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Abstract

Our work stands in the field of software engineering for large scale software intensive systems.
We aim at providing techniques and tools to help software architects master the ever-increasing com-
plexity of these systems. Using mainly model-driven engineering approaches, our contribution is
organised around three axes. The first axis concerns the development of reliable and flexible hier-
archical component-based systems with dynamic reconfiguration capabilities. Through the use of
novel forms of software contracts, the proposed systems and frameworks support several specifica-
tion formalisms and maintain up-to-date contracts at runtime. A second part of our work consists
in providing self-adaptive capabilities to these contracting systems, through negotiation mechanisms
over contracts and self-adaptive monitoring sub-systems. A third axis is related to software product
lines in which feature models are widely used to model variability. Our contribution consists in pro-
viding a set of sound and efficiently implemented composition operators for feature models, as well
as a dedicated language for their large scale management.

Résumé

Nos travaux s’inscrivent dans le domaine du génie logiciel pour les systèmes informatiques à large
échelle. Notre objectif est de fournir des techniques et des outils pour aider les architectes logi-
ciels à maîtriser la complexité toujours grandissante de ces systèmes. Principalement fondées sur
des approches par ingénierie des modèles, nos contributions s’organisent autour de trois axes. Le
premier axe concerne le développement de systèmes à la fois fiables et flexibles, et ce à base de
composants hiérarchiques équipés de capacités de reconfiguration dynamique. Par l’utilisation de
nouvelles formes de contrats logiciels, les systèmes et frameworks que nous proposons prennent en
compte differents formalismes de spécification et maintiennent les contrats à jour pendant l’exécution.
Une seconde partie de nos travaux s’intéresse à fournir des capacités auto-adaptatives à ces systèmes
contractuels, à travers des mécanismes de négociation de contrats et des sous-systèmes de monitoring

eux-mêmes auto-adaptatifs. Un troisième axe concerne les lignes de produits logiciels dans lesquelles
les features models sont largement utilisés pour modéliser la variabilité. Nos contributions consistent
en un ensemble d’opérateurs de composition bien définis et implémentés efficacement pour les feature

models, ainsi qu’un langage dédié permettant leur gestion à large échelle.
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It is the pervading law of all things organic and inorganic,

Of all things physical and metaphysical,

Of all things human and all things super-human,

Of all true manifestations of the head,

Of the heart, of the soul,

That the life is recognizable in its expression,

That form ever follows function. This is the law.

Louis Sullivan1

1"The Tall Office Building Artistically Considered", Lippincott’s Magazine (March 1896).
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CHAPTER

1
Introduction

This habilitation thesis should be seen as a summary of the research conducted in the field of software

engineering over a period of around ten years, it is not another PhD thesis.

This chapter presents the context of our work, summarizes our contributions according to three re-
search axes and gives an outline of the rest of this document.

1.1 Context and Approach

By the late 60s, it was already clear that even if computer systems were made of more than just
software, this software part was the most important to achieve envisioned goals of organizational
improvement in many human and machine-based activities. Unfortunately the software community
was also acknowledging the fact that failing software was the main impediment to these objectives.
During the 1968 NATO Conference, this community establishes the software development activity as
an engineering problem, defining goals for the discipline of software engineering. In more than forty
years, software engineering has made huge progress, both in theory and practice, but the complexity
of software intensive systems constantly and inexorably grew and almost annihilated the successive
improvements of the discipline. Over the two last decades, this complexity led to huge costs in both
distributing them to end-users and maintaining them. Recent studies report that software projects are
still running over time and budget to produce poor-quality software that do not meet requirements
and are hard to maintain [NFG+06]. The main challenge is still to provide the appropriate theories,
languages, abstractions, models, methods, and tools to assist software developers in building software.
→ In this context, the approach we have been following for several years consists in providing tech-

niques and tools to advance the software engineering field in a pragmatic way, i.e. solutions that
are intended to be easily grasped by average software developers and architects, solutions that follow
and integrate well with the other trends of large and software intensive systems. Consequently our
research work is mainly focused on providing integration solutions that make some trade-offs,
mainly between reliability and flexibility. To do so, we constantly attempted to use and apply general
principles of abstraction (design patterns, framework, models, models at runtime) and separation of
concerns (compositional techniques).

In the field of software engineering, first paradigms and concepts such as structured programming,
abstract data types and modularization were introduced with a clear objective of breaking the com-
plexity, thus simplifying the engineering activity. Object orientation mixes this objective with a focus
on controlled reuse through the open/close principle [Mey88]. In the mean time software applications
grew in size to reach all departments of companies, and became interconnected inside a company.
This leads to different approaches to again tame the resulting complexity. Approaches such as design
patterns [GHJV94] and software frameworks [JF88] attempt to organize software abstractions so that
different level of stability and reuse can be obtained from the software artifacts. First works on soft-
ware architecture aimed at reasoning on the structure of a software system, its software elements and
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Chapter 1. Introduction

their dependencies. Conversely an approach based on Aspects also emerged [KLM+97] with the aim
of modularizing differently software systems. Refining the basic principle of separation of concerns

to tame complexity [TOHS99], aspect orientation isolates supporting functionalities from the main
business logic. Besides, to tackle the distributed nature of interconnected systems, a middleware layer
was introduced and gained itself in complexity when interconnections were getting more and more
complex. In parallel with these trends, some approaches focused on abstracting from technological
peculiarities, such as Model-Driven Architectures (MDA) [KWB03], and Model-Driven Engineering
(MDE) [Sch06], which generalizes the previous approach. The methodology is then to create and use
domain models at all possible levels of the software development life cycle, fostering compatibility
and simplifying design.
→ In our work, we use model abstractions in different forms, from abstractions into classes, some

ad hoc models at run-time to software frameworks and integration in a model-driven toolchain.

At dawn of the new century, the concept of software component, already present in the first works
on structured programming [McI68, Par72], finds a newly defined meaning with a parallel with the
electronic industry. Basically a component defines both what it provides, and what it requires, making
explicit some salient dependencies [BBB+00, Szy02]. Interestingly both the community of software
systems, attempting to tame complexity of their middleware systems, and the software engineering
community, striving to master the one of software, come to the same facts and similar proposals at the
same time. Finally, the community was getting back to its roots, the foundation for the engineering of
large systems. One aims at designing a system so that is composed of parts which, because they are
smaller, should be easier to understand and build. One also defines interfaces that allow these parts to
work together, be developed separately and maybe reuse in some way.
→ A first part of our work started with the shift to component-based programming [Szy02, CL02,

LW07] and the objective to provide pragmatic solutions to design reliable and flexible component-
based systems and frameworks with the use of software contracts, a concept well-defined in object-
oriented systems [Mey92] (cf. section 1.2).

In the mean time a shift towards very large scale systems occurred. Software applications became
naturally distributed inside and outside companies, not only through basic Internet protocols, but us-
ing the World Wide Web as a standard platform. Software intensive systems also begun to invade all
aspects of businesses, societies and people. Hundreds of millions of people started to have pervasive
access to a phenomenal amount of information, through different devices and from anywhere. Engi-
neering these software systems means tackling the complexity of building and maintaining distributed
and interconnected of 24/7 deployed applications. Mastering the evolution of software systems was
an issue since the beginning of their development, but with computing tasks and applications executed
over long periods of times, 24/7 in more and more cases, it clearly becomes crucial. Software sys-
tems must become more versatile, flexible and resilient by adapting to changing operational contexts,
environments or system characteristics. To tackle this issue, a general approach is to provide adaptive
capabilities to software, so that it can adapt at run-time to its changing environment (user require-
ments, faults, operational context, resource fluctuation) [LRS00, CLG+09]. With the aim of realizing
the vision of autonomic computing [KC03], i.e. the application on a large scale of self-adaptivity to
all software intensive systems, the field faces numerous challenges in engineering such self-adaptive
systems [CLG+09, ST09].
→ A second part of our work then consisted in providing self-adaptive capabilities to our contract-

ing system, through negotiation mechanisms over contracts and self-adaptive monitoring sub-systems
(cf. section 1.3).

2



1.2. Contracting Software

As for the evolution of software engineering trends, our work also concerns an approach that takes
importance in the last decade. Facing the increasing demand of highly customized products and
services, many complex variants must be produced and maintained, forming a new and important
factor of complexity. Software Product Line (SPL) engineering can be seen as a paradigm shift
towards modeling and developing software system families rather than individual systems [CN01].
Making the analogy of other industries such as automotive or semiconductor sectors, the approach
aims at managing multiple similar software products by an explicit handling of common and variable
parts.
→ Our work focused on Feature Models (FMs), a formalism first defined by [KCH+90] and now

widely used in SPL engineering to model variability of all forms of artifacts and software sub-systems.
Facing both the multiplicity and the increasing complexity of such FMs, our contribution consisted
in applying the principles of separation of concerns (SoC) so to provide a set of sound and efficiently
implemented composition and decomposition operators for feature models, as well as a Domain-
Specific Language (DSL) for managing them on a large scale (cf. section 1.4).

1.2 Contracting Software

Historically, assertions were notably used to express program properties. An assertion in a program is
a boolean expression that must be satisfied whenever the associated code is correctly executed. First
works of Floyd [Flo67] and Hoare [Hoa69] concerned program construction and reasoning about
their correctness. Several structured and modular programming languages also introduced assertions
afterward. Abstract data types were then extended with preconditions and postconditions.
With object orientation, these assertions have been complemented with invariants on classes, making
up specifications that were also called contracts. The Eiffel language [Mey92] was the first one to
integrate these contracts and systematize their usage in the development life cycle, following a prin-
ciple of "Design by Contract" [Mey92]. The specifications are then interpreted as mutual obligations
and benefits, similar to business contracts, but between the developer and the user of a class. When
contracts are checked at run-time, a failure can then be interpreted to precisely blame the responsi-
ble party. Clients (users of a class) are responsible for preconditions – they have to ensure that the
precondition holds before calling the method –, while suppliers (developers of a class) are respon-
sible for the postconditions and invariants – they should ensure postconditions and invariants hold
whenever preconditions do –. Responsibilities make a clear metaphor to guide the design process and
were also adaptable to inheritance, providing an interpretation as inheritance contracts between class
designers. Moreover contracts can be well-organized with exception handling, separating correctness
from robustness concerns, and can also be used as automated and up-to-date software documentation.
Additionally contracts can be used in unit testing, so to check that it meets its contract assuming its
subcontractors meet theirs. Embedding contracts and tests into components can finally make them
self-testable [JDT01].
Different types of contracts are usually distinguished. A first classification was established by Beug-
nard et al. [BJPW99] when interpreting contracts to renewed forms of software components [Szy02].
Four levels of contracts were distinguished:

⋄ basic, i.e. concerning syntactical properties (method names, parameter types) or simple seman-
tic properties, e.g. interface definition languages;

⋄ behavioral, which are related to properties expressed through pre/postconditions and invariants,

3



Chapter 1. Introduction

directly implementing the responsibility model of design by contract when method executions
considered as atomic.

⋄ synchronization, i.e. concerning interactions between components, typically defined by method
call sequences following a specified pattern. Concurrency in method calls is then taken into
account in this property description.

⋄ quality of service, which finally encompass all contracts related to non-functional properties,
e.g. response time, quality of information, etc.

In our work, we have first tackled the issues of contracting rich forms of software components, by
developing a assertion-based contracting system for hierarchical components that goes beyond classic
interface contracts. We afterward organized contracting systems as a framework abstracting both
input formalisms and targeted platforms. Almost naturally, our work on software contracts led to
the integration of contracting mechanisms inside an engineering process following a Model-Driven
Architecture aimed both at service and component platforms. Additionally, we also explored the
established relationship between our forms of contracts and testing, providing a framework to build
self-testable hierarchical components.

1.3 Self-Adaptive Capabilities

Self-adaptive capabilities are provided by software systems to cope with changes at run-time. Self-
adaptive software can be characterized by the fact that "it evaluates its own behavior and changes be-
havior when the evaluation indicates that it is not accomplishing what the software is intended to do,
or when better functionality or performance is possible" [LRS00]. This means that the self-adaptive
capabilities should facilitate run-time decisions to control structure and behavior of the system. This
latter is taking these decisions itself, with minimal or no human interactions, while reasoning about its
own state and environment. The relevance of engineering self-adaptive capabilities in the software de-
velopment landscape is due to the continuous evolution from software-intensive systems to ultra-large
scale systems [NFG+06]. As acknowledged in [CLG+09], software systems must now become more
versatile, flexible, resilient, dependable, robust, energy-efficient, recoverable, customizable, config-
urable, and self-optimizing by adapting to changing operational contexts, environments or system
characteristics.
Properties of self-adaptive systems are now generally named self-* properties [SPTU05]. When IBM
initiated their Autonomic Computing initiative [IBM01], they defined four main properties that serve
as the de facto standard in the domain [ST09]: self-configuring is the capability of reconfiguring
automatically and dynamically software entities in response to changes, self-healing consists in de-
tecting, diagnosing, and reacting to disruptions and also in anticipating potential problems to prevent
failures, self-optimizing is the capability of optimally and automatically managing performance and
resource allocation, while self-protecting concerns the detection of security breaches and recovering
from attacks. Actually Autonomic Computing [KC03] revisits the engineering of self-adaptive sys-
tems by aiming their application on a large scale to tame maintenance costs of all kinds of software
intensive systems. One major challenge of the approach is the necessity to combine and evolve tech-
niques and results from several research disciplines, e.g. artificial intelligence (planning, decision
making, machine learning, agents,etc.), control theory, distributed computing and software engineer-
ing [ST09, CLG+09].
In order to organize self-adaptation, feedback control loops are recognized as one of the most generic
mechanisms [CLG+09, BDG+09]. There can be several ways of presenting the key activities of a
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1.4. Feature Modeling in Software Product Lines

feedback, but typically, it involves four steps (collect, analyze, decide, and act) [BDG+09]. In the
IBM architectural blueprint for autonomic computing [KC03], the notion of autonomic manager is
introduced. This is basically a component that implements a MAPE-K control loop. The name is an
abbreviation for Monitor, Analyze, Plan, Execute and Knowledge. The loop is divided into four parts
that share the knowledge and control a managed resource through sensors and effectors:

⋄ The monitor function provides the mechanisms that collect, aggregate, filter and report details
collected from the managed resource.

⋄ The analyze function provides the mechanisms that correlate and model complex situations
They allow the autonomic manager to learn about the system environment and help predict
future situations.

⋄ The plan function provides the mechanisms that build the actions needed to achieve goals and
objectives. The planning mechanism is guided by policy information.

⋄ The execute function provides the mechanisms that control the execution of a plan with consid-
erations for dynamic updates.

In this context, a second part of our work concerned the adaptation of our contracting systems to some
of these self-adaptation needs. We provided negotiation mechanisms, inspired from those conceived
in multi-agent systems, which make it possible to adapt components or contracts at configuration
and run times, with the aim to restore the validity of established contracts. We also designed and
implemented a fine-grained support for a large class of non-functional properties within hierarchical
software components, enabling their exploitation in the above negotiation process. Additionally, as
contract checking and many self-management activity directly rely on appropriate monitoring, our
work also comprised techniques and tools to provide adaptive monitoring systems.

1.4 Feature Modeling in Software Product Lines

A software product line (SPL) is "a set of software- intensive systems that share a common, managed
set of features satisfying the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way" [PBvdL05]. SPL engineering
relies on the idea of mass customization [Pin99] known from many industries, like in the automotive,
telecommunication, aerospace and avionics fields. Mass customization takes advantage of similarity
principle and modular design to massively produce customized products. Taking its roots in the idea
of program families [Par76], SPL engineering become popular in the 90s with the massive integration
of software in families of electronic products such as mobile phones. Since then, many companies
(Alcatel, Boeing, Hewlett Packard, Philips...) report significant benefits of using SPLs [Nor02].
SPL engineering is separated in two complementary phases. Domain engineering is concerned with
development for reuse, and consists in analyzing the entire domain and its potential requirements,
e.g. to scope the SPL and identify what differs between products, to identify reusable artifacts and
plan their development, etc. On the other hand application engineering is the development with reuse,
also called product development, in which concrete products are adapted to specific requirements and
derived using the common and reusable artifacts developed in domain engineering. In the context of
SPLs, MDE is gaining more attention as a provider of techniques and tools to tame their complexity
of development. For example, generative software development techniques [CE00] aims at designing
and implementing system families so that a given system can be automatically generated from a
specification – a model – written in one or more textual or graphical domain-specific languages.

5



Chapter 1. Introduction

Central and unique to SPL engineering is the management of variability, i.e., the process of factoring
out commonalities and systematizing variabilities of documentation, requirements, models, code, test
artifacts... Variability is commonly described in terms of features, which are domain abstractions
relevant to stakeholders (people concerned with the SPL). It is then usually modeled, using languages
that can be graphical, textual or a mix of both.
Variability can be amalgamated into models [ZJ06, PVL+10] or be represented as first-class entities
in meta-models, like in Clafer [BCW11] On the other hand, variability can be mapped to another
metamodel [CA05]. This directly relates features and model elements and product models are de-
rived by removing all the model elements associated with non-selected features. To realize variability
at the code level, SPL methods classically advocate usage of inheritance, components, frameworks,
aspects or generative techniques. At the model level, some approaches annotates a global model
and a specific model is obtained by activating or removing model elements from a combination of
features [CA05, BCFH10]. This is also referred as model pruning [SPHM09] or negative variabil-
ity [VG07] Some other approaches, compositional, consists in separately implementing features in
distinct software modules that are composed to obtain variants. Many techniques have been proposed
to implement this form of positive variability [VG07]. In model-based SPL engineering, approaches
composing multiple models or fragments have been proposed, relying on aspects [MVL+08], adapted
superimposition techniques [AJTK09] or merging of class diagram fragments [PKGJ08b].
Considering approaches in which the variability description is expressed in a dedicated model, our
work concerns Feature Models (FMs). First defined by [KCH+90], an FM is used to compactly define
all features in an SPL and their valid combinations; it is basically an AND-OR graph with proposi-
tional constraints. This de facto standard is now widely used in SPL engineering to model variability
of all forms of artifacts and software sub-systems. As FMs are getting increasingly complex, our
work focused on applying the principles of separation of concerns (SoC) so to provide composition
operators (insert, merge, aggregate) and a decomposition operator (slide) specific to FMs. These op-
erators have a well-defined semantics that rests on the properties that must be preserved in terms of
configuration set and hierarchy of the composed/decomposed FMs. Our work also consisted in creat-
ing a Domain-Specific Language (DSL), FAMILIAR, for managing FMs on a large scale. It enables
one to combine the proposed operators with other reasoning and editing operators to realize complex
tasks.

1.5 Outline

The remainder of this document is organized in three main chapters getting back to the research axes
of our work.
Chapter 2 summarizes our activity on providing contracting techniques and tools in new forms of
software architectures. We first describe ConFract, a contracting system using executable assertions
on hierarchical components (section 2.1). Contracts are dynamically built from specifications at as-
sembly times, then maintained at run-time and updated according to dynamic reconfigurations. Not
being restricted to the scope of separated interfaces, new kinds of composition contracts are sup-
ported and semantically defined by their own responsibility model. Then the Interact framework is
presented. It provides abstractions and automated mechanisms to facilitate software contracting with
different kinds of specification formalisms and different component or service based architectures
(section 2.2). This framework notably supports the integration of behavioral specification formalisms
and relies on a central model handling both compatibility and conformance checking. The results of
the ANR FAROS project are then described, showing how the central model of the Interact frame-
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work was integrated and extended as a metamodel inside a model-driven toolchain ranging from
high-level business constraints to contract checking mechanisms on different service and component
oriented platforms (section 2.3). Finally, the chapter is ended by a presentation of an extension of
our ConFract system to provide a complete contract-based built-in testing framework. This frame-
work enables contracted components to be self-testable through appropriate embedded tests reusing
contracts as oracles (section 2.4).
Chapter 3 presents the research conducted to provide self-adaptive capabilities in our contracting
systems. We describe the extension of ConFract to support negotiable contracts in hierarchical com-
ponents (section 3.1). The proposed negotiation mechanisms are inspired from similar mechanism in
multi-agent systems, and allow for adapting components or contracts at configuration and run times.
Reusing the responsibility model of contracts, components carry their own negotiation ability and
can be dynamically reconfigured. A first concession-based policy is proposed in order to pilot the
negotiation process for obtaining properties relaxation in contracts. Conversely, a effort-based policy
is developed to direct the negotiation on the responsible component. The relations between nego-
tiable contracts and autonomic control loops, as well as the use of the negotiation system to regulate
itself are discussed. We then describe a model and a supporting run-time infrastructure that allows
for reifying non-functional properties in relation with components, as well as for supporting a basic
form of compositional reasoning that relate system properties to component properties (section 3.2).
These patterns of non-functional properties can be exploited by the negotiation process presented be-
fore. The effort-based policy is then extended, enabling negotiation to be propagated according the
compositional nature of some non-functional properties. Focusing next on the necessary monitoring
features of current infrastructures, we propose a QoI-aware monitoring framework that is able to deal
with multiple clients needing flexible and dynamically reconfigurable access to dynamic data streams
with different Quality of Information (QoI) needs (section 3.3). The framework allows for instanti-
ating monitoring systems with automatic configuration of all monitoring entities and data sources so
that QoI and resource constraints are taken into account.
Chapter 4 presents our advances in the domain of feature modeling. Our proposed support for Sep-

aration of Concerns targeted to feature models is first presented (section 4.1). The support consists
in a set of composition and decomposition operators with both a formal semantics definition and
an efficient implementation. We notably define their semantics in terms of configuration set and
hierarchy of the manipulated FMs. The FAMILIAR (FeAture Model scrIpt Language for manIpula-

tion and Automatic Reasoning) DSL is then described (section 4.2). It enables one to combine the
proposed operators with language constructs for importing/exporting FMs, editing FMs, reasoning
about FMs (validity, comparison) and their configurations. The different constructs of the language
are presented (variables, operations, scripts and modules). Several applicative case studies are also
reported and discussed in terms of usage of the operators and the DSL (section 4.3). They range
from consistent construction of scientific workflow to end-to-end handling of multiple variabilities in
video-surveillance systems and reverse engineering of architectural variability.
Chapter 5 concludes this manuscript by assessing our results and discussing a research roadmap.

Main Supervisions and Publications

The results presented here are related to several PhD supervisions and publications. A complete list
of publications is available at http://www.i3s.unice.fr/~collet/publications.html.
Works presented in chapter 2 have been published in several international conferences [CRCR05,
DC06, COR06, COR07, CMOR07]. The ConFract system was realized under a first collaboration
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contract with France Télécom R&D (now Orange labs) and partly through the Master Theses of
Annabelle Mercier [Mer02] and Alain Ozanne. The resulting software was registered to APP and
transferred to France Télécom R&D. The following framework, Interact, was developed in the context
of Alain Ozanne’s PhD Thesis [Oza07], which I co-supervised with Prof. Jacques Malenfant.
Works presented in chapter 3 have been the subject of several national and international journal and
conference publications [CC05, CCOR06, CC06, CC07b, CC07a, LDCMR10]. The contract negoti-
ation mechanisms were realized under another collaboration contract with Orange labs and concerns
the Master and PhD Theses of Hervé Chang [Cha04, Cha07]. The results on the Adamo monitoring
framework correspond to Bao Le Duc’s PhD Thesis [LD10], which was co-supervised with Prof.
Jacques Malenfant and funded by Orange labs.
Results of chapter 4 have been published in several international journals and conferences [ACLF09,
ACLF10b, ACLF10a, ACC+11, ACLF11c, ACG+11]. They correspond to Mathieu Acher’s Master
and PhD Theses [Ach08, Ach11], co-supervised with Prof. Philippe Lahire.
The work evoked in the conclusion and related to engineering of feedback control loops are the subject
of the ongoing PhD Thesis of Filip Krikava. Early results have been published in some international
conferences [CKM+10, KC11].
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Chapter 2. Contracting

This chapter presents our research work on contracting techniques and tools, which have been con-
ducted from 2002 to 2008.
This research starts in the context of the component definition being revisited [BBB+00, CL02,
LW07] so to face the increasing complexity of more dynamic, evolving and long-living software
systems. From McIlroy’s appeal in 1968 [McI68], component-based software engineering (CBSE)
has gone through an important evolution. Components were at first units of compilation, modules in-
teracting through an explicit interface, then classes associated by use or inheritance links and finally,
black boxes, organized in a (re-)configurable architecture and capable of communicating on networks
through several interfaces.
One of the most used definition of this renewed form of component is given by Szyperski [Szy02]:
"A software component is a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed independently and is subject

to third-party composition." The notion of contract is explicitly part of the definition of software
components, at least to define their interfaces. Our work then aimed at providing a contracting system
for a rich form of software components that makes possible hierarchical compositions of them.

2.1 A Contracting System for Hierarchical Components

This section shares material with the CBSE’05 paper "A Contracting System for Hierarchical Com-
ponents" [CRCR05] and the Euromicro-SEAA’05 paper "Fine-grained Contract Negotiation for Hier-
archical Software Components" [CC05]. It mainly relates to work made in collaboration with Roger
Rousseau.

2.1.1 The Fractal Component Model

Component-based programming aims at facilitating adaptable and manageable software development
by enforcing a strict separation between interface and implementation and by making software ar-
chitecture explicit [Szy02]. Coupled with meta-programming techniques, it can hide some non-
functional aspects, like in mainstream component models (EJB, .Net, etc.) and their containers. At the
beginning of the 2000s, both component-based frameworks and Architecture Description Languages
(ADLs) provide means for explicit dependencies between components, but they only supported par-
tially adaptation or extension capabilities [MT00]. There was thus a need to reconcile the advantages
of the basic notions of software components, while having the means to manage the resulting archi-
tecture, to separate concerns (functional from non functional), to choose the right level of abstraction
with components being created from other components, and to extend all these mechanisms.
The Fractal component framework [BCL+04, BCL+06] is a general and open component model that
was designed to meet these requirements. It has the following main features: composite components
(to have a uniform view of applications at various levels of abstraction), shared components (to model
resources and resource sharing while maintaining component encapsulation), reflective capabilities
(introspection capabilities to monitor a running system and re-configuration capabilities to deploy and
dynamically configure a system) and openness (in the model, almost everything is optional and can be
extended). The Fractal component model basically enables developers to hierarchically organize an
application, with components being built from other subcomponents. Components can be connected
through server (provided) and client (required) interfaces. The signatures of the interfaces are defined
using the underlying language of the implementation Julia [BCL+04] of Fractal , currently Java.
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Internally, a Fractal component is formed out of two parts: a membrane and a content. The content
of a composite component is composed of other components, called subcomponents, which are under
the control of the enclosing component. The Fractal model is thus recursive and allows components
to be nested. The membrane embodies the control behavior associated with a particular component.
In particular, it can i) intercept oncoming and outgoing operation invocations targeting or originat-
ing from the component’s subcomponents, ii) superpose a control behavior to the behavior of the
component’s subcomponents or iii) provide an explicit and causally connected representation of the
component’s subcomponents. Different concerns of this control behavior are distinguished by con-
trollers. Basic Fractal controllers are dedicated to manage life cycle (LifecycleController), component
bindings (BindingController) and component content (ContentController).

2.1.2 Illustration

In the rest of this section, we use, as a working example, a basic multimedia player that has been
developed with the Sun Java Media Framework API2. The architecture of the multimedia player is
shown on figure 2.1 and presents a FractalPlayer component containing five subcomponents:
Player which exclusively provides the playing service through its start method and manages
some of its functioning parameters through attributes, GuiLauncher which manages the GUI part,
VideoConfigurator which provides services to optimize the playing service (the canPlay

method evaluates the ability to entirely play a video in its specific display size, according to available
resources like the battery level), Logger which manages a history of played videos (the lastUrl
method allows one to get the url of the most recently played video), and finally BatteryProbe that
provides information on the battery (method getLifePercent returns the percentage of remaining
stamina).
For all these components, their client interfaces manage what their environment should provide to
realize their services. At assembly time, all these interfaces must be connected, through the content
controller of the surrounding component (<fp> in our example), to interfaces of compatible type and
of inverse role (client to server).

2.1.3 Rationale for Contracting Hierarchical Components

In component-based systems, like in object-oriented ones, it is well accepted that interface signatures,
even with comments, are insufficient to capture and control the salient properties of an application
[BBB+00]. More complete specifications are needed on the functional and extra-functional aspects
(architecture, quality of services, etc.). Some properties can be checked early, using static analysis or
proofs. Other properties, often extra-functional, which refer to runtime values, need to be dynamically
checked. In the case of hierarchical components where the assemblies are dynamic, we liken the word
static to “before the component is (re-)started”.
Either static or dynamic, many different properties can be expressed, using different specification
formalisms [LBR99, dAH01, PV02, BS03]. For example, interface automata [dAH01] enables a
specification to capture input assumptions about the order in which the methods of a component are
called and output guarantees about the order of called external methods. Checking compatibility and
refinement between interface models is then possible. Behavior protocols [PV02] express traces on
interface method calls with a form of regular expressions and takes into account hierarchical compo-
nents. These protocols can be defined on interfaces, frames (aka component types) and architectures
(aka component internal assembly). Refinement of specifications are verified at design time, while

2http://www.oracle.com/technetwork/java/javase/index-142695.html
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controllers

interface MultimediaPlayer {
void l oad (URL ur l ) ;
URL getURL() ;
void s t a r t ( ) ;

. . . }

interface Conf i gurator {
boolean canPlay ( DataSource ds ,

int w, int h) ;
. . . }

interface His tory{
URL l a s tU r l ( ) ;
. . . }

interface BatteryIn fo {
int ge tL i f ePe r c en t ( ) ;

. . . }

BC CC LC CTC Interface signatures

: membrane

: control interface

: attributes

: provided interface (server)

: required interface (client)

width, height
jmfVersion,

h:History

hist:History

bi:

mpl:m:Main

FractalPlayer <fp>

cfg:Configurator

c:Configurator

Player

Probe
<bp>

Battery
Configurator

<vc> <l>
Logger

GuiLauncher
<gl>

Player
<pl>

Video

Multimedia

BatteryInfo

Figure 2.1: A multimedia player in Fractal.

adherence of a component’s implementation to its specification is checked at run time. To build the
ConFract system, we decided to first focus on the contracting mechanisms, rather than on the expres-
siveness of the specification formalism. The idea is to make explicit the contract at configuration3 and
execution times, in the same way as the architecture is made explicit in the Fractal model. The con-
tract should then be a model at runtime that reifies the common definition of “document negotiated

between several parties, the responsibilities of which are clearly established for each provision”.

When the ConFract development was initiated, to our knowledge, the proposals to explicitly support
contracts for components all focused on interfaces or connectors, taken separetely. They aimed at
specifying behavior [BS03], architectural constraints [Pah01] or quality of services [WBGP01]. As
such they lack several important features to be well suited to our definition of components:

⋄ Take into account a hierarchical assembly of components,

⋄ Build contracts incrementally and update them if any dynamic reconfiguration occurs,

⋄ Check them at configuration times or at least at runtime,

⋄ Empower contracts with exploitable responsibilities, e.g. in case of violation.

Finally, we also advocate the contracts, as runtime objects, should be distinguished from the speci-
fications, as input formalisms, they are built from. The overall objective of the ConFract is then to
meet these requirements.

3As the Fractal model is open, we liken the configuration time to be a period that can encompass assembly and de-
ployment, before a component is run, as well as a period of dynamic reconfigurations with re-assembly and deployment
again.
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2.1.4 Specification with the CCL-J Language

As one of main principles of ConFract is to clearly separate contracts from specifications, we de-
veloped an input specification formalism dedicated to our targeted component model. Executable
assertions, the formalism first introduced with contracts [Mey92], are then used as they constitute a
interesting trade-off between expressiveness and ease of learning and use.
The CCL-J language (Component Constraint Language for Java) is inspired by OCL [OMG97] and
enhanced to be adapted to the Fractal model and its implementation in Java. Classic categories
of specifications like preconditions (pre), postconditions (post) and invariants (inv) are supported.
Some specific constructs like rely and guarantee4 are also included but not discussed here. Each
category consists of one or more clauses, identified by a number or a label and bound by a logical
conjunction.
The main contribution of CCL-J is the provision of different scopes of specification that are adapted
to salient location in an assembly of hierarchical components. Syntactically, the scope of specifica-
tions is adapted using variants of the context construct. It can refer to:

⋄ a method of a Java interface: context method-signature;

⋄ a component type: on <Component Type> context...;

⋄ or a particular component (instance or template of Fractal components [BCL+04]): on <cpt

instance> context...

As in current proposals for contracting components [WBGP01, BS03], it must be possible to use
the connection point between two interfaces, client and server, to define some specifications. For
example, the following precondition states that the input url should be valid for the start method
of interface MultimediaPlayer, wherever it is used:

c o n t e x t vo id M u l t i m e d i a P l a y e r . s t a r t ( )
pre U r l V a l i d a t o r . i s V a l i d ( getURL ( ) )

To express more relevant properties, it is necessary to compose external or internal properties by
widening the scope, while respecting encapsulation, which is controlled by component membranes.
The following specification shows an example of component type specification, with a specifica-
tion of one of its interfaces in relations with the others. This specification defines both a pre-
condition and a postcondition for the start method of the Fractal interface named mpl (of type
MultimediaPlayer). The precondition also refers to another external interface of <Player>,
the required interface named c of type Configurator, to express acceptable conditions to play
the video. As for the postcondition, it refers to the required interface named h of type History and
specifies that the last entry of the history matches the played video.

on < P l a y e r >
c o n t e x t vo id mpl . s t a r t ( )

pre c . c a n P l a y ( g e t U r l ( ) . g e t D a t a s o u r c e ( ) ,
< t h i s > . a t t r i b u t e s . ge tWid th ( ) ,
< t h i s > . a t t r i b u t e s . g e t H e i g h t ( ) )

pos t h . l a s t U r l ( ) . e q u a l s ( g e t U r l ( ) )

4rely, resp. guarantee, states conditions that a method can rely, resp. must guarantee, during its entire execution.
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All properties stated this way are located on component types, as they are valid whatever is their inter-
nal assembly. It must be noted that both specifications expressed until now refer to the Multimedia-
Player interface, but the first one is general enough to be used on each binding of this type whereas
the other one is just general enough to be interpreted on each instantiation of the <Player> compo-
nent type.
Finally, in the case of a composite component, it is also necessary to define properties over its inter-
nals, accessible through its internal interfaces or through the external interfaces of its subcomponents.
The specification below is a configuration invariant that constrains <fp> so that its subcomponent
<pl> uses a version of the JMF API more recent than 2.1. It uses specific constructs of CCL-J , such
as parameters over specification and access to the attributes of a component (getJmfVersion()):

param jmfMin = JMF . V2_1
on <fp >

inv <pl > . a t t r i b u t e s . g e t J m f V e r s i o n ( ) . compareTo ( jmfMin ) >= 0

Another example of CCL-J capabilities is the usage of regular expression to denote several names
referring to methods, interfaces and components. The following specification defines a 10% threshold
for the battery, which is mandatory for the multimedia playing and which should be checked before
any method is called in it (pattern *):

on <fp >
c o n t e x t <* >. * ( * )

pre <bp > . b i . g e t L i f e P e r c e n t ( ) >= 10

All the properties then concern component instances, as they are dependent from a specific assembly
in the content of a composite component.

2.1.5 The ConFract System

Types of contract

The ConFract system distinguishes several types of contracts according to the specifications given by
the designers.

⋄ Interface contracts are established on the connection point between each pair of client and
server interfaces and the retained specifications only refer to methods and entities in the in-
terface scope. Our example of precondition on the start method of MultimediaPlayer
interface is then used to build the interface contract of Figure 2.2 This contract is built on the
binding between required interface m: MultimediaPlayer and provided interface mpl:
MultimediaPlayer. The figure shows a textual representation of the corresponding con-
tract object with all actual instances of interfaces and interfaces identified in the contract, as
well as their responsibilities (see below).

⋄ external composition contracts are located on the external side of each component membrane.
They consist of specifications which refer only to external interfaces of the component. They
thus express the usage and external behavior rules of the component. As shown on figure 2.3,
the specification expressed on the <FractalPlayer component type is automatically taken
into account to build the external composition contract on the <pl> component instance.

⋄ internal composition contracts are located on the internal side of a composite component mem-
brane. In the same way, they consist of specifications which refer only to internal interfaces
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context void MultimediaPlayer . s t a r t ( )
pre Ur lVa l idator . i sVa l i d (getURL ( ) )

interface contract on <fp>
server : Mult imediaPlayer <pl >.mpl
cl ient : Mult imediaPlayer <gl >.m
participants : <gl> <pl>
provisions :

void s t a r t ( )
pre

guarantor : <gl> beneficiaries : <pl>
Ur lVa l idator . i sVa l i d (getURL( ) )

. . .

