N
N

N

HAL

open science

Aspectualizing Component Models: implementation and
Interferences Analysis
Abdelhakim Hannousse

» To cite this version:

Abdelhakim Hannousse. Aspectualizing Component Models: implementation and Interferences
Analysis. Programming Languages [cs.PL]. Ecole des Mines de Nantes, 2011. English. NNT:

2011EMNAOQ009 . tel-00657285

HAL Id: tel-00657285
https://theses.hal.science/tel-00657285

Submitted on 6 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00657285
https://hal.archives-ouvertes.fr

Lu ['université

nantes

nam :::; =l
le mans ECOLE DE

POLE DE RECHERCHE ET D'ENSEIGNEMENT SUPERIEUR

THESE

Abdelhakim Hannousse

NES DE NANTES

ECOLE DOCTORALE : ED STIM
THESE N° 2011EMNAO0009

These présentée en vue de I'obtention du grade de
Docteur de I'Ecole des Mines

Sous le label de I'Université Nantes Angers Le Mans
Discipline Informatique

Soutenue le 14 novembre 2011

DIRECTEUR DE THESE :
Mario Suidholt, Professeur, EMN

Aspectualizing

Component MOdeIS : CO DIRECTEUR DE THESE :

. Rémi Douence, Maitre de conférence, INRIA, EMN
I m ple m e ntatl O n an d Gilles Ardourel, Maitre de conférence, Université de Nantes
Interferences Analysis RAPPORTEURS DE THESE

Laurence Duchien, Professeur, Université de Lile 1 (USTL)
Isabelle Borne, Professeur, Université de Bretagne Sud

PRESIDENT DU JURY :
Jean-Marc Jézéquel, Professeur, Université de Rennes

MEMBRES DU JURY :

Laurence Duchien, Professeur, Université de Lile 1 (USTL)
Isabelle Borne, Professeur, Université de Bretagne Sud
Mario Sudholt, Professeur, EMN

Rémi Douence, Maitre de conférence, INRIA, EMN

Gilles Ardourel, Maitre de conférence, Université de Nantes

To all my gamilly members. friends and collegucs

Acknowledgements

The work presented in this thesis could not have been possible
without the support of many people. Many thanks to my
supervisors: Mario Siidholt, Rémi Douence and Gilles Ardourel
for their timely advice, consultations, encouragement, and
critiques throughout the development of this work. Rémi has
been an invaluable source of support and guidance all along my

work on the thesis.

Many thanks to my small family (my wife and my daughter
Rawane), I also would like to thank my Mom and Dad for their
encouragement, understanding and caring. They have always
been a source of motivation. Without them, I could have never

accomplished what I have done today.

Last and not least, I am very grateful to Ascola and Aelos teams

for their support of this thesis.

Abdelhakim Hannousse

Abstract

Component based software engineering, or CBSE in short, enables the modular-
ization of concerns in terms of separate software entities called components. Each
component provides a set of services and may require services from other compo-
nents to accomplish its tasks. Components can be assembled in order to construct
complex systems. On the other hand, aspect oriented programming, or AOP in
short, focuses on the modularization of scattered and tangled concerns that can-
not be modularized using regular software entities. Crosscutting concerns are not
related to a specific paradigm and CBSE is not an exception. However, current
works on CBSE focus only on mapping AspectJ-like concepts into component mod-
els missing the particularity of components (i.e., join point model for black boxes)
and component systems (i.e., pointcuts defining points in component architectures)
and the interferences that may appear when several aspects are woven to a system.
In fact, aspect interferences detection and resolution is still a challenge for AOP.
In this thesis we contribute by introducing a declarative pointcut language (VIL)
for component models, and we provide a formal framework for aspect interference
detection and resolution when several aspects are woven to a component system. In
our framework we introduce an ADL that extends current ADL(s) with explicit def-
inition of component and aspect behaviors, and aspect weaving rules. Each weaving
rule uses our VIL expressions to describe which and where aspects should be wo-
ven. We provide a set of transformation rules to obtain the formal specification of
components and aspects from the ADL, and we use model checkers for the detection
of potential interferences among aspects. For interference resolution, we provide a
set of composition operators. Each operator is given with a motivation example, a
structure, and a set of applicability rules. The operator structure is described as an
abstract form that can be instantiated for any two arbitrary aspects and a set of join
points. The list of operators in the catalog is not exhaustive but it can be considered
as a first step towards a pattern catalog for aspect interferences resolution. In our
framework we adopt the use of Uppaal model checker for its support of template
instantiation, local variable declarations, and parameter passing between processes
in addition to its support of timing constraints to model real time systems. We
illustrate our approach with Fractal component model and a case study: airport
wireless access. We define a set of interfering aspects for the example, and we show
how our modelization of the system with aspects in Uppaal enables the detection of
interferences and how our operators can be instantiated to solve them. Finally, we
should mention that our framework is general and can be used for other component
models with minimum adaptations.

iii

Résumé

La programmation par composants (CBSE) permet la modularisation des préoc-
cupations en termes d’entités logiciels séparées appelés composants. Chaque com-
posant fournissant explicitement des services en s’appuyant sur des services fournis
par d’autres composants. Les composants peuvent étre assemblés afin de constru-
ire le systéme global. D’autre part, I'approche aspects (AOP) vise a séparer les
préoccupations techniques ou de contrdle (e.g., synchronisation, persistance, con-
traintes temps réel, etc.) des préoccupations métier ou fonctionnelles. Elle offre
un mécanisme de tissage qui permet de fusionner ces deux types de préoccupations
afin de construire le systéme global. Ceci permet une meilleure séparation du code
fonctionnel du code non fonctionnel et d’assurer une meilleure maintenabilité du sys-
téme. Les préoccupations transversales ne sont pas liés & un paradigme spécifique
et le paradigme composants n’est pas une exception. Malheureusement, les travaux
actuels sur la programmation par composants vise & implenté les concepts d’Aspect.J
directemment on tel quels dans les modéles a composants ignorant la particularité
des composants et les systémes & composants (i.e., points de coupures définissants
des points dans les architectures composants) et les interférences entre les aspects
qui peuvent apparaissent lorsque plusieurs aspects sont tissés a un systéme. En fait,
la détection et la résolution des interférences d’aspects est toujours un défi pour les
AQOP. Dans cette thése, nous contribuons par 'introduction d’un langage déclarative
de points de coupure (VIL) dédié au modéles & composants, et nous fournissent un
cadre formel pour la détection et la résolution des interférences d’aspects lorsque
plusieurs aspects sont tissés & un systéme & composants. Dans ce cadre, nous intro-
duisons un ADL qui s’étend ADL(s) actuellent par une définition explicite des com-
portements des composants et d’aspects, et les régles du tissage et de composition
d’aspects. Chaque régle utilise des expressions VIL afin de décrire déclarativement
ol les aspects vont étre tissés. Nous fournissons un ensemble de régles de transfor-
mation pour obtenir la spécification formelle des composants et des aspects & partir
de P’ADL, et nous utilisons des model checkers pour la détection des interférences
possibles entre les aspects. Pour la résolution des interférences, nous fournissons
un ensemble d’opérateurs de composition. Chaque opérateur est donnée avec un
exemple de motivation, une structure et un ensemble de régles d’applicabilité. La
structure d’opérateur est décrit comme une forme abstraite qui peut étre instancié
pour n’importe quel deux aspects et n’importe quelle ensemble de points de jonture.
La liste des opérateurs forme une premiére étape vers un catalogue pour la résolu-
tion d’interférences d’aspects. Dans notre proposition, nous adoptons l'utilisation
de model checker Uppaal pour son soutien & l'instanciation des processus, la déc-
laration des variables locales, et le passage de paramétres entre les processus, en
plus de son soutien & des contraintes temporelles pour modéliser les systémes temps
réel. Nous illustrons notre approche avec le modéle de composants Fractal et une
étude de cas: 'accés wifi dans un AirPort. Nous définissons un ensemble d’aspects
interférant pour ’exemple, et nous montrons comment notre modélisation du sys-
téme avec les aspects en Uppaal permet la détection d’interférences et de la fagon

dont nos opérateurs peuvent étre instanciés pour les résoudre. Enfin, il convient
de mentionner que notre approche est générale et peut étre utilisé pour d’autres
modéles & composants avec des adaptations minimales.

Contents

1 Introduction 11
1.1 Thescopeofthethesis 11
1.2 Contributions 12
1.3 Illustration Example: Crane System 12
1.4 Thesis structure 14
1.5 Published papers 15

I Background 17

2 Aspect Oriented Programming and Aspect Interference Issue 19
2.1 Overview of AOP 19

2.1.1 Aspectd ..o 21
2.1.2 Composition Filters 22
2.1.3 Hyper/J 25
2.1.4 Evaluation. 26

2.2 Aspect Interferenceso 27
2.2.1 Syntactic-Based Approaches 27
2.2.2 Semantic-Based Approaches 31
2.2.2.1 Modular Approaches 31

2.2.2.2 Non-Modular Approaches 33

2.3 Lessonslearned 35
2.3.1 Interference Detection 35
2.3.2 Interference Resolution 36

3 Component Based Software Engineering and their AOP support 39

3.1 Overview of CBSE 39
3.2 Container-Based Component Models 41
321 EJB .. 41
322 AES . . . 42
3.23 CORBA/CCM 44
3.2.4 AspectCCM/CORBA 46
3.25 Spring AOP 47
326 JBoss AOP 48
327 JAsCo 49
3.3 Aspectual Component-Based Models 51
3.3.1 CAM/DAOP 52
3.3.2 Fractal 53
3.3.3 FractallAOP 56

334 FAC . . . 57

2 Contents
3.35 Safran 58

3.4 Software Architecture Modeling based models 59
3.4.1 PRISMA 59

3.4.2 AspectLEDA 61

3.5 Lessonslearned 63

IT Contributions 67
5 Aspects as wrappers on views of component systems architectures 91
5.1 Aspects as wrappers on Viewso 91
5.2 Views definition language oL L. 96
5.2.1 The join point Model Lo 96

522 Syntaxof VIL 97

5.2.3 Semanticsof VIL 98

5.2.3.1 FPath Query Language 98

5.2.3.2 VIL semantics in FPath 99

5.3 Implementation of VIL in Fractal component model 101
5.3.1 Composable controllers 101

5.3.2 The components of interest belong to the same composite . . 103

5.3.3 The components of interest are scattered in the architecture . 106

5.3.4 Fractal Weaver 109

53.4.1 VIL Analyzer 109

5.3.4.2 ADL Transformer 110

5.3.4.3 Julia Config Generator 110

5.4 Implementation of VIL in EJB component model 110
5.5 Conclusion 111

Aspects as wrappers on views of component systems architectures 91

5.1 Aspects as wrappers on views 91
5.2 Views definition language oL 96
5.2.1 The join point Modelo Lo 96
5.22 Syntaxof VIL o 97
5.2.3 Semanticsof VIL 98
5.2.3.1 FPath Query Language 98

5.2.3.2 VIL semantics in FPath 99

5.3 Implementation of VIL in Fractal component model 101
5.3.1 Composable controllers 101
5.3.2 The components of interest belong to the same composite . . 103
5.3.3 The components of interest are scattered in the architecture . 106
5.3.4 Fractal Weaver 109
5.3.4.1 VIL Analyzer, 109

5.3.4.2 ADL Transformer 110

5.3.4.3 Julia Config Generator 110

Contents 3
5.4 Implementation of VIL in EJB component model 110
5.5 Conclusion. L 111

6 Aspects Interferences Detection and Resolution 113
6.1 Overview of Uppaal 114

6.1.1 Description language L. 114
6.1.2 Simulator 116
6.1.3 Model checker oo 116
6.2 Formalization of component systems in Uppaal 117
6.2.1 ADL description of component systems 117
6.2.2 Formalization of primitive components 120
6.2.3 Formalization of composite components 121
6.2.4 Formalization of component bindings 123
6.2.5 Component systems Lo 123
6.2.6 Aspect weaving 123
6.3 Interference detection and resolution 125
6.3.1 Well-definedness of component systems 126
6.3.2 Correctness of aspects w.r.t component systems 126
6.3.3 Interference and Interference-freedom of aspects 127
6.3.4 Composition operators solving Interferences 128
6.4 Composition operators catalog 129
6.4.1 Fst composition patterno 129
6.4.2 Seq composition pattern 129
6.4.3 Cond composition pattern 131
6.4.4 And composition pattern 133
6.4.5 Alt composition pattern 133
6.5 Conclusion. 134

7 Case Study: Airport Internet Access 137
7.1 Base System Architecture 0L 138
7.2 Aspectson Views 139

7.2.1 The Bonus Aspect 140
7.2.2 The Alert Aspect 142
7.2.3 The NetOverloading Aspect 143
7.2.4 The LimitedAccess Aspect 144
7.2.5 The Safety Aspect 145
7.3 Formal Specification in Uppaal 146
7.3.1 Primitive components 147
7.3.2 Composite components 149
7.3.3 Component binding L. 149
7.3.4 The complete base system 150
7.3.5 Weaving individual aspects to the system 150
7.3.5.1 Weaving the Bonus aspect 151

7.3.5.2 Weaving the Alert aspect 151

Contents

7.3.5.3 Weaving the NetOverloading aspect 152
7.3.5.4 Weaving the LimitedAccess aspect 153
7.3.5.5 Weaving the Safety aspect 154
7.4 Interference Detection and Resolution 154
7.4.1 Bonus vs Alert 154
7.4.2 LimitedAccess vs NetOverloading. 157
7.4.3 Safety vs Alertand Bonus 159
7.5 Conclusion 160
Conclusion 161
8.1 Aspectualizing Component Models 162
8.2 Aspect Interaction Analysis L. 163
8.3 Perspectives L 164
Résumé en Francais 165
A.1 Imtroduction 165
A2 Background 166
A3 Lesaspectsetlesvues 170
A31 LeLangage VIL 170
A32 VILen Fractal 171
A.3.2.1 Les controleurs composable 172
A.3.2.2 Cas 1. Vue courante = Vue désirée: 172
A.3.2.3 Cas 2. Vue courante # Vue désirée: 173
A.3.24 Letisseur Fractal 173
A33 VILenEJB 175
A.4 Les interférences des aspects 176
A.4.1 Détection et résolution des interférences 177
A41.1 Apergude Uppaal 177
A.4.1.2 Modélisation des systémes a composants en Uppaal 178
A.4.1.3 Modélisation des composants primitifs 178
A.4.1.4 Modélisation des composants composites 178
A.4.1.5 Modélisation des assemblages des composants 178
A.4.1.6 Modélisation des systémes & composants 179
A.4.1.7 Modélisation des aspects 179
A.4.1.8 Modélisation du tissage d’aspects 179
A.4.1.9 Modélisation des opérateurs de composition 180

A.4.1.10 Le processus de détection et de résolution des inter-
férenceso 180
A5 Conclusion générale L 181
A.5.1 Les modéles & composants aspectualisés 182
A.5.2 Analyse d’interaction des aspects 183
A5.3 Perspectives 184

Bibliography 185

1.1
1.2
1.3

2.1
2.2
2.3

24

3.1
3.2
3.3
3.4
3.5
3.6

5.1
5.2
5.3
5.4
9.5
5.6
5.7

5.8
5.9
5.10
5.11
5.12

5.1
5.2
5.3
5.4
9.5
5.6

List of Figures

Running example: (a) overview, (b) loading process scenario 13
Crane system architecture 13
Views on the thesis structure: how to read the thesis 16
AOP weaving and unweaving process 21
Composition Filter wrapping mechanism 23
An excerpt of the message flow graph representing the crane example

showing the interaction between saveEnergy and truckSafety aspects 28
Weaving Interaction graph of the crane example showing the interac-

tion between the saveEnergy and the craneSafety aspects 32
EJB Container structure 42
CORBA Container model 45
Fractal component architecture 54
Fractal-AOP weaving of the Performance aspect to the crane system 56
FAC implementation of the crane system 58
Safran Adaptation mechanism 59
Performance/Recovery view of the crane 93
TruckSafety /SaveEnergy view of the crane 94
CraneSafety view of the crane 95
RTCrane view of the crane 95
Wrappers crosscutting phenomenon L. 96
Directed labeled graph adopted for component architectures 99
A composable controller on the Performance view of the crane where

the ICController is shown as a gray box with the name of the aspect

and the Dispatcher is depicted with (7) at the top of the view . . . 102
Seq(TruckSafety,SaveEnergy) plugged into ControlledEngine view 103
Fractal Weaver Architecture 109
VIL Expressions structure oL 109
The implementation of views and wrappers in flat component models 111
Wrappers composition in flat component models 112
Performance/Recovery view of the crane 93
TruckSafety /SaveEnergy view of the crane 94
CraneSafety view of the crane 95
RTCrane view of the crane 95
Wrappers crosscutting phenomenon L. 96
Directed labeled graph adopted for component architectures 99

List of Figures

5.7

5.8
9.9
5.10
5.11
5.12

6.1
6.2

6.3

6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

7.14

7.15
7.16
7.17
7.18
7.19
7.20
7.21

A composable controller on the Performance view of the crane where
the ICController is shown as a gray box with the name of the aspect

and the Dispatcher is depicted with (7) at the top of the view . . . 102
Seq(TruckSafety,SaveEnergy) plugged into ControlledEngine view 103
Fractal Weaver Architecture 109
VIL Expressions structure 109
The implementation of views and wrappers in flat component models 111
Wrappers composition in flat component models 112
Uppaal graphical description of a client-server example 115
The generated Uppaal template for the iEngine interface of the Crane

component L.l e e 122
The generated Uppaal template for the iMagnet interface of the Crane

component e e 123
The Fst template 130
The Seq template oL 131
The Cond template 132
The Cond template (variant for non shared join points) 132
The And template 133
The Alt template 134
Architecture of the airport wireless access system 138
A scenario of adding a bonus to customers L. 140
The airport system extended with Bonus (the Bonus view) 141
A scenario of alerting users before the end of their sessions 142
The airport system extended with Alert 143
The airport system extended with NetOverloading 144
The airport system extended with LimitedAccess 145
The airport system extended with Safety 146
Formal Model for the Timer Component 148
Formal Model for Token: iToken interface 149
Formal Model for Token: iTokenCallback interface 149
Formal Model for the Timer Component after binding 149
Synchronizing the ValidityChecker process with the Bonus: (a) be-

fore synchronization, (b) synchronized process 151
Synchronizing the ValidityChecker process with the Alert: (a) be-

fore synchronization, (b) synchronized process 152
Synchronizing the Firewall process with the NetOverloading process153
Seq(Bonus,Alert) scenario 155
Alt (Bonus,Alert) scenario 156
SessionManager view for A1t and Bonus aspects 157
Seq(LimitedAccess,NetOverloading) scenario 157
And(LimitedAccess,NetOverloading) scenario 158

Cond(LimitedAccess,NetOverloading,isMinor) scenario 158

List of Figures 7

7.22 The view for LimitedAccess and NetOverloading aspects 159
7.23 Par(Safety,Alert) scenario 160
A.1 L’architecture du Tisseur Fractal 174

A.2 Les wrappers et leur composition dans modéles & composants plats . 175

21

3.1

6.1
6.2
6.3
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2

Al

A3

List of Tables

Summary of AOP models and their supports for aspect interferences
detection and resolution: (TL) Temporal Logic, (LTL) Linear Tem-
poral Logic, (FOL) First Order Logic, (UTP) Unifying Theory of
Programming, (AVM) Abstract Virtual Machine 37

Current Aspectualized component models and their support level of
aspects: (+) fully supported feature, (-) non supported feature, (7)

Unknown 66
ADL description language for aspectualized component systems . . . 118
Properties of the crane system 126
The intent of the composable aspects 127
The semantic of the Fst operator 130
The semantic of the Seq operator 131
The semantic of the Cond operator 132
The semantic of the Cond operator (variant) 133
The semantic of the And operator (variant) 134
The semantic of the ALt operator 135
Properties of the airport system 150
Verification Time for Checking Properties 160

Le modéles & composents et leurs niveaux de support des aspects: (+)
un support complet de la propriété, (-) pas de support de la propriété,
(7) inconnu 169
La sémantique de 'opérateur Seq 180

CHAPTER 1

Introduction

Contents
1.1 The scope of thethesis 11
1.2 Contributions o o o s 12
1.3 Illustration Example: Crane System 12
1.4 Thesis structure 0000 ... 14
1.5 Published papers., 15

1.1 The scope of the thesis

Component-based software engineering (CBSE) [Szyperski 2002 focuses on the mod-
ularity and the reusability of software systems. Following CBSE, the behavior of a
system is divided into different parts and implemented by separate and reusable
entities named components. Components can be assembled in order to obtain
the complete and desired application. This considerably reduces software com-
plexity and enhances the understandability, the reusability and the maintenance
of complex software systems. On the other hand, aspect-oriented programming
(AOP) [Kiczales 2001a| focuses on the separation of concerns in general and the
modularity and the reusability of non-modular (a.k.a., non-functional, extra-functio-
nal) properties of software systems in particular (i.e., persistence, synchronization,
real-time constraints). Those properties are scattered and tangled over several
entities and cannot be encapsulated in only one entity. AOP provides a set of
mechanisms to deal with such properties: join point models, pointcut languages,
and weaving strategies (i.e., compile time, load time, or runtime weaving). AOP
is considered as a paradigm independent approach that can be implemented for
functional [Dantas 2008], procedural [Coady 2001], object-oriented [Kiczales 2001b]
or even component-based [Suvée 2003| paradigms. Putting CBSE and AOP to-
gether is a promising approach that ensures better modularity and reusability of
software components: when aspects are kept modular after weaving, component
and aspect modularity and reusability are preserved. The main challenge for CBSE
to support AOP, is twofold. First, how to model aspects in a component model,
in other words, should aspects be implemented as regular architectural elements
(symmetry approach) or new elements should be defined in CBSE (asymmetry ap-
proach)? [Suvée 2006]. Second, aspect interferences is still a challenge in AOP, so

12 Chapter 1. Introduction

what happens when several aspects are woven to the same component system?, how
there interferences can be detected and solved?. Current works on the integration
of AOP into CBSE are limited to: (1) map object-oriented pointcut languages into
component models, (2) the proposed implementations are adhoc solutions and can-
not be generalized for other component models, and (3) the proposed approaches
do not provide an effective support for aspect interference detection and resolution.

1.2 Contributions

In this thesis we focus on the aspectualization of component models in general.
This includes the definition of a pointcut language dedicated for component models,
modelling aspects in an abstract way without much care about their implementa-
tion (i.e., symmetry or asymmetry approach). In addition, we provide a support for
interference detection and resolution. During our exploration of existing component
models, we observed that hierarchical component systems can be reconfigured in
different ways, each of which defines a point of view of the architect on the system.
On the other hand, aspects are scattered over different components, and in order to
preserve the modularity of aspects, all the components of interest to an aspect must
be encapsulated together. In our proposal we get benefit of configuration variation of
component systems and we define a view (a system reconfiguration) for each aspect.
Fulfilling this requirement, we define a generic and a declarative pointcut language
named VIL (for VIews definition Language). We give its syntax and semantics in
terms of generic concepts of component models to preserve its component model in-
dependence. In addition, we provide a unified formal model for software components
and aspects, and we use Uppaal model checker for the detection of potential inter-
ferences among aspects. For interference resolution, we provide a set of composition
operators as a catalog of patterns. Inspired from the GoF patterns [Gamma 1995],
each operator is illustrated with a motivation example, applicability circumstances,
structure (as a state machine), and a semantic (based on the actions taken by as-
pects and the intercepted join points). We evaluate our proposal by implementing
the VIL language, the composition operators and the formal modelling process for
Fractal component model [Bruneton 2004|. In addition, we illustrate the proposal
with a case study: a wireless access in an airport [Sery 2007, Adamek 2007]. The
following section, introduces an illustrative example that we use all along the thesis
chapters in order to help the reader understanding the introduced concepts of our
proposal.

1.3 Illustration Example: Crane System

Our example is a revised version of the one given in [Bergmans 1996|. It describes a
software controller of a crane that can lift and carry containers from arriving trucks
to a buffer area and vice versa. The crane system is composed of an engine that
moves the crane left to the truck and right to the buffer area, a mechanical arm

1.3. Illustration Example: Crane System 13

::Controller ::Crane::Engine ::Crane::Arm ::Mag@
<€— engine | — B> setMode(mode) ' !
load() ' !
—

moveRight(mode) []

Arm
controlboard *

moveUp(mode) i
load unload Hagnet
=)
Mode 1T [<--mmmmmmm e

slow fast s —— L
movelLeft(mode)
e @ Buffer area

moveDown(mode)

* E ,,,,,,,,,,,,,,]
User ! S
% ' E moveUp(mode) |

q G T T !

Figure 1.1: Running example: (a) overview, (b) loading process scenario

that moves up and down, and a magnet for latching and releasing containers by
activating and deactivating its magnetic field. The engine and the arm may run in
two different modes: slow and fast. Users interact with the crane using a control
board. The control board allows users to choose a running mode (i.e., fast or slow)
for the crane and to start loading or unloading containers. Figure 1.1(a) and figure
1.2 depict, respectively, a schematic overview and a possible component architecture
of the system. Figure 1.2 models the crane system as a component architecture with

Crane Legend :

o Controller Engine Arm (O Component
O— Provided Interface

)>— Required Interface

Figure 1.2: Crane system architecture

three main components: controller, crane and magnet. The controller component
provides an interface that permits to set the running mode of the crane and start
loading and unloading containers. Upon receipt of user commands, the controller
component transforms those commands into signals and requires the crane to act
following those signals through its required interface. The crane component is a
composite of an engine and an arm components. The engine component provides
an interface that permits to move the crane left and right following a running mode
and requires an interface to call the arm to move up and down. The arm, in turn,
provides an interface for moving up and down following a running mode and requires
an interface to ask the magnet to latch or release a container. Finally, the magnet
component provides merely an interface for latching and releasing containers. Figure
1.1(b) shows the UML sequence diagram of loading a single container. The process
of loading a container starts when a user sets the running mode for the crane and
presses the load button on the control board. These two actions are transformed
into calling setMode and load services, respectively, on the provided interface of
the controller component. When the controller component receives a load service
call, it requires the engine component to move right by calling moveRight on its
required interface. Upon receipt of moveRight call, the engine does the action and

14 Chapter 1. Introduction

requires the arm to move down by calling moveDown service. The arm accepts the
call, moves down and asks the magnet to latch a container from the buffer area by
calling setOn service on the provided interface of the magnet. When the container
is latched, the engine calls the arm to move up throwing a moveUp call. When all
this done, the controller component requires the engine to move left to the truck by
calling moveLeft service. The engine receives the call, asks the arm to move down
which in turn asks the magnet to release the latched container by calling setOff
service. This basic crane system is later on enhanced by forcing it to fulfil a set of
new requirements. Each one of those requirements is modeled as an aspect to be
woven to the system:

Performance:
Enforce the crane to move fast, whatever was the running mode chosen by the
user, when the arm is not carrying a container. This considerably improves
the general response time of the crane.

Recovery:
Return both the engine and the arm to their stable position in the middle
whenever an undesirable sequence of actions is captured. This ensures the
viability of the crane system.

Truck Safety:
enforce the arm to move slow, whatever was the running mode chosen by the
user, when the crane is loading a container on the truck. This ensures the
safety of both the truck and the containers.

Save Energy:
enforce the arm to move slow, whatever was the running mode chosen by the
user, after carrying a given number of containers. This ensures a better energy
consumption of the crane.

Crane Safety:
Ignore user commands when the temperature of the engine or the arm reaches
a critical value. This ensures the safety of the crane devices.

Real-Time:
Check whether loading/unloading containers is achieved in tepeed (< tspeed)
time. If it is not the case, the arm must be moved up and all the subsequent
requests must be refused.

1.4 Thesis structure

This thesis is divided into two parts: background and contributions. In the back-
ground, we first introduce and evaluate current works on AOP (Chapter 2). Sec-
ond, we overview current works on aspectualized component models highlighting
their strengths and weaknesses and the points that should be considered for a generic

1.5. Published papers 15

approach to aspectualize component models (Chapter 3). The second part is di-
vided into three chapters: we introduce our proposed generic and declarative point-
cut language for component models (VIL) and we show how it can be implemented
in Fractal component model (Chapter 4). Then, we describe our formal model
for the detection and the resolution of aspect interferences in component models
(Chapter 5). Finally, we illustrate our approach with a case study (Chapter 6)
and we conclude the thesis (Chapter 7). Figure 1.3 gives a reader a general idea
about our views-based approach for aspectualizing component models and gives a
reader a suggestion of how to read the thesis according to his/her purpose. The
structure is modeled as a component architecture with different views. Each view
is presented as gray shape and annotated with a title in a white box. A binding of
two components ¢; and ¢y indicates that ¢ requires concepts and details given in
cy. Finally, we use a dashed box to indicate a shared component.

1.5 Published papers

1. A.H. Hannousse, Rémi Douence, Gilles Ardourel, Static Analysis of As-
pect Interaction and Composition in Component Models, In Proceeding of the
10th International Conference on Generative Programming and Component
Engineering, GPCE’11, Portland, Oregon, USA, ACM, 2011

2. A.H. Hannousse, Rémi Douence, Gilles Ardourel, Composable Controllers
in Fractal: Implementation and Interference Analysis, In Proceeding of the
37th EUROMICRO Conference on Software Engineering and Advanced Ap-
plications, SEAA’11, Oulu, Finland, IEEE CS, 2011

3. A.H. Hannousse, Gilles Ardourel, Rémi Douence, Views for aspectualizing
component models, In Proceedings of the Ninth AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software, ACP4IS’10, pp. 21-25,
Rennes, France, 2010.

Introduction

Chapter 1.

16

SISO} 9} PeaI 0} MOT :DINIONI)S SISO} Y} UO SMIIA :¢'T oINS

7

_ Apnis asen

19 Ja)deyn

S

UONINGUIUOD [edIUydaL

?

a

siojesado uonnjosay
i uonoasg

|eeddn
1L uonoasg

Yledd
11’'€'g uonodeg

JaAB3N\ [e1ORIS

i€ uol9ag

uo1}99}8(Q SAdUBIBMAU]
1g uonoeg

eedd
> _ | nelav

g uopodasg

(leyoes)
M3IAIBAO 388D !
Z'guonoss |
‘godeyd |

S9oUdIaaU| J0adsy
:g 19)deyn

p 19)deyn

A
1g-1 uonosg

Ul| smoin uo siaddeim se s}oadsy

JTC

suonnquo)

aJnjonalg sisay |

7 J—
MaINOH dOY leA3 dOv
& 1Z-1 uonoas) 1€ UonOas
dov
: d
L z 1a1deyn
"
[momoy 3sE0 |er3 3580
T p-1 uOpoAS) g uonoag

3590
:g 19)deyn

punoJibyoeg

Part 1

Background

CHAPTER 2
Aspect Oriented Programming
and Aspect Interference Issue

Contents

2.1 Overviewof AOP 19
2.1.1 Aspectd 21
2.1.2 Composition Filters 22
2.1.3 Hyper/J 25
2.1.4 Evaluation Lo oo 26

2.2 Aspect Interferences. oo e 27
2.2.1 Syntactic-Based Approaches 27
2.2.2 Semantic-Based Approaches 31
2.2.2.1 Modular Approaches. 31

2.2.2.2 Non-Modular Approaches 33

2.3 Lessonslearned. e 35
2.3.1 Interference Detection 35
2.3.2 Interference Resolution 36

2.1 Overview of AOP

Object-Oriented Programming (OOP) [Meyer 1997] abstracts and encapsulates con-
cerns into separate entities called classes. It provides a set of mechanisms to rely
and compose them: inheritance, aggregation, and polymorphism. However, some
concerns fail to be encapsulated into single and separate classes and, instead, they
spread over multiple classes. These particular concerns are known as crosscutting
concerns. Aspect Oriented Programming (AOP) [Kiczales 2001a] provides a mecha-
nism to cope with the encapsulation of concerns in general and crosscutting concerns
in particular. It provides a mechanism to encapsulate concerns, crosscutting or not,
into separate and independent modules. It comprises techniques as well as tools for
composing these modules to get the final program. Here we give the basic tenets of
AQP; first we introduce the basic concepts common to all the AOP approaches:

Join point: is a particular point in the control flow of a program. Join points are
caught when programs are under execution. Crosscutting concerns interact

Chapter 2. Aspect Oriented Programming and Aspect Interference
20 Issue

only with other concerns at these points. In object oriented paradigm, these
points can be a method call, an attribute access, or an object instantiation.

Pointcut: is a predicate that matches a set of join points. A pointcut joins a set
of join point expressions with logical operators. An AOP model provides an
expressive pointcut language that specifies the set of required join points in a
declarative style.

Advice: implements a whole or a part of the behavior of a crosscutting concern. An
advice is executed when pointcuts matching succeeds. An advice is executed
before, after or instead of the matched join point(s).

Aspect: is a modularization unit that encapsulates a crosscutting concern. An
aspect specification includes pointcuts and advices definition.

Weaving: is a mechanism that merges aspects modeling crosscutting concerns with
the rest of modules modeling regular concerns. This is necessary to get the
complete program with all the concerns needed. The result program is called
aspectualized program due to the integration of aspects into its basic program.
A weaving is an automatic process performed by tools called weavers. Aspects
can be weaved at compile time, post-compile time, load time or runtime. Each
mode of weaving has its pros and cons depend on a set of properties such as:
the availability of the source code of the basic program, the performance of
the process, etc. Note here, that it is possible that a weaver implements more
than one weaving mode. The reverse process of weaving is called unweaving.
It is useful to ensure dynamic reconfiguration of software systems.

Figure 2.1 illustrates the process of weaving and unweaving aspects. In the figure, a
concern is modeled as a set of squares, each of which represents a unit of a module
(e.g., method, statement, etc.). While colored squares refer to aspect units, white
squares refer to base program units. A pointcut is modeled as a set of integer values
indicating the positions where aspect units should be injected to the base program.
For example (0,4) indicates that the aspect unit should be injected at the first and
the fourth positions of the base module. The result system after weaving is a mixture
of a white and colored units. The unweaving process is possible if we keep track of
the positions of the already woven aspects.

The same aspect may affect several program modules and several aspects can
be woven to the same base program. In the former case one or more instances of
aspects may be created. This is useful when shared variables are considered. In the
latter case, each aspect extends the base program with new features; this generally
leads to what is called interaction between aspects. In some cases interactions are
natural and desirable, but in many cases, interactions are undesirable because they
lead to an unexpected behavior of the woven program. We call this latter kind
of interactions interferences. Actually, one of the most challenging issues of AOP
implementation models is how to weave several aspects without potential interfer-
ences. The above mentioned concepts of AOP are modeled differently according

2.1. Overview of AOP 21

Aspects Modules Aspectualized Modules

(0,2)

(1.3)

weaving direction » unit [:]

unweaving direction <« relative pointcuts (i, j, ...)

Figure 2.1: AOP weaving and unweaving process

to each implementation model, and aspect interferences are managed at different
granularity levels. In the following, we discuss three implementation models and we
show how the above concepts are modeled and how interferences are managed.

2.1.1 Aspectd

Aspect] [Kiczales 2001b] is the reference implementation of AOP in Java. Aspects
are modular units encapsulating crosscutting concerns with explicit definition of
pointcuts and advices. AspectJ enables static and dynamic crosscutting. By static
crosscutting, an aspect defines additional attributes and methods to existing Java
classes, and also enables the declaration that an existing class implements new in-
terfaces or extends new other class. By dynamic crosscutting, AspectJ enables the
execution of additional behaviors (advices code) at well-defined points in the exe-
cution of a program (pointcuts). AspectJ provides a declarative pointcut language
for object-oriented programming; a pointcut captures a set of join points using a set
of predefined terms and composes them using logical operators. The pointcut lan-
guage includes: calling and executing methods or constructors, setting and getting
attributes and more advanced pointcuts such as cflow(jp) that captures each join
point in the control flow of jp including jp itself. In [Allan 2005, Douence 2006],
AspectJ pointcut language is extended with tracematch pointcut where advices’
execution is based upon the execution history of a program. With tracematches,
regular patterns of events are specified, and aspect advices are executed when the
execution trace of a program matches one of these patterns at runtime. The advices
in AspectJ are of three main types: before, after and around that specify that the
aspect behavior, implemented by the advice, is executed before, after or instead of
the captured join points, respectively. Listing 2.1 describes the saveEnergy aspect
in AspectJ. In the listing, two pointcuts are defined left and right (line 5-6);
the former captures calls to all the methods whose names end with load in the
Controller class and the latter captures all the methods whose names start with
move in the Arm class. Two advices of type before are defined for each pointcut.
The former (line 8-10) increments the number of carried containers, the latter (line

Chapter 2. Aspect Oriented Programming and Aspect Interference
22 Issue

12-14) checks whether the number of carried containers reaches 100. If it is the case,
it calls a local method setSpeedParameter to change the speed parameter of the
captured join point to SLOW value.

aspect saveEnergy {
declare precedence : truckSafety , saveEnergy.
private int NbContainer =0;
pointcut left () : call(x Controller.xload (x));
pointcut right() : call(x Arm.movex(x));
before() : left() {
NbContainer++;
¥
before() : right() {
if (NbContainer>100) setSpeedParameter (SLOW) ;
¥
void setSpeedParameter(Speed s) {
// code not shown here
}

Listing 2.1: The saveEnergy aspect in AspectJ

For interference management, AspectJ defines a set of precedence rules to resolve
the execution order of multiple advices at the same join points. A precedence order
is explicitly defined for aspects by either sub-classing (i.e., an aspect is declared as
a subaspect of another) or using declare precedence keyword. Another implicit
precedence rules are inferred from the type of advices and their declaration order.
For example, the advice that appears first lexically inside an aspect is the one who
executes first. In the crane example, the truckSafety aspect advices should be
executed before the advices of the saveEnergy aspect, this can be specified using
declare precedence statement as shown in Listing 2.1 line 2.

In AspectJ, aspects can be either singleton or can be instantiated per object
and even per control flow. In the former case, an aspect is instantiated for every
object triggering a join point (i.e., perthis) or for every target object of a join point
(i.e., pertarget). In the latter case, an aspect instance is created for every control
flow beginning at a join point picked out by a pointcut parameter.

AspectJ weaver tool ajc supports bytecode weaving where the code of advices is
added to class files at compile time, post-compile time or at load time; the weaver
should only be parametrized with the required weaving mode.

2.1.2 Composition Filters

Composition Filters (CF) [Aksit 1992 provides a support of AOP to the object
oriented paradigm. In CF an object is encapsulated with a wrapping layer called
interface that intercepts and handles incoming and outgoing calls by means of filters.
Incoming calls pass through a sequence of filters called inputfilters and outgoing

2.1. Overview of AOP 23

calls pass through a sequence of filters called outputfilters. A filter corresponds
to an aspect that wraps an object and decides to accept or reject calls. Each
filter has a type which in turn has a well-defined semantics of calls acceptance and
rejection. CF supports a set of predefined filter types and allows the definition of
new filters when they are needed. The current provided filter types are: Wait (for
calls synchronization), RealTime (for real time properties management), Error (for
error handling), Meta (for message reification), Substitute (for substituting messages
properties), and Send, Dispatch (for message delegation in input and outputfilters,
respectively). These filters are orthogonal which means that they are independent
and they can be easily composed by forming a chain. Filters are reusable entities
that can be instantiated by specifying their elements. A filter element corresponds to
a pointcut in AOP, if the intercepted message matches a filter element, the message
is accepted, otherwise it is matched to the next filter element; if it does not match
the last filter element, the message is rejected. The acceptance and the rejection
actions depend on the filter type. For example, a filter of Meta type accepts a
message by sending it as a parameter of another message to a named object, and
rejects a message by allowing it to pass to the next filter in the chain. Besides
input and output filters, the interface layer encapsulates a set of objects called
internals; these objects implement new functionalities that have to be added to the
encapsulated object named inner object. The interface layer also refers to a set of
external objects that are objects communicating with the inner object. Figure 2.2
shows the architecture of the CF object model.

input call

inputfilters

|
|
'
|
i
i
i
|
|
v

. inner object \; =
internals ./ externals
-

i
1

outputfilters T J
1

output call

Figure 2.2: Composition Filter wrapping mechanism

Originally, the CF is designed to model aspects that crosscut a single object.
In later work [Bergmans 2001], the approach is generalized to model aspects that
crosscut multiple objects using superimposition. The superimposition defines a set
of filters and maps them to multiple objects. However, filters are only composed
sequentially following their declaration order. Listing 2.2 illustrates the implemen-

Chapter 2. Aspect Oriented Programming and Aspect Interference
24 Issue

tation of the saveEnergy aspect in CF. The aspect defines two interface layers
leftModule and rightModule. The former uses a Meta and a Dispatch as inputfil-
ters and the latter uses a Substitute and a Send as outputfilters. The Meta filter
met (line 9) reifies each incoming call whose name ends with load and passes it to an
external object (saveEnergy) to execute its maintainNbContainer method. This
latter increments the number of carried containers (line 39) and proceeds the call
by calling the predefined fire method (line 40). The Dispatch filter dis (line 10)
accepts all the calls to the inner object instance. The Substitute filter sub (line 19-
22) changes the parameter value of the moveLeft and moveRight messages to SLOW
whenever the number of carried containers reaches a threshold number (e.g., 100
in this case); this is checked by calling the isThresholdNbReached method of the
external object (line 42-44). Note that the Dispatch and Send filters should be
used as the last filters in inputfilters and outputfilters sets, respectively, to transmit
messages to their target objects. The superimposition part (line 26-33) specifies a
set of selectors that specify a set of objects that should be wrapped with a specific
interface layer. In the listing, two selectors are defined left and right (line 28-
29). The former includes all the instances of the Controller class while the latter
includes all the instances of the Engine class. The filtermodules part (line 41-42)
states that the leftModule and rightModule wrap all the objects defined by the
left and right interface layers, respectively.

1// interface layers part

2 concern SaveEnergyAspect {
filterinterface leftModule {
4 externals

5 saveEnergy: SaveEnergy;
6 methods
7
8

w

maintainNbContainer (Message) ;
inputfilters

9 met: Meta = {True => [x.xload(..)] saveEnergy.maintainNbContainer}
10 dis: Dispatch = {inner.x}

11 };

13 filterinterface rightModule {

14 externals

15 saveEnergy: SaveEnergy;

16 conditions

17 saveEnergy.isThresholdNbReached;

18 outputfilters

19 sub: Substitute = {

20 isThresholdNbReached => [*.moveleft(..)] #*.moveleft(SLOW),
21 [*.moveRight (..)] *.moveRight (SLOW)
23 send: Send = {x.x};

24 %

26 superimposition {

27 selectors

28 left = {#=Controller};

29 right= {#=Engine};

30 filtermodules

31 left <— leftModule;

32 right <— rightModule;

34
35
36
37
38
39
40
41
42
43
44
45
46

1

0~ O Ut W N

9
10
11
12
13
14
15

2.1. Overview of AOP 25

// implementation part
class SaveEnergy {
private int NbContainer = 0;
void maintainNbContainer (Message m) {
NbContainer++;
m. fire () ;

boolean isThresholdNbReached () {
return NbContainer >100;

¥
}
}

Listing 2.2: The saveEnergy aspect in CF approach

2.1.3 Hyper/J

Hyper/J [Tarr 2000] implements AOP following the multi-dimensional separation
of concerns approach (MDSOC) [Tarr 1999, Ossher 2001]. In MDSOC, a software
system is divided into different units called concerns. A concern describes a part of
interest or a role of a software unit (e.g., class, method, attribute). Different types
of concerns may exist for the same software system. For example, the base program
of an application is a concern, and all the aspects to be applied to that application
can either be of the same concern type or different concern types according to their
roles. In our crane example, all the primitive components constitute one concern
type called base (one dimension), while the proposed aspects can be considered as
one concern type (another dimension) named optimization. Affecting software units
to concerns is explicitly specified in a separate module called hyperslices. Concerns
of different or the same type interact with each other and can be easily managed and
composed using a set of weaving operators named relationships. Hyper/J provides a
collection of relationships such as: mergByName and bracket. The former, indicates
that units of the same name in different concern types (dimensions) are merged and
composed together and form a new unit. The latter indicates that a set of units
should be executed before or after other units. The weaving strategy supported
by Hyper/J for merging units is a post-compile time, where the bytecode of the
composed units are merged.

hyperspace craneSystem

class User; class Controller; ...; class SaveEnergy; class TruckSafety;
class Performance;
hyperslices
class User : Feature.base
class Controller : Feature.base;
class SaveEnergy : Feature.optimization;
class TruckSafety : Feature.optimization;
class Performance : Feature.optimization;

hypermodule ExtendedCraneSystem
hyperslices
Feature . base,

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter 2. Aspect Oriented Programming and Aspect Interference
26 Issue

Feature.optimization ,
relationships
bracket Feature.base."xload"
before Feature.optimization. TruckSafety.setLoadingState
before Feature.optimization.SaveEnergy.maintainNbContainers;

bracket Feature.base.moveUp
before Feature.optimization.SaveEnergy.checkForSpeed;

bracket Feature.base.moveDown
before Feature.optimization. TruckSafety.checkForSpeed,
before Feature.optimization.SaveEnergy.checkForSpeed;

bracket Feature.base.moveleft OR Feature.base.moveRight
before Feature.optimization.Performance.checkForSpeed;

bracket Feature.base.setx
before Feature.optimization.Performance.setMagnetState;
end hypermodule;

Listing 2.3: The crane example in Hyper/J

Listing 2.3 illustrates the crane example in Hyper/J. In the listing, the set of
software units are declared in a hyperspace module (line 1-3); in the example this
includes all the classes implementing both components and aspects. Software units
are mapped to concerns in a hyperslice module (line 5-11). As mentioned above,
components are mapped to the base concern type while our aspects are mapped
to the optimization concern type. The composition of concerns is defined in a
hypermodule (line 13-34). In the hypermodule, the set of all the concern types to be
composed is determined with the hyperslices keyword (18-20), and the composition
rules are defined within the relationships keywords (line 21-34). In our example,
only the bracket composition rule is used to order the execution of methods of
different concern types. For example, the bracket rule at line (22-24) indicates that
whenever a method whose name ends with load (this includes load and unload
methods of the Controller) of a base concern type is invoked, two methods of the
optimization concern type should be executed before; that are: setLoadingState
of the truckSafety concern and maintainNbContainers of the saveEnergy in such
order. The other bracket rules are interpreted similarly.

2.1.4 Evaluation

The above models implement the AOP tenets in general. They show how aspects,
pointcuts and advices are modeled and specified within language constructs, when
aspects are woven to base systems (i.e., compile-time, runtime, etc.), and how sev-
eral aspects are ordered. Each of the above models has its strengths with respect
to AOP: Aspect] provides an expressive and a declarative pointcut language for
object-oriented models, especially with trace matches and control flow pointcuts
support, CF provides a set of reusable filter types encapsulating aspect semantics
such as synchronization and real-time constraints, and Hyper/J provides a symme-
try approach with a minimum language constructs to define aspects and offers a
set of predefined composition rules to compose their advices. However, these three

2.2. Aspect Interferences 27

models share a set of limitations: they only support sequential ordering of aspects
and do not provide any support of aspect interferences analysis. In the following we
overview a set of works dedicated to aspect interferences detection and resolution.

2.2 Aspect Interferences

Aspects interact in different ways even if they are orthogonal. When several aspects
needed to be applied to the same system, undesired interactions may appear. We
call such undesired interactions interferences. Many works are dedicated to detect
and /or solve interferences among aspects. The proposed approaches can be divided
into two categories: syntactic and semantic based approaches.

2.2.1 Syntactic-Based Approaches

The focus of syntactic-based approaches is limited to analyze aspects sharing join
points or updating common variables of base systems. In this section, we overview
some relevant works to this category: Durr et al [Durr 2007, Durr 2008] propose a
resource-base model for interferences detection at shared join points. The proposed
approach models each join point as a resource manipulated by different aspect ad-
vices. A set of operations, on those join points, are defined such as: read and write.
The conflicts treated are of two kinds: data and control flow conflicts. Data conflicts
are related to modifying a resource properties, while control flow conflicts are re-
lated to advices actions on resources (i.e., proceed or skip). For example, a sequence
(write;write) of the same join point parameter is a source of data conflict. While,
a sequence (skip;proceed) of the same join point is a source of control flow conflict.
For conflicts detection, advice actions performed on each join point are tracked and
a set of conflicting rules are defined. A conflict rule is a sequence of actions. When
a conflicting rule matches a part of the actions trace on a join point, a conflict
is reported to the user. For showing statically the different sequences of advices
actions performed on shared join points, a message flow graph is generated. Each
node of the graph represents a program element to be evaluated (i.e., join point,
pointcut, data variables, etc.), while each path in the graph represents a possible
sequence of actions performed by advices at a shared join point. Arcs in the graph
are labeled with resource operations (e.g., read or write) and advice method names
or actions (i.e., proceed or skip). Figure 2.3 shows the message flow graph show-
ing the interaction between the saveEnergy and the truckSafety aspects. Only
the shared join points are presented in the graph. Normal font labels are advice
method names, pattern matching or condition evaluation. Italic and underlined la-
bels are resource operations, while bold font labels are advice actions. From the
graph, a conflict is detected for the moveDown call join point, because of the se-
quence: args[0] .write;args[0].write in the path: both aspects change the same
parameter.

Since traces cannot be detected statically, a runtime process is provided by the
approach. The runtime process uses an abstract virtual machine AVM. The virtual

Chapter 2. Aspect Oriented Programming and Aspect Interference
28 Issue

sel==load sel==moveDown
Jp.read jp.read
NbContainer<=100 NbContainer>100
updaterCWO

setLoadingState checkForSafety
args|[0].write

Proceed checkForSafety
args[0].write
Cf Proceed

®

checkForSpeed
args[0].write

Proceed

@—0O

Figure 2.3: An excerpt of the message flow graph representing the crane example
showing the interaction between saveEnergy and truckSafety aspects

machine keeps track of the different advice actions and resource operations applied
to each join point at runtime. When the saved trace matches one of the conflicting
rules, a warning is reported to the user. The given approach is applied to the
composition filters (CF) and implemented to its Compose* toolset [de Roo 2008].
The approach has two main drawbacks: first, all the conflicting rules should be
explicitly determined by the user which is a tedious and error prone task. Second,
take for example, the conflicting rule: args[i].write; argsl[i].write, it does
not always refer to a conflict, the interaction between the saveEnergy and the
truckSafety aspects is a counter example: when both are applied sequentially, they
both overwrite the parameter value of the moveDown call but there is no interference
between them, and hence, false positives can also be reported within the approach
due to lack of knowledge about the intent of each aspect. Finally, the approach
supports user defined advice actions, however, resource operations actions should
be abstract as possible, otherwise, a global awareness and knowledge of all the
aspects to be woven is needed. This threatens the separation of concerns principle
and hardens the update of these properties whenever other aspects needed to be
applied.

Marot et al. [Marot 2009] tackle the above limitations by replacing global con-
flicting rules by local assumptions called compositional intentions. Compositional
intentions are defined for each advice and describe assumptions about the actions
of other advices on shared join points. Each compositional intention has a type
and a behavior description. The compositional intention type describes when the
advice should be executed with respect to other advices. Besides before and after,
tgnored is used to indicate that the advice should be ignored when the behavior de-
scription part is matched by other advices. A behavior description is a conjunction
and/or a disjunction of action predicates. An action predicate denotes the action

N =

N =

2.2. Aspect Interferences 29

of an advice. An advice may proceed a join point (proceed), skip it (NoProceed),
make multi proceed calls (MultiProceed), or substitute the join point properties
(proceed WithSubst). These are more precise control flow actions than those defined
in [Durr 2007, Durr 2008|. Data flow predicate actions are also supported by the
approach but in a more general form: only read and write of variable instances
are supported. A compositional intention of an advice states that, if the behavior
description is matched by another advice, according to the type, the advice in ques-
tion is executed before, after that advice or its execution is completely ignored. For
example, the saveEnergy aspect’s maintainNbContainer advice can be associated
with the following compositional intention.

Ignored: NoProceed

0
After: MultiProceed (

)

Listing 2.4: Compositional intention of the maintainNbContainer advice

This compositional intention states that, if the join point (i.e., load or unload
method calls in this case), is skipped by another advice, the maintainNbContainer
advice is ignored and hence the number of carried containers is not incremented
(line 1); and whenever the join point is called, the advice is executed (line 2). This
ensures the correct composition of the saveEnergy aspect with an aspect that skips
the call of load or unload methods to the Controller such as the craneSafety
aspect. Remember that the craneSafety aspect skips all the user commands when
the temperature of the crane exceeds a threshold value. In the approach, conflicts
are detected at runtime: an assumption of an advice is compared with all the other
advices, if the assumption of the advice matches the assumption of another with
incompatible type, an error is reported to the user. However, the proposed compo-
sitional language is not expressive enough to describe all the kinds of interferences
accurately. Take for example, the truckSafety and the saveEnergy aspects; their
corresponding checkForSpeed advices (checkForSpeed advice changes the speed
parameter value of the call to SLOW when a correspondent predicate holds) are de-
fined with the following compositional intention:

Before: Read(thisJoinPoint, args(0), speed) A
Write(thisJoinPoint , args(0), speed);

Listing 2.5: Compositional intention of the checkForSpeed advice

This compositional intention states that the checkForSpeed advice is assumed
to be executed before any reading or writing of the first join point argument speed
(the first argument of the call args(0)). However, when both saveEnergy and
truckSafety aspects are composed, a conflict is detected, because their correspond-
ing checkForSpeed advices assume to be executed before each other. This is correct
when they give a different value to the speed argument. In the example, they give it
the same value SLOW. Thus, an error is reported where there is no a real conflict and

=

Chapter 2. Aspect Oriented Programming and Aspect Interference
30 Issue

the change of the parameter value cannot be expressed with the current language:
write action does not mean that the value is changed.

Douence et al. [Douence 2002] address aspect interaction problem at shared join
points. In this work, a formal expressive crosscut language (EAOP) is defined and
a linguistic support for conflict resolution is proposed. The proposed framework is
based on observable events. The following listing describes the truckSafety aspect
of the crane system following EAOP syntax: the aspect has two parts; the first
(line 1) defines a crosscut that matches the load method call event, and an insert
that executes the setLoadingState method and proceeds the call. The second part
defines a crosscut that matches the moveDown method call event, and an insert that
executes the checkForSpeed method and proceeds the call. The pa is used for
recursion to say that an aspect starts in a state a, waits for one of the events (load
or moveDown), executes the corresponding advice code, proceeds the call (proceed
keyword) and returns to the state a.

truckSafety = pa (load() > setLoadingState() proceed; a) |
pa (moveDown (..) > checkForSpeed () proceed; a)

Listing 2.6: The truckSafety aspect in EAOP

On the interaction point of view, this work focuses on aspects sharing join points.
Two forms of independence are distinguished: strong independence and independence
w.r.t. a program. The former occurs when two aspects can be expressed as a single
aspect without any overlap of their crosscuts, whereas the latter is relative to a
given base program by checking all its possible observable execution traces. For
each case, an algorithm is provided to check whether two aspects are independent.
An interaction between aspects is detected when their crosscuts match the same join
point. The weaving process is modeled by analyzing aspect rules and determining
the set of rules applicable to the current join point and to the next join point in the
trace.

The proposed solution is a set of parallel operators indicating to the weaver how
to compose aspects on conflicting points: execute them in sequence, execute only
one and ignore the other, etc. For example, the saveEnergy and the truckSafety
aspects are composed sequentially as follows: saveEnergy ||seq truckSafety. One
interesting feature of the approach is the definition of scopes for aspects. A scope
definition controls the visibility of aspects; this ensures that non-terminating weav-
ing never occurs: an aspect does not match join points coming from arbitrary other
aspects. The work is later extended to stateful aspects [Douence 2004] and for con-
current aspects [Douence 2006]. In the former work, the model is extended with
inter-crosscut variables. While the latter provides a support of concurrent aspects,
models the woven program as FSP processes and checks properties with LTSA.

2.2. Aspect Interferences 31

2.2.2 Semantic-Based Approaches

Semantic-based approaches do not focus on shared join points and common ma-
nipulated variables. They consider the behavior of the aspects to be woven. The
approaches of this category can be divided into two subcategories: modular and non
modular approaches. Modular approaches detect behavioral conflicts of aspects in-
dependently of any base program. While non-modular approaches detect semantic
conflicts with respect to a base program. In the following we overview some works
of both categories.

2.2.2.1 Modular Approaches

Katz et al. [Katz 2008] propose the use of LTL (linear temporal logic) formulas
to define a set of assume-guarantee properties of aspects. The assume properties
are general properties any base program should satisfy otherwise the aspect cannot
be woven to that program. The guarantee properties are satisfied by the program
after weaving the aspect. A pairwise check is performed by the approach: two
aspects are interference-free if when they are woven to a base program satisfying their
assumption properties, their guarantee properties should be satisfied after weaving.
For formal verification, Maven model checker is used for automatic verification of
properties. With Maven, an aspect is checked with respect to its specification. In
an extended work with Goldman [Goldman 2010], state machines are used to model
the base program, the aspects, and the woven system. The weaving process is
implemented by inlining the aspect state machine directly in the base system state
machine. However, the approach only focuses on weakly invasive aspects and the
precedence interaction between aspects. Moreover, when precedence does not solve
the interference, the approach does not provide any solution. In fact, this work is
proposed to cope with the limitations of Krishnamurthi et al. [Krishnamurthi 2007]
proposition, where a state machine is defined for each advice, and focus on treating
aspects not modifying data variables of base systems.

Kniesel [Kniesel 2009] defines a predicate-based formal model that describes as-
pects in particular and programs in general as a set of conditional transformations
(CTs). A conditional transformation (CT) is defined as a pair of formulas: pre-
condition and transformation. Preconditions are predicates that a base program
should satisfy, otherwise the transformations (i.e., advices) become inapplicable
to the program. Transformations are of three kinds: adding, deleting elements
(i.e., attributes, methods) to/from the base program or creating new element iden-
tities. Aspect weaving is modeled as applying the CTs modeling an aspect to the
base program. The effects and the postconditions of each CT are automatically
derived from its precondition and transformation. While effects inform the direct
changes on the base program after executing a CT transformation, postconditions
tell what can be deduced from the precondition of a CT. Effects and postcondi-
tions are used to detect potential interactions between aspects (CTs) in a modular
way (without refer to a concrete base program): an interaction between two as-
pects A1 and As is detected when the execution of Ay affects the execution of A,

Chapter 2. Aspect Oriented Programming and Aspect Interference
32 Issue

positively or negatively. Positive effect is to satisfy the precondition of As, which
was previously not satisfied, after the execution of the transformation of A;. Neg-
ative effect is to falsify the precondition of Ao, which was previously true, after
the application of the A; transformation. Affecting one aspect positively is called
triggering while affecting one aspect negatively is called inhibition. For interference
detection, a weaving interaction graph is designed. The graph nodes denote the
different transformation actions (advices), and edges between two nodes indicate an
interaction detected between the transformations of the nodes (triggering or inhibi-
tion). Figure 2.4 shows the graph representing the interaction between the advices
of the saveEnergy and craneSafety aspects of the crane example. The graph shows
that the maintainNbContainer advice triggers the checkForSpeed advice. That is
because the action (i.e., transformation) of the maintainNbContainer increments
the number of containers which may satisfy the precondition of the checkForSpeed
(i.e., the number of carried containers reaches a threshold number). In addition,
the graph shows that the checkForTemperature advice of the craneSafety inhibits
the execution of the maintainNbContainer advice of the saveEnergy aspect. That
is because, the checkForTemperature advice may skip the execution of the inter-
cepted join point (i.e., load and unload method calls) which prevents the execution
of the maintainNbContainer advice.

triggering . "
I saveEnergy: checkForSpeed }<—<‘ saveEnergy: maintainNbContainer
®

triggering 1 inhibition

IcraneSafety: checkForTemperature l

Figure 2.4: Weaving Interaction graph of the crane example showing the interaction
between the saveEnergy and the craneSafety aspects

Conflicts are proven to be inhibition cycles of length greater than one in the
graph. For some cases, an automatic resolution is made by an algorithm that diag-
nosis the graph and associates a weaving order to the transformations (advices). In
other cases, users are asked to give more specific information about the application
of CTs or to specify directly the right execution order for conflicting transformations.
The main drawback of the approach is its focus on interferences that appear at the
weaving stage. However, several other kinds of interferences cannot be detected
within the approach. In our opinion, this is due to the limitation of the considered
interactions between advices. Triggering and inhibition interactions are not enough.
Take for example, the saveEnergy and the performance aspects; they are in conflict
because the effects and the postconditions of their advices are contradictory (one
wants the crane to move fast and the other wants it to move slow). This does not
appear as a cycle in a graph based only on inhibition and triggering of advices.

2.2. Aspect Interferences 33

2.2.2.2 Non-Modular Approaches

De Fraine et al. [Fraine 2008] propose a static control flow analysis of aspect in-
teractions. Within control flow analysis, aspect interferences on non shared join
points can be detected. The approach associates a set of policies. A policy is a
predicate formulae that specifies the expected aspect-aspect or aspect-base control
flow relations. A set of interesting predefined predicates are presented to define the
relationships among aspects and base programs. For example, must(a.mi,b.ms)
predicate specifies that the aspect advice method a.mj occurs on all the control-
flow of the base method b.mgy; depend(b.m,ai.mi,az.mg) predicate specifies that
the advice methods aq.m1 and as.mo occur conjointly in the control-flow of the base
method b.m and exclude(b.m,ai.mq,as.m2) specifies that the two advice methods
ai1.mi, as.ms cannot occur together in the same control-flow of the base method
b.m.

Control-flow graphs are automatically generated form the static analysis of byte-
code programs with woven aspects. These graphs are traversed to define for each
method the different paths traversed from its entry to its exit. Each path is de-
fined as the set of methods (i.e., nodes) visited. These paths are checked later
to evaluate the different predicates. For example, must(a.mi,b.ms) is defined as:
Vp : path(b.mga,p) = member(a.m1,p) which states that for each path on the
control-flow of b.mo the advice method a.mq is a member of that path. Here we
show the policy associated to the performance aspect of the crane example.

1 VM, Ma, M3, A : matches(M1, Engine.movex(..))A
2 matches(M3z, Performance.changeSpeed ())A
3 adviceOf(A, M) = exclude(M1, Mo, M3,)

Listing 2.7: The performance aspect policy

The above policy states that, in the control-flow of any method matching the pat-
tern Engine.move*(..), there is no other aspect advice (advice0f (A, My)) that
occurs conjointly with the changeSpeed () advice of the performance aspect. This
latter policy is violated because the saveEnergy aspect executes its checkForSpeed
advice on the moveUp and moveDown methods of the Arm that belong to the control-
flow of Engine.moveLeft (Speed) and Engine.moveRight (Speed) and hence an in-
terference is detected. However, this is not completely true because not all the
aspect advices should be excluded in this case, we need only to exclude those chang-
ing the parameter value of type Speed. In order to solve this problem, the policy
language should be extended with data-flow analysis support.

Weston et al. [Weston 2007| developed AIDA tool (Aspect Interaction Detection
Analysis). AIDA extends AspectJ compiler (abc) with data-flow analysis. Within
AIDA a conflict is detected when a data variable used by one aspect advice is mod-
ified by another advice. It is the case for the performance and the saveEnergy
aspects where their advices affect the speed parameter value of basic method calls.
Besides the direct interaction, AIDA considers transitive interaction between as-

Chapter 2. Aspect Oriented Programming and Aspect Interference
34 Issue

pects. This expresses the case when a data variable modified by one aspect is
passed through a chain of base program methods before it is used by another as-
pect. AIDA performs a pre and post-weaving analysis. At pre-weaving stage, the
control flow graph (a subgraph for each method considering its statements and the
relationships with other methods) is analyzed and a transfer function and a sum-
mary transfer function are calculated. The transfer function indicates the effects of
each statement on data variables. The summary transfer function is the conjunc-
tion of the transfer functions of all the statements of a method, in other words, it
indicates the effects of calling a method. At post-weaving stage (when advices are
injected into base program methods), the summary transfer functions of methods
are recalculated and compared with those resulting from the pre-weaving stage to
extract those of advice methods. The result information about data variables af-
fected by the different advices are compared to detect potential direct or transitive
data conflicts.

Katz et Sihman [Katz 2004| propose the use of Bandera tool [Hatcliff 2001] to
model check a collection of aspects called superimposition and their interferences
when they are applied to a base program. Bandera tool analyses Java source code
augmented with aspects and annotated with BSL (Bandera’s temporal Specification
Language) formulas and generates a compatible code that can be checked using
model checkers such as: SPIN [Ben-Ari 2008| and Java PathFinder [Havelund 2000].
The proposed verification process by the authors has four main steps: first the base
system should be correct with respect to a set of basic properties defined for this
purpose. Second, a set of assumptions defined for each aspect in the superimposition
should be checked, thus when they are not satisfied the aspects cannot be woven
into that base system. Third, weave the superimposition to the base program and
check whether the basic properties used in the first step are still verified, otherwise
an interference with the base program is reported by returning a counter example.
Fourth and finally, a set of desired properties of the woven aspects are checked. The
idea behind the proposition of the superimposition concept is to provide a reusable
aspect library. That is to say, when a superimposition is woven into a basic program
satisfying the superimposition’s assumptions, it is assured that the woven program
will satisfy the desired properties and conform to the original specification of the
basic program.

In a recent work, Chen et al. [Chen 2010] propose a formal model based upon
UTP (Unified Theories of Programming) designs [Hoare 1998| for base-aspect and
aspect-aspect interferences. In this work, base classes and aspects are defined as
tuples of their underlying elements (i.e., attributes, methods, advices, intertype
declarations). Methods and advices are defined as UTP designs of the form p - ¢
that can be read as: if the execution of a design starts successfully from a state in
which the precondition p holds, it will terminate successfully in a state satisfying the
postcondition g. The pre and postconditions are defined in terms of class attributes
values. Moreover, an invariant is defined for each class. An invariant is a global
predicate that is assumed to be hold before and after the execution of each method of
the class. The weaving is modeled as the composition of the formal models describing

2.3. Lessons learned 35

the class and the aspects to be woven. An interference between an aspect and a
base program is detected by checking whether the base program design satisfies the
aspect preconditions. That is to say, if the aspect advice is a before advice, the result
predicate of the conjunction of the class invariant and the precondition of the method
to be altered by the aspect should imply the precondition of the advice. Similar
rules are defined for the after and around advices. After weaving, the result method
should satisfy the invariant of the class, otherwise an interference is reported. An
interference between two aspects is detected by: first check the potential weaving
of the aspects individually to the base program; second, weave the first aspect and
check weavability of the second aspect with the woven system, finally, check the
postcondition of the first aspect whether it is still satisfied after the weaving of the
second aspect. If it is the case, the two aspects are interference-free otherwise, an
interference is reported. In this case, the unsatisfied conditions can be used to avoid
the conflict. The main drawback of this approach, is that aspects are applied to a
single class and hence aspects altering several classes cannot be treated. Table 2.1
summarizes the above discussed approaches for aspect interferences detection and
resolution, the underlying logic and the verification tool used by each approach.

2.3 Lessons learned

In our assessment process we focus on interferences detection and resolution in
general. In the following we list the set of conclusions from the above review over
interferences detection and resolution:

2.3.1 Interference Detection

1. Syntactic verification is one first step towards interferences detection. Nowa-
days, it is known that these approaches are not efficient enough to detect all
potential interferences among aspects, thus semantic interference verification
should be considered. This includes data and controlflow analysis. This need
can be justified by the fail of syntactic-based approaches to detect the conflict
between the performance and the saveEnergy aspects of our crane example.

2. As shown in [Fraine 2008, Weston 2007|, an efficient semantic interference de-
tection must include both control and data flow analysis. This enables a
precise and a complete analysis of aspect advices interactions.

3. An aspect specification should be unaware of any other aspect, otherwise a
new specification is needed each time has an aspect to be woven to another
context. The compositional intentions based specification provided by Marot
et al. [Marot 2009] is a good example implementing this purpose, where CTs
are defined in an abstract way and do not rely on a specific context.

As general conclusion for aspect interferences detection, both syntactic and se-
mantic features of aspects must be considered. In other words, an effective detection

Chapter 2. Aspect Oriented Programming and Aspect Interference
36 Issue

of aspect interferences must take into account the aspect intent and behavior. While
the intent of an aspect explains the aspect effects on the base system, the behav-
ior shows the positions where the aspect interact with the system and the explicit
actions taken by the aspect to achieve the intent. In addition, the specification of
intents and behaviors of aspects should be as abstract as possible for testing the
applicability of an aspect to any base system and check its interaction with any
aspect applied to such a system.

2.3.2 Interference Resolution

1. Precedence is the basic and intuitive way to compose aspects but it does not
solve all kinds of interferences. Thus, we should get rid of aspect precedence
study and think about more powerful composition strategies.

2. The compositions strategies should be generic and not ad hoc propositions,
this enables the reusability of the proposed solutions.

3. AOP approaches generally use an implicit specification of skipping a join
point. This needs to be revised for interference resolution, because the dif-
ferent aspects actions on join points should be considered. Take for example
the craneSafety and the saveEnergy aspects: when load or unload calls are
skipped by the former aspect, the corresponding advice of the latter aspect
should not be executed otherwise the saveEnegy aspect will forces the arm
to work in slow mode before reaching the threshold number of carried con-
tainers. This cannot be detected without making the skip action explicit. In
[Marot 2009], skip is modeled by the NoProceed action to solve the conflict.

4. Generally, an interference can not be solved automatically. In this case it is
not sufficient to report the conflict to the user, useful and aiding information
should also be reported so that the user could realize the source of the conflict
and can make the right decision. It is the case for the UTP based model
provided by Chen et al. [Chen 2010].

As general conclusion for interference resolution, the actions of aspects on join
points should explicitly be specified, and more general and reusable composition
strategies must be provided. In addition, the developer should be given information
that explains why and how an interference appears. This enables the developer to
choose the right composition strategy that solves the interference. We believe that
model checking approaches may help in the detection of interferences and give suf-
ficient information about aspect properties violation. We also believe that a library
of patterns for composition operators may help to determine the right composition
strategies solving interferences.

37

QUIYDRIN [BNUIA 10RIISqY (INAY) ‘Surumeidor jo A10oy], Sutdjiup (JI,0)) 01807 opiQ 1siq (TO) 01807 rerodway, resur (TT1/T)
‘01807 Terodwo], (7T],) :UOIIM[OSOI pUR UOIIDOJOP SeoULIdfIoUI Joadse 10] sproddns 1oy} pue sppow JOV Jo Arewwung :T°g 9[qeR],

Lessons learned

2.3.

- dLN - suonipuod jsod/a1d l0T0g Wy

NIdS “eiopureg TL - SISATeUR 9pOO O19R)S [700z zye3]]
vAlv syders mopgp - SISATeU®R MO ®JRp (2007 woysop|

SISATeur MO[O 104 - soryrodord oojuerensd /owmnsse [8007 ourel|

- 104 oouepadard syders mopgo (6007 [osotuy]

UDARTA] TI1 - sorjotidord oojuerens /owmsse [8007 z1ey]

VSIT dSd | 10 ‘puy ‘beg :siojerodo UOT)RAIISUO SIUOAD [200Z @oueno(]

- | sydei8 mopgo /mopp 9ouepadard | s9dTApR U0 SUOIjuLUI Teuor}Isodurod (6007 101eN]

WAV ydeis mopo oouapovard SISATeUR MOJJ [0IJUO0D /e)ep [800¢ 1m(]]

[009 uoIedYLISA | I180[SUIA[IapU() Honmiosoy ey sy @ui@a@ﬁ“ﬂwowuwﬁ 90UBJI9JaI [OPOIA

CHAPTER 3

Component Based Software
Engineering and their AOP
support

Contents
3.1 Overviewof CBSE 39
3.2 Container-Based Component Models 41
321 EJB ... 41
322 AES 42
323 CORBA/CCM 44
3.2.4 AspectCCM/CORBA 46
325 Spring AOP L 47
326 JBoss AOP 48
327 JAsCo 49
3.3 Aspectual Component-Based Models 51
3.3.1 CAM/DAOP 52
332 Fractal 593
3.3.3 FractallAOP 56
334 FAC e 57
335 Safran 58
3.4 Software Architecture Modeling based models 59
3.4.1 PRISMA 59
3.4.2 AspectLEDA 61
3.5 Lessonslearned. e 63

3.1 Overview of CBSE

Component-Based Software Engineering (CBSE) enables quick and easy assembly
of prefabricated software units named components to get the final software applica-
tion. With CBSE, the required components are developed independently by soft-
ware developers. Components come with a clear specification of what it provides

and requires. That indicates how and with which a component can be assembled,

Chapter 3. Component Based Software Engineering and their AOP
40 support

and under which circumstances the assembling is correct. The main benefits of
CBSE is the modularity, the reusability and the interoperability of software compo-
nents. By modularity, a software application is composed of separate components,
each of which implements a part of the business logic of the system which deeply
improves the maintainability of software applications. By reusability, components
can be used again and again in different software applications with non-invasive
adaptation, minimum reconfiguration or even with no modification at all. By in-
teroperability, heterogeneous components that come from different providers can be
assembled and work together efficiently. Nowadays, several industrial and academic
component models are proposed (e.g., CORBA, EJB, Fractal, Sofa, etc.) aiming
to ensure better modularity, reusability and interoperability of components. How-
ever, as we mentioned in the above chapter, some functionalities or system features
are non modular, and when they are needed to be implemented in CBSE, the big
challenge is how to ensure the modularity of those functionalities and the reusabil-
ity of regular components. One solution is to provide a support of aspect-oriented
programming techniques to CBSE.

In this chapter we overview a set of component models and we discuss their
support level of aspects. The overview does not mean to be exhaustive, but rather
discuss their aspect-oriented support. For better comprehensibility of how the pre-
sented models work we demonstrate their ability to model our crane example with its
different aspect extensions. Note that each component model, provides its own defi-
nitions of architectural elements and their relationships. Here, we give the common
terminologies of the CBSE that we use all along in this chapter.

Component a component is the composition unit of CBSE, it is a black or gray
box that encapsulates a business logic and exposes its services through a set
of interfaces. For hierarchical component models, two kinds of components
are supported: primitives and composites. Primitive components are the fine-
grained software units of composition, while composites are units composed
of other components either primitive or composite ones.

Interfaces interfaces are the only access points of a component. Services provided
by a component are abstracted and exposed in interfaces named provided in-
terfaces. Components that require services from other components abstract
all the required services in separate interfaces called required interfaces.

Binding is a mechanism of assembling components together. A binding connects
a required interface to one or more provided interfaces directly or by means
of connectors.

The presented component models in this chapter are divided into three cate-
gories: container-based and aspectual component models, and software architecture
modeling-based models.

3.2. Container-Based Component Models 41

3.2 Container-Based Component Models

Container-based component models are developed to free software developers from
implementing the so called complex features or aspects in AOP such as distribution,
synchronization and persistence. So that, the containers implement and manage
these aspects for the deployed components. Enterprise Java Beans and CORBA
component models belong to such category. The main drawbacks of such component
models are: (1) restricted aspects provided by their containers (2) do not support
flexible aspect extensions. However, some extensions are proposed to extend those
models with user defined aspects. In this section, we discuss a set of those component
models with their extensions.

3.2.1 EJB

EJB [Burke 2006] enables the development and the deployment of components which
are Java objects called enterprise beans. Enterprise beans are distributed software
components that run exclusively in an EJB container. The EJB container wraps
enterprise beans and prevents any direct access to their provided services. Each
external invocation to an enterprise bean service is intercepted by the container;
the container executes some additional behaviors according to the semantic of its
supported aspects then it may calls the original invoked service. The EJB container
supports security, persistence, transactions, concurrency, and resources management
aspects. These are predefined aspects that are automatically woven to the enterprise
beans and do not have to be written by enterprise beans developers.

Each EJB component exposes two interfaces home and remote. While the former
provides life cycle management services for the bean: creation, update, destruction,
and locate the bean reference, the latter provides business services of the bean.
For the crane example, IController, IEngine, IArm, and IMagnet interfaces are
remote interfaces because they define business services of their components. Using
a business service of the bean by an external enterprise bean is made by first calling
the home server interface to get a reference to the bean then, the service of the remote
interface can be invoked. Figure 3.1 shows the structure of the EJB container. EJB
distinguishes two kinds of components: entity and session beans. Entity beans
represent a data in a database and their remote interface only define accessors and
other related services to that data. Session beans implement business services of
their remote interface. In our crane example, all the components are session beans
because they implement business services that are not related to any database. The
main advantage of using EJB is the portability of enterprise beans. By portability,
once an enterprise bean is developed, it can be executed in any EJB container such
as the ones provided by BEA, IBM, and GemStone servers.

From the AOP point of view, pointcuts of the supported aspects by EJB are
explicitly indicated in an XML file called deployment descriptor. In this file, enter-
prise beans developers explicitly specify the methods that require a transaction, or
a security access role. All these information and others like whether the persistence

Chapter 3. Component Based Software Engineering and their AOP
42 support

EJB Container

|Transaction| | Security |

]]

| Persistence | |Concurrency|

as
.

Figure 3.1: EJB Container structure

is handled automatically by the container or is performed by the bean itself is col-
lected in the deployment descriptor. The file is read by the EJB container at the
deployment phase to know how to manage the beans at runtime. Listing 3.1 shows
the deployment descriptor file of the crane example. In the listing, each component
is defined using session element (for session beans only) (line 3-8), everyone has
a full access to all the component methods (line 12-21) with the use of "*", and
transaction is not required for methods with the use of Never transaction type (line
27).

Limitations

At first glance, it appears that aspect weaving in EJB is made by wrapping, but in
fact, the enterprise beans must implement the EJBHome and EJBObject interfaces.
These interfaces define methods to be implemented by enterprise beans to explicitly
call the container to execute the code of the predefined aspects for them. The
main drawback of EJB, is its lack of support for user defined aspects such as the
performance and the saveEnergy aspects required for our example. Furthermore,
EJB does not provide a flexible way to update and compose the current predefined
aspects.

3.2.2 AES

AES [Choi 2000] extends EJB with a development support of flexible and extensible
aspects. It replaces the default EJB container with metaobjects. With AES, aspects
are independent entities that are developed and updated separately then added to
metaobjects. A metaobject controls a baseobject (i.e., regular enterprise bean) and
references one or more aspects and calls them when method calls, to the baseobject,
are intercepted.

The deployment descriptor of EJB is extended to cope with user defined aspect
pointcuts. In the new deployment descriptor one should indicate the set of methods

3.2. Container-Based Component Models 43

1 <ejb—jar>

2 <enterprise —beans>

3 <session>

4 <ejb—name>ControllerBean </ejb—name>
5 <home>ControllerHome </remote>

6 <remote>IConcoller </remote>

7 <ejb—class>Controller </ejb—class>
8 </session>

9 <! all the other components are declared here the same way/>
10 </enterprise—beans>

11 <assembly—descriptor>

12 <security —role>

13 <role —name>everyone </role —name>

14 </security —role>

15 <method—permission>

16 <role —name>everyone </role —name>

17 <method>

18 <ejb—name>*<ejb—name>

19 </method—name>+</method—name>

20 </method>

21 </method—permission>

22 <container—transaction>

23 <method>

24 <ejb-—name>x+<ejb—name>

25 </method—name>+</method—name>

26 </method>

27 <trans—attribute >Never</trans—attribute >
28 </container—transaction>

29 </assembly—descriptor>

30 </ejb—jar>

W N =

Listing 3.1: Deployment descriptor file for the crane system in EJB

affected by each aspect. The deployment descriptor is read by the metaobject to
call the different aspects when join points are captured at runtime. Listing 3.2
illustrates an excerpt of the deployment descriptor of the crane example. Line 1
states that all the methods (i.e., "*") of the Controller bean are connected to the
setLoadingState advice method of the truckSafety aspect. Line 2 states that the
method moveDown of the Engine is connected to the checkForSpeed advice method
of the truckSafety aspect.

Controller is truckSafety with {setLoadingState = x*}
Engine is truckSafety with {checkForSpeed = moveDown}
Controller is saveEnergy with {maintainNbController = x*}
Engine is saveEngine with {checkForSpeed = x}

Listing 3.2: deployment descriptor in AES

In the case of shared join points, aspects advice methods are called in nested way.
Listing 3.3 illustrates a method called nested_load of the metaobject. This latter,
connects the Controller baseobject with the saveEnergy and the truckSafety
aspects for the load method that should be intercepted by both aspects. A nested
method m is created (line 5) for the load method of the baseobject Controller. The
truckSafety and the saveEnergy aspects with their corresponding advice methods

© 00O Ui W

Chapter 3. Component Based Software Engineering and their AOP
44 support

(i.e., setLoadingState and maintainNbContainer respectively) are added to the
nested method in such order (line 6-7). Finally, the nested method is invoked (line
8). Following code nesting principle [Choi 2000], the created nested method executes
the last added aspect advice, then the one before the last and so forth until the first
added one, all around the base method.

Object nested load () {
Method base = controller.getClass().getMethod("load");
Method adl = truckSafety.getClass().getMethod("setLoadingState");
Method ad2 = saveEnergy.getClass().getMethod("maintainNbContainer");
NestedMethod m = new NestedMethod(this, controller , base);
m.addMethod (truckSafety , adl);
m.addMethod (saveEnergy , ad2);
return m.invoke ()
}
Listing 3.3: truckSafety and saveEnergy composition in AES
Limitations

AES extends EJB with a support for user defined aspects. However, nesting com-
position mechanism is just another form of sequential composition of aspects. It
correctly compose the truckSafety and the saveEnergy aspects but it is useless
for aspects not sharing join points such as the saveEnergy and the performance
aspects. Thus, much work is still needed to support more powerful composition
mechanisms. In addition, AES does not provide any support for aspect interfer-
ences detection.

3.2.3 CORBA/CCM
CCM |Wang 2001, OMG 2006| extends CORBA with a development support to

implement, configure, and manage components. In CCM, component interfaces are
called ports, the set of provided interfaces are called facets, and the set of required
interfaces are called receptacles. A component in CORBA /CCM can emit and push
events via two more kinds of ports called event sources and event sinks, respectively.
In other words, facets and receptacles are used for synchronous communications,
while event sources and sinks are used for asynchronous communications. Moreover,
CCM defines component instance managers called homes; a home is defined for
each component type and manages the life cycle of its component instances. Like
EJB, CORBA components are managed by containers; a container encapsulates
components and component homes and forwards client requests to components it
manages to the Object Request Broker (ORB) to execute some predefined aspects:
transaction, security, persistence, and notification services. Furthermore, a container
defines a set of API interfaces accessible by its inner components to explicitly call
the ORB aspects via their internal interfaces. Figure 3.2 shows the CCM container
model.

1

3.2. Container-Based Component Models 45

CORBA Container

internal

receptacle

Component
source

(ORB)

| Persistence | | Transaction | | Security | | Notification |

Figure 3.2: CORBA Container model

Similar to EJB, CCM provides XML descriptors called IDLs. CCM descriptors
are used to describe components, properties, assemblies, and packages. Component
descriptors are used to describe component features: name, ports and home. Prop-
erty descriptors are used to configure component instances at the deployment phase
by assigning values to component attributes. Assembly descriptors are used to de-
scribe system configurations or component connections. Finally, package descriptors
are used to define a set of general technical properties of components such as the
supported operating system, the implementation language, and the component de-
pendencies (i.e., the set of required programs for the execution of the component).
Listing 3.4 describes the Controller component in IDL component descriptor; pro-
vided interfaces are noted with provides (line 2), required interfaces are noted with
uses (line 3), and the component home ControllerHome is explicitly defined with
the keyword home (line 5).

component Controller {

2 provides IController iController;

3 uses |Engine iEngine;

4}

5 home ControllerHome manages Controller{}

Listing 3.4: Controller component in CCM/CORBA IDL

Limitations

CORBA is a language and platform independent model and its Portable Object
Adapter (POA) extension |[Pyarali 1998] makes CORBA containers more flexible
than those of EJB, but not flexible enough to allow the definition of user defined
aspects.

Chapter 3. Component Based Software Engineering and their AOP
46 support

3.2.4 AspectCCM/CORBA

AspectCCM [Clemente 2002| extends CCM component model of CORBA with a
support for user defined aspects. Aspects in AspectCCM are regular CCM compo-
nents exposing their services via facets and event sinks. AspectCCM distinguishes
two kinds of component interconnections: intrinsic and non-intrinsic interconnec-
tions. The former indicates the business logic services required from other CCM
components, these are normally specified in CCM with wuses keyword in the com-
ponent specification phase (see Listing 3.4). The latter indicates non business logic
services implemented by aspects; these required services are added later at the as-
sembly or the packaging phases. AspectCCM adds uses aspect keyword to the
component specification to describe this second type of interconnections. Now, the
truckSafety and the saveEnergy aspects can be added to the Controller com-
ponent description as shown in Listing 3.5 (line 4-5). Note that the truckSafety
and the saveEnergy aspects also require the interception of the Engine component
interfaces and hence they should also be added to the Engine component descriptor.

1 component Controller {

2 provides |Controller iController;
3 uses |Engine iEngine;

4 uses_aspect truckSafety;

5 uses_aspect saveEnergy;

6}

7 home ControllerHome manages Controller{}

Listing 3.5: Controller component in AspectCCM/CORBA

Aspect services are added at the packaging phase. For this purpose, AspectCCM
extends the package software descriptor of CCM with elements defining the package
where aspects are hosted, where and when each aspect advice is called in AspectJ
like expressions. Listing 3.6 illustrates a simplified code of the IDL extension pro-
vided by AspectCCM to describe aspect weaving in our crane example. Pointcuts
are defined in line (2-3) with pointcut element, while the aspect advices association
is specified with advice element. This description is later parsed and dependencies
of aspects are added to CCM components without introducing crosscutting to com-
ponents implementation. In AspectCCM it is at the assembly phase where the real
instances of aspects are bound to the base components. For this purpose, the as-
sembly descriptor of CCM is also extended to support aspect connections as shown
in Listing 3.7 where aspect instances are located (line 2-3).

Limitations

AspectCCM enables user defined aspects and aspect instantiation. However, it does
not say anything about the execution order of aspects even at shared join points.
In other words, AspectCCM does not provide a support for explicit composition of
aspects. In addition, aspect interference detection is omitted by the model.

3.2. Container-Based Component Models 47

1 <usesaspects>

2 <pointcut name="in" type element= execution(x Controller.x())/>

3 <pointcut name="out" type element= call(x Engine.x())/>

4 <advice nameserver="truckSafety" pointcut_name="in" type= before/>
5 <advice nameserver="saveEnergy" pointcut_name="in" type=before/>

6 <advice nameserver="truckSafety" pointcut_name="out" type= before/>
7 <advice nameserver="saveEnergy" pointcut_name="out" type=before/>
8 </usesaspects>

Listing 3.6: Aspect weaving description in AspectCCM

1 <connections type=connectaspects>

2 <aspect componentinstanceref= truckSafety/>
3 <aspect componentinstanceref= saveEnergy/>
4 </connections>

Listing 3.7: Aspect instances locators in AspectCCM

3.2.5 Spring AOP

SpringAOP [Pawlak 2005, Walls 2007] is a container based component model that
allows user defined aspects. Aspects in SpringAOP are Java objects called beans
implementing the different advice methods. To be weaved to other beans imple-
menting the business logic of applications, aspect pointcuts must be defined using
either AspectJ annotation style or schema-based approach. In the former case, an-
notations defining pointcuts and advices are scattered over different beans. In the
latter case, a separate file of an XML-like schema is used to define aspect elements.
Here we focus on the latter case, Listing 3.8 shows the schema-based description
of the saveEnergy aspect. Each aspect is defined by aop:aspect element with an
identifier and a reference to the bean implementing it (line 2). Pointcuts are de-
scribed by aop:pointcut element with an identifier and an AspectJ-like pointcut
expression (line 3-4). Currently, SpringAOP supports only method execution point-
cuts. Advices are described according to their types, in the saveEnergy case, only
before advices are used, they are defined by aop:before with a pointcut reference
pointcut-ref and the advice method method (line 5-6).

1 <aop:config>

2 <aop:aspect id="saveEnergy" ref="saveEnergyBean">

3 <aop:pointcut id="in" expression="execution(x Controller.x(..))"/>
4 <aop:pointcut id="out" expression="execution(x Arm.x(..))"/>

5 <aop:before pointcut—ref="in" method="maintainNbContainer"/>

6 <aop:before pointcut—ref="out" method="checkForSpeed"/>
7 </aop:aspect>
8 <bean id="saveEnergyBean" class="saveEnergy"/>
9 </aop: config>

Listing 3.8: saveEnergy aspect in SpringAOP schema-based approach

Chapter 3. Component Based Software Engineering and their AOP
48 support

Limitations

SpringAOP provides a flexible container for beans. It enables user defined aspects
and interoperate with AspectJ weaver. Form AOP point of view, SpringAOP is a
mapping of AspectJ concepts into Spring beans: it supports all the advice types
defined in Aspect] (i.e., before, after, around, before throwing, etc.), and supports
aspect instantiation using AspectJ’s like mechanism (i.e., perthis and pertarget).
For aspect weaving, SpringAOP may call AspectJ weaver at loading time to weave
Spring beans. SpringAOP also supports weaving by wrapping beans with proxies
that intercept calls and delegate them to aspects relevant to that method calls.
The former approach is used when both internal and external calls needed to be
intercepted, because with proxy-based approach only external calls are intercepted.
Composing Aspects follows AspectJ precedence mechanism (the aspect beans should
either implement the predefined Ordered interface or be annotated with @order
notation). However, aspect interferences detection is also omitted by this model and
the precedence relationship among aspects is not sufficient to solve interferences.

3.2.6 JBoss AOP

JBossAOP [Pawlak 2005| provides a support for AOP to Java component systems.
Like SpringAOP, aspects are regular Java classes extended with annotations or with
XML-descriptions to explicitly describe pointcuts and advices. The join point model
of JBossAOP supports method and constructor execution, attribute access and con-
trol flow specification. Listing 3.9 shows a description of the saveEnergy aspect in
XML-description. Pointcuts and advice associations are defined with bind element
(line 3-5, 6-8). Different instances of aspects may appear at the same application,
this can be specified in the scope attribute of the aspect element (line 2). PER_VM
value indicates that only one aspect instance should appear for an application. Other
values can be used to instantiate aspects for each class PER_CLASS, for each bean
instance PER_INSTANCE and even for each join point (PER_JOINPOINT). JBossAOP
also supports intertype declaration using mixins.

2 <aspect name="saveEnergy" class="saveEnergy" scope="PER VM"/>
3 <bind pointcut="execution(x Controller.x())">

4 <before name="maintainNbContainer" aspect="saveEnergy"/>

5 </bind>

6 <bind pointcut="execution(x Arm.x())">

7 <before name="checkForSpeed" aspect="saveEnergy"/>

8 </bind>
9 </aop>

Listing 3.9: saveEnergy aspect in JBossAOP schema-based approach

Listing 3.10 explicitly shows that the setLoadingState advice of the truckSafety
should be executed before the maintainNbContainer advice of the saveEnergy as-
pect (line 2-3). The same, the checkForSpeed advice of the truckSafety should be
executed before the checkForSpeed advice of the saveEnergy aspect (line 6-7).

3.2. Container-Based Component Models 49

1 <precedence>

2 <advice aspect="truckSafety" name="setLoadingState"/>

3 <advice aspect="saveEnergy" name="maintainNbContainer"/>
4 </precedence>

5 <precedence>

6 <advice aspect="truckSafety" name="checkForSpeed"/>

7 <advice aspect="saveEnergy" name="checkForSpeed"/>

8 </precedence>

Listing 3.10: Advice precedence in JBossAOP

Limitations

JBossAOP also maps AspectJ concepts into JBoss beans. JBossAOP allows dy-
namic weaving by wrapping beans (i.e., JBoss intercepts join points at runtime and
calls aspects). No interference detection mechanism is provided and only advices
precedence at shared join points is supported.

3.2.7 JAsCo

JAsCo [Suvée 2003| extends Java beans with aspects. Aspects or aspect beans in
JAsCo define a set of hooks. Each hook is defined by one or more constructors and
one or more advice methods. A hook constructor initializes a hook; its body specifies
an abstract pointcut over an abstract method parameter. When it is instantiated,
the abstract method matches a concrete method and as a result, the abstract point-
cut matches a concrete pointcut. In JAsCo, only two AspectJ-like pointcuts are
available: execution and cflow. Like AspectJ, JAsCo supports before, after and
around advices. Listing 3.11 shows the code of the saveEnergy aspect in JAsCo
with two hooks definition: maintainNbContainer (line 5-12) and checkForSpeed
(line 14-21). The former matches each method execution (line 7) and maintains the
number of carried containers by executing the before advice (line 9-11). The latter
matches each method execution (line 16) and checks whether the number of carried
containers reaches a threshold number (line 19). If it is the case, it changes the
speed parameter value to LOW.

JAsCo uses connectors to instantiate and apply aspects to one or more com-
ponents. A connector instantiates one or more hooks by calling their correspond-
ing constructors. A constructor is called with an expression defining the set of
concrete methods to replace its abstract method parameter. Listing 3.12 shows
the saveEnergyConnector. This connector, instantiates the maintainNbContainer
hook on each method defined within the Controller component whose name ends
with load, and instantiates the checkForSpeed hook on each outgoing event (onevent
keyword) of the Engine whose name starts with move. Hence, whenever a load or un-
load methods are called, the before advice of the maintainNbContainer hook is exe-
cuted, and whenever moveLeft or moveRight events are triggered, the before advice
of the checkSpeed hook is executed. JAsCo applies aspects to components via com-
ponent wrapping. Wrapping is made by associating traps to methods, so that, when

0O Uik WK

Chapter 3. Component Based Software Engineering and their AOP
50 support

class saveEnergy {
final static int THRESHOLD = 100;
int nbContainer = 0;

hook maintainNbContainer {
maintainNbContainer (method (.. args)) {
execute (method) ;

}
before () {
nbContainer++;

by
}

hook checkForSpeed {
checkForSpeed (method (.. args)) {
execute (method) ;

}
before () {

if (nbContainer>=THRESHOLD) ((Speed)args[0])=Speed.LOW;
¥

¥
}

Listing 3.11: saveEnergy aspect in JAsCo

connector seveEnergyConnector {
saveEnergy . maintainNbContainer nbc =
new saveEnergy.maintainNbContainer(x Controller.xload(x));

saveEnergy .checkForSpeed cs =
new saveEnergy.checkForSpeed(onevent * Engine.movex(x));

Listing 3.12: saveEnergyConnector in JAsCo

a method is called, a connector registry is interrogated and the concerned connector
is called. The connector dispatches the called method or event to the corresponding
hook. When more than one hook correspond to the method, a composition strategy
assigned to the connector is executed. JAsCo supports composition of both advices
and aspects. The advices’ execution order is explicitly specified at each connector,
when its is omitted, the before advices are executed first, then the around advices
then the after advices. Listing 3.13 shows the saveEnergyTruckSafetyConnector.
This latter, instantiates the checkForSpeed hook of both aspects saveEnergy and
truckSafety. The execution order specification part (line 8-9) indicates that the
before advice of the truckSafety aspect (line 8) is executed first then the before
advice of the saveEnergy aspect can be executed (line 9).

Aspect composition in JAsCo is supported by implementing a CombinationStra-
tegy interface that defines a verifyCombinations method to specify the execution
strategy of aspects. The implementation of the combination strategy is instantiated
and added to the connector using addCombinationStrategy(strategy) method.
Listing 3.14 describes a Twin combination strategy of two hooks hookA and hookB.
This combination-strategy specifies that hookB should be removed whenever hookA

3.3. Aspectual Component-Based Models 51

connector seveEnergyTruckSafetyConnector {
saveEnergy.checkForSpeed se cs =
new saveEnergy.checkForSpeed(onevent % Engine.movex(x));

truchSafety.checkForSpeed ts cs =
new truckSafty.checkForSpeed(onevent * Engine.moveDown(x));

ts _cs.before();
se_cs.before();

}
Listing 3.13: Ordering saveEnergy and truckSafety aspects in JAsCo

is not found (line 11-16). This way, the behavior of hookB is never executed, if the
behavior of hookA is not performed.

class twinCombinationStrategy implements CombinationStrategy {
private Object hookA, hookB;
twinCombinationStrategy (Object a, Object b) {
hookA =a;
hookB =b;
ks
HookList verifyCombinations(HookList hlist) {
if (!hlist.contains(hookA)) hlist.remove(hookB);
return hlist
¥
}

Listing 3.14: The twin combination stratgy in JAsCo

JAsCo offers a set of keywords that enables creating multiple aspect instances.
For instance, perobject creates a unique hook for every target object instance,
while perclass creates a unique hook for every target class.

Limitations

JAsCo provides a set of interesting AOP features: aspectualize components by com-
ponent wrapping, aspect instantiation, advices execution ordering rules and a pro-
grammatic way for aspect composition. However, the model is a language dependent
and does not provide a support for aspect interferences detection.

3.3 Aspectual Component-Based Models

Aspectual component-based models are more flexible and extensible models com-
pared with container-based ones. They enable user defined aspects definition and
provides a greater support for their extension when more requirements are needed.
In this section we overview two component models of this category: CAM/DAOP
and Fractal component model with its different extensions.

Chapter 3. Component Based Software Engineering and their AOP
52 support

1 <aspect role="SAVEENERGY">

0N O Ul W

9
10
11
12
13

<evaluatedinterface>
<method name="load "></method>
<method name="unload"></method>
<method name="moveUp">Speed </method>
<method name="moveDown">Speed </method>
</evaluatedinterface>
<implementation>
<name>saveEnergy </name>
<language>java </language>
<class>saveEnergy.class</class>
</implementation>
</aspect>

Listing 3.15: saveEnergy aspect in CAM/DAOP ADL

3.3.1 CAM/DAOP

CAM/DAOP [Pinto 2003, Pinto 2005 provides a component aspect model (CAM)
and a dynamic execution platform (DAOP). CAM is a flat component model with
support of aspects. Aspects in CAM are special kind of components that implement
an evaluated interface. The evaluated interface defines an eval(Message m) method
that implements the advices code of the aspect, and it is called whenever a message
is intercepted by the DAOP platform. Role names are assigned to both compo-
nents and aspects. Roles are used to reference architectural elements; the main
advantage of using roles is the ability to replace aspects and components by others
implementing the same roles without need to recompile the system. CAM/DAOP
provides an ADL language to describe the architecture of the system with aspects.
Listing 3.15 describes the saveEnergy aspect in CAM/DAOP ADL. In the listing,
the saveEnergy aspect is defined within the SAVEENERGY role (line 1), the methods
of interest with their parameters are listed in the evaluatedInterface section (line
2-7). The aspect real name, its programming language and its implementation class
file are defined in the implementation section (line 8-12).

The join point model of CAM includes component creation and destruction and
received and sent messages or events. Pointcuts and advice types are both defined
by means of composition rules. Each composition rule defines the source and the
target components of the interesting methods, the set of aspects to be weaved, and
when aspects must be executed. Listing 3.16 describes the composition rule of the
saveEnergy and the truckSafety aspects of the crane example. The source com-
ponent roles (i.e., USER and ENGINE) are declared at line 4, while the target
component roles (i.e., CONTROLLER and ARM) are declared at line 5. The mes-
sages of interest (i.e., load, unload, moveUp and moveDown) are explicitly defined at
line 6. The aspects to be weaved are defined at line (8-9) and the type of advices used
in this case is BEFORE RECEIVE (line 6). In CAM/DAOP an aspect can be exe-
cuted before receiving and sending messages or events (BEFORE RECEIVE, BE-
FORE _SEND), after receiving or sending messages or events (AFTER _RECEIVE,
AFTER _SEND), and before or after creation or destruction of components (BE-

3.3. Aspectual Component-Based Models 53

1 <compositionRules>

2 <aspectCompositionRule>

3 <aspectRule>

4 <sourceComponentRole>USER ENGINE</sourceComponentRole>

5 <targetComponentRole>CONTROLLER ARM</targetComponentRole>
6 <BEFORE_RECEIVE>

7 <message>load unload moveUp moveDown</message>

8 <aspectlList>truckSafety </aspectList>

9 <aspectlList>saveEnergy </aspectList>

10 </BEFORE_RECEIVE>

11 </aspectRule>

12 </aspectCompositionRule>
13 </compositionRules>

Listing 3.16: saveEnergy and truckSafety aspect weaving in CAM/DAOP

FORE NEW, AFTER NEW, BEFORE DESTROY, AFTER DESTROY).
Aspects in CAM/DAOP can only be executed sequentially or concurrently: as-
pects declared in the same aspectList element of the composition rule are executed
concurrently and those declared in different aspectList elements (e.g., line (8-9))
are executed sequentially. DAOP platform applies the weaving at runtime. When
several aspects are sequentially composed and a message of interest is intercepted
by DAOP, the eval() method of the aspects are called sequentially; the aspects in
this case forms a chain, thus if an error occurs, the eval() methods of the subsequent
aspects in the chain are not called and the message never reaches its target.

Limitations

CAM/DAOP is designed to be a language-independent model, but currently it is
only implemented in Java. However, the model has several limitations: (1) the
model does not provide a declarative pointcut language, instead all the messages
or events to be intercepted are explicitly declared one by one, (2) it only support
sequential composition of aspects, (3) it does not provide advice execution ordering,
and (4) it does not provide a support for interferences detection.

3.3.2 Fractal

Fractal [Bruneton 2004, Coupaye 2006] is an extensible, flexible and hierarchical
component model developed by OW2 consortium. Besides its component hierar-
chization support, Fractal supports a set of interesting features such as: component
sharing and aspects through component controllers. Each component in Fractal
has a content and a membrane. The content encapsulates the business logic of a
component, while the membrane exposes the provided and the required interfaces
of a component and encapsulates a set of controllers implementing aspects applied
to the component. Figure 3.3 shows the general structure of a component in Fractal
with a content and membrane. By hierarchization, both primitive and composite
components are supported by Fractal. Primitive components are distinguished from
composites by the definition of their contents. The content of a primitive component

Chapter 3. Component Based Software Engineering and their AOP
54 support

controller interface

e . - ——

e membrane ~<
/ \
/ \
1 \

provided interface required interface

Figure 3.3: Fractal component architecture

is defined as a set of attributes and operations implementing the business logic of
the component, while the content of a composite is defined as a set of components
and their connections. Components are connected to each other via binding. A
binding connects a required interface of a component to a provided interface on the
assumption that the provided interface type is a sub-type of the required interface
type due to the strong typing of Fractal.

Fractal also provides an architectural description language called Fractal-ADL
to describe the architecture of component systems. Listing 3.17 illustrates the de-
scription of the Crane composite component in Fractal-ADL. The role attribute of
an interface element indicates whether the interface is provided (i.e., server) or re-
quired (i.e., client). Primitive components content element indicates the location of
the implementation class of the component, while the content of a composite com-
ponent is defined by a set of component definitions encapsulated by the composite.
Component binding is described using the binding element (line 14-16), this includes
internal bindings that bound a composite component interface to an interface of its
inner components. Internal bindings are indicated with the keyword this in the
place of the component interface owner name (line 14, 16).

1<definition name="Crane">

0 O Uk W N

17
18

<interface name="iEngine" role="server" signature="crane.|lEngine"/>

<interface name="iMagnet" role="client" signature="crane.l|Magnet"/>

<component name="Engine">
<interface name="iEngine" role="server" signature="crane.|lEngine"/>
<interface name="iArm" role="client" signature="crane.lArm"/>
<content class="cane.enginelmpl"/>

</component>

<component name="Arm">
<interface name="iArm" role="server" signature="crane.lArm"/>
<interface name="iMagnet" role="client" signature="crane.lMagnet"/>
<content class="cane.armlmpl"/>

</component>

<binding client="this.iEngine" server="Engine.iEngine"/>

<binding client="Engine.iArm" server="Arm.iArm"/>

<binding client="Arm.iMagnet" server="this.iMagnet"/>

<controller desc="Performance"/>

</definition>

Listing 3.17: The Crane component in Fractal-ADL

0O Uik WK

18
19

3.3. Aspectual Component-Based Models 55

(Performance

(

"interface —class—generator

(
(performance—controller crane.lAspect)
)
(
(crane.Performance)

)
(

(org.objectweb . fractal.julia.asm.InterceptorClassGenerator
org.objectweb . fractal.julia.asm.LifeCycleCodeGenerator
(Fclnterceptors.inOutlnterceptor 'interfaceName)

)
)

org.objectweb . fractal.julia.asm.MergeClassGenerator
'"optimizationLevel

)
)

Listing 3.18: The specification of the Performance controller in Julia

Fractal supports dynamic reconfiguration through its provided API or by means
of FScript language extension |[David 2009a|. Furthermore, Fractal is a language-
independent model and Julia [Bruneton 2006] is its reference implementation in
Java. Fractal defines a set of predefined controllers to manage the life cycle of a
component (life-cycle controller), to configure component attributes (attribute con-
troller), to reconfigure the content of a composite controller (content controller) and
to manage component interface bindings (binding controller). In addition, Fractal
supports user defined controllers to implement aspects. Fractal controllers modify
the behavior of their underlying components. A controller intercepts the messages
sent and received by a component and it can alter them, redirect or even discard
them. In Fractal-ADL aspects like controllers are defined using the controller ele-
ment and the desc attribute indicates the name of a Julia template that describes
the interface and the implementation class of the controller; this is specified in a
separate Julia configuration file. For example, the Performance aspect of the crane
example can be integrated as a controller to the Crane composite component (line
17 of listing 3.17) and the Julia configuration file is shown in Listing 3.18 where the
interface controller (line 5), the class implementation file (line 8) and the type of
interceptor needed (line 13) are specified.

Limitations

Fractal supports a set of CBSE features: component hierarchization, component
instantiation and component sharing, in addition to its AOP support via the mem-
brane controllers. Unfortunately, its AOP support is very limited: (1) no declarative
pointcut language is provided, (2) no controller composition mechanism is offered,
(3) controllers model only aspects altering single components (i.e., primitive or
composite), while aspects affect several components. Thus when the components
involved in the interaction with an aspect do not belong to the same composite, a

Chapter 3. Component Based Software Engineering and their AOP
56 support

simple controller cannot model the complete behavior of the aspect. For example,
the saveEnergy concern affects the Controller and the Engine components. This
aspect cannot be added to the system as a regular controller since the concerned
components do not belong to the same composite. Several solutions are proposed;
in the following we review the proposed solutions one by one highlighting their
strengths and their weaknesses.

3.3.3 Fractal-AOP

Fractal-AOP [Fakih 2004| extends the membrane of components with two additional
control interfaces: execution controller (noted by cEc) and proceed controller (noted
by sPc). The former exposes the set of captured join points, while the latter proceeds
any intercepted join point. The join point model of Fractal-AOP includes incoming
and outgoing calls, getting and setting attributes, and components reconfiguration
actions. An aspect in Fractal-AOP is modeled as an assembly of components: ad-
vice components, and a weaving component. Advice components are Fractal regular
components that implement advices behaviors in services and expose them in one
or more provided interfaces. The weaving component is responsible to decide what
to do for each intercepted join point: proceeds it or call a service in an advice com-
ponent. A weaving component must be configured to define the set of pointcuts
to match join points at runtime and the services in the advice component to be
invoked before and/or after join points execution. It proceeds the captured join
point by calling the proceed controller of the functional component that advises the
interception of that join point.

Q@
g
=
=
(]
2
3

Q
g
+
>
<
8

|

sPcy CcEc cEc:_sPc
O—_(m o &{
N 2

Figure 3.4: Fractal-AOP weaving of the Performance aspect to the crane system

Aspect weaving in Fractal-AOP is performed at runtime by binding the weaving
component with both advice and functional components. For better understand-
ing of Fractal-AOP principle, let us see how to model the performance aspect of
the crane example in Fractal-AOP. The performance aspect is modeled as two
components: perf-Advice and perf-Weaving. The former implements setMagnet-
State and checkeForSpeed methods and exposes them in a provided interface. The
latter, is configured so that each captured call to setOn and setOff involves two
actions: first, calling the setMagentState method on the provided interface of the

3.3. Aspectual Component-Based Models 57

perf-Advice component, second, proceeds the call by calling the proceed controller
of the Arm component. In addition, each captured call to moveLeft and moveRight
involves: first, calling the checkForSpeed method on the provided interface of the
perf-Advice component, second, proceeds the call by calling the proceed controller
of the Engine. Figure 3.4 depicts the crane system architecture after weaving the
performance aspect, the result bindings of the weaving process are drawn with
dashed lines.

Limitations

Fractal-AOP provides, for Fractal, an API for explicit support of AOP. An aspect
is separated into a weaving and advice components. This enables the reusability of
aspects but complicates the architecture of the system by adding new components
modeling aspects. Fractal-AOP does not provide a declarative pointcut language
and does not say much about aspect composition and misses a support for aspect
interferences analysis.

3.3.4 FAC

FAC [Pessemier 2006, Pessemier 2008] models an aspect as a regular component
called aspect component. Like Fractal-AOP, an aspect component embodies a cross-
cutting concern by implementing the different advices code as services and expose
them in a provided interface called advice interface. The weaving component of
Fractal-AOP is replaced by a controller called weaving interface. This latter imple-
ments a set of methods like weave that enables aspect binding. An aspect binding is
a kind of connection of a controller interface to a regular provided interface, which is
in fact a simple access call to aspect component interfaces via Fractal introspection.
The weaving interface intercepts calls from component membrane and delegates
them to the aspect component by calling its advice interfaces. In order to be able to
weave different components at different levels of architecture, an aspect domain is
proposed. An aspect domain is a composite that encapsulates the aspect component
and shares the other underling components with their original components taking
advantage of Fractal component sharing feature. Figure 3.5 illustrates the crane
system after weaving the performance and the saveEnergy aspects following FAC
approach. In the figure, aspect components are annotated with «AC» stereotype,
shared components are represented by dashed boxes, aspect bindings are depicted
with dashed lines, and aspect domains are indicated by gray boxes.

In order to define the set of components and their interfaces captured by an
aspect, a pointcut language is provided. In addition to pattern matching, the point-
cut language of FAC defines two keywords SERVER and CLIENT to indicate the pro-
vided and required interfaces by a component, respectively. For example: SERVER
controller.*.* means that the aspect controller should intercept every method
on every provided interface of the Controller component. The pointcut language
of FAC also supports tracematch mechanism [Allan 2005, Avgustinov 2006]; trace-

Chapter 3. Component Based Software Engineering and their AOP
58 support

(2]
o
3
=l
S
o
<
m
=]
«Q
=]
o
>
1
3
m
3
Q
=]
o

Crane WI !

el o+ e ()

Figure 3.5: FAC implementation of the crane system

matching means that an aspect is executed only when a sequence of methods is
executed. Regular expressions are used to define traces.

For shared join points, FAC aspect controller interface defines methods that
assign an execution order to aspects at each common method [Pessemier 2007]:
changeACorder, getACPosition. The former changes the execution order of an as-
pect component in a common method, the latter returns the current position of an
aspect for a common method.

Limitations

FAC is a first step towards an expressive, declarative, and proper pointcut lan-
guage for component models. Regular expressions defining traces and SERVER and
CLIENT keywords are useful pointcut expressions. However, more expressive lan-
guage is still needed for component models: with SERVER and CLIENT expressions,
one should explicitly specify the component(s) whose interfaces needed to be inter-
cepted, and pattern matching is not sufficient to ensure the required expressiveness
of the language. FAC only supports precedence relationship among aspects execu-
tion at shared join points and does not provide a mechanism for aspect interferences
analysis.

3.3.5 Safran

Safran [David 2003] extends Fractal component model with dynamic adaptation
support. Adaptation is considered as a separate concern or aspect that can be
defined separately and woven to the base system when needed at runtime. For this
purpose, Safran extends Fractal component membranes with a controller interface
that encapsulates a set of adaptation policies and a set of runtime information called
context-awareness about components. These information are used to decide which
adaptation policy should be triggered. An adaptation policy includes changing
component bindings, adding or removing meta level components that implements
the adaptation strategy. When an adaptation policy is triggered and a meta level

3.4. Software Architecture Modeling based models 59

component is added, the meta level component intercepts method calls instead of
the original component, executes some additional behavior and possibly calls the
original method on the adapted component. Figure 3.6 shows the application of an
adapted policy to a component.

Adapted component
adaptation controller

5 Meta-level o original
component component

Figure 3.6: Safran Adaptation mechanism

Limitations

Safran suffers from the same limitations of Fractal-AOP, but the main drawback of
the approach is that adaptation policies are applied only to individual components
which is not compatible with aspects that affect more than one component such as
the performance and the saveEnergy aspects of our crane example.

3.4 Software Architecture Modeling based models

The peculiarity of software architecture based models is that aspects are introduced
at early phases (i.e., analysis or design) of the modeling process. In this section we
overview two approaches belonging to this category: PRISMA and AspectLEDA
showing how aspects are defined, weaved and composed into regular components.

3.4.1 PRISMA

PRISMA approach [Pérez 2006, Pérez 2008| provides an architecture description
language named AOADL to describe aspects, components (i.e., primitives), con-
nectors and systems (i.e., composites) as architectural elements at the design stage.
PRISMA follows the MDSOC approach [Tarr 1999, Ossher 2001] in considering both
components and aspects as regular concerns. The main difference is that an aspect
is the only concern that crosscuts different other concerns. An aspect is defined
in a separate module that can be imported by several other architectural elements
(i.e., components and connectors). An aspect definition in PRISMA AOADL in-
cludes the definition of a set of attributes, a set of services, a set of roles an aspect
may taken following the semantics of its defined services, and a protocol describing
the aspect behavior. Listing 3.19 shows the saveEnergy aspect in PRISMA AOADL.
The saveEngery aspect is considered to be an optimization concern that captures
the IController and the IArm interfaces (line 1). It defines the nbContainer at-
tribute (line 3), and the semantics it associates to each service (line 5-20). The
begin and end are predefined services used for aspects creation and destruction,

1

20
21
22
23
24
25
26
27

Chapter 3. Component Based Software Engineering and their AOP
60 support

respectively. The in keyword indicates that the service is offered by an aspect. The
played_roles part indicates that the aspect plays two roles: maintain the number
of carried containers for load and unload services (line 22), and speed checker for
moveUp and moveDown services (line 23). The saveEnergy aspect protocol (line 25-
26), says that an aspect after its creation until its destruction, plays its different
roles in indeterministic way (line 24-26).

OPTIMIZATION aspect saveEnergy using IController , |Arm

attributes
nbContainer : nat;
services
begin;
in load();
valuations
[in load ()] nbContainer := nbContainer +1;

in unload();
valuations
[in unload()] nbContainer := nbContainer +1;
in moveUp(input speed:Speed)
valuations
[in moveUp(input speed:Speed)]
if (nbContainer >100) speed := Speed.LOW;
in moveDown(input speed:Speed)
valuations
[in moveDown (input speed:Speed)]
if (nbContainer >100) speed := Speed.LOW;

end;

played _roles
MAINTAIN NB_ CONTAINER ::= IController.load? () + IController.unload? ();
CHECKSPEED ::= IArm.moveUp? (Speed) + IArm.moveDown? (Speed);

protocol

SAVEENERGY = begin — BEHAVE;
BEHAVE = (MAINTAIN_NB_CONTAINER + CHECKSPEED) — BEHAVE + end;
end OPTIMIZATION aspect saveEnergy;

Listing 3.19: The saveEnergy aspect in PRISMA AOADL

An aspect weaving in PRISMA is explicitly specified at architectural elements’
specification phase, where both functional and other concerns of each architectural
element are determined. Listing 3.20 shows the specification of the Controller
component as a PRISMA architectural element. According to the specification, the
Controller component has three concerns: a functional concern implemented by
the Controller module (line 2) and two optimization concerns implemented by the
saveEnergy and the truckSafety modules (line 3-4). The weaving is indicated with
the weavings keyword (line 6-11). The weaving says that the load service of the
truckSafety module is executed before the load service of the saveEnergy module
(line 7) which in turn executed before the load service of the Controller (line 8);
and the same for the unload service (line 9-10). In this case the before operator is
used. In addition, PRISMA defines other similar operators for services composition
such as after, instead, and beforelf. Indeed, to complete the weaving of the
saveEnergy and the truckSafety aspects, the same aspect modules should be im-
ported by the Engine component specification and their services execution should

1

14
15
16
17

3.4. Software Architecture Modeling based models 61

be ordered in the weaving part of the specification.

component Controller
FUNCTIONAL aspect import Controller;
OPTIMIZATION aspect import saveEnergy;
OPTIMIZATION aspect import truckSafety;

weavings
truckSafety.load () before saveEnergy.load();
saveEnergy.load () before Controller.load();
truckSafety.unload () before saveEnergy.unload();
saveEnergy.unload () before Controller.unload();
end weavings;

ports
iCtrl: IController;
iEng: IEngine;
end ports
end component;

Listing 3.20: Weaving the saveEnergy aspect on the Controller component in

PRISMA

Limitations

In PRISMA, aspects are considered from the design stage as regular concerns that
may crosscut other concerns. However, no pointcut language is provided, and hence
the designer should be aware of all the join points at the beginning listing them
one by one. Moreover, PRISMA provides an advice level composition strategies for
aspects using a set of keywords, using those keywords, a developer must indicate the
explicit execution order of advices for each join point which is not practical solution,
and hence more aspect level composition strategies are needed. The main advantage
of PRISMA is its formal model support of protocol specification of concerns which
allows a validation of architectural elements properties.

3.4.2 AspectLEDA

AspectLEDA approach [Navasa 2009| defines aspects at the design stage. First,
UML diagrams are described for the base system without aspects. Second, aspects
are added to the system by maintaining the previously defined diagrams to deal with
aspects. At this stage, designers extract information about aspects interactions with
the base system. These information include, the interaction points of each aspect,
the components involved in the interaction and when each aspect is applied. The
extracted information are used later at the architectural design stage where the ar-
chitecture of the base system with aspects is described in an AOADL provided by
the framework. Aspects in AspectLEDA are regular components implementing the
advices code and expose them with a regular provided interface. Aspect weaving
is modeled as binding aspect components to base system components by means of
coordinators. A coordinator monitors base system components and calls the aspect

1

20

Chapter 3. Component Based Software Engineering and their AOP
62 support

advices services when a join point is reached. In AspectLEDA, a coordinator is
defined for each join point and when several aspects shares a join point, a Superco-
ordinator is interrogated to get the order in which aspects must be executed based
on predefined priority rules.

component extendedCraneSystem {
composition
craneSystem : System;
saveEnergy : Aspect;
truckSafety : Aspect;
priority truckSafety > saveEnergy;
attachments
craneSystem . User.load () <Controller, RMA, NoAvail, before>
saveEnergy . maintainNbContainer () ;
craneSystem . User.load () <Controller, RMA, NoAvail, before>
truckSafety.setLoadingState();
craneSystem . User.unload () < Controller, RMA, NoAvail, before>
saveEnergy . maintainNbContainer () ;
craneSystem . Engine.moveUp(Speed) <«Arm, RMA, NoAvail, before>
saveEnergy.checkeForSpeed () ;
craneSystem . Engine . moveDown(Speed) <Arm, RMA, NoAvail, before>
saveEnergy.checkeForSpeed();
craneSystem . Engine.moveDown(Speed) <Arm, RMA, NoAvail, before>
truckSafety.checkeForSpeed();

}
Listing 3.21: The crane system extended with saveEnergy and truckSafety aspects
in AspectLEDA AOADL

Listing 3.21 shows the crane system extended with saveEnergy and truckSafety
aspects in AspectLEDA. The composition section line (2-5) defines the base system,
and the set of the aspects to be added. The priority clause indicates that the
truckSafety is executed before the saveEnergy aspect. This rule is used by the
Supercoordinator when shared join points are captured (i.e., load and unload in our
case) by a coordinator. The interaction between a component system and an aspect
is described in the attachments section. Each attachment defines: the component
calling the service, the receiver component, the type of the event, the condition in
which the aspect is executed, and when the aspect is executed with respect to the
captured event. For example, The attachment description at line (8-9) says that
whenever the load method of the User component is intercepted (RMA: Receive
messAge) the maintianNbContainer method of the saveEnergy aspect component
is always (NoAvail: Not Available condition) executed before (before keyword).

Limitations

AspectLEDA provides a primitive pointcut language (i.e., call, receive) and very
limited advice execution strategies (i.e., before, after, conditional). The model does
not provide any form support for interference detection, it is up to the designer to
detect potential interferences from the sequence diagrams of case studies extended
with aspect behaviors.

3.5. Lessons learned 63

3.5 Lessons learned

The above sections overviewed a set of component models and their support of
aspect-oriented mechanism. In this section we review those models with respect to
a set of criteria we propose for a generic support of aspect orientation in compo-
nent based systems. Fulfilling all the proposed criteria enables better modularity,
reusability and encapsulation of both components and aspects before and after weav-
ing.

Hierarchy: By hierarchization, different components can be encapsulated by one
composite component. In our opinion, a composite should not be only an
abstraction and an encapsulation of a set of components. Since external calls
pass through the composite, it is natural that composites implement their
own behavior and have the ability to accept or reject external calls. This
allows aspects to be implemented in a unique module and integrated at the
composite level to be applied to all its inner components. From the above
discussed models, only PRISMA and Fractal support hierarchization.

Pointcut Language: The pointcut language should be expressive enough to define
the set of interesting points that should be captured at runtime. Current
models just project object-oriented pointcuts to the world of components.
We understand that its is due to the fact that most component models are
object oriented ones. However, specific pointcuts for components enables the
definition of join points in a declarative way. For example, FAC extension of
Fractal enables CLIENT and SERVER keywords to indicate the set of required and
provided interfaces by a component. These are specific pointcut elements that
are used rather than specifying explicitly one by one the different interfaces
implemented or used by a component.

Interference Detection support: Aspect interference detection is a main feature
that a component model with aspects should provide. Without this support,
there is no guarantee that the added aspects works properly together when
they are woven to the same system. A component model developer should
be aided with this support to indicate the emergence of interferences and
possibly indicate what to do to solve the conflict. In AspectLEDA, aspects
are detected at the design stage and their weaving require updating the UML
sequence diagrams of the base system; at this stage developers can detect
possible interferences. However, UML sequence diagrams only enables the
detection of structural interferences and not behavioral ones (i.e., interferences
at shared join points). Note that interference detection is still a challenge in
AOP and none of the above models provides a support to this feature.

Aspect Composition: when interferences are detected, a mechanism for solving
these interferences should be provided. One of possible solutions is aspect
ordering that indicates that one aspect should be executed before another.

Chapter 3. Component Based Software Engineering and their AOP
64 support

AspectCCM, FAC and SpringAOP enables this strategy inspiring it from As-
pectd. In fact, aspect ordering specifies the same execution order of their ad-
vices at shared join points, but in some cases the order should not be the
same for all the intercepted join points. To overcome this problem, AES,
CAM/DAOP, JBossAOP and AspectLEDA enables advice ordering. However,
coarse-grained ordering (i.e., aspect ordering) can be used in conjunction with
fine-grained ordering (i.e., advice ordering), for example, when aspects share
one or more join points and define a large set of advices that should be ex-
ecuted within the same order, aspect ordering is useful for simplification. In
addition, aspect composition goes beyond ordering, especially when interfer-
ences are due to the weaving of aspects with no shared join points. It is the
case for the saveEnergy and the performance aspects of our crane example.
All the above discussed models are limited to aspect or advice ordering, but
JAsCo. JAsCo supports both aspect and advice ordering, it also provides a
programmatic way to develop more complex composition strategies.

Aspect Modularity: aspect modularity is the ability to define the aspect behav-
ior in a separate module and preserves this modularity after weaving. All the
above discussed models consider aspects as first class entities (i.e., compo-
nents, controllers, connectors, etc.), however preserving this modularity after
weaving strongly depends on the weaving strategy supported by each model.
The weaving shows how aspects are integrated into components. In AOP two
famous strategies are provided: static and dynamic weaving. In the world
of components, static weaving is not always possible because components are
often available in binary form. On the other hand, dynamic weaving is techni-
cally more complex than static weaving, in addition, dynamic weaving is not
possible for encrypted or digitally signed components. Moreover, enabling as-
pects to be woven and unwoven at runtime makes static and dynamic weaving
strategies useless. In the world of components, wrapping is the strategy that
can be used whatever the kind of components and enable weaving and unweav-
ing aspects as needed. By wrapping, aspects should be modeled as first class
entities and the underlying components should be monitored so that when
join points are reached the aspects are called. Some of the above discussed
models supports static weaving such as PRISMA, AspectLEDA, SpringAOP,
and hence the modularity of aspects is not preserved after weaving by those
models.

Component Instantiation: with component instantiation, several aspect instances
may appear in the same system. This is an important when an aspect defines
one or more state variables that are updated when join points are reached.
In that case, only relevant components share the same aspect instance and
state variables of the aspect are updated only for the defined components.
Most of the shown models support aspect instantiation. However, the closed
container-based models such as CCM and EJB, give no information about
aspect instantiation either because the supported aspects are stateless ones or

3.5. Lessons learned 65

the instantiation is automatically managed by their black box containers.

To sum up, Table 3.1 presents a cumulative and a direct comparison of the
different component models shown in this chapter. The comparison is based upon
the set of AOP criteria presented above. As shown in the table, none of the models
provides a full support of all the criteria we define for a complete, generic and
effective support of aspects in component models, which strongly motivates the
work of this thesis.

Chapter 3. Component Based Software Engineering and their AOP

support

66

umowyyun (j) ‘enyesj

poyroddns uou (-) ‘emyes) pajroddns ATmJ (+) :spoadse jo [oao] 310ddns I101) pue sppout Juotoduiod pazifendodsy Juormy) :T°¢ o[qe],

oouapadard

wrexgderp "bas NN

vVadaredsy

AT

VINSTdHd

oouapadaxd

dOV ssodr

9ouopadaxd

dOV Suridg

oouapadard

dOVA/INVD

AT

AT

oSV I

9oudpadaxd

HAAYMAS ‘INATTO

ovda

dOV-1eioelq

|+

ueljeg

rejoeaq

9ouopadaxd

INDDIRdsY

+]+

INDOD

ooupadard

SHV

o [o | [[| [|+ |+

AT

A Ed R A E R R a Ea e s

dara

"gsuy

1YV

alojog

201APY

100dsy

Ayrempoy

[2Ao97 uorjisoduwo))

u0130999(J "JIOIU]

adenduer jndjulodg

AydIeIoTy

Part 11

Contributions

CHAPTER 4
Aspects as wrappers on views of
component systems architectures

Contents

5.1 Aspects as wrappers on views00 oo e e e e e 91
5.2 Views definition language 96
5.2.1 The join point Model L. 96
5.2.2 Syntaxof VIL 97
5.2.3 Semanticsof VIL 0. 98
5.2.3.1 FPath Query Language 98

5.2.3.2 VIL semanticsin FPath 99

5.3 Implementation of VIL in Fractal component model 101
5.3.1 Composable controllers, .. 101
5.3.2 The components of interest belong to the same composite . . 103

5.3.3 The components of interest are scattered in the architecture . 106

5.3.4 Fractal Weaver L. 109
5341 VIL Analyzer., 109

5.3.4.2 ADL Transformer 110

5.3.4.3 Julia Config Generator 110

5.4 Implementation of VIL in EJB component model 110
55 Conclusion i oo 111

In this chapter, we describe our approach based on views and wrappers for
aspectualizing component models. We define a declarative pointcut language VIL
adopted for component models to define views on a declarative style. We introduce
the basic concepts of the approach: wviews and wrappers, we show how they are
used for the running example, and we detail how they can be implemented for two
component models: Fractal and EJB.

4.1 Aspects as wrappers on views

In the CBSE development process, component assemblies are defined by software
architects who decide which components are used and how they are connected.

Chapter 4. Aspects as wrappers on views of component systems
70 architectures

Software architects use requirements specification to choose the appropriate config-
uration (assembly). In practice, different system configurations are possible, each of
which meets one or more requirements. Based on this observation, we use the term
view to refer to a component system configuration adopted for a purpose (i.e., base
system). In addition, we use the term wrapper to refer to an entity that encap-
sulates a component, intercepts its ingoing and/or outgoing service calls, executes
extra-code, and explicitly proceed or skip original calls (i.e., aspect). For better un-
derstanding of views and wrappers, let us consider the crane system and the different
requirements described in Chapter 1. Here, we recall the set of those requirements,
and we show how they can be fulfilled using views and wrappers:

Performance:
Enforce the crane to move fast, whatever was the running mode chosen by the
user, when the arm is not carrying a container. This considerably improves
the general response time of the crane.

Recovery:
Return both the engine and the arm to their stable position in the middle
whenever an undesirable sequence of actions is captured. This ensures the
viability of the crane system.

Truck Safety:
enforce the arm to move slow, whatever was the running mode chosen by the
user, when the crane is loading a container on the truck. This ensures the
safety of both the truck and the containers.

Save Energy:
enforce the arm to move slow, whatever was the running mode chosen by the
user, after carrying a given number of containers. This ensures a better energy
consumption of the crane.

Crane Safety:
Ignore user commands when the temperature of the engine or the arm reaches
a critical value. This ensures the safety of the crane devices.

Real-Time:
Check whether loading/unloading containers is achieved in tepeed (< tspeed)
time. If it is not the case, the arm must be moved up and all the subsequent
requests must be refused.

Each of the above requirements adds a new functionality to the crane. In a black
box based models, the above requirements cannot be added directly to the behavior
of components since their source code is not available. Aspect-oriented approach
tackles this problem by encapsulating the required functionalities in separate mod-
ules (i.e., aspects) that can be added to the base system via aspect weaving. Note
that static and dynamic weaving strategies are not always possible: static weav-
ing is not possible if the source code of components is not available, and dynamic

4.1. Aspects as wrappers on views 71

weaving is not possible if the binary form of components code is encrypted or dig-
itally signed. For this purpose, we propose to model aspect weaving as component
wrapping. Thus, we model aspects as wrappers on specific views that encapsulate
one or more components, intercept their ingoing and/or outgoing service calls and
execute the aspect behavior when calls are intercepted. In the following, we show
how views and wrappers can be used in order to force the crane system to fulfil the
above requirements.

Implementing the performance aspect

The crane system can be forced to fulfill the performance requirement by adding a
wrapper that surrounds the engine and the arm components. The added wrapper
intercepts calls on the provided interface of the engine (i.e., iEngine interface) and
the required interface of the arm (i.e., iMagnet interface). The wrapper stores and
updates the state of the magnet whenever setOn() and set0£ff () services are called
on the iMagnet interface. Thus, whenever the wrapper intercepts moveLeft (Speed)
and moveRight (Speed) calls on the iEngine interface, it first checks the current
state of the magnet. If the magnet is off the wrapper forces the engine to run in
fast mode by proceeding the intercepted call with fast as a value of the parameter
of the call. Adding the wrapper likewise requires the engine and the arm to be in
the same composite, this is already satisfied by the provided configuration of the
system and hence no reconfiguration is needed. Figure 5.1 depicts the required view
for the performance wrapper. In the figure, the performance wrapper surrounds the
crane composite, it is shown as a gray box surrounding the crane component.

Performance/Recovery

Crane

ool -

Figure 4.1: Performance/Recovery view of the crane

Implementing the recovery aspect

The recovery aspect returns both the engine and the arm to their stable position in
the middle whenever an undesirable sequence of actions is captured. This requires
the interception of all the actions taken by the engine and the arm to detect the
undesirable sequence of actions and starts a recovery process accordingly. Thus, all
the provided and required interfaces of the engine and the arm should be intercepted
and hence the same view for the performance is required (see figure 5.1).

Chapter 4. Aspects as wrappers on views of component systems
72 architectures

Implementing the truck-safety aspect

The truck-safety can be integrated as a wrapper around the control and the engine
components. This way, the integrated wrapper can intercept calls on the provided
interface of the controller (i.e., iController interface) and the required interface of
the engine (i.e., iArm interface). The wrapper stores and updates the state on which
the controller is under loading or unloading a container when it intercepts load()
and unload() calls on the iController interface. So that, whenever the second
call of moveDown(Speed) on the iArm interface is intercepted and the controller is
being loading a container, the wrapper proceeds the moveDown (Speed) call in slow
mode by setting the parameter value of the call to slow. However, the provided
configuration does not match the required one (i.e., the controller and the engine
are not in the same composite). In this case, the system should be reconfigured to
fulfil the required view as shown in Figure 5.2.

TruckSafety/SaveEnergy

Controller

Crane

- (=

Figure 4.2: TruckSafety/SaveEnergy view of the crane

Implementing the save-energy aspect

The save-energy wrapper requires to intercept the provided interface of the controller
(i.e., iController interface) to count the number of load and unload calls. In
addition, it requires the interception of the calls on the required interface of the
engine (i.e., iArm interface) to change the speed of the taken actions when the
number of carried containers reaches a threshold number. The required view for
this feature is the same as the one required by the truck safety (see figure 5.2).

Implementing the crane-safety aspect

The cane-safety control the temperature of the engine and the arm. The temperature
of the engine and the arm are captured by their corresponding components and
available through the access to their attributes and hence the engine and the arm
should be in the same composite. Moreover, When the temperature of the devices
reaches a provided critical value, all the requests to load or unload a container must
be skipped and a message is sent to the supervisor. This requires to intercept calls
on the provided interface of the controller to skip the controller action requests. As
a result, the required view should encapsulate the controller, the engine, and the
arm in the same composite. The required view is depicted in figure 5.3.

4.1. Aspects as wrappers on views 73

e
P ——r— Crane
CraneSafety

| B |
7 o _C
\

Figure 4.3: CraneSafety view of the crane

Implementing the real-time aspect

Real-time constraints can also be implemented as a wrapper on a crane system view.
If the crane is in slow mode, then no real-time constraints are enforced. If the crane
is in fast mode, then the time between the crane request to load /unload a container
and setting the magnet off have to be achieved in f4pcq time units. Otherwise,
the arm should be moved up for its safety and all the subsequent user commands
are refused and the supervisor must be warned. The required view in this case is
the provided interface of the controller (to initialize the local time for the action
when load or unload requests are intercepted), the required interface of the arm (to
capture the interception time of setting the magnet off) and the provided interface
of the arm (to call the arm to move up when the real-time constraint is violated).
The corresponding view is shown in figure 5.4.

Crane
I g— ﬂ

rm
)

Figure 4.4: RTCrane view of the crane

Controller

As shown from the above examples, views make it simple to implement the above
aspects: if the components are properly assembled (i.e., the current configuration
matches the required view), aspects are added as wrappers to the view otherwise
a reconfiguration is needed. However, when we consider aspects requiring different
views at the same time, wrappers (i.e., aspects) crosscut each other as shown in
Figure 5.5. It is obvious that the architecture of the component system must be
reconfigured in order to enable different wrappers requiring different views. In the
following, we introduce a specialized language for views definitions and show how it
can be used in order to weave crosscutting wrappers.

Chapter 4. Aspects as wrappers on views of component systems
74 architectures

/—| SaveEnergy/TruckSafety i

Performance/Recovery
CraneSafety
° :controuer A
N
RTCrane
.

Figure 4.5: Wrappers crosscutting phenomenon

4.2 Views definition language

In this section we define a declarative language we call VIL (VIews Language) for the
definition of views in component architectures. In the AOP point of view, VIL is a
declarative pointcut language suitable for component models. Using VIL, minimum
language constructs are used to define the points where aspects should interact with
the system and this prevents the knowledge of the complete and detailed structure
of the component systems. Here, we first define the join point model, then we
introduce the complete syntax of the language and we describe its semantic.

4.2.1 The join point Model

The main element of each aspect-oriented language is the join point model. The join
point model defines well-defined points in the execution of programs. These points
are captured at runtime and aspects get involved only on those points [Kiczales 2001a].
On the other hand, components can be seen as black, gray or white boxes. Black box
components are characterized with no specific knowledge of their internal behaviors,
no access to their source code, and no knowledge of their architecture. In that case,
the only accessible information of a component are its provided and required inter-
faces. Gray box components may show their internal architecture and potentially
some knowledge of their behavior in terms of protocols or contracts [Szyperski 2002].
In particular, Fractal [Bruneton 2004] is a hierarchical component model where the
architecture of composite components are given. Finally, white box components pro-
vides full access to their structure and behavior (i.e., source code available). Thus,
each of the above different categories of components requires an appropriate join
point model when aspect-orientation is required. In our approach, we focus on the
intermediate level (gray box component models) where components, their architec-
tures and their behaviors specification are provided. While component architecture
description enables the definition of views and the exact points where aspects are
involved in the interaction with the base system, bahavior’s specification enables
aspect interferences detection. In our proposal, we consider calling services from
required or provided services, and accessing component attributes. Inspired from

4.2. Views definition language 75

AspectJ [Kiczales 2001b], each service call at runtime is a different join point, and
each component attribute access is a different join point. A join point has one of
the forms (cId, itfId, svId) (for service call) and (cId, atId) (for attribute
access) where cId ranks over component names, itfId and atId rank over interface
and attribute identifiers, respectively, and svId ranks over service signatures. For
example, the (engine, iArm, moveUp(Speed)) denotes calling the moveUp (Speed)
service of the iArm interface of the engine component, while (engine, speed)
denotes the access to the attribute named speed of the engine component. The
following section gives the complete syntax of VIL.

4.2.2 Syntax of VIL

In this section we describe our declarative pointcut language VIL for component
models.

vexp € View 1= x
| cld
| child [*] v
| parent [t] v
| primitive v
| instance v
| [direct] provide v [(T | N) id*][sig*]
| [direct] require v [(T | N) id*][sig*]
| bound [C | S] v [¢d*]
| attributes v [atId*]
| scflow v
| v1 D v2
| vi®w
| v1 © v2

VIL defines a view in a component architecture specifying the set of components
to be encapsulated together and their interfaces and services to be intercepted. In
“*¥” denotes that all the components of the architecture should be en-
capsulated in one component and all their interfaces and services are intercepted.

particular,

Thus, the required view is the same as the original one (i.e., no need to reconfigure
the system) and the wrapper is to be plugged into the root component of the ar-
chitecture. As described above, cId refers to a component identifier, this indicates
that the required view is the same as the original one and all the interfaces of cId
are intercepted, but in this case the wrapper is to be plugged into the component
cId. child v and parent v denote that the view should encapsulate all the inner
components (resp. parents) of v in the same component and all their interfaces are
intercepted. “+4” denotes a recursive closure of the above relations. primitive v
denotes a view where all the primitive components of v should be in the same com-
posite and all their interfaces are intercepted. instance v denotes a view where all
the instances of v should be wrapped and all their interfaces are intercepted. pro-
vide v and require v denote the same view as v however, only the provided (rep.
required) interfaces are intercepted. For more exhaustive specification we denote
name (N) or type (T) patterns of the interfaces to be intercepted and potentially

Chapter 4. Aspects as wrappers on views of component systems
76 architectures

the service signatures to be captured (sig). bound v denotes all the bound compo-
nents to v. To be more precise we provide C and S to denote only the components
bound to a client or to a server interfaces of v, respectively. An identifier pattern
can also be used to select only the components whose names match a pattern iden-
tifier. attributes v denotes a view that encapsulates all the components in v and
intercept accesses to all or some of their attributes. We also use scflow v to define
a view that encapsulates all the components of v in the static control flow of the
join points defined by v. Finally, a view can be composed of two other views using
a union (@), an intersection (®) or a difference (©) operators over views.

4.2.3 Semantics of VIL

Component architectures can alternately be represented as directed labeled graphs.
Nodes in those graphs are the main architectural elements of the component ar-
chitectures (i.e., components, attributes, interfaces and services), and the arc’s la-
bels denote the relationships among such elements (e.g., child, provides, requires,
boundTo). These representation enables the introspection of component architec-
tures and determine the location of elements of interest using an abstract language.
FPath [David 2009b| is a domain specific language introduced to introspect Fractal
architectures. FPath is a general and an extendible language and hence can be gen-
eralized for different component models by introducing new architectural elements
and new relationships among elements. In the following we overview FPath and we
show how our VIL expressions are evaluated using such a language.

4.2.3.1 FPath Query Language

FPath [David 2009b] is a query language developed to deal with the introspection of
Fractal component architectures. FPath uses declarative path expressions to intro-
spect Fractal elements: components, interfaces and attributes. FPath is jointly used
with a scripting language named FScript to define complex runtime reconfiguration
of Fractal architectures rather than using Fractal API which is a tedious and error
prone task. FPath expressions are of the following form, where nodeld is a node
identifier denoting the starting point from which the navigation starts and arcld
denotes a transition label identifier denoting the axis to follow:

fExp == S$nodeld “/” step (“/” step)*
step == arcld “::” (nodeld | x) |predicate(.)|

For example, the FPath expression “$crane/child:: */requires::*” returns the set
of required interfaces (the arc label requires :: %) of all the inner components
(child :: %) of the crane composite component ($crane). However, the current
version of FPath cannot directly be used in our proposal for several reasons: (1)
FPath expressions return primitive elements: a set of components or interfaces or
attributes while in our join point model we need to define a set of tuples defining
the interface services of components to be intercepted. (2) FPath does not consider

4.2. Views definition language s

low level architectural elements such as services. (3) some of the current relation-
ships are related to Fractal (e.g., internal interfaces) where we need an independent
language. For the above mentioned reasons, we adapt FPath to fulfil our require-
ments. Figure 5.6 depicts the architectural elements and the relationships required
by our model. In the figure, the architectural elements considered are depicted with
named circles: component, interface, service and attribute. The relationships among
the elements are represented by labled arrows: parent, child, provides, requires, has,
boundTo, defines, set and get. The elements and the relationships annotated with
are the ones newly added to FPath.

parent child

Component

provides boundTo

requires

defines™

*
’ calls

Figure 4.6: Directed labeled graph adopted for component architectures

4.2.3.2 VIL semantics in FPath

In this section we give an excerpt of the semantics of VIL, the rest can be straight-
forwardly deduced. VIL uses FPath to access the different architectural elements
on a component architecture, and defines the different join points required to be
intercepted. In addition, a views transformation function is defined for VIL to gen-
erate the required views (i.e., a view where all the components in the jon points are
wrapped). First we introduce a function eval that defines the set of join points from
VIL expressions for a component architecture a. Let us consider the primitive ex-
pression c/d, the eval function calls FPath (Fp,q, function) to get all the interfaces
of cId (e.g., itfs) and all the services defined for each interface (e.g., svsjy), finally it
defines the set of join points as a set tuples {(cId, itf, sv) : itf € itfs \ sv € svsyy}.
Formally:

Chapter 4. Aspects as wrappers on views of component systems

78 architectures
eval (cId) a = let e; = $cId/provides :: %, ea = $cId/requires :: x,
itfs = Fpanler] a U Fpanlez] a
in
U {(cId,itf,s) : s € Fpunl(ei|ez)[name(.) = itf]/service :: x| a}
Vitf €itfs

Another example is the expression (child v) which is evaluated by evaluating v
first and for each component in v we get all its direct inner components capturing
all their services of all their provided and required interfaces. The s, in the formula
denotes a projection operation that extracts only the t elements from the tuples
defined by s.

eval (child v) a = let cs = (eval v a)

icomponent
in U eval cId a
Veld' e(Veldecs: Fpain[$cId/child::x])

The expression (attributes v) is evaluated by applying the eval function to v
capturing all the attributes defined on all the components of v.

eval (attributes U) a = let Ccs = (e'Ua/l v a)wl/component
in U {(cld,at) : at € Fpgn[$cId/has ::] a}
Velde cs

A more interesting example is the (scflow v) which is evaluated by evaluating
v capturing the set of join points on the recursive closure of calls relation of each
service on v.

eval (scflow v) a = let jps = eval v a
in U {(cld,itf,s) : s € Fpun[$sv/calls™ i «] a}
Vsve jpsiservice
A last example is views composition operations that forms one view from two
predefined views. Here is the definition of the union operation of views, that con-

structs a new view that encapsulates all the components and intercepts all the join
points encapsulated and intercepted by its underlying views.

eval (v ® vy)a = eval v1 a U eval vy a

In addition to the above eval function, we provide views transformation function
Omid- This function is a model-independent function. It defines how wrappers and

=W N =

4.3. Implementation of VIL in Fractal component model 79

views are represented according to the basic tenets of a component model mId.
In the following, we show how o,,74 is defined to model views and wrappers for
two different categories of component models: hierarchical component models with
component sharing such as Fractal and flat component models such as EJB.

4.3 Implementation of VIL in Fractal component model

Fractal component model [Bruneton 2004| defines its own architecture description
language (ADL) to describe component assemblies. It supports hierarchies, compo-
nent controllers, introspection and component sharing. Fractal controllers intercept
calls to a component provided and/or required interfaces and enable component be-
havior adaptation and the definition of extra-functional features to components by
executing an additional code when calls are intercepted. We get benefit of Fractal
controllers to define aspects (i.e., wrappers). However, in Fractal Julia implementa-
tion, when a component has several controllers, there is no general way to compose
them. They can only be executed independently or sequentially by configuring inter-
ceptors or be composed in a programmatic way by explicitly calling one controller
from another. This makes the implementation of controller-based adaptations a
complex task with sometimes unexpected behavior. To tackle this limitation, we
introduce composable controllers into Fractal Julia implementation. Composable
controllers, as their name indicate, get benefits of regular Fractal controllers (con-
trol the behavior of components by introducing extra-functional properties) and
enable controller composition. In the following, we introduce the concept of com-
posable controllers, we describe how views are defined using VIL, and we show how
aspects (i.e., controllers) can be composed to solve potential interferences.

4.3.1 Composable controllers

We define a composable controller as a pair (Dispatcher,ICController) where
Dispatcher is a regular Fractal controller plugged into the composite defining the
view and ICController is an object implementing the ICController interface (see
Listing 5.1).

enum Action {Proceed, Skip}
interface ICController {
Action match(MessageContext c);

b
Listing 4.1: ICController interface

The Dispatcher controller intercepts calls to the inner components of the view,
reifies the intercepted calls into MessageContext objects and calls the match()
method of the ICController. The Dispatcher waits for the action taken by the
ICController (i.e., Proceed or Skip) and behaves accordingly. When it receives a
Proceed action, it calls the original method and the call reaches its target, when it

0~ O Uk WN

— =
W N = O o

Chapter 4. Aspects as wrappers on views of component systems
80 architectures

receives a Skip the Dispatcher does nothing and the call is ignored. For composing
controllers, composition operators are defined as ICController(s), this enables the
composition of controllers and composition operators in a composite pattern way.
Each match(MessageContext) method of the composition operator implements the
semantics associated to each operator and returns Proceed or Skip accordingly to
the Dispatcher controller. Take for example the crane view of the crane system

Crane
Arm

(see Figure 5.7).

O Controller Engine

Figure 4.7: A composable controller on the Performance view of the crane where
the ICController is shown as a gray box with the name of the aspect and the
Dispatcher is depicted with (T) at the top of the view

The integration of the Performance aspect to the crane requires adding a com-
posbale controller (Dispatcher,Performance) to the original view. The Dispatcher,
in this case, intercepts the incoming calls to the Engine and the outgoing calls from
the Arm. For each intercepted call, the Dispatcher reifies it and calls the match()
method of the Performance object (see Listing 5.2). The match() method of the
Performance checks whether the intercepted call is a setOn() (resp. set0f())
method call (line 6-7). If it is the case, it stores the state of the magnet in the at-
tribute isMagnetOn. If the intercepted call is a moveLeft (Speed) or a moveRight (S-
peed) method call (line 8), it first checks the state of the magnet, if it is off, it changes
the parameter value of the call to fast by calling c.setSpeedArgument ("fast")
method (code not shown here). Finally, the match() method returns Proceed (line
11) thus the Dispatcher calls the original method which reaches its target.

class Performance implements ICController {
private boolean isMagnetOn = false;
Action match(MessageContext c) {
if (c.getSignature().equals("setOn()")) isMagnetOn = true;
else if (c.getSignature().equals("setOff()")) isMagnetOn = false;
else if (c.getSignature().startsWith("move")) {
if (isMagnetOn()) c.setSpeedArgument("fast");
b
return Action.Proceed;
}
}

Listing 4.2: The Performance implementation

Now, we want to apply the TruckSafety and the SaveEnergy aspects, both
require another view where the Controller and the Engine to be in the same com-
ponent. However, since both aspects intercept the same join points, a composition

1
2

4.3. Implementation of VIL in Fractal component model 81

strategy should be used. In our approach we adopt the sequential composition as
a default strategy for aspects sharing join points. The sequential composition is
abstracted with a generic and a reusable operator named Seq. The Seq operator
forwards calls to shared join points to both aspects in a sequential order and proceeds
a call only when at least one of its underlying aspects returns Proceed, otherwise it
skips the call (see Chapter 6 for the full semantics of operators). Figure 5.8 depicts
the Fractal architecture of the crane example after applying both the TruckSafety
and the SaveEnergy aspects (i.e., ICController(s)). In the figure, the new view
crosscuts the original view, thanks to component sharing, this configuration is pos-
sible (i.e., the Engine component is a shared component between the two views).
Shared components are depicted with dashed lines in the figure.

I TruckSafety | I SaveEnergy |
AN —

F [Performance |
ControlledEngine A
pr——— Crane
Controller ! Engine H—C Arm D—[Ej
Sommmmnmanac’
./

Figure 4.8: Seq(TruckSafety,SaveEnergy) plugged into ControlledEngine view

Let us generalize and detail our implementation of views for Fractal. For the
definition of views in Fractal Julia, we distinguish two cases: (1) the components to
be wrapped belong to the same composite, and (2) the components to be wrapped
do not belong to the same composite. In the following we detail how views are
created for each case.

4.3.2 The components of interest belong to the same composite

In this case, the required view is the same as the original configuration. In practice,
this requires to update the ADL description of the architecture by (1) declaring
a composable controller modelling the required aspect as a part of the membrane
of the composite encapsulating the components of interest and (2) by declaring an
interceptor controller as a part of the membrane of each component of interest. In
addition, a Julia configuration file is generated to include the definition of the added
controllers. Listing 5.3 shows the general required modification of the ADL descrip-
tion where the component named ¢ models the required view by a VIL expression. In
that case, a composable controller is defined for that component (CControllerName
line 12), and an interceptor controller is defined for each one of its inner components
(Interceptor line 10). Each interceptor controller intercepts incoming and/or out-
going calls to/from its underlying component and forwards them to the Dispatcher
of the composable controller of its component parent.

<component name="c">
// interface declarations

12
13

1

Chapter 4. Aspects as wrappers on views of component systems

82 architectures
// the content declaration if "c¢”" is a primitive
// else for each inner component ci
<component name— "c;">
// interface declarations of the inner component
// the content declaration if "ci" is a primitive
// or the inner components declaration if "ci" is a composite
// binding declarations if "ci" is a composite
<controller desc = ”Interceptor”/>
</component>
<controller desc = ”CControllerName” />
< /component>

Listing 4.3: The required ADL modification if the view corresponds to the original
configuration: the underlined code is the one that is added to model the wrapper

In addition to the above ADL description modification, a Julia configuration
file should be defined to include the full description of each controller: its imple-
mentation class, the required interceptors and a controller composition expression
if any. Listing 5.4 shows the structure of the Julia configuration file. The file starts
with an indication of the composable controller identifier, the same used in the ADL
description (i.e., CControllerName line 1). The interface of the controller is defined
(ICController line 4). The implementation class of the controller is defined by the
Dispatcher class name followed by ccExp expression that is passed as a parameter
to the Dispatcher class. The ccExp expression is of the form:

(ccExp) == ICControllerName | (opId) ({ccEzp), {ccExp))
(opId) u= Seq| Fst| Alt| ...

In addition, the InterceptorKind is one of three kinds: InInterceptor that
intercepts only the incoming calls of a component, OutInterceptor that intercepts
only the outgoing service calls of a component, and InOutInterceptor that inter-
cepts all the incoming and the outgoing calls of a component.

(CControllerName

(
"interface —class—generator
(
(CControllerName—controller vil.common.lICController)
)
(
(vil.controllers.Dispatcher <ccExp>)
)
(
(org.objectweb . fractal.julia.asm.InterceptorClassGenerator
org.objectweb . fractal.julia.asm.LifeCycleCodeGenerator
)
)
org.objectweb . fractal.julia.asm.MergeClassGenerator
"optimizationLevel
)
)
(Interceptor

(

"interface—class—generator

(

4.3. Implementation of VIL in Fractal component model

83

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38)

(Interceptor—controller vil.common.lInterceptor)
(vil.controllers.Interceptor)

)
(

(org.objectweb . fractal.julia.asm.InterceptorClassGenerator
org.objectweb . fractal.julia.asm.LifeCycleCodeGenerator
(vil.interceptors.InterceptorKind 'interfaceName)

)

org.objectweb . fractal.julia.asm.MergeClassGenerator
"optimizationLevel

Listing 4.4: The generated Julia configuration file for each view definition

For better understanding of our modelization, take for example the crane exam-

ple with its crane view. Listing 5.5 shows the updated ADL description of the crane

example after adding the Performance aspect to the crane component. The only

modification is the addition of interceptor controllers Interceptor to the inner com-

ponents of the Crane (line 15,21) and a composable controller named Performance
to the Crane composite (line 26).

1 <component name-=root >
<interface name="iController" signature="Crane.IController" role="server">

<component name="controller ">

<interface name="iController" signature="Crane.IController" role="server"

>
<interface name="iEngine" signature="Crane.IEngine" role="client">
<content class="Crane.ControllerImpl">
< /component>
<component name="crane">
<interface name="iEngine" signature="Crane.IEngine" role="server'">
<interface name="iMagnet" signature="Crane.IMagnet" role="client">
<component name—engine >
<interface name="iEngine" signature="Crane.IEngine" role="server">
<interface name="iArm" signature="Crane.IArm" role="client">
<content class="Crane.Enginelmpl">
<controller desc = Interceptor/>

< /component>

<component name="arm'">
<interface name="iArm" signature="Crane.IArm" role="server">
<interface name="iMagnet" signature="Crane.IMagnet" role="client ">
<content class="Crane.ArmImpl">
<controller desc = Interceptor/>

< /component>
<binding client="this.iEngine" server="engine.iEngine"/>
<binding client="engine.iArm" server="arm.iArm"/>
<binding client="arm.iMagnet" server="this.iMagnet"/>
<controller desc = Performance/>
< /component>
<component name—="magnet ">
<interface name="iMagnet" signature="Crane.IMagnet" role="server">
<content class="Crane.MagnetImpl">
< /component>
<binding client="this.iController" server="controller.iController"/>
<binding client="controller.iEngine" server="crane.iEngine"/>
<binding client="crane.iMagnet" server="magnet.iMagnet"/>

Chapter 4. Aspects as wrappers on views of component systems
84 architectures

35 </component>

Listing 4.5: The Fractal ADL description of the crane example after adding the
Performance aspect

Listing 5.6 describes the Julia configuration file that defines the Performance
controller. In the listing, the interface implemented by the controller (i.e., ICController)
is indicated at line 5. The Dispatcher controller is indicated at line 8 where the
Performance is passed as a parameter to the Dispatcher. Thus, an object of the
class Performance is created for the Dispatcher controller. The rest of the code in
the listing indicates how the code of the controller is merged with the component
implementation code.

1 (Performance

2

3 "interface —class —generator

1

5 (performance—controller vil.common.ICController)

6)

7 (

8 (vil.controllers.Dispatcher Performance)

9)

10 (

11 (org.objectweb . fractal.julia.asm.InterceptorClassGenerator
12 org.objectweb . fractal.julia.asm.LifeCycleCodeGenerator
13)

14)

15 org.objectweb . fractal.julia.asm.MergeClassGenerator

16 "optimizationLevel

17

18)

Listing 4.6: The Julia configuration file for the Performance aspect

4.3.3 The components of interest are scattered in the architecture

Here we need to reconfigure the system to accept the required view. Thanks to
component sharing feature in Fractal, this kind of reconfiguration is possible. In
Fractal we adopt the following reconfiguration strategy: a new composite is created
as a child of the closest common parent of the required components. This composite
shares all the required components with their original parents. Similar to the above
case, the composable controller is plugged into the new composite and an interceptor
controller is added to the membrane of each inner component. Thus, the view is
added and the original configuration is preserved. The choice for the position of the
new composite declaration is made to synchronize the life-cycle of the view with
the life-cycle of its inner components. Thus, when all the inner components of the
view are destroyed, the view is automatically destroyed. In addition, when two views
crosscut each other and an interference appears between their composable controller,
both views are composed into one view using the union operator (). This enables

1

0~ O Uk WN

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

4.3. Implementation of VIL in Fractal component model 85

the composition of the composable controllers of different views to solve potential
interferences among them.

Thus, the definition of a view in this case is divided into two steps. The first step
consists in finding the closest common parent of the components to be wrapped. This
can be done using FPath language: consider ¢;; and co; two different components
belonging to ¢; and co, respectively. The following FPath expression provides a set
of all their common parents including the root component:

e = c11/ancestor :: x[in(ca1 /ancestor ::)]

The “c11/ancestor :: " sub-expression returns the set of all the ancestors of ¢1;
including the root component. With the predicate “in” presented between square
brackets, only the ancestors of c11 that belong to the set of ancestors of co; will be
returned. The closest parent ¢ belongs to that set and has the following particularity:
descendant(c) N Fpan(e) = ¢ which states that none of the descendants of the
closest parent is a common parent of the required components. The second step
consists in adding a new composite as an inner component of the common parent
of c11 and c¢o1 found by the previous step. This is shown in Listing 5.7. The new
composite view (line 24-28) declares c¢1; and cg; as its inner components sharing
them with their original parents ¢; and cg, respectively (line 25-26). This way,
the original architecture is preserved after the new view is defined. Finally, an
interceptor controller is associated to each shared component (line 9,19), and a
composable controller is added to the new created composite (line 27). The added
interceptor controllers intercept calls on their components and route them to the
nesting composite.
<component name="c; ">

// interface declarations

<component name—= "cj1">

// interface declarations of the inner component
// the content declaration if "c11" is a primitive
// or the inner components declaration if "ci1" is a composite

// binding declarations if "ci1" is a composite
<controller desc = ”Interceptor” />

</component>
// other inner components of ci
< /component>
<component name="c,">
// interface declarations
<component name— "cp ">
// interface declarations of the inner component
the content declaration 1 "co1 " is a primitive
p
// or the inner components declaration if "co1" is a composite
binding declarations t¢f "co1” is a composite
g p
<controller desc = ”Interceptor”/>

</component>

// other inner components of ca
< /component>
// other component declarations of this level
<component name = ’view’>

<component name = "cy;” definition = ”/ci/c11"/>

<component name = "co;” definition = 7 /co/co" />

27

86

Chapter 4. Aspects as wrappers on views of component systems
architectures

<controller desc = ”CControllerName” />

28 </component>

Listing 4.7: The required ADL modification if the components of interest are
scattered in the architecture

Listing 5.8 shows the ADL description of the reconfigured crane example to
include the composition of the truckSafety and the saveEnergy aspects.
added lines are underlined in the script.
for the view includes the definition given in Listing 5.4 replacing (ccExzp) with
Seq(truckSafety,saveEnergy).

1 <component name-=root >

38

<interface name="iController" signature="Crane.IController" role="server">

<component name="controller ">

<interface name="iController" signature="Crane.IController" role="server"

>
<interface name="iEngine" signature="Crane.IEngine" role="client">
<content class="Crane.ControllerImpl">
<controller desc = Interceptor/>

< /component>
<component name="crane">
<interface name="iEngine" signature="Crane.IEngine" role="server'">
<interface name="iMagnet" signature="Crane.IMagnet" role="client">
<component name—engine >
<interface name="iEngine" signature="Crane.IEngine" role="server">
<interface name="iArm" signature="Crane.lArm" role="client">
<content class="Crane.Enginelmpl">
<controller desc = Interceptor/>

</component>
<component name="arm'">
<interface name="iArm" signature="Crane.IArm" role="server">
<interface name="iMagnet" signature="Crane.IMagnet" role="client ">
<content class="Crane.ArmImpl">
< /component>
<binding client="this.iEngine" server="engine.iEngine"/>
<binding client="engine.iArm" server="arm.iArm"/>
<binding client="arm.iMagnet" server="this.iMagnet"/>
< /component>
<component name="magnet ">
<interface name="iMagnet" signature="Crane.IMagnet" role="server">
<content class="Crane.MagnetImpl">

</component>

<component name = ”ControlledEngine”>
<component name = ”controller” definition = ”/controller"/>
<component name = ”engine” definition = ”/crane/engine"/>
<controller desc = ”Seq — truckSafety — saveEnergy” />

</component>

<binding client="this.iController" server="controller.iController"/>
<binding client="controller.iEngine" server="crane.iEngine"/>
<binding client="crane.iMagnet" server="magnet.iMagnet"/>

39 </component>

Listing 4.8: The Fractal ADL description of the crane example after adding the
Seq(TruckSafety,SaveEnergy) composable controller

The Julia configuration file generated

4.3. Implementation of VIL in Fractal component model 87

4.3.4 Fractal Weaver

The above component architecture transformation becomes a tedious and error
prone task when the architecture grows. Our approach makes it possible to au-
tomatize this task. For that reason we developed a Fractal weaver as a top level
extension of Fractal Julia implementation as shown in Figure 5.9. In the figure, the
Fractal weaver consists of three modules: VIL analyzer, ADL transformer, and Julia
config generator. In the following we describe the role of each module.

VIL ©
o VIL ADL Julia Config o
5 Analyzer Transformer Generator 2
2 | aoL y \ ,r aoL 5

Fractal Julia Framework

Figure 4.9: Fractal Weaver Architecture

4.3.4.1 VIL Analyzer

This module analyzes the input VIL expressions, and uses Julia introspection mech-
anism to introspect the given ADL description and returns the concrete join points
to be intercepted. When an expression is not well-defined, an exception is thrown
indicating an error in the input expression, otherwise a set of concrete join points is

returned (see Section 5.2.1). Figure 5.10 describes the UML class diagram associated
to VIL expressions.

<<Abstract>>
VExp

| 0p: String
ca: componentArchitecture
evaluate(): LinkedList<joinpoint>

(3

BCExp SBExp UExp
left: VExp left: VExp left: VExp
right:VExp right:String[] evaluate(): Set<joinpoint>
evaluate(): Set<joinpoint> evaluate(): Set<joinpoint>

Figure 4.10: VIL Expressions structure

A VIL expression is of three forms: (1) Unary form (UExp) where the expression
has an operator and merely one operand. This includes child, parent and instance
expressions. (2) Selective binary form (SBExp) where the right hand side operand is a
set of patterns or selectors that match a subset of the find join points. This includes

T W N =

Chapter 4. Aspects as wrappers on views of component systems
88 architectures

provide, require and direct expressions. (3) Binary composition of expressions
(BCExp) where views are composed using @, © and ® operators. The analyzer role is
to interpret VIL expressions and returns a set of join points (Set<joinpoint>). The
evaluate () function of each class implements the required behavior of the analyzer
for the form in question.

4.3.4.2 ADL Transformer

This module uses the returned join points from the above module and uses them
to determine and define the required views. It uses the process described in Sec-
tion 5.3.2 and Section 5.3.3, respectively. This includes the addition of new com-
posites, the declaration of composable controllers and interceptor controllers for
components, and the composition views when needed (see Section 5.3.3).

interface TADLTransformer {
Dag Adl2Dag(File src);
File Dag2Adl(Dag dag);
run (ComponentArchitecture ca, String asld, VExp exp);

}
Listing 4.9: ADL Transformer Interface

The ADL transformer uses an intermediate DAG structure to transform the ADL
description into a component architecture with the required views and controllers.
Listing 5.9 describes the interface implemented by the ADL transformer. It defines
three methods: Ad12Dag() and Dag2Adl() to transform an ADL description into
a DAG structure and vice versa, and a run() method that calls the Ad12Dag()
method to get the DAG structure of the original architecture, then it calls the VIL
analyzer to interpret a VIL expression, update the DAG structure to consider the
required view and calls the Dag2Ad1l () method to get the final ADL description with
the required views and composable controller(s).

4.3.4.3 Julia Config Generator

This latter module generates the required Julia configuration files providing infor-
mation about the implementation of composable controllers and interceptors. These
files are required for the correct execution of the result system in Julia. It automa-
tizes the step described in Section 5.3.3.

4.4 Implementation of VIL in EJB component model

For flat component models, such as EJB, a view cannot be modeled as a composite
since component hierarchy is not supported by such models. In addition, neither
controllers nor component sharing are supported. One solution is to model a wrap-
per as a pair of regular components or beans (Dispacher,Aspect). The Dispatcher
bean is bound to all the beans of interest on the interfaces to be intercepted. Since
the Dispatcher in this case has no a general structure (i.e., no predefined num-
ber and type of interfaces), it can be automatically generated from the join points

4.5. Conclusion 89

definition (i.e., defines all the interfaces in the set of defined join points). Like the
one in Fractal, the dispatcher intercepts all the calls, defined by VIL expressions,
instead of their original targets, reifies and forwards the calls to the aspect bean.
The Aspect bean executes extra-code and decides whether to proceed or skip the
call by returning proceed or skip to the dispatcher. This latter proceeds calls by
calling the original service and skips them by ignoring them. Implementing this so-
lution, the component system is reconfigured by adding the components modelling
the dispatcher and the aspect bean to the container and update the bindings to
fulfil the required view as depicted in Figure 5.11. In the figure, the dispatcher and

TruckSafety
o

o
Dispatcher
O—[Comroller o—[Engine Jo—[Arm @——[Magnet j
g
Dispatcher
e
o

Performance

EJB Container

Figure 4.11: The implementation of views and wrappers in flat component models

the aspect beans are depicted with gray boxes. Two crosscutting views (Crane and
the ControlledEngine) are presented. The Dispatcher bean in this case defines
two required interfaces (i.e., IController and IArm) and two provided interfaces
(i.e., IController and IArm). An Aspect bean always provides only one inter-
face similar to that defined for Fractal (i.e., ICController interface). This enables
the composition of aspect beans using composition operator. A composition oper-
ator can also be modeled as components or beans that intercept reified join points
and forward them to beans modelling the different aspects following their appropri-
ate strategy, then return the result to the dispatcher. Figure 5.12 shows how the
TruckSafety and the SaveEnergy wrappers are composed using the Seq operator.

4.5 Conclusion

In this chapter, we described our approach based on views and wrappers for as-
pectualizing component models. Views can be defined using VIL language in a
declarative style. VIL is a pointcut language adopted for component models. Cross-
cutting views can be modeled in different ways following the basic tenets of each
component model. Our approach is designed to be model and language-independent,
we have shown how it can be used for hierarchical component models with compo-
nent sharing such as Fractal and flat component models such as EJB. Currently,
the approach is implemented for Fractal component model and the Fractal weaver
presented in Section 5.3.4 is available upon request.

90

Chapter 4. Aspects as wrappers on views of component systems

architectures

TruckSafety SaveEnergy
0 o
u
C

EJB Container

o
Performance

Figure 4.12:

Wrappers composition in flat component models

CHAPTER b5
Aspects as wrappers on views of
component systems architectures

Contents

5.1 Aspects as wrappers on views00 oo e e e e e 91
5.2 Views definition language 96
5.2.1 The join point Model L. 96
5.2.2 Syntaxof VIL 97
5.2.3 Semanticsof VIL 0. 98
5.2.3.1 FPath Query Language 98

5.2.3.2 VIL semanticsin FPath 99

5.3 Implementation of VIL in Fractal component model 101
5.3.1 Composable controllers, .. 101
5.3.2 The components of interest belong to the same composite . . 103

5.3.3 The components of interest are scattered in the architecture . 106

5.3.4 Fractal Weaver L. 109
5341 VIL Analyzer., 109

5.3.4.2 ADL Transformer 110

5.3.4.3 Julia Config Generator 110

5.4 Implementation of VIL in EJB component model 110
55 Conclusion i oo 111

In this chapter, we describe our approach based on views and wrappers for
aspectualizing component models. We define a declarative pointcut language VIL
adopted for component models to define views on a declarative style. We introduce
the basic concepts of the approach: wviews and wrappers, we show how they are
used for the running example, and we detail how they can be implemented for two
component models: Fractal and EJB.

5.1 Aspects as wrappers on views

In the CBSE development process, component assemblies are defined by software
architects who decide which components are used and how they are connected.

Chapter 5. Aspects as wrappers on views of component systems
92 architectures

Software architects use requirements specification to choose the appropriate config-
uration (assembly). In practice, different system configurations are possible, each of
which meets one or more requirements. Based on this observation, we use the term
view to refer to a component system configuration adopted for a purpose (i.e., base
system). In addition, we use the term wrapper to refer to an entity that encap-
sulates a component, intercepts its ingoing and/or outgoing service calls, executes
extra-code, and explicitly proceed or skip original calls (i.e., aspect). For better un-
derstanding of views and wrappers, let us consider the crane system and the different
requirements described in Chapter 1. Here, we recall the set of those requirements,
and we show how they can be fulfilled using views and wrappers:

Performance:
Enforce the crane to move fast, whatever was the running mode chosen by the
user, when the arm is not carrying a container. This considerably improves
the general response time of the crane.

Recovery:
Return both the engine and the arm to their stable position in the middle
whenever an undesirable sequence of actions is captured. This ensures the
viability of the crane system.

Truck Safety:
enforce the arm to move slow, whatever was the running mode chosen by the
user, when the crane is loading a container on the truck. This ensures the
safety of both the truck and the containers.

Save Energy:
enforce the arm to move slow, whatever was the running mode chosen by the
user, after carrying a given number of containers. This ensures a better energy
consumption of the crane.

Crane Safety:
Ignore user commands when the temperature of the engine or the arm reaches
a critical value. This ensures the safety of the crane devices.

Real-Time:
Check whether loading/unloading containers is achieved in tepeed (< tspeed)
time. If it is not the case, the arm must be moved up and all the subsequent
requests must be refused.

Each of the above requirements adds a new functionality to the crane. In a black
box based models, the above requirements cannot be added directly to the behavior
of components since their source code is not available. Aspect-oriented approach
tackles this problem by encapsulating the required functionalities in separate mod-
ules (i.e., aspects) that can be added to the base system via aspect weaving. Note
that static and dynamic weaving strategies are not always possible: static weav-
ing is not possible if the source code of components is not available, and dynamic

5.1. Aspects as wrappers on views 93

weaving is not possible if the binary form of components code is encrypted or dig-
itally signed. For this purpose, we propose to model aspect weaving as component
wrapping. Thus, we model aspects as wrappers on specific views that encapsulate
one or more components, intercept their ingoing and/or outgoing service calls and
execute the aspect behavior when calls are intercepted. In the following, we show
how views and wrappers can be used in order to force the crane system to fulfil the
above requirements.

Implementing the performance aspect

The crane system can be forced to fulfill the performance requirement by adding a
wrapper that surrounds the engine and the arm components. The added wrapper
intercepts calls on the provided interface of the engine (i.e., iEngine interface) and
the required interface of the arm (i.e., iMagnet interface). The wrapper stores and
updates the state of the magnet whenever setOn() and set0£ff () services are called
on the iMagnet interface. Thus, whenever the wrapper intercepts moveLeft (Speed)
and moveRight (Speed) calls on the iEngine interface, it first checks the current
state of the magnet. If the magnet is off the wrapper forces the engine to run in
fast mode by proceeding the intercepted call with fast as a value of the parameter
of the call. Adding the wrapper likewise requires the engine and the arm to be in
the same composite, this is already satisfied by the provided configuration of the
system and hence no reconfiguration is needed. Figure 5.1 depicts the required view
for the performance wrapper. In the figure, the performance wrapper surrounds the
crane composite, it is shown as a gray box surrounding the crane component.

Performance/Recovery

Crane

ool -

Figure 5.1: Performance/Recovery view of the crane

Implementing the recovery aspect

The recovery aspect returns both the engine and the arm to their stable position in
the middle whenever an undesirable sequence of actions is captured. This requires
the interception of all the actions taken by the engine and the arm to detect the
undesirable sequence of actions and starts a recovery process accordingly. Thus, all
the provided and required interfaces of the engine and the arm should be intercepted
and hence the same view for the performance is required (see figure 5.1).

Chapter 5. Aspects as wrappers on views of component systems
94 architectures

Implementing the truck-safety aspect

The truck-safety can be integrated as a wrapper around the control and the engine
components. This way, the integrated wrapper can intercept calls on the provided
interface of the controller (i.e., iController interface) and the required interface of
the engine (i.e., iArm interface). The wrapper stores and updates the state on which
the controller is under loading or unloading a container when it intercepts load()
and unload() calls on the iController interface. So that, whenever the second
call of moveDown(Speed) on the iArm interface is intercepted and the controller is
being loading a container, the wrapper proceeds the moveDown (Speed) call in slow
mode by setting the parameter value of the call to slow. However, the provided
configuration does not match the required one (i.e., the controller and the engine
are not in the same composite). In this case, the system should be reconfigured to
fulfil the required view as shown in Figure 5.2.

TruckSafety/SaveEnergy

Controller

Crane

- (=

Figure 5.2: TruckSafety/SaveEnergy view of the crane

Implementing the save-energy aspect

The save-energy wrapper requires to intercept the provided interface of the controller
(i.e., iController interface) to count the number of load and unload calls. In
addition, it requires the interception of the calls on the required interface of the
engine (i.e., iArm interface) to change the speed of the taken actions when the
number of carried containers reaches a threshold number. The required view for
this feature is the same as the one required by the truck safety (see figure 5.2).

Implementing the crane-safety aspect

The cane-safety control the temperature of the engine and the arm. The temperature
of the engine and the arm are captured by their corresponding components and
available through the access to their attributes and hence the engine and the arm
should be in the same composite. Moreover, When the temperature of the devices
reaches a provided critical value, all the requests to load or unload a container must
be skipped and a message is sent to the supervisor. This requires to intercept calls
on the provided interface of the controller to skip the controller action requests. As
a result, the required view should encapsulate the controller, the engine, and the
arm in the same composite. The required view is depicted in figure 5.3.

5.1. Aspects as wrappers on views 95

e
P ——r— Crane
CraneSafety

| B |
7 o _C
\

Figure 5.3: CraneSafety view of the crane

Implementing the real-time aspect

Real-time constraints can also be implemented as a wrapper on a crane system view.
If the crane is in slow mode, then no real-time constraints are enforced. If the crane
is in fast mode, then the time between the crane request to load /unload a container
and setting the magnet off have to be achieved in f4pcq time units. Otherwise,
the arm should be moved up for its safety and all the subsequent user commands
are refused and the supervisor must be warned. The required view in this case is
the provided interface of the controller (to initialize the local time for the action
when load or unload requests are intercepted), the required interface of the arm (to
capture the interception time of setting the magnet off) and the provided interface
of the arm (to call the arm to move up when the real-time constraint is violated).
The corresponding view is shown in figure 5.4.

Crane
I g— ﬂ

rm
)

Figure 5.4: RTCrane view of the crane

Controller

As shown from the above examples, views make it simple to implement the above
aspects: if the components are properly assembled (i.e., the current configuration
matches the required view), aspects are added as wrappers to the view otherwise
a reconfiguration is needed. However, when we consider aspects requiring different
views at the same time, wrappers (i.e., aspects) crosscut each other as shown in
Figure 5.5. It is obvious that the architecture of the component system must be
reconfigured in order to enable different wrappers requiring different views. In the
following, we introduce a specialized language for views definitions and show how it
can be used in order to weave crosscutting wrappers.

Chapter 5. Aspects as wrappers on views of component systems
96 architectures

/—| SaveEnergy/TruckSafety i

Performance/Recovery
CraneSafety
° :controuer A
N
RTCrane
.

Figure 5.5: Wrappers crosscutting phenomenon

5.2 Views definition language

In this section we define a declarative language we call VIL (VIews Language) for the
definition of views in component architectures. In the AOP point of view, VIL is a
declarative pointcut language suitable for component models. Using VIL, minimum
language constructs are used to define the points where aspects should interact with
the system and this prevents the knowledge of the complete and detailed structure
of the component systems. Here, we first define the join point model, then we
introduce the complete syntax of the language and we describe its semantic.

5.2.1 The join point Model

The main element of each aspect-oriented language is the join point model. The join
point model defines well-defined points in the execution of programs. These points
are captured at runtime and aspects get involved only on those points [Kiczales 2001a].
On the other hand, components can be seen as black, gray or white boxes. Black box
components are characterized with no specific knowledge of their internal behaviors,
no access to their source code, and no knowledge of their architecture. In that case,
the only accessible information of a component are its provided and required inter-
faces. Gray box components may show their internal architecture and potentially
some knowledge of their behavior in terms of protocols or contracts [Szyperski 2002].
In particular, Fractal [Bruneton 2004] is a hierarchical component model where the
architecture of composite components are given. Finally, white box components pro-
vides full access to their structure and behavior (i.e., source code available). Thus,
each of the above different categories of components requires an appropriate join
point model when aspect-orientation is required. In our approach, we focus on the
intermediate level (gray box component models) where components, their architec-
tures and their behaviors specification are provided. While component architecture
description enables the definition of views and the exact points where aspects are
involved in the interaction with the base system, bahavior’s specification enables
aspect interferences detection. In our proposal, we consider calling services from
required or provided services, and accessing component attributes. Inspired from

5.2. Views definition language 97

AspectJ [Kiczales 2001b], each service call at runtime is a different join point, and
each component attribute access is a different join point. A join point has one of
the forms (cId, itfId, svId) (for service call) and (cId, atId) (for attribute
access) where cId ranks over component names, itfId and atId rank over interface
and attribute identifiers, respectively, and svId ranks over service signatures. For
example, the (engine, iArm, moveUp(Speed)) denotes calling the moveUp (Speed)
service of the iArm interface of the engine component, while (engine, speed)
denotes the access to the attribute named speed of the engine component. The
following section gives the complete syntax of VIL.

5.2.2 Syntax of VIL

In this section we describe our declarative pointcut language VIL for component
models.

vexp € View 1= x
| cld
| child [*] v
| parent [t] v
| primitive v
| instance v
| [direct] provide v [(T | N) id*][sig*]
| [direct] require v [(T | N) id*][sig*]
| bound [C | S] v [¢d*]
| attributes v [atId*]
| scflow v
| v1 D v2
| vi®w
| v1 © v2

VIL defines a view in a component architecture specifying the set of components
to be encapsulated together and their interfaces and services to be intercepted. In
“*¥” denotes that all the components of the architecture should be en-
capsulated in one component and all their interfaces and services are intercepted.

particular,

Thus, the required view is the same as the original one (i.e., no need to reconfigure
the system) and the wrapper is to be plugged into the root component of the ar-
chitecture. As described above, cId refers to a component identifier, this indicates
that the required view is the same as the original one and all the interfaces of cId
are intercepted, but in this case the wrapper is to be plugged into the component
cId. child v and parent v denote that the view should encapsulate all the inner
components (resp. parents) of v in the same component and all their interfaces are
intercepted. “+4” denotes a recursive closure of the above relations. primitive v
denotes a view where all the primitive components of v should be in the same com-
posite and all their interfaces are intercepted. instance v denotes a view where all
the instances of v should be wrapped and all their interfaces are intercepted. pro-
vide v and require v denote the same view as v however, only the provided (rep.
required) interfaces are intercepted. For more exhaustive specification we denote
name (N) or type (T) patterns of the interfaces to be intercepted and potentially

Chapter 5. Aspects as wrappers on views of component systems
98 architectures

the service signatures to be captured (sig). bound v denotes all the bound compo-
nents to v. To be more precise we provide C and S to denote only the components
bound to a client or to a server interfaces of v, respectively. An identifier pattern
can also be used to select only the components whose names match a pattern iden-
tifier. attributes v denotes a view that encapsulates all the components in v and
intercept accesses to all or some of their attributes. We also use scflow v to define
a view that encapsulates all the components of v in the static control flow of the
join points defined by v. Finally, a view can be composed of two other views using
a union (@), an intersection (®) or a difference (©) operators over views.

5.2.3 Semantics of VIL

Component architectures can alternately be represented as directed labeled graphs.
Nodes in those graphs are the main architectural elements of the component ar-
chitectures (i.e., components, attributes, interfaces and services), and the arc’s la-
bels denote the relationships among such elements (e.g., child, provides, requires,
boundTo). These representation enables the introspection of component architec-
tures and determine the location of elements of interest using an abstract language.
FPath [David 2009b| is a domain specific language introduced to introspect Fractal
architectures. FPath is a general and an extendible language and hence can be gen-
eralized for different component models by introducing new architectural elements
and new relationships among elements. In the following we overview FPath and we
show how our VIL expressions are evaluated using such a language.

5.2.3.1 FPath Query Language

FPath [David 2009b] is a query language developed to deal with the introspection of
Fractal component architectures. FPath uses declarative path expressions to intro-
spect Fractal elements: components, interfaces and attributes. FPath is jointly used
with a scripting language named FScript to define complex runtime reconfiguration
of Fractal architectures rather than using Fractal API which is a tedious and error
prone task. FPath expressions are of the following form, where nodeld is a node
identifier denoting the starting point from which the navigation starts and arcld
denotes a transition label identifier denoting the axis to follow:

fExp == S$nodeld “/” step (“/” step)*
step == arcld “::” (nodeld | x) |predicate(.)|

For example, the FPath expression “$crane/child:: */requires::*” returns the set
of required interfaces (the arc label requires :: %) of all the inner components
(child :: %) of the crane composite component ($crane). However, the current
version of FPath cannot directly be used in our proposal for several reasons: (1)
FPath expressions return primitive elements: a set of components or interfaces or
attributes while in our join point model we need to define a set of tuples defining
the interface services of components to be intercepted. (2) FPath does not consider

5.2. Views definition language 99

low level architectural elements such as services. (3) some of the current relation-
ships are related to Fractal (e.g., internal interfaces) where we need an independent
language. For the above mentioned reasons, we adapt FPath to fulfil our require-
ments. Figure 5.6 depicts the architectural elements and the relationships required
by our model. In the figure, the architectural elements considered are depicted with
named circles: component, interface, service and attribute. The relationships among
the elements are represented by labled arrows: parent, child, provides, requires, has,
boundTo, defines, set and get. The elements and the relationships annotated with
are the ones newly added to FPath.

parent child

Component

provides boundTo

requires

defines™

*
’ calls

Figure 5.6: Directed labeled graph adopted for component architectures

5.2.3.2 VIL semantics in FPath

In this section we give an excerpt of the semantics of VIL, the rest can be straight-
forwardly deduced. VIL uses FPath to access the different architectural elements
on a component architecture, and defines the different join points required to be
intercepted. In addition, a views transformation function is defined for VIL to gen-
erate the required views (i.e., a view where all the components in the jon points are
wrapped). First we introduce a function eval that defines the set of join points from
VIL expressions for a component architecture a. Let us consider the primitive ex-
pression c/d, the eval function calls FPath (Fp,q, function) to get all the interfaces
of cId (e.g., itfs) and all the services defined for each interface (e.g., svsjy), finally it
defines the set of join points as a set tuples {(cId, itf, sv) : itf € itfs \ sv € svsyy}.
Formally:

Chapter 5. Aspects as wrappers on views of component systems
100 architectures

eval (cId) a = let e; = $cId/provides :: %, ea = $cId/requires :: x,
itfs = Fpanler] a U Fpanlez] a
in
U {(cId,itf,s) : s € Fpunl(ei|ez)[name(.) = itf]/service :: x| a}
Vitf €itfs

Another example is the expression (child v) which is evaluated by evaluating v
first and for each component in v we get all its direct inner components capturing
all their services of all their provided and required interfaces. The s, in the formula
denotes a projection operation that extracts only the t elements from the tuples
defined by s.

eval (child v) a = let cs = (eval v a)

icomponent
in U eval cId a
Veld' e(Veldecs: Fpain[$cId/child::x])

The expression (attributes v) is evaluated by applying the eval function to v
capturing all the attributes defined on all the components of v.

eval (attributes U) a = let Ccs = (e'Ua/l v a)wl/component
in U {(cld,at) : at € Fpgn[$cId/has ::] a}
Velde cs

A more interesting example is the (scflow v) which is evaluated by evaluating
v capturing the set of join points on the recursive closure of calls relation of each
service on v.

eval (scflow v) a = let jps = eval v a
in U {(cld,itf,s) : s € Fpun[$sv/calls™ i «] a}
Vsve jpsiservice
A last example is views composition operations that forms one view from two
predefined views. Here is the definition of the union operation of views, that con-

structs a new view that encapsulates all the components and intercepts all the join
points encapsulated and intercepted by its underlying views.

eval (v ® vy)a = eval v1 a U eval vy a

In addition to the above eval function, we provide views transformation function
Omid- This function is a model-independent function. It defines how wrappers and

=W N =

5.3. Implementation of VIL in Fractal component model 101

views are represented according to the basic tenets of a component model mId.
In the following, we show how o,,74 is defined to model views and wrappers for
two different categories of component models: hierarchical component models with
component sharing such as Fractal and flat component models such as EJB.

5.3 Implementation of VIL in Fractal component model

Fractal component model [Bruneton 2004| defines its own architecture description
language (ADL) to describe component assemblies. It supports hierarchies, compo-
nent controllers, introspection and component sharing. Fractal controllers intercept
calls to a component provided and/or required interfaces and enable component be-
havior adaptation and the definition of extra-functional features to components by
executing an additional code when calls are intercepted. We get benefit of Fractal
controllers to define aspects (i.e., wrappers). However, in Fractal Julia implementa-
tion, when a component has several controllers, there is no general way to compose
them. They can only be executed independently or sequentially by configuring inter-
ceptors or be composed in a programmatic way by explicitly calling one controller
from another. This makes the implementation of controller-based adaptations a
complex task with sometimes unexpected behavior. To tackle this limitation, we
introduce composable controllers into Fractal Julia implementation. Composable
controllers, as their name indicate, get benefits of regular Fractal controllers (con-
trol the behavior of components by introducing extra-functional properties) and
enable controller composition. In the following, we introduce the concept of com-
posable controllers, we describe how views are defined using VIL, and we show how
aspects (i.e., controllers) can be composed to solve potential interferences.

5.3.1 Composable controllers

We define a composable controller as a pair (Dispatcher,ICController) where
Dispatcher is a regular Fractal controller plugged into the composite defining the
view and ICController is an object implementing the ICController interface (see
Listing 5.1).

enum Action {Proceed, Skip}
interface ICController {
Action match(MessageContext c);

b
Listing 5.1: ICController interface

The Dispatcher controller intercepts calls to the inner components of the view,
reifies the intercepted calls into MessageContext objects and calls the match()
method of the ICController. The Dispatcher waits for the action taken by the
ICController (i.e., Proceed or Skip) and behaves accordingly. When it receives a
Proceed action, it calls the original method and the call reaches its target, when it

0~ O Uk WN

— =
W N = O o

Chapter 5. Aspects as wrappers on views of component systems
102 architectures

receives a Skip the Dispatcher does nothing and the call is ignored. For composing
controllers, composition operators are defined as ICController(s), this enables the
composition of controllers and composition operators in a composite pattern way.
Each match(MessageContext) method of the composition operator implements the
semantics associated to each operator and returns Proceed or Skip accordingly to
the Dispatcher controller. Take for example the crane view of the crane system

Crane
Arm

(see Figure 5.7).

O Controller Engine

Figure 5.7: A composable controller on the Performance view of the crane where

the ICController is shown as a gray box with the name of the aspect and the
Dispatcher is depicted with (T) at the top of the view

The integration of the Performance aspect to the crane requires adding a com-
posbale controller (Dispatcher,Performance) to the original view. The Dispatcher,
in this case, intercepts the incoming calls to the Engine and the outgoing calls from
the Arm. For each intercepted call, the Dispatcher reifies it and calls the match()
method of the Performance object (see Listing 5.2). The match() method of the
Performance checks whether the intercepted call is a setOn() (resp. set0f())
method call (line 6-7). If it is the case, it stores the state of the magnet in the at-
tribute isMagnetOn. If the intercepted call is a moveLeft (Speed) or a moveRight (S-
peed) method call (line 8), it first checks the state of the magnet, if it is off, it changes
the parameter value of the call to fast by calling c.setSpeedArgument ("fast")
method (code not shown here). Finally, the match() method returns Proceed (line
11) thus the Dispatcher calls the original method which reaches its target.

class Performance implements ICController {
private boolean isMagnetOn = false;
Action match(MessageContext c) {
if (c.getSignature().equals("setOn()")) isMagnetOn = true;
else if (c.getSignature().equals("setOff()")) isMagnetOn = false;
else if (c.getSignature().startsWith("move")) {
if (isMagnetOn()) c.setSpeedArgument("fast");
b
return Action.Proceed;
}
}

Listing 5.2: The Performance implementation

Now, we want to apply the TruckSafety and the SaveEnergy aspects, both
require another view where the Controller and the Engine to be in the same com-
ponent. However, since both aspects intercept the same join points, a composition

1
2

5.3. Implementation of VIL in Fractal component model 103

strategy should be used. In our approach we adopt the sequential composition as
a default strategy for aspects sharing join points. The sequential composition is
abstracted with a generic and a reusable operator named Seq. The Seq operator
forwards calls to shared join points to both aspects in a sequential order and proceeds
a call only when at least one of its underlying aspects returns Proceed, otherwise it
skips the call (see Chapter 6 for the full semantics of operators). Figure 5.8 depicts
the Fractal architecture of the crane example after applying both the TruckSafety
and the SaveEnergy aspects (i.e., ICController(s)). In the figure, the new view
crosscuts the original view, thanks to component sharing, this configuration is pos-
sible (i.e., the Engine component is a shared component between the two views).
Shared components are depicted with dashed lines in the figure.

I TruckSafety | I SaveEnergy |
AN —

F [Performance |
ControlledEngine A
pr——— Crane
Controller ! Engine H—C Arm D—[Ej
Sommmmnmanac’
./

Figure 5.8: Seq(TruckSafety,SaveEnergy) plugged into ControlledEngine view

Let us generalize and detail our implementation of views for Fractal. For the
definition of views in Fractal Julia, we distinguish two cases: (1) the components to
be wrapped belong to the same composite, and (2) the components to be wrapped
do not belong to the same composite. In the following we detail how views are
created for each case.

5.3.2 The components of interest belong to the same composite

In this case, the required view is the same as the original configuration. In practice,
this requires to update the ADL description of the architecture by (1) declaring
a composable controller modelling the required aspect as a part of the membrane
of the composite encapsulating the components of interest and (2) by declaring an
interceptor controller as a part of the membrane of each component of interest. In
addition, a Julia configuration file is generated to include the definition of the added
controllers. Listing 5.3 shows the general required modification of the ADL descrip-
tion where the component named ¢ models the required view by a VIL expression. In
that case, a composable controller is defined for that component (CControllerName
line 12), and an interceptor controller is defined for each one of its inner components
(Interceptor line 10). Each interceptor controller intercepts incoming and/or out-
going calls to/from its underlying component and forwards them to the Dispatcher
of the composable controller of its component parent.

<component name="c">
// interface declarations

12
13

1

Chapter 5. Aspects as wrappers on views of component systems

104 architectures
// the content declaration if "c¢”" is a primitive
// else for each inner component ci
<component name— "c;">
// interface declarations of the inner component
// the content declaration if "ci" is a primitive
// or the inner components declaration if "ci" is a composite
// binding declarations if "ci" is a composite
<controller desc = ”Interceptor”/>
</component>
<controller desc = ”CControllerName” />
< /component>

Listing 5.3: The required ADL modification if the view corresponds to the original
configuration: the underlined code is the one that is added to model the wrapper

In addition to the above ADL description modification, a Julia configuration
file should be defined to include the full description of each controller: its imple-
mentation class, the required interceptors and a controller composition expression
if any. Listing 5.4 shows the structure of the Julia configuration file. The file starts
with an indication of the composable controller identifier, the same used in the ADL
description (i.e., CControllerName line 1). The interface of the controller is defined
(ICController line 4). The implementation class of the controller is defined by the
Dispatcher class name followed by ccExp expression that is passed as a parameter
to the Dispatcher class. The ccExp expression is of the form:

(ccExp) == ICControllerName | (opId) ({ccEzp), {ccExp))
(opId) u= Seq| Fst| Alt| ...

In addition, the InterceptorKind is one of three kinds: InInterceptor that
intercepts only the incoming calls of a component, OutInterceptor that intercepts
only the outgoing service calls of a component, and InOutInterceptor that inter-
cepts all the incoming and the outgoing calls of a component.

(CControllerName

(
"interface —class—generator
(
(CControllerName—controller vil.common.lICController)
)
(
(vil.controllers.Dispatcher <ccExp>)
)
(
(org.objectweb . fractal.julia.asm.InterceptorClassGenerator
org.objectweb . fractal.julia.asm.LifeCycleCodeGenerator
)
)
org.objectweb . fractal.julia.asm.MergeClassGenerator
"optimizationLevel
)
)
(Interceptor

(

"interface—class—generator

(

5.3. Implementation of VIL in Fractal component model

105

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38)

(Interceptor—controller vil.common.lInterceptor)
(vil.controllers.Interceptor)

)
(

(org.objectweb . fractal.julia.asm.InterceptorClassGenerator
org.objectweb . fractal.julia.asm.LifeCycleCodeGenerator
(vil.interceptors.InterceptorKind 'interfaceName)

)

org.objectweb . fractal.julia.asm.MergeClassGenerator
"optimizationLevel

Listing 5.4: The generated Julia configuration file for each view definition

For better understanding of our modelization, take for example the crane exam-

ple with its crane view. Listing 5.5 shows the updated ADL description of the crane

example after adding the Performance aspect to the crane component. The only

modification is the addition of interceptor controllers Interceptor to the inner com-

ponents of the Crane (line 15,21) and a composable controller named Performance
to the Crane composite (line 26).

1 <component name-=root >
<interface name="iController" signature="Crane.IController" role="server">

<component name="controller ">

<interface name="iController" signature="Crane.IController" role="server"

>
<interface name="iEngine" signature="Crane.IEngine" role="client">
<content class="Crane.ControllerImpl">
< /component>
<component name="crane">
<interface name="iEngine" signature="Crane.IEngine" role="server'">
<interface name="iMagnet" signature="Crane.IMagnet" role="client">
<component name—engine >
<interface name="iEngine" signature="Crane.IEngine" role="server">
<interface name="iArm" signature="Crane.IArm" role="client">
<content class="Crane.Enginelmpl">
<controller desc = Interceptor/>

< /component>

<component name="arm'">
<interface name="iArm" signature="Crane.IArm" role="server">
<interface name="iMagnet" signature="Crane.IMagnet" role="client ">
<content class="Crane.ArmImpl">
<controller desc = Interceptor/>

< /component>
<binding client="this.iEngine" server="engine.iEngine"/>
<binding client="engine.iArm" server="arm.iArm"/>
<binding client="arm.iMagnet" server="this.iMagnet"/>
<controller desc = Performance/>
< /component>
<component name—="magnet ">
<interface name="iMagnet" signature="Crane.IMagnet" role="server">
<content class="Crane.MagnetImpl">
< /component>
<binding client="this.iController" server="controller.iController"/>
<binding client="controller.iEngine" server="crane.iEngine"/>
<binding client="crane.iMagnet" server="magnet.iMagnet"/>

35

Chapter 5. Aspects as wrappers on views of component systems
106 architectures

< /component>

Listing 5.5: The Fractal ADL description of the crane example after adding the
Performance aspect

Listing 5.6 describes the Julia configuration file that defines the Performance

controller. In the listing, the interface implemented by the controller (i.e., ICController)

is indicated at line 5. The Dispatcher controller is indicated at line 8 where the
Performance is passed as a parameter to the Dispatcher. Thus, an object of the
class Performance is created for the Dispatcher controller. The rest of the code in
the listing indicates how the code of the controller is merged with the component
implementation code.

(Performance

(

"interface —class—generator

(

(performance—controller vil.common.ICController)
(vil.controllers.Dispatcher Performance)

)
(

(org.objectweb . fractal.julia.asm.InterceptorClassGenerator
org.objectweb . fractal.julia.asm.LifeCycleCodeGenerator

)
)

org.objectweb . fractal.julia.asm.MergeClassGenerator
"optimizationLevel

Listing 5.6: The Julia configuration file for the Performance aspect

5.3.3 The components of interest are scattered in the architecture

Here we need to reconfigure the system to accept the required view. Thanks to
component sharing feature in Fractal, this kind of reconfiguration is possible. In
Fractal we adopt the following reconfiguration strategy: a new composite is created
as a child of the closest common parent of the required components. This composite
shares all the required components with their original parents. Similar to the above
case, the composable controller is plugged into the new composite and an interceptor
controller is added to the membrane of each inner component. Thus, the view is
added and the original configuration is preserved. The choice for the position of the
new composite declaration is made to synchronize the life-cycle of the view with
the life-cycle of its inner components. Thus, when all the inner components of the
view are destroyed, the view is automatically destroyed. In addition, when two views
crosscut each other and an interference appears between their composable controller,
both views are composed into one view using the union operator (). This enables

1

0~ O Uk WN

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

5.3. Implementation of VIL in Fractal component model 107

the composition of the composable controllers of different views to solve potential
interferences among them.

Thus, the definition of a view in this case is divided into two steps. The first step
consists in finding the closest common parent of the components to be wrapped. This
can be done using FPath language: consider ¢;; and co; two different components
belonging to ¢; and co, respectively. The following FPath expression provides a set
of all their common parents including the root component:

e = c11/ancestor :: x[in(ca1 /ancestor ::)]

The “c11/ancestor :: " sub-expression returns the set of all the ancestors of ¢1;
including the root component. With the predicate “in” presented between square
brackets, only the ancestors of c11 that belong to the set of ancestors of co; will be
returned. The closest parent ¢ belongs to that set and has the following particularity:
descendant(c) N Fpan(e) = ¢ which states that none of the descendants of the
closest parent is a common parent of the required components. The second step
consists in adding a new composite as an inner component of the common parent
of c11 and c¢o1 found by the previous step. This is shown in Listing 5.7. The new
composite view (line 24-28) declares c¢1; and cg; as its inner components sharing
them with their original parents ¢; and cg, respectively (line 25-26). This way,
the original architecture is preserved after the new view is defined. Finally, an
interceptor controller is associated to each shared component (line 9,19), and a
composable controller is added to the new created composite (line 27). The added
interceptor controllers intercept calls on their components and route them to the
nesting composite.
<component name="c; ">

// interface declarations
<component name—= "cj1">
// interface declarations of the inner component
// the content declaration if "c11" is a primitive
// or the inner components declaration if "ci1" is a composite

// binding declarations if "ci1" is a composite
<controller desc = ”Interceptor” />

</component>
// other inner components of ci
< /component>
<component name="c,">
// interface declarations
<component name— "cp ">
// interface declarations of the inner component
the content declaration 1 "co1 " is a primitive
p
// or the inner components declaration if "co1" is a composite
binding declarations t¢f "co1” is a composite
g p
<controller desc = ”Interceptor”/>

</component>

// other inner components of ca
< /component>
// other component declarations of this level
<component name = ’view’>

<component name = "cy;” definition = ”/ci/c11"/>

<component name = "co;” definition = 7 /co/co" />

27

108

Chapter 5. Aspects as wrappers on views of component systems
architectures

<controller desc = ”CControllerName” />

28 </component>

Listing 5.7: The required ADL modification if the components of interest are
scattered in the architecture

Listing 5.8 shows the ADL description of the reconfigured crane example to
include the composition of the truckSafety and the saveEnergy aspects.
added lines are underlined in the script.
for the view includes the definition given in Listing 5.4 replacing (ccExzp) with
Seq(truckSafety,saveEnergy).

1 <component name-=root >

38

<interface name="iController" signature="Crane.IController" role="server">

<component name="controller ">

<interface name="iController" signature="Crane.IController" role="server"

>
<interface name="iEngine" signature="Crane.IEngine" role="client">
<content class="Crane.ControllerImpl">
<controller desc = Interceptor/>

< /component>
<component name="crane">
<interface name="iEngine" signature="Crane.IEngine" role="server'">
<interface name="iMagnet" signature="Crane.IMagnet" role="client">
<component name—engine >
<interface name="iEngine" signature="Crane.IEngine" role="server">
<interface name="iArm" signature="Crane.lArm" role="client">
<content class="Crane.Enginelmpl">
<controller desc = Interceptor/>

</component>
<component name="arm'">
<interface name="iArm" signature="Crane.IArm" role="server">
<interface name="iMagnet" signature="Crane.IMagnet" role="client ">
<content class="Crane.ArmImpl">
< /component>
<binding client="this.iEngine" server="engine.iEngine"/>
<binding client="engine.iArm" server="arm.iArm"/>
<binding client="arm.iMagnet" server="this.iMagnet"/>
< /component>
<component name="magnet ">
<interface name="iMagnet" signature="Crane.IMagnet" role="server">
<content class="Crane.MagnetImpl">

</component>

<component name = ”ControlledEngine”>
<component name = ”controller” definition = ”/controller"/>
<component name = ”engine” definition = ”/crane/engine"/>
<controller desc = ”Seq — truckSafety — saveEnergy” />

</component>

<binding client="this.iController" server="controller.iController"/>
<binding client="controller.iEngine" server="crane.iEngine"/>
<binding client="crane.iMagnet" server="magnet.iMagnet"/>

39 </component>

Listing 5.8: The Fractal ADL description of the crane example after adding the
Seq(TruckSafety,SaveEnergy) composable controller

The Julia configuration file generated

5.3. Implementation of VIL in Fractal component model 109

5.3.4 Fractal Weaver

The above component architecture transformation becomes a tedious and error
prone task when the architecture grows. Our approach makes it possible to au-
tomatize this task. For that reason we developed a Fractal weaver as a top level
extension of Fractal Julia implementation as shown in Figure 5.9. In the figure, the
Fractal weaver consists of three modules: VIL analyzer, ADL transformer, and Julia
config generator. In the following we describe the role of each module.

VIL

Exp Cfg

VIL ADL Julia Config
Analyzer Transformer Generator

ADL y Y ‘T ADL

Fractal Julia Framework

Figure 5.9: Fractal Weaver Architecture

input data

output data

5.3.4.1 VIL Analyzer

This module analyzes the input VIL expressions, and uses Julia introspection mech-
anism to introspect the given ADL description and returns the concrete join points
to be intercepted. When an expression is not well-defined, an exception is thrown
indicating an error in the input expression, otherwise a set of concrete join points is

returned (see Section 5.2.1). Figure 5.10 describes the UML class diagram associated
to VIL expressions.

<<Abstract>>
VExp

| 0p: String
ca: componentArchitecture
evaluate(): LinkedList<joinpoint>

(3

BCExp SBExp UExp
left: VExp left: VExp left: VExp
right:VExp right:String[] evaluate(): Set<joinpoint>
evaluate(): Set<joinpoint> evaluate(): Set<joinpoint>

Figure 5.10: VIL Expressions structure

A VIL expression is of three forms: (1) Unary form (UExp) where the expression
has an operator and merely one operand. This includes child, parent and instance
expressions. (2) Selective binary form (SBExp) where the right hand side operand is a
set of patterns or selectors that match a subset of the find join points. This includes

T W N =

Chapter 5. Aspects as wrappers on views of component systems
110 architectures

provide, require and direct expressions. (3) Binary composition of expressions
(BCExp) where views are composed using @, © and ® operators. The analyzer role is
to interpret VIL expressions and returns a set of join points (Set<joinpoint>). The
evaluate () function of each class implements the required behavior of the analyzer
for the form in question.

5.3.4.2 ADL Transformer

This module uses the returned join points from the above module and uses them
to determine and define the required views. It uses the process described in Sec-
tion 5.3.2 and Section 5.3.3, respectively. This includes the addition of new com-
posites, the declaration of composable controllers and interceptor controllers for
components, and the composition views when needed (see Section 5.3.3).

interface TADLTransformer {
Dag Adl2Dag(File src);
File Dag2Adl(Dag dag);
run (ComponentArchitecture ca, String asld, VExp exp);

}
Listing 5.9: ADL Transformer Interface

The ADL transformer uses an intermediate DAG structure to transform the ADL
description into a component architecture with the required views and controllers.
Listing 5.9 describes the interface implemented by the ADL transformer. It defines
three methods: Ad12Dag() and Dag2Adl() to transform an ADL description into
a DAG structure and vice versa, and a run() method that calls the Ad12Dag()
method to get the DAG structure of the original architecture, then it calls the VIL
analyzer to interpret a VIL expression, update the DAG structure to consider the
required view and calls the Dag2Ad1l () method to get the final ADL description with
the required views and composable controller(s).

5.3.4.3 Julia Config Generator

This latter module generates the required Julia configuration files providing infor-
mation about the implementation of composable controllers and interceptors. These
files are required for the correct execution of the result system in Julia. It automa-
tizes the step described in Section 5.3.3.

5.4 Implementation of VIL in EJB component model

For flat component models, such as EJB, a view cannot be modeled as a composite
since component hierarchy is not supported by such models. In addition, neither
controllers nor component sharing are supported. One solution is to model a wrap-
per as a pair of regular components or beans (Dispacher,Aspect). The Dispatcher
bean is bound to all the beans of interest on the interfaces to be intercepted. Since
the Dispatcher in this case has no a general structure (i.e., no predefined num-
ber and type of interfaces), it can be automatically generated from the join points

5.5. Conclusion 111

definition (i.e., defines all the interfaces in the set of defined join points). Like the
one in Fractal, the dispatcher intercepts all the calls, defined by VIL expressions,
instead of their original targets, reifies and forwards the calls to the aspect bean.
The Aspect bean executes extra-code and decides whether to proceed or skip the
call by returning proceed or skip to the dispatcher. This latter proceeds calls by
calling the original service and skips them by ignoring them. Implementing this so-
lution, the component system is reconfigured by adding the components modelling
the dispatcher and the aspect bean to the container and update the bindings to
fulfil the required view as depicted in Figure 5.11. In the figure, the dispatcher and

TruckSafety
o

o
Dispatcher
O—[Comroller o—[Engine Jo—[Arm @——[Magnet j
g
Dispatcher
e
o

Performance

EJB Container

Figure 5.11: The implementation of views and wrappers in flat component models

the aspect beans are depicted with gray boxes. Two crosscutting views (Crane and
the ControlledEngine) are presented. The Dispatcher bean in this case defines
two required interfaces (i.e., IController and IArm) and two provided interfaces
(i.e., IController and IArm). An Aspect bean always provides only one inter-
face similar to that defined for Fractal (i.e., ICController interface). This enables
the composition of aspect beans using composition operator. A composition oper-
ator can also be modeled as components or beans that intercept reified join points
and forward them to beans modelling the different aspects following their appropri-
ate strategy, then return the result to the dispatcher. Figure 5.12 shows how the
TruckSafety and the SaveEnergy wrappers are composed using the Seq operator.

5.5 Conclusion

In this chapter, we described our approach based on views and wrappers for as-
pectualizing component models. Views can be defined using VIL language in a
declarative style. VIL is a pointcut language adopted for component models. Cross-
cutting views can be modeled in different ways following the basic tenets of each
component model. Our approach is designed to be model and language-independent,
we have shown how it can be used for hierarchical component models with compo-
nent sharing such as Fractal and flat component models such as EJB. Currently,
the approach is implemented for Fractal component model and the Fractal weaver
presented in Section 5.3.4 is available upon request.

112

Chapter 5. Aspects as wrappers on views of component systems

architectures

TruckSafety SaveEnergy
0 o
u
C

EJB Container

o
Performance

Figure 5.12:

Wrappers composition in flat component models

CHAPTER 6

Aspects Interferences Detection

and Resolution

Contents
6.1 Overviewof Uppaal 114
6.1.1 Description languageo 114
6.1.2 Simulator 116
6.1.3 Model checker o Lo 116
6.2 Formalization of component systems in Uppaal 117
6.2.1 ADL description of component systems 117
6.2.2 Formalization of primitive components 120
6.2.3 Formalization of composite components 121
6.2.4 Formalization of component bindings 123
6.2.5 Component systems 123
6.2.6 Aspect weaving o 123
6.3 Interference detection and resolution 125
6.3.1 Well-definedness of component systems 126
6.3.2 Correctness of aspects w.r.t component systems 126
6.3.3 Interference and Interference-freedom of aspects. 127
6.3.4 Composition operators solving Interferences 128
6.4 Composition operators catalog 129
6.4.1 Fst composition patterno 129
6.4.2 Seq composition patterno 129
6.4.3 Cond composition pattern, 131
6.4.4 And composition patterno 133
6.4.5 Alt composition pattern L. 133
6.5 Conclusion i e e 134

In this chapter, we show how aspect interferences can be detected and potentially
solved using model checking approaches and composition operators, respectively.

In our proposal we adopt the use of Uppaal model checker for modelling compo-

nent systems, aspects, and aspectualized component systems, for formal detection

of aspect-base and aspect-aspect interferences. First, we give a short overview of

Uppaal. Second, we describe a transformation scheme of component systems into

114 Chapter 6. Aspects Interferences Detection and Resolution

Uppaal processes. Third, we show how base system and aspect properties can be
specified in CTL formulas and checked within Uppaal to detect interferences. Fi-
nally, we present a set of composition operators as patterns for aspect interference
resolution.

6.1 Overview of Uppaal

Uppaal [Bengtsson 1996, Larsen 1997, Behrmann 2004] is a toolbox used to design,
simulate and check properties for systems that can be modelled as state machines
extended with local variables, data types, and clock variables. Such kind of state
machines with time support are called timed automata [Alur 1992]. For modelling
time, Uppaal uses a dense time logic [Ahmed 1996] where clock variables range
over real numbers, but they can be reset and assigned to natural numbers. All the
clocks of a system start at the same instant and they proceed at the same rate
and hence clocks of the same system progress synchronously. Each state machine
in Uppaal is called a template. A template can be parametrized with constants
and data variables indicating how that template is instantiated (e.g., how many
instances will be created). Each instance is called a process. Template nodes are
called locations while the edges are called transitions. The Uppaal toolbox consists
of three parts: a modelling description language, a simulator and a model checker.
In the following we give a brief description of each part of Uppaal with an abstract
client-server example.

6.1.1 Description language

For each Uppaal template, edges are decorated with channels, guards and reset oper-
ations. Channels are the communication means between processes in Uppaal. Thus,
Uppaal uses a! and a? to denote sending and receiving a channel a, respectively.
In addition, channels can be broadcasted to several processes, where different pro-
cesses can synchronize with the same channel. Guards express conditions on data
variables and clocks that must be satisfied to enable transitions. Reset operations
are sequences of data variables and clocks assignment that can also be expressed as
C functions in the declaration part of templates. Channels, guards and reset op-
erations presence is optional in transitions. In particular, the absence of a channel
indicates an internal action of the process. To enforce timing constraints, Uppaal
supports invariants on locations to indicate that the system cannot remain in a par-
ticular location more than a specified time value associated to a clock variable. In
addition, Uppaal supports parameter passing between processes.

For better understanding of Uppaal modelling language, let us consider an ab-
stract client-server example that we show in figure 6.1. In the figure, two templates
are presented, one for a server (left hand side figure) and one for a client (right hand
side figure). The initial location SO is indicated with a double circle. The transi-
tion (80 -> S1) in the server template is decorated with a condition (isActive() in
italic font), a received channel name (a[id]? in normal font) and a reset operation

6.1. Overview of Uppaal 115

(update() in bold font). The transition (SO -> 82) is decorated only with a con-
dition (/isActive()) and a receiving channel (a[id]?). That is to indicate that from
an initial location, a server waits for a message a[id]?. The (SO -> S1) transition
is enabled if the server is active (isActive() evaluates to true). In that case, the reset
operation update() is executed and the system goes to S1 location. If the server
is not active (/isActive() evaluates to false), the (SO -> S2) transition is enabled
and the system goes to the S2 location. In both cases, the system is not allowed to
stay at the new location more than 5 minutes (c1<=5 variant), instead, the process
returns to the initial location by either sending b[ret]! or ¢! channels to the cor-
responding client and resets the clock variable (c1:=0). Since there are more than
one instance of the server (the server template is parametrized with const ID id,
where ID is a data type of range [0,N] and N is a constant indicating the number
of processes that should be instantiated for the template), a client arbitrary chooses
one of the servers (id:ID selector in underlined font), sends a channel a[id]! to
the server id and goes to the S1 location. It stays at that location waiting for either
blret]? or c? channels, when this happens, the client returns directly to the initial
location. The initial location of the client is denoted with the symbol (U) to indicate
that this location is urgent and hence the client does not stay at that location since
there is a server enable to communicate with the client. Furthermore, the server
process passes a returned value to the client in the b[ret]! channel, the returned
value is saved in the local variable val (i.e., val:=ret).

c!
cl:=0

S2
cl<=5

isActive()

alid]? id:ID
dat S1 a[id]!
S0 update(cl<=5 S0 @ (] S1
b[ret]! ret:RET
cl:=0 b[ret]?
val:=ret
Server (const ID id) Client

Figure 6.1: Uppaal graphical description of a client-server example

For describing systems, Uppaal provides both a graphical (XML) format and
a textual (XTA) format. Within the graphical format, templates can be designed
as graphs with nodes and edges following the WYSIWYV principle (i.e., What
You See Is What You Verify) as shown in figure 6.1. The textual format provides
to the user a programming language of automata. Listing 6.1 describes the XTA
description of the client server example. In the figure, constants, data types and
channels are declared first (line 2-5), in the global declaration part followed by a set
of processes declarations. Fach process has an identifier and potential parameters.
For example, the server process is parametrized with const ID id to denote that
several instances (3 in this case) of the template are available. Then the set of
local variables, clocks, and potential C functions used for guards or assignments

116 Chapter 6. Aspects Interferences Detection and Resolution

are declared. States and transitions are declared at the end of process declaration.
Finally, the set of concurrent processes are indicated using the system clause.

1 // global declarations

2 const N = 3;

3 typedef int[1, N] ID;

4 typedef int [0,5] RET;

5 chan a[ID], b[RET], c;

6

7 process Server(const ID id) {

8 // local declarations

9 clock cl;
10 RET ret := 0;

11

12 bool isActive () {}
13 void update() {}

14 state SO, S1 {cl<=5}, S2 {cl<=5};
15 init S2;

16 trans

17 S0 —> S1 { guard isActive(); sync a[id]?; assign update();},
18 S0 —> S2 { guard lisActive(); sync a[id]?;},
19 S1 —> SO0 { sync b[ret]!; assign cl:=0;},
20 S2 —> S0 { sync c!; assign cl :=0;};
21}
22
23 process Client () {
24 RET val;
25 state SO, S1;
26 urgent S1;
27 init S1;
28 trans

29 S0 —> S1 { select id:ID; sync a[id]!;},

30 S1 —> SO0 { sync c?;},

31 S1 —> SO { select ret: RET; sync b[ret]?; assign val:=ret;};
32}

33 // The list of processes to be composed into a system
34 system Client, Server;

Listing 6.1: Textual description (XTA) of the client server example

6.1.2 Simulator

Uppaal provides a simulator for exhaustive examination of systems behaviors. Within
a simulator, a user can interact with the system, execute the system step by step,
decide which transition should be taken when several are enabled, and see how
the data variables and clocks values change during the execution. In addition, the
simulator visualizes traces generated by the model checker.

6.1.3 Model checker

The Uppaal model checker is designed to check reachability, safety and liveness
properties expressed in a subset of CTL (Computation Tree Logic) formulae. When
a particular property is violated, a counter example in terms of a diagnosis trace is
automatically reported to the user. Thus, the user is given information to detect
potential errors and helped to correct them. Uppaal model checker supports two
kinds of formulas: state formulae and path formulae. While the former evaluate the

6.2. Formalization of component systems in Uppaal 117

system in individual states, the latter, focus on the model behavior over traces of
its execution.

State formulae evaluate state variables in individual locations (e.g., val==5), or
checks whether a process is in a given location (e.g., Server [id] .S1). The deadlock
freedom is a state formula that is checked for every state using a special keyword
(not deadlock). State formulae can be combined using regular logical operators
(i.e., and &&, or ||, not !).

Path formulae are divided into reachability, safety, and liveness properties. Reach-
ability properties in Uppaal express that "some states satisfying a property are
reachable”, this is written as: E<> ¢ where ¢ is a state formula. Safety proper-
ties in Uppaal express that "something good is invariantly true”, these are written
in Uppaal as: A[] ¢ (for all the paths and all the sates in each path) and E[] ¢
(for all the states of some paths). Liveness properties express that "something will
eventually happen”, this is written as A<> ¢ or "whenever a property is satisfied,
another property is eventually satisfied”, this is written as ¢1 --> ¢o.

In our proposal, the reason for the adoption of Uppaal model checker is twofold:
(1) generality and (2) expressiveness. By generality, both real time systems and
non real time systems can be modelled thanks to the use of clocks in the process
templates. While by expressiveness, we get the benefit of state variable assignments,
parameter passing between processes and templates instantiation which are intrinsic
properties for components: components may have attributes that can be updated
during their life cycles, they may exchange values and they can be instantiated
several times in the same system.

6.2 Formalization of component systems in Uppaal

In this section we describe a transformation scheme of component systems into Up-
paal processes. First, we describe an ADL for the specification of the structural and
the behavioral properties of component systems with aspects. Second, we describe a
set of transformation rules from that ADL into Uppaal processes, we describe what
a component system is and how aspects are bound and composed to the system.

6.2.1 ADL description of component systems

In this section we describe an ADL that enables the definition of both structural
and behavioral properties of component systems. Our ADL enriches current ADL(s)
with the information needed to detect and solve interferences among aspects. The
behavior of primitive components and aspects is unified and explicitly specified. In
addition, a set of weaving rules are provided to specify where and how aspects are
woven and composed to the base system. Table 6.1 shows the BNF-like grammar of
our ADL. In the table, id refers to general identifiers, cld, itfld, and svld refer to
component, interface and service identifiers. In addition, asld, pctld, opld, and locld
refer to aspect, pointcut, operator, and location identifiers, respectively. Finally, we
use t to refer to data types.

118 Chapter 6. Aspects Interferences Detection and Resolution

Component System Architecture Specification

Architecture = system id (Interfaces) (Components) (Attachments) [(Aspects) { Weavings)] [(Ops)]
Interfaces = (interface id {(@Q(syn | asyn) [@rtc “[’int,int"]"] svld)T})T
Components = primitive | composite | (Components); {(Components)
Primitive = primitive id [(n :> 2)] {

(Template) computation (Behavior)
Composite = composite id [(n:>2)] {

(Template) internals cldt

}
Attachments = binding (client=cld; .itfld; server=cldg.itfldp)*
Template = [attributes (¢ id;)"] [provides (itfld id;)T] [requires (itfld id;)T]
Component System Behavior Specification

Behavior = process id {

[(t id)™;] [clock id*;]

state locldt;

init locld;

trans (Transitions);

}
Transitions = (locld — > locld {[{Guard)] [{Sync)] [{Assign)]})T
Guard := guard bexp
Sync = sync [(proceed | skip).|[asId.]itfId.svId (! | ?)
Assign = assign exp
Aspects and Aspect weaving Specification

Weavings = weave ((WRule);)t
WRule = asld (pctld, vexp)t | opld {(WRule)(WRule)
Aspects = (aspect id (Behavior);)t
Ops = (operator id (Behavior);)T

Table 6.1: ADL description language for aspectualized component systems

According to the above ADL specification, a component system architecture (top
part of Table 6.1) is defined as a set of interfaces (Interfaces), components (Com-
ponents), attachments (Attachments), and optionally, aspects (Aspects), a set of
weaving rules (Weavings) and a set of reusable composition operators (Ops). Each
interface is defined by an identifier, and a set of service signatures, each of which
is annotated with (@syn or @asyn) to indicate whether the service is synchronous
or asynchronous, respectively, and optionally, a timing constraint interval (Qrtc)
indicating the lower and the upper bound time of the execution of the service. We
distinguish two kinds of components: primitives (Primitive) and composites (Com-
posite). A primitive component is defined with an identifier, a set of attributes, two
sets of provided and required interfaces and a behavior indicated with the compu-
tation keyword. Compared with a primitive, a composite does not have a behavior,
instead a set of its internal components are indicated within the internals key-
word. Since different instances may exist in the component system configuration,
an indication of the number of instances for each component is optionally indicated
with a natural number (n :> 2) that follows the component name. The set of
attachments defines the configuration of the system by setting down all the con-
nections between components. Inspired from Fractal [Bruneton 2004], a connection
binds a component required interface (i.e., client) to a component provided in-
terface (i.e., server). The weaving part of the ADL description, indicates which

0~ O ULk WN

6.2. Formalization of component systems in Uppaal 119

aspect should be woven to the system and how aspects are composed using binary
composition operators. Both aspects and composition operators are defined with
an identifier and an abstract behavior (middle part of Table 6.1). By abstract be-
havior aspect pointcuts are denoted with abstract names that should be replaced
with concrete join points at the weaving stage (see section 6.2.6). To describe be-
haviors we adopt Uppaal XTA-like notation [Larsen 1997]. Accordingly, a behavior
is indicated with a (process) keyword followed by potential declarations of local
variables, clocks and a set of transitions. Each transition indicates the start and
the end location, and a transition label. A transition is decorated with a guard,
a synchronization channel, and a sequence of assignments. A guard is a predicate
(i.e., boolean expression bexp), its satisfaction enables the transition. For channel
labels, we adopt the following notations in the ADL specification: a channel label
is a concatenation of the interface and the service identifiers. In addition, a channel
label can be prefixed with two predefined keywords (proceed and skip) to indicate
the actions taken by an aspect. Assignments are a sequence of clock and/or variable
assignments, they can also represented by calls to one or more C function. Finally,
for aspect weavings (bottom part of Table 6.1), an aspect is associated with a map-
ping (pctld, vexp) where: pctld is an abstract pointcut identifier used in the aspect
behavior specification, and vezp is a VIL expression (see chapter 5) used to define
concrete join points that correspond to pctld. For better understanding of the ADL
specification, here we describe an excerpt of the crane example. Listing 6.2 shows
the specification of the Crane composite component.

system CraneSystem
interface IEngine {@sync moveleft(Speed); @sync moveRight(Speed);}
interface |IArm {@sync moveUp(Speed); @sync moveDown(Speed);}
interface IMagnet {@async setOn(); @async setOff();}
// other interfaces
primitive Engine {
provides |Engine iEngine;
requires |Arm iArm;
// behavior

primitive Arm {
provides |Arm iArm;
requires |Magnet iMagnet;
// behavior

composite Crane {
provides I|Engine iEngine;
requires |Magnet iMagnet;
internals Engine, Arm;
}
binding client Engine.iArm server Arm.iArm,
client Crane.iEngine server Engine.iEngine,
client Arm.iMagnet server Crane.iMagnet;
// other attachments
aspect Performance {//Behavior}
weave Performance (pct, "Crane");

Listing 6.2: An excerpt of the ADL description of the crane example

In the above listing, three interfaces are declared with the signatures of their ser-
vices (line 2-4). For example, the IEngine interface (line 2) defines two synchronous

120 Chapter 6. Aspects Interferences Detection and Resolution

services named moveLeft and moveRight, respectively. Two primitive components,
the Engine (lines 6-10) and the Arm (lines 11-15), are described with their pro-
vided and required interfaces. The Crane composite component is described (line
16-20) with its interfaces and internals. The attachment description in (line 21)
indicates that the iArm interface of the Engine component is bound to the iArm
interface of the Arm component. The weaving declaration (line 26) indicates that
the Performance aspect (line 25) is bound to the system and its abstract pointcut
pct should be replaced by the concrete join point defined by the VIL expression
"Crane" which indicates all the services (synchronous or asynchronous) of all the
interfaces (provided and required) of the component named Crane.

The next sections detail how the above ADL description can be transformed into
Uppaal processes. For this aim, we define a set of helper functions that introspect
component architectures and provide information about the component structure:
primitives and composites, two functions that introspect the whole component ar-
chitecture and return the set of primitive and composite component identifiers,
respectively, services, a function that returns the set of service identifiers defined
in a given interface type identifier, name, a function that returns the name of any
software entity (i.e., component, aspect, interface, behavior) in a given architec-
ture, synchronous, a function to check whether a given service name is declared
synchronous in a given interface type, attachments, a function that returns the set
of bindings defined in a given component architecture, copy, a function that makes
a copy of a behavior of a software entity with a given new name, and nbSync and
nbAsync, functions that return the number of synchronous and asynchronous ser-
vices declared in a given interface description, respectively.

primitives, composites : Architecture — ID*

services : ID — Architecture — ID*

name : (Component + Interface + Behavior) — Architecture — ID
synchronous : Interface — ID — Architecture — Boolean

attachments : Architecture — Attachments

copy : Behavior — ID — Behavior

nbSyn, nbAsyn : ID — Architecture — N

6.2.2 Formalization of primitive components

We model each primitive component as a Uppaal process. Primitive components, in
the ADL, are defined with their behavior specifications, those specifications should
be transformed into Uppaal-XTA form. In our ADL, the behavior specification
is chosen to be a subset of the Uppaal-XTA and hence minimum adaptations are
needed. In particular, each channel label in the ADL consists of the interface and
the service names. In our formalization we adopt the following notation for chan-
nel labels: each label is a concatenation of the component, the interface and the

7

service identifiers separated with “ 7 symbol. This notation helps on modeling

component bindings (see Section 6.2.4). Accordingly, all the channel labels in the

6.2. Formalization of component systems in Uppaal 121

specification should be prefixed by the component name. In addition, when more
than one instance are required, the channel labels are suffixed with “[id]” indicat-
ing the instance reference of each component; where id is a constant that ranges
over [1..n] and n is the indicated number of instances for the component in the
specification. In Uppaal XTA, this number should be declared as a parameter of
the template modeling the component. The following listing describes the general
rule that generates a complete Uppaal-XTA template from the ADL specification
of each primitive component declaration where p [y / x] denotes a substitution of
each occurrence of x in p by y.

1P : Primitive — UppaalTemplate

2 Plprimitive cId temp computation cpt]= cpt[cld_itfld svld [itfld.svid]

3 P[primitive cId (n) temp computation cpt]= let p= copy(cpt, cld(const id:[l..n]))
4 in plcld_sdtfld_svid[id] [/ itfld.svid]

Listing 6.3: primitive component transformation rule

Listing 6.3 shows how to transform the two available forms of ADL specifica-
tion of primitive components into Uppaal processes. The first form (i.e., primitive
with a single instance) is transformed by substituting each channel label of the form
itfId.svId, in the behavior specification, by cId itfId svId (prefixing the orig-
inal label with the component identifier cI/d, and replaces the default separator “.”
with “_ 7). The second form (i.e., primitive with multiple instances) is transformed
by making a copy of the original behavior using the copy () function, naming the new
copy cId(const id : [1..n]). This enables the instantiation of the template (n) times.
In addition, we substitute each channel label itfId.svId by cId itfId svId[id].
This enables to synchronize the desired component instances.

6.2.3 Formalization of composite components

A composite is modeled as a set of Uppaal processes, one for each bound inter-
face. Each template of those processes has a central initial location and a set of
directed cycles from and to that location. Each cycle describes one service. Asyn-
chronous services are represented by cycles of two transitions: receives a message
(cIdy itfId; s;?), then forwards it (cIdy itfId, s;!) (Listing 6.4 line 16-17).
Synchronous services are represented by cycles with four transitions: receives a
message (cIdy itfId; s;?), forwards it (cIdy itfId, s;i!), waits for the reply
(E_cIdy itfId, s;i7), and forwards the reply (E_cId; itfId; s;!) (Listing 6.4
line 11-14). When the composite has multiple instances, similar to primitives, we
suffix the channel labels of the component in question with “[id]” (Listing 6.4 line
20-35). The following is the complete transformation rule of a composite component
from the ADL specification of composites.

1C : Composite — Architecture — UppaalTemplate*

2 C[composite cId; temp internals clds] a=

3 Vitfld; € interfaces(cldy),

4 I(client= cld;.itfld; server= cldz.itflds) € attachments(a):

5 process cld; itfld; () {

6 state lo,..,lx; % k=nbSync(itfld;, a)*3 + nbAsync(itfld;, a)
7 init lo;

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

122 Chapter 6. Aspects Interferences Detection and Resolution
trans
V s; € services (itfld;,a) {
if (synchronous(s;,itfld;,a)) {
lo —> lil {w C[d]_itffch_sz‘?;},
liy, —> li, {sync cldg _itflde _s;!;},
liy, —> liy {sync E_cldy_itflds_s;7;},
liy, —> lo {sync E_cld;_itfld; _s;';};
} else {
lo —> Ui {sync cld; atfld; s;7;},
liy —> lo {sync cldg_itflds_s;!;};
}
b
Clcomposite cId; (n) temp internals clds] a=

V(client= cld;.itfld; server= cldy.itflds) € attachments(a)

process cld; itfld;(const id:[1..n]) {
state lo,..,lp; % k=nbSync(itfld;, a)*3 + nbAsync(itfld;, a)
init lo;
trans

V s; € services (itfld;) {

if (synchronous(s;,ifId;)) {
lo —> lil {M cld; [id]iitf]d1isz‘?;},
Iy, — U, {% cldy _atfldy s; '}
li, —> liy {sync E_cldg itfldy s;7?;};
liy, —> lo {sync E_cld;[id]_itfld; _si!;};
} else {
lo —> Ui, {sync cld;[id] atfld; s;?7;},
liy —> lo {sync cldg_itflds_s;!;};
b

—

Listing 6.4: composite component generation rule

For example, let us consider the Crane composite component. This component
has two interfaces: iEngine and iMagnet (see listing 6.2 line 17-18). The interface
iEngine has two synchronous services: moveLeft and moveRight (Listing 6.2 line 2)
for moving the engine left and right respectively. Figure 6.2 depicts the generated
Uppaal template for iEngine interface of the Crane component (two cycles of four
transitions each).

s: Speed s: Speed
crane_iEngine_moveleft[s]? crane_iEngine_moveRight[s]?
engine_iEngine_moveLeft[sp]! sp:=s sp:=s /) engine_iEngine_moveRight[sp]!

g O Ret >

E_engine_iEngine_moveLeﬂ[sp]?u E_crane_iEngine_movelLeft[sp]! E_crane_iEngine_moveRight[sp] !u E_engine_iEngine_moveRight[sp]?

Figure 6.2: The generated Uppaal template for the iEngine interface of the Crane
component

The iMagnet interface has two asynchronous services: setOn and setOff (List-
ing 6.2 line 4) for activating and deactivating the magnet field respectively. Fig-
ure 6.3 depicts the generated Uppaal template modeling the iMagnet of the Crane
component (two cycles of two transitions each).

6.2. Formalization of component systems in Uppaal 123

crane_iArm_setOn? crane_iArm_setOff?
d Ret j®

magnet_iArm_setOn! magnet_iArm_setOff!

Figure 6.3: The generated Uppaal template for the iMagnet interface of the Crane
component

6.2.4 Formalization of component bindings

Component bindings can be modeled either as separate Uppaal processes that receive
channels from required interfaces and forward them to their bound provided inter-
faces, or by renaming. In our approach we adopt the second solution for minimum
state number generation. By renaming, a bound interface itfId; of a component
cIdy to an interface itfIdy of a component cId, is modeled by replacing each chan-
nel label occurrence cIdy itfId; s in the template of cId; by cIdy, itfId, s,
for each service name s. This synchronizes the channels of two bound components.
Listing 6.5 describes the general binding rule.

1B : UppaalTemplate — Architecture — UppaalTemplate

2 Blp] a= let cIdi= name(p)

3 in V (client= cld;.itfld; server= cldp.itfl[ds) € attachments(a),
4 Vs € services (itfld; ,a) p[clds _atflde s [cld; atfld; s];

Listing 6.5: binding function

6.2.5 Component systems

A complete component system without aspects is modeled as the parallel composi-
tion of all the processes modeling the components of the architecture. The primitive
components are adapted to follow the Uppaal-XTA form and bound to each other
using the binding function, while composite templates are automatically generated
from the ADL specification. Formally, the component system of an architecture a
is:

N [[a]] = ||Vc€primitives(a) B[[P [[C]]]]a ||Vt€attachment5(a) ¢ [[t]] a

6.2.6 Aspect weaving

The behavior of aspects is already described in the ADL specification following
Uppaal-XTA form. The aspect behavior defines a set of cycles from and to the
initial location, each of which describes the behavior of an aspect for an abstract
pointcut pctId. The proceed and the skip actions taken by an aspect for each
join point jp are explicitly modeled by (proceed_jp) and (skip_jp) channel labels,
respectively. However, the behavior is abstract and should be instantiated for con-
crete join points. In our model, pointcuts are defined using VIL in a declarative
style. VIL interprets and transforms the pointcut expressions into tuples of the

124 Chapter 6. Aspects Interferences Detection and Resolution

form (cld, itfld, svld) (i.e., a component, an interface and a service identifiers).
In addition, a mapping (pctld,exp) from an abstract pointcut to an expression de-
scribing the concrete join points is given in the ADL specification for each aspect
(see the weaving clause in Table 6.1). In the instantiation process, for each map-
ping (pctld,exp), we use VIL to interpret the expression erp and returns a set of
tuples of the form (cld, itfld, svid). For each tuple, we make a copy of the cycle
denoting pctld in the aspect abstract behavior. Then, we replace each pctld occur-
rence by cId_itfId_svId from the tuple. Listing 6.6 describes this instantiation
process of Uppaal templates from the ADL specification of aspect behaviors. In the
listing, the duplicateTransitions(asId,pctId) function, as its name indicates,
duplicates the set of transitions forming a cycle in the behavior specification asld
where pctld appears as a channel label of at least one transition, and V denotes VIL
evaluation function of pointcut expressions. For composed aspects, we instantiate
each aspect individually using its defined mapping and we instantiate the composi-
tion operator. The composition operator is duplicating the 1hs cycle for each join
point defined for the left-hand side aspect only, the rhs for each join point of the
right-hand side aspect only and 1rhs for each shared join point. Finally, we replace
each occurrence of left and right in the behavior specification of the operator by
the name of left and right-hand side aspect identifiers, respectively.

1Z : Weavings — Architecture — UppaalTemplate*
2 I[weave asld map] a= {
3 process asld {

4 // the declaration given in bevavior(asld)

5 trans

6 V(pctld,e) € map :

7 let jps=V[e](a)

8 in V(cld,itfld, svld) € jps :

9 duplicate Transitions (asld, pctld) [cId _itfld _svld | pctld]
0 }

11}

12 Z[weave wi;wz2]] a= Z[weave wi]] a U Z[weave wz] a

13 Z[weave opld w; wp] a=

14 let p= Z[weave opld {(lhs,Dew,), (Ths, Dew,), (Irhs, (Dew,;) @ (Bew,))}] a
15 in {Z[wi] a, Z[w2] a, p[name(wi) / left; name(w2) / right]}

Listing 6.6: Instantiation rule

In order to synchronize component processes with the one modelling an aspect, a
set of locations and transitions have to be added to component specifications. This
extension ensures that each intercepted service call is forwarded to the aspect pro-
cess, which executes its behavior and returns either proceed or skip. In the former
case, the extension ensures that the service call reaches its target and continues its
original path. In the latter case, the extension ensures that the service call is skipped
by returning to the initial location if the service is asynchronous. If the service is
synchronous, all the actions between the begin and the end events of the service call
are ignored. The following listing shows how the component processes are adapted
to forward the join points to the aspect process (line 9,22), to wait for the aspect
action (lines 9-11,23-24) and to behave accordingly either by continuing the original
path (line 10,23) or returning to the location that ignores the execution of the join

6.3. Interference detection and resolution 125

point (lines 11-12,24). For the case of composed aspects, the component templates
are adapted so that all the join points are redirected to the operator rather than to
individual aspects (line 30-31).

1R : Weavings — Architecture — UppaalTemplate*
2 R[weave asld map] a= S(a)|[
3 V(pct, e) € map,V(cld, itfld, svId) € V]e] :

4 let p = process(cld,a)

5 in

6 if synchronous (itfld, svld, a)

7 pL(

8 li => lin: {X1 sync cld_itfld_sld? Xa2},
9 lit => lia: {sync asld_itfld _svId!},

10 lio —> lj: {sync proceed asld_itfld svId?},
11 lig => Ui : {sync skip_asld_itfld_svld?},
12 Ik => Ui: {Y1 sync E_cld_itfld_svid! Y1},
13)/

14 (

15 li => lj: {X1 sync cld_itfld_svld? X2},
16 Iy —> Ui {Y1 sync E_cld_itfld_s! Ya},
17)

18]

19 else

20 pL(

21 li = li1: {X1 sync cld_itfld_svld? X2},
22 lin => lio: {sync asld_itfld _svld},

23 lig —=> lj: {sync proceed _asld_itfld_svld?},
24 lj = lo: {sync skip_asId_itfld svId?},
25)/

26 (

27 li = l;: {X1 sync cId_itfld_svld? X3},
28)

29]

30]

31 R[weave wi;wz]] a= R[weave wi] a U R[weave wz] a
32 R[weave opld w; wz] a= R[weave opld {(lhs, Bew,), (Ths, Dew,), (irhs, (Bew,) ® (Pew,))}] a

Listing 6.7: Component adaptation for aspect weaving

Aspect weaving is made in two steps: aspect instantiation and component adap-
tation. Thus, each aspect template is instantiated for the defined join points, and
the components affected by the aspect are adapted following the above rule.

1W : Weavings — Architecture — UppaalTemplate*
2 Ww] a= Z[w] a U Rlw] a

Listing 6.8: weaving an aspect to a component

6.3 Interference detection and resolution

Now, let us show how the Uppaal model checker is used for the detection and the
resolution of aspect interferences. First, we give a set of helpful formal definitions to
describe component systems and aspects. We start by defining component systems
and their well-definedness, aspect correctness w.r.t a component system, and an
interference between two aspects. Finally, we define whether a composition operator
solves an interference.

126 Chapter 6. Aspects Interferences Detection and Resolution

6.3.1 Well-definedness of component systems

For interference detection, a component system comes with a set of properties that
the system satisfies during its execution. Here is the formal definition we give to a
component system:

Definition 1 We define a component system I' as a couple (ar, Pr) where:
e ar: is the ADL description of the component architecture of the system.

e Pr: is a set of CTL formulae describing the properties of the behavior of the
system.

Definition 2 A component system I' = (ap, Pr) is well defined if the parallel com-
position of all the processes modelling the components of the system (see §6.2.5)
satisfies all the desired properties of such system:

D(r) < Sfar] E Pr

Properties for the Crane Base System (Pcrane)
Safe 1 A[] not deadlock
Safe 2 A[] Controller.configured imply User.speed == Controller.speed
Safe 3 A[] Engine.left || Engine.right imply Engine.speed == Arm.speed

Table 6.2: Properties of the crane system

Table 7.1 describes the set of properties of the crane system before its behavior
is altered by aspects. The crane system is designed to be a deadlock free (Safe
1), to ensure that the speed recommended by the user is always considered by the
controller (Safe 2), and both the engine and the arm moves with the same speed
(Safe 3). When the crane system is modeled as the process shown in section 6.2, the
above properties are satisfied which indicates that the crane system is well defined.

6.3.2 Correctness of aspects w.r.t component systems

The intent of each aspect should also be given as a set of CTL formulae. The
intent describes the set of properties the aspect ensures when it is woven to the
system. The satisfaction of these properties when the aspect is bound determines
the applicability of the aspect to the base system.

Definition 3 Given a component systemI' = (ar, Pr), an aspect A = (aldp, mapp,Py),
where Py is the set of aspect intrinsic properties (intent), mapy is the mapping be-
tween the abstract pointcuts of the aspect behavior and concrete ones described in
VIL, and 731/3 C Pr is the set of the system properties that must be preserved after
weaving A. An aspect is said to be correct with respect to a component system I' if

the following condition holds:

W]weave asldy mapp] ar E 7714\ A Pa

6.3. Interference detection and resolution 127

If an aspect is not correct w.r.t a component system, it should not be applied
to the system since it violates the intrinsic properties of the system (Pf\) or it does
not ensures its intent.

Properties for the save energy aspect (PsaqveEnergy)
A[l (Arm.movingDownl || Arm.movingDown2 || Arm.movingUp) &&
SavingEnergy.nbCarriedContainers>15 imply Arm.speed==slow

Safe 11

Properties for the truck safety aspect (PiruckSafety)
Safe 21 [A[] Arm.movingDown2 && TruckSafety.loading imply Arm.s==slow

Properties for the crane safety aspect (P ranesafety)
Safe 31 [A[] Arm.temp>60 || Engine.temp>60 imply Crane.stopped

Table 6.3: The intent of the composable aspects

Table 6.3 describes the intents of three aspects to be woven to the crane system.
The SaveEnergy aspect ensures that when the arm is moving up or down and
the number of carried containers reaches a threshold number (15 in this case), the
arm moves slow (Safe 11). The TruckSafety aspect ensures that when the arm
is moving down for the second time when it is loading a container, the arm moves
slow (Safe 21). Finally, the CraneSafety aspect ensures that when the temperature
of the engine or the arm exceeds 60 degree, the crane is stopped (Safe 31). When
the SaveEnergy and the TruckSafety aspects are woven to the crane system, the

Savebnergy and PLruckSafely are defined to be all the properties except Safe 2 since
these aspects change the speed of the arm component independently of the engine.
While, in the case of the CraneSafety the Pg’;%’fs‘lf“y is simply (Perane). The
individual weaving of these aspects shows that they are all individually correct with
respect to the crane system. In the sense that they validate both the associated

system intrinsic properties and their own intents.

6.3.3 Interference and Interference-freedom of aspects

Extending components with several aspects may give rise to interferences. Two
aspects are interference-free with respect to a base program, if: (1) each aspect is
correct with respect to the base program, (2) when both aspects are bound to the
system, the result process satisfies all the properties of the underlying aspects and
the system intrinsic properties defined for both aspects. Formally:

Definition 4 Given a base systemI' = (ar, Pr), two aspects A1 = (asIdp,, mapa,,Pa,),
Ao = (asldp,, mapa,, Pr,). A1 and A are interference-free if the following condi-
tions hold:

1. the base system is well defined: D(T")
2. the composition is correct w.r.t I':

(a) mapn, N mapp, = ¢:
Wi[weave (asldy, mapy,); (asldp, mapp,)] ar = 73?1/\73?2/\73/\1/\73/\2

128 Chapter 6. Aspects Interferences Detection and Resolution

(b) mapp, Nmapy, 7é ¢:
W[weave Seq (asIdp, mapy,) (asldy, mapp,)] ar = 731/}1 /\73?2/\73/\1 A
P,

Where 731/} ! and 771/} 2 denote the set of intrinsic properties of the system defined
for A1 and As, respectively.

In our crane example, when the saveEnergy and the truckSafety are woven to
the crane, all their properties and the associated intrinsic properties defined for the
crane are satisfied which indicates that they are interference-free. However, when
the saveEnergy and the craneSafety are woven, Safe 11 is violated which indicates
that these two aspects are interfering.

6.3.4 Composition operators solving Interferences

A composition operator solves an interference between two aspects if the instanti-
ation for these two aspects and the composition of its template to the system, the
interference disappears. Formally:

Definition 5 Given a base system I' = (ap,Pr) and two interfering aspects Ay
and Ay such that: Ay = (asldp,,mapa,,Pr,), and Ay = (asldp,, mapp,, Pa,). A
composition operator opld solves an interferences if the following condition hold:

Wi]weave opld (asldy, mapp,) (asldp, mapy,)] ar = 7711}1 A 771/}2 N Pa; A Pa,

We should mention here, that in our proposal, when two aspects share common
join points (i.e., service call events), they are composed sequentially by instantiating
the Seq template. When the default sequential composition does not solve the
problem, a diagnosis trace is reported to the user to find out the source of the
error and potentially choose another operator from our list or define a new one in
a similar way. For the crane example, the truckSafety, the saveEnergy and the
craneSafety aspects share the load and unload service call events. It is observed
that Seq(saveEnergy, truckSafety), reports no error, which indicates that the
default composition of these two aspects is correct with respect to the crane system.
However, Seq(saveEnergy, craneSafety) reports an interference between these
two aspects with a diagnosis trace. Analyzing the reported trace, shows that when
the Seq operator is used in this case, the load and unload service calls are forwarded
to the saveEnergy after being skipped by the craneSafety. This causes a false
value on the nbCarriedContainer variable maintained by the saveEnergy aspect.
To solve this problem, another operator should be used. The required behavior
of this operator is to skip service calls if the first aspect decides to skip it. This
operator is named And operator. The use of this operator (i.e., And(craneSafety,
saveEnergy)) reports no error and thus it solves this interference.

6.4. Composition operators catalog 129

6.4 Composition operators catalog

In this section we provide a set of abstract composition operators modeled as Up-
paal templates. Those templates can be instantiated for aspects in order to solve
their potential interferences. The operators are presented as patterns for aspect
interference resolution. Similar to the GoF design patterns [Gamma 1995], each op-
erator pattern is given a significant name, a motivation example, applicability cases,
a structure and a semantic. The structure is given as a Uppaal template, while the
semantic is presented as a table showing how the operator behaves according to the
actions taken by aspects. In the semantics table (-) denotes that an aspect is not
called for a given join point.

6.4.1 Fst composition pattern

Applicability: The Fst operator can be used in the following cases:

1. two aspects are mutually exclusive and only one aspect should be applied;

2. one aspect satisfies all the properties of another and hence only the first
one should be applied;

3. an aspect behavior have to be hidden on a subset of its join points.

Motivation example: The criticallLifting and the performance aspects of the
crane example are mutually exclusive: the former aspect forces the engine and
the arm to move slowly while the latter forces them to move rapidly.

Structure: the Fst operator directly proceeds all the calls intercepted by the sec-
ond aspect and forwards all the other calls to the first aspect only. Thus, only
the first aspect is executed when a shared join point is intercepted and the sec-
ond aspect is never called. Figure 6.4 depicts the template modelling the Fst
operator. In the figure, the intercepted call by either the first aspect only 1hs?
or by both aspects 1rhs? are forwarded to the first aspect only left_lhs!
and left_lrhs! and the operator waits for the decision of the aspect and
forwards it. The intercepted call rhs? denotes an intercepted service call by
the second aspect only. This latter is directly proceeded (proceed_rhs!).

Semantic: the following table shows how the Fst act following the different join
points (i.e., shared or not) and the actions taken by the underlying aspects.
In the table, (-) is used to indicate that the join point is not forwarded to the
aspect in question.

6.4.2 Seq composition pattern

Applicability: the Seq operator is applicable in the following cases:

1. the default composition of two aspects sharing at least one join point.

2. precedence relationship between aspects.

130

Chapter 6. Aspects Interferences Detection and Resolution

proceed_lIrhs!) proceed_left_Irhs?
N
()
Irhs? N et irhs!
)
W skip_ihs! ¢ skip_left_Irhs?
proceed_lhs! proceed_left_lhs?
proceed_rhs! D
)
Ihs? N left_ihs!
)
skip_lhs! M= skip_left_Ihs?

Figure 6.4: The Fst template

LHS | RHS | Fst(LHS,RHS)
Shared join points / LHS join points
proceed - proceed
skip - skip
RHS join points
- | - | proceed

Table 6.5: The semantic of the Fst operator

3. one aspect satisfies a subset of the properties of another and hence both
aspects should be executed in a specific order.

Motivation example: The saveEnergy and the truckSafety aspects of the crane

example are one-way inclusive. This is because the truckSafety forces the
arm to move slowly when it is carrying a container to the truck. This is a
particular case of the saveEnergy aspect that forces the arm to move slowly
in all the cases after carrying a threshold number of containers. The Fst
operator cannot be used in this case, because, before reaching the threshold
number of carried containers, the truckSafety should be executed.

Structure: the Seq operator forwards the intercepted calls common to both aspects

to the first aspect, it waits for its decision to send it to the second aspect. The
call in this case is proceeded when at least one of the aspects decides to proceed
it, otherwise, the service call is skipped. In addition, the intercepted calls by
either aspects are forwarded to their corresponding aspects only. Figure 6.5
depicts the template modelling the Seq operator. In the figure, the inter-
cepted call 1rhs? intercepted by both aspects is forwarded to the first aspect
(left_1rhs?), the decision of this aspect is saved in a local variable fstAct,
then the call is forwarded to the second aspect (right_lrhs?). The call is
proceeded when it is proceeded by the second aspect (proceed_right_lrhs?)
or it is skipped by it and proceeded by the first aspect. Two other cycles
describe forwarding non common service calls to their corresponding aspects
(cycles for 1hs? and rhs?).

6.4. Composition operators catalog 131

proceed_left_lrhs?
fstAct := proceed

left_lhs! . hs? Irhs? N\ leftIrhs!

proceed_lIrhs! mproceed_right_lrhs? skip_left_Irhs?
\) fstAct := skip
~ \/\ right_Irhs!
skip_Iths! e/ fstAct = skip
skip_right_Irhs?

proceed_lIrhs! - fstAct = Iskip
skip_right_Irhs?

proceed_left_lhs? proceed_lhs!

)
skip_left_Ihs? ~ o/ skip_lhs!

right_rhs! Y rhs?
e L

(M)
proceed_right_rhs? N proceed_rhs!

)
skip_right_rhs? S/ skip_rhs!

D)

Figure 6.5: The Seq template

Semantic:

[LHS [RHS [Seq(LHS,RHS) |
Shared join points

proceed proceed proceed

skip proceed proceed

proceed skip proceed

skip skip skip
LHS join points

proceed - proceed

skip - skip
RHS join points

- proceed proceed

- skip skip

Table 6.6: The semantic of the Seq operator

6.4.3 Cond composition pattern

Applicability: the Cond operator is applicable in the following cases:

1. the execution of the first aspect should always be executed while the exe-
cution of one aspect relies on state variables or any other effects generated
from the execution of the other aspect (original form).

2. the execution of both aspects is based on state variables and any other
predicate (variant).

Motivation example: see the next chapter Section 7.4.2.

Structure: the Cond operator (see Figure 6.6) forwards each intercepted call to the
first aspect and maintains a predicate when the action of the aspect is received.
According to the predicate, the call is forwarded to the second aspect or the
action of the first aspect is directly taken. The structure in figure 6.6 describes
the case of two aspects sharing join points. Another variant of this operator

132 Chapter 6. Aspects Interferences Detection and Resolution

leond()
left_lhs! Y lhs? proceed_lIrhs!
[u cond()
) proceed_Irhs! mproceedfrightflrhs?m right_Irhs!
proceed_left_lhs? u proceed_lhs! N/
Ko Ioft Ihs? m\r Ko The! Y proceed_left_Irhs?
skip_left_Ihs? skip_lhs! \ N
:) @ skip_lths! S skip_right_Irhs? maintainCond()
right_rhs! N rhs? i)
4 L/ hs? > left_Irhs!
) ;
skip_left_Irhs?
%roceed_right_rhs? N proceed_rhs! maﬁ;tainaond()
)
skip_right_rhs? N skip_rhs! leond()
skip_lIrhs!

Figure 6.6: The Cond template

proceed_rhs! proceed_lhs!

leond()
proceed_rhs! proceed_left_lhs?
proceed_right_rhs? maintainCond()

cond()u rhs? O lhs? C left_Ihs!

skip_right_rhs? right_rhs! skip_left_lns?
maintainCond()

skip_rhs! skip_lhs!

Figure 6.7: The Cond template (variant for non shared join points)

is designed to consider two aspects with no shared join points, it is shown in

Figure 6.7.
Semantic:
Pre [LHS | RHS [Cond(p,LHS,RHS) | Post]
Shared join points
proceed proceed proceed maintain(p)
p=true proceed skip skip maintain(p)
skip - skip maintain(p)
p—false pr9ceed - pr.oceed mafnt ain (p)
skip - skip maintain(p)
LHS join points
proceed - proceed
skip - skip
RHS join points
- proceed proceed
- skip skip

Table 6.7: The semantic of the Cond operator

6.4. Composition operators catalog 133

[Pre | LHS | RHS [Cond(p,LHS,RHS) | Post |
LHS join points
proceed - proceed maintain(p)
skip - skip maintain(p)
RHS join points
B - proceed proceed
p=true - skip skip
p=false - - proceed

Table 6.8: The semantic of the Cond operator (variant)

6.4.4 And composition pattern
Applicability: the And operator is applicable in the following cases:

1. two aspects complement each other and should only be executed in a
specific order otherwise a conflict appears.

2. there is a precedence relation between two aspects and the execution of
one aspect should not be in a conflict with the action taken by another.

Motivation example: It is the case for the saveEnergy and the craneSafety
aspects of the crane example. The craneSafety may decide to skip or proceed
loading an unloading containers, this should be executed first before the action
is counted by the saveEnergy aspect.

Structure: the And operator is used to proceed calls only when it is proceeded by
both aspects and skips it when one of the aspects skips it. If the first aspect
decides to skip the call, the call is directly skipped without being forwarded to
the second aspect. In addition, the And operator can be used to block aspect
actions on join points that are not yet handled by the other aspect.

left_lhs! N\ lhs?
proceed_lIrhs! N\ proceed_right_Irhs? 7\ _ fight_Irhs!

)
proceed_left_Ihs? Nt proceed_lhs! u
\ skip_right_Irhs?
)

)
skip_left_lhs? Sd

skip_lhs!
)
right_rhs! N rhs? skip_lIrhs! N/ skip_left_Irhs? proceed_left_Irhs?
)
proceed_right_rhs? S/ proceed_rhs!)
) Irhs? N left_lrhs!

skip_right_rhs? N skip_rhs!

Figure 6.8: The And template

Semantic:

6.4.5 Alt composition pattern

Applicability: the Alt operator is applicable in the following case:

134 Chapter 6. Aspects Interferences Detection and Resolution

[LHS | RHS [And(LHS,RHS) |
Shared join points
proceed proceed proceed
proceed skip skip
skip - skip
LHS join points
proceed - proceed
skip - skip
RHS join points
- proceed proceed
- skip skip

Table 6.9: The semantic of the And operator (variant)

e two aspects share some join points and must be executed alternately on
those join points.

Motivation example: see the next chapter Section 7.4.1.

Structure: the Alt operator is used to alternately call aspects on shared join points.
Figure 6.9 is the template showing the Alt operator. The shared intercepted
service 1lrhs? is alternately forwarded to the first and the second aspect,
respectively. The turn of each aspect for a particular join point is captured
by the function isLeft (1rhs). The other intercepted events 1hs and rhs are
forwarded to their corresponding aspects left and right, respectively.

left_lhs! N lhs? skip_Irhs! P skip_right_Irhs?
N

)
proceed_left_lhs? _/ proceed_lhs!

proceed_Irhs! Y proceed_right_Irhs?

C

Y
skip_left_lhs? e/ skip_lhs! isLeft(Irhs)

left_Irhs!

lisLeft(Irhs)

right_rhs! Y rhs? right_Irhs!
£ > ®
roceed_lIrhs! roceed_right_lrhs?
proceed_right_rhs e proceed_rhs! P - p -rignt_|
))
skip_right_rhs? S’ skip_rhs! skip_Irhs! S/ skip_right_Iths?

Figure 6.9: The Alt template

Semantic:

6.5 Conclusion

This chapter describes our contribution in the detection and the resolution of aspect
interferences in component systems. The approach proposes an ADL that enriches

6.5. Conclusion 135

[Pre [THS | RHS | Alt(LHS,RHS) | Post |
Shared join points
NbOcc(thisJoinPoint)% 2=0 Sliioceed) p;oceed
P . S<Ib NbOcc(thisJoinPoint)++
NbOce(thisJoinPoint)% 2=1 | ~ proceed | proceed
- skip skip
LHS join points
proceed - proceed
skip - skip
RHS join points
- proceed proceed
- skip skip

Table 6.10: The semantic of the A1t operator

component architectures description with formal specifications of primitive compo-
nent and aspect behaviors. This enables formal verification using model checkers.
A set of transformation rules from the ADL to state machines are presented and
exemplified with our running example. We have shown how Uppaal model checker
is used to detect interferences. In addition, a set of composition operators are pre-
sented as patterns for aspect interference resolution. We have to mention that our
approach does not rely neither on a specific component model nor on a particular
model checker. The transformation rules are general but not exhaustive since other
component models such as Sofa 2 [Bures 2006, Hnetynka 2007] may require other
rules for transforming their own software architecture elements. For example, Sofa
connectors are first class entities that implement different communication strategies,
those connectors can be modeled as Uppaal processes implementing the desired
strategy. In addition, the Uppaal model checker is used for its suitable provided
features such as local variables declaration, parameter passing and process instan-
tiation. Moreover, the set of proposed composition operators is an extendible set
where other operators can be defined in a similar way. The proposed set of operators
are sufficient to solve the interferences among the aspects proposed for our running
example, and our case study (see Chapter 7). Finally, we should mention that the
composition operators are only proposed as a support for the users since several
other cases require ad hoc solutions. For example, adapt the runtime behavior of
one aspect according to the presence or the absence of other aspects [Kienzle 2009).

CHAPTER 7
Case Study: Airport Internet
Access

Contents

7.1 Base System Architecture 138
7.2 Aspectson Views i i i i i 139
7.2.1 The Bonus Aspect 140
7.2.2 The Alert Aspect 142
7.2.3 The NetOverloading Aspect 143
7.2.4 The LimitedAccess Aspect 144
7.2.5 ThesSafety Aspect. 145

7.3 Formal Specification in Uppaal 146
7.3.1 Primitive componentso 147
7.3.2 Composite components L. 149
7.3.3 Component binding oL 149
7.3.4 The complete base system 150
7.3.5 Weaving individual aspects to the system 150
7.3.5.1 Weaving the Bonus aspect 151

7.3.5.2 Weaving the Alert aspect 151

7.3.5.3 Weaving the NetOverloading aspect 152

7.3.5.4 Weaving the LimitedAccess aspect 153

7.3.5.5 Weaving the Safety aspect 154

7.4 Interference Detection and Resolution 154
741 BonusvsAlert 154
7.4.2 LimitedAccess vs NetOverloading 157
7.4.3 SafetyvsAlertandBonus 159

7.5 Conclusion i 160

In this chapter, we apply our proposal to a significant and a concrete example,
we show how views are defined using VIL (see Chapter 3), how aspects are added
to the views and how interferences are detected and solved following our formal
model (see Chapter 4). The example is developed in Fractal component model
and our Fractal weaver is used to create the required views. Compared with the
running example, the case study requires more properties of component models such

138 Chapter 7. Case Study: Airport Internet Access

as multiple instances of components and dynamic reconfiguration of the system. In
addition, the proposed aspects require more complicated views and more operators
to solve the interferences among them.

7.1 Base System Architecture

Our case study models an airport service for providing a wireless Internet connec-
tion for passengers [éery 2007, Adamek 2007]. Free Internet access is granted to
passengers owning valid flight tickets. A passenger uses his/her flight ticket number
to login and access the network for an associated time to the ticket. Three kind of
users are distinguished: (1) users owning valid flight tickets who use their tickets
number to access the network. (2) users owning frequent flight tickets who use their
frequent flight ticket number to access the network with a permitted access time
of the maximum provided time by the flight tickets of the user, and (3) regular
users that do not have valid flight tickets or frequent flight tickets or have already
consumed all the time provided by their tickets. They may create a temporary ac-
count and buy access time. Figure 7.1 depicts the component architecture of this
application.

IQuery IMessager O ILogin IUAccount O

:AirportWirelessAccess

:InternetAccessManager * ‘Token
IConnection IFirewall —
{ :ProxyServer]—O)—[:Firewall { :ValidityChecker
! 5 S

/(Flcuslomcallback \‘J ITimerCallback ? ITimer

|DhopCallback :CustomToken i { :Timer }

b

T ITokenCallback| [

fé)\ IAccount

[Token ‘ :WebAccountManager
:ArbitratorJ:j)i{ :AccountManager }
I e |AccountDb ICardCenter

:FlightTicketManager

:DhcpServer

:DheplListener O) :IpAddressManager
IDhcpListener
:PIpDbConnection S
IllpMacDb
:TipDbConnection o—
lpMacDb

IDhcpListener IManagement

IFreqFlyAuth

{:AbeConnection} {:CsanConnection} {:VTDbConnection}

:FregFlightTicketManager ity Ti
qFlig 9 (FiyTckstAuh IF\y‘ﬁcke(Dbé) IFlyTicketDb é IVaIld\tyTlcke(Dbé

IFreqTicketDb 4(07
:FreqFlyDbConnection 0 :FreqFlyManager) ‘ :FlyTicketClassifier
‘ IFreqFlyTicketAuth L

Figure 7.1: Architecture of the airport wireless access system

To connect to the airport wireless system, a user requests an IP address from
the DhcpServer (use IDhcpListener interface), then it asks to login from the
AirportServer (use ILogin interface). Once connected, it sends queries to the
InternetAccessManager (use IQuery interface). The InternetAccessManager for-
wards users’ requests to the Firewall that blocks unauthorized Internet connections.
The requests of users with enabled IP addresses are actually sent to the Net Proxy.

7.2. Aspects on Views 139

The TP address requests are first captured by the DhcpListener component that
delegates them to the IpAddressManager which provides a dynamic allocation of IP
addresses. The allocated IP addresses are managed by the TIpDbConnection and
PIpDbConnection components. Only one of the two above components is used for
each IP address as determined by the manager using the IManagement interface.
The Token component models a user session. When the Arbitrator receives a login
request, it checks the validity of the ticket, the frequent flight ticket or the input ac-
count number, and retrieves the authorized access time from the FlyTicketManager,
the FreqFlyTicketManager, or the WebAccountManager, respectively. Then it or-
ders the InternetAccessManager to enable communications for the user, and starts
a new session by instantiating a Token and calls the ValidityChecker to start
the session Timer component. When session time elapses, the Timer informs the
ValidityChecker which in turn informs the Arbitrator. The Arbitrator closes
the session by calling the InternetAccessManager to disable the user communica-
tions, and the DhcpServer to disable its IP address. The CustomToken component
is optional (i.e., indicated with dashed lines) and it appears only for the sessions of
regular users. When the ValidityChecker is informed of the end of a regular user
session, it calls the CustomToken to update the permitted connection time of the
user in the WebAccountManager. Regular users may create temporary accounts and
pay for an indicated access time using IUAccount interface of the AirportServer
component. The payment is managed by the CardCenter component, while the
consumed time is managed by the AccountDbConnection component.

7.2 Aspects on Views

We want to alter the functionality of the system by introducing a set aspects. Each of
which defines a new functionality that requires the adaptation of a set of scattered
components over the system architecture. However, these adaptations cannot be
added to the components behavior directly when their source code is not provided.
The desired aspects are:

Bonus: offer free Internet access promotions to clients according to their categories.
Alert: warn clients five minutes before the end of their current sessions.
Safety: terminate sessions when their corresponding flights are taking off.

NetOverloading: block P2P access when the number of active sessions reaches
1000.

LimitedAccess: consider different access privileges according to clients age.

In the following, we detail each functionality, its required view, and the imple-
mentation of each aspect as a composable controller in Fractal component model
(see Chapter 3).

140 Chapter 7. Case Study: Airport Internet Access

7.2.1 The Bonus Aspect

Let us suppose that the airport manager decides to offer a bonus time to customers
according to their types (e.g., 10 minutes for valid fight ticket owners, 20 minutes for
frequent flight ticket owners and only 5 minutes for regular customers). Figure 7.2
shows a scenario of how 10 minutes of bonus time are added to a valid flight ticket
owner with 60 minutes as authorized connection time.

l ::Arbitrator l I::Token::VaIidityCheckerl @

iLogin.IoginWithFIyTicke:t(id) i

tiLogin.loginWithFlyTicket(id)

1
1
setType(ID) i

t=0 F-r——m ;
i [.
=60 _»_:r ___________________ i _______________________ ' iTimerCallback.timeout() ‘F
i i \v iTimer.setTimeout(10) :I
i | e
i ! iTimerCallback.timeout()
|
t=70 = —me i m o e

L
_ iTimerCaIIback.timeout()D

iTokenCallthack.tokenlInvalidated()
1

Figure 7.2: A scenario of adding a bonus to customers

The above scenario shows that the Bonus aspect requires the interception of
the ILogin interface of the Arbitrator to determine the type of each logged in
customer. In addition, it requires the interception of the ITimerCallback inter-
face of ValidityChecker component to receive the timeout service call which is
called by the Timer to inform the ValidityChecker of the end of the session, thus
the aspect uses the ITimer interface to reset the Timer for a bonus time and pro-
ceeds the next intercepted timeout on the ITimerCallback interface. According
to the above scenario, the required view must encapsulate the Arbitrator and the
ValidityChecker components on the same composite. However, the required view
is not fulfilled by the original architecture, and hence a transformation is needed.
Following our proposed implementation for Fractal (see Chapter 3), a new com-
posite is created and the Arbitrator and the ValidityChecker(s) components are
declared as its inner components sharing them with their original parents. This
view can be defined in VIL using the following expression:

vBonus = (provide * (T {ILogin})) @& (instance (bound {Timer}))

The above VIL expression states that the required view should encapsulate all
the components providing the ILogin interface and all the instances of all the com-

7.2. Aspects on Views 141

ponents bound to the Timer component. In addition, it implicitly states that the in-
tercepted and used interfaces are ILogin and all the provided and required interfaces
of the component instances bound to the Timer (i.e., ITimer and ITimerCallback
in this case).

Query Messager

O ILogin IUAccount ©

:AirportWirelessAccess

IDhcpListener IManagement

:InternetAccessManager
IConnection IFirewall
:ProxyServer O :Firewall

IDhcpCallback
o

*

:Token

i

:ValidityChecker

enCallback

:DhcpServer

:DhepListener }—@—[:IpAddressManager}
IDhcpListener

o

|

:Arbitrator

IToken
L o

Lo

? ICustomCallback n_?mmercmlback

:CustomToken |

[Timer

)

[

/(JP\ IAccount

:WebAccountManager

:AccountManager

)

untAuth

ICardCenter

:CardCenter

:PlpDbConnection)—‘
llpMacDb

TIpDbConnection o—
llpMacDb

1AccountDb
:AccountDbConnection

:FlightTicketManager

IFreqFlyAuth

{:AbeConnection} [:CsanConnecﬁon} {:VTDbConnection}

:FreqgFlightTicketManager IF\yTickeIDbé) IFlyTicketDb é IValidity TicketDb é))
IFreqTicketDb s
:FreqFlyDbConnection O :FreqFlyManager ‘

IFIyT\EketAuth

9 { :FlyTicketClassifier }
IFreqFlyTicketAuth

Figure 7.3: The airport system extended with Bonus (the Bonus view)

The Bonus aspect is modeled in Fractal as a composable controller (Dispatcher, -
Bonus) added to the new composite (see Figure 7.3, the intercepted and used inter-
faces are marked with “X”). The Dispatcher controller intercepts service calls to the
ILogin and the ITimerCallback interfaces of the Arbitrator and the ValidityChe-
cker components, respectively. The Dispatcher intercepts a call, reifies it into a
message object and sends it to the Bonus object by calling its match method. The
match method of Bonus behaves as follows: when it receives a login* call, it stores
the type of the customer (e.g., loginWithFlyTicket implies that the customer is a
flight ticket owner), when it receives the first occurrence of timeout (i.e., the cus-
tomer session should be closed), it checks the previously stored type of the customer
to decide which bonus time should be affected, it resets the timer for the correspon-
dent bonus time (by calling the setTimeout (bonusTime) service on the ITimer
interface of the corresponding Timer component), and informs the Dispatcher con-
troller that it wants to skip the call by returning a Skip command. That means
that the timeout, in this case, is not actually proceeded and the session continues.
If it receives a second occurrence of timeout from the same customer, the match
method returns a Proceed command to Dispatcher. This causes the Dispatcher
to call its invoke () method which proceeds the call and ends the current session of
the user.

142 Chapter 7. Case Study: Airport Internet Access

7.2.2 The Alert Aspect

Now, suppose that the airport manager decides to add a service that alerts users
five minutes before their authorized time connection elapses. In this case, a session
timer is initialized with five minutes less than the authorized time. When the time
elapses and a timeout is generated, an alert is sent to the user and the timer is reset
for five more minutes. Figure 7.4 shows a scenario of how the alert is sent to users
5 minutes before the end of their sessions.

::Arbitrator l |::Token::VaIidityCheckerl

iLogin.IoginWithFI)'fTicket(id))

|
t=0 i iTimer.setTimeout(60) i
S I 4) args[0]=-5 !
i iTimer.setTimeout(60) i
o e e
! 1 !
! 1 !
{255 ___i[___________________ i _______________________ i _iTimerCallback.timeout()
| iMdssager.show("only 5 min left") [|) 1
! ! iTimer.setTimeout(5) 1
! el
i i <o
i | | iTimerCallback.timeout()
! ! _— .
=60 | b i iTimerCallback.timeout() J;I
iTokenCall Iack.tokenlnvalidated() i

B £
-----4

Figure 7.4: A scenario of alerting users before the end of their sessions

In order to fulfil the alert aspect requirement, the aspect requires to intercept
the ITimerCallback interface (for the timeout calls) and uses the ITimer (to reset
the timer for 5 min) and the IMessager interface (to send an alert message to users).
Since the required interfaces belong to components scattered over the architecture
(i.e., the ValidityChecker and the Arbitrator components do not belong to the
same composite), a view must be defined. In this case, the required view is the same
as the one defined for the Bonus aspect except that it intercepts IMessager rather
than ILogin. The following VIL expression defines the view required by the Alert
aspect.

vAlert = (require * (T {IMessager})) @ (instance (bound {Timer}))

Similar to Bonus, the Alert aspect in Fractal is modeled as a composable controller
(Dispatcher,Alert) added to the new composite encapsulating the Arbitrator
and the different instances of ValidityChecker(s) as shown in Figure 7.5.

The match method of Alert behaves as follows: when the setTimeout service
call is intercepted on the ITimer interface of the ValidityChecker component, the
Alert changes the parameter value of the call (e.g., 60 minutes) by subtracting
a time alert (5 minutes), and proceeds the call. Thus, the ValidityChecker will

7.2. Aspects on Views 143

IQuery IMessager O ILogin IUAccount O

:AirportWirelessAccess

:InternetAccessManager T * :Token
IConnection IFirewall —
O :Firewall 4{ :ValidityChecker
I g 3
[

f?\ln:usmmcmlback \%"‘ ITimerCallback ’('?‘ ITimer

H)
?, IDhepCallback i:CustomToken { Timer }
g0 o), i

% I enCallback ‘

b3 DhooS fé)\ IAccount

N :DhcpServer

] [Token ‘ :WebAccountManager
2) —o—

207 :DheplListener) :IpAddressManager ‘Arbitrator

S IDhcpListener H—O)— :AccountManager

o

untAuth
:PIpDbConnection 0 IAccountDb ICardCenter
IllpMacDb
TipDbConnection :AccountDbConnection :CardCenter

llpMacDb

:FlightTicketManager

IFreqFlyAuth
{:AbeConnection} {:CsanConnection} {:VTDbConneckion}

:FreqgFlightTicketManager IFlyTicketD! i
qFlig g FiyTckstAulh yTicket bé) IFlyTicketDb é IValidity TicketDb é/

IFreqTicketDb o—
:FreqFlyDbConnection O :FreqFlyManager)7% :FlyTicketClassifier }
IFreqFlyTicketAuth

Figure 7.5: The airport system extended with Alert

receive a timeout 5 minutes before the end of the session. When the timeout is
intercepted, the Alert aspect sends an alert message to the user (by calling the
show("you have only 5 min left") on the IMessager interface required by the
Arbitrator), resets the Timer for 5 minutes by calling setTimeout (5) and skips the
currently intercepted timeout. The Alert proceeds the next intercepted timeout
to end the session.

7.2.3 The NetOverloading Aspect

The NetOverloading aspect intent is to block P2P connection queries when the
number of connected users exceeds a threshold number. The implementation of
such aspect requires the interception of the IQuery interface to check whether the
required IP connection is P2P and refuse the access to such queries when the number
of connected users exceeds the threshold number. In order to count the number
of connected users, the aspect needs to intercept the IIpMacDb that defines the
services add and remove to save or delete the IP addresses of users when they are
connected or disconnected, respectively. Thus, a new view is required for this aspect
in which the Firewall, the TIpDbConnection, and the PIpDbConnection providing
the required interfaces are encapsulated in the same component. The following is
the VIL expression describing the required view:

vNetQuverloading =
(direct provide * (T {IQuery})) ® (provide * {add(IP),remove(IP)})

The above expression states that the required view must encapsulate the prim-
itive component providing IQuery interface (the use of direct keyword) and all

144 Chapter 7. Case Study: Airport Internet Access

the components providing interfaces defining methods matching add(IP) and re-
move(IP). In addition, all the methods of IQuery interface have to be intercepted.

IQuery IMessager O ILogin IUAccount O

:AirportWirelessAccess

:InternetAccessManager * ‘Token

v
IConnection| IFirewall —
{ :ProxyServer]—O :Firewall },40 { :ValidityChecker
‘ &

/(?ICuslomCaIIback \c%/IT\merCa\lback ? [Timer
5 IDhepCallba | ‘CustomToken “Timer
20 5 [j
g ITokenCallback|
b3 fé)\ IAccount
n 0 :DhcpServer
2
k]
2
3
a
8
2
Q

T IToken ‘ :WebAccountManager
:DhepListener thLi)sj‘ene’ :IpAddressManager :Arbitrator ’:Z { AccountManager }
| I e |AccountDb ICardCenter
IllpMacDb
—

llpMacDb

:FlightTicketManager

IFreqFlyAuth
{:AbeConnection} {:CsanConnection} {:VTDbConneckion}

:FreqgFlightTicketManager IFlyTicketD! i
qFlig g FlyTcketéuth yTicket bé) IFlyTicketDb é IValidity TicketDb é/

IFreqTicketDb o—/
:FreqFlyDbConnection O :FreqFlyManager)7% :FlyTicketClassifier }
IFreqFlyTicketAuth

Figure 7.6: The airport system extended with NetOverloading

Figure 7.6 depicts the airport system after wrapping the Firewall, the TIpDbConn-
ection, and the PIpDbConnection by the composable controller (Dispatcher,Net-
Overloading). The Dispatcher in this case intercepts calls to the IQuery and
IIpMacDb, and calls the match method of the NetOverloading ICController ob-
ject which behaves as follows: each time it receives add(IP) (resp. remove(IP))
it increments (resp. decrements) the number of connected users. When it receives
connect (IP) on the IQuery interface, it checks if the required IP is P2P address. If
it is the case, it checks the stored number of connected users, if it reaches a prede-
fined threshold number, it returns Skip to the Dispatcher and the call is skipped,
otherwise, it returns Proceed and hence the connection establishes.

7.2.4 The LimitedAccess Aspect

The LimitedAccess aspect aims to prevent minors access to blacklisted websites.
To fulfil this requirement, the aspect should intercept the IQuery interface to check
whether the required IP is in the black list and block the access if the customer is
minor. The age of the customer is stored in the ticket or in the account information
in the corresponding databases. To access these information, the aspect should
intercept the TAccountAuth, the IF1yTicketAuth, and the IFreqFlyAuth for each
customer type, respectively. In this case, since the Arbitrator requires all these
interfaces and requires all the information of the customer at each login request, the
Arbitrator component is the one that should be encapsulated with the Firewall in

7.2. Aspects on Views 145

the required view (see Figure 7.7). The following is the correspondent VIL expression
defining the view:

vLimitedAccess = (direct provide * (T {IQuery})) @ (require * (T {xAuth}))

IQuery IMessager O ILogin IUAccount Q

:AirportWirelessAccess

:InternetAccessManager. * ‘Token
IConnection| IFirewall —
©) :Firewall { :ValidityChecker

/(JFICuslomCallback \%/ ITimerCallback ,(J? [Timer

‘CustomToken | { :Timer }

[LitnitedAcogsg] oo ‘
T fé)\ |Account

[
Token ‘ ‘WebAccountManager
J

IDhepCallback
o

o

:DhcpServer

:DheplListener]—O)—[:IpAddressManager}
IDhcpListener
uth
:PlpDbConnection)4 1AccountDb ICardCenter
IllpMacDb
TIpDbConnection :AccountDbConnection :CardCenter
IllpMacDb

:FlightTicketManager

IDhcpListener IManagement

:Arbitrator
)—1«{ :AccountManager }

IFreqFlyAuth
?)7 [:AbeConnection} {:CsanConneclion} [:VTDbConnection}

:FreqFlightTicketManager IFlyTicketD! i
qFlig g FlyTcketauth yTicket bé) IFlyTicketDb é IValidity TicketDb é/

IFreqTicketDb — o——
:FreqFlyDbConnection O :FreqFlyManager)7% :FlyTicketClassifier }
IFreqFlyTicketAuth

Figure 7.7: The airport system extended with LimitedAccess

The match method of the LimitedAccess object behaves as follows: when it
receives the return value of the service call getInfo on one of the required interfaces
by the Arbitrator, it stores the age of the customer with its IP address. When it
receives a customer queries on the IQuery interface, it checks whether the requested
IP connection is in the black list and the customer is minor (age <=18). If it is the
case, the match method returns Skip to the Dispatcher to ignore the call, otherwise
it returns Proceed and the connection establishes.

7.2.5 The Safety Aspect

The Safety aspect aims to automatically end the sessions of current connected cus-
tomers at taking off of their planes. Implementing this feature, the aspect requires
the IF1lyTicketDb to access the information about the exact taking off of planes,
the IToken interface to end the session and the ILogin interface to map the cus-
tomer IP with the flight ticket number. Thus, the required view must ensure that
the Arbitrator and the FlyTicketClassifier belong to the same composite as
indicated in Figure 7.8. This view is obtained by interpreting the following VIL
expression:

146 Chapter 7. Case Study: Airport Internet Access

vSafety =
(require * {getTicket(ID)}) & (provide (T {ILogin})) & (require * (T {IToken}))

IQuery IMessager O ILogin IUAccount O
:AirportWirelessAccess
:InternetAccessManager * ‘Token
IConnection IFirewall —
:ProxyServer :Firewall :ValidityChecker
T
/(?ICuslomCaIIback \E‘Bz ITimerCallback ’(J? ITimer
€ { i
g |. ;
£ IDhepCallback i.CustomToken‘ { :Timer }
g0 S T
g ITokenCallback
= fé)\ IAccount
N :DhcpServer
] [Token :WebAccountManager
H K<
30 :DheplListener O) :IpAddressManager ‘Arbitrator
s IDhcpListener —O—— :AccountManager
Q I untAuth

ICardCenter

:PlpDbConnection o
IllpMacDb

|AccountDb
:AccountDbConnection

:CardCenter

TIpDbConnection o—
lpMacDb

:FlightTicketManager

IFreqFlyAuth

P
:FregFlightTicketManager

IFreqTicketDb
:FreqFlyDbConnection 0 :FregFlyManager

{:AbeConnection} {:CsanConnection} {:VTDbConneckion}

|

IFlyTicketDb, (5 IFlyTicketDb \(& IValidity TicketDb \é)
i > >

IFlyTicketAuth

L

IFreqFlyTicketAuth

:FlyTicketClassifier

Figure 7.8: The airport system extended with Safety

7.3 Formal Specification in Uppaal

For formal detection of interferences among the above defined aspects, the complete
system is modeled as Uppaal processes following the model presented in chapter 4:
(1) a Uppaal process is generated for each primitive component from its behavior
specification given in the ADL, (2) a set of Uppaal processes are generated from
the ADL specification for each bound interface of a composite component, and (3)
a renaming process is executed to bound components (i.e., synchronize processes
modelling components on the bound interfaces).

00~ O Uk WN

28

7.3. Formal Specification in Uppaal 147

system airportinternetAccess {
interface ITimer {@sync setTimeout(int)}
interface |ITimerCallback {@async timeout()}
interface IToken {@sync startToken ()}
interface |ITokenCallback {@async tokenlnvalidated ()}
// other interfaces
primitive Timer (n) {
provides ITimerCallback iTimerCallback;
requires |ITimer iTimer;
// behavior
}
primitive ValidityChecker (n) {
provides ITimer iTimer, |IToken iToken;
requires |ITimerCallback iTimerCallback,
ITokenCallback iTokenCallback;
// behavior
¥
composite Token (n) {
provides |ITokenCallback iTokenCallback;
requires |Token iToken;
internals Timer (1), ValidityChecker(1);
}
binding
client ValidityChecker.iTimer server Timer.iTimer;
client ValidityChecker.iTokenCallback server Token.iTokenCalback
client Token.iToken server ValidityChecker.iToken
// other attachments
¥

Listing 7.1: An excerpt of the ADL of the airport system example

Listing 7.1 shows an excerpt of the ADL specification of the airport Internet
access example. In the listing, four interfaces are declared with the signatures of
their services (line 2-5). For example, the ITimerCallback interface defines only one
asynchronous service named timeout. Two primitive components, the Timer and the
ValidityChecker, are described (lines 7-11, 12-17, respectively) with their provided
and required interfaces. The Token composite component is described (line 18-22)
with its interfaces and internals. Since several tokens can be created, the component
is parametrized with n (the maximum number of instances). In the internals part
declaration, the Timer and the ValidityChecker are parametrized with the value
1 to indicate that only one instance of each per Token is enabled. The attachment
description in (line 23) indicates that the iTimer interface of the ValidityChecker
component is bound to the iTimer interface of the Timer component.

7.3.1 Primitive components

For primitive component specification (see § 6.2.2), Figure 7.9 shows the Uppaal
template modelling the Timer primitive component. The template can be read
clockwise from the initial location distinguished with a double circle. The Timer
waits for a setTimeout call with a parameter of type TIME' declared at the top of
the channel label (time:TIME). When it receives such an event, it stores the time
value in a local variable (time:=t), resets a clock variable c1 to 0 (c1:=0) and goes

ITIME is a user defined data type

148 Chapter 7. Case Study: Airport Internet Access

to the next location. Then, the Timer sends E_.._setTimeout indicating the end
of the treatment of the setTimeout event (setTimeout is a synchronous event) and
goes to the next location. This latter is decorated with an invariant (cl<=time) to
indicate that the process should not stay at that location when the invariant becomes
false (i.e., c1>time). When that happens, the Timer enables the last transition by
triggering a timeout event, resets the clock again to 0 (c1:=0), and returns to the
initial location. Another possibility to leave the location with the invariant is to
receive a stopTimer event to end a session due for example to a user logout request.
In that case, the timer returns E_. . _stopTimer [time-cl] indicating the end of the
action and the remaining time for the user, it resets the clock to 0 and returns to
the initial location.

timer_iTimerCallback_timeout!
cl:=0

tTIME
timer_iTimer_setTimeout]t]?
Q time :=t; cl:=0 ™\ E_timer_iTimer_setTimeout! -
()

E_timer_iTimer_stopTimer[time-cl]! v timer_iTimer_stopTimer?
cl:=0

Figure 7.9: Formal Model for the Timer Component

Listing 7.2 shows the Uppaal textual description (XTA) of the Timer component.
Data types (e.g., TIME) are declared first (line 1). Each template in Uppaal is
declared within the process keyword followed by the name of the template (Timer
in this case) (line 2). Clock variables (c1) and local variables (time) are declared in
the top of the declaration (line 3-4). Then the locations are listed (line 5), and the
initial location is explicitly indicated (line 6). The transitions come last following
the same syntax we adopted for behaviors specification in the ADL description (line
7-15).

1 typedef int [0,6] TIME;

2 process Timer() {

3 clock cl;

4 TIME time;

5 state o {cl<=time}, l1, l2;

6 init lp;

7 trans

8 lo —> U1 {select t:TIME; sync timer_iTimer_setTimeout[t]?; assign time:=t, cl:=0;},
9 Iy —> Iz {sync E_timer iTimer_ setTimeout!;},

10 lo —> lg {sync timer_iTimerCallback timeout!;},

11 lo —> I3 {sync timer_iTimer_ stopTimer?;},
12 I3 —> lo {sync E_timer_iTimerCallback timeout[time—cl]!; assign cl:=0;};
13}

Listing 7.2: The Uppaal-XTA description of the Timer component

7.3. Formal Specification in Uppaal 149

7.3.2 Composite components

For composite component specification (see § 6.2.3), let us consider the Token com-
posite component. This component has two interfaces: iToken and iTokenCall-
back (see Listing 7.1 line 19-20). The interface iToken has one synchronous service:
startToken (Listing 7.1 line 4) for starting a new session. Figure 7.10 depicts the
generated Uppaal template for iToken interface of the Token component (one cycle
of four transitions). While the iTokenCallBack interface has a single asynchronous
service: timeout (Listing 7.1 line 3) for signaling that the session time elapsed.
Figure 7.11 depicts the generated Uppaal template modeling the iTokenCallback
of the Token component (a single cycle of two transitions).

token_iToken_startToken[id]? f\vaIidityCheckerﬁiTokenfstartToken[id]!

Q =

E_token_iToken_startToken[id]! =/ E._validityChecker_iToken_startToken(id]?

Figure 7.10: Formal Model for Token: iToken interface

token_iTokenCallback_tokenInvaidated[id]?

ol O

arbitrator_iTokenCallback_tokenlnvalidated[id]!

Figure 7.11: Formal Model for Token: iTokenCallback interface

7.3.3 Component binding

For component binding (see § 6.2.4), Figure 7.12 depicts the Timer template after
binding its required interface iTimerCallback to that provided by the ValidityChe-
cker component (Listing 7.1 line 23). Thus, the timer_iTimerCallback_timeout!
is substituted by validityChecker_iTimerCallback_timeout!.

validityChecker_iTimerCallback_timeout!
cl:=0

tTIME
timer_iTimer_setTimeout]t]?
Q time :=t; cl:=0 ™\ E_timer_iTimer_setTimeout! -
()

E_timer_iTimer_stopTimer[time-cl]! v timer_iTimer_stopTimer?
cl:=0

Figure 7.12: Formal Model for the Timer Component after binding

150 Chapter 7. Case Study: Airport Internet Access

7.3.4 The complete base system

The whole example is modeled as 32 Uppaal template: 19 for primitive components
(one for each component) and 13 for composite components (one for each bound in-
terface). As described in Section 6.2.5. Primitive component behavior specifications
are adapted to meet our notations for transition labels and component instantiation,
composite components are automatically generated from the ADL specification and
the binding is elaborated by renaming. In addition, aspects are also modeled as
Uppaal templates (one for each aspect) and a weaving process is executed to syn-
chronize the aspect process with the processes modelling the components on the
required view.

Properties for the Airport Base System (Pairport)

Live 1 User (id) .Connected -> User(id) .Disconnected
Safe 1 A[] not deadlock
Safe 2 A[] V(id:IDS),V(ip:IPS) (User(id).Connected A currentIp(id)==ip A

Firewall.enabled(id)) = User(id).isConnected

Safe 3 A[] V(id:IDS) User(id).Connected = User(id).cl<=validity(id)

Reach 1 E<> User(0).Connected A (V(id:IDS) id!=0 = User(id).Connected)

Table 7.1: Properties of the airport system

The airport wireless access example is designed to satisfy different (liveness,
safety, and reachability) properties. These are given in Table 7.1 (Pairport). In
particular, a user can not stay connected forever (Live 1), the system is deadlock
free (Safe 1), a user cannot stay connected more than the validity time indicated
in his flight ticket (Safe 2), a user can connect to all the IP addresses when its
access is enabled by the firewall (Safe 3), and several users can be connected at the
same time (Reach 1). The formulae rely on different constants, variables and auxil-
iary functions: IDS and IPS denote the range for user identifiers and IP addresses,
respectively, Connected and Disconnected are identifiers denoting particular loca-
tions of the user process, the validity(id) is a global function that returns the
authorized connection time of a user id, currentIp(id) returns the current IP ad-
dress the user wants to connect, and enabled(id) checks whether a user id access
is enabled by the firewall. The cl is a local clock associated to the user process,
and the isConnected is a local variable in the user process that stores the firewall
response of the user access to each IP address. These properties are later used for
interference’s detection.

7.3.5 Weaving individual aspects to the system

In this section we show how the desired aspects are woven individually to the system.
At this step, the conformance of each aspect with the base system can be checked.
The conformance is detected if the woven system satisfies the intrinsic properties of
the base system and the intent properties of the woven aspect.

7.3. Formal Specification in Uppaal 151

7.3.5.1 Weaving the Bonus aspect

The Bonus aspect is designed to satisfy a safety property Safe 3’: a user can stay con-
nected a bonus time (BonusTime) after its authorized time elapses, where BonusTime
is a constant denoting the bonus time associated to the user.

Safe 3 = A[l V(id:ID) User(id).Connected = User(id).cl<=validity(id) + BonusTime

For weaving the Bonus aspect (see § 6.2.6), the process modelling the ValidityChe-
cker (the component owning the provided interface intercepted by the aspect) is
instrumented by adding new locations and transitions in order to synchronize with
the Bonus process. Figure 7.13 shows an excerpt of the ValidityChecker adapted
to be synchronized with the Bonus aspect.

validityChecker_iTimerCallback_timeout[id]?

(a)

token_iTokenCallback_tokenInvalidated[id]!

skip_bonus_iTimerCallback_timeout[id]?

Figure 7.13: Synchronizing the ValidityChecker process with the Bonus: (a) before
synchronization, (b) synchronized process

After instrumenting the Bonus aspect, the woven system is the parallel composi-
tion of the base system processes with the instrumented ValidityChecker process
and the process modeling the Bonus aspect. Applying the Bonus aspect, we want
to preserve all the basic system properties but Safe & since the Bonus aspect is de-
signed to offer a bonus time to users in addition to its original authorized time. In
that case, P2 ig defined to be all the properties Pairport €xcept Safe 3. Uppaal

airport

model checker shows that Pb"m‘st and Pponus (i-€., Safe 37) are all satisfied by the

airpor
woven system with Bonus and no error is reported.

7.3.5.2 Weaving the Alert aspect

The Alert aspect intent is to ensure that a user is always alerted before it is dis-
connected (Live 2) and the alert is intercepted exactly before a TimeAlert of its
elapsing time (Safe /). In the formulae below, Alerted is an identifier denoting a
particular location in the user process, isAlerted is a local boolean variable of the
user indicating whether a user reached the Alerted location, and AlertTime is a
constant denoting the alert time (e.g., 5 minutes).

Live 2
Safe 4

Use(id) .Connected --> User(id).Disconnected A User(id).isAlerted
A[] V(id:ID) User(id).Alerted = User.cl== validity(id) - AlertTime

152 Chapter 7. Case Study: Airport Internet Access

Weaving the Alert aspect requires the synchronization of the ValidityChecker
process, having the provided interface intercepted by the aspect, with the process
modeling the Alert. Figure 7.14 shows the ValidityChecker process synchronized
with the Alert.

validityChecker_iTimerCallback_timeout[id]?

(@)

token_iTokenCallback_tokenlInvalidated[id]!

skip_alert_iTimerCallback_timeout[id]?

Figure 7.14: Synchronizing the ValidityChecker process with the Alert: (a) before
synchronization, (b) synchronized process

Finally, the instrumented process with the Alert aspect instantiated for the
intercepted join points are composed in parallel with the rest of the processes of
the base system. Similar to the case of Bonus, Uppaal model checker reports no
violation of base system properties and the aspect intent properties Pyt (i.€., Live
2 and Safe 4). Note that in the case of Alert: palert — Pairport-

airport

7.3.5.3 Weaving the NetOverloading aspect

The intent of the NetOverloading aspect is to prevent access to P2P addresses for
all the users when the airport server is overloaded. This property can be described
in CTL as follows:

Safe 5 = A[l V(id:ID), V(ip:IP) User(id).Connected
A currentIp(id)==ip
A NetOverloading.isP2P (ip)
A NetOverloading.isOverload() = !User(id).isConnected

The above formula states that if the system is overloaded (NetOverloading.is-
Overload()) and the requested IP connection is P2P (NetOverloading.isP2P(ip))
then the user request is refused (!User(id) . isConnected). In the formula, isOverload()
and isP2P(ip) are predicates defined for the NetOverloading aspect process.

Weaving the NetOverloading aspect requires the adaptation of the TIpDbConnection,
PIpDbConnection, and Firewall component processes. The adaptation enables the
synchronization of the component processes with the aspect process. Figure 7.15
depicts the adapted Firewall process, where the added states are represented with
dark circles and the added transitions are represented with dashed arrows.

The NetOverloading aspect is designed to disable the Safe 2 property that
checks whether a user has the access to all its requested addresses where he/she is
netOuerloading 1o qofined as Pairport €xcept Safe 2. The parallel

airport
composition of the NetOverloading aspect process, the adapted component pro-

connecting. Thus, P

cesses and the rest of the base system component processes reports no violation of

7.3. Formal Specification in Uppaal 153

ip:dP ip:lP
firewall_iFirewall_disablePortBlock[ip]? firewall_iFirewall_enablePortBlock[ip]?
enablelpAccess(ip) disablelpAccess(ip)

~

E_firewall_iFirewall_enablePortBlock!

src, dest:IP \

firewall_iQuery_connect[src][dest]?
IPSrc = src, IPDest = dest

enabledIpAccess(IPSrc) : netOverloading_iQuery_connect[src][dest]!
proxy_iConnection_connect[IPSrc][IPDest]! ¥

o

E_firewall_iFirewall_disablePortBlock!

E_firewall_iQuery_connected[IPSrc]!

e e 10
proceed_netOverloading_iQuery_connect[src][dest]? T
1 skip_netOverloading_iQuery_connect[src][dest]?

v
)
S

lenabledIpAccess(IPSrc) E_firewall_iQuery_enableToConnect[IPSrc]!

Figure 7.15: Synchronizing the Firewall process with the NetOverloading process

P(Zﬁgfte rloading and PretOverioading (i-€., Safe 5) which indicates that the weaving of

the NetOverloading aspect is correct w.r.t to the airport base system.

7.3.5.4 Weaving the LimitedAccess aspect

The intent of the LimitedAccess aspect is to prevent access to blacklisted addresses
for minors and enforces the access to all the requested addresses for first class users.
These two properties can be expressed in CTL as follows:

Safe 5 = A[]l V(id:ID), V(ip:IP) User(id).Connected

A currentIp(id)==ip

A LimitedAccess.isMinor (id)

A LimitedAccess.inBlackList(ip) = !User(id).isConnected
Safe 6 = A[]l V(id:ID), V(ip:IP) User(id).Connected

A currentIp(id)==ip

A LimitedAccess.isFirstClass(id) = User(id).isConnected

Safe 5 states that if a user is minor (LimitedAccess.isMinor(id)) and the
requested IP connection is in the black list (LimitedAccess.inBlackList(ip))
then that user request is refused (!User(id).isConnected). Safe 6 states that
if a user has a first class ticket (LimitedAccess.isFirstClass(id)) then all that
user requests must be accepted (User(id).isConnected). Where isMinor(id),
isFirstClass(id), and inBlackList (ip) are predicates defined in the LimitedAccess
aspect process.

Weaving the LimitedAccess aspect requires the adaptation of the Arbitrator

and the Firewall component processes for their synchronization with the aspect
netOverloading .
airport 15

defined as Pgirport €xcept Safe 2. When the processes are adapted and composed
with the instantiated aspect process and the rest processes of the system, Uppaal
model checker reports no error which indicates the LimitedAccess aspect is correct

process. Similar to the case of the NetOverloading aspect, the P,

with respect to the airport base system.

154 Chapter 7. Case Study: Airport Internet Access

7.3.5.5 Weaving the Safety aspect

The intent of the Safety aspect is to end user sessions when their flights are taking
off. This can be expressed in CTL as:

Safe 7 = A[] V(id:ID), User(id).Connected
A Safety.flightTakeOffTime(id)>=gcl = !User(id).isConnected

In the above formula, f1ightTake0OffTime (id) is a local function to the Safety
aspect that returns the take off time of the id user plane and the gcl is a global
clock defined for the system. Weaving the Safety aspect, the Arbitrator and the
FlyTicketClassifier component processes must be adapted to be synchronized
with the Safety aspect. In addition, P;ff;égt is defined as Pgirport, since the aspect
is not designed to alter the basic behavior of the system but to enforce a new
constraint. Uppaal also in this case does not report any violation.

Since The base system is proven that it is well-defined (i.e., it satisfies all its
intrinsic properties), all the desired aspects are correct with respect to the base

system, let us check for potential interferences among the aspects.

7.4 Interference Detection and Resolution

In this section we discuss interferences among the above defined aspects. We use
our formal model to detect such interferences. For each two aspects we introduce
a sequence diagram of their composition and we show how they interfere with each
other. Then we define the intent of each aspect as CTL formulae and we use Uppaal
model checker to detect interferences and report a trace that violates the desired
properties. Remember that, in our approach, when two aspects intercept common
join points (i.e., services), the advices of the two aspects on those services are
executed sequentially, and the service call continue its original path (i.e., proceeded)
only if at least one of its underlying aspects decides to proceed the call, otherwise,
the call is skipped.

7.4.1 Bonus vs Alert

Let us consider the original airport system with the bonus and the alert aspects.
Let us also assume that the original session duration is 60 minutes, the bonus adds
10 minutes and the alert warns the user 5 minutes before the end of the session.
When both aspects are bound to the system, we wish users to get a bonus time and
be alerted exactly 5 minutes before the actual end of their sessions (i.e., alert at 65
minutes, end of session at 70 minutes).

