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Chapter 1

Introduction

1.1 Context

Beyond their historical or cultural interest, television archives are potentially valuable
through commercial re-exploitation by today’s broadcasters. The demand in this direction
has noticeably increased with the advent of new digital media (cable, satellite, DVD)
related to the MPEG-2 standard. But it is coupled with higher and higher expectations
concerning the visual quality of the documents.

However, due to ageing and/or to early technical limitations, archives are generally
affected by a number of deteriorations and are not in a condition that enables to re-use
them directly for broadcast. Therefore after being transferred onto a digital medium, they
need to be restored. This process is long and costly and may take up to several tens of
hours of work per hour of programme. That is why moreautomation is essential for
significant cost reduction. This automation is to be partly achieved by the development
of specific processing algorithms.

Whereas in most countries, individual broadcasters are in charge of their own archives,
this task has been assigned in France to a state-owned company (or Etablissement Public à
caractère Industriel et Commercial, EPIC) originally created for this purpose, namely In-
stitut National de l’Audiovisuel (INA). Set up in 1975, INA is one of the components re-
sulting from the splitting of the former state broadcast monopoly. Among other missions
established by law, it is responsible for the collection, preservation and re-exploitation of
the national audiovisual heritage. INA holds in particular one of the largest TV archives
collections in the world with nearly 500,000 hours of programmes at the end of 2001. As
such, it is daily faced with large-scale restoration issues.

Despite earlier isolated works, archives restoration has only started to be acknowl-
edged as a research field of its own since the pioneering work of Kokaram in 1993
[Kok 93]. Because archives are its core business, INA has invested a significant research
effort in this domain during the last decade. Collaboration with other partners led to the
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Chapitre 1

Introduction

1.1 Contexte

Au-delà de leur intérêt historique ou culturel, les archives télévisées ont potentiel-
lement une grande valeur liée à leur ré-exploitation commerciale par les diffuseurs. La
demande en ce sens s’est particulièrement accrue avec l’apparition des nouveaux médias
numériques (câble, satellite, DVD) issus de la norme MPEG-2. Mais elle s’accompagne
d’exigences de plus en plus élevées quant à la qualité visuelle des documents.

Or, du fait de leur vieillissement et/ou des limitations techniques de l’époque, les
archives sont généralement affectées par un certain nombre de dégradations et ne sont
pas diffusables en l’état. Elles doivent donc passer, après leur transfert sur support nu-
mérique, par une étape de restauration. Ce processus est lent et coûteux et peut prendre
jusqu’à plusieurs dizaines d’heures de travail par heure de programme. C’est pourquoi
une plus grandeautomatisation est indispensable pour parvenir à une réduction signifi-
cative des coûts. Cette automatisation passe en partie par le développement d’algorithmes
de traitement spécifiques.

Alors que dans la plupart des pays, les diffuseurs sont eux-mêmes responsables de
leurs propres archives, cette tâche a été confiée en France à un Etablissement Public à
caractère Industriel et Commercial (EPIC) créé à l’origine dans ce but, à savoir l’Institut
National de l’Audiovisuel (INA). Né en 1975, l’INA est une des sociétés issues du dé-
mantèlement de l’ORTF. Entre autres missions fixées par la loi, l’Institut est chargé de
la collecte, de la conservation et de la ré-exploitation du patrimoine audiovisuel national.
L’INA détient en particulier l’un des principaux fonds d’archives télévisées au monde
avec près de 500.000 heures fin 2001. En tant que tel, il est confronté quotidiennement
aux problèmes de restauration à grande échelle.

Malgré quelques travaux ponctuels antérieurs, la restauration d’archives a réellement
commencé à s’imposer comme un domaine de recherche à part entière depuis les travaux
précurseurs d’Anil Kokaram en 1993 [Kok 93]. Dans la mesure où les archives cons-
tituent son cœur de métier, l’INA a consenti des efforts de recherche conséquents dans

11



12 Chapter 1. Introduction

European Union’s AURORA project (AUtomated Restoration of ORiginal film and video
Archives) between 1995 and 1999 [Che 98] and more recently to the BRAVA project
(BRoadcast Archives restoration through Video Analysis) from 2000 to 2002. This thesis
has partly taken place within the framework of this latter project.

1.2 Contribution of the thesis

Among the wide variety of impairments that can affect archived material, we have chosen
to focus onimpulsive defects. This problem occurs very frequently on film documents
and appears as flashing blotches (dirt or gelatine sparkle). Similar artifacts are found to
a lesser extent in video: what is referred to as dropout is when one or more lines cannot
be read properly. As these artifacts are essentially local both in time and space, they are
removed in two steps:detectionof the damaged pixels and their ensuingcorrection by
interpolating missing data. These two steps heavily rely on motion estimation between
images in order to take advantage of the temporal redundancy.

In practice, existing detection methods have a major limitation: they are very sensitive
to motion estimation failures, which are the source of false alarms. These false alarms
have a critical impact on the performance of the overall system: when they are combined
with perfectible correction methods which do not always wisely incorporate temporal
information, they give rise to the creation of visually disturbing artifacts in regions which
were initially free from trouble. A manual intervention is then necessary to avoid damage
and the resulting degree of automation is largely insufficient.

To overcome these problems, the key innovation in our approach is to take into ac-
count these undesirable failures of motion estimation. They are due to complex natural
events which are an integral part of the original document and should therefore be pre-
served, and yet act as a disturbance for the restoration process. This notion of what we
shall callpathological motion is at the heart of this thesis. On the one hand, we incorpo-
rate it in our detection model by involving a larger temporal window than the usual three
frames; this shall allow to distinguish defects from pathological motion, which persist on
a longer duration. On the other hand, the proposed correction scheme aims at performing
well even in the presence of pathological motion: it attempts to make an “intelligent”
use of temporal information and to be able to do without it when it cannot be used reli-
ably. For these two steps, specific attention is devoted to the fulfilment of requirements
of efficiency, genericity, robustness, automation and computational speed.

The tools investigated in this thesis to achieve our aims are probabilistic models and
more specificallyMarkov random fields. They consist in specifying local probabilistic
interactions between neighbouring pixels. They are used explicitly (parametric models)
for the proposed detection method within the framework of the Bayesian theory of esti-
mation; they are involved as heuristics derived from the Markovian “philosophy” (non-
parametric models) and inspired by recent works on texture synthesis for the developed
correction technique. In both cases, the proposed algorithms are compared with the most
relevant works in the literature. The overall work detailed in this thesis has been validated



1.2. Contribution of the thesis 13

ce domaine durant les dix dernières années. La collaboration avec d’autres partenaires
a conduit aux projets AURORA (AUtomated Restoration of ORiginal film and video
Archives) entre 1995 et 1999 [Che 98], puis BRAVA (BRoadcast Archives restoration
through Video Analysis) de 2000 à 2002, tous deux soutenus par l’Union Européenne.
Cette thèse s’est en partie déroulée dans le cadre de ce dernier projet.

1.2 Contribution de la thèse

Parmi la grande variété de défauts qui peuvent affecter les documents archivés, nous
avons choisi de nous attaquer auxdéfauts impulsifs. Ce problème est très fréquent sur
les documents film et se manifeste par l’apparition fugitive de taches (salissures ou éclats
de gélatine). On retrouve dans une moindre mesure des artefacts similaires en vidéo :
on parle de “dropout” lorsqu’une ou plusieurs lignes sont mal lues. Dans la mesure où
ces artefacts sont très localisés à la fois spatialement et temporellement, leur élimination
s’effectue en deux étapes : ladétectiondes pixels corrompus, puis leurcorrection en ré-
générant les données manquantes. Ces deux étapes s’appuient fortement sur l’estimation
de mouvement entre les images afin d’exploiter la redondance temporelle.

En pratique, les méthodes de détection existantes présentent une limitation majeure :
elles sont particulièrement sensibles aux erreurs d’estimation de mouvement, qui gé-
nèrent des fausses alarmes. Ces fausses alarmes ont un impact critique sur les perfor-
mances du système complet : lorsqu’elles sont combinées avec des méthodes de cor-
rection imparfaites, qui ne font pas toujours une utilisation prudente de l’information
temporelle, on aboutit à la création d’artefacts visuellement gênants dans des zones qui
en étaient initialement dépourvues. Une intervention manuelle est alors nécessaire pour
éviter les dégâts et le degré d’automatisation final est largement insuffisant.

Pour surmonter ces problèmes, l’élément clé de notre approche est la prise en consi-
dération de ces défaillances indésirables de l’estimation de mouvement. Elles sont dues à
des phénomènes naturels complexes qui font partie intégrante du document d’origine et
doivent donc être conservés, et qui agissent cependant comme une perturbation vis-à-vis
du processus de restauration. Cette notion de ce que nous qualifierons demouvement
pathologiqueest au cœur de cette thèse. D’une part, nous l’incorporons dans notre mo-
dèle de détection en prenant en compte une fenêtre temporelle plus large que les trois
images habituelles ; on peut ainsi espérer mieux distinguer les défauts des mouvements
pathologiques, qui persistent sur une durée plus importante. D’autre part, la stratégie de
correction proposée vise à donner des résultats satisfaisants y compris en présence de
mouvement pathologique : elle s’efforce de faire une utilisation “intelligente” de l’infor-
mation temporelle et de savoir s’en passer lorsque celle-ci ne peut pas être utilisée de
manière fiable. Pour ces deux étapes, nous portons une attention toute particulière à la
satisfaction d’objectifs d’efficacité, de généricité, de robustesse, d’automatisation et de
faible temps de calcul.

Les outils explorés dans cette thèse pour parvenir à nos fins sont des modèles proba-
bilistes et plus spécifiquement leschamps de Markov. Ils consistent en la spécification
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by the implementation from A to Z of a software prototype for the concealment of im-
pulsive defects.

1.3 Thesis outline

Chapter 2: Problem to be addressed
The thesis begins by providing the basic concepts necessary to understand the problem.
We then focus on the restoration step and after an overview of the main impairments, on
impulsive defects.

Chapter 3: Existing approaches for the concealment of impulsive defects
After having described how detection and correction algorithms are currently evaluated,
this chapter reviews the state of the art of existing methods for these two steps. It high-
lights the major limitations that prevent them to meet their expectations.

Chapter 4: Probabilistic tools in image analysis
We introduce in this chapter the theoretical tools that are used in the remainder of the
thesis, namely Markov random fields, Bayesian estimation and their combination.

Chapter 5: Impulsive defect detection and pathological motion
The beginning of this chapter is devoted to the definition of what we point out as patho-
logical motion. Our detection model enabling to distinguish it from impulsive defects is
exposed. It is validated on real sequences chosen for their complexity in terms of motion.

Chapter 6: Correction in missing data areas
We then describe and experiment the algorithm developed to resynthesize information in
damaged regions, which can be applied to archives restoration as well as to many other
domains (suppression of superimposed logos or subtitles, image retouching or special
effects).

Chapter 7: Experimentation of the complete prototype
After having validated separately our proposals for detection and correction, we stress
here on the combination of these two steps to create a complete prototype for the con-
cealment of impulsive defects.

Chapter 8: Conclusions and further research
The final chapter highlights the achievements of the thesis and discusses the four main
points that are seen as interesting directions for future work.
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d’interactions locales probabilistes entre pixels voisins. Nous les utilisons de manière
explicite (modèles paramétriques) pour la méthode de détection proposée, dans le cadre
de la théorie bayesienne de l’estimation ; ils interviennent sous la forme d’heuristiques
dérivées de la “philosophie” markovienne (modèles non-paramétriques) et inspirées par
les récents travaux sur la synthèse de texture pour la technique de correction développée.
Dans les deux cas, les algorithmes proposés sont comparés aux principaux travaux du
domaine. La démarche complète détaillée dans cette thèse a été validée par l’implémen-
tation de A à Z d’un prototype logiciel de suppression des défauts impulsifs.

1.3 Organisation de la thèse

Chapitre 2 : Problématique traitée
La thèse commence par présenter les concepts essentiels à la bonne compréhension du
problème. Nous nous focalisons ensuite sur l’étape de restauration et, après un survol des
principales détériorations, sur les défauts impulsifs.

Chapitre 3 : Approches existantes pour la suppression des défauts impulsifs
Après avoir décrit la manière dont sont actuellement évalués les algorithmes de détection
et de correction, ce chapitre dresse l’état de l’art des méthodes existantes pour ces deux
étapes. Il met en lumière les limitations majeures à cause desquelles elles ne donnent pas
satisfaction.

Chapitre 4 : Outils probabilistes en analyse d’images
Nous présentons dans ce chapitre de manière détaillée les outils théoriques utilisés dans
la suite de la thèse, à savoir les champs de Markov, l’estimation bayesienne et leur com-
binaison.

Chapitre 5 : Détection de défauts impulsifs et mouvement pathologique
Le début de ce chapitre est consacré à la définition de ce que nous qualifions de mou-
vement pathologique. Il expose notre modèle de détection permettant de les distinguer
des défauts impulsifs. Ce modèle est validé sur des séquences réelles choisies pour leur
complexité en termes de mouvement.

Chapitre 6 : Correction dans les zones d’information manquante
Nous décrivons et testons ensuite l’algorithme développé pour la resynthèse d’informa-
tion dans les zones corrompues, applicable à la restauration d’archives comme à beau-
coup d’autres domaines (suppression de logos ou sous-titres, retouche d’images ou effets
spéciaux).

Chapitre 7 : Expérimentation du prototype complet
Après avoir validé séparément nos propositions pour la détection et la correction, nous
mettons l’accent ici sur la mise bout à bout de ces deux étapes pour constituer un proto-
type complet de suppression des défauts impulsifs.

Chapitre 8 : Conclusions et perspectives
Le chapitre final résume les apports de la thèse et discute les quatre principaux points
considérés comme des axes prometteurs de recherches futures.





Chapter 2

Problem to be addressed

This chapter introduces the practical problem which is the subject of our concern in the
thesis. As a preliminary point, we first explain what television archives are, i.e. film or
video material. The re-exploitation workflow is then described before focusing on the
restoration step. After an overview of the wide variety of impairments that can affect
archived documents, impulsive defects which are at the heart of this thesis are detailed.
Finally we list the objectives that are targeted for the concealment of these defects.

2.1 Introduction to film and video

We start by giving a quick overview of the technical aspects involved to represent ani-
mated images in the broadcast industry. This is necessary before introducing restoration
issues, since a basic understanding of film and video technologies is essential to fully ap-
prehend how defects can occur. Most information in this section is based either on INA’s
internal expertise or on field knowledge gathered from various sources.

2.1.1 Film

Photographic film, especially 35mm, is regarded as the excellence for animated image
acquisition. It is recognized not only for its very high resolution qualities but also for
its ability to accurately represent the full tonal range and texture of any scene. The use
of film is not limited to the motion picture industry: a huge amount of material has
been recorded on this medium specifically for TV broadcast without any exploitation in
cinema theatres. This support is still used nowadays in the broadcast industry for high-
end productions.

A film is composed of different layers (figure 2.1):

• a protective overcoatingmade of a thin layer of gelatine to protect the film from
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18 Chapter 2. Problem to be addressed

abrasion;

• theemulsion layerwhich includes a suspension of light-sensitive material in gela-
tine. This consists of silver halides for black and white film or successive layers of
colour-sensitive dyes separated by filter layers for colour film;

• a transparentbaseor support layer. Originally, film base was made of cellulose
nitrate but the manufacturing of this type of film, nicknamedfilm-flammein French,
was stopped in the early 50’s because of its extreme flammability and its chemical
instability. Cellulose nitrate has been replaced since then by cellulose triacetate
and more recently polyester;

• ananti-halation and anti-curl backingpreventing light reflections and curling caused
by humidity.

emulsion

base

protective
overcoating

anti−halation and
anti−curl backing

Figure 2.1: cross-section of film

Film is universally recorded at the speed of 24 frames per second. Depending on
the period and the type of programme, film documents can be found in 35mm or 16mm
formats, usually as negative or reversal originals and more rarely as intermediate prints
(inter-negative, inter-positive). Beside documents that have been originally produced
on film support, archives also contain film documents known as “kinescopes”. The ki-
nescope process consisted in recording on film (usually reversal 16mm or 35mm) the
image displayed on a specially designed TV monitor. This technique was in widespread
use from the 50’s to the beginning of the 70’s. At this time, it was the only way to record
live programmes. This transfer process usually results in a poor document quality.

Because it preceded the invention of video and because of its intrinsic qualities,
film material is very commonly found in broadcast archives. In the case of French TV
archives, an estimated 40 to 50% of INA’s collection is on film support.

2.1.2 Video

Unlike film, video is characterised by a large heterogeneity of formats that have coex-
isted and superseded each other. Videotape consists of a magnetic layer supported by a
polyester substrate. This magnetic layer, made of magnetic pigments suspended within



2.1. Introduction to film and video 19

a polymer binder, is capable of recording a magnetic signal. A common feature of all
the different formats is that the video signal is stored on the magnetic layer following a
pattern called helical scanning (see figure 2.2): the video tracks are recorded diagonally
on the tape.

video tracks

Figure 2.2: helical scan recording on a videotape

A video frame is composed of two “half-images” orfields. The odd and even fields
respectively regroup all the odd-numbered and even-numbered lines. Each video frame
is thus recorded or displayed in two steps: in a first step, one half of the lines (first field)
is transmitted and in a second step, the other half of the lines (second field) is transmitted
in turn. This scanning process is known as2:1 interlaced scanning. It was originally
introduced to trade off vertical resolution against temporal resolution: achieving a rate
on a frame basis that is high enough to comply with the human persistence of vision
would have required too much bandwidth. A consequence of interlaced scanning is that
for a document originally recorded on video, the two fields of the same frame capture
two distinct moments of time separated by a very short time interval.

Another point that is common to all video formats is the colour space chosen to ex-
press colour information. Whereas the RGB colour space is ubiquitous in the computer
(and film post-production) industry, colour is represented in video by oneluminancecom-
ponent coupled with two colour differences (orchrominance) components. This colour
space is found in slightly different but equivalent flavours, often called YIQ for analog
NTSC, YUV for analog PAL, YDbDr for analog SECAM and YCbCr for digital video
(see appendix A). A major reason for the choice of this colour space was the constraint
of compatibility with monochrome television. The other reason in favour of this colour
space is the fact, demonstrated by psychovisual studies, that the human eye is much more
sensitive to small variations in black and white than to colour difference details. This
allows subsequent bandwidth reduction on the chrominance components.

2.1.2.1 Analog video systems

Broadly speaking, there are different ways to handle colour in the video signal. The most
commonly found are known as composite and component video. Incomponent video, the
three luminance and chrominance signals are conveyed separately. Incomposite video,
the chrominance components are encoded on top of the luminance signal to form a single
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signal. This is the encoding exploited in analog video systems to store a single continuous
video signal on the magnetic tape. Three different and incompatible analog systems are
in use throughout the world: NTSC, PAL and SECAM.

NTSC (National Television System Committee)[Duv 96] was adopted in 1954 in the
United States. It is mainly used in North America, Japan, Central America and one third
of South America. The NTSC system is also commonly referred to as a525-linesys-
tem because this is the total number of lines in each frame (among which active lines of
video, horizontal and vertical blanking intervals and synchronisation pulses). The field
frequency is 59.94 Hz and the frame frequency 29.97 Hz. The technique chosen to embed
the chrominance signals in the luminance signal is known as Vestigial SideBand Ampli-
tude Modulation (VSB-AM) ordouble Modulation d’Amplitude à Porteuse Supprimée
(MAPS) en quadrature.

On the other side, PAL and SECAM systems show much similarity. They are com-
monly known as625-linesystems. Both of them have a field frequency of 50 Hz and a
frame frequency of 25 Hz. Therefore, they have traded off a higher vertical resolution
than the NTSC system against a lower frame rate. The main difference between PAL and
SECAM resides in the way colour information is conveyed.

PAL (Phase Alternating Line)[Duv 95] was initially developed in Germany as an im-
provement of the NTSC system and was finalized in 1967. It is the predominant television
system in the world and is the standard in around 60% of the world countries. PAL is
commonly used in most Western Europe (France and Greece being notable exceptions),
most Asian and non-French speaking African countries, part of the Middle-East, Pacific
countries. Local variants of the PAL system are also used in Brazil (PAL-M), Argentina,
Uruguay and Paraguay (PAL-N). As for NTSC, colour is encoded using VSB-AM, but
with the phase of the subcarrier inverted every other line, which makes it significantly
more robust to colour shifts.

SECAM (SEquentiel Couleur A Mémoire)[Duv 86] was a French initiative started in
1953 and adopted in 1967. This is the system used in France as well as in Greece, Eastern
Europe, Russia, French-speaking African countries and part of the Middle-East. Unlike
PAL and NTSC colour encodings which are based on amplitude modulation, SECAM
uses a Sequential Frequency Modulation with the separation of the two chrominance
components: in each line is alternatively encoded either Db or Dr.

2.1.2.2 Digital video

Digital video follows a universally acknowledged standard issued by the ITU-R (Inter-
national Telecommunication Union - Radiocommunication sector), formerly known as
CCIR (Comité Consultatif International des Radiocommunications). This standard initi-
ated in 1982 is known as RecommendationCCIR 601or ITU-R 601or is often simply
nicknamed4:2:2 [ITU 95]. It defines a digital video coding for both 525-line and 625-
line systems with a common sampling frequency of the luminance signal equal to 13.5
MHz. The samples can be encoded either on 8 bits or on 10 bits as allowed by the
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standard. 8-bit accuracy is often considered to be sufficient in many contexts, including
archives restoration.

In this coding standard, video is considered as a component signal, i.e. the luminance
Y and the colour differences Cb and Cr are handled separately. As composite colour
encoding was the major difference between analog PAL and SECAM, this difference dis-
appears in the digital world, leaving only two systems. The fundamental characteristics
of these two systems are summarized in table 2.1.

System Resolution Frame rate Field rate
ITU-R 601

720× 480 pixels 29.97 Hz 59.94 Hz
NTSC

ITU-R 601
720× 576 pixels 25 Hz 50 Hz

PAL/SECAM

Table 2.1: fundamental characteristics of ITU-R 601

As the human vision is less sensitive to chrominance details, Cb and Cr signals are
sampled with half of the sampling frequency of the luminance signal Y, i.e. 6.75 MHz.
This chrominance subsampling by a factor of two is known as 4:2:2. Figure 2.3 shows
the spatial arrangement given by 4:2:2 sampling: chrominance samples are located on
odd-numbered columns.

Y sample only

Y, Cb and Cr samples

Figure 2.3: 4:2:2 sampling

The data rate of digital video is the same for 525-line and 625-line systems and is
about 166 Mbits/s or 20.7 MBytes/s for 8-bit samples. The huge amount of data is one
of the inherent difficulties in video processing: as a comparison point, the data rate of a
studio-quality (48 kHz, 16 bits) stereo soundtrack is only 1540 Kbits/s or 188 KBytes/s.

2.1.2.3 Video formats

Many different formats for storing video have emerged and faded from the scene through-
out television history. Some of these formats have coexisted at the same period but were
purposefully used for different types of programmes: some were considered as the best,
studio-quality of their time and were intended for high-end programmes; others were con-
sidered as a better balance between cost and quality and were restricted to programmes
for which quality expectations are less stringent (typically news programmes). Other
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formats never managed to break through and never attained commercial success. The
following list is restricted to the main professional video formats that have gained wide
acceptance along with their period of full exploitation:

• 2-inchtapes, which was the first video recording format, introduced in 1956 and in
widespread use from the 60’s to the beginning of the 80’s.

• 1-inch Band1-inch Ctapes respectively introduced in 1977 and 1979 and exploited
until the very beginning of the 90’s.

• U-maticand its variants launched in 1971 and fully exploited from the middle of
the 70’s to the beginning of the 80’s.

• BVU (Broadcast Video U-matic), also known as U-matic High Band, which was
an improvement of the U-matic format introduced in 1978 and used from the be-
ginning of the 80’s until the very beginning of the 90’s.

• Betacamtