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Résumé 
 

Introduction  

 

Le questionnement sur les conséquences sanitaires des essais nucléaires aériens et des 

accidents d’installations nucléaires reste toujours d’actualité. En effet, des dizaines d’années 

après ces événements, différents radionucléides, en particulier le 137Cs et le 90Sr, sont toujours 

présents dans l’environnement du fait de leur demi-vie longue (Fairlie 2007; Kashparov et al. 

2001). Ces radionucléides ont progressivement intégré les écosystèmes et les chaînes 

alimentaires menant à l’homme, et encore aujourd’hui des populations importantes ingèrent 

quotidiennement de faibles quantités de ces radioéléments, bien que des études aient montré 

une réduction de l’ingestion de radionucléides avec le temps (Assimakopoulos et al. 1995; 

Cooper 1992; Paasikallio et al. 1994; UNSCEAR 2000). Ces deux radionucléides sont 

principalement retrouvés dans les champignons, mais aussi dans le lait et les produits laitiers 

pour le 90Sr (de Ruig and van der Struijs 1992; Hoshi et al. 1994). Les effets sanitaires non 

cancéreux de l’ingestion de ces petites quantités de radionucléides pendant de longues 

périodes restent mal connus. Des études chez les populations vivant sur les territoires 

contaminés de Tchernobyl ont montré des déséquilibres des systèmes hématopoïétique et 

immunitaire: par exemple une augmentation des immunoglobulines G et M circulantes chez 

des enfants (Titov et al. 1995), une diminution de l’activité du thymus et du nombre de 

lymphocytes chez les liquidateurs (Yarilin et al. 1993), une modification des populations 

lymphocytaires sanguines (Vykhovanets et al. 2000) ou une diminution de la réponse 

proliférative des lymphocytes après activation par différents mitogènes chez les liquidateurs 

(Kuzmenok et al. 2003). Cependant, ces études n’ont pas permis d’établir un lien direct entre 

l’ingestion chronique de radionucléides et les effets observés. 

 

Notre laboratoire a lancé le programme de recherche ENVIRHOM, dans le but d’étudier les 

modifications non cancéreuses des grandes fonctions physiologiques de l’organisme à la suite 

d’une telle contamination. Dans un premier temps, des études ont été centrées sur le 137Cs. 

Ces études ont montré que la contamination induit quelques modifications dans différents 

systèmes physiologiques des modèles de rongeurs utilisés. Par exemple, une modification des 

cycles veille-sommeil chez des rats (Lestaevel et al. 2006) a été démontrée, ce qui peut être 

associé à une réaction neuro-inflammatoire (Lestaevel et al. 2008). Également des 
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modifications du système cardio-vasculaire (diminution de la pression artérielle) (Gueguen et 

al. 2008), du métabolisme de la vitamine D (diminution de la vitamine D3 active dans le 

plasma) (Tissandie et al. 2006; Tissandie et al. 2009), du métabolisme du cholestérol 

(augmentation de différents cytochromes intervenant dans la transformation du cholestérol et 

des acides biliaires) (Racine et al. 2009; Racine et al. 2010b; Souidi et al. 2006) et du 

métabolisme des hormones stéroïdiennes (Grignard et al. 2008)ont été montrées. Cependant, 

la plupart des modifications observées sont au niveau moléculaire (telles que des 

modifications d'expression génique ou la variation de la synthèse des protéines) sans 

conséquences majeures sur l'état de santé des animaux (Lestaevel et al. 2010).  

 

En revanche, d’autres études n'ont montré aucune modification des systèmes hématopoïétique 

et immunitaire après l'ingestion chronique de 137Cs (Bertho et al. 2011; Bertho et al. 2010). 

Ceci suggère que le 90Sr pourrait être impliqué dans les effets des systèmes hématopoïétique 

et immunitaire observés chez l’homme. Ce radionucléide est d’origine exclusivement 

anthropogénique et du fait de ses propriétés physico-chimiques, persiste à long terme dans 

l’environnement, ce qui a notamment conduit à la contamination chronique par ingestion de 

populations humaines en Russie, Ukraine et Biélorussie. L’induction de tumeurs osseuses 

liées à la fixation du 90Sr dans les os après une contamination interne a été largement décrite 

dans différents modèles animaux (Galle 1982, 1997; Raabe et al. 1981b). Par contre, 

l’occurrence d’effets non cancéreux est beaucoup moins bien connue. 

 

Son accumulation privilégiée au niveau de l’os pourrait conduire à une modification de la 

physiologie de la moelle osseuse et du fait de la proximité entre l’os et la moelle osseuse 

(Calvi et al. 2003; Taichman 2005), il est possible que l’irradiation localisée par les 

rayonnements β- induise des effets sur la différenciation hématopoïétique et sur le 

développement du système immunitaire. 

 

L’objectif de cette étude est donc de déterminer quelles sont les modifications fonctionnelles 

des systèmes hématopoïétique, immunitaire et osseux après une contamination chronique par 

ingestion à faible niveau de 90Sr. L’étude est menée en parallèle sur deux modèles: in vivo 

(souris Balb/c) comme modèle de la situation des populations humaines, et in vitro (pré-

ostéoblastes et cellules souches mésenchymateuses) pour étudier les mécanismes d’actions du 
90Sr. 
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Biocinétique de 90Sr et doses absorbées 

 

Pour le modèle in vivo, nous avons d’abord déterminé la biocinétique de 90Sr après une 

contamination chronique par ingestion de l’eau de boisson (20 kBq/l, correspondant à une 

ingestion ciblée de 120 Bq/jour par animal à l’âge adulte) dans un modèle murin juvénile et 

adulte. La concentration utilisée a été utilisée dans les études précédentes (Bertho et al. 2011; 

Bertho et al. 2010) et correspond à différentes mesures de contenu en radionucléides dans le 

bol alimentaire des populations exposées. Pour le modèle juvénile, la contamination a débuté 

chez les parents avant l’accouplement et s’est poursuivi via l’eau de boisson après sevrage. 

Les descendants ont été sacrifiés entre la naissance et l’âge de 20 semaines, que ce soit pour la 

détermination de la concentration en 90Sr dans les os ou pour les différents tests des fonctions 

hématopoïétique, immunitaire et osseuse. 

 

La première étape a consisté à déterminer la biocinétique de 90Sr. Aucune modification 

significative du poids des animaux n’a été observée entre les animaux témoins et contaminés, 

en tenant compte du sexe. Les animaux contaminés ont ingéré entre 40 et 91 Bq de 90Sr par 

animal et par jour, selon l’âge et le sexe. Cette ingestion quotidienne de 90Sr correspond aux 

estimations de présence de 90Sr dans un bol alimentaire moyen dans les territoires contaminés 

(de Ruig and van der Struijs 1992; Hoshi et al. 1994). L’excrétion était plus importante par les 

féces que par les urines, ce qui montre que le 90Sr n’est pas absorbé en totalité durant le transit 

intestinal.  

 

Les résultats ont montré l’accumulation de 90Sr dans les os. Ceci est en accord avec d'autres 

études expérimentales dans divers modèles animaux (Gillett et al. 1992; Lloyd et al. 1976; 

Raabe et al. 1981a), y compris des rats (Gran 1960; Nilsson 1970) et conformément avec le 

modèle biocinétique de strontium précédemment proposé par la CIPR (ICRP 1993; Leggett 

1992; Lloyd et al. 1976). Les modèles juvéniles et adultes ont montré des tendances très 

différentes de l'accumulation du 90Sr dans les os. Pour le modèle juvénile, le taux d'absorption 

du 90Sr dans les os a été rapide pendant les premières semaines, puis atteint un niveau plateau 

à l'âge adulte. Ce niveau plateau d'accumulation de 90Sr à l'âge adulte a également été 

observée dans une étude avec des beagles qui ont ingéré chroniquement du 90Sr in utero 

jusqu’à 1,5 ans (Parks et al. 1984). Comme Book et al. l’ont montré, ce taux élevé 

d'accumulation de 90Sr est corrélée avec la croissance osseuse (Book et al. 1982). Par ailleurs, 
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il a été décrit que le niveau d'absorption du strontium est limitée par la disponibilité de 

calcium. En effet le strontium et le calcium partagent les mêmes mécanismes de transport à 

travers la paroi intestinale et sont donc absorbés de façon compétitive (Apostoaei 2002; 

Hollriegl et al. 2006a; Hollriegl et al. 2006b; Hoshi et al. 1994). Une étude menée par 

Sugihira et al. a montré que le ratio de l’accumulation strontium vs. calcium dans les os était 

plus élevée au cours des âges jeunes, probablement à cause à une plus grande efficacité de 

l'absorption de strontium par l'intestin grêle au début de la vie (Sugihira et al. 1990). Ces 

mécanismes peuvent expliquer à la fois l'augmentation rapide de l'accumulation du 90Sr à un 

jeune âge et le niveau plateau observé à l'âge adulte.  

 

En revanche, pour le modèle adulte, une augmentation continue du taux de 90Sr dans les os a 

été trouvée au cours des 20 semaines de l'ingestion chronique. Cela est probablement dû au 

faible niveau d'ingestion quotidienne qui ne permet pas d'atteindre l'équilibre entre l'ingestion, 

l'excrétion et l'accumulation dans l'os, mais aussi à la limitation de 20 semaines de durée 

d'ingestion. Le taux réduit de l'accumulation de 90Sr dans le modèle adulte est conforme avec 

d'autres études montrant que l'accumulation de 90Sr dans les os adultes est principalement liée 

au remodelage osseux (Dahl et al. 2001; Momeni et al. 1976a; Momeni et al. 1976b). 

 

Par ailleurs, pour les deux modèles, l’accumulation du 90Sr est systématiquement plus élevée 

dans les os des femelles que chez les mâles, ce qui pourrait être lié à la régulation hormonale 

de la physiologie osseuse (Chiu et al. 1999; Hotchkiss and Brommage 2000; Kalyan and Prior 

2010), essentiellement à cause des œstrogènes impliqués dans la régulation de la physiologie 

osseuse. En effet, une étude a montré que les ostéoblastes expriment des récepteurs 

d'œstrogènes qui, une fois activés, favorisent la différenciation des ostéoblastes (Marie 2001). 

 

De plus, des différences ont été observées selon les différents sites du squelette. Ceci a été 

également observé dans d’autres modèles animaux suite à une ingestion chronique de 90Sr et 

pourrait dépendre des différences dans le remodelage osseux local et le débit sanguin régional 

(Dahl et al. 2001; Momeni et al. 1976a; Momeni et al. 1976b).   

 

Dans tous les autres organes testés (sang, foie, rate, reins, thymus, cœur, poumons, système 

nerveux central, muscle, peau), le taux de 90Sr était inférieur à la limite de détection. 

Néanmoins, de petites quantités de 90Sr ont été trouvées dans le tube digestif. La mesure du 

taux de 90Sr dans les différents segments du tube digestif (estomac, grêle, caecum et colon) 
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d'animaux a montré que les quantités de 90Sr étaient uniquement détectables dans l’intestin 

grêle mais pas dans les autres segments. Cela suggère plutôt une rétention faible de 90Sr dans 

les villosités de la muqueuse intestinale qu’une accumulation vraie dans le tissu intestinal, 

comme décrit précédemment pour l'ingestion d'uranium (Dublineau et al. 2007; Dublineau et 

al. 2005). 

 

Les doses absorbées au corps entier qui résultent de cette accumulation osseuse de 90Sr ont été 

calculées en utilisant des facteurs de conversion de dose (FCD) pour un modèle de rat publié 

par la CIPR. Il en résulte que les animaux du modèle juvénile recevaient une faible dose 

absorbée au corps entier variant de 0.3 ± 0.1 mGy à la naissance à 10.6 ± 0.1 mGy à l’âge de 

20 semaines, avec des différences entre mâles et femelles. Le calcul des doses absorbées par 

des DCF a été vérifié en utilisant une méthode de calcul de dose basée sur des fractions 

d'absorption spécifique (FAS) pour un fantôme de souris voxelisé de Stabin et al. (Stabin et 

al. 2006) et une simulation Monte Carlo avec un fantôme de souris voxelisé du Laboratoire 

d'Evaluation de la Dose Interne (LEDI) de l’IRSN. Une bonne corrélation entre les doses 

estimées par les méthodes FCD, FAS et LEDI ont été retrouvées. De plus, le LEDI a calculé 

que la dose absorbée pour le squelette a été beaucoup plus élevée que les autres tissus et 

atteint 55 mGy pour le modèle juvéniles après 20 semaines d’ingestion chronique de 90Sr.  

 

Par conséquent, des effets éventuels de l'ingestion chronique de 90Sr pourraient être observés 

sur la physiologie osseuse et le système hématopoïétique, en raison de la localisation des 

cellules souches hématopoïétiques (CSH) près de l'os (Calvi et al. 2003; Howard and Jannke 

1970; Taichman 2005). En effet, un modèle dosimétrique a décrit que des doses de 

rayonnement beaucoup plus élevées peuvent atteindre les cellules souches hématopoïétiques 

en raison de la proximité de l'os (Eckerman and Stabin 2000). Comme la moelle osseuse est le 

site anatomique principal de la différenciation des lymphocytes B, des effets pourraient 

également être observés sur le système immunitaire.  

 

L'utilisation du modèle juvénile pour étudier les effets potentiels de la contamination par 

l'ingestion chronique de 90Sr sur la physiologie osseuse et les systèmes hématopoïétique et 

immunitaire semble être d'un intérêt particulier parce que le rayonnement absorbé est plus 

élevé que dans le modèle adulte. En effet, les systèmes hématopoïétique et immunitaire se 

développent essentiellement pendant la vie fœtale et postnatale et les juvéniles montrent une 
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sensibilité accrue envers de nombreux composés toxiques, y compris les radionucléides 

(Blakley 2005; Hoyes et al. 2000; Lindop and Rotblat 1962; Preston 2004).  

 

Effets sur la physiologie osseuse 

 

Pour la physiologie osseuse, nous n'avons pas observé une modification des taux plasmatiques 

de calcium et de phosphate pour les animaux contaminés par rapport aux animaux témoins. Ni 

les concentrations plasmatiques des hormones calciotropiques (vitamine D3 active et hormone 

parathyroïdienne) ni les marqueurs de la formation osseuse (alkaline phosphatase spécifique 

(bALP), protéine morphogénétique osseuse 2 (BMP2) et procollagène 1 propeptide N-

terminal (PINP)) n’ont été modifiés. En revanche, une augmentation significative du taux 

plasmatique du marqueur de la résorption osseuse C-télopeptide du collagène de type 1 (CTX) 

a été observée chez des mâles contaminés. De plus, l’ingestion de 90Sr et son accumulation 

dans l’os a induit une modification de l’expression des gènes impliqués dans la formation et la 

résorption osseuse, avec un déséquilibre favorisant la résorption osseuse. Nous avons donc 

examiné la morphologie osseuse chez les animaux à l’âge de 20 semaines. Nous n’avons pas 

observé de modification significative de l’épaisseur de la plaque de croissance ni de la surface 

osseuse. Ceci suggère donc que le déséquilibre induit par le 90Sr dans le remodelage osseux ne 

conduit pas à l’apparition des modifications morphologiques. Cependant, nous ne pouvons 

pas exclure qu’à un temps plus tardif (au-delà de 20 semaines), des modifications 

morphologiques au niveau du tissu osseux puissent être observées pour les animaux 

contaminés. 

 

Comme nous avons observé une modification de l'équilibre de la formation et la résorption 

osseuse au niveau de l'expression des gènes et des concentrations plasmatiques après une 

contamination chronique de 90Sr, il serait intéressant d’étudier les effets morphologiques à des 

temps plus tardifs et de compléter l’étude par de l’immunohistologie et des mesures de la 

microarchitecture osseuse et de la solidité des os. 

 

Effets sur le système hématopoïétique 

 

Pour le système hématopoïétique, différents paramètres ont été étudiés et les effets sur le 

système hématopoïétique étaient limités. Le Flt3-ligand était significativement diminué à la 
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naissance chez des femelles contaminées. Ce résultat pourrait indiquer une hématopoïèse 

modifiée mais ceci n'a pas été confirmé ni par l'analyse phénotypique des cellules Lin-C-

kit+SCA-1+ dans la moelle osseuse, ni par la fréquence des progéniteurs dans la moelle 

osseuse et la rate. En revanche, des différences significatives au cours du temps (sans 

influence de l'état de la contamination des animaux) ont été observées pour certains 

paramètres, liés au développement normal du système hématopoïétique au cours de la vie 

post-natale (Tavian and Peault 2005). 

 

Nos résultats suggèrent que l'ingestion chronique de 90Sr à des faibles concentrations ne 

provoque pas un changement significatif dans la moelle osseuse de souris. Toutefois, des 

méthodes plus sensibles devraient être utilisées afin de confirmer cette hypothèse. Par 

exemple en regardant in situ les cellules souches hématopoïétiques (CSH) dans la niche ou 

d'effectuer des dosages plasmatiques des facteurs de croissance spécifiques de l'hématopoïèse, 

comme SDF-1 (facteur 1 dérivé des cellules stromales), EPO (érythropoïétine), TPO 

(thrombopoïétine) ou SCF (facteur des cellules souches) (Tarasova et al. 2011; Wognum et al. 

2003). 

 

Effets sur le système immunitaire 

 

Mis à part quelques différences ponctuelles, nous n’avons pas observé d'effets sur le système 

immunitaire à l’état d’équilibre chez les animaux contaminés par le 90Sr. Bien que nous 

n'ayons pas observé une modification majeure sur les populations des lymphocytes T et B, 

nous ne pouvons pas exclure l'induction d’un vieillissement accéléré du système immunitaire 

qui pourrait être observé à des temps plus tardifs.  

 

Par ailleurs, des augmentations significatives dans le pourcentage des CD3+CD4+CD25+ 

lymphocytes T régulateurs (Treg) ont été observées pour les animaux contaminés à l'âge de 16 

et 20 semaines. Ces cellules sont connues pour leur régulation négative sur la réponse 

immunitaire des lymphocytes T et B et des cellules NK (natural killer) et le contrôle de la 

réponse auto-immunitaire (Jager and Kuchroo 2010). En tant que tel, une augmentation du 

pourcentage de Tregs pourrait suggérer une réponse réduite aux antigènes. Ainsi, bien 

qu'aucun changement majeur n'ai été observé dans le système immunitaire à l'état d’équilibre, 
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nous avons supposé que la contamination au 90Sr pourrait induire des changements 

fonctionnels du système immunitaire. 

 

Afin de répondre à cette question, nous avons étudié la réponse vaccinale. Nous avons 

effectué ce test fonctionnel avec des antigènes spécifiques soit de la toxine tétanique (TT) soit 

de l’hémocyanine de patelle (KLH), qui sont classiquement utilisés dans des expériences de 

toxicologie (Luster et al. 1993; Luster et al. 1992). 

 

Nous avons observé une diminution significative des immunoglobulines G spécifiques à la TT 

pour les animaux contaminés et vaccinés TT en comparaison aux animaux témoins et 

vaccinés TT. De plus, l'analyse phénotypique des cellules de la rate ont révélé une diminution 

significative du pourcentage des lymphocytes T CD3+CD4+ et lymphocytes B CD45+CD19+ 

pour ces animaux. Basé sur ces faits, nous avons évalué si la balance Th1/Th2 de la réponse 

immunitaire avait été modifiée. Nous avons observé dans la rate des diminutions 

significatives des gènes T-bet (T-box exprimé dans les cellules T, Th1), Gata3 (protéine 3 liée 

à Gata, Th2) et FoxP3 (Forkhead box P3, Treg) pour les animaux contaminés et vaccinés TT 

ou KLH en comparaison aux animaux témoins et vaccinés TT ou KLH. Au niveau protéique, 

la diminution significative de l'expression de T-bet pour les animaux contaminés et vaccinés 

TT a été confirmée. 

 

En conclusion de cette expérience avec les antigènes TT et KLH pour évaluer la capacité du 

système immunitaire à répondre à une stimulation antigénique a montré une diminution 

significative des immunoglobulines spécifiques, une différenciation lymphoïde B perturbée et 

un changement possible dans la balance Th1/Th2 de la réponse immunitaire dans la rate chez 

les animaux vaccinés. Cela suggère un effet indirect de l'accumulation du 90Sr dans les os des 

animaux sur leur système immunitaire et cet effet pourrait être dû à l'irradiation par le 90Sr des 

cellules stromales médullaires. 

 

Pour compléter cette étude, il serait intéressant d'effectuer une analyse phénotypique et 

histologique des cellules de la moelle osseuse, d’évaluer les cellules B dans la rate et la 

moelle osseuse par histologie et de confirmer les résultats par mesure des taux de cytokines de 

la balance Th1/Th2 dans la rate. 
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Mécanismes du 90Sr 

 

Afin d'examiner in vitro les mécanismes d'action de 90Sr, nous avons utilisé la lignée des 

cellules pré-ostéoblastiques MC3T3-E1, qui était auparavant utilisé pour explorer les 

mécanismes moléculaires de la prolifération, maturation et différenciation des ostéoblastes 

(Davis et al. 2000; Gal et al. 2000; Wang et al. 1999). Plusieurs techniques ont été mises au 

point afin d’étudier les effets du 90Sr sur la mortalité cellulaire, la prolifération et la 

différenciation des pré-ostéoblastes. Aux concentrations de 90Sr utilisées (jusqu'à 100 kBq/ml 

dans le milieu de culture) aucun effet n’a été observé. En revanche, il a été montré 

précédemment par des irradiations externes γ que les cellules MC3T3-E1 sont sensibles aux 

radiations ionisantes, et que leur survie et leur prolifération peuvent en conséquence être 

affectées (Dudziak et al. 2000; Gevorgyan et al. 2008; Szymczyk et al. 2004).  

 

Cependant, une étude préliminaire a montré l’induction de foci γ-H2AX dans des cellules 

souches mésenchymateuses (CSM) contaminées avec les mêmes concentrations de 90Sr, 

indiquant l’induction des cassures d'ADN double brin par le 90Sr. Des expériences 

complémentaires seront nécessaires pour confirmer ce résultat et il serait intéressant de 

détecter des protéines de réparation des cassures d’ADN double brin tels qu’ATM et MRE11 

(Czornak et al. 2008; Garner and Costanzo 2009). 

 

Conclusion et perspectives 

 

Nos résultats suggèrent qu’après ingestion chronique à faible concentration de 90Sr, 

l’accumulation de 90Sr dans l’os, essentiellement durant la phase de croissance osseuse, est à 

l’origine de modifications de la physiologie osseuse et immunitaire. Nous ne pouvons pas 

exclure que l'ingestion chronique de 90Sr pourrait par exemple provoquer une accélération du 

vieillissement hématopoïétique qui pourrait être observée à des temps plus tardifs. Cependant, 

le choix d'une durée de 20 semaines de contamination chronique dans notre modèle juvénile 

était basé sur l'hypothèse que cette durée serait suffisante pour observer des effets éventuels 

dus à l'exposition précoce. En effet, pendant la vie fœtale et post-natale les systèmes 

hématopoïétique et immunitaire sont très sensibles à de nombreux agents toxiques, y compris 

des radionucléides (Blakley 2005; Gran 1960; Hoyes et al. 2000; MacDonald 1962; Preston 

2004; Ruhmann et al. 1963; von Zallinger and Tempel 1998). 
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Nous avons supposé que nos modèles de souris utilisés sont représentatifs de la situation des 

personnes vivant sur des territoires contaminés. Néanmoins, dans le contexte de la 

radioprotection, il serait intéressant d'effectuer une étude dose-réponse afin de déterminer à 

quelle concentration d'ingestion de 90Sr la dose sans effet nocif observé (NOAEL) est atteinte. 

Par ailleurs, du point de vue toxicologique, une étude dose-réponse avec des doses plus 

élevées de 90Sr serait intéressante pour confirmer les conclusions formulées sur la base des 

résultats obtenus. De plus, il serait intéressant d'utiliser un mélange de radionucléides dans 

l'eau potable pour nos modèles de souris, éventuellement en combinaison avec des métaux 

lourds ou d'autres polluants chimiques, afin d'être plus pertinent par rapport à la situation à la 

suite d’un accident nucléaire. 

 

Les mécanismes par lesquels l'accumulation de 90Sr dans les os mène à une diminution de la 

capacité du système immunitaire à réagir aux stimuli extérieurs restent à élucider. Cependant, 

on peut proposer un mécanisme hypothétique basé sur le fait que les CSM et les ostéoblastes, 

qui sont tous deux des régulateurs clés de l'hématopoïèse, sont situés à proximité du site de 

l'accumulation du 90Sr. Ainsi, nous ne pouvons pas exclure que l'irradiation locale des MSC 

et/ou des ostéoblastes conduisent non seulement à une dérégulation de la physiologie osseuse, 

mais aussi à une dérégulation de l'hématopoïèse. Ceci est soutenu par notre observation 

préliminaire de foci γ-H2AX dans des MSC et ostéoblastes in vitro en présence de 90Sr. De 

même, on ne peut pas exclure que le 90Sr irradie des CSH dans la niche endostéale. En 

conséquence, l'irradiation localisée à faible dose par le 90Sr pourrait induire des changements 

sur la différenciation des cellules B et/ou de la différenciation précoce des cellules T. Bien 

que dans notre étude ceci n'est pas visible sur les principaux paramètres du système 

immunitaire, tel que l'analyse phénotypique, des changements fonctionnels dans la réponse 

immunitaire pourraient être induits. 

 

Les effets mécanistiques du 90Sr pourraient être élucidés par une étude des dommages à 

l'ADN in situ sur des coupes de moelle osseuse avec la détection des foci γ-H2AX, ATM et 

MRE11 phosphorylés (Czornak et al. 2008; Garner and Costanzo 2009; Suzuki et al. 2006). 

De plus une étude de l’apoptose induite dans les cellules stromales de la moelle osseuse, un 

examen histologique de la niche endostéale par quantification des CSM nestine+ ou SDF-1+ et 

des CSH exprimant CXCR4 (Martin et al. 2003; Nagasawa et al. 2011), et le suivi de la 
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différenciation des lymphocytes B selon l'âge des animaux par la quantification des cellules 

pré-B IgM+, IgD+ et CD20+ dans la moelle osseuse et la rate (Chu et al. 2006). 

 

En conclusion, nos résultats suggèrent que l'accumulation de 90Sr dans les os après ingestion 

chronique de 90Sr est responsable de changements dans l'os et le système immunitaire. Nos 

résultats contribuent à améliorer les connaissances sur les conséquences non cancéreuses 

après une exposition chronique à de faibles quantités de radionucléides rejetés 

accidentellement. Selon les systèmes physiologiques testés nous avons observé différents 

niveaux de réponse, de la moelle osseuse dans laquelle aucun effet significatif n'a été observé 

et du système immunitaire dans lequel un effet majeur a été observé. Ainsi les effets 

biologiques de la contamination chronique peuvent varier non seulement en fonction de la 

concentration en radionucléides, mais aussi selon le système physiologique étudié. Il est 

important de poursuivre ce travail car il est d'un intérêt majeur pour la santé publique. Ceci est 

montré par l'accident nucléaire de Tchernobyl et plus récemment de Fukushima, au cours 

desquels de nombreux radionucléides, y compris le 90Sr, ont été libérés dans l'environnement. 

Aujourd'hui des questions sur les conséquences sanitaires de ces accidents demeurent, même 

25 ans après l'accident de Tchernobyl. 
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Foreword 
 

Nuclear weapon tests and nuclear power plant accidents caused the release of many 

radionuclides in the environment. Most of these radionuclides decayed during the transport in 

the atmosphere or have decayed in the months following after their deposition on the ground. 

However, two radionuclides remain above all in the environment due to their long half-life: 

cesium-137 (137Cs) and strontium-90 (90Sr). These two radionuclides have in the course of 

time progressively integrated the ecosystems and the food chains conducting to humans. 

Consequently, large populations living on contaminated territories ingest on a daily basis 

small quantities of them. The effects on the human health of long term ingestion of small 

quantities of these radionuclides remains until now unclear.  

 

Some data obtained for populations living on contaminated territories around Chernobyl, 

where a major nuclear accident happened in 1986 with a massive release of radionuclides, 

suggest that 137Cs accumulates in skeletal muscles, heart muscles and the thyroid after chronic 

ingestion. Experimental studies showed on the other hand showed that 90Sr accumulates 

preferentially in the skeleton and teeth after chronic ingestion. 

 

Other studies showed changes in the immune system of liquidators and inhabitants of 

contaminated territories of Chernobyl as a consequence of the accumulation of these 

radionuclides in the human body. Although it is difficult to make a link between the nature 

and amount of radionuclides ingested and the observed changes in the immune system, it is 

suggested that chronic ingestion of radionuclides could significantly alter the immune system 

and induce changes in the frequency of allergic or opportunistic diseases among these 

contaminated populations. 

 

As part of the program ENVIRHOM, the Laboratory of Experimental Radiotoxicology 

(LRTOX) of the french National Institute of Radioprotection and Nuclear safety (IRSN) 

developed over the past years a research program to study functional changes in the 

hematopoietic and immune system after chronic ingestion of 137Cs at small amounts. Obtained 

results for the mouse model used suggest that chronic ingestion of small amounts of 137Cs in 

drinking water in the long term does not have any biologically relevant effect on the 

hematopoietic or immune system. 
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However, while 137Cs is predominantly found in the environment, other radionuclides might 

be involved in the effects observed in populations living on contaminated territories. Of these 

radionuclides 90Sr is an interesting candidate. Indeed, 90Sr can be found in significant amounts 

on contaminated territories even 25 years after the Chernobyl accident. It is a β emitter and 

induces a high local energy deposition in its accumulation site, the bone tissue. In fact, several 

experimental studies showed the appearance of osteosarcoma in animals following a chronic 

contamination by 90Sr. Moreover, a close interaction between bone cells and the 

hematopoietic niche in the bone marrow was shown in other studies. Therefore it is possible 

that the local accumulation of 90Sr in bone tissue induces changes in the bone physiology as 

well as in the homeostasis of the hematopoietic and immune system. 

 

While 137Cs has previously been investigated, little information on the non-cancerous effects 

after 90Sr long term chronic ingestion at small quantities is available up to now. The aim of 

this thesis is to determine what changes can appear as a result of such 90Sr chronic ingestion to 

the bone physiology, and what are the possible functional consequences of these changes to 

the hematopoietic and immune system. 



 

 17   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Introduction  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 18   

Introduction  

1. Release of radionuclides in the environment 
 

Radionuclides found in the environment can be of natural or anthropogenic origin. In this 

chapter we focus on 90Sr, an anthropogenic radionuclide released in the environment after 

nuclear weapon tests and power plant accidents. In this chapter, these events will be discussed 

in detail. However, one has to note that these events released large amounts of also other 

radionuclides in the environment, with the nature of the radionuclides being variable and the 

mixture complex. 

1.1. Nuclear weapon tests and power plant accidents 
 

Atmospheric nuclear weapon tests and different accidents at nuclear installations have lead to 

the release of 90Sr in significant amounts in the environment (Christodouleas et al. 2011). 

Small amounts of 90Sr are also be released by the normal operation of nuclear power and 

reprocessing plants and are as such found in airborne and water effluents. However, these 

releases are considered insignificant when compared to the amounts of 90Sr released from 

atmospheric nuclear weapon tests and accidents at nuclear installations. Effluents of the plants 

are mostly arriving at waterways or the sea and as such an important dilution takes place. It is 

considered that the dilution is such that the accumulation of 90Sr in marine species is very low 

and that the accumulation takes mainly place in the skeleton of fish or shells of crustaceans 

and molluscs, which are not consumed by humans. So these releases are considered to 

contribute only for a very small part to the 90Sr found in the environment and will not be 

further discussed (Muck et al. 2001). 

 

A description and the main consequences for both the environment and contaminated 

populations of some events in the past that lead to major releases of 90Sr in the environment 

are given in this chapter. Recently, on March 11, 2011, a natural disaster caused substantial 

damage to the Fukushima Daiichi nuclear power plant at Japan. The Nuclear and Industrial 

Safety Agency (NISA) of Japan estimates that the release of radionuclides in the atmosphere 

was approximately 10 % of the Chernobyl accident, the major nuclear accident ever occurred. 

The exact levels of radionuclides released by the Fukushima accident in the environment are 
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until now not certain and the impact of this accident on the population’s health is so far 

unknown (Bolsunovsky and Dementyev 2011; Christodouleas et al. 2011). 

1.1.1.Atmospheric nuclear weapon tests 
 

Above ground testing of nuclear weapons resulted in the wide dispersal of 90Sr and other 

radionuclides in the environment. Te bulk of the nuclear fission products that were released 

into the atmosphere from the past until now was as a result of tests taking mainly place in the 

northern hemisphere during the 1950s and 1960s (Table 1). In function of the power of the 

nuclear weapons, the altitude and place of explosion, radioactive particles were spread in 

different layers of the atmosphere (Balonov 1997; Comar et al. 1957; Muck et al. 2001).  

 

Country Time period Number Power (Mt) 

ex-USSR 1945-1962 193 138.6 

USA 1949-1962 142 357.5 

United Kingdom 1952-1962 21 16.7 

France 1960-1974 45 11.9 

China 1964-1980 22 20.7 

 

Table 1. Distribution of atmospheric nuclear weapon tests between 1945 and 1980. 1 Mt is the equivalent of the 

power released by an explosion of 1 106 ton of trinitrotoluene (TNT) (data from Balonov 1997; Comar et al. 

1957; Lawson 1994; Muck et al. 2001; Stamoulis et al. 1999). 

 

A detailed table of nuclear explosions was published by Lawson et al. for the period 1945-

1994. According to the authors, during this period, 881 nuclear weapon tests were performed 

above ground and in the atmosphere. It is estimated that about 1018 Bq of 90Sr were released 

in the atmosphere and subsequently deposited on the earth and in the oceans by the tests 

during the first half of this period (1945-1965), (Froidevaux et al. 2006; Lawson 1994; 

Stamoulis et al. 1999). Another study showed that the release of 90Sr in the atmosphere 

reached a maximum in 1963, with declining levels afterwards (Figure 1) (Galle 1997). 
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Figure 1. Annual release of 90Sr in the atmosphere by above ground nuclear weapon testing, the blue line 

represents the northern hemisphere and the green line the southern hemisphere (from Galle 1997). 

 

At the end of 1963, the so-called “Nuclear Test Ban Treaty” was signed by the United States, 

the former Soviet Union (USSR) and the United Kingdom. This meant the prohibition of all 

test detonations of nuclear weapons above ground and was made to slow the arms race 

between the different nations and to stop the excessive release of radionuclides into the 

planet’s atmosphere. Since the signing of the “Nuclear Test Ban Treaty”, the airborne 

concentrations of 90Sr have dropped steadily due to deposition and radioactive decay.  

 

The 90Sr released by these atmospheric nuclear weapon tests was transferred to humans 

predominantly via the consumption of contaminated milk (Balonov 1997) which will be 

discussed further in detail. 

1.1.2.Techa river 
 

One of the main military plutonium production plants of the former Soviet Union (USSR) for 

the fabrication of nuclear weapons was situated in the Ural Mountains and included the so 

called “Mayak” production plant. This plant had a surface over 100 km2 and was located 

between the cities of Chelyabinsk and Ekatrinbourg about 1200 km east of Moscow. People 

living along the banks of the nearby Techa River were exposed to contaminated drinking 

water and food following discharges of radioactive waste into the river between 1949 and 

1956 from this production plant (Balonov 1997; Tolstykh et al. 2011b).  
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Technical flaws and lack of expertise in radioactive waste management led to the 

contamination of vast areas and the population was not informed about the releases. 

Protective measures as evacuations, restrictions on the use of flood lands and river water for 

agricultural and domestic purposes were implemented too late. As such, during the years of 

the releases, 39 settlements, with a total population of about 28 000 people, located along the 

banks of the Techa River were exposed (Balonov 1997; Degteva et al. 1994; Tolstykh et al. 

2011b). The peak of most releases of radionuclides was during 1950-1951 (Kossenko et al. 

1997) with an estimated release of 1 to 2 PBq of 90Sr during this period (Apostoaei and Miller 

2004; Balonov 1997). 

 

The radioecological situation in the riverside settlements was followed by Peremyslova et al. 

They showed that the specific activity of 90Sr in the water below the river mouth was 44.4 

Bq/l in 1961 and decreased to 3.2 Bq/l in 2002. 90Sr in fish muscles was 18 Bq/kg in 1977 and 

decreased to 2 Bq/kg in 2002. An average 90Sr specific activity in milk was 10.2 Bq/l in 1961 

and 1.2 Bq/l in 2001 (Peremyslova et al. 2009). Shutov et al. performed in 2002 

environmental measures in the two villages closest to the Mayak production plant and showed 

that soils were contaminated with 100 to 1000 kBq/m2 of 90Sr. What concerns the foodstuff 

collected, vegetables were rather weakly contaminated (1 to 2 Bq/kg). However, milk (0.1 to 

20 Bq/kg of 90Sr) and fish (from the Techa river, 2 to 130 Bq/kg of 90Sr) contained higher 

levels of 90Sr (Shutov et al. 2002). 

 

It was estimated that the riverside residents ingested an average of 3 MBq of 90Sr, with 95 % 

of the 90Sr being ingested in the short period of time from September 1950 to October 1951 

(Shagina et al. 2003b; Tolstykh et al. 2011b). In another study, 90Sr intake for breast-fed 

infants of the riverside settlements was calculated and a 90Sr intake between 60 and 80 Bq for 

the period 1950-1951 was found (Tolstykh et al. 2008). The same authors measured also 90Sr 

body burden of approximately 15 000 individuals between 1974 and 1997 with use of a 

special whole body counter (WBC). They found that almost the entire amount of 90Sr had 

been deposited in the cortical part of the skeleton by 25 years following intake (Tolstykh et al. 

2011a). This result was confirmed by Shagina et al. by direct measurements of 90Sr 

concentration in different types of bones of riverside residents (Shagina et al. 2003b). 

Moreover, Tolstykh et al. found a significant negative relationship between the cortical bone 

resorption rate and 90Sr body burden or doses absorbed by the riverside residents. The 

observed decrease in bone remodelling rate can be a cause of the increased degenerative 
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dystrophic bone pathologies observed in the exposed persons (Tolstykh et al. 2011a). 

Furthermore Degteva et al. estimated absorbed doses for the bone marrow of riverside 

residents. It was estimated that the mean dose to the bone marrow was about 0,4 Gy and for 

about 5 % of the individuals a dose to the bone marrow was in excess of 1 Gy was estimated 

(Degteva et al. 1994). 

1.1.3.Kyshtym accident 
 

A major nuclear accident took place in the winter of 1957-1958 at a nuclear weapon 

production plant near the city of Kyshtym at the Ural Mountains in the USSR. At that time 

period, the city of Kyshtym counted about 32 000 inhabitants. It is supposed that an explosion 

took place of a stored nuclear waste container. A surface of about 1500 km2 around Kyshtym 

was contaminated with radioactive strontium and cesium. About 12 PBq of 90Sr was released 

in the environment. Populations were contaminated by the consumption of contaminated milk 

and vegetables. Balonov et al. estimated that the average effective dose in the most exposed 

group of residents reached 0.5 Sv (Balonov 1997). 

1.1.4.Chernobyl accident 
 

The most severe accident ever occurred in the nuclear industry took place in Chernobyl, 

Ukraine, about 20 km south of the border with Belarus. After atmospheric nuclear weapon 

tests, this accident is the most significant source of environmental contamination by 

radioactive materials. The impact of this accident on the workers and local residents has been 

both serious and enormous (Balonov 1997). 

 

On April 25th, 1986, operators of the Chernobyl nuclear power plant shut down the graphite-

moderated light water reactor number 4 to test the emergency power system in the event of a 

power loss. After a series of failures and human errors, the reactor number 4 exploded in the 

early morning of April 26th. The explosion completely destroyed the reactor, sheared pressure 

tubes and water coolant channels, and dislodged the upper shield of the reactor, weighing 

1400 tons. The explosion ejected a large cloud of radioactive fission products and debris from 

the core and reactor 7 to 9 kilometres into the atmosphere. About a day later, combustible 

gases from the disrupted core caught fire, and this ignited the graphite moderator, which 

burned for the next 10 days (Fairlie 2007). The fire continued the massive release of 

radionuclides in the environment. The quantity of radionuclides released after 10 days 
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following the accident was estimated, based on the inventory of the nuclear core of the reactor 

and measures of radionuclide deposition in the environment, to be 12 000 Pbq. About 85 PBq 

of 137Cs and 8 PBq of 90Sr were released in the atmosphere (UNSCEAR 2011). In terms of 

Becquerel, the total radioactivity released from Chernobyl was 200 times higher than that 

released by the atomic bombs at Hiroshima and Nagasaki (Fairlie 2007). 