CTC

CCL−J specification

from the contract object
Textual extraction

FractalPlayer <fp>
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construction
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design time

configuration &
execution

m: mpl:

scope

Player
<pl><gl>

GuiLauncher

MultimediaPlayer MultimediaPlayer

Figure 2.2: Example of interface contract.

on <Fracta lPlayer >
context void mpl . s t a r t ( )

pre c . canPlay ( getUr l ( ) . getDatasource ( ) ,
<this >. a t t r i b u t e s . getWidth ( ) ,
<this >. a t t r i b u t e s . getHeight ( ) )

post h . l a s tU r l ( ) . equa l s ( getUr l ( ) )

external composition contract on <pl>
participants : <fp> <pl> <vc> <l>
provisions on server interface MultimediaPlayer mpl :

void s t a r t ( )
pre

guarantor : <fp> beneficiaries : <pl>
c . canPlay ( getUr l ( ) . getDatasource ( ) ,

<this >. a t t r i b u t e s . getWidth ( ) ,
<this >. a t t r i b u t e s . getHeight ( ) )

post

guarantor : <pl> beneficiaries : <fp> <gl>
h . l a s tU r l ( ) . equa l s ( getUr l ( ) )

. . .

from the contract object
Textual extraction

CCL−J specification

Playermpl:

h:History
c:Configurator

height
width

FractalPlayer <fp>

construction
dynamic

design time

configuration &
execution

scope

<vc>
Configurator

Video

Multimedia Player
<pl>

<l>
Logger

CTC

Figure 2.3: External composition contract on component <pl>.
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of the component and to external interfaces of its subcomponents. This internal composition
contract then enforces the assembly and internal behavior rules of the implementation of the
composite component. In our example, this is the two specifications that we define on compo-
nent <fp> (see Figure 2.4). One can also see that all specifications, even expressed separately,
are grouped and interpreted in several contract provisions, a.k.a. clauses.

param jmfMin = JMF.V2_1
on <fp>

inv <pl >. a t t r i b u t e s . getJmfVersion ( ) .
compareTo ( jmfMin ) >= 0

on <fp>
context <∗>.∗(∗)

pre <bp>. b i . g e tL i f ePe r c en t ( ) >= 10

internal composition contract on <fp>
participants : <fp> <pl> <bp>
param jmfMin = JMF.V2_1

inv

guarantor : <fp> beneficiaries : <fp>
<pl >. a t t r i b u t e s . getJmfVersion ( ) . compareTo ( jmfMin ) >= 0

provisions :
<∗>.∗(∗)

pre

guarantor : <fp> beneficiaries : <fp>
<bp>. b i . g e tL i f ePe r c en t ( ) >= 10

. . .

scope

Textual extraction
from the contract object

CCL−J specifications

mpl: Player

jmfVersion

bi:

FractalPlayer <fp>

dynamic
construction

design time

configuration &
execution

Multimedia
Player
<pl>

Battery
Probe
<bp>

BatteryInfo

CTC

Figure 2.4: Internal composition contract on component <fp>.

Responsibilities

During the reification of a contract, the ConFract system determines the responsibilities associated to
each specification, among the list of participating components in the contract. These responsibilities
can be either i) guarantor, the component that must be notified in case of violation of the provision,
and which has the capacity to react to the problem, or ii) beneficiaries, the components which can rely
on the provision, or iii) possible contributors, which are components needed to check the provision,
i.e. a contract is not complete without all its contributors identified. Contrary to most object-oriented
contracting systems, there is no concept of blame or guilty party in our model, as it is more dynamic
and open to negotiations. As a result, on a contract violation, the focus is more on how to dynamically
adapt the application at best, preserving robustness, rather that on assigning blame about a correctness
issue (see section 3.1).
In the case of an interface contract, these responsibilities are directly those of a client/supplier re-
lationship as in an object contract [Mey92], as shown on Figure 2.5. The responsibilities for an
external composition contracts are given on Figure 2.6. In this case, the interface role (client or
server) directly impacts the interpretation of the responsibility. For server interface, the guarantor is
the carrying component and beneficiaries are the surrounding component and components connected
to this server interface. For example, on the component <pl> – the player – for the postcondition of a
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construct guarantor beneficiary

pre client supplier
<gl> <pl>

post supplier client
<pl> <gl>

Figure 2.5: Responsibilities for an interface contract, with example of fig. 2.2.

method on its server interface mpl, the guarantor is the component itself, as it implements the method
and provides the interface, and the beneficiaries are <fp>, which contains <pl>, and <gl> which is
connected to the interface mpl. Conversely, the precondition on the server interface is guaranteed by
the surrounding component, which is the only one able to ensure a property that is potentially related
to several interfaces of one of its subcomponents. The component connected to the server interface
only see this very interface and is not able to understand the complete composition contract. In our
example of component <pl>, the precondition on mpl is guaranteed by <fp>, and not by <gl>,
which cannot be responsible for a property dealing with the video configurator <vc> through the
interface c.

interface role construct guarantor beneficiaries

server pre surrounding component carrying component
mpl <fp> <pl>

server post carrying component surrounding + connected components
mpl <pl> <fp>, <gl>

client pre carrying component surrounding + connected components
h, c <pl> <fp>, <vc> (c), <l> (h)

client post surrounding component carrying component
h, c <fp> <pl>

Figure 2.6: Responsibilities for an external composition contract, with example of fig. 2.3.

As for the responsibilities associated to an internal composition contract, they are quite straightfor-
ward, as the composite component carrying the contract is at the same time the guarantor and the
beneficiary in all cases. As this kind of contract is similar to some constraints put on its internal
assembly, it is normal that the component is entirely responsible for its own implementation.

Progressive closure of contracts

When a component is inserted into an assembly, ConFract creates its internal composition contract if
it is composite, and its external composition contract if it has some specifications bound to several of
its interfaces. For every specification bound to some composition contracts, a provision template is
created and attached to the composition contract. Every template is waiting for all its contributors to
close up. When a new subcomponent is added into a composite, all the templates that participate in
the concerned composition contract have their responsibilities completed. When all the contributors
of a template are known, it is closed and becomes a provision. When all the provision templates of an
internal composition contract are closed, the contract is closed as well, as all the responsibilities are
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identified, and the component can be finally started.
For an interface contract, the life cycle is very simple, as there are only two participants in the contract.
It is thus created during the connection between the interfaces and is automatically closed.
It must also be noted that the contract can simply be reopened when a dynamic reconfiguration occurs.
If any binding of a component is removed5, the corresponding contracts are reopened, e.g. both
the interface contract between the bound interfaces and the external composition contract reopen.
Similarly, if a component is removed from a composite, the internal composition contract of this
composite also reopens, waiting for a new component to be added. This ensures that the contracts are
always up-to-date and dynamically reflect any reconfiguration on the component architecture.

Contract checking

When building the contract, the ConFract system includes in each provision of a contract, the spec-
ification predicate (currently a CCL-J assertion), an interception context (the times and locations
where the provision is supposed to be satisfied) and the necessary references to the context (compo-
nent, interfaces, etc.). The contracts are then evaluated when the appropriate event occurs (see section
2.1.6).
At configuration time, the provisions of composition contracts that define invariant properties on com-
ponents are checked, such as the invariant part of the internal composition contract of Figure 2.4. As
for preconditions, postconditions and method invariants of all contracts, they are checked at runtime.
When a method is called on a Fractal interface, the provisions of the different contracts that refer
to this method are checked in the following way. Preconditions from the interface contract are first
checked. As they are created from the client and server specifications, they also check hierarchy
errors to ensure behavioral subtyping [FF01]. Preconditions from the external composition contract
of the component receiving the call, are then checked, ensuring the environment of the component
is as expected. Preconditions from the internal composition contract are then checked. It should be
noted that preconditions from the three different kinds of contract are simply checked sequentially.
No specific rule is needed to ensure substituability as the interface contract already defined it, and
that the other preconditions are not sharing the same scope and responsibilities. A similar checking
is done with postconditions and method invariants after the call.

2.1.6 Implementation

The ConFract system is integrated into Fractal using its reference implementation in Java, named
Julia [BCL+04]. Julia is a software framework dedicated to components membrane programming.
It is a small run-time library together with bytecode generators that relies on an AOP-like mechanism
based on mixins and interceptors. A component membrane in Julia is basically a set of controllers and
interceptors objects. A mixin mechanism based on lexicographical conventions is used to compose
controller classes. Julia comes with a library of mixins and interceptors classes the programmer can
compose and extend.

The contract controller

The various contracts are managed by contract controllers (CTC on Figures 2.2 to 2.4), located on the
membrane of every component. As subcomponents are under the control of the enclosing component,

5In Fractal , a component must be stopped before any binding or content management.
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every contract controller of a composite component manages the life cycle and the evaluation of the
contracts that refer to its subcomponents and their bindings:

⋄ the internal composition contract of the composite on which it is placed,

⋄ the external composition contract of each of the subcomponents,

⋄ the interface contract of every connection in its content.

During the creation of a composite component, the initialization of its contract controller creates its
internal composition contract. The other contracts are built and updated by mixins.
According to the configuration actions made on components, the contract controller reacts as different
mixins are placed on the other Fractal controllers:

⋄ Binding Controller (BC). As this controller manages the creation and destruction of the con-
nections between component interfaces, a mixin notifies the surrounding contract controller of
connections (resp. disconnections) to instantiate (resp. to remove) the corresponding interface
contract.

⋄ Content Controller (CC). This controller manages the insertion of subcomponents inside a com-
posite. A mixin notifies the contract controller of each insertion, so that it builds the external
composition contract of the new subcomponent C . The contract controller also closes the pro-
visions that refers to C in the internal composition contract. The inverse actions are realized
during the removal of a subcomponent.

⋄ Life-cycle Controller (LC). As the Fractal model is very open, the only moment when one
can be sure that a component is completely configured is just before it is started, using the
start method of the life-cycle controller. As a result, a mixin is added to perform "static"
checks (cf. section 2.1.3). The contract controller of the component (resp. of the surrounding
component) verifies that its internal composition contract (resp. external) is closed. Finally, the
contract provisions that are statically verifiable, such as component invariants, are checked.

As for the evaluation of dynamic contract provisions, Julia interceptors are used. Every Fractal

interface related to a contract receives an interceptor on its methods entry and/or exit. In the case of
CCL-J , when a method is called on an interface, the contract controller is then notified and it applies
the checking rules previously described.

2.1.7 Related Work

Since the Eiffel language, numerous works focused on executable assertions in object-oriented lan-
guages, notably for Java [LBR99, Plö02]. JML [LBR99] combines executable assertions with some
features of abstract programs. It allows the developer to build executable models which use abstrac-
tion functions on the specified classes. CCL-J is much simpler than JML in terms of available
constructs, but we only use CCL-J to validate the contracting mechanisms of ConFract . The compo-
sition contract provided by ConFract can be compared to collaboration contracts on objects proposed
by Helm and Holland [HHG90]. The notion of views in the collaboration is similar to the roles of
the participants in our contracts. However, in the ConFract system, the composition contracts are
carried by components – which allows for distributing them in the hierarchy – and are automatically
generated and updated according to the actions of assembly and connection.
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Works on contracting components focused on using adapted formalisms to specify component inter-
faces. For example, contracts on .NET assemblies have been proposed [BS03], using AsmL as a
specification language. Abstract programs are then interpreted in parallel with the code, but the con-
tracts are only associated with interfaces. Numerous works rely on the formalism QML (QoS Model-

ing Language) [FK98b], for example to contract QoS related properties on components [LS04]. QML

allows the designer to describe such contracts by specifying the expected levels of the qualities on
interfaces, but does not allow one, unlike CCL-J , to combine functional and extra-functional aspects
in the same specification (for example, it is not possible to link a extra-functional constraint to some
input parameter of a method). Several works have also proposed contracts for UML components. In
[Pah01], contracts between service providers and service users are formulated based on abstractions
of action and operation behavior using the pre and postcondition technique. A refinement relation is
provided among contracts but they only concerns peer to peer composition in this approach. In the
same way, a graphical notation for contracting UML components is proposed in [WBGP01], focus-
ing on expressing both functional (with OCL [OMG97]) and extra-functional (with QML [FK98b])
contracts on component ports. Here again, only the connection of components is considered and
checking means are not discussed. More recently Defour et. al. [DJP04] proposed a variant of the
contracts of [WBGP01] with QML , which can be used for constraints solving at design time.
ADLs have been proposed for modelling software architectures in terms of components and their
overall interconnection structure. Many of these languages support formal notations to specify com-
ponents and connectors behaviors. For example, Wright [AG97] and Darwin [Mag99] use CSP-based
notations, Rapide [La95] uses partially ordered sets of events and supports simulation of reactive ar-
chitectures. These formalisms allow to verify correctness of component assemblies, checking prop-
erties such as deadlock freedom. Some ADLs support implementation issues, typically by generating
code to connect component implementation, however most of the work on applying formal verifi-
cations to component interactions has focused on design time. A notable exception is the SOFA
component model and its behavior protocol formalism [PV02], based on regular-like expressions,
that permit the designer to verify the adherence of a component’s implementation to its specification
at runtime. The extension of ConFract with such behavioral formalisms is the subject of a following
work presented in the next section.

2.1.8 Summary

We have described the ConFract system, which proposes a contractual approach for hierarchical
component models. Contract objects are dynamically built from specifications, at assembly time, and
are updated according to dynamic reconfigurations. These contracts are not restricted to the scope of
interfaces, taken separately. On the contrary, new kinds of contracts can be associated to the scope
of a whole component. These composition contracts constrain either several external interfaces of
a component, providing some kind of "usage contract", or several interfaces inside the component,
providing a sort of "assembly and implementation contract".
In ConFract , the responsibilities are identified in a fine-grained way, at the level of each provision
of a contract. As a result, developers can better organize violation handling and adaptations. The
current implementation of ConFract follows the principle of separation of concerns by using Fractal

controllers, which manage extra-functional services at the component level.
ConFract has been applied in different case studies, notably in a client/server application that orga-
nizes instant communities that share the same interest (see section 2.2.2). Different sub applications
are then controlled inside a community, the Fractal player used as illustration begin one of them. This
application will be further detailed in some of the following sections.
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In the version presented, ConFract uses the executable assertions language CCL-J to express speci-
fications at interface and component levels. This language allows the developer to express interesting
properties at the component level, but other formalisms, especially oriented towards behavioral speci-
fication, have been identified as candidates for integration. A part of this integration in a more general
contracting framework is the subject of the next section.
Besides, in order to better handle contract violations, the idea of some negotiation mechanisms have
emerged from this work, mainly by exploiting the explicit responsibility model. This will be presented
in chapter 3.

2.2 From a Contracting System to a Framework

This section shares material with the SC’06 paper "Enforcing Different Contracts in Hierarchical
Component-Based Systems" [COR06], the SOFSEM’07 paper "Towards a Versatile Contract Model
to Organize Behavioral Specifications" [COR07] and the SC’07 paper "Composite Contract Enforce-
ment in Hierarchical Component Systems" [CMOR07]. It concerns Alain Ozanne’s PhD Thesis and
collaborative work with Jacques Malenfant and Nicolas Rivierre within a contract with France Télé-
com R&D (now Orange labs).
With the definition of components provided by models such as Fractal [BCL+04, BCL+06], con-
tracts must not only be associated with connected interfaces between components, but also with their
assemblies, so that they can organize the guarantee of properties related to exchanges between assem-
bled components. With ConFract , described in the previous section, specifications with executable
assertions are used to dynamically build contract objects at assembly time, which are maintained at
run-time and updated according to dynamic reconfigurations. Not being restricted to the scope of
separated interfaces, new kinds of composition contracts are supported and semantically defined by
their own responsibility model.
Aiming at some reusable sets of abstractions to facilitate contract support in different contexts, we
focused on determining a software framework [JF88] to do so. For our objectives, the two common
definitions of a framework [Joh97] are relevant: "a framework is a reusable design of all or part of

a system that is represented by a set of abstract classes and the way their instances interact", and "a

framework is the skeleton of an application that can be customized by an application developer."

2.2.1 Requirements for a General Contracting Framework

Going beyond assertions, a general contracting framework should be able to interpret, in contractual
terms, a larger class of formalisms. Indeed, either static or dynamic, many relevant properties can be
expressed, using different specification formalisms [LBR99, dAH01, PV02, BS03]. Behavioral spec-
ifications are particularly complementary to execution assertions, which are state-based, because they
allow for expressing constraints over method call order. For example, interface automata [dAH01]
allows for checking compatibility and refinement between interface models that relate input to out-
put call orders. Behavior protocols [PV02] express traces on interface method calls with a form of
regular expressions and takes into account hierarchical components. These protocols can be defined
on interfaces, frames (aka component types) and architectures (aka component internal assembly).
Compatibility and refinement of specifications are verified at design time. Adherence of a compo-
nent’s implementation to its specification can be checked at run time or by program model checking
[PPK06].
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Combining different specification formalisms is then desirable to leverage reliability on component-
based systems, but this task is rather complex, given the diversity of formalisms that express behavior,
their numerous common points and differences, and the separation between static and dynamic ap-
proaches. This shows that a more general contracting framework should handle several formalisms,
with the verification of conformance of a component to its specification, such as in our first contract-
ing system, but also the compatibility between specifications.
Among contract models that have been proposed for components, all considered at least the con-
formance of the components’ concrete realizations to their specifications. They handled quality of
services [SAD+02, JDP03] or behavioral [TBD+04] properties, but were dedicated to one form of
formalism. Fewer models dealt with the compatibility of components in a configuration. These mod-
els differed by their consideration of the architecture and by the point at which they explicitly define
the compatibility. For example, in the CQML model [Aeg01], the compatibility property is not ex-
plicit. Even if an expression of the compatibility is provided in the language, it is not linked with
the component architecture. On the contrary, the architectural configuration is taken in account in
[TBD+04], but if the compatibility property is handled in the formalism, it is still not explicit in the
model. Interface bindings are the bases of Requirement/Assurance contracts [Rau00], which explicit
the compatibility of their participants, but the formulation of this property is dedicated to the contract
formalism. The most advanced work in this direction was Parameterized Contracts [RSP03b]. Even
if the compatibility is not explicitly part of this model, a generic expression is given with consid-
eration to the architecture. Moreover behavioral and QoS properties, for specific formalisms, were
considered.
Besides, the emergence of service oriented architectures [MLM+06], as well as the Service Compo-

nent Architecture specifications [Ope07], put a strong focus on how to create service-based composite
applications, leading to different architectural configurations to be considered. In this context, we also
defined as a requirement of the framework that it must also enable software designers to use different
architectures, with contract types tailored to the kinds of architectures it controls. We summarize
these requirements in the four following properties for our framework:

P1 - Make explicit the conformance of individual components to their specifications.

P2 - Make explicit the compatibility of components specifications (between components of same level

of composition, and between a composite and its subcomponents), on the base of their archi-

tectural configuration.

P3 - Make explicit the responsibilities of participating components against each specification they

are involved in.

P4 - Support various specification formalisms and verification techniques (at configuration or run

times).

The next paragraphs presents and illustrate the Interact framework, which meet these requirements.

2.2.2 Case Study

We illustrate our contribution on an instant messaging system with dynamic grouping capabilities.
This application, named Amui6, has been developed using both Fractal components and web ser-
vice technologies. It served as a validating application for ConFract (see previous section), Interact ,

6Amui means to gather in Tahitian.

22



2.2. From a Contracting System to a Framework

the framework now presented, and the contract negotiation system developed on top of them (see
section 3.1).
The Amui system manages automatic grouping of users, according to their common interests, and
dynamic application sharing. The server part is deployed on an Apache Tomcat container bundled
with the Axis SOAP engine. Moreover, it also reuses instant messaging (IM) functionalities provided
by the existing Openfire system7, a cross-platform and extensible IM server that relies on the XMPP
protocol. These functionalities are accessed and managed through component and service proxies,
enabling the virtualization of the whole system through Fractal components.
Functionally, an user equipped with the Amui client application connects to the Amui server and
gives some authentication information (login, password) as well as some keywords that describe its
interests. The server then automatically finds the groups whose topics match the user’s keywords,
and it adds the user into the matched groups. Groups are associated with chat rooms and currently,
once assigned in the same chat room, users can engage in a discussion with other users, and they also
receive various advertisements according to their group topics. However, a larger range of shared
functionalities can still be integrated into groups, for example to stream videos or simply to launch
other applications on all clients.
Figure 2.7 shows a simplified view of the Amui architecture, focusing on the server part. The Amui
server is structured with components at different levels of hierarchy. The top-level composite com-
ponent named AmuiServer is formed out of three subcomponents : AmuiFacade which pilots
all main functionalities, Core which encapsulates all the business functionalities, Advert Proxy

which represents a proxy to the external advertisement web service used by the Core component
and a BdwMonitor component to get information on the consumed bandwidth. The Core is pi-
loted by AmuiFacade through three interfaces : one to match users’ keywords to groups’ topics
named GroupMatching, one to manage users (UserManagement) and the last one to man-
age groups named (GroupManagement). Each interface is bound to one of the three components
UGMatcher, GroupManager and UserManager, which simply provide functionalities corre-
sponding to their name. In particular, UGMatcher contains the component LuceneMatcher that
implements the matching mechanism by reusing the Apache Lucene8 text search engine library. As it
implements a rather general service, LuceneMatcher has a required interface, MatchAdapter,
which gives access to a map-like structure in which the search is done. The map of information is
then filled by the dedicated adapter component GroupAdapter with the various user groups infor-
mation.
Many properties, both functional and non functional can be expressed on the extracted component
assembly. In the remainder of the section, we focus on some specifications and contracts that illustrate
our contributions.

2.2.3 Interact Framework Principles

In Interact , the overall design of the underlying contract model assumes that the collaboration be-
tween software entities (components, services, etc.) is driven by their architectural configuration. A
complete and operational contract model is thus meant to verify properties of such configurations,
and to determine the participating entities and their responsibilities. This implies that the used speci-
fications should be explicit enough to allow a contracting system to determine the origin of a failure
of a configuration. The model should also make it possible to express guarantees using various kinds
of specification formalisms, provided that they can be interpreted in terms of contracts. On another

7http://www.igniterealtime.org/projects/openfire/index.jsp
8http://lucene.apache.org/
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interface Connection{

int getMaxConnections ( ) ;
. . .
}

interface CoreAttr ibutes
extends Att r i bu t eCont ro l l e r {

int getMaxUsers ( ) ;
. . . }

interface UserManagement{

User createUser ( Str ing username , Str ing password ) ;
void addUserTab ( L i s t u s e r s ) ;
int r eg i s t r a t i onQueueS i z e ( ) ;
void s tartUserCrea t i on ( ) ;
void c l os eUserCrea t i on ( ) ;
void setKeyWordList ( Co l l ec t i on <String> keywords ) ;
void setGroup ( User u , Group g ) ;

. . .
}

interface BdWidthInfo{

int getBdWLevel ( ) ;
. . .
}

interface GroupManagement{

Col l ec t i on <String > getGroupsId ( ) ;
Co l l ec t i on <String > getGroupTopics ( Str ing groupid ) ;
void startGroupSearch ( ) ;
void closeGroupSearch ( ) ;
Co l l ec t i on <String > getGroupTabForKeyword ( Str ing keyword ) ;
Co l l ec t i on <String > ref ineGroupSearch ( Str ing keyword ) ;
Group createGroup ( Str ing groupid ) ;
int removeGroup (Group g ) ;

. . .
}

interface GroupMatching {

Col l ec t i on <String > searchGroupForKeywords ( Co l l ec t i on <String >
keywords ) ;

Co l l ec t i on <String > getGroupTab ( Col l ec t i on <String > keywords ) ;
. . .
}

ContentController (CC)BindingController (BC) LifecycleController (LC)

: provided interface (server) : required interface (client) : attributes : control interface: membrane

AmuiServer <as>

Interfaces Signature

umt:User
Management

Management
gmt:Group

gm:Group
Matching

umt:User
Management

Core <c>

<af>
AmuiFacade

c:Connection

AdvertProxy
<ap>

BdwMonitor
<bm>

UGMatcher<ugmtc>

bi:bdWidthInfo

maxUsers

UserManager
<umgr>

maxUsers

<gmgr>
GroupManager

gmt:GroupManagement

gm

gmt
c:Connection

ma:Match
Adapter

<ga>

GroupAdapter

<mtc>
LuceneMatcher

Figure 2.7: Architecture of the server.
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hand, as different component and service models are to be handled, the contract model should be
adaptable to different architectural styles, i.e. different configuration of collaborating components.

Formalism

Integrator Architecture

Integrator

DSL

Architecture

Plugin

Formalism

Plugin

provides

DSL rules

generator

provides observations 

on the systemFramework

kernelinterprets rules

(responsibilities)
evaluates rules

(observations)

Figure 2.8: Principles of the Interact framework.

As shown on figure 2.8, the framework is based on a central contracting model, that acts as a rea-
soning kernel. A contract is thus defined as a software artifact that takes as input an architectural
configuration and some specifications related to the components of its configuration, and evaluates
the validity of the configuration, with a precise diagnosis in case of failure. To handle the variability of
formalism, the integration of each formalism is made by providing a rule generator for the language.
Rules are expressed through a provided DSL, described in the next paragraph. As for the architectural
part, a specific plugin is also provided so that the DSL rules can be interpreted according to events
occurring on a targeted architecture.
In the kernel, the contract model integrates specifications following an assume-guarantee seman-
tics [AL93]. As this semantics basically describes commitments between a component and its envi-
ronment, it enables the contracting system to make explicit the assumptions and guarantees and to
compute both conformity and compatibility checking on the manipulated specifications. Figure 2.9
shows the concrete syntax associated with the generic contract model. It mainly defines:

Participants. The participants of a contract are the components of the architectural configuration it
constraints.

Clauses. Each of the clauses is associated to a contract participant and contains a guarantee and an
assumption following the assume-guarantee semantics. The associated participant is respon-
sible for the satisfaction of the guarantee as long as the other participants, its environment,
satisfy the assumption. More precisely the guarantee constrains elements that are provided by
the responsible participant (its emitted signals...), whereas the assumption constrains elements
that are required by the participant (incoming signals...).

Agreement. The agreement makes concrete the compatibility between the different clauses of par-
ticipating components. Components work together by exchanging elements they provide and
require. Their collaboration then requires that a guarantee made by the provider of an ele-
ment on this latter fulfills the assumption made on this element by its requiring component.
The agreement is thus the combination of these compatibility expressions on the exchanged
elements.

The underlying kernel object model is discussed in section 2.2.7.

2.2.4 Integration of Formalisms

The integration of a formalism in the contracting framework is concerned by the definition of appro-
priate verification methods and tools. The provided DSL enables integrators to focus on the semantics
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Contract

{
P a r t i c i p a n t s : <component_name >* ;
C l a u s e s :
{

c l a u s e : <name>
r e s p o n s i b l e : <component_name >;
guarantee : < e x p r e s s i o n > ;
assumption : < e x p r e s s i o n > ;

}*
Agreement : { ag reemen t e x p r e s s i o n }

}

Figure 2.9: Concrete syntax pattern of a resulting contract object.

of observations and verifications rather than on technical particularities. Using the DSL one can give
a set of rules describing where and when observations occur, what values they capture, and the veri-
fications to be triggered. A rule is defined the following syntax pattern:

On <a component >
Observe {

( v a l : <some va lue > at : <some t imes > ; ) +

}
V er i f y <some p r o p e r t i e s >

The On block defines what spatial domain of the system is visible to the rule, i.e. a component scope.
The Observe block describes the observations operated in the scope. It contains a list of observations
that are defined by the statements val:... at:..., where the at block gives the times at which the value
described in the val block can be observed. Finally, the Verify block describes the checking part,
where the property to evaluate is a predicate that takes the val values as parameters.
In order to define when observations should occur, some atomic observable events are provided. For
example, the following definition contains one event: the entry in the getGroupsId() method of the
gmt interface (see the Amui example on Figure 2.7).

at : e n t r y C o l l e c t i o n < S t r i n g > gmt . g e t G r o u p s I d ( )

Basic regular expressions enable designers to easily denote sets of events that encompass several
method calls or several interfaces using wilcards.

at : e n t r y * gmt . * ( * ) , e x i t * gmt . * ( * )

This set of events contains all events that are determined by an entry or exit of any method on the gmt

interface. This kind of event specification is similar to what is used in aspect-oriented programming
[KLM+97]. In our context, events that are specific to components life cycle are also manipulable
so that configuration events can be taken into account. For example, adding/removing a component
to/from a composite one, or binding/unbinding two interfaces. As the Fractal platform provides these
control features through extensible interfaces [BCL+04], it is quite straightforward to be notified of
these events in this architecture. In the general case, this is the responsibility of the architecture pattern
to trigger relevant events to the contracting kernel so that they can be used in rule interpretation.
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2.2.5 Application to Executable Assertions

We now show how the CCL-J assertion language (cf. section 2.1.4) we developed for the ConFract

system (cf. section 2.1) can be integrated in the framework by providing a appropriate DSL gener-
ator. We give examples of some CCL-J specifications on the Amui system and show the generated
contracts.
Regarding interface specifications, the following assertion concerns the createUser method on the
UserManagement Java type:

c o n t e x t User UserManagement . c r e a t e U s e r ( S t r i n g username ,
S t r i n g password )

pre : ! username . t r i m . e q u a l s ("" )

In this particular case, the system can produce the equivalent of an interface contract in ConFract

wherever this interface is used on the binding between a client and a server interface. In the Amui
server, this is for example the case between the two interfaces connected between the AmuiFacade
<af> and the Core component <c>.
The following text shows a textual representation of the contract object, using the resulting DSL rules
to define observations:

Contract :
P a r t i c i p a n t s : <af > , <c > ;
Clause :

r e s p o n s i b l e : <af >
guarantee : r u l e {

On <c>
Observe {

v a l : username
at : e n t r y umt . c r e a t e U s e r ( S t r i n g username ,

S t r i n g password ) ;
}

V er i f y ! username . t r i m . e q u a l s ("" )
. . .

Here, the responsibilities defined for ConFract are reproduced with (i) guarantor which is responsible
to ensure the clause and must be notified in case of violation, (ii) beneficiaries which can rely on the
clause or (iii) possible contributors which are needed to check the clause. The syntax above only
shows the responsible component, in our example, this is a classic client-server relationship: the
component <af> is thus responsible to ensure the precondition as it is the caller of the method.
To illustrate contract based on exchanges between components, we define the following specifica-
tions:

on <af >
c o n t e x t vo id umt . addUserTab ( L i s t u s e r s )

pre :
u s e r s . s i z e ( ) < c . ge tMaxConnec t ions ( ) ;

on <c>
c o n t e x t vo id umt . addUserTab ( L i s t u s e r s )

pre :
u s e r s . s i z e ( ) < 20−umt . r e g i s t r a t i o n Q u e u e S i z e ( ) ;

27



Chapter 2. Contracting

The first precondition above is a specification on the <af> component, which states that the size of the
list of registration requests does not exceed the number of simultaneous user connections accepted
by the server. The second precondition, on component <c>, constrains the size of the registration list
received so that the final size of the registration queue is less than 209. The resulting contract, which
will be managed by the contracting system, has the following textual form:

Contract :
P a r t i c i p a n t s : <af > , <c> ;
Clause :

r e s p o n s i b l e : <af >
guarantee : r u l e {
On <af >

Observe : v a l : u s e r s at e n t r y umt . addUserTab ( L i s t u s e r s ) ;
V er i f y : u s e r s . s i z e ( ) <c . ge tMaxConnec t ions ( ) ;

}

Clause :
r e s p o n s i b l e : <c>
assumption : r u l e {
On <c>

Observe : v a l : u s e r s at e n t r y umt . addUserTab ( L i s t u s e r s ) ;
V er i f y : u s e r s . s i z e ( ) <20−umt . r e g i s t r a t i o n Q u e u e S i z e ( ) ;

}

Agreement :
On <c>

Observe :
v a l : u s e r s at e n t r y umt . addUserTab ( L i s t u s e r s ) ;

V er i f y :
u s e r s . s i z e ( ) <c . ge tMaxConnec t ions ( ) =>

u s e r s . s i z e ( ) <20−umt . r e g i s t r a t i o n Q u e u e S i z e ( ) ;

The contracting system is thus able to interpret these two preconditions in the terms of the underlying
contract model. It follows that in the first clause, <af>, client of addUserTab method, classically guar-
antees the first precondition (property P1 and P3). It also comes that <c>, server of the addUserTab-

method, assumes then the second precondition, that is the second clause of the contract (property P1).
This assembly of two components is valid not only if their clauses are respected (property P1), but
also if these latter are compatible. This compatibility property constrained what is exchanged, i.e. the
users list, and is made explicit by the agreement. It represents the implication of the assumption by
the guarantee, i.e. the assumption of component <c> on a received users list must be fulfilled by the
guarantee of component <af> on this sent list (see Figure 2.10). The inverse implication would have
been built if postconditions were also present in the input specifications.

2.2.6 Application to Behavior Protocols

The behavior protocol (BP) formalism [PV02] allows one to specify and verify the correctness of
communication among components. It has been applied to hierarchical component models (SOFA
[PV02] and Fractal itself10 [KAB+06]) to capture both horizontal (client-service) and vertical (nest-

9This kind of constraint has been really observed on the underlying IM server, with too many simultaneous user regis-
trations being canceled by the system.

10http://fractal.objectweb.org/fractalbpc/index.html
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As = pre : 

users.size()<20-umt.registrationQueueSize();

Ac = post : true

Gc = pre :

users.size()<c.getMaxConnections();

Gs = post : true

Contract (binding between two components)

server Interface

logical implication

Agreement :

Gc => As

Gs => Ac

G : GuaranteeA : Assumption<X>.y : interface y of component X

client interface

<af>.umt <af>.umt

Figure 2.10: Agreement of the assertion-based contract between <af> and <c>.

ing) communications among components. We now illustrate how the framework would integrate and
interpret BP in terms of explicit contracts.
BP are associated to the frame and architecture of components. A frame is a black-box view of
a component, defining its provided and required interfaces. An architecture describes the structure
of a composite component. It is formed by the frames and bindings of its sub-components at the
first level of nesting. A BP is an expression describing a set of traces (sequences of events). When
applied to components, every method call or a return from a method call forms an event. The notation
proposes several useful shortcuts. For example, the notation !i.m describes the activity of a caller
component (emitting a m method call on its required interface i followed by accepting the return),
while ?i.m describes what the callee component does (accepting the call on its provided interface i

and emitting the return). Some of the operators employed in behavior protocols are ; for sequencing,
+ for alternative choice, * for finite repetition, and | for parallel interleaving of the traces generated
by the operands. If P is an arbitrary protocol, ?i.m{P} means that the call request of m is absorbed,
and while m is processed, the component behaves as specified by P; afterwards, the call response of
m is emitted.
The frame protocols of the <ugmtc>, <gmgr>, <umgr> components and the composite <c> of the
Amui system (cf. section 2.2.2) can be completely specified. We now only describe a part of it to il-
lustrate our contribution. In order to associate the new users to their relevant groups, the getGroupTab

method is called on the matcher component for each user. This component then retrieves group infor-
mation through the group manager. Considering the specification ugmtcFP, the frame protocol of the
matcher component <ugmtc>, means that while its method getGroupTab is processed, this component
emits several calls to get and refine group searches. More precisely, <ugmtc> accepts a getGroupTab

call on its provided interface gm. While this method is processed, this component emits a sequence
of calls on its required interface gmt (startGroupSearch, a finite number of getGroupTabForKeyword,
a finite number of refineGroupSearch and finally closeGroupSearch). Afterward, the response of
getGroupTab is issued.

/ / ugmtcFP : frame p r o t o c o l o f t h e UGCMatcher component

?gm . getGroupTab {
! gmt . s t a r t G r o u p S e a r c h ;
! gmt . getGroupTabForKeyword * ;
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! gmt . r e f i n e G r o u p S e a r c h * ;
! gmt . c l o s e G r o u p S e a r c h

}

The following protocol concerns the GroupManager component, which behavior has three alterna-
tives. The first one is symmetric to output of the protocol described above and the two others relates
to group creation and removal.

/ / gmgrFP : frame p r o t o c o l o f t h e GroupManager component

( ?gmt . s t a r t G r o u p S e a r c h ;
?gmt . getGroupTabForKeyword * ;
?gmt . r e f i n e G r o u p S e a r c h * ;
?gmt . c l o s e G r o u p S e a r c h

)
+ ?gmt . c r e a t e G r o u p
+ ?gmt . removeGroup

/ / umgrFP : frame p r o t o c o l o f t h e UserManager component

?umt . s t a r t U s e r C r e a t i o n ;
?umt . se tKeyWordLis t ;
?umt . s e t G r o u p * ;
?umt . c l o s e U s e r C r e a t i o n

The following protocol finally expresses the composite protocol of the Core component, which is
refined by the three previous protocols.

