
HAL Id: tel-00656877
https://theses.hal.science/tel-00656877v1
Submitted on 5 Jan 2012 (v1), last revised 12 Sep 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial root separation and applications
Tomislav Pejkovic

To cite this version:
Tomislav Pejkovic. Polynomial root separation and applications. Number Theory [math.NT]. Univer-
sité de Strasbourg; University of Zagreb, 2012. English. �NNT : �. �tel-00656877v1�

https://theses.hal.science/tel-00656877v1
https://hal.archives-ouvertes.fr


INSTITUT DE
RECHERCHE

MATHÉMATIQUE
AVANCÉE

UMR 7501

Strasbourg

&

DEPARTMENT
OF

MATHEMATICS

FACULTY OF
SCIENCE

Zagreb

www-irma.u-strasbg.fr
www.math.hr

Thesis
presented to receive the degree of doctor of

philosophy at University of Zagreb
and Université de Strasbourg
Spécialité MATHÉMATIQUES

Tomislav Pejković
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Introduction

For a polynomial with integer coefficients, we can look at how close two of its
roots can be. This can be done when we look at roots in the field of real or
complex numbers and also if we wish to study roots in the p-adic setting, i.e.
in the fields Qp or Cp, where p is some prime number. Since we can always
find polynomials with roots as close as desired, we need to introduce some
measure of size for polynomials with which we can compare this minimal
separation of roots. This is done by bounding the degree and most usually
using the height, i.e. maximum of the absolute values of the coefficients of a
polynomial.

For an integer polynomial P (x) of degree d ≥ 2, height H(P ) and with
distinct roots α1, . . . , αd ∈ C, we set

sep(P ) := min
1≤i<j≤d

|αi − αj|

and define e(P ) by
sep(P ) = H(P )−e(P ).

For an infinite set S of integer polynomials containing polynomials of arbi-
trary large height, we define

e(S) = lim sup
P (X)∈S,H(P )→+∞

e(P ).

Mahler [22] proved in 1964 that if S contains only polynomials of degree
d, then e(S) ≤ d− 1. The lower bound on e(S) for this class of polynomials
has been successively improved with the best bound in the real/complex case
now standing at e(S) ≥ d

2
+ d−2

4(d−1)
for general d (see [8]). However, for the

set of cubic polynomials it was shown [15, 32] that e(S) ≥ 2 which is, of
course, best possible. For other small d, better results than the general one
we mentioned have been found. Another direction of research is to study
particular subsets of all polynomials of degree d, for example, we can distin-
guish between irreducible and reducible polynomials or monic and nonmonic
polynomials (see [9]).
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Taking up a combination of these directions in the first chapter, we ex-
amine in detail the class of reducible monic polynomials of fourth degree. We
give a complete description of this case showing that e(S) ≤ 2 and construct-
ing a family of polynomials which gives e(S) ≥ 2. We also examine the case
of families of polynomials which have polynomial and not exponential growth
of coefficients. This line of study is important also for the p-adic case of root
separation since we know how to transfer results with polynomial growth of
coefficients from the real into p-adic setting, unlike those where exponential
growth of coefficients appears.

Separation of roots in the p-adic setting has been much less studied (see
[7, §9.3] and [24]). In the second chapter we give analogues of some auxiliary
lemmas on polynomials which have been proved in the reals, cf. [7, §A]. The
next chapter gives explicit families of integer polynomials of general degree
with proofs of bounds for root separation. The quadratic and reducible cubic
polynomials are completely understood, while in the irreducible cubic case,
we give a family with the bound ep(S) ≥ 25/14 which is the best currently
known.

The second part of this thesis is concerned with results on p-adic ver-
sions of Mahler’s and Koksma’s classifications of transcendental numbers.
For a transcendental number ξ ∈ Qp, denote by wn(ξ) the upper limit
of the real numbers w for which there exist infinitely many integer poly-
nomials P (X) of degree at most n satisfying 0 < |P (ξ)|p ≤ H(P )−w−1.
Also, denote by w∗n(ξ) the upper limit of the real numbers w for which
there exist infinitely many algebraic numbers α in Qp of degree at most

n satisfying 0 < |ξ − α|p ≤ H(α)−w−1. Let w(ξ) = lim supn→∞
wn(ξ)
n

and

w∗(ξ) = lim supn→∞
w∗n(ξ)
n

. Mahler used the functions wn in order to classify
transcendental numbers into three classes: S-numbers are those that have
w(ξ) <∞, T -numbers are those with w(ξ) =∞ and wn(ξ) <∞ for any in-
teger n ≥ 1 and U -numbers have w(ξ) =∞ and wn(ξ) =∞ for some integer
n ≥ 1. Koksma’s classification into S∗−, T ∗− and U∗− numbers is achieved
in the same way, just using functions w∗n, w

∗ in place of wn, w. These two
classifications coincide. See [7] for all references.

Almost all numbers (in the sense of Lebesgue measure for real and Haar
measure for p-adic numbers) are S-numbers and U -numbers contain for ex-
ample Liouville numbers. But, it was only in 1968 that Schmidt [29] proved
the existence of T -numbers in R. Schlickewei [28] adapted this result to the
p-adic setting. While Schlickewei showed that p-adic T -numbers do exist, his
proof only gave numbers ξ such that wn(ξ) = w∗n(ξ) for all integers n ≥ 1.
Since for any p-adic transcendental number ξ we have

w∗n(ξ) ≤ wn(ξ) ≤ w∗n(ξ) + n− 1,
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it is natural to ask whether there exist p-adic numbers ξ such that wn(ξ) 6=
w∗n(ξ) for some integer n and how large can wn(ξ)−w∗n(ξ) really be. Although
the second question is, as in the more extensively studied real case, far from
being resolved, the main result of chapter four gives a positive answer to the
first question and goes some way in answering the second one.

Theorem 4.1. Let (wn)n≥1 and (w∗n)n≥1 be two non-decreasing sequences in
[1,+∞] such that

w∗n ≤ wn ≤ w∗n + (n− 1)/n, wn > n3 + 2n2 + 5n+ 2, for any n ≥ 1.

Then there exists a p-adic transcendental number ξ such that

w∗n(ξ) = w∗n and wn(ξ) = wn, for any n ≥ 1.

We also impose much milder growth requirements on the sequence (wn)n≥1

than Schlickewei and thus our theorem considerably improves the range of
attainable values for w∗n and wn. The proof is quite involved and follows that
of R. C. Baker’s theorem in [1].

In chapter five we improve an aspect of Theorem 4.1 showing that for any
n ≥ 3, function wn − w∗n contains the interval [0, n

4
]. We achieve that using

integer polynomials having two zeros very close to each other. Estimating the
distance between algebraic numbers is done with the help of a lemma which
unlike the lemma in the previous chapter has effective constants appearing in
the lower bound. However, the drawback we have to endure in this method is
a larger left endpoint of interval for wn. More importantly, we can construct
p-adic numbers ξ with prescribed values for w∗n(ξ) and wn(ξ) for only one
(or, with a modification, finitely many) positive integer n at a time. This
is in stark contrast to the situation in Theorem 4.1 where we succeeded in
constructing p-adic numbers ξ with prescribed value for w∗n(ξ) and wn(ξ) for
all positive integers n ≥ 2.

At the end of this chapter, we briefly mention the case n = 1. We also
examine the case n = 2, proving that the difference w2 − w∗2 can take any
value from the interval [0, 1[ which is essentially best possible.

Mahler proved in [20] that his classification of real numbers has the prop-
erty that every two algebraically dependent numbers belong to the same
class. In order to prove this basic property he showed that if ξ and η are
transcendental real numbers such that P (ξ, η) = 0 for an irreducible polyno-
mial P (x, y) ∈ Z[x, y] of degree M in x and N in y, then the inequalities

wn(ξ) + 1 ≤M(wnN(η) + 1) and wn(η) + 1 ≤ N(wnM(ξ) + 1)
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are valid for every positive integer n. Schmidt [29] showed that these condi-
tions also imply inequalities

w∗n(ξ) + 1 ≤M(w∗nN(η) + 1) and w∗n(η) + 1 ≤ N(w∗nM(ξ) + 1),

i.e. the inequalities we get when Mahler’s function wk is replaced with
Koksma’s function w∗k.

Mahler himself [21] proved the first two inequalities under analogous con-
ditions in the p-adic setting. We establish in chapter six a p-adic version of
the last two inequalities and show that in a very special, but nontrivial case
these inequalities become equalities.
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Basic notation, definitions and
lemmas

Notation

In this chapter we will describe the notation used in this thesis. To simplify
our exposition later on, we include here some basic definitions and well known
lemmas.

For the real number r, we denote by brc the largest integer not greater
than r.

We will be using the most natural measure for the size of a polynomial
or an algebraic number. The notation H(P ) stands for naive height of poly-
nomial P , i.e. the maximum of the absolute values of its coefficients. The
height H(α) of a number α algebraic over Q is that of its minimal polynomial
over Z.

For a polynomial P (X) ∈ Z[X] of degree d ≥ 2 and with distinct roots
α1, . . . , αd, we set

sep(P ) := min
1≤i<j≤d

|αi − αj|

and we call this quantity minimal separation of roots of P (X).
Now we fix our notation with respect to the p-adic analysis we will be

using. Let p be a rational prime number. We denote by Qp the completion
of the field of rational numbers Q with respect to p-adic absolute value | · |p
which is normalised in such a way that |p|p = p−1. By Zp we denote the
ring of p-adic integers, i.e. set {x ∈ Qp : |x|p ≤ 1}. We also use Cp

for the (metric) completion of an algebraic closure of Qp. The field Qp of
p-adic numbers is usually considered as an analogue of the field R of real
numbers, while the field Cp is analogous to the field C of complex numbers.
The function µ denotes the Haar measure which is defined on balls in Qp

by µ({x ∈ Qp : |x − a|p ≤ p−λ}) = p−λ for a ∈ Qp and λ ∈ Z and then
extended in the usual fashion. Basic facts about p-adic theory will be tacitly
used, interested reader can consult e.g. [16].
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Symbols � and � are the Vinogradov symbols. For example A � B
means A ≤ cB where c is some constant. We will usually say what this
constant depends upon in a particular case. When A � B and A � B, we
write A � B.

Lemmas

First we give two versions of a result by Carl Friedrich Gauss. Recall that a
polynomial with integer coefficients is called primitive if the greatest common
divisor of its coefficients is 1.

Lemma 0.1 (Gauss’s Lemma). (1) If f(X) = g(X)h(X), where f(X),
g(X) ∈ Z[X], h(X) ∈ Q[X] and g(X) is primitive, then h(X) ∈ Z[X]
as well.

(2) Let A be a unique factorization domain (factorial ring) and F its field
of fractions. If a polynomial P (X) ∈ A[X] is reducible in F[X], then
it is reducible in A[X].

Proof. See [19, Theorem 2.1, Corollary 2.2, §IV.2, p. 181].

The next lemma relates the height of a product of polynomials to the
product of heights of these polynomials.

Lemma 0.2 (Gelfond’s Lemma). Let P1(X1, . . . , Xk),. . . ,Pr(X1, . . . , Xk) be
non-zero polynomials of total degree n1,. . . ,nr, respectively, and set n = n1 +
· · ·+ nr. We then have

2−n H(P1) · · ·H(Pr) ≤ H(P1 · · ·Pr) ≤ 2n H(P1) · · ·H(Pr).

Proof. See [7, Lemma A.3, p. 221] or [3, Lemma 1.6.11, p. 27].

The following lemma and its proof hold whether we take the algebraic
number to be in C or in Cp.

Lemma 0.3. Let α be a non-zero algebraic number of degree n. Let a, b and
c be integers with c 6= 0. We then have

H

(
aα + b

c

)
≤ 2n+1 H(α) max{|a|, |b|, |c|}n.
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Proof. (cf. [7, Lemma A.4, p. 222]) Let P (X) and Q(X) be minimal poly-
nomials over Z of α and aα+b

c
, respectively. Since Q(aX+b

c
) is a polynomial in

Q[X] vanishing at α, we must have degQ ≥ degP . Likewise, since anP ( cX−b
a

)
is a polynomial in Z[X] vanishing at aα+b

c
, we must have degQ ≤ degP .

From the minimality of P and Q using Gauss’s Lemma 0.1, we conclude that
anP ( cX−b

a
) = d ·Q(X), where d is an integer. Therefore,

H

(
aα + b

c

)
= H(Q(X)) ≤ H

(
anP

(cX − b
a

))
≤ max

i

n∑
k=i

(
k

i

)
·max{|a|, |b|, |c|}n · H(P ) < 2n+1 max{|a|, |b|, |c|}n · H(P ),

because
∑n

k=i

(
k
i

)
=
(
n+1
i+1

)
< 2n+1.

Standard tools to investigate questions of separation of roots are the no-
tions of resultant and discriminant. We gather definitions and most impor-
tant properties in the following lemma, for proofs and further results consult
for example [14, 19, 23].

Lemma 0.4. Let D be an integral domain contained in an algebraically closed
field K. Let P (X) and Q(X) be two polynomials in D[X], of degree m and
n respectively. Write

P (X) = amX
m + · · ·+ a1X + a0 = am(X − α1) · · · (X − αm) and

Q(X) = bnX
n + · · ·+ b1X + b0 = bn(X − β1) · · · (X − βn)

in K[X]. The resultant of two non-zero polynomials P (X) and Q(X) is the
product

Res(P,Q) = anmb
m
n

∏
1≤i≤m
1≤j≤n

(αi − βj) = anm
∏

1≤i≤m

Q(αi) = (−1)mnbmn
∏

1≤j≤n

P (βj).

If P (X) ≡ 0 or Q(X) ≡ 0, then Res(P,Q) = 0. The resultant of two
polynomials in D[X] is zero if and only if the two polynomials have a common
root in K. The resultant can also be written as

Res(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am · · · a0

. . . . . .

am · · · a0

bn · · · b0
. . . . . .

bn · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
3



where, more precisely, the coefficients of the (m+ n)× (m+ n) matrix (ci,j)
associated to this determinant are given by

ci,j = am−j+i, for 1 ≤ i ≤ n,

cn+i,j = bn−j+i, for 1 ≤ i ≤ m

and 0 otherwise. Thus, Res(P,Q) is an element of D.
The discriminant of the polynomial P (X) as above is given by

Disc(P ) = a2m−2
m

∏
1≤i<j≤m

(αi − αj)2 = (−1)m(m−1)/2a−1
m Res(P, P ′).

The discriminant Disc(P ) can easily be written as a determinant, it is an
element of D and it is non-zero if and only if P (X) is separable.

If we have polynomials in more than one variable, we will denote the
variable with respect to which the resultant is to be computed. The other
variables are taken as constants during this computation. For example, for
polynomials P (X, Y ), Q(X, Y ) ∈ Z[X, Y ], the resultant ResX(P,Q) will be
computed exactly as in the previous lemma looking at P (X, Y ) and Q(X, Y )
as polynomials in X with coefficients in D = Z[Y ]. The same lemma then
insures that ResX(P,Q) ∈ Z[Y ].

The following result, known as Hensel’s Lemma is probably the most
important algebraic property of p-adic numbers. It says that one can often
decide quite easily whether a polynomial has roots in Zp. The test involves
finding an “approximate” root of the polynomial and then verifying a condi-
tion on the (formal) derivative of the polynomial [16]. We bring two versions
of this result. The first one is probably best known and the second one, while
more general, also shows more clearly why this is actually a p-adic analogue
of Newton’s approximation method from the reals.

Lemma 0.5 (Hensel’s Lemma). (1) Let f(X) ∈ Zp[X] be a polynomial in
one variable and let α0 ∈ Zp be such that

f(α0) ≡ 0 (mod pZp) and f ′(α0) 6≡ 0 (mod pZp),

where f ′(X) denotes the formal derivative of f(X). Then there exists a
unique p-adic integer α ∈ Zp such that α ≡ α0 (mod pZp) and f(α) =
0.

(2) Let f(X) ∈ Zp[X] be a polynomial in one variable and let α0 ∈ Zp be
such that

|f(α0)|p < |f ′(α0)
2|p.

4



Then the sequence

αi+1 = αi −
f(αi)

f ′(αi)

converges to a root α of f(X) in Zp, and we have

|α− α0|p ≤
∣∣∣∣ f(α0)

f ′(α0)2

∣∣∣∣
p

.

Moreover, there is only one root α of f(X) in Qp which satisfies the
last inequality.

Proof. See [10, §4.3] or [19, Proposition 7.6, §XII.7, p. 493] for the proof of
the general form of this lemma. Statement in (1) is an easy consequence of
(2).

5



Chapter 1

Separation of complex roots for
integer polynomials of small
degree

1.1 Introduction

For an integer polynomial P (x) of degree d ≥ 2 and with distinct roots
α1, . . . , αd ∈ C, we set

sep(P ) := min
1≤i<j≤d

|αi − αj|

and define e(P ) by
sep(P ) = H(P )−e(P ).

For an infinite set S of integer polynomials containing polynomials of arbi-
trary large height, we define

e(S) = lim sup
P (x)∈S,H(P )→+∞

e(P ).

In this chapter we will be concerned with reducible monic polynomials of
degree four with integer coefficients. Therefore, we introduce the notation
RMd for the set of all reducible monic polynomials of degree d with integer
coefficients.

First, we briefly summarize what is known about bounds on e(S) if S is
some class of integer polynomials. We start with a classical result of Mahler
[22].
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Lemma 1.1. Let P (x) be a separable, integer polynomial of degree n ≥ 2.
For any two distinct zeros α and β of P (x) we have

|α− β| >
√

3(n+ 1)−(2n+1)/2 max{1, |α|, |β|}H(P )−n+1.

Proof. See [7, Theorem A.3, p. 226].

This immediately implies that if S contains only polynomials of degree
d, then e(S) ≤ d− 1.

We are interested here in classes of polynomials of relatively small degree
(d ≤ 4). Therefore, in the next table we merely give the lower bounds
on e(S) if S is a certain class of polynomials of degree d ≥ 5. The exact
constructions of polynomial families establishing these bounds can be found
in the references ([8] for classes of general irreducible polynomials and monic
irreducible polynomials of odd degree d ≥ 7, [9] for everything else).

d ≥ 5 general monic

irreducible e ≥ d
2

+ d−2
4(d−1)

e ≥ 7
4

for d = 5,

e ≥ d
2

+ d−2
4(d−1)

− 1 for odd d ≥ 7

e ≥ d−1
2

for even d

reducible
e ≥ d+1

2
for odd d e ≥ d−1

2
for odd d

e ≥ d
2

for even d e ≥ d
2

for even d

We go back to polynomials of small degree. For a quadratic polynomial
P (x) = ax2 + bx+ c, we have

sep(P ) =
∣∣∣−b+

√
b2 − 4ac

2a
− −b−

√
b2 − 4ac

2a

∣∣∣ =
∣∣∣√b2 − 4ac

a

∣∣∣,
which gives upper bounds e(S) ≤ 1 and e(S) ≤ 0 when S is the set of
all quadratic polynomials and the set of all monic quadratic polynomials,
respectively. Since this case is almost trivial, we only give four families of
polynomials that prove these bounds are actually attained

(k2 + k − 1)x2 + (2k + 1)x+ 1, x2 + (2k + 1)x+ (k2 + k − 1),

(kx− 1)
(
(k + 1)x− 1

)
, (x− k)(x− k + 1).