 

After the accident, hundreds of thousands measurements of 137Cs levels in the environment 

were carried out by low altitude flights and analyses of soil samples. The obtained data have 

been mapped (Figure 2) and indicated a very widespread 137Cs contamination. Over 40 % of 

the surface of Europe was contaminated by 137Cs at levels higher than 4 kBq/m2. A smaller 

area, about 2.3 % of the surface of Europe, was even more contaminated, to levels higher than 

40 kBq/m2. Particularly large areas of Belarus, Ukraine and Russia were contaminated with 

high levels of radionuclides (Fairlie 2007; Moller and Mousseau 2006). 

 

 
Figure 2. Distribution of 137Cs deposition (kBq/m2) in May 1986 as a result of the Chernobyl disaster (from 

UNSCEAR 2000). 
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Being less volatile than 137Cs particles, 90Sr particles had a greater deposition near the source 

of the accident (Hirose et al. 1993; Outola et al. 2009). The largest part of the 90Sr released 

was deposited in the former Soviet Republics in Eastern Europe (Figure 3) and the rest was 

blown northwest by winds and dispersed as fallout over Northern Europe (Fairlie 2007; Muck 

et al. 2001). Measures for instance in France after the passage of the radioactive plume 

showed a mean density of 90Sr deposition  between 1 and 600 Bq/m2 for 90Sr and between 120 

Bq/m2 and 3560 Bq/m2 for 137Cs (Renaud et al. 1999). 

 

 
Figure 3. Distribution of 90Sr deposition (kBq.m-2) in May 1986 as a result of the Chernobyl disaster (from 

UNSCEAR 2000). 

 

Several years after the accident Kashparov et al. did large-scale soil sampling (at about 1300 

sampling sites) in the 30 km exclusion zone around the destroyed nuclear reactor of 

Chernobyl. The total content of 90Sr on the ground surface of this zone (without the reactor 

site and the radioactive storages) was estimated to be 8.1 1014 Bq in 1997 (Kashparov et al. 

2001).  
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Furthermore, Fairlie et al. did an estimation of residual amounts of radioactive radionuclides 

in the environment around Chernobyl over a period of 50 years until 2056 and the results are 

shown in Table 2 for 90Sr and 137Cs (Fairlie 2007). 

 

Nuclide PBq released in 

1986 

PBq remaining 

in 1996 

PBq remaining 

in 2006 

PBq remaining 

in 2056 
90Sr 8 6 4.9 1,5 

137Cs 85 68 54 17 

 

Table 2. Estimation of residual radionuclides in the environment of Chernobyl (from Fairlie 2007). 

 

Over 600 000 people have been registered as being involved in the clean up operation during 

and after the accident. Of this total, about 200 000 recovery operation workers were employed 

in the 30 km exclusion zone. A total of 100 000 residents from 75 settlements were evacuated 

from the area and relocated (Balonov 1997; Cherenko et al. 2004; Moysich et al. 2011).  

 

Since 1987, populations still living on contaminated territories around Chernobyl have on the 

long term essentially been contaminated by 137Cs and 90Sr, either by external exposure of 

these radionuclides deposited on the ground and internal exposure due to the contamination of 

local foodstuff. For foodstuff, the highest levels of radionuclides were mainly found in milk, 

dairy products, mushrooms and wild berries of the forest (Balonov 1997). The most 

significant radionuclide found in contaminated food was 137Cs, with lower levels of 90Sr. 90Sr 

radioactivity measurements by de Ruig et al. on food products sampled in 1990 in the 

contaminated areas ranged between 1.8 and 340 Bq.kg-1 wet mass. Mushrooms were very 

highly contaminated: from 7.8 up to 340 Bq.kg-1. Milk products had a content of 3.6 Bq.kg-1. 

The authors conclude that the contamination of all food products was below stated limits, 

except for mushrooms (de Ruig and van der Struijs 1992). Measures of 90Sr in foodstuff in 

1991 by Hoshi et al. showed levels of 118 Bq.kg-1 in fresh mushrooms and 6.5 Bq.kg-1 in 

powder milk (Hoshi et al. 1994). Furthermore, the International Atomic Energy Agency 

(IAEA) performed in the 1990s in selected settlements in three former USSR republics a 

study of radioactivity in food estimate internal doses. The 90Sr concentration ranged form 0.1 

to 7.9 Bq.kg-1 wet mass in foodstuff. In mushrooms a maximum 90Sr concentration was 

measured of 165 Bq.kg-1 dry mass. Calculated internal doses due to 90Sr in the diet, ranged 

from 0.01 to 0.08 mSv per year (Cooper 1992). Other studies showed that 270 000 people in 
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the most contaminated areas received internal doses between 5 and 50 mSv during the first 

year after the accident (Balonov 1997; Cherenko et al. 2004; Moysich et al. 2011). 

 

Although the consumption of local foodstuff in contaminated areas around Chernobyl has 

been banned, there is evidence suggesting that contaminated milk, dairy products and forest 

products (i.e. mushrooms) are still widely consumed by important populations (Sekitani et al. 

2010). 

1.2. Radionuclides released in the environment 
 

The events described above show that large amounts of different nuclear fission products 

were released in the environment after nuclear weapon tests and power plant accidents. The 

most important for human health are the long term remnants 137Cs and 90Sr, which will be 

described further in detail, and short-lived radioactive iodine isotopes. 

 

The major long-lived radionuclide detected is 137Cs with a half-life of 30.1 years. Its high 

solubility in water and high mobility in the environment results in a wide distribution in plants 

and animals. 137Cs has a biological behaviour close to that of potassium (Leggett et al. 2003). 

Although it was demonstrated that 137Cs competes with potassium and may induce a blockade 

of K+ channels in smooth muscle cells (Cecchi et al. 1987), 137Cs is considered to be a 

radionuclide with low toxicity, mainly linked to the emission of β (514 keV) and γ (662 keV) 

rays during its disintegration (Balonov 1997). 

 

The major short-lived iodine isotope released during these events is 131I. The half-life of this γ 

emitter is 8 days and therefore once released in the environment, it is dissipated fairly soon. 

However, it is demonstrated that after its accumulation in the thyroid, 131I can cause thyroid 

cancer (Moysich et al. 2011). Indeed, different studies on the Chernobyl population found 

evidence for an increased thyroid cancer incidence in young people in the aftermath of the 

accident (Moysich et al. 2011; Prysyazhnyuk et al. 2007). 

2. Post accidental situation and consequences on 
human health 

 

The below described health effects in humans after oral exposure to 90Sr are based mostly on 

long term studies of the Techa riverside population. One has to note that although this 
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population was mainly exposed to 90Sr, they were also exposed to 137Cs and lower levels 

(Tolstykh et al. 2008).  

 

Riverside residents were reported to have immunological changes, which included 

granulocytopenia, decreased antigen expression of differentiating T-lymphocytes, and 

decreased T-lymphoblast transformation (Akleyev et al. 2010). Furthermore, a slight increase 

in lethal chromosomal anomalies and a significant increase in the incidence of leukaemia 

were observed in this population (Kossenko 1996; Kossenko et al. 1994). 

 

Furthermore, several scientific groups did immunological monitoring of persons affected by 

the Chernobyl accident, as little was known of the effects of chronic exposure of low radiation 

doses to the immune system,.  

 

A study evaluated T-cell immunity in 134 clean up workers. Peripheral blood mononuclear 

cells (MNCs) were used to analyze their phenotype and proliferative response to mitogens in 

vitro. Evaluation of the MNC phenotype did not reveal a significant disturbance in the T-cell 

subpopulations content except for an increase in CD3+CD16+CD56+ natural killer cells. 

Phenotyping of phytohemagglutinin (PHA)-activated MNCs demonstrated suppression of 

CD4+ T-cell propagation and augmentation of CD8+ T-cell propagation in vitro compared to 

control individuals (Kuzmenok et al. 2003). T-cell number and serum concentrations of 

thymic hormones were studied by Yaralin et al. in 71 people 5 years after they were affected 

by the Chernobyl accident, either working at the power plant during the accident or taking 

part in the clean up operation. Total T-cell number and serum α1-thymosin concentration were 

decreased in all groups of affected persons and CD8+ or CD4+ cell number were decreased in 

the low dose and the high dose exposed people respectively (Yarilin et al. 1993). Peripheral 

blood MNCs were also examined of 23 clean up workers by Chumak et al. The percentage of 

CD4+ cells was significantly increased in heavily irradiated men, whereas the percentage of 

CD8+ cells tented to decrease with higher doses (Chumak et al. 2001). 

 

The immediate and long term effects (from 1986 to 1992) of radiation on the B-system 

immunity of children affected by the Chernobyl accident were studied by Titov et al. They 

carried out a complete clinical and immunological examination of more than 6000 children. 

Decreased levels of B-cells and immunoglobulins (Ig) M and G were observed short after the 

disaster. Long term effects of low doses of radiation showed increased concentrations of IgM 
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and IgG (Titov et al. 1995). Furthermore, in children, lymphocyte subsets in the peripheral 

blood were assessed by Chernyshov et al. in 120 children of 6 to 13 years old with recurrent 

respiratory diseases and living on highly contaminated areas around Chernobyl. Significantly 

lower percentage of CD3+CD4+ T-helper cells was observed for these children compared to 

control children also having recurrent respiratory diseases (Chernyshov et al. 1997). 

Vykhovanets et al. also analysed blood lymphocyte subsets in children with recurrent 

respiratory diseases living around Chernobyl and they observed significantly lower 

percentage of T-cells and higher percentage of NK cells compared to control children with 

recurrent respiratory diseases (Vykhovanets et al. 2000). 

 

In a study by Senyuk et al. peripheral blood of 124 men working at the “shelter” object of the 

demolished nuclear reactor number 4 at Chernobyl was investigated. An increased 

manifestation of signs of common inflammatory reactions was observed, such as increased 

number of leukocytes, an unproportionally high number of monocytes and neutrophiles, and 

increased in plasma cytokine levels, such as interferon-α (IFN- α) and tumor necrosis factor-β 

(TNF- β) (Senyuk et al. 2002).  

 

The above described studies showed that in the 10 to 15 years after the Chernobyl accident 

many clean up workers and children had quantitative changes in their cellular and humoral 

immunity. These changes were mainly expressed by a decrease in the general number of T- 

and B-lympocytes, changes in the ratio of subpopulations of T-lymphocytes, a decrease in the 

levels of serum IgG and IgM immunoglobulins, impaired production of cytokines and an 

activation of neutrophilic granulocytes. 

 

Apart from the events described above, several hundred thousand people were exposed to 

radioactive fallout from atmospheric nuclear weapon detonations at nuclear test sites carried 

out in the 1950s and 1960s. A study by Taooka et al. observed increased T-cell receptor 

(TCR) mutations in peripheral blood from radiation exposed residents near such a former 

nuclear test site in the ex-USSR (Taooka et al. 2006).  

 

Little or no association between oral exposure to 90Sr from worldwide fallout and cancer 

incidence has been found in epidemiological studies. For example, a study by Hole et al. used 

data collected between 1959 and 1970 from a 90Sr monitoring program in Scotland to identify 

risk cohorts for leukaemia, non-Hodgkin’s lymphoma, acute myeloid leukaemia and bone 
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cancer. Based on the degree of fallout, three cohorts were identified and included: a high risk 

group born between 1963 and 1966 (exposed to high levels of fallout, i.e. 90Sr at young age), a 

medium risk group born between 1959 and 1962 (exposed to high levels at an older age) and a 

low risk group born after 1966. The study found no evidence for increased risk of leukaemia, 

non-Hodgkin’s lymphoma or acute myeloid leukaemia for cohorts born during the highest 

radioactive fallout period (between 1963 and 1966). The few cases of bone cancers showed a 

statistically non significant increase for children born during the high risk period (Hole et al. 

1993). 

 

Finally, there is little information concerning specific 90Sr toxicity in humans. One study 

describes effects for workers in paint factories in Czechoslovakia, Switzerland and Poland 

that were exposed to luminescent colours containing 90Sr and 226Ra. No significant clinical 

changes could be observed in the exposed persons, except the signs of radiation dermatitis in 

some cases. An increase in the frequency of chromosomal aberrations in blood lymphocytes 

was observed, and was correlated with absorbed doses at the bone marrow (Müller 1966). On 

the other hand, more information is available on non radioactive strontium effects in humans. 

Non radioactive strontium under the form of strontium ranelate has namely been reported to 

enhance bone formation and to decrease bone loss in osteoporosis patients (Dahl et al. 2001).  

3. What are the respective roles of each of the 
radionuclides ingested?  

 

As can be deduced from the above described studies, it is unclear if the human health 

consequences of chronic ingestion of radionuclides are due to either internal radionuclide 

contamination or external irradiation exposure and which radionuclides are exactly 

responsible for the observed effects. Thus, our laboratory launched the research program 

ENVIRHOM, which is dedicated to the study of non-cancerous effects of chronic ingestion of 

low quantities of radionuclides. The type of contamination used for the ENVIRHOM 

program, i.e. chronic ingestion, is representative to the mode of contamination for populations 

living on contaminated territories after nuclear accidents.  

 

The first studies conducted at our laboratory were focused on the effects of chronic 137Cs 

contamination by ingestion. A rat model of chronic ingestion of 137Cs by drinking water (at 

6500 Bq/l, corresponding to 150 Bq/rat/day) was used. Results showed that the contamination 
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induced some modifications in various physiological systems. A modification of sleep-wake 

cycles in rats (Lestaevel et al. 2006) was demonstrated, which may be associated with a 

neuro-inflammatory reaction (Lestaevel et al. 2008). Also modifications on the cardio-

vascular system (decrease in arterial pressure) (Gueguen et al. 2008), the vitamin D 

metabolism (decrease of active vitamin D3 in plasma) (Tissandie et al. 2006; Tissandie et al. 

2009), the cholesterol metabolism (increase in different cytochromes intervening in the 

transformation of cholesterol and bile acids) (Racine et al. 2010a; Racine et al. 2009; Souidi et 

al. 2006) and the steroid hormone metabolism (Grignard et al. 2008) were shown. Obtained 

results showed thus that the chronic ingestion of low quantities of 137Cs over a long period of 

time induced some non-cancerous modifications in the physiology of animals, however 

without major consequences on their general health status.  

 

Furthermore, the effects of this 137Cs chronic intake on the hematopoietic and immune system 

were studied, as earlier mentioned studies suggested that in humans chronic ingestion of long-

lived radionuclides may be responsible for modifications in thymic physiology (Yarilin et al. 

1993), in blood Ig levels (Titov et al. 1995) and in blood lymphocyte subsets (Vykhovanets et 

al. 2000). In order to detect non-cancerous modifications in these physiological systems 

during the course of a chronic ingestion of 137Cs, our laboratory used a mouse model, at which 

Balb/c mice were chronically contamined by 137Cs through contaminated drinking water (at 

20 kBq/l). The obtained results showed however no biologically relevant effect on the 

hematopoietic or immune system (Bertho et al. 2011; Bertho et al. 2010). 

 

Thus, the modifications of the immune system observed within contaminated human 

populations may be due to other causes. In fact, we used a single contaminant in a controlled 

environment and we cannot exclude that another radionuclide, or a combination of different 

radionuclides, may have different effects on the hematopoietic and immune systems. Precisely 
90Sr presents in this context interesting properties. This radionuclide accumulates 

preferentially in bone tissue and there exist a close interaction between bone cells and the 

hematopoietic niche in the bone marrow. The properties of this radionuclide will now be 

discussed in detail. 
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4. Strontium-90 

4.1. Origin and utilisation  
 

Strontium is named after Strontian, a village in Scotland near the lead mine where this 

element was first discovered in 1790. The rate of strontium in the earth crust is rather weak 

(0.034 %). Natural strontium is non radioactive and is a mixture of four stable isotopes: 84Sr 

(0.56%), 86Sr (9.86%), 87Sr (7.02%) and 88Sr (82.56%). For the first time it was isolated from 

its mineral form in 1808 in England and it occurs mostly in the mineral forms of strontium 

sulphate (celestite, SrSO4) and strontium carbonate (strontianite, SrCO3) (Galle 1997; Pors 

2004).  

 

The first large scale application of non radioactive strontium was in the production process of 

sugar from sugar beet, this by a crystallisation process using strontium hydroxide. Nowadays, 

stable strontium is used in combination with ranelic acid as a pharmaceutical agent to prevent 

osteoporosis, as it has been shown to stimulate bone growth.  

 

Radioactive strontium on the other hand is artificial and, like many other radionuclides, was 

discovered in the 1940s in nuclear experiments connected to the development of the atomic 

bomb. Of the sixteen unstable isotopes known, the most important are 85Sr, 89Sr and 90Sr. 

During the 1960s and 1970s, 85Sr was used for research of the skeleton. However, due to its 

half-life of 65 days and its relatively high γ energy emission of 0.51 MeV, this radionuclide 

was no longer used after the 1970s as it caused consequent irradiation of patients. Nowadays 
85Sr is replaced by other bone tracers like labelled pyrophosphates and 99mTechnetium. The 

isotope 89Sr has also a short half life and is still used as a treatment to alleviate bone pain 

secondary to metastatic bone tumors. As strontium acts like calcium, which will be discussed 

further, the administration of 89Sr results in the delivery of radioactive emissions directly to 

bone sites with increased osteogenesis (Galle 1997).  

 

The isotope 90Sr is a by-product of the fission reaction of uranium and plutonium. As 90Sr is 

one of the best long-lived high energy β emitters known, the heat generated by 90Sr 

radioactive decay can be converted to electricity for long lived portable power supplies. 

Indeed, 90Sr is often used for remote locations, such as navigational beacons, remote weather 

stations and spacecraft. Moreover, it is also used as a heat source in many Russian 
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radioisotope thermoelectric generators (RTGs), usually in the form of strontium chloride. 90Sr 

is also used as a radioactive tracer in medical and agricultural studies, as a radiation source in 

industrial thickness gauges, in luminous signs and ice detection devices of airplane wings. 

Finally, controlled amounts of 90Sr have been used a treatment for bone cancer and 

ophthalmic diseases (Galle 1982, 1997).  

4.2. Physicochemical and radiological characteristics 
 

Strontium, like calcium, magnesium, barium and radium, belongs to group 2 of the periodic 

classification table of elements. In Table 3 one can find the properties of the most 

biologically important elements of this group (i.e. calcium, magnesium and strontium) and 

their distribution in the body of a 70 kg standard man (Pors 2004). 

 

Element Atomic number Atomic weight Amount (g) 

in man 

% of body mass in 

man 

Ca 20 40.08 1000 1.4 

Mg 12 24.32 19 0.027 

Sr 38 87.63 0.32 0.00044 

 

Table 3. Physical properties of the most biologically important elements of group 2 of the periodic system and 

their distribution in the body of a 70 kg standard man. 

 

Strontium is a silver-white alkaline earth metal and turns yellow when exposed to air. It has 

atomic number 38 and its standard atomic weight is 87.63 g.mol-1. Because of its high 

reactivity, the element strontium alone is not found in nature. Strontium exists only as 

molecular compound with other elements, mostly as oxide, hydroxide, nitrate or chloride salt, 

which are soluble in water, or as sulphate or phosphate salts, which are relatively insoluble. 

 

As mentioned before, the most important radioactive isotopes of strontium are 85Sr, 89Sr and 
90Sr (Table 4). 85Sr is a γ emitter with a half life of 65 days, while 89Sr and 90Sr are β- emitters 

with half-lives of 50 days and 28.8 years respectively.  
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Radioisotope Half life Principal emissions 
85Sr 65 days γ (0.51 MeV) 
89Sr 50 days β

- (1.49 MeV) 
90Sr 28.8 years β

- (0.54 MeV) 

 

Table 4. Characteristics of the principal radioactive isotopes of strontium. 
 

90Sr has 52 neutrons and 38 protons and results from a fission chain reaction of 90Br (Figure 

4). By β- disintegration, in the form of an energetic electron of maximum 0.54 MeV, 90Sr will 

conduct to the ytrium 90 (90Y), which is also an unstable radioisotope. 90Y is a β- emitter (2.26 

MeV) with a short half-life of 64 hours and decays itself to stable zirconium 90 (90Zr). The 

long half-life period of 90Sr and the short half-life period of 90Y make that these two 

radionuclides reach a secular equilibrium within three weeks. 

 

 
Figure 4. Fission chain reaction of 90Br and disintegration of 90Sr. 
 

The two successive β- emissions of 90Sr and 90Y deposit their energy within a small volume in 

the vicinity of the decaying nuclei. The route of the β- emission depends of its energy. It is in 

the order of a meter in air and some micrometers in water and tissue. An aluminium paper of 

some micrometers thickness can block the particle. The energy of β- particles is sufficient to 

produce ionizations and excitations of molecules in their path. However, due to a rather weak 

linear energy transfer (LET), the β- emission is not highly ionizing. 

4.3. Transfer of 90Sr in the environment 
 
90Sr is mainly found in the environment after atmospheric nuclear weapon tests or nuclear 

accidents as described earlier. For all radionuclides released in the atmosphere, their 

dispersion and ground deposition are governed by many factors. Apart from the 

characteristics of the explosion, the size of particles emitted, topography of surrounding 

territories and weather conditions are decisive. What concerns the weather conditions, speed 

and wind direction and temperature gradient condition the movement of the radioactive 
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plume. Furthermore, rainfall causes leaching of the air and increases the rate of deposition of 

radionuclides on the ground (Galle 1997).  

 

The radionuclides deposited on the ground will be able to penetrate the soil, migrate and settle 

there, more or less rapidly, at depth. Once in the soil, radionuclides are absorbed by soil 

constituents with whom they form complexes. The rate of migration of radionuclides depends 

on the nature and stability of these complexes, as well as physical and chemical properties of 

the soil, such as its composition, pH, permeability and water holding capacity (Comar et al. 

1957). Strontium shows rather a moderate mobility in soils and sediments. It has been shown 

that the absorption of strontium is highest in grounds with weak levels of calcium and that the 

migration rate is about 0.2 to 0.4 cm.year-1. Some studies in contaminated territories showed 

that radioactive strontium is mainly found in the superior layers of the soil, about fifty percent 

in the first four centimetres and the rest up to thirty centimetres deep (Balonov 1997; Galle 

1982, 1997). 

 

Rather lowly fixed by soil constituents, strontium is easily transferred to plants. The 

penetration of strontium in plant tissues can be foliar or by root. Foliar uptake of strontium is 

low but once retained by the leaves, strontium is very mobile in the plant. Root uptake from 

soil is more important and the absorption is dependent on the mineral composition of the soil. 

Indeed, it has been shown that there can be up to 50 fold differences among the transfer 

factors of plants in different soils. Furthermore, the competition between radioactive isotopes 

and stable isotopes or chemically similar stable elements in the soil limits the uptake by the 

roots. For this reason the absorption of strontium by plant roots is inversely proportional to 

the concentration of exchangeable calcium in the soil. Of course, root uptake is also 

dependent on the type of plant. After uptake by the roots, strontium is distributed in the plants 

and fixed in their stems and leaves (Balonov 1997; Paasikallio et al. 1994; Putyatin et al. 

2006).  

4.4. Exposure pathways 
 

Animals like cattle can be contaminated by ingestion of these 90Sr contaminated plants and 

also, but to a lesser extent, by inhalation of 90Sr particles. The duration of contamination by 

inhalation is usually short and only contamination by ingestion continues on the long term. 

Given the long half-life of 90Sr, its accumulation in the soil and its mode of transfer to plants, 
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animals mostly become contaminated for long periods. In these animals, strontium will follow 

calcium metabolism and distribution in different organs and body fluids and will be excreted 

primarily in urine and milk (Assimakopoulos et al. 1995; Balonov 1997; Fabbri et al. 1994).  

 

Human exposure to 90Sr can result from consumption of contaminated food, drinking water, 

or the incidental ingestion of soil or dust contaminated with 90Sr. As for animals, the exposure 

by inhalation seems to be for humans only a minor pathway (Comar et al. 1957; Putyatin et al. 

2006). The primary route of exposure to 90Sr is considered through ingestion of contaminated 

food and drinking water. Contaminated vegetation consumed by animals such as cows, goats, 

reindeer may eventually transfer 90Sr to the human food chain through the human 

consumption of beef, milk or other dairy products. As the transfer of 90Sr throughout the food 

chain is similar to that of calcium, milk and dairy products are the main food in which 90Sr 

will be found (Assimakopoulos et al. 1995; Fabbri et al. 1994). 

 

Studies show that global populations consume daily varying amounts of strontium, depending 

on the source of food and water, leading to the natural presence of small amounts of it in their 

soft tissues, blood and bones. One study showed that a normal diet contains between 0.023 

and 0.046 mmol of strontium per day (Marie et al. 2001) and another study showed that a 

normal diet in Western countries contains 2 to 4 mg of strontium per day, mostly derived from 

vegetables and cereals (Pors 2004). Furthermore, a study showed that the average daily intake 

of 90Sr in North America is less than 0.05 Bq per day (ATSDR 2004). For populations living 

on contaminated territories around Chernobyl on the other hand, the daily ingestion of 90Sr 

was estimated to be up to 100 Bq per day, mainly by the consumption of contaminated local 

dairy products and mushrooms (de Ruig and van der Struijs 1992; Hoshi et al. 1994). 

4.5. 90Sr intake recommendations 
 

An annual limit on intake (ALI) of 106 Bq for 90Sr ingestion intake and 7 105 Bq for 90Sr 

inhalation intake was proposed by the International Commission on Radiological Protection 

(IRCP) (ICRP 1979). 

 

In drinking water, a maximum value 10 Bq of 90Sr per litre was recommended by the World 

Health Organisation (WHO) (WHO 2011). On the other hand, the European Union (EU) 

recommended 0.06 Bq of 90Sr per litre (Euratom 2000).  
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Furthermore, the EU recommended 0,2 Bq of 90Sr per litre in milk and 0,1 Bq of 90Sr per 

person per day in a mixed diet (Euratom 2000). 

4.6. 90Sr levels in bone and teeth 
 

One study has recorded the levels of activity of 90Sr in the milk teeth of children from 

different regions of Switzerland since the first atomic explosions in the atmosphere from 1950 

to 2002. It is assumed that teeth are an extension of the skeleton and accumulate stable and 

radioactive bone seeking metals that enter the body. The 90Sr activity peaked at 0.421 Bq/g of 

calcium (Ca) at the beginning of the sixties, coinciding with the detonation of many large 

nuclear devices. Following the “Nuclear Test Ban Treaty”, a steady and significant decrease 

in 90Sr activity in milk teeth was observed (down to 0.03 Bq/g of Ca for children born in 

1994). The effect of the 90Sr deposition from the Chernobyl accident was barely measurable in 

the milk teeth. Furthermore, no effect was observed from nearby Swiss nuclear power plants 

(Figure 5) (Froidevaux et al. 2006).  

 

 
 

Figure 5. 90Sr activity in milk teeth extracted from Swiss children since 1950 for three different regions in 

Switzerland (n>5 teeth for each point, from Froidevaux et al. 2006). 

 

A similar study performed in the United States confirms the peak of 90Sr concentration in milk 

teeth at the beginning of the sixties (Figure 6). However, in this study an increase in 90Sr has 

been observed in the milk teeth of children living close to nuclear power plants (Mangano et 

al. 2003). In another study by the same authors milk teeth of only people born during the 
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atmospheric nuclear weapon testing years were analysed. Interestingly the authors showed 

that average 90Sr levels in milk teeth of persons who died from cancer were significantly 

greater than for matched controls (Mangano and Sherman 2011). 

 

 

 

Figure 6. 90Sr activity in milk teeth extracted form United States children (n=6-836 for the different time 

periods, from Mangano et al. 2003). 

 

Others collected adult teeth in Ukraine for measurements of 90Sr activity. The teeth were 

grouped according to the age and sex of donors. 90Sr activity was lower by a factor of 10 for 

teeth in the 1990s compared to teeth in the 1960s and 1970s. An interesting feature of the data 

was a 3 fold increase of 90Sr levels for teeth in the 1990s in the 25-45 year old age group of 

the male population compared to the female population of the same age. The authors 

suggested that this age group contained a significant number of men who were mobilized 

immediately after the Chernobyl accident for cleanup operations within the 30 km zone 

around the damaged nuclear power plant (Kulev et al. 1994). 

 

Stamoulis et al. have compiled data from more than 20 studies to show mean values of 90Sr 

concentration in bones throughout the world as a function of the calendar year (Figure 7) 

(Stamoulis et al. 1999). 
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Figure 7. World-wide mean annual values of 90Sr concentration in bones grouped by age. Data are a compilation 

of more than 20 studies from the period 1957-1986 (from Stamoulis et al. 1999). 

 

Since the start of nuclear weapon tests in the 1950s several studies have been conducted to 

measure 90Sr concentration levels in bone and teeth. In conclusion, the studies discussed here 

indicate that the 90Sr environmental contamination which resulted from the atmospheric 

nuclear weapon tests exceed by far the 90Sr environmental contamination caused by the 

Chernobyl accident (Stamoulis et al. 1999). 

 

Shagina et al. measured over a period of 24 years (from 1974 to 1997) 90Sr levels in bones of 

15 000 individuals living near the Techa river. The authors showed that almost all of the 90Sr 

was in the cortical part of the skeleton by 25 years after initial intake (Shagina et al. 2003b). 

Retrospective analysis of post-mortem measurements of 90Sr levels in bones from riverside 

residents was performed by Tolstykh et al. from 1960 to 1982. It was shown that 90Sr levels in 

bones of residents that lived in settlements located downstream from the river mouth was 5 

times higher than average 90Sr levels in bones of general Russian residents. Moreover, dietary 
90Sr intake was reconstructed by the authors from these measurements. The mean total 90Sr 

dietary intake for the period 1950 to 1975 was about 68 kBq and the mean absorbed dose in 

the red bone marrow after 25 years accumulated to 14 mGy (Tolstykh et al. 2010).  

 

Other studies used the radionuclide contamination measurements in soil and food samples in 

order to reconstruct population exposure doses. For 137Cs for instance, there is a good 

correlation between the radioactivity measured in soil and food samples of contaminated 
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territories of Chernobyl and human whole body counting results (Sekitani et al. 2010; 

Takatsuji et al. 2000). One study on the other hand showed a good correlation (Figure 8) 

between soil contamination levels of villages near the “Mayak” nuclear production plant and 
90Sr levels measured in teeth of cows living on those soils (Toyoda et al. 2010). 

 

 

 

Figure 8. Correlation between soil 90Sr levels and 90Sr levels measured in teeth of cows living on those soils. 

The curve shown is the best fit line for all 64 samples (from Toyoda et al. 2010). 

 

Another study by Ryabokon et al. measured 90Sr levels in soil and bank voles captured using 

live traps at five monitoring sites with different ground deposition of radionuclides at different 

distances from the destroyed Chernobyl nuclear reactor. Investigations were started in the 

year of the accident and continued until 10 years later. The 90Sr levels in the bank voles 

increased in the period 5 to 10 years after the accident and correlated well with the 90Sr levels 

of the soil (Ryabokon et al. 2005). 

5. Biokinetics of strontium(-90) 
 

The biokinetics of strontium have mostly under the form of strontium chloride been examined 

in different species after oral administration, injection or inhalation. These studies will are 

discussed in detail in this chapter as well as the strontium biokinetics model proposed by the 

ICRP. 
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5.1. Absorption 
 

It is recognized that the absorption of calcium and strontium occurs mostly in the small 

intestine, especially in the jejunum and ileum, and that little absorption takes place in the 

stomach or large intestine. Some data indicate that a constant ratio of calcium and strontium 

absorption exist throughout the small intestine (Li et al. 2006, 2008; Wasserman 1963; 

Wiseman 1964). Dahl et al. reported gender differences in the gastrointestinal absorption of 

strontium as in experimental studies with rats and monkeys, plasma strontium levels were 

higher in males than females (Dahl et al. 2001). 

 

The transport of strontium through the enteral cells seems to be mediated by the same 

membrane carriers used for calcium (Hollriegl et al. 2006a; Hollriegl et al. 2006b; ICRP 

2006; Sugihira et al. 1990). It is assumed that the gastrointestinal absorption of strontium 

takes place, at least partly, by an active transport mechanism involving calcium-binding 

proteins (Dahl et al. 2001). However, although the chemical behaviour of strontium is similar 

to that of calcium, strontium is not as efficiently absorbed or retained as calcium (Comar et al. 

1957; Gran 1960; Sugihira et al. 1990; Wasserman 1963). It is estimated that the ratio of 

intestinal absorption of calcium to strontium is 2 for humans and 3 for rats (ICRP 2006). One 

hypothesis of the preferential absorption of calcium is attributed to its relatively smaller size 

(Cohn et al. 1963; Pors 2004). 

 

On the basis of available human data, the ICRP adopted an average gut to blood transfer 

factor (f1 value) of 0.3 for adults, with ranges from 0.15 to 0.45 (ICRP 1993). Values from 

studies with animal species are generally similar (Fujita 1965; Hollriegl et al. 2006a; ICRP 

1993, 2006; Li et al. 2006).  

 

Data on a possible elevated absorption of strontium during growth period are contradictory. A 

study with 7 day old infants fed with cow’s milk showed an intestinal absorption greater than 

0.73 (Widdowson et al. 1960). On the other hand, a study with 5 to 15 year old children 

showed same intestinal absorption ratios for children as for adults (Bedford et al. 1960). 

Anyhow, based on the available information, the ICRP set higher gut to blood transfer factors 

of 0.4 to 0.6 for infants (ICRP 1993).  
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In table 5 90Sr ingestion dose coefficients proposed by the ICRP are shown for different age 

groups. The dose coefficients are significantly higher for children and teenagers (Balonov 

1997; ICRP 1993). 

 

 Age (years) 

Radionuclide <1 1-2 2-7 7-12 12-17 >17 
90Sr 230 72 47 60 79 28 

 

Table 5. 90Sr ingestion dose coefficients for different age groups (nSv of effective dose per Bq intake) (data from 

Balonov 1997; ICRP 1993). 

 

It has been shown that the intestinal absorption of 90Sr is better when 90Sr is taken in with an 

aqueous solution than with food. Alginate, a specific nutrional factor and food additive, 

reduces significantly strontium absorption (Hollriegl et al. 2006b; Li et al. 2006, 2008). On 

the other hand, some studies show that milk diets may increase strontium absorption 

(Hollriegl et al. 2006b; ICRP 2006; Li et al. 2006; Wasserman 1963). A number of factors 

have furthermore been found to increase strontium intestinal absorption, including low dietary 

levels of calcium, magnesium and phosphorus; fasting; vitamin D; lactose and some amino 

acids (i.e. L-lysine and L-arginine) (Apostoaei 2002; Gran 1960; Hollriegl et al. 2006b; ICRP 

2006; Kargacin and Kostial 1982; Li et al. 2006; Pors 2004; Wasserman 1963; Wiseman 

1964). A study with human volunteers showed that overnight fasting resulted in an increase in 

strontium absorption from about 25 % to 55 % and a decrease in calcium content of the diet 

by 75 % raised strontium absorption from 20 % to 40 % (ICRP 2006). Another study showed 

that a low calcium diet enhances the expression of all genes involved in the transcellular 

pathway for calcium absorption in the intestine probably by activation of the vitamin D 

endocrine system (Perez et al. 2008). Indeed, it has been shown that the active form of 

vitamin D, calcitriol (1,25-dihydroxyvitamin D3), regulates the transcellular pathway of 

calcium absorption, through the activation of intestinal channels TRPV6 and TRPV5, 

PMCA1b and the Na+/Ca2+ exchanger (NCX1). Calcitriol molecules bind to their nuclear 

receptors and this complex interacts with specific DNA sequences inducing the transcription 

and increasing the expression levels of TRPV5 and TRPV6, calbindins and the extrusion 

systems (Figure 9) (Apostoaei 2002; Perez et al. 2008). 
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Figure 9. Schematic representation of mechanisms involved in the intestinal calcium (Ca2+) absorption. 

Calcitriol (1,25-(OH)2 vitamin D3) stimulates the individual steps of transcellular Ca2+ transport (from Perez et 

al. 2008). 

 

Under the condition of an increased absorption it has been shown that the degree of 

discrimination between strontium and calcium ions in the small intestine is often reduced 

(Wasserman 1963). Different studies showed that for young animals and humans, the 

intestinal absorption is very effective and that no discrimination between strontium and 

calcium exist (Comar et al. 1957; Galle 1997; ICRP 2006; Kulp et al. 1960; Wiseman 1964). 

It has been suggested that the mechanisms discriminating the uptake of strontium and calcium 

develop gradually during maturation, and as such that the high efficiency of strontium 

absorption by the small intestine early in life may be due to a deficiency in this discrimination 

(Dahl et al. 2001; Sugihira et al. 1990). 

 

Finally, what concerns inhalation exposure, experimental studies with beagles showed that 
90Sr is rapidly translocated from the lung to the blood (Benjamin et al. 1975; Gillett et al. 

1987a). 

5.2. Distribution  
 

It is assumed that strontium follows the movement of calcium in the body with slight 

differences in the pattern of distribution. Where there is a metabolically controlled passage of 
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ions across a biological membrane in the living organism, calcium seems to be transported 

more efficiently than strontium (Cohn et al. 1963; Dahl et al. 2001; Harrison et al. 1967). 

 

After passage of the intestinal or pulmonary barrier, 90Sr enters the blood circulation and 

binds to plasma proteins. The plasmatic half life is estimated to be a couple of hours 

(Leeuwenkamp et al. 1990). Experimental studies in animals and humans indicated that only 

very low concentrations of strontium can be found in blood and that there is no evidence for 

the accumulation of 90Sr in the erythrocytes (Li et al. 2008). 

 

According the ICRP, 99 % of absorbed 90Sr is accumulated in the skeleton and teeth (ICRP 

1993; Leggett et al. 1982). Marie et al. suggested that the distribution of strontium in the 

skeleton seems to be directly proportional to plasma levels (Marie et al. 2001).  

 

Bone mineral consists mainly of a crystalline fraction made of apatite and crystalline calcium 

phosphate complexes and strontium is incorporated into it by two mechanisms: surface 

exchange and ionic substitution (Dahl et al. 2001). It is assumed that 90Sr is predominantly 

fixated in metabolic active regions of bones and this in function of the bone growth and 

remodelling rate. Indeed, autoradiography of tibia and femurs of young rats, who were 

contaminated with 90Sr at 148 kBq/g by single intramuscular injection, showed that 90Sr was 

fixated in metabolic active regions of bone growth (Graf and Lafuma 1963). However, 

strontium seemed to be less incorporated into new bone than calcium (Cohn et al. 1963).  

 

The skeletal repartition of strontium seems to be related to the relative cortical and trabecular 

proportions of bone, because bone turnover is higher in trabecular than in cortical bone, and 

newly formed bone is more abundant in trabecular than cortical bone (Dahl et al. 2001). A 

study measured 90Sr levels in human femurs and vertebrae. Calculations showed that of the 
90Sr that reached the skeleton, half went to the cortical bone and half to the trabecular bone. 

Furthermore, it has been shown in the same study that uptake and turnover varied with age 

(Papworth and Vennart 1984). On the other hand, Shagina et al. measured over a long period 

of 24 years  90Sr levels in bones of 15 000 individuals living near the Techa river and almost 

all of the 90Sr was in the cortical part of the skeleton by 25 years after initial 90Sr intake. The 

authors explained the fact that 90Sr remained mainly in cortical bones by a more rapid 

elimination of 90Sr from trabecular bone, as the rate of trabecular bone remodelling is six 

times higher than for cortical bone (Shagina et al. 2003b). 
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Experimental animal studies suggested that the incorporation of strontium in bone is gender 

and skeletal site dependent and varies in function of dose, duration and mode of 

administration (Dahl et al. 2001; Gran 1960; Marie et al. 2001; Parks et al. 1984). 

Administration of strontium to rats at 5 to 500 parts per million (ppm) in drinking water for 12 

weeks showed a dose dependent increase in strontium and decrease in calcium in bones (Xu et 

al. 1997). Rats given strontium up to 0.5 % in their feed for about four weeks beginning at 

weaning showed dose dependent effects on calcium in femurs. At the highest dose, 

corresponding to 0.875 micromoles per day of strontium, calcium was markedly decreased in 

both serum and femur (Morohashi et al. 1994). In a study by Ruhmann et al., pregnant rats 

received 90Sr by injection and the offspring showed a continued increase in strontium burden 

from birth until weaning (Ruhmann et al. 1963).  

 

Dahl et al. showed in rats that after repeated administration for a sufficient period of time (at 

least 4 weeks), strontium concentration in bone reached a plateau level. The strontium levels 

in bone varied according to the anatomical site and bone structure. Higher levels were found 

in trabecular bone than in cortical bone (Dahl et al. 2001). In another study, this time with 

beagles exposed to 90Sr beginning in utero and by continuous ingestion up to 540 days of age, 

the continuous ingestion of 90Sr resulted in a 90Sr burden that steadily increased with age. 