Figure 7.16 details the execution of the Bonus and the Alert behaviors sequen-
tially. At time 0, a user logs in for 60 minutes provided by his flight ticket. The
message setTimeout (60) sent from a ValidityChecker to its Timer is intercepted
and forwarded to the Alert aspect only (i.e., the setTimeout (60) is not a common
intercepted call). The Alert subtracts 5 minutes from 60 and proceeds the call with

7.4. Interference Detection and Resolution 155

| z:vi::Arbitrator | | ::vi1::ValidityChecker | | Seq | | Bonus | | lert |
iLogin JoginWith(ID) i 1 ; i
iLogin.loginWith*(ID) | [-
+ iLogin.loginWith*(ID)
i

t=0

T
| | {
e iTimer.setTimeout(60) | 1 -
: e.arg[0]-=5
; iTimer.setTimeout(55)
H T

. R T A
1255 |- e [_ i iTimerCallback.timeout()
a H \ iTimerCallback.timeout()_ | |
1 iTimer.setTimeout(10)
Skip | [""" mmmmodm oo
SRR EGLTIRLLE .
iTimerCallback.timeout() |
iMessagér.show("5 min left"
¢! () iTimer.setTimeout(5)
i Skip D
e AERRREEEEEEEREEEE
165 ! ! ! iTimerCallback.timeout()
- ! !

iTimerCallback imeout()_ |
—

Proceed

: ;
i l:‘ iTimerCallback.timeout()

Figure 7.16: Seq(Bonus,Alert) scenario

the new parameter value (55). As a result, a timeout service call is intercepted at
time 55. The timeout is common intercepted service so that its call is forwarded to
the Bonus first then to the Alert. The Bonus resets the timer for 10 minutes and
skips the call. Then, the call is sent to Alert that warns the user, resets the timer
for 5 minutes and skips the call. This violates the expected behavior: the alert is
sent too early (at time 55 instead of the expected 65). Moreover, the Timer has been
set twice with different values and hence it is inconsistent whatever happens next.
This is called an interference since the desired behavior is not satisfied by the default
sequential composition of aspects. To solve this interference, another composition
strategy is needed: the first occurrence of timeout should only be managed by Bonus
and the second occurrence should only be managed by Alert. Within this alternate
strategy, when a service common to both aspects is intercepted, its occurrences are
passed alternately to the left and the right hand side aspects. When a service is not
common to both aspects, the call is forwarded to its corresponding aspect only.

Figure 7.17 details the alternate execution of the Bonus and the Alert scenario.
At time 0, a user logs in for 60 minutes provided by his flight ticket. The message
setTimeout (60) sent from a ValidityChecker to its Timer is intercepted and for-
warded to Alert. The Alert subtracts 5 minutes from 60 and proceeds the call. As
a result the setTimeout (55) call is proceeded. At time 55, a timeout is intercepted
which is a common intercepted message by both aspects. Here, the call is forwarded
only to Bonus (first occurrence) that resets the timer for 10 minutes and skips the
message. Thus, the first timeout call is ignored. At time 65, a second timeout

156 Chapter 7. Case Study: Airport Internet Access

| z:vi::Arbitrator | | ::v1::ValidityChecker | | Alt | | Bonus | | lert |
iLogin JoginWith(ID) i 1 ‘
iLogin.loginWith*(ID) | [o H
+ iLogin.loginWith*(ID) !
! I:IQsetType(lD)
Proceed
< omommmmmooon e oo IR ;
t=0 : L iTimer.setTimeout(60) : - - ' :
| e: iTimer.setTimeout(60) : | e.arg[0]-=5
; iTimer.setTimeout(55)
R, '.<’”"’”""”""""IL”"""""""J ,,,,,,,,,,,,,,,,,,,,,,
| | i iTimerCallback.timeout()
t=B55 [T T T
H | iTimerCallback.timeout()_ | H
| iTimer.setTimeout(10)
Skip | [mmmmAm oo
. '
' ! | 1 iTimerCallback.timeout()
t=65 [-m b e P - - . :
I I iTimerCallback.timeout() |
+ 4 iTimer.setTimeout(5)
iMessager.show("5 min left")
! : ! iTimerCallback.timeout()
=70 b _ ;
i i iTimerCallback.timeout()
i i

Figure 7.17: A1t (Bonus,Alert) scenario

is intercepted. The call, this time, is forwarded only to Alert (second occurrence)
that warns the user, resets the timer for 5 minutes and skips the message. Thus, the
timeout call is ignored again. At time 70, a third timeout call is intercepted and
forwarded only to Bonus (third occurrence) that proceeds the call since the bonus
time is consumed. As a result, the timeout is proceeded. This ends the session and
elaborates the desired behavior.

When both Bonus and Alert are woven to the system and composed using Seq
(see Figure 7.16), the Uppaal model checker reports that Safe 3 property is violated
and it gives a diagnostic trace similar to the sequence diagram in Figure 7.16. The
reported trace shows that both aspects reset the Timer for two different values and
the Timer is not designed to accept such kind of behavior. In addition, the alert
message is send to the User before the addition of bonus. To solve the problem,
we used the Alt operator (see Figure 7.17) that sets the Timer once for each inter-
cepted timeout event, and ensures that the alert is sent to the User after consuming
the bonus. The use of Uppaal model checker this time shows that all the desired
properties are satisfied which indicates that the interference is solved.

For the implementation point of view, the original Fractal configuration is up-
dated so that, a new composite modelling the view named SessionManager is cre-
ated as a child of the root component (i.e., the closest common parent of the required
components for the view in the example), the Arbitrator and the ValidityChecker
components are declared as shared components of the SessionManager, an intercep-
tor controller is added to the Arbitrator and the ValidityChecker to intercept the

7.4. Interference Detection and Resolution 157

e

Al

e - Dispatcher ..

:SessionManager

Interceptor Interceptor

I . 1

:ValidityChecker |
Secccccsccccsacas’

[

Figure 7.18: SessionManager view for A1t and Bonus aspects

required service calls and forward them to the composable controller (Dispatcher,
Alt(Alert,Bonus)) at the top of the SessionManager component. Figure 7.18
shows the structure of the SessionManager component. In the figure, shared com-
ponents are depicted with double dashed lines, controllers are depicted with dark
rectangles while ICController(s) are depicted with white controllers. The arrows
linking controllers show the control flow of intercepted calls.

7.4.2 LimitedAccess vs NetOverloading

Let us consider the LimitdtedAccess and the NetOverloading aspects. While the
former blocks access to blacklisted websites, which can be P2P as well, for minors
and provides full access for first class customers, the latter blocks all access to P2P
addresses for all the users when the airport server is overloaded. This results on an
interference when the server is overloaded and a first class customer request to access
to a P2P. Both aspects share a join point (i.e., IQuery interface of the Firewall) and
hence they are composed using the Seq operator. However, this default composition
reports an error by Uppaal: Safe j is violated. The reported diagnosis trace (see
Figure 7.19) shows that the default sequential execution of such aspects does not
solve the problem if the requested IP address by a first class customer is P2P address
and the system is overloaded.

LimitedAcces | |NelOverloading‘ | ::Firewall |
i i ' i
4
BN >

! iQuery. t(id, i ' : : '
i 1Query.connect(id.ip) - iQuery.connect(id,ip)

Proceed isFirstClass|(id)

! B isOverload()
S N Skip | | isp2p(ip)

1
iQuery.connect(id,ip) : : s/

| ' T
! :

< - m e W< oomomooomomomoooo- et et -

: : | : :

Figure 7.19: Seq(LimitedAccess,NetOverloading) scenario

158 Chapter 7. Case Study: Airport Internet Access

For solving such an interference we must choose which aspect is prioritized. In
other words, when the system is overloaded, either we do not accept P2P access for
all users even for users owning first class tickets, or we block P2P access only for first
class minor customers. In the former case, we use And (LimitedAccess,NetOverload-
ing) operator (see Figure 7.20), while in the latter case we use Cond(LimitedAccess, -
NetOverloading, "isMinor(id)") (see Figure 7.21).

| LimitedAcces | |Ne10verloading| | ::Firewall |
X ‘
\‘\

i iQuery.connect(id,ip) !

iQuery.connect(id,ip)

iQuery.connect(id,ip)

H
1 Proceed
[ttt

S i ittt Fmmmmmmmm e B Rttt i
1 |
' 1

Figure 7.20: And(LimitedAccess,NetOverloading) scenario

| LimitedAcces | |NelOverIoadinq| | ::Firewall |

*x x> X <x >

| iQuery.connect(id,ip) !

iQuery.connect(id,ip)

Sk
Qslore(id,age(id)) '

<
I iQuery.connect(id,ip) . .
. iQuery.connect(id,ip)

Q store(id,age(id))

ALT tisMinor(id)
iQuery.connect(id,ip)

i
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
;
}
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
;
A
i
|
|
|
|
|
;
|
2
o
g 12
8 id

[

S 1 S f:r_f:, :::::/,JAJ,A
iQuery.connect(id,ip) |s:M|nor(|d) : 1
< ----------------- == ’"""""""""""E ””””””””””””” i""""""*w

Figure 7.21: Cond(LimitedAccess,NetOverloading,isMinor) scenario

The implementation of such aspects requires the configuration of the Fractal
system. In our approach, to compose two composable controllers, both controllers
should be integrated into the same view. The views required by both aspects share

7.4. Interference Detection and Resolution 159

the Firewall component. The required view for their composition is calculated
using the following VIL expression:

vNetOverLoadingLimitedAccess = vLimitedAccess ® vINetOuverloading

The result view encapsulates all the components defined by vLimitedAccess and
vNetOverloading and the resulting controller from the composition of both con-
trollers is added to that new view as shown in Figure 7.22.

NetOverloading

And/Cond
T iDispatcher T e
:ConnectionManager
Interceptor Interceptor [Interceptor| \ lnterceptor\
, -IC) . i b
0 0 [} 0 [b
:PlpDbCoonection| | Firewall | | Aitrator | |:TipDbCoonection|
i " N J A

~

Figure 7.22: The view for LimitedAccess and NetOverloading aspects

7.4.3 Safety vs Alert and Bonus

According to our approach, since both aspects do not share join points, there is no
need to compose them using Seq, instead, they are executed in parallel. However,
this may also lead to an undesirable behavior. Take for example, the Safety aspect,
its intent states that when a user id is connected and the plane of this user is taking
off, the user disconnects immediately. Using Uppaal model checker, it shows that
all the properties of Alert (i.e., Live 2 and Safe 4) are violated (i.e., the user is not
alerted before five minutes of the end of the session). The reported trace (see Fig-
ure 7.23 where Par refers to the regular parallel composition of processes) shows that
an interference among the Safety and the Alert aspects appears when the Alert
already subtracts 5 min from the authorized time and the Safety wants to close the
session because the flight of the user is taking-off. In that case, the Alert is waiting
for the first timeout event to alert the user and reset the timer with 5 minutes. The
Safety aspect is urgent and the session must be closed but this deprives the user
of 5 min of his/her authorized time and prevents alerting the user. To solve this
problem, one solution is to execute the Safety aspect only if the authorized time for
a user is greater than the remaining time for the flight to take off, otherwise, both
aspects can be executed without any interference (i.e., use the variant of the Cond
operator, Cond(Safety,Alert,validity(id)>=take0ff(id))). When the Bonus
aspect is considered, neither Alert nor Bonus should be executed if the authorized
time with bonus is greater than the remaining time to the taking off of the plane
(i.e., Cond(Safety,Alt (Bonus,Alert),validity(id)+BonusTime>=takeOff (id))).

160 Chapter 7. Case Study: Airport Internet Access

‘::Validitychecker’ ‘Dispalcher’ ‘ Safety ’ ‘ Alert ’ ‘ =:Timer ’
i

| > >

! t=t-5

1 iTimer.setTimeout(t)

| |
ALT currentTimé:TakeOﬂPlan
E'J iTimer.endSession()
T

iTimerCaIIbaclk.invalidated(t-t‘)

- T
| ICustomCallback.updateValidity(t-t')
i j

Figure 7.23: Par(Safety,Alert) scenario

Verification time (sec)
1 users | 2 users | 3 users
Safe 1 0.03 1.84 220
Safe 2 0.01 1.21 141
Safe 3 0.02 1.31 167
Reach 1 0.01 0.11 3.23
Live 1 0.01 6.22 ?
System -+ Bonus
[Safe 5’ 003 [903 | 7
System -+ Alert
Safe 4 0.05 16.11 ?
Live 2 0.11 154 ?
System + Bonus + Alert
Safe 8’ 0.14 43.11 ?
Live 2 0.11 154 ?
Nb of processes 32 38 44

Table 7.2: Verification Time for Checking Properties

7.5 Conclusion

In this chapter, we have exemplified the use of VIL language to define the required
views for aspect weaving. In addition we have shown how interferences are detected
using Uppaal model checker after formalizing the base system as a network of state
machines, and how the interferences are solved using composition operators. The
case study is modeled as 32 Uppaal templates in total. Table 7.2 shows the number of
processes generated and the respond time of Uppaal model checker for each property.
The table shows that Uppaal does not give respond for more than two users in a
woven system for our case study. However, for our verification, merely one user is
enough to detect interferences among the woven aspects. To avoid state explosion
some abstractions have to be made. By abstraction, some composite components
with their internals that are not part of views can be replaced by primitive processes
abstracting the behavior of the composite.

CHAPTER 8

Conclusion

Contents
8.1 Aspectualizing Component Models 162
8.2 Aspect Interaction Analysis 163
8.3 Perspectives. i i i i e e e e e e e e e e e 164

Aspect-oriented programming provides a support to deal with non-modular fea-
tures of software systems ensuring their modularity and reusabibilty. CBSE provides
a modular way to design software systems enhancing their reusability and reducing
their maintenance effort. The idea behind AOP is to model a non-modular feature
as one entity named aspect. An aspect consists of the definition of one or more
methods, called advices, describing the feature behavior and an expressive language
to describe points in the base program, named join points, specifying where advices
must be executed. In addition, AOP provides a weaving mechanism that enables
the execution of advices in the right places in the base program. On the other hand,
CBSE divides a software system into separate entities, named components, and pro-
vides a mechanism to compose them to get the required complete system. However,
like the other paradigms, CBSE suffers from modelling non-modular features that
are scattered over several components and can not be modeled as regular entities.
For the sake of ensuring better modularity and reusability of component software
in CBSE, non-modular features must be added in a modular way, and hence, AOP
aspects should be integrated into CBSE models. Achieving this aim, a modelization
of aspects and their constituents (i.e., join point description language, advices, and
the weaving mechanism) in component models are required. In this thesis, we pro-
posed a generic approach to model aspects. The proposed approach gets benefit of
component configuration diversity to specify the adequate system configuration for
each aspect to be added. However, adding one or more aspects may give rise to inter-
ferences where the execution of one aspect may alter the execution of another. For
this reason, we provided a support to detect and solve aspect interferences in com-
ponent models. In our proposal, aspects are modeled as wrappers on views. A view
is an adequate configuration for a wrapper, it encapsulates all the components of
interest of a wrapper in the same composite. Views are clearly visible in hierarchical
component models such as Fractal, where composites are created to encapsulate the
required components for a wrapper. In flat component models such as EJB, a view
is abstract, it only defines the points where a wrapper must be added as a regular
component bound to the components defined in the view. For declarative definition

162 Chapter 8. Conclusion

of views, we introduced VIL: a declarative pointcut language adopted for component
models. For interference detection and resolution, a formalization process is defined:
First, an abstract ADL is proposed to describe the component architecture struc-
ture and bevavior. Both primitive components and aspects behavior is given in the
ADL as state machines with a conventional notation of transitions labels. Second,
a translation scheme is executed to generate the full formalization of the aspectual-
ized component system from the ADL description, this includes the adaptation of
primitive components processes, composite components processes generation, com-
ponent binding and aspects weaving. The result system can be used as input to a
model checker with the set of intrinsic properties of the system and the intent of
each aspect. An interference is detected when at least one of the intent properties of
aspects or the intrinsic properties of the system is violated. To solve interferences, a
catalog of composition operators’ patterns is provided. Our approach is exemplified
with two case studies: a crane system and an airport wireless access. For each ex-
ample, an implementation in Fractal component model is provided, a set of aspects
are defined and woven to the system, and interferences are detected using Uppaal
model checker and solved using adequate composition operators. The proposed ap-
proach is designed to be general (it does not rely on a specific component model),
we have shown how views can be modeled and how wrappers can be implemented
into two different categories of component models: hierarchical component models
with component sharing such as Fractal and flat component models such as EJB.

8.1 Aspectualizing Component Models

There are several ways to extend component models with AOP support, each method
depends on the underpinnings of each model. However, this requires an effort to ex-
tend each model. A unified approach is required to save those efforts. The concept
of views proposed in this thesis is a generic concept that can be adapted for differ-
ent component models. Moreover, classical weaving strategies (i.e., compile time,
load time and runtime) harms the modularity of components and disables dynamic
weaving /unweaving of aspects. To tackle this problem, component wrapping/moni-
toring are considered for component models. This preserves the modularity of both
components and aspects before and after weaving and enables dynamic weaving /un-
weaving of aspects by activating/deactivating wrappers. Our views-based idea is a
promising approach to locate the scope of each aspect, views can be seen clearly in
hierarchical component models (i.e., they are modeled as composites), but in flat
component models views are still abstract units where only the interesting points
of an aspect are specified and dummy components or connectors are used to for-
ward the intercepted calls into the components modelling aspects. Adding dummy
components and connectors hardens and complicates the original architecture of
systems. This has direct side effects on the pointcut expressions that are originally
defined for a base system architecture that is changed after weaving other aspects.
Pointcut expressions for each aspect must always be defined for the current system

8.2. Aspect Interaction Analysis 163

architecture. Note that views can be defined at earlier stages of software develop-
ment processes. For example, at the design stage if some non-functional properties
are already known, the base system architecture will be already designed with views
and wrappers implementing such non-functional features. In addition, views can be
used at the maintenance stage where new non-functional requirements are required
for an already designed and implemented system.

8.2 Aspect Interaction Analysis

When several aspects are woven to the same component system their interactions
must carefully be analysed in order to avoid potential interferences among them that
lead to misbehaving the complete system. However, interferences are not always
avoidable by composition operators, it depends on the kind of their interactions and
on their effects on the system. Aspects interact in different ways, our experience
shows that three kinds of aspect interactions are available:

Neutral: Two aspects are neutral when they are woven to the same system the
result system satisfies the intent properties of all the woven aspects in addition
to the system invariant.

Positive Interaction: Two aspects interact positively when the execution of one
aspect reinforces the execution of another by fulfilling the precondition of the
second aspect.

Negative Interaction This appears when the weaving of an aspect individually
to a system is correct but its weaving to an already woven system leads to
undesirable behavior. This means that the execution of one aspect alters the
execution of another.

Dealing with aspect interferences is a tedious work where aspect interactions
must be carefully analysed. This can be achieved by specifying clearly what is in-
tended by a component system before and after weaving aspects and the intended
behavior of each aspect to be woven. This enables the detection of conflicting prop-
erties and contradictory ones which is an error prone task if it is done manually.
Tools such as model checkers are useful to detect such conflicting and contradic-
tory properties. Due to state explosion problem, the use of model checkers is still
limited to component systems with no considerable number of components and/or
an optimized behavior specification. In addition, our proposition of a catalog of
composition operators helps users to choose the adequate composition strategy that
solve detected interferences. An alternative solution is aspect adaptations where one
aspect should be aware of the presence or the absence of other aspects so that it may
decide what to do with each intercepted join point. However, aspect adaptation is
hard and error prone task especially that conflicting aspects cannot be easily and
statically determined. But when operators does not provide a solution component
adaptation can be used.

164 Chapter 8. Conclusion

8.3 Perspectives

Besides the generality of our approach, some limitations of the approach and how
to be tackled are: (1) the use of model checkers to model huge component systems
following our approach leads to state explosion. To tackle this problem, we adopted
system abstractions where composite components with their internals not part of
the view are replaced with a primitive process modelling the external behavior of
such composites. However, this is hard and error prone task. One solution is to
use theorem proving such as B method. Using B, each component can be mod-
eled as a B machine with its behavior specification in terms of pre/post conditions
for each service and a protocol to describe the control flow of each component.
Thus, the B tool can be used to check the conformance of intrinsic properties of
systems with the different intent properties of aspects to detect interferences. (2)
the composition patterns catalog must be extended with more operators. This can
be achieved by experimenting the approach with more concrete examples and other
aspect interactions. (3) actually, views are defined for centralized systems, where
aspects are defined for components in the same server, for distributed systems where
components are deployed into different servers, distributed AOP features must be
taken into account. (4) the approach is adopted for component models, where the
basic architecture of the system is defined, but what about software architecture
based models where aspects are considered at earlier stages of software design. One
proposition is to adapt the approach for component-based model-driven software de-
velopment such as rCos |Jifeng 2006, Chen 2008]. rCos is an ongoing project aims
to support multiple dimensional modeling: models at different levels of abstrac-
tion related by refinement relations, and models of different views of the system
(structural, behavioral, and non functional ones).

APPENDIX A

Résumé en Francais

A.1 Introduction

La programmation par composants (CBSE) permet la modularisation des préoccu-
pations en termes d’entités logiciels séparées appelées composants. Chaque com-
posant fournissant explicitement des services en s’appuyant sur des services fournis
par d’autres composants. Les composants peuvent étre assemblés afin de construire
le systéme global. D’autre part, 'approche aspects (AOP) vise a séparer les préoc-
cupations techniques ou de contrdle (e.g., synchronisation, persistance, contraintes
temps réel, etc.) des préoccupations métier ou fonctionnelles. Elle offre un mécan-
isme de tissage qui permet de fusionner ces deux types de préoccupations afin de
construire le systéme global. Ceci permet une meilleure séparation du code fonc-
tionnel de celui de contrdle ou technique et d’assurer une meilleure maintenabilité
du systéme. Les préoccupations transversales ne sont pas liées & un paradigme spé-
cifique et le paradigme composants n’est pas une excéption. Malheureusement, les
travaux actuels sur la programmation par composants visent a implanter les concepts
d’AspectJ [Kiczales 2001b| tels quels dans les modéles a composants ignorant la par-
ticularité des composants et des systémes a composants (e.g., points de coupures
définissant des points dans les architectures composants) et les interférences entre les
aspects qui peuvent apparaitre lorsque plusieurs aspects sont tissés & un systéme.
En fait, la détection et la résolution des interférences d’aspects est toujours un
défi pour AOP. Dans cette thése, nous contribuons par l'introduction d’un langage
déclaratif de points de coupure (VIL) dédié aux modéles & composants, et nous four-
nissons un cadre formel pour la détection et la résolution des interférences d’aspects
lorsque plusieurs aspects sont tissés a un systéme a composants. Dans ce cadre, nous
introduisons une extension aux ADL(s) actuels par une définition explicite des com-
portements des composants et des aspects, et des régles de tissage et de composition
d’aspects. Chaque régle utilise des expressions VIL afin de décrire déclarativement
ol les aspects vont étre tissés. Nous fournissons un ensemble de régles de transfor-
mation pour obtenir la spécification formelle des composants et des aspects & partir
de 'ADL, et nous utilisons des "model checkers* pour la détection des interférences
possibles entre les aspects. Pour la résolution des interférences, nous fournissons
un ensemble d’opérateurs de composition. Chaque opérateur est donné avec un
exemple de motivation, une structure et un ensemble de régles d’applicabilité. La
structure d’opérateur est décrite comme une forme abstraite qui peut étre instanciée
pour n’importe quel aspect et n’importe quel ensemble de points de jointure. La
liste des opérateurs forme une premiére étape vers un catalogue pour la résolution

166 Appendix A. Résumé en Frangais

d’interférences d’aspects. Dans notre proposition, nous adoptons 'utilisation du
model checker Uppaal pour son soutien a l'instanciation des processus, la déclara-
tion des variables locales, et le passage de parameétres entre les processus, en plus
de son soutien & des contraintes temporelles pour modéliser les systémes temps réel.
Enfin, il convient de mentionner que notre approche est générale et peut étre utilisée
pour d’autres modéles & composants avec des adaptations minimales.

A.2 Background

Notre expérience montre qu'un modéle générique composant-aspect doit satisfaire
un ensemble de critéres que nous citons ci-dessous afin de permettre une meilleure
modularité, réusabilité et préservant ’encapsulation des composants et des aspects
avant et apres le tissage.

Hiérarchie: par hiérarchisation, les différents composants peuvent étre encapsulés
par un composant composite. A notre avis, un composite ne doit pas étre
seulement une abstraction et une encapsulation d’un ensemble de composants,
il doit avoir son propre comportement vis-a-vis des appels entrants et sortants
de ses interfaces externes. Par example, il peut décider de suivre 'appel ou le
bloquer. Cela permet aux aspects de s’intégrer au niveau composite et d’étre
appliqués a tous leurs composants internes.

Langage de coupure approprié aux composants: un langage de points de cou-
pure devrait étre suffisamment expressif pour définir ’ensemble des points de
jointure associés & un aspect. Les modéles actuels utilisent le méme langage de
point de coupure proposé pour les objets au monde des composants. Nous com-
prenons que cela est di au fait que la plupart des modéles de composants sont
basés sur des objets. Toutefois, les points de coupures spécifiques pour les com-
posants permettent la définition des points de jointures de maniére déclarative.
Par exemple, l'extension de Fractal FAC |Pessemier 2006, Pessemier 2008|
définit deux mots-clés: "client” et "server” pour indiquer I’ensemble des in-
terfaces requises et fournies par un composant. Ce sont des points de coupures
spécifiques aux composants qui sont utilisés au lieu de préciser explicitement
une par une les différentes interfaces d’un composant & étre interceptées.

Support pour la détection des interférences: la détection des interférences d’a-
spects est une caractéristique principale d’un modéle & composants utilisant
des aspects pour modéliser ses propérietés transversales ou non modulaires.
Sans ce support, il n’y a aucune garantie que les aspects tissés fonctionnent
correctement. Le développeur d’un modéle & composants doit étre guidé par ce
support pour indiquer s’il y a lieu une interférence et éventuellement lui indi-
quer ce qu’il faut faire pour résoudre le conflit. En AspectLEDA [Navasa 2009]
les interférences entre aspects sont détectés pendant la phase de conception
et leur tissage nécessite la mise & jour des diagrammes de séquence UML du
systéme de base; & ce stade les développeurs peuvent détecter les interférences

A.2. Background 167

possibles manuellement en observant le diagramme résulat du tissage. Mal-
heureusement, le diagramme de séquence UML ne permet que la détection
d’interférences structurelles et non pas des d’interférences comportementales
(i.e., des interférences aux points de jointures partagés). Notez que la détec-
tion des interférences est toujours un probléme en AOP.

Composition d’aspects: Le tissage de plusieurs aspects est un source d’inconsista-
nce du systéme. Afin de pallier ce probléme, une solution est d’offrir un mé-
canisme de composition d’aspects qui nous permette de spécifier quels sont
les aspects qui doivent étre exécutés et sur quel ordre pour chaque point de
jointure. En plus, nous pensons que les model checkers peuvent aider a la
détection des interférences et donner suffisamment d’informations sur les as-
pects et leurs propriétés violées. Nous croyons également qu’une bibliothéque
des patrons des opérateurs de composition peut aider & déterminer la bonne
stratégie de composition pour résoudre les interférences qui apparaissent. As-
pectCCM [Clemente 2002], AES [Choi 2000] et SpringAOP [Pawlak 2005] per-
mettent de déterminer l'ordre d’exécution des aspects aux points de jointure
partagés, mais dans certains cas, 'ordre ne devrait pas étre le méme sur
tous les points de jointure. Pour surmonter ce probléme, AES [Choi 2000],
CAM/DAOP [Pinto 2003, Pinto 2005], JBossAOP [Pawlak 2005] et Aspec-
tLEDA [Navasa 2009] permettent de déterminer et de spécifier 'ordre d’exécu-
tion au niveau advices. Cependant, ces deux niveaux de composition sont
nécessaires et doivent étre considérés ensemble. Par exemple, lorsque deux
aspects partagent plusieurs points de jointure et 'ordre d’exécution des ad-
vices est le méme pour tous les points de jointure, la composition au niveau
aspects est utile, autrement, la composition au niveau advices est nécessaire.
Cependant, la composition d’aspects va au-dela de I'ordonnancement, en par-
ticulier lorsque les interférences sont dues au tissage des aspects sans points
de jointure partagés. JAsCo [Suvée 2003] supporte a la fois 'ordonnancement
au niveau aspects et au niveau advices, et il fournit également une maniére
programmatique pour développer des stratégies de composition plus complexe.

Modularité d’aspects: la modularité d’aspects est la possibilité de définir le com-
portement de l'aspect dans un module séparé et préserver cette modularité
aprés le tissage. La plupart des modéles & composants considérent les as-
pects comme des entités de premiére classe (& savoir, des composants, des
controleurs, des connecteurs, etc.), mais la préservation de cette modularité
aprés le tissage dépend fortement de la stratégie de tissage de chaque modéle.
Le tissage montre comment les aspects sont intégrés dans les composants. En
AOP deux stratégies majeures de tissage sont fournies: statique et dynamique.
Dans le monde des composants, le tissage statique n’est pas toujours possible
car les composants sont souvent disponibles sous forme binaire. D’autre part,
le tissage dynamique est techniquement plus complexe que le tissage statique.
En outre, le tissage dynamique n’est pas possible pour les composants cryptés
ou signés numériquement. Cela montre que ces deux modes de tissage sont

168 Appendix A. Résumé en Frangais

inutiles dans le monde des composants. PRISMA [Pérez 2006, Pérez 2008,
AspectLEDA [Navasa 2009], et SpringAOP [Pawlak 2005] utilisent le tissage
statique des aspects et par conséquent la modularité des aspects n’est pas
conservée aprés le tissage par ces modéles. Dans le monde des composants, le
wrapping ou le monitorat est la stratégie qui peut étre utilisée quel que soit
le type de composants et permet le tissage et le détissage d’aspects selon les
besoins. Par wrapping, les aspects devraient étre modélisés comme des entités
de premier ordre et les composants sous-jacents devraient étre surveillés de
sorte que lorsque des points de jointure sont atteints les aspects sont appelés.

Instanciation d’aspects: plusieurs instances d’un aspect peuvent apparaitre dans
le méme systéme. Ceci est important quand un aspect définit une ou plusieurs
variables d’état qui sont mises a jour quand certains points de jointure d’un
composant sont atteints. Dans ce cas, tous les composants pertinents d’un as-
pect sont contrélés par une seule instance et les variables d’état de ’aspect sont
mises & jour uniquement pour les composants définis. La plupart des modéles &
composants prennent en charge I'instanciation d’aspects. Cependant, les mod-
¢les & base des conteneurs tels que CCM [OMG 2006] et EJB [Burke 2006], ne
donnent aucune information sur l'instanciation d’aspect soit parce que les as-
pects pris en charge sont singleton ou que I'instanciation est automatiquement
gérée par leurs conteneurs.

Le tableau A.1 présente un résumé et une comparaison directe des différents
modéles & composants. La comparaison est basée sur I’ensemble des critéres d’AOP
présentés ci-dessus. Comme indiqué dans le tableau, aucun des modéles étudiés
ne fournit un support complet de tous les critéres, ce qui motive fortement le tra-
vail de cette thése. De notre point de vue, un modéle d’aspects complet doit étre
générique (applicable a différents modéles & composants) et offrir un support efficace
des aspects dans les modéles & composants (instanciation d’aspects, détection des
interférences entre les aspects et la composition des aspects).

169

nuuoout () ‘919trdord ey op 310ddns
op sed (-) ‘9jourdoad e[op jordwos y10ddns un (+) :syoedse sop j10ddns op XNEOATU SINS[19 SHUSSOAWIOD @ SB[QPOW o Ty SR,

A.2. Background

ooupeadard -

wreigerp ‘bos TINN

Vad1eedsy

- B

VINSTdd

oouapadard -

dOV ssodr

- ooupooard

dOV 3uridg

oouapadard -

dOVA/INVD

- -

0DSV [

- Qouapoard

MAATHAS ‘INATTD

ovd

dOV-eier

|

ueljeg

rejoeag

- souapeoard

INDDI2edsy

+]+

INDD

douapadard -

SHV

oo o [[|| |]+

|]

A(v

qara

“psup

seady | jueay

9OIAPY 100dsy

9)1IRMPOIN

uoryisoduio)) ap NEIAIN

‘JI99U] U013999)9(

D d °p otadoadde oSeSuer]

OIYOIRIDI]

170 Appendix A. Résumé en Frangais

A.3 Les aspects et les vues

Dans le processus de développement des systémes a composants, les configurations
des systémes sont définis par des architectes de logiciels qui décident quels com-
posants sont utilisés et comment ils sont connectés. Les architectes de logiciels, selon
la spécification des besoins, choisissent la configuration appropriée (assemblage) aux
systémes. En pratique, pour un systéme donné, différentes configurations sont pos-
sibles, chacune répond & une ou plusieurs exigences. Partant de ce constat, nous
utilisons le terme vue pour référer une configuration du systéme adoptée & une ou
plusieurs exigences (systéme de base). En outre, nous utilisons le terme wrapper
pour désigner une entité qui encapsule un composant, intercepte ses appels entrants
et /ou sortants, exécute un extra-code, et explicitement poursuit ou pas les appels
d’origine (un aspect). Dans ce qui suit, on présente le langage de points de coupure
VIL que 'on propose pour les modéles a composants.

A.3.1 Le Langage VIL

VIL est un langage de définition des vues qui permet de définir des configurations
des systémes a composants requises pour le tissage des aspects. Une expression
VIL spécifie a la fois ’ensemble des composants & encapsuler et ’ensemble de leurs
interfaces et services qui doivent étre interceptées.

verp € View = %
| cld

| child [t] v

| parent [t] v

| primitive v

| instance v

| [direct] provide v [(T | N) id*][sig*]
| [direct] require v [(T | N) id*][sig*]
| bound [C | S] v [id*]
| attributes v [atId*]
| scflow v
| v1 B v
| v1 ® v2
| v] © V2

99 L6

Dans notre langage, présenté ci-dessus, ’x“ indique que tous les composants de
I’architecture doivent étre encapsulés en un seul composant et toutes leurs interfaces
et services sont interceptés. Ainsi, la vue requise est la méme que celle d’origine
(i.e., pas besoin de reconfigurer le systéme) et le wrapper, dans ce cas, doit étre
appliqué au composant racine de l’architecture. cld se référe a un identificateur
de composants, ce qui indique que la vue requise est celle d’origine et toutes les
interfaces du cld sont interceptés, et le wrapper est ajouté au composant nommé
cld. Les mots-clés parent et child indiquent que la vue doit encapsuler tous les
composants internes (resp. parents) de v dans le méme composant et toutes leurs
interfaces sont interceptées.”+“ dénote une fermeture transitive des relations ci-
dessus. primitive v désigne une vue ot tous les composants primitifs de v doivent

A.3. Les aspects et les vues 171

étre dans le méme composite et toutes leurs interfaces sont interceptés. instance v
désigne une vue oil toutes les instances de v doivent étre wrappées et toutes leurs
interfaces sont interceptées. require v et provide v désignent la méme vue que
v, mais seules les interfaces requises (résp. offertes) sont interceptées. Pour une
spécification plus exhaustive, nous notons le nom (N), le type (T) des interfaces a
étre interceptées et potentiellement les signatures de services a saisir (sig). bound
v désigne ’ensemble des composants liés aux composants de v. Pour étre plus
précis, nous fournissons (C) et (S) pour désigner uniquement les composants liés a
une interface requise ou offerte de v, respectivement. Un motif d’identifiant peut
également étre utilisé pour sélectionner uniquement les composants dont les noms
correspondent & un motif. attribute v désigne une vue qui encapsule tous les
composants de v et intercepte tout accés a I’ensemble ou a certains de leurs attributs.
Nous utilisons scflow v pour définir une vue qui encapsule tous les composants dans
le flux de controle statique de v. Enfin, les vues peuvent étre composées en utilisant
les opérateurs : union (@), intersection (®) et différence (&).

A.3.2 VIL en Fractal

Le modéle & composant Fractal [Bruneton 2004| définit son propre langage de de-
scription d’architecture (ADL) pour décrire la configuration des systémes & com-
posants. Il supporte la hiérarchie des composants, les contréleurs pour les com-
posants, l'introspection et le partage des composants. Les contréleurs Fractal in-
terceptent les appels entrants/sortants des interfaces des composants et permettent
I'adaptation des comportements des composants et la définition des propriétés extra-
fonctionnelles aux composants par I’exécution d’un code supplémentaire lorsque les
appels sont interceptés. Nous bénéficions des contréleurs Fractal pour définir les
aspects. Cependant, dans la mise en ceuvre de Fractal Julia, quand un composant
posséde plusieurs contréleurs, il n’y a pas une maniére générale de les composer.
Ils ne peuvent étre qu’exécutés indépendamment ou de fagon séquentielle en con-
figurant les intercepteurs, ou bien étre composés d’une fagon programmatique en
appelant explicitement un contréleur depuis un autre. Cela rend la mise en ceuvre
des controleurs une tache complexe avec un comportement parfois inattendu. Pour
faire face & cette limitation, nous introduisons les controleurs composables dans la
mise en ceuvre de Fractal Julia.

Les contréleurs composables, comme leur nom I’indique, ont les mémes propriétés
que les controleurs Fractal réguliers (font partie des membranes des composants, leur
role est de controler le comportement des composants et introduire des propriétés
extra-fonctionnelles) mais ils peuvent étre composés avec d’autre controleurs a l'aide
des opérateurs de composition. Dans la suite, nous introduisons le concept de con-
troleurs composables, nous décrivons comment les vues sont définies en utilisant VIL,
et nous montrons comment les aspects ou les contréleurs peuvent étre composées
pour résoudre les interférences possibles.

W N =

172 Appendix A. Résumé en Frangais

A.3.2.1 Les contréleurs composable

Nous définissons un controleur composable comme une paire (Dispatcher,ICContr-
oller) ot Dispatcher est un controleur Fractal régulier ajouté a la membrane d’un
composant et le ICController est un objet Java qui implémente l'interface IC'Con-
troller (voir Listing A.1). Le role du controleur Dispatcher est d’intercepter les ap-
pels vers les composants intérieurs de la vue, réifier les appels interceptés en un objet
MessageContext et appeler la méthode match() de 'ICController. Le Dispatcher
attend la décision prise par le ICController (proceed ou skip) et se comporte en
conséquence. Quand il regoit proceed, il fait appel a la méthode d’origine et ’appel
atteint sa cible, quand il recoit skip le Dispatcher ne fait rien et ’appel est ignoré.
Pour composer des contréleurs, un ensemble d’opérateurs de composition sont définis
comme ICController(s), cela permet la composition des controleurs sous la forme
de patron composite. La méthode match(MessageContext) de chaque opérateur de
composition met en ceuvre la sémantique associée & 'opérateur et retourne proceed
ou skip au contréleur Dispatcher.

enum Action {Proceed, Skip}
interface ICController {
Action match(MessageContext c);

}
Listing A.1: L’interface ICController

Généralisons et détaillons la mise en ceuvre de vues pour Fractal. Pour la déf-
inition des vues en Fractal Julia, nous distinguons deux cas: (1) la vue courante
est la méme que la vue désirée (les composants a étre wrappés appartiennent au
méme composite), et (2) la vue courante n’est pas la méme que la vue désirée (les
composants a étre wrappés n’appartiennent pas au méme composite). Dans la suite
nous détaillons comment les vues sont créées pour chaque cas.

A.3.2.2 Cas 1. Vue courante = Vue désirée:

Dans ce cas, la vue requise est la méme que la configuration d’origine. En pratique,
cela nécessite de mettre a jour la description ADL de l’architecture (1) en déclarant
un contrdleur composable modélisant ’aspect comme une partie de la membrane
du composite encapsulant les composants requis et (2) en déclarant un contrdleur
d’interception dans la membrane de chaque composant requis. En plus, un fichier de
configuration Julia est généré pour inclure les nouvelles structures des membranes
des composants. Le listing A.2 montre la modification générale nécessaire de la
description ADL ot le composant nommé ¢ modélise la vue requise. Dans ce cas, un
contrdleur composable est défini pour ce composant (CControllerName ligne 12), et
un controleur intercepteur est défini pour chacun de ses composants internes (Ligne
10: Interceptor). Chaque contrdleur intercepteur intercepte les appels entrants
et/ou sortants de/vers ses composants sous-jacents et les transmet au controleur
Dispatcher de son parent. En plus de la modification ADL décrite ci-dessus, un

A.3. Les aspects et les vues 173

fichier de configuration Julia doit étre défini pour inclure la description compléte de
chaque controleur: la classe implémentant son comportement, le type d’intercepteur
et une expression de composition des contréleurs.

1 <component name="c">

2 // interface declarations

3 // the content declaration if "c¢”" is a primitive

4 // else for each inner component c;

5 <component name— "c;">

6 // interface declarations of the inner component
7 // the content declaration if "ci" is a primitive
8 // or the inner components declaration if "ci" is a composite
9 // binding declarations if "ci" is a composite
10 <controller desc = ”Interceptor”/>

11 < /component>

12 <controller desc = ”CControllerName” />

13 </component>

Listing A.2: La modification du fichier ADL nécessaire si la vue d’origine correspond
a la vue désirée

A.3.2.3 Cas 2. Vue courante # Vue désirée:

Ici nous avons besoin de reconfigurer le systéme pour qu'’il accepte la vue requise.
Grace au composant partagé en Fractal, ce type de reconfiguration est possible.
Dans Fractal nous adoptons la stratégie de reconfiguration suivante: un nouveau
composant composite est créé comme un composant interne au parent commun le
plus proche des composants requis. Ce composite partage les composants requis
avec leurs parents d’origine. De fagon similaire au cas précédent, le controleur
composable est intégré & la membrane de ce nouveau composite et un contréleur
intercepteur est ajouté a la membrane de chacun de ses composants internes. Dans
ce cas, la vue est ajoutée et la configuration d’origine est préservée. Le choix de
la position de la nouvelle déclaration de composite est fait afin de synchroniser le
cycle de vie de la vue avec le cycle de vie de ses composants internes. Ainsi, lorsque
tous les composants internes de la vue sont détruits, la vue est automatiquement
détruite. En outre, lorsque deux vues se recoupent et une interférence entre ces
controleurs apparait, les deux vues sont réunies a ’aide de 'opérateur d’union ().
Cela permet la composition des controleurs composables de vues différentes pour
résoudre les interférences éventuels entre eux.

A.3.2.4 Le tisseur Fractal

La reconfiguration des systémes & composants afin de créer des vues devient une
tache fastidieuse. Notre approche permet d’automatiser cette tiche. Pour cette
raison nous avons développé un outil pour Fractal que nous appelons tisseur Frac-
tal (Fractal weaver), congu une extension de haut niveau de la mise en ceuvre de
Fractal Julia. La figure A.1 montre ’architecture de 'outil. Dans la figure, 'outil
se compose de trois modules: analyseur VIL, transformateur ADL, et générateur de
configurateurs Julia. Dans la suite nous décrivons le role de chaque module.

CU R W N =

174 Appendix A. Résumé en Frangais

VIL ADL Julia
ADL y y .

Le Framework Fractal Julia

Figure A.1: L’architecture du Tisseur Fractal

VIL
Exp Cfg
‘ Analyseur HTransformateurH Configurateur Q

>
O
=

données

d'entrées

données de
sorties

Analyseur VIL:

Ce module analyse les expressions VIL en entrée, utilise le mécanisme d’introspection
de Julia pour parcourir 'architecture des systémes et renvoie les points de jointure
qui vont étre interceptés. Quand une expression n’est pas bien définie, une exception
est levée indiquant une erreur dans ’expression d’entrée, sinon un ensemble de points
de jointure est renvoyé.

Transformateur ADL:

Ce module utilise les points de jointure retournés a partir du module ci-dessus et les
utilise pour déterminer et définir la vue correspondante. Ce transformateur ajoute
de nouveaux composites aux systémes, déclare des controleurs composables et des
controleurs intercepteurs a ’ensemble des composants de la vue, en plus il gére la
composition des vues si nécessaire. Le transformateur ADL utilise une structure
intermédiaire DAG pour transformer la description ADL d’origine en une autre
qui inclut les vues et les controleurs nécessaires. Le listing A.3 décrit I'interface
implémentée par le transformateur ADL. Il définit trois méthodes: Adl2Dag() et
Dag2Adl() pour transformer une description ADL en une structure de DAG et vice
versa, en plus d’une méthode run() qui appelle Adi2Dag() pour obtenir le DAG de
I’architecture d’origine, puis il appelle I'analyseur VIL pour définir la vue nécessaire
et mettre a jour la structure du DAG considérant la vue. Finalement, il fait appel
a Dag2Adl() afin d’obtenir la description ADL finale.

interface IADLTransformer {
Dag Adl2Dag(File src);
File Dag2Adl(Dag dag);
run (ComponentArchitecture ca, String asld, VExp exp);

}
Listing A.3: L’interface du Transformateur ADL

Générateur de configurateurs Julia:

Ce dernier module génére des fichiers de configuration Julia nécessaires fournissant
des informations sur la mise en ceuvre des contrdleurs composables et des inter-

A.3. Les aspects et les vues 175

cepteurs. Ces fichiers sont nécessaires pour 'exécution correcte du systéme sous la
plateforme Julia.

A.3.3 VIL en EJB

Pour les modeéles a composants plats, tels que EJB [Burke 2006|, une vue ne peut
étre modélisée comme un composite car la hiérarchie des composants n’est pas prise
en charge par ces modéles. En outre, les contréleurs et le partage des composants ne
sont plus possibles. Une solution consiste & modéliser un wrapper comme une paire
de composants réguliers ou des beans (Dispatcher,Aspect). Le Dispatcher est lié
a tous les composants dont les interfaces doivent étre interceptées. Le Dispatcher
dans ce cas n’a pas une structure générale (aucun nombre ou type d’interfaces
prédéfini), mais il peut étre généré automatiquement a partir des définitions des
points de jointure. Comme celui en Fractal, le Dispatcher intercepte tous les ap-
pels, définis par des expressions VIL, au lieu de leurs composants originaux, il réifie
et transmet ces appels au composant Aspect. Le composant Aspect exécute un
extra-code et décide de poursuivre ou d’ignorer ’appel en retournant proceed ou
skip au Dispatcher. L’implémentation de cette solution nécessite la configuration
du systéme en ajoutant les composants Dispatcher et Aspect et la mise & jour des
liaisons pour satisfaire la vue requise comme le montre la figure A.2. Un opérateur
de composition peut également étre modélisé comme un composant régulier qui in-
tercepte les appels aux points de jointure et les transmet aux composants Aspects
selon sa stratégie appropriée, puis renvoie le résultat au composant Dispatcher.

f S
[j [j Conteneur EJB
Al A2
<) o
u
c1 o—(c2 o c3 9—{ c3
\ ®

Figure A.2: Les wrappers et leur composition dans modéles & composants plats

176

Appendix A. Résumé en Frangais

A.4 Les interférences des aspects

Dans notre processus d’évaluation, nous nous concentrons sur la détection des in-

terférences entre les aspects et leur résolution. Par la suite nous listons I’ensemble

des conclusions déduites lors de I'examination d’un ensemble de modéles a aspects.

1.

La vérification syntaxique est une premiére étape vers la détection d’interféren-
ces. De nos jours, il est connu que ces approches ne sont pas assez efficaces pour
détecter toutes les interférences possibles entre les aspects, et la vérification
sémantique devrait étre envisagés.

. Comme montré dans [Fraine 2008, Weston 2007|, une détection des inter-

férences sémantiques efficace doit inclure a la fois 'analyse de flux de controle
et de données. Cela permet une analyse précise et compléte des interactions
des aspects.

. Une spécification aspect devrait étre indépendante des autres aspects, sinon

une nouvelle spécification est nécessaire & chaque fois que l'aspect néces-
site d’étre tissé a un nouveau contexte. La spécification de composition
d’intentions fournie par Marot et al. [Marot 2009] est un bon exemple de la
mise en ceuvre de cet effet, ou les intentions sont définies de maniére abstraite
et ne comptent pas sur un contexte spécifique.

. La spécification de la précédence entre les aspects est le moyen fondamental et

intuitif pour composer des aspects, malheureusement, cela ne résout pas toutes
sortes d’interférences. Ainsi, nous devrions nous débarrasser de la priorité
entre les aspects et réfléchir & des stratégies de composition plus puissantes.

. Les stratégies des compositions doivent étre génériques et non pas ad hoc, ce

qui permet la réutilisation des solutions proposées.

. Les approches AOP courantes spécifient d’'une maniére implicite I'action des

aspects sur les points de jointure (proceed or skip). Afin de résoudre les
interférences entre les aspects, leurs actions doivent étre considérées afin de
décider si les advices d’autres aspects sur les points de jointure en question
doivent étre exécutés ou pas. Dans [Marot 2009, action skip est modélisée
par 'action NoProceed pour résoudre le conflit entre les aspects.

Généralement, une interférence ne peut étre résolue automatiquement, mais
des informations sur l'interférence doivent étre rapportées a l'utilisateur, ce
qui lui permet de détecter la source du conflit et prendre la bonne décision.
C’est le cas pour le modeéle basé UTP fourni par Chen et al. [Chen 2010].

Comme conclusion générale pour la résolution des interférences d’aspects, les

actions sur les différents points de jointure doivent étre explicitement spécifiées dans
le comportement des aspects, et des stratégies de composition d’aspects générales
et réutilisables doivent étre fournies. En outre, le développeur doit étre informé

A.4. Les interférences des aspects 177

de pourquoi et comment une interférence apparait. Cela permet au développeur
de choisir la bonne stratégie de composition qui résout cette interférence. Nous
pensons que les model checkers peuvent aider a la détection des interférences et
donner suffisamment d’informations sur la violation des propriétés modélisant le
comportement attendu des aspects. Nous croyons également qu’une bibliothéque de
patrons de composition peut aider & déterminer la bonne stratégie de composition
qui résout une interférence détectée.