The next table sums up the results for d = 2.

d = 2 general monic

irreducible e = 1 e = 0

reducible e = 1 e = 0

7



For cubic polynomials, the case of general (i.e. nonmonic) polynomials
was first solved by Evertse [15] and later Schönhage [32] gave an easier con-
structive proof. In the monic case Bugeaud and Mignotte [9] proved the
lower bound e(M3) ≥ 3

2
, where M3 is the set of monic cubic polynomials

with integer coefficients. They also showed that e(M3) = 3
2

is equivalent
to Hall’s conjecture which asserts that, for any positive real number ε, we
have |x3 − y2| > x1/2−ε, for any suficiently large positive integers x and y
with x3 6= y2. Hall’s conjecture is one of the many consequences of the
abc-conjecture (see [30]).

Proving that e(RM3) = 1 is not hard when we notice that a polynomial
from this set is a product of a linear and a quadratic polynomial, both monic
and with integer coefficients because of Gauss’s Lemma 0.1. In the next table
we summarize known results for d = 3:

d = 3 general monic

irreducible e = 2 e ≥ 3
2

reducible e = 2 e = 1

Until now no exact values when d = 4 were known, just the lower bounds
given in the following table:

d = 4 general monic

irreducible e ≥ 13
6

e ≥ 3
2

reducible e ≥ 7
3

e ≥ 2

The bound for the nonmonic irreducible case arises from a general construc-
tion by Bugeaud and Dujella [8] which gives e((P 4,n(x))n∈N) = 13

6
in this

special case, where

P 4,n(x) = (20n4 − 2)x4 + (16n5 + 4n)x3 + (16n6 + 4n2)x2 + 8n3x+ 1.

For nonmonic reducible polynomials, a recent unpublished result by Bugeaud
and Dujella, shows that the sequence

P̃4,n(x) =
(
(2n+ 1)x3 + (2n− 1)x2 + (n− 1)x− 1

)(
(n2 + 3n+ 1)x− (n+ 2)

)
gives e ≥ e((P̃4,n(x))n∈N) = 7

3
. The bound for monic irreducible polynomials

e ≥ 3
2

is deduced by looking at the sequence

P̂4,n(x) = (x2 − nx+ 1)2 − 2(nx− 1)2, n ∈ N

(see Bugeaud and Mignotte [9]). Finally, for reducible monic polynomials,
it follows from a general case discussed in [9] that e(RM4) ≥ 2. While

8



the proof from [9] is nonconstructive, in Section 1.2 we establish the same
inequality by exhibiting a set S ⊆ RM4 such that e(S) = 2. In Section 1.3
we prove that e(RM4) ≤ 2. By putting together the results from Sections
1.2 and 1.3, we obtain the main result of this chapter, which gives the first
exact value in the above table for d = 4.

Theorem 1.1. It holds that e(RM4) = 2.

Furthermore, in Section 1.4, we show that if the coefficients of polynomials
in the sequence S = (Pn(x))n∈N ⊆ RM4 grow polynomially in n, we must
have a strict inequality e(S) < 2. But we also show that we can choose such
a sequence so that e(S) is arbitrarily close to 2. More precisely, we prove the
following theorem.

Theorem 1.2. If S = (Pn(x))n∈N ⊆ RM4 is a sequence of polynomials
whose coefficients are polynomials in n, then e(S) < 2. For any ε > 0, there
is a sequence of polynomials S = (Pn(x))n∈N ⊆ RM4 whose coefficients are
polynomials in n such that e(S) > 2− ε.

1.2 The constructive proof of e(RM4) ≥ 2

We want to find a sequence of polynomials S = (Pn(x))n∈N ⊆ RM4 such
that e(S) = 2. We look at integer polynomials of the type

P (x) = (x2 + rx+ s)(x2 + ax+ b),

where r and s are fixed while a and b depend on them and on n such that
one root of the polynomial in the first bracket is very close to a root of the
polynomial in the second bracket.

Choose r and s such that the roots λ1, λ2 of the polynomial R(x) = x2 +
rx+ s ∈ Z[x] satisfy λ = λ1 > 1 > λ2 > 0. Also, let (an)n∈N be an increasing
sequence of positive integers that satisfies the recurrence an+2+ran+1+san =
0 whose characteristic polynomial is R(x). Hence,

an = c1λ
n
1 + c2λ

n
2 = c1λ

n + c2
s

λn
,

for some constants c1, c2.
Assume that λ + ε is a root of the polynomial x2 + ax + b ∈ Z[x]. Then

we have
(λ+ ε)2 + a(λ+ ε) + b = 0 or

ε2 + (2λ+ a)ε+ (a− r)λ+ (b− s) = 0.

9



Therefore 2ε = −(2λ+ a)±
√

(2λ+ a)2 − 4
(
(a− r)λ+ (b− s)

)
. If we have

2λ+ a > 0 and |4
(
(a− r)λ+ (b− s)

)
| < (2λ+ a)2, (1.1)

then we get a smaller |ε| for the + sign, so

|2ε| =
∣∣∣∣ 4

(
(a− r)λ+ (b− s)

)
−(2λ+ a)−

√
(2λ+ a)2 − 4

(
(a− r)λ+ (b− s)

)∣∣∣∣
�
∣∣∣∣(a− r)λ+ (b− s)

2λ+ a

∣∣∣∣
(1.2)

(here M � N stands for M � N and N �M , where the implicit constants
depend only on r and s). At this point we see that by choosing

a− r = an, r ≤ −1, b− s = −an+1, s = 1,

the conditions on λ1, λ2, (an)n∈N and inequalities (1.1) are fulfilled, while
from (1.2) we have

sep(Pn) = |ε| �
∣∣∣∣ anλ− an+1

2λ+ an + r

∣∣∣∣ =

∣∣∣∣c1λn+1 + c2
λn−1 − c1λn+1 − c2

λn+1

2λ+ c1λn + c2
λn

+ r

∣∣∣∣
� 1

λ2n
� max{1, |a|, |b|}−2 � H(Pn)−2

and thus
e((Pn)n∈N) = 2,

where
Pn(x) = (x2 + rx+ 1)

(
x2 + (r + an)x+ (1− an+1)

)
.

This shows that e(RM4) ≥ 2.

Note that we could have taken s = −1 before and if we were trying to
approach the smaller root i.e. λ2, we would get a similar family of polynomials

Pn(x) = (x2 + rx− 1)
(
x2 + (r − an+1)x− (an + 1)

)
,

and after substitution x 7→ −x, we would get

Pn(x) = (x2 − rx− 1)
(
x2 + (−r + an+1)x− (an + 1)

)
.

In case of a1 = 1, a2 = 1, r = −1, the above polynomial is

Pn(x) = (x2 + x− 1)
(
x2 + (1 + Fn+1)x− (Fn + 1)

)
where (Fn)n∈N is the Fibonacci sequence. This last sequence of polynomials,
which was first obtained by numerical experiments, was the motivating factor
for this study.
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1.3 The proof of e(RM4) ≤ 2

Let us prove that e(RM4) ≤ 2. In other words, the best separation of roots
we can get in the case of a reducible separable monic quartic polynomial
P (x) ∈ Z[x] is � H(P )−2. (All the constants implied in �,�,� in this
section are absolute.)

We have to look at two cases: when the polynomial has a cubic irreducible
factor and when the polynomial has a quadratic irreducible factor. Because
of Gauss’s Lemma 0.1 all the monic divisors in Q[x] of P (x) will actually be
from Z[x]. Therefore, the case when P (x) is a product of linear factors is
trivial.

If we have P (x) = (x − k)(x3 + ax2 + bx + c), where a, b, c, k ∈ Z, then
by the result of Mahler we know that the roots of Q(x) = x3 + ax2 + bx+ c
can be no closer than � (max{1, |a|, |b|, |c|})−2. Because of Gelfond’s Lemma
0.2, we have

1

16
max{1, |k|}max{1, |a|, |b|, |c|} ≤ H(P )

≤ 16 max{1, |k|}max{1, |a|, |b|, |c|}, (1.3)

so sep(Q) � H(P )−2. There only remains to check whether we can have a
root ofQ(x) close to k. Let us takeQ(k+ε) = (k+ε)3+a(k+ε)2+b(k+ε)+c =
0 where without loss of generality we can suppose |ε| < 1. It is obvious that
|k+ ε| < |a|+ |b|+ |c|+ 1 must hold, otherwise we get a contradiction. Thus,
from (1.3) we get |k| � H(P )1/2. Since P (x) does not have multiple roots
and Q(x) ∈ Z[x] we have

1 ≤ |Q(k)| = |Q(k + ε)−Q(k)| = |Q′(t)| · |ε|,

where t ∈ (k, k+ ε) ⊂ (k− 1, k+ 1). But, using (1.3) and |k| � H(P )1/2, we
get

|Q′(t)| = |3t2 + 2at+ b| ≤ 3(|k|+ 1)2 + 2|a|(|k|+ 1) + |b| � H(P ).

Finally, we arrive at |ε| ≥ 1/|Q′(t)| � H(P )−1.

If P (x) = Q1(x)Q2(x), where Q1(x), Q2(x) ∈ Z[x] are two quadratic
polynomials, then we have from Gelfond’s Lemma 0.2

1

16
H(Q1) H(Q2) ≤ H(P ) ≤ 16 H(Q1) H(Q2). (1.4)

Since for quadratic polynomials we have sep(Qi) � H(Qi)
−1, we only have

to check the proximity of the roots α and β of Q1(x) and Q2(x), respectively.

11



Theorem A.1 from [7, p. 223] states that in our separable case

|α− β| ≥ 2−13−5/2 · H(Q1)
−2 H(Q2)

−2 ·max{1, |α|}max{1, |β|} � H(P )−2.

Hence, we proved that e(RM4) ≤ 2, which concludes the proof of Theorem
1.1.

1.4 Polynomial growth of coefficients

In Section 1.2 we exhibited a family of reducible monic polynomials Pn(x)
whose coefficients grow exponentially in n such that sep(Pn) � H(Pn)−2.

We will show that this is not possible if the coefficients grow polynomi-
ally. More precisely, let Pn(x) = P (n, x) ∈ Z[n, x] be a polynomial which is
monic of degree 4 in x and such that for every positive integer n′, polynomial
Pn′(x) ∈ Z[x] is reducible. This is the exact meaning of the conditions in the
first statement of Theorem 1.2. Now we will need a quantitative version of
Hilbert’s Irreducibility Theorem. Hilbert’s Irreducibility Theorem roughly
asserts that for polynomials in several variables irreducible over the ratio-
nal field, there always exist rational specializations of some of the variables
which preserve irreducibility [34]. Stating precisely, we will use the following
theorem proved by Dörge [12].

Theorem H-D. If f(x1, . . . , xk, t) is an irreducible polynomial with integral
coefficients and if R(N) is the number of integers τ such that |τ | < N and
f(x1, . . . , xk, τ) is reducible, then R(N) ≤ CN1−α where α, C are certain
positive constants.

Note that an earlier result by Skolem [33] giving limN→∞R(N)/N =
0 would be sufficient for our purposes. Together with our assumption on
reducibility this easily implies that

Pn(x) = Qn,1(x)Qn,2(x),

where Qn,1(x) and Qn,2(x) are monic polynomials in x whose coefficients are
integer polynomials in n. Note that because of the result in the previous
section, the case of a reducible monic polynomial with a linear factor is not
very interesting. Therefore, we will assume that Qn,1(x) and Qn,2(x) are
irreducible quadratic polynomials in x without common roots, so we may
write

Qn,1(x) = x2 + r(n)x+ s(n), Qn,2(x) = x2 + a(n)x+ b(n),

12



where r(n), s(n), a(n), b(n) ∈ Z[n]. For the sake of simplicity, we will usually
omit n. As already mentioned, we can assume that the closest roots of P are
a root of Q1 and a root of Q2. So, without loss of generality, let us take

2 sep(P ) = 2ε = −r +
√
r2 − 4s+ a+

√
a2 − 4b.

After some manipulation we get that ε satisfies the following equality

ε4 − 2(a− r)ε3 + (r2 + a2 − 3ra+ 2s+ 2b)ε2

− (a− r)(−ra+ 2s+ 2b)ε+ (s2 + b2 − rsa− rab− 2bs+ sa2 + br2) = 0.

(1.5)

Notice that the last term is just the resultant Resx(Q1, Q2) of the polynomials
Q1 and Q2:

Res(Q1, Q2) = Res(Q1, Q2 −Q1) = (b− s)2 + (a− r)(as− br).

Let us suppose that ε � H−2, where by Gelfond’s Lemma 0.2, H =
H(P ) � H(Q1) H(Q2). We mention here that all the constants in O, �, �,
� in the first part of this section depend at most on the coefficients of r, s, a, b.
Since P (x) is a separable integer polynomial, it follows that Res(Q1, Q2) is
an integer polynomial in n and |Res(Q1, Q2)| ≥ 1. Now we get from (1.5)
and (1.4) that

H−2 � ε�
|Res(Q1, Q2)|

| ε3︸︷︷︸
O(H−6)

− 2(a− r)ε2︸ ︷︷ ︸
O(H−3)

+ (r2 + a2︸ ︷︷ ︸
O(H2)

− 3ra+ 2s+ 2b︸ ︷︷ ︸
O(H)

)ε

︸ ︷︷ ︸
O(1)

−(a− r)(−ra+ 2s+ 2b)|

and

H−2 � ε� |Res(Q1, Q2)|
|O(1)− 2as+ 2rb︸ ︷︷ ︸

O(H)

+ra2 − r2a+ 2rs− 2ab|
. (1.6)

Because of Gelfond’s Lemma 0.2, |r|, |s|, |a|, |b| � H and |ar| � H which
implies that |a| � H1/2 or |r| � H1/2. Without loss of generality we can
suppose that |a| � H1/2. Thus we get |ra2| = |ra| · |a| � H3/2 and |ab| =
|a| · |b| � H3/2. We also have | − r2a+ 2rs| = |r| · |ra− 2s| = |r|O(H) so the
inequality (1.6) becomes

H−2 � ε� 1

max{O(H3/2), |r|O(H)}
.
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It implies that |r| � H, so from |r| � H, we get |r| � H. Also, we obtain
|Res(Q1, Q2)| = O(1). Since r, s, a, b are polynomials in n and |ra| � H,
|rb| � H, we conclude that a and b are constants.

If we now have degn s < degn r, then

degn Res(Q1, Q2) = degn
(
(b− s)2 + (a− r)(as− br)

)
≥ degn r + degn s,

so |Res(Q1, Q2)| � H, which leads to a contradiction. Therefore, degn s =
degn r and hence |s| � |r| � H→∞.

The leading coefficient of Res(Q1, Q2) as a polynomial in n, i.e. the
coefficient that belongs to the monomial of degree 2 degn r = 2 degn s, is the
leading coefficient of s2 − ars + br2, i.e. k2

s − akrks + bk2
r , where ks, kr are

leading coefficients of s and r, respectively. If it were 0, then −ks/kr ∈ Q
would be a root of x2 + ax+ b which is impossible, since by our assumption
this polynomial is irreducible. Thus degn Res(Q1, Q2) = 2 degn r ≥ 2 and
this is in contradiction with the condition |Res(Q1, Q2)| = O(1).

We conclude that sep(Pn) � H(Pn)−2 cannot hold in this case, and this
proves the first statement of Theorem 1.2.

Although the previous result of this section shows that we cannot have a
family of reducible monic quartic integer polynomials with polynomial growth
of coefficients that has the best possible exponent for root separation in this
case, i.e. −2, we can still construct families with the exponent as close to −2
as we like. The construction that follows is similar to the one in Section 1.2.

We look at the family of polynomials Pk,n(x) indexed with n ∈ N in
variable x. As before, we will usually omit n and write simply Pk(x). We
define

Pk(x) = (x2 + nx+ 1)︸ ︷︷ ︸
Qk(x)

(x2 + nx+ 1 + Ak+1x+ Ak)︸ ︷︷ ︸
Rk(x)

= (x2 + n︸︷︷︸
r

x+ 1︸︷︷︸
s

)
(
x2 + (Ak+1 + n)︸ ︷︷ ︸

a

x+ (Ak + 1)︸ ︷︷ ︸
b

)
,

where
(
Ak(n)

)
k∈N0

is defined recursively by

A0(n) = 1, A1(n) = n, Ak+1(n) = nAk(n)− Ak−1(n) for n ≥ 2.

It is easy to see that degnAk = k, so we get (implied constants are absolute
from now on)

H(Pk) � nk+2.
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Let us look at the resultant:

Resx(Qk, Rk) = (b− s)2 − r(b− s)(a− r) + s(a− r)2

= A2
k − nAkAk+1 + A2

k+1

= A2
k + Ak+1(Ak+1 − nAk)

= A2
k − Ak+1Ak−1

= A2
k − (nAk − Ak−1)Ak−1

= Ak(Ak − nAk−1) + A2
k−1

= A2
k−1 − AkAk−2

= . . . = A2
1 − A2A0 = n2 − (n2 − 1) · 1 = 1.

(1.7)

The roots of Qk(x) are

α1 =
−n−

√
n2 − 4

2
, α2 =

−n+
√
n2 − 4

2
,

and the roots of Rk(x) are

β1 =
−(Ak+1 + n)−

√
(Ak+1 + n)2 − 4(Ak + 1)

2
,

β2 =
−(Ak+1 + n) +

√
(Ak+1 + n)2 − 4(Ak + 1)

2
.

Therefore,

α1 � −n, α2 � −
1

n
, β1 � −nk+1, β2 =

Ak + 1

β1

� −1

n
,

so we have

1 = Res(Qk, Rk) = 1212 |α1 − β2|︸ ︷︷ ︸
�n

|α1 − β1|︸ ︷︷ ︸
�nk+1

|α2 − β1|︸ ︷︷ ︸
�nk+1

sep(Pk),

and it follows that

sep(Pk) � n−2k−3 = n−2(k+2)n � H(Pk)
−2+ 1

k+2 .

Hence, we proved the last statement of Theorem 1.2.
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Chapter 2

General results on polynomials
in the p-adic setting

This chapter brings together results of a general nature on polynomials in the
p-adic setting. These are for the most part analogues of the results in the real
and complex case. In this way we streamline the proof of our main results
and avoid unnecessary repetition. However, some lemmas on polynomials
which are specific to the subject of a particular chapter are left there.

The first two lemmas give bounds on the size of roots and products of
roots of a polynomial.

Lemma 2.1. If α ∈ Cp is a root of the polynomial P (X) = anX
n + · · · +

a1X + a0 ∈ Zp[X], then |a0|p ≤ |α|p ≤ 1/|an|p.

Proof. If α = 0, then both inequalities obviously hold. Therefore, we assume
α 6= 0. From P (α) = 0 we get

a0α
−1 = −(anα

n−1 + · · ·+ a1).