However, a plateau level was reached at the time of skeletal maturity. When the 90Sr intake 

was stopped after 540 days of age, the 90Sr levels in bone decreased due to mineral exchange 

and skeletal remodelling (Parks et al. 1984).  

 

Overall, these experimental data have suggested that strontium levels in bone increase with 

the administered dose and at higher administered doses, the strontium levels in bone tend to 

reach a plateau level. One likely explanation for this plateau effect is a saturation of the 

gastrointestinal absorption mechanisms. Sugihira et al. showed that higher strontium to 

calcium ratios in all tissues of young rats could be found compared to old rats and assigned 

this fact to the high efficiency of strontium absorption by the small intestine early in life 

(Sugihira et al. 1990). 

 

What concerns the distribution of strontium through the placental barrier, it is assumed that 

once administered to the mother, strontium traverses rapidly the placental barrier. As for the 

intestinal barrier, there exists a preferential transfer of calcium (Gran 1960; MacDonald 1962; 

Ruhmann et al. 1963). Mice experiments evaluated this discrimination and showed a 
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maximum discrimination early in pregnancy while at the end of pregnancy strontium and 

calcium were transported at almost equal proportions across the placenta (von Zallinger and 

Tempel 1998). 

5.3. Metabolism 
 

In animal experimental studies strontium showed similar metabolism action in bone like 

calcium. In fact, the chemical properties of strontium seem to be similar enough to calcium so 

that it can exchange with calcium in bone and other cellular components. However, specific 

biological effects for strontium exist. For example, non radioactive strontium at 

pharmacological doses may affect the rate of bone turnover by increasing osteoblastic activity 

and decreasing osteoclastic activity (Marie 2006). The biological effects of non radioactive 

strontium and radioactive 90Sr are described further in this thesis. 

5.4. Elimination  
 

It is assumed that elimination of strontium from bone happens by different processes: 

clearance from exchangeable pools in bone, displacement of strontium (presumably by 

calcium) from sites within the bone matrix by long term exchange processes, and volume 

removal from the bone matrix by osteoclastic resorption. Theoretical models of strontium 

elimination from the skeleton revealed an initial rapid elimination followed by a slower 

elimination (Dahl et al. 2001).  

 

Shagina et al. measured over a long period of 24 years 90Sr levels in bones of 15 000 Techa 

riverside residents and calculated the rate of 90Sr elimination from bone. The authors showed 

that women had higher rates of elimination than men over the entire range of observation, and 

for both sexes the elimination of 90Sr increased with increasing age (Shagina et al. 2003b). 

 

In comparison with other elements, strontium seems to be excreted rather slowly from the 

body. The urine appears to be the major route of excretion of strontium from the plasma. A 

study showed that urinary excretion was maximal the day of administration and decreased 

progressively afterwards (Hollriegl et al. 2006a). It is assumed that calcium and strontium 

share a common tubular transport path in the renal tubes (ICRP 2006; Pors 2004). It was 

shown that the mammalian kidney excretes strontium more rapidly than calcium. Studies 

suggest that the renal clearance of strontium is around 3 times higher than for calcium. The 
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discrimination between both elements seems to be principally situated at the tubular re-

absorption, with a smaller tubular re-absorption of strontium, probably due to the larger size 

of the strontium elements (Dahl et al. 2001; Hollriegl et al. 2006b; ICRP 2006; Pors 2004).  

 

Apostoaei et al. showed that in the first days after a single ingestion of 85SrCl2, most of the 

strontium eliminated in feces was of exogenous origin (i.e. not absorbed into the body fluids). 

However, small amounts of strontium of endogenous origin (i.e. absorbed into the blood 

fluids and been returned to feces) were also excreted. Five to six days after a single ingestion, 

the entire amount of strontium eliminated in feces was of endogenous origin (Apostoaei 

2002). Another experimental animal study confirmed that strontium was secreted in tiny 

amounts directly from the plasma into the intestine (Palmer and Thompson 1961). Other 

studies indicated that biliary secretion accounted for only a small portion of the total secretion 

of strontium, calcium, into the alimentary tract (ICRP 2006; Wasserman 1963; Wiseman 

1964). 

 

In a study with strontium chronically fed mice, elimination of strontium happened mainly by 

the feces (Wiseman 1964). In a study with 90Sr chronically fed rats, 90Sr levels in feces 

increased over time. On the other hand, the urinary levels of 90Sr were low and stayed 

constant over time (Gran 1960). 

  
90Sr could be found in milk of lactating rats. However, preferential transfer for calcium from 

blood to milk was observed (Gran 1960). 

5.5. ICRP strontium biokinetics model 
 

A biokinetic model mathematically characterizes the movement, transfer, fate, deposition and 

excretion of a substance in a living system. Such a model predict where a substance goes in 

the body, how long it there remains, and as such permits the calculation of internal doses and 

risk to specific tissues and organs as well as the whole body. 

 

The ICRP developed a such a biokinetic compartimental model for alkaline earth elements, 

including strontium, which is applicable to children, adolescents and adults (Figure 10) 

(ICRP 1993). This model is based on a nearly identical model previously developed by 

Leggett et al. (Leggett 1992). The model is designed to simulate oral exposures and cannot be 
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applied to other routes of exposure without modification. As well it is designed for human 

applications and cannot be applied to other species without modification. 

 

 
 

Figure 10. ICRP model of strontium biokinetics (from Li et al. 2006). 

 

The fraction of ingested strontium that is absorbed by the small intestine is assumed to vary 

with age and has values of 0.6 in children up to 12 months of age, 0.4 from 12 months of age 

through 15 years, and 0.3 from 15 years of age through adulthood. Once absorbed, strontium 

that enters the blood plasma is assumed to distribute to the skeleton, liver and other tissues. 

Blood plasma in the model is treated as a uniformly mixed pool. Since the alkaline earth 

elements have little affinity for red blood cells, this compartment is not considered explicitly. 
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Liver and kidneys are treated separately from other soft tissues, because these organs show 

sometimes higher concentrations of radionuclides than the average soft tissue (Leggett 1992).  

 

In the ICRP model, bone is divided into cortical and trabecular components, each of which is 

further divided into bone surface and bone volume. The model assumes that 99 % of the 

strontium that enters the body and not being excreted is ultimately transferred to the skeleton 

and only 1% to soft tissues. Skeletal deposition is assumed to distribute initially to the bone 

surface of either cortical or trabecular bone, from which it can exchange relatively rapidly 

with plasma or more slowly with the bone volume. Two pools are assumed to exist within the 

bone volume, an exchangeable pool that communicates with the surface bone, and a non 

exchangeable pool from which strontium can be returned to plasma only as a result of bone 

resorption (Leggett 1992). 

 

Excretion is assumed to occur only in urine and feces. Strontium in urine is assumed to have 

passed directly from plasma to the urinary bladder, and strontium in feces is assumed not been 

absorbed or have passed directly form plasma to the gastrointestinal tract. The biliary 

excretion pathway is considered of limited importance. Furthermore, it is assumed that 

strontium secreted into the gastrointestinal tract is not reabsorbed (Leggett 1992). 

 

The transfer rate coefficients between compartments are assumed to be age and gender 

specific (Apostoaei and Miller 2004; Shagina et al. 2003a). However, originally the ICRP 

(ICRP 1993) did not account for age dependence of strontium elimination in elderly persons. 

Indeed, because the model was created for a standard human of undefined sex, gender 

dependence was not taken into account either.  Apostoaei et al. calculated on the basis of 

available human metabolic data that transfer rates of strontium from plasma to cortical and 

trabecular bone and subsequent elimination rates are age dependent. Moreover they calculated 

that the elimination rate of strontium from the trabecular bone is slightly gender dependent 

(Apostoaei and Miller 2004).  

 

Besides the above described systemic biokinetics model, the ICRP developed also a 

gastrointestinal model (GI) for strontium. This GI model is used to describe the movement of 

swallowed or endogenously secreted strontium through the stomach and intestines. The GI 

model developed divides the GI tract into four compartments: stomach, small intestine, upper 
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large intestine and lower large intestine. Like the systemic biokinetics model, the GI model 

assumes that absorption of strontium occurs only through the small intestine (ICRP 2006). 

6. Biological effects of non radioactive strontium 

6.1. Generalities 
 

The processes of bone formation and resorption are tightly regulated by a variety of systemic 

and local regulatory agents, of which calcium is one of them. Strontium, which is chemically 

related to calcium, is also found to exert effects on bone cells (Marie et al. 2001).  

 

Many studies showed that non radioactive strontium has a positive effect on bone formation. 

In an in vitro study with human bone derived cells (HOB), it was demonstrated that strontium 

(5 105 M SrCl2) increased the expression of type 1 collagen mRNA and reduced the 

production of matrix metalloproteinases (MMP) (Braux et al. 2011). Another study observed 

that strontium (1mM SrCl2) enhanced the ability of osteoblasts to form mineralized nodules in 

vitro and increased the expression of Runx2, one of the earliest osteoblast specific 

transcription factors (Lymperi et al. 2008). Moreover, in a study by Boanini et al., the 

response of primary cultures of rat osteoblasts to strontium substituted hydroxyapatite was 

investigated. Increased levels of cell proliferation, alkaline phosphatase (ALP) and collagen 1 

were observed (Boanini et al. 2011). In vivo studies in normal rats and mice indicate that low 

doses of strontium (up to 4 mmol/kg/day SrCl2) may increase bone mass at different skeletal 

sites by increasing bone formation and reducing bone resorption (Marie 1984; Marie et al. 

2001). Lymperi et al. showed that strontium treated mice had increased number of osteoblasts, 

increased bone volume and trabecular thickness, with the trabeculae having more 

interconnections within the bone marrow cavity (Lymperi et al. 2008). On the other hand, a 

study with mice fed with a high concentration of strontium (2 % SrCO3 in rodent chow) 

throughout pregnancy, showed inhibited bone development in the offspring, presumably by 

affected bone calcification (Shibata and Yamashita 2001). 

 

Given its potential beneficial effect on bone formation, the use of strontium has been thought 

to have an interest as a treatment for osteoporosis. This bone disorder of mainly post-

menopausal women is characterized by low bone mass, enhanced bone fragility and fracture 

risk. This may be due to oestrogen deficiency, causing an imbalance between bone resorption 

and bone formation, and impaired intestinal absorption of calcium (Dahl et al. 2001). As such, 
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this led to the development of the drug strontium ranelate, which has been proven its 

efficiency to reduce the bone fracture incidence of osteoporotic patients (Cortet 2010; Pors 

2004). 

6.2. Strontium ranelate 
 

Most in vitro studies used the anti-osteoporotic drug strontium ranelate (5-

[bis(carboxymethyl) amino]-2-carboxy4-cyano-3-thiopheneacetic acid distrontium salt, 

S12911, Protelos®, Servier, France) (Figure 11) to investigate the effects of strontium. 

However, until now cellular and molecular mechanisms of action have not yet been fully 

elucidated. This drug, composed of two atoms of stable strontium (Sr2+) and an organic part 

(ranelic acid) was found to stimulate bone growth, increase bone density, and lessen vertebral, 

peripheral and hip fractures (Dahl et al. 2001).  

 

 
 

Figure 11. Chemical structure of strontium ranelate (S12911-2, from Baron and Tsouderos 2002). 

 

Different in vivo studies suggested that strontium ranelate reduces bone resorption and 

increases bone mineral density and some markers of bone formation (Ahmet-Camcioglu et al. 

2009; Ammann 2006; Marie 2006). A study with female rats showed that a 2 year period of 

exposure to strontium ranelate significantly increased bone mechanical properties of vertebrae 

and femurs. All the determinants of bone strength measured were positively influenced by the 

treatment, like bone mass and microarchitecture (Ammann 2006). Results of another study by 

histomorphometric analysis demonstrated that long term administration (104 weeks) of 

strontium ranelate at dose levels up to 1800 mg/kg/day increased bone formation and reduced 

bone resorption in normal male and female mice, and increased bone volume without 

deleterious effect induced on bone metabolism (Delannoy et al. 2002). 

 

Moreover, strontium ranelate showed its anti-fracture efficacy in a study with mice 

overexpressing Runx2, which is a model of severe developmental osteopenia associated with 

spontaneous vertebral fractures. Strontium ranelate was able to decrease vertebrae fracture 
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through an improvement of bone microarchitecture (Geoffroy et al. 2010). Treatment with 

strontium ranelate prevented also the effect of ovariectomy on bone strength (Ammann 2006). 

Strontium ranelate (625 mg/kg/day for 52 weeks) treatment showed improved bone strength 

in ovariectomized rats (Bain et al. 2009).  

 

In vitro studies showed that strontium ranelate reduced osteoclast differentiation and induced 

even apoptosis of these cells (Figure 12) (Baron and Tsouderos 2002; Marie et al. 2001). 

Moreover, it was shown that strontium ranelate dose dependently decreased osteoclastic 

activity in vitro (Ammann 2006). Another study showed a decreased area of resorption pits of 

osteoclasts (Takahashi et al. 2003).  

 

On the other hand, strontium ranelate induced replication of pre-osteoblasts, synthesis of 

collagen and ALP activity (Barbara et al. 2004; Canalis et al. 1996; Marie 2006; Marie et al. 

2001). A study suggested that interaction of strontium with the G-protein-coupled calcium-

sensing receptor (CaSR), might be one of the explanations of the mechanism of action. More 

precisely, strontium ranelate has been shown to increase the accumulation of inositol 

phoshatase (which derives from phospholipase C (PLC) activity) in the cultured cell lines, an 

effect that might occur through CaSR activation (Coulombe et al. 2004). However, this 

potential mechanism and eventual other mechanisms independent of the CaSR remain to be 

fully eludicated (Ammann 2006; Pi et al. 2005; Pi and Quarles 2004).  

 

 

 

Figure 12. Strontium ranelate exerts antiresorbing and bone forming effects which results in bone gain in vivo 

(from Marie 2006). 
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7. Biological effects of 90Sr 

7.1. Generalities 
 

90Sr is chemically similar to calcium and as such, this radionuclide is capable to exchange for 

calcium in tissues, especially in bone which has a high calcium content, and consequently 

exert there biological effects. Moreover, 90Sr may affect other calcium utilizing processes 

including enzymes, secondary messenger systems and transporter systems. The stable forms 

of strontium might not pose a significant health treat but the radioactive isotope 90Sr, which 

emits high energetic β- particles, can lead to various bone disorders and even other adverse 

health effects. 90Sr that incorporates into bone and irradiate bone cells may also irradiate 

hematopoietic tissue in the bone marrow or other surrounding soft tissues. As such, 

hematopoietic and immune cells located in the bone marrow may be susceptible to injury as 

well. These facts, coupled with the proven carcinogenic effects of ionizing radiation and 90Sr 

long half-life, make it a potential toxic hazard for exposed humans. At equal levels, children 

may even exhibit an enhanced response to 90Sr exposure. Due to a higher intake of strontium 

during growth, younger organisms could be more susceptible to the toxic effects of 90Sr. 

 

Considerable animal experimental work has been performed in order to predict the 

radiobiological effects of 90Sr once absorbed in the human body. Animal studies included 

acute and chronic exposures in dogs, rodents, pigs, cows and monkeys. Particularly a wide 

range of studies have been conducted since the 1960s using beagles. Growing concern about 

health effects after radioactive fallout exposure from atmospheric nuclear weapon tests 

conducted in the 1950-60s was the starting shot of these studies. Beagles were chosen because 

of the physiological similarities of their skeleton and lungs to these of humans, and for their 

relatively long life span, which is roughly comparable to the time required for the latent 

effects of radiation exposure to become manifest in humans (Gillett et al. 1987a). Of 

particular interest are studies at the University of California at Davis and at the University of 

Utah at Salt Lake City involving beagles that received 90Sr chronically both in utero and by 

daily ingestion in their feed afterwards (Book et al. 1982; Dungworth et al. 1969; Momeni et 

al. 1976a; Nilsson and Book 1987; Parks et al. 1984; Raabe et al. 1981b; Raabe et al. 1981a; 

White et al. 1993).  
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The observed adverse effects included bone and kidney damage, hematological, 

immunological and developmental effects, cancer and death. All the observed effects could be 

directly correlated to the 90Sr doses used. Especially young animals have been shown to be 

vulnerable to 90Sr exposure, which was linked to their immature skeleton having a higher rate 

of bone remodelling. 

7.2. Acute toxicity of 90Sr 
 

In experiments with young and adult rats, Casarett et al. reported a 80 % reduction in survival 

at five months when young rats were given at least 11 MBq of 90Sr per kg per day for 10 days 

by drinking water. The survival of adult rats on the other hand was unaffected. The increased 

mortality of the young rats, which was 20 times higher than for adults, was attributed to the 

increased skeletal burden of 90Sr in the young rats. Approximately 19 % of adult rats ingesting 

2.4 MBq per day in drinking water for 10 days developed chronic interstitial nephritis. Rats 

drinking water for five days at doses higher than 3.7 MBq per day suffered from bone 

malformations, cartilage detachments, and bone fractures (Casarett et al. 1962). Another study 

with rhesus monkeys given daily oral doses of 37 MBq of 90Sr showed that the animals died 

within four months from pancytopenia (Casarett et al. 1962). Cragle et al. reported deaths in 

four out of six young cows given 2 GBq of 90Sr orally for five days. Deaths occurred from 

radiation sickness including severely decreased leukocytes and platelet counts after 80 days 

(Cragle et al. 1969).  

 

A study showed the appearance of bone tumours in mice after single injection at high doses 

(up to 59.2 kBq/g) of 90Sr. It was shown furthermore that not only latency time and tumor 

frequency but also the type and location of tumors were related to the dose (Nilsson 1970). 

Also a study with beagles showed the appereance of osteosarcomas after single injection at 

high doses of 90Sr (Nilsson and Book 1987). A single injection of 22 kBq/g in rabbits at the 

time of weaning led to a significant reduction in the length of tibias (Galle 1997). 

 

Hematological effects after a single administration of 90Sr by inhalation was examined in 

adult beagles by Gillett et al. Dogs were observed throughout their life span and showed bone 

marrow hypoplasia, pancytopenia, thrombocytopenia and neutropenia (Gillett et al. 1987b). A 

single high dose injection of 90Sr (300 to 740 kBq/g) by rat induced leucopenia, short period 
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neutropenia, transitory reticulopenia, fluctuating variations in thrombocyte numbers and 

finally blood anemia (Galle 1997). 

7.3. Chronic toxicity of 90Sr 

7.3.1.Life expectancy 
 

Several studies showed a decrease in survival of rodents orally exposed on the long term to 
90Sr. Hopkins et al. reported a 36 % reduction in survival of young rats ingesting 3.8 MBq/kg 

per day of 90Sr for 30 days (Hopkins et al. 1966). In rats fed with 18.5 up to 74 kBq/kg per 

day of 90Sr for their postweaning lifetimes, Zapol’skaya et al. reported that lifespans shortened 

by 18 to 30 % compared to control rats (Zapol'skaya et al. 1974). Regular administration of 
90Sr at 0.74 kBq/kg per day during 3 years in mice conducted to perturbations in the 

development of offspring and a decrease in life expectancy (Galle 1997). In another study, 

mice were fed up to 1147 kBq/kg per day of 90Sr from the time of conception through the rest 

of their life. Their parents received the same amount through conception to lactation. No 

effects on litter size, survival of offspring or increase in malformations were noted. However, 

survival of offspring was shortened at doses above 111 kBq/kg per day and was attributed to 

an increased incidence of bone marrow cancers (Finkel 1960). 

 

A study with beagles by White et al. reported that beagles given up to 1.3 MBq/kg of 90Sr per 

day for 540 days and maintained until death had reduced survival of 18, 64, and 85 % at the 

three highest dose levels (0.1 ; 0.4 and 1.3 MBq/kg per day respectively) when compared with 

control dogs. Concentrations of 90Sr in feed at or below 1.6 kBq/kg per day had no apparent 

effect on survival and there were no reported bone sarcoma deaths in these dose groups, 

whereas bone sarcomas were noted in the higher dose groups (White et al. 1993). In another 

study, Book et al. exposed 15 beagle dogs from gestational age day 21 throughout their 

lifetime to 0; 0.05; 0.15 or 0.44 MBq of 90Sr/kg per day. The median survival times of the 

groups were 15; 12.5; 6.5 and 5.2 years respectively. Osteodystrophy was observed in the 

highest dose group. The two main causes of radiation induced mortality were 

myeloproliferative syndrome and skeletal sarcomas (Book et al. 1982).  

 

Multigenerational effects were studied by Clarke et al. in swine fed with 0.037 up to 114.7 

MBq of 90Sr per day only during the period of mating. No effect on fertility or fecundity was 

observed. Some sows receiving the highest dose did not survive gestation. Offspring of sows 
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fed 23.13 MBq per day showed reduced weight at weaning and did not survive to nine months 

when fed with 90Sr after birth, even though parent sows fed the same doses survived well past 

breeding age (Clarke et al. 1970). In another study by McClellan et al., sows ingesting 115 

MBq per day from the age of nine months did not survive their first pregnancy, succumbing 

from the destruction of hematopoietic tissue in the bone marrow. Sows exposed to 0.9, 4.6 

and 23 MBq per day, showed increased mortality after 11, 5 and 1 year respectively. Effects 

on the F1 generation females exposed from time of conception were more severe. None of 

these females exposed to the highest dose survived more than nine months (McClellan et al. 

1963).  

7.3.2.Bone cancers 
 

Bone injury and bone cancers were frequent in studies with beagles chronically fed with 90Sr. 

Momeni et al. evaluated beagles exposed to different concentrations of 90Sr with as highest 

dose 1.3 MBq/kg of 90Sr per day. Increased skeletal changes, i.e. endosteal and periosteal 

cortical sclerosis and thickening, were noted for dogs exposed at doses above 49 kBq/kg per 

day (Momeni et al. 1976b). White et al. reported that beagles fed between 4 and 125 kBq/kg 

per day of 90Sr developed bone sarcoma, chondrosarcoma, hemangiosarcoma, fibrosarcoma 

and leukemia. Multiple tumors occurred only at the highest dose levels. Of the 66 sarcomas 

reported in this study, 75 % were osteosarcomas (White et al. 1993). Nilsson et al. showed 

that among beagles fed 90Sr during skeletal development, the incidence of bone tumors was 

dose dependent. Bone tumors appeared sooner and were more often multiple in animals 

receiving higher doses. Long bones were the sites where most of the tumors appeared after the 

highest dose level (Nilsson and Book 1987). Gillett et al. showed that beagles that were 

exposed to 90Sr by inhalation, chronic ingestion or injection developed bone tumors, which 

were different in their skeletal distribution and histological phenotype, dependant of the route 

of exposure. Furthermore, bone tumors tended to occur at later times after exposure in dogs 

exposed to 90Sr by chronic ingestion (Gillett et al. 1992). 

 

Other animal studies also showed that oral 90Sr exposure increased the incidence of bone 

tumors. Adult rats developed osteosarcomas in a study when fed 1.2 up to 2.4 MBq per day of 
90Sr over 10 days. Rats given 29.2 MBq of 90Sr over 30 days showed a 27 % increase in the 

incidence of osteosarcoma, hypoplasia of the bone marrow, a 11 % increase in skin sarcoma 

and a 6 % increase in leukemia incidence (Casarett et al. 1962). Rats fed 18.5 up to 74 kBq/kg 
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per day during lifetime showed an 18 % increase in malignancies compared to control rats. 

The malignancies included osteosarcoma and leukaemia (Zapol'skaya et al. 1974). In a study 

with young rabbits fed with 218 kBq/kg per day on average for 224 to 280 days, multiple 

osteosarcomas developed in the skull and the rapidly growing ends of long bones within 6 to 

8 months (Downie et al. 1959). In a study with miniature swine, Howard et al. showed that 

most bone tumors occurred in the skull, including the mandible and maxilla, and arose near or 

within the periosteal surface of the bone (Howard et al. 1969). 

 

In a multigenerational study with miniature swine fed with 90Sr up to 114.7 MBq per day for 

life developed different cancers. In the parents, myeloid neoplasms were observed but no 

bone cancer developed. The F1 and F2 offspring exposed from conception developed myeloid 

metaplasia and osteosarcoma. The osteosarcoma had a longer latency period and occurred at 

the higher doses. The myeloid metaplasia developed sooner and were more frequent in the F1 

and F2 generations (Clarke et al. 1970). 

7.3.3.Hematologic malignancies 
 

Dungworth et al. reported that beagles chronically exposed up to 530 kBq/kg per day of 90Sr 

by ingestion showed myeloproliferative disorders in the highest dose groups. Other effects 

seen were abnormal erythrocyte morphology, drop in hematocrit levels, leukopenia, an 

abnormal amount of immature granulocytes, reduction in platelets, and splenomegaly 

(Dungworth et al. 1969). In a six year chronic study in which beagles were fed with 90Sr at 

14.8 kBq/kg per day, Dungworth et al. reported that about 1 % of the exposed animals 

developed myeloid metaplasia of the spleen (Dungworth et al. 1969). 

 

Howard et al. demonstrated the induction of hematopoietic disorders, such as myeloid 

metaplasia, myeloid leukaemia, lymphocytic leukaemia and stem cell leukaemia, in miniature 

swine after chronic 90Sr feeding up to 114 MBq/day (Howard and Clarke 1970). 

Osteonecrosis, hematopoietic disorders and bone marrow hyperplasia were commonly found 

by Clarke et al. among swine that died after ingesting a diet containing 90Sr levels of 1 or 114 

MBq/day (Clarke et al. 1972). 

 

In rabbits, chronic administration by ingestion of low concentrations of 90Sr (100 Bq/g per 

day) led to an instability of the erythrocyte system and weakening of the hematopoietic 

function (Galle 1982). Hypoplasia of the bone marrow leading to anemia and 
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thrombocytopenia developed in rabbits fed with 218 kBq of 90Sr/kg per day for 31 to 280 

days. Moreover, reduced osteocyte numbers after 48 days were reported (Downie et al. 1959). 

Another study showed that rats receiving chronically more than 18,5 kBq/kg per day had 

significantly depressed hematopoiesis (Zapol'skaya et al. 1974). 

 

Long term exposures to 90Sr resulted also in impaired immune function in animals. Howard et 

al. reported that pigs fed with 23,13 MBq per day for nine months had significantly reduced 

antibody response to Brucella bacteria or phytohemagglutinin stimulation (Howard and 

Jannke 1970).  

8. Physiological systems studied 
 

As explained in the foreword we decided to study the non-cancerous effects on the bone 

physiology and hematopoietic and immune systems after chronic 90Sr ingestion at low dose 

for this thesis. These physiological systems are described in this chapter with particular 

attention for the parameters evaluated. 

8.1. Bone physiology 

8.1.1.Generalities 
 

The skeleton provides structural support for the rest of the body, permits movement and 

locomotion by providing levers for the muscles, protects vital internal organs and structures, 

provides maintenance of mineral homeostasis, serves as a reservoir of growth factors and 

cytokines and provides the environment for hematopoiesis within the bone marrow spaces 

(Taichman 2005). 

 

The four general categories of bones of the skeleton are long bones, short bones, flat bones 

and irregular bones. Flat bones are formed by membranous bone formation, whereas long 

bones are formed by a combination of endochondreal and membranous bone formation 

(Clarke 2008; Marie 2001). The long bones are composed of a hollow shaft, or diaphysis; 

cone-shaped metaphyses below the growth plates; and rounded epiphyses above the growth 

plates (Figure 13).  
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Figure 13. The long bone (here represented by a 

femur) is composed of the proximal and distal 

epiphyses, metaphyses, growth plates and the 

diaphysis. 

 

 

It is assumed that the adult human skeleton is composed of 80 % cortical bone and 20 % 

trabecular bone (Clarke 2008). The diaphysis is composed primarily of dense cortical bone, 

whereas the metaphysic and epiphysis are composed of trabecular meshword bone surrounded 

by a relatively thin shell of dense cortical bone. Cortical bone is dense and solid, whereas 

trabecular bone is composed of a network of trabecular plates and rods. Both cortical and 

trabecular bone are composed of osteons (Figure 14). Cortical osteons are called Haversian 

systems. Haversian systems are cylindrical in shape, and form a branching network within the 

cortical bone. Trabecular osteons are called packets, and composed of concentric lamellae. 

Cortical bone and trabecular bone are normally formed in a lamellar pattern, in which 

collagen fibrils are laid down in alternating orientations. The normal lamellar pattern is absent 

in woven bone, in which collagen fibrils are laid down in a disorganized manner. As such, 

woven bone is weaker than lamellar bone. Woven bone is normally produced during 

formation of primary bone (Clarke 2008). The collagen fibril diameter is regulated by 

osteonectin (Clarke 2008). It is a glycoprotein abundantly expressed in bone undergoing 

active remodeling (Sila-Asna et al. 2007). 
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Figure 14. Hierarchical structural organization of bone: cortical and trabecular (cancellous) bone; osteons with 

Haversian systems; lamellae; collagen fiber assemblies of collagen fibrils; bone mineral crystals, collagen 

molecules, and non-collagenous proteins (from http://biomechanism.com/mechanical-properties-and-the-

hierarchical-structure-of-bone). 

 

The periosteum is a fibrous connective tissue sheath that surrounds the outer cortical surface 

of bone, except at joints where bone is lined by cartilage. The endosteum is a membranous 

structure covering the inner surface of cortical bone, trabecular bone and the blood vessel 

canals (Volkman’s canals) present in bone (Clarke 2008).  

 

Bone is a heterogeneous and complex tissue made up of various proportions of cellular 

content, extracellular matrix and mineral content. Depending on the species, age of the 

species, the type and location of bone, these contents can vary. The inorganic fraction makes 

up to 70 % of tissue weight of the mature bone, the organic fraction up to 20 % and water 

accounts for the remaining 10 %. Calcium phosphate minerals are present in the matrix as 

hydroxyapatite [Ca10(PO4)6(OH)2]. Bone crystals provide mechanical rigidity and load-

bearing strength to bone, whereas the organic matrix provides elasticity and flexibility (Clarke 

2008). The organic matrix of bone is composed of many diverse materials but collagen makes 

up to 90 % of the matrix of the tissue. Collagen type 1 fibres constitute the majority of the 

matrix and are arranged generally as parallel fibrils of even diameter. Their orientation 

changes through the thickness of the tissue. The remaining 10 % of the matrix consists of 
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noncollagenous material and is made up of proteins, proteoglycans, lipids and other 

substances with the bulk being noncollagenous proteins (Clarke 2008; Sila-Asna et al. 2007).  

 

A main noncollagenous protein present in bone is alkaline phosphatase (ALP). This protein 

plays a role in the mineralization process of bone. It hydrolyzes mineral deposition inhibitors 

such as extracellular pyrophosphate and cleaves phosphate groups into inorganic phosphate 

ions, which are used for mineral deposition (Al-Jallad et al. 2006; Clarke 2008; Mackie et al. 

2008). The upregulation of ALP activity is used as a marker for differentiation of pre-

osteoblasts in mature osteoblasts. The final phase of osteoblast development is characterized 

by the formation of mineralized extracellular matrix and once this mineralization starts, ALP 

activity decreases significantly (Coetzee et al. 2009).  

 

Osteopontin (OPN) is another abundant noncollagenous protein in the bone. It is produced by 

osteoblasts and osteoclasts. OPN plays a key controlling role both in cell attachment and bone 

resorption (Yoshitake et al. 1999). Moreover, OPN has a critical role in the regulation of the 

physical location and proliferation of HSCs. In vitro studies suggested that OPN inhibits HSC 

proliferation (Haylock and Nilsson 2006; Nilsson et al. 2005).  

 

Furthermore, bone sialoprotein (BSP) is also a major noncollagenous matrix protein and is 

produced by osteoblasts, osteoclasts, osteocytes and hypertrophic chondrocytes. It mediates 

cell attachment. Its role is furthermore associated with the formation of the hydroxyapatite 

crystal on one hand and osteoclastogenesis and bone resorption on the other hand (Boudiffa et 

al. 2010; Clarke 2008; Sila-Asna et al. 2007; Valverde et al. 2008). 

8.1.2.Mesenchymal stem cells and osteoblasts 
 

Bone marrow contains a small population of mesenchymal stem cells that are able to give rise 

to several cell types such as osteoblasts, chondroblasts and adipocytes (Figure 15) (Bonfield 

and Caplan 2010; Disthabanchong et al. 2007; Pittenger et al. 1999; Thompson et al. 1998).  
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Figure 15. Mesenchymal stem cell differentiation (from Bonfield and Caplan 2010). 
 

Mesenchymal stem cells can differentiate into immature osteoblasts through the action of 

Runt-related transcription factor 2 (Runx2), osterix and β-catenin. Runx2, also known as 

Core-binding factor alpha 1 (Cbfα1), is a transcription factor of the Runt domain gene family 

that is essential for bone formation. Runx2 directs multipotent mesenchymal cells to an 

osteoblastic lineage, and inhibits them from differentiating into the adipocytic and 

chrondrocytic lineages (Geoffroy et al. 2010). After MSC differentiation to pre-osteoblasts, 

Runx2, β-catenin and osterix direct these cells to immature osteoblasts, which produce bone 

matrix proteins, blocking their potential to differentiate into the chondrocytic lineage. 

Moreover, Runx2 inhibits osteoblast maturation and the transition into osteocytes, keeping as 

such osteoblasts in an immature stage (Komori 2006, 2009). 

 

The immature pre-osteoblasts are spindle-shaped and express high levels of OPN. Pre-

osteoblasts that are found near functioning osteoblasts are usually recognizable because of 

their expression of ALP. They differentiate into mature large cuboidal differentiated 

osteoblasts, which express high levels of osteocalcin (OCN). This is a major noncollagenous 

protein of the matrix, synthesized and secreted exclusively by osteoblastic cells in the late 

stage of maturation and is considered as a late indicator of osteoblast differentiation. OCN 

expression is modulated by parathyroid hormone (PTH) and other factors. OCN binds with 
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high affinity to hydroxyapatite crystals and regulates bone crystal growth (Sila-Asna et al. 

2007).  

 

 

Figure 16. Some principal expressed genes during osteoblast differenciation (ALP: alkalin phosphatase, Coll 1: 

collagen 1, OPN: osteopontin, BSP: bone sialoprotein, OSC: osteocalcin, PTHr: parathyroid hormone receptor) 

(from Marie 2001). 

 

Active mature osteoblasts that synthetize bone matrix have large nuclei, enlarged Golgi 

structures, and extensive endoplasmatic reticulum. These osteoblasts secrete type 1 collagen 

and other matrix proteins (fibronectin, OPN, osteonectin, OCN and BSP) vectorially towards 

the bone formation surface. Osteoblasts and bone lining cells are found in close proximity and 

joined by adherent junctions (Marie 2001). 

 

Growth factors produced by osteoblasts, including insulin-like growth factor (IGF), fibroblast 

growth factor (FGF), bone morphogenetic protein (BMP) and transforming growth factor-β 

(TGF-β), are important for bone growth and osteogenesis. They are capable of stimulating 

both osteoblast cell proliferation and differentiation (Baek and Kang 2009; Tsumaki and 

Yoshikawa 2005). BMP signalling for instance is required for normal rates of onset and 

progression of chondrocyte hypertrophy (Mackie et al. 2008). 

 

The mature osteoblasts are embedded in the bone matrix to become osteocytes (Komori 

2006). Osteocytes represent terminally differentiated osteoblasts and support bone structure 

and metabolism. They do not express ALP but do express OCN. It is suggested that 

osteocytes may undergo apoptosis (Clarke 2008). It has been shown that osteocytes in bone 
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produce FGF-23, a 1,25-(OH)2 vitamin D3 regulating hormone, and as such bone participates 

in the regulation of vitamin D and mineral homeostasis (Quarles 2008). 

8.1.3.Osteoclasts 
 

Osteoclasts are specialized cells for bone resorption via ruffled borders and clear zones 

(Figure 17) (Shibata and Yamashita 2001). They are multinucleated cells formed by 

cytoplasmic fusion of their mononuclear precursors, which are in the myeloid lineage of 

hematopoietic cells that also give rise to macrophages. The switch to osteoclast differentiation 

requires expression in osteoclast precursors of c-Fos, a RANKL activated transcription factor 

(Baron and Tsouderos 2002; Boyce and Xing 2007). 

 

Osteoclasts bind to bone matrix via integrin receptors. Binding of osteoclasts to bone matrix 

causes them to become polarized, with the bone resorbing surface developing a ruffled border. 

The ruffled border secretes H+ ions via H+-ATPase and chloride channels and causes 

exocytosis of cathepsin K and other enzymes like MMP-9 in the acidified vesicles. Upon 

contact with bone matrix, the fibrillar cytoskeleton of the osteoclast organizes into an actin 

ring, which promotes formation of a sealing zone around the periphery of osteoclast 

attachment to the matrix. As such, the sealing zone surrounds and isolates the acidified 

resorption compartment from the surrounding bone surface (Boyce and Xing 2007). The low 

pH of the so called resorption pit activates the proteolytic enzymes and promotes dissolution 

of crystalline calcium phosphate of the bone matrix (Wu et al. 2008). 
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Figure 17. Diagram of the formation of osteoclasts and their relationship to osteoblasts. CFU-GM: colony-

forming unit for the granulocyte-macrophage series, M-CSF: monocyte-macrophage colony-stimulating factor, 

Cl- : chloride ion, H+: hydrogen ion, H+ ATPase: H+-adenosine triphosphatase, HCO3
-: carbonate ion, OPG: 

osteoprotegerin, PTH: parathyroid hormone, PTH-R: Parathyroid Hormone Receptor, RANK: receptor activator 

factor of nuclear factor-κB, RANKL: RANK ligand. 

 

Osteoblasts regulate osteoclast maturation and proliferation by cytokines such as macrophage 

colony-stimulating factor (M-CSF) (Baek and Kang 2009) and receptor activator of nuclear 

factor-κB ligand (RANKL) (Figure 18) (Boyce and Xing 2007; Lymperi et al. 2008; Wu et 

al. 2008). RANKL belongs to the tumor necrosis factor (TNF) superfamily and is produced by 

osteoblasts and osteoblast precursors to stimulate osteoclast recruitment and activation. It 

interacts with membrane-bound molecules on nearby (by secreted RANKL) or adjacent (by 

membrane-bound RANKL) osteoclasts and its precursors (Baek and Kang 2009; Boyce and 

Xing 2007). The effects of RANKL are counterbalanced by osteoprotegerin (OPG), which 

protects the skeleton from excessive bone resorption by binding to RANKL and preventing it 

from binding to its receptor RANK (Baek and Kang 2009; Boyce and Xing 2007). 
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Figure 18. Signaling pathway for normal osteoclastogenesis. RANKL produced by osteoblasts binds to RANK 

on the surface of osteoclast precursors and recruits the protein TRAF6, leading to NF-κB activation and 

translocation to the nucleus. NF-κB increases c-Fos expression and c-Fos interacts with NFATc1 to trigger the 

transcription of osteoclastogenic genes. OPG inhibits the initiation of the process by binding to RANKL. NFAT, 

nuclear factor of activated T cells; NF-κB, nuclear factor-κB; OPG, osteoprotegerin; RANKL, receptor activator 

of nuclear factor-κB ligand; TRAF, tumor necrosis factor receptor associated factor from (Boyce and Xing 

2007). 

8.1.4.Bone growth, modelling and remodelling 
 

Bone undergoes longitudinal and radial growth, modelling and remodelling during life. 

Longitudinal and radial growth occurs during childhood and adolescence. At growth plates, 

longitudinal growth occurs before subsequently undergoing mineralization to form primary 

new bone (Clarke 2008). Bone modelling on the other hand is the process by which bone 

changes its overall shape in response to physiologic influences or mechanical forces, leading 

to the gradual adjustment of the skeleton to the forces that it encounters (Clarke 2008).  

 

The main recognized functions of bone remodelling include preservation of bone mechanical 

strength by replacing older micro-damaged bone with newer healthier bone and calcium and 

phosphate homeostasis (Clarke 2008). Remodelling begins before birth and continues until 

death. Remodelling involves continuous removal of discrete packets of old bone, replacement 

of these packets with newly synthesized bone matrix, and subsequent mineralization of the 

matrix to form new bone. The bone remodelling unit is composed of a tightly coupled group 
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of osteoblasts and osteoclasts that sequentially carry out resorption of old bone and formation 

of new bone (Clarke 2008). At skeletal maturity, the process of bone remodelling occurs less 

intensively than previously. Later on with age, the intensity of osteoclastic resorption begins 

to increase, leading to a net loss of bone mass (Riis 1996). 

 

Studies with female humans and animals showed changes in bone remodelling during the 

menstrual cycle with monthly episodes of increased bone resorption (Chiu et al. 1999; Gass et 

al. 2008; Hotchkiss and Brommage 2000; Kalyan and Prior 2010). Women undergo 

significant bone mass loss during menopause which is linked to oestrogen deficiency leading 

to increased bone remodelling with an excess of resorption over formation (Windahl et al. 

