS environment. Nonetheless, in order to execute the resulting MAS
(e.g., to simulate it), it is necessary to have an underlying implementation for
these agents profiles, such as the one we considered above.

The aim of the MASs used in this thesis is to model social systems that exist
in the real world, where agents have a physical position in space. One way
to address this, often used in MASs simulations, is to provide a simplification
of the physical space, such as a two dimensional grid in which each cell is
a possible position. However, in EMMAS we adopt a different abstraction.
Instead of representing the physical position of agents, we represent their
relationships. That is to say, the MAS is viewed as a social network. In this
manner, we are able to focus on the social relations among agents, which may
be quite independent of the physical conditions to which they are subject to.
For example, the fact that agent ag1 can reward agent ag2 by praising him
holds independently of whether they are in the same room or communicating
through the Internet.

Given the behaviourist point of view that we adopt, these relationships are
modelled by defining how the actions of an agent are transformed in stimuli
for other agents by means of action transformers. An agent is related toaction transform-

ers another if it can stimulate the other in this manner. This intermediary ele-
ment between the action of an agent and the stimulation received by another
is justified by the fact that an action can have several different concurrent con-
sequences. Indeed, the same action by an agent can be perceived as different
stimuli by different agents.

EMMAS allows the dynamic creation and destruction of these action trans-
formers. The importance of this is twofold. First, it allows the specification
of phenomena in which the relation among agents change as they age. Sec-
ond, it allows specification of several possible network structures for the same
environment (i.e., the description of a class of social networks, and not one
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particular social network).

Although the relationships between agents can change, agents themselves can-
not be created nor destroyed in EMMAS. A reason for this is that, to be
created, an agent following the Behaviourist Agent Architecture must
be parametrized a priori in a detailed manner before becoming part of the
MAS. But since in EMMAS agents are represented as agent profiles, this
parametrization can not be done within EMMAS specifications themselves.
It is nevertheless possible to emulate creation and destruction of agents in
EMMAS. To do so, it suffices to define a pool of agents, initially not related
to any other, and then manipulate how their actions affect the environment
(and thus other agents). An agent whose actions are entirely ignored and
which receives no stimuli is effectively irrelevant in the MAS, and therefore
can be considered as non-existing.

An environment defines the context in which the agents exist, which is more
than merely setting initial conditions. It includes behaviours pertaining to
the environment itself, which may be executed either in response to an agent’s
actions or independently of any such action. From the simulation and verifi-
cation point of view adopted in this thesis, this environmental context can be
seen as an experimental setup, which defines all the possible experiments that
can be performed in the agents. One may provide environment operations
in EMMAS in order to define such an experimental setup.

Given an MAS meant for simulation and verification, a crucial point concerns
how it evolves. That is to say, how it changes from one state to another until
the end of the procedure being applied (e.g., a simulation). Since in this thesis
we explicitly separate the formalizations of agents and environments, we are
led to give different accounts for the evolutions of each:

• Agents states. The Behaviourist Agent Architecture defines how
any agent state is transformed in a new agent state by the provision
of environmental stimulation. This definition is specified using the Z
Notation.

• Environment states. EMMAS specifications have a semantics in terms
of the π-calculus process algebra Milner (1999); Parrow (2001). Hence,
each state of the environment corresponds to a π-calculus expression
P , together with contextual information (a triple called environment
status) that constrain the possible successors to the state: environment sta-

tus

(P , 〈Stimulation,Response,Literals〉)

The environment states have contextual information (functions Stimulation,
Response, and set Literals) that relate them to the agents states, thereby
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incorporating all the observable information relevant to the MAS. That is to
say, environment states are global states in so far as the observable evolutions
of the MAS are concerned. It suffices then to provide a semantics for EMMAS
in order to have the semantics of the MAS itself.

EMMAS Semantics

The semantics of EMMAS, as said above, is given in terms of the π-calculus
process algebra. Process algebras are typically employed to describe concur-
rent systems. They are good at succinctly describing behaviours relevant to
inter-process communication. The particular choice of π-calculus as a theo-
retical foundation is motivated by some of its features, which together make it
a distinguished formalism among existing such algebras. First, it takes com-
munication through channels as a primitive notion, which makes it a natural
choice for representing networks. Second, it allows for dynamic modification,
which makes the creation and destruction of connections between agents pos-
sible. Third, it provides a convenient representation for broadcast behaviour
through its replication operator. Finally, it has few operators and a simple
operational semantics. Owing to this operational semantics, we can give an
annotated transition system (ATS) that denotes all the possible evolu-annotated transi-

tion system (ATS) tions of the MAS.

The semantics of EMMAS is actually given in two stages, by considering:
(i) a syntactical translation of EMMAS into π-calculus expressions through
a translation function [ ]π; (ii) a mathematical foundation which relates
π-calculus events to the stimuli and actions of agents in a transition system.
The π-calculus translation of (i), through its operational semantics, provides
an over-approximation of the desired behaviour, which is then made precise
using the restrictions provided by (ii). By this method, we are able to define
an environment ATS (possibly infinite) that establishes the possible statesenvironment ATS

and transitions for any particular environment specification.

The semantics thus achieved is general and is not tied to any particular ap-
plication, not even simulation. For the purposes of the verification technique,
however, it will be necessary to carry out stage (ii) in a slightly more specific
manner, so that the result can be used in a simulator. In short, the difference
is that we introduce a new event in the environment ATS, called commit,
which makes the computation of runs more efficient and explicit during sim-
ulations (an example is given below).

To implement EMMAS, we have developed a π-calculus library in Java,
which allows the construction of the required π-calculus processes and the
application of its operational semantic rules. This library follows the defini-
tion of π-calculus closely, which allows a direct mapping between π-calculus
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elements and their implementation.

Each sequence of states and events (called a run) in an environment ATS
corresponds to one possible global evolution of the MAS. By considering dif-
ferent runs, one investigate different possibilities of global evolutions of the
MAS, and therefore one may look systematically for certain properties of in-
terest. This is the basis on which relies the verification technique developed
in this thesis.

As an example of such a run, consider the following one:

s1
!beginning0u→ s2

!beginning0v→ s3
!commit
→ s4

?emit0a→ s5

where s1, s2, s3, s4 and s5 are states of the environment ATS, and !beginning0u ,
!beginning0v and ?emit0a denote events relative to an agent identified by 0, stim-
uli u and v and an action a (i.e., stimulation and action events concerning an
agent). During a simulation, this run is interpreted as follows: first, schedule
events !beginning0u and !beginning0v , but do not pass them yet to agent 0. Then,
since a !commit is found, all scheduled events are taken into account. In the
case of the two events we have scheduled, it means that the agent implemen-
tation will be notified that it is now receiving stimuli u and v . Then the event
?emit0a happens, and this means that in state s4 the agent implementation has
notified the simulator that agent identified by 0 is actually emitting action a.

Simulation Purposes and Satisfiability Relations

One models an MAS in order to study its properties. In this thesis, we pro-
pose a way to do so by formulating hypotheses about the MAS and checking
whether they hold or not (e.g., “every time the agent does X, will it do Y
later?”). If a hypothesis does not hold, it means that either the hypothesis is
false or the MAS has not been correctly specified. The judgement to be made
depends of our objectives in each particular circumstance. Are we trying to
discover some law about the MAS? In this case, if a hypothesis that represents
this law turns out to be false, it is the hypothesis that is incorrect, not the
MAS. Are we trying to engineer an MAS that obey some law? In this case
we have the opposite, a falsified hypothesis indicates a problem in the MAS.
This view is akin to that found in empirical sciences, in which scientists inves-
tigate hypotheses and make judgements in a similar manner. In this respect,
the main difference is that the empirical scientist studies the natural world
directly, while we are concerned with models of nature in the form of MASs.

In this thesis, such a hypothesis is defined by specifying a simulation pur-
pose and a satisfiability relation. If the MAS satisfies the specified simu-
lation purpose with respect to the desired satisfiability relation, then the
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Figure F.2: Only the shaded runs in the ATS M and the simulation purpose
SP can synchronize. States are annotated with propositions and transitions with
events. There are rules that determine how events and states synchronize. The
state labelled with S is Success, and the one labelled with F is Failure. The dots
(. . .) denote thatM continues beyond the states shown (it is possibly infinite).

hypothesis is corroborated. Otherwise, it is falsified. The idea of using such
a simulation purpose is inspired by the TGV (Jard and Jéron, 2005) ap-
proach to model-based testing, in which formal test purposes are used to select
relevant test cases. Here, a formal simulation purpose is used to select rele-
vant simulations executions, though of course the criteria of relevance, among
other technicalities, are quite different.

Formally, a simulation purpose is an ATS subject to further restrictions.
In particular, it is finite and defines two special states, Success and Failure.
All runs that lead to Success denote desirable simulations, whereas all that
lead to Failure denote undesirable ones.

The satisfiability relations, in turn, require the introduction of another techni-
cal definition, namely, the notion of synchronous product . Given an ATSsynchronous prod-

uct M that models an MAS, and a simulation purpose SP, their synchronous
product (denoted by SP⊗M) is another ATS in which every run represents
a possible evolution of M which has been allowed by the SP. Each state in
SP ⊗M takes the form of (q , s), where s is a state ofM, and q is a state of
SP. Figure F.2 shows an example of SP,M and runs that synchronize to
form SP ⊗M.