If |α|p ≤ 1 this implies |a0α
−1|p ≤ 1. If |α|p > 1, |a0α

−1|p ≤ 1 obviously
holds. Either way, we get |a0|p ≤ |α|p and the other inequality follows from
this one by noting that 1/α is a root of the polynomial XnP (1/X) = a0X

n+
a1X

n−1 + · · ·+ an.

Lemma 2.2. Let P (X) = anX
n+ · · ·+a1X+a0 = an(X−α1) · · · (X−αn) ∈

Cp[X]. Then for any set I ⊆ {1, . . . , n}, it holds∏
i∈I

|αi|p ≤
maxj∈{0,1,...,n} |aj|p

|an|p
.

Proof. This is shown in [24, p. 341].
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As an analogue of Lemma 1.1 proved by Mahler for complex roots, we
prove a lower bound on the distance of two roots in the p-adic case. Just as
in the complex case, for a polynomial P (x) of degree d ≥ 2 and with distinct
roots α1, . . . , αd ∈ Cp, we set

sepp(P ) := min
1≤i<j≤d

|αi − αj|p.

Lemma 2.3. Let P (X) be a separable, integer polynomial of degree n ≥ 2.
For any two distinct zeros α, β ∈ Cp of P (X), we have

|α− β|p ≥ sepp(P ) ≥ n−
3
2
n H(P )−n+1.

First proof. First part of this proof has been done by Morrison (cf. [24]). If
no two roots of the polynomial

P (X) = an(X−α1) · · · (X−αn) = anX
n+· · ·+a1X+a0, αi ∈ Cp (1 ≤ i ≤ n)

are equal we look at the polynomial

Q(X) =
∏

1≤i<j≤n

(
X − (αi − αj)2

)
.

The coefficients of Q are symmetric polynomials with integer coefficients in
α1, . . . , αn and therefore integer polynomials in elementary symmetric poly-
nomials in α1, . . . , αn, that is, by Viète’s formulas, in a0

an
, . . . , an−1

an
and it is

easy to see that their degree in αi is at most 2(n − 1) and since each of
a0

an
, . . . , an−1

an
is of degree 1 in αi, we get that

a2n−2
n Q(X) ∈ Z[a0, . . . , an−1, an][X] ⊂ Z[X].

According to Lemma 2.1, we now know that

|(αi − αj)2|p ≥ |constant term of a2n−2
n Q(X)|p

and since

|constant term of a2n−2
n Q(X)| = |a2n−2

n

∏
1≤i<j≤n

(αi − αj)2| = |Disc(P )|
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we are left to bound

|Disc(P )| =
∣∣∣∣ 1

an
(−1)

n(n−1)
2 Res(P, P ′)

∣∣∣∣

=
1

|an|
| det



an · · · a0

. . . . . .

an · · · a0

nan · · · a1

. . . . . .

nan · · · a1


| = | det



1 · · · a0

. . . . . .

an · · · a0

n · · · a1

. . . . . .

nan · · · a1


|

≤ (n+ 1)n−1nn · nn H(P )2n−2 ≤ n3n H(P )2n−2.
(2.1)

Finally, it follows that, sepp(P ) ≥ n−
3
2
n H(P )−n+1.

Second proof. We briefly sketch an alternative proof of this lemma. Instead
of using Morrison’s construction of the polynomial Q(X) from the first part
of the proof we just showed, we use the procedure similar to what Mahler
employed in his proof of the complex numbers analogue of this result (cf. [7,
Theorem A.3]). Namely,

|Disc(P )|p = |a2n−2
n |p

∏
1≤i<j≤n

|αi − αj|2p

≤ |α1 − α2|2p|an|2n−2
p

∏
1≤i<j≤n
(i,j)6=(1,2)

(
max{1, |αi|p}max{1, |αj|p}

)2
≤ |α1 − α2|2p

(
|an|p

∏
1≤i≤n

max{1, |αi|}
)2n−2

≤ |α1 − α2|2p( max
0≤i≤n

|ai|p)2n−2

≤ |α1 − α2|2p,

where we used Lemma 2.2 in order to get to the penultimate line.
Combined with the upper bound (2.1) on |Disc(P )| from the first proof

and inequality
1

|Disc(P )|
≤ |Disc(P )|p,

we get another proof of Lemma 2.3.

The following lemma compares the value of an integer polynomial at some
number with the distance of this number from the roots of the polynomial.
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Lemma 2.4. Let P (X) be a non-constant, separable, integer polynomial of
degree n. Let ξ ∈ Cp and α be a root of P (X) in Cp such that |ξ − α|p is
minimal. Then

n−3n/2 H(P )−n+1|ξ − α|p ≤ |P (ξ)|p.

Proof. (cf. [7, Lemma A.8, p. 231]) Let P (X) = anX
n + · · · + a1X + a0 =

an(X − α1) · · · (X − αn) ∈ Z[X], where we order the roots α1, . . . , αn ∈ Cp

in such a way that

α = α1 and |ξ − α1|p ≤ · · · ≤ |ξ − αn|p.

First we bound the discriminant of P (X) as in (2.1)

|Disc(P )| ≤ n3n H(P )2n−2.

Now we have,

n−3n/2 H(P )−n+1 ≤
√
|Disc(P )|p = |an|p|α1−α2|p · · · |α1−αn|p

√
|Disc(Q)|p,

where Q(X) = an(X − α2) · · · (X − αn). Applying Lemma 2.2 to the integer
polynomial P (X), we get the last bound below

√
|Disc(Q)|p = |an|n−2

p · |

∣∣∣∣∣∣∣
α0

2 · · · αn−2
2

...
. . .

...

α0
n · · · αn−2

n

∣∣∣∣∣∣∣ |p
≤ |an|n−2

p

∏
2≤i≤n

max{1, |αi|p}n−2 ≤ 1.

Using |ξ − α1|p ≤ · · · ≤ |ξ − αn|p, we get for 1 ≤ i < j ≤ n

|αi − αj|p ≤ max{|ξ − αi|p, |ξ − αj|p} = |ξ − αj|p
which combined with the previous bound gives

n−3n/2 H(P )−n+1 ≤ |an|p|ξ − α2|p · · · |ξ − αn|p,
n−3n/2 H(P )−n+1|ξ − α|p ≤ |P (ξ)|p.

Next lemma gives a useful lower estimate for the distance between two
distinct algebraic numbers.

Lemma 2.5. Let α and β be distinct algebraic numbers in Cp of degree at
most m and n, respectively. Then there exists a positive constant c(m,n) < 1,
depending only on m and n, such that

|α− β|p ≥ c(m,n) H(α)−n H(β)−m.

An admissible value for c(m,n) is (m+ 1)−n(n+ 1)−m.
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Proof. If α and β are conjugate over Q, let their minimal polynomial over
Z be P (X) = ak(X − α1) · · · (X − αk), where α1 = α, α2 = β. Thus,
H(α) = H(β) = H(P ) and k ≤ min{m,n}. We are now in the situation of
Lemma 2.3 and so

|α− β|p ≥ k−3k/2 H(P )−k+1 ≥ (m+ 1)−n(n+ 1)−m H(α)−n H(β)−m.

Next, we assume that numbers α and β are not conjugate over Q. Suppose
that α and β are algebraic numbers of degree exactly m and n, respectively.
Let

P (X) = am(X − α1) · · · (X − αm) = amX
m + · · ·+ a1X + a0 and

Q(X) = bn(X − β1) · · · (X − βn) = bnX
n + · · ·+ b1X + b0

be the minimal polynomials of α = α1 and β = β1 over Z. Then the resultant
Res(P,Q) is a non-zero integer and it can be bounded from above:

|Res(P,Q)| = | det



am · · · a0

. . . . . .

am · · · a0

bn · · · b0
. . . . . .

bn · · · b0


|

≤ (m+ 1)n(n+ 1)m H(P )n H(Q)m

= (m+ 1)n(n+ 1)m H(α)n H(β)m.

On the other hand, from the definition of Res(P,Q) we get

|Res(P,Q)|p = |bn|mp
∏

1≤j≤n

|P (βj)|p

≤ |bn|mp |P (β)|p
∏

2≤j≤n

(
max

0≤i≤m
|ai|p(max{1, |βj|p})m

)
≤ |bn|mp |am|p|β − α|p

∏
2≤i≤m

|β − αi|p
∏

2≤j≤n

(max{1, |βj|p})m

≤ |bn|mp |am|p|β − α|p
∏

2≤i≤m

(max{1, |αi|p}max{1, |β|p})
∏

2≤j≤n

(max{1, |βj|p})m

≤ |β − α|p
(
|am|p

∏
2≤i≤m

max{1, |αi|p}
)(
|bn|p

∏
1≤j≤n

max{1, |βj|p}
)m
.
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Lemma 2.2 together with the already used fact that all the coefficients of the
polynomials P (X) and Q(X) are integers implies that both brackets above
are ≤ 1. Thus

|β−α|p ≥ |Res(P,Q)|p ≥
1

|Res(P,Q)|
≥ (m+1)−n(n+1)−m H(α)−n H(β)−m.

We immediately see that if the degrees of α and β are smaller than m and
n, the same inequality holds a fortiori.

After covering both cases, this lemma is proved.
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Chapter 3

On separation of roots in the
p-adic case

3.1 General degree

Lemma 2.3 shows that for an integer polynomial P (X) of degree ≤ n, the
distance between two of its roots in Cp is always � H(P )−n+1, where the
implicit constant depends only on n. In the first part of this chapter we give
explicit families of integer polynomials of general degree with close roots in
Cp. The second part deals with quadratic and especially cubic polynomials
with close roots.

One usual idea for construction of such polynomials is to take an already
known family (Pk(X))k≥1 of polynomials whose coefficients are polynomials
in the indexing variable k, substitute k with 1/pk in Pk(X) and then multi-
ply this polynomial with a sufficiently high power of pk so that the resulting
polynomial has integer coefficients. While the starting polynomial had rel-
atively small discriminant, we arrive at a polynomial whose discriminant is
a rational integer divisible by a large power of p and from Lemma 0.4 we
expect that such a polynomial has close roots in Cp. In order to find out
how small sepp really is, we use the so called Newton polygons. We briefly
explain some basic facts on this concept adopting the exposition from [16]
while more properties together with proofs can be found e.g. in [16, §6.4] or
[17, §IV.3].

Let P (X) ∈ Cp[X] be a polynomial. Since we are interested in under-
standing zeros of P (X), we may factor out the highest power of X which
divides P (X). In other words, we may assume that P (0) 6= 0 and after
dividing by P (0), we may also assume that P (0) = 1. Thus, we take a
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polynomial
P (X) = 1 + a1X + a2X

2 + · · ·+ anX
n

with ai ∈ Cp. In the Cartesian coordinate plane we plot the points (0, 0) and,
for each i between 1 and n, (i, vp(ai)), where vp(x) = − logp(|x|p) is the usual
p-adic valuation. If ai = 0 for some i, we take vp(ai) to be +∞ and think of
the corresponding point as “infinitely high”. In practice, we just ignore that
value of i. The polygon we want to consider is the lower boundary of the
convex hull of this set of points. We can also think of it this way:

i) Start with the vertical half-line which is the negative part of y-axis.

ii) Rotate that line counter-clockwise until it hits one of the points we
have plotted.

iii) “Break” the line at that point, and continue rotating the remaining
part until another point is hit.

iv) Continue until all the points have either been hit or lie strictly above
a portion of the polygon. Cut off the polygon at its last vertex.

The resulting polygon is called Newton polygon of the polynomial P (X) with
respect to p. Since we always fix the prime p, we will usually not make a
reference to it. We will be interested in the following information from this
polygon:

i) the slopes of the line segments appearing in the polygon;

ii) the “length” of each slope, meaning the length of the projection of the
corresponding segment on the x-axis;

iii) the “breaks”, i.e. the values of i such that the point (i, vp(ai)) is a
vertex of the polygon.

To illustrate these concepts, we take p = 3 and consider the polynomial

P (X) = 1 + 6X +
1

3
X2 + 15X3 + 63X5 + 81X6.

The points we work with are

(0, 0), (1, 1), (2,−1), (3, 1), (5, 2), (6, 4).

Plotting these points and applying the process with the rotating line gives
the next figure.

Here are the properties of Newton polygon we will be using (cf. [16,
Theorem 6.4.7]).
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Lemma 3.1. Let P (X) = 1 + a1X + a2X
2 + · · · + anX

n ∈ Cp[X] be a
polynomial, and let m1,m2, . . . ,mr be the slopes of its Newton polygon in
increasing order. Let i1, i2, . . . , ir be the corresponding lengths. Then, for
each k, 1 ≤ k ≤ r, P (X) has exactly ik roots in Cp (counting multiplicities)
of p-adic absolute value pmk .

Thus, the polynomial from our example above has in C3 two roots of
absolute value 1/

√
3, three roots of absolute value 3 and one root of absolute

value 9.
Getting back to our subject, here are some examples of polynomials with

small root separation. Note that the first two families are reducible, while
the other two are irreducible according to Eisenstein’s criterion.

If we take P (X) =


(X − pk)(Xn−1 −X + pk)

(X − pk)(pkXn−1 −X + pk)

Xn − 2(X − pk)2

p2kXn − 2(X − pk)2

, k ≥ 1,

we get sepp(P )�


H(P )−

n−1
2

H(P )−
n
2

H(P )−
n
4

H(P )−
n
4
− 1

2

. Let us show how to arrive at these results.

P (X) = (X − pk)(Xn−1 −X + pk)

One root of P (X) is pk, let another one, closest to pk, be pk + ε ∈ Cp. Then

P (pk + ε) = ε
(
(pk + ε)n−1 − (pk + ε) + pk

)
= 0,
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and since ε 6= 0, we get (pk + ε)n−1 − ε = 0. Let us look at the polynomial

Q(X) =
(pk +X)n−1 −X

p(n−1)k

= 1 +
(n− 1)p(n−2)k − 1

p(n−1)k
X +

(n− 1)(n− 2)

2
· 1

p2k
X2 + · · ·+ 1

p(n−1)k
Xn−1

= 1 +
n−1∑
i=1

aiX
i.

If we now look at the Newton polygon of Q(X), we are interested in the
points

(0, 0), (1, vp(a1)), (2, vp(a2)), . . . , (n− 1, vp(an−1)), i.e.

(0, 0), (1, vp

((n− 1)p(n−2)k − 1

p(n−1)k

)
),

(2, vp

((n− 1)(n− 2)

2p2k

)
, . . . , (n− 1, vp

( 1

p(n−1)k

)
).

We see that vp(a1) = −(n − 1)k, vp(ai) ≥ −ik for i = 2, . . . , n − 2 and
vp(an−1) = −(n − 1)k. Therefore, the Newton polygon is as shown in the
picture below.

From the properties of Newton polygons i.e. Lemma 3.1, as there is
exactly one slope λ = −(n−1)k−0

1−0
= −(n− 1)k of length 1 and the other slope

λ = 0 is of length n−2, we conclude that exactly one root ξ of Q(X) satisfies
|ξ|p = p−(n−1)k and all the other roots η of Q(X) have |η|p = 1. The choice
of ε implies that ε = ξ so

sepp(P ) ≤ |ε|p = p−(n−1)k = (p2k)−
n−1

2 =
(

H(P )
)−n−1

2 .
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The case of the polynomial P (X) = (X − pk)(pkXn−1 −X + pk) is done
very similarly. We omit the details.

P (X) = Xn − 2(X − pk)2

The polynomial P (X) is irreducible over Q because of Eisenstein’s criterion.
Let pk + ε be the root of P (X) closest to pk. Then

P (pk + ε) = (pk + ε)n − 2
(
(pk + ε)− pk

)2
= (pk + ε)n − 2ε2 = 0.

For the polynomial

Q(X) =
1

pnk
(
(pk +X)n − 2X2

)
= 1 +

n

pk
X +

(
n
2

)
p(n−2)k − 2

pnk
X2 +

(
n
3

)
p3k

X3 + · · ·+ 1

pnk
Xn

= 1 +
n∑
i=1

aiX
i,

we have vp(ai) ≥ −ik, for i = 1 and i = 3, . . . , n− 1, and vp(a2) = vp(an) =
−nk. Therefore, the Newton polygon of Q(X) is as shown below.

Since there are two slopes on it, λ = −nk
2

of length 2 and λ = 0 of length
n − 2, we conclude that there are two roots of Q(X) with p-adic absolute

value p−
nk
2 and these have to be ε and −ε. Finally we get

sepp(P ) ≤ |(pk+ε)−(pk−ε)|p = |2ε|p = |ε|p = p−
nk
2 = (p2k)−

n
4 �

(
H(P )

)−n
4 .

Although we tacitly used that p is an odd prime, note that for p = 2
we can take P (X) = Xn − 3(X − pk)2 and all the conclusions remain the
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same. Also, compare with Lemma 5.1 for a more detailed analysis of a similar
polynomial.

The case of the polynomial P (X) = p2kXn − 2(X − pk)2 is done very
similarly and we again leave the details to the interested reader.

3.2 Degrees two and three

Quadratic polynomials

Lemma 2.3 says that for a quadratic separable polynomial P (X) with integer
coefficients, we have sepp(P ) ≥ 1

8
H(P )−1. To show that the exponent−1 over

H(P ) really can be attained we can take the family of reducible polynomials

Pk(X) = X(X + pk) = X2 + pkX, k ≥ 1

which gives sepp(Pk) = p−k = H(P )−1. We can also look at the family of
irreducible polynomials

Pk(X) = (−p2k + pk + 1)X2 + (p2k + 2pk)X + p2k, k ≥ 1

for which

sepp(Pk) =

∣∣∣∣
√

(p2k + 2pk)2 − 4(−p2k + pk + 1)p2k

−p2k + pk + 1

∣∣∣∣
p

=

∣∣∣∣
√

5p4k

−p2k + pk + 1

∣∣∣∣
p

= p−2k

if p 6= 5. Thus, here we have sepp(Pk) � H(Pk)
−1, where the implied con-

stants are absolute. The last asymptotic relation obviously holds even if
p = 5. For a family of monic irreducible quadratic polynomials (Pk(X))k
with root separation sepp(Pk) � H(Pk)

−1, see Lemma 5.2.

Lemma 3.2. Let P (X) be a quadratic separable polynomial with integer co-
efficients. For every prime p, we have

sepp(P ) ≥ 1

H(P )
√

5
.

Equality is achieved if and only if p = 5 and P (X) ∈ {X2 ±X + 1,−X2 ±
X − 1}.
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Proof. For a separable quadratic polynomial P (X) = aX2 + bX + c with
integer coefficients, the following sequence of inequalities holds

sepp(P ) =

∣∣∣∣√b2 − 4ac

a

∣∣∣∣
p

=
|b2 − 4ac|

1
2
p

|a|p

(i)

≥ 1

|b2 − 4ac| 12
(ii)

≥ 1(
|b|2 + 4|a||c|

) 1
2

(iii)

≥ 1

H(P )
√

5
.