2009; Xing and Boyce 2005). In vitro studies have shown that oestrogen enhances the 

proliferation and differentiation of osteoblasts and promotes osteoclast apoptosis (Hughes et 

al. 1996; Marie 2001). Moreover, oestrogen decreased the production of M-CSF and tumor 

necrosis factor α (TNF-α), two cytokines involved in osteoclast formation (Marie 2009; 

Srivastava et al. 1999; Srivastava et al. 1998). Furthermore, oestrogens increase the 

expression of 1,25-(OH)2 vitamin D3 receptor in osteoblasts, which was linked to an anti-

apoptotic effect of these cells (Duque et al. 2002). Oestrogen also decreased the production of 

RANKL and increased the production of OPG, which prevents osteoclast differentiation 

(Zallone 2006). Cao et al. showed in vitro that oestrogen activates BMP, and as such favours 

the differentiation of pre-osteoblasts and osteoblasts (Cao et al. 2003). Finally, it has been 

shown that testosterone has some antiresorptive effects and helps maintain bone formation 

(Baek and Kang 2009). 

8.1.4.1. Intramembranous and endochondreal bone 
formation 

 

Intramembranous bone formation happens mostly in flat bones. With intramembranous bone 

formation, bone arises directly from mesenchymal cells which condense and directly 

differentiate into osteoblasts to deposit bone matrix (Chung et al. 2004; Cohen 2006). 

 

Endochondreal bone formation happens on the other hand mostly in long bones (Figure 19). 

It involves a cartilaginous precursor template from which bone and bone marrow develops. At 

the onset of endochondreal bone formation, MSC differentiate into chrondrocytes. 

Chondrocytes then proliferate and produce a matrix to form primordial cartilage (A). Shortly 

after formation of the primordial cartilage, proliferating chrondrocytes in the central region of 
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the cartilage undergo differentiation into hypertrophic chondrocytes . These exit the cell cycle 

and synthesize another matrix. The hypertrophic cartilage is invaded by blood vessels, 

osteoblasts, osteoclasts and hematopoietic cells, resulting in the formation of primary 

ossification centers (B). The hypertrophic cartilage matrix is degraded by chondroclasts, the 

hypertrophic chondrocytes die and bone marrow and endochondreal bone replaces the 

disappearing cartilage (C). A collar of bone surrounding the surface of the cartilage model 

results from intramembranous ossification. As the front nears the end of the long bone, distal 

chondrogenesis elaborates a cartilaginous growth plate (Figure 20) that serves as a continual 

source of cartilage conversion to bone, resulting in linear growth of the long bone. Secondary 

centres of ossification at the ends of the long bone appear during late fetal life and early 

childhood. Articular-epiphyseal growth cartilage (AEGC) remains under the permanent 

articular cartilage (D). Long bones cease growing at the end of puberty and with time the 

growth plates are replaced by bone and the only remaining cartilage is the permanent articular 

cartilage at each end of bone (E) (Chung et al. 2004; Cohen 2006; Mackie et al. 2008; Pratt 

1957; Tsumaki and Yoshikawa 2005).  

 

 

 

Figure 19. Development of an endochondreal bone (from Mackie et al. 2008). 
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Figure 20. Schematic representation and photomicrograph of the growth plate of an endochondreal bone 

demonstrating chondrogenesis, hypertrophy of chondrocytes, vascular invasion, and osteogenesis (from Cohen 

2006). 

8.1.4.2. Bone remodelling cycle 
 

The bone remodelling cycle (Figure 21) starts with resorbing osteoclasts secreting hydrogen 

ions via H+-ATPase proton pumps and chloride channels in their cell membranes into the 

resorption pit to lower the pH within at 4,5 which helps mobilize bone mineral. Resorbing 

osteoclasts secrete tartrate-resistant acid phosphatase (TRAP5b), cathepsin K, MMP-9 and 

gelatinase from cytoplasmic lysosomes to digest the matrix (Baek and Kang 2009; Clarke 

2008). TRAP5b has two distinct enzymatic activities to participate in the degradation of 

matrix components. It can function as a phosphatase at acidic pH and as a generator of 

reactive oxygen species (ROS) at neutral pH. Matrix degradation products are endocytosed 

together with cathepsin K into osteoclasts and transported through the cell in transcytotic 

vesicles. Vesicles containing TRAP5b are fused in these vesicles. When the vesicles move 

away from the resorption lacuna their pH is changed to neutral, providing an optimal 

environment for the ROS generating activity of TRAP5b. ROS finalize degradation of the 

matrix components during their transcytosis. Finally, the matrix degradation products are 

released from the osteoclast into the blood circulation together with TRAP5b (Vaaraniemi et 

al. 2004). During osteoclastic bone resorption, C-telopeptide degradation products from type 

1 collagen (CTX) are released into the circulation. Indeed, in a rat model, it was shown that an 

increased concentration of CTX in the serum is associated to an enhanced degradation of the 

bone matrix (Brzoska and Moniuszko-Jakoniuk 2005a, b). 
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During a reversal phase, bone resorption transitions to bone formation. At the completion of 

bone resorption, resorption pits contain a variety of mononuclear cells, including pre-

osteoblasts recruited to begin new bone formation. One coupling signal linking the end of 

bone resorption to the beginning of bone formation is TGF-β, which is released form the bone 

matrix and decreases osteoclast resorption by inhibiting RANKL production by osteoblasts 

(Clarke 2008). The osteoblasts synthesize new collagenous organic bone matrix. During 

collagen synthesis, procollagen 1 N-terminal propeptide (PINP) is released. This propeptide is 

ultimately secreted into the blood circulation. Osteoid formed is the unmineralized, organic 

portion of the bone matrix that forms prior to the mature mineralized bone tissue. 

 

The end result of each bone remodelling cycle is the production of a new osteon. The 

remodelling process is essentially the same in cortical and trabecular bone (Clarke 2008). At 

the completion of bone formation, osteoblasts undergo apoptosis or become osteocytes or 

bone lining cells. Bone-lining cells may regulate influx and efflux of mineral ions into and out 

of bone extracellular fluid, thereby serving as a blood-bone barrier. They can redifferentiate 

into osteoblasts upon exposure to PTH or mechanical forces (Clarke 2008). 

 

Figure 21. The bone remodelling cycle. 
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8.1.5.Vitamin D and bone metabolism 
 

The process of osteogenesis is controlled by systemic hormones and growth factors. Two of 

the main regulators of calcium homeostasis are 1,25-(OH)2 vitamin D3 and parathyroid 

hormone (PTH) (Baek and Kang 2009). 

 

Vitamin D is crucial to the overall health and has important functions in calcium homeostasis 

and bone metabolism. After absorption or skin production of vitamin D, the liver synthesizes 

25-OH vitamin D and the kidneys subsequently produce biologically active 1,25-(OH)2 

vitamin D3, also called calcitriol (Figure 22). 1,25-(OH)2 vitamin D3 functions through the 

binding with a vitamin D receptor (VDR) in target cell nuclei, regulating gene expression in 

these cells, including osteoblasts and chondrocytes (Masuyama et al. 2006). Serum 1,25-

(OH)2 vitamin D3 is responsible for maintaining serum calcium and phosphorus and does this 

primarily by stimulating intestinal absorption of calcium and phosphorus (Samadfam et al. 

2008; Tissandie et al. 2006). The effect of vitamin D on bone is complex and many studies 

conducted both in vitro and in vivo have brought conflicting results. It is suggested that 1,25-

(OH)2 vitamin D3 exert both anabolic and catabolic effects on the skeleton (Duque et al. 

2005; Samadfam et al. 2008).  

 

On one hand 1,25-(OH)2 vitamin D3 seems to be an osteotropic hormone that stimulates bone 

resorption. In vitro experiments showed that VDR signalling in chondrocytes directly 

regulates osteoclastogenesis by inducing RANKL expression (Baron and Tsouderos 2002; 

Masuyama et al. 2006). In vivo, 1,25-(OH)2 vitamin D3 inhibited osteoclastogenesis by 

decreasing the pool of osteoclast precursors in the bone marrow and removal of osteoclasts 

from the resorption site by apoptosis (McKenna et al. 2000; Shibata et al. 2002). On the other 

hand, vitamin D seems to stimulate mineralization of the bone matrix. Several studies showed 

that vitamin D deficiency leads to impairment of bone mineralization. Vitamin D promoted 

differentiation of osteoblasts and stimulated osteoblastic expression of OPN and OCN and 

regulated collagen post-translational modifications and maturation in an osteoblastic cell 

culture system (Clarke 2008; Marie 2001; Nagaoka et al. 2008). An in vivo study with rats 

showed that 1,25-(OH)2 vitamin D3 improved mechanical strength in an ovariectomized rat 

model (Fu et al. 2009). 
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Figure 22. 1,25-(OH)2 vitamin D3 production (from http://chemistry.gravitywaves.com/CHE452/). 
 

Generally, it is assumed that 1,25-(OH)2 vitamin D3 at lower doses seems to have 

predominantly an anabolic effect on bone, whereas at high doses seems to stimulate bone 

resorption (Suda et al. 2003). Furthermore, 1,25-(OH)2 vitamin D3 inhibits PTH production 

both by direct action on the parathyroid glands and indirectly by raising serum calcium levels. 

PTH is recognized as being a major regulator of calcium homeostasis and bone remodelling. 

In vivo, PTH exerted both anabolic and catabolic effects on bone. Intermittent injections of 

PTH increased bone mass, while continuous infusion of PTH caused bone loss (Choudhary et 

al. 2008; Dempster et al. 1993; Lymperi et al. 2008; Marie 2001; Samadfam et al. 2008). It 

has been shown that PTH has direct effects on bone via PTH receptors in osteoblasts and 

increases calcium and phosphate efflux from the exchangeable bone compartiment (Quarles 

2008).  

 

1,25-(OH)2 vitamin D3 production is itself stimulated by PTH, thus providing an effective 

control loop (Figure 22). Indeed, some studies showed a compensatory response to vitamin D 

deficiency by the stimulation of PTH secretion, and that hyperparathyroidism increased bone 

turnover and bone loss (Baek and Kang 2009). 

 

Finally, glucocorticoids inhibit calcium absorption from the gut by opposing the actions of 

vitamin D and by decreasing the expression of specific calcium channels in the duodenum 



 

 72   

(Baek and Kang 2009). Furthermore it has been shown that glucocorticoids increase the 

expression of RANKL, inducing osteoclastic differentiation. Some studies showed that 

glucocorticoid dexamethasone inhibits proliferation of pre-osteoblasts and induces on the long 

term reduction of bone formation (Marie 2001; Xing and Boyce 2005). Another study on the 

other hand showed that dexamethasone inhibits bone resorption by indirectly inducing 

apoptosis of osteoclasts (Warabi et al. 2001). 

8.2. Hematopoietic system 

8.2.1.Generalities 
 

Hematopoiesis is defined as the whole of mechanisms leading to the continuous and regulated 

production of functional and mature blood cells (Figure 23) (Ceredig et al. 2009). The 

hematopoietic tissue is situated mainly in the bone marrow for adult humans and in the bone 

marrow and spleen for adult mice. In adult humans, bone marrow can be found in short bones 

and long bones, in particular femurs, hip bones, vertebrae, ribs and the skull (Cristy 1981). 

The hematopoietic tissue includes four cellular compartments: the hematopoietic stem cells 

(HSC), progenitors, precursors and mature cells. The HSC proliferate and are capable to 

differentiate in progenitors, then precursors and finally mature cells. This process is strictly 

controlled by stromal cells of the bone marrow and the medullar micro-environment through 

growth factors and adhesion molecules. 
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Figure 23. Diagram of hematopoietic cell differentiation. Myeloid progenitor differentiation is stimulated by 

granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte differentiation by granulocyte colony 

stimulating factor (G-CSF), monocyte-macrophage differentiation by macrophage colony stimulating factor (M-

CSF), erythrocyte differentiation by erythropoietin (EPO) and platelet differentiation by thrombopoietin (TPO). 

8.2.2.Hematopoietic stem cell 
 

The HSC have an auto-renewal capacity and as they are multipotent, are capable to 

differentiate in medullar, blood and thymic cells. One strategy by which HSC can accomplish 

these two tasks is asymmetric cell division, whereby each stem cell divides to generate one 

daughter with a stem cell fate (self-renewal) and one daughter that differentiates. HSC can 

also use symmetric divisions to self-renew and to generate differentiated progeny. Symmetric 

divisions are defined as the generation of daughter cells that are destined to acquire the same 

fate, i.e. two daughter stem cells or two differentiated cells. As such, these symmetric 

divisions can expand the HSC number. HSC seem to divide asymmetrically under steady-state 

conditions and divide symmetrically to restore stem cell pools depleted by injury or disease 

(Martinez-Agosto et al. 2007; Morrison and Kimble 2006; Morrison et al. 1997). 
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The existence of HSC has been put in evidence by Till and McCulloch in a mouse model fifty 

years ago in which a lethal medullar aplasia consecutive to an irradiation of 10 Gy was treated 

with bone marrow transplantation (Till and Mc Culloch 1961). Furthermore, this work put in 

evidence the existence of clones in the spleen, which are called colony forming units-spleen 

(CFU-S), that contain progenitors capable to generate erythroid, granulocyte, monocyte and 

megacaryocyte colonies.  

 

Even if the existence of HSC is known for some while, their characterisation stays difficult. 

Indeed, these cells are not frequent in the bone marrow and present no specific morphologic 

characteristics recognizable by cytological coloration methods. On the other hand, these cells 

can be characterized by functional engraftment tests such as the competitive repopulation 

assay (for mouse cells) and the severe combined immuno deficient (SCID) repopulation assay 

(for human cells) (Dick et al. 1997; Harrison 1980; Szilvassy and Cory 1993; Yahata et al. 

2003).  

 

The absence of markers of differentiation of HSC (lineage negative) makes them difficult to 

identify. However, certain markers, which are species specific, can be expressed during early 

hematopoiesis. By men, the most important marker is the cluster of differentiation 34 (CD34), 

which is expressed during differentiation (Civin et al. 1984). However, as CD34 can also be 

found on the surface of some medullar stromal cells and endothelial cells (Fina et al. 1990; 

Simmons and Torok-Storb 1991), other positive or negative selection markers are used in 

association with CD34 in order to characterize HSC. For example, the absence of CD38, 

CD33 (myeloid marker) and CD19 (B lymphocyte marker) markers (Andrews et al. 1989; 

Terstappen et al. 1991) and the presence of CD133, CD90 and C1qRp markers can be used 

(Baum et al. 1992; Bonnet 2003; Boxall et al. 2009; Danet et al. 2002). Moreover, HSC 

express a certain number of receptors for cytokines and chemokines. KDR, CD184 (CXCR4) 

and CD117 (c-Kit) for example, with the latter a receptor for stem cell factor (SCF) (Wright et 

al. 2002; Ziegler et al. 1999). SCF is known to promote stem cell proliferation (Wognum et al. 

2003). By mice, the markers are a bit different, but the way to characterize HSC is similar, 

with the positive and negative selection of specific markers. Stem cell antigen-1 (Sca-1) is a 

murine cell surface antigen identified on HSC that is expressed at varying levels throughout 

HSC differentiation and plays a role in HSC proliferation (Okada et al. 1992). To conclude, 

mouse HSC can be defined as Lin- c-Kit+ Sca-1+ CD45+ (Li and Li 2006; Osawa et al. 1996; 

Ramos et al. 2003).  
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8.2.3.Hematopoietic progenitors, precursors and mature 
cells 

 

HSC differentiation gives raise to new cells with a strong clonogenic potential, called 

hematopoietic progenitors (Figure 24). These progenitors are characterized by cultivation 

technique in semi-solid medium in the presence of growth factors (Dexter et al. 1977; 

Spangrude et al. 1988). Indeed, in the 1960s, Bradley and Metcalf generated colonies of 

macrophages and polynuclear cells from bone marrow cells (Bradley and Metcalf 1966). The 

hematopoietic progenitors as such characterized are called colony forming cells (CFC), 

colony forming unit (CFU) or burst forming unit (BFU). Different types of progenitors could 

be characterized, including CFU-GEMM (capable of generating colonies of granulocytes, 

macrophages, megakaryocytes and erythroid cells), CFU-GM (capable of generating colonies 

of granulocytes and macrophages) and BFU-E (capable of generating colonies of erythroid 

cells) (Dingli and Pacheco 2010). 

 

The progenitors differentiate into precursors and represent one of the last stages of 

hematopoietic cell maturation. These precursors are myeloblasts, promyelocyte basophils, 

promyelocyte eosinophils, megakaryoblasts and lymphoblasts. They are recognizable by 

morphological characteristics. Finally, the maturation of the hematopoietic precursors leads to 

the formation of mature circulating cells, such as granulocytes (essentially neutrophils, but 

also eosinophils and basophils), monocytes (which further differentiate into macrophages), 

erythrocytes, thrombocytes and lymphocytes. The latter terminating their differentiation in the 

bone marrow (B-lymphocytes) or in the thymus (T-lymphocytes) (Figure 24) (Dingli and 

Pacheco 2010).  
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Figure 24. Hematopoiesis has a tree-like structure with the hematopoietic stem cells at the root of the process. 

Each cell division gives rise to progeny cells that can retain the properties of their parent cell or differentiate. As 

the progeny move further away from the hematopoietic stem cell (HSC), their pluripotent ability is increasingly 

restricted. CMP: common myeloid progenitor, CLP: common lymphoid progenitor, CFU-GEMM: granulocyte 

erythrocyte megakaryocyte monocyte, BFU-E: erythroid burst forming unit, CFU-GM: granulocyte-macrophage 

colony-forming unit (from Dingli and Pacheco 2010). 

8.2.4.Bone hematopoietic niche 
 

Hematopoietic stem cells reside in the bone marrow cavity in a specific microenvironment 

known as the HSC niche. The hematopoietic niche consists of different stromal cell types 

such as endothelial cells, fibroblasts, adipocytes and osteoblasts that regulate survival, self-

renewal, migration, proliferation and differentiation of HSC (Lam and Adams 2010; Moore 

2004). 

 

Osteoblasts have been shown to regulate hematopoiesis by producing a vast array of growth 

factors and cytokines, important for the maturation of hematopoietic progenitors (Taichman 

and Emerson 1994, 1998). On the surface of osteoblasts, Angiopoietin-1 regulates HSC 

number through the activation of Tie-2/Ang-1 signalling pathway, whereas the Notch receptor 

ligand, Jagged 1, modulates HSC self-renewal (Lemischka and Moore 2003; Zhu and 
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Emerson 2004). Furthermore, OPN participates in HSC location and is a negative regulator of 

their proliferation (Lymperi et al. 2008). A study supports the notion that N-cadherin+ 

osteoblasts are fundamental in the hematopoietic niche (Zhang et al. 2003). Increasing the 

overall number and function of osteoblasts whithout increasing N-cadherin+ cells is not 

sufficient to enhance HSC quantity and function. Thus although osteoblasts are indeed a key 

functional component of the niche, HSC number seems to be correlated with the number of a 

subset but not the overall number of osteoblasts (Lymperi et al. 2008). 

 

Furthermore, stromal fibroblasts of the bone marrow have been shown to produce a large 

number of molecules, such as stem cell factor (SCF), granulocyte colony-stimulating factor 

(G-CSF) and Flt-3 ligand, which are capable to stimulate the proliferation and maturation of 

hematopoietic progenitors (Lisovsky et al. 1996; Verfaillie 1993). It also seems that 

hematopoiesis is regulated by endothelial cells and adipocytes, the latter by the action of their 

leptin and adiponectin production (Laharrague et al. 1998; Yokota et al. 2003). 

8.2.5.Flt-3 ligand 
 

Flt3-ligand (fms-like tyrosine kinase 3 ligand) plays a central role in the proliferation, 

survival, and differentiation of early hematopoietic precursor cells, but also at later stages of 

hematopoiesis such as early B cell lineage differentiation and expansion of monocytes and 

immature dendritic cells. 

 

Flt3-ligand is a cell surface transmembrane protein that can be proteolytically processed and 

released as a soluble protein (McClanahan et al. 1996). It is structurally related to stem cell 

factor (SCF) and colony stimulating factor (CSF) (Hannum et al. 1994). Despite the 

widespread expression of Flt3-ligand mRNA, the Flt3-ligand protein has only been found in 

stromal fibroblasts present in the bone marrow microenvironment and T-lymphocytes (Brasel 

et al. 1996; Lisovsky et al. 1996). Both the membrane-bound and soluble isoforms of Flt3-

ligand are biologically active and stimulate the tyrosine kinase activity of Flt3 receptor 

Flk2/Flt3 (Rappold et al. 1997). The Flt3 receptor is expressed predominantly on primitive 

hematopoietic progenitors and is restricted to CD34+ cells lacking lineage-specific markers 

(Matthews et al. 1991). Flt3-ligand mediated triggering of Flt3 receptor induces a receptor 

autophosphorylation at tyrosine residues and activation of multiple cytoplasmic molecules 

(Rosnet et al. 1996).  
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Administration of Flt3-ligand to mice resulted in expansion of HSC and significant 

stimulation of hematopoiesis, whereas administration of Flt3-ligand to mice and rabbits 

subjected to lethal doses of irradiation protected HSC and allowed rapid hematopoietic 

recovery (Gratwohl et al. 1998; Hudak et al. 1998). Moreover, results of a marked reduction 

in number of dendritic cells and natural killer cells (NK cells) in mice lacking Flt3-ligand 

expression indicate that Flt3-ligand is also important for the development and function of the 

immune system (McKenna et al. 2000).  

 

Regulation of Flt3-ligand is based on intracellular retention of preformed of Flt3-ligand and 

its release from intracellular stores, depending on the status of the stem cell compartment. 

During steady-state hematopoiesis, Flt3-ligand is expressed constitutively but little of the 

cytokine is released by cells. Release of Flt3-ligand may be triggered by stem cell deficiency 

in the bone marrow. The increase in Flt3-ligand levels reflects a compensatory response 

whose aim is to restore the HSC compartment and levels return to normal upon hematopoietic 

recovery. In radiation accidents, the measured Flt3-ligand levels were indicative of the 

severity of bone marrow aplasia (Bertho et al. 2001; Bertho et al. 2009; Bertho et al. 2008; 

Huchet et al. 2003; Prat et al. 2006; Wodnar-Filipowicz 2003). 

8.3. Immune system 

8.3.1.Generalities 
 

The immune system is involved in the regulation of most pathological processes and it is 

known that impaired immunity promotes disease progression and, in some cases, disease 

initiation. The immune system is highly susceptible to radiation in addition to other factors.  

 

The immune response includes two types of mechanisms: the non specific immunity or innate 

immunity and the specific acquired immunity or adaptive immunity. Although few specific, 

the innate immunity assures an immediate response to an infection. On the other hand, the 

innate immune response has no memory of antigens encountered, this in contrast to the 

adaptive immune response. The principal actors of the adaptive immunity are lymphocytes, 

which use receptors for the recognition of specific antigens. Adaptive immunity has the 

advantage of an immunological memory, but depends on the innate immunity for initiation 

and orientation of the response.  
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Cells involved in the immune system are principally dendritic cells, macrophages and natural 

killer (NK) cells for the innate immunity and T- and B-lymphocytes for the adaptive 

immunity. Whatever the immune type activated, the cells can release regulating molecules, 

which are called cytokines and chemokines. Cytokines are a diverse group of soluble peptides 

that signal between cells and elicit biological responses, including cell activation, 

proliferation, growth, differentiation, migration and cytotoxicity (Tarrant 2010). Chemokines 

are substances that attract cells to migrate in a particular direction (chemotaxis). Like 

cytokines, they operate via binding to receptors on the outer surface of immune cells (Kidd 

2003). 

8.3.2.Granulocytes 
 

Neutrophils, basophils and eosinophils are polymorphonuclear granulocytes, named after their 

nucleus multilobulated shape. The granules present in their cytoplasm contain biochemical 

mediators that serve inflammatory and immune functions. Moreover, enzymes present in their 

cytoplasm are capable of destroying microorganisms and catabolyzing debris ingested during 

phagocytosis (George-Gay and Parker 2003). 

 

Neutrophils are the most abundant type of white blood cells and form an essential part of the 

innate immune system. Highly motile, they are in response to acute inflammation or infection 

one of the first to arrive at the site of inflammation. They migrate through the blood vessels 

and then through interstitial tissue, following chemical signals such as interleukins and 

leukotrienes. Neutrophils quickly congregate at the site of inflammation and release cytokines 

which amplify inflammatory reacions by several other cells. In addition neutrophils play a key 

role in the front line defence against invading pathogens by directly attacking micro-

organisms (by phagocytosis or release of granule proteins) (Mantovani et al. 2011; Nathan 

2006; Segal 2005; Witko-Sarsat et al. 2000). 

 

Eosinophils circulate in blood and migrate to inflammatory sites in tissues in response to 

chemokines and leukotrienes. Following activation eosinophils combat parasites and 

infections by the production and release of granule proteins, enzymes (i.e. elastase), lidid 

mediators (i.e. eicosanoids), growth factors and cytokines (i.e. interleukins). The granule 

proteins released by eosinophils can create toxic pores in the membranes of target cells 

allowing potential entry of other cytotoxic molecules to the cell, can induce the degranulation 
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by mast cells and can form reactive oxygen species that promote oxidative stress in the target 

cells, causing cell death by apoptosis and necrosis. Moreover, eosinophils are implicated in 

antigen presentation to T lymphocytes (Hogan et al. 2008; Rothenberg and Hogan 2006; Shi 

2004).  

 

Basophils are the least common type of the white blood cells. They appear in many 

inflammatory reactions, particularly those that cause allergic symptoms. When activated, 

basophils degranulate to release histamine, proteoglycans (i.e. heparin), proteolytic enzymes 

(i.e. elastase), leukotrienes or cytokines (i.e. IL-4) (Schroeder 2009).  

8.3.3.Non-granulocytes 
 

Non-granulocytes are white blood cells that do not have granules in their cytoplasm. Inclusive 

in this group are monocytes/macrophages and lymphocytes. 

8.3.3.1. Monocytes/macrophages 
 

Monocytes are the largest of the white blood cells and are young cells found freely circulating 

in blood.  Once the young monocyte leaves the blood stream and enters tissue, it transforms 

into a mature macrophage. They are usually the first cell to engulf and process the antigen and 

present it to the immune cells (lymphocytes) in a manner that will stimulate a specific 

immune response to that particular antigen (George-Gay and Parker 2003). 

8.3.3.2. Lymphoid cells 
 

Lymphocytes are also non-granulocytes and are the most numerous circulating white blood 

cells after neutrophils. There are 2 classes of lymphocytes: T- and B-lymphocytes. Both T- 

and B-lymphocytes can be sorted into subtypes based on characteristic surface molecules on 

them called cluster of differentiation (CD). 

8.3.3.2.1. T-lymphocytes 
 

The growth of T-lymphocytes from pluripotent stem cells happens by different developmental 

stages which start in the bone marrow and end in the thymus (Geenen et al. 2003).  
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During the early stages of differentiation the immature T-lymphocyte cells are double-

positive: they express both CD4 and CD8. In a next phase, single-positive CD4+ T 

lymphocytes are selected by their interaction with MHC class II molecules and the CD8+ T 

lymphocytes selected on the basis of their interaction with MHC class I molecules (Callard 

2007; Geenen et al. 2003; Germain 2002).  

 

During their differentiation, lymphocytes express antigen-specific receptors, called T-cell 

receptors (TCR) (Nemazee 2000). TCR recognize small peptides consisting of 10 to 12 amino 

acids presented by antigen presenting cells (APC) (Hennecke and Wiley 2001; Kidd 2003). 

TCR are associated with a CD3 complex and their simultaneous signals are essential for the 

activation and proliferation of T cells. T cells that are unable to recognize own major 

histocompatibility complex (MHC) molecules die by apoptosis and those that do recognize 

own MHC molecules, receive a signal from the protective epithelial cells in the cortex of the 

thymus so that they do not undergo apoptosis. This is called the positive selection step in T-

lymphocyte differentiation. In a next step, negative selection occurs through an interaction 

with dendritic cells and macrophages in the medulla of the thymus. The T-lymphocytes that 

have a high affinity for own MHC molecules (auto-reactive T-lymphocytes) undergo 

apoptosis (Figure 25) (Alam and Gorska 2003). 

 
 

Figure 25. Positive and negative selection steps in T-lymphocyte differentiation (from Delves 2011). 

 

During rearrangement of the gene segments encoding the antigen-specific α/β TCR, certain 

chromosomal sequences are excised to produce episomal DNA by-products, called TCR 
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rearrangement excision circles (TRECs) (Figure 26). More in detail, the gene segments 

encoding TCR delta (TCRD) protein chain reside within the TCR alpha (TCRA) locus in 

human and mice. Functional rearrangement of TCRA gene segments first requires deletion of 

the TCRD locus. Two elements flanking the TCRD locus preferentially recombine, resulting 

in deletion of the TCRD locus, the so called TREC (Broers et al. 2002). TRECs are stable, not 

duplicated during mitosis, and diluted out with each cellular division (Broers et al. 2002). 

Measurement of TRECs in thymocytes and peripheral blood T cells has been used to study 

thymus output as a quantitative analysis of thymic T cell production (Castermans et al. 2007; 

Dion et al. 2007; Geenen et al. 2003; Sempowski et al. 2002). 

 
Figure 26. Schematic representation of TCR gene rearrangement (from Delves 2011). 

 

 

T-lymphocytes play a central role in cell-mediated immunity. Several subsets of T cells exist, 

each with a distinct function. T cells recognize antigens and modulate the immune response. 

To enhance contact with antigens, lymphocytes circulate continuously in different tissues and 

naive T-lymphocytes migrate mainly to the lymph nodes. In order that T-lymphocytes could 

recognize antigens, exogenous proteins are presented to T-lymphocytes by APC in the context 

of either class I or class II MHC molecules (Figure 27). These APC are mainly monocytes, 

dendritic cells or B lymphocytes and are able to capture antigens and degrade them by 

proteosomes (Hennecke and Wiley 2001).  
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Figure 27. Helper and cytotoxic T-lymphocyte subsets are restriced by MHC class (from Delves 2011). 
 

The CD4+ T-lymphocytes can differentiate into T helper 1 cells (Th1), T helper 2 cells (Th2) 

or T helper 17 cells (Th17), distinguishable by the profile of their cytokine release (Figure 

28) (Alam and Gorska 2003). The so called Th1/Th2 balance is further discussed in detail.  

 

Antigen-activated naïve CD4+ T cells may also differentiate into regulatory T cells (Treg). 

These cells play an essential role in the immune homeostasis. They stimulate or inhibit the 

functions of other cells involved in the innate and adaptive immune response (Chen et al. 

2010; Langier et al. 2010). The specific mechanisms by which these cells act are not yet fully 

elucidated. Belonging to the group of regulatory T-lymphocytes are CD4+CD25+ regulatory 

T-lymphocytes (Treg) and natural killer (NK) cells. CD4+CD25+ cells represent only a small 

fraction of the CD4+ T cells and play an important role in the prevention of organ-specific 

autoimmunity and the maintenance of self tolerance (Sakaguchi et al. 1995).  
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Figure 28. Naive CD4+ T-lymphocytes can undergo polarization to distinct subsets that secrete different 
cytokine combinations (from Delves 2011). 

 

The CD8+ lymphocytes are known as cytotoxic T lymphocytes. These lymphocytes have 

perforines and Fas ligand (Figure 29). The perforines nestle in the membrane of target cells 

and forms pores in it (Shresta et al. 1998). Through these pores enter granular enzymes within 

the cytosol of the target cell leading to apoptosis of the target cell. The Fas ligand binds to its 

receptor, which leads to apoptosis of the target cell by activation of caspases (Russell and Ley 

2002). 

 

 

 

 

 

 

 

 

Figure 29. Cytotoxic T-lymphocytes can kill target 

cells by apoptosis via granule dependent or Fas ligand 

dependent pathways (from Delves 2011). 

 



 

 85   

8.3.3.2.2. B-lymphocytes 
 

B-lymphocytes play a role in the humoral immune response. These cells make antibodies 

against antigens, perform the role of APC and eventually develop into memory B cells after 

activation by antigen interaction. 

 

Like T-lymphocytes B-lymphocytes originate from bone marrow. Unlike T-lymphocytes, 

these cells undergo their whole differentiation in the bone marrow (Rolink et al. 2006). IL-7 

seems to induce the differentiation of common lymphoid progenitors into CD19+ B cell 

progenitors and initiates the transition of pro-B cells into early pre-B cells. Mature B-

lymphocytes bring membrane-bound immunoglobulins (Ig) to expression. Unlike the TCR, B-

cell receptors (BCR), which are membrane-bound forms of Ig, recognize directly foreign 

antigens in the form of large peptides. BCR recognize secondary and tertiary structures and 

even entire proteins (Delves 2011).  

 

B-lymphocytes leave the bone marrow and are activated in the periphery, but only after 

contact with an antigen. When B-lymphocytes do not meet antigens, they will die by 

apoptosis after a few weeks. When a specific antigen binds on the other hand to the BCR, the 

B-lymphocyte differentiates into a plasmocyte and can produce high quantities of specific 

antibodies against the antigen (Delves 2011). 

 

Memory B-lymphocytes will bring a much larger and more efficient response after a 

subsequent exposure to an antigen. Cytokines produced by T cells as IL-4, IL-5, IL-6, IL-2 

and IFN-γ can stimulate the proliferation and differentiation of B-lymphocytes into antibody 

producing plasmocytes. Naive B-lymphocytes produce IgM and IgD on their surface. 

However, when stimulated, they develop into plasmocytes producing IgG, IgA or IgE (Alam 

and Gorska 2003). 

8.3.4.The immune response 
 

During the first contact with antigen, there is recognition of this antigen by cells of the 

immune system. This entails an immune response directed against the antigen or a state of 

tolerance to the same antigen. As mentioned before, the immune response can be cellular or 

humoral. How the immune response is turned in one or another of these types of answer 

depends on how the antigen is presented to the lymphocytes. In many cases the response is 
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mixed cellular and humoral. During the second contact with the antigen, the type of response 

is largely determined by the effect of the first contact, but the intensity and quality of the 

immune response is different (Figure 30). 

 

 
 

Figure 30. Synthesis of immunoglobulines G (IgG) and M (IgM) in the primary and the secondary responses to 

antigen (from Delves 2011). 

 

One theory of immune response regulation involves homeostasis between T-helper 1 (Th1) 

and T-helper 2 (Th2) activity. The Th1/Th2 hypothesis arose from 1986 research suggesting 

mouse T-helper (Th) cells expressed different cytokines (Mosmann et al. 1986). This 

hypothesis was adapted to human immunity, with Th1- and Th2- cells directing different 

immune response pathways (Kidd 2003). Upon receiving signals through the binding of an 

antigen to the TCR in the presence of polarizing cytokines, the naive Th precursor cells 

differentiate into Th1 or Th2 effecter cells that are defined by their function and the cytokines 

they secrete (Figure 31). 
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Figure 31. The generation of Th1 and Th2 CD4+  T-cell subsets. 

 

Th1 cells produce large amounts of interferon-gamma (IFN-γ) and also in a smaller extent IL-

12 (via Stat4 signalling auto-inducing Th1 development) and IL-2. These cytokines are 

responsible for cell-mediated immune defence against intracellular pathogens, by activating 

inflammatory pathways mainly via macrophage activation. They also play a central role in 

organ-specific autoimmune diseases.  

 

Th2 cells defend the host against extracellular parasites and take part in atopic and allergic 

reactions. The signature Th2 cytokine is IL-4 (via Stat6 signalling auto-inducing Th2 

development) which can be measured early in Th2 development. Other cytokines produced by 

Th2 lymphocytes include IL-6, IL-10 an IL-13. The cytokines secreted by Th2 cells 

upregulate antibody formation via B cells and stimulate mast cells and eosinophils (Chakir et 

al. 2003; Kidd 2003; Szabo et al. 2000; Tarrant 2010; Yamashita et al. 2004).  

 

Furthermore, Th1 and Th2 cells differ by the level of expression of different membrane 

molecules. The chemokine receptors CCR5 and CXCR3 are expressed on human Th1 
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lymphocytes, while CCR3 and CCR4 receptors are expressed on Th2 cells (Lebrec et al. 

2001). 

 

Among the many signals that influence the development of naive Th cells, two  have been 

suggested to be master regulators of Th1 and Th2 differentiation, respectively expression of 

the transcription factors T-box expressed in T-cells (T-bet) and Gata-binding protein-3 

(Gata3). T-bet is thought to initiate Th1 development, while inhibiting Th2 cell 

differentiation. Gata-3 plays a role in the development of the Th2 phenotype while inhibiting 

Th1 cells (Chakir et al. 2003; Szabo et al. 2000; Yamashita et al. 2004).  

 

A key feature of the Th1 and Th2 cells is that they can antagonize each other’s actions, either 

by blocking polarized maturation of the opposite cell type or by blocking its receptor 

functions (Figure 32). For example, IFN-γ secreted by Th1 cells can block the proliferation of 

Th2 cells, and high concentrations of IL-4 and IL-13 can block the generation of Th1 cells 

form naïve T cells. However, other immune cell types, like regulatory T cells, can also 

intervene to block either Th1 or Th2 activity or both (Callard 2007; Kidd 2003). Commitment 

to Th1 or Th2 cells appears to be final, since efforts to reverse such differentiated cells have 

not been successful (Callard 2007; Kidd 2003). 

 
 

Figure 32. Antagonism between Th1 and Th2 T-lymphocyte subpopulations (modified from Delves 2011). 
 

8.3.5.IFN-γ, IL-4 and IL-7  
 

IFN-γ is produced primarily by T lymphocytes and NK cells. The production of IFN-γ is 

induced by antigenic challenge and by cytokines such as IL-12. Besides its anti-viral activity, 

IFN-γ has been shown to play a key role in host defense by exerting antiproliferative, 

immunoregulatory, and proinflammatory activities. IFN-γ induces the production of cytokines 

and upregulates the expression of class 1 and 2 MHC antigens. Furthermore, IFN-γ modulates 

macrophage effector functions and potentiates the secretion of antibodies by B cells. IFN-γ 
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has also been shown to increase IL-12 induced Th1 development and stimulate HSC to 

proliferate (Baldridge et al. 2011). 

 
IL-4 is produced primarily by activated T-lymphocytes, but also by mast cells and basophils. 

This interleukin has multiple immune response-modulating activities on a variety of cell 

types. IL-4 induces IgE production in B lymphocytes and is an important modulator of the 

differentiation of precursor Th cells to the Th2 subset (Delves 2011). 

 
In the thymus, IL-7 induces the proliferation of triple negative immature thymocytes, 

participates in TCR rearrangement, and suppresses CD4 expression in favour of CD8 on 

single positive T cells. In the periphery, IL-7 contributes to homeostatic proliferation and 

survival of naive CD4+ and CD8+ T cells and promotes the formation and survival of memory 

CD4+ and CD8+ T cells (Bradley et al. 2005).  
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Material and methods 

1. In vivo studies 

1.1. Animal models 

1.1.1.Balb/c mice 
 

Balb/c mice were purchased from Elevage Janvier (Le Genest Saint Isle, France). Before start 

of experiments a minimal adaptation period of one week was given to the animals. Animals 

were housed in standard cages and were kept at a constant room temperature (21°C ± 2°C) 

with a 12-hour daylight cycle (day from 8 AM until 8 PM). In all described experiments 

animals received ad libitum water and standard rodent chow containing a mean calcium 

concentration of 9 g Ca2+/kg (normal calcium diet, R03-type chow, Safe, Epinay-sur-Orge, 

France).  

 

The animal care committee of the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) 

reviewed and approved all the animal experiments, which were conducted in accordance with 

French regulations for animal experimentation (Ministry of agriculture Act No. 8 7-848, 19 

October 1987, modified May 29, 2001).  

1.1.2.Contamination of models 
 

Drinking water (Evian, Danone, Paris, France) was contaminated with a 90Sr source (90SrCl2 

in 0,1 N HCl, AREVA-CERCA LEA, Pierrelatte, France). The animals were contaminated 

with through drinking water containing 20 kBq of 90Sr per liter. This concentration was also 

used in a previous study at our laboratory to determine the biokinetics of 137Cs after chronic 

contamination (Bertho et al. 2011; Bertho et al. 2010) and represents an expected mean daily 

intake of 100 Bq per animal. This daily intake is close tot the daily estimated ingestion by 

populations living on contaminated territories of Chernobyl (Cooper 1992; de Ruig and van 

der Struijs 1992; Handl et al. 2003; Hoshi et al. 1994). Based upon an assumed daily water 

consumption of 5 ml per animal per day at adult age, a 90Sr contamination of about 100 Bq 

per animal per day at adult age was expected. 