These runs may terminate in a state (q , s) where q = Success or q = Failure,
meaning that the run in question is desirable or undesirable, respectively.
Different satisfiability relations are defined, namely:

• Feasibility : SP is feasible with respect to M if there is at least oneFeasibility
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run in SP⊗M which terminates in a state (q , s) such that q = Success.
There are weak and strong variants of this.

• Refutability : SP is refutable with respect toM if there is at least one Refutability

run in SP⊗M which terminates in a state (q , s) such that q = Failure.
There are weak and strong variants of this.

• Certainty : SP is certain with respect to M if all runs in SP ⊗M Certainty

terminate in a state (q , s) such that q = Success.

• Impossibility : SP is impossible with respect to M if all runs in Impossibility

SP ⊗M terminate in a state (q , s) such that q = Failure.

Verification Algorithms

These satisfiability relations define conditions that one may require of the
MAS, but they do not specify the computation to be used. Granted, they
are rather operational definitions, but the details of how to perform the syn-
chronous product are abstracted away. It is therefore also necessary to have
algorithms to check whether they hold or not. Moreover, despite the fact that
there are several satisfiability relations, their verification is carried out in a
similar manner. All the algorithms have the following main characteristics:

• They perform a depth-first search on the synchronous product of SP
andM.

• The search has a maximum depth, depthmax .

• SP⊗M is computed on-the-fly (i.e., it is not computed a priori ; rather,
at each state, the algorithm calculates the next states necessary to con-
tinue), because M itself is obtained on-the-fly from the π-calculus ex-
pressions present in each of its states.

• A simulator interface is assumed to exist. This is used to control the
simulation execution, including the possibility of storing simulator states
and backtracking to them later.

What the search is looking for is what changes from one algorithm to an-
other. In the case of feasibility, the objective is to find one run that leads
to Success, thus showing an example of how to perform a successful simula-
tion. In certainty, it is to find one run that leads to Failure, and therefore
provides a counter-example (if no such run is found, it means that certainty
holds with respect to the available observations). The other satisfiability re-
lations are checked analogously to these. Furthermore, if the verification of a
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satisfiability relation requires a search depth greater than depthmax , then the
result of the algorithm is inconclusive, instead of Success or Failure.

The complexities of the algorithms must be given considering the fact that
they perform a depth-first search on a possibly infinite transition system that
is built on-the-fly (i.e., SP ⊗ M) and only up to a maximum depth (i.e.,
depthmax ). This means that the complexities must be given mainly in terms
of depthmax and the maximum branching factor (i.e., the maximum number
of possible successors of any state), instead of the number of states and tran-
sitions in the complete transition system, as it would be the case if all of
these states and transitions were to be explored. Moreover, since states in
M are actually computed from an EMMAS environment specification, the
complexities of these computations must be taken in account as well. These
characteristics lead to many parameters to be accounted for in the statement
of the complexities. The complete development is given in the thesis. In a few
words, the complexity in space is polynomial with respect to the size of the en-
vironment and other parameters, and the complexity in time is exponential
with respect to depthmax .

What is important in this technique is that, once given a simulation pur-
pose, it chooses which simulations to execute automatically and in a system-
atic manner, instead of depending on a user to guide and inspect the simulation
manually, thereby exploring the possible simulations more efficiently, even if
inconclusively. Moreover, the algorithms are carefully justified to be correct
according to precise notions of soundness and completeness.

Simulator

These algorithms have been implemented in a tool called Formally Guided
Simulator (FGS), which works as follows. It keeps a repository of compo-
nents, among which is the Java implementation of the Behavioural Agent
Architecture. To request the verification of an MAS, three kinds of XML
files must be provided to FGS:

• One or more parameterizations to the agents present. These parameteri-
zations are used to instantiate the implementation of the Behaviourist
Agent Architecture.

• One scenario description, in which the agents are declared to exist, and
the EMMAS specification is provided.

• One experiment description, in which a simulation purpose and the
satisfiability relation to be checked are specified.
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Once FGS is invoked, it first uses the scenario description to instantiate the
Behavioural Agent Architecture, so that the relevant agents become avail-
able to the simulator. It then transforms the EMMAS specification provided
in the scenario description in a π-calculus expression. This expression is imple-
mented directly by instantiating classes from the π-calculus simulation library
according to the implementation of the translation function. This corre-
sponds to the initial state of the MAS to be simulated.

FGS then reads the experiment description in order to obtain the simula-
tion purpose and the satisfiability relation to be checked. The simulation
purpose is implemented trivially, since its structure is very simple. The sat-
isfiability relation, in turn, determines which verification algorithm should be
used.

After all this has been done, FGS merely executes the requested verification
algorithm. To calculate the next states in theATS implementation, it uses the
π-calculus operational semantics rules which are implemented in the π-calculus
library. The state of the agents are changed and inspected by manipulating
the objects that instantiate them. This information is used to annotate states,
and apply the relevant constraints.

There is a special event, commit, which signals that agents should receive
stimulation and provide behavioural responses. This is implemented by FGS
as follows. Events are stored as they are found in a run of the ATS, but are
not delivered to the agents. When a commit event is found, then the stored
events are delivered to the relevant agents, and they may also change whether
they are emitting or not emitting their actions.

If the appropriate options have been set, FGS will output information about
every synchronization made in the synchronous product, which allows the
visualization of the simulations. When the algorithm terminates, the verdict
is shown, and a run is displayed as well if relevant (e.g., the feasible run
that led to Success).

Conclusion

This thesis proposes a way to model a class of MASs, as well as a related
framework for their simulation and verification. This framework is based on
formal descriptions of agents and their environments, and formal definitions of
simulation purposes. These elements are used to perform simulations in a
systematic and guided manner in order to determine whether certain precisely
defined satisfiability relations hold or not. It is thus a significant step forward
in bridging the gap between simulation and verification techniques. It must be
said that some transformations (mainly related to programming the simulator)
are not completely verified. Nonetheless, the thesis brings a novel and wide
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framework for some automated and formally-based analyses of MASs.

F.2 Resumo Estendido

Sistemas Multi-Agentes (SMAs) podem ser usados para modelar fenômenos
que podem ser decompostos em vários agentes que interagem dentro de um
ambiente. Em particular, eles podem ser usados para modelar sociedades hu-
manas e animais, com a finalidade de analisar as suas propriedades através
de meios computacionais. Esta tese aborda o problema de análise automati-
zada de um tipo particular de tais modelos sociais, a saber, aqueles baseados
em prinćıpios comportamentalistas, os quais contrastam com as abordagens
cognitivas dominantes na literatura sobre SMAs. A principal caracteŕıstica
das teorias comportamentalistas é a ênfase na definição do comportamento
em termos da interação entre os agentes e seu ambiente. Desta forma, não
apenas ações reflexivas, mas também aprendizagem, motivações, e emoções
podem ser definidas. A tese propõe uma técnica de verificação que investiga
tais SMAs por meio de simulações guiadas. Isso é feito através da modelagem
das evoluções de um SMA como um sistema de transição (implicitamente),
e da propriedade a ser verificada como um outro sistema de transição (ex-
plicitamente). O primeiro é derivado (em tempo de execução, on-the-fly) de
uma especificação formal do ambiente do SMA. O segundo, que chamamos
de propósito de simulação, é utilizado tanto para verificar a propriedadepropósito de simu-

lação quanto para guiar a simulação. Dessa forma, somente os estados que são rele-
vantes para a propriedade em questão são simulados. Algoritmicamente, isto
corresponde a construir um produto śıncrono desses dois sistemas de tran-
sição em tempo de execução e usá-lo para operar um simulador. A Figura
F.3 mostra os elementos mais importantes da abordagem proposta. A seguir
resumimos as várias partes deste trabalho, tomando cuidados especiais para
mostrar como se vai de idéias informais para formalizações, e depois para a
implementação real.

Agentes

Para descrever um SMA, é preciso ter noções espećıficas tanto de agentes
quanto de ambientes. Com relação aos agentes, muito trabalho tem sido feito
na tentativa de entender e modelar os chamados agents inteligents e cognitivos.
Essas abordagens focam em grande parte na natureza das decisões racionais,
especialmente no caso de agentes com capacidades computacionais limitadas
(por exemplo, todos nós). A arquitetura BDI (Beliefs-Desires-Intentions)
(Bratman, 1987; Cohen and Levesque, 1990; Rao and Georgeff, 1995) é um
exemplo bem conhecido.
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Figure F.3: Interação entre os elementos de verificação e simulação. Note, em par-
ticular, a importante posição ocupada pelo ambiente ao relacionar a verificação à
simulação. Ele atua como um coordenador que, por um lado define formalmente o
que pode ser feito, e por outro requisita operações concretas ao simulador.

O comportamento dos organismos, no entanto, às vezes é melhor descrito em
termos diferentes. Um cão não raciocina que ele irá morrer se não comer2;
ele meramente tem uma motivação para procurar comida quanto sente-se com
fome. Se o cão aprendeu que sempre que seu dono assobia ele fornece alimento,
o cão irá salivar na presença desse som – sem pensar. Estas observações sug-
erem que um foco diferente na modelagem de agentes é posśıvel. Nesta tese
consideramos tal modelo, baseado numa teoria de psicologia conhecida como
Análise do Comportamento (Skinner, 1953). Nessa teoria, as ações dos agentes
são vistas como o resultado da estimulação passada e de certos parâmetros
inatos de acordo com leis comportamentais. O foco não é em qualidades men-
tais, tal como a natureza da razão, mas simplesmente a previsão e o controle
de comportamentos por meio da estimulação ambiental. Esse ponto de vista,
embora clássico dentro da psicologia, é escasso na literatura de SMAs. Como

2Assumindo, é claro, que os cães não podem prever suas próprias mortes da mesma
forma que nós humanos podemos.
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uma contribuição neste sentido, esta tese introduz a Arquitetura de Agente
Comportamentalista (Behaviourist Agent Architecture).Arquitetura de

Agente Compor-
tamentalista Essa arquitetura define os principais componentes de um agente para que ele

se enquadre nos principios comportamentalistas visados. Sua estrutura segue
prinćıpios centrais da Análise do Comportamento, que nós organizamos em
cinco classes: (i) condicionamento de estimulos; (ii) reflexos; (iii) comporta-
mento operante; (iv) motivações; e (v) emoções. Esses elementos trabalham
de modo coerente, a fim de permitir comportamentos adaptativos e aprendiza-
gem.

A Notação Z é usado para formalizar a arquitetura. Isso garante que uma espe-
fificação precisa e composicional. Os benef́ıcios de precisão são evidentes. Mas
a composicionalidade também deve ser valorizada, pois permite que cada parte
da especificação possa ser examinada e modificada separadamente. Portanto,
permite que progressos sejam feitos com base no que é fornecido incialmente.
De fato, graças à possibilidade de refinar as especificações Z, pode-se adicionar
novos refinamentos para a arquitetura, a fim de especializá-la.

A arquitetura é implementada em Java. Para instanciar um agente, basta
para criar um novo objeto Organism e inicializá-lo com um tipo especial do
arquivo XML, em que os diversos parâmetros do agente devem ser definidos
(por exemplo, os est́ımulos que ele reconhece, as ações que pode realizar, os
reflexos).

Em uma abordagem de desenvolvimento completament formal, este programa
Java deveria ser provado correto com relação à especificação Z (por exemplo,
por meio de refinamentos formais). Isso não foi feito nesta tese, na qual o
principal esforço formal foi dedicado às simulações formalmente guiadas simu-
lações e aos algoritmos de verificação correspondentes, que são cuidadosamente
justificados. No entanto, a implementação Java da arquitetura segue de muito
perto a estrutura da sua especificação Z, e assim é provável que esteja correta.

Ambientes

Em comparação com agentes, ambientes de SMAs têm recebido pouca atenção,
como o estudo de Weyns et al. (2005) ressalta. O modelo de ambiente de
Ferber and Müller (1996) é uma exceção. Nesta tese propomos o Modelo de
Ambiente para Sistemas Multi-Agentes (Environment Model for Multi-Modelo de Am-

biente para
Sistemas Multi-
Agentes

Agent Systems – EMMAS ), que é projetado para trabalhar com a Arquite-
tura de Agente Comportamentalista . Dado que a teoria piscológica da

Arquitetura de
Agente Compor-
tamentalista

qual nos valemos coloca grande importância na relação entre agentes e seus
ambientes, um tal modelo expĺıcito de ambiente é um aspecto importante a
ser considerado.
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No EMMAS, os agentes são representados por perfis de agente (agent perfis de agente

profiles). Um tal perfil atribui um identificador ao agente e define os est́ımulos
que ele reconhece, assim como as ações que ele pode emitir. Isto fornece as
informações necessárias para definir um ambiente EMMAS. No entanto, a
fim de executar o SMA resultante (e.g., para simulá-lo), é necessário ter uma
implementação subjacente para esses perfis de agente, como por exemplo a
que consideramos acima.

O objetivo dos SMAs utilizados nesta tese é modelar sistemas sociais que ex-
istem no mundo real, onde os agentes têm uma posição f́ısica no espaço. Uma
maneira de resolver isso, freqüentemente utilizado em simulações de SMAs, é
fornecer uma simplificação do espaço f́ısico, tal como uma grade bidimensional
em que cada célula é uma posição posśıvel. No entanto, no EMMAS adota-
mos uma abstração diferentes. Ao invés de de representarmos a posição f́ısica
dos agentes, representamos apenas seus relacionamentos. Isto é, o SMA é visto
como uma rede social. Dessa forma, somos capazes de nos concentrar sobre as
relações sociais entre os agentes, que podem ser consideravelmente indepen-
dentes das condições f́ısicas às quais estão sujeitos. Por exemplo, o fato de que
o agente ag1 pode recompensar outro agente ag2 elogiando-o pode ocorrer de
várias maneiras: na mesma sala ou comunicando-se através da Internet, por
exemplo.

Dado o ponto de vista comportamentalista que adotamos, essas relações são
modeladas através da definição de como as ações de um agente são transfor-
mados em est́ımulos para outros agentes, por meio de transformadores de
ação (action transformers). Um agente está relacionado a outro se ele pode transformadores

de açãoestimulá-lo dessa maneira. Esse elemento intermediário entre a ação de um
agente e o est́ımulo recebido por outro é justificada pelo fato de que uma ação
pode ter diversas conseqüências simultâneas. De fato, a mesma ação de um
agente pode ser percebida como diferentes est́ımulos por diferentes agentes.

EMMAS permite tanto a criação quanto a destruição dinâmica desses trans-
formadores de ação. A importância disso é dupla. Em primeiro lugar, isso
permite a especificação de fenômenos em que a relação entre os agentes muda à
medida em que envelhecem. Em segundo lugar, esse recurso permite a especi-
ficação de várias estruturas de rede posśıveis para o mesmo ambiente (ou seja,
a descrição de uma classe de redes sociais, e não uma rede social particular).

Embora as relações entre os agentes possam mudar, os agentes em si não
podem ser criados nem destrúıdos num ambiente EMMAS. A razão é que,
para ser criado, um agente definido de acordo com aArquitetura de Agente
Comportamentalista deve ser parametrizado a priori de forma detalhada
antes de se tornar parte do SMA. Dado que numa especificação EMMAS
os agentes são representados como perfis de agente, essa parametrização
não pode ser feita dentro da especificação do ambiente. No entanto, é posśıvel
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imitar a criação e a destruição de agentes no EMMAS. Para isso, basta definir
um conjunto de agentes, inicialmente não relacionadas a quaisquer outros,
e então manipular como suas ações afetam o ambiente (e, portanto, outros
agentes). Um agente cujas ações são inteiramente ignoradas e que não recebe
est́ımulos é efetivamente irrelevante no SMA e, portanto, pode ser considerada
como não-existentes.

Um ambiente define o contexto no qual os agentes existem, que é mais do que
simplesmente a definição das condições iniciais. Ele inclui comportamentos
pertencentes ao próprio ambiente, que podem ser executadas seja em resposta
a ações de um agente, seja de forma independente de qualquer ação. Do
ponto de vista da simulação e da verificação adotado nesta tese, esse contexto
ambiental pode ser visto como um configuração de experimento, que define
todas as experiências posśıveis que podem ser realizadas com os agentes. É
posśıvel especificar operações de ambiente em uma especificação EMMAS
a fim de definir uma tal configuração experimental.

Dado um SMA para simular e verificar, o modo como ele evolui é um ponto
crucial. Isto é, como ele muda de um estado para os próximos até o final
do procedimento a ser aplicado (e.g., uma simulação). Uma vez que nesta
tese separamos explicitamente as formalizações de agentes e ambientes, somos
levados a descrever as evoluções de cada um de modo diferente:

• Estados dos agentes. A Arquitetura de Agente Comportamental-
ista define como qualquer estado do agente é transformado em um novo
estado levando-se em conta a estimulação recebida do ambiente. Tais
definições são especificadas usando a Notação Z.

• Estados do ambiente. Especificações EMMAS têm uma semântica em
termos da álgebra processos π-calculus (Milner, 1999; Parrow, 2001).
Assim, cada estado do ambiente corresponde a uma expressão P do π-
calculus, juntamente com a informação contextual, numa tripla chamada
de status do ambiente (environment status), que limita os sucessoresstatus do ambi-

ente posśıveis para o estado:

(P , 〈Stimulation,Response,Literals〉)

Os estados do ambiente possuem informação contextual (funções Stimulation,
Response, e conjunto Literals) que os relaciona aos estados dos agentes, inte-
grando assim todas as informações observáveis relevantes para o SMA. Isto é,
os estados do ambiente são estados globais no que diz respeito às evoluções ob-
serváveis do SMA. Basta, portanto, fornecer uma semântica para o EMMAS
a fim de obter-se uma semântica para o próprio SMA.
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Semântica do EMMAS

A semântica do EMMAS, como afirmado acima, é dada em termos da álgebra
de processos π-calculus. Álgebras de processos são normalmente empregadas
na descrição de sistemas concorrentes. Elas são boas em descrever sucinta-
mente os comportamentos relevantes para comunicações inter-processos. A
escolha particular do π-calculus como fundamento teórico é motivada por al-
gumas de suas caracteŕısticas, que juntas tornam-o um formalismo particu-
larmente útil entre tais álgebras. Primeiro, ele define comunicação por canais
como uma noção básica, o que o torna uma escolha natural para a represen-
tação de redes. Segundo, ele permite a modificações dinâmicas, o que torna a
criação e destruição de conexões entre agentes posśıvel. Terceiro, ele fornece
uma representação conveniente para o comportamento de difusão através de
seu operador de replicação. Finalmente, ele tem poucos operadores e uma
semântica operacional simples. Devido a essa semântica operacional, pode-se
definir um Sistema de Transição Anotado (Annotated Transition System Sistema de Tran-

sição Anotado– ATS ) que denota todas as evoluções posśıveis do SMA.