/ / cFP : frame p r o t o c o l o f t h e Core component

?umt . s t a r t U s e r C r e a t i o n ;
?umt . se tKeyWordLis t ;
?gm . getGroupTab ;
?umt . s e t G r o u p * ;
?umt . c l o s e U s e r C r e a t i o n

Using the behavior protocol formalism and its associated tools, the designer can verify:

⋄ the adherence of a component’s implementation to its specification. This kind of verification
refers to our property P1 and can be achieved using an appropriate runtime checker or program
model checker tools.

⋄ the correctness of composing or refining the specifications. This kind of verification refers
to property P2 and can be achieved using model checker tools: either horizontally (checking
that frame protocols cooperate well together when composed at the same level of nesting)
or vertically (checking the compliance between the architecture and the frame protocols of a
composed component).

In our case, as an architecture protocol of a composed component is constructed as a parallel compo-
sition of the frame protocols of its sub-components, the architecture protocol of the Core component
<c> is built as (ugmtcFP ⊓ gmgrFP ⊓ umgrFP), where ⊓ is the parallel composition.
Regarding the contractual interpretation of Behavior Protocols, we observe that a frame protocol
specifies the valid traces of incoming and outgoing calls of a component. It naturally fits with the
notion of clause and makes it possible to express the conformance of a component to its specification
and its responsibility (as long as its incoming calls satisfy the protocol, its outgoing calls must satisfy

30



2.2. From a Contracting System to a Framework

this protocol). Moreover the compatibility of behavior protocols can be checked between nested
components, or between components at the same level of nesting. This makes it possible to express
the compatibility based agreement of a contract on any configuration of components.
We now illustrate how our properties P1, P2 and P3 can be expressed in our contracting framework.
Conformance (P1) and Responsibility (P3). The illustration applies to the component <ugmtc> and
its frame protocol ugmtcFP introduced above. The verification of the protocol is separated in two
rules, one for the guarantee and one for the assumption. The guarantee rule verifies that each call
of the component <ugmtc> is emitted in conformance with the protocol, while the assumption rule
verifies that each received call is effectively expected by the protocol. The guarantee must hold as
long as the assumption holds, otherwise the component <ugmtc> violates its specification. A runtime
checker tool is used to verify the conformance at each new observation.

Contract :
P a r t i c i p a n t s : <ugmtc > , <gmgr > , <umgr > , <c> ;
Clause :

r e s p o n s i b l e : <ugmtc >
guarantee : r u l e {

On <ugmtc >
Observe : v a l : at e n t r y gm . * ;
V er i f y : run t imeCheck ( ugmtcFP ) ;

}
assumption : r u l e {

On <ugmtc >
Observe : v a l : at e n t r y gmt . * ;
V er i f y : run t imeCheck ( ugmtcFP ) ;

}
. . .

Compatibility (P2). The next illustration relies on a component life cycle event. The rule expresses
that, just before starting the composed component <c>, an agreement must be verified between this
component and its subcomponents 11. The verification is done first horizontally (checking that the
parallel composition of the frame protocols of the components <ugmtc>, <gmgr> and <umgr> is
valid) and then vertically (checking the compliance between the architecture protocol obtained from
the first step and the frame protocols of the composed component <c>). This kind of verification,
based on model-checking, can be alternatively realized at the ADL level.

Contract :
P a r t i c i p a n t s : <ugmtc > , <gmgr > , <umgr > , <c> ;
. . .
Agreement :

On <c>
Observe :

v a l : at : e n t r y <c > . s t a r t
V er i f y :

v e r t i c a l C h e c k ( cFP ,
p a r a l l e l C h e c k ( ugmtcFP , gmgrFP , umgrFP ) )

11As in ConFract , static checking on Fractal component can only be done when one is sure an assembly is complete. We
use the start method here, but another integration could have associated this verification to some external event, such as an
explicit validation inside an IDE
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It must be noted that the methods used in the verify clauses (runtimeCheck, verticalCheck, paral-

lelCheck) are to be provided when integrating the BP formalism in the framework. They encapsulate
appropriate checking methods to be accessible in the DSL rules.

2.2.7 Kernel of the Contracting Model

We now describe the object model of our contracting kernel. Following our main design choices, a
contract must be represented a set of clauses constraining its participants, that are finally bound by an
agreement. Figure 2.11 shows a class diagram of the main reified concepts. A Participant is an object

watches

ContextAssumption

   *

Agreement

*
refers to

*

   *

responsible

ParticipantArchitecturalPattern

constrains

CompositeContractualSpecification

Guarantee

Assumption

ContractualSpecificationClauseContract

Figure 2.11: Kernel model of the contracting framework.

that refers to a compositional entity of the architecture, a Fractal component in the specialization
of the framework for Fractal that we have used so far. Participants are obtained by the Architec-

turalPattern described below. Guarantee and Assumption hold a predicate and the description of
the observations on the system it constrains. For a given component, the guarantee constrains what
it provides (its emitted messages...) while the assumption constrains what it requires (its received
messages...). According to the formalism used, their satisfaction can be evaluated at configuration or
run times. A ContractualSpecification is simply a representation of the predicate that binds together
an assumption and a guarantee for a given component. It follows the assume-guarantee principle:
as long as the assumption is true then the guarantee has to be also true [AL93]. Consequently, our
model applies to specification formalisms that are modular, i.e. a specification can be attached to a
component, and that can also be interpreted in assume-guarantee terms (property P4).
A Clause is an object associating a contractual specification with a participant of the contract (prop-
erty P1), which is then responsible for its guarantee (property P3). The model relies on architectural
paths, not detailed here, to navigate in the component structure. They allow a Clause to enforce its
specification, by checking if its guarantee and assumption denote respectively observable actions un-
der the control of the component it constrains (e.g. emitted calls) or of its environment (e.g. received
calls). Some strategy objects are associated to the evaluation of clauses, to detect if a guarantee is vio-
lated before its associated assumption. An Agreement then expresses the compatibility of the clauses
(property P2) of the contract, stating that the assumptions of the collaborating parties are fulfilled
by their guarantees in a given environment. An ArchitecturalPattern defines a configuration of rela-
tions between software entities. It is used to discern the entities and their relations constrained by
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the contract. A ContextAssumption expresses a supplementary assumption on the environment of the
components, i.e. a predicate constraining the context in which they are composed.
In addition the model also supports the vertical composition of contracts, still relying on the Abadi/Lam-
port theorem [AL93], which makes explicit, under some assumptions, the dependency between the
specification of a component and the ones of its subcomponents. Enforcing vertical composition
consists in checking the compatibility between the specification of a composite and the composition
of its subcomponents specifications. In order to support this, A CompositeContractualSpecification

class refers to a Contract between its subcomponents. This contract reifies an agreement so that the
resulting composite contract can check the validity on the agreement between subcomponents. The
CompositeContractualSpecification is itself an assume-guarantee ContractualSpecification obtained
from the specifications of its subcomponents, which make explicit the conclusion of the theorem rule.
The application of this inference rule relies on several prerequisites, which are going to be either en-
sured by construction, or checked on the components by appropriate elements in the contract model.

2.2.8 Framework Roles

At each stage of the framework usage is associated some roles that we now describe, with a focus on
the instantiation of the framework on the Fractal platform (cf. figure 2.12):

Formalism

Integrator Architecture

Integrator

Business

Designer

Component

Assembler

Contract

Controller

DSL

Fractal component

(Julia implementation)

Architecture

Plugin

Formalism

Plugin

specs

assembles with

guarantee and

diagnosis

provides

specs

provides

DSL rules

generator

provides observations 

on the systemFramework

kernelinterprets rules

(responsibilities)
evaluates rules

(observations)

Figure 2.12: Roles and features of the framework with a Fractal instantiation.

On the formalism side, each formalism integrator, an expert in the semantics of the formalism to be in-
tegrated, has to provide a plugin that is able to parse specifications and to associate them to DSL rules,
as described in section 2.2.4. On the architecture side, an architecture integrator provides observa-
tions on the system, so that the kernel can reason on an architecture. This encompasses introspection
on architectural elements (components, interfaces in the case of Fractal ) and behavioral observations
(description and notification of observed events, such as method calls on Fractal interfaces).
Later on, business designers can use available formalisms to write specifications on components
and their assemblies. At configuration and runtimes, component assemblers can simply put together

33



Chapter 2. Contracting

specified components. The contracting framework is then able to build contracts managed by contract
controllers (see next section). Through these controllers, component assemblers get information on
the constructed contracts, as the kernel can compute agreements and shows responsibilities among
assembled components.

2.2.9 Contract Management in the Fractal Instantiation

To present the framework, we have only focused on its Fractal instantiation as it is the richer form
of architecture that we have targeted and was the only one to be validated end-to-end. We briefly
discuss here how contracts are managed at runtime in Fractal , mainly by showing the differences and
extensions from the ConFract system implementation described in section 2.1.6.
To do so, the framework provides interfaces and abstract classes to provide contract manager. In
Julia-based implementation of Fractal that we use, this is an adapted form of the contract con-
troller presented in the previous section that will implement the contract manager interface. Figure
2.13 gives an overview of the main interactions realized by a contract controller. Basically, the con-
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Figure 2.13: Main interactions related to the contract controller in the framework.

tract controller still implements the same functionality as in ConFract , but in the framework, each
modification of the architecture perceived by one of the other controllers (binding, content, life-cycle)
is now transformed in an event handled by the framework DSL engine. Contract objects, as shown in
previous paragraphs, are incrementally built and attached to the corresponding contract controller. For
the runtime checking part, which concerns functional interfaces (CCL-J assertions checking, obser-
vations on Behavior Protocols), the architecture plugin is realized through another controller, named
ServiceController. It pilots interceptor objects put on each functional interface of its component. An
object or component can then register on this controller to be notified of specific events (e.g. entry of
a method). This mechanism directly implements the necessary observation part of the architectural
plugin. Consequently, when a contract is built through the contract controller, it registers itself to the
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service controller of each component that has to be observed. At runtime, when a message is sent to
an interface, the service controller detects it through one of its interceptor objects, notifies the contract
controller, which evaluate the appropriate rules, thus checking clauses and agreements.

2.2.10 Summary

We have described a general framework that aims at abstracting the integration of different speci-
fication formalisms so that given specifications can be organized as contracts on different software
architectures with an appropriate support for checking. The nature of the proposed framework is ex-
pressed through two major plugins, a formalism plugin, so that different specification formalisms can
be contractually handled, and an architecture plugin, so that a contracting kernel model can be applied
to different kinds of architecture, mainly components and services. Taking into account formalisms is
done through a DSL, that enables formalism experts to give to the system a generator of interpretation
rules corresponding to specifications. The central model reifies them as contractual specifications, i.e.
predicates following the assume-guarantee semantics [AL93]. This enables the system to compute
responsibilities on specifications when they are interpreted as contracts. Moreover, two major prop-
erties can then be checked on contracts, i.e. conformity of a component against its specification and
compatibility between specifications of horizontally or vertically composed components. On the ar-
chitecture side, both architectural and behavioral observations must be defined in the framework so
that contract construction and checking can be automated.
The implementation of our framework is currently based on the Julia implementation of the Fractal

specification, like the ConFract system implementation. It actually reuse and extend this implementa-
tion so that i) architectural events needed by the framework are provided by some Fractal controllers,
ii) contracts are built and updated by a contract controller interacting with other controllers, iii) con-
tracts are checked by interpreting the rules on event triggering.
Three formalisms have been studied for integration, executable assertions with CCL-J , behavioral
CSP-like specifications with Behavior Protocols, and sequence-based specifications with TLA [Lam94]
(see also [COR06]). A combination of the first two have been used on a developed Fractal based
client/server application that demonstrates this part of the integration as well as the architectural in-
tegration with hierarchical component-based systems. Nevertheless, Fractal is the only architecture
that has been completely integrated in the framework. Demonstrations over service, or service and
component based systems like SCA [Ope07], were missing. The following section 2.3 deals with
the FAROS project and will show some reuse of the contracting kernel in a model driven toolchain
targeting both service and component based systems.

2.3 From a Framework to a Model-Driven Toolchain

This section shares material with the CAL’08 paper "Vers l’intégration dynamique de contrats dans
des architectures orientées services : une expérience applicative du modèle au code" [MBFCL08]
and with several external deliverables of the ANR FAROS project 12. It is therefore related to several
collaborative works within the project, with Mireille Blay-Fornarino, Laurence Duchien, Philippe
Lahire, Sébastien Mosser, Alain Ozanne and Nicolas Rivierre.
The FAROS project took place between 2005 and 2008. It aimed at defining a composition envi-
ronment for building reliable SOAs (Service Oriented Architectures) for applications to be used in
ubiquitous environments. The main approach is to use contracts between various stakeholders and

12http://www.lifl.fr/faros

35

http://www.lifl.fr/faros


Chapter 2. Contracting

entities of the application at the design level, in order to ensure a coherent composition of the services
and components at the implementation level.

2.3.1 Motivations

In order to ease construction and maintenance of large and evolving information systems, SOA is
usually presented as an architectural style allowing companies to transform existing resources into
reusable and decoupled business services [MLM+06]. Building services from the composition of
several services is made explicit by a workflow which result is a service itself.
Focus on business services and loose coupling between them are key benefits for high-level design-
ers [Pap03]. To manage architectural benefits of SOA, fhe fusion of service-oriented and component-
based architectural styles led to proposals such as SCA (Service and Component Architecture) [sta07].
However the integration and management of service-oriented applications and their necessary tech-
nical services, such as security, transactions, or QoS (Quality of Service), induced to take into ac-
count infrastructure and implementation targeted platforms. Many research work thus focused on
the composition of services, including adaptation of composite services (process, workflow) at run-
time [CM04], context-awareness of QoS measures for cooperating applications [BMFGI06], man-
agement of their constraints (Service Level Agreement) [BG05, ACD+05] and dynamic discovery of
new services.
In this context, developers and administrators have to build and maintain highly scalable decoupled
information systems, on a variety of platforms and constantly evolving technologies. Moreover They
also have to reliable systems, which rely on and provide adapted forms of guarantees, from business
SLAs to other contracts related to the software architectures or low-level QoS dimensions. There
are advances and partial solutions in the different layers of the considered software systems, but
major issues are the heterogeneity of execution platforms and the low-level abstractions offered to
business architects. This problem requires that the deployment of service compositions and associated
guarantees (performance, security, etc., specified at business level) are as much as possible automated.
This section shows how our contracting metamodel has been integrated as a central part of the FAROS
generic process for building reliable Service-Oriented Architectures for ubiquitous applications. We
mainly focus on the processing of contracts towards execution platforms. Besides, the ConFract

contracting system was also used as one of the targeted runtime platforms. It is notably used to
illustrate the projection from the abstract contract models to the platform specific models.

2.3.2 FAROS Process Overview

In order to ensure a coherent composition of services and components, the FAROS process is aiming
at using contracts between different entities. The contract elements capture different properties, e.g.
functional and non-functional, and are used throughout a model-driven composition environment
to integrate contracts from business level to various service and component based platforms. As
shown on figure 2.14, the process relies on three dedicated metamodels. High level abstractions,
dedicated to business domains and independent of underlying technologies, are offered to business
architects and captured by business metamodels (upper part of figure 2.14). A particular focus is
placed on a central metamodel integrating the concepts of service composition, contractual guarantees
and behavioral aspects. The diversity of the targeted infrastructures (orchestration or component) and
specific contracting capabilities (policies, assertion language, aspects, etc.) are handled by platform
models conforming to dedicated metamodels (lower part of figure 2.14). The central metamodel
decouples business and platform levels and consequently, it allows transforming a business model
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and its associated constraints into a pivot model, and later into an executable instance. Operations,
such as validation, can then be applied on the central models regardless of the contexts of business or
platforms.
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Figure 2.14: Models and metamodels in the FAROS process.

The transition between different models is handled by transformation. This approach helps to max-
imize the capitalization of know-how separately. The central metamodel also allows for reusing
transformations, so that structured information is preserved and external tools such as checkers can
be integrated during the development process. For instance, the central metamodel hosts the valida-
tion of service compositions and the processing that prepare projections to platforms through model
transformations.
Regarding contracts, they are first expressed as constraints on the business models. These constraints
are organized following the assume / guarantee semantics [AL93], so that they can be organized into
contract models inside the central model. These contract models use a contract metamodel directly
inspired from the Interact one presented in the previous section (see next paragraphs for details).
Finally, these contracts are refined with checker model, and the transformation to the targeted execu-
tion platforms maps to a specific contracting runtime support, from basic checking code to first-class
aspects or full-fledged contract objects.
The FAROS process has been developed to be generic enough to cover different service or component
platforms. Platform metamodels have been designed for five different platforms:

⋄ Adore [MBFR08], a web service orchestration engine that supports behavioral evolution with
an uniform and merging-based model for orchestration and evolution. Two versions were de-
veloped: a first one in which each contract is then transformed in an Adore fragment to be
then merged in the main business process, another one (Adore/Coconet [MBFCL08]) in which
contract checking code is generated inside web service implementations.

⋄ AoKell [SPDC06] is a aspect-oriented implementation of the Fractal component model. An
extension of it was developed for FAROS and transformed contracts are aspects that are woven
in components.
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⋄ ORQOS [BRL07], an extension of a BPEL engine to take into account static and dynamic QoS
policies. Contracts are then transformed into ORQOS policies for events related to services.

⋄ WComp [TLR+09], a lightweight service execution environment for ubiquitous event-based
applications, which supports dynamic orchestrations. Contracts are then transformed into
WComp specific aspects that are composed.

⋄ ConFract (see section 2.1), which is supported by generating CCL-J specifications from the
FAROS contracts, as illustrated below.

The approach is illustrated with a diversity of business domains (information broadcast in schools,
personal medical record system, smart appliance for electrical networks). The process is tooled
through EMF models and metamodels, and the transformations are implemented using the Kermeta13

workbench.

2.3.3 Metamodels and Integration of Contracts

Figure 2.15 depicts the structural part of the central metamodel. It defines the organization of software
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Figure 2.15: Structural part of the central metamodel (from FAROS deliverable F-2.3 [DBFC+08]).

Elements on which contracts can be applied. This metamodel is aimed at being sufficiently generic to
consider the structural dimensions of a service oriented architecture or a component-based architec-
ture. The concept of service or component is notably represented by an Entity and its type EntityType.
There is a support in the metamodel for an EntityType being defined by the process, being pre-existing
in the application, so that existing code can be represented when combined with generated one. An

13http://www.kermeta.org/
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entity also provides Operations via a ProvidedPort, requires Operations through a RequiredPort and
can have sub-parts.
Each structural Element of Figure 2.15 can be associated with one or several contracts, which repre-
sentation is given in the metamodel of figure 2.16. The upper part of this figure is the representation
of specifications organized as assumed/guarantee clauses and agreement between them, i.e. the ker-
nel part of Interact presented in section 2.2.7. Thus Contract has participants (Element), is made of
clauses which are defined by a Specifications attached to a type. A Specification associates an as-
sumption (assume relationship) and a guarantee (guarantee relationship). Each clause references one
of its participants as responsible for the clause, in terms of assume/guarantee logic. ActionGuarantee

is simply the reification of an action to be triggered in case of violation.
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Figure 2.16: Complete contract metamodel (extracted from [DBFC+08]).

Specifications and agreements are carried out by a Checker, which is the main entry point to the part
that reifies the checking process in the metamodel (lower part of figure 2.16. A Checker allows the
registration of the activation events (checkedOn) that will trigger the checking operation (check). It
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can get values from Observers, which are value containers that are computed on a specific Event.
They characterize the elements of an application which provide the information in accordance with
the context of a contract checking, i.e. any monitored value such as system time, the resolution of
a screen of any complex values computed from the execution environment. There is also a support
for Property, so that some non-functional properties that need to be made explicit at some points
of the process — such properties can be explicit right from the business model or only visible in
execution platform models —. The value computation of a property can also be implemented by an
Observer, so that the event triggering this computation is made explicit. The checker finally checks
its expression with all property and observer values. Events referenced in the contract metamodel
are also organized in a metamodel not show here. This metamodel allows for representing life cycle
events of entities (connections, start/stop...), communication (request sending/receiving, operation
entry and exit...) and application specific events. Moreover checkers, observers and properties can be
entirely defined in the model, and they are then Literal..., or they can be black-boxes as they represent
checking mechanisms already defined in some execution platforms. Finally, these contracts are to be
transformed to some model elements conforming to a targeted platform metamodel.

2.3.4 Illustration

To illustrate our approach, we choose an example taken from the FAROS validating case studies. We
use timeout constraints, which are a typical requirement in numerous locations within information
systems, either at the business or technical levels. For example, in information broadcast systems
such as the SEDUITE or DMP applications (cf. section 2.3.2), a user will wait for its information
in front of a public screen for at most an average maximum time. This timeout constraint should be
propagated to technical layers of the software architecture in which information from various sources
is dynamically aggregated in information data flow. There are also different means to verify this
kind of contract and finally, if runtime checking is needed, there are different means to measure tome
according to execution platforms: event-based systems can support time-stamping, orchestration en-
gines need to be carefully crafted to take time before/after receiving/calling, etc. A possible deploy-
ment of the SEDUITE application is to broadcast information in colleges or universities, e.g., news
and timetables of identified people are concatenated and combined to be displayed on several screens.
The underlying business metamodel is thus concerned with the modeling of information sources com-
position and broadcasting on different devices, while a conforming business model would be defined
for the specific application. The business expert would then add a predefined timeout constraint,
parametrized by a delay, in the business model, so that the time to broadcast information on a screen
is limited, as well as the time for a source to deliver its data.
Applying the transformation defined on the business metamodel to the central metamodel generates
a Timeout contract model. Figure 2.17 shows a contract between a screen and an information
provider. It specifies when does the timer start and stop, and the comparison between the computed
delay and the set threshold. According to the constrained elements, e.g. required or provided port,
the checking moment differs. This is captured in the different observers and the checker, which refers
to events GetInfoOperationEntry (for BeforeTime) and getInfoOperationExit (for AfterTime and the
LiteralTimeChecker). In the central model, we do not completely express how the contract is checked.
It is in the transformation to the platform model that implementation details will be made explicit,
i.e. how to determine the time, while preserving the observations and checks coordination according
to events. Nevertheless, literal checkers are used to analyze the data flow to detect inconsistencies,
such as services requiring delay from called entities shorter than the delays they guarantee or more
compositional properties on the sum of all used service timeouts against a global timeout threshold.
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Figure 2.17: TimeoutContract on InformationProvider (extracted from [DBFC+08]).

As platform metamodel, we use the CCL-J metamodel, which has been created in the FAROS project
to cover one possible of platforms, i.e. a language based platform. Other FAROS platform metamod-
els cover creations of aspects, dedicated components, etc. Figure 2.18 gives an overview of the
CCL-J metamodel. This metamodel describes the kinds of specification through a class hierarchy
and the structural elements of a CCL-J specification as associated concepts. Each specification form
thus inherits from CCLJSpec, relies on a Context, which is an operation for pre and post, and an in-
terface for invariants. A specification can also contains an assertion with its label and its expression.
Taking our timeout contract example, figure 2.19 illustrates what classes and information are trans-
formed to obtain a CCL-J model The contract scope is used to determine the context of the spec-
ification (OperationContext). The clause and its responsibilities (client/supplier relationship) drive
the transformation towards a interface specification (InterfaceCCLJSpec). The analysis of the Liter-

alTimeChecker and of its two observers leads to a postcondition (Post), which will generate the final
expression. It is through the detection of a pattern among observers and events (values computed on
OperationEntry and reused on OperationExit) that the expression is generated. Here the properties
are not kept on the targeted platform, so only their observation part is used. Constant values like
threshold are generated in an utility class to be easily modified.
The generated model can then produce the following textual specification in CCL-J :

c o n t e x t I n f o i . g e t I n f o ( )
pos t : System . nanoTime ( ) − System . nanoTime ( ) @pre

< FAROS_constants . t i m e r _ t h r e s h o l d ;

This specification can then serve as input for the ConFract system, generated contract object at con-
figuration and execution times (cf. section 2.1).
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Figure 2.18: CCL-J metamodel (extracted from [DBFC+08]).

2.3.5 Discussion

We only showed above the projection towards the ConFract system, but the targeted platforms in the
FAROS project cover different forms of contract implementation, ranging from programs (Adore/-
Coconet), to aspect technologies (AOKell, Adore, Wcomp) and language (ConFract , ORQOS). The
abstract contract models capture and distinguish moments that determine the evaluation context of
contracts from moments they are checked, but the construction of the context is very different among
platforms and some expressions or elements in contract models cannot be generated on them. For
example, when projecting to Adore, fragments, a.k.a concerns to be merged in the orchestration, are
generated. The transformation encapsulates some mapping between kinds of contracts, e.g. a time-
out, and a fragment template. This template has parameters that define the way to relate a contract to
a service, e.g. when a contract needs to check something at operation entry, it will be placed before
the activity that is used for merging fragments, so that the checking will be done before the service
execution.

Two other kinds of contracts have also been experienced on all platforms: an authentication contract
checking that a client calling a service has already been authenticated through another dedicated
service, and a architectural contract checking whether a given component/service is present. Studying
the code generation needed on targeted platforms, we experienced the difficulties to specify at the
model level and to automate the support for checking while ensuring that constraints will have a
equivalent semantics between model and execution platforms. This is obviously due to the weak, but
open, semantics that is underlying the event-based description of checkers in the central metamodel.
Nevertheless, we acknowledged the fact that there exist contract patterns that are difficult to generate,
but can be easily provided by the platforms. We identified some possible patterns with the developed
examples, i.e. timeouts, data and access constraints, architectural constraints, call history... These
patterns were sketched during the last stages of the FAROS project and the lack of time did not allow
for developing further this concept. This is mainly due to the large and unforeseen effort deployed to
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Figure 2.19: Transformation of the Timer contract into CCL-J model (extracted from [DBFC+08]).

make the end-to-end toolchain handle service and component architectures, an example of accidental
complexity of current MDE techniques [FR07].

2.3.6 Summary

We described some results of the ANR FAROS project which aimed at providing a MDE composition
workbench for building reliable service and component architectures with the help of an end-to-end
contracting support. In the FAROS process, the software architectures and the contracts are captured
at three different levels, with metamodels at each level. Business metamodels are described and
corresponding models are annotated with constraints. A central metamodel decouples business and
platform levels, and integrate concepts of service composition, contractual guarantees and checking.
Platform metamodels capture the various targeted execution platforms.

In this project, our contribution is related to the provision of the central contracting metamodel, which
is directly inspired by the Interact one presented in the previous section. The metamodel is also
largely extended to capture observation and checking operations and model them in connection with
an event model. These events allows for defining how contracts should be checked while being
open to interpretation on the execution platforms when they are transformed towards them. Our
ConFract system was also one of the targeted platforms and we showed how the central contracts
were transformed into CCL-J specification models.
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2.4 Contract-based Self-testable Components

This section shares material with the Fractal CBSE Workshop at ECOOP’06 paper "Specification of
a Contract Based Built-In Test Framework for Fractal" [DC06]. It concerns a collaborative work with
Daniel Deveaux.
Continuing our line of research around software contracting, we now describe some work that aims
at providing a testing framework in which rich components become self-testable through the addition
of our software contracts and associated built-in test suites.

2.4.1 Motivations

With the emergence of richer component models, e.g. Fractal , Koala, SOFA, etc. [LW07], the disci-
pline of CBSE has made significant improvements. Such models support forms of horizontal (con-
nections between components through explicit provided and required ports) and vertical (composite
components compositions. If component models have been more powerful, less effort has been put
on providing some testing architectures that correspond to the need of both unit and integration test-
ing of these richer forms of component. Considering their features, the approach of contract-based

testing [Mad03] seems particularly suited, as the notion of contract is a fundamental part of the def-
inition of software components [Szy02] and the approach itself is now considered as one of the best
testing techniques [Bin96]. This comes from the ability of contracts to be used at the same time
as a software documentation and design approach [Mey92] and a support for class testing, using the
responsibilities they set between classes to determine salient oracles.
At the end of the nineties, an approach of "Contract-Based Testing" was proposed by several au-
thors [Mad03] and in CBSE, contracts have been also studied for component design [BJPW99,
Szy02]. At the time of this work, several proposals had been made to construct contract-based built-
in tests (CBBT), as a methodological approach [Gro05] or with practical frameworks [VFH05]. In
[BAM03] the authors propose an UML based approach to incorporate built-in tests into Java compo-
nents through aspect-oriented techniques. Components are equipped with an additional testing inter-
face, as defined by [AG02], and this interface provides state-related information of the component.
The contract is established between the component and its client through the interface. A component
is thus a black-box and if it has some required parts, they are not taken into account in the testing
framework. Aspect-oriented techniques are used to easily produce component implementations in a
Java platform. Some other implementation framework relies on executable assertions to base testing
on behavioral contracts [VFH05], or on some timing constraints to determine the fulfillment of a
component’s response time requirements when it operates in a client-server relation with other com-
ponents [GMR05]. We see in all these approaches a common point in the fact that they consider
contracts on a client/server mode very similar to object-orientation. Components are tested through
one of their provided interfaces, but nothing is provided to support testing with required interfaces
connected to some forms of stubs or real components.
In this work, our objective was two-fold. First, we aimed at providing a contract-based testing frame-
work that fully exploits the rich features of available component models, taking Fractal and ConFract

as starting points. Second, we wanted to provide a support for the concept of self-testability [DFJ01]
adapted to the same software components. This approach has been developed in the STclass sys-
tem, a contract-based testing framework for Java [DFJ01]. A Self-Testable class supports a so-called
"Design for Trustabilty" [TDJ99] (DfT) process The goal is to maintain high quality along the life
cycle of library classes. The DfT uses a "test first" approach like eXtreme Programming or JUnit, but
with a strong structuring of the specifications using contracts: the tests are defined before the code
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implementation, but not really first, because they are built from the contracts which capture specifi-
cations. Using STclass tool, the benefits of built-in testing for object-oriented languages have been
demonstrated: tests are not limited by the encapsulation and built-in tests can be replayed in various
situations, in particular for regression testing. The framework allows the inheritance of contracts and
tests, supporting the reuse and the uniqueness of the validation. Another important result shared by
STclass and JUnit concerns the management of test results. For regression analysis and maintenance,
it is very important to store on the long term all test results in a structured reusable form and to have
sophisticated statistics and report tools.

// from JUnit t u t o r i a l
public interface Money {

public Money add (Money m) ;
public boolean i s Z e ro ( ) ;
public Money mul t ip ly ( f loat f a c t o r ) ;
public Money negate ( ) ;
public Money subs t ra c t (Money m) ;
public f loat amount ( ) ;
public Str ing currency ( ) ;
public Str ing toS t r i ng ( ) ;

}

public interface ExchangeRates {
// l i s t o f managed currenc ie s
public Set c u r r e n c i e s ( ) ;
// ge t the exchange rat e f o r a s p e c i f i c convers ion
public f loat exchangeRate ( Str ing inCurr , Str ing outCurr ) ;
// ge t the decimal count f o r a s p e c i f i c convers ion
public int decimalCount ( Str ing inCurr , Str ing outCurr ) ;
// i s t h i s currency managed by the module
public boolean i sVa l idCurrency ( Str ing curr ) ;

}

public interface Converter {
// make the raw conversion wi thout bank rat e .
public Money convert (Money m, Str ing toCurrency ) ;
// make the convers ion app ly ing a bank rat e .
public Money convertThruBank (Money m, Str ing toCurrency , BankInfo

. TransferType t t ) ;
}

public interface BankInfo {
public enum TransferType {CREDIT_CARD,CASH,INTERBANK} ;
// ge t the bank rat e f o r the bank ’bankName ’ and t r an s f e r t type ’

t t ’
public f loat r a t e ( Str ing bankName , TransferType t t ) ;

}

ConvertApp

Interfaces Signature

CurrencyConverter

BankRateProvider

RateExchanger

ic

InteractiveConverter

conv bank

exc

Figure 2.20: CurrencyConverter architecture.

2.4.2 Illustration

To illustrate our contribution, we use a simplified currency conversion application made with Fractal

components (see figure 2.20). It can be seen as an extension of the example used in the famous JUnit
tutorial 14 [GB99]. An equivalent Money interface is notably used in this application.

14
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
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The application is implemented as a composite component, ConvertApp, which contains four sub-
components. InteractiveConverter is connected to the interface (m of type Main) provided by
ConvertApp. It controls interactively the conversion required by the user. CurrencyConverter is
the component that effectively realizes the conversion through its interface conv of type Converter,
but it also needs two external functionalities, designed as two required interfaces. The first one, bank
of type BankInfo enables it to obtain the transfer rate of a bank according to the kind of transaction
(by card, in cash, etc.), while the other one, exc of type ExchangeRates is used to obtain sup-
ported currencies, their exchange rates and the number of decimals needed for an accurate conversion.
BankRateProvider provides the interbank rates and RateExchanger provides the functionality
of currency exchange mentioned above.
We now focus on some of the possible constraints that can complement the architecture of the ap-
plication, write the corresponding CCL-J specification and shows the resulting contract in ConFract

(see section 2.1 for details on CCL-J and ConFract). First, on the ExchangeRates interface, the
resulting conversion rate, which must be a positive float number, is obtained from two valid currency
names (strings). Moreover, on the same interface, assuming that currency names are valid, the number
of decimals for a conversion is also obtained, and must be between 1 and 5.

c o n t e x t f l o a t ExchangeRates . exchangeRa te ( S t r i n g inCur r , S t r i n g o u t C u r r )
/ / spec1

pre : i s V a l i d C u r r e n c y ( i n C u r r ) ;
pre : i s V a l i d C u r r e n c y ( o u t C u r r ) ;
pos t : r e s u l t > 0 . 0 ;

c o n t e x t i n t ExchangeRates . dec ima lCoun t ( S t r i n g inCur r , S t r i n g o u t C u r r )
/ / spec2

pre : i s V a l i d C u r r e n c y ( i n C u r r ) ;
pre : i s V a l i d C u r r e n c y ( o u t C u r r ) ;
pos t : 1 < r e s u l t < 5

This results in an interface contract generated by the ConFract system, as shown on top of figure 2.21.
A more complex specification can be defined on the main conversion method. The conversion of an
amount m from a currency to another (toCurrency) with a transfer rate tt is made by the method
convertThruBank; this method can be executed if the source and target currencies are valid –
obtained through the required interface exc –; the method must then return a Money instance with
the targeted currency, and the backward conversion of its value must be equal, with some decimal
approximation, to m minus the bank commission – obtained on the other required interface bank – :

on < C u r r e n c y C o n v e r t e r > / / spec3

c o n t e x t Money conv . conve r tThruBank ( Money m, S t r i n g toC ur r ency ,
T r a n s f e r T y p e t t )

pre : exc . i s V a l i d C u r r e n c y ( t o C u r r e n c y ) ;
pre : exc . i s V a l i d C u r r e n c y (m. c u r r e n c y ( ) ) ;
pos t : r e s u l t . c u r r e n c y ( ) . e q u a l s ( t o C u r r e n c y ) ;
pos t : M a t hU t i l . app roxEqua l ( r e s u l t . amount ( ) , c o n v e r t (m, t o C u r r e n c y ) .

amount ( ) * (1 − bank . r a t e ( < t h i s > . a t t r . bankName , t t ) ) , exc .
dec ima lCoun t (m. c u r r e n c y ( ) , t o C u r r e n c y )−1) ;

The above specification refers to three interfaces, conv, bank and exc, and produces an external
composition contract (see bottom of figure 2.21). The responsibility model associated to the external
composition contract takes into account the hierarchical nature of the component assemblies. The
surrounding component (ConvertApp) is responsible of the compositional preconditions, as it is
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the only component that can act on its subcomponents so that they all together ensure the exposed
property. The beneficiary of these preconditions and the guarantor of postconditions is the specified
component.

external composition contract on <CurrencyConverter> // p r e t t y p r i n t . . .
participants : <CurrencyConverter >, <ConvertApp>, <Inte rac t iv eConver t e r >,

<BankRateProvider >, <RateExchanger>
c l au s e s on server interface Converter conv :

Money conv . convertThruBank (Money m, St r ing toCurrency , TransferType t t ) // spec3
pre guarantor : <ConvertApp> b en e f i c i a r y : <CurrencyConverter>

exc . i sVal idCurrency ( toCurrency ) ;
exc . i sVal idCurrency (m. currency ( ) ) ;

post guarantor : <CurrencyConverter> b en e f i c i a r y : <Inte rac t iv eConver t e r >
r e s u l t . currency ( ) . equa l s ( toCurrency ) ;
MathUtil . approxEqual . . . // remainder o f spec 3

. . . // o ther c l auses , o ther i n t e r f a c e s , e t c .

interface contract on <ConvertApp> // p r e t t y p r i n t o f the con trac t o b j e c t
server : ExchangeRates <RateExchanger >. exc
cl ient : ExchangeRates <CurrencyConverter >. exc
participants : <RateExchanger>, <CurrencyConverter>
c l au s e s :

f loat exchangeRate ( S t r ing inCurr , S t r ing outCurr ) // spec1
pre guarantor : <CurrencyConverter> b en e f i c i a r y : <RateExchanger>

isVal idCurrency ( inCurr ) ; i sVal idCurrency ( outCurr ) ;
post guarantor : <RateExchanger> b en e f i c i a r y : <CurrencyConverter>

r e s u l t > 0 . 0 ;
. . . // spec 2 , e t c .