 

Contamination of animals was verified by measurement of 90Sr in femurs of sacrificed 

animals, which is discussed further in detail. 
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1.1.3.Juvenile model 
 

Two groups of mice were constituted throughout all the experiments. One control group 

receiving normal drinking water and one group receiving drinking water containing 20 kBq.l-1 

of 90Sr (CERCA-LEA). Male and female parents received normal or 90Sr containing water 

starting two weeks before mating and until their date of sacrifice (Fig 33). Control and 

contaminated breeding groups were constituted with one male and two females for one week. 

Male parents were one week after start of mating anesthetized by intraperiteoneal injection of 

a mixture of ketamine (Imalgene, Mérial, Villeurbanne, France) and xylazine (Rompun, Bayer 

Healthcare, Monheim, Germany) and killed by cervical dislocation. Births within breeding 

groups were carefully recorded. Three weeks after birth, i.e. at the time of weaning, female 

parents were anesthetized and killed by cervical dislocation. Sexing of the offspring was made 

and the mice were separated into groups of 6-24 control and 10-24 90Sr ingesting animals, 

with a sex ratio of 1:1. In order to avoid possible litter effects, groups of sacrifice were 

constituted with males and females originating from different litters. Surplus animals were 

sacrificed. The animals continued to receive normal or 90Sr contaminated drinking water until 

their sacrifice at the age of 3, 6, 12, 16 or 20 weeks (Fig 33) for organ sampling. So the 

contamination started with parents before mating and continued for offspring until the time of 

sacrifice. As such, offspring were contaminated by placental transfer during foetal life, by 

lactation before weaning and by drinking water afterwards.  

1.1.4.Adult model 
 

As for the juvenile model, two groups of mice were constituted throughout the experiments. 

One control group receiving normal drinking water and one group receiving drinking water 

containing 20 kBq.l-1 of 90Sr (CERCA-LEA). Groups of 6 controls and 12 90Sr ingesting nine-

week old mice were formed, with a sex ratio of 1:1. The animals were sacrificed after the 

same time periods as for the juvenile mouse model, i.e. after 3, 6, 12, 16 or 20 weeks of 

chronic ingestion (Fig 33). 
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Figure 33. Summary of the 90Sr ingestion schedules (hatched boxes) for the juvenile and the adult mouse model. 

The time periods of sacrifice of animals are indicated for both models (vertical lines in the hatched boxes).  

1.1.5.Vaccination model 
 

The experimental schedule was the same as described for the juvenile model described above, 

except that at the time of weaning, experimental groups were constituted with male offspring 

only. The mice were separated into 3 groups of 12 control and 3 groups of 12 90Sr ingesting 

male animals. The animals continued to receive normal or 90Sr contaminated drinking water 

until their sacrifice at the age of 24 weeks (Fig 34) for organ sampling. 

 

Response to antigen injection was tested in 3-7 week-old and 20-24 week-old animals. At the 

age of 3 weeks, 100 µl of tetanus toxin (TT, Pasteur Vaccins, Paris, France, 1:20 dilution in 

saline) or keyhole limpet hemocyanin (KLH, 0.5 mg.ml−1 in saline, Sigma-Aldrich, Saint-

Quentin Fallavier, France) were injected intraperitoneally in 12 males from each of the 

control and 90Sr chronic ingesting groups. A second injection was made at the age of 20 

weeks. 12 males from either control or 90Sr chronic ingesting groups were injected with saline 

(0.9 % NaCl) as an experimental control (placebo group). During 4 weeks after each injection, 

blood samples were weekly drawn by jugular puncture. At the age of 24 weeks, animals were 

sacrificed as described above and organs were collected for analysis (Fig 34). 
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Figure 34. Summary of the 90Sr ingestion schedule (hatched boxes) for the vaccination mouse model. The first 

injection with tetanus toxin (TT), keyhole limpet hemocyanin (KLH) or saline (placebo) was given at 3 weeks of 

age and the second injection at 20 weeks of age of animals. During 4 weeks after each injection, blood samples 

were weekly drawn by jugular puncture (checkered boxes). Animals were sacrificed at 24 weeks of age.  

1.2. Methods 

1.2.1.Body mass, food and water consumption 
 
A weekly record of individual body weight of each animal was made together with a weekly 

follow-up record per cage for food and water consumption. For the juvenile model this was 

done from the time of weaning. The mean food and water consumption per animal and per 

day was obtained by calculation on the basis of the number of animals per cage.  

1.2.2.Organ sampling 
 

For the juvenile model at age of birth, 3, 6, 12, 16 and 20 weeks or for the adult model at 3, 6, 

12, 16 and 20 weeks of 90Sr ingestion duration, 6-24 control and 10-24 contaminated animals 

with equal number of males and females were anesthetized by an intraperiteoneal injection of 

a mixture of ketamine (Imalgene) and xylazine (Rompun). Blood was drawn by intracardiac 

puncture using heparinised tubes (Choay, Sanofi Aventis, Paris, France) and the animals were 

killed by cervical dislocation.  

 

For animals used in the 90Sr biokinetics study, the following organs were collected: skin, liver, 

spleen, kidneys, digestive tract (from stomach to the rectum), heart, thymus, lungs, skeletal 

muscle, femurs, central nervous system (CNS). Remaining tissues were separated into two 

parts: legs, tail, and skin on the one hand, and the remaining upper part of the body (the 
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carcass) on the other hand. All samples were weighted before 90Sr measurements. Animals 

used for the determination of 90Sr content at different skeletal sites were sacrificed as 

described above and internal organs were removed. Carcasses were then treated entirely for 1 

hour in boiling water and then overnight at 56°C in the presence of papain (1 mg/ml final 

concentration, Sigma, Saint Quentin Fallavier, France). Bones were isolated and grouped 

according to the different skeletal sites under an inverted microscope before 90Sr 

measurements. 

 

To study the hematopoietic system, blood was drawn from animals as described before and 

spleen, thymus and femurs were isolated for phenotypical analysis of hematopoietic cells 

and/or determination of hematopoietic progenitors by the colony forming cell (CFC assay). 

After flushing the bone marrow of femurs, femurs were weighted and used to verify the 

presence of 90Sr in bones. 

To study the bone physiology, the protocol was modified by isolating both femurs and tibias 

from animals. One femur was immediately frozen in liquid nitrogen, stored at -80°C and used 

for genetic expression analysis. The other femur was decalcified with chlorhydric acid (RDC 

agent, CML, Nemours, France), fixed in 4 % formaldehyde (VWR, Fontenay-sous-Bois, 

France) and used for histological analysis. The tibias were weighted and used to verify the 

presence of 90Sr in bones. 

For animals used for the study of the immune system, blood was drawn by jugular puncture 

and spleen, thymus and mesenteric lymph nodes were isolated for genetic and protein 

expression analysis and phenotypical analysis of cells. Femurs were used to verify the 

presence of 90Sr in bones as described above. 

 

Blood cell count was performed with a MS-9 (Melet-Schlossing, Osny, France) veterinary 

automatic blood counter and plasma was isolated by centrifugation of blood at 5000 rounds 

per minute (rpm) for 5 minutes (min). Obtained plasma was stored at -80°C for subsequent 

analysis. 

1.2.3.90Sr measurements 
 

To measure 90Sr in organs, these were first calcined at 500°C in an oven during 5 hours. 

Ashes were dissolved in nitric acid (HNO3, 67 %) and hydrogen peroxide (H2O2, 30 %, both 

from VWR) in a 2:1 ratio and gently heated until complete evaporation. This step of 
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dissolution in HNO3 and H2O2 was repeated twice for each sample. This whole procedure was 

repeated twice. Samples were then redissolved in 1 ml nitric acid (HNO3, 10 %) by shaking 

overnight.  

 

Fifteen ml of scintillation liquid was added (Ultima Gold AB, Perkin Elmer, Courtaboeuf, 

France) to each sample and 90Sr measurements were made with a β counter (TRI-CARB 

2700TR Liquid Scintillation Analyzer, Perkin Elmer). 90Sr activity was measured at least one 

month after organ sampling, the time necessary to reach a secular equilibrium at the time of 

counting between initial 90Sr content in samples and 90Y. The counting time per sample of 

organs was 2 hours. The count rate (in counts per minute, cpm) obtained for each sample was 

converted to activity per mass unit Am (in Bq.g-1) using the following equation: 

 

Am= (CPMgross − CPMcontrol)/((60 × E × m)/100) 

 

where CPMgross is the gross measurement of the sample (cpm), CPMcontrol the mean 

background cpm of 10 control samples, m the mass of the samples (g) and E the efficiency of 
90Sr detection. This efficiency of detection E (%) was determined with the following equation:  

 

E= (CPMadd − CPMgross)/((60 × Aadd)/100) 

 

where CPMadd is the gross measurement of the sample after a defined activity of 2Bq of 90Sr 

was added (cpm) and Aadd the defined activity of 90Sr added (2 Bq). Organs from control 

animals were counted under the same conditions.  

 

The whole body specific activity was then calculated as the sum of 90Sr activities (Bq) in all 

organs divided by the total body weight of the animals (g). The detection limit of 90Sr was 

between 0,45 Bq and 0,75 Bq per sample depending of the organs. 

1.2.4.Metabolic cages 
 

Before sacrifice, animals used for the 90Sr biokinetics study were placed individually in 

metabolic cages. After an adaptation period feces and urine were collected over a whole 

period of 48 hours and were measured for 90Sr content. 
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1.2.5.Transfer rate calculations 

1.2.5.1. Daily intestinal absorption ratio 
 

The daily intestinal absorption ratio (IAR) of 90Sr was calculated using the following equation: 

 

IAR = (I – FE)/I 

 

were I is the mean daily 90Sr ingestion calculated on the basis of weekly measurements (as 

described above) in Bq.d-1 and FE is the measured individual 90Sr excretion through feces in 

Bq.d-1. 

1.2.5.2. Rate of 90Sr accumulation in bones 
 

The rate of 90Sr accumulation in bones Bq∆t (in Bq.day-1) was calculated with use of the 

following equation:  

Bq∆t = (Bqt − Bqt-1)/(∆t) 

 

where Bqt and Bqt-1 are the total activity (in Bq) of 90Sr measured in bones at the times t and t-

1 respectively and ∆t the number of days between the two time points t and t-1. 

1.2.6.Calculation of absorbed doses 

1.2.6.1. Total body activity, body mass and mass class 
 

For absorbed dose calculation purpose, the 90Sr total body activity of each animal during each 

time interval was taken to be the mean of the total body activity measured in the animal at the 

time point of sacrifice and the mean of total body activities measured in all animals 

euthanized at the previous time point, starting from 0 at the time of mating. 

 

As described earlier, animals were followed up individually for their body mass since 

weaning (3 weeks old) until their date of sacrifice. As for 90Sr total body activity, the body 

mass was estimated as the mean of the observed value at the time point of sacrifice for each 

specific animal and the mean of masses of animals euthanized at the previous time point, 

starting from 0 at the time of mating. 
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1.2.6.2. Dose conversion factors used for dose 
calculation 

 

Dose conversion factors (DCF) expressed in (µGy.day-1)/(Bq.kg-1) and used for absorbed dose 

calculations are indicated in table. DCF proposed by the ICRP take into account the daughter 

products of radionuclides, provided that the half-life of these daughter products is less than 10 

days, i.e. only in case secularly equilibrium could be reached during the exposure (ICRP 

2008). This is in fact the case for 90Sr, which daughter product, 90Y, has a half-life of 2.7 days.  

 

Radionuclide Internal exposure 
External exposure in an uniformly 

contaminated soil 
90Sr 1.5x10-2 3.0x10-9 

 

Table 6. Dose conversion factors (DCF) used in this study, expressed in (µGy.day-1)/(Bq.kg-1), according to 

ICRP 2008.  

 

For each time of sacrifice i, the radiation dose Di absorbed from the time i-1 to the time i was 

calculated according to the following formula: 

 

Di = DCF x Ti x Ai / Mi 

 

where Ti is the time period since previous euthanasia i-1 expressed in days, Ai and Mi the total 

body activity and body mass in the time interval i-1 to i in Bq and kg respectively. The total 

dose absorbed up to a given time point i is thus the sum of doses Dj calculated for each time 

point j ≤ i. 

1.2.7.General biochemical parameters 
 

An automated spectrometric system (Konelab 20, Thermo Electron Corporation, Cergy-

Pontoise, France) with the manufacturer’s biological chemistry reagents was used to measure 

levels of calcium (Ca), phosporus (P), alkaline phosphatase (ALP), aspartate aminotransferase 

(AST), alanine aminotransferase (ALT), creatinine, creatinine kinase and urea in plasma. 
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1.2.8.Plasma dosages 

1.2.8.1. Enzyme linked immunosorbant assays  
 

To evaluate the hematopoietic system, plasma Flt-3 ligand and IL-7 concentrations were 

measured by commercial available enzyme linked immunosorbant assay (ELISA) following 

the according manufacturer’s recommendations (R&D Systems, London and Abingdon, UK). 

The detection limits of the tests were 5 pg.ml-1 and 15 pg.ml-1 respectively. 

 

To evaluate the bone physiology, plasma concentrations of parathyroid hormone (PTH, 

Immunotopics, San Clemente, CA, USA, detection limit (dl): 3 pg.ml-1), 1,25-

dihydroxyvitamin D3 (1,25(OH)2D3, Immunodiagnostics Systems, Paris, France, dl: 2.5 

pg.ml-1), bone morphogenetic protein-2 (BMP-2,USCN Life Science Inc., Wuhan, China, dl: 

6.7 pg.ml-1), osteocalcin (OCN, USCN Life Science Inc., dl: 4.2 pg.ml-1), bone-specific 

alkaline phosphatase (bALP, USCN Life Science Inc., dl: 0.143 U/l), procollagen type 1 N-

terminal telopeptide (PINP, Immunodiagnostics Systems, dl: 0.7 ng.ml-1), osteoclast-specific 

tartrate resistant acid phosphatase 5b (TRAP5b, USCN Life Science Inc., dl: 0.29 U/ml) and 

collagen type 1 C-telopeptide (CTX, Immunodiagnostics Systems, dl: 2 ng.ml-1) were 

measured by commercial available ELISA according to manufacturer’s recommendations. 

Optic density (OD) was measured with a MRX 2 microplate reader (Thermo Labsystems, 

Palaiseau, France). 

1.2.8.2. Immunoglobulin detection 
 

Immunoglobulins (Ig) were measured using specific ELISA tests developed in our laboratory. 

96-well plates (Nunc, Dominique Dutcher, Brumath, France) were coated overnight with 100 

µl of anti-mouse IgG or IgM (both from Sigma) at a concentration of 10 µg.ml−1 in 0.1 M 

sodium carbonate buffer. Wells were then saturated with 100 µl of a 5 mg.ml−1 bovine serum 

albumine (BSA) solution in Tris buffer (TBS, Sigma). After washing with TBS-Tween 0.1%, 

serial dilutions of plasma (1:1000; 1:3000 and 1:10 000) in TBS were distributed in wells. 

Control IgG or IgM (both from Sigma) at concentrations of 1; 0.1; 0.01; 0.001 and 0.0001 

µg.ml−1 as well as a negative control were used in each ELISA plate. After 2 hours of 

incubation, wells were washed and biotinylated anti-IgG or anti-IgM (20 and 100 ng.ml−1, 

respectively, in TBS, both from Sigma) were added for 1 hour. After washing, a streptavidin–

peroxidase complex (1:200 dilution in TBS, R&D systems) was incubated for 1 hour, wells 



 

 100   

were washed and tetramethylbenzidine (TMB) substrate (BD Biosciences, Le Pont de Claix, 

France) was added for 30 min. The substrate reaction was stopped by the addition of 2 N 

H2SO4. The OD was read at 490 nm, and concentrations of IgG or IgM were calculated 

according to a regression analysis made with OD obtained for serial dilutions of control IgG 

or IgM. 

 

For detection of IgG specific for TT or KLH, the above-described ELISA protocol was used 

with a modification of the coating step. KLH or TT (10 µg.ml−1) in carbonate buffer were 

used for coating ELISA plates, and IgG anti-KLH (BD Biosciences) or IgG anti-TT (Abcam, 

Paris, France) with serial dilutions (25 down to 0.4 ng.ml−1) were used as controls in order to 

calculate the plasma concentration of specific IgG against TT or KLH. 

1.2.9.Phenotypical analysis 
 

Femurs, thymus and spleen from animals were collected and bone marrow was flushed from 

femurs with a syringe containing α-Minimal Essential Medium Eagle (α-MEM, Invitrogen, 

Cergy-Pointoise, France). Thymus and spleen were crushed in a Tenbrock’s Potter. Cell 

suspensions were harvested washed, counted and viability was assessed by Trypan Blue 

(Invitrogen) exclusion. 

 

Suspension of bone marrow, thymic or spleen cells were adjusted to 1 x 106 cells.ml-1 in 

phosphate buffered salt solution (PBS, Invitrogen), supplemented with 0.5 % bovine serum 

albumin (BSA, Sigma). One hundred microliter of cell suspension was then mixed with pre-

defined concentration of a mix of directly coupled specific antibodies as indicated in Table 7. 

Cells were then incubated for 20 min at 4°C. After washing in PBS 0.5 % BSA, cells were 

then analysed onto a FACSort flow cytometer (BD Biosciences) with at least 10,000 events 

per point and data was analysed with Cellquest software (BD Biosciences). 
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Bone Marrow 

Tube number FL1 FL2 FL3   

1 IgG1-FITC IgG2b-PE IgG2a-PECy5 Control 

2 CD3e-FITC CD4-PE CD8-PECy5 T-lymphocytes 

3 CD45-FITC CD19-PE - B-lymphocytes 

4 CD45-FITC CD11b-PE - Granulocytes 

5 CD45-FITC CD49b-PE - NK cells 

6 Lin-FITC SCA1-PE c-kit-PECy7 Stem cells 

7 Lin-FITC IgG2b-PE IgG2a-PECy7 Control 

     

Thymus 

Tube number FL1 FL2 FL3   

1 IgG1-FITC IgG2b-PE IgG2a-PECy5 Control 

2 CD3e-FITC CD4-PE CD8-PECy5 T-lymphocytes 

3 CD44-FITC CD25-PE CD8-PECy5 Immature thymic cells 

4 CD44-FITC CD25-PE CD4-PECy5 Immature thymic cells 

5 CD44-FITC CD25-PE 
CD4-PECy5          

+ CD8-PECy5 
Immature thymic cells 

     

Spleen 

Tube number FL1 FL2 FL3   

1 IgG1-FITC IgG2b-PE IgG2a-PECy5 Control 

2 CD3e-FITC CD4-PE CD8-PECy5 T-lymphocytes 

3 CD3e-FITC CD25-PE CD4-PECy5 T-regulatory cells 

4 CD45-FITC CD19-PE - B-lymphocytes 

5 CD45-FITC CD11b-PE - Granulocytes 

6 CD45-FITC CD49b-PE - NK cells 

7 CD62l-FITC CD45RB-PE CD4-PECy5 Naive/Memory cells 

8 CD62l-FITC CD45RB-PE CD8-PECy5 Naive/Memory cells 
 

Table 7. Mix of antibodies used for phenotypical analysis of hematopoietic cells in the bone marrow, thymus 

and spleen. 
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Antibody Clone Supplier Reference 

Control FITC (Hamster IgG1) A19-3 BD Pharmingen 553971 

Control PE (Rat IgG2b) A95-1 BD Pharmingen 553989 

Control PE-Cy5 (Rat IgG2a) R35-95 BD Pharmingen 553931 

Control PE-Cy7 (Mouse IgG2a) G155-178 BD Pharmingen 552868 

PE-Cy7 anti mouse CD117 (c-Kit) 2B8 BD Pharmingen 558163 

FITC anti-mouse CD44 5035-41.1D Abcam ab23557 

FITC anti-mouse CD62L (L-Selectin) MEL-14 Beckman Coulter 732183 

FITC anti-mouse CD3 KT3 Beckman Coulter IM2768 

FITC anti-mouse CD45 I3/2.3 Beckman Coulter 732147 
AlexaFluor 488 mouse lineage mixture 

(Lin)   CALTAG MLM20 

PE anti-mouse Ly-6A/E (Sca-1) D7 Beckman Coulter 732230 

PE anti-mouse CD25 PC61 BD Pharmingen 553866 

PE anti-mouse CD4 (L3T4) H129.19 BD Pharmingen 553653 

PE anti-mouse CD49b HMα2 BD Pharmingen 558759 

PE anti-mouse CD19 6D6 Beckman Coulter 733273 

PE anti-mouse CD11b/Mac1 M1/70 Beckman Coulter 733270 

PE anti-mouseCD45RB C363.16A Beckman Coulter 732166 

PE-Cy5 anti-mouse CD8a 53-6.7 BD Pharmingen 553034 

PE-Cy5 anti-mouse CD4 (L3T4) H129.19 BD Pharmingen 553654 
 

Table 8. Characteristics of antibodies used for phenotypical analysis of hematopoietic cells. 

1.2.10. Colony forming cell (CFC) assay 
 

Femurs and spleen from animals were collected and treated as described above. Cells were 

plated at 2 x 105 for spleen cells and 2.5 x 104 for bone marrow cells in 1.1 ml of complete 

methylcellulose medium with cytokines (Stem cell technologies, Vancouver, Canada) in 30 

mm diameter petri dishes (Greiner Bio-One, Courtaboeuf, France). Cultures were incubated at 

37°C in a humidified atmosphere with 95% air and 5% C02.  

 

Colony-forming units-granulocyte macrophage (CFU-GM), burst-forming units-erythroid 

(BFU-E) and CFU-granulocyte erythrocyte monocyte megakaryocyte (CFU-GEMM) were 

scored on day 12 of culture (Fig 35). 
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CFU-GM BFU-E CFU-GEMM 

   

 

Figure 35. Representative photos of a CFU-GM, BFU-E and CFU-GEMM (60x). 

1.2.11. Genetic expression analysis 

1.2.11.1. Extraction of messenger RNA 
 
Genetic expression analysis was performed on spleen, mesenteric lymph nodes, thymus and 

femurs. Except femurs, extraction of RNA was realized with use of a column-based RNA 

extraction kit (Rneasy Total RNA Isolation kit, Qiagen, Courtaboeuf, France) according to the 

manufacturer’s instructions.  

 

About 30 mg of samples were lysed in 600 µl of a lysis solution containing RLT buffer 

(buffer containing guanidine-thiocyanate with strong denaturation potential) completed with 

1% β-mercaptoethanol. Lysis of samples was performed with use of a ribolyzer-homogenizer 

(Fastprep, BIO101, QBiogene). After centrifugation (16000g during 3 min), the lysate was 

harvested and homogenized in 350 µl ethanol 70% in order to increase the specific binding of 

RNA to the membrane of the column. This mixture was transferred to a mini column 

containing silicium resin. Then centrifugation took place during 1 min at 16000g. A first wash 

buffer was applicated on the column and centrifuged 1 min at 16000g. Residual DNA was 

eliminated by adding DNAse during an incubation step of 15 min. Then a second wash buffer 

was deposited on the column and centrifugation 1 min at 16000g took place. 25 µl of 

sterilized RNAse-free water was deposited on the column. A last centrifugation step took 

place for 1 min at 16000g to recuperate the RNA.  
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RNA concentration was checked by OD measurement at 230nm (Thermo Scientific 

NanoDrop 1000, ND-1000 spectrophotometer, Labtech, Palaiseau, France). RNA quality was 

verified by measurement of the ratio of the OD at 260nm / 280nm (which has to be between 

1.75 and 2.1). Integrity of RNA was checked by gel electrophoresis on a 1 % agarose gel in 

denaturation condition, with ethidium brome for revelation. RNA was conserved at -20°C. 

 

Extraction of RNA from femurs was realized with use of a Trizol reagent (Sigma) according 

to the manufacturer’s instructions. Frozen femurs were pulverized using a T25 Ultra-Turrax 

(IKA, Staufen, Germany) and total RNA was isolated from bone powder using Trizol reagent. 

Obtained RNA was purified by RNeasy Total RNA Isolation Kit (Qiagen) as described 

earlier.  

1.2.11.2. Reverse transcription (RT) 
 

1 µg of total RNA was reverse transcribed with random hexamers by use of the high-capacity 

cDNA Reverse Transcription Kit according to manufacturer’s recommendations (Applied 

Biosystems, Courtaboeuf, France). Synthesis of complementary DNA (cDNA) was performed 

with 50 units of reversal transcriptase (Multiscribe reverse transcriptase) in a 20 µl reaction 

buffer (containing RT buffer, Random primer, dNTP, RNase-free water). The steps for 

reverse transcription include a first step during 10 min at 25°C, a second step during 120 min 

at 37°C and a third step during 5 min at 85°C. The cDNA samples were conserved at -20°C 

until their use. 

1.2.11.3. Polymerase chain reaction (PCR) in real time 
 

cDNA was amplified with use of forward and reverse primers listed in Table 9 for genes 

studied for the bone physiology and in Table 10 for genes studied for the immune system. 

Primers used for the amplification of cDNA were inspired from bibliographic study or 

determined by use of “Primer Express” software (Applied Biosystems). Primers were 

obtained from Invitrogen-Life Technologies or Applied Biosystems. 

 

Expression of genes was measured by polymerase reaction (PCR) in real time on plates with 

96 wells or 384 wells. 5 or 10 ng of cDNA was amplified in duplicates for each reaction using 
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SYBR Green PCR Master Mix or Taqman fast universal PCR Master Mix (both from Applied 

Biosystems).  

For 96 well plates, it was realized with 5 µl of cDNA diluted at 1/25th (10 ng of cDNA) and 

20 µl of a mixture with SYBR Mix (polymerase, dNTP, salts, intercalating fluorescent, 

fluorophore of internal control, Power SYBR Green (Applied Biosystems) or Taqman Mix 

(83 % v/v), sterilized water (14.5 % v/v) and forward and reverse primers of genes of interest 

(2.5 % v/v).  

For 384 well plates, it was realized with 4 µl of cDNA diluted at 1/50th (5 ng of cDNA) and 6 

µl of a mixture with SYBR Mix (polymerase, dNTP, salts, intercalating fluorescent, 

fluorophore of internal control, Power SYBR Green (Applied Biosystems) or Taqman Mix 

(83 % v/v), sterilized water (14.5 % v/v) and forward and reverse primers of genes of interest 

(2.5 % v/v).  

 

Amplification and detection of PCR products was performed with the Abi Prism 7900 

Sequence Detection System (Applied Biosystems), using the following steps: 50°C during 2 

min, 95°C during 10 min to activate AmpliTaq Gold DNA polymerase for 40 cycles of 

amplification including 15 sec of denaturation at 95°C and 1 min of hybridizing-elongation at 

60°C. SYBR green has the characteristics to incorporate on a non specific manner at double 

strand DNA while emitting fluorescence at 530nm.  

 

The raw, background-subtracted fluorescence data provided was analysed by SDS software 

(Applied Biosystems). PCR products (using SYBR green technology) were subjected to a 

melting curve analysis to confirm the specificity of the amplification. The resulting fractional 

cycle number of the threshold (Ct) was used for transcript quantification. Expression level of 

each sample was normalized by the expression level of an intern reference gene. 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been chosen as the reference gene. 

Results were normalized to GAPDH transcription to compensate for variation in input RNA 

amounts and efficiency of reverse transcription. Relative expression to the control group was 

calculated for each gene by the 2-∆∆Ct method described by Livak et al. (Livak and Schmittgen 

2001). 
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Table 9. List of genes studied for the bone physiology and the related forward and reverse primers used. 
 

 
 

Table 10. List of genes studied for the immune system and the related forward and reverse primers used. 

1.2.12. T cell excision circle (TREC) detection 
 

5 × 106 thymic cells were used for DNA extraction using a QIAmp DNA Mini Kit (Qiagen). 

After quality control of DNA by gel electrophoresis in a 0.8 % agarose with 500 µg.ml−1 

ethidium bromide, DNA concentration was adjusted to 12.5 µg.ml−1.  
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50 ng of DNA was then used for TREC detection by PCR in real time using Taqman fast 

universal PCR master mix (Applied Biosystems). For TREC, the following primers were 

used: sense primer: 5’-CAA GCT GAC AGGGCA GGT TT-3’, anti-sense primer: 5’-TGA 

GCA TGG CAA GCA GTA CC-3’. The reference gene used was the gene encoding for the 

constant part of the T cell receptor antigen alpha chain (TCRA), with the following primers: 

sense: 5’-TGA CTC CCA AAT CAA TGT G-3’, anti-sense: 5’-GCA GGT GAA GCT TGT 

CTG-3’. The specificity of the PCR products was controlled using the following probes: 

FAM-TGC TGG ACA TGA AAG CTA TGG A-TAMRA for TREC, and FAM-TGC TGT 

GTG CCC TAC CCT GCC C-TAMRA for TCRA.  

 

All amplifications were made on the ABI prism 7900 sequence detection system (Applied 

Biosystems). Results, expressed as the number of cycles needed to obtain a significant signal 

for TREC (CtTREC) and for TCRA (CtTCRA), were used for calculating the difference 

between control and contaminated animals (∆CtTREC and ∆CtTCRA) at each time point. 

Results were then normalised by calculating at each time point the ratio according to the 

following formula: R = (ETREC) 
−∆CtTREC /(ETCRA) 

−∆CtTCRA, where E is the efficiency of the PCR 

reaction, as determined by the slope of the standard curve made with serial dilutions of DNA. 

1.2.13. Protein expression analysis 

1.2.13.1. Extraction of total proteins 
 

Total proteins from spleen were extracted with use of a lysis buffer from the Mammalian Cell 

Lysis Kit (Sigma), using 500 µl of buffer for 10 mg of tissue. The lysis buffer was composed 

of 250 mM Tris-HCl and 5 mM EDTA Buffer, 750 mM NaCl, 0.5 % SDS lauryl sulphate, 2.5 

% deoxycholic acid, 5 % Igepal CA630 and 1 % of cocktail of protease inhibitors. 

 

Samples were homogenized by gentle agitation during 20 min at 4°C and the obtained lysate 

was refined during 10 sec with a ribolyzer-homogenizer (Fastprep, QBiogene, Illkirch, 

France). After centrifugation (20 min, 12000 rpm, 4°C), supernatant was harvested and 

conserved at -80°C. 

1.2.13.2. Measure of protein concentration 
 

Protein concentration of samples was determined by Bradford method (Bradford 1976), with a 

standard curve of bovine serum albumin (BSA) as reference. This method relies on the 
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characteristic of Coomassie Blue (Protein Assay, Biorad, Marnes la Coquette, France) to 

change of absorbance from 465nm to 595nm when it is binds to proteins. 

1.2.13.3. Protein analysis by western blot method 
 

Proteins of spleen were denaturated (5 min at 95°C) in a laemmli buffer (containing 125 mM 

Tris-HCl pH 6.8, 20 % glycerol, 4% SDS, 0.02 % bromophenol blue and 10 % β-

mercaptoethanol).  

 

40 µg of proteins were deposited on a 12 % SDS-polyacrylamide gel in denaturing conditions. 

Components of the gel are listed in Table 11. After separation, proteins were electro-

transferred to a nitrocellulose membrane (Invitrogen) during 2 hours. Aspecific binding sites 

of the membrane were blocked during 1 hour at room temperature in tris saline buffer (TBS) 

with 5 % of non-fat dry milk. Then the membrane was incubated with a primary antibody 

(diluted in TBS with 2 % of non-fat dry milk) overnight at 4°C and afterwards with the 

corresponding secondary antibody (diluted in TBS with 2 % of non-fat dry milk), coupled at 

horseradish peroxydase (HRP), during 1 hour at room temperature. The antibodies used are 

listed in Table 12. After each incubation step with an antibody, series of washing with 0.025 

% TBS-Tween were realized (5 times 5 min at room temperature). Chemiluminescence 

(Millipore, Cergy Pontoise, France) permitted to reveal the signal of the immune complexes 

and these were detected with a CCD camera (Las-3000, Fujifilm, Raytest, France). Reaction 

intensity was determined by computer-assisted densitometry with use of MultiGauge software 

(Fujifilm). The intensity of the bands was normalized to the intensity of the protein band of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 

 

 Stacking gel Running gel 

dH2O 1.4 ml 3.3 ml 

Acrylamide 330 µl 4.0 ml 

Tris 1,5 M pH 8,8  2.5 ml 

Tris 0,5 M pH 6,6 250 µl  

SDS 10 % 20 µl 100 µl 

APS 10 % 20 µl 100 µl 

Temed 2 µl 4 µl 

 

Table 11. Components of the 12 % polyacrylamide gels used for western blot method. 
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Primary antibody Secondary antibody 

Protein 

Molecular 

weight 

(kDa) 

Ref Supplier  Ref Supplier 

Tbet 62kDa 4B10 (sc-

21749) 

Santa Cruz Goat anti-

mouse 

sc-2005 Santa Cruz 

Gata 3 51kDa ab-32858 Abcam Goat anti-

rabbit 

sc-2004 Santa Cruz 

Foxp3 50kDa ABE75 Millipore Goat anti-

rabbit 

sc-2004 Santa Cruz 

GAPDH 37kDa FL335 (sc-

25778) 

Santa Cruz Goat anti-

rabbit 

sc-2004 Santa Cruz 

 

Table 12. Primary and secondary antibodies used for western blot method. 

1.2.14. Bone histology and histomorphometric analysis  

1.2.14.1. Preparation of samples 
 
After being decalcified with chlorhydric acid (RDC agent, CML), femurs were conserved in 

formaldehyde 4%. Then femurs were put in cassettes and these were put in an automatic 

apparatus for dehydration (Tissue-Tek VIP, Sakura, Villeurbanne, France). This apparatus 

performs different steps to dehydrate samples and includes them in paraffin. The different 

steps performed are: a step for dehydration which replaces water content of cells by alcohol 

100 %, a step which replaces alcohol 100 % by toluene and a final step to replace toluene by 

paraffin. The different steps and accompanying treatment times are given in Table 13. 
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Solution Time (minutes) 

Formol 10 

Ethanol 80 % 10 

Ethanol 80 % 25 

Ethanol 95 % 10 

Ethanol 95 % 25 

Ethanol 100 % 25 

Butanol 15 

Butanol 15 

Toluene 40 

Xylene 40 

Paraffin 15 

Paraffin 30 

Paraffin 60 

Paraffin 60 

 

Table 13. Steps for dehydration of samples. 

 

Femurs were then embedded in paraffin and serial longitudinal sections of 7 µm thick were 

obtained using a microtome (Microm Microtech, Francheville, France). Sections cut were 

unfolded in warm water at 37°C and put on glass slides. 

1.2.14.2. Removal of paraffin 
 

Removal of paraffin was done with an automatic apparatus (DRS 601, Sakura), following the 

steps given in Table 14.  
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Solution Time (minutes) 

Xylene 3 

Xylene 3 

Ethanol 100 % 3 

Ethanol 100 % 3 

Ethanol 100 % 3 

dH2O 15 

Triton X-100 0,1 % 10 

dH2O 5 

H202 3 % 10 

dH2O 15 

 

Table 14. Steps for removal of paraffin. 

 

After being deparaffinized, 6 sections per femur were used for modified Trichrome Goldner 

staining and subsequent quantitative analysis of bone morphometric parameters. Some extra 

sections were colored by hematoxylin eosin safran (HES) method to examine morphologic 

structures. 

1.2.14.3. Histological staining  

1.2.14.3.1. Hematoxylin eosin safran (HES) 
 

This coloration was performed by an automatic apparatus (DRS 601, Sakura) following steps 

given in Table 15. 
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Solution Time (minutes) 

dH2O 2 

Hematoxylin 15 

dH2O 1,5 

dH2O 1,5 

Alcohol HCl 1 % 0,5 

dH2O 0,5 

dH2O 1,5 

Lithium carbonate 2 

dH2O 0,5 

dH2O 1,5 

Erythrosine 1 % 0,1 

dH2O 0,5 

dH2O 1,5 

Ethanol 100 % 1 

Ethanol 100 % 1 

Safran 4 

Ethanol 100 % 0,5 

Ethanol 100 % 1 

Xylene 1 

Xylene 2 

 

Table 15. Steps for hematoxylin eosin safran coloration method. 

1.2.14.3.2. Modified trichrome Goldner 
 

Slides were incubated overnight in picric acid (Merck, Darmstadt, Germany) at 4°C and 

washed afterwards with running tap water.  Slides were incubated for 10 min at room 

temperature with fuchsine (Merck) and rinsed with 1 % acetified water. Then slides were 

incubated for 5 min at room temperature with phosphomolybdic acid (Merck) and for 10 min 

at room temperature with Fast Green solution (Sigma). Slides were rinsed with 1% acetified 

water (Sigma) and dehydrated with 100 % ethanol and methylcyclohexane (VWR) and 

mounted with Entallan (Merck).  
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1.2.14.4. Analysis of samples 
 

The distal diaphysis of femurs was examined by a Leica DM4000B light microscope and 

images were captured using a digital Sony XCD-U100CR camera. Images were analysed with 

Histolab 7.6 software (Microvision instruments, Evry, France).  

 

Mean thickness of the growth plate per section was determined from 3 measurements (red 

lines) at set distances along the growth plate. Mean thickness of the growth plate per femur 

was then determined from 6 sections. Finally growth plate thickness per group was averaged 

of 8 femurs from different animals in the group. 

 

Furthermore a tissue surface (green contour) restricted in a 2 mm region (yellow line) from 

the growth plate (which was included) was determined for analysis (Fig 36 a). Automated 

quantification of bone surface in the tissue surface confined was performed by user predefined 

parameters and the ratio between them (in %) was calculated (Fig 36 b). Results were 

averaged for every femur from 6 sections, giving a bone volume (BV) to tissue volume (TV) 

ratio. Finally this BV/TV ratio per group was averaged of 8 femurs from different animals in 

the group. 

 

a b 

 
 

 
Fig 36. Representative images of bone histology and histomorphometry. Fig a: distal diaphysis of femur stained 
by modified Trichrome Goldner. Mean thickness of the growth plate was determined from 3 measurements (red 
lines) at set distances along the growth plate and a tissue surface (green contour) restricted in a 2 mm region 
(yellow line) from the growth plate (which was included) was determined for analysis of bone morphometric 
parameters. Fig b: automated quantification of bone surface in the tissue surface confined was performed by user 
predefined parameters. 
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2. In vitro studies 

2.1. Cell culture models 

2.1.1.Pre-osteoblastic cells 
 

The used cell line MC3T3-E1 is derived from mouse pre-osteoblastic cells. MC3T3-E1 mouse 

pre-osteoblasts are clonally derived from murine calvariae and this cell line maintains 

osteoblast phenotype despite repeated subcultivation.  

 

The cells were purchased from ATCC (American Tissue Culture Collection, Illkirch, 

Strasbourg, France) and had the following references: CRL-2593 MC3T3-E1 for subclone 4 

(preosteoblast mouse), CRL-2594 MC3T3-E1 for subclone 14 (bone calvaria mouse), CRL-

2596 MC3T3-E1 for subclone 30 (calvaria mouse) and CRL-2595 MC3T3-E1 for subclone 

24 (preosteoblast mouse). 

 

Cells were conserved at -150°C. At the moment of cultivation, cells were thawed the fastest 

as possible and were put in cell culture medium that was previously warmed at 37°C. Cell 

culture medium used was α-Minimal Essential Medium Eagle (α-MEM, Gibco, Cergy 

Pontoise, France), supplemented with 1 % penicillin-streptomycin (Gibco), 1 % L-glutamin 

(Gibco) and 10 % fetal bovine serum (Gibco). Cells were centrifuged during 10 min at 450g. 

Cell pellet was retaken in new cell culture medium and distributed in cell culture flasks at 20 

x 103 cells per cm2. Cells were maintained in culture 75 cm2 tissue culture flasks at 37°C, in a 

humidified atmosphere of 95 % O2 and 5 % CO2. 

2.1.2.Mesenchymal stem cells (MSC) 
 

Mesenchymal stem cells (MSC) are isolated from bone marrow from femurs or subcutaneous 

and ovarian fat tissue of female Sprague Dawley rats of 7 weeks old. MSC are capable to 

differentiate into immature osteoblasts in the presence of specific factors (Pittenger et al. 

1999). Bone marrow was flushed from femurs with a syringe containing α-MEM cell culture 

medium (Gibco). Fat tissue was cut in α-MEM cell culture medium and digested under 

stirring in 0.1 % collagenase type 1 (Sigma) solution during 30 min at 37°C. The obtained cell 

suspension was filtered with a 100 µm filter and collagenase was neutralized by fresh cell 

culture medium.  
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Cells collected were cultivated in cell culture flasks of 75 cm2, in α-MEM cell culture medium 

supplemented with 20% of fetal calf serum (Thermo Fisher Scientific, Illkirch, France), 1 % 

of penicillin/streptavidin (Gibco) and 1 % L-glutamine (Gibco). Cells were kept in culture at 

37°C, in a humidified atmosphere of 95 % O2 and 5 % CO2. After 24 hours, cell culture 

medium was removed to eliminate non adherent cells (hematopoietic cells). The adherent 

cells (MSC) were then washed 3 times in phosphate-buffered saline solution (PBS) (Gibco). 

Fresh cell culture medium was added and cells were kept in culture at 37 °C, in a humidified 

atmosphere of 95 % O2 and 5 % CO2. 

 

The presence of MSC specific markers (CD90, CD73) and the absence of HSC specific 

markers (CD45, CD34) were verified by phenotypical analysis. For this, MSC were harvested 

and the cell density was adjusted to 1 x 107 cells per ml with PBS. Then the cells were 

labelled with the specific markers described above at 4°C in the dark for more than 30 min. 

Cells were washed once with PBS and then analysed onto a FACSort flow cytometer (BD 

Biosciences) and data was analysed with Cellquest software (BD Biosciences). 

2.1.3.Contamination of cell cultures 
 
90Sr solutions were prepared from a 90Sr source (90SrCl2 in 0,1 N HCl, AREVA-CERCA 

LEA). For contamination of cell cultures, 90Sr was dissolved in cell culture medium to obtain 
90Sr concentrations from 312 Bq/ml up to 100 kBq/ml. The pH of the solutions was verified 

and adjusted to a neutral pH of 7. 

 

Non radioactive strontium was prepared from strontium dichloride hexahydrate (SrCl2) 

powder (Sigma), dissolved in deionised and sterilized H20. The solution was filtered on a 0.22 

µm filter and SrCl2 was dissolved in cell culture medium to obtain concentrations from 0.01 

mM up to 10 mM. 

 

Some cells used were irradiated with a 137Cs source (IBL 637, Cisbio, Saclay, France). 

Irradiation of cells was realized in cell culture plates, at room temperature, with a radiation 

dose of 0.5 Gy for γH2AX foci detection and doses from 0.5 Gy up to 4 Gy for cytotoxic 

tests. Control cells were treated in the same experimental conditions.  
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2.2. Methods 

2.2.1.Cell cultivation and maintenance 
 

All cells were cultivated in α-MEM (Gibco) cell culture medium supplemented with 10 % of 

fetal bovine serum (for MC3T3-E1 cell line) (Gibco) or 20 % of fetal calf serum (for MSC) 

(Thermo Fisher Scientific), 1 % of penicillin/streptavidin (Gibco) and 1 % L-glutamine 

(Gibco) in an incubator at 37°C, with 95 % of oxygen and 5 % of CO2.  

 

Cell culture medium was changed twice a week until 80 % of confluence of cells. In this case 

cells were passaged. For this, cell culture medium was removed from the cell culture flasks 

and replaced by PBS (Gibco) in order to eliminate cellular debris and cell culture medium 

containing fetal calf or bovine serum, which could inhibit the action of trypsin. PBS is 

replaced by a solution of trypsin (Gibco) and incubated with trypsin during 5 minutes at 37°C. 

After detachment of cells, cells were centrifuged 8 min at 1500 rpm. Cell pellet is retaken in 

cell culture medium at 37°C and cells were numbered with Trypan blue (Gibco) and seeded at 

a lower cell density at 5 x 103 cells per cm2 for MC3T3-E1 cells and 1 x 103 cells per cm2 for 

MSC in new cell culture flasks of 75 cm2. 

 

For cell culture differentiation and contamination, chemicals were added to fresh cell culture 

medium. 

2.2.2.Cell culture differentiation 
 

Differentiation of cells was induced in cell culture plates of 6, 12 or 24 wells. Differentiation 

of pre-osteoblastic or mesenchymal stem cells into osteoblasts was induced by addition of 

specific factors to the cell culture medium: 50 µg/ml ascorbic, 10-7 M and 10mM β-

glycerophosphate (all from Sigma). The use of this supplemented medium is customary when 

investigating mineralization properties of cells. Supplemented medium containing ascorbic 

acid and β-glycerophosphate stimulates greater collagen production and cross-linking. The 

synthetic glucocorticoid dexamethasone further enhances osteogenesis. 
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2.2.3.Cell mortality test 
 

Lactate dehydrogenase (LDH) is an enzyme excreted from cells when their cell membrane is 

damaged. As such, the measurement of this enzyme served to estimate cell mortality. The 

quantification of LDH in cell lysate is realized with the Cytotoxicity Detection Kit Plus 

(Roche Diagnostic, Meylan, France) according to the manufacturer’s recommendations. 

Briefly, in a 96 well plate 50µl of reaction mixture was added to 50µl of recuperated cell 

lysate and this mixture was incubated for 20 min in the dark. 25 µl of a stop solution was 

added and spectrophotometer analysis was performed at 490 nm and 630 nm. The intensity of 

the final colour reflected the LDH released from cells. 

2.2.4.Cell viability test 
 

The MTT test (Roche Diagnostic) permitted to test viability of cells. The assay is based on the 

cleavage of the yellow tetrazolium salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium brome) to purple formazan crystals by metabolic active cells. Briefly, tetrazolium 

salt MTT was added to the cell culture medium and during different times (24, 48, 72 or 96 

hours) this salt was metabolized by the living cells. The obtained colour was homogenized by 

a buffer solution and the intensity of the final colour reflected the viability of cells in the wells 

and their cellular metabolic activity. Colour intensity was measured by spectrophotometer 

analysis at 595 nm and 630 nm. 

2.2.5.Differentation assays 

2.2.5.1. Alkaline phosphatase activity test 
 

Alkaline phosphatase (ALP) activity was determined using a ALP Assay Kit (Alkaline 

Phosphatase Blue Microwell Substrate Solution, Sigma) according to the manufacturer’s 

specifications. As a positive control, 10-8 M calcitriol (Sigma) was used. Briefly, cell pellets 

were retaken in 250 µl of PBS supplemented with 0,1 % Triton X-100 (Sigma). Cells were 

sonicated (100W) during 30 sec and seeded on a 96 well plate. Alkaline substrate solution (5-

bromo-4-chloro-3-indolyl phosphate (BCIP) and nitro blue tetrazolium (NBT) was added 

during 15 min in the dark. A stop solution was added and colour intensity was measured by 

spectrophotometer analysis at 595 nm. Obtained values were normalized to the protein 

concentration measured by Bradford method (Bradford 1976). 
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2.2.5.2. Mineralization tests 
 
Formation of mineralizing plaques was visualized by Von Kossa staining and Alizarin Res S 

staining techniques.  

 

For Von Kossa staining, cells were rinsed three times in 0,9 % NaCl solution (pH 7,2) and 

fixed in 4% paraformaldehyde (Sigma) in 0,9 % NaCl solution at room temperature for 10 

min. Cells were then rinsed three times in deionised distilled water (dH2O), incubated with 3 

% AgNO3 (Sigma) in the dark for 30 min, and exposed to ultraviolet light for 30 min. Cells 

were then washed in dH2O and counterstained with Toluidine Blue (Merck) for 5 min. The 

total area of nodules (µm2) per well was analysed with Histolab software (Microvision 

instruments). 

 

For Alizarin Red S staining, cells washed twice with PBS (pH 7,4) and fixed with ice-cold 70 

% ethanol at -20°C for 20 min. Then the plates were washed two times with distilled water 

and incubated with 40 mM Alizarin Red S (pH 4,2, Sigma) for 10 min at room temperature 

under gentle agitation. After removing Alizarin Red S solution by aspiration, the cells were 

then washed thoroughly with deionised water. The cells were subsequently destained for 30 

min with 10 % cetylpyridinium chloride (Sigma) in 10 mM sodium phosphate (pH 7). The 

extracted stain was then transferred to a 96-well plate, and the optical density at 595 nm was 

measured. 

2.2.5.3. Collagen synthesis test 
 

The effects on collagen production were measured by the Sirius Red method. Cell layers were 

washed with PBS and fixed for 1h in Bouin’s fixative. The fixation solution was removed by 

suction, the wells were washed by immersion in running tap water for 15 min and cell culture 

plates were dried overnight. 0,1 % Sirius Red F3BA solution (Chroma, Stuttgart, Germany) in 

satured picric acid was added. After 1 h of staining under gentle agitation, cell layers were 

washed in running tap water and again in 0,01 N HCl to remove the non-bound dye. Cell 

morphology was photodocumented and for quantification of collagen content, the dye was 

dissolved in 0,1 NaOH. The dye solution was transferred to microtiter plates and the optical 

density was measured at 550 nm. 
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2.2.6.Immunohistochemical study of γ-H2AX foci 
 
For this study Lab-Tek chamber slides (Nunc, VWR) containing 2 chambers of 4 cm2 each 

were used. The immunostaining technique was based on a protocol previously described 

(Roch-Lefevre et al. 2010) for γ-H2AX immunostaining and foci analysis. Briefly, cells were 

washed with PBS, and fixed with 2 % paraformaldehyde (PFA, Sigma) for 10 min. Then they 

were permeabilized with 0,1 % of Triton for 10 min and incubated at 37°C with PBS-BSA 

2% for 30 min. Cells were immunostained using a primary monoclonal γ-H2AX antibody 

(Upstate-Millipore, USA) for 1h at 37°C, washed in PBS, and incubated with a FITC 

conjugated goat anti-mouse secondary antibody (Sigma) for 1h at 37°C. After extensive 

washing, slides were mounted with DAPI Vectashield solution (Vector Laboratories, Les 

Ulis, France) and covered with cover slips. Slides were viewed with an epifluorescence 

microscope (Provis AX70, Olympus, Japan) and an uncooled CDD camera was used to 

acquire images. Fields were selected on the basis of DAPI-counterstained nuclei. Image 

analysis was performed using Cartograph and Histolab software (Microvision instruments). 

Parameters for focus detection and analysis were maintained constant during all the study and 

at least 100 cells per condition were analysed. 

3. Statistical analysis 
 

All results are presented as mean ± standard deviation (SD) unless otherwise indicated. 

Comparisons between groups were made with either Student t test or 2-way ANOVA 

(analysis of variance) test, as indicated in the text. Differences were considered statistically 

significant for a p value less than 0.05. All statistical analyses were performed using 

Sigmaplot software (Systat software Inc., San Jose, Ca). 
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Results 

1. Biokinetics of 90Sr 

1.1. Reproduction data 
 

We analysed the birth of animals for the whole of our experiences. We had a total of 90 

reproduction groups, each consisted of 2 females and 1 male per cage, for each of the control 

animals and the 90Sr ingesting animals. Despite a similar total number of litters (n=52) for the 

control and the 90Sr ingesting animals there was no significant difference (Student t test, p = 

0.149) in the number of animals per litter at birth between the two groups (Fig 37). For the 

control group, we had a mean of 5.0 ± 2.4 animals per litter and for the 90Sr ingesting group a 

mean of 5.7 ± 2.8 animals per litter. 

 
Figure 37. Number of animals per litter for each group of treatment. No significant difference between the two 

groups was observed by Student t test analysis (p = 0,149). Results are presented as mean ± standard deviation 

(SD), with n=52 for control mice and 90Sr ingesting mice.  

1.2. General health parameters 
 

In order to verify the general health status of our animals, we measured creatin kinase, 

creatinin, urea, alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT) 

levels in blood plasma (data not shown). Overall no significant difference was detected 

between control and 90Sr ingesting animals (2-way ANOVA analysis, p>0.05) with a single 

exception for creatinin for females at 16 weeks (Student t test, p<0.001; 44.2 ± 2.8 µM and 

52.7 ± 3.1 µM for control and 90Sr ingesting animals respectively (n=5)). 
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1.3. Distribution of 90Sr in the juvenile model 

1.3.1.Body mass 
 

A regular weight gain was observed for males and females (Fig 38). No significant 

modification of body weight of animals has been observed between control and 90Sr ingesting 

animals, whatever the age or sex of the offspring (2-way ANOVA analysis, F(1,50) = 1.06, non 

significant (n.s.) for males and F(1, 50) = 0.017, n.s. for females), although a dispersion of body 

weight was observed in males between 16 and 20 weeks of age. The reason for such dispersed 

body weight in males remains unclear, but time specific statistical analysis (using Student t 

test) did not showed significant differences. A body weight of 30.7 ± 5.2 g for control males, 

28.7 ± 5.2 g for 90Sr ingesting males, 25.8 ± 4.7 g for control females and 25.6 ± 1.6 g for 90Sr 

ingesting females was reached after 20 weeks of ingestion.  

 

Figure 38. Evolution of the body weight (g) of control and 90Sr ingesting animals from the juvenile model, 

according to the age and sex of animals. No significant difference between control and 90Sr-ingesting animals 

was observed (2-way ANOVA test, F(1, 50) = 1.06, n.s. for males and F(1, 50) = 0.017, n.s. for females). Results are 

presented as mean ± SD, with n=3 to 9 for control mice and n=6 to 24 for 90Sr ingesting mice, depending on the 

age.  

1.3.2.Water intake and ingestion of 90Sr 
 

A weekly follow-up of food and drinking water consumption per cage was made starting from 

the time of weaning. The mean food and water intake per animal and per day was obtained by 

calculation on the basis of the number of animals per cage. Based on these data the 

corresponding daily ingestion of 90Sr was calculated (Fig 39). Results indicated that 90Sr 
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ingestion increased rapidly the first weeks post-weaning, reaching 68.2 ± 9.7 Bq.animal-1.day-

1 for males and 71.2 ± 7.7 Bq.animal-1.day-1 for females at 6 weeks of chronic ingestion. No 

significant difference in 90Sr ingestion was observed between males and females, whatever 

their age (2-way ANOVA analysis, F(1,165) = 1.042, n.s.). The mean daily intake of 90Sr over 

the whole period of 20 weeks of chronic ingestion was 74.3 ± 14.6 Bq for males and 69.0 ± 

11.6 Bq for females. This was lower than the expected ingestion of 100 Bq per animal per day 

at adult age and was caused by a lower drinking water intake than expected. In fact, the mean 

daily water intake per animal over the whole period of 20 weeks was 4.6 ± 0.9 ml.day-1 for 

control males, 3.7 ± 0.7 ml.day-1 for 90Sr ingesting males, 3.4 ± 0.5 ml.day-1 for control 

females and 3.5 ± 0.6 ml.day-1 for 90Sr ingesting females. 

 

Figure 39. 90Sr intake (Bq.animal-1.day-1) through drinking water, according to the age and sex of animals from 

the juvenile model. No significant differences were observed between males and females (2-way ANOVA test 

F(1, 165) = 1.042, n.s.). Results are presented as mean ± SD, with n=3 to 9 for control mice and n=6 to 24 for 90Sr 

ingesting mice, depending on the age.  

1.3.3.90Sr concentration in femurs 
 

In order to investigate the distribution of 90Sr after chronic ingestion, the 90Sr content was 

measured in different organs (skin, liver, spleen, kidneys, digestive tract (from stomach to the 

rectum), heart, thymus, lungs, skeletal muscle, femurs and central nervous system (CNS)) of 

male and female animals from both control and 90Sr ingestion groups. 90Sr was below 

detection limit in organs of control animals. The detection limit of 90Sr was between 0.45 Bq 

and 0.75 Bq per sample. For 90Sr ingesting animals, the highest 90Sr concentrations were 

found in the bones. It has to be noted that 90Sr content in femurs (Fig 40) was measured 

without separating the bone from the bone marrow. According to the age of animals a 
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significant increase in 90Sr content in femurs was seen (2-way ANOVA analysis, F(5, 64) = 

266.5, p<0.001), reaching at 6 weeks 79.7 ± 9.4 Bq.g-1 and 75.4 ± 9.9 Bq.g-1 for females and 

males respectively. At adult age (6 weeks to 20 weeks of offspring), 90Sr content in the femurs 

seems to be stabilized at 72.6 ± 7.0 Bq.g-1 for males and 75.0 ± 2.1 Bq.g-1 for females. No 

significant difference appeared in the evolution of 90Sr in the femurs between males and 

females (2-way ANOVA analysis, F(1, 64) = 0.521, n.s.) even if a punctual difference was 

evidenced at 12 weeks old (Student t test, p=0.035). 

 

Figure 40. 90Sr concentration (Bq.g-1) in the femurs of 90Sr ingesting animals from the juvenile model, according 

to the age and sex of animals. All the results are presented as mean ± SD, with n = 6 per group. Time-specific 

differences between males and females are significant for *: p<0.05 (Student t test).  

1.3.4.90Sr concentration in the digestive tract 
 

90Sr was below the detection limit in all other organs tested (data not shown) with the 

exception of the digestive tract (Fig 41). A significant variation with age was observed (2-way 

ANOVA analysis, F(5, 64) = 17.3, p<0.001) with a peak of 90Sr content at 12 weeks (3.0 ± 1.8 

Bq.g-1 for males and 2.0 ± 1.1 Bq.g-1 for females) and a decrease afterwards. Again, no 

significant difference was found between males and females (2-way ANOVA analysis, F(1, 64) 

= 1.36, n.s.) with the exception of a punctual difference at 12 week-old (p=0.031). In order to 

delineate more precisely 90Sr location in the digestive tract, 90Sr activity was measured in 

different segments of the digestive tract, namely the stomach, the small intestine, the caecum 

and the colon. Results showed that 90Sr was only detectable in the small intestine with a 
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maximum activity of 0.7 ± 0.3 Bq.g-1 both at 6 and 20 weeks and not in other segments (data 

not shown). Since the villi of the digestive tract are highly prominent in the small intestine, 

this result suggests that the 90Sr retention was mainly due to a mechanical retention in the villi 

of the small intestine. 

 
Figure 41. 90Sr concentration (Bq.g-1) in the digestive tract of 90Sr ingesting animals from the juvenile model, 

according to the age and sex of animals. All the results are presented as mean ± SD, with n = 6 per group. Time-

specific differences between males and females are significant for *: p<0.05 (Student t test).  

1.3.5.Whole-body 90Sr activity 
 

The mean 90Sr whole body activity (Fig 42) was calculated by dividing the sum of all 90Sr 

activity detected in all organs by the body weight. Results show that between birth and 12 

weeks of offspring, a significant increase in the mean whole body activity is seen (2-way 

ANOVA analysis, F(5, 64) = 72.32, p<0.001). After 12 weeks of chronic ingestion, the mean 

whole body activity showed a slight decrease over time for both males and females, down to 

4.9 ± 0.6 Bq.g-1 for males and 5.6 ± 0.3 Bq.g-1 for females at 20 weeks of age of offspring. 

With the exception of 6 weeks (3.6 ± 2.2 Bq.g-1 for males and 2.7 ± 1.6 Bq.g-1 for females), 

the mean whole body activity of females was always higher than for males with significant 

differences between them at 3 weeks (Student t test, p=0.043) of age of offspring. 
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Figure 42. Mean whole body 90Sr activity (Bq.g-1) in 90Sr ingesting animals from the juvenile model, according 

to age and sex of the animals. All the results are presented as mean ± SD with n = 6 animals per group. A 

significant evolution of whole body specific activity according to the age of animals was observed (2-way 

ANOVA test, F(5, 64) = 72.32, p<0.001) but not according to the sex of animals. Time-specific differences 

between males and females are significant for *: p<0.05 (Student t test).  

1.3.6.90Sr accumulation at different skeletal sites  
 

As 90Sr preferentially accumulates in bones, we investigated if there is a difference in the 90Sr 

content at the different skeletal sites. We isolated the whole skeleton from animals of 6 and 20 

weeks old from the juvenile model by papain treatment. Results showed that the 90Sr uptake 

in the skeleton depends on both gender (F(1, 150) = 24.4, p<0.001 at 6 weeks and F(1, 120) = 41.9, 

p<0.001 at 20 weeks) and skeleton site (F(14, 150) = 27.3, p<0.001 at 6 weeks and F(14, 120) = 3.4, 

p<0.001 at 20 weeks), whatever the age of test. The highest 90Sr accumulation was found in 

teeth both in males and in females (Fig 43) which indeed are continuously growing in rodents, 

thus accumulating 90Sr over ingestion duration. For other bones, the range of 90Sr 

concentrations were between 110.7 ± 48.9 Bq.g-1 and 154.9 ± 16.8 Bq.g-1 for females and 

between 97.5 ± 14.2 Bq.g-1and 135.5 ± 15.5 Bq.g-1 for males at the age of 20 weeks. These 

variations are in a lower range than the observed variations in humans (Kulp 1960). Overall, 

higher 90Sr concentrations were consistently found in females as compared to males in all 

skeleton sites, with the exception of ulna at the age of 20 weeks. One should note that the 

mean 90Sr concentration is higher in this set of experiments as compared to previous 

experiments in (Fig 40) for the same age. This is due to the difference in the method used to 



 

 127   

obtain bones. In fact, bones were isolated by simple dissection and mechanically cleaned 

(using a scalpel) in previous experiments while in the present experiment bones were isolated 

by enzymatic treatment which removes completely all soft tissues, including bone marrow 

and cartilages. However, in both cases females showed higher 90Sr concentration in bones as 

compared to males.  

 
Figure 43. 90Sr content (Bq.g-1) at the different skeletal sites of 90Sr-ingesting male (closed bars) and female 

(open bars) animals of 20 weeks old of the juvenile model. All the results are presented as mean ± SD of 5 

animals per group. Differences between males and females are significant for *: p<0.05 and **: p<0.001 

(Student t test). 

1.4. Distribution of 90Sr in the adult model 

1.4.1.Body mass 
 

A continuous weight gain was observed for males and females, reaching a body weight of 

29.7 ± 1.5 g for control males, 30.0 ± 1.2 g for 90Sr ingesting males, 24.4 ± 0.7 g for control 

females and 24.2 ± 1.4 g for 90Sr ingesting females after 20 weeks of ingestion duration (Fig 

44). No significant differences in weight gain between control and 90Sr-ingesting animals was 

observed (2-way ANOVA analysis, F(1, 444) = 3.71 for males and F(1, 444) = 3.56 for females, 

n.s.). 
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Figure 44. Evolution of the body weight (g) of control (closed symbols) and 90Sr ingesting animals (open 

symbols) from the adult model, according to the age and sex of animals. No significant difference between 

control and 90Sr-ingesting animals was observed (2-way ANOVA test, F(1, 444) = 3.71, n.s. for males and F(1, 444) = 

3.56, n.s. for females). Results are presented as mean ± SD with n = 3 to 9 for control mice and n = 6 to 30 for 
90Sr ingesting mice.  

1.4.2.Water intake and ingestion of 90sr 
 

The mean calculated daily ingestion of 90Sr per animal was 91.1 ± 16.2 Bq for males and 75.4 

± 14.3 Bq for females over the whole period of 20 weeks of ingestion with a significant 

higher 90Sr intake by males as compared to females (2-way ANOVA analysis, F(1, 416) = 192.3, 

p<0.001) (Fig 45). This was due to lower water intake by females. In fact, the mean daily 

water intake per animal over the whole period of 20 weeks of ingestion was 5.1 ± 1.0 ml.day-1 

for control males, 4.6 ± 0.8 ml.day-1 for Sr-90 ingesting males, 4.0 ± 0.8 ml.day-1 for control 

females and 3.8 ± 0.7 ml.day-1 for 90Sr ingesting females (data not shown). As for the juvenile 

model, the mean daily 90Sr ingestion was lower than envisaged and was caused by an overall 

lower water intake than expected. One should note that 90Sr intake showed important week-to-

week variations, especially in the first 3 weeks of experiment. The reasons for these variations 

are unclear. Since these variations are linked to variation in water intake, one can propose that 

this is due to variations in temperature of the animal care that in turn induced variations in 

water intake by animals. Nevertheless, one also should note that there was no significant 

difference in water intake between control and 90Sr ingesting animals, and that all animals 

showed a regular weight gain.  
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Figure 45. 90Sr intake (Bq.animal-1.day-1) through drinking water according to the age and sex of animals from 

the adult model. A significant difference in 90Sr intake was observed between males and females (2-way 

ANOVA test F(1, 416) = 192.3, p<0.001). Results are presented as mean ± SD with n = 3 to 9 for control mice and 

n = 6 to 30 for 90Sr ingesting mice.  

1.4.3.90Sr concentration in femurs 
 

A significant continuous increase of 90Sr content in femurs was found (2-way ANOVA 

analysis, F(4, 50) = 29.6, p<0.001) (Fig 46). At 20 weeks of chronic ingestion, this resulted in a 
90Sr concentration of 33.6 ± 5.2 Bq.g-1 for males and 39.5 ± 2.8 Bq.g-1 for females. 2-way 

ANOVA analysis did not show overall significant differences between males and females (F(1, 

50) = 1.42, n.s.), although a significantly higher accumulation was found in females after 20 

weeks of ingestion as compared to males (Student t test, p<0.05). It has to be noted that after 

20 weeks of ingestion the 90Sr content in the femurs from adult animals (36.5 ± 5.1 Bq.g-1) 

was lower than from juvenile animals (73.6 ± 6.9 Bq.g-1). 
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Figure 46. 90Sr concentration (Bq.g-1) in the femurs of contaminated animals from the adult model, according to 

the age and sex of animals. All the results are presented as mean ± SD with n = 6 animals per point. Time-

specific differences between males and females are significant for *: p<0.05 and **: <0.001 (Student t test).  

1.4.4.90Sr concentration in the digestive tract 
 

90Sr was below the detection limit in all other organs tested (data not shown) with the 

exception of low quantities detected in the digestive tract (Fig 47). The mean 90Sr content 

over the whole 20 weeks period of ingestion duration was 0.3 ± 0.2 Bq.g-1 for males and 0.3 ± 

0.2 Bq.g-1 for females. Significant variation with age was observed (2-way ANOVA analysis, 

F(4, 50) = 13.1, p<0.001) with a peak of 90Sr content at 3 weeks (0.6 ± 0.3 Bq.g-1 for males and 

0.5 ± 0.2 Bq.g-1 for females). No significant difference was found between males and females 

(2-way ANOVA analysis, F(1, 50) = 2.84, n.s.). In order to delineate more precisely 90Sr 

location in the digestive tract, 90Sr activity was measured in different segments of the 

digestive tract, namely the stomach, the small intestine, the caecum and the colon. Similarly 

to what was observed in the juvenile model, most of the 90Sr activity was detected in the small 

intestine (data not shown). The lower 90Sr concentrations found in the adult model as 

compared to the juvenile model may be due to a better cleaning of the different segments of 

the digestive tract.  
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Figure 47. 90Sr concentration (Bq.g-1) in the digestive tract of 90Sr ingesting animals from the adult model, 

according to the age and sex of animals. All the results are presented as mean ± SD, with n = 6 per group. No 

significant time-specific differences between males and females were found (Student t test).  

1.4.5.Whole-body 90Sr activity 
 

The mean 90Sr whole body activity (Fig 48) showed also a continue increase over time (2-way 

ANOVA analysis, F(4,50) = 90.85, p<0.001), with females having systematically and 

significantly a higher mean whole body activity of 90Sr than males (2-way ANOVA analysis, 

F(1, 50) = 41.33, p<0.001). After 6 weeks of contamination duration, this increase was mainly 

observed for females, while in males the mean 90Sr whole body activity remained stable. At 

20 weeks of contamination duration, a mean content of 2.3 ± 0.4 Bq.g-1 for males and 3.7 ± 

0.5 Bq.g-1 for females was found in their body (Student t test, p<0.001).  
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Figure 48. Mean whole body 90Sr concentration (Bq.g-1) of contaminated animals from the adult model, 

according to the age and sex of animals. All the results are presented as mean ± SD with n = 6 animals per point. 

Time-specific differences between males and females are significant for *: p<0.05 and **: <0.001 (Student t 

test).  

1.5. Rate of 90Sr accumulation in bones 
 

We calculated the rate of 90Sr accumulation in the bones (Bq.day-1) of animals from both the 

juvenile and the adult model (Fig 49). For both models, an increase in this rate was observed 

during the first 12 weeks of ingestion, with significantly higher rates for the juvenile than the 

adult model. At 12 weeks the rate of 90Sr accumulation in the bones was for males 2.5 ± 0.3 

Bq.day-1 for the juvenile model and 0.8 ± 0.2 Bq.day-1 for the adult model (Student t test, 

p<0.001) and for females 2.6 ± 0.5 Bq.day-1 for the juvenile model and 0.5 ± 0.2 Bq.day-1 for 

the adult model (p<0.001). After 12 weeks of ingestion the rate of 90Sr accumulation in the 

bones decreased for both models, even becoming negative for some time points in the juvenile 

model. Overall, these facts show that the accumulation of 90Sr in the bones is different during 

bone growth in the juvenile period and bone remodelling during the adult period. 
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Figure 49. Rate of 90Sr accumulation in the bones of 90Sr-ingesting males (left panel) and females (right panel) 

from the juvenile (open bars) and adult (closed bars) mouse models. Results are presented as mean ± SD of 6 

animals per point. Time-specific differences between juvenile and adults animals are significant for *: p<0.05 

and **: p<0.001 (Student t test). 

1.6. Metabolic cage experiment in the adult model 

1.6.1.90Sr concentration in feces 
 

In order to follow the elimination 90Sr during chronic ingestion, animals of the adult model 

were housed in metabolic cages for 48 hours before euthanasia and their excreta were 

collected (Fig 50). The level of 90Sr elimination through faeces was dependent upon both 

ingestion duration (2-way ANOVA analysis, F(4, 50) = 41.4, p<0.001) and sex of animals (F(1, 

50) = 7.1, p<0.05), with a low level of 90Sr excretion at 3 weeks of ingestion. 
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Figure 50. 90Sr excretion during 24 hours in the faeces (Bq.g-1) of 90Sr-ingesting animals from the adult model, 

according to the age and sex of animals. Results are presented as mean ± SD of 6 animals. Time-specific 

differences between males and females are significant for *: p<0.05 and **: p<0.001 (Student t test). 

1.6.2.90Sr concentration in urine 
 
90Sr excretion through urine appeared similar in both gender (2-way ANOVA analysis, F(1,50) 

= 4.0, n.s.) and constant over ingestion duration (2-way ANOVA analysis, F(4,50) = 2.1, n.s.), 

with mean 90Sr contents of 1.1 ± 0.3 Bq.g-1 for males and 1.5 ± 0.3 Bq.g-1 for females (Fig 

51).  

 

Figure 51. 90Sr excretion during 24 hours in the urine (Bq.g-1) of 90Sr-ingesting animals from the adult model, 

according to the age and sex of animals. Results are presented as mean ± SD of 6 animals. 
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1.6.3.Daily intestinal absorption ratio 
 

Starting from these results and the calculated daily 90Sr ingestion we calculated the daily 

intestinal absorption ratio (IAR) as indicated in the material and methods section. This IAR 

takes into account both direct 90Sr intestinal uptake and 90Sr actively re-excreted in the 

intestine, as previously described both in humans and in rodents (Wiseman 1964). Results 

indicated that for the adult model, the IAR (Fig 52) varied according to both the duration of 

ingestion (2-way ANOVA analysis, F(4, 50) = 48.1, p<0.001) and the sex of animals (F(1, 50) = 

5.02, p<0.05). The highest IAR was observed at 3 weeks of ingestion and decreased 

thereafter. This may be explained by a similar direct 90Sr intestinal absorption throughout the 

experiment, but an increase of active 90Sr re-excretion in the intestine from 6 weeks of 

ingestion to the end of the experiment. Moreover, gender differences may be explained by 

increased intestinal absorption of strontium in males, as it was previously suggested in rats 

and monkeys (Dahl et al. 2001).  

 
Figure 52. Daily intestinal absorption ratio (IAR) for the adult model calculated as described in the material and 

methods section. Results are presented as mean ± SD of 6 animals. Time-specific differences between males and 

females are significant for *: p<0.05 (Student t test). 

1.7. Calculation of absorbed doses 
 

In order to facilitate the interpretation of observed biological effects, it is of importance to 

know the absorbed radiation dose due to the chronic ingestion of studied radionuclides. In 

order to answer this question, we used the mean whole body radionuclide concentration as 
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previously measured and a model proposed by the ICRP publication 108 (ICRP 2008) to 

calculate absorbed radiation doses for environmental radiation protection purposes.  

 

The model of the ICRP is based upon three reference plant and nine reference animals, 

representing most of the ecosystems (ICRP 2008). A simplified geometry was defined for 

each of these plants and animals. For the rat model, the geometric representation (Fig 53) is a 

solid ellipsoid of 20 cm length and 5 and 6 cm main and secondary diameters, and a mass of 

314 g. For each of these organisms, dose conversion factors (DCF) from the whole organism 

activity concentration to the resulting dose rate were defined in (µGy.day-1)/(Bq.kg-1) for 

numerous radionuclides. Several hypotheses were made in addition to the simplified geometry 

of animals (ICRP 2008). Notably, the organism is considered as a medium of homogeneous 

density in which the radionuclide is homogeneously distributed.  

 

We used the rat model of ICRP and corresponding DCF for 90Sr, given in the material and 

methods section, combined with the time-dependant activity concentrations discussed above, 

in order to calculate absorbed radiation doses from chronic ingestion exposure through 

ingestion of 90Sr. 

 
Figure 53. Geometric representation of a rat by the ICRP publication 108 (ICRP 2008). 

1.7.1.Absorbed doses during foetal life 
 

Animals are exposed during foetal life to both auto-irradiation due to internal contamination 

of the foetus and external irradiation due to the internal contamination of the mother. In order 

to take into account this external irradiation due to the mother, we used DCF corresponding to 

an external irradiation due to a contaminated soil surrounding the animal together with the 
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mean body burden of the mother. Thus, as an approximation, the mother is assimilated to a 

medium of homogeneous density with a homogeneous contamination, as it was previously 

proposed for modelling radiation doses to the embryo (ICRP 2001).  

 

Mean body burden for the mother obtained was 10.4 ± 2.4 kBq.kg-1 for 90Sr. Results (Fig 54) 

show that the total absorbed radiation dose at birth is 0.3 ± 0.1 mGy for animals ingesting 
90Sr. For comparison, mean body burden for the mother obtained in a previous study for 137Cs 

ingestion (Bertho et al. 2010) was 13.8 ± 1.3 kBq.kg-1 and results (Fig 54) show that the total 

absorbed radiation dose at birth is 2.3 ± 0.2 mGy for those animals ingesting 137Cs. The 

results show that the absorbed radiation dose due to internal contamination of the foetus is 

similar for both radionuclides. By contrast, the contribution to the total dose of external 

irradiation of the foetus due to the internal contamination of the mother is close to 85% in the 

case of 137Cs and less than 1% in the case of 90Sr. This is due to the highly penetrating γ-rays 

emitted by 137mBa, which was taken into account due to its short half-life (153 seconds) for 

the establishment of DCF for 137Cs. 

 

 

Figure 54. Absorbed doses calculated for foetal life (black bars) and distribution between external dose due to 

the mother (hatched bars) and dose due to internal irradiation (open bars). Results are presented as mean ± SD of 

5 animals. 

1.7.2.Whole-body absorbed radiation doses 
 

As shown before, the evolution of body weight of 90Sr ingesting animals of the juvenile 

mouse model showed a slower body weight increase in females than in males (Fig 38 and Fig 
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55). Males were significantly heavier than females after 6 weeks and a stabilisation of body 

weight was observed from 16 weeks. Results show that the evolution of absorbed radiation 

dose (Fig 55) is close to linearity until 20 weeks, when the absorbed radiation dose is up to 

9.7 ± 0.1 mGy in males and 10.6 ±0.1 mGy in females (Student t test, p<0.001). However, the 

absorbed radiation dose increases more rapidly in females as compared to males with 

significant differences appearing as soon as 3 weeks, and mainly after 12 weeks of age. This 

is linked to the mean 90Sr body burden which increases faster in females than in males (Fig 

42).  

 

 
Figure 55. Mean body mass (vertical bar) and body absorbed radiation doses calculated using DCF (circles and 

lines) for contamination experiments through chronic ingestion of 90Sr for the juvenile mouse model. Results are 

presented as mean ± SD of 5 animals. Differences between males (white circles and bars) and females (black 

circles and bars) are significant for *: p<0.05 and **: p<0.001 (Student t test). 

 

The comparison between 90Sr and 137Cs (data used from Bertho et al. 2010) results for the 

juvenile mouse model shows that the absorbed dose increases faster in 90Sr ingesting animals 

than in 137Cs ingesting animals (Fig 56), although it is lower at birth. This seems to be linked 

to the higher energy deposition of beta rays from 90Sr in body tissues as compared to the 

gamma rays from 137Cs. 
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Figure 56. Comparison of body absorbed dose evolution in females (black symbols) and males (white symbols) 

contaminated by 137Cs (circles) or by 90Sr (triangles). Results are presented as mean ± SD of 5 animals. 

 

For the adult mouse model, body weight results of 90Sr ingesting animals showed an overall 

higher body weight for males than females (Fig 44 and Fig 57). The evolution of absorbed 

radiation dose (Fig 57) is close to linearity until 20 weeks of ingestion, when the absorbed 

radiation dose is up to 3.8 ± 0.1 mGy in males and 4.7 ± 0.1 mGy in females (Student t test, 

p<0.001). However, the absorbed radiation dose increases more rapidly in females as 

compared to males with significant differences appearing at 12 weeks. This is linked to the 

mean 90Sr body burden which increases faster in females than in males (Fig 48).  
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Figure 57. Mean body mass (vertical bar) and body absorbed radiation doses calculated using DCF (circles and 

lines) for contamination experiments through chronic ingestion of 90Sr for the adult mouse model. Results are 

presented as mean ± SD of 5 animals. Differences between males (white circles and bars) and females (black 

circles and bars) are significant for *: p<0.05 and **: p<0.001 (Student t test). 

1.7.3.Validation of the DCF calculation method 
 

In order to confirm the above described dose calculations made with DCF, more sophisticated 

dose calculations considering cross irradiation of organs were performed by the Laboratory of 

Internal Dose Evaluation (LEDI, under the direction of E. Blanchardon) of IRSN. To that aim, 

a mouse voxel (volume x elements) phantom of Stabin et al. (Stabin et al. 2006) was used. 

This phantom is composed of ten segmented organs and uses specific absorbed fractions of 

energy (SAF) to calculate absorbed doses. 

 

Calculated body absorbed doses were in the range from 0.3 ± 0.1 mGy at birth up to 9.7 ± 0.1 

mGy at 20 weeks of 90Sr ingestion in our juvenile mouse model (Fig 58). In order to make a 

direct comparison between the DCF and SAF calculation methods, the external radiation 

doses due to the mother during foetal life were omitted as they are negligible for 90Sr (Fig 54). 

2-way ANOVA analysis showed significant difference between the two calculation methods 

both for males (circles, F(1,50) = 31.3, p<0.001) and for females (squares, F(1,50) = 44.0, 

p<0.001), especially after 12 weeks of 90Sr ingestion. However, one can note that the body 

absorbed doses were only slightly overestimated with DCF calculations as compared to SAF 

calculations and are in this context of absorbed radiation dose calculations insignificant.  
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Figure 58. Comparison of two methods for calculation of body absorbed doses by animals contaminated with 
90Sr, using either DCF (ICRP 2008) (black symbols) or specific absorbed fractions of energy (Stabin 2006) 

(white symbols). Results are presented as mean ± SD of 5 animals. Differences at each time point between the 

two calculation methods for females are significant for *: p<0.05 and **: p<0.001 and for males for +: p<0.05 

and ++: p<0.001 (Student t test). 

1.7.4.Absorbed doses at the skeleton 
 

In collaboration with our laboratory, the LEDI developed a three dimensional mouse voxel 

phantom to calculate by Monte Carlo simulation absorbed radiation doses for the whole body 

and more interesting for specific organs after contamination with different radionuclides. This 

mouse voxel phantom (Fig 59) was created from magnetic resonance imaging (MRI) 

segmentations.  

 

The LEDI calculated for our juvenile mouse model that the absorbed dose is 10.2 mGy for the 

whole body, which confirms the whole body absorbed dose calculated by us with use of the 

DCF from the ICRP publication 108 as described above (ICRP 2008). More interesing, the 

LEDI calculated an absorbed dose of 55.0 mGy for the skeleton in our juvenile mouse model 

after 20 weeks of chronic 90Sr ingestion. 
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Figure 59. The three dimensional mouse voxel phantom created by the Laboratory of Internal Dose Evaluation 

(LEDI) from magnetic resonance imaging (MRI) segmentations in order to calculate whole body and specific 

organ absorbed radiation doses.   

2. Effects on the bone physiology 

2.1. General plasma parameters 
 
Calcium, phosphorus and alkaline phosphatase (ALP) levels were measured in blood plasma 

by an automated spectrometric system in blood plasma (Fig 60). Time-specific significant 

differences between control and 90Sr ingesting animals were only observed for calcium at 12 

weeks for males (p=0.021), for phosphorus at 20 weeks for males (p=0.020) and for ALP at 

birth for males and females (both p<0.001) by Student t test analysis. Overall, with the 

exception of ALP for males (2-way ANOVA analysis, F(1,90), p<0.001), these plasma 

parameters in our juvenile mouse model were not affected by 90Sr chronic ingestion.  
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Figure 60. Calcium (mM) (A), phosphorus (mM) (B) and alkaline phosphatase (ALP, U.l-1) (C) levels in blood 

plasma. Results are presented as mean ± SD of 5 to 17 animals. Time-specific differences between control and 
90Sr ingesting males or control and 90Sr ingesting females are significant for *: p<0.05 and **: p<0.001 (Student 

t test). 

2.2. Bone specific plasma parameters 
 

Specific plasma parameters for the bone physiology were measured by enzyme linked 

immunosorbant assays at 6 weeks and 20 weeks of age of animals of our juvenile mouse 

model (Table 16). We measured bone specific alkaline phosphatase (bALP), bone 

morphogenetic protein 2 (BMP2), osteocalcin and procollagen type 1 N-terminal propeptide 

(PINP) as markers for bone formation and tartrate acid phosphatase 5b (TRAP5b) and C-

telopeptide of collagen (CTX) as makers for bone resorption. Moreover parathyroid hormone 

(PTH) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) were measured, both having multiple 

roles in the bone physiology as described in the introduction section.  

 



 

 144   

A significant difference for the bone resorption marker CTX was found between control and 
90Sr ingesting male animals at 6 weeks (Student t test, p=0.039) and at 20 weeks (Student t 

test, p=0.023), with 90Sr ingesting males having higher levels of CTX than control males (18.6 

± 3.2 ng.ml-1 vs. 15.8 ± 3.7 ng.ml-1 at 6 weeks and 9.9 ± 5.8 ng.ml-1 vs. 6.4 ± 1.6 ng.ml-1 at 20 

weeks).  

 

Moreover, we evaluated PINP, CTX and PTH plasma levels over the whole ingestion period 

for the animals of the juvenile mouse model (Fig 61).  

 

A significant decrease in PINP and CTX plasma levels could be observed over time (2-way 

ANOVA analysis, for example in males for PINP, F(4,77)= 102.4, p<0.001 and for CTX, 

F(4,80)= 33.3, p<0.001) however without an effect of contamination status (2-way ANOVA 

analysis, for example in males for PINP, F(1,77)=0.003, p= n.s. and for CTX, F(1,80)= 2.5, p= 

n.s.), despite the earlier mentioned time-specific significant differences at 6 and 20 weeks 

(Student t test, p=0.039 and p=0.023 respectively) between control and 90Sr ingesting males. 

 

For PTH, an increase in plasma levels could be observed over time (2-way ANOVA analysis, 

for males, F(4,40)= 17.6, p<0.001), with significant differences for males at 12 weeks and 16 

weeks (Student t test, p=0.022 and p=0.028 respectively). 
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Table 16. 
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Figure 61. Bone specific plasma parameters procollagen type 1 N-terminal propeptide (PINP) (ng.ml-1) (A), C-

telopeptide of collagen (CTX) (ng.ml-1) (B) and parathyroid hormone (PTH) (g.ml-1) (C) of animals of the 

juvenile mouse model. Results are presented as mean ± SD of 5 to 16 animals. Time-specific differences 

between control and 90Sr ingesting males or control and 90Sr ingesting females are significant for *: p<0.05 

(Student t test). 

2.3. Gene expression analysis 
 

Gene expression analysis was performed of genes implicated in the bone formation (runt 

related transcription factor 2 (Runx2), ALP, bone sialoprotein (BSP), osteopontin (OPN), 

osteocalcin (OCN), collagen 1 and 3 and in the bone resorption (parathyroid hormone 

receptor (PTHr), TRAP5b, receptor activator for nuclear factor κ β ligand (RankL) at femurs 

of 6 and 20 weeks old control and 90Sr ingesting animals of the juvenile mouse model (Table 

17). 

 

What concerns genes implicated in the bone formation, significant decreases in the expression 

of ALP (Student t test, p=0.027) and OCN (Student t test, p=0.018) were observed between 
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control and 90Sr ingesting animals for males of 6 weeks and for females of 20 weeks of age 

respectively. For genes implicated in the bone resorption, a significant increase in the 

expression of RankL (Student t test, p=0.036) was observed for 90Sr ingesting females of 20 

weeks of age compared to control females of the same age. 

 

The obtained results of this gene expression analysis are summarized in Table 18. At 20 

weeks of chronic contamination by 90Sr ingestion, the gene expression balance (at femurs) 

between bone formation and bone resorption seems to be modified with bone resorption in 

favour of bone formation. 

 

 90Sr ingesting males 90Sr ingesting females 

 Bone formation Bone resorption Bone formation Bone resorption 

6 weeks ▼ (*ALP) ▼ - - 

20 weeks ▼ ▲ / - ▼ (*OCN) ▲ (*RankL) 

 
Table 17. Summarized table of gene expression analysis at femurs of 6 weeks and 20 weeks old 90Sr ingesting 

males and females (results are shown for 90Sr ingesting animals in comparison with control animals with same 

sex and age). ALP: alkaline phosphatase, OCN: osteocalcin and RankL: receptor activator for nuclear factor κ β 

ligand. Time-specific differences between control and 90Sr ingesting males or control and 90Sr ingesting females 

are significant for *: p<0.05 (Student t test). 
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Table 18. 
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2.4. Bone histomorphometry 
 

In this report bone histomorphometry results are presented for femurs from 20 weeks old 

animals of the juvenile mouse model. 

 

Firstly we used hematoxylin eosin safran (HES) staining to evaluate the overall structure of 

the femur area used for further histomorphometry analysis, i.e. the distal femur end (Fig 62). 

Collagenous structures are colored in orange, cell nuclei in blue and cytoplasm in red. 

Cortical bone is colored in orange, as the bone matrix is mainly composed of type I collagen. 

The growth plate appears in dark purple as this area is made up of newly synthesized bone 

and chondrocytes whose nuclei are revealed in blue by HES staining. The growth plate is at 

the boundary between the epiphyseal and metaphyseal part of the bone. The bone marrow 

cells have their nucleus stained blue and their cytoplasm stained red resulting in an overall 

purple color of the bone marrow space. 

 

 
Figure 62. Longitudinal section of a femur after HES staining (2.5x). We can distinguish the bone marrow (a) 

surrounded on both sides by cortical bone (b) and distally by the growth plate (c). The diaphysis (d), epiphysis 

(e) and metaphysis (f) are also shown. 

 

 

As decribed in the material and methods section, we quantified after modified trichrome 

Goldner staining the bone tissue volume (BV) in a total tissue volume (TV) defined in a 2 mm 

region from the growth plate with Histolab software (Fig 63). After automated analysis, 

orange and brown colors defined by Histolab are superimposed on the bone tissue area, while 
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green color is superimposed on the bone marrow area. The obtained analysed image is 

consistent with a HES stained femur section. 

 

 

Figure 63. Longitudinal section of a femur stained with modified trichrome Goldner and analysed by Histolab 

software (2.5x). Bone tissue is shown in orange and brown colors, bone marrow is shown in green color. 

2.4.1.Total surface analysed 
 

To perform the histomorphometry analysis, it was necessary to ensure that the total surface 

(TV) analysed for each femur was the same for all groups (Fig 64). Overall, the average total 

surface analysed per animal for all four groups was 22.4 ± 1.0 mm2 and no significant 

differences between the control and 90Sr ingesting animals were observed (Student t test, for 

males p=0.328 and for females p= 0.164). As such, the study could be performed without the 

risk of bias in the delimitation of the area of interest. 
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Figure 64. The average total surface (TV) analysed (mm2) per animal for each group of 20 weeks old animals of 

the juvenile mouse model. After comparing the groups by Student t test analysis, no significant differences were 

observed (p>0.05). Results are presented as mean ± standard deviation (SD), with n=8. 

2.4.2.Growth plate thickness 
 

The thickness of the growth plate is expressed as the mean for all animals of each group 

determined from three measurements at set distances along the growth plate per slide. Overall, 

the average growth plate thickness per animal for all four groups was 142.6 ± 4.6 µm and no 

significant differences were observed between the control and 90Sr ingesting animals (Student 

t test, for males p=0.195 and for females p=0.695) (Fig 65). 

 
 

Figure 65. The average growth plate thickness (µm) per animal for each group of 20 weeks old animals of the 

juvenile mouse model. After comparing the groups by Student t test analysis, no significant differences were 

observed (p>0.05). Results are presented as mean ± standard deviation (SD), with n=8. 
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2.4.3.BV/TV ratio 
 

No significant differences were observed between the control and 90Sr ingesting animals for 

the bone volume to tissue volume (BV/TV) ratio (Student t test, for males p=0.803 and for 

females p=0.350). Overall, the average BV/TV ratio per animal for all four groups was 35.9 ± 

2.0 % (Fig 66).  

 

 
 

Figure 66. The average bone volume (BV) to tissue volume (TV) ratio (%) per animal for each group of 20 

weeks old animals of the juvenile mouse model. After comparing the groups by Student t test analysis, no 

significant differences were observed (p>0.05). Results are presented as mean ± standard deviation (SD), with 

n=8. 

3. Effects on the hematopoietic system 

3.1. Blood cell count 
 

Blood cell count was made in offspring of the juvenile mouse model, with differential for 

white blood cells, lymphocytes, monocytes, granulocytes, red blood cells and blood platelets. 

Moreover hemoglobin and hematocrit levels were measured. Overall, with the exception for 

white blood cells (Student t test, p=0.030) (Fig 67) and lymphocytes (Student t test, p=0.013) 

(data not shown) of males of 12 weeks old, we did not detect any significant difference 

between control groups and 90Sr ingesting groups by 2-way ANOVA analysis (p>0.05), 

taking into account possible effects of age. A significant increase in red blood cell number (2-

way ANOVA analysis, for males F(55, 825)= 157.3, p<0.001 and for females F(56, 993)= 38.5, 

p<0.001) and blood platelets number (2-way ANOVA analysis, for males F(56, 801)= 6.6, 

p<0.001 and for females F(54, 981)= 6.2, p<0.001) was observed with increasing age, mainly 
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before age of 6 weeks. This increase in both red blood cells and blood platelets corresponds to 

the development of the hematopoietic system during the post-natal life in the mouse. 

 

A B 

 
 

C D 

  
 

Figure 67. Evolution of the number (per liter) of white blood cells (A), red blood cells (B), blood platelets (C) 

and and hematocrit (%) level (D) in control and 90Sr ingesting animals. All the results are presented as mean ± 

SD, with 5 to 14 animals per group. Time-specific differences between control and 90Sr ingesting males or 

control and 90Sr ingesting females are significant for *: p<0.05 (Student t test).  

3.2. Flt3-ligand 
 

We used plasma Flt3-ligand concentration as a biological indicator of bone marrow function 

(Prat et al. 2006). The highest concentrations were observed at birth, with a significant 

decrease with increasing age of the animals (2-way ANOVA analysis, for males F(5,47)= 47.3, 

p<0.001 and for females F(5,47)= 51.1, p<0.001) (Fig 68). For females at birth a significant 

difference was found in plasma Flt3-ligand concentration between control and 90Sr ingesting 

animals (Student t test, p<0.001).  
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Figure 68. Evolution of Flt3-ligand concentration (pg.ml-1) in blood plasma of animals of the juvenile mouse 

model. All the results are presented as mean ± SD, with 5 animals per group. Time-specific differences between 

control and 90Sr ingesting males or control and 90Sr ingesting females are significant for **: p<0.001 (Student t 

test).  

3.3. Phenotypic analysis of bone marrow cells 
 

We evaluated the hematopoietic system by phenotypic analysis of the following bone marrow 

cells: Lin-C-kit+SCA-1+ early progenitors and stem cells, CD3+CD4+ and CD3+CD8+ T 

lymphocytes and CD45+CD19+ B lymphocytes (Fig 69).  

 

For all cell populations studied, significant differences over time were observed (2-way 

ANOVA analysis, p<0.001), without influence of the contamination status of animals (2-way 

ANOVA analysis, p>0.05). Indeed, only punctual differences between control and 90Sr 

ingesting animals were observed in the percentage of Lin -C-kit+SCA-1+cells for males at 6 

and 16 weeks (Student t test, p=0.003 and p=0.012 respectively) and for females at 16 weeks 

(Student t test, p=0.041); in CD3+CD4+ T helper lymphocytes for females at 16 weeks 

(Student t test, p=0.002); in CD3+CD8+ T cytotoxic lymphocytes for males and females at 6 

weeks (Student t test, p<0.001 and p=0.010 respectively); and in CD45+CD19+ B lymphocytes 

for males and females at 16 weeks (Student t test, p=0.005 and p=0.028 respectively) and 

females at 20 weeks (Student t test, p=0.021). 
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Figure 69. Phenotypical analysis of bone marrow cells of animals of the juvenile mouse model. Percent Lin-C-

kit+SCA-1+ early progenitor and stem cells (A), CD3+CD4+ T helper lymphocytes (B), CD3+CD8+ T cytotoxic 

lymphocyes (C) and CD45+CD19+ B lymphocytes (D). All the results are presented as mean ± SD, with 5 

animals per group. Time-specific differences between control and 90Sr ingesting males or control and 90Sr 

ingesting females are significant for *: p<0.05 and **: p<0.001 (Student t test).  

3.4. Colony-forming cells 
 

As a functional test we evaluated the frequency of colony forming cells (CFCs) in the bone 

marrow and the spleen by a methylcellulose CFC assay. A significant difference in the 

number of the progenitors was observed over time (2-way ANOVA analysis, p<0,001) 

without influence of the contamination status of animals (2-way ANOVA analysis, p>0,05) 

(Fig 70). However, some time-specific significant differences between control and 90Sr 

ingesting animals could be observed. For the bone marrow assays significant differences were 

observed for colony-forming units-granulocyte erythrocyte monocyte macrophage (CFU-

GEMM) of females at birth and for males at 6 weeks (Student t test, p=0,030 and p=0,045 
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respectively); for CFU-granulocyte macrophage (CFU-GM) of females at 16 weeks (Student t 

test, p=0,007); and for burst-forming units-erythroid (BFU-E) of males at 6 weeks and 

females at 16 weeks (Student t test, p<0,001 and p=0,045 respectively). For the spleen assays 

significant differences were observed for CFU-GEMM of females at birth and at 3 weeks 

(Student t test, p=0,007 and p=0,033 respectively) and of males at birth (Student t test, 

p<0,001); and for CFU-GM of females at 12 weeks (Student t test, p=0,039). 

 

It should be noted that the number of cells harvested from femurs and spleen of animals were 

not significantly different between control and 90Sr ingesting animals (data not shown), 

indicating that the absolute number of CFCs remained unchanged in 90Sr ingesting animals 

when compared to the control animals.  
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Figure 70. Colony forming cells (CFCs) in the bone marrow and spleen of animals of the juvenile mouse model. 

CFU-GEMM: colony-forming units-granulocyte erythrocyte monocyte macrophage; CFU-GM: colony-forming 

units-granulocyte macrophage and BFU-E: burst-forming units-erythroid. The number of progenitors are given 

for the bone marrow per 105 plated bone marrow cells and for the spleen per 106 plated spleen cells. All the 

results are presented as mean ± SD, with 5 animals per group. Time-specific differences between control and 
90Sr ingesting males or control and 90Sr ingesting females are significant for *: p<0.05 and **: p<0.001 (Student 

t test).  

 



 

 158   

4. Effects on the immune system 

4.1. Steady-state immune system 

4.1.1.Thymus parameters 

4.1.1.1. Phenotypic analysis of thymic cells 
 

Results showed (Fig 71) some time-specific significant differences between control and 90Sr 

ingesting animals for the T lymphocyte subsets tested, i.e. CD4-CD8- double negative 

thymocytes, CD4+CD8+ double positive thymocytes, CD4+CD8- T helper lymphocytes and 

CD4-CD8+ T cytotoxic lymphocytes. Indeed, time-specific significant differences were 

observed between control and 90Sr ingesting animals for CD4+CD8+ cells of males at 6 weeks 

and at 16 weeks (Student t test, p=0.026 and p=0.002 respectively), for CD4+CD8- cells of 

males and females at 16 weeks (Student t test, both p<0.001) and for CD4-CD8+ cells of 

males at 6 weeks (Student t test, p=0.011). However, there was no overall significant variation 

according to either the 90Sr ingestion status or the age of animals as demonstrated by 2-way 

ANOVA analysis (p>0.05). As a result, the CD4+/CD8+ ratio seemed not to be affected by 

chronic ingestion of 90Sr. 
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Figure 71. Phenotypical analysis of thymic cells of animals of the juvenile mouse model. Percent CD4-CD8- 

double negative thymocytes (A), CD4+CD8+ double positive thymocytes (B), CD4+CD8- T helper lymphocytes 

(C) and CD4-CD8+ T cytotoxic lymphocytes (D). All the results are presented as mean ± SD, with 5 animals per 

group. Time-specific differences between control and 90Sr ingesting males or control and 90Sr ingesting females 

are significant for *: p<0.05 and **: p<0.001 (Student t test).  

4.1.1.2. TRECs 
 

We used T cell excision circle (TREC) detection as an indicator of T cell receptor gene 

rearrangement, which is a central process during T lymphocyte differentiation. No significant 

variation of the ratio of TRECs (Fig 72) was observed in comparison with the reference 

dotted line, indicating that the frequency of TRECs was not significantly different between 

control and 90Sr ingesting animals. 
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Figure 72. Ratio of T cell excision circles (TRECs) in thymic cells. All the results are presented as mean ± SD, 

with n= 9-10. 

4.1.2.Blood parameters 

4.1.2.1. Interleukin-7  
 

Interleukin-7 (IL-7) concentration in plasma (Fig 73) was used as a bio-indicator of T cell 

homeostasis. There was a significant influence of the age of animals on IL-7 concentration (2-

way ANOVA analysis, males: F(5,44) = 7.8, p<0.001 and females: F(5,46) = 11.1, p<0.001). No 

influence of the contamination status of animals was observed (2-way ANOVA analysis, 

p>0.05), with a time-specific exception at birth for males (Student t test, p=0.002). 

 
 

Figure 73. Evolution of IL-7 concentration (pg.ml-1) in blood plasma of animals of the juvenile mouse model. 

All the results are presented as mean ± SD, with 2 to 5 animals per group. Time-specific differences between 

control and 90Sr ingesting males or control and 90Sr ingesting females are significant for *: p<0.05 (Student t 

test).  
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4.1.2.2. Immunoglobulins G and M 
 

Circulating immunoglobulins G (IgG) and M (IgM) (Fig 74) were measured as indicators of 

B lymphocyte function. No significant differences between control and 90Sr ingesting animals 

were observed, although a significant evolution of IgG and IgM levels according to the age of 

animals was observed by 2-way ANOVA analysis (p<0.001). This suggests that the main 

immune function of B lymphocytes, i.e. immunoglobulin production, was not affected by 

chronic ingestion of 90Sr. 

 

A B 

  

 

Figure 74. Immunoglobulins G (IgG) (A) and M (IgM) (B) levels (µg.ml-1) in blood plasma of control and 90Sr 

ingesting animals of the juvenile mouse model. No significant differences were observed between control and 
90Sr ingesting animals for the same age and sex. Results are presented as the mean ± SD of 5 animals per group.  

4.1.3.Spleen parameters 

4.1.3.1. Phenotypic analysis of spleen cells 
 

Phenotypic analysis of spleen cells showed (Fig 75) some significant differences between 

control and 90Sr ingesting animals for the cell populations tested, i.e. CD3+CD4+ T helper 

lymphocytes, CD3+CD8+ T cytotoxic lymphocytes, CD45+CD19+ B lymphocytes and 

CD3+CD4+CD25+ T regulatory cells. Indeed, time-specific significant differences were 

observed between control and 90Sr ingesting animals for CD3+CD4+ cells of females at 3 

weeks (Student t test, p=0.029) and of males at 12 weeks and 20 weeks (Student t test, 

p=0.003 and p=0.033 respectively); for CD3+CD8+ cells of females at 3 weeks (Student t test, 

p=0.005) and of males at 12, 16 and 20 weeks (Student t test, p=0.002, p=0.030 and p=0.005 

respectively); for CD45+CD19+ cells of males at 6 weeks (Student t test, p<0.001) and 
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females at 6 weeks and 12 weeks (Student t test, p=0.024 and p=0.022 respectively); and for 

CD3+CD4+CD25+ cells of females at 16 weeks (Student t test, p<0.001) and males at 20 

weeks (Student t test, p<0.001). However, there was no overall significant difference between 

control and 90Sr ingesting animals for all the cell populations tested, as demonstrated by 2-

way ANOVA analysis. As a result, the CD4+/CD8+ ratio seemed not to be affected by chronic 

ingestion of 90Sr.  

 

A B 

  
C D 

  
 

Figure 75. Phenotypical analysis of spleen cells of animals of the juvenile mouse model. Percent CD3+CD4+ T 

helper lymphocytes (A), CD3+CD8+ T cytotoxic lymphocytes (B), CD45+CD19+ B lymphocytes (C) and 

CD3+CD4+CD25+ T regulatory cells (D). All the results are presented as mean ± SD, with 5 animals per group. 

Time-specific differences between control and 90Sr ingesting males or control and 90Sr ingesting females are 

significant for *: p<0.05 and **: p<0.001 (Student t test).  
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4.2. Immune response to KLH and TT antigens 

4.2.1.Specific immunoglobulins 
 

We used a vaccine challenge experiment as a functional test to study the immune system of 

our animals. Tetanus toxin (TT) and keyhole limpet hemocyanin (KLH) antigens were used, 

both classically used in toxicological experiments. This experiment was made with 3 week 

old control and 90Sr ingesting animals. Two antigen injections were made, the first one at 3 

weeks of age and the second one at 20 weeks of age in order to evaluate both the primary and 

secondary vaccine response. The concentration of IgG and IgM specific for either TT or KLH 

was followed for 4 weeks after each injection. Results (Fig 76) indicated that very low levels 

of specific immunoglobulins for either TT or KLH were found in placebo injected animals, 

either form the control group or from the 90Sr ingesting group, throughout the experiment and 

without any significant evolution according to time (2-way ANOVA analysis, p>0.05). In 

antigen injected groups a time dependent increase in plasma concentration of specific IgG or 

IgM against TT or KLH was observed by 2-way ANOVA analysis (p<0.001). Furthermore 

specific time point significant differences were observed especially for IgG specific to TT 

between control and 90Sr ingesting TT vaccinated animals (2-way ANOVA analysis F(1,175) = 

12.9, p<0.001). 
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Figure 76. Specific immunoglobulin response of control and 90Sr ingesting male animals injected with either 

tetanus toxin (TT) or keyhole limpet hemocyanin (KLH) or saline (placebo). Results were analysed separately 

for saline, TT or KLH injected animals using a 2-way ANOVA test. Each point is the mean ± SD from 12 

animals.  Time-specific significant differences are indicated for *: p<0.05 and **: p<0.001. 

4.2.2.Phenotypical analysis of spleen cells 
 

Phenotypical analysis of spleen cells (Fig 77) of vaccinated animals at 24 weeks was 

performed for the following cell populations: CD3+CD4+ T helper lymphocytes, CD3+CD8+ T 

cytotoxic lymphocytes, CD4+CD25+ T regulatory cells and CD45+CD19+ B lymphocytes. 

Significant differences were observed for CD3+CD4+ cells between control and 90Sr ingesting 

TT vaccinated animals (Student t test, p=0.044) and for CD45+CD19+ cells also between 

control and 90Sr ingesting TT vaccinated animals (Student t test, p=0.009). 
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Figure 77. Phenotypical analysis of spleen cells of control and 90Sr ingesting animals injected with either saline 

(placebo), keyhole limpet hemocyanin (KLH) or tetanus toxin (TT). Percent CD3+CD4+ T helper lymphocytes, 

CD3+CD8+ T cytotoxic lymphocytes, CD4+CD25+ T regulatory cells and CD45+CD19+ B lymphocytes in the 

spleen are given for each group. All the results are presented as mean ± SD, with 6 animals per group. 

Differences between groups are significant for *: p<0.05 (Student t test).  

4.2.3.Gene expression analysis 
 

Gene expression analysis of genes implicated in the differentiation of naive CD4+ T 

lymphocytes towards T helper 1 cells (Th1), T helper 2 cells (Th2) or T regulatory cells 

(Treg) was performed at the spleen of control and 90Sr ingesting animals of 24 weeks of age 

(Fig 78). For Th1 cells we analysed the gene expression of T-box expressed in T cells (Tbet) 

and interferon gamma (IFNg), for Th2 cells the gene expression of Gata-binding protein 3 

(Gata3) and interleukin-10 (IL-10) and for Treg cells the gene expression of Forkhead box P3 

(FoxP3). For all genes we observed significant differences by Student t test analysis (p<0.05) 

between control and 90Sr ingesting KLH or TT vaccinated animals, with very significant 

decreases in both Tbet and Gata3 gene expression for 90Sr ingesting KLH and TT vaccinated 

animals compared to control KLH and TT vaccinated animals (Student t test, p<0.001). 
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Figure 78. Expression of genes implicated in the differentiation of naive CD4+ T lymphocytes towards T helper 

1 cells (Th1), T helper 2 cells (Th2) or T regulatory cells (Treg) at the spleen of 24 weeks male animals injected 

with either saline (placebo), keyhole limpet hemocyanin (KLH) or tetanus toxin (TT). Tbet: T-box expressed in 

T cells, Gata3: Gata-binding protein 3, IFNg: interferon gamma, IL-10: interleukin-10, FoxP3: forkhead box P3. 

Expression of genes for all groups is relative to the control placebo group and GAPDH is used as reference gene. 

Results are presented as mean ± standard error of mean (SEM). Differences between groups are significant for *: 

p<0.05 and **:p<0.001 (Student t test) and n=8-11. 

4.2.4.Protein expression analysis 
 

Moreover we analysed the expression of Tbet, Gata3 and FoxP3 at the protein level in the 

spleen of control and 90Sr ingesting animals of 24 weeks of age (Fig 79). For KLH and TT 

vaccinated animals we found a decrease in Tbet protein levels for 90Sr ingesting animals 

compared to control animals, although this decrease was only statistically significant for 90Sr 

ingesting TT vaccinated animals (Student t test, p=0.023). On the other hand, for Gata3 and 

FoxP3 no significant differences were found between control and 90Sr ingesting animals, 

whatever the vaccination status of the animals (Student t test, p>0.05). 
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Figure 79. Protein expression levels of Tbet (A), Gata3 (B) and FoxP3 (C) in the spleen of control and 90Sr 

ingesting male animals of 24 weeks injected with either saline (placebo), keyhole limpet hemocyanin (KLH) or 

tetanus toxin (TT). Representative images of protein bands are shown for each group. Protein levels were 

normalized to the protein level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Results are presented 

as mean ± SD. Differences between groups are significant for *: p<0.05 (Student t test) and n=5-6. 
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5. Cell culture models 
 

To examine the mechanisms of action of 90Sr we used the pre-osteoblastic MC3T3-E1 cell 

line. This cell line has been shown to be a viable model for exploring the molecular 

mechanisms of osteoblast proliferation, maturation and differentiation (Gal et al. 2000). It has 

been shown that MC3T3-E1 cultured in the presence of ascorbic acid and β-glycerophosphate 

display a time-dependent and sequential expression of osteoblast characteristics analogous to 

the bone formation process in vivo. The cells actively replicate, express alkaline phosphatase 

(ALP) activity and synthetize a collagenous extracellular matrix which progressively 

undergoes mineralization (Barbara et al. 2004; Quarles et al. 1992). 

5.1. Differentiation potential  
 

To validate the previous mentioned studies we investigated the differentiation potential of 

pre-osteoblastic MC3T3-E1 clone 4 cells in the presence of ascorbic acid (AA) and β-

glycerophosphate (BglyP). Moreover we investigated the effects of non-radioactive 88SrCl2 on 

bone matrix mineralization, collagen synthesis and alkaline phosphatase activity.  

5.1.1.Bone matrix mineralization 
 

We examined by Von Kossa staining bone matrix mineralization of MC3T3-E1 clone 4 cells 

treated with cell culture medium alone (control), medium supplemented with 10 mM 88SrCl2 

or medium supplemented with AA + BglyP during 7, 10 and 14 days (Fig 80). A significant 

increase over time in bone matrix mineralization was only observed for MC3T3-E1 clone 4 

cells treated with AA + BglyP. 
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Figure 80. Representative images (10x) of Von Kossa staining of MC3T3-E1 clone 4 cell cultures after 7, 10 

and 14 days of treatment with cell culture medium alone (control), medium supplemented with 10 mM 88SrCl2 or 

50µg/ml acid ascorbic (AA) + 10 mM β-glycerophosphate (BglyP). 

 

Bone matrix mineralization was also examined by Alizarin Red S staining (Fig 81). An 

increase in mineralization was again only observed for MC3T3-E1 clone 4 cells treated with 

AA + BglyP. The presence of 88SrCl2 in cell culture medium at the concentration of 10 mM 

didn’t seem to affect bone mineralization in our experiments.  

 

 
 

Figure 81. Mineralization (% difference treated vs control) of MC3T3-E1 clone 4 cell cultures after 7 and 14 

days of treatment with cell culture medium supplemented with 10 mM 88SrCl2 or 50µg/ml acid ascorbic (AA) + 

10 mM β-glycerophosphate (BglyP). Results are presented as mean ± SD of 2 independent experiments. 
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5.1.2.Collagen synthesis  
 

Collagen synthesis was examined by Sirius Red staining (Fig 82). The presence of 10 mM 
88SrCl2 in cell culture medium didn’t stimulate collagen synthesis by MC3T3-E1 clone 4 

cells. However collagen synthesis was increased for all other conditions tested, i.e. cell culture 

medium supplemented with AA, AA + 10 mM 88SrCl2 or AA + BglyP.  

 

 
 

Figure 82. Collagen synthesis (% difference treated vs control) of MC3T3-E1 clone 4 cell cultures after 7 and 14 

days of treatment with cell culture medium supplemented with 10 mM 88SrCl2, 50µg/ml acid ascorbic (AA), 

50µg/ml AA + 10 mM 88SrCl2 or 50µg/ml AA + 10 mM β-glycerophosphate (BglyP). Results are presented as 

mean ± SD of 4 independent experiments. 

5.1.3.Alkaline phosphatase activity 
 

We examined alkaline phosphatase (ALP) activity between 3 and 21 days of MC3T3-E1 

clone 4 cells in the presence of 10 mM 88SrCl2 in cell culture medium (supplemented with AA 

+ Bglyp) (Fig 83). A significant increase in ALP activity was observed between 3 and 10 

days and declined slightly afterwards. However, no significant difference was observed in 

ALP activity of the cells contaminated with 88SrCl2 and supplemented cell culture medium 

alone in this experiment. 
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Figure 83. Effect of 10 mM 88SrCl2 on alkaline phosphatase (ALP) activity (OD at 595nm / mg protein) by 

MC3T3-E1 clone 4 cells at 3, 7, 10, 14 and 21 days of treatment. Results are presented of 1 experiment. 

5.2. Cell mortality and viability  
 

Our results of bone matrix mineralization, collagen synthesis and alkaline phosphatase 

activity tests confirmed that MC3T3-E1 cells cultured in the presence of AA and BglyP 

display a time-dependent and sequential expression of osteoblast characteristics analogous to 

the bone formation process in vivo. However, 88SrCl2 in cell culture medium at a 

concentration of 10 mM didn’t have any influence on the differentiation potential of this cell 

line.  

 

In a next step we investigated if 90Sr has an influence on the cell mortality (Fig 84) and cell 

viability (Fig 85) of the MC3T3-E1 clone 4 cells. We used different concentrations of 90Sr 

(from 3.125 kBq.ml-1 to 100 kBq.ml-1) in cell culture medium but didn’t observe any 

significant modification on the mortality and viability of MC3T3-E1 clone 4 cells in the 

presence of 90Sr. 
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Figure 84. Effect of different concentrations of 90Sr (3.125 kBq/ml up to 100 kBq/ml) and 10 mM 88SrCl2 on the 

cell mortality (measured by the release of lactate dehydrogenase (LDH)) of MC3T3-E1 clone 4 cells after 24, 48 

and 96 hours treatment with 90Sr or 88SrCl2. Results are presented as mean ± SD of 4 independent experiments. 

 
 

Figure 85. Effect of different concentrations of 90Sr (3.125 kBq/ml up to 100 kBq/ml) and 10 mM 88SrCl2 on the 

cell viability (measured by MTT assay) of MC3T3-E1 clone 4 cells after 24, 48 and 96 hours treatment with 90Sr 

or 88SrCl2. Results are presented as mean ± SD of 4 independent experiments. 

5.3. γ-H2AX foci 
 

In preliminary experiments we detected γ-H2AX foci, as markers of DNA double-strand 

breaks (DSB), in MC3T3-E1 clone 4 cells that were irradiated with a dose of 0.5 Gy and foci 

per cell were counted after 30 minutes (Fig 86). One has to note that the number of γ-H2AX 

foci in control non-irradiated cells was higher, i.e. 7.6 ± 3.6 foci per cell for the 3 experiments 

taken together, than normally expected for non-irradiated cells. For the irradiated cells 13.3 ± 
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5.6 foci per cell were observed for the 3 experiments taken together. This higher number of γ-

H2AX foci indicates more DNA double-strand breaks in irradiated cells. 

 

 
 

Figure 86. Number of γ-H2AX foci per cell of MC3T3-E1 clone 4 cells irradiated at a dose of 0.5 Gy for 3 

independent experiments. Results are presented as mean ± SD of 100 evaluated cells per condition. Differences 

between control (0 Gy) and irradiated (0.5 Gy) groups are significant for **:p<0.001 (Student t test). 

 
Because of the observed high number of γ-H2AX foci already present in the control MC3T3-

E1 clone 4 cells, we decided to use for further experiments mesenchymal stem cells (MSC). 

 

We repeated the above described experiment (irradiation at 0.5 Gy) (Fig 87) and observed a 

lower number of γ-H2AX foci for the control MSC than for the MC3T3-E1 cells (1.0 ± 0.1 

foci per cell for both experiments vs. 7.6 ± 3.6 foci per cell respectively). Furthermore, a 

higher number of γ-H2AX foci were observed for the irradiated MSC (3.0 ± 1.0 foci per cell 

for both experiments) compared to the control MSC. 
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Figure 87. Number of γ-H2AX foci per cell of MSC irradiated at a dose of 0.5 Gy for 2 independent 

experiments. Results are presented as mean ± SD of 100 evaluated cells per condition. Differences between 

control (0 Gy) and irradiated (0.5 Gy) groups are significant for *:p<0.05 and **:p<0.001 (Student t test). 

 
Finally we evaluated γ-H2AX foci in MSC after 90Sr contamination. MSC were contaminated 

by 1 kBq.ml-1 or 10 kBq.ml-1 during 30 minutes, 24 hours or 72 hours (Fig 88). Experiments 

showed more γ-H2AX foci in 90Sr contaminated MSC than control MSC for almost all 

experiences. This demonstrates the induction of DNA double-strand breaks in MSC cells by 

radiation of 90Sr. However, at longer exposure times to 90Sr present in cell culture medium 

(i.e. 72 hours), fewer γ-H2AX foci per cell were observed and thus indicating DSB reparation. 

A B 

  
 
Figure 88. Number of γ-H2AX foci per cell of MSC contaminated with 1 kBq/ml of 90Sr (A) and 10 kBq/ml of 
90Sr (B) after 30 minutes, 24 hours and 72 hours of 90Sr contamination. Results for 2 independent experiments 

and presented as mean ± SD of 100 evaluated cells per condition. Differences between control and 90Sr 

contaminated groups are significant for **:p<0.001 (Student t test). 
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Discussion 
 

For several years the research program ENVIRHOM at our laboratory has been dedicated to 

the study of non-cancerous effects of chronic ingestion of low quantities of radionuclides. The 

type of contamination used, i.e. chronic ingestion, was chosen because it is representative to 

the mode of contamination for populations living on radionuclide contaminated territories 

after nuclear accidents. These accidents led to the dispersion of many radionuclides in the 

environment. On the long term, two radionuclides remain important for chronic contamination 

by ingestion, 137Cs and 90Sr (Fairlie 2007; Kashparov et al. 2001). Indeed, several studies 

showed that due to the Chernobyl accident important populations are already chronically 

exposed to small amounts of 137Cs and 90Sr by ingestion, although studies showed a reduction 

of radionuclide ingestion with time (Cooper 1992; de Ruig and van der Struijs 1992; Hoshi et 

al. 1994; UNSCEAR 2000). 

 

The first studies conducted at our laboratory were focused on the effects of chronic 137Cs 

contamination by ingestion. These studies showed that the contamination induced some 

modifications in various physiological systems of rodent models used. For instance, a 

modification of sleep-wake cycles in rats (Lestaevel et al. 2006) was demonstrated, which 

may be associated with a neuro-inflammatory reaction (Lestaevel et al. 2008). Also 

modifications on the cardio-vascular system (decrease in arterial pressure) (Gueguen et al. 

2008), the vitamin D metabolism (decrease of active vitamin D3 in plasma) (Tissandie et al. 

2006; Tissandie et al. 2009), the cholesterol metabolism (increase in different cytochromes 

intervening in the transformation of cholesterol and bile acids) (Racine et al. 2010; Racine et 

al. 2009; Souidi et al. 2006) and the steroid hormone metabolism (Grignard et al. 2008) were 

shown. However, most of the observed modifications are at the molecular level (such as gene 

expression modifications or variation in protein synthesis) without any major consequences 

on health status of animals (Lestaevel et al. 2010). By contrast, studies on the hematopoietic 

and immune systems showed no modifications after chronic ingestion of 137Cs (Bertho et al. 

2011; Bertho et al. 2010). 

 

Overall, results obtained showed that chronic ingestion of 137Cs has limited effects on animal 

physiology. Furthermore modifications on the hematopoietic and immune systems as 

observed for populations living on contaminated territories, as described in the introduction 
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section, were not observed. Thus it was suggested that these observed effects were due to 

other radionuclides than 137Cs and we decided to investigate the effects of chronic 90Sr 

contamination by ingestion.  

 

The effects of 90Sr after administration by injection, inhalation or ingestion have been under 

study for several decades using laboratory animals (Book et al. 1982). Most of these studies 

were performed using large animals, mainly beagle dogs and involved a relatively short 

period of administration, by single injection, multiple injections, or inhalation, or longer 

periods of administration, by ingestion. However, the bulk of these studies mainly 

investigated cancerous effects after 90Sr contamination at high quantities of this radionuclide. 

1. 90Sr biokinetics 
 

We used a juvenile and adult mouse model and contamination was performed by drinking 

water containing a 90Sr concentration of 20 kBq.l-1, as previously used by Bertho et al. 

(Bertho et al. 2011; Bertho et al. 2010). This concentration corresponds to a daily ingestion of 
90Sr by populations living on contaminated territories of Chernobyl, mainly by consumption 

of dairy products and mushrooms (de Ruig and van der Struijs 1992; Hoshi et al. 1994). 

Indeed, we expected that animals used in our study ingested on average 5 ml of water per day, 

which gives a 90Sr contamination of 100 Bq per day. Our results showed that for our animals 

the daily 90Sr intake ranged from 40 Bq up to 91 Bq per animal, depending on its age and 

gender. Thus our protocol of chronic contamination through ingestion appears as 

representative of what is going on in contaminated territories. 

 

We detected 90Sr mainly in bones is in agreement with other experimental studies in various 

animal models (Gillett et al. 1992; Lloyd et al. 1976; Raabe et al. 1981) including rats (Gran 

1960; Nilsson 1970a, b) and in accordance with the biokinetic model of strontium previously 

proposed by the ICRP (ICRP 1993; Leggett 1992; Lloyd et al. 1976). The juvenile and the 

adult models showed very different patterns of 90Sr accumulation in bones. The rate of 90Sr 

uptake in bones was rapid during the first weeks of offspring’s life, reaching a plateau level 

afterwards at adult age. A plateau level of 90Sr accumulation at adult age was also observed in 

a study with beagles which ingested chronically 90Sr from in utero to 1.5 years of age (Parks 

et al. 1984).  
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As shown by Book et al., this high rate of 90Sr accumulation is correlated with bone growth 

(Book et al. 1982). Moreover, it has previously been demonstrated that the level of strontium 

uptake is limited by calcium availability (Apostoaei 2002; Hollriegl et al. 2006a; Hollriegl et 

al. 2006b; Hoshi et al. 1994). In fact, in the present study the animals received a diet with 

normal levels of calcium, thus limiting the absorption of strontium. Other studies showed that, 

due to their chemical similarities, strontium and calcium share similar transport system 

mechanisms across the intestinal wall and are absorbed competitively (Apostoaei 2002; Hoshi 

et al. 1994). A study by Sugihira et al. showed that the ratio of Sr/Ca accumulation in bones 

was higher during young ages, possibly due to a higher efficiency of Sr absorption by the 

small intestine early in life (Sugihira et al. 1990). These mechanisms may explain both the 

rapid increase in 90Sr accumulation at young ages and the plateau level at the adult age 

observed in the juvenile model. Further they suggest that 90Sr accumulation in bones may be 

limited even in immature skeletons that have the high calcium turnover associated with early 

life. 