A.4.1 Détection et résolution des interférences

Dans cette section, nous montrons comment les interférences entre les aspects peu-
vent étre détectées et potentiellement résolues en utilisant des model checkers et des
opérateurs de composition, respectivement. Dans notre proposition nous adoptons
l'utilisation du model checker Uppaal [Behrmann 2004] pour la modélisation des
systémes & composants, des aspects, et des systémes & composants aspectualisés pour
la détection formelle des interférences aspect-base et aspect-aspect. Tout d’abord,
nous donnons un bref aper¢cu de Uppaal. Deuxiémement, nous décrivons un sys-
téme de transformation des systémes a composant en Uppaal. Troisiémement, nous
montrons comment le systéme de base et les propriétés des aspects peuvent étre spé-
cifiées sous forme des formules CTL [Henzinger 1992| (Computational Tree Logic)
et vérifiées par Uppaal pour détecter les interférences. Enfin, pour la résolution
des interférences nous proposons un ensemble d’opérateurs de composition, chaque
opérateur forme un patron de composition qui peut étre instancié pour n’importe
quels aspects a n’importe quel ensemble des points de jointure.

A.4.1.1 Apergu de Uppaal

Uppaal [Bengtsson 1996, Larsen 1997, Behrmann 2004] est une boite & outils pour
la conception, simulation et la vérification des propriétés des systémes qui peuvent
étre modélisés sous forme des machines d’état étendues avec des variables locales,
des types de données, et des variables d’horloge. Ce genre de machines d’état avec
le support du temps, sont appelées des automates temporisés [Alur 1992]. Chaque
machine d’état en Uppaal est appelée un modéle. Un modéle peut étre paramétré
avec des constantes et des variables de données indiquant comment ce modéle est
instancié (e.g., combien d’instances doivent étre créées). Chaque instance est ap-
pelée un processus. La boite a outils Uppaal se compose de trois parties: un langage
descriptif de modélisation qui permet la spécification des automates, un simulateur
qui permet de visualiser le systéme en cours d’exécution et le changement des états
des variables, et un vérificateur qui permet de vérifier si des propriétés du systéme
sont satisfaites ou pas. Le cas échéant, le vérificateur renvoie une trace d’exécution
qui permet de déterminer et de résoudre I’échec.

178 Appendix A. Résumé en Frangais

A.4.1.2 Modélisation des systémes a composants en Uppaal

Notre proposition consiste a enrichir les ADL(s) actuels des informations nécessaires
pour détecter et résoudre les interférences entre les aspects tissés aux systémes &
composants. Cet enrichissement consiste & unifier et explicitement spécifier les com-
portements des composants primitifs et des aspects sous forme de machines d’états
finis, et décrire dans ’ADL un ensemble de régles de tissage pour spécifier ou et
comment les aspects sont tissés et composés au systéme de base.

A.4.1.3 Modélisation des composants primitifs

Nous modélisons chaque composant primitif par un processus Uppaal. Cette spéci-
fication doit étre transformée en formalisme Uppaal-XTA |[Bengtsson 1996]. Dans
notre ADL, la spécification de comportement est choisie pour étre un sous-ensemble
de Uppaal-XTA. Dans la spécification, chaque transition est étiquetée par le nom du
composant, nom de Uinterface et la signature de service séparés par " _". Cette no-
tation permet, par la suite, la modélisation d’assemblage des composants. En outre,
lorsque plus d’une instance d’un composant est nécessaire, les noms des transitions
sont suffixés avec "[id]" indiquant la référence de chaque instance; ou id est une
constante qui varie entre [1..n] et n est le nombre d’instances indiquées dans la
spécification du composant. En Uppaal-XTA, ce nombre devrait étre déclaré comme
un paramétre du processus modélisant le composant.

A.4.1.4 Modélisation des composants composites

Un composite est modélisé par un ensemble de processus Uppaal, un pour chaque
interface liée. Chacun de ces processus a un état central initial et un ensem-
ble de transitions formant des cycles, un pour chaque service. Les services asyn-
chrones sont représentés par des cycles de deux transitions: regoit un message
(cId;_itfId;_sId?), puis le transmet (cIdg_itfIdy_sId!), tandis que les services
synchrones sont représentées par des cycles de quatre transitions: recoit un message
(cId;_itfId;_sId?), le transmet (cIda_itfIdp_sId!), attend la réponse (E_cIda_-
itfIdp_sId?), et transmet la réponse (E_cId;_itfId;_sId!). Lorsque le composite
a plusieurs occurrences, semblables & des primitives, nous suffixons les noms des
transitions par "[id]".

A.4.1.5 Modélisation des assemblages des composants

L’assemblage des composants peut étre modélisé soit par des processus séparés qui
recoivent un message a partir d’'une interface requise et le transmettent & leur in-
terface offerte liée, soit par renommage. Dans notre approche, nous adoptons la
seconde solution pour l'optimisation du nombre d’états. Par renommage, une in-
terface itfId; d’un composant cId; liée & une interface itfIdo d’un composant
cIdy est modélisée en remplagant chaque nom de transition c¢Id;_itfId;_sId par
cIdy_itfIdo_sId dans le processus modélisant le composant cId;, pour chaque nom

A.4. Les interférences des aspects 179

de service sId. Cela synchronise les transitions des deux composants assemblés aux
interfaces lies (itf; et itfs).

A.4.1.6 Modélisation des systémes & composants

Un systéme & composant complet sans aspects est modélisé par la composition
paralléle de tous les processus modélisant les composants de ’architecture aprés
la génération des processus modélisant les composites et ’application des régles
d’assemblage.

A.4.1.7 Modélisation des aspects

Le comportement de chaque aspect est définit par une machine d’état fini qui se
compose d’un ensemble de cycles, de et vers I’état initial, dont chacun décrit le com-
portement d’un aspect pour un point de jointure donné. La décision de poursuivre ou
d’ignorer un appel & un point de jointure appartenant & un point de coupure pctId
est modélisée par les transitions (proceed_pctId!) et (skip_pctId!), respective-
ment. La machine d’état modélisant un aspect est abstraite (il n’y a que des pctId;
utilisés dans les étiquettes des transitions), pour étre instanciées, les occurrences
pctId doivent étre remplacées par des points de jointures concréts. Dans notre
modéle, des mapping des points de coupure et leurs descriptions en VIL (pctId,
vexp) sont donnés dans 'ADL. VIL interpréte et transforme les expressions vexp
de chaque point de coupure en un ensembles de tuples de la forme (cId, itfId,
sId) (identificateur de composant, identificateur d’interface et signature de service).
Pour instancier un aspect, pour chaque point de jointure (cId, itfId, sId) dans
I’expression correspondante au pctId on génére un cycle qui correspond & pctId
dans la machine d’état abstraite en remplacant toute occurrence de pctId par la
concaténation cId_itfId_sId.

A.4.1.8 Modélisation du tissage d’aspects

Pour le tissage d’un aspect, un ensemble d’états et de transitions doit étre ajouté
aux spécifications des composants. Cette extension assure que chaque appel & un
point de jointure jp (jp?) est transmis & l'aspect ald (ald!) qui exécute son
propre comportement et renvoie soit (proceed_jp!) pour poursuivre I’appel soit
(skip_jp!) pour l'ignorer. Dans la machine d’état de composant, quand un aspect
recoit (proceed_jp?) il passe a I’état juste avant Uinterception de I'appel dans la
version d’origine, et quand il regoit (skip_jp?) on distingue deux cas : (1) 'appel est
synchrone et dans ce cas il passe a I’état aprés avoir regu la fin de 'appel (E_jp?), (2)
I’appel est asynchrone et dans ce cas le processus passe a I’état initial. En résumé, le
processus de tissage d’aspect se fait en deux étapes: (1) I'instanciation de la machine
d’état de l'aspect et (2) 'adaptation des composants afin de les synchroniser avec
le processus de I’aspect.

180 Appendix A. Résumé en Frangais

A.4.1.9 Modélisation des opérateurs de composition

De facon similaire & un aspect, un opérateur est modélisé par une machine d’état
abstraite décrivant ou chaque appel intercepté doit étre transmis. Pour étre instan-
ciées, on remplace les occurrences des "left" and "right“ dans les étiquettes de
transitions par les noms des processus aspects. En plus, comme le cas des aspects,
des cycles de transitions sont générés pour chaque point de jointure qui correspond
a un pctd; donné dans spécification de 'opérateur.

A.4.1.10 Le processus de détection et de résolution des interférences

Pour la détection des interférences entre les aspects, deux types de propriétés doivent
étre spécifiées en CTL : (1) les propriétés attendues du systéme de base, et (2) les
propriétés attendues de chaque aspect. Cependant, certains aspects sont congus
pour changer le comportement du systéme de base, dans ce cas, ’ensemble des pro-
priétés du systéme qui ne doivent pas étre modifiées par chaque aspect doit étre
explicitement défini par le concepteur. Toutes ces propriétés doivent étre passées au
model checker pour étre vérifiées sur 'automate modélisant le systéme aspectualisé.
Une interférence est détectée si 'une des propriétés des aspects tissés et celles du
systéme de base qui doit étre préservée aprés le tissage des deux aspects, n’est pas
vérifiée. Dans ce cas, le model checker renvoie la trace d’exécution ou 'interférence
apparait; le concepteur est alors chargé de déterminer la source d’erreur et de trou-
ver la stratégie de composition d’aspects résolvant le probléme. Dans notre ap-
proche, nous proposons un catalogue des opérateurs de composition sous forme de
patrons décrivant la structure abstraite de chaque opérateur (machine d’état finis
abstraite). La sémantique de chaque opérateur est définie a 'aide d’un tableau
spécifiant la poursuite ou l'ignorance de chaque point de jointure selon son type
(partagé ou ne concerne que l'un des aspects) et la décision des aspects opérants
(voir le tableau A.3). En plus, des cas d’utilisation et un exemple de motivation
de chaque opérateur sont donnés. Dans notre catalogue, nous proposons six opéra-
teurs, mais le catalogue peut étre étendu avec d’autres opérateurs de la méme fagon.
Notre catalogue n’est pas congu pour étre complet mais il forme une premiére étape
vers une étude plus exhaustive des interactions des aspects.

[LHS [RHS [Seq(LHS,RHS) |
Shared join points

proceed proceed proceed

skip proceed proceed

proceed skip proceed

skip skip skip
LHS join points

proceed - proceed

skip - skip
RHS join points

- proceed proceed

- skip skip

Table A.3: La sémantique de l'opérateur Seq

A.5. Conclusion générale 181

En résumé, cette partie décrit notre contribution dans la détection et la résolu-
tion des interférences d’aspects dans les systémes & composants. L’approche propose
un ADL pour la spécification des structures et des comportements des aspects et des
composants et leurs vérification formelle a ’aide de model checkers comme Uppaal.
Un ensemble de régles de transformation de ’ADL vers des machines d’état est
présenté. Nous avons montré comment on peut détecter les interférences entre les
aspects en spécifiant au model checker ’ensemble des propriétés a vérifier. En outre,
un ensemble d’opérateurs de composition est utilisé pour résoudre les interférences.
Nous devons mentionner que notre approche ne repose ni sur un modéle & com-
posant spécifique, ni sur un model checker particulier. Les régles de transformation
sont générales, mais non exhaustives car d’autres modéles & composants peuvent
exiger d’autres régles pour transformer leurs propres éléments d’architecture logi-
cielle. Par exemple, SOFA 2 [Hnetynka 2007, Bures 2006] propose des connecteurs
pour 'assemblage des composants, ces connecteurs sont définis sous forme d’entités
de premiére classe qui mettent en ceuvre différentes stratégies de communication.
Ces connecteurs peuvent étre modélisés comme des processus Uppaal qui modélisent
les stratégies de communication désirées. Par ailleurs, I’ensemble des opérateurs de
composition proposé est un ensemble extensible et d’autres opérateurs peuvent étre
définis de maniére similaire.

A.5 Conclusion générale

La programmation par aspects (AOP) fournit un mécanisme pour faire face aux
fonctionnalités non modulaires des systémes logiciels en assurant leurs modularités
et leurs réutilisabilités. La programmation par composants (CBSE) fournit un mé-
canisme modulaire pour la conception des systémes logiciels en améliorant leurs
réutilisabilités et en réduisant l'effort de maintenance. L’idée derriére AOP est de
modéliser une propriété non modulaire par une entité séparée nommée aspect. Un
aspect consiste en la définition d’une ou de plusieurs méthodes, appelées advices,
décrivant le comportement de la propriété et 'utilisation d’un langage expressif pour
décrire des points dans le programme de base, nommés points de jointure, qui pré-
cisent ou les advices doivent étre exécutés. En outre, TAOP fournit un mécanisme
qui permet le tissage du code des advices dans les bons endroits dans le programme
de base. D’autre part, le CBSE divise un systéme logiciel en plusieurs entités,
nommés composants, et fournit un mécanisme pour les composer afin d’obtenir le
systéme requis complet. Cependant, comme les autres paradigmes, le CBSE ne
peut modéliser les fonctionnalités non modulaires, qui sont dispersées sur plusieurs
composants, comme des entités réguliéres. Afin d’assurer une meilleure modularité
et réutilisabilité des composants logiciels en CBSE, les propriétés non modulaires
doivent étre ajoutées de fagon modulaire et par conséquent les aspects devraient étre
intégrés dans les modéles & composants. Pour atteindre cet objectif, une intégration
des aspects et de leurs constituants dans les modéles & composants est nécessaire.
Dans cette thése, nous avons proposé une approche générique d’intégration des as-

182 Appendix A. Résumé en Frangais

pects dans les modéles & composants. L’approche proposée bénéficie de la diver-
sité des configurations des systémes & composants pour spécifier la configuration
adéquate pour chaque aspect. Toutefois, ’ajout de plusieurs aspects peut donner
lieu & des interférences lorsque 'exécution d’un aspect peut modifier ’exécution d’un
autre. Pour cette raison, nous avons fourni un support formel pour la détection et
la résolution des interférences des aspects dans les modéles & composants.

Dans notre proposition, les aspects sont modélisés par des enveloppes (wrap-
pers) sur des vues. Une vue est une configuration adéquate pour un wrapper, elle
encapsule tous les composants d’un wrapper dans le méme composite. Les vues sont
clairement visibles dans les modéles hiérarchiques tels que Fractal, ot les compos-
ites sont créés pour encapsuler les composants d’'un wrapper. Dans les modéles a
composants plats tels que EJB, une vue est abstraite, elle ne définit que les points
ol un wrapper doit étre ajouté, un wrapper peut se modéliser sous forme d’un ou
de plusieurs composants ou connecteurs réguliers liés aux autres composants de la
vue. Pour la définition déclarative des vues, nous avons introduit VIL : un langage
des points de jointures adopté pour les modéles & composants. Pour la détection
des interférences et leurs résolution, un processus de formalisation est défini : tout
d’abord, un langage de description d’architectures (ADL) abstrait est proposé pour
décrire la structure ainsi que les comportements des composants. Les composants
primitifs, les aspects et leurs comportements sont donnés dans ADL sous forme de
machines d’état finis avec une notation spécifique pour les transitions. Ensuite,
un systéme de transformation est exécuté pour générer la formalisation compléte
du systéme aspectualisé (le systéme de base avec des aspects tissés). Le proces-
sus de transformation inclut I’adaptation des processus des composants primitifs,
la génération des processus modélisant les composants composites, et le tissage des
aspects. Le systéme résultant peut étre utilisé comme entrée au modéle de vérifica-
tion formelle avec I’ensemble des propriétés intrinséques du systéme et les propriétés
attendues de chaque aspect. Une interférence est détectée lorsque au moins une des
propriétés attendues d’un aspect ou une des propriétés intrinséques du systéme est
violée. Pour résoudre les interférences, un catalogue des patrons des opérateurs de
composition est fourni. Pour la vérification formelle nous avons utilisé le vérifica-
teur des modeéles Uppaal. L’approche proposée est congue pour étre générale (elle
ne repose pas sur un modeéle de composant spécifique), nous avons montré comment
les vues peuvent étre modélisés et comment les wrappers peuvent étre mis en ceuvre
pour deux catégories différentes de modéles & composants: les modéles hiérarchiques
avec partage de composants tels que Fractal et les modéles plats comme EJB.

A.5.1 Les modéles & composants aspectualisés

Il y a plusieurs fagons d’étendre les modéles & composants avec les concepts d’AOP,
chaque méthode dépend des fondements de chaque modéle. Cependant, un effort
est nécessaire pour étendre & chaque modéle. Une approche unifiée est alors indis-
pensable pour atténuer ces efforts. Le concept de vues proposé dans cette thése est
générique et peut étre adapté a différents modéles & composants. Par ailleurs, les

A.5. Conclusion générale 183

stratégies classiques de tissage (complile-time, runtime) détruisent la modularité des
composants et compliquent fortement le tissage/détissage dynamique des aspects.
Pour pallier ce probléme, le wrapping ou le monitorat des composants est le mécan-
isme efficace pour les modeéles & composants. Cela préserve la modularité & la fois
des composants et des aspects avant et aprés le tissage et permet le tissage/détissage
dynamique des aspects en activant/désactivant les wrappers. Les vues permettent
de localiser le champ d’application de chaque aspect et peuvent étre vues clairement
dans les modéles a composants hiérarchiques, par contre, dans les modéles plats les
vues sont des unités abstraites ou seuls les points d’intervention d’un aspect sont
spécifiés et des composants supplémentaires et/ou des connecteurs sont utilisés pour
transférer les appels interceptés aux composants modélisant les aspects. L’ajout des
composants et des connecteurs supplémentaires durcit et complique ’architecture
originale des systémes. Notez que les vues peuvent étre définies pendant différentes
phases du processus de développement des logiciels. Par exemple, dans la phase de
conception, les vues peuvent étre définies pour déterminer I'architecture adéquate
aux propriétés non fonctionnelles qui sont déja connues. En outre, les vues peuvent
étre utilisées dans la phase de maintenance ot de nouvelles exigences non fonction-
nelles sont requises pour un systéme déja congu et mis en ceuvre.

A.5.2 Analyse d’interaction des aspects

Lorsque plusieurs aspects sont tissés au systéme, leurs interactions doivent étre
soigneusement analysées afin d’éviter les interférences possibles qui peuvent con-
duire & un mauvais comportement du systéme complet. Cependant, les interférences
ne sont pas toujours évitables par des opérateurs de composition, cela dépend de
la nature de l'interaction et de 'effet de bord des aspects sur le systéme. Les as-
pects interagissent de différentes fagons, notre expérience montre que trois types
d’interactions fondamentaux des aspects sont disponibles:

Neutre: une interaction entre deux aspects est neutre quand les aspects sont tissés
au méme systéme, le systéme résultant satisfait les propriétés attendues des
deux aspects tissés en plus de l'invariant du systéme.

Interactions positives: deux aspects interagissent positivement lorsque I’exécution
d’un aspect renforce ’exécution de ’autre en satisfaisant la condition du sec-
ond aspect.

Interactions négatives: cette interaction négative apparait lorsque le tissage d’un
aspect individuel & un systéme est correct, mais son tissage a un systéme avec
des aspects déja tissé conduit & des comportements indésirables. Cela signifie
que 'exécution d’un aspect influe sur 'exécution de 'autre.

L’analyse des interférences des aspects est un travail fastidieux ot les interactions
d’aspects doivent étre soigneusement analysés. Ceci peut étre réalisé en spécifiant
clairement ce qui est attendu par un systéme avant et aprés le tissage et les propriétés

184 Appendix A. Résumé en Frangais

attendues de chaque aspect. Ceci permet la détection de propriétés contradictoires,
qui est une source d’erreurs si elle est faite manuellement. Des outils tels que les
model checkers sont utiles pour détecter de telles propriétés contradictoires. En
raison du probléme d’explosion combinatoire d’état, 1'utilisation de ces outils est
encore limitée aux systémes ayant une taille faible en nombre des composants et/ou
dotés de spécifications de comportements optimisées. En outre, notre proposition
d’un catalogue d’opérateurs de composition permet aux utilisateurs de choisir la
stratégie de composition adéquate qui résout les interférences détectées. Une solu-
tion alternative est ’adaptation des aspects ot chaque aspect devrait étre conscient
de la présence ou ’absence d’autres aspects afin qu’il puisse décider que faire avec
chaque point de jointure intercepté. Cependant, 'adaptation des aspects est difficile
surtout dans le cas ol les aspects contradictoires ne peuvent étre facilement et sta-
tiquement déterminés. Mais lorsque les opérateurs ne fournissent pas une solution,
I'adaptation peut étre utilisée.

A.5.3 Perspectives

Outre la généralité de notre approche, certaines limites sont a relever, nous pro-
posons les solutions suivantes: (1) l'utilisation des model checkers pour les systémes
a composants de taille énorme, suivant notre approche, conduit a une explosion
combinatoire d’états. Pour remédier a ce probléme, nous avons adopté ’abstraction
des systémes otl les composites, avec leurs composants internes qui ne sont pas con-
cernés par un aspect, sont remplacés par une machine d’état primitive simplifiée
modélisant le comportement externe de tels composites. Cependant, cette tache est
difficile et peut masquer des détails de comportements important pour la détection
des interférences. Une solution consiste a utiliser les mA@©thodes de preuves tels
que la méthode B. En utilisant B, chaque composant peut étre modélisé par une
machine abstraite qui spécifie le comportement de chaque composant en termes de
pré/post conditions pour chaque service et un protocole qui décrit le flux de con-
trole de chaque composant. Ainsi, 'outil Atelier B pourrait étre utilisé pour vérifier
la conformité des propriétés intrinséques des systémes avec celles des différents as-
pects pour détecter les interférences. (2) le catalogue des opérateurs de composition
doit étre étendu. Cela peut étre atteint par I’expérimentation de ’approche avec
plus d’exemples concrets et d’autres interactions d’aspects. (3) vu que les vues sont
définies pour les systémes centralisés, ol les aspects sont définis pour des composants
dans le méme serveur, dans les systémes distribués, les vues doivent étre adaptées
et les aspects distribuées avec leurs propriétés doivent étre pris en compte.

Bibliography

[Adamek 2007] Jiri Adamek, Tomas Bures, Pavel Jezek, Jan Kofron, Vladimir
Mencl, Pavel Parizek and Frantisek Plasil. Component reliability extensions
for fractal component model. Academy of Sciences of the Czech Republic and
France Telecom. http://websvn.ow2.org/, 2007. (Cited on pages 12 and 138.)

[Ahmed 1996] Mohsin Ahmed and G. Venkatesh. Dense Time Logic Programming.
Journal of Symbolic Computation, vol. 22, no. 5-6, pages 585 — 613, 1996.
(Cited on page 114.)

[Aksit 1992] Mehmet Aksit, Lodewijk Bergmans and Sinan Vural. An Object-
Oriented Language-Database Integration Model: The Composition-Filters
Approach. In ECOOP ’92 European Conference on Object-Oriented Pro-
gramming, volume 615 of LNCS, pages 372-395, Berlin, Germany, 1992.
Springer. (Cited on page 22.)

[Allan 2005] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hen-
dren, Sascha Kuzins, Ondfej Lhotak, Oege de Moor, Damien Sereni, Ganesh
Sittampalam and Julian Tibble. Adding Trace Matching with Free Variables
to AspectJ. ACM SIGPLAN Notices, vol. 40, no. 10, pages 345-364, 2005.
(Cited on pages 21 and 57.)

[Alur 1992] Rajeev Alur and David Dill. The theory of timed automata. In
J. de Bakker, C. Huizing, W. de Roever and G. Rozenberg, editeurs, Real-
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Sci-
ence, pages 45-73. Springer Berlin / Heidelberg, 1992. (Cited on pages 114
and 177.)

[Avgustinov 2006] Pavel Avgustinov, Eric Bodden, Elnar Hajiyev, Laurie Hendren,
Ondrej Lhotak, Oege de Moor, Neil Ongkingco, Damien Sereni, Ganesh Sit-
tampalam, Julian Tibble and Mathieu Verbaere. Aspects for Trace Monitor-
ing. In Formal Approaches to Software Testing and Runtime Verification, vol-
ume 4262 of LNCS, pages 20-39. Springer Berlin / Heidelberg, 2006. (Cited
on page 57.)

[Behrmann 2004| Gerd Behrmann, Alexandre David and Kim G. Larsen. A Tutorial
on Uppaal. In SFM-RT: International School on Formal Methods for the

Design of Computer, Communication, and Software Systems, numéro 3185 de
LNCS, pages 200-236. Springer-Verlag, 2004. (Cited on pages 114 and 177.)

[Ben-Ari 2008] Mordechai Ben-Ari. Principles of the spin model checker. Springer,
1st édition, 2008. (Cited on page 34.)

186 Bibliography

[Bengtsson 1996] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson
and Wang Yi. UPPAAL-a tool suite for automatic verification of real-time
systems. In Proceedings of the DIMACS/SYCON workshop on Hybrid sys-
tems III : verification and control, pages 232—243. Springer-Verlag, 1996.
(Cited on pages 114, 177 and 178.)

[Bergmans 1996] Lodewijk Bergmans and Mehmet Aksit. Composing synchroniza-
tion and real-time constraints. Journal of Parallel and Distributed Comput-
ing, vol. 36, no. 1, pages 32-52, July 1996. (Cited on page 12.)

ergmans odewijk Bergmans and Mehmet Aksit. Composing crosscutting

B 2001] Lodewijk B d Meh Aksit. C ' '
concerns using composition filters. Communications of the ACM, vol. 44,
pages 51-57, 2001. (Cited on page 23.)

[Bruneton 2004| E. Bruneton, T. Coupaye and J. B. Stefani. The Fractal Component
Model. Online Available: http://fractal.ow2.org/specification/index.html,
2004. (Cited on pages 12, 53, 96, 101, 118 and 171.)

[Bruneton 2006 Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien
Quéma and Jean-Bernard Stefani. The Fractal Component Model and its
Support in Java. Software-Practice and Experience, vol. 36, no. 11-12, pages
1257-1284, 2006. (Cited on page 55.)

[Bures 2006] Tomas Bures, Petr Hnetynka and Frantisek Plasil. SOFA 2.0: Balanc-
ing Advanced Features in a Hierarchical Component Model. In SERA ’06:
Proceedings of the Fourth International Conference on Software Engineer-
ing Research, Management and Applications, pages 40-48, Washington, DC,
USA, 2006. IEEE Computer Society. (Cited on pages 135 and 181.)

[Burke 2006] Bill Burke and Richard Monson-Haefel. Enterprise javabeans 3.0 (5th
edition). O’Reilly Media, Inc., 2006. (Cited on pages 41, 168 and 175.)

[Chen 2008| Zhenbang Chen, Abdel Hakim Hannousse, Dang Van Hung, Istvan
Knoll, Xiaoshan Li, Zhiming Liu, Yang Liu, Qu Nan, Joseph C. Okika, An-
ders P. Ravn, Volker Stolz, Lu Yang and Naijun Zhan. Modelling with Rela-
tional Calculus of Object and Component Systems - rCOS. In The Common
Component Modeling Example, volume 5153 of Lecture Notes in Computer
Science, pages 116-145. Springer Berlin / Heidelberg, August 2008. (Cited
on page 164.)

[Chen 2010] Xin Chen, Nan Ye and Wenxu Ding. A formal approach to analyzing in-
terference problems in aspect-oriented designs. In Proceedings of the Third in-
ternational conference on Unifying theories of programming, UTP’10, pages
157-171. Springer-Verlag, 2010. (Cited on pages 34, 36, 37 and 176.)

[Choi 2000] Jung Pil Choi. Aspect-Oriented Programming with Enterprise Jav-
aBeans. In Proceedings of the 4th International conference on Enterprise

Bibliography 187

Distributed Object Computing, EDOC 00, pages 252-261, Washington, DC,
USA, 2000. IEEE Computer Society. (Cited on pages 42, 44 and 167.)

[Clemente 2002] Pedro J. Clemente, Juan Hernandez, Juan M. Murillo, Miguel A.
Pérez and Fernando Sanchez. AspectCCM: An Aspect-Oriented Extension of
the Corba Component Model. In Proceedings of 28th EUROMICRO confer-
ence, pages 10-16, Los Alamitos, CA, USA, 2002. IEEE Computer Society.
(Cited on pages 46 and 167.)

[Coady 2001] Yvonne Coady, Gregor Kiczales, Mike Feeley and Greg Smolyn. Using
aspectC to improve the modularity of path-specific customization in operating
system code. In Proceedings of the 8th European software engineering con-
ference held jointly with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, ESEC/FSE-9, pages 88-98, New York,
NY, USA, 2001. ACM. (Cited on page 11.)

|[Coupaye 2006] Thierry Coupaye, Vivien Quéma, Lionel Seinturier and Jean-
Bernard Stefani. Le systéeme de composants Fractal. In ICAR, editeur,
Intergiciel et Construction d’Applications Réparties. ICAR, 2006. (Cited
on page 53.)

[Dantas 2008| Daniel S. Dantas, David Walker, Geoffrey Washburn and Stephanie
Weirich. AspectML: A polymorphic aspect-oriented functional programming
language. ACM Trans. Program. Lang. Syst., vol. 30, pages 14:1-14:60, May
2008. (Cited on page 11.)

[David 2003] Pierre Charles David and Thomas Ledoux. Towards a Framework
for Self-adaptive Component-Based Applications. In Distributed Applica-
tions and Interoperable Systems, volume 2893 of LNCS, pages 1-14. Springer
Berlin / Heidelberg, 2003. (Cited on page 58.)

[David 2009a] Pierre-Charles David, Thomas Ledoux, Marc Léger and Thierry Cou-
paye. FPath and FScript: Language support for navigation and reliable recon-
figuration of Fractal architectures. Annales des Télécommunications, vol. 64,
no. 1-2, pages 45-63, 2009. (Cited on page 55.)

[David 2009b] Pierre-Charles David, Thomas Ledoux, Marc Léger and Thierry Cou-
paye. FPath and FScript: Language support for navigation and reliable recon-
figuration of Fractal architectures. Annales des Télécommunications, vol. 64,
no. 1-2, pages 45-63, March 2009. (Cited on page 98.)

|[de Roo 2008] A. de Roo, M.F.H. Hendriks, W. Havinga, P. Durr and L. Bergmans.
Compose*: a Language- and Platform-Independent Aspect Compiler for
Composition Filters. In First International Workshop on Advanced Soft-
ware Development Tools and Techniques, WASDeTT 2008, 2008. (Cited on
page 28.)

188 Bibliography

[Douence 2002] Rémi Douence, Pascal Fradet and Mario Stidhot. A Framework
for the Detection and the Resolution of Aspect Interaction. In GPCE’06:
Proceedings of the 1st ACM SIGPLAN/SIGSOFT conference on Generative
programming and component engineering, pages 173-188. Springer-Verlag,
2002. (Cited on pages 30 and 37.)

[Douence 2004] Rémi Douence, Pascal Fradet and Mario Siidhot. Composition,
Reuse and Interaction Analysis of Stateful Aspects. In ACM Press, edi-
teur, AOSD’04: Proceedings of the 3rd international conference on Aspect-
oriented software development, pages 141-150. ACM, 2004. (Cited on
page 30.)

[Douence 2006] Rémi Douence, Didier Le Botlan, Jacques Noyé and Mario Siidhot.
Concurent Aspects. In proceedings of the 5th international conference on
Generative programming and component engineering, GPCE’06, pages 79—
88. ACM, 2006. (Cited on pages 21 and 30.)

[Durr 2007] Pascal Durr, Lodewijk Bergmans and Mehmet Aksit. Static and dy-
namic detection of behavioral conflicts between aspects. In Proceedings of the

7th international conference on Runtime verification, RV’07, pages 38-50,
Berlin, Heidelberg, 2007. Springer-Verlag. (Cited on pages 27 and 29.)

[Durr 2008] P. E. A. Durr. Resource-based Verification for Robust Composition of
Aspects. PhD thesis, University of Twente, Enschede, June 2008. (Cited on
pages 27, 29 and 37.)

[Fakih 2004] Houssam Fakih, Noury Bouraqadi and Laurence Duchien. Aspects and
Software Components: A case study of the FRACTAL Component Model. In
International Workshop on Aspect-Oriented Software Development (WAOSD
2004), Beijing, China, 2004. (Cited on page 56.)

[Fraine 2008] Bruno De Fraine, Pablo Daniel Quiroga and Viviane Jonckers. Man-
agement of Aspect Interactions using Statically- Verified Control-Flow Rela-
tions. In Proceedings of the 3rd International Workshop on Aspects, Depen-
dencies and Interactions, ADI'08, pages 5—14, 2008. (Cited on pages 33, 35,
37 and 176.)

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson and John M. Vlissides.
Design patterns : elements of reusable object-oriented software. Addison-
Wesley, first édition, 1995. (Cited on pages 12 and 129.)

[Goldman 2010] Max Goldman, Emilia Katz and Shmuel Katz. MAVEN: modu-
lar aspect verification and interference analysis. Formal Methods System
Designs, vol. 37, pages 61-92, 2010. (Cited on page 31.)

[Hatcliff 2001] John Hatcliff and Matthew B. Dwyer. Using the Bandera Tool Set to
Model-Check Properties of Concurrent Java Software. In Proceedings of the

Bibliography 189

12th International Conference on Concurrency Theory, CONCUR, ’01, pages
39-58. Springer-Verlag, 2001. (Cited on page 34.)

[Havelund 2000] Klaus Havelund and Thomas Pressburger. Model checking JAVA
programs using JAVA PathFinder. International Journal on Software Tools
for Technology Transfer (STTT), vol. 2, pages 366-381, 2000. (Cited on
page 34.)

[Henzinger 1992] T.A. Henzinger, X. Nicollin, J. Sifakis and S. Yovine. Sym-
bolic model checking for real-time systems. Information and Computation,
vol. 111, pages 394 —406, 1992. (Cited on page 177.)

[Hnetynka 2007] Petr Hnetynka and Tomés Bures. Advanced Features of Hierarchi-
cal Component Models. In Proceedings of the 10th International Conference
on Information System Implementation and Modeling (ISIM’07), volume 252
of CEUR Workshop Proceedings, pages 3-10, Czech Republic, April 2007.
CEUR-WS.org. (Cited on pages 135 and 181.)

[Hoare 1998] C.A.R. Hoare and He Jifeng. Unified theories of programming. Pren-
tice Hall, 1998. (Cited on page 34.)

[Jifeng 2006] He Jifeng, Xiaoshan Li and Zhiming Liu. 7COS: A refinement calculus
of object systems. Theoretical Computer Science, vol. 365, no. 1-2, pages
109-142, July 2006. (Cited on page 164.)

[Katz 2004 Shmuel Katz and Marcelo Sihman. Aspect Validation Using Model
Checking. In Verification: Theory and Practice, volume 2772 of LNCS, pages
391-392. Springer Berlin / Heidelberg, 2004. (Cited on pages 34 and 37.)

[Katz 2008] Emilia Katz and Shmuel Katz. Incremental analysis of interference
among aspects. In Proceedings of the 7th workshop on Foundations of aspect-
oriented languages, FOAL ’08, pages 29-38, New York, NY, USA, 2008.
ACM. (Cited on pages 31 and 37.)

[Kiczales 2001a] Gregor Kiczales and Erik Hilsdale. Aspect-oriented programming.
In Proceedings of the 8th European software engineering conference held
jointly with 9th ACM SIGSOFT international symposium on Foundations
of software engineering, ESEC/FSE-9, page 313. ACM, 2001. (Cited on
pages 11, 19 and 96.)

[Kiczales 2001b| Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm and William G. Griswold. An Querview of AspectJ. In Proceedings of
the 15th European Conference on Object-Oriented Programming, ECOOP
‘01, pages 327-353, London, UK, UK, 2001. Springer-Verlag. (Cited on
pages 11, 21, 97 and 165.)

[Kienzle 2009] Jorg Kienzle, Ekwa Duala-Ekoko and Samuel Gélineau. Transac-
tions on Aspect-Oriented Software Development V. chapitre AspectOptima:

190 Bibliography

A Case Study on Aspect Dependencies and Interactions, pages 187-234.
Springer-Verlag, Berlin, Heidelberg, 2009. (Cited on page 135.)

[Kniesel 2009] Giinter Kniesel. Transactions on Aspect-Oriented Software Develop-
ment V. chapitre Detection and Resolution of Weaving Interactions, pages
135-186. Springer-Verlag, Berlin, Heidelberg, 2009. (Cited on pages 31
and 37.)

[Krishnamurthi 2007| Shriram Krishnamurthi and Kathi Fisler. Foundations of In-
cremental Aspect Model-Checking. ACM Transactions on Software Engineer-
ing and Methodology, vol. 16, no. 2, pages 1-39, 2007. (Cited on page 31.)

[Larsen 1997] Kim G. Larsen, Paul Pettersson and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, vol. 1, pages
134-152, 1997. (Cited on pages 114, 119 and 177.)

[Marot 2009] Antoine Marot and Roel Wuyts. Detecting unanticipated aspect in-
terferences at runtime with compositional intentions. In Proceedings of the
Workshop on AOP and Meta-Data for Software Evolution, RAM-SE ’09,
pages 31-35. ACM, 2009. (Cited on pages 28, 35, 36, 37 and 176.)

[Meyer 1997] Bertrand Meyer. Object-oriented software construction. Prentice-Hall,
Inc., 2nd édition, 1997. (Cited on page 19.)

[Navasa 2009] Amparo Navasa, Miguel A. Pérez-Toledano and Juan M. Murillo.
An ADL dealing with aspects at software architecture stage. Information and
Software Technology, vol. 51, no. 2, pages 306-324, 2009. (Cited on pages 61,
166, 167 and 168.)

[OMG 2006] OMG. Corba Component Model Specification 4.0. Online:
http://www.omg.org/cgi-bin/apps/doc?formal /06-04-01.pdf, 2006. (Cited
on pages 44 and 168.)

[Ossher 2001] Harold Ossher and Peri Tarr. Using multidimensional separation
of concerns to (re)shape evolving software. Communications of the ACM,
vol. 44, pages 43-50, 2001. (Cited on pages 25 and 59.)

[Pawlak 2005] Renaud Pawlak, Lionel Seinturier and Jean-Philippe Retaillé. Foun-
dations of aop for j2ee development. Apress, Berkely, CA, USA, 2005. (Cited
on pages 47, 48, 167 and 168.)

[Pérez 2006] Jennifer Pérez, Nour Ali, Jose Carsi and Isidro Ramos. Designing Soft-
ware Architectures with an Aspect-Oriented Architecture Description Lan-
guage. In CBSE: Component-Based Software Engineering, volume 4063 of
LNCS, pages 123-138. Springer Berlin / Heidelberg, 2006. (Cited on pages 59
and 168.)

Bibliography 191

[Pérez 2008| Jennifer Pérez, Nour Ali, Jose A. Carsi, Isidro Ramos, Barbara Al-
varez, Pedro Sanchez and Juan A. Pastor. Integrating aspects in software
architectures: PRISMA applied to robotic tele-operated systems. Information
and Software Technology, vol. 50, no. 9-10, pages 969-990, 2008. (Cited on
pages 59 and 168.)

[Pessemier 2006] Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye and Lau-
rence Duchien. A Model for Developing Component-Based and Aspect-
Oriented Systems. In Software Composition : 5th International Symposium,
SC 2006, volume 4089 of LNCS, pages 259-274. Springer Berlin / Heidelberg,
2006. (Cited on pages 57 and 166.)

[Pessemier 2007| Nicolas Pessemier. Unification des approches par aspects et a com-
posants. PhD thesis, Université Lille 1, Laboratoire d’Informatique Fonda-
mentale de Lille, Lille, France, 2007. (Cited on page 58.)

[Pessemier 2008| Nicolas Pessemier, Lionel Seinturier, Laurence Duchien and
Thierry Coupaye. A component-based and aspect-oriented model for software
evolution. Int. J. Computer Applications in Technology, vol. 31, no. 1/2,
pages 94-105, 2008. (Cited on pages 57 and 166.)

[Pinto 2003] Monica Pinto, Lidia Fuentes and Jose Maria Troya. DAOP-ADL: an
architecture description language for dynamic component and aspect-based
development. In Proceedings of the 2nd international conference on Gener-
ative programming and component engineering, GPCE ’03, pages 118-137.
Springer-Verlag, 2003. (Cited on pages 52 and 167.)

[Pinto 2005] Monica Pinto, Lidia Fuentes and José Maria Troya. A Dynamic Com-
ponent and Aspect-Oriented Platform. The Computer Journal, vol. 48, no. 4,
pages 401-420, 2005. (Cited on pages 52 and 167.)

[Pyarali 1998] Irfan Pyarali and Douglas C. Schmidt. An overview of the CORBA
portable object adapter. ACM StandardView, vol. 6, no. 1, pages 30-43, 1998.
(Cited on page 45.)

[Suvée 2003] Davy Suvée, Wim Vanderperren and Viviane Jonckers. JAsCo: an
aspect-oriented approach tailored for component based software development.
In Proceedings of the 2nd international conference on Aspect-oriented soft-
ware development, AOSD ’03, pages 21-29. ACM, 2003. (Cited on pages 11,
49 and 167.)

[Suvée 2006] Davy Suvée, Bruno De Fraine and Wim Vanderperren. A Symmetric
and Unified Approach Towards Combining Aspect-Oriented and Component-
Based Software Development. In CBSE: Component-Based Software Engi-
neering, volume 4063 of Lecture Notes in Computer Science, pages 114—122.
Springer Berlin / Heidelberg, June 2006. (Cited on page 11.)

192 Bibliography

[Szyperski 2002] Clemens Szyperski, Dominik Gruntz and Stephan Murer. Compo-
nent software: Beyond object-oriented programming. Component Software
Series. ACM Press and Addison-Wesley, New York, NY, 2nd édition, 2002.
(Cited on pages 11 and 96.)

[Tarr 1999| Peri Tarr, Harold Ossher, William Harrison and Stanley M. Sutton Jr.
N degrees of separation: multi-dimensional separation of concerns. In Pro-
ceedings of the 21st international conference on Software engineering, ICSE
'99, pages 107-119, New York, NY, USA, 1999. ACM. (Cited on pages 25
and 59.)

[Tarr 2000| Peri Tarr and Harold Ossher. Hyper/J user and installation manual.
Rapport technique, IBM T. J. Watson Research Center, 2000. (Cited on
page 25.)

[éery 2007] Ondrej éery and FrantiSek Plasil. Slicing of component behavior speci-
fication with respect to their composition. In Proceedings of the 10th inter-
national conference on Component-based software engineering (CBSE’07),
volume 4608 of Lecture Notes in Computer Science, pages 189-202. Springer-
Verlag, 2007. (Cited on pages 12 and 138.)

[Walls 2007] Craig Walls and Ryan Breidenbach. Spring in action. Manning Pub-
lications Co., Greenwich, CT, USA, 2007. (Cited on page 47.)

[Wang 2001] Nanbor Wang, Douglas C. Schmidt and Carlos O’'Ryan. Overview
of the corba component model, pages 557-571. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001. (Cited on page 44.)

[Weston 2007] Nathan Weston, Francois Taiani and Awais Rashid. Interaction
Analysis for Fault-Tolerance in Aspect-Oriented Programming. In Proceed-
ings of the Workshop on Methods, Models and Tools for Fault-Tolerance,
MeMoT’07, pages 95-102, 2007. (Cited on pages 33, 35, 37 and 176.)

Bibliography 193

Abdelhakim Hannousse

Aspectualizing Component Models: Implementation and Interference Analysis

Résumé

L’utilisation d’AOP pour modéliser les
préoccupations transverses ou non modulaire
de CBSE assure une meilleure modularité et
réutilisabilité des composants. Dans ce cadre,
nous proposons une approche générique pour
modéliser les aspects dans les modeles a
composants. Nous modélisons un aspect par un
wrapper sur une vue de systeme. Une vue décrit
une configuration adéquate du systeme ou tous
les composants dans l'intérét d'un aspect sont
encapsulés dans le méme composite. Pour la
définition des vues, nous définissons un langage
déclaratif VIL. Nous illustrons comment les vues
sont mises en ceuvre dans des modéles a
composants (ex., Fractal), et nous fournissons
un modele formel pour Il'analyse des
interférences d’aspects. Les composants et les
aspects sont modélisés par des automates et
Uppaal est utilisé pour détecter les
interférences. Pour la résolution d’interférences,
nous fournissons un ensemble d'opérateurs de
composition. Notre approche est illustrée par un
exemple: I'acces wifi dans un aéroport.

Mots clés
Programmation par aspect, programmation par
composants, analyse formelle, composition des
aspects

Lu ['université
nantes
nam .
le mans

POLE DE RECHERCHE ET D'ENSEIGNEMENT SUPERIEUR

Abstract

Using AOP to model non-modular concerns in
CBSE ensures better modularity and reusability
of components. In this thesis, we provide a
model independent approach for modeling
aspects in component models. In the approach
we model aspects as wrappers on views of
component systems. A view describes an
adequate component system configuration
where all the components of interest of an
aspect are encapsulated in the same composite.
For declarative definition of views, we provide a
declarative language VIL. We illustrate how
views are implemented in component models
(e.g., Fractal). We provide a formal framework
for aspect interferences analysis. In the
framework component systems and aspects are
modeled as automata and Uppaal model
checker is used for the detection of aspect
interferences. For interferences resolution, we
provide a set of composition operators as
templates to be instantiated for any two arbitrary
aspects. Our approach is illustrated with an
airport wireless access example.

Keywords
AOP, CBSE, aspect interferences, interferences
detection, aspect composition.

	THESE N 2011EMNA0009
	remerciements.pdf
	these-hannousse.pdf
	Introduction
	The scope of the thesis
	Contributions
	Illustration Example: Crane System
	Thesis structure
	Published papers

	I Background
	Aspect Oriented Programming and Aspect Interference Issue
	Overview of AOP
	AspectJ
	Composition Filters
	Hyper/J
	Evaluation

	Aspect Interferences
	Syntactic-Based Approaches
	Semantic-Based Approaches
	Modular Approaches
	Non-Modular Approaches

	Lessons learned
	Interference Detection
	Interference Resolution

	Component Based Software Engineering and their AOP support
	Overview of CBSE
	Container-Based Component Models
	EJB
	AES
	CORBA/CCM
	AspectCCM/CORBA
	Spring AOP
	JBoss AOP
	JAsCo

	Aspectual Component-Based Models
	CAM/DAOP
	Fractal
	Fractal-AOP
	FAC
	Safran

	Software Architecture Modeling based models
	PRISMA
	AspectLEDA

	Lessons learned

	II Contributions
	Aspects as wrappers on views of component systems architectures
	Aspects as wrappers on views
	Views definition language
	The join point Model
	Syntax of VIL
	Semantics of VIL
	FPath Query Language
	VIL semantics in FPath

	Implementation of VIL in Fractal component model
	Composable controllers
	The components of interest belong to the same composite
	The components of interest are scattered in the architecture
	Fractal Weaver
	VIL Analyzer
	ADL Transformer
	Julia Config Generator

	Implementation of VIL in EJB component model
	Conclusion

	Aspects as wrappers on views of component systems architectures
	Aspects as wrappers on views
	Views definition language
	The join point Model
	Syntax of VIL
	Semantics of VIL
	FPath Query Language
	VIL semantics in FPath

	Implementation of VIL in Fractal component model
	Composable controllers
	The components of interest belong to the same composite
	The components of interest are scattered in the architecture
	Fractal Weaver
	VIL Analyzer
	ADL Transformer
	Julia Config Generator

	Implementation of VIL in EJB component model
	Conclusion

	Aspects Interferences Detection and Resolution
	Overview of Uppaal
	Description language
	Simulator
	Model checker

	Formalization of component systems in Uppaal
	ADL description of component systems
	Formalization of primitive components
	Formalization of composite components
	Formalization of component bindings
	Component systems
	Aspect weaving

	Interference detection and resolution
	Well-definedness of component systems
	Correctness of aspects w.r.t component systems
	Interference and Interference-freedom of aspects
	Composition operators solving Interferences

	Composition operators catalog
	Fst composition pattern
	Seq composition pattern
	Cond composition pattern
	And composition pattern
	Alt composition pattern

	Conclusion

	Case Study: Airport Internet Access
	Base System Architecture
	Aspects on Views
	The Bonus Aspect
	The Alert Aspect
	The NetOverloading Aspect
	The LimitedAccess Aspect
	The Safety Aspect

	Formal Specification in Uppaal
	Primitive components
	Composite components
	Component binding
	The complete base system
	Weaving individual aspects to the system
	Weaving the Bonus aspect
	Weaving the Alert aspect
	Weaving the NetOverloading aspect
	Weaving the LimitedAccess aspect
	Weaving the Safety aspect

	Interference Detection and Resolution
	Bonus vs Alert
	LimitedAccess vs NetOverloading
	Safety vs Alert and Bonus

	Conclusion

	Conclusion
	Aspectualizing Component Models
	Aspect Interaction Analysis
	Perspectives

	Résumé en Français
	Introduction
	Background
	Les aspects et les vues
	Le Langage VIL
	VIL en Fractal
	Les contrôleurs composable
	Cas 1. Vue courante = Vue désirée:
	Cas 2. Vue courante = Vue désirée:
	Le tisseur Fractal

	VIL en EJB

	Les interférences des aspects
	Détection et résolution des interférences
	Aperçu de Uppaal
	Modélisation des systèmes à composants en Uppaal
	Modélisation des composants primitifs
	Modélisation des composants composites
	Modélisation des assemblages des composants
	Modélisation des systèmes à composants
	Modélisation des aspects
	Modélisation du tissage d'aspects
	Modélisation des opérateurs de composition
	Le processus de détection et de résolution des interférences

	Conclusion générale
	Les modèles à composants aspectualisés
	Analyse d'interaction des aspects
	Perspectives

	Bibliography

	Verso-these Ecole des mines-2.pdf