ConvertApp

CurrencyConverter

BankRateProvider

RateExchanger

ic

InteractiveConverter

conv bank

exc

Figure 2.21: Resulting contracts on the CurrencyConverter.

2.4.3 Testing Framework Overview

The testing framework follows three simple principles, which are applicable to hierarchical compo-
nent models in general.
Writing tests only relies on basic concepts. In order to write and run tests, testers should only
handle basic concepts in the component model. As in JUnit or in STclass [DFJ01], in which tests are
defined as simple DSLs, testers should only use components and small configuration scripts to define
and run tests. This leads to using components as testing elements such as drivers and stubs, thus
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providing an uniform view of the component and its testing artifacts. On the contrary, the framework
should manage all the complexity associated to test automation (management of test suites, results
collection, etc.).
Testing is strongly contract-based. Postconditions and invariants in contracts make good and salient
oracles. Few extra oracles have to be defined and testing units code consists only in simple method
calls on interfaces. In addition, preconditions limit the scope of the test. It is then not necessary to
test situations that are always rejected by contracts. Contracts that share the execution sequence in
very small units make possible a clear identification of responsibilities when a fault is detected. Like
in STclass [DFJ01], another benefit of using contracts is to split into two separate descriptions the
specification and the test scenario.
Tests are built-in. The component to be tested should contain, or have reference to, all informa-
tion relative to its own testing, making it self-testable. This consists of information to generate the
provided interfaces and test drivers, information to generate testing stubs and storage of its own test
results.
Besides, to capitalize on OO unit testing habits, the concepts of TestUnit, TestCase and TestSuite are
reused with a similar semantics. These concepts are organized as in STclass [DFJ01], which is close
to JUnit with some minor differences:

⋄ TestUnit defines a scenario, with a segment of (Java or other) code, which is applied to one or
more provided interfaces of the "Component Under Test" (CUT).

⋄ TestCase defines a test environment for the TestUnits. It is able to create, initialize and connect
testing stubs and to define local testing ressources; it contains five definitions: i) an architectural

setup that defines the stubs’ connection and configuration, ii) data setup actions to configure
states of both the environment and the CUT before testing, iii) the list of UnitTests that can
be activated in this environment, iv) a data teardown actions to reconstruct the initial testing
environment (mainly external data used or modified), v) an architectural teardown that restore
the initial isolation. The first three definitions are mandatory, whereas both teardown actions
can be omitted — if no architectural teardown is defined, a default isolation will be realized by
the framework.

⋄ TestSuite is a simple ordered list of TestCases, TestSuites or TestUnits (following the traditional
composite pattern) that can be activated during the test.

With this organization, the same TestUnit can be used in several TestCases and can be activated
(following the TestCase definitions) for different kinds of test. These concepts will be illustrated in
the following paragraphs.

2.4.4 Supported Testing Modes

The framework aims at supporting all functional testing situations all along the component life-cycle.

Black-box testing in isolation. First the component can be tested in isolation, usually during its
design and implementation. Considering the whole CUT as a black box, its external composition
contract controls the dependencies between its interfaces, and the interface contract on its provided
interface gives the functional oracles for the test. In our currency converter example, the external
composition contract enables us to build a first unit test corresponding to the general case. It is
going to call the method convertThruBank with 1 euro for an interbank conversion in dollar. The
environment has thus to create an object Money that has a value of 1 euro:
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Money oneEuro = new MoneyImpl(1.0,"EUR");

and the test simply calls the method:

conv.convertThruBank(oneEuro, "USD",BankInfo.INTERBANK);

The test oracle is then the external composition contract of the figure 2.21. As a result, the tester
does not have to create result objects or to define explicit oracles, since postconditions ensure that the
currency and the value of the result are correct.
Figure 2.22 illustrates the architecture and test elements that are necessary to perform this test. The
two components BankRateprovider and RateExchanger are disconnected and respectively re-
placed by two stubs: the BankStub component can only return a fixed transaction rate, while re-
specting the interface contract). It could be more sophisticated, using for example a mechanism of
configuration by attribute so that setup code of test cases can configure it. As for the RateSub com-
ponent, it can be simply implemented as a conversion euro to dollar and incrementally improved
afterward with other conversions, as new test cases are added.
A second TestUnit (convert 02) illustrates another capability of the framework, i.e. the explicit
definition of an oracle when interface contracts are not sufficient to verify the oracle, often when the
test composes actions. In our example, it consists in checking that the backward conversion is correct.
From these two first tests, one may consider further tests grouped in the same test case for the method
convertThruBank. These other tests would use other amounts, other currencies, and the two other
forms of conversion.

[Tcase convert_bb1]
 arcSetup:                 // FScript/Fpath source shell  
     // cut is the component under test
     // create stubs
     bs = adl-new("org.cbbt.cc.BankStub");
     rs = adl-new("org.cbbt.cc.RateStub");
     // create drivers
     dr = adl-new("org.cbbt.GenericDriver(cut)");
     // bindings of stubs
     bind($cut/interface::bank, $bs/interface::bank);
     bind($cut/interface::exc, $rs/interface::exc);
     // binding of driver
     bind($dr/interface::conv, $cut/interface::conv); 
 dataSetup:               // beanshell code 
     Money oneEuro = new MoneyImpl(1.0,"EUR");
 tunits:  convert_01, convert_02, ....
 dataTeardown:      // beanshell code
     oneEuro = null;
 arcTeardown:

tunit: convert_01                                     // A first test unit (beanshell code)
  Money tmp = conv.convertThruBank(oneEuro, "USD", BankInfo.INTERBANK);
tunit: convert_02                                    // another tunit (beanshell code)
  Money tmp = conv.convertThruBank(oneEuro, "USD", BankInfo.INTERBANK);
  tmp = conv.convertThruBank(tmp, "EUR", BankInfo.INTERBANK);
  float comp = (1.0 - BankInfo.INTERBANK)  * (1.0 - BankInfo.INTERBANK);
  CBBT.AssertApproxEquals(tmp.amount(), oneEuro.amount()*comp, 0.1);

CurrencyConverter

BankStub

RateStub

InteractiveConverter

Driver

BankRateProvider

RateExchanger

conv bank

exc

run

Figure 2.22: Black-box testing in isolation.

Figure 2.22 also shows the definition of TestUnits and TestCases, in separate syntactic (files) units, as
a TestUnit can be used in several TestCases. As for test cases, it must be noted that the architectural
setup and teardown are defined using an extension of the Fscript language [DLLC09]. This DSL
relies on a notation inspired by the XPath language for XML, so that navigations and dynamic re-
configurations of Fractal architectures can be performed through simple an readable queries. On our
example, the architectural setup uses some Fscript operations to create stubs and drivers and to bind
them to the CUT. Bindings use the navigation to get the appropriate interfaces from the concerned
components. Our testing framework extends the language by providing some default values for cut
as a reference to the tested component, as well as for any component connected to it before testing.
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The data setup and teardown are using Java code as scripts, which are interpreted by a beanshell in-
terpreter (cf. section 2.4.5). The code inside TestUnits is also Java scripts, with the addition of some
variables to access the provided interfaces of the CUT (conv in our example). The language used
above is just an example, but it demonstrate clearly that the tester manipulates only simple declar-
ative language elements. All operations specific to component implementations are handled by the
testing framework. Finally, it should be noted that the preconditions filter out any test that would not
use known currencies. A violation of preconditions shows that the CUT is not to blame, but that its
environment, test driver or stub, is badly configured.

In situ testing. A second step is related to the integration of the CUT with its effective providers.
This implies two activities: i) requirement testing which verifies that some external provider com-
ponent, intended to be connected to a required interface of the CUT, respects the contracts on the
connected interface; ii) integration testing where the CUT, connected with its actual suppliers, is
tested on its provided interfaces, using both interface and external composition contracts as oracles. It
should be noted that, for both of these forms of testing, tests should be able to be replayed in case of
dynamic reconfiguration. Actually an in situ test realizes the integration testing of the CUT with its
actual providers, it is then crucial that this test can be also run during or just after some reconfigura-
tion actions. The requirement test is also particularly useful if the external component is a Component
Off The Shelf (COTS), which has neither contracts nor built-in testing equipment. As shown on fig-
ure 2.23, to realize this test, a specific test driver is connected to the external provider component.
As in black-box testing, it will be driven by TestUnits and TestCases, but in the arc setup part, no
stubs are used and the driver is not connected to the CUT. The arcSetup only consists in a direct
connection between the driver and the tested provider component.

[Tcase env_exch]
  arcSetup:
    // create and bind environment test driver
    envdr = adl-new("org.cbbt.EnvtDriver(cut_server_exc))");
    bind($envdr/interface::exc, $cut_server_exc/interface::exc);
  dataSetup:
    ...
  tunits: env_rexc_01, env_rexc_02, ...
  dataTeardown:
  arcTeardown:

[Tunits]
  tunit: env_rexc_01                                   // a first testunit
    CBBT.AssertEquals(exc.exchangeRate("USD","USD"), 1.0);
  tunit: env_rexc_02                                   // a second testunit
    ...

BankRateProvider

RateExchangerInteractiveConverter Driver

run

CurrencyConverter

conv

exc

bank

Figure 2.23: Requirement testing.

As for the integration test, it is also very similar to the black-box testing, but the CUT is directly con-
nected to its real suppliers rather than to stubs, as shown on figure 2.24. Obviously the integration can
be progressive and a test may simultaneously use stubs and real suppliers (cf. figure ??). As a result,
the description of the integration for the developer is very similar to a black-box test description, only
the arcSetup (and eventually arcTeardown) differs, the TestUnits can be the same.

Gray-box testing. The framework also supports a form of gray-box testing, that is some testing
on the content of the tested component. During the black-box testing of a component, enabling the
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TestCase
arc_setup
data_setup
...

TestUnit

CurrencyConverter

InteractiveConverter

Driver

BankRateProvider

RateExchanger

conv bank

exc

run

Figure 2.24: Integration testing.

verification of its internal composition contract turns the process into a gray-box testing, in which its
implementation is tested. The same elements of the framework are then used in this situation. As the
considered component model is recursive, its implementation can be some code or an assembly of
components, with their own contracts. It is also possible to imagine hierarchical testing of the inner
side of the component, but this aspect is out of the scope of our contribution.

2.4.5 Test Management and Framework Implementation

Using the proposed framework, tests and contracts can be considered as built-in, like in physical elec-
tronic components. Each component has a reference to the description of its contracts and tests and
a block of management code, which i) interprets test and contract descriptions, ii) creates the driver
and stub component, iii) runs the tests and iv) collects test results. An obvious way to integrate this
technical feature into Fractal components is to equip each component with a specific non-functional
interface, a test controller, through which an architect or some runtime code can control testing.
To become self-testable a component should contain or reference all information relative to its own
testing. The testing controller is thus able to get contract information from the contract controller (see
section 2.1.6) and to get test units, cases and suites as separated files organized in the file hierarchy,
just like files for Fractal ADL and Java implementation of primitive components.
This testing controller also acts as a generic runner for all tests related to its component and manages
the history of all test results. As An important facet of the test activity is the test reporting and archiv-
ing, test results of the framework are stored in XML report files that can be processed to automatically
generate many forms of test reports and which allow for easy long-term archiving.
When a test running method is called, the testing controller first isolates its component by unbinding
both its required and provided interfaces (the component should have been stopped first). It then
creates a surrounding component, called the testbed, so that the component is put inside and other
components needed for testing are also created inside. According to the arguments of the running
method, it creates test drivers connected to provided interfaces of the component under test, testing
stubs connected to its required interfaces and/or bypass binding to some actual provider components.
In case of integration testing, only test drivers connected to the actual provider component are created.
While the type of test driver components is dependent from the provided interfaces under test15,
their implementation uses reflective capabilities to be generic. It consists in an interpretation engine,

15the Fractal type system does not allow a component to change its type, e.g. to add or remove one of its interfaces.
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based on the Beanshell16 Java scripting language, which i) calls the architectural setup in Fscript,
ii) interprets the data setup in Java, and iii) interprets the test units, using also reflection to call the
methods on the provided interfaces.
Before running the test cases, the testing controller needs to be notified of any contract violations on
the tested parts of the component. It thus registers itself to two contract controllers: the one of the
surrounding test bed (for the external composition contract and interface contracts of the CUT) and
the one of the component under test (for its internal composition contract).

2.4.6 Summary

We gave an overview of a testing framework that exploits our ConFract contracting system so that
targeted components become self-testable through the addition of built-in test suites that exploit con-
tracts as oracles. We show how our testing framework enables developers and architects to organize
tests in different ways. Black-box testing can be made in isolation with specific component acting
as drivers and stubs around the component under test. Tests are organized as units, cases and suites,
but are complemented with specific forms of setup, both for the architecture and for the data. Built-
in tests can also concern the environment of a deployed component, testing its providers, and they
can also be used for integration testing when the component is connected to its actual providers at
assembly time. According to the management policy of dynamic adaptations, the same tests as in
the assembly phase can be passed again after some dynamic reconfigurations. The reflexive capabil-
ities of Fractal makes this possible as runtime components can be entirely reconfigured so that the
framework is able to manage dynamic connections and tests. The framework makes also possible to
perform contract checking and testing at runtime for critical software systems. In this case a resulting
overhead will appear and an interesting open issue is the definition of a self-test supervisor that could
schedule components self-tests, managing the whole system efficiency and workload.

16www.beanshell.org
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This chapter presents our research work on providing self-adaptive capabilities to contracting and
monitoring systems. This research was conducted from 2004 to 2010 and is now continued by ongo-
ing work on architecting self-adaptive systems (see chapter 5).
Self-adaptive capabilities are provided by software systems to cope with changes at run-time [LRS00].
The relevance of engineering self-adaptive capabilities is mainly due to the continuous evolution from
software-intensive systems to ultra-large scale systems [NFG+06]. This means that the self-adaptive
capabilities should support and facilitate run-time decisions to control structure and behavior of the
system. With our background on providing contract support in software intensive systems, we were
interested in relating software contracts to self-adaptive capabilities, going beyond the symptoms of
changes that a contract violation represents. This led to research on negotiation mechanisms for
component contracts. As monitoring is clearly the common activity between contract checking and
adaptive systems, we also focused on providing self-adaptive monitoring systems with advanced func-
tionalities.

3.1 Negotiation of Non-functional Contracts

This section shares material with the Euromicro-SEAA’05 paper "Fine-grained Contract Negotiation
for Hierarchical Software Components" [CC05], and the ATC’06 paper "From Components to Auto-
nomic Elements using Negotiable Contracts" [CCOR06]. It is related to a part of Hervé Chang’s PhD
Thesis and a collaboration contract with France Télécom R&D (now Orange labs).
Our work related to contracting started on the observation that contracts are a well-adapted means to
organize stable properties on software entities, enforcing and reusing constraints on their interactions
and non functional aspects. Nevertheless, providing powerful contracting systems is not an easy task
with strong requirements both on software systems, such as 24/7 operation implying dynamic recon-
figuration capabilities, and on the internal architecture itself using hierarchical components for the
sake of generality. Among the advances that we have made, the capability to manipulate contracts
as first-class entities at configuration and run times is particularly relevant. This form of model at
runtime [BBF09] allows for automatically checking again some properties of a software architec-
ture after it has been dynamically reconfigured. But on the other hand, with highly fluctuating non
functional properties and different kinds of changes dynamically happening, contracts are frequently
challenged and violated.

3.1.1 Motivations

Contract violations correspond to relevant changes in the system behavior, that could be exploited
to modify the system itself. If these adaptation operations are embedded in the software system and
automatically executed, it naturally becomes a form of self-adaptive software, partly following the
definition of [LRS00]: "it evaluates its own behavior and changes behavior when the evaluation indi-
cates that it is not accomplishing what the software is intended to do, or when better functionality or
performance is possible". Handling basically the contract violations necessitates to catch the corre-
sponding exception and attach some adaptation code. With many contracts that may be violated, ad

hoc code is spread out on the architecture, hampering maintenance. There is thus a need to find the
appropriate mechanisms and tools to make a trade-off between reliability, ensuring stable properties
with contracts, and flexibility, with dynamic adaptations on contracted components.
In component-based systems, some mechanisms handle the runtime fluctuations in QoS properties
and the available resources using a monitoring system combined with basic adaptation rules which
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perform component re-parametrization or structural modifications [DC01, DL03]. When they de-
fine a notion of contract, it is restricted to the architecture of the system, ensuring correct connections
between components [DC01]. Other middleware platforms provide QoS control and measurement ca-
pabilities of particular critical network-related properties through reflective and adaptive techniques
[BAB+00, N. 01] which directly provide integrated control mechanisms without explicit representa-
tion of non-functional properties. Other techniques consist in selecting other implementations or QoS
profiles that fulfill the specification [GPA+04a], or in trying statically-defined alternate services re-
quiring lower quality levels [LS04]. These works use a notion of contract to organize the knowledge
of different functioning levels, but the negotiation mechanisms are not made explicit in the runtime
architecture, i.e. components are not empowered with the right to negotiate on properties they are
responsible for. Being concerned about automatically restoring, in most cases, the validity of con-
tracts, we proposed negotiation mechanisms, inspired from those conceived in multi-agent systems,
which make it possible to adapt components or contracts at configuration and run times, with the aim
to restore the validity of established contracts.
Besides, as numerous challenges are directly related to the software engineering of self-adaptive
systems with feedback control loops (find an appropriate control model [HDPT04], architecting the
loop [KPGV03a, GSS04, LPH04a]...), we also studied the interpretation of the resulting negotiable
contracts in feedback loops following the Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) ar-
chitecture [KC03, IBM01].
The contribution here relies on a general negotiation model, in which contract violations are handled
by activating a negotiation process for each violated clause of a contract. A notion of negotiation
policy enables one to finely control the negotiation process. Integrating the negotiation mechanisms
in the Fractal reflective component model also allows for making theses mechanisms self-adaptive,
notably to avoid some harmful behaviors.

3.1.2 Case Study

As an illustrative example, we reuse the application and contracts on the Fractal multimedia player
described in section 2.1.2. Figure 3.1 shows the surrounding FractalPlayer component with its
five connected subcomponents managing GUI, core playing, video configuration, battery probing and
logging. It also depicts the textual form of an external composition contract objects built with the Con-

Fract system. This contract is related to the start method of the Fractal interface named mpl, en-
suring that the video can be played (precondition using the Configurator) and that the played url
is part of the History at the end (postcondition). In the precondition the VideoConfigurator
component evaluates, through the canPlay method, the Player ability to entirely play the given
video, considering different parameters such as system parameters (e.g., battery level) and the video
source (taking into account the decoding complexity of the video). Figure 3.1 shows also the re-
sponsibilities computed in the contract, i.e. guarantor, beneficiary, and contributors (participating
component being necessary to check the contract). Details can be found in section 2.1.5. Responsi-
bilities in our example of external composition contract can be summarized as follows:

Interface role Construct Guarantor Beneficiaries
server (mpl) pre <fp> <pl>

server (mpl) post <pl> <fp>, <gl>

client (c) pre <pl> <fp>, <vc>

client (c) post <fp> <vc>

Once built, contracts may be challenged by the fluctuations in extra-functional properties, such as
variations in available resources, changing requirements and environment, or by the dynamic recon-
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external composition contract on <pl>
participants : <fp> <pl> <vc> <l>
provisions on server interface MultimediaPlayer mpl :

void s t a r t ( )
pre

guarantor : <fp> beneficiaries : <pl>
c . canPlay ( getUr l ( ) . getDatasource ( ) ,

<this >. a t t r i b u t e s . getWidth ( ) ,
<this >. a t t r i b u t e s . getHeight ( ) )

post

guarantor : <pl> beneficiaries : <fp> <gl>
h . l a s tU r l ( ) . equa l s ( getUr l ( ) )

. . .

BC CC LC CTC
controllers

: membrane

: control interface

: attributes

: provided interface (server)

: required interface (client)

: scope of the contract

FractalPlayer<fp>

bi:

width, height
jmfVersion,

m:Main Player

mpl:

Multimedia

c:Configurator

cfg:Configurator

h:History

hist:History

<bp>

Battery

Probe Configurator
Video

<vc>

<gl>
PlayerGuiLauncher
<pl>

Logger
<l>

BatteryInfo

Figure 3.1: External composition contract on the Fractal multimedia player.

figurations of components. By default, the ConFract system handles contract violations by notifying
the guarantor component with the violation context. In an ad hoc approach, it is then possible to
manage these violations by adding specific handling code throughout the architecture.
A better organized solution consists in reusing the responsibilities of each clause (provisions in the
contract object) as they precisely determined all responsible components. Putting negotiation capa-
bilities inside components allows for involving them in an automatic negotiation process which aims
at restoring the validity of contracts. This negotiation can occur either at assembly time or at run time.
At assembly time, such negotiation assists the system integrator to detect and to solve incompatible
constraints before execution, and to leverage the qualities of assemblies while taking into account
each component specification. At execution time, this negotiation contributes more to increase the
autonomy of the application by handling contract violations in an automatic way. In our example,
the negotiation could then lead to lower battery consumption by reducing the video display size, or
to completely withdraw the constraint, thus implying that the video might be stopped if battery gets
weak.

3.1.3 Negotiation Model

The negotiation model aims at restoring the validity of violated contracts by making the responsible
components negotiate the violated contracts in which they are involved. As contracts are composed of
provisions, negotiation processes are done at the granularity of each violated provision of a contract.
In the ConFract system, contract provisions both specify functional and extra-functional aspects. The
negotiation of functional aspects is more appropriate during testing. On the other hand, as extra-
functional aspects address configuration and run time qualities of components (usually classified un-
der the larger concept of Quality Of Service) and their relationship with the environment (deployment
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constraints), we mainly focus on negotiating provisions which specify such aspects.
For each violated provision, an atomic negotiation is thus automatically built and activated. Each
atomic negotiation precisely defines the negotiation parties and protocol. Accordingly, given each
participating component role, it is possible to develop different negotiation policies which define the
participants reasoning and drive the negotiation. We developed a concession-based and an effort-

based negotiation policies, that take advantage of the various component responsibilities.
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Figure 3.2: Negotiating parties for the precondition of the external composition contract.

An atomic negotiation involves negotiating parties and follows a negotiation protocol partly inspired
from the extended Contract-Net Protocol (CNP) [Smi80]. This protocol, commonly applied in multi-
agent systems for decentralized tasks allocation, basically organizes the interactions between a man-
ager and contractors following three steps: announcing, bidding and rewarding. In our model, we
retrieve this organization by defining as negotiating parties (i) the contract controller in the role of
the negotiation initiator, which controls the negotiation process, as it manages contract life cycle and
operates contract checking, (ii) participants, which are composed of the participants of the provision,
and of an external contributor which helps representing interests from a "third party" with deeper
decision ability. For example, this external contributor could be the system integrator willing to inject
higher level constraints into the system (e.g deployment constraints) or various data to parametrize
the negotiation process (e.g the negotiability of the provision 17 given a specific deployment context,
negotiation timeout, propagation of negotiation information to lower hierarchy levels).
In our example that refers to the external composition contract, the negotiating parties of the precon-
dition on the start method are the contract controller of <fp> as initiator, <fp> itself as guarantor
and <pl> as beneficiary (cf. figure 3.2). For the postcondition, the parties are the contract controller
of <fp> as initiator, <pl> as guarantor, and <fp> and <gl> as beneficiaries.
The negotiation initiator and the various participants thus interact following three steps (request of
proposals, proposal of modifications and re-checking of the provision against the proposed modifica-

17A provision is negotiable if the negotiating parties agree to negotiate it.
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tion), and the responsibilities of participating components are exploited to develop the two following
negotiation policies.

3.1.4 Concession-based Policy

The concession-based policy provides a first kind of negotiation behavior which is based on a process
of concession-making. By taking advantage of their type of responsibility, the negotiation initiator
thus interacts with the beneficiaries components, and it requests from them to rely on an under-
constrained clause. These beneficiaries may then propose some concession proposals which can only
refer to the negotiated provision object. Such proposals can lead to change the whole provision
or some of its parametrized elements in the same current execution context, e.g. some function
parameters, or to completely withdraw the provision.
In order to completely define the concession-based policy, the beneficiary role is refined by introduc-
ing a principal beneficiary and a secondary beneficiary. Principal beneficiaries are directly concerned
with a clause as they have the ability to act during the negotiation process. On the opposite, secondary
beneficiaries are quite passive and cannot make the negotiation progress. They can only validate the
proposed changes. In our example concerning the postcondition of the start method of the mpl
interface, <fp> is the principal beneficiary because it is responsible of the correct usage of the con-
tract (played video history is correct) and can act on its subcomponents during the negotiation. <gl>
is the secondary beneficiary because it only appears as a simple client of the video player service and
does not have knowledge of the other interfaces referenced in the contract. Using an extension of
the responsibility model, the contracting mechanism automatically detects principal from secondary
beneficiaries.
When the verification of a provision fails, the concession-based negotiation process is decomposed
into three steps, as described in Fig. 3.3.

1. in step 1, the initiator requests the negotiability of the violated clause from the beneficiaries and
it evaluates the overall negotiability by computing a weighted linear additive scoring function.

2. in step 2, if the provision is negotiable, the initiator requests concession proposals from prin-
cipal beneficiaries and for each proposal, it performs changes on the provision and re-checks
the provision. If a proposal re-validates the provision, the atomic negotiation is successfully
completed and changes are committed.

3. in step 3, if proposed changes are not satisfactory or the withdrawal of the provision has been
issued18, the initiator asks to principal and secondary beneficiaries for permission to withdraw
the provision.

To successfully act during the negotiation process, the decision model of the principal beneficiaries is
based on sets of alternatives which express their preferences. Thus, a component named C can define
the following set of alternatives:

A#p,C :={A1
#p,C ,A2

#p,C , ...,An
#p,C ,STOP or RELEASE}

to negotiate the provision identified as #p . For every concession proposal requested by the initiator,
the component C will successively propose its preferred alternative among this set. In this policy,
an alternative Ai

#p,C corresponds either to provision or some of its parametrized elements, and STOP

18A proposal can consists in the withdrawal of a provision to suggest to completely remove the provision.
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or RELEASE are used to notify the end of the concession process while retaining the provision or
withdrawing it.
In our example, the provision that ensures the ability to entirely play a video can only be checked at
run time since it requires the execution context and up-to-date resource information. If the verification
of this provision fails, the concession-based negotiation process would involve the contract controller
of <fp> as the initiator and <pl> as the unique and principal beneficiary. The negotiation outcomes
may lead to progressively reduce the video display size in order to decrease battery consumption.
If these concessions are not satisfactory, the provision could then be completely withdrawn, and in
this case, since the constraint has been discarded, the video might be interrupted if the battery level
becomes weak.
In this scenario, <pl>’s successive concessions may be driven by the following set of alternatives:

Apre,<pl> :={(width← width√
2
, height← height√

2
), RELEASE}

With this set of alternatives, <pl> initially proposes an alternative describing the changes on its pa-
rameters width and height. The initiator performs the change and evaluates the provision. If
the verification succeeds, the negotiation outcome is successful, otherwise the initiator cancels the
changes, and requests for a new concession to which <pl> responds by proposing the provision
withdrawal with the RELEASE alternative. The negotiation finally terminates with the provision with-
drawal since <pl> is the only beneficiary.
In the same way, the clause concerning the correct history of played videos can only be checked at run
time. The negotiating parties would be the contract controller of <fp> as initiator, <pl> as guarantor
and <fp> and <gl> respectively as principal and secondary beneficiaries. During the negotiation
process, <fp>, with the set of alternatives Apost ,<pl> :={RELEASE}, would propose the provision
withdrawal and the initiator would consult <fp> and <gl> to definitely decide to withdraw it.

3.1.5 Effort-based Policy

The effort-based negotiation policy is proposed to enrich the model with different kinds of negotia-
tion. To restore the violated clause, this policy focus on exploiting the responsibility of the guarantor
which has to ensure the provision. The overall negotiation process using the effort-based policy fol-
lows the three steps defined in the negotiation protocol. However, it differs by the negotiation propos-
als issued by the guarantor component. The negotiation initiator requests efforts from the guarantor
which can propose two kinds of efforts according to its responsibility of either, the implementation
of the terms referred in the negotiated provision or, the assembly of its subcomponents. In the first
case, the guarantor is responsible of the implementation of the terms in the provision, and it can act
to restore the clause by doing some action efforts at its level. In the second case, the guarantor does
not implement the terms of the clause, but some of its subcomponents does. Therefore, it is now
responsible of the assembly of its subcomponents and may act by propagating the negotiation process
down its hierarchy, in order to consult the subcomponents which may propose efforts to restore the
violated clause at the higher level.
The next section 3.2 further details the negotiation process for action and propagation proposals,
based on patterns on the architecture.
Compared to the concession-based policy which deals with relaxing the negotiated clause, the efforts
proposed by the guarantor component consists in doing some actions that aims at restoring the vio-
lated clause by changing its evaluation context. These actions can consist in changing the values of
the terms referred in the clause, or executing an adaptation function that may perform any adaptation
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code, provided that it keeps the negotiated contract clause unchanged and is realized under the scope
of the guarantor component.
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Figure 3.4: Action proposals in the effort-based negotiation policy.

Fig. 3.4 depicts the interactions between the negotiation initiator and the guarantor component. The
first step which evaluates the negotiability is omitted in the figure as it is basically the same as in the
concession-based policy. We suppose the clause is negotiable and in this case, the interaction steps
are the following.

1. the initiator requests efforts from the guarantor.

2. if the proposed action consists in changing the values of terms referred in the clause then the
initiator performs the changes and re-checks the clause.

3. otherwise, if it consists in an adaptation function, as this function remains private to the guar-
antor, the initiator can then only accept or refuse the execution of the function without knowing
its details. If it accepts, the adaptation function is performed, and the initiator then re-checks
the clause to assess its validity. Otherwise, if the initiator refuses, it simply requests for other
action proposals.

4. in both two cases, the atomic negotiation is successfully completed, as soon as a proposal re-
validates the clause, and it terminates with a failure, if none of the actions efforts restore the
validity of the clause.
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3.1.6 Negotiable Contracts in Autonomic Control Loops

As negotiable contracts intuitively provide some elements relevant to self-adaptive systems construc-
tion, we now briefly discuss the role of contracts in feedback control loop following the MAPE-K
decomposition [IBM01]. In our system, contracts play a central role. They specify collaboration
properties between parts of the system, they are monitored all along the life cycle of the system
and updated according to architectural changes, and they provide a support on which the negotiation
model relies to activate and finalize each atomic negotiation. In fact, contracts serve as knowledge
and analysis tools to identify, in a fine-grained way, some part of the system to be monitored, the re-
sponsible components for each violated provision, and whether the proposed modifications revalidate
the contract.
As contracts are managed by contract controllers in ConFract (see section 2.1), each contract con-
troller provides support for instrumenting contracted components it is in charge of and monitoring
them both at assembly and execution times. Then it checks the provisions, detects architectural or
behavioral contract violations, and finally drives the negotiation activity according to the negotiation
rules and policy. Therefore contract controllers are involved in each step of the control feedback
loop. At any level of composition, a feedback control loop can use the different types of contracts
(interface contracts, internal and external composition contracts) supported by ConFract . External
composition contracts, for example, express the usage and external behavior rules of a component.
They are well suited to develop a negotiation policy between a component and its environment.

⋄ Monitor. Contracts define the spatial domains of the system that are visible, that is a compo-
nent scope, and the temporal context under which provisions have to be checked. The provi-
sions of a contract mainly describe where the observation occur in terms of parts of the system
(external or internal side of components, interfaces), when to operate the checking rules, the
values to capture, and the verifications to be made. The CCL-J language currently supported
in ConFract and based on executable assertions (see section 2.1), allows one to easily perform
sanity checks and detect contract violations by testing the validity of the input and output values
of components.

⋄ Analyze. Contracts represent a source of knowledge and can be exploited to shift towards finer
understanding and analysis of the problems that occur in the system. They can be used to obtain
various information that concern the locations of the system where the violations appear and the
responsibilities of the impacted components. Each provision of a contract precisely identifies,
among the set of participating components, the responsible components in terms of guarantor,
beneficiary or contributor of the provision.

⋄ Plan. To adjust the system in reaction against contract violations, atomic negotiations are
activated and they organize the recovery process through a collaborative activity between the
negotiating parties. Atomic negotiations are themselves organized through various negotiation

policies. Such negotiation policies rely on the role of the participating components and define
a complete negotiation behavior. Each proposed negotiation actions can be seen as part of a
plan, even if this is a very simple instantiation of it, in comparison with planning and decision
making approaches.

⋄ Execute. The negotiation aims at restoring the validity of contracts. To achieve this, the actions
to execute depend on the negotiation policy and on the own capabilities of the negotiating
parties. These actions span from basic re-configurations — through attributes — of components
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involved in the negotiation to more sophisticated modifications of the contract themselves, as
well as advanced architectural changes. Finally, it should be noted that contracts are checked
to validate the negotiation, so that they participate in ensuring the correctness of the adaptive
actions of the feedback control loop.

During negotiations, components can be seen as configuring themselves when they try to (re-)establish
valid contracts. A form of self-configuration is thus supported and negotiable contracts are intrinsi-
cally acting for the robustness of the overall system by helping each component to deal with detected
failures. The following section on the implementation of our negotiation mechanisms will also show
the limitations of the approach, as if contracts can be used with relevance in control loops, they are
not sufficient to build complete self-adaptive systems.

3.1.7 Implementation and Self-Adaptive Capabilities

The implementation of the negotiation mechanisms is realized upon the first implementation of the
contracting system ConFract . Tt is based on the reference implementation in Java of the Fractal

component model, named Julia. Negotiation mechanisms represent new control functionalities
which are used by the contract manager. The negotiation model is itself implemented as full-fledged
components which are created and hosted in the membrane of components, through dynamic re-
configurations of component membranes19. Although it would have been possible to implement the
negotiation model using plain Java objects, we decided to use full-fledged components to explicitly
represent the main components of the model as well as their architecture in a uniform approach that
applies component-based structure and separation of concerns. With such an implementation, we also
consider applying some forms of contracting at the (meta-)level of the negotiation system itself.
When the checking of a contract provision fails, an atomic negotiation composite component is dy-
namically built to represent the atomic negotiation process. Fig. 3.5 depicts the architecture of the
atomic negotiation component. It encapsulates some proxy components to the various parties that
have to negotiate and also other meta-components which are used to build and drive the negotiation
process. To instantiate this atomic negotiation component, references to the responsible components
are retrieved from the violated contract provision object according to the negotiation policy, and for
each negotiating party (contract controller and responsible components), a proxy component which
will negotiate on behalf of each party, is dynamically built using dedicated factories. These proxy
components are composite components which notably encapsulate the negotiation reasoning of each
corresponding negotiating party and they expose clearly defined interfaces, which then allows them
to interact according to their role of initiator or participant in the Contract-Net protocol. The negotia-
tion reasoning component of each negotiating party is instantiated from strategies defined in external
XML files, and they can also be redefined at runtime, outside any atomic negotiation.
Using the component-based architecture of the controllers and the negotiation processes, some self-
adaptive capabilities have been implemented within the negotiation mechanisms:

⋄ Each negotiation action has a contract over its realization, so to detect timeout when interacting
with each participant. This timeout value can be relaxed once, then an effort action is executed
to forbid negotiation with the faulty participant.

⋄ Each negotiation process has a contract over its realization, so to detect overall timeouts of an
atomic negotiation. As default values for negotiation, this other timeout value can be relaxed

19While we implemented the first ConFract system, the Julia implementation added the capacity to implement com-
ponent membranes (i.e. controllers) using objects but also components.
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Figure 3.5: Component-based architecture of an atomic negotiation component.

with two other values

⋄ The two timeout negotiations described above are themselves controlled for timeouts but with
a simple reactions that consists in deactivating all timeout contracts.

Additionally, we implemented an history of all negotiations, centralized on each Fractal runtime, so
that oscillations on some contracts can be detected. Each negotiation, with its clause and results,
is saved, so that cases of oscillation between similar provisions or functioning parameters used in
negotiation can be detected. Oscillations can be experimented in our negotiation systems because we
also added some other control loops that try to reestablish nominal values on negotiated contracts on
a regular basis.

This clearly shows both the capabilities and the limitations of the negotiation mechanisms. On the
one hand, the component-based organization of the negotiation mechanisms and processes allows for
their own adaptivity through the very same mechanisms. On the other hand, the provided mechanisms
presented here are not powerful enough to cover a complete self-healing mechanism. The main
missing feature is the possibility to consider feedback control loops that are quite implicit to be
completely explicit [BDG+09], so that they can be more easily organized and that some appropriate
control model can be integrated when possible. Even with some smarter policies that could mix
concessions and efforts to provide a form of regulation, the resulting regulation would still be subject
to possible oscillations if the values exchanged during the negotiation create an overshoot in the
control [HDPT04]. Currently, it is only possible to detect this overshoot and to deactivate the involved
negotiation.
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3.1.8 Related Work

Negotiation is used in multi-agent systems (MAS) to coordinate actions, resolve conflicts and above
all share scarce resources. Several negotiation mechanisms base their interactions model on the gen-
eral Contract-Net Protocol [Smi80]. The negotiation strategies are often specialized and dedicated to
a specific application whereas, Faratin et al. defined in [FSJB99] advanced strategies with responsive
and deliberative mechanisms. In our model, although we adapted the CNP protocol, the negotiation
differs by dealing with the provisions of a violated contract and our strategies are defined by sets of al-
ternatives closely related to work from Balogh et al. [BLH00]. Furthermore, while MAS are endowed
with social and environmental autonomy, our approach is more closely related to self-adaptive sys-
tems and autonomic computing, by aiming at automatically restore the validity of contracts through
adaptation of components or contracts at assembly and run times.

Numerous works use QML (QoS Modeling Language) [FK98a] to specify and contractualise QoS
properties. In QML, extra-functional aspects are described by specifying expected quality levels.
However, specifications in QML express relatively high-level constraints without explicit represen-
tation at run time. Particularly, it is not possible, contrary to CCL-J , to combine both functional
and extra-functional aspects within a specification, as well as referring to component, interface or
method parameters at the application level. QML is usually used to specify QoS in distributed systems
[BG99, KS98] and component models [RBUW03, LS04]. In distributed systems, negotiation proto-
cols deal with a restricted number of QoS parameters relating to network characteristics and mainly
consider the negotiation as the process of reserving resources [SLM98, PLS+00]. In component
models, most QoS negotiation protocols are dedicated to multimedia applications and the negotiation
consists in controlling components admission and performing ressources reservation to support the
agreement. In [GPA+04b], the negotiation protocol consists in selecting either an implementation or
a QoS profile that fulfills the specification whereas in [LS04], negotiation is statically defined and
consists in trying alternate services with lower quality levels. Our approach differs as we view the
negotiation as a generic process of consulting and adapting responsible components or contracts to
restore the validity of contracts.

3.1.9 Summary

We described mechanisms to support contract negotiation on hierarchical software components. These
mechanisms were designed for ConFract . In the proposed negotiation model, the protocol is partly
inspired from the extended Contract-Net Protocol, frequently used in multi-agent systems. A negotia-
tion initiator thus consults clearly identified responsible components in order to restore the validity of
violated contracts. Given component responsibilities, two complementary negotiation policies have
been proposed. A concession-based negotiation policy enables beneficiary components to relax vio-
lated constraints. An effort-based policy exploits the guarantor component capabilities so that it can
realize adaptation. The next section will detail an extension of this effort based policy so that com-
positional patterns of non-functional properties are exploited to propagate efforts among the relevant
part of the component hierarchy.

The proposed mechanisms have been developed over the ConFract system and validated on a large
component-based applications, Amui, that provides dynamic grouping capabilities on an instant mes-
saging server, using the multimedia player used as example as one of the applications that is automat-
ically launched between members of the same dynamic group.
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3.2 Compositional Patterns of Non-Functional Properties

This section shares material with the Journal of Software article "Compositional Patterns of Non-
Functional Properties for Contract Negotiation". Like the previous section, it is related to a part of
Hervé Chang’s PhD Thesis and a collaboration contract with France Télécom R&D (now Orange
labs).
While the CBSE approach successfully dealt with the functional dimension of components, one of
the major challenges was to facilitate the management of non-functional properties [BBB+00]. These
properties represent various qualities of software components and systems, and with the proliferation
of components in long-running applications, where these qualities are important, the need for identi-
fying and handling these properties as precisely as possible during the design, (re-)configuration and
runtime phases is crucial.

3.2.1 Objective

In this context, our goal is to provide a fine-grained representation of a large class of non-functional
properties in systems built with hierarchical software components, and to use them to precisely specify
and manage these properties. Our approach is to provide both a model and a supporting runtime
infrastructure, so to stand half-way between analysis techniques and dedicated monitoring systems.
We thus propose to reify some non-functional properties in relation with components, and to provide
means to support a basic form of compositional reasoning that relate system properties to component
properties. This should then enable software architects to better master the design, integration and
also the runtime management of non-functional properties into component-based systems.
The proposed representation consists in some architectural patterns that model non-functional prop-
erties. They are based on a classification of some low-level observable non-functional properties,
which is established by considering their nature and life-cycle. The proposed patterns reify different
kinds of parameters on individual components, as well as physical resources, and are mapped to the
general Fractal component platform [BCL+04, BCL+06]. We particularly show how the composi-
tional support for non-functional properties is used to conduct the propagation of contract negotiation
down into the component hierarchy. Some kinds of efforts can then be realized to react to contract
violations related to those properties.

3.2.2 Classification of Non-Functional Properties

The proposed classification is not intended to be exhaustive. It is rather limited to the range of
low-level properties which are measurable and sufficiently orthogonal to functional aspects. Hence,
non-functional aspects which concern high-level properties and system life-cycle at development and
maintenance phases, are not taken into account here, as well as other temporal aspects, which require
more knowledge about the behavior of components. Moreover, to reason compositionally on non-
functional properties, the analysis of non-functional properties of a system must also be based on
properties of the components that compose it. Consequently, the classification also takes into account
the composability of properties at the level of component compositions. The classification is then
built by first analyzing what kinds of non-functional properties can be directly derived from individual
components, and what kind of features they express in relation with them. The life-cycle of properties
is also analyzed in relation with the one of components. The moments when these properties are
defined are distinguished, as well as when they are to be observed.
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The proposed patterns directly match the categories of non-functional properties at an abstract level
of architecture specification in order to remain independent from underlying component technologies.
They are also used to support automated reasoning on compositional properties, once and for all, at
the level of patterns themselves.

Some non-functional properties represent the key features or nature of components. For example, they
can describe a memory footprint, the compatibility version number of a video codec or a maximum
capacity. These properties are comparable to the technical characteristics of electronic or mechanical
components, they capture and represent some design and development features of components and
have an impact on their whole usage. They result of choices made when designing and developing
components, and are generally taken into account at assembly and configuration times to evaluate
the suitability of components, for instance when selecting potential components and matching them
to requirements. As they describe the nature of components, they thus cannot be changed and their
measurements remain constant all along configuration and runtime phases.

Some other properties represent configurable parameters of components themselves. They describe,
for example, the size of a buffer component or the maximum size of a resource pool component. These
properties influence the required and provided services of components, and may be (re-)parametrized
to set components to some specific functioning mode. They can be defined during the development
phase by default values, but they are mostly observed and changed at assembly and (re-)configuration
times, to properly customize the functioning mode of components, and also adapt them to their run-
time environment (other components, runtime infrastructure). Once set, these properties are generally
defined to remain constant between two successive reconfiguration phases. Compared to the previous
category, configuration parameters are defined to adapt components, they thus support a wider range
of change, but still remain constant all along an execution.

Others properties describe functioning parameters of components. For example, they can describe
the number of active sessions on a web server, the current state of a video player processing a media
stream, and the current number of packets exchanged between a given client and a server. These
properties capture some key information about the behavior of components at runtime and can thus
be seen as properties that probe for some functional aspects of components. As they are related to
the runtime behavior of components, they are naturally defined and observed during this time. Com-
pared to the previous property categories, functioning properties pinpoint some elements related to
the varying behavior of components at runtime.

The two other categories considered in our classification consist in properties which are related to
the runtime infrastructure. These properties can represent physical resources such as memory, CPU
as well as other network properties (bandwidth). They are generally considered under the general
term of resources, and they describe exogenous requirements of applications. They clearly determine
the execution of services, in term of external resources being provided by the underlying infrastruc-
ture. In order to make possible their effective monitoring and management, and take advantage of the
component-based approach, these resources are now commonly reified at the application level. The
resource properties are completely defined at deployment time, as they refer to the deployment infras-
tructure and runtime environment, and for a given deployment, their existence is constant all along
the runtime phase, and until the next deployment. Compared to the three previous property classes,
resources concern the underlying infrastructure, and are not directly attached to business components.
Beyond the existence of resources, the properties that are frequently considered are resource capacity
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properties, which describe some aspects in relation with the resource use, as memory occupation,
battery remaining capacity, CPU usage, or bandwidth level. These properties express and quantify
the level of resources provided by the underlying infrastructure, and required by applications. They
are the most often considered resource property, as they represent critical properties of resource-
constrained applications, and strongly influence their runtime qualities. As they describe resource
consumption at runtime, these properties are defined and observed at this time.

3.2.3 Modeling Patterns

(a) Patterns for properties of nature, configuration parameters and
functioning parameters.

(b) Patterns for resources and resource capacity
properties.

Figure 3.6: Overview of modeling patterns.

The proposed patterns are described using UML 2 component diagrams [RJB04], so that they can
be more easily applicable to different component platforms. UML 2 components represent indepen-
dent, interchangeable parts of a system. They realize one or more provided and required interfaces,
which determine the behavior of components. Interfaces define sets of operations that components
implement. Attributes can also be added to components to represent data fields or properties about
them.
The first three categories of non-functional properties directly match the concept of attributes. As
properties of nature cannot be changed, they are modeled as read-only private component attributes,
which are accessed only by their associated getter operations defined in a provided interface (named
IPropertiesOfNature in Fig. 3.6a). Configuration parameters can be defined and also re-
parameterized. They are thus modeled as both read and write component attributes which are accessed
and modified through their associated getter and setter operations defined in a provided interface
(named IConfigurationProperties in Fig. 3.6a).
Functioning parameters provide information about some aspects of the behavior of components. They
are modeled as read-only component attributes with their associated getter operations defined in a
provided interface (named IFunctioningParameters in Fig. 3.6a). One may note that, at the
modeling level, the integration patterns proposed for the three previous property classes are quite
similar, as they only relate to the structure of components. However, the semantics of each pattern is
rather different, as they each have their own definition on how and when properties are defined and
observed (see section 3.2.2).
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Physical resources are elements from the underlying infrastructure as a whole. To keep this design
both at the infrastructure and application levels, resources are reified as full-fledged components. This
then allows one to manipulate these reified resource components as usual business components, and
to make them work together seamlessly. In particular, as resource capacity properties probe some in-
formation about the level of resources provided by underlying physical resources, they are modeled as
operations of the reified resource components, and are accessed through a provided interface (named
IResourceProbeMeasures in Fig. 3.6b).
As components may exhibit properties that belong to several of these previous categories, the pro-
posed patterns can be applied together. Regarding the measurement of non-functional properties, the
proposed patterns provide standardized way to represent properties at the modeling level, but they do
not provide predefined mechanisms to measure them, at the implementation level. Such mechanisms
are defined at implementation time when the component technology and the runtime environment
are determined. For example, runtime properties, mainly related to resources, can be simply mea-
sured through appropriate resource probes and asynchronous communications support for processing
monitoring information, like the ones provided in the DREAM framework [LQS05].

3.2.4 Reasoning Support for Compositional Properties

To be able to reason on the realization of a compositional property from other ones, information
describing the relationships, as well as some appropriate reasoning support must be provided.
Except resource properties, which do not express quantifiable properties, other properties from our
classification have been modeled using patterns that derive directly from individual components.
These properties are thus compositional by nature, and some simple form of compositional reasoning
can be supported. Building on those primitive parts, we define a compositional property as a property
providing the following characteristics: (C1) the set of properties that contribute in decomposing that
property, (C2) for each contributing property, the components that realize it, and (C3) a composition
function that allows for computing the overall value of the property given each contributing property.
To illustrate this, Fig. 3.7 gives two examples of simple compositional properties. Fig. 3.7a de-
scribes a compositional relation A.Interface.p=B.Interface.p that links the assembly property p of A
directly to the same property p on its subcomponent B. This property is realized by the subcompo-
nent B, and these two properties are equal (identity function). In Fig. 3.7b, the compositional relation
A.Interface.p=f(B.Interface.p1,C.Interface.p2) now relates the property p of A to the two properties p1
and p2 ascribed to B and C. The set of contributing properties of p are now p1 and p2; they are
respectively realized on the subcomponents B and C, and the composition function is f (which can
be, for example, a simple arithmetical sum or min function).
For a compositional property, determining these compositional information formally may be hard,
even impossible, and may also require deeper analysis, especially as the composition function (C3)
may be difficult to express. The fact that our study is restricted both to non-functional properties that
are directly derived from single components, and compositional properties, which are a function of
properties of its components only (no system environment, or architecture-related factors), simplifies
identifying these information. Even with these hypothesis, there are still many dependencies be-
tween properties as well as measurement influences during monitoring (a form of the observer effect,
at least because monitoring consumes time and space), which are hard to express and model using
simple compositional functions. Compositional functions are to be defined individually for each con-
sidered compositional property, and it is necessary to provide a trade-off between simple and provable
formula and complicated but more error-prone functions. In our case the composition functions can
be defined with almost arbitrary code, as these functions are specified with assertion-based contracts
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(a) (b)

Figure 3.7: Examples of compositional relations.

(see section 2.1), so that checking can be performed during both testing and exploitation stages. We
thus suppose that for each compositional property, compositional information are provided through
descriptive meta-data that may be expressed using code annotations or Domain Specific Language
(DSL) facilities.
To enable reasoning on them at runtime, compositional properties are reified as meta-objects, and
we integrate the following compositional properties support. A CompositionalPropertyManager (see
Fig. 3.8) is built for each Component to manage the set of its compositional properties. It uses the
provided compositional information to instantiate and register a CompositionalProperty (meta-object)
for each compositional property. Each property object reifies a corresponding compositional property
and it gives access to all of its compositional information: its value, all other properties necessary to
compute its composition function and their contributing components.

Figure 3.8: Elements at the meta-level.

At runtime, the CompositionalPropertyManager can be exploited by elements at the base or at the
meta level to retrieve the corresponding CompositionalProperty object and get the compositional
information about the property it reifies. When interacting with the compositional manager, the se-
quence of messages carried out by a client is as follows: i) the client invokes the compositional
manager that manages the property objects of its associated component to look up the property object
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that corresponds to a given compositional property, ii) the compositional manager returns the refer-
ence to the property object, iii) the client can then directly invokes the property object to retrieve,
for example, the value of the property computed from the compositional function or the list of the
contributing components that decompose the property. Other compositional information are retrieved
similarly.

3.2.5 Mapping Patterns to the Fractal Platform

We now illustrate how the proposed patterns can be integrated and used into a component platform
such as the Fractal component model.
The Fractal component model provides dedicated attribute-controller interfaces to model orthogonal
properties of components. They give access to component attributes before starting components and
without needing to bind and use their functional interfaces. They also offer various access modes
(read and/or write accesses) which make it possible to respect the difference between properties of
nature and functioning properties, which cannot be changed, and configuration parameters which can
be modified. Hence, as properties of nature, configuration parameters and functioning parameters of
components, are simply modeled through component attributes, they are basically mapped to Fractal

attributes and attributes control interfaces (see Fig. 3.9a and 3.9b), with their appropriate read-only
or read-and-write operations.

Control
Interface

Attributes
getProperty()

....

Functional
Interface

Properties of nature
Functioning parameters

Business Component

(a)

get/setProperty()
....

Functional
Interface

Control
Interface

Attributes
Configuration parameters

Business Component

(b)

Resource Probe Component

Component sharing

Business Component

Component sharing

RR

R

(c)

getResourceLevel()
....

Functional
Interface

Resource capacity properties

Resource Probe Component

(d)

Figure 3.9: Patterns for Fractal components.

As resources are modeled by components, they are reified using full-fledged Fractal components,
which do not provide a priori advanced services, except for probing their associated physical re-
source. Moreover, as resources can be used by several distinct business components, the component

sharing feature provided by the Fractal platform is exploited to reflect resource sharing at the com-
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ponent composition level (see Fig. 3.9c). It enables one to use a same instance of a reified resource
component, in several distinct enclosing components, at different level of hierarchy, while preserving
component encapsulation.
Resource capacity properties represent primitive data collected by resources probes, which are mod-
eled using Fractal components. They are modeled using functional interfaces attached to the corre-
sponding resource probe component (see Fig. 3.9d). The type of collected data is open and to be
determined by the developers of probe components, spanning from primitive measurements to more
advanced performance indicators processed by statistical models (interpolations, correlations, etc.).
It should be noted that, as Fractal components can be recursively nested, the proposed integration
patterns can be applied at any level of hierarchy in a uniform way.

3.2.6 Illustration

To illustrate our contribution, we use a variant of the Amui system already presented in section 2.2.2.
The Amui system manages automatic grouping of users, according to their common interests, and
dynamic application sharing. Several variants of the system were developed to study both Fractal

capabilities and the different propositions we designed and prototyped. The version we use here
automatically groups users into chat rooms, and streams videos to grouped users according to their
common interests.
The server, shown on figure 3.10, is represented by the composite component FractalInstant-
Communication, which is formed out of three subcomponents : InstantGroup manages the
users and their grouping through its provided interface UserMgmt20, VideoService manages
the video streaming service, and BdwMonitor monitors the network bandwidth and measures the
overall bandwidth consumption of the server. InstantGroup is composed of UserManager
which manages the users, GroupManager which manages groups, MsgMonitor which moni-
tors messages exchanged between users, and InstantFacade which pilots the other components.
InstantGroup also exhibits the properties maxUsers and groupedUsersRatio which, re-
spectively, describe the maximum number of concurrent users that the server supports, and the rate of
users that have been grouped. VideoService is composed of VideoManager which manages
the video streaming, and VideoMonitor which monitors the bandwidth consumption of the video
service. Moreover, each component is endowed with capabilities to control its bindings, content and
lifecycle (respectively depicted as BC, CC and LC in Fig. 3.10). The content of BdwMonitor is
detailed together with contracts in section 3.2.7.
In this example, the various proposed categories are illustrated. The maxUsers and grouped-

UsersRatio properties of InstantGroup are respectively a configuration parameter that is de-
fined when configuring the server to set the maximum threshold of concurrent users, and a func-
tioning parameter that describes the rate of users that have been grouped. They are modeled with
read-and-write Fractal attributes. The property nbUsers of UserManager is a functioning pa-
rameter that describes how many users have been registered. It is modeled with a read-only Fractal

attribute. The property nbGroupedUsers of GroupManager is a functioning parameter that
describes how many users have been grouped, and is also modeled with a read-only attribute. All
these attributes are accessed through the attributes controller interface of their corresponding com-
ponent. As for the network bandwidth property, the associated resource probe is modeled as a Frac-

tal component (BdwMonitor), and the probed data, such as the level of network bandwidth used
(getBdWidthLevel()), are modeled through the functional interface BdWidthInfo. More-

20For lisibility sake, this interface is not detailed on Fig. 3.10.
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over, as BdwMonitor relies on the level of bandwidth used for the messaging and video service to
compute the overall bandwidth, it uses MsgMonitor and VideoMonitor which are then shared
and hosted in BdwMonitor. For lisibility sake, the sharing of these components is further detailed
in section 3.2.7.
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Figure 3.10: Architecture of the server, and some contracts.

3.2.7 Exploitation in Contract Negotiation

We now illustrate how the effort-based negotiation policy defined in section 3.1.5 can rely on the
proposed integration patterns and the compositional properties support. This negotiation policy con-
sists in exploiting the responsibility of the guarantor component. As it is responsible either of its
assembly or the implementation of some terms referred in the negotiated provision, the guarantor
can act to restore the validity of the provision by either doing some reconfiguration actions at its
level or propagating the negotiation process down its hierarchy. In this latter case, some contributing

components, which contributes to the negotiated provision at the lower levels, are then consulted to
propose some efforts that may revalidate the violated provision at the higher level. The contributing
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properties that decompose a given compositional property are used to propagate the negotiation from
a level of component hierarchy to the sub-level. They are identified using the compositional function.
Moreover, for each contributing property, its realizing component is explicitly identified according to
the proposed integration patterns. Each contributing component which is asked for efforts, may then
propose some changes regarding the property it realizes.

CTC

CTC
C.ci.P < 100

C.ci.P := f(A.ai.P1,B.bi.P2)

compositional property P

..........

..............

Base−level

Meta−level
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Requests compositional information
& Identifies contributing components

contributing components
Interacts withC

Reification
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Contract

P1 and P2

Management

Property realization

. value : f(A.ai.P1,B.bi.P2)

Compositional information:

Compositional function

A and B

A B

Figure 3.11: Overview of the propagative negotiation process.

Fig. 3.11 summarizes the propagative process by depicting the various entities involved and their in-
teractions during the compositional reasoning. The negotiation focuses on a contract provision built
from the specification C.ci.P < 100, which expresses a maximum threshold for A property P realized
through an interface ci of a component C. The contract is managed by the contract controller (CTC)
of the component D, which then activates an atomic negotiation in case of violation. Following the
proposed compositional support (see section 3.2.4), the meta-object of the compositional property P
is built from the compositional function C.ci.P := f(A.ai.P1,B.bi.P2) and it gives access to the composi-
tional information. It is exploited by the contract controller of the component C to retrieve the set of
contributing components, A and B, in order to consult them, and requests efforts from them according
to their contribution in the contract provision.
Moreover, when the checking of a contract provision fails, the overall negotiation process using the
propagative negotiation policy involves the contract controller, which manages the violated contract
and the guarantor component. It then executes according to the following steps:

1. The contract controller requests proposals from the guarantor component. In response to these
requests, the guarantor component can then either make proposals to revalidate the provision at
its level or, decide to consult some components in its content (if it is composite) ;

2. In this latter case, the contract controller of the guarantor takes in charge the negotiation and
thus have to identify the set of components that contribute in the property that is specified in
the contract provision, and that are to be consulted ;

74



3.2. Compositional Patterns of Non-Functional Properties

3. These components either implement the property, or belong to the set of components that con-
tribute in decomposing that property. In the first case, this contract controller uses the inte-
gration patterns to identify the component that implement the property. In the other case, it
interacts with the compositional properties manager and the associated compositional property
meta-object to retrieve the compositional information that describe the decomposition of that
property;

4. Once identified, these contributing components are consulted by the contract controller in or-
der to make proposals that may revalidate the violated contract provision. At their turn, they
can either propose changes that may revalidate the contract provision, or take in charge the
negotiation and propagate it in their content, following the process as in step 2.

Some contracts on non-functional properties

Back to our working example, Figure 3.10 shows a pretty print of the reified internal composition

contract which is built in the content of the component <fic>. This contract is managed by the
contract controller (CTC in figure 3.10) of <fic>, and contains three contract provisions which
express some internal behavior rules on the implementation of <fic>.
The first provision (see figure 3.10) defines an invariant on the configuration of <ig>, such that
the maximum threshold of concurrent users that the server can support (maxUsers) is higher than
250 users. The second one constraints <ig> by defining a minimum threshold of 80% for the
groupedUsersRatio (on 10 registered users, at least 8 of them must belong to a group), which
must hold all along the execution of every method of <umt> (rely construction and operator ∗).
The third provision constraints <bm> by defining a bandwidth consumption threshold of 30ko/sec,
which is required to prevent a high bandwidth use. This constraint must hold all along the execution
of every method in the content of <fic>. As for checking, the first contract provision is checked
at configuration time, as it specifies an invariant of the configuration. The other provisions, which
specify functioning and resource capacity properties, are checked at runtime. Regarding responsibil-
ities, for each of these three contract provisions, <fic> is at the same time, the guarantor and the
beneficiary component, as it has to take in charge its internal assembly and also benefits from it (cf.
section 2.1.5).

Scenario for a configuration parameter

The first provision may be violated, if for example, the component <ig> supports by default a maxi-
mum threshold of 100 users. Let us suppose that the compositional relation (R1) (see figure 3.12) is
provided to describe the fact that the property maxUsers of <ig> decomposes itself identically into
the same property maxUsers of <um>. The negotiation process then involves the contract controller
(CTC) of <fic> and <fic> itself, as the unique guarantor. It executes as follows. First, the contract
controller consults the component <fic> and requests from it some proposals (step 1). As <fic>
is responsible of its internal assembly, it then takes in charge the negotiation process and consults its
subcomponent <ig>, which carries the property maxUsers (step 2). To propagate the negotiation
in its content, the contract controller of <ig> interacts with the compositional properties controller
(named CPC in figure 3.12) and the compositional property meta-object associated to the maxUsers
property, to identify the components to be consulted. The compositional information that describe the
maxUsers property (step 3) are then retrieved, and the component <um> is identified as the unique
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contributing component. The contract controller of <ig> requests proposals from <um> which, ac-
cording to its negotiation reasoning, makes proposals that may, for example, consist in reconfiguring
its parameter with a higher value of maxUsers (maxUsers=300 for example) (step 4). For each
proposal, the contract controller of <ig> uses the compositional function to evaluate whether the
proposed changes are sufficient to revalidate the contract provision.

CTC

CPCCTC

  <um>.attributes.maxUsers
<ig>.attributes.maxUsers:=

(R1)

Step 3
Step 1

: Compositional Relation

: Propagation of the Negotiation

Step 2

Step 4

<fic>

<ig> maxUsers

maxUsers

<um>

Figure 3.12: Propagative scheme for the maxUsers property.

Scenario for a functioning parameter

The second provision may be violated if the grouped users ratio is lower than 80%. To negotiate this,
let us suppose that the compositional relation (R2) (see figure 3.13), describes the decomposition of
the property groupedUsersRatio of <ig> into the property nbGroupedUsers of <gm> and
nbUsers of <um>. It expresses the fact that the grouped users ratio is equal to the ratio between
the number of users in groups and the overall number of users. The negotiation process involves
the same negotiating parties as in the previous example, and it is propagated at the level of <ig>,
using the same propagation scheme (step 1 and 2). However, the components that contribute here
in realizing the property groupedUsersRatio are <gm> and <um>, which respectively exhibit
the property nbGroupedUsers and nbUsers (step 3). They are thus consulted (step 4), but, as
these properties describe functioning properties of <gm> and <um>, they cannot be directly changed.
<gm> and <um> are likely to be unable to propose some efforts. The negotiation then terminates with
a failure, which leads to an exception. This exception may be caught outside any negotiation process
in order to perform more adhoc and global adaptations or reconfigurations of components (replacing
the <gm> component, etc.).

Scenario for a resource capacity property

The third provision is challenged if the global bandwidth consumption exceeds 30ko/sec. As the
BdwMonitor component relies on the bandwidth levels of the messaging and video services, which
are measured by the probe components <mm> and <vdm>, these two components are shared and their
associated slave instances, <mm’> and <vdm’>, are hosted in the content of BdwMonitor. Be-
sides, the compositional relation named (R3) in figure 3.14 is provided to describe that the property
bdWidthLevel of <bm> decomposes into the sum of the property bdWidthLevel of <mm’>
and <vdm’>. As in the two previous scenarios, following the steps 1 and 2, the contract controller
of <bm> takes in charge the negotiation and identifies the component <mm’> and <vdm’> as the
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Figure 3.13: Propagative scheme for the groupedUsersRatio property.

contributing components. However, as opposed to previous examples, <mm’> and <vdm’> are not
consulted as they merely represent the slave instances of resource probe components, which cannot
propose efforts at the application level. The sharing relation is then exploited to retrieve the reference
to the master probe components <mm> and <vdm> (step 4), from which the enclosing business com-
ponents <ig> and <vs> are retrieved (step 5). The components <vg> and <ig> are then consulted
by the contract controller of <bm> (step 6), as they are the components at the application-level that
may propose efforts to lower the bandwidth consumption (selecting lower bitrates, changing used
codecs, compressing file transfers, etc.).
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Figure 3.14: Propagative scheme for the bdWidthLevel property.

3.2.8 Implementation

Like the ConFract prototype and the negotiation mechanisms associated to it, the compositional prop-
erties support has been implemented with the Julia version of Fractal , which notably supports
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component membranes, i.e. controllers implemented as components themselves.

Support of compositional properties. As the control dimension of Fractal components is open,
the CompositionalPropertyManager is implemented as a new Fractal controller component, namely
compositional property controller, and integrated in the membrane of every composite component to
control its set of compositional properties.
For each compositional property of a component, the meta-data representing the compositional in-
formation are described using Java annotations, and a custom multi-value annotation type is defined
to describe: the set of contributing components, the set of contributing properties, the modeling ele-
ments which realize each property (interface and method names) and the compositional function that
links the value of the compositional property to its contributing properties. These annotations are then
parsed and the compositional information of each property are retrieved by the compositional prop-

erty controller in order to instantiate and register each corresponding property object. This controller
thus maintains the references to all of the compositional property objects of its component, and like
any other Fractal controllers, its control interface is accessed, at runtime by introspecting the given
component, and used to access to each compositional property object.

Negotiation mechanisms and propagation. The negotiation mechanisms are organized around
atomic negotiations. In our Fractal implementation, a dedicated composite component is dynami-
cally built to represent the atomic negotiation process (cf. section 3.1.7). This component is hosted
in the membrane of the component whose contract controller initiates the negotiation process (see
figure 3.15). It encapsulates some proxy components to the various parties that have to negotiate.
when a negotiation needs a propagation, it creates a new atomic negotiation. As the spatial scope
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Figure 3.15: High-level architecture of atomic negotiations in component membranes.

of an atomic negotiation involves only parties that are related by at most one level of hierarchy of
component, a new atomic negotiation component is then built for each propagated negotiation. The
construction of this new component is activated by the participating component which have proposed
the propagation. It thus becomes client of the new atomic negotiation component, and can both re-
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ceive the negotiation outcome of the propagated atomic negotiation component and make proposals
in the negotiation at the upper level (see figure 3.15).

3.2.9 Related Work

Numerous studies have been conducted around the analysis, modeling and management of non-
functional properties. At the highest-level of analysis, some approaches provide methodologies to
analyze quality attributes [BKLW95], or address non-functional properties through quality standards
(IEEE 1061, ISO/IEC-9126) and models [BV02, BRO+02] that provide classifications of high-level
properties. They aim at proposing a generic taxonomy and studying relationships between properties,
or structuring knowledge by successively defining and decomposing non-functional characteristics.
At the lowest-level of platform and resource management, substantial works exist on providing re-
source management and monitoring capabilities to applications, at different level of abstractions (API,
technologies) [CHS+05]. Such works also aim at integrating advanced tools for the diagnosis of per-
formance issues [PS06]. Compared to these works, our work stands in between analysis techniques
and management systems. We focus on providing some patterns to finely model and integrate a range
of non-functional properties in software components, so that it is possible to precisely manage them
at runtime, and also reason on their composition according to those of components.
To achieve non-functional requirements in the domain of distributed systems, numerous works pro-
posed some component-based middleware platforms that provide QoS control and measurement ca-
pabilities through reflective and adaptive techniques [BAB+00, N. 01]. However, they particularly fo-
cus on critical network-related properties, and provide integrated control mechanisms without explicit
representation of non-functional properties. Some other component platforms also enable flexible in-
tegration of arbitrary non-functional services using code transformation such as aspect-weaving, or
indirection frameworks (interceptors, meta-object protocols). Non-functional services are essentially
middleware-related services (transactions, load balancing, security checks, etc.), and they are handled
by containers which wrap set of components.
Specific to component-based systems, several compositional approaches aim at improving non func-
tional property analysis in component assemblies. Analysis models and property theories are thus in-
tegrated to component technology [HMSW03], and they allow one to guarantee, by construction, the
predictability of some properties on component assemblies. However, they require advanced analysis
models and techniques, and are mostly dedicated to specific properties, such as latency [HMSW03],
reliability [HMW01, RSP03a] or memory usage [EFHC02]. Some of these models could also be ex-
tended to other properties if the properties are properly related to the architecture and modeled in some
generic ways that make possible to reason on them. Our approach differs as, instead of analyzing for-
mally some specific property upon existing theories, we rather focus on a larger range of low-level
non-functional properties which can be directly modeled and integrated to runtime components and
platforms so that mechanisms to manage and monitor these properties can be developed.
To enable reasoning on non-functional properties at the architectural level, the relationship between
software components and software architecture has been outlined [WSHK01] and exploited by study-
ing how properties relate to component assemblies and individual component properties. In partic-
ular, in order to help describing how properties relate to compositions, an interesting classification
[CLP05] has synthesized different classes of dependency between properties, components and their
context. Our approach aligns with these works, as it integrates non-functional properties categories
at the architecture level using existing basic elements of components (components, component at-
tributes, interfaces). However, by focusing on some low-level properties only related to individual
component, we only support some simple forms of compositional properties which are a function of
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the properties of the components involved (no architecture, context or usage dependencies).

3.2.10 Summary

We defined abstract integration patterns that map low-level measurable non-functional properties to
individual software components. Properties are then distinguished among attributes of nature, con-
figurable parameters, functioning parameters, resources and resource capacities. These patterns are
then mapped to the Fractal hierarchical component platform. As properties are clearly modeled to
components and directly derived only from them, some simple compositional relations, which de-
scribe the realization of properties given component compositions, can be expressed. Elements at the
component meta-level have also been provided to support reasoning on such compositional proper-
ties. We also showed how these patterns and the compositional support are exploited to negotiate
non-functional contracts on Fractal hierarchical components. They are used in a general propagative
scheme, which, by following the compositional relationship between properties, propagate the nego-
tiation to contributing components, so that they may propose efforts to revalidate violated contracts.
Both the patterns and the negotiation support have been developed and validated on different variants
of the Amui system, already described in the previous section.

3.3 Self-adaptive QoI-aware Monitoring

This section shares material with the ADAPTIVE’10 paper "A QoI-aware Framework for Adaptive
Monitoring" [LDCMR10]. It concerns Bao Le Duc’s PhD Thesis and collaborative work with Jacques
Malenfant and Nicolas Rivierre within a contract with Orange labs.
In chapter 2, we have presented contract-based techniques and tools aimed at improving reliability of
service and component based architectures. This follows the overall objective of taming complexity
of the new forms of software intensive systems, which are very large, highly distributed and 24/7
operated. Besides these systems are now more and more organized around Service Level Agreements

(SLA), a form of contract which can be relevant both at the business and infrastructure levels. They
mostly refer to Quality of Service (QoS) dimensions to express guarantees and thus call for underlying
monitoring systems.
But these systems are not the only ones that need monitoring subsystems. With activities such as
scheduling, resource allocation and problem diagnosis, there are similar needs for continuous mon-
itoring of all parts of software intensive systems, from the underlying infrastructures to high level
services.

3.3.1 Objective

With different clients needing to monitor a large number of QoS dimensions, the issue of the Quality

of Information (QoI) arises. QoI is the expression of the properties required from the monitored
QoS data [BKS03]. It can be about the type of the monitored data, their granularity, lifespan or
simply their precision. With highly distributed and pervasive systems, monitoring is now always done
over a distributed infrastructure. It must extract information among deployed processes, efficiently
collect and redistribute them to the querying clients adapting formats when needed, while dealing with
communication delays, non deterministic event ordering and usually an alteration of the observed
system [JLSU87].
In SOA, monitoring systems have been quickly provided [BGP06, BTPT06], but with implicit QoI
support [MRD08] or no support at all. In this work, our viewpoint was to consider that a monitoring
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system should currently provide several information flows to multiple clients having specific QoI
requests, while being dynamically reconfigurable. We also considered that this capability of dynamic
reconfiguration should be applicable to the monitoring system itself, constraining it on the resources it
consumes. Several works have been conducted in different domains such as context-aware computing,
data stream processing or transactional systems [ACC09, JYDZ09, MW06], with focus on QoI or
adaptive monitoring, but not taking into account all our requirements at the same time.
We thus developed a monitoring framework, ADAMO (ADAptive MOnitoring), which is able to
deal with multiple clients requesting flexible and dynamically reconfigurable access to dynamic data
sources with different QoI needs, and supports automatic configuration of all monitoring entities and
data sources so that QoI and resource constraints are taken into account.
To illustrate the requirements of our monitoring framework, we take here a small example of two
clients requesting data with different QoI characteristics. In [LD10], we used scenarios from a C3

(Control, Command and Communication) application, i.e. a system that mediates commanders and
their teams on an action field (rescue, battle, etc.). There are thus needs to gather data on positions
of teams, transports and materials, and on various field sensors, with low bandwidth consumption
on wireless networks. The two clients can have the need for different data, some of them being
common, with quality such as coherency, i.e. values taken in some time interval, or freshness, i.e.
the age of data does not pass some limit. For all clients, data access must be efficient and flexible
enough, masking any specificity that can be automatically handled such as data conversion. Finally,
regarding the consumption of the monitoring system itself, we consider it can be collocated in the
same infrastructure and that its bandwidth consumption can be constrained, e.g. not to take more that
5% of the total bandwidth. Consequently, the monitoring system must also be aware of bandwidth
fluctuation to adapt itself.

3.3.2 ADAMO Underlying Model

ADAMO relies on a QoI model that formalizes data sources, monitoring queries and system resources

and which was mainly established by Jacques Malenfant. The model leverages constraint solving to
find appropriate frequencies to configure data sources according to clients needs and resource con-
straints. Consumers send ADAMO QoI-aware monitoring queries and receive data streams as result.
ADAMO addresses QoI by processing queries so that the requested QoI and resource constraints are
automatically transformed into appropriate configurations of the data sources. The formalization of
this QoI model is available in [LDCMR10] and detailed in Le Duc’s PhD Thesis [LD10]. We only
discuss here the main elements of the model and the resulting resolution capabilities.
In the model, monitored values are defined as independent data sources, even though some may
actually represent the same physical entity or sensor. A data stream is sequences of data produced
in temporal order by a probe, so that each data value is associated with a time-stamp. It can be used
to enforce QoI constraints on the configuration parameters, e.g., interrogation mode (push/pull) or
sampling frequency. The sampling frequencies act as filters on raw data streams to pick the values
that will be transmitted to clients. Monitoring can then be regulated by choosing one of the possible
frequencies.
A query specifies the need of a client to receive tuples of data under some given QoI constraints.
In the developed version, the ADAMO model addresses the age and coherency properties, but the
framework architecture presented below is aimed at integrate easily new QoI properties. Currently,
ADAMO addresses two different QoI properties: age and coherency. An age constraint then imposes
a maximal delay between the production of a data by a source and its reception by the client. A
coherency constraint imposes a maximal delay between any pair of data of the requested tuple.
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System resources represents bandwidth, CPU, and memory resources. Each of the resources uses
available data source properties expressing the consumption of that resource when delivering data to
consumers to get the overall estimation of their consumption by the monitoring system in a given
configuration of the data sources.
The objective of the model is to enable reasoning on data source configuration, so that a given set of
queries under some resource constraints can be satisfied. Even if the QoI model is generic and open to
be extended with new data sources, properties, resource and constraints, each kind of QoI will require
a specific processing, which integration would be facilitated by the architecture framework presented
in section 3.3.3.
The model resolution is possible in both resource unconstrained and resource constrained cases. If re-
sources are unconstrained, the system is supposed to be able to process all data queries, and the result
should be a configuration of each data source that satisfies highest QoI requirements among the set of
queries. In the constrained case, the configuration should be a trade-off between QoI requirements and
resource constraints. This trade-off problem varies upon usage contexts as well as how QoI impacts
on clients. To got beyond simple approaches that would equally reduce QoI for all client, some utility
functions can express that some requirements have higher utility than others [PSGS04, ACMS06],
leading the monitoring to guarantee higher QoI for certain clients at the expense of reducing it for the
rest. In both cases, the frequency of each source is computed to achieve the QoI required by the set
of queries.

QoI enforcement in a resource unconstrained system. When resource is not a concern for mon-
itoring, the problem is to find an assignment for all the properties of each data source such that the
constraints are satisfied for all sources and queries. The problem can be modeled as a constraint

satisfaction problem (CSP). CSP is particularly well-adapted to ADAMO, as it provides a systematic
approach to the problem, and can be extended with resource constraints or cross-constraints between
criterai or new QoI needs. The variables in the CSP are the data source and the QoI properties ap-
pearing in the data source and QoI constraints. Constraints on data sources impose restrictions on
the domain of the configuration variables of the data source and can be directly used in the CSP.
Constraints on the QoI need to be related to the configuration properties of data sources in order to
enforce some values for their configuration. Corresponding constraints are added to the CSP.
The obtained CSP is not detailed here but it can have several solutions, as multiple frequencies for
data source may match the desired age and coherency constraints of the queries. In this case, the
smallest frequencies in the sets of values satisfying all of the constraints are chosen.

QoI enforcement in a resource constrained system. In the constrained case, we consider that
a specific amount of resource already modeled is allocated to the monitoring. A straightforward
approach consists in adding a resource constraint over the sum of all consumed resources of all prop-
erties with this specific amount. The problem is then to find a configuration that satisfies not only
the age and coherency constraints, but also this resource constraint. However, the system is now dif-
ferently constrained, changing the nature of the problem. As the resource constraint may impair the
satisfaction of the age and coherency constraints of some queries, the user should be able to express
preferences among its queries so to concentrate the resource on the most important queries and lower,
if necessary, the requirements of the less important ones.
In order to allow the user to express preferences over QoI properties, the model is enriched with a
set of utility functions that extends query definitions. Each monitoring property as an utility function
and utilities are combined to get the total utility of a configuration. Age and coherency constraints
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can then be seen as minimal requirements, and the problem becomes to find a configuration that
maximizes the above utility under the age, coherency and resource constraints.

3.3.3 ADAMO Architecture

Relying on the model described above, the ADAMO architecture consists in several abstractions to
allow for building monitoring systems that enforce QoI requirements. These systems are aimed at
being deployed on given points of a distributed infrastructure (this also means ADAMO systems
themselves are not distributed).
The common operations of all ADAMO instances are basically i) to gather data from sources, poten-
tially distributed, ii) to store them in a buffer system, iii) to process them so that supported properties
are enforced on requested QoI while maintaining the threshold on resource consumption, iv) to deliver
process data to clients. The ADAMO architecture thus factors out the necessary common structure
and behavior from the monitoring specific parts. The framework itself uses different techniques, hi-
erarchical components to represent functional building blocks, interfaces for decoupling all elements
either inside the common parts or as extension points and some design patterns to ease integration of
specific parts in the framework.
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Figure 3.16: ADAMO functional architecture and roles.

Figure 3.16 gives an overview of the main components with data stored and interactions, as well
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as roles of people using the framework. There are three main roles in the ADAMO framework.
Applications are clients of the monitoring system. They request, sometimes dynamically, different
QoS data with specific QoI constraints on each of them. Suppliers of the monitoring system are
data sources, which are also varied in form and location and thus impact differently the bandwidth
consumption. Finally, system administrators configure the resource constraints over the monitoring
system.
Regarding the ADAMO functional architecture, functionalities related to data collector are separated
from those of (runtime) QoI control. In the data collecting part, the client front-end is the query

analyzer component, which processes QoI-aware data queries of different kinds, submitted as batch
or on-demand. Handling queries, the query analyzer initiates the data inquiry component, which
basically wraps an inquiry algorithm that can optimize the connection to data sources by finding
an appropriate configure set for their properties (frequency, message size, transmission mode, etc.).
The inquired data stream is cached in local data buffers. The query analyzer also identifies QoI
constraints from clients and stores them into a query repository for further reasoning. The QoI control

component then dynamically finds an appropriate configuration for all data inquiries, which satisfies
best QoI requirements of concurrent clients given resources constraints. As for the Self-adaptation

component, it monitors resource levels through the data collector part and, if needed, triggers QoI

control to find a new configuration (see section 3.3.7). Finally, data processing view, simply named
view afterwards, are components that streams data to clients while realizing some final QoI filtering
or data conversion.

3.3.4 Elements of the Framework

In ADAMO various abstraction points are available to clarify domain intents and reduce implemen-
tation efforts. This allows software architects to focus on solving a problem without being concerned
about less relevant lower level details. In the framework, each component represents a level of ab-
straction that can be extended to specific adaptive monitoring requirements. For example, QoI control

can be extended in order to adopt a new trade-off algorithm taking into account coherency and some
resource constraints.

Query Analyzer. This component is in charge of handling and processing QoI-aware data queries.
In ADAMO, a QoI-aware data query consists of two specific parts in which (a) a list of dimensions
expresses which data sources are to be monitored and how the monitored data are processed, (b)
QoI constraints express how good the monitored data should be for the applications. ADAMO then
supports two ways to submit a query: static and incremental. In the static mode all queries are
submitted to the monitoring service once and for all. A set of data sources (SQ ) is then derived from
the set of queries (Q). The incremental mode is obviously more complex and consists in handling
queries subscription and removal at runtime. This requires some specific support on existing queries
so that data inquiry processes are correctly deactivated. A new set of data sources is then derived from
the pre-existent ones and the new query (SQ = f (S

′

Q , q)). In both cases, when multiple clients refer
to the same data source, the query analyzer makes the necessary adjustments to converge to a single
data inquiry, so that duplicated remote data transmissions from data sources are avoided. Due to the
necessary knowledge on data queries for both the query analyzer and the QoI control component,
information related to queries, data sources and their relationships is indexed and stored in a query

repository.

84



3.3. Self-adaptive QoI-aware Monitoring

Data Inquiry. The data inquiry component establishes a data inquiry protocol, based on a given
configuration CSQ

assigned to data source properties. Data source properties include frequency,
message size, data transmission mode (push/pull), but also inquiry mode (batching multiple samples,
summary techniques). In practice, message size and data transmission are usually chosen at design
time while inquiry frequency is used to regulate data transmission. The monitored data are stored into
local data buffers. New updates enrich query results but consume bandwidth as well as computation
resources. Therefore, a data inquiry can be adjusted to receive less or more data at runtime in order
to achieve QoI and resource consumption objectives.

Data Processing View. A data processing view produces high-level abstract information from some
low-level raw data. It also provides data to the client applications according to the protocol of their
choice (pull or push mode). In most cases, raw data sensed from the environment may be meaningless
for clients or some measurements may not be good enough for a given QoI request. Two types of data
processors are provided to handle these cases. Value based processing aims at aggregating data to
higher representation levels based on monitoring data value to provide data richness. As an example,
a simple form can be unit conversion, e.g., km to mile. More generally, it aggregates different sources
to produce a new data dimension, e.g., speed = distance/time . QoI based processing aims at
filtering out irrelevant data in order to guarantee certain levels of QoI as requested by clients. For
example, data from two sources should be filtered out to remove incoherent tuples before delivering
results to applications. Figure 3.17 depicts a temporal filter of <age, coherency>=<2 minutes, 1/2

minute> that uses a sliding window to select the first coherent tuple of two sources.
In both cases, the views are fed by data buffers and multiple clients can share their mutual data sources
while having their own mode of delivery, pull, push or even multicast push mode.

age = 2 min

now

time

d1

d2

coherency=30 sec

data tuple

sliding direction

Figure 3.17: Example of temporal filter (extracted from [LDCMR10]).

QoI Control. At runtime, the QoI control component is used to find a configuration of the moni-
toring service satisfying QoI requirements and resource constraints set by the administrator. Three
distinct tasks are associated to this component. First, it gathers inputs to feed the QoI control algo-
rithms defined in the underlying model of section 3.3.2. These inputs consist of knowledge from the
query repository (the current set of QoI-aware queries Q , the subset of data sources SQ used by Q),
and resource settings specified by an administrator (the set of resource constraints CR). Resource
constraints are usually bandwidth consumption but in other contexts, it might include other resource
dimensions such as CPU, memory, or battery. On the other hand data source constraints specify
sampling frequency domains, which express possible configuration settings of data sources. In both
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cases, we consider a constraint resolution approach in which the QoI control component implements
a constraint resolution algorithm.
Consequently, in the second step, the component executes the QoI control algorithm to find the data
source configuration CSQ

satisfying the current set of queries Q under the resource constraints CR.
This algorithm can be changed at runtime thanks to dynamic reconfiguration of components (see sec-
tion 3.3.5 on the framework implementation). Finally, it delivers CSQ

to the data inquiry component,
in charge of applying dynamically this new configuration into the monitoring system (see above).
The configuration of QoI control is typically executed when a new query is submitted, but executing
this algorithm on demand is potentially costly. To tackle this issue, ADAMO proposes two strategies
for the administrator. The first one consists in providing two reconfiguration modes: reconfigure all
data sources or reconfigure only inactive data sources. The second allows for specifying a QoI control

execution policy, which states when reconfigurations are effectively run. The default policy executes
the algorithm when a change occurs. A time interval based policy allows for specifying the minimal
interval between two consecutive executions, e.g., every 5 minutes. A query unit based policy defines
the minimal number of changes (subscription, removal) on data queries between two consecutive
executions, e.g., every 3 query updates. A last policy combines the two previous ones and avoids
query pending by using the time interval.

3.3.5 Implementation

The implementation of the ADAMO framework is mainly split in two parts. The first part deals
with descriptions and inputs from the different roles in the framework, consisting of QoI-aware data
queries, data source and resource definitions. Since they are structural descriptions from external
actors, we took advantages of code generation and extension mechanism of the Eclipse Modeling
Framework (EMF) [Ecl10] to implement this part. XSD models were thus defined for QoI-aware
data query, data source and resource. These models were imported into EMF tools, which generate
classes that can manipulate the XML documents conformed to corresponding XML Schema, i.e.
QoI-aware data query, data sources, and resource definitions.
The second part deals with core mechanisms of monitoring organized in a component-based archi-
tecture. This part has been implemented to a large extent on top of COSMOS [CRS07], a probe
framework for managing context data in ubiquitous applications. This enables ADAMO to easily
reuse many data sources through dedicated wrappers, which are also easy to write or to partly gener-
ate. As for its component model, ADAMO relies on the Fractal [BCL+06] component model, so that
features like hierarchical decomposition and dynamic reconfigurations are exploited.

3.3.6 Patterns and Extension Points

In the ADAMO framework, software architects can directly used the different elements previously de-
scribed to build monitoring systems. In complement of its component-based architecture, ADAMO
relies on several design patterns [GHJV94] to ensure its consistency and facilitate its implementa-
tion and extension. Moreover software architects can also extend the framework by providing new
versions of QoI-aware data queries, data sources or resource definitions. To do so, several extension
points are provided in ADAMO.
Every monitoring system instantiated from ADAMO should compose provided components or in-
tegrate new ones implemented by extending the abstraction mechanisms At the highest level, these
components must be consistent with each other and an Abstract Factory pattern is then used to ensure
this consistency constraint. For example, to integrate a new QoI concept as a first-class constraint,
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such as data precision of the query results, the Abstract Factory allows for ensuring that this con-
cept is integrated all concerned monitoring entities, i.e. the query analyzer, data inquiry, view and
QoI control components. As the monitoring service creates some runtime specific components, the
query analyzer component acts a Builder for all views. Besides View elements are using the Compos-

ite pattern. They are implemented by Fractal hierarchical components, themselves extended by the
COSMOS probe system [CRS07].
As multiple clients may be interested in the same source, data transmission is improved by creating a
single transmission channel between ADAMO and every needed data source. While the QoI Control

component configures the mutual data inquiry to satisfy different requests, the Flyweight pattern is
used so that, when the view are composed, data buffers are transparently shared between clients.
Finally, the Singleton pattern ensures that each ADAMO instance has only one query analyzer, query

repository and QoI control. Being the front-end to clients, the Query analyzer acts as a Facade

pattern.
A notable extension point in ADAMO concerns the integration of new forms of QoI control. The
resource unconstrained and resource constrained systems are an obvious example in which the QoI
constraints are defined differently from different inputs. Extending a QoI control thus involves both
the QoI control algorithm and the inputs defined by different actors including QoI requirements,
resource constraints as well as data source constraints. Since the implementation of the data query
definition relies on a XML Schema, it can be extended to define new QoI requirement formalism
using EMF code generation techniques (cf. section 3.3.5). Currently, ADAMO supports value based
(2) or domain based ([2..5]) constraints for data sources, as well as value based (0.4) and relative
(15%) constraints for resources. In the same way as for QoI requirements, new forms of data source
constraint or resource constraint can also be defined by extending the corresponding element. Several
interfaces of the framework can also be extended to specialize data inquiry and data processing. The
new components implementing these interfaces have then to be registered in the framework, e.g., by
providing an specific Factory.
Regarding the QoIcontrol algorithm, the ADAMO architecture provides two extension points, on the
QoI control abstraction and on the used constraint solving back-end. The QoI control component can
be exchanged with different implementations depending on when and how the QoI is effectively con-
trolled. To do so, the component is using a QoI enforcement algorithm, following the Strategy pattern
implemented by an abstract interface Constraint Solver. For example, in the resource constraint case
discussed above, the algorithm formulates the problem as a Constraint Optimization Problem (COP),
which realization implements this interface. Similarly, in the unconstrained case, the same interface
is implemented to formulate the problem as Constraint Satisfaction Problem (CSP). In both cases the
gecode21 toolkit was used and specific code was produced by traversing and reasoning on all inputs
using both the Interpreter and Visitor patterns.

3.3.7 Self-Adaptive Capability

The self-adaptive part of the ADAMO framework aims at dynamically adjusting the monitoring com-
ponents according to available resources and resource constraints imposed by the system adminis-
trator. To do so ADAMO continuously monitors resource levels of the underlying system, analyzes
them and takes the correct action in order to enforce resource constraints. This self-adaptive capabil-
ity has been implemented through a general feedback control loop [BDG+09] which is deployed over
the QoI enforcement component in the case of a resource constrained system. The loop is decom-

21http://www.gecode.org/
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posed in three activities, monitoring, decision and action, following a simplified form of autonomic
loop [KC03].

ADAMO

System probeBandwidth probe

ADAMO entity

Dedicated

View View View View
QoI

Control

Data
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Monitoring Action

Decision

Self-

Adaptation

Figure 3.18: ADAMO self-adaptive loop.

An interesting property of the architecture of this feedback control loop is that it reuses many elements
of the ADAMO framework itself. Consequently, it can be seen as a case study demonstrating its
extensibility.
Figure 3.18 depicts the loop activities and their integration with different ADAMO elements. First, we
take advantage of ADAMO’s features to monitor the necessary resource dimensions of the runtime
support. Only dimensions that concern resource constraints are monitored22. As the collection of
such resources is generally relatively negligible with regards to other resources used in the functional
data collection, the QoI control component with a default configuration is used. In this context, the
decision part of the loop plays the role of client while rest of the ADAMO framework has the data
provider role.
To make its decision, the self-adaptation component takes as inputs the resource constraints and
resource information collected from the dedicated data collector. It notifies the QoI control whenever
the resource levels are considered to be changed, either through a degradation or elevation of some
resource dimension. The default decision making technique uses a simple threshold to compare with
available resource. This is obviously a basic solution that has many drawbacks, but on the other hand,
the architecture of the loop is explicit enough to implement other techniques, such as prediction based
on historical resource information.
On the action side, the resource changes bring about violation of resource constraints or resource
under-performance. The QoI control component is thus reused to enforce monitoring constraints,
leading typically to the trade-off between QoI and available resources. Since runtime issues of QoI
control are also concerned, the principle of the QoI control policy (cf. Section 3.3.4) is applied to
the self-adaptation cycle. However, reconfiguration caused by applicative clients (i.e. submission or
removal of a query) and self-adaptation are distinguished so that two QoI control policies coexist.
Besides it is the default policy, applying the QoI control on each change, which is used on the self-

22We suppose that the underlying system can provide necessary data sources to collect resource information, such as
bandwidth consumption or CPU usage
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adaptive loop.

3.3.8 Related Work

Context-aware systems are typically concerned with QoI to perceive situations and adapt applications
based on the recognized context. Quality of Context is well studied in [BKS03, MTD08, AHAES08]
where many dimensions are proposed, including precision, freshness and consistency of the moni-
tored data. These works, however, do not address the architecture of context-aware systems or the
problem of maximizing QoI over a set of constraints. Among the different works on context-aware
management systems, COSMOS [CRS07] is an architecture based on components (called context
nodes) that are responsible to produce higher level context information from data gathered at lower
architectural layers. Several composition patterns of these components allows for architecting the
context-aware part of applications. In [ACC09], COSMOS is extended to support Quality of Con-
text (QoC) by using a specialized component to filter and evaluate QoC from collected information.
Although they do not address the problem of maximizing QoC in overloaded situations their architec-
ture is highly modular and extensible, and allows for introducing controlled trade-offs between QoI
requirements and resource consumption.
Poladian et al. [PSGS04, PGS+07] focus on adaptive systems based on multiple concurrent applica-
tions running on local computing devices with limited memory, CPU and bandwidth. They propose an
analytical model and an efficient algorithm to decide how to allocate scarce resources to applications,
and how to set the quality parameters of each application to best satisfy user and supplier preferences.
Their approach could fit well into the ADAMO framework in order to adjust the monitoring to current
conditions, given QoI objectives.
Several works propose sophisticated algorithms and optimization techniques in the domain of data
stream processing systems. They are concerned with the problem of saving network or compute
resource to deliver accurate information. For example some proposals drop data tuples to reduce
bandwidth and processing when needed [BDM04, TcZ07]. Load shedding is then formalized as an
optimization problem with the goal of minimizing query inaccuracy within the limits imposed by
resource constraints. However these works does not address the design of the monitoring framework
to implement them in a modular and flexible manner.
Some others works aim at predicting runtime malfunctions in software systems. In [MW06, MJW08]
the authors propose a new approach to monitor multi-tier transaction systems. It uses relationships
between the monitored data in the form of regression models to determine normal operation, with
minimal monitoring, from areas that need more monitoring in the event of anomalies. Nevertheless,
they not consider QoI requirements such as the age of monitoring data.

3.3.9 Summary

We have described, ADAMO, an adaptive monitoring framework that tackles different QoI-aware
data queries over dynamic data streams. ADAMO provides solutions for i) flexible access to dynamic
data streams for multiple clients with different QoI needs, ii) taking into account QoI constraints to
generate and configure appropriate elements in the monitoring system, iii) making the monitoring
system adaptable to resource constraints at runtime, and iv) managing data queries in a static or
incremental way. The proposed system relies on a constraint-solving approach to transform QoI needs
into probe configuration settings. A QoI control component implements this behavior and is open to
integrate different QoI control algorithms. A default static configuration is possible, but two adaptive
configurations are more interesting. The QoI enforcement on a resource unconstrained system aims
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at minimizing monitoring resource consumption (limited to bandwidth) while guaranteeing all client
QoI needs. In a resource constrained system the QoI enforcement seeks the trade-off between QoI
and available resources to maximize clients’ utility. ADAMO also provides a self-adaptive capability
to best satisfy QoI requirements. A feedback control loop enables the framework to continuously
monitor the system resources and dynamically enforce monitoring constraints.
As a framework, several extension points enable software architects to customize or integrate new fea-
tures including data processors and QoI control mechanisms. Especially, the QoI control component
provides an abstract constraint solver generator that facilitates the integration of new solvers. The
usage of several design patterns and EMF-based generative techniques improves consistency and fa-
cilitates extension of the framework. Two variants of a versatile crisis management system have been
developed (fire fighting, flood management) and served as case studies. The fire fighting case study
have been integrated in a end-to-end demonstration in the context of the ANR Semeuse project23.
Measurements on the instantiated monitoring systems also show that the adaptive monitoring proper-
ties have been met with good performance and resource efficiency.

23http://www.semeuse.org
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This chapter presents our research work on large scale management of feature models which have
been conducted from 2008 on.
Making the analogy of other industries such as automotive or semiconductor sectors, Software Prod-
uct Line (SPL) engineering is a paradigm shift towards modeling and developing software system
families rather than individual systems [CN01]. Its goal is to produce a family of related program
variants for a domain [PBvdL05]. SPL development starts with an analysis of the domain to identify
commonalities and differences between the members of the product line. A common way is to de-
scribe variabilities of an SPL in terms of features which are domain abstractions relevant to stakehold-
ers and are typically increments in program functionality [AK09]. Feature Models (FMs) [KKL+98]
are now widely used to compactly define all features and their valid combinations in an SPL. As FMs
are getting increasingly large and complex, our work focused on applying the principles of separa-

tion of concerns (SoC) so to provide composition and decomposition for FMs. For a better support,
a dedicated language was developed and several significant case studies were developed to validate
these contributions.
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4.1 Supporting Separation of Concerns for FM Management

This section shares material with the SLE’09 paper "Composing Feature Models" [ACLF09] and
the ASE’11 paper "Slicing Feature Models" [ACLF11c]. It concerns Mathieu Acher’s PhD Thesis,
co-supervised with Philippe Lahire, and a collaborative work with Robert B. France.

4.1.1 Background on Feature Models

Feature Models (FMs) were first introduced in the FODA method [KKL+98], which also provided
a graphical representation through Feature Diagram. FMs are now widely adopted with support of
formal semantics, reasoning techniques and tooling [SHTB07, CW07, AK09, BSRC10]. An FM de-
fines both a hierarchy, which structures features into levels of increasing details, and some variability

aspects expressed through several mechanisms. When decomposing a feature into subfeatures, the
subfeatures may be optional or mandatory or may form Xor or Or-groups. In addition, any proposi-

tional constraints (e.g., implies or excludes) can be specified to express more complex dependencies
between features. We consider that an FM is composed of a feature diagram coupled with a set of
constraints expressed in propositional logic. Figure 4.1a shows an example of an FM. The feature
diagram is depicted using a FODA-like graphical notation used throughout this chapter.

W

constraints
E implies D

R implies E 

D excludes F

S implies (F and not E)

P

R S

fm1

AV

T U

B C D

E F

Optional

Mandatory

Xor-Group

Or-Group

(a) FM: FODA-like representation

[[fm1]] = {
{A,B ,C ,D ,E ,P ,R,T ,U ,W },
{A,B ,C ,F ,P ,S ,T ,U ,W },
{A,B ,C ,D ,E ,P ,R,T ,W },
{A,B ,C ,F ,P ,S ,T ,V ,W },
{A,B ,C ,F ,P ,S ,T ,U ,V ,W },
{A,B ,C ,F ,P ,S ,T ,W },
{A,B ,C ,D ,E ,P ,R,T ,V ,W },
{A,B ,C ,D ,E ,P ,R,T ,U ,V ,W }

}
(b) corresponding set of con-
figurations

φfm1
= W // root

∧W ⇔ P ∧ W ⇔ T
∧ U ⇒W // optional
∧ V ⇒ T
∧ A⇔ T // mandatory
∧ A⇔ B ∧ A⇔ C
∧ D ⇒ A
∧ E ⇒ C ∧ F ⇒ C
// Or-group
∧ P ⇒ R ∨ S
∧ R ⇒ P ∧ S ⇒ P
// constraints
∧ E ⇒ D ∧ R ⇒ E
∧ D ⇒ ¬F ∧ S ⇒ (F ∧ ¬E )

(c) corresponding propositional formula

Figure 4.1: FM, set of configurations and propositional logic encoding.

The hierarchy of an FM is represented by a rooted tree G = (F ,E , r) where F is a finite set of
features and E ⊆ F×F is a finite set of edges (edges represent top-down hierarchical decomposition
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of features, i.e., parent-child relations between them) ; r ∈ F being the root feature.
An FM defines a set of valid feature configurations. A valid configuration is obtained by selecting
features so that i) if a feature is selected, its parent is also selected; ii) if a parent is selected, all
the mandatory subfeatures, exactly one subfeature in each of its Xor-groups, and at least one of its
Or groups are selected; iii) propositional constraints hold. For example, in Figure 4.1a, D while E

cannot be selected at the same time, E cannot be selected without C due to the parent-child relation
between them.
We define a configuration of a feature model FM as a set of selected features. JFM K denotes the set
of valid configurations of the feature model FM and is thus a set of sets of features (cf. Figure 4.1b).
FMs have been semantically related to propositional logic [CW07]. The set of configurations repre-
sented by an FM can be described by a propositional formula φ defined over a set of Boolean vari-
ables, where each variable corresponds to a feature (cf. Figure 4.1c).The translation of FMs into logic
representations allows for using reasoning techniques for automated FM analyses [MM09, BSRC10].

4.1.2 Motivations

FMs are becoming increasingly complex. There are a number of factors that contribute to their grow-
ing complexity. A first factor is that FMs are being used not only to describe variability in software
designs, but also variability in wider system contexts [MPH+07, HT08, TBC+09]. For example, fea-
tures may refer to high-level requirements as well as to properties of the software platform. Similarly,
external variability, visible to customers, can be distinguished from internal variability, hidden from
customers, in an FM [PBvdL05].
Another contributing factor is the use of multiple FMs to describe SPLs. It has been observed
that maintaining a single large FM for the entire system may not be feasible [KKL+98, MPH+07,
PBvdL05, DGRN10]. Following a model-based approach, several FMs are usually designed to de-
scribe software features at various levels of abstraction and to manage variability of artifacts that are
produced in different development phases [PBvdL05, AK09]. In addition, organizations are increas-
ingly faced with the challenge of managing variability in product parts provided by external suppli-
ers [HT08, HTM09]. The need to support multiple SPLs (also called product populations) makes
developing SPLs challenging [PBvdL05]. Product populations with FMs consisting of hundreds to
thousands of features have been observed [RW07, MC10, BSRC10]. Finally, automated extraction
of FMs from large implemented software systems [SLB+11], can produce FMs with thousands of
features.
With FMs being handled by several stakeholders, or even different organizations, managing them with
a large number of features that are related in a variety of ways is intuitively a problem of Separation

of Concerns (SoC). The sought benefits are indeed similar to the ones of software engineering disci-
plines, i.e., reduced complexity, improved reusability and simpler evolution [TOHS99]. As with any
formalism, SoC techniques may differ depending on the supported kinds of decomposition and com-
position. In feature modeling, previous works have mainly focused in providing techniques to reason
on relevant subparts of a larger FM, either by enabling staged configuration by different stakehold-
ers with FM specialization [CHE05b] or by allowing view extraction from an FM [HHS10]. These
approaches make the assumption that a single FM keeps all the information, which is not acceptable
any more for very large FMs recently observed.
We advocated that some fully-fledged SoC support is needed for large scale FM management and
that this support should be based on a set of decomposition and composition operators. Moreover
all activities related to FMs involve reasoning about the represented configurations and the impact
on the described variable artifacts. The provided form of composition and decomposition must thus
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ensure salient properties on them so that automatic reasoning is made possible [BSRC10]. These
requirements have been confirmed on a large scale, with experience in the development of a real-world
Video Surveillance Systems SPL [ACL+11] and a Medical Imaging Workflow SPL [ACLF10b], in
which several variability concerns are to be managed (see section 4.3).

4.1.3 Overview and Semantic Basis

We identify three composition operators and one decomposition operator.
The first identified mechanism, called insert, aims at introducing new features, already organized in
a feature model, into a specific location of another existing feature model. It is primarily used to
populate an existing feature model with additional information, but can also allow for reusing an
existing feature model when creating a larger composed feature model.
The second identified mechanism, called aggregate, supports cross-tree constraints between features
so that separated feature models can be inter-related.
The third mechanism, called merge, is dedicated to the composition of feature models that have
similar features24.
The proposed decomposition operator, called slice, goes beyond a simple extraction of features and
automatically produces a feature model that contains only the relevant subset of features according to
a slicing criterion.
To determine the underlying semantics from these intuitive definition, we consider that the primary
meaning of a feature model, known as its configuration semantics, is a set of legal configurations,
i.e., sets of selected features that respect the dependencies entailed by the diagram and the cross-tree
constraints (see section 4.1.1). We thus define the semantics properties of each operator in terms of
the relationship between the configuration sets of the input models and the resulting feature model.
In particular, we rely on the classification proposed in [TBK09] that covers all the changes a designer
can produce on a feature model and that provides a sound basis for reasoning about these changes. In
[TBK09], the authors distinguish and classify four feature model adaptations that we detail now. Let
f and g be two feature models, Jf K and JgK denote their respective sets of configurations.

⋄ f is a specialization of g if Jf K ⊂ JgK

⋄ f is a generalization of g if JgK ⊂ Jf K

⋄ f is a refactoring of g if JgK = Jf K

⋄ f is an arbitrary edit of g if f is neither a specialization, a generalization nor a refactoring of g.

The term "edits" is used as a set of changes to a feature model. An example of edit given in [TBK09]
is "moving a feature from one branch to another".
Feature models have other important properties that can be extracted by automated techniques and that
will be relevant to our proposals. In particular, a feature model may represent no valid configuration,
it is then a void feature model.
A feature f of FM is dead if it cannot be part of any of the valid configurations of FM . The set of
dead features of FM is noted deads(FM ) = {f ∈ F | ∀c ∈ JFM K, f /∈ c}.
A feature f of FM is a core feature if it is part of all valid configurations of FM . The set of core
features of FM is noted cores(FM ) = {f ∈ F | ∀c ∈ JFM K, f ∈ c}.
Furthermore, we encode the set of configurations as a propositional formula and consider the feature
hierarchy.

24We consider that feature names are unique in all considered feature models.
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Another important property of an FM is indeed the way features are organized, directly reflected
in the feature hierarchy. We recall that two FMs can have identical configuration semantics, yet
different hierarchies and thus meaning [TBK09, BSRC10]. Consequently, we consider that the feature
hierarchy should also be part of the semantics of the operators.

4.1.4 Composing FM

Insert

The insert operator aims at introducing elements from a given feature model in another one. To define
the behavior and semantics of this operator, we borrow the terminology of aspects, calling one FM
the base model and the one inserting elements in it, the aspect model. We define insert as being a
versatile operator to add features, corresponding to the elements to be inserted, without any merging.
The precondition of the insert operator requires that the intersection between the set of features of the
base feature model and the one of the aspect feature model is empty. This condition preserves the
well-formed property of the composed feature model which states that each feature’s name is unique.
Then, a feature of the base feature model must act as a joint point where the aspect feature model
will be inserted, and there will be various ways to insert an aspect feature model according some
variability operators (optional, mandatory, etc.). To materialize it, we syntactically define the insert
operator as follows:

insert (aFM: FeatureModel, bFM: FeatureModel, jptFeature: Feature, vop: VariabilityOperator)

It takes four arguments: the aspect feature model to be inserted (aFM ), the base feature model bFM ,
the targeted feature (a feature in the base model) where the insertion is to be done (jptFeature), and
the variability operator vop (whose value is either Mandatory, Optional, Xor, Or).
When the variability operator is either Mandatory or Optional, the root of the aspect feature model
is inserted as a child feature of the join point feature. When the variability operator is either Xor or
Or, the root of the aspect feature model is inserted as a sibling feature of the join point feature. An
insertion may also create a feature group if needed.
How an aspect feature model is inserted has a direct impact on the set of configurations of the re-
sulting feature model. Intuitively, it is tempting to state that when an aspect feature model is added
somewhere in a base feature model BaseFM , the set of configurations of BaseFM necessarily grows

, that is, new configurations are added to the original set of configuration (and thereby Base ′FM is a
generalization of BaseFM ). We have demonstrated that it is not the case and that the kind of rela-
tionship between BaseFM and Base ′FM is dependent both on the original properties of BaseFM , the
variability operator and the joinpoint feature chosen. Importantly, Base ′FM being a specialization of
BaseFM is not possible. Details and proofs related to all cases can be found in Mathieu Acher’s PhD
Thesis [Ach11].

Aggregate

The aggregate operator supports cross-tree constraints between features so that separated FMs can be
inter-related. Features in input feature models are related to each other through relations expressed in
propositional logic. Here we do not make the distinction between a base feature model and an aspect
feature model, the features models are equally important.
We syntactically define the aggregate operator as follows:

aggregate (sFM: set of FeatureModel, sCst: set of Constraint)
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The aggregate operator takes as input a set of feature models (sFM ), a set of propositional constraints
(sCst) and produces a new feature model. The input FMs are aggregated under a synthetic root
syntheticft

25 so that the root features of input FMs are child-mandatory features of syntheticft . This
ensures that no arbitrary feature has to be chosen to be a root, leading to meaningless results. In
addition, the propositional constraints are added in the resulting FM.
The properties of the aggregated FM heavily depends on the set of propositional constraints used
during the aggregate. It may lead to situations where the aggregated FM does not represent any valid
configuration or include dead or core features. We consider that the aggregate operator is purely
syntactical. Semantics properties are more relevant when merging feature models, as shown below.

Merge

The merge operator is dedicated to the composition of FMs that exhibit similar features, i.e. features
with the same name. In this case, the merge operator can be used to merge the overlapping parts of
the FMs and then to obtain an integrated FM. The merge uses name-based matching: two features
match if and only if they have the same name.
We syntactically define the aggregate operator as follows:

merge (sFM: set of FeatureModel, mode: MergeMode)

We consider that the merge operator takes as input a set of feature models sFM , a merging mode
mode and produces a new feature model. As there are different ways to merge two or more than two
feature models, several modes are defined for the merge operator. The merging mode can be either
union, strict union, intersection or diff. The set of configurations expressed by the merge feature
model depends on this merging mode.
The union mode is the most inclusive option. The merged FM includes all the valid configuration
defined by the input FMs and is defined as follows:

JFM1K ∪ JFM2K = JResultK

This property is obviously too loose to be usable in the general case. In particular, some valid config-
urations of FMr are neither valid in FM1 nor in FM2, being open to different interpretations.
On the other hand, the merge operator in the strict union mode is denoted FM1 ⊕∪ FM2 = Result

and provides some interesting properties. We use "strict" as we just want to obtain a merged feature
model FMr that represents exactly the union of the two sets of configurations of FM1 and FM2. In
this mode, each valid configuration of FMr is also valid either in FM1 or FM2 (or in both):

JFM1K ∪ JFM2K = JFMr K

An example is given in given in Figure 4.2: fmm56 (see Figure 4.2c) is the feature model resulting
from the merge in strict union mode of fmm5 (see Figure 4.2a) and fmm6 (see Figure 4.2b).
Another merge operator, called diff, is denoted as FM1⊕\ FM2 = Result . The following defines the
semantics of this operator:

JFM1K \ JFM2K = {x ∈ JFM1K | x /∈ JFM2K} = JResultK

An example is given in given in Figure 4.2: fmdiff 56 (see Figure 4.2d) is the feature model resulting
from the merge in diff mode of fmm5 and fmm6.

25A synthetic root is a fake elements added at the root of a FM. It is only used to ensure the well-formedness of the
hierarchy and is not part of the set of configurations of the aggregated feature model.
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A

B C

E

(a) fmm5

A

B C

F

(b) fmm6

A

B C

E F

F implies not (B and C) 

(c) fmm56

A

B C

E

(d) fmdiff 56

fmm5 ⊕∪ fmm6 = fmm56

fmm5 ⊕\ fmm6 = fmdiff 56

Figure 4.2: Merging in strict union and diff modes.

The intersection mode is the most restrictive option: the merged FM, FMr , expresses the common
valid configurations of FM1 and FM2. The merge operator in the intersection mode is denoted as
follows: FM1 ⊕∩ FM2 = Result . The relationship between a merged FM Result in intersection
mode and two input FMs FM1 and FM2 can be expressed as follows:

JFM1K ∩ JFM2K = JResultK

An example is given in Figure 4.3.
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(a) fmm3
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(b) fmm4

A
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(c) fmm34

fmm3 ⊕∩ fmm4 = fmm34

Figure 4.3: Merging in intersection mode.

We encode each input FMs involved in the merging operation as propositional formulas and, depend-
ing on the merging mode, we apply some Boolean operations over these formulas. For instance, the
strict union of two sets of configurations represented by two FMs, FM1, and FM2, can be computed
as follows. First, FM1 (resp. FM2) FMs are encoded into a propositional formula φFM1

(resp. φFM2
).

Then, the following formula is obtained:
φResult = (φFM1

∧ not(FFM2
\ FFM1

)) ∨ (φFM2
∧ not(FFM1

\ FFM2
))

where FFM1
(resp. FFM2

) is the set of features of FM1 (resp. FM2) and, FFM2
\ FFM1

denotes the
complement (or difference) of FFM2

with respect to FFM1
; not is a function that, given a non-empty

set of features, returns the Boolean conjunction of all negated variables corresponding to features:
not({f1, f2, ..., fn}) =

∧
i=1..n ¬fi

Computing the intersection of two sets of configurations represented by two FMs, FM1, and FM2,
follows the same principles and we obtain:
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φResult = (φFM1
∧ not(FFM2

\ FFM1
)) ∧ (φFM2

∧ not(FFM1
\ FFM2

))

Several FMs, with different hierarchies, can represent the same set of configurations [TBK09, BSRC10].
So in particular several merged FMs can be produced and consistently represent the expected set of
configurations while having different hierarchies. The problem of choosing a hierarchy from amongst
a set of hierarchies can be formulated as a minimum spanning tree (MST) problem. We consider a
connected, undirected, weighted graph Gm = (Vm ,Em) that includes all features and edges26 of the
input FMs and assigns to each edge e ∈ Em a weight equal to the −n , n being the number of times
e occurs in the different hierarchies of the input FMs. Then the choice of the hierarchy is a minimum
spanning tree of Gm .

4.1.5 Decomposing FM

The overall idea behind FM slicing is similar to program slicing [Wei81]. Program slicing has been
successfully applied in computer programming: It has several practical applications in program un-
derstanding, maintenance, debugging, differencing, merging, etc. It aims at simplifying or abstracting
programs by focusing on selected aspects of semantics. Program slicing techniques proceed in two
steps: the subset of elements of interest (e.g., a set of variables of interest and a program location),
called the slicing criterion, is first identified ; then, a slice (e.g., a subset of the source code) is com-
puted. In the context of FMs, we define the slicing criterion as a set of features considered to be
relevant by an SPL practitioner while the obtained slice is a new FM.
We syntactically define the slice operator as follows:

slice (aFm: FeatureModel, criterion: set of Feature)

The result of the slicing operation is a new FM, FMslice , such that:
JFMsliceK = { x ∈ JFM K | x ∩ Fslice } (called the projected set of configurations);
For a slicing FMslice = Πft1,ft2,...,ftn (FM ), the propositional formula φslice corresponding to FMslice

can be defined as follows:

φslice ≡ ∃ ftx1, ftx2, . . . ftxm′ φ

where ftx1, ftx2, . . . ftxm′ ∈ (F \ Fslice) = Fremoved .
φslice is obtained from φ by existentially quantifying out variables in Fremoved . Intuitively, all oc-
currences of features that are not present in any configuration of FMslice are removed by existential
quantification in φ.
The hierarchy of the sliced FM is defined as follows: Gslice = (FFMslice

,Eslice) with
FFMslice

= ((Fslice \ deads(FM )) ∪ synthetics) and Eslice ⊆ E such that
Eslice = {e = (v , v ′) | e ∈ E ′ ∧ ∄ v ′′ ∈ E ′ : ((v , v ′′) ∈ E ′ ∧ (v ′, v ′′) ∈ E ′)}
where G ′ = (F ′,E ′) is the transitive closure of Gslice ;
Intuitively, some features have to be connected to their closest ancestor if their parent is not part of the
sliced FM. We consider that the synthetic root is not part of JFMsliceK and is only here to ensure the
well-formedness of the hierarchy (if needs be). The synthetic root can be removed from Gslice when
one or more than one of its child feature is a core feature, otherwise the synthetic root is necessary
(e.g., for the purpose of visualization). In the case there is exactly one core child feature fcore , the root
feature of FMslice becomes fcore . In case the synthetic root has two or more than two child features
that are core features, a procedure should choose one.

26In intersection mode, features (and associated edges) known to be not included in the merged FM are removed.
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A

B C D

E F

constraints
E implies D

D implies E

D excludes F

fm2 = slice (fm1, {A, B, C, D, E, F}) 

[[fm2]] = {{A, B, C, D, E},{A, B, C, F}}

Figure 4.4: Example of slice applied on the feature model of Figure. 4.1a.

An example is given in Figure 4.4 where the slicing criterion corresponds to the set of features A, B,
C, D, E and F. The hierarchy of fm2 does not alter the structure (i.e., parent-child relationships) of
the original feature model fm1. It corresponds to a subtree of the tree of fm1 whose root is feature A.
The valid configurations characterized by fm2 corresponds to the valid configurations of the original
feature model fm1, when looking only at the specific features of the criterion. It can be seen as a
projection of the relational algebra on Jfm1K (see Figure 4.1b) when the features not included in the
criterion ( W, P, ..., U) are discarded. The variability of fm2 is then set to accurately represent Jfm2K.
I can be first observed that features E and F form an Xor-group in fm2 whereas they are optional
features in fm1. Actually they were already mutually exclusive in fm1. A new constraint ( D implies
E) has been added to fm2, as it is logically entailed by fm1. Finally the constraint D excludes F is
not added to fm2 since it is redundant (i.e., does not alter Jfm2K).

4.1.6 Implementation, Complexity and Performance

The implementation of the aggregate operator is without any difficulty. The implementations of the
merge and slice operators present much more difficulties but rely on the same principles: we first
i) compute the propositional formula representing the expected set of configurations and then ii) we
apply propositional logic reasoning techniques to construct an FM (including its hierarchy, variability
information and cross-tree constraints) from the propositional formula.
We reuse and adapt techniques presented in [CW07, SLB+11] where the authors construct a feature
diagram from a propositional formula. The technique notably allows one to detect Xor- or Or- groups
(using the method of prime implicants). A major difference is that, in our work, we already know the
resulting hierarchy and how features are grouped. We thus exploit this information to streamline the
algorithm. Details can be found in [ACLF11c] and [Ach11].
Hierarchy computations use standard graph techniques (e.g., minimum spanning tree technique in
the case of merge) and are not an issue, even for very large FMs. Currently, our handling of logical
operations relies on Binary Decision Diagrams (BDDs) [BRB90]. Computing the existential quan-
tification of BDDs can be performed in at most polynomial time with respect to the sizes of the BDDs
involved [BRB90]. This property is important in the case of the slice operator, i.e., when computing
φslice . In addition, computing the negation, conjunction or disjunction of two BDDs can be performed
in at most polynomial time with respect to the sizes of the BDDs involved (these logical operations
are used extensively during the merging of several FMs). As argued in [CW07], the cost of feature di-
agram construction is polynomial regarding the size of the BDD representing the input propositional
formula (the most expensive step is the computation of prime implicants). The size of a BDD struc-
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ture is highly sensitive to the variable ordering used in its construction. An inappropriate ordering
may prevent the BDD encoding of an FM. We thus reuse the heuristics developed in [MWCC08] (i.e.,
Pre-CL-MinSpan) that are known to scale for up to 2000 features.

In a first evaluation, we used several small and medium-sized FMs that were publicly available from
SPLOT [MM09] repository as well as FMs from our case studies. We performed our experiments
on more than 100 FMs, the bigger one having 290 features. Computing the slice or the merged was
almost instantaneous in all cases.
Another evaluation relies on randomly generated FMs following the procedure described in [MM09].
We varied i) the number of features, noted #features , from 100 to 2000 features (the practical limits
of BDD) ; ii) CTCR (the ratio of the number of features in the constraints to the number of features
in the feature hierarchy expressed as percentage) from 10% to 100%. In each generated model,
each type of mandatory, optional, Xor and Or-groups was added with equal probability. The cross-
tree constraints were generated as a single Random 3-CNF formula. The results first shows that the
synthesis of the feature diagram has practical limits (up to 800 features), for both merge and slice.
We observed that the slicing technique can scale even for an FM with 2000 features if the percentage
of features to slice is ≤ 35%. The reason is that the size of a BDD will always be smaller or at least
unchanged after existential quantification. Another result is that the primary limit of the BDD-based
implementation lies in the difficulties to compile BDD from the original FM. In particular, the total
number of features in the resulting merged FM should not be less than 2000 features, otherwise it is
impossible to having a BDD-representation of the merged formula. For the slice operator, whenever
an FM can be represented as a BDD, φslice can be computed. Hence the encoding of φslice can scale
up to 2000 features with a CTCR of 10.
Recently, She et al. proposed techniques to reverse engineering very large FMs, with more than 5000
features [SLB+11]. As BDDs do not scale, the authors adapted their techniques to use SAT solvers
and reported some significant improvement of scalability. We discuss possible improvements, such
as a SAT-based implementation of slicing and merging, in section 5.2.5.

4.1.7 Related Work

Regarding composition, a few works [AGM+06, GMB06, SHTB07, SBRCT08] consider some forms
of composition for FMs and suggest the use of a merge operator.
In [SHTB07] and [HST+08], the authors considers that that intersection or (strict) union can be
realized by maintaining separate input feature models and inter-relating them with constraints. The
limitations of this reference-based approach are that i) the resulting merged feature model may contain
anomalies (false optional features, dead features) and ii) the entire set of features of input feature
models is included in the resulting feature model so that the number of features quickly increases
and large feature models are produced. In comparison, our resulting merged feature models are more
compact and more readable.
Alves et al. motivate the need to manage the evolution of FMs (or more generally of an SPL) and
extend the notion of refactoring to FMs [AGM+06, GMB06]. Although their work is focused on
refactoring single FMs, they also suggest to use these rules to merge FMs. Inspired by the work of
Alves et al., Segura et al. provide a catalog of visual rules to describe how to merge FMs [SBRCT08].
Our proposal goes further since we clarified the semantics of the merge, in terms of configuration
semantics and feature hierarchy. An in-depth comparison of implementation approaches can be found
in [ACLF10a].
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Recently, in [vGN10], merging is realized through an algorithm that guarantees some properties (min-
imality, parent compatibility, commutativity, etc.) of the merged feature models, but this algorithm is
less general as it assumes that input feature models are parent-compatible.

4.1.8 Summary

We described a set of composition and decomposition operators (insert, aggregate, merge, slice) ded-
icated to the formalism of feature model. The merge operator notably produces more compact fea-
ture models than existing techniques. It thus facilitates the handling, understanding and analysis of
multiple feature models. Moreover the slice operator allows one to find semantically meaningful de-
compositions of a feature model. The implementation of the two operators guarantees that the set
of configurations and the hierarchy of the produced feature model are consistent with a well-defined
semantics. The use of propositional logic techniques for the implementation of the merge operators
outperforms current solutions, raises previous limitations and notably preserves, by construction, the
set of configurations.
But for these composition and decomposition operators to be fully usable at managing large scale
feature models, one need to combine them with other manipulation and reasoning operations. The
next section will detail the dedicated language tackling this issue. A summary of several applicative
case studies complements this description in the last section.

4.2 A Domain-Specific Language for Large Scale Management of FM

This section shares material with the SAC’11 paper "A Domain-Specific Language for Managing
Feature Models" [ACLF11a] and the VAMOS’11 paper "Managing Feature Models with Familiar:
a Demonstration of the Language and its Tool Support" [ACLF11b]. Like the previous section, it
concerns Mathieu Acher’s PhD Thesis and a collaborative work with Philippe Lahire and Robert B.
France.

4.2.1 Motivations

In the previous section, we presented a set of composition operators for FMs (insert, merge, aggregate)
that preserved semantic properties expressed in terms of configuration sets of the composed FMs. The
decomposition counterpart was also described. This is a slicing algorithm that produces a projection
of an FM (a slice) using a slicing criterion.
Our experience in the development of a real-world Video Surveillance Systems SPL [ACL+11] and
a Medical Imaging Workflow SPL [ACG+11] suggests that support for separating concerns and syn-
thesizing large FMs from smaller FMs can significantly improve management of complex SPLs27.
But providing support for FM composition is not enough. Manually analyzing complex FMs is an
error-prone and tedious task, and thus there is a need for tools that automate significant aspects of the
reasoning process [BSRC10]. To support effective development and management of large complex
FM, SPL developers need scalable FM development environments that allow them to better control
how large FMs are created, analyzed and evolved. This can be done by giving developers the means
to define complex operations on FMs by combining basic FM operators that, for example, compose
FMs, add new features, remove features, and support reasoning about FM properties.

27Section 4.3 summarizes this experience on several applicative case studies.
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4.2.2 Rationale for an FM Management DSL

There are at least three possible solutions to meet the requirements above. One approach is to reuse
existing FM development tools and editors. The other two involve using a language, either general-
purpose or domain-specific.
Several graphical FM editors are currently available, and some do provide support for managing
some aspects of FM development, for example, pure::variants [pur06], SPLOT [MBC09] or Fea-
tureIDE [KTS+09]. For large scale management, pure::variants is a commercial tool with good
support for binding FMs to other models and for code generation. FeatureIDE is a comprehensive
environment that interconnects with different FM management tools and has a Java API to manipulate
FMs. Integration of reasoning tools is thus facilitated, for example, a tool for FM edits [TBK09] has
been integrated. Nevertheless, current tools do not fully support the composition of FMs or decom-
position of an FM into several separated FMs. A conceivable solution would be to integrate our FM
operators (insert, aggregate and merge) as additional functionalities inside a mainstream graphical ed-
itor. Numerous examples and our case studies indicate that manipulating several FMs requires support
for defining and replaying sequences of operations, observing properties as the FMs are manipulated,
and organizing all these actions as reusable operations. These observations led us to consider devel-
oping a textual, executable language, that can be used in much the same way as scripting languages.
Such a scripting language should provide i) basic sequencing of FM operations, ii) access to FM in-
ternals, iii) reasoning operations and iv composition and decomposition mechanisms. A textual script
performs a sequence of operations on FMs. Such operations are reproducible and reusable. Obtaining
the same properties in a graphical editor requires an additional effort, for example, the implementa-
tion of an undo/redo system and serialization of the sequence of operations is not straightforward.
The scripting aspect of the FAMILIAR language is likely to favor readability of the specified opera-
tions, and usability and productivity when dealing with decomposition and composition operations
on FMs. It should be noted that our use of a textual scripting language does not preclude graphical
counterparts built on top of the textual language.
As editors like FeatureIDE and frameworks such as FAMA or SPLOT provide an API, another con-
ceivable solution would be to build an API extension in a mainstream programming language in order
to provide support for using composition operators and other FM management operations. While this
may be a feasible solution, it would require developers to be knowledgeable about the host language
(i.e., Java), many require them to perform repetitive and error-prone actions (e.g., importing an FM
or using reasoning operations). If the API was created with simplicity and readability as major ob-
jectives, and it is based on a limited set of concepts related to the domain of FMs, then one can argue
that the API is an internal DSL, written on top of a host language. The external/internal dichotomy is
generally used to characterize DSLs. An external DSL is a completely separate language and has its
own custom syntax. An internal DSL is more or less a set of APIs written on top of a host language
(e.g., Java). Internal DSL is limited to the syntax and structure of its host language. Both internal
and external DSLs have strengths and weaknesses (learning curve, cost of building, programmer fa-
miliarity, communication with domain experts, mixing in the host language, strong expressiveness
boundary, etc.) [Fow10].

An internal or external DSL should allow an FM user to more quickly build the code they need to
manipulate FMs. The facilities provided to the FM users must allow the description of complex
operations dedicated to FMs, in both a compact and readable way, while being understandable by
an expert who may not necessarily be a software engineer. An external DSL seems particularly
adequate in our work as it would provide only the necessary expressive power for anticipated FM
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manipulations. In addition, such an external DSL should be used more easily by FM users as the
learning curve is expected to be more favorable.
The decision to develop a new DSL (e.g., when?, why? and how?) is a difficult one as it involves
both advantages/disadvantages or risks/opportunities [Fow10, vDK98, MHS05]. Essential to this
decision is the notion of domain that determines the scope of a DSL. Automated analysis of FMs is
an active area of research and is gaining importance in the SPL community. Hence the development
of an FM manipulation DSL that integrates automated analysis concepts seems particularly adequate.
Furthermore, DSLs are considered as "enablers of reuse” [MHS05] and there is a clear opportunity to
reuse operations already defined in the domain.
We further restrict the DSL to manipulation of propositional FMs. Our restriction to propositional
FMs means that our DSL does not fully support FMs with feature attributes or constraints expressed
in logics that go beyond propositional logic (e.g., [BSRC10, CHE05a, MCHB11]). Moreover, FMs
are usually mapped to other artefacts of an SPL (e.g., see [ZJ06, VG07, CA05, HSS+10]). We do not
consider the relationship between FMs and other artifacts, i.e., the domain is restricted to FMs.

The predominant idea is that we propose a textual language dedicated to the domain of FMs. TVL (for
Textual Variability Language) [CBH10] has similar characteristics but its focus is on specifying FMs
and not on manipulating FMs. In particular, the support for reasoning about FMs is not integrated into
the language and is provided in the form of a Java library. FeatureIDE [KTS+09], FAMA [FaM08],
SPLOT [MBC09] and TVL [CBH10] frameworks do not pursue the objective of managing multiple
FMs. Reasoning operations are dedicated to be applied on an unique FM. More importantly and to
the best of our knowledge, there is no comprehensive support for composing and decomposing FMs.
Moreover, framework users have typically to deal with details about FM imports or reasoning solvers.
As a result, manipulations are not encapsulated by operations that hide low-level programming lan-
guage level details (i.e., additional effort beyond simply manipulating FM concepts is needed) and
developers are required to master the framework as well as advanced skills in Java language.

4.2.3 FAMILIAR

The FAMILIAR DSL is an executable scripting language that supports manipulating and reasoning
about FMs. The next subsections will detail and illustrate the main constructs of the language.
In complement with the abstract example introduced in section 4.1.1, we will use another example
taken from one of our case studies, here in the medical imaging domain. Figure 4.5a represents a
simplified version of a FM related to the format of a medical image.
FAMILIAR is a typed language that supports both complex and primitive types. Variables representing
complex types record a reference to the data whereas other variables record the data value itself28.
Complex types are Feature Model, Configuration, Feature, Constraint, etc. or generic Set which
represents container values. Primitive types include String (e.g., feature names are strings), Boolean,
Enum, Integer and Real.
Types have accessors for observing the content of a variable. From a feature, one can get its name,
parent, root, children, etc. Several operators detailed below enable one to manipulate FMs. A classical
if then else and a loop control structure are also provided.
Statements can then be organized in scripts. FAMILIAR provides modularization mechanisms that
allow for the creation and use of multiple scripts in a single SPL project, and that support the definition
of reusable scripts. The language relies on namespaces to allow disambiguation of variables having

28The notions of reference and value are similar to the ones used in programming languages.
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AnonymizedModality Acquisition

MRI

T1 T2

CT

Medical Image

MRI excludes Anonymized

fm1

(a) FODA-like representation

[[fm1]] = {

{MI ,MA,MRI ,T1},

{MI ,MA,MRI ,T2},

{MI ,MA,MRI ,T1,T2},

{MI ,MA,CT},

{MI ,MA,CT ,AN },

}

(b) corresponding set of configura-
tions

Figure 4.5: FM on medical image format.

the same name, and a namespace is associated with each included script. By default, a script makes
visible to other scripts all its variables and some export and hide constructs allows for some fine-tuning
if needed. Besides scripts can be parametrized with parameters that can be used as variables.

Importing and Exporting FMs

We provide multiple notations for importing and exporting FMs. A FAMILIAR user can i) load FMs
in these notations (using FM constructor) ; ii) serialize the FMs in these notations (using serialize).
Still using the FM constructor, FAMILIAR also provides a concise notation, notably inspired from
FeatureIDE/GUIDSL [KTS+09].

1 fm1 = FM (MedicalImage : ModalityAcquisition [Anonymized];//Ano. optional

2 ModalityAcquisition : (MRI|CT); // Xor-group

3 MRI : (T1|T2)+ ; // Or-group

4 MRI excludes Anonymized ; // constraint )

5 sfm1= configs fm1 // set of configurations

6 fm2 = FM ("fm2.tvl") // TVL notation

7 fm3 = FM ("fm3.m") // FeatureIDE/GUIDSL notation

8 serialize fmFoo into SPLOT // export in SPLOT notation

In the example of line 1, the variable fm1 corresponds to the FM depicted in Figure 4.5a. Medical-

Image is the root feature. ModalityAcquisition and Anonymized are child-features of MedicalImage:
ModalityAcquisition is mandatory while Anonymized is optional. MRI and CT form a Xor-group
and are child-features of ModalityAcquisition. T1 and T2 form an Or-group and are child-features
of MRI. " MRI excludes Anonymized" corresponds to a propositional constraint of the FM. The vari-
able fm1 can then be used, for example in line 5, to obtain its set of configurations enumerated in
Figure 4.5b. FMs can also be imported in other notations using the same FM constructor (in line 6 we
import a TVL [BCFH10] model while in line 7 we import an FM in FeatureIDE/GUIDSL [KTS+09]
notation). Line 8 gives an example of a serialization in SPLOT [MBC09] notation.

Modifications on FMs

The language provides some basic operators for renaming and removing features in FMs. Renaming
can be useful when composing or comparing FMs that use different terminology for the same concept
(i.e., feature). The following illustrates how features can be renamed:
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9 oldFeature = parent Analyze // ’Format’ feature of mi3

10 newName = strConcat "MI" (name oldFeature)

11 b1 = renameFeature oldFeature as newName // aligning terms

12 assert (b1 eq true) // assert (b1) is equivalent

In lines 9-11, the feature DICOM of FM mi3 is renamed to MIFormat by concatenating the string
MI with the old name Format. The operator assert in line 12 stops the program with an appropriate
error message if the renaming is not successful (i.e., b1 is false). A renaming is not successful if the
feature to be renamed (e.g., oldFeature in the previous example) does not exist. Similarly, the operator
removeFeature takes a feature as an argument and removes the feature and its descendants from the
FM it belongs to. It also returns true or false depending whether it is successful or not.

Handling and reasoning about FMs and their configurations

The language also allows FAMILIAR users to create FM configurations, and then select, deselect, or
unselect a feature. To select a feature means that the configuration includes the feature. To deselect

means that it will not be part of the configuration. To unselect means that no decision has been made:
the feature is neither selected nor deselected. Each of these configuration manipulation operations
returns a boolean value, i.e., true if the feature selected/deselected/unselected does exist.
An example usage of these operations is given below:

13 conf1 = configuration mi1 // create a configuration of mi1

14 b1 = select Anonymized in conf1 // feature Anonymized is selected

15 b2 = deselect Anonymized in conf1 // override the previous selection

16 b3 = unselect Anonymized in conf1 // neither selected nor deselected

In line 13, the operator configuration creates and initializes a configuration of the FM mi1. Lines 14-16

provide examples of the configuration manipulations.
FAMILIAR provides several operators to support reasoning about FMs and configurations. The script
below provides examples of the FM manipulation and reasoning operators:

17 conf2 = copy conf1

18 nb = counting mi1 // number of valid configurations: 8

19 b1 = isValid conf1

20 b2 = (selectedF conf1) eq (selectedF conf2) // true

21 select Anonymized in conf1

22 confFM = asFM conf1 // convert a configuration into an FM

23 cmp = compare m1 mi2 // refactoring

Line 18 computes the number of valid configurations of mi1. The isValid operator checks whether a
configuration is not inconsistent according to its FM (see line 19). Indeed, a selection or deselection of
feature may lead to an invalid configuration, e.g. when two mutually exclusive features are selected.
The isValid operator can also perform on an FM and determines its satisfiability (an FM is unsatisfiable
if it represents no configurations). FAMILIAR also provides an operator, called isComplete, that checks
whether a configuration is complete, i.e., whether all features have been selected or deselected. The
Configuration type provides three accessors that return the set of selected, deselected and unselected
features: selectedF, deselectedF and unselectedF. Line 20 checks that the set of selected features in
both conf1 and conf2 are equal, which is true simply because conf2 is a copy of conf1.
Moreover, the operator asFM can convert a configuration, say c, into an FM: for each selected feature
of c, say f , we add a propositional constraint (i.e., a literal f ) to the FM of c and for each deselected
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feature of c, say g , we add a propositional constraint (i.e., a negative literal ḡ) to the FM of c. For
example, in line 22, confFM is the FM mi1 plus the literal Anonymized . asFM is typically used when
a configuration is not complete.
The compare operation is used to determine whether an FM is a refactoring, a generalization, a spe-
cialization or an arbitrary edit of another FM. This operation is based on the algorithm and termi-
nology used in [TBK09] (cf. section 4.1.3). Line 23 illustrates comparison capabilities based on
FM configuration sets. cmp is an Enum type whose possible values can be REFACTORING, SPE-

CIALIZATION, GENERALIZATION and ARBITRARY. In the example above, cmp has the value
REFACTORING since mi1 and mi2 represent the same set of configurations.

Several constructs are dedicated to the management of large number of features and feature models.
Dividing FMs into localized and separated parts should be supported, together with the realization of
our specific composition and decomposition operators.

Extracting

A first basic mechanism is to "copy" a sub-tree of an FM, including cross-tree constraints involving
features of the subtree. It is the role of the extract operator, which is purely syntactical and quite
limited. It ignores cross-tree constraints that involve features not present in the sub-tree and extracted
features must belong to the same sub-tree.

Slicing

The slice raise these limitations and implements the operator defined in section 4.1.5. Its syntax is as
follow:

fmS = slice anFM including | excluding setOfFeatures

anFM is the input FM to be sliced and fmS is the resulting FM. The set of features that constitutes
the slicing criterion can be specified either by inclusion (keyword: including) or exclusion (keyword:
excluding). A specific notation allows an SPL practitioner to select a set of features. Basic operators
to perform the union, intersection or difference of feature sets are also provided.

Aggregation

We now describe two important forms of FM composition, aggregate, then merge (insert has a similar
syntax). As defined in the previous section, the aggregate operator supports cross-tree constraints
between features so that separated FMs can be inter-related. The input FMs are aggregated under
a synthetic root syntheticft so that the root features of input FMs are child-mandatory features of
syntheticft . In addition, the propositional constraints are added in the resulting FM. For example, the
aggregate operator can be used to compose three FMs fm1, fm2 and fm3 together with constraints
(see Figure 4.6).

1 fm1 = FM (A : B [C] [D] ; D : (E|F) ; C excludes E;) //E&F form Xor-group

2 fm2 = FM (I : J [K] L ; ) // K is optional

3 fm3 = FM (M : (N|O|P)+ ; ) // M, N, O, P form an Or-group

4 cst = constraints (J implies C ; )

5 fm4 = aggregate fm* withMapping cst

6 // last line is equivalent to aggregate { fm1 fm2 fm3 } withMapping cst

7 dfm4 = deads fm4

8 cfm4 = cores fm4
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All reasoning operations (e.g., isValid) can be similarly performed on the new FM resulting from
the aggregation. In particular, when FMs are related through constraints, some features may become
dead or core features (cf. section 4.1.3). For example, the feature E is a dead feature in fm4 (see
Figure 4.6). FAMILIAR provides two operators to compute the set of core and dead features of an FM
(see line 7–8).

I M

synthetic

A

BD P NJ L KC

F

O

E
J implies C

C excludes E

fm4

I M

MySPL

A

BD P NJ L KC

F

O

fm5

Figure 4.6: Two FMs fm4 and fm5 at the end of a FAMILIAR script execution

Merging

The merge operator is dedicated to the composition of FMs that exhibit similar features, i.e. with the
same name. In this case, the merge operator can be used to merge the overlapping parts of the FMs
and then to obtain an integrated FM. The merge uses name-based matching: two features match if
and only if they have the same name.
The syntax the merge operator is given in Figure 4.7 where the properties of the merged feature model
are summarized with respect to the sets of configurations of input FMs and the mode (intersection,
strict union, diff).

Mode Semantics properties Mathematical notation FAMILIAR notation
Intersection JFM1K ∩ JFM2K ∩ . . . FM1 ⊕∩ FM2 ⊕∩ . . . fmr = merge intersection { fm1

∩JFMnK = JFMr K ⊕∩FMn = FMr fm2 ... fmn}
Strict Union JFM1K ∪ JFM2K ∪ . . . FM1 ⊕∪ FM2 ⊕∪ . . . fmr = merge sunion { fm1

∪JFMnK = JFMr K ⊕∪FMn = FMr fm2 ... fmn}
Diff {x ∈ JFM1K | x /∈ JFM2K} FM1 \ FM2 = FMr fmr = merge diff { fm1 fm2 }

= JFMr K

Figure 4.7: Merge: semantic properties and FAMILIAR notation.

Below is part of a script that uses the merge operator in intersection mode:

1 mi4 = FM ( MedicalImage: Modality Format Anatomy [Anonymized];

2 Modality: (v10.1|v10) ; Format: (NiftiII|Analyze) ; Anatomy: Brain;)

3 mi5 = FM ( MedicalImage: Modality Format Anatomy [Header];

4 Modality: (v10.1|v10|v9) ; Format: NiftiII ; Anatomy: (Kidney|Brain);)

5 mi_inter = merge intersection { mi4 mi5 }

6 mi_inter_expected = FM ( MedicalImage: Modality Format Anatomy ;

7 Modality: (v10.1|v10) ; Format: NiftiII ; Anatomy: Brain ;)

8 assert (mi_inter eq mi_inter_expected)

In line 5, the merge operator in intersection mode is applied on mi4 and mi5 and produces a new FM
that can be manipulated through the variable mi−inter . In line 8, we check that mi−inter is equal to
mi−inter−expected . The binary operator eq is specific to variable complex types. In particular, two
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variables of FM type are equal if i) they represent the same set of configurations, i.e., the compare

operator applied to the two variables returns REFACTORING and ii) they have the same hierarchy.

9 mi_sunion = merge sunion { mi4 mi5 }

10 n_sunion = counting mi_sunion // number of valid configurations

11 n_expected = counting mi4 + counting mi5 - counting mi_inter

12 assert (n_sunion eq n_expected)

In line 9, the merge operator in strict union mode is applied on mi4 and mi5 and produces a new
FM that can be manipulated through the variable mi−sunion . In lines 10-12, we check the following
property:

Jmi4K ∪ Jmi5K| = |Jmi4K|+ |Jmi5K| − |Jmi4 ∩mi5K| = |Jmi−sunionK|

using counting operations, i.e., the value of n is equal to Jmi−sunionK.

4.2.4 Environment and Reasoning Back-end

We provide an Eclipse-based development environment for FAMILIAR that is composed of i)an Eclipse
text editor (including syntax highlighting, formatting, code-completion, etc.), ii) an interpreter that ex-
ecutes the various FAMILIAR scripts and iii) an interactive toplevel, connected with graphical editors.
FAMILIAR is developed in Java language using Xtext [Xte11], a framework for the development of
external DSLs. We reuse Xtext facilities to parse FAMILIAR scripts and develop the Eclipse text editor.
FAMILIAR is connected with other languages and framework. Several notations can be used for spec-
ifying FMs (SPLOT [MBC09], GUIDSL/FeatureIDE [Bat05, KTS+09], a subset of TVL [BCFH10],
etc.). The proposed bridges allow users to import FMs or configurations from their own environ-
ments. The connection with the FeatureIDE framework allows for reusing the graphical editors, for
both editing and configuring FMs. All graphical edits are synchronized with variables environment
and all interactive commands are synchronized with the graphical editors. We also developed a bridge
with S2T229, a configurator developed at Lero.
All reasoning operations (e.g., isValid) on FMs require an efficient representation (i.e., a propositional
formula) of the set of configurations. The implementation of the merge and slice operators also relies
on propositional formulae. Two reasoning back-ends are internally used in FAMILIAR and perform
over these propositional formulae: SAT solvers and Binary Decision Diagrams (BDDs). SAT (for
satisfiability) solvers aim at deciding the satisfiability problem, i.e., the problem of determining for a
given formula whether there is an assignment such that the formula evaluates to true or not. A BDD
offers a compact graph-based representation of a Boolean function on a particular ordering of input
variables.

The connection with other languages and framework has several benefits. The support of different
notations encourages interoperability between feature modeling tools. As an FM or a configuration
can be exported (using the save operation), outputs generated by FAMILIAR can be processed by other
third party tools, for example, modeling tools when we need to relate FMs to other models [CA05,
HSS+10].
Perhaps more importantly, the support of different formats allows one to easily reuse state-of-the-art
operations already implemented in existing tools. We reuse an efficient technique to reason about
edits described in [TBK09] and implemented in FeatureIDE [KTS+09] to implement the compare

29http://download.lero.ie/spl/s2t2/
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operator. Feature-model-synthesis 30 implements an algorithm to synthesize an FM from a proposi-
tional formula (as described in [CW07]). We reuse and adapt some techniques of the algorithm to
implement the merge and the slice operators [ACLF11c]. We also reuse some heuristics developed in
SPLOT [MBC09] to compile large FMs into BDDs.
A notable benefit for FAMILIAR users is that they do not have to deal with implementation details
related to solvers. They can directly use operators, thus focusing on domain concepts (FMs, config-
uration) and avoid accidental complexity. Our practical experiences with FAMILIAR gave insights on
how to efficiently use solvers within the interpreter. We observed that SAT solver does not scale for
counting all solutions of FMs whereas BDDs are much faster in counting all solutions and scale better.
On the other hand, FMs with a number of features up to 2.000 cannot be compiled to BDD even with
the use of heuristics techniques developed in [MWCC08]. As a result, optimal reasoning back-ends
(e.g., the choice of BDD for counting) are internally selected when an operator of FAMILIAR is used
and implementable with both back-ends.
For most of the operations, logic encoding prevails over diagrammatic representation: the propo-
sitional formula by itself is sufficient to perform reasoning operations. Based on this observation,
FAMILIAR implements a lazy strategy: for all merge, aggregate and slice operations, we only compute
the propositional formula of the resulting FM. The hierarchy of the FM is constructed only when
needs be, for example, for the purpose of visualization or serialization. The lazy strategy is useful
since from our experiments we observed that reconstructing the hierarchy is costly.

4.2.5 Summary

We gave an overview of FAMILIAR, a textual and executable domain-specific language that provides
a practical support for managing feature models. We describe its main syntactic facilities as well as
operators provided so that feature model users can import, export, edit, configure, compose, decom-
pose, configure and reason about feature models. The operators of FAMILIAR, combined with modular
mechanisms, enable users to separate, compose and reuse feature models. The next section will report
on various applications of FAMILIAR in different domains, showing some elements of demonstration
of its applicability.

4.3 Applications of SoC in Feature Modeling

Again related to Mathieu Acher’s PhD Thesis, this section shares material with several papers and
summarizes different collaborations with:

⋄ Robert B. France, Alban Gaignard and Johan Montagnat, in the domain of medical imaging
with analysis services and workflow deployed on the grid. Related papers are the SC’10 paper
"Managing Variability in Workflow with Feature Model Composition Operators" [ACLF10b]
and the Software Quality Journal article "Composing Multiple Variability Artifacts to Assemble
Coherent Workflows" [ACG+11].

⋄ Philippe Lahire, Sabine Moisan and Jean-Paul Rigault, in the domain of video-surveillance
systems. It is related to the ICECCS’11 paper "Modeling Variability from Requirements to
Runtime" [ACL+11].

30https://bitbucket.org/mintcoffee/feature-model-synthesis.
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Figure 4.8: Process overview: from design to configuration of the workflow.

⋄ Anthony Cleve, Philippe Merle and Laurence Duchien in the domain of reserve engineering
feature models related to software architecture. It concerns the ECSA’11 paper "Reverse Engi-
neering Architectural Feature Models" [ACC+11].

We now report on our experience with FAMILIAR in four different and representative case studies.
We then summarize benefits and limits of both FAMILIAR and our operators. For each of the four
case studies, we briefly describe the application context, how FAMILIAR has been used, the order of
complexity in terms of feature modeling and the benefits observed.

4.3.1 Composing Multiple Variability Artifacts to Assemble Coherent Workflows

In some application domain, support for manipulating multiple SPLs (i.e., a set of SPLs) may be
needed [vO02, vdS04, RW07, HTM09, DGRN10]. When several suppliers compete to deliver similar
products, it is interesting to be able to compare and integrate them.
In the medical imaging domain, we proposed a comprehensive modeling process and tooling support
(including FAMILIAR and a set of domain specific languages) for combining multiple variability arti-
facts with the purpose of assembling coherent processing chains, called workflows. Separated FMs
are used to describe the variability of the different artifacts. At each step of the workflow design,
automated reasoning techniques assist medical imaging experts in selecting services from among sets
of competing services organized in a catalog while guaranteeing that the composition of services does
not violate important constraints.

Process overview. Figure 4.8 gives an overview of the associated multi-step process. Its overall
goal is to derive, from an high-level description augmented with variability requirements, a consistent
workflow product composed of services offered by the catalog.
In step ➀ of the process, the workflow designer first develops a high-level description of the work-
flow that defines the computational steps (e.g., data analyses) that should take place as well as the
dependencies between them. The workflow description is then augmented with rich representation
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of requirements in order to support discovery, creation and execution of services used to realize the
computational steps. In step ➁, the workflow designer identifies the variable concerns (e.g., medical
image format, algorithm method) for each process of the scientific workflow. The variability of each
concern is represented by a FM. Hence several FMs are woven at different, well-located places in each
process (e.g., dataport, interface) for specifying the variability of application-specific requirements.
In the general case, some features of a concern may interact with one or more features of other
concern(s). In step ➂, some application-specific constraints within or across services are typically
specified by the workflow designer to forbid some combinations of features. Similarly, some com-
patibility constraints (e.g., between dataports) can be deduced from the workflow structure and be
activated or not by the workflow designer.
In order to ensure that the variability requirements do match the combination of features offered by
the catalog, the workflow designer compares, in step ➃, the FMs woven in the workflow with the
FMs in the catalog of legacy services. In step ➄, we automatically reason about FMs and constraints
specified by the workflow designer in step ➀ and ➁. Constraints propagation and merging techniques
are combined to reason about FMs and their compositions. This provides assistance to the workflow
designer (detection of errors, automatic selection of features, etc.). To complete the workflow con-
figuration (step ➅), the designer has to resolve concern FMs where some variability still remains,
by performing select/deselect operations. The step ➅ may be repeated as much as needed in order
to allow the designer to proceed incrementally, with step ➄ also repeated to ensure consistency. In
step ➆, the workflow designer uses the final workflow configuration to identify the services in the
catalog that support the combination of features. If more than one service is identified, the work-
flow designer examines them to chose a best fit or an arbitrary configuration of legacy services. This
process has been applied to different real scientific workflows, with up to 25 FMs and two hundreds
features [ACG+11].

Variability requirements specification. FAMILIAR is used to specify variability requirements (e.g.,
medical image formats, algorithm method, deployment information, etc.) within services of the work-
flow. More precisely, FAMILIAR is embedded into the DSL Wfamily which enables skaheolders to:

⋄ import FMs from external files while performing some high-level operations (extraction, re-
naming/removal of features, etc.). For example, the user can load an existing FM from a cata-
log, then extract the sub-parts that are of interest and finally specialize the different FMs ;

⋄ weave FMs to specific places of the workflow ;

⋄ constrain FMs within and across services by specifying propositional constraints. Each FM
that has been woven has an unique identifier and can be related to another through cross-tree
constraints.

Fully-fledged workflow configuration. FAMILIAR code is generated from the workflow analysis
and a Wfamily specification, for example, to reason about data compatibility between services. The
FAMILIAR code is then interpreted to check the consistency of the whole workflow, to report errors
to users as well as to automatically propagate choices. Users can incrementally configure, using
graphical facilities provided by FeatureIDE editors31, the various FMs of the workflow. Finally,
in order to derive a final workflow product, competing services can be chosen from among sets of
services in the catalog using FAMILIAR reusable scripts. Our first applications of the process showed

31see next section for explanations on bridges between FAMILIAR and the FeatureIDE graphical editor.
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that the overall approach offers an adequate user assistance and degree of automation for managing
the large number of features and FMs, thereby decreasing the effort and time needed.

4.3.2 Modeling Variability From Requirements to Runtime in Video Surveillance Sys-

tems

In the development of Video Surveillance (VS) systems, we observed multiple variability factors,
both for i) specifying an application, including the environments and contexts where an application
is deployed and run (e.g., lighting conditions, information on the objects to recognize), the quality
of service required, etc. ii) describing the software platform, including the number of components,
their variations due to choices among possible algorithms, the different ways to assemble them, the
number of tunable parameters, etc.

Process overview. We applied the principles of Separation of Concerns and represented the vari-
ability of the application requirements and the variability of the software platform as two separated
FMs [ACL+11]. The software variability is expressed in a dedicated FM, called the PlatForm Con-

figuration (pfc) model representing a view of implementation modules provided by the software plat-
form. For deriving an actual product, we advocate the use of domain knowledge which contains
relevant information to reason about and to select among variants at a higher level of abstraction. The
domain variability is expressed through the Video Surveillance Application Requirement (vsar) model
which comprises, in our case, the task specification, the scene context, the object of interests, the
Quality of Service (QoS). Confining the variability in a dedicated space thus improves the modeling
process. During the application engineering process, users can take decisions only related to their
know-how and domain.
In Figure 4.9 we present a process that supports rigorous reasoning and user assistance until the
application is deployed. In this Figure, we show also the behaviour when adaptations are performed at
runtime and the operations required to ensure systematic consistency and end-to-end transformation.
The two stakeholders (VS expert and software application engineer) of the approach interact with the
FMs during modeling, specialization and transformation. 77 features and 108 configurations were
present in the vsar FM, while 51 features and 106 configurations were present in the pfc FM. The
relationships between the two FMs were described as 39 rules (propositional constraints) relating
features across models.

Reachability property checking. Before the execution of a system, FMs are used to verify impor-
tant properties. Among others, one want to guarantee the reachability property, i.e., that for all valid
specifications and contexts, there exists at least one valid software configuration. In terms of FMs,
the reachability property can be formally expressed as follows:

∀c ∈ JvsarK, c ∈ JsliceVSfull includingFvsarK

where VSfull is the aggregation of vsar, pfc together with cross model constraints, while Fvsar de-
notes the set of features of vsar. Intuitively, if the projection (slice) of the vsar features to JVSfullK is
equivalent to the original JvsarK, the reachability property holds. Otherwise some specifications (i.e.,
configurations of vsar) cannot be reached. The property above can then be implemented with the slice
operator and, if needs be, one can also enumerate all products that cannot be realized using the merge
operator in diff mode. More precisely, the equation above implies to check if vsar is a refactoring of
sliceVSfull includingFvsar.
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Figure 4.9: From requirements to deployment and runtime: process.

A brute force strategy which consists in enumerating all possible specifications and then checking the
existence of a software configuration would be clearly inappropriate, especially in our case where we
have more than 108 valid specifications and more than 106 software configurations. The combined
use of slice, compare and merge diff are a much more scalable technique. Without these capabilities,
this kind of reasoning would not be made possible for this order of complexity.

Step-wise specialization and choices propagation. In line with specific requirements and deploy-
ment scenarios, the video surveillance expert step-wise specialized vsar by removing some features,
by modifying some feature groups, etc. After the specialization of vsar, automated techniques were
used to update the software platform FM. To do so, the specialized vsar FM and the software platform
FM together with rules were aggregated. Finally, we used the slice operator on the aggregated FM by
only including the set of features related to the software platform.
We observed that from a specification of a context, the possible configurations in the software platform
can be highly reduced. We applied the techniques on six different scenarios: the average number of
features to consider in the software platform FM was less than 104 (instead of 106 configurations). In
the six scenarios, we reused i) the FMs and the constraints and ii) automated procedures to control
the specialization process and reduce the variability in the software part.

4.3.3 Reverse Engineering Architectural Variability

FAMILIAR was evaluated when applied to FraSCAti [Fra11, MMR+10], a large and highly config-
urable component and plugin-based system. FraSCAti is an open-source implementation of the Ser-
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vice Component Architecture (SCA) standard [sta07], which allows for building hierarchical compo-
nent architectures with the support of many component and service technologies. As its capabilities
grew, FraSCAti has itself been refactored, completely architected with SCA components and become
highly configurable in many parts of its own architecture. The goal was to reverse engineer a variabil-
ity model of the FraSCAti architecture, as the task of manually creating the architectural FM clearly
required substantial effort, was daunting, time-consuming and error-prone.
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Figure 4.10: Extraction and refinement process of architectural FMs.

Process overview. Figure 4.10 gives an overview of the two main parts of the process, the automatic
extraction on the top left part, and the reconciliation and refinement on the bottom part. The starting
idea was that the software architecture FM, noted FMArch150 , originally produced by an automatic
extraction procedure, represents only an over approximation in terms of sets of valid configurations.
Hence several sources of information, namely software architecture (FMArch150), plugin dependen-
cies (FMPlug ) and the correspondences between software elements and plugins, were combined using
the aggregate operator. Intuitively, the presence of constraints in the aggregated FM reduces the legal
combinations of FMArch150’s features. This is the role of the slice operator to compute the projection
corresponding to the software architecture part of the aggregated FM.
The aggregated FM resulting from the combination of different variability sources and the bidirec-
tional mapping contains 92 features and 158 cross-tree constraints. The slicing technique significantly
reduced the over approximation of the original architectural FM (from ≈ 1011 to ≈ 106) so that we
obtained a more accurate variability representation of the architecture.
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The architectural FM resulting from the automatic extraction was compared with another architectural
FM, this time manually designed by Philippe Merle, the FraSCAti software architect. Unfortunately,
the direct comparison yielded to unexploitable results, mainly due to the difference of granularity, i.e.
some features in one FM were not present in the other. Basic manual edits of FMs were unpractical
and the slice operator was extensively applied as we needed to safely remove features involved in sev-
eral constraints or that were in the middle of the hierarchy. Once the two FMs have been reconciled,
they were compared and differences were identified (e.g., using the merge operator in diff mode or
the compare operator).

4.3.4 Management of Product Line Variability and Software Variability

In SPL engineering, two concerns of variability are usually distinguished [PBvdL05, MPH+07]: soft-
ware variability, related to technical details and hidden from customers (also called internal variabil-
ity), as opposed to product line (PL) variability, proposing a set of products that are visible to them
(also called external variability). In [MPH+07], Metzger et al. proposed a formal and concise ap-
proach for separating PL variability and software variability and enabling automatic analysis. The
two concerns are modeled as two FMs and inter-related by constraints. The authors mention several
properties that should be checked when reasoning about the two kinds of variability. As the operators
provided in FAMILIAR can be combined to support and reason about these two kinds of variability, we
revisited several of these properties.
Let fmPL be the FM documenting the PL variability, fmsoftware be the FM documenting the software
variability and mapSoftPL be the constraints relating the two FMs. The intersection between the set
of features of fmPL, denoted FPL, and the set of features of fmsoftware , denoted Fsoftware , is empty.
Furthermore, the mapping between features of fmPL and fmsoftware is not necessarily one-to-one (e.g.,
a feature in fmPL may imply the selection of three features in fmsoftware ).

Realized-by property checking. An important property of an SPL is realizability, that is, whether
the set of products that the PL management decides to offer is fully covered by the set of products
that the software platform allows for building. In terms of feature modeling, we want to ensure that
for each valid selection/deselection of features of fmPL performed by a customer, there exists at least
one corresponding software product described by fmsoftware .
To do so we first reason about the relationship between fmsoftware and fmPL. We compute fmG , the
aggregation of fmPL and fmsoftware together with the constraints mapSoftPL. In terms of FMs, the
realizability property can be formally expressed as follows:

∀cp ∈ JfmPLK, cp ∈ Jslice fmG including FPLK

The realized-by property is similar to the reachability property described in section 4.3.2: aggregate,
slice and merge operators in diff and intersection modes can be used to automatically check this prop-
erty. Consequently the FAMILIAR scripts developed in the context of video surveillance systems have
been reused.

Usefulness property checking. Another important property is to determine whether a product is
useful, i.e. whether it is a possible realization of a PL member. As argued in [MPH+07], the list of
non-useful products is a symptom of unused flexibility of the software platform. Formally, all prod-
ucts are useful if the following relation holds:

∀cp ∈ JfmsoftwareK, cp ∈ Jslice fmG including FsoftwareK
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The usefulness property can be seen as the "symmetric" of the realized-by property, and similar
techniques can be applied.

Evolving the FMs. In some circumstances, the realized-by or/and usefulness property may not
hold. It can be on purpose, for example, justified by future marketing extensions. It can also be
an unexpected property, i.e. an error. FAMILIAR scripts can then be used to assist stakeholders in
detecting the error and identifying the missing configurations in fmPL or/and fmsoftware . As a result,
stakeholders can correct fmPL, fmsoftware or the mapping between the two FMs (mapSoftPL) and
reiterate the process until the expected properties hold. The corrective instructions consist in reusing
FAMILIAR facilities to edit FMs while checking operations can be performed afterwards. In this
case, the FAMILIAR language offers a comprehensive solution to manage PL and software variability,
including their specifications, their checking and their evolutions.

On scalability. We revisited the approach defended in [MPH+07]. We applied the techniques using
the larger example described in [MPH+07]. We successfully retrieved the same results, but our
approach is more efficient since we do not enumerate configurations/products as they do. Hence, for
larger FMs, the use of our proposed techniques are mandatory since without them the checking of
some important properties (e.g., realizability) would not be possible. It is for instance the case for the
order of complexity observed in the video surveillance case study.

4.3.5 Summary

Figure 4.11 summarizes the different case studies in which FAMILIAR has been involved.
FAMILIAR has been used in different application domains (medical imaging, video surveillance), for
different purposes (scientific workflow design, variability modeling from requirements to runtime,
reverse engineering FMs) and by different kinds of stakeholders (e.g., domain experts, software en-
gineer). In the different case studies, the main benefits are an adequate and scalable support for
Separation of Concerns (SoC) and automated reasoning, the two important requirements that we
identified.
In the four case studies, support for SoC was clearly needed, either because FMs were originally
separated (variability of services, FMs to be integrated or reconciled) or because the SPL practitioner
wanted to modularize the variability (separation of requirements and software variability). Further-
more, the modular mechanisms of FAMILIAR allow an FM user to reuse FMs and reasoning pro-
cedures. In the video-surveillance case study, vsar and pfc have been reused in the six deployment
scenarios as well as parametrized scripts to control the realizability property. In the medical imaging
case study, the catalog of FMs has been reused to configure different workflows. Finally, in the case
study of section 4.3.4, the PL and software variability can be incrementally managed: edits to the two
FMs are applied while reasoning operations can be repeated.
For most of the management activities used in the case studies, a manual intervention is both error-
prone, labor-intensive and time-consuming. It is thus very important to be able to automate the
decision making process as much as possible. Another important aspect is the ability of techniques
to reason about FMs, for example, to infer choices. As previously shown, FAMILIAR does provide a
set of automated reasoning techniques (operators) that can scale for large FMs and a large number
of constraints. The FAMILIAR language brings new capabilities to the FM users: without these ca-
pabilities, some analysis and reasoning operations would not be made possible, for example, in the
video-surveillance case study where an enumerative technique is not adequate.
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Figure 4.11: FAMILIAR and SoC operators: case studies.
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CHAPTER

5
Conclusions

This document has described the research we conducted from 2002 to 2011 in the I3S laboratory
(Université de Nice Sophia Antipolis - CNRS). This work was made successively in the OCL, RAIN-
BOW and now MODALIS research groups. It concerns the field of software engineering with the
general objective of taming the complexity of building and maintaining large software intensive sys-
tems. We focused on providing pragmatic integration support for several approaches in the field. The
developed solutions always aimed at finding an appropriate trade-off between reliability, so that the
manipulated software systems can be used and reused with more confidence, and flexibility, so that
the same systems can cope with increasing changes of all forms. In this chapter, we first assess our
work following the three research axes that structure it. Section 5.2 then presents a research roadmap
for future work.

5.1 Assessment

5.1.1 On Contracting

A first part of our work concerns the provision of contracting techniques and tools for component and
service based architectures.
This work starts with the contribution of the ConFract system, a contracting system using executable
assertions on hierarchical components (cf. section 2.1). We provide a system in which contracts are
models at runtime, they are dynamically built from specifications when components are assembled
and configured, and updated according to dynamic reconfigurations. Another contribution is in the
form of the contracts themselves. They are not restricted to connected interfaces, as object contracts,
but new kinds of composition contracts are also supported. The contract on external interfaces can
be seen as a contract on the usage of the component. Its internal counterpart is more an "assembly

and implementation contract". As in object contracts, responsibilities among involved components
are automatically determined so that they can be exploited (blame, test oracle, negotiation). One of
the main limitations of this work was that only an executable assertion language, CCL-J , was used
as an input formalism, while other behavioral formalisms could intuitively be interpreted in contracts.
This limitation was raised with the Interact framework. In this framework, the contributions concern
the provision of abstractions and automated mechanisms to facilitate software contracting with dif-
ferent kinds of specification formalisms and different component or service based architectures (cf.
section 2.2). This framework notably supports the integration of behavioral specification formalisms
(Behavior Protocol, TLA) and relies on a central contracting model that handles both compatibility
and conformance checking. Some integration of representative formalisms is clearly shown, but a
study on what really characterized formalisms that can be contractualized would complement and
reinforce the obtained results. Another limitation was related to the validation, which only relies on a
component-based version. It is raised by the work that follow.
Relying on these advances, we contribute to the ANR FAROS project (cf. section 2.3) by providing
both models and platforms related to contracting. This notably shows how the kernel of the Interact
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framework was adapted and extended to serve as the central metamodel of the FAROS process. This
process drives a model-driven toolchain that supports contracting from the expression of high-level
business constraints down to implementation mechanisms. The process also targets different service
and component oriented platforms and ConFract served as one of the targets, both in the process and
for the development of use case applications. In a certain manner, this validates that our contract
metamodel is general enough to make management and reasoning possible in such a process and to
cope with service orientation. One lesson learned is that a significant amount of time was spent on
building the model-driven toolchain dealing with components and services, thus reducing the scope
of the validation at the end of the project. Besides it should be noted that this also enables other works
to develop other forms of contracts on software architectures [WMD08, WSMD08]. ConFract , and
its extension in Interact , also served as the main example in the Beugnard et al. paper "Contract
Aware Components, 10 years after" [BJP10]. This paper revisits the issues discussed in [BJPW99]
and presents our contribution as elaborate means of contract management.
Finally, a last contribution in this research axis concerns a testing framework which completely relies
on ConFract to provide self-testable components with contracts and built-in tests (cf. section 2.4).
The framework is only a facilitation structure and coupling with testing techniques to produce tests
is an interesting line of research. Recent work on automated testing with contracts [MCLL07] and
adaptive random testing [CLOM08] are good candidates. Building the testing framework from the
main structuring ideas was really straightforward. We interpret this as a sign of coherent architecture
in our contracting system.

5.1.2 On Self-Adaptation

The second part of the presented work is related to the provision of self-adaptive capabilities in and
around our contracting systems, i.e. developing concepts and tools around negotiable contracts and
providing advanced forms of monitoring systems.
A first contribution is a ConFract extension that supports negotiable contracts, in the context of hi-
erarchical components (cf. section 3.1). Inspired by the Contract Net Protocol (CNP) defined in
multi-agent systems, it enables configuration and runtime adaptations over components, which are
empowered with some capacities of negotiation. Negotiation policies drives the adaptation process
by relying on the responsibility model of violated contracts. Two policies, concession-based and
effort-based, were proposed. The first allows property relaxations while the second one turns towards
the responsible component. A complementary contribution was a model and a supporting run-time
infrastructure that allows for reifying non-functional properties in relation with components. It also
sports a basic form of compositional reasoning that relates system properties to component properties
(cf. section 3.2). These patterns of non-functional properties can be exploited by the negotiation
process to propagate effort requests inside the responsible component hierarchy.
We also studied the relation between the obtained negotiable contracts and feedback control loops
organized according to the MAPE-K decomposition [IBM01, KC03]. Negotiable contracts are well
suited to directly link adaptive behavior to contract violations, and also to provide well-defined verifi-
cation means when adaptations are triggered. Nevertheless there is no guarantee that the values used
during negotiation do not lead to oscillations due to some overshoot in the induced control [HDPT04].
We have partly raised this limitation by providing self-adaptive capabilities over the negotiation mech-
anisms. We used the very same mechanisms to control some properties such as timeout and to deal
with the history of negotiation, detecting some overshoots and deactivating the involved negotiations.
But it is also clear that the provided mechanisms are not powerful enough to cover a complete self-
healing mechanism. Integrating negotiable contracts into explicit feedback control loops [BDG+09]
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would certainly bring several benefits, such as a better integration of adapted control model with static
analysis of the control loop behavior [ZC06]. We discuss this line of research in section 5.2.2.
Another contribution concerned monitoring systems, an inescapable piece of any large scale software
infrastructure. We proposed a QoI-aware monitoring framework which can deal with multiple clients
needing flexible and dynamic QoI needs (cf. section 3.3). The framework allows for instantiating
monitoring systems with automatic configuration of all monitoring entities and data sources so that
QoI and resource constraints are taken into account. The proposed system relies on a constraint-
solving approach to transform QoI needs into probe configuration settings. In the framework, a QoI
control component is open to integrate different enforcement algorithms. When resources are uncon-
strained, monitoring is minimized while guaranteeing all client QoI needs. If they are constrained
the QoI enforcement seeks the trade-off between QoI and available resources to maximize utility
function provided by clients. This monitoring framework also provides a self-adaptive capability
through a control loop that monitors the resource consumption of the other monitoring parts and en-
forces monitoring constraints. As with the previous contribution, this mainly provides a framework
but lacks the integration of sophisticated decision making algorithms. Another limitation concerns
the deployment of monitoring systems, which are centralized even they deal with distant data sources
and clients. This constitutes interesting lines of research (see below).

5.1.3 On Feature Modeling

The last part of our work concerns feature models, a central formalism to specification and reasoning
activities in engineering Software Product Lines (SPLs).
Considering their increasing complexity and the usage of multiple FMs at the same time, we identified
the need for supporting Separation of Concerns in feature models while enabling reuse of state-of-
the-art automated reasoning techniques (cf. section 4.1). Our contribution consisted in a set of com-
position (aggregate, merge, insert) and decomposition (slice) operators with both a formal semantics
definition and an efficient implementation. Their semantics is notably defined in terms of configura-
tion set and hierarchy of the manipulated FMs. The merge operator outputs more compact, and thus
more accessible, feature models than current techniques. The slice operator easily generates seman-
tically meaningful decompositions of a feature model. Both operator implementations guarantee that
the set of configurations and the hierarchy of the produced feature model are semantically consistent.
These operators enable automated reasoning and form a powerful and operational support for SoC
applied to feature modeling. As we have grounded their definition on a formal basis, further work
could study what is needed to provide a complete support or form an algebra from these operators.
A complementary contribution consisted in the provision of a textual and executable Domain-Specific
Language (DSL), named FAMILIAR (for FeAture Model scrIpt Language for manIpulation and Au-
tomatic Reasoning). This language provides a practical support to the previous operators together
with additional facilities to import, export, edit, configure and reason about feature models. Result-
ing scripts can be parametrized and reused through a module mechanism. The language implemen-
tation reuses state-of-the-art operations through appropriate connections to other feature modeling
frameworks. Internally, SAT and BDD solvers are used to implement some operations. This im-
plementation also comprises a Eclipse-based environment and a stand-alone runtime. Regarding the
performance of the two major operators (merge and slice), it has been observed in several case studies
that the order of complexity publicly available feature models can be easily handled. However, the
operators and language rely on the assumptions that handled feature models are propositional feature
models, without any extensions. Some extensions, such as feature attributes, are gaining importance
in the SPL field and have to be considered [CBH10, MCHB11]. Moreover, even with its demon-
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strated performance, the FAMILIAR environment is still a proof of concept. It must be more stabilized
and improved so that user experiments and qualitative assessments of the language can be conducted
qualitatively. We discuss some perspectives in section 5.2.5.
Different case studies served as validating some aspects of both the operators and the FAMILIAR

language. FAMILIAR was coupled with some other domain specific languages to combine multiple
variability artifacts in the medical imaging domain. This constitutes a complete process to build co-
herent scientific workflows with good user assistance and automation when possible. A second case
study demonstrates the usage of multiple FMs to handle variability from requirements to run-time in
video-surveillance processing chains. Domain and software variabilities were split into two feature
models related by constraints and the configuration spaces was reduced by an order of magnitude in
the different studied scenarios. We also used our operators and language to reverse engineering the
variability of a component and plugin architectures, i.e. the FraSCAti framework, mixing automated
extraction and manual edits. The resulting FM have shown to be correct and useful, as they are now
used to drive the new FraSCAti development as a SPL. These case studies demonstrate that our con-
tributions are useful in different application domains and by different people. However, validation
could be improved by better defined experiments and more generally, relating feature model compo-
sition to the variable software artifacts (model, code) that have also to be composed, is still an open
issue. We discus several related lined of research in the next section.

5.2 A Research Roadmap

Our three main research axes all bring interesting lines of research to be developed. We focus here in
a research roadmap that naturally seeks to raise limitations of previous works, but which also strives
to develop synergies between our domains of expertise. Some starting or ongoing work are discussed
along the following paragraphs.

5.2.1 End-to-end Contracting

Our different contributions on contracting software could be put together and extended to provide a
more complete solution towards the provision of a reliable and yet flexible approach for component
and service based systems. Our contracting systems and frameworks targeted for component-based
architectures are likely to be used to express technical contracts inside the architectures, whereas
in service oriented architectures, contracts are mainly established with Service Level Agreements

(SLAs), which focus on properties at an higher level, most often related to business metrics. Both
contexts manipulate common concepts of contracting, such as mutual agreement and responsibility.
Naturally, a more general approach would enable to define high-level SLA, then refines them into
contracts related to implementing components and subcomponents. Some recent work show the pos-
sibility of expressing different types of contract on different points of a service and component archi-
tecture [WMD08, WSMD08]. Relating different forms of contracts is a line of research that would
necessitate to integrate negotiation mechanisms similar as ours, so that general functioning modes

can be determined to organize self-adaptation at a coarse grain, as well to use QoI-aware monitoring
systems with an overall control over its resource consumption. With different forms of contracts, de-
ployed at different locations and with different moments at which they are relevant [BJP10], different
input formalisms will have to be taken into account, and salient combination of different forms of
specification and their verification techniques will have to be studied.
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5.2.2 Model-Driven Construction of Self-Adaptive Systems

Through our work on negotiable contracts and on adaptive monitoring, we face some major issues in
engineering self-adaptive systems. Despite some adapted mechanisms to organize the self-adaptive
behavior, there were possibilities of incorrect behavior, either because the control model based on
thresholds was too weak to ensure relevant properties of control [HDPT04], or because this behavior
was not represented as a statically analyzable model [ZC06].
An interesting line of research is then to provide models, techniques and tools to facilitate the en-
gineering of self-adaptive systems in large software systems. Many challenges have to be tackled
in this domain [CLG+09], such as making control loops explicit [BDG+09], providing appropriate
architectures fostering reuse of loop and loop elements, supporting these efficiently at runtime while
having strong verification and validation capabilities.

The SALTY project. From the end of 2009, I am leading a three-years ANR funded project,
SALTY32 (for Self-Adaptive very Large disTributed sYstems). Its aim is to provide a software frame-
work to implement self-adaptive systems using model-driven engineering techniques to abstract away
technological contingencies while relying on software architecture standards, such as SCA [Ope07],
at runtime. Developers and maintainers of large scale infrastructures should then be able to design
control loops with explicit self-adaptive capabilities at runtime, while monitoring a very large num-
ber of entities and events and coordinating feedbacks of different nature and objectives. Several case
studies are used in the project. A first one concerns the regulation in load and frequency of data gath-
ered from the geo-tracking of very large truck fleet (10.000 to 100.000 trucks) [MAC+10]. Another is
related to the generic self-regulation of grid and high-throughput computing middlewares [CKM+10].
As many other studies on the state of the art have shown [CLG+09, ST09], in this project, we ac-
knowledge the fact that the domain is rich of frameworks providing support for building self-adaptive
systems [KPGV03b, GCH+04, LPH04b], for example by following the MAPE-K autonomic de-
composition [KC03], but also that the resulting feedback control loops are not explicit enough.
To solve the problem of the opacity and the non-scalability of such approaches, some recent re-
search works suggest that, "the feedback loops that control self adaptation must become first-class

entities" [BDG+09]. Despite recent works with more advanced frameworks [SBD08, HLM+09,
RRS+09] there is still major issues in coordination of several control loops and large scale man-
agement.
Facing these issues, the SALTY framework should provide methodological processes and architec-
tural models to make explicit loops as assemblies of reusable loop elements. Regarding decision
making, the framework strives to explore automatic computation of policies at run time using learning
techniques (reinforcement learning and neuro-fuzzy approaches) while enforcing the SASO proper-
ties from control engineering (stability, accuracy, settling time, overshoot [HDPT04]). Some large
scale coordination algorithms are also under development by some partners in the project. All to-
gether, these elements should be transformed into a platform dependent representation, based on the
SCA standard. At runtime, it will reuse an implementation of feedback control loops architected with
SCA components, which will be an evolution of the current SPACES system [NRS10].

Ongoing work. In this context, the ongoing PhD Thesis of Filip Krikava aimed at providing an
abstract model to represent loop and loop elements. A first architectural model has already been
designed and prototyped [KCBF11, KC11]. In the proposed architecture, each part of the feedback

32https://salty.unice.fr
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control loop is uniformly and explicitly designed as a first-class adaptive element. Making these
elements explicit allows the architect to reason about system modeling, while capturing different pat-
terns of interactions and controls (coordination of loops, adaptive monitoring, loops over controllers,
etc.). Code generation from the architecture avoids painful details of low-level system implementa-
tion. Small experiments on the Condor middleware33 have shown that some non-trivial control can
be applied while checking at runtime that the loops are stable and robust. Ongoing work consists in
evolving the architectural model to support composite loop elements and to represent deployment of
large number of loops. At longer term, we expect that reusable patterns of loop could be modeled
with our solution. A supporting DSL is going to be provided so to ease both description and reuse of
these elements. This is obviously related to issues of model at runtime, as we need to find a trade-off
between scalability and explicit representation. Prototyping and experimentation are also conducted
in parallel, so that the resulting architectures can be put to the test. Similar deployments on two dif-
ferent middlewares, GLite and Condor, should bring interesting results in terms of resulting adaptive
behavior and reuse of the control loops and of their elements.

5.2.3 Checking and Contracting Self-Adaptive Systems

With the explicit architectural model evoked above, another objective is to integrate verification tech-
niques at appropriate times for ensuring consistency and behavior of the control loops. Based on petri
nets, there have been some work with significant impact bringing some possible solutions to the static
analysis and code generation of verified self-adaptive behavior [ZC06]. More recently, an approach
based on a DSL was proposed for sense/compute/control applications [CBCL11]. It notably relies on
model-checking of the built control loops while generating code skeletons in such a way that it pro-
vides some guarantees on the usage of loop elements. This approach also uses a form of interaction

contracts to express some coordination rules at some points of the control loops.
In order to provide similar mechanisms on larger and more complex control loops, we envisage to
be able to build a behavioral model of several coordinated loops from our architectural model, so
that it can be model-checked. Moreover we would like to provide more versatile contracts than the
interaction contracts of [CBCL11]. Using assertions together with some extensions should provide
specifications that can be statically checked for compatibility among loop elements, while being also
used when testing the loop assembly. Besides, these new forms of contracts could also referred to
some non-functional properties, such as the quality of information in all the data flow of a given loop.

5.2.4 Software Product Lines of Self-Adaptive Systems

In our contributions on feature models, we handled variability from requirements to runtime, notably
by modeling both the context and the software variants with feature models [ACF+09]. This is related
to the field of dynamic SPLs, i.e. SPL in which there is some variability of the context (information
accessible at runtime) and dynamic binding of the system to a specific variant [CHS+08]. There have
been several interesting work that use aspect-orientation with some variability handling techniques,
to unify design-time and runtime variabilities [PBCD11] or to reduce the combinatorial explosion of
variants when handling adaptations of software modes according to the context [MBJ+09].
A first interesting line of research is to integrate this dynamic SPL principles with our ongoing work of
framework for self-adaptive systems. A more original line is to consider the usage of SPL engineering
techniques for the construction of the loop architectures. We already face problems of composition
and reuse among our loops and loop elements. Capturing typical loop interactions in variable patterns

33http://www.cs.wisc.edu/condor/
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with some consistent configuration looks a promising way to us. This could also be related to work on
testing SPL [PSK+10], so that the process of testing feedback control loops could also benefit from
these results.

5.2.5 Scalable Feature Modeling Composition

This naturally leads to lines of research directly related to our contribution on feature modeling com-
position. As analyzed in the previous sections, some improvements are necessary to stabilize and
improve the FAMILIAR DSL and its underlying implementation. This should allow for using FAMIL-

IAR for larger and better defined experiments. As FAMILIAR is now used to manage its variability,
we notably envisage an empirical study on the FraSCAti SPL to trace evolution among features of
successive versions. We expect some interesting outputs on some more long term usage of FAMILIAR,
so that its adequacy can be analyzed.
Regarding the language and the composition operators, the complete integration of feature attributes,
like in TVL [CBH10], is one of the priorities. As for the implementation of the merge and the
slice operators, the current version is limited to an implementation based on BDDs. An ongoing
work develop efficient techniques to encode propositional formulae fed to SAT solvers, adapting
recent results from [SLB+11]. We plan to make a systematic comparison of BDD and SAT based
implementations, and use it to offer an optimal support into FAMILIAR.
Besides, this support will encompass some new functionalities. When merging or comparing feature
models in an open domain, suppliers may use different hierarchies, concepts and vocabulary, thus
implying some alignment activities to relate concepts. In our applications, we mainly rely on a com-
mon basis, e.g., through a single ontology [FJFA+10], or we use FAMILIAR scripts to restructure a
hierarchy with renaming and removing actions. A possible extension is to consider a semi-automatic
process for identifying features that are equivalent, intuitively by reusing and adapting matching tech-
niques [ES07]. Coupled with these alignment techniques, an interesting issue is the provision of a
better diff operator that should combine our merge diff operator working on configuration sets with
some syntactic comparison of the hierarchies.

5.2.6 On the Relation of Features to Other Models

Following an approach that extensively uses feature models in SPL engineering, a very important
problem that we did not tackle so far is the relationship between feature models and other models in
the broad sense of term, i.e. textual requirements, UML diagrams and models, source code.
A first issue is related to the extraction of feature models to abstract the variability of other models.
Our contribution in extracting architectural feature models from the FraSCAti paves the way for inves-
tigating further the combination of multiple information sources [CKK06, WCR09] with some expert
knowledge. To do so, we will need to face several challenges, in automating the extraction while
putting the expert in the process, providing a result of quality in terms of features and hierarchies, and
finding scalable implementation techniques.
A second issue concerns the realization of variability in other models. Currently, two different ap-
proaches are used to implement variability in SPLs at the code or model levels, by relying either on
annotative (aka model pruning) or compositional (aka model merging) techniques [PKGJ08a, Käs10,
HKW08, SZLT+10, PVL+10, PCBD10]. Numerous contributions have been made to cope with re-
alization at the code level, but we envisage to focus more on variability in models. Most existing
work focus on checking the syntactical consistency of model products and finding salient semantic
properties that can be expressed and checked during pruning or merging models. In the composi-
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tional approach, Saval et al. notably identified three challenges when merging models [SPHM09],
co-evolution of model fragments, lack of variability in the base model and scoping of model frag-
ments. There is thus a need to provide techniques and tools to model and relate appropriate forms of
variability. Facing these challenges will also enable us to investigate how feature models can partici-
pate in a compositional approach involving a large number of inter-related models, i.e. compositional
SPL [Bos10].
Moreover an ANR project named YourCast, starting in 2012 in our research group, aims at providing
an SPL for information broadcast systems. FAMILIAR will be extensively throughout the SPL, but
new solutions will also have to be developed, enabling us to study some of the evoked research lines.
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