A semântica do EMMAS é dada em duas etapas: (i) uma tradução sintática
de especificações EMMAS em expressões π-calculus usando uma função
de tradução [ ]π; (ii) uma fundação matemática que relaciona eventos do função de

traduçãoπ-calculus a est́ımulos e ações dos agentes em um sistema de transição. A
tradução para o π-calculus de (i), através de sua semântica operacional, fornece
uma sobre-aproximação do comportamento desejado, que é então tornada pre-
cisa pelas restrições estipuladas em (ii). Dessa forma, somos capazes de definir
umATS de ambiente (environment ATS ), possivelmente infinito, que estab- ATS de ambiente

elece os posśıveis estados e transições para qualquer especificação de ambiente.

A semântica assim alcançada é geral e não está vinculada a nenhuma aplicação
em particular, nem mesmo à simulação. Para os fins da técnica de verificação,
no entanto, será necessário realizar o estágio (ii) de uma forma um pouco
mais espećıfica, para que o resultado possa ser usado em um simulador. Em
poucas palavras, a diferença é que nós introduzimos um novo evento no ATS
de ambiente, chamado commit, que torna a computação das execuções mais
eficiente e expĺıcita durante as simulações (um exemplo é dado abaixo).

Para implementar o EMMAS, desenvolvemos um biblioteca em Java para o
π-calculus, a qual permite a construção dos processos π-calculus necessários e
a aplicação das regras de sua semântica operacional. Essa biblioteca segue de
perto a definição formal do π-calculus, o que permite um mapeamento direto
entre os elementos do π-calculus e suas implementações.

Cada seqüência de estados e eventos, chamada de execução (run), em um
ATS de ambiente corresponde a uma posśıvel evolução global do SMA. Con-
siderando diferentes execuções, temos as diferentes possibilidades de evolução
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global do SMA, e, portanto, podemos buscar sistematicamente as propriedades
de interesse. Essa é a base sobre a qual a técnica de verificação desenvolvida
nesta tese repousa.

Tomemos como exemplo a seguinte execução:

s1
!beginning0u→ s2

!beginning0v→ s3
!commit
→ s4

?emit0a→ s5

onde s1, s2, s3, s4 e s5 são os estados do ATS de ambiente, e !beginning0u ,
!beginning0v e ?emit0a denotam eventos relativos a um agente identificado por
0, est́ımulos u e v e uma ação a (i.e., eventos de estimulação e ação com
relação a um agente) Durante uma simulação, essa execução é interpretado
da seguinte forma: primeiro, escalonar os eventos !beginning0u e !beginning0v ,
mas não passá-los ainda ao agente 0. Então, como um !commit é encontrado,
todos os eventos escalonados são processados. No caso dos dois eventos que
escalonamos, isso significa que a implementação do agente será notificada que
ela está recebendo os est́ımulos u e v . Em seguida, o evento ?emit0a acontece, e
isso significa que no estado s4 a implementação do agente notificou o simulador
de que o agente identificado por 0 está emitindo a ação a.

Propósitos de Simulação e Relações de Satisfazibilidade

SMAs são modelados de modo a poder-se estudar as suas propriedades. Nesta
tese, propomos uma maneira de fazer isso através da formulação de e da
verificação de hipóteses sobre o SMA (e.g., “sempre que o agente fizer X, ele
fará Y depois?”). Se uma hipótese não não é confirmada, isso significa ou
que a hipótese é falsa ou que o SMA não foi especificado corretamente. O
julgamento a ser feito depende do objetivos em cada circunstância particular.
Estamos tentando descobrir alguma lei sobre o SMA? Nesse caso, se uma
hipótese que representa tal lei é falsa, é a hipótese que está incorreta, não
o SMA. Estamos tentando projetar um SMA obedeça a alguma lei? Nesse
caso, temos o oposto, uma hipótese falseada indica um problema no SMA.
Esse ponto de vista é semelhante ao encontrada nas ciências emṕıricas, em
que os cientistas investigam hipóteses e estabelecem julgamentos de forma
semelhante. A principal diferença é que o cientista emṕırico estuda o mundo
natural diretamente, enquanto que nós estamos preocupados com modelos da
natureza na forma de SMAs.

Nesta tese, tais hipóteses são definidas especificando-se um propósito de sim-
ulação e uma relação de satisfazibilidade. Se o SMA satisfaz o propósito
de simulação especificado no que diz respeito à relação satisfazibilidade de-
sejada, então a hipótese é corroborada. Caso contrário, é falseada. A idéia
de usar um tal propósito de simulação é inspirada na abordagem TGV
(Jard and Jéron, 2005) de testes baseados em modelos (model-based testing),
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Figure F.4: Somente as execuções enfatizadas no ATS M e no propósito de
simulação SP podem sincronizar. Estados são anotados com proposições e tran-
sições com eventos. Existem regras que determinam como os eventos e estados sin-
cronizam. O estado rotulado com S é o Success, e o marcado com um F é o Failure.
Os pontos (. . .) denotam queM continua além dos estados mostrados (e é possivel-
mente infinito).

na qual propósitos de teste formais são usados para selecionar casos de teste
relevantes. Aqui, um propósito de simulação formal é utilizado para sele-
cionar as simulações relevantes, embora evidentemente os critérios de relevân-
cia, entre outros aspectos técnicos, sejam bastante diferentes.

Formalmente, uma propósito de simulação é um ATS sujeito a novas re-
strições. Em particular, ele é finito e define dois estados especiais, Success
(sucesso) e Failure (fracasso). Todas as execuções que levam a Success de-
notam simulações desejáveis, enquanto que todas que levam a Failure denotam
simulações indesejáveis.

As relações satisfazibilidade, por sua vez, requerem a introdução de uma outra
definição técnica, a saber, a noção de produto śıncrono. Dado um ATSM produto śıncrono

que modela um SMA, e um propósito de simulação SP, o produto śın-
crono deles (denotado por SP⊗M) é um outro ATS em que cada execução
representa uma evolução posśıvel deM autorizada por SP. Cada estado em
SP ⊗M assume a forma (q , s), onde s é um estado de M e q é um estado
de SP. A Figura F.4 mostra um exemplo de SP, M e das execuções que
sincronizam para formar SP ⊗M.

Essas execuções podem terminar em um estado (q , s) onde q = Succes ou q =
Failure, o que significa que a execução em questão é desejável ou indesejável,
respectivamente. Definimos diferentes relações satisfazibilidade, a saber:

• Factibilidade (Feasibility): SP é fact́ıvel com relação aM se houver Factibilidade
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pelo menos uma execução em SP⊗M que termina em um estado (q , s)
tal que q = Success. Há variantes fraca e forte disso.

• Refutabilidade (Refutability): SP é refutável com relação a M seRefutabilidade

houver pelo menos uma execução em SP ⊗ M que termina em um
estado (q , s) tal que q = Failure. Há variantes fraca e forte disso.

• Certeza (Certainty): SP é certo com relação a M se todas as exe-Certeza

cuções em SP ⊗M terminarem em estados (q , s) tais que q = Success.

• Impossibilidade (Impossibility): SP é imposśıvel com relação a MImpossibilidade

se todas as execuções em SP ⊗M terminarem em estados (q , s) tais
que q = Failure.

Algoritmos de Verificação

Essas relações de satisfazibilidade definem as condições que podemos exigir do
SMA, mas elas não especificam a computação a ser utilizada. Embora sejam
definições bastante operacionais, os detalhes de como construir o produto
śıncrono não são dados. Portanto, é também necessário ter algoritmos para
verificar se elas são ou não válidas. Ademais, apesar do fato de que existem
várias relações de satisfazibilidade, a verificação de todas elas é realizada de
forma semelhante. Todos os algoritmos possuem as seguintes caracteŕısticas
principais:

• Eles executam uma busca em profundidade no produto śıncrono de
SP eM.

• A busca tem uma profundidade máxima, depthmax .

• SP ⊗M é computado em tempo de execução (i.e., on-the-fly – ele não
é computado a priori ; em cada estado, o algoritmo calcula os estados
sucessores necessários para continuar), pois o próprio M é obtido em
tempo de execução das expressões do π-calculus presentes em cada um
de seus estados.

• Supõe-se que o simulador fornece uma interface. Ela é usada para con-
trolar a execução da simulação, inclusive a possibilidade de se armazenar
estados do simulador para retornar a eles mais tarde.

O que muda de um algoritmo para o outro é a execução buscada. No
caso da factibilidade, o objetivo é encontrar uma execução leve a Success,
mostrando assim um exemplo de como realizar uma simulação bem sucedida.
Por outro lado, na relação de certeza, o objetivo é encontrar uma execução
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que leve a Failure e, portanto, forneça um contra-exemplo (se não houver tal
execução, isso significa que a relação de certeza é verdadeira com relação
às observações dispońıveis). As demais relações de satisfazibilidade são ver-
ificadas de forma análoga. Além disso, se a verificação de uma relação de
satisfazibilidade exige uma profundidade de busca superior a depthmax , então
o resultado do algoritmo é inconclusivo.

A complexidade dos algoritmos deve ser dada considerando-se o fato de que
eles executam uma busca em profundidade em um sistema de transição pos-
sivelmente infinito que é constrúıdo em tempo de execução (i.e., SP ⊗M)
e apenas até uma profundidade máxima (i.e., depthmax ). Isso significa que
a complexidade deve ser dada principalmente em termos de depthmax e o fa-
tor de ramificação máxima (i.e., o número máximo de posśıveis sucessores de
qualquer estado), em vez do número de estados e transições no sistema de
transição completo, como seria o caso se todos esses estados e transições fos-
sem ser explorados. Ademais, como os estados deM são computados a partir
de uma especificação de ambiente EMMAS, a complexidade de tais com-
putações deve ser levada em conta também. Essas caracteŕısticas implicam
na inclusão de diversos parâmetros nos cálculos das complexidades. O desen-
volvimento completo desses cálculos é dado na tese. Em poucas palavras, a
complexidade no espaço é polinomial com relação ao tamanho do ambiente
e outros parâmetros, e a complexidade no tempo é exponencial com relação a
depthmax .

O importante nessa técnica é que, uma vez dado um propósito de simu-
lação, ela escolhe automatica e sistematicamente quais simulações executar,
em vez de depender de um usuário para guiar e inspecionar a simulação man-
ualmente. Isso torna a exploração das simulações posśıveis mais eficiente,
mesmo que por vezes inconclusiva. Ademais, mostramos cuidadosamente que
os algoritmos são corretos com relação a noções precisas.

Simulador

Esses algoritmos foram implementados em uma ferramenta chamada Simu-
lador Formalmente Guiado (Formally Guided Simulator – FGS), que funciona
da seguinte forma. Ele mantém um repositório de componentes, entre os quais
a implementação em Java da Arquitetura de Agente Comportamental-
ista. Para solicitar a verificação de um SMA, três tipos de arquivos XML
devem ser fornecidos ao FGS:

• Uma ou mais parametrizações para os agentes presentes. Essas parametriza-
ções são utilizadas para instanciar a implementação da Arquitetura de
Agente Comportamentalista.
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• Uma descrição de cenário, na qual a existência dos agentes é declarada,
e uma especificação EMMAS é fornecida.

• Uma descrição de experimento, na qual um propósito de simulação
e a relação de satisfazibilidade são especificados.

Uma vez que o FGS tenha sido invocado, ele primeiro usa a descrição do
cenário para instanciar a Arquitetura de Agente Comportamentalista,
de modo que os agentes relevantes tornem-se dispońıveis para o simulador.
Em seguida, ele transforma a especificação EMMAS fornecida na descrição
do cenário em uma expressão do π-calculus. Essa expressão é implementada
diretamente por classes instanciadas da biblioteca de simulação do π-calculus
de acordo com a implementação da função de tradução. Isto corresponde
ao estado inicial do SMA a ser simulado.

O FGS, em seguida, lê a descrição de experimento, a fim de obter o propósito
de simulação e a relação de satisfazibilidade a ser verificada. O propósito
de simulação é implementado trivialmente, pois sua estrutura é muito sim-
ples. A relação de satisfazibilidade, por sua vez, determina qual algoritmo de
verificação deve ser usado.

Depois de que tudo isso foi feito, o FGS apenas executa o algoritmo de veri-
ficação solicitado. Para computar os estados sucessores na implementação do
ATS, ele utiliza as regras da semântica operacional do π-calculus dispońıveis
na biblioteca de simulação do π-calculus. O estado dos agentes são alterados
e inspecionados através da manipulação dos objetos que os instanciam. Essa
informação é usada para anotar os estados, e aplicar as restrições relevantes.

Há um evento especial, commit, que sinaliza que os agentes devem receber
estimulação e fornecer respostas comportamentais. Isso é implementado pelo
FGS da seguinte maneira. Eventos são armazenados conforme eles são en-
contrados em uma execução do ATS, mas não são entregues aos agentes.
Quando um evento commit é encontrado, então os eventos armazenados são
entregues aos agentes apropriados, os quais, por sua vez, também podem mu-
dar as ações que estão emitindo.

Se certas opções foram definidas, o FGS irá imprimir informações sobre cada
sincronização feita durante a construção do produto śıncrono, o que per-
mite a visualização das simulações. Quando o algoritmo termina, o veredito é
mostrado e uma execução apropriada é apresentada (e.g., a execução fac-
t́ıvel que levou a Success).
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Conclusão

Esta tese propõe uma maneira de se modelar uma classe de SMAs, bem como
um arcabouço relacionado para a sua simulação e verificação. Esse arcabouço
baseia-se em descrições formais de agentes e seus ambientes, e definições for-
mais de propósitos de simulação. Esses elementos são utilizados para se
realizar simulações de forma sistemática e guiada, a fim de determinar se cer-
tas relações de satisfazibilidade precisamente definidas são ou não verdadeiras.
Trata-se, portanto, de um passo significativo para aproximar técnicas de sim-
ulação e de verificação formal. É preciso dizer que algumas transformações
(principalmente relacionadas à programação do simulador) não são completa-
mente verificadas. Apesar disso, a tese traz um arcabouço novo e amplo para
analizar SMAs de modo automatizado e formalmente guiado.

F.3 Résumé Étendu

Les Systèmes Multi-Agents (SMAs) peuvent être utilisés pour modéliser les
phénomènes décomposables en plusieurs agents en interaction, qui co-existent
au sein d’un environnement. En particulier, ils permettent de modéliser les
sociétés humaines et animales et d’analyser leurs propriétés par des moyens
informatiques. Cette thèse aborde le problème de l’analyse automatisée d’un
type particulier de tels modèles sociaux, à savoir ceux fondés sur les principes
comportementalistes (behaviourist), qui contrastent avec les approches cogni-
tives plus dominante dans la littérature SMA. La caractéristique des théories
comportementalistes est l’accent mis sur la définition du comportement en
termes d’interaction entre les agents et leur environnement. De cette manière,
non seulement des actions réflexives, mais aussi l’apprentissage, les motiva-
tions et les émotions peuvent être définies. La thèse propose une technique
de vérification qui examine de tels SMAs en utilisant des simulations guidées.
Ceci est réalisé en modélisant les évolutions d’un SMA comme un système
de transition (implicitement), et la propriété qui doit être vérifiée comme un
autre système de transition (explicitement). Le premier est dérivé (à la volée)
à partir d’une spécification formelle de l’environnement du SMA. Le deux-
ième, que nous appelons un objectif de simulation (simulation purpose), objectif de simu-

lationest utilisé à la fois pour vérifier la propriété et pour guider la simulation. De
cette façon, seuls les états qui sont pertinents pour la propriété en question
sont en réalité simulés. Algorithmiquement, cela correspond à la construction
à la volée d’un produit synchrone de ces deux systèmes de transitions et à
son utilisation pour faire fonctionner un simulateur. La Figure F.5 montre
les éléments les plus importants de l’approche proposée. Dans ce qui suit,
nous résumons les différentes parties de ce travail, en prenant soin de montrer
comment on passe des idées informelles à la formalisation, et puis à la mise
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Figure F.5: Interaction entre les éléments de vérification et de simulation.
L’environnement a un rôle important pour mettre la vérification en rapport avec
la simulation. Il fonctionne comme un coordinateur qui, d’une part, définit formelle-
ment ce qu’on peut faire, tandis que d’autre part il active les opérations de simulation
réelles.

en oeuvre effective.

Agents

Pour décrire un SMA, nous avons besoin des notions spécifiques d’agents et
d’environnements. En ce qui concerne les agents, beaucoup de travail a été
fait dans le domaine des agents dits intelligents et cognitifs. Ces approches
se concentrent largement sur ce qui constitue les décisions rationnelles, spé-
cialement dans le cas des agents avec des capacités de calcul limitées (par
exemple, les êtres humains). L’architecture BDI (Beliefs-Desires-Intentions)
(Bratman, 1987; Cohen and Levesque, 1990; Rao and Georgeff, 1995) est un
exemple bien connu.

Cependant, le comportement des organismes est parfois mieux décrit de façon
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différente. Un chien ne fait pas le raisonnement qu’il va mourir s’il ne mange
pas3; en revanche, il dispose d’une motivation à chercher de la nourriture
quand il a faim. S’il a appris que chaque fois que son mâıtre siffle il lui
fournit de la nourriture, le chien va saliver au son du sifflement – sans raison-
ner. Ces observations suggèrent qu’une orientation différente en matière de
modélisation d’agent est possible. Dans cette thèse, nous considérons un tel
modèle, basé sur la théorie psychologique connue comme l’Analyse Comporte-
mentale (Behaviour Analysis) (Skinner, 1953). Dans cette théorie, les actions
des agents sont vues comme le résultat d’une stimulation passée et certains
paramètres innés, en fonction des lois comportementales. L’accent n’est pas
dans les qualités mentales telles que la nature de la raison, mais seulement
dans la prédiction et le contrôle des comportements à partir de la stimulation
environnementale. Ce point de vue, bien que classique au sein de la psycholo-
gie, est rare dans la littérature SMA. En guise de contribution en ce sens, cette
thèse présente l’Architecture d’Agent Comportementaliste (Behaviourist Architecture

d’Agent Com-
portementaliste

Agent Architecture).

Cette architecture définit les aspects essentiels des agents afin qu’ils soient con-
formes aux principes comportementalistes. Sa structure suit les principes fon-
damentaux de l’analyse comportementale, que nous organisons en cinq classes:
(i) conditionnement de stimulus; (ii) les réflexes; (iii) le comportement opérant;
(iv) les motivations; et (v) les émotions. Ces éléments travaillent de manière
cohérente afin de permettre l’adaptation et l’apprentissage des comportements.

La notation Z est utilisé pour formaliser l’architecture. Cela assure que celle-
ci est définie dans une forme précise et compositionnelle. Les avantages de
la précision sont évidents. Mais la compositionnalité devrait également être
valorisée, car elle permet à chaque partie de la spécification d’être examinée et
modifiée séparément, et donc permet qu’elle soit améliorée. En effet, grâce à
la possibilité de raffinement des spécifications Z, on peut ajouter de nouveaux
raffinements à l’architecture afin de la spécialiser.

L’architecture est implémentée en Java. Afin d’instancier un agent, il suffit
de créer une nouvel objet Organism et de l’initialiser avec un type spécial du
fichier XML, dans lequel plusieurs paramètres de l’agent doivent être définis
(par exemple, les stimuli qu’il reconnâıt, les actions qu’il peut effectuer, les
réflexes).

Dans une démarche de développement formel complet, ce programme Java
devrait être prouvé correct par rapport à la spécification Z (par exemple, au
moyen des raffinements formels). Cela n’a pas été fait dans cette thèse, où
l’effort formel principal a été consacrée a les simulations formellement guidées
et les algorithmes de vérification correspondants, qui sont vérifiés. Cependant,

3En supposant, évidement, que les chiens ne peuvent pas prévoir leur propre mort de la
même manière que nous, les humains, le pouvons
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l’implémentation Java de l’architecture d’agent suit de très près la structure
de sa spécification Z, et donc a de grandes chances d’être correcte.

Environnements

En comparaison avec les agents, les environnements des SMA ont reçu peu
d’attention, comme c’est remarqué par l’étude de Weyns et al. (2005). Le
modèle d’environnement de Ferber and Müller (1996) est une exception. Dans
cette thèse, nous proposons le modèle Environnement pour Systèmes
Multi-Agents (Environment Model for Multi-Agent Systems – EMMAS ),Environnement

pour Systèmes
Multi-Agents

conçu pour fonctionner avec l’Architecture d’Agent Comportemental-
iste. Étant donné que la théorie psychologique de base que nous utilisons
accorde une grande importance aux rapports entre les agents et leur environ-
nement, une telle modélisation explicite de l’environement est un aspect très
important à prendre en compte.

Dans EMMAS, les agents sont représentés par les profils d’agent (agentprofils d’agent

profiles). Un tel profil attribue un identifiant à un agent et définit les stimuli
qu’il reconnâıt ainsi que les actions qu’il peut émettre. Cela fournit les in-
formations nécessaires pour définir un environnement EMMAS. Néanmoins,
afin d’exécuter le SMA résultant (e.g., pour le simuler), il est nécessaire d’avoir
une implémentation sous-jacente pour ces profils d’agents, tel que celle que
nous avons considérée ci-dessus.

Le but des SMA utilisés dans cette thèse est de modéliser les systèmes soci-
aux qui existent dans le monde réel, où les agents ont une position physique
dans l’espace. Une façon de résoudre ce problème, souvent utilisée dans les
simulations des SMAs, est de fournir une simplification de l’espace physique,
comme par example une grille à deux dimensions dans lequel chaque cellule
est une position possible. Cependant, dans EMMAS nous adoptons une ab-
straction différents. Au lieu de représenter les position physique des agents,
nous représentons leurs relations. C’est-à-dire, le SMA est considéré comme
un réseau social. De cette manière, nous sommes en mesure de nous concentrer
sur les relations sociales entre les agents, qui peuvent être tout à fait indépen-
dantes de la condition physique auxquelles ils sont soumis. Par exemple, le
fait que un agent ag1 récompense un autre agent ag2 en le complimentant peut
se passer de plusieurs manières : dans la même salle ou à en communiquant
par l’Internet.

Etant donné le point de vue comportementaliste que nous adoptons, ces re-
lations sont modélisées en définissant comment les actions d’un agent sont
transformées en stimuli pour d’autres agents par l’intermédiaire de trans-
formateurs d’action (action transformers). Un agent est lié à un autre s’iltransformateurs

d’action peut stimuler l’autre de cette manière. Cet élément intermédiaire entre l’action
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d’un agent et la stimulation reçu par un autre est justifié par le fait qu’une
action peut avoir plusieurs conséquences simultanées. En effet, la même ac-
tion par un agent peut être perçue comme des stimuli différents par des agents
différents.

EMMAS permet la création et la destruction dynamique de ces transfor-
mateurs d’action. L’importance de cela est double. Tout d’abord, ça per-
met la spécification de phénomènes dans lesquels le rapport parmi les agents
change à mesure qu’ils vieillissent. Deuxièmement, ça permet la spécifica-
tion de plusieurs structures de réseau possibles pour le même environnement
(i.e., la description d’une classe de réseaux sociaux, et non pas un seul réseau
social).

Bien que les relations entre les agents puissent changer, les agents eux-mêmes
ne peuvent pas être créés ni détruits dans EMMAS. Une raison à cela est
que, pour être créé, un agent suivant l’Architecture d’Agent Comporte-
mentaliste doit être paramétrée a priori d’une manière détaillée avant de
devenir partie du SMA. Mais puisque dans EMMAS les agents sont représen-
tés comme des profils d’agent, cette paramétrisation ne peut pas être faite
au sein des spécifications EMMAS elles-mêmes. Il est néanmoins possible
d’émuler la création et la destruction des agents dans EMMAS. Pour le
faire, il suffit de définir un pool d’agents, d’abord isolés, et ensuite de manip-
uler comment leurs actions affectent l’environnement (et donc d’autres agents).
Un agent dont les actions sont entièrement ignorées et qui ne reçoit pas de
stimuli peut être considéré comme non-existant.

Un environnement définit le contexte dans lequel les agents existent, ce qui
est plus que fixer les conditions initiales. Il inclut les comportements relatifs
à l’environnement lui-même, qui peuvent être exécutés en réponse aux actions
d’un agent ou indépendamment d’une telle action. Du point de vue de simula-
tion et de vérification adopté dans cette thèse, ce contexte de l’environnement
peut être considéré comme un dispositif expérimental, qui définit toutes les
expériences possibles qui peuvent être effectuées avec les agents. Il est possi-
ble de spécifier des opérations d’environnement (environment operations) opérations

d’environnementdans EMMAS afin de définir un tel dispositif expérimental.

Si nous avons un SMA à simuler et vérifier, un point crucial concerne la
façon dont il évolue. C’est-à-dire, comment il change d’un état à un autre
jusqu’à la fin de la procédure appliquée (e.g., une simulation). Etant donné
que dans cette thèse nous séparons explicitement les formalisations des agents
et des environnements, nous tenons compte de l’évolution de chacun de façon
différente:

• Les états des agents. L’Architecture d’Agent Comportementaliste
définit comment chaque état d’agent est transformé en un état nouveau
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en prenant en compte des stimulations environnementales. Ces défini-
tions sont spécifiés en utilisant la notation Z.

• Lest états du environnement. Les spécifications EMMAS ont une sé-
mantique en termes de l’algèbre de processus π-calculus (Milner, 1999;
Parrow, 2001). Ainsi, chaque état de l’environnement correspond à une
expression P du π-calculus, avec des informations contextuelles, dans un
triplet appelé statut de l’environnement (environment status), quistatut de

l’environnement limitent les successeurs possibles de l’état:

(P , 〈Stimulation,Response,Literals〉)

Les états de l’environnement ont des informations contextuelles (fonctions
Stimulation, Response, et ensemble Literals) qui les mettent en rapport avec
les agents, incorporant ainsi toutes les informations observables pertinentes
du SMA. C’est-à-dire, les états d l’environnement sont des états globaux en
ce que concerne les évolutions observables du SMA. Il suffit alors de fournir
une sémantique pour EMMAS afin d’avoir la sémantique du SMA lui-même.

Sémantique d’EMMAS

La sémantique d’EMMAS, comme nous avons déjà dit ci-dessus, est don-
née en termes de l’algèbre de processus π-calculus. Les algèbres de proces-
sus sont généralement employées pour décrire les systèmes concurrents. Elles
sont bonnes pour décrire succinctement les comportements pertinents à la
communication inter-processus. Le choix particulier du π-calculus comme un
fondement théorique est motivé par certaines de ses caractéristiques qui le
distinguent parmi les algèbres de processus existantes. D’abord, il considére
la communication à travers les canaux comme une notion primitive, ce qui
en fait est un choix naturel pour représenter les réseaux. Deuxièmement, il
permet des modifications dynamiques, ce qui rend la création et la destruc-
tion des connexions entre les agents possibles. Troisièmement, il fournit une
représentation pratique pour la diffusion grâce à son opérateur de réplication.
Enfin, il a peu d’opérateurs et une sémantique opérationnelle simple. Grâce à
cette sémantique opérationnelle, nous pouvons donner un Système de Tran-
sition Annoté (Annotated Transition System – ATS) qui dénote toutes lesSystème de Tran-

sition Annoté évolutions possibles du SMA.

La sémantique d’EMMAS est effectivement donnée en deux étapes : (i) une
traduction syntaxique d’EMMAS dans des expressions π-calculus à travers
une fonction de traduction (translation function) [ ]π; (ii) un ensemblefonction de tra-

duction de définitions qui lie les événements du π-calculus aux stimuli et actions des
agents dans un système de transition. La traduction vers le π-calculus de (i), à
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travers sa sémantique opérationnelle, fournit une sur-approximation du com-
portement désiré, qui est ensuite rendu précis grâce aux restrictions prévues
par (ii). Par cette méthode, nous sommes en mesure de définir un ATS
d’environnement (environment ATS ), peut-être infini, qui établit les états ATS

d’environnementet transitions possibles pour n’importe quel spécification EMMAS.

La sémantique ainsi obtenue est d’ordre général et n’est pas liée à une ap-
plication particulière, pas même la simulation. Pour les fins de vérification,
cependant, il sera nécessaire de procéder à l’étape (ii) d’une façon un peu
plus précise, de sorte que le résultat puisse être utilisé dans un simulateur.
En bref, la différence est que nous introduisons un nouvel événement dans
le ATS d’environnement, appelé commit, ce qui rend le calcul des exécu-
tions plus efficace et plus explicite lors des simulations (un exemple est donné
ci-dessous).

Pour mettre EMMAS en oeuvre, nous avons développé une bibliothèque
pour le π-calculus en Java, ce qui permet la construction des processus π-
calculus et l’application des règles de sa sémantique opérationnelle. Cette
bibliothèque suit la définition formelle du π-calculus de très près, ce qui permet
une correspondance directe entre les éléments du π-calculus et leur mise en
oeuvre.

Chaque séquence d’états et d’événements, appelé une exécution (run), dans
un ATS d’environnement correspond à une évolution globale possible du
SMA. En considérant des exécutions différentes, nous avons les différentes
possibilités d’évolutions globales du SMA, et donc nous pouvons chercher sys-
tématiquement les propriétés d’intérêt. Ceci est la base sur laquelle repose la
technique de vérification développée dans cette thèse.

Soit l’exemple suivant d’une telle exécution :

s1
!beginning0u→ s2

!beginning0v→ s3
!commit
→ s4

?emit0a→ s5

où s1, s2, s3, s4 et s5 sont des états de l’ATS d’environnement, et !beginning0u ,
!beginning0v et ?emit0a dénotent des événements relatifs à un agent identifié par
0, stimuli u et v et une action a (i.e., événements de stimulation et d’action
concernant un agent). Lors d’une simulation, cette exécution est interprétée
de la façon suivante: d’abord, noter les événements !beginning0u et !beginning0v ,
mais ne pas les passer encore à l’agent 0. Ensuite, comme un !commit est
trouvé, tous les événements programmés sont pris en compte. Dans le cas des
deux événements que nous avons prévus, cela signifie que l’implémentation de
l’agent 0 sera avisée qu’il est maintenant en train de recevoir les stimuli u et
v . Finalement, l’événement ?emit0a arrive, et cela signifie que dans l’état s4
l’implémentation de l’agent 0 a avisé le simulateur qu’il est en train d’émettre
l’action a.
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Objectifs de Simulation et Relations de Satisfaction

On modélise les SMAs afin d’étudier leurs propriétés. Dans cette thèse, nous
proposons un moyen de le faire en formulant des hypothèses sur le SMA et
en vérifiant si elles tiennent ou pas (e.g., “chaque fois que l’agent fait X, va-
t-il faire Y plus tard?”). Si une hypothèse ne tient pas, cela signifie soit
que l’hypothèse est fausse, soit que le SMA n’a pas été correctement spécifié.
Le jugement dépend de notre objectif dans chaque circonstance particulière.
Essayons-nous de découvrir une loi sur le SMA? Dans ce cas, si une hypothèse
qui représente cette loi s’avère être fausse, c’est l’hypothèse qui est inexacte, et
non le SMA. Essayons-nous de concevoir un SMA qui obéisse à une loi? Dans
ce cas, nous avons l’inverse, une hypothèse falsifiée indique un problème dans le
SMA. Cette vue est similaire à celle trouvée dans les sciences empiriques, dans
lesquelles les scientifiques étudient des hypothèses et font des jugements d’une
manière semblable. À cet égard, la différence principale que nous sommes
concernés par des modèles de la nature sous la forme des SMAs, alors qu’eux
étudient le monde naturel directement.

Dans cette thèse, une telle hypothèse est définie par la spécification d’un
objectif de simulation et une relation de satisfaction. Si le SMA satis-
fait l’objectif de simulation spécifiée par rapport a la relation de satis-
faction désirée, l’hypothèse est corroborée. Sinon, elle est falsifiée. L’idée
d’utiliser un tel objectif de simulation est inspiré par l’approche de TGV
(Jard and Jéron, 2005) pour les tests de logiciel basés sur des modèles (model-
based testing), dans lequel des objectifs de test formels sont utilisés pour sélec-
tionner les cas de test pertinents. Ici, une objectif de simulation formel est
utilisé pour sélectionner les exécutions de simulations pertinentes, bien que les
critères de pertinence, entre autres technicités, soient assez différents.

Formellement, un objectif de simulation est un ATS soumis à de nouvelles
restrictions. En particulier, il est fini et définit deux états spéciaux, le Success
(succès) et le Failure (échec). Tous les exécutions qui mènent au Success
dénotent des simulations souhaitables, alors que celles qui conduisent à Failure
dénotent des simulations indésirables.

Les relations de satisfaction, à leur tour, nécessitent encore l’introduction
d’une autre définition technique, à savoir, la notion de produit synchroneproduit synchrone

(synchronous product). Soit un ATSM qui modélise un SMA, et un objectif
de simulation SP. Leur produit synchrone (écrit SP ⊗M) est un autre
ATS dans lequel chaque exécution représente une évolution possible deM
qui a été autorisée par SP. Chaque état dans SP ⊗M prend la forme de
(q , s), où s est un état deM, et q est un état de SP. La Figure F.6 montre
un exemple de SP, M et des exécutions qui synchronisent pour former
SP ⊗M.
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Figure F.6: Seules les exécutions ombrées dans l’ATS M et l’objectif de simu-
lation SP peuvent se synchroniser. Les états sont annotés avec des propositions
et les transitions avec des événements. Il y a des règles qui déterminent comment les
événements et les états se synchronisent. L’état étiqueté avec S est le Success, et
celui marqué avec F est le Failure. Les points (. . .) dénotent queM continue au-delà
des états représentés (il est peut-être infini).

Ces exécutions peuvent se terminer dans un état (q , s) où q = Succes ou q =
Failure, ce qui signifie que l’exécution en question est désirable ou indésirable,
respectivement. Nous définissons plusieurs relations de satisfaction, à savoir:

• Faisabilité (Feasibility): SP est faisable par rapport àM si il y a au Faisabilité

moins une exécution dans SP ⊗M qui se termine dans un état (q , s)
tel que q = Success. Il existe des variantes faible et forte de ceci.

• Réfutabilité (Refutability): SP est réfutable par rapport à M s’il y Réfutabilité

a au moins une exécution dans SP ⊗M qui se termine dans un état
(q , s) tel que q = Failure. Il existe des variantes faible et forte de ceci.

• Certitude (Certainty): SP est certain par rapport à SP si tous les Certitude

exécutions dans SP ⊗M finissent dans des états (q , s) tels que q =
Success.

• Impossibilité (Impossibility): SP est impossible par rapport àM si Impossibilité

tous les exécutions dans SP⊗M finissent dans des états (q , s) tels que
q = Failure.

Algorithmes de Vérification

Ces relations de satisfaction définissent les conditions que nous pouvons exiger
du SMA, mais elles ne précisent pas le calcul à utiliser. Certes, ce sont plutôt
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des définitions opérationnelles, mais les détails concernant la construction du
produit synchrone ne sont pas donnés. Il est donc nécessaire d’avoir des
algorithmes afin de vérifier si elles sont valides ou pas. En outre, malgré le fait
qu’il y a plusieurs relations de satisfaction, leur vérification est réalisé d’une
manière semblable. Tous les algorithmes ont les caractéristiques principales
suivantes:

• Ils effectuent une recherche en profondeur (depth-first search) sur le pro-
duit synchrone de SP etM.

• La recherche a une profondeur maximale,depthmax .

• SP ⊗M est calculée a la volée (c’est à dire, il n’est pas calculé a priori ;
à chaque état, l’algorithme calcule les états suivants nécessaires pour
continuer), carM est lui-même obtenu à la volée, a partir de l’expression
π-calculus présente dans chacun de ses états.

• Une interface avec le simulateur est supposée exister. Elle est utilisée
pour contrôler l’exécution de la simulation, y compris la possibilité de
stocker les états du simulateur et d’y retourner plus tard.

Ce qui change d’un algorithme à l’autre est l’exécution recherchée. Dans
le cas de faisabilité, l’objectif est de trouver une exécution qui mène à
Success, montrant ainsi un exemple de comment effectuer une simulation à
succès. En revanche, pour la relation de certitude, le but est de trouver une
exécution qui mène à Failure, et fournit donc un contre-exemple (si aucune
telle exécution est trouvé, cela signifie que la relation de certitude tient
par rapport aux observations disponibles). Les autres relations de satisfaction
sont vérifiées de manière similaire à celles-ci. Par ailleurs, si la vérification
d’une relation de satisfaction exige une profondeur de recherche supérieur à
depthmax , alors le résultat de l’algorithme est non-concluant.

La complexité des algorithmes doit être donnée en considérant le fait qu’ils ef-
fectuent une recherche en profondeur sur un système de transition éventuelle-
ment infini qui est construit à la volée (i.e., SP ⊗ M) et que jusqu’à une
profondeur maximale (i.e., depthmax ). Cela signifie que la complexité doit être
donnée principalement en termes de depthmax et le maximum du facteur de
branchement (i.e., le nombre maximal de successeurs possibles d’un état), au
lieu du nombre d’états et les transitions dans le système complet, comme ce
serait le cas si tous ces états et les transitions étaient à explorer. En outre,
étant donné que les états àM sont en fait calculées à partir d’une spécifica-
tion d’environnement EMMAS, la complexité de ces calculs doit être prise
en compte aussi. Ces caractéristiques introduisent de nombreux paramètres
dans la complexité. Le développement complet est donné dans la thèse. En
quelques mots, la complexité en espace est polynomiale par rapport à la taille
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de l’environnement et d’autres paramètres, et la complexité en temps est
exponentielle par rapport à depthmax .

Ce qui est important dans cette technique est qu’elle choisit les simulations à
exécuter automatiquement et de manière systématique, au lieu de dépendre
d’un utilisateur pour guider et d’inspecter la simulation manuellement. Cela
rendre l’exploration des simulations possibles plus efficace, même si on a par-
fois des résultats non concluants. Par ailleurs, les algorithmes sont avérés être
corrects selon des notions précises.

Simulateur

Ces algorithmes ont été mis en oeuvre dans un outil appelé Simulateur Formelle-
ment Guidé (Formally Guided Simulator – FGS), qui fonctionne de la façon
suivante. Il maintient une collection de composants, parmi lesquels l’implémentation
Java de l’Architecture d’Agent Comportementaliste. Pour demander la
vérification d’un SMA, trois types de fichiers XML doivent être fournis au
FGS:

• Une ou plusieurs paramétrisations des agents présents. Ces paramé-
trages sont utilisés pour instancier l’implémentation de l’Architecture
d’Agent Comportementaliste.

• Une description du scénario, dans lequel les agents sont déclarés d’exister,
et la spécification EMMAS sont fournies.

• Une description d’expérience, dans laquelle un objectif de simulation
et la relation de satisfaction à vérifier sont spécifiées.

Une fois qu’on démarre FGS, il utilise d’abord la description du scénario pour
instancier l’Architecture d’Agent Comportementaliste, de sorte que les
agents concernés deviennent disponibles pour le simulateur. Il transforme
ensuite la spécification EMMAS fournie dans la description du scénario en
une expression du π-calculus. Cette expression est mise en oeuvre directement
par l’instanciation des classes à la bibliothèque de simulation du π-calculus en
fonction de l’application de la fonction de traduction. Cela correspond à
l’état initial du SMA à simuler.

FGS lit alors la description de l’expérience afin d’obtenir l’objectif de simu-
lation et de savoir quelle relation de satisfaction dois être vérifiée. L’objectif
de simulation est implémenté trivialement, puisque sa structure est très
simple. La relation de satisfaction, à son tour, détermine l’algorithme de véri-
fication qui doit être utilisé.
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Ensuite, FGS exécute simplement l’algorithme de vérification demandé. Pour
calculer les états suivant dans l’implémentation du ATS, il utilise les règles
de la sémantique opérationnelle du π-calculus, disponibles aussi dans la bib-
liothèque de simulation du π-calculus. Les états des agents sont modifiés et
inspectés en manipulant les objets qui les instancient. Cette information est
utilisée pour annoter les états, et pour appliquer les contraintes pertinentes.

Il y a un événement spécial, commit, qui signale que les agents doivent re-
cevoir des stimulations et fournir des réponses comportementales. Ceci est
implémenté par FGS de la manière suivante. Les événements sont stockés au
fur et à mesure qu’ils sont trouvés dans une exécution du ATS, mais ils ne
sont pas livrés aux agents. Quand un événement commit est trouvé, alors
les événements stockés sont livrés aux agents appropriés, et ils peuvent aussi
changer les actions qu’ils sont en train d’emmètre.

Si certains options ont été fixées, FGS va afficher des informations a propos de
chaque synchronisation faite dans les produit synchrone lors des simulation,
ce qui permet de les visualiser. Lorsque l’algorithme se termine, le verdict est
montré, et une exécution approprié est affichée aussi (e.g., le exécution
faisable qui a conduit au Success).

Conclusion

Cette thèse propose une façon de modéliser une classe de SMAs, ainsi qu’un
cadre correspondant pour effectuer leur simulation et leur vérification. Ce
cadre est fondé sur des descriptions formelles des agents et de leur environ-
nement, ainsi que des définitions formelles des objectifs de simulation. Ces
éléments sont utilisés pour effectuer des simulations de manière systématique
et guidée afin de déterminer si certaines relations de satisfaction précisément
définies sont valides ou pas. C’est donc une étape importante pour combler
le fossé entre les techniques de simulation et de vérification. Il faut dire que
certaines transformations (principalement liées à la programmation du simu-
lateur) ne sont pas complètement vérifiée. Néanmoins, la thèse apporte un
cadre nouveau et d’une portée considérable pour analyser les SMAs de façon
automatisée et guidées formellement.
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Glossary

Agent An entity capable of autonomous behaviour which exists within an
environment.

Agent Architecture An abstract, structured and integrated description of
a class of agents.

Annotated Transition System An extension of Labelled Transition Sys-
tems developed in this thesis in which states can also be labelled (“an-
notated”). See Definition 6.2.

Architecture Depends on the context. See either Agent Architecture or
Software Architecture.

Behaviour Analysis A branch of behaviourism created and developed mainly
by Burrhus Frederic Skinner from the decade of 1930 onwards.

Behavioural Agent Architecture The Agent Architecture developed in
this thesis, which follows core ideas from the Behaviour Analysis tra-
dition.

Behaviourism A movement which postulates that observable and measur-
able behaviour is the only legitimate object of study within Psychology.

Drive A temporary modification of behaviour which is regulated by either the
provision or the deprivation of particular stimuli. For instance, thirst
and hunger.

Emotion A temporary modification of behaviour which is not explained by
any Drive. For instance, depression and frustration.

Environment The entity in which agents exist and through which they com-
municate. See Definition 5.6.

Experiment The specification of the Simulation Strategy to adopt.
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Experimenter A human that sets up and performs experiments. In this the-
sis, the experimenter is the user who defines the scenarios to be simulated
and runs the simulator in order to address some particular question.

Formal Method Any software development method characterized by the use
of abstract models and rigorous mathematical tools.

Formal Specification Any mathematical description of some system, in-
tended to be precise and unambiguous.

Formal Verification Any technique to formally check whether a system sat-
isfies some formal specification.

Labelled Transition System A tuple composed by a set of states and la-
belled transitions. Such representations are often used to provide the
Operational Semantics of Process Algebras. See Definition E.1.

Model Checking A formal verification technique which consists in systemat-
ically, explicitly and (usually) exhaustively investigating the State-Space
of a system in order to determine its conformance with respect to some
property. It is, therefore, a technique that operates directly on seman-
tics, and not on syntax.

Multi-Agent System A system composed by agents that exist and interact
within an environment.

Operant Behaviour The class of behaviour in which behaviours are learned
through either reinforcement or punishment. A behaviour thus learned
establishes an association between an organism’s action and a consequent
stimulus, but the strength of this relation can be changed over time.

Operational Semantics A style of providing semantics of languages in which
the meaning of a sentence is given in terms of the changes it produces in
some structure. This is often achieved by a hierarchical system of rules
which specify changes in terms of pre- and post-conditions.

Process Algebra Any Formal Method whose specifications are given in terms
of expressions composed of primitive elements and operators ruled by
certain laws. That is to say, specifications that resemble ordinary alge-
bra. Process algebras are usually employed to specify the communication
capabilities of concurrent systems.

Reflex A fixed behaviour (i.e., not learned) which depends on an eliciting
stimulus to happen.



Respondent Behaviour The class of behaviours formed by Reflexs.

Scenario The specification of the initial configuration of a Simulation Model.

Simulation The execution of a simulation model.

Simulation Model An abstract and executable description of some Target
System which can be subject to simulation.

Simulation Purpose A particular kind of Annotated Transition System suit-
able to the specification of desired and undesired simulations. These
structures are used in this thesis as the properties to be verified w.r.t. a
system. See Definition 7.8.

Simulation Strategy An algorithm used to perform simulations.

Simulator A software that given a executable model produces sequences of
states of this model.

Software Architecture An abstract, structured and integrated description
of a class of programs.

Software Component A unit of software which is developed to be composed
later with other components, and which depends on some underlying
infrastructure.

State-Space The set of all possible states for a system. It is often formalized
as a Labelled Transition System. In this thesis we employ our Annotated
Transition System for this purpose.

Target System That which one wishes to model. That is to say, the object
of the real world which one wishes to model in order to study it in an
abstract form.

Utility The perceived value of a stimulus.





Acronyms

ATS Annotated Transition System.

BDI Belief-Desire-Intention.

EMMAS Environment Model for Multi-Agent Systems.

FGS Formally Guided Simulator.

LTS Labelled Transition System.

MAS Multi-Agent System.

SP Simulation Purpose.

XML Extensible Markup Language.
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