(3.1)
In (3.1.i) equality holds if and only if p does not divide a and b2 − 4ac = pk

for some nonnegative integer k. In (3.1.ii) equality is achieved if and only
if ac ≤ 0 while equality in (3.1.iii) is equivalent to |a| = |b| = |c| = H(P ).
Combining these conditions we arrive at the statement of the lemma.

Reducible cubic case

We will exhibit a family of reducible cubic polynomials whose separation of
roots is (up to an absolute constant) best possible.

We look at the polynomial P (X) = (aX − b)(X2 + rX + s) ∈ Z[X]. The
roots of this polynomial are

b

a
and

−r ±
√
r2 − 4s

2
,

so in order to get the smallest separation of roots we only have to look at the
distance of the root of the linear and of the quadratic factor of P (X). Let

0 = P
( b
a

+ ε
)

= ε
(
ε2 +

(2b

a
+ r
)
ε+

( b2
a2

+
rb

a
+ s
))
.

Therefore, ε 6= 0 is a root of the polynomial

Q(X) = 1 +
2ba+ ra2

b2 + rba+ sa2
X +

a2

b2 + rba+ sa2
X2.

It is obvious that∣∣∣ 2ba+ ra2

b2 + rba+ sa2

∣∣∣
p
≤ |b2 + rba+ sa2| � H(P )2,

where the implied constant in second inequality is absolute and follows from
Gelfond’s Lemma 0.2. The same bound holds for the leading coefficient of
Q(X) as well. We will construct a sequence of polynomials

(
Pk(X)

)
k

such
that the above bound becomes asymptotic equality. Then, using the Newton
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polygons it will follow that sep(Pk) � H(Pk)
−2 which is, of course, the best

possible exponent.
To this end we will use the sequence

(
Ak(n)

)
k≥0

of polynomials defined
recursively

A0(n) = 1, A1(n) = n, Ak+1(n) = nAk(n)− Ak−1(n) for n ≥ 2.

We already used this sequence in the real case of reducible quartics. It is
easy to see that degnAk = k, and it was shown in (1.7) that

A2
k − nAkAk+1 + A2

k+1 = 1.

Now we define new polynomials Ãk(n) by “reversion”: Ãk(n) = nkAk
(

1
n

)
. It

is a recursive sequence

Ã0(n) = 1, Ã1(n) = n, Ãk+1(n) = Ãk(n)− n2Ãk−1(n) for n ≥ 2

that satisfies
Ã2
k+1 − Ãk+1Ãk + n2Ã2

k = (nk+1)2. (3.2)

First few terms of the sequence Ãk(n) are

1, 1,−n2 + 1,−2n2 + 1, n4 − 3n2 + 1, 3n4 − 4n2 + 1, . . .

so we see that the constant term is always 1 and the degree is degn Ãk = 2
⌊
k
2

⌋
.

Fixing any integer k ≥ 2, we set

ak,l = Ãk(p
l), bk,l = Ãk+1(p

l), rk,l = −1, sk,l = p2l, for l ≥ 1.

Denoting

Pk,l(X) = (ak,lX − bk,l)(X2 + rk,lX + sk,l)

=
(
Ãk(p

l)X − Ãk+1(p
l)
)
(X2 −X + p2l), l ≥ 1,

we see that the quadratic factor is irreducible over Q and (dropping indices
k and l)

vp

( 2ba+ ra2

b2 + rba+ sa2

)
= −2(k + 1)l

since a ≡ b ≡ 1 (mod p) and b2 + rba + sa2 = p2(k+1)l because of (3.2).
Therefore, |ε|p = p−2(k+1)l and since |a| �k p2bk/2cl and |b| �k p2b(k+1)/2cl, we
have

H(Pk) �k p2(b(k+1)/2c+1)l,

which implies
sepp(Pk,l)� H(Pk,l)

−2+εk , l→∞.
Here, εk → 0 when k → ∞. Hence, we can choose Pk(X) = Pk,lk(X) for
some sequence (lk)k which increases sufficiently fast so that

sepp(Pk) � H(Pk)
−2, k →∞.
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Irreducible cubic case

Let P (X) = aX3 + bX2 + cX + d ∈ Z[X] be an integer polynomial with
distinct roots α1, α2, α3 ∈ Cp. In order to analyze sepp(P ), we first construct
a polynomial whose roots are closely related to the distances between the
roots of P (X). Denoting by Q(X) = ResY

(
P (Y ), P (X + Y )), Lemma 0.4

tells us that Q(X) has integer coefficients and for x0 ∈ Cp:

Q(x0) = 0 ⇔ P (Y ) and P (x0 + Y ) have a common root in Cp

⇔ ∃y0 ∈ Cp such that P (y0) = P (x0 + y0) = 0

⇔ ∃α, β ∈ Cp such that P (α) = P (β) = 0, x0 = α− β

This shows that if we denote δ1 = α1 − α2, δ2 = α2 − α3, δ3 = α3 − α1, then

Q(X) = ã
∏

1≤i≤3
1≤j≤3

(
X − (αi − αj)

)
= ã(X2 − δ2

1)(X2 − δ2
2)(X2 − δ2

3)X3.

Taking R(X) = Q(X)/X3 ∈ Z[X] and then S(X) = R(
√
X)/R(0), we get

that

S(X) =
−1

δ2
1δ

2
2δ

2
3

(X − δ2
1)(X − δ2

2)(X − δ2
3)

is a polynomial in Q[X] such that

S(0) = 1 and sepp(P ) = min
{
|δ|

1
2
p : δ ∈ Cp, S(δ) = 0

}
. (3.3)

After some computation, we obtain

S(X) = 1− (b2 − 3ac)
2
X

b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2

+
2a2 (b2 − 3ac)X2

b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2

− a4X3

b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2
. (3.4)

Before announcing the family of polynomials with the best currently
known upper bound for separation of roots, let us mention an example we get
using the process described in the introduction of this chapter. Taking from
[8] a family of polynomials Qk(X) = (8k3−2)X3 + (4k4 + 4k)X2 + 4k2X+ 1,
k ≥ 1, with close roots in R, substituting k with 1/pk and multiplying by p4k

we procure the polynomial

Pk(X) = (−2p4k + 8pk)X3 + (4p3k + 4)X2 + (4p2k)X + p4k
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and insert its coefficients into (3.4). The coefficients of S(X) = a0 + a1X +
a2X

2 + a3X
3 in the order a0, a1, a2, a3 are

1,
16p−13k

(
2− 8p3k + 5p6k

)2
−8 + 27p3k

,

−
16p−11k

(
−4 + p3k

)2 (
2− 8p3k + 5p6k

)
−8 + 27p3k

,
4p−9k

(
−4 + p3k

)4
−8 + 27p3k

,

which gives the following points we are interested in (for p 6= 2)

(0, vp(a0)), (1, vp(a1)), (2, vp(a2)), (3, vp(a3))

= (0, 0), (1,−13k), (2,−11k), (3,−9k).

Thus, the Newton polygon of S(X) is as below (note that we have dropped
the index k to ease the notation, but this is still a family of polynomials).

Lemma 3.1 and (3.3) show that sepp(Pk) = p−13k/2 � H(Pk)
−13/8 because

H(Pk) � p4k.
Finally, for a family of polynomials

Pk(X) = (−45056pk−17280p4k−243p7k)X3 +(8192+1536p3k−378p6k)X2

+ (512p2k + 156p5k)X + 8p4k + 2p7k,
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coefficients of S(X) = a0 + a1X + a2X
2 + a3X

3 in the order a0, a1, a2, a3 are

1,
256p−25k

(
2097152 + 9p3k

(
327680 + 99p3k

(
1536 + 256p3k + 9p6k

)))2
19683 (128 + 81p3k)

,

−
16p−23k

(
45056 + 27p3k

(
640 + 9p3k

))2
19683 (128 + 81p3k)

·

·
(
2097152 + 9p3k

(
327680 + 99p3k

(
1536 + 256p3k + 9p6k

)))
,

p−21k
(
45056 + 27p3k

(
640 + 9p3k

))4
78732 (128 + 81p3k)

,

which gives the following points we are interested in (for p 6= 2)

(0, vp(a0)), (1, vp(a1)), (2, vp(a2)), (3, vp(a3))

= (0, 0), (1,−25k), (2,−23k), (3,−21k).

Lemma 3.1 and (3.3) show that sepp(Pk) = p−25k/2 � H(Pk)
−25/14 because

H(Pk) � p7k. Even if asymptotics does not change for p = 2, we are not
certain that the polynomials Pk(X) are irreducible in this case. For p 6= 2
this is guaranteed by Eisenstein’s criterion.

Remark 3.1. This last family of polynomials was deduced from the family

(−45056n6 − 17280n3 − 243)X3 + (8192n7 + 1536n4 − 378n)X2

+ (512n5 + 156n2)X + 8n3 + 2, n ≥ 0

by the usual process. The original family of polynomials gives a separation
of roots in the real case with the exponent −25/14 which is at present the
best exponent for a family of irreducible cubic polynomials with polynomial
growth of coefficients. Although Schönhage [32] proved that in the real case
the best possible exponent −2 is attainable, his families of polynomials have
exponential growth of coefficients. One of the main ingredients Schönhage
used to construct these families is continued fraction expansion of real num-
bers. In the p-adic setting there are several types of continued fractions that
have been proposed. None of them have all the good properties of the stan-
dard continued fractions and at the moment Schönhage’s construction does
not seem to translate easily to p-adic numbers. This is one of the reasons
why we are interested in families of polynomials with polynomial growth of
coefficients.
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Chapter 4

p-adic T -numbers

4.1 Introduction

Mahler [20] introduced in 1932 a classification of complex transcendental
numbers according to how small the value of an integer polynomial at the
given number can be with regards to the the height and degree of this poly-
nomial. In 1939 Koksma [18] devised another classification which looks at
how closely the complex transcendental number can be approximated by al-
gebraic numbers of bounded height and degree. Koksma proved that the
two classifications are identical and thus we have three classes consisting of
S-numbers or S∗-numbers, T -numbers or T ∗-numbers and U -numbers or U∗-
numbers. Here the nonstared letters refer to Mahler’s classification whereas
the stared ones refer to Koksma’s. See [7] for all references.

While almost all numbers in the sense of Lebesgue measure are S-numbers
and U -numbers contain for example Liouville numbers, it was only in 1968
that Schmidt [29] proved the existence of T -numbers.

Schlickewei [28] adapted this result to the p-adic setting. After this infor-
mal introduction, we give the necessary definitions in order to explain how
the main result of this chapter improves Schlickewei’s result. We take inspi-
ration from a paper by R. C. Baker [1] on complex T -numbers in order to
establish similar results for p-adic T -numbers.

In analogy with his classification of complex numbers, Mahler proposed a
classification of p-adic numbers. Let ξ ∈ Qp and given n ≥ 1, H ≥ 1, define
the quantity

wn(ξ,H) := min{|P (ξ)|p : P (X) ∈ Z[X], deg(P ) ≤ n, H(P ) ≤ H, P (ξ) 6= 0}.
We set

wn(ξ) := lim sup
H→∞

− log(Hwn(ξ,H))

logH
and w(ξ) := lim sup

n→∞

wn(ξ)

n
,
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and thus wn(ξ) is the upper limit of the real numbers w for which there exist
infinitely many integer polynomials P (X) of degree at most n satisfying

0 < |P (ξ)|p ≤ H(P )−w−1.

In analogy with Koksma’s classification of complex numbers, for ξ ∈ Qp

and given n ≥ 1, H ≥ 1, we define the quantity

w∗n(ξ,H) := min{|ξ−α|p : α algebraic in Qp, deg(α) ≤ n, H(α) ≤ H, α 6= ξ}.

We set

w∗n(ξ) := lim sup
H→∞

− log(Hw∗n(ξ,H))

logH
and w∗(ξ) := lim sup

n→∞

w∗n(ξ)

n
,

and thus w∗n(ξ) is the upper limit of the real numbers w for which there exist
infinitely many algebraic numbers α in Qp of degree at most n satisfying

0 < |ξ − α|p ≤ H(α)−w−1.

We say that a transcendental number ξ ∈ Qp is an

• S-number if 0 < w(ξ) <∞;

• T -number if w(ξ) =∞ and wn(ξ) <∞ for any integer n ≥ 1;

• U-number if w(ξ) =∞ and wn(ξ) =∞ for some integer n ≥ 1.

S∗-, T ∗- and U∗- numbers are defined as above, using w∗n in place of wn.
Actually, the definition of the quantity wn(ξ) given here differs from the

one used by Schlickewei [28]. Indeed, for him, the numerator of the defining
fraction is − log(wn(ξ,H)) instead of − log(Hwn(ξ,H)). This means that
there is a shift by 1 in the value of the critical exponent, which however does
not imply any change regarding the class of a given p-adic number. We have
adopted the same notation as in [7] since then wn(ξ) = w∗n(ξ) = n holds for
almost all p-adic numbers ξ, with respect to the Haar measure on Qp.

Another possible issue is also settled, namely, as in the real case, if
w∗n(ξ,H) is replaced by the minimum of |ξ − α|p over all numbers α 6= ξ
which are roots of integer polynomials of degree at most n and height at
most H, the value of w∗n(ξ) does not change, see [7, §9.3]. So by replacing
Qp with an algebraic closure Qp in the definition of w∗n(ξ,H) we gain noth-
ing new in respect to w∗n(ξ). See [7] for details and further results on the
exponents wn and w∗n.

The central result of Schlickewei’s paper [28] is his Theorem 2:
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Theorem S. Let (Bn)n≥1 be a sequnce of real numbers such that

B1 > 9, Bn > 3n2Bn−1 for n > 1.

There exist numbers ξ ∈ Qp with

w∗n(ξ) = Bn for any n ≥ 1.

While Schlickewei showed that p-adic T -numbers do exist, his proof only
gave numbers ξ such that wn(ξ) = w∗n(ξ) for all integers n ≥ 1. Since for any
p-adic transcendental number ξ we have

w∗n(ξ) ≤ wn(ξ) ≤ w∗n(ξ) + n− 1 (4.1)

(see Theorem 9.3 in [7]), it is natural to ask whether there exist p-adic num-
bers ξ such that wn(ξ) 6= w∗n(ξ) for some integer n and how large wn(ξ)−w∗n(ξ)
can really be. Although the second question is, as in the more extensively
studied real case, far from being resolved, our main result (cf. [1] or [7, The-
orem 7.1, p. 140]) gives a positive answer to the first question and goes some
way in answering the second one.

Theorem 4.1. Let (wn)n≥1 and (w∗n)n≥1 be two non-decreasing sequences in
[1,+∞] such that

w∗n ≤ wn ≤ w∗n+(n−1)/n, wn > n3+2n2+5n+2, for any n ≥ 1. (4.2)

Then there exists a p-adic transcendental number ξ such that

w∗n(ξ) = w∗n and wn(ξ) = wn, for any n ≥ 1.

It is also important to notice that we impose much milder growth require-
ments on the sequence (wn)n≥1 than in Theorem S. Thus our Theorem 4.1
considerably improves the range of attainable values for w∗n and wn.

The next section brings together necessary auxiliary results. In Section
4.3 we give the main proposition together with its proof and in the last section
we use this proposition to prove our Theorem 4.1.

4.2 Auxiliary results

We will be using the following lemma by Schlickewei which is an immediate
corollary of his p-adic version of Schmidt’s Subspace Theorem.
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Lemma 4.1. Let ξ be an algebraic number in Qp and n be a positive integer.
Then, for any positive real number ε, there exists a positive (ineffective)
constant κ(ξ, n, ε) such that

|ξ − α|p > κ(ξ, n, ε) H(α)−n−1−ε

for any algebraic number α of degree at most n.

Proof. See [28, Theorem 3, p. 183].

In the next two lemmas we look at polynomials whose roots will be build-
ing blocks in the construction of numbers satisfying conditions of Theorem
4.1.

Lemma 4.2. Let n be a positive integer.
(a) Let p be an odd prime and d be the smallest prime in the arithmetic
progression p− 1, 2p− 1, 3p− 1, . . ..

(i) If p - n, the polynomial Xn + d is irreducible over Q and has a root in
Qp.

(ii) If p|n, the polynomial Xn+dXn−1−dX+d is irreducible over Q and
has a root in Qp.
(b) Let p = 2.

(iii) If n is odd, the polynomial Xn + 3 is irreducible over Q and has a
root in Q2.

(iv) If n is even, the polynomial Xn+X+2 is irreducible over Q and has
a root in Q2.
Moreover, in each of the four cases we can take the root to be in 1 + pZp.

Proof. A statement similar to this Lemma is given in [28, Lemma 1, p. 184].
Proof of irreducibility uses Eisenstein’s criterion (see e.g. [27, Theorem 2.1.3,
p. 50]) in cases (i), (ii) and (iii). For the irreducibility in case (iv) we use
another result by Osada [25], see [27, Theorem 2.2.7, p. 58].

Hensel’s Lemma 0.5 shows that each of the specified polynomials has a
root in 1 + pZp.

For the prime p and any positive integer n we denote by ηn ∈ 1 + pZp the
root defined in the appropriate case of Lemma 4.2.

Lemma 4.3. If η′n is a conjugate of ηn over Q different from ηn itself, then
|η′n − ηn|p = 1.

Proof. Obviously, ηn and η′n are both roots of a polynomial P (X) mentioned
in Lemma 4.2. We denote by δ = η′n − ηn and then easily establish that it
satisfies

0 =
P (η′n)− P (ηn)

δ
=

n∑
k=1

P (k)(ηn)

k!
δk−1

36



where P (k)(ηn)/k! ∈ Zp since P (X) ∈ Z[X] and ηn ∈ Zp. It follows from
Lemma 2.1 that

|P ′(ηn)|p ≤ |δ|p ≤
1

|P (n)(ηn)/n!|p
.

But with reference to Lemma 4.2,

P ′(ηn) ≡ n · 1 6≡ 0 (mod p) (case (i)),

P ′(ηn) ≡ n · 1− 1 · (n− 1) · 1 + 1 ≡ 2 6≡ 0 (mod p) (case (ii)),

P ′(ηn) ≡ n · 1 ≡ 1 6≡ 0 (mod p) (case (iii)),

P ′(ηn) ≡ n · 1 + 1 ≡ 1 6≡ 0 (mod p) (case (iv)),

while P (n)(ηn)/n! = 1 in all four cases. This shows that |δ|p = 1 which is
what we wanted to prove.

Remark 4.1. In order to minimize cumbersome repetition, we will be assum-
ing that p is an odd prime which does not divide the degree n of the algebraic
number ηn we defined earlier, in other words, the situation from case (i) of
Lemma 4.2. Modifications which are needed to deal with the other three
cases from this Lemma will be briefly mentioned at the appropriate places.

Later on, we will define ξj = −cj + vjηmj , where cj, vj are integers. If
ξj = θj,1, θj,2, . . . , θj,mj ∈ Cp are roots of the minimal polynomial of ξj over
Z, i.e. Pj(X) = (X + cj)

mj + dv
mj
j , then we obviously have

ξj − θj,k = (−cj + vjηmj)− (−cj + vjη
′
mj

) = vj(ηmj − η′mj),

where we denoted by η′mj a conjugate of ηmj . But Lemma 4.3 now implies
|ξj − θj,k|p = |vj|p for all k = 2, . . . ,mj.

In our construction we will have ξ = limj→∞ ξj and |ξj− θj,k|p > |ξj− ξ|p,
so |ξ − θj,k|p = |ξj − θj,k|p = |vj|p which gives

|Pj(ξ)|p =

mj∏
k=1

|ξ − θj,k|p = |vj|mj−1
p |ξ − ξj|p. (4.3)

(It is easily seen that the same equality holds in the other three cases from
Lemma 4.2 as well.)

Remark 4.2. Let us consider what happens if we take ξj =
aj
bj
ηmj where

aj, bj ∈ Z and gcd(aj, bj) = 1. Schlickewei even has |aj|p = |bj|p = 1 in [28],
but we do not take these additional assumptions. Now, because η

mj
mj +d = 0,

where d ≡ −1 (mod p), we have |ηmj |p = 1 and thus |ξj|p = |aj|p|bj|−1
p . If

|aj|p is not bounded by a positive number from below, then gcd(aj, bj) =
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1 implies |ξjk |p → 0 (k → ∞) for some subsequence (ξjk)k≥1 which gives
ξ = 0 and this is not possible. If |bj|p is not bounded by a positive number
from below, then gcd(aj, bj) = 1 implies |ξjk |p → ∞ (k → ∞) for some
subsequence (ξjk)k≥1 which gives ξ =∞ and this is not possible either.

Therefore, (|aj|p)j≥1 and (|bj|p)j≥1 are both bounded from below by a
positive number and since they are trivially bounded from above by 1, we
conclude that for all positive integers n and for all j such that mj = n,

|aj|
mj−1
p |bj|p is bounded so that an equality similar to (4.3) implies |Pj(ξ)|p �

|ξ − ξj|p. This gives (after an analysis we later give for the general case we
study) wn(ξ) = w∗n(ξ). That is why we have to construct ξj in a more
complicated manner analogous to the real case.

4.3 Main proposition

We now follow the exposition of R. C. Baker’s theorem as given in [7, §7.2,
p. 141]. Some lines where the proof is identical to the real case will be
briefly mentioned, while places where a modification is necessary will be
more thoroughly explained.

Proposition 4.1. (cf. [7, Proposition 7.1, p. 142]) Let ν1, ν2, . . . be real
numbers > 1 and µ1, µ2, . . . be real numbers in [0, 1]. Let m1,m2, . . . be
positive integers and χ1, χ2, . . . be real numbers satisfying χn > n3 + 2n2 +
4n + 3 for any n ≥ 1. Then, there exist positive real numbers λ1, λ2, . . ., an
increasing sequence of positive integers g1, g2, . . ., and integers c1, c2, . . . such
that the following conditions are satisfied.
(Ij) cj ∈ [gj/2, gj], vj = pbµj logp gjc (j ≥ 1).
(II1) ξ1 = −c1 + v1ηm1.
(IIj) ξj = −cj + vjηmj belongs to the annulus Ij−1 ⊆ Qp defined by

1

2p
g
−νj−1

j−1 ≤ |x− ξj−1|p < g
−νj−1

j−1 .

(IIIj) |ξj−αn|p ≥ λnH(αn)−χn for any algebraic number αn of degree n ≤ j
which is distinct from ξ1, . . . , ξj (j ≥ 1).

Proof. In what follows, we denote by αn a p-adic algebraic number of degree
exactly n. We fix a sequence (εn)n≥1 in ]0, 1[ such that, for any n ≥ 1, we
have

χn > n3 + 2n2 + 4n+ 3 + 20n2εn. (4.4)

We add four extra conditions (IVj), . . . , (V IIj) to be satisfied by the numbers
ξj.
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Set

Jj := {x ∈ Ij : |x− αn|p ≥ 2λn H(αn)−χn for any algebraic

αn of degree n ≤ j, αn 6= ξ1, . . . , ξj, x, H(αn) ≥ (λng
νj
j )1/χn}.

The extra conditions are:
(IVj) ξj ∈ Jj−1 (j ≥ 2).
(Vj) |ξj − αj|p ≥ 2λj H(αj)

−χj for any αj 6= ξj (j ≥ 1).

(V Ij) n ≤ j, H(αn) ≤ g
1/(n+1+εn)
j ⇒ |ξj − αn|p ≥ 1/gj (j ≥ 1).

(V IIj) µ(Jj) ≥ µ(Ij)/2 (j ≥ 1).
Here, µ denotes the Haar measure (µ({x ∈ Qp : |x− a|p ≤ p−λ}) = p−λ).

We construct the numbers ξ1, λ1, ξ2, λ2, . . . by induction with description
of steps the same as in [7, p. 144]. At the j-th stage, there are two steps.
Step (Aj) consist in building an algebraic number

ξj = −cj + vjηmj

satisfying conditions (Ij) to (V Ij). In step (Bj), we show that the number ξj
constructed in (Aj) satisfies (V IIj) as well, provided that gj is chosen large
enough in terms of

ν1, . . . , νj, µ1, . . . , µj,m1, . . . ,mj, χ1, . . . , χj,

ε1, . . . , εj, ξ1, . . . , ξj−1, λ1, . . . , λj−1. (4.5)

The symbols o,� and� used throughout steps (Aj) and (Bj) mean that the
numerical implicit constants depend (at most) on the quantities displayed in
(4.5). Furthermore, the symbol o implies ‘as gj tends to infinity’.

Note that we will have vj, cj ∈ [gj/2, gj].
Step (A1) is easy. There are� g1 possible numbers ξ1 = −c1 +v1ηm1 and

since 0 < c1 ≤ g1, the distance between such numbers is

|(−c′1 + v1ηm1)− (−c′′1 + v1ηm1)|p = |c′1 − c′′1|p >
1

g1

. (4.6)

There are only o(g1) rational numbers α1 satisfying H(α1) ≤ g
1/(2+ε1)
1 , so we

are able to choose ξ1 such that (V I1) is verified. Moreover, by Lemma 4.1
with n = 1, there exist λ1 in ]0, 1[ such that both (III1) and (V1) hold.

We continue exactly as in [7] making only the necessary and obvious
changes. Let j ≥ 2 be an integer and assume that ξ1, . . . , ξj−1 have been
constructed. Step (Aj) is much harder to verify, since we have no control on
the set Jj−1. Thus, it is difficult to check that the condition (IVj) holds, so
we introduce a new set J ′j−1 which contains Jj−1.
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Set ξj = −cj + vjηmj for some positive integers gj and cj ∈ [gj/2, gj] with

g
νj
j > 2g

νj−1

j−1 , (4.7)

and denote by J ′j−1 the set of p-adic numbers x in Ij−1 satisfying |x−αn|p ≥
2λn H(αn)−χn for any algebraic number αn of degree n ≤ j− 1, distinct from
ξ1, . . . , ξj−1, x and whose height H(αn) satisfies the inequalities

(λng
νj−1

j−1 )1/χn ≤ H(αn) ≤ (2λng
n2+n+1+2nεn
j )1/(χn−n−1−εn). (4.8)

Since

χn−n−1−εn > n3 +2n2 +2n+1+5n2εn > (n+1)(n2 +n+1+2nεn), (4.9)

the exponent of gj in the right of (4.8) is strictly less than 1/(n+ 1). Thus,
there are o(gj) algebraic numbers αn satisfying (4.8). We will prove that for
gj large enough we have� gj suitable choices for cj such that the conditions
(Ij) to (Vj) are fulfilled.

Denote by B(c, r) the ball {x ∈ Qp : |x− c|p < r}. By introducing

B̂j−1 = B(ξj−1, g
−νj−1

j−1 ) and B̌j−1 = B
(
ξj−1, g

−νj−1

j−1 /(2p)
)
,

we can write Ij−1 = B̂j−1 \ B̌j−1.
Because in ultrametric space every two balls are either disjoint or one is

a subset of the other, we can take a subfamily F of the balls defined by (4.8)
and the text that immediately precedes it, i.e. a subfamily of

{B(αn, 2λn H(αn)−χn) : αn algebraic of degree n ≤ j − 1,

αn 6= ξ1, . . . , ξj−1, x, and H(αn) satisfies (4.8)}

such that every two balls in F are disjoint, each of them is contained in B̂j−1,
has nonempty intersection with Ij−1 and J ′j−1 = Ij−1 \

⋃
B∈F B. If B̌j−1 is

not already a subset of some ball in F , then we add B̌j−1 to the family F so
that

J ′j−1 = Ij−1 \
⋃
B∈F

B = B̂j \
⋃
B∈F

B.

We look at the numbers from the set

Sj := {ξj = −cj + vjηmj : cj ∈ [gj/2, gj] ∩ Z}.

For any ball B = B(s, r) ∈ F , we have r = p−k for some k ∈ Z≥0 (depending
on B) and we can take s to be the smallest nonnegative integer in B. Consider
when ξj ∈ B:

|(−s+ vjηmj)− cj|p = |(−cj + vjηmj)− s|p = |ξj − s|p < r = p−k.
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Thus we see that all the associated cj for such ξj are of the form cj = s̃+pk+1l,
where l = 0, 1, 2, . . ., also s̃ is an integer, 0 ≤ s̃ < pk+1, and cj ∈ [gj/2, gj].
The measure of B is obviously µ(B) = p−k−1 and if we define

Nj(B) := #{ξj : ξj ∈ Sj ∩B},

it follows that

gj
2
µ(B)− 1 =

gj/2

pk+1
− 1 ≤ Nj(B) ≤ gj/2

pk+1
+ 1 =

gj
2
µ(B) + 1,

gj
2
µ

( ⋃
B∈F

B

)
−#F ≤

∑
B∈F

Nj(B) ≤ gj
2
µ

( ⋃
B∈F

B

)
+ #F .

Analogously,

gj
2
µ(B̂j−1)− 1 ≤ Nj(B̂j−1) ≤

gj
2
µ(B̂j−1) + 1.

Using

Nj(J
′
j−1) = Nj(B̂j−1)−

∑
B∈F

Nj(B) and µ(J ′j−1) = µ(B̂j−1)− µ
( ⋃
B∈F

B

)
,

we get

µ(J ′j−1)−
#F + 1

gj/2
≤
Nj(J

′
j−1)

gj/2
≤ µ(J ′j−1) +

#F + 1

gj/2
.

As was explained right after the equation (4.9), #F = o(gj). Since (V IIj−1)
with J ′j−1 ⊃ Jj−1 implies µ(J ′j−1)� 1, we conclude

Nj(J
′
j−1)� gj.

We now have � gj possible numbers ξj = −cj + vjηmj ∈ J ′j−1 which
means that they trivially satisfy (IIj). We will prove that they also satisfy
(IVj) for gj large enough.

Let αn be an algebraic number of degree n. By Lemma 4.1, there exists
a positive constant κ(mj, n, εn) such that

|ξj − αn|p = |(−cj + vjηmj)− αn|p = |vj|p
∣∣∣∣ηmj − (αn + cj

vj

)∣∣∣∣
p

≥ |vj|pκ(mj, n, εn) H

(
αn + cj
vj

)−n−1−εn

≥ g
−(n2+n+1+2nεn)
j H(αn)−n−1−εn ,

(4.10)
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if gj satisfies

gj ≥ κ(mj, n, εn)−1/(nεn)2(n+1)(n+1+εn)/(nεn).

Here, we have used Lemma 0.3:

H

(
αn + cj
vj

)
≤ 2n+1 H(αn) max{1, |cj|, |vj|}n ≤ 2n+1 H(αn)gnj .

In particular, if gj is large enough, we have

|ξj − αn|p ≥ 2λn H(αn)−χn (4.11)

as soon as
H(αn)χn−n−1−εn ≥ 2λng

n2+n+1+2nεn
j . (4.12)

This together with the definition of J ′j−1 shows that all our ξj ∈ J ′j−1

also belong to Jj−1. Therefore, the condition (IVj) is verified. Note that the
proofs of all the conditions from the proposition are obviously independent
of the case from Lemma 4.2 we are in.

Conditions (V Ij), (Vj), (IIIj) and the step (Bj) are done mutatis mu-
tandis just like in [7]. We are left with � gj suitable algebraic numbers
ξj, mutually distant by at least g−1

j (compare (4.6)). Only o(gj) algebraic
numbers αn satisfy

H(αn) ≤ g
1/(n+1+ε)
j , (4.13)

thus there are � gj algebraic numbers ξj such that |ξj − αn|p ≥ 1/gj for the
numbers αn verifying (4.13). Further, Lemma 4.1 ensures that there exists
λj in ]0, 1[ such that (Vj) is satisfied. Consequently, there are� gj algebraic
numbers ξj satisfying (Ij), (IIj), (IVj), (Vj) and (V Ij).

It remains for us to show that such a ξj also satisfies (IIIj). To this end,
because of (IVj) and (Vj), it suffices to prove that

|ξj − αn|p ≥ λn H(αn)−χn

holds for any algebraic number αn of degree n < j, which is different from
ξ1, . . . , ξj and whose height H(αn) satisfies

H(αn) < (λng
νj−1

j−1 )1/χn .

Since by (4.7) the sequence (gνtt )t≥1 is increasing, we either have

g−νnn < λn H(αn)−χn , (4.14)
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or there exists an integer t with n < t < j such that

g−νtt < λn H(αn)−χn ≤ g
−νt−1

t−1 . (4.15)

In the former case, we infer from (Vn), (4.7) and (4.14) that

|ξj − αn|p ≥ |ξn − αn|p − |ξj − ξn|p ≥ 2λn H(αn)−χn − g−νnn > λn H(αn)−χn .

In the latter case, (IVt), (4.7) and (4.15) yield that

|ξj − αn|p ≥ |ξt − αn|p − |ξj − ξt|p ≥ 2λn H(αn)−χn − g−νtt > λn H(αn)−χn .

Thus condition (IIIj) holds and the proof of step (Aj) is completed.
Before going on with the step (Bj), let us mention that the integer cj is

far from being uniquely determined. Indeed, at any step j we have � gj
suitable choices for ξj which shows that the construction actually gives an
uncountable set of T -numbers.

Let j ≥ 1 be an integer. For the proof of step (Bj), we first establish that
if gj is large enough and if x lies in Ij, then we have

|x− αn|p ≥ 2λn H(αn)−χn (4.16)

for any algebraic number αn 6= ξj of degree n ≤ j such that

(λng
νj
j )1/χn ≤ H(αn) ≤ g

νj/(χn−n−1−εn)
j . (4.17)

Let, then, αn 6= ξj be an algebraic number satisfying (4.17) and let x be in
Ij, that is, such that

1

2p
g
−νj
j ≤ |x− ξj|p < g

−νj
j . (4.18)

If νj(n+1+εn) ≤ χn−n−1−εn, then H(αn) ≤ g
1/(n+1+εn)
j and it follows

from (V Ij), (4.17), (4.18), and the assumption νj > 1 that

|x− αn|p ≥ |ξj − αn|p − |ξj − x|p ≥ g−1
j − g

−νj
j ≥ 2g

−νj
j ≥ 2λn H(αn)−χn ,

provided that gj is large enough.
Otherwise, we have

νj(n+ 1 + εn) > χn − n− 1− εn, (4.19)

and, by (4.10), we get

|x− αn|p ≥ |ξj − αn|p − |ξj − x|p
≥ g

−(n2+n+1+2nεn)
j H(αn)−n−1−εn − g−νjj

≥ g
−(n2+n+1+2nεn)
j H(αn)−n−1−εn/2.

(4.20)
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To check the last inequality, we have to verify that

2g
−νj
j ≤ g

−(n2+n+1+2nεn)
j H(αn)−n−1−εn . (4.21)

In view of (4.17), inequality (4.21) is true as soon as

2g
νj(n+1+εn)/(χn−n−1−εn)
j ≤ g

νj
j g
−(n2+n+1+2nεn)
j ,

which, by (4.19), holds for gj large enough when

n+ 1 + εn
χn − n− 1− εn

< 1− (n2 + n+ 1 + 2nεn)
n+ 1 + εn

χn − n− 1− εn
, (4.22)

and in particular when χn satisfies (4.4). Furthermore, we have

g
−(n2+n+1+2nεn)
j H(αn)−n−1−εn ≥ 4λn H(αn)−χn . (4.23)

Indeed, by (4.17), λn < 1, and (4.19), we get

H(αn)−χn−n−1−εn ≥ (λng
νj
j )(χn−n−1−εn)/χn ≥ λng

νj(χn−n−1−εn)/χn
j

> λng
(χn−n−1−εn)2/(χn(n+1+εn))
j ≥ 4λng

n2+n+1+2nεn
j ,

since we infer from (4.4) that

(χn − n− 1− εn)2 > χn(n+ 1 + εn)(n2 + n+ 1 + 2nεn). (4.24)

Combining (4.20) and (4.23), we have checked that

|x− αn|p ≥ 2λn H(αn)−χn

holds under assumption (4.19). By (4.19), this implies that (4.16) is true if
αn satisfies (4.17) and is not equal to ξj. Consequently, for gj large enough,
the complement J cj of Jj in Ij is contained in the union of the balls

B(αn, 2λn H(αn)−χn),

where αn ∈ Qp runs over the algebraic numbers of degree n ≤ j and height

greater than g
νj/(χn−n−1−εn)
j . The Haar measure of J cj is then

�
j∑

n=1

∑
H>g

νj/(χn−n−1−εn)

j

Hn−χn = o(g
−νj
j ) = o(µ(Ij)),

since for any positive integers H and n there are at most

(2H + 1)n+1 − (2(H − 1) + 1)n+1 < (8H)n

algebraic numbers of height H and degree n. Thus, we conclude that we can
find gj large enough such that µ(Jj) ≥ µ(Ij)/2. This completes step (Bj) as
well as proof of Proposition 4.1.
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At this point, we summarize where the condition χn > n3 + 2n2 + 4n+ 3
appears. There are three steps where it is needed, namely (4.9), (4.22) and
(4.24). Asymptotically, these three inequalities reduce, respectively, to χn >
(n + 1)(n2 + n + 2), χn > (n + 1)(n2 + n + 3), and (χn − n− 1)2 > χn(n +
1)(n2 + n+ 1). The most restricting condition is given by (4.22), hence, our
assumption on χn.

4.4 Proof of Theorem 4.1

Let (wn)n≥1 and (w∗n)n≥1 be two sequences fulfilling the conditions of Theorem
4.1. We will define numbers which are needed to apply Proposition 4.1.

Let (mj)j≥1 be a sequence of positive integers taking infinitely many times
each value 1, 2, . . . For j ≥ 1, we set νj = mj(w

∗
mj

+ 1) and define µj in [0, 1]
by

w∗mj +
mj − 1

mj

µj = wmj .

Moreover, for any integer n ≥ 1, we set χn = wn − n + 1 so that χn >
n3+2n2+4n+3. Let λ1, λ2, . . . , ξ1, ξ2, . . . be as in Proposition 4.1 and denote
by ξ the limit of the sequence (ξj)j≥1. This sequence obviously converges since
it is a Cauchy sequence and Qp is complete.

We fix an integer n ≥ 1. Observe that the minimal polynomial of ξj over
Z is the polynomial

Pj(X) = (X + cj)
mj + dv

mj
j ,

which is primitive since it is monic. Thus, recalling that cj, vj ∈ [gj/2, gj],
we get that (gj/2)mj ≤ H(ξj) ≤ (dgj)

mj . (We have completely analogous
statements in the other three cases of Lemma 4.2.) Furthermore, for any
j ≥ 1 we have

|ξ − ξj|p ∈ [
1

2p
g
−νj
j , g

−νj
j [

and the definition of νj implies that

|ξ − ξj|p ∈ [
1

2p
2−νj H(ξj)

−w∗mj−1
, dνj H(ξj)

−w∗mj−1
]. (4.25)

Moreover, if αm is an algebraic number of degree m ≤ n, which is not equal
to one of the ξj, then, by (IIIj) we have

|ξj − αm|p ≥ λm H(αm)−χm ,
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hence, as j tends to infinity,

|ξ − αm|p ≥ λm H(αm)−χm ≥ λm H(αm)−w
∗
m−1, (4.26)

since χm = wm−m+ 1 ≤ w∗m + 1−m+ 1 ≤ w∗m + 1. As mj = n for infinitely
many integers j, it follows from (4.25), (4.26) and from the fact that the
sequence (w∗m)m≥1 is increasing that

w∗n(ξ) = w∗n.

It remains for us to prove that wn(ξ) = wn. This is clear for n = 1, thus
we assume n ≥ 2. Until the end of this proof, we write A� B when there is
a positive constant c(mj), depending only on mj, such that |A| ≤ c(mj)|B|,
and we write A � B if both A � B and B � A hold. Since H(Pj) � g

mj
j ,

we get from (4.3)

|Pj(ξ)|p = |vj|mj−1
p |ξ − ξj|p

� g
−µj(mj−1)
j g

−νj
j � g

−mj(wmj−w
∗
mj

)

j g
−mj(w∗mj+1)

j

� H(Pj)
−wmj−1.

(4.27)

Since mj = n for infinitely many j, we infer from (4.27) that wn(ξ) ≥ wn. In
order to show that we have equality, let P (X) be an integer polynomial of
degree at most n, which we write as

P (X) = aR1(X) · · ·Rs(X) ·Q1(X) · · ·Qt(X),

where a is an integer and the polynomials Ri(X) and Qj(X) are primitive
and irreducible. We moreover assume that each Ri(X) does not have a root
equal to one of the ξ`s, but that each Qj(X) has a root equal to some ξ`. If
k denotes the degree of the polynomial Ri(X), then, by Lemma 2.4, it has a
root θ satisfying

|Ri(ξ)|p � H(Ri)
1−k|ξ − θ|p � λn H(Ri)

−χk−k+1

= λn H(Ri)
−wk � λn H(Ri)

−wn .
(4.28)

If ` denotes the degree of Qj(X), then (4.27) shows that

|Qj(ξ)|p � H(Qj)
−w`−1 ≥ H(Qj)

−wn−1.

Together with (4.28) and Lemma 0.2, this gives

|P (ξ)|p �
(

H(R1) · · ·H(Rs) H(Q1) · · ·H(Qt)
)−wn−1 � H(P )−wn−1,

and we get wn(ξ) = wn, as claimed.
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Chapter 5

On the difference wn − w∗n

5.1 Introduction and auxiliary results

In this chapter we improve an aspect of Theorem 4.1 showing that for any
n ≥ 3, the range of the function wn − w∗n contains the interval [0, n

4
]. We

achieve that using integer polynomials from Lemma 5.1 having two zeros
very close to each other instead of polynomials from Lemma 4.2. Estimating
the distance between algebraic numbers is done with the help of Lemma
2.5 which unlike Lemma 4.1 has effective constants appearing in the lower
bound. However, the drawback we have to endure in this method is a larger
left endpoint of interval for wn. More importantly, we can construct p-adic
numbers ξ with prescribed values for w∗n(ξ) and wn(ξ) for only one (or, with
a modification, finitely many) positive integer n at a time. This is in stark
contrast to the situation in Theorem 4.1 where we succeeded in constructing
p-adic numbers ξ with prescribed value for w∗n(ξ) and wn(ξ) for all positive
integers n ≥ 3.

Following [4], we give full proof of Theorem 5.1 although it has many
lines similar to the proof of Theorem 4.1 we did in the previous chapter.

At the end of this chapter, we briefly mention the case n = 1. We also
examine the case n = 2, proving that the difference w2 − w∗2 can take any
value from the interval [0, 1[ which is essentially best possible.

Lemma 5.1. Let n ≥ 3 and a ≥ 1 be integers. If p is an odd prime, then let
d be the smallest prime in the arithmetic progression p− 1, 2p− 1, 3p− 1, . . ..
If p = 2, we set d = 15. The polynomial

Pn,a(X) := Xn + d(X − p2a)2

is irreducible and has two roots δ1(n, a), δ2(n, a) ∈ Qp which are very close to
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each other, namely

|δ1(n, a)− δ2(n, a)|p = |δ1(n, a)− p2a|p = |δ2(n, a)− p2a|p

=

{
p−na if p 6= 2

2−na−1 if p = 2

�p H(Pn,a)
−n

4 .

Every other root δ ∈ Cp of Pn,a(X) satisfies

|δ|p = |δ − p2a|p = 1.

Remark 5.1. We do not explicitly note the dependence of the polynomial
Pn,a(X) on d, since it is uniquely determined by p and we presuppose that
the prime number p is fixed from the start.

Proof. The polynomial Pn,a(X) is irreducible over Q because of Eisenstein’s
criterion. We write P (X) instead of Pn,a(X) for convenience.

By introducing the substitution Y = (X − p2a)/pna or X = pnaY + p2a

and letting Q(Y ) = P (X)/p2na, we get

Q(Y ) =
1

p2na
P (pnaY + p2a) = (p(n−2)aY + 1)n + dY 2.

Hence, we have Q(Y ) ∈ Z[Y ] and

Q′(Y ) = np(n−2)a(p(n−2)aY + 1)n−1 + 2dY.

First we deal with the situation when p is an odd prime. Then Q(±1) ≡
1 − 1 ≡ 0 (mod p) while Q′(±1) ≡ 2d(±1) ≡ ∓2 6≡ 0 (mod p). Hensel’s
Lemma 0.5 now shows that Q(Y ) has two roots δ̃1(n, a) ∈ −1 + pZp and
δ̃2(n, a) ∈ 1+pZp. Therefore, P (X) has roots δi(n, a) = pnaδ̃i(n, a)+p2a ∈ Qp

(i = 1, 2) which obviously satisfy the assertions of this lemma.
If p = 2, then

Q(Y ) = (2(n−2)aY + 1)n + 15Y 2,

Q′(Y ) = n2(n−2)a(2(n−2)aY + 1)n−1 + 30Y.

It is manifest that we have to use the general form of Hensel’s Lemma 0.5.
So putting α0 = 1 and β0 = 15, we calculate

|Q(α0)|2 = |Q(1)|2 = |16|2 =
1

16
,

|Q′(α0)
2|2 = |Q′(1)|22 = |30|22 =

1

4
> |Q(1)|2,

|Q(β0)|2 = |Q(15)|2 = |1 + 153|2 = |3376|2 =
1

16
,

|Q′(β0)
2|2 = |Q′(15)|22 = |30 · 15|22 =

1

4
> |Q(15)|2.
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Now, Lemma 0.5 implies that there exist α, β ∈ Z2 such that

|α− α0|2 ≤
∣∣∣∣ Q(α0)

Q′(α0)2

∣∣∣∣
2

⇔ |α− 1|2 ≤
1

4
and

|β − β0|2 ≤
∣∣∣∣ Q(β0)

Q′(β0)2

∣∣∣∣
2

⇔ |β − 15|2 ≤
1

4

Therefore,

|α− β|2 ≤ max{|α− 1|2︸ ︷︷ ︸
≤ 1

4

, |β − 15|2︸ ︷︷ ︸
≤ 1

4

, |1− 15|2︸ ︷︷ ︸
= 1

2

} ⇒ |α− β|2 =
1

2
,

which shows that Q(Y ) has two roots δ̃1(n, a) = α and δ̃2(n, a) = β, both
in 1 + 2Z2, with |δ̃1(n, a) − δ̃2(n, a)|2 = 1

2
. Thus, P (X) has roots δi(n, a) =

2naδ̃i(n, a) + 22a ∈ Q2 (i = 1, 2) which satisfy the assertions of this lemma.
We continue the proof without having to distinguish primes p any more.

To show that the other roots of P (X) are “far enough” apart, we look at the
Newton polygon of Q(Y ). For the polynomial

Q(Y ) = (p(n−2)aY + 1)n + dY 2

= 1 + np(n−2)aY + (

(
n

2

)
p2(n−2)a + d)Y 2 +

(
n

3

)
p3(n−2)aY 3 + · · ·+ pn(n−2)aY n

= 1 +
n∑
i=1

aiY
i,

we have vp(ai) ≥ i(n− 2)a for i 6= 2 and vp(a2) = 0, so the Newton polygon
of Q(Y ) is as shown below.
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Since there are two different slopes on it, λ = 0 of length 2 and λ = na
of length n − 2, we conclude that there are two roots of Q(Y ) with p-adic
absolute value 1. These are exactly δ̃1(n, a) and δ̃2(n, a), while if δ̃ is any of
the other n− 2 roots, we have |δ̃|p = pna. Substituting back, we get that for
every root δ of P (X) different from δ1(n, a) and δ2(n, a) it holds

|δ|p = |pnaδ̃ + p2a|p = 1 and likewise |δ − p2a|p = 1.

5.2 Main theorem and central part of its proof

Theorem 5.1 asserts the existence of p-adic numbers with special properties.

Theorem 5.1. Let n ≥ 3 be an integer and set F (n) = 2n3 + 2n2 + 3n. Let
wn and w∗n be real numbers such that

w∗n ≤ wn ≤ w∗n +
n

4
, wn > F (n). (5.1)

Then there exist ξ ∈ Qp such that

w∗n(ξ) = w∗n and wn(ξ) = wn.

Proposition 5.1 below gives an explicit inductive construction of sequences
(ξj)j≥1 of p-adic algebraic numbers of degree n. It will later be proved that
such carefully selected sequences converge to p-adic numbers having the prop-
erties stated in Theorem 5.1. We use in the next proposition the same nota-
tion as in Lemma 5.1, namely we denote by δ1(n, a) the root of the polynomial
defined in that lemma.

Proposition 5.1. Let n ≥ 3 be an integer and let µ, ν be real numbers with
0 ≤ µ ≤ n/4 and ν > 1. Set H(n) = 2n3 + 2n2 + 2n + 1 and let χ > H(n)
be a real number.

Then there exist a positive number λ < 1/2, an increasing sequence of
integers g1 ≥ 5, g2, . . ., and a sequence of integers c1, c2, . . . such that the
following conditions are satisfied, where we have set γj := δ1(n, bµ logp gjc)
for any integer j ≥ 1:
(Ij) cj ∈ [gj/2, gj].
(II1) ξ1 = −c1 + γ1.
(IIj) ξj = −cj + γj belongs to the annulus Ij−1 ⊆ Qp defined by

1

2p
g−νj−1 ≤ |x− ξj−1|p < g−νj−1.
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(III1) |ξ1 − α|p ≥ 2λH(α)−χ for any algebraic number α 6= ξ1 of degree
≤ n.
(IIIj) |ξj − α|p ≥ λH(α)−χ for any algebraic number α 6∈ {ξ1, . . . , ξj} of
degree ≤ n (j ≥ 2).

Proof. To simplify the notation, in what follows, we denote by α an algebraic
number of degree ≤ n. Let ε be a positive number such that

χ > 2n3 + 2n2 + 2n+ 1 + 2n2ε. (5.2)

In order to prove this proposition, we add three extra conditions (IVj), (Vj)
and (V Ij) which should be satisfied by the numbers ξj.

Set

Jj := {x ∈ Ij : |x− α|p ≥ 2λH(α)−χ for any algebraic α

of degree ≤ n, α 6= ξ1, . . . , ξj, x, H(α) ≥ (λgνj )1/χ}.

The extra conditions are:
(IVj) ξj ∈ Jj−1 (j ≥ 2).

(Vj) H(α) ≤ g
1/(n+1+ε)
j ⇒ |ξj − α|p ≥ 1/gj (j ≥ 1).

(V Ij) µ(Jj) ≥ µ(Ij)/2 (j ≥ 1).
Here as before, µ denotes the Haar measure.

We construct the numbers ξ1, ξ2, . . . by induction with description of steps
the same as before (cf. [4, 7]). At the j-th stage, there are two steps. Step
(Aj) consist in building an algebraic number

ξj = −cj + γj

satisfying conditions (Ij) to (Vj). In step (Bj), we show that the number ξj
constructed in (Aj) satisfies (V Ij) as well, provided that gj is chosen large
enough in terms of

n, µ, ν, χ, ε, λ, ξ1, . . . , ξj−1. (5.3)

The symbols o, � and � used throughout steps (Aj) and (Bj) mean that
the numerical implicit constants depend (at most) on quantities (5.3). Fur-
thermore, the symbol o implies ‘as gj tends to infinity’.

Note that we will have cj ∈ [gj/2, gj].
Step (A1) is easy. There are � g1 possible numbers ξ1 = −c1 + γ1 and

since 0 < c1 ≤ g1, the distance between such numbers is

|(−c′1 + γ1)− (−c′′1 + γ1)|p = |c′1 − c′′1|p >
1

g1

. (5.4)
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There are only o(g1) algebraic numbers α of degree at most n satisfying

H(α) ≤ g
1/(n+1+ε)
1 , so we are able to choose ξ1 such that (V1) is satisfied.

Moreover, by Lemma 2.5, we have

|ξ1 − α|p ≥ 2λH(α)−n

with λ = c(n, n) H(ξ1)
−n/2, for any algebraic number α 6= ξ1 of degree at

most n. Thus (I1), (II1), (III1) and (V1) are satisfied.
Let j ≥ 2 be an integer and assume that ξ1, . . . , ξj−1 have been con-

structed. Step (Aj) is much harder to verify, since we have no control on the
set Jj−1. Thus, it is difficult to check that the condition (IVj) holds, so we
introduce a new set J ′j−1 which contains Jj−1.

Set ξj = −cj + γj for some positive integers gj > gj−1 and cj ∈ [gj/2, gj]
and denote by J ′j−1 the set of p-adic numbers x in Ij−1 satisfying |x −
α|p ≥ 2λH(α)−χ for any algebraic number α of degree ≤ n, distinct from
ξ1, . . . , ξj−1, x and whose height H(α) satisfies the inequalities

(λgνj−1)
1/χ ≤ H(α) ≤

(
c(n)−1g2n2

j )1/(χ−n), (5.5)

where c(n) is a constant depending only on n which will be defined in a
moment. Since, by (5.2), we have

χ− n > 2n2(n+ 1), (5.6)

the exponent of gj in the right of (5.5) is strictly less than 1/(n+ 1). Thus,
there are o(gj) algebraic numbers α satisfying (5.5). We will prove that for
gj large enough we have� gj suitable choices for cj such that the conditions
(Ij) to (IVj) are fulfilled.

Exactly the same argument as in the proof of Proposition 4.1 is applied to
show that µ(J ′j−1)� 1 (which is a consequence of J ′j−1 ⊃ Jj−1 and (V Ij−1))
implies that there are � gj possible numbers ξj = −cj + γj ∈ J ′j−1. These
numbers trivially satisfy (IIj) and we will prove that they also satisfy (IVj)
for gj large enough.

Let α be an algebraic number of degree ≤ n. We have

H(γj) = H
(
δ1(n, bµ logp gjc)

)
= dp4bµ logp gjc ≤ dgnj

and Lemma 0.3 gives

H(ξj) = H(−cj + γj) ≤ 2n+1 H(γj) max{1, |cj|}n ≤ 2n+1 H(γj)g
n
j ≤ 2n+1dg2n

j .

We infer from Lemma 2.5 that there exist positive constants c̃(n) and c(n)
such that

|ξj − α|p ≥ c̃(n) H(ξj)
−n H(α)−n ≥ c(n)g−2n2

j H(α)−n. (5.7)
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In particular, using 2λ < 1, we have

|ξj − α|p ≥ 2λH(α)−χ (5.8)

as soon as
H(α)χ−n ≥ c(n)−1g2n2

j . (5.9)

This together with the definition of J ′j−1 shows that all our ξj ∈ J ′j−1 also
belong to Jj−1. Therefore, the condition (IVj) is verified.

We are left with � gj suitable algebraic numbers ξj, mutually distant by
at least g−1

j (compare with (5.4)). Only o(gj) algebraic numbers α of degree
at most n satisfy

H(α) ≤ g
1/(n+1+ε)
j , (5.10)

thus there are � gj algebraic numbers ξj such that |ξj − α|p ≥ 1/gj for the
numbers α verifying (5.10). Consequently, there are� gj algebraic numbers
ξj satisfying (Ij), (IIj), (IVj) and (Vj).

We still have to prove that such a ξj also satisfies (IIIj). To this end,
because of (IVj), it suffices to show that

|ξj − α|p ≥ λH(α)−χ

holds for any algebraic number α of degree ≤ n, which is different from
ξ1, . . . , ξj and whose height H(α) satisfies

H(α) < (λgνj−1)
1/χ.

Since the sequence (gt)t≥1 is increasing, we either have

g−ν1 < λH(α)−χ, (5.11)

or there exists an integer t with 2 ≤ t < j such that

g−νt < λH(α)−χ ≤ g−νt−1. (5.12)

In the former case, we infer from (III1) and (5.11) that

|ξj − α|p ≥ |ξ1 − α|p − |ξj − ξ1|p ≥ 2λH(α)−χ − g−ν1 > λH(α)−χ.

In the latter case, (IVt) and (5.12) yield that

|ξj − α|p ≥ |ξt − α|p − |ξj − ξt|p ≥ 2λH(α)−χ − g−νt > λH(α)−χ.

Thus condition (IIIj) holds and the proof of step (Aj) is completed.
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Before going on with the step (Bj), let us mention that the integer cj is
far from being uniquely determined. Indeed, at any step j we have � gj
suitable choices for ξj which shows that the construction actually gives an
uncountable set of numbers.

Let j ≥ 1 be an integer. For the proof of step (Bj), we first establish that
if gj is large enough and if x lies in Ij, then we have

|x− α|p ≥ 2λH(α)−χ (5.13)

for any algebraic number α 6= ξj of degree ≤ n such that

(λgνj )1/χ ≤ H(α) ≤ g
ν/(χ−n−1−ε)
j . (5.14)

Let, then, α 6= ξj be an algebraic number of degree ≤ n satisfying (5.14) and
let x be in Ij, that is, such that

1

2p
g−νj ≤ |x− ξj|p < g−νj . (5.15)

If ν(n + 1 + εn) ≤ χ − n − 1 − ε, then H(α) ≤ g
1/(n+1+ε)
j and it follows

from (Vj), (5.14), (5.15) and the assumption ν > 1 that

|x− α|p ≥ |ξj − α|p − |ξj − x|p ≥ g−1
j − g−νj ≥ 2g−νj ≥ 2λH(α)−χ, (5.16)

provided that gj is large enough.
Otherwise, we have

ν(n+ 1 + ε) > χ− n− 1− ε, (5.17)

and, by (5.7), we get

|x− α|p ≥ |ξj − α|p − |ξj − x|p
≥ c(n)g−2n2

j H(α)−n − g−νj
≥ c(n)g−2n2

j H(α)−n/2.

(5.18)

The last inequality holds if

2g−νj ≤ c(n)g−2n2

j H(α)−n. (5.19)

In view of (5.14), inequality (5.19) is true as soon as

2g
nν/(χ−n−1−ε)
j ≤ c(n)gνj g

−2n2

j ,
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which, by (5.17), holds for gj large enough when

n

χ− n− 1− ε
< 1− 2n2 n+ 1 + ε

χ− n− 1− ε
, (5.20)

and in particular when χ satisfies (5.2). Furthermore, we have

c(n)g−2n2

j H(α)−n ≥ 4λH(α)−χ. (5.21)

Indeed, by (5.14), λ < 1, and (5.17), we get

H(α)χ−n ≥ (λgνj )(χ−n)/χ ≥ λg
(χ−n)(χ−n−1−ε)/(χn+χ+χε)
j

≥ 4λc(n)−1g2n2

j ,

since we infer from (5.2) that

(χ− n)(χ− n− 1− ε) > 2χn2(n+ 1 + ε). (5.22)

Combining (5.18) and (5.21), we have verified that

|x− α|p ≥ 2λH(α)−χ

holds under assumption (5.17). By (5.16), this implies that (5.13) is true if
α satisfies (5.14) and is not equal to ξj. Consequently, for gj large enough,
the complement J cj of Jj in Ij is contained in the union of the balls

B(α, 2λH(α)−χ),

where α ∈ Qp runs over the algebraic numbers of degree ≤ n and height

greater than g
ν/(χ−n−1−ε)
j . The Haar measure of J cj is then

�
∑

H>g
ν/(χ−n−1−ε)
j

Hn−χ = o(g−νj ) = o(µ(Ij)).

Thus, we conclude that we can find gj large enough such that µ(Jj) ≥
µ(Ij)/2. This completes step (Bj) as well as proof of Proposition 5.1.

At this moment, we can recap where the condition χ > 2n3 +2n2 +2n+1
was used. There are three steps where it was needed, namely (5.6), (5.20)
and (5.22). Asymptotically, these three inequalities reduce, respectively, to
χ− n > 2n2(n + 1), χ− n− 1 > 2n2(n + 1) + n, and (χ− n)(χ− n− 1) >
2χn2(n + 1). The most restricting condition is given by (5.20), hence, our
assumption on χ.
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5.3 Proof of Theorem 5.1

Let wn and w∗n be two real numbers fulfilling the conditions of Theorem
5.1. We will define numbers which are needed to apply Proposition 5.1. Set
µ = wn − w∗n ∈ [0, n/4], ν = n(w∗n + 1) and finally, set χ = wn − n + 1, so
that χ > H(n) = 2n3 + 2n2 + 2n+ 1.

Let λ and ξ1, ξ2, . . . be as in Proposition 5.1 and denote by ξ ∈ Qp the
limit of the Cauchy sequence (ξj)j≥1.

The constants implied in � and � of this section depend at most on p
and n. Our choice of γj implies that the minimal polynomial of ξj over Z is

Qj(X) := (X + cj)
n + d

(
(X + cj)− p2bµ logp gjc

)2
.

This polynomial is indeed primitive and irreducible by the first statement of
Lemma 5.1.

Since cj ∈ [gj/2, gj] and µ ≤ n/4, we have H(ξj) = H(Qj) � gnj . More-
over, for any j ≥ 1

|ξ − ξj|p ∈ [
1

2p
g−νj , g−νj [

and we deduce that

|ξ − ξj|p � H(ξj)
−ν/n � H(ξj)

−w∗n−1. (5.23)

Further, if α is of degree ≤ n and is not one of the ξj’s, then |ξ − α|p ≥
λH(α)−χ, whence

|ξ − α|p ≥ H(α)−w
∗
n−1 (5.24)

since χ ≤ w∗n + 1. It follows from (5.23), (5.24) and our remarks on the
definition of w∗n(ξ) from §4.1 that w∗n(ξ) = w∗n.

It now remains to prove that wn(ξ) = wn. Denote by ξj = βj1, . . . , βjn
the roots of Qj(X), numbered in such a way that βj2 is closest to ξj. Denote
by δ3, . . . , δk the roots of Pn,bµ logp gjc(X) other than δi(n, bµ logp gjc), i = 1, 2.
Then using Lemma 5.1, we get

|ξj − βj2|p = |(−cj + γj)− (−cj + δ2(n, bµ logp gjc))|p
= |δ1(n, bµ logp gjc)− δ2(n, bµ logp gjc)|p
= p−nbµ logp gjc � g−nµj

and
|ξj − βjk|p = |γj − δk|p = 1, for k ≥ 3.
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Keeping in mind that |ξ − βj2|p = |ξj − βj2|p since |ξj − βj2|p > |ξ − ξj|p, we
arrive at

|Qj(ξ)|p = |ξ − ξj|p|ξ − βj2|p
∏

3≤k≤n

|ξ − βjk|p

� H(ξj)
−w∗n−1g−nµj

� H(Qj)
−w∗n−µ−1.

We see that
wn(ξ) ≥ w∗n + µ. (5.25)

Now we will show that (5.25) is indeed an equality. Let P (X) be an
integer polynomial of degree ≤ n which is not a multiple of some Qj(X).
Write

P (X) = aR1(X) · · ·Rs(X),

where a is an integer and the polynomialsRi(X) are primitive and irreducible.
Since Ri(ξ) 6= 0, if k denotes the degree of the polynomial Ri(X), then by
Lemma 2.4, this polynomial has a root θ satisfying

|Ri(ξ)|p � H(Ri)
1−k|ξ − θ|p � λH(Ri)

−χ−k+1 � λH(Ri)
−wn . (5.26)

Consequently, it follows from (5.26) and Gelfond’s Lemma 0.2 that

|P (ξ)|p �
(

H(R1) · · ·H(Rs)
)−wn � H(P )−wn

and we get wn(ξ) = wn as claimed.

5.4 The case n = 1

Solely for completeness, we include the following proposition which deals
with the case n = 1.

Proposition 5.2. For every ξ ∈ Qp \Q we have w1(ξ) = w∗1(ξ) ≥ 1. More-
over, for every w ∈ [1,+∞], there are uncountably many ξ ∈ Qp such that
w1(ξ) = w∗1(ξ) = w.

Proof. The lower bound w1(ξ) ≥ 1 follows from the general case proved by
Mahler [21] and is basically a consequence of Dirichlet’s pigeonhole principle.

The equality w1(ξ) = w∗1(ξ) is obtained from the inequality w1(ξ) ≥
w∗1(ξ), which is trivial in this case, and the reversed inequality, which becomes
obvious if we notice that for a reduced fraction a/b ∈ Q such that |ξ−a/b|p <
|ξ|p, we have |a/b|p = |ξ|p and therefore min{|a|p, |b|p} ≥ min{|ξ|p, 1/|ξ|p}.

The second part of this proposition is deduced for example during com-
putation of Hausdorff dimension of sets {ξ ∈ Qp : wn(ξ) = w}, w ≥ n, see
[7, Theorem 9.6] or [2, §6].
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If w > 1+
√

5
2

, we can give a simple construction of ξ ∈ Qp such that
w∗1(ξ) = w.

Proposition 5.3. Let w > 1+
√

5
2

and

ξ =
∞∑
i=1

aip
b(w+1)ic ∈ Qp,

where ai ∈ {1, . . . , p− 1} for all i ≥ 1. Then w1(ξ) = w∗1(ξ) = w.

Proof. Take any w > 1+
√

5
2

and let ξk =
∑k

i=1 aip
b(w+1)ic. All the implicit

constants in � and � in this proof depend at most on p. Since

|ξ − ξk|p = p−b(w+1)k+1c � ξ−w−1
k

for any k ≥ 1, we have w∗1(ξ) ≥ w.
For a reduced fraction a/b ∈ Q whose height is large enough, let l ≥ 1 be

such that
ξl ≤ H(a/b) < ξl+1.

Suppose that ∣∣∣ξ − a

b

∣∣∣
p

= H
(a
b

)−ν
,

where ν > w + 1. We have

|ξ − ξl|p = |ξl+1 − ξl|p = p−b(w+1)l+1c � ξ−w−1
l ,

|ξ − ξl+1|p = p−b(w+1)l+2c � ξ−w−1
l+1 � ξ

−(w+1)2

l .

Therefore,

1

|b|ξl + |a|
≤
∣∣∣bξl − a

b

∣∣∣
p

=
∣∣∣ξl − a

b

∣∣∣
p
≤ max{|ξ − ξl|p,

∣∣∣ξ − a

b

∣∣∣
p
} (5.27)

� max{ξ−w−1
l ,H(a/b)−ν} = ξ−w−1

l and

1

|b|ξl+1 + |a|
≤
∣∣∣ξl+1 −

a

b

∣∣∣
p
≤ max{|ξ − ξl+1|p,

∣∣∣ξ − a

b

∣∣∣
p
} (5.28)

� max{ξ−w−1
l+1 ,H(a/b)−ν}.

From (5.27) we get

ξw+1
l � |b|ξl + |a| � H(a/b)(ξl + 1)� H(a/b)ξl, i.e.

ξwl � H(a/b). (5.29)
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From (5.28) we get

min{ξw+1
l+1 ,H(a/b)ν} � |b|ξl+1 + |a| � H(a/b)ξl+1.

Since ξwl+1 � H(a/b) does not hold, we must have

H(a/b)ν � H(a/b)ξl+1, i.e.

H(a/b)� ξ
1

ν−1

l+1 � ξ
1
w
l+1 � ξ

w+1
w

l . (5.30)

If there is an infinite sequence ak
bk
∈ Q such that

lim sup
k→∞

− log |ξ − ak
bk
|p

log H(ak/bk)
> w,

then H(ak/bk) → ∞ when k → ∞ and we conclude from (5.29) and (5.30)

that w ≤ w+1
w

which implies w ≤ 1+
√

5
2

, contrary to our choice of w.
Hence, it must hold that w∗1(ξ) = w.

5.5 On w2 − w∗2
Lemma 5.2. There exists a family of irreducible integer polynomials

Pm(X) = X2 + amX + bm, m ≥ 1

with roots in Qp such that am + 1 ≥ |bm|, am � pm and

sepp(Pm) � H(Pm)−1,

where the implicit constants depend only on p.

Proof. We first examine the case p 6= 2. Let g be the smallest prime such
that g ≡ 1 (mod 4p). Its existence is guaranteed by Dirichlet’s theorem on
primes in arithmetic progressions.

Let

lm =
⌊pm√g

2
+

1

2

⌋
.

Then it is easy to see that

(2lm − 1)2 ≤ p2mg < (2lm + 1)2

and we put am = 2lm − 1 if p2mg ≤ 1
2

(
(2lm − 1)2 + (2lm + 1)2

)
= 4l2m + 1.

Otherwise, we put am = 2lm + 1. Since (2lm + 1)2 − (2lm − 1)2 = 8lm, if we
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now set bm = 1
4
(a2
m − p2mg), it must be |bm| ≤ 1

4
8lm = 2lm ≤ am + 1, while

bm ∈ Z is assured by a2
m ≡ (2lm ± 1)2 ≡ 1 (mod 4) and p2mg ≡ (±1)2m1 ≡ 1

(mod 4).
Hensel’s Lemma 0.5 ensures that the polynomial Q(X) = X2 − g has

roots δ ∈ 1 + pZp and −δ ∈ −1 + pZp. Thus the polynomial

Pm(X) = X2 + amX + bm =
1

4

(
(2X + am)2 − p2mg

)
=
p2m

4
Q
(2X + am

pm

)
has roots −am±p

mδ
2

, which are in Qp and their distance is

sepp(Pm) = |pmδ|p = p−m � a−1
m � H(Pm)−1.

If p = 2, we take lm = b2m
√

17c, and put either am = 2lm or am = 2lm+2

depending for which choice a2
m is closer to 22(m+1)17. Taking b2m = a2

m

4
−22m17,

it can easily be checked that all the claims of this lemma are fulfilled.

We will prove the next theorem which is analogous to a result for the real
numbers from [6].

Theorem 5.2. The set of values taken by the function w2−w∗2 contains the
interval [0, 1[.

In view of (4.1), Theorem 5.2 is essentially best possible. Unfortunately,
our method of proof does not enable us to deduce whether there exist ξ ∈ Qp

such that w2(ξ) = w∗2(ξ) + 1.
The proof of Theorem 5.2 basically follows that of Theorems 4.1 and 5.1.

The key point is the existence of a family of quadratic integer polynomials
from Lemma 5.2 having two p-adic roots very close to each other. We will
not give a full proof of this theorem, but merely explain which lines from the
Proposition 5.1, Theorem 5.1 and their proofs need to be modified beyond
the simple substitution n = 2.

Proposition 5.4. Let µ, ν, χ be real numbers such that µ ∈]1/2, 1[, ν > 1
and χ is sufficiently large with respect to µ, for example χ > 12(2 + µ

1−µ).

Then there exist a positive number λ < 1/2, an increasing sequence of
integers g1, g2, . . ., and a sequence of integers c1, c2, . . . such that the following
conditions are satisfied for any integer j ≥ 1:
(Ij) cj ∈ [gj/2, gj] and γj is one root of polynomial Pmj(X) = X2 +amjX+

bmj from Lemma 5.2 where mj is such that amj � g
µ

1−µ
j .

(II1) ξ1 = −c1 + γ1.
(IIj) ξj = −cj + γj belongs to the annulus Ij−1 ⊆ Qp defined by

1

2p
g−νj−1 ≤ |x− ξj−1|p < g−νj−1.
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(III1) |ξ1 − α|p ≥ 2λH(α)−χ for any algebraic number α 6= ξ1 of degree
≤ 2.
(IIIj) |ξj − α|p ≥ λH(α)−χ for any algebraic number α 6∈ {ξ1, . . . , ξj} of
degree ≤ 2 (j ≥ 2).

Proof (sketch). For ease of writing, denote τ = 2 + µ
1−µ . The main difference

from the proof of Proposition 5.1 is that inequalities (5.9) no longer hold.
Therefore, we need to make the following modifications:

(λgνj−1)
1/χ ≤ H(α) ≤

(
c(µ)−1g2τ

j )1/(χ−2) (5.5’)

χ− 2 > 6τ (5.6’)

H(ξj) ≤ 8 H(γj)g
2
j < ĉ(µ)gτj

|ξj − α|p ≥ c̃H(ξj)
−2 H(α)−2 ≥ c(µ)g−2τ

j H(α)−2 (5.7’)

H(α)χ−2 ≥ c(µ)−1g2τ
j (5.9’)

|x− α|p ≥ c(µ)g−2τ
j H(α)−2/2 (5.18’)

2g−νj ≤ c(µ)g−2τ
j H(α)−2 (5.19’)

2

χ− 3− ε
< 1− 2τ

3 + ε

χ− 3− ε
(5.20’)

c(µ)g−2τ
j H(α)−2 ≥ 4λH(α)−χ (5.21’)

(χ− 2)(χ− 3− ε) > 2τχ(3 + ε) (5.22’)

We see that for example χ > 12τ = 12(2 + µ
1−µ) satisfies all the conditions

(5.6’) (5.20’), (5.22’) for ε small enough, say 0 < ε < 1.

Proof of Theorem 5.2 (sketch). The function w2−w∗2 certainly takes all val-
ues from [0, 1/2] according to Theorem 4.1, so we are only concerned with
the interval ]1/2, 1[. Pick µ from that interval, χ large enough, w2 ≥ χ + 1,
w∗2 = w2 − µ and ν = 1

1−µ(w∗2 + 1). Apply Proposition 5.4 and set ξ =
limj→∞ ξj ∈ Qp.

The minimal polynomial of ξj over Z is

Qj(X) := Pmj(X + cj) = (X + cj)
2 + amj(X + cj) + bmj .

Noting that we employ the usual notation for algebraic conjugates and that
the implicit constants in � depend only on p and µ, it holds

H(ξj) = H(Qj) � cj max{amj , cj} � cjamj � g
1

1−µ
j
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since amj � g
µ

1−µ
j , cj � gj and µ ∈]1/2, 1[. Also,

|ξ − ξj|p � g−νj � H(ξj)
−w∗2−1,

|ξ − ξ′j|p = |ξj − ξ′j|p = |γj − γ′j|p = sepp(Pmj) � a−1
mj
,

|Qj(ξ)|p = |ξ − ξj|p|ξ − ξ′j|p � H(ξj)
−w∗2−1a−1

mj
� H(Qj)

−w∗2−µ−1.

Therefore, w2(ξ) ≥ w∗2 + µ = w2 and the rest of the proof, just like all the
details, is the same as the proof of Theorem 5.1.
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Chapter 6

Some results on w∗n

Mahler proved in [20] that his classification of real numbers has the property
that every two algebraically dependent numbers belong to the same class. In
order to prove this basic property he showed that if ξ and η are transcendental
real numbers such that P (ξ, η) = 0 for an irreducible polynomial P (x, y) ∈
Z[x, y] of degree M in x and N in y, then the inequalities

wn(ξ) + 1 ≤M(wnN(η) + 1) and wn(η) + 1 ≤ N(wnM(ξ) + 1) (6.1)

are valid for every positive integer n. Schmidt [29, (4), p. 276] showed that
these conditions also imply inequalities

w∗n(ξ) + 1 ≤M(w∗nN(η) + 1) and w∗n(η) + 1 ≤ N(w∗nM(ξ) + 1), (6.2)

i.e. the analogous inequalities we get when Mahler’s function wk is replaced
with Koksma’s function w∗k.

Mahler himself [21] proved the inequalities (6.1) under analogous condi-
tions in the p-adic setting. We will establish in this chapter a p-adic version
of (6.2). Let us mention that our proof is in different fashion from what
Mahler did in [21] and is more in vein with [29].

Our first lemma is valid for every algebraic number, whether we take it
from C or Cp.

Lemma 6.1. Let α be an algebraic number of degree n and let

P (x) = anx
n + · · ·+ a0 = an(x− α)(x− α2) · · · (x− αn)

be its minimal polynomial over Z. Then if k1, . . . , kt are distinct numbers
among 1, . . . , n, the number anαk1 · · ·αkt is an algebraic integer.

Proof. See [31, Hilfssatz 17, p. 77].
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The second lemma deals with the standard representation of symmetric
polynomials through elementary symmetric polynomials but with an impor-
tant observation that will later be required.

Lemma 6.2. Let P (t1, . . . , tk) ∈ Z[t1, . . . , tk] be a homogeneous symmetric
polynomial. Denote

degt1 P = · · · = degtk P = d.

There exists a unique polynomial Q(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

P (t1, . . . , tk) = Q(s1, . . . , sk),

where si = si(t1, . . . , tk) (1 ≤ i ≤ k) are elementary symmetric polynomials
of t1, . . . , tk. For every monomial si11 · · · s

ik
k in Q(s1, . . . , sk), we have i1 +

· · ·+ ik ≤ d.

Proof. See [19, Theorem 6.1, §IV.6, p. 191], [14, Theorem 3.3.1, p. 25], [11,
Exercise 13, §7.1, p. 326].

Now we prove the announced result.

Theorem 6.1. Let ξ, η ∈ Qp be two transcendental numbers which are al-
gebraically dependent. Suppose P (x, y) ∈ Z[x, y] is a non-zero polynomial
irreducible over Q, of degree M in x and degree N in y such that P (ξ, η) = 0.
Then for every positive integer n, it holds

w∗n(ξ) + 1 ≤M(w∗nN(η) + 1) and w∗n(η) + 1 ≤ N(w∗nM(ξ) + 1).

Proof. Of course, it is enough to prove only the first inequality since the
second follows by interchanging ξ and η.

Fix a positive integer n. It is not hard to see from Lemma 0.3 that for
any integer l 6= 0 we have w∗n(ξ) = w∗n(lξ) and w∗n(η) = w∗n(lη). Hence, by
taking l to be a large power of p and multiplying the polynomial P (x, y) by
the appropriate power of p, we see that without loss of generality we can
suppose ξ, η ∈ Zp.

The partial derivatives of P (x, y) do not vanish at (ξ, η). Suppose to the
contrary that ∂

∂y
P (x, y) vanishes at (ξ, η). By considering P (ξ, y) as a poly-

nomial in y with coefficients in Q(ξ), one sees that P (ξ, y) = P ∗1 (ξ, y)P ∗2 (ξ, y),
where P ∗1 (ξ, y), P ∗2 (ξ, y) are polynomials of positive degree in y, with coeffi-
cients in Q(ξ). Since ξ is transcendental, Q(ξ) is isomorphic to Q(x), so in
fact we have P (x, y) = P ∗1 (x, y)P ∗2 (x, y), where P ∗1 (x, y), P ∗2 (x, y) ∈ Q(x)[y].
But Q(x) is the fraction field of Q[x], so by Gauss’s Lemma 0.1 we can
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find polynomials P1(x, y), P2(x, y) ∈ Q[x, y] of positive degree in y and with
P (x, y) = P1(x, y)P2(x, y). This contradicts the irreducibility of P (x, y).

Let H > 1 and suppose β ∈ Qp is an algebraic number with deg(β) ≤ n,
H(β) ≤ H such that w∗n(ξ,H) = |ξ − β|p. Obviously, if H is large enough,
w∗n(ξ,H) becomes as small as we want, and since ξ ∈ Zp, we can assume
β ∈ Zp as well. Since P (x, y) and ∂

∂y
P (x, y) are polynomials, there exist ε,

c1, c2 all positive real numbers depending only on P (x, y) (in other words,
only on ξ and η) such that for any u ∈ Qp

|u− ξ|p < ε ⇒


|P (u, η)|p = |P (u, η)− P (ξ, η)|p < c1|u− ξ|p,∣∣∣∣ ∂∂yP (u, η)− ∂

∂y
P (ξ, η)

∣∣∣∣
p

<
1

2

∣∣∣∣ ∂∂yP (ξ, η)

∣∣∣∣
p

= c2 > 0.

If we take H large enough, we get

|ξ − β|p < min
{
ε,
c22
2c1

}
,

which implies

|P (β, η)|p < c1|β − ξ|p <
c22
2

and

∣∣∣∣ ∂∂yP (β, η)

∣∣∣∣
p

> c2.

Therefore, ∣∣∣∣∣ P (β, η)(
∂
∂y
P (β, η)

)2
∣∣∣∣∣
p

<
1

2

and if we look at P (β, y) as a polynomial in y, we see that the conditions
of Lemma 0.5 are fulfilled. This lemma implies there is a β′ ∈ Zp such that
P (β, β′) = 0 and

|β′ − η|p ≤

∣∣∣∣∣ P (β, η)(
∂
∂y
P (β, η)

)2
∣∣∣∣∣
p

<
c1
c22
|β − ξ|p � |β − ξ|p = w∗n(ξ,H),

where the implied constants in � and � everywhere they appear in this
proof depend at most on ξ, η and n.

Let Q(x) = ak(x − β1) · · · (x − βk) (k ≤ n) be the minimal polynomial
of β = β1 over Z. The number β′ is a root of the polynomial P (β, y) in y,
hence a root of the polynomial

R(y) = aMk P (β1, y)P (β2, y) · · ·P (βk, y).
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The polynomial P (β, y) is not identically zero, since P (x, y) would otherwise
be divisible by the minimal polynomial of β. Thus R(y) is not identically
zero. The coefficients of R(y) are linear combinations with rational integer
coefficients of terms of the type

aMk
∑
σ

βi1σ(1) · · · β
ik
σ(k),

where the sum is taken over all permutations σ of {1, . . . , k} while 0 ≤ ij ≤
M for 1 ≤ j ≤ k. But, because of Lemma 6.2 and Vietè’s formulas for
the polynomial Q(x), such terms are rational integers themselves and �
H(Q)M ≤ HM . Therefore, R(y) ∈ Z[y] and H(R) � HM . Since R(β′) = 0,
we see that β′ is algebraic and its minimal polynomial over Z is a factor of
R(y). Using Gauss’s Lemma 0.1 and Gelfond’s Lemma 0.2, we get that this
minimal polynomial also has coefficients � HM . Hence H(β′) � HM , say
H(β′) ≤ cHM . Thus

w∗nN(η, cHM) ≤ w∗kN(η, cHM) ≤ |η − β′|p � w∗n(ξ,H)⇒

w∗nN(ξ) + 1 = lim sup
H→∞

− log(w∗nN(ξ, cHM))

log(cHM)

≥ 1

M
lim sup
H→∞

− log(w∗n(ξ,H))

logH
=

1

M
(w∗n(ξ) + 1).

We are able to show that the inequalities in (6.2) are sharp at least in a
very special situation.

Proposition 6.1. Let k ≥ 1 be an integer, w be a real number such that

w > −1 + k +
k2 + k

√
k2 + 4k

2

and

ξ = a0 +
∞∑
i=1

aip
b(w+1)ic ∈ Qp,

where ai ∈ {1, . . . , p−1} for all i ≥ 0. Then w∗1(ξ) = w and w∗1(ξk) = w+1
k
−1.

Proof. It has been shown in Proposition 5.3 that w∗1(ξ) = w. We claim that
w∗1(ξk) = w+1

k
− 1 and, thus,

w∗1(ξ) + 1 = k
(
w∗1(ξk) + 1

)
,
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so that inequality (6.2.i) becomes an equality for this special choice of η = ξk

and n = 1.
Using similar notation as in Proposition 5.3, we have

|ξk − ξkl |p = |(ξl + ρlp
b(w+1)l+1c)k − ξkl |p

� p−b(w+1)l+1c

� ξ
−(w+1)
l � (ξkl )−

w+1
k ,

with ρl being some element in Zp \ pZp and constants in � depending only
on p and k. Hence,

w∗1(ξk) ≥ w + 1

k
− 1.

In order to show that the last inequality is actually an equality, we proceed
just like in the proof of Proposition 5.3. Let a/b ∈ Q be a reduced fraction
such that

ξkl ≤ H(a/b) < ξkl+1

and ∣∣∣ξ − a

b

∣∣∣
p

= H
(a
b

)−ν
,

where ν > w+1
k

.
Instead of (5.29), we now have

(ξkl )
w+1
k
−1 ≤ H(a/b)

and instead of (5.30),

H(a/b) ≤ (ξkl )
k(w+1)
w+1−k

where we used the fact that w + 1 > 2k which obviously holds if w satisfies
the conditions of this proposition.

If we had w∗1(ξk) > w+1
k
− 1, we could conclude that

w + 1

k
− 1 ≤ k(w + 1)

w + 1− k
which contradicts the lower bound on w imposed in the statement of this
proposition.

Remark 6.1. Set

ξ = a0 +
∞∑
i=1

ai10−b(w+1)ic ∈ R,

where ai ∈ {1, 2, . . . , 9} for all i ≥ 0 and the same condition on w as in Propo-
sition 6.1. Proceeding completely analogously as in the proof of Proposition
6.1, we get a new example in the real numbers for which equality in (6.2.i)
holds. See also [7, §3.7,§7.7].
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[18] J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzenden-
ten Zahlen und die Approximation komplexer Zahlen durch algebraische
Zahlen, Monatsh. Math. Phys. 48, (1939), 176–189.

[19] S. Lang, Algebra. Revised third edition. Graduate Texts in Mathematics,
211. Springer-Verlag, New York, 2002.

[20] K. Mahler, Zur Approximation der Exponentialfunktion und des Loga-
rithmus. I, II, J. Reine Angew. Math. 166 (1932), 118–150.
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Summary

Polynomial root separation and applications
In this thesis we study bounds on the distances of roots of integer poly-

nomials and applications of such results. Denote by sep(P ) the minimal
distance of roots of the separable integer polynomial P (X) and by H(P )
maximum of the absolute values of its coefficients.

In the first chapter which looks at polynomial roots in the set of complex
numbers, we first summarize results on quadratic and cubic polynomials.
The bulk of this chapter is dedicated to quartic polynomials and especially
reducible monic integer polynomials of fourth degree. We show that for
such polynomials sep(P ) � H(P )−2 but also construct families (Pk(X)) of
such polynomials that have sep(P ) � H(P )−2. The case when coefficients of
Pk(X) are polynomials in k is studied more thoroughly.

In the second chapter different lemmas on roots of polynomials in the
p-adic setting are proved. These lemmas are mostly analogues of the results
in the real and complex case and are used later in the thesis.

In the third chapter explicit families of polynomials of general degree n
are given which bound the exponent above H(P ) from the other side than
sepp(P ) � H(P )−n+1. Results are proved using Newton polygons. Then
the case of quadratic and reducible cubic polynomials in the p-adic setting
is completely solved which shows that the bound above is really attained in
those classes of polynomials. For irreducible cubic polynomials a bound with
a new, better exponent is exhibited.

The rest of the thesis is concerned with results on p-adic versions of
Mahler’s and Koksma’s functions wn and w∗n and the related classifications
of transcendental numbers in Cp.

In the fourth chapter the main result is a construction of numbers such
that the two functions wn and w∗n differ on them for every n. We can even
require wn − w∗n to be a chosen number in some small interval. The proof is
quite involved and follows R. C. Baker’s proof in the real case.

In the fifth chapter the interval of possible values for wn−w∗n is expanded
using an effective estimate for the distance of algebraic numbers and a family
of polynomials with very close roots. The main proof in this chapter follows
the one in the previous chapter, but is a little easier since we restrict ourselves
to one or finitely many n. Special attention is given to cases n = 1 and n = 2.

In the last chapter inequalities linking values of Koksma’s functions for
algebraically dependent numbers are proved.
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Résumé

Séparation des racines des polynômes et applications
Dans cette thèse, nous étudions les bornes sur les distances des racines

des polynômes entiers et les applications de ces résultats. Notons par sep(P )
la distance minimale des racines du polynôme entier séparable P (X) et par
H(P ) le maximum des valeurs absolues de ses coefficients.

Dans le premier chapitre, qui examine les racines des polynômes dans
l’ensemble des nombres complexes, nous avons d’abord résumé les résultats
sur les polynômes quadratiques et cubiques. L’essentiel de ce chapitre est
consacré aux polynômes quartiques et surtout aux polynômes réductibles
normalisés de quatrième degré à coefficients entiers. Nous avons montré que
pour de tels polynômes sep(P ) � H(P )−2, mais aussi construit des familles
(Pk(X)) de tels polynômes qui ont sep(P ) � H(P )−2. Le cas où les coefficients
de Pk(X) sont polynômes en k est étudié plus à fond.

Dans le deuxième chapitre différents lemmes sur les racines des polynômes
en nombres p-adiques sont prouvés. Ces lemmes sont pour la plupart ana-
logues aux résultats dans le cas réel et complexe et sont utilisés plus tard
dans la thèse.

Dans le troisième chapitre sont données les familles explicites de po-
lynômes de degré n qui bornent l’exposant de H(P ) de l’autre côté que
sepp(P ) � H(P )−n+1. Les résultats sont prouvés en utilisant des polygones
de Newton. Ensuite, le cas des polynômes quadratiques et des polynômes cu-
biques réductibles dans les p-adiques est résolu complètement, ce qui montre
que la limite présentée ci-dessus est vraiment atteinte dans ces classes de
polynômes. Pour les polynômes cubiques irréductibles une borne avec un
nouveau et meilleur exposant est fournie.

Le reste de la thèse est dédié aux résultats liés aux versions p-adiques
des fonctions de Mahler et de Koksma wn et w∗n, ainsi qu’aux classifications
correspondantes des nombres transcendants dans Cp.

Dans le quatrième chapitre le résultat principal est une construction des
nombres pour lesquelles les deux fonctions wn et w∗n sont différentes pour
tous les n. Nous pouvons même exiger que wn−w∗n prenne une valeur choisie
dans un certain intervalle de petite taille. La preuve en est assez complexe
et suit celle de R. C. Baker dans le cas réel.

Dans le cinquième chapitre l’intervalle de valeurs possibles pour wn−w∗n
est élargi en utilisant une estimation efficace pour la distance de nombres
algébriques et une famille de polynômes à racines très proches. La principale
preuve dans ce chapitre suit celle du chapitre précédent, mais est quelque
peu plus simple car elle est limitée à un seul, ou à un nombre fini de n. Une
attention particulière est accordée aux cas n = 1 et n = 2.

Dans le dernier chapitre sont prouvées les inégalités reliant les valeurs des
fonctions de Koksma en nombres algébriquement dépendants.
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Sažetak

Separacija korijena polinoma i primjene
U ovoj disertaciji se proučavaju ograde na udaljenosti korijena cjelobroj-

nih polinoma i primjene takvih rezultata. Označimo sa sep(P ) minimalnu
udaljenost korijena separabilnog cjelobrojnog polinoma P (X), a s H(P ) mak-
simum apsolutnih vrijednosti njegovih koeficijenata.

U prvom poglavlju promatraju se korijeni polinoma u skupu kompleksnih
brojeva. Ukratko se donose rezultati o kvadratnim i kubnim polinomima, a
glavnina poglavlja posvećena je polinomima četvrtog stupnja, posebice klasi
reducibilnih normiranih polinoma četvrtog stupnja. Pokazuje se da za takve
polinome vrijedi sep(P )� H(P )−2, ali se i konstruira familija (Pk(X)) takvih
polinoma za koju je sep(P ) � H(P )−2. Detaljnije je proučen slučaj kada su
koeficijeniti od Pk(X) polinomi u k.

U drugom poglavlju dokazane su različite leme o korijenima polinoma
u p-adskom slučaju. Ove su leme većinom analogoni rezultata u realnom i
kompleksnom slučaju, a koriste se kasnije u disertaciji.

U trećem poglavlju dane su eksplicitne familije polinoma općeg stupnja n
koje eksponent iznad H(P ) ograduju s druge strane od sepp(P )� H(P )−n+1.
Rezultate se dokazuje korǐstenjem Newtonovih poligona. Zatim je potpuno
riješen slučaj kvadratnih i reducibilnih kubnih polinoma s korijenima u skupu
p-adskih brojeva. Pokazuje se da se za te klase polinoma gornje ograde zaista
postižu. Dana je i nova ograda s boljim eksponentom za ireducibilne kubne
polinome.

Drugi dio disertacije bavi se rezultatima vezanim uz p-adsku verziju Ma-
hlerovih i Koksminih funkcija wn i w∗n te s njima povezanim klasifikacijama
transcendentnih brojeva u Cp.

U četvrtom poglavlju glavni je rezultat konstrukcija brojeva za koje se
funkcije wn i w∗n razlikuju za svaki prirodan broj n. Može se zahtijevati i da
vrijednost wn − w∗n bude odabrani broj u nekom malom intervalu. Podulji
dokaz slijedi dokaz koji je u realnom slučaju dao R. C. Baker.

U petom poglavlju interval mogućih vrijednosti od wn − w∗n je povećan
korǐstenjem efektivne ocjene za udaljenost algebarskih brojeva i familija po-
linoma s vrlo bliskim korijenima. Glavni dokaz u ovom poglavlju slijedi onaj
iz prethodnog, ali je nešto jednostavniji jer se ograničuje na samo jedan ili
konačno mnogo brojeva n. Posebna pozornost dana je slučajevima n = 1 te
n = 2.

U posljednjem poglavlju dokazane su nejednakosti koje povezuju vrijed-
nosti Koksminih funkcija za algebarski zavisne brojeve.
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We study bounds on the distances of roots of integer polynomials and applications of
such results. The separation of complex roots for reducible monic integer polynomials
of fourth degree is thoroughly explained. Lemmas on roots of polynomials in the p-adic
setting are proved. Explicit families of polynomials of general degree as well as families
in some classes of quadratic and cubic polynomials with very good separation of roots
in the same setting are exhibited. The second part of the thesis is concerned with
results on p-adic versions of Mahler’s and Koksma’s functions wn and w∗

n and the related
classifications of transcendental numbers in Cp. The main result is a construction of
numbers such that the two functions wn and w∗

n differ on them for every n and later on
expanding the interval of possible values for wn − w∗

n. The inequalities linking values of
Koksma’s functions for algebraically dependent numbers are proved.

Nous étudions les bornes sur les distances des racines des polynômes entiers et les
applications de ces résultats. La séparation des racines complexes pour les polynômes
réductibles normalisés de quatrième degré à coefficients entiers est examinée plus
à fond. Différents lemmes sur les racines des polynômes en nombres p-adiques sont
prouvés. Sont fournies les familles explicites de polynômes de degré général, ainsi que
les familles dans certaines classes de polynômes quadratiques et cubiques avec une
très bon separation des racins dans le cadre p-adique. Le reste de la thèse est dédié
aux résultats liés aux versions p-adiques des fonctions de Mahler et de Koksma wn et
w∗

n, ainsi qu’aux classifications correspondantes des nombres transcendants dans Cp. Le
résultat principal est une construction des nombres pour lesquelles les deux fonctions
wn et w∗

n sont différentes pour tous les n et puis l’intervalle de valeurs possibles pour
wn−w∗

n est élargi. Les inégalités reliant les valeurs des fonctions de Koksma en nombres
algébriquement dépendants sont prouvées.
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Bijenička cesta 30
10000 Zagreb

Croatia
Tel: +385 (0)1 4605 777, Fax: +385 (0)1 4680 335

ured@math.hr

IRMA 2012/001
http ://tel.archives-ouvertes.fr/tel-xxxxxxxxISSN 0755-3390

Institut de Recherche
Mathématique Avancée


	couv1
	manuscript30
	couv2