 

By contrast, in our adult mouse model, a continuous increase of 90Sr content in the bones was 

found during the 20 weeks of chronic 90Sr ingestion and no plateau level was reached. This is 

probably due to the low level of daily ingestion which may not allow reaching equilibrium 

between ingestion, excretion and bone accumulation, but also to the limitation to 20 weeks of 

ingestion duration. Furthermore, the reduced rate of 90Sr uptake in our adult model is in 

accordance with other studies showing that 90Sr uptake in adult bones is mainly linked to bone 

remodelling (Dahl et al. 2001; Momeni et al. 1976a; Momeni et al. 1976b). 

 

In all the other organs tested (blood, liver, spleen, kidneys, thymus, heart, lungs, CNS, 

muscles, skin), 90Sr was below the detection limit. In fact, since previous studies showed that 

more than 90% of absorbed strontium is accumulated in bones (ICRP 1993), this indicates 

that, according to the daily rate of 90Sr intestinal absorption between 0.1 and 0.4 in our 

models, less than 3.5 Bq may be found in all other organs than the skeleton. This estimation 

strongly suggests that, once 90Sr is present in the liver, kidney and/or blood, the 90Sr 

concentration is below the detection limit in our models.  

 

Nevertheless, small amounts of 90Sr were found in the digestive tract. Measure of 90Sr content 

in different segments of the digestive tract (stomach, small intestine, caecum and large 

intestine) of animals of both models showed that 90Sr was only detectable in the small 
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intestine and not in the other segments. This suggests rather a weak trapping of 90Sr in the villi 

of the intestinal mucosa than a real accumulation in the intestinal tissue, as previously 

described for uranium ingestion (Dublineau et al. 2007; Dublineau et al. 2005). However, this 

local retention may have influence on the inflammatory status of the intestine due to 90Sr 

irradiation, similarly to the inflammatory reaction observed in a rat model of uranium 

ingestion (Dublineau et al. 2007). 

 

Furthermore, gender differences were observed in 90Sr uptake. For both models higher 90Sr 

contents were found in the bones of females as compared to males. This difference between 

males and females was observed whatever the skeletal site tested at the age of 6 and 20 

weeks. It is well known that bone remodelling is under the dependency of hormonal cycles in 

females (Chiu et al. 1999; Hotchkiss and Brommage 2000; Kalyan and Prior 2010) and this 

may explain the observed discrepancy in 90Sr accumulation in bones between females and 

males, despite the lower 90Sr intestinal absorption in females as compared to males. Especially 

the oestrogen hormone seems to be involved in the regulation of the bone physiology. Indeed, 

a study showed that osteoblasts express oestrogen receptors, which once activated promote 

osteoblast differentiation (Marie 2001). 

 

Differences in 90Sr content were also observed according to the different skeletal sites. 

Previously a study with monkeys who were chronically contaminated by 90Sr ingestion for 26 

weeks showed that the incorportation of 90Sr into bone depended upon skeletal site. 

Differences in 90Sr content were observed in the femoral diaphysis, lumbar vertebra and iliac 

crest (Dahl et al. 2001). A difference in skeletal retention was also observed in beagles 

following ingestion or injection of 90Sr (Momeni et al. 1976a; Momeni et al. 1976b). The 

variations in uptake of Sr between various skeletal sites may depend on differences in local 

bone turnover and regional blood flow (Dahl et al. 2001). 

 

 

Our results confirmed that the skeleton is the preferential site of storage of 90Sr along 

the course of a long term chronic ingestion. We also showed that the incorporation of 
90Sr was age, gender and skeletal site dependant and this must be taken into account in 

future studies on the potential effects of 90Sr chronic ingestion on the long term. 
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2. Absorbed 90Sr doses 
 

We calculated absorbed radiation doses based upon dose conversion factors (DCF) for a rat 

model published by the ICRP (ICRP 2008).  

 

Results show that the application of these DCF in our experiments with chronic contamination 

through ingestion of 90Sr allowed calculating absorbed radiation doses between 0.3 ± 0.1 mGy 

and 10.6 ± 0.1 mGy. More precisely, after 20 weeks of 90Sr ingestion, they were 9.7 ± 0.1 

mGy for males and 10.6 ± 0.1 mGy for females in the juvenile model and 3.8 ± 0.1 mGy for 

males and 4.7 ± 0.1 mGy for females in the adult model. As such, absorbed radiation doses to 

the whole body due to the chronic 90Sr intake and accumulation in bones remained low in our 

model. 

 

However, the setup of DCF relies on some hypotheses. The first one is the simplified 

geometry of animals and their environment. This is a major limitation, since energy 

deposition in living tissues depends on the source-target geometry. In fact, the model used for 

a rat representation is a solid ellipsoid with a length of 20 cm, diameters of 6 and 5 cm, and a 

mass of 315 g. This is approximately 12 fold larger than an adult mouse. The DCF model 

considers also that plants and animals are made of a medium of homogeneous density in 

which radionuclides are homogeneously distributed (ICRP 2008). Obviously, results from 

biokinetic experiments demonstrate that radionuclides are heterogeneously distributed. 

Indeed, 90Sr for example seems to be strictly localized in bones (Synhaeve et al. 2011; Dahl et 

al. 2001) and 137Cs content varies from 2 kBq.kg-1 in the skin up to 30 kBq.kg-1 in striated 

muscles in the adult mouse (Bertho et al. 2010). Tissue density on itself also varies, although 

in lesser proportions, from less dense tissues such as lungs up to more dense tissues such as 

bones and teeth.  

 

The use of a soil uniformly contaminated surrounding the animal as a substitute to calculate 

the external radiation dose due to the mother during foetal life is another important limitation. 

Other limitations are parameters linked to animal housing such as the litter contamination, the 

presence of the bottle of drinking water containing the radionuclide in the upper part of the 

cage and the cross irradiation of animals by neighbours. Litter contamination may be taken 

into account by using DCF proposed for a superficially contaminated ground (ICRP 2008), 
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but other parameters would need additional modelling. However, due to the short distance 

travelled by β particles emitted by 90Sr, the external radiation doses due to these parameters 

seems to be negligible in the case of 90Sr contamination experiments, as it was the case for 

external irradiation due to the contamination of the mother during fetal life. On the other 

hand, they may induce a significant external irradiation in the case of 137Cs contamination 

experiments. This hypothesis is supported by the calculation of external radiation doses 

during foetal life due to mother contamination.  

 

However, we were able to verify that the use of the rat model proposed by the ICRP as a 

surrogate for the mouse does not induce large uncertainties on the calculation of mean whole 

body absorbed radiation doses for 90Sr and 137Cs used in our studies. In fact, by using a 

method of dose calculation based upon specific absorption fractions (SAF) previously 

established in a mouse voxel phantom by Stabin et al. (Stabin et al. 2006) we observed a good 

correlation between the doses estimated by the DCF and SAF methods. Moreover, in 

collaboration with our laboratory, a three dimensional mouse voxel phantom was created by 

the Laboratory of Internal Dose Evaluation (LEDI). By Monte Carlo simulation they 

calculated for our juvenile mouse model an absorbed dose of 10.2 mGy for the whole body 

after 20 weeks of 90Sr chronic ingestion, which confirms the whole body absorbed dose at the 

same time point calculated by us with use of the DCF. Overall, the DCF calculated absorbed 

radiation doses to the whole body were very similar to the values obtained with the mouse 

voxel phantom of the LEDI. In conclusion, the DCF calculation method allows estimating in a 

simple and rapid way whole body radiation doses absorbed by laboratory rodents in 

contamination experiments on the long term, provided that data on organ mass and biokinetics 

are available.  

 

Furthermore, absorbed radiation doses for specific organs could be calculated by the LEDI 

with use of their mouse voxel phantom. As expected, the absorbed dose for the skeleton was 

much higher than other tissues and reached 55.0 mGy for our juvenile mouse model after 20 

weeks of 90Sr ingestion. Consequently, potential health effects of 90Sr chronic ingestion may 

be observed on the bone physiology and also the hematopoietic system, due to the location of 

the hematopoietic stem cells close to the bone (Calvi et al. 2003; Howard and Clarke 1970; 

Taichman 2005). Indeed, a dosimetric model described that much higher radiation doses may 

arise to hematopoietic stem cells due to the proximity of bone (Eckerman and Stabin 2000). 
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As the bone marrow is the main anatomical site of B lymphocyte differentiation, potential 

effects may be observed on the immune system.  

 

For our mouse models absorbed radiation doses to the whole body remained low. On the 

other hand, absorbed doses for the skeleton were much higher and could have an impact 

on bone physiology as well as on the hematopoietic and immune systems. 

 

The use of a juvenile mouse model to study potential effects of 90Sr contamination by chronic 

ingestion on the bone, hematopoietic and immune systems seemed to be of particular interest 

because the absorbed radiation is higher. The hematopoietic and immune systems which 

mainly develop during late fetal and post-natal life and juveniles show an enhanced sensitivity 

towards many toxic compounds including radionuclides (Blakley 2005; Hoyes et al. 2000; 

Lindop and Rotblat 1962; Preston 2004). Moreover, their lifespan makes them the primary 

targets for potential long-term effects.  

3. Effects on the bone physiology 
 

Different phases of the skeletal development were studied to estimate the effects of a chronic 
90Sr contamination by ingestion on the bone physiology during bone growth and bone 

maturity. For this purpose, we analysed calcium, phosphate and alkaline phosphatase (ALP) 

plasma levels but also more specific biochemical markers of bone turnover in plasma which 

allowed us estimating the processes of bone formation and bone resorption. We evaluated also 

plasma concentrations of the calciotropic hormones 1,25-(OH)2 vitamin D3 and parathyroid 

hormone (PTH) which both influence bone metabolism by playing a crucial role in the 

regulation of calcium and phosphate homeostasis (Baek and Kang 2009; Morgan 2001). 

Finally on femurs, expression analysis of genes involved in the bone formation and resorption 

and a morphological study by histomorphometry were performed.  

 

First of all, we didn’t observe a modification in calcium and phosphate plasma levels for 90Sr 

ingesting animals compared to control animals. Neither were the plasma levels of 1,25-(OH)2 

vitamin D3 and PTH modified, which by acting on the intestine, bone and kidney, strictly 

regulate the plasma concentrations of these elements important in bone mineral status (Baek 

and Kang 2009; Brzoska and Moniuszko-Jakoniuk 2005a, b; Garnero et al. 2003; Tissandie et 

al. 2006). 
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On the other hand, significant increased plasma levels of the bone resorption marker C-

telopeptide degradation products from type 1 collagen (CTX) were observed in 90Sr ingesting 

males at the age of 6 and 20 weeks. Previously in rat models, it was shown that an increased 

concentration of CTX in plasma is associated to an enhanced degradation of bone matrix 

(Brzoska and Moniuszko-Jakoniuk 2005a, b; Garnero et al. 2003). Surprisingly this effect was 

observed in males and not in females. The latter have in fact a skeleton which is supposed to 

be more susceptible to damage resulting from variations in calcium levels associated to 

hormonal cycles, pregnancy, lactation cycles or postmenopausal changes in the hormone 

profile (Riis 1996; Xing and Boyce 2005). By contrast, bone formation markers measured in 

plasma, i.e. bone-specific ALP, bone morphogenetic protein 2 (BMP2) and procollagen 1 N-

terminal propeptide (PINP) were not modified according to the contamination status of 

animals, either in males or females. 

 

At the same time points, i.e. during skeletal growth and at maturity, we observed a significant 

decrease in the bone formation activating genes ALP and osteocalcin (OCN) and a significant 

increase in the bone resorption gene RANKL in femurs of 90Sr ingesting animals.  

 

The results of plasma markers of bone turnover and gene expression at femurs may indicate 

that 90Sr accelerates the age related loss of bone mass by enhancing the rate of bone turnover. 

Indeed, if bone resorption is enhanced and bone formation impaired, the amount of bone that 

is lost by continuously occurring bone resorption is incompletely restored by bone formation 

and as such results in a net bone loss. We thus looked at bone morphology at the age of 20 

weeks of animals. Nevertheless, at the morphological level, we could not observe differences 

in growth plate thickness and ratio of bone volume to tissue volume between 90Sr ingesting 

animals and control animals of 20 weeks of age. However, we cannot exclude that at later 

time points morphological changes at the bone tissue level can be observed for 90Sr ingesting 

animals.  

At 20 weeks of chronic 90Sr contamination by ingestion bone specific plasma markers 

and gene expression balance at femurs between bone formation and bone resorption 

seemed to be modified with bone resorption in favour of bone formation. At the same 

time point no modifications at the morphological level could be observed. However, it is 

not excluded that they could be observed at later time points. 
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In conclusion, as we observed a modification in the balance between bone formation and bone 

resorption at the gene expression level and plasma level at 20 weeks of chronic 90Sr 

contamination by ingestion, it would be interesting complete to study the effects at the 

morphological level at later time points and complete this study by immunohistology, bone 

microarchitecture and bone strength measurements. 

4. Effects on the hematopoietic system 
 
As mentioned before, potential health effects of 90Sr chronic ingestion may be observed on the 

hematopoietic system due to the location of the hematopoietic stem cells in the bone marrow 

close to the bone (Calvi et al. 2003; Porter and Calvi 2008; Taichman 2005). Moreover, it is 

known that the hematopoietic system is one of the most radiosensensitive tissues and as such 

the effects of external irradiation or radionuclide accumulation have already been studied on 

hematopoietic stem cells (HSC) (Bertho et al. 2010; Dainiak 2002; Svoboda and Klener 1972; 

Svoboda et al. 1985). 

 
As such it has been shown that irradiation induces an important reduction in the number of 

HSC and hematopoietic progenitors in the bone marrow. However, as the hematopoietic cells 

don’t have all the same activation status (resting vs. proliferating), they don’t have all the 

same radiosensitivity. Indeed, HSC located in the niche are in general quiescent and as such 

relatively radioresistant. On the other hand, hematopoietic progenitors are highly 

proliferating, making them more radiosensitive. On the opposite, hematopoietic precursor 

cells and differentiated mature hematopoietic cells, with the exception of lymphocytes, are 

less proliferating and consequently more radioresistant. Furthermore, irradiation of medullar 

stroma cells affects regulation of hematopoiesis by modification of the expression of growth 

factors (Dainiak 2002; Fliedner et al. 1988; Gothot et al. 1997; Laver 1989). Thus, the 

hypothesis of an indirect effect of strontium accumulation in bones on HSC early 

hematopoiesis is substantiated by current knowledge. 

 
We investigated the influence of a chronic 90Sr ingestion on the hematopoietic system by 

analysing blood cell counts, plasma Flt3-ligand concentration (as a biological marker of bone 

marrow function) (Prat et al. 2006), progenitor frequencies in the bone marrow and spleen 

(reflecting the general status of hematopoiesis) (Grande and Bueren 2004) and phenotypical 

analysis of bone marrow cells. 
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With the exception of some punctual time-specific differences, we did not detect significant 

differences between control animals and 90Sr ingesting animals in terms of the parameters 

measured. Moreover, we did not observe significant differences between males and females. 

However, one can note that Flt3-ligand was significantly decreased in 90Sr ingesting females 

at birth. This result could indicate a modified hematopoiesis but was not confirmed by 

phenotypical analysis of Lin-C-kit+SCA-1+ cells in the bone marrow nor by progenitor 

frequency both in the bone marrow an in the spleen. 

  

By contrast, significant differences over time (without influence of the contamination status of 

animals) were observed for some parameters, associated with normal development of the 

hematopoietic system during post-natal life (Tavian and Peault 2005). This was for instance 

the case for Flt3-ligand concentration, red blood cell count and progenitor frequencies in the 

bone marrow and the spleen. 

 

Although the parameters used in this study could be not sufficiently sensitive to detect subtle 

variations in the homeostasis of hematopoiesis, our results strongly suggest that a chronic 90Sr 

intake does not induce a significant modification of the hematopoietic system.  

 

As discussed before, effects on the bone physiology were observed after chronic 90Sr 

ingestion. Surprisingly for the hematopoietic system this was not the case. Different reasons 

can explain this discrepancy. Firstly, strontium and calcium are both without any known 

chemical toxicity (Dahl et al. 2001; Leggett 1992; Pors 2004). Thus the potential toxic effect 

may be exclusively linked to the emission of ionizing radiation by 90Sr. Secondly, the 90Sr 

concentration used in this study was low, with corresponding radiation doses to the 

contaminated animals also being low, i.e. 10 mGy for the whole body and 55 mGy for the 

skeleton after 20 weeks of chronic 90Sr ingestion. Such radiation doses are possibly 

insufficient to induce cell death in detectable amounts when compared to the background. 

Thirdly, the hematopoietic system is a hierarchically organized physiological system that is 

able to produce from a reduced pool of stem cells large numbers of mature and functional 

cells per day (Blank et al. 2008; Ceredig et al. 2009). Consequently, the hematopoietic system 

is able to respond to stressful situations, such as exposure to external high dose irradiation, 

that lead to significant cell loss (Grande and Bueren 2004; Prat et al. 2006). In a similar way, 

the hematopoietic system may also be able to respond to an internal exposure with low doses 

from ingested 90Sr. However, more sensitive methods should be used in order to confirm this. 



 

 186   

For instance by looking in situ at the HSC in the niche or performing plasma dosages of 

specific growth factors of hematopoiesis like stromal cell derived factor 1 (SDF-1) 

erythropoietin (EPO), thrombopoietin (TPO) or stem cell factors (SCF) (Tarasova et al. 2011; 

Wognum et al. 2003).  

 

Our results suggest that chronic ingestion of 90Sr at low concentrations does not induce a 

significant change in bone marrow function of mice. 

5. Effects on the immune system 
 

We studied potential effects of chronic 90Sr intake on the immune system as earlier studies 

suggested that chronic ingestion of long lived radionuclides in humans may be responsible for 

modifications in thymic physiology (Yarilin et al. 1993), in immunoglobulin levels in blood 

(Titov et al. 1995) and in blood lymphocyte subsets (Vykhovanets et al. 2000). Moreover, 

other studies demonstrated a link between the bone and immune systems by molecular and 

cellular interactions, for instance between lymphocytes and osteoclasts (Hanada et al. 2011; 

Takayanagi 2007). Furthermore, it has been shown that osteoblasts and mesenchymal stem 

cells (MSC) can interact with cells of both the innate and adaptive immune systems, leading 

to the modulation of several of their effector functions (Lorenzo 2000; Lorenzo et al. 2008; 

Uccelli et al. 2008; Zhu et al. 2007). 

 

First of all we analysed T-lymphocyte differentiation by phenotypical analysis of thymic cells 

and intrathymic T cell differentiation by TREC evaluation, being an indicator of TCR gene 

rearrangement (Broers et al. 2002; Ciofani and Zuniga-Pflucker 2007; Sempowski et al. 

2002). In fact, in a previous study it was proposed that T-lymhocyte deficiencies observed in 

victims of the Chernobyl accident were due to a modification of intrathymic T-lymphocyte 

differentiation (Yarilin et al. 1993). Our results showed no modifications for the T-

lymphocyte subsets tested and for TRECs after chronic ingestion of 90Sr. 

 

We then looked at mature T lymphocytes in the spleen of contaminated animals. Analysis of 

various T-lymphocyte subsets and the associated CD4+/CD8+ T-lymphocyte ratio are indeed 

frequently used methods for evaluating the immune status in various situations including long 

term effects of chronic low dose external irradiation or internal contamination (Chang et al. 

1999a; Chang et al. 1999b; Vykhovanets et al. 2000). However, percentage of T-lymphocyte 
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subsets and CD4+/CD8+ T-lymphocyte ratio were not affected by the chronic ingestion of 90Sr 

in our mouse model.  

 

Furthermore, we evaluated interleukin-7 (IL-7) plasma levels as an indicator of T cell 

homeostasis (Bradley et al. 2005). Also for this parameter no significant differences were 

observed between control and 90Sr ingesting animals.  

 

Phenotypic analysis of B lymphocytes in the spleen together with determination of circulating 

immunoglobulins G (IgG) and M (IgM) in the plasma provided a global analysis of B 

lymphocyte lineage as were previously used in a study of atomic bomb survivors and a study 

of children exposed to the Chernobyl fallout (Fujiwara et al. 1994; Titov et al. 1995). In our 

mouse model with chronic ingestion of 90Sr on the long term however, neither B lymphocyte 

numbers nor IgG or IgM concentrations were affected. 

 

Our results show no major effects on the steady state immune system of mice after 

chronic ingestion of 90Sr at low concentrations.  

 

Although we didn’t observe a major modification on T- and B-lymphocyte populations, we 

cannot formerly exclude that potential effects of chronic 90Sr intake might include induction 

of accelerated ageing of the immune system that could be observed at later time points. In 

fact, some time-specific changes were observed in 90Sr ingesting animals for the parameters 

tested, for instance in the percentage of T helper and T cytotoxic cell populations in the spleen 

at different time points and in IL-7 plasma level at birth. 

 

Furthermore, one can note that significant increases in the percentage of CD3+CD4+CD25+ T 

regulatory lymphocytes (Treg) were observed for 90Sr ingesting animals at the age of 16 

weeks and 20 weeks. Tregs are known to negatively regulate the immune response from B, T 

and NK cells and to control the autoimmune response (Jager and Kuchroo 2010). As such, an 

increase in the percentage of Tregs may suggest a reduced response to antigens. Thus, 

although no major changes were observed in the steady-state immune system, we 

hypothesized that 90Sr contamination could induce functional changes in the immune system. 

 

In order to answer to this question, we investigated the immune response to a vaccine 

challenge. We performed this functional test with the specific antigens tetanus toxin (TT) and 
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keyhole limpet hemocyanin (KLH), which are classically used in toxicology experiments 

(Luster et al. 1993; Luster et al. 1992). 

 

For the circulatory immunoglobulins, we observed significant decreases in the levels of IgG 

specific to TT for 90Sr ingesting TT vaccinated animals compared to control TT vaccinated 

animals. Moreover, phenotypic analysis of spleen cells revealed significant decreases in the 

percentage of CD3+CD4+ T helper lymphocytes and CD45+CD19+ B lymphocytes for these 

animals.  

 

Based on these facts we evaluated if the Th1/Th2 immune response balance was modified 

after antigen challenge. First of all we examined in the spleen the expression of genes 

implicated in the differentiation of naive CD4+ T-lymphocytes towards T Th1, Th2 or Treg 

cells. We found significant decreases for the genes T-box expressed in T-cells (T-bet) (Th1), 

Gata-binding protein-3 (Gata3) (Th2) and Forkhead box P3 (Treg) for 90Sr ingesting TT or 

KLH vaccinated animals compared to control TT or KLH vaccinated animals. At the protein 

level the significant decrease in T-bet expression for 90Sr ingesting TT vaccinated animals 

compared to control TT vaccinated animals was confirmed. This ensemble of results gives an 

indication of a modified Th1/Th2 balance and even an immunosuppressive effect of 90Sr. 

 

In conclusion, the vaccination challenge test with TT and KLH to evaluate the functionality of 

the immune system after stimulation with antigens showed a significant decrease in specific 

immunoglobulins, an impaired B-lymphocyte differentiation and a possible change in the 

Th1/Th2 balance in the spleen in vaccinated animals. This suggests an indirect effect of the 
90Sr accumulation in the bones of animals on their immune system and this effect could be 

due to the irradiation of bone marrow cells by 90Sr. 

 

A functional test with vaccine challenge demonstrated that the chronic ingestion of 90Sr 

in the long term modifies the ability of the immune system to respond to an antigenic 

stimulation. 

 

To complete this study, it would be interesting to evaluate this immune response also at the 

spleen after the first injection with antigens and compare these results with the above 

described results after the second injection with antigens. We could complete our study by 

evaluating the Th1/Th2 balance at the spleen at 3 weeks (before vaccination), at 7 weeks (end 
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of first vaccination) and at 20 weeks (before second vaccination). Furthermore this study can 

be extended by phenotypical and histological analysis of bone marrow cells, histological 

evaluation of B cells at the spleen and bone marrow, and to confirm our results by 

measurement of Th1 and Th2 cytokine levels in the spleen.  

6. 90Sr mechanistic effects 
 

To examine the mechanisms of action of 90Sr we used the pre-osteoblastic MC3T3-E1 cell 

line, which was previously used for exploring the molecular mechanisms of osteoblast 

proliferation, maturation and differentiation (Davis et al. 2000; Gal et al. 2000; Wang et al. 

1999). As such it has been shown that MC3T3-E1 cultured in the presence of ascorbic acid 

(AA) and β-glycerophosphate (BglyP) display a time-dependent and sequential expression of 

osteoblast characteristics which are analogous to the processes during bone formation in vivo. 

For instance, the MC3T3-E1 cells actively replicate, express alkaline phosphatase (ALP) 

activity and synthetize a collagenous extracellular matrix which progressively undergoes 

mineralization (Barbara et al. 2004; Quarles et al. 1992).  

 

To validate these characteristics we investigated the differentiation potential of MC3T3-E1 

clone 4 cells in the presence of AA and BglyP as described above. Moreover we investigated 

the effects of non-radioactive 88SrCl2 on bone matrix mineralization, collagen synthesis and 

alkaline phosphatase activity. Our results of bone matrix mineralization, collagen synthesis 

and alkaline phosphatase activity tests confirmed that MC3T3-E1 cells cultured in the 

presence of AA and BglyP display a time-dependent and sequential expression of osteoblast 

characteristics (Al-Jallad et al. 2006; Davis et al. 2000; Dudziak et al. 2000; Gal et al. 2000; 

Nakano et al. 2007; Quarles et al. 1992). However, 88SrCl2 in cell culture medium at a 

concentration of 10 mM in our study didn’t have any influence on the differentiation potential 

of this cell line. By contrast, in studies using MC3T3-E1 cells and comparable concentrations 

of non-radioactive strontium ranelate, increased ALP activity and collagen synthesis could be 

demonstrated (Barbara et al. 2004; Nie and Richardson 2009; Quarles et al. 1992). Thus, the 

chemical form of strontium coupled with ranelate appears crucial for its activity on the bone 

physiology. This in turn may suggest that 90Sr has only a radiation toxicity in vivo and may 

explain that we observe an effect of 90Sr on bone resorption in vivo. 
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What concerns the action of 90Sr on MC3T3-E1 clone 4 cells, we investigated first if 90Sr had 

an influence on the cell mortality and cell viability of these cells. We used different 

concentrations of 90Sr (up to 100 kBq.ml-1) in cell culture medium but couldn’t observe any 

significant modification on the mortality and viability of MC3T3-E1 clone 4 cells in the 

presence of 90Sr at the concentrations used. By contrast, it has previously been shown that 

MC3T3-E1 cells are sensitive to ionizing radiation and that their cell survival and 

proliferation can in consequence be affected (Dudziak et al. 2000; Gal et al. 2000; Gevorgyan 

et al. 2008; Szymczyk et al. 2004). 

 

On the other hand, in some preliminary experiments with MC3T3-E1 clone 4 cells that were 

irradiated with a dose of 0.5 Gy we detected an increase in phosphorylated H2AX (γ-H2AX) 

foci, which are early markers of DNA double-strand breaks (DSB) (MacPhail et al. 2003; 

Roch-Lefevre et al. 2010). However, the number of γ-H2AX foci in control non-irradiated 

cells was higher than normally expected for non-irradiated cells. This may be due to the facts 

that MC3T3-E1 cells continuously proliferate and the knowledge that γ-H2AX foci appear 

during cell division (MacPhail et al. 2003; Roch-Lefevre et al. 2010). 

 

Because of the observed high number of γ-H2AX foci already present in the control MC3T3-

E1 clone 4 cells, we decided to use MSC for further experiments. Indeed, we observed a 

lower number of γ-H2AX foci for the control MSC than for the MC3T3-E1 cells. 

Furthermore, in these MSC we confirmed a higher number of γ-H2AX foci in irradiated cells 

than control cells. 

 

Ultimately we evaluated γ-H2AX foci in MSC after 90Sr contamination. Results showed more 

γ-H2AX foci in 90Sr contaminated MSC than control MSC. This demonstrated the induction 

of DNA double-strand breaks in MSC by radiation of 90Sr. However, one can note that at 

longer exposure times to 90Sr present in cell culture medium, less γ-H2AX foci per cell were 

observed and was probably associated to DSB reparation. 

 

In vitro results didn’t show an influence of chronic 90Sr contamination on pre-

osteoblastic MC3T3-E1 cell line viability, mortality or differentiation potential at the 

concentrations of 90Sr used. On the other hand, more γ-H2AX foci in MSC were 

observed after chronic 90Sr contamination, indicating an increase in DNA double strand 

breaks by 90Sr. 
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It is necessary to confirm results of our study by performing supplementary experiments 

under the same conditions. In addition, it would be interesting to detect DSB repair proteins 

such as ATM and MRE11 (Czornak et al. 2008; Garner and Costanzo 2009) to confirm our 

interpretation of results. 

7. Perspectives 
 

In this study we used a single concentration of 90Sr in drinking water. Our results showed that 

the daily intake of 90Sr in was in agreement with estimates of daily ingestion by humans living 

on contaminated territories (Cooper 1992; de Ruig and van der Struijs 1992; Hoshi et al. 

1994). Moreover, the 90Sr ingestion resulted in 90Sr contents in the skeleton similar to those 

measured in human bones (Shagina et al. 2003b; Tolstykh et al. 2011b; Tolstykh et al. 2011a). 

We thus assumed that our mouse models of chronic 90Sr ingestion are representative for the 

situation of people living in contaminated territories.  

 

Nevertheless in the radioprotection context, it would be interesting to perform a dose response 

study to determine at what concentration of 90Sr ingestion a No Observable Adverse Effect 

Level (NOAEL) is reached, i.e. the highest concentration of 90Sr chronic ingestion at which 

no effects on the studied physiological systems are observed. Moreover, from a toxicological 

viewpoint, a dose response study with higher doses of 90Sr would be interesting to confirm the 

conclusions formulated on the basis of our obtained results. 

 

One can remark that the length of follow-up in our study may not be representative of the 

existing situation of populations living in contaminated territories. In fact, effects of 90Sr 

could be cumulative and may lead to the appearance of late bone, hematopoietic or immune 

defects as it was observed for chronic 90Sr ingesting beagles, swine or rats (Clarke et al. 1972; 

Dungworth et al. 1969; Howard and Clarke 1970; White et al. 1993; Zapol'skaya et al. 1974). 

Indeed, we cannot exclude that chronic 90Sr ingestion might for instance induce an 

acceleration of hematopoietic aging that may be observed at later time points. However, the 

choice of a 20 week duration of 90Sr intake in our study was based upon the hypothesis that 

this duration would be sufficient to observe eventual effects due to early exposure. This is 

based on the fact that during fetal and early post-natal life the hematopoietic and immune 

systems are highly sensitivity to many toxic agents including radionuclides (Blakley 2005; 

Gran 1960; Hoyes et al. 2000; Lindop and Rotblat 1962; MacDonald 1962; Preston 2004; 
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Ruhmann et al. 1963; Verfaillie 1993). In fact, in accordance with other studies (Gran 1960; 

MacDonald 1962; Ruhmann et al. 1963; von Zallinger and Tempel 1998), we observed a 

passage of 90Sr through the placenta during fetal life as 90Sr was detected in offspring at birth. 

Moreover, as far as mice and humans are comparable in such a simple way, our duration of 

contamination corresponds to approximately 30 % of human life expectancy, including the 

early period of life (Quinn 2005).  

 

Moreover one can remark that in our study we used a single contaminant in a controlled 

environment and that this represents a simplification of existing situations. Indeed, we cannot 

exclude that a combination of radionuclides, including for example 90Sr, 137Cs and 134Cs, may 

have different effects on the physiological systems studied. Moreover, this mouse model takes 

into account only one exposure route. By contrast, human populations in contaminated 

territories are exposed to both external and internal irradiation (Kuzmenok et al. 2003; Yarilin 

et al. 1993). This induces an uncertainty about the level of either external exposure or internal 

contamination. However a recent study based on long term external and internal radiation 

exposure measurements of residents around Chernobyl indicated that the proportion of 

effective doses from internal contamination is (increasingly) more important as body burdens 

are decreasing more slowly than the external exposure (Bernhardsson et al. 2011). 

Furthermore, other studies used also estimates of exposure based upon soil and food 

contamination data and did not include whole body counting for example (Chernyshov et al. 

1997; Titov et al. 1995; Vykhovanets et al. 2000). However, we agree that it would be 

interesting to use a mix of different radionuclides in drinking water for our mouse model, 

eventually in combination with heavy metals or other chemical pollutants, in order to be more 

relevant to the post accident situation. 

 

What concerns the effects of chronic 90Sr ingestion on the bone physiology and immune 

system, it was surprising that we observed effects at the low dose and dose rate in our study, 

even taking in account the exposure over long term. As discussed before, the whole 

absorption radiation dose of our animals was on average 10 mGy after 20 weeks of chronic 
90Sr intake, which correspond to a dose rate of about 3 µGy per hour. However, others have 

also shown effects on the immune system of mice at low dose and dose rate irradiation, i.e. by 

a reduced percentage of CD4+ and CD8+ T lymphocytes in lymph nodes and spleen or a 

decreased level of immunoglobulins, both after long term γ irradiation at 10 cGy per year 

(Courtade et al. 2001; Lacoste-Collin et al. 2007). Moreover in studies at our laboratory, other 
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physiological systems were shown to be modified by chronic 137Cs intake at low dose 

(Gueguen et al. 2008; Lestaevel et al. 2006; Racine et al. 2010a; Souidi et al. 2006; Tissandie 

et al. 2006). 

 

The mechanisms by which the accumulation of 90Sr in bones conducts to a reduced ability of 

the immune system to respond to external stimuli remain to be elucidated. However, one can 

propose a putative mechanism based upon the fact that MSC and osteoblasts, which are both 

key regulators of early hematopoiesis, are situated at the site of 90Sr accumulation (Fig 89). 

Thus we cannot exclude that local irradiation of MSC and/or osteoblasts conduct not only to a 

disregulation of the bone physiology but also of the regulation of early hematopoiesis. This is 

supported by our preliminary observation of γ-H2AX foci in MSC and osteoblasts cultured in 

the presence of 90Sr. As well, one cannot exclude that 90Sr irradiates HSC in the endosteal 

niche. As a result, we expect that this low level and localized irradiation by 90Sr may induce 

changes in B cell differentiation and/or early T cell differentiation. Although in our study not 

visible on main parameters of the immune system such as phenotypic analysis, this may 

induce functional changes in the immune response. Furthermore, it can not be exlcuded that 

the differentation of other cells of hematopoietic origin may be affected by 90Sr. In this 

context the differentiation of dendritic cells and macrophages may be changed, wich may alter 

their antigen presenting capacity and as such modify the immune response.  

 

 

Figure 89.  Illustration for hypothesis of 90Sr mechanisms. 

 

The mechanistic effects of 90Sr could be elucidated by: DNA damage detection in situ (on 

bone marrow slides) by γ-H2AX foci and phosphorylated ATM and MRE11 foci detection 
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(Czornak et al. 2008; Garner and Costanzo 2009; Suzuki et al. 2006); study of apoptosis of 

stromal cells in the bone marrow; histological examination of the endosteal HSC niche by 

quantification of nestin+ or SDF-1+ mesenchymal stem cells and CXCR4 expressing 

hematopoietic cells (Martin et al. 2003; Nagasawa et al. 2011); and follow-up of B 

lymphocyte differentiation according to the age of animals by quantification of IgM+, IgD+ 

and CD20+ pre-B cells in the bone marrow and spleen (Chu et al. 2006). Marcrophage and 

dendritic cell populations could be investigated by quantification of respectively 

CD68+CD14+ and CD80+CD40+ cells in the spleen (Vremec and Shortman 1997; Wang et al. 

2009). 

 
In conclusion, our results suggest that the accumulation of 90Sr in bone after chronic 90Sr 

ingestion is responsible for changes in the bone and immune systems. Our results help to 

improve the knowledge on non cancerous consequences after chronic exposure to small 

quantities of radionuclides discharged accidentally. According to the physiological systems 

tested we observed various levels of response, from the bone marrow in which no significant 

effect was observed, to the immune system in which a major effect was observed. Thus 

biological effects of chronic contamination may vary not only according to the radionuclide 

concentration, but also according to the physiological system. It is important to continue this 

work as it is of major interest for the public health, shown by the nuclear accidents of 

Chernobyl and more recently of Fukushima, at which many long remaining radionuclides, 

including 90Sr, were released into the environment. Nowadays questions about the health 

consequences of these accidents remain, and this even 25 years after the Chernobyl accident. 
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Le Strontium 90 (90Sr) est un radionucléide d’origine anthropogénique, relâché en grandes 
quantités dans l’environnement à la suite d’essais nucléaires aériens ou d’accidents 
d’installations nucléaires. Le 90Sr persiste à long terme dans l’environnement, ce qui conduit à 
la contamination chronique par ingestion de populations des territoires contaminés. 
L’induction de tumeurs osseuses liées à la fixation du 90Sr a été largement décrite. Par contre, 
l’occurrence d’effets non cancéreux est beaucoup moins connue. Nous avons utilisé un 
modèle murin avec une contamination chronique par ingestion d’eau contenant 20 kBq/l de 
90Sr. Une étude de biocinétique a confirmé l’accumulation de 90Sr dans les os, avec un taux 
d’accumulation plus rapide durant la croissance osseuse. Cette accumulation est plus élevée 
dans les os des femelles que chez les males. Les doses absorbées au corps entier varient de 
0.33 ± 0.06 mGy (naissance) à 10.6 ± 0.1 mGy (20 semaines). La dose au squelette peut aller 
jusqu’à 55 mGy. L’ingestion de 90Sr induit une modification de l’expression des gènes 
impliqués induisant à un déséquilibre favorisant la résorption osseuse, mais sans répercussion 
sur la morphologie de l’os. Aucun effet majeur n’a été observé pour le système 
hématopoïétique. Par contre, des modifications mineures du système immunitaire ont été 
observées. Afin d’évaluer la fonctionnalité du système immunitaire, un test de vaccination 
avec les antigènes TT et KLH a été utilisé. Les résultats montrent chez les animaux 
contaminés une diminution significative de la production d’immunoglobulines spécifiques, 
une modification de la balance Th1/Th2 dans la rate et une différenciation lymphoïde B 
perturbée. Ces résultats permettent de mieux comprendre certaines des conséquences non 
cancéreuses de l’exposition chronique à faible dose à des radionucléides à demi-vie longue 
pouvant être rejetés accidentellement. 
 
Mots clés : 90Sr, ingestion chronique, faible dose, biocinétique, physiologie osseuse, système 
hématopoïétique, système immunitaire 
 
Strontium 90 (90Sr) is a radionuclide of anthropogenic origin released in large quantities in the 
environment as a result of nuclear atmospheric tests or accidents at nuclear facilities. 90Sr 
persists on a long-term basis in the environment, leading to chronic contamination by 
ingestion of populations living on contaminated territories. The induction of bone tumours 
associated with the fixation of 90Sr has been widely described. However, the occurrence of 
non-cancer effects is much less known. We used a mouse model with chronic contamination 
by ingestion of water containing 20 kBq/l of 90Sr. A biokinetic study confirmed the 
accumulation of 90Sr in the bones, with an increased rate of accumulation during bone growth. 
This accumulation was higher in the bones of females than in males. The whole-body 
absorbed doses ranged from 0.33 ± 0.06 mGy (birth) to 10.6 ± 0.1 mGy (20 weeks). The 
absorbed dose for the skeleton was up to 55 mGy. Ingestion of 90Sr induced a change in the 
expression of genes inducing an imbalance in favour of bone resorption, but without effect on 
bone morphology. No significant effect was observed for the hematopoietic system. On the 
other hand, minor modifications were observed for the immune system. To evaluate the 
functionality of the immune system, a vaccination test with TT and KLH antigens was used. 
Results showed in contaminated animals a significant decrease in the production of specific 
immunoglobulins, changes in the Th1/Th2 balance in the spleen and a disrupted B 
lymphocyte differentiation. These results improve the understanding of some of the non-
cancerous consequences of chronic exposure at low dose of radionuclides with a long half-
life, which can be accidentally released. 
 
Keywords : 90Sr, chronic ingestion, low dose, biokinetics, bone physiology, hematopoietic system, 
immune system 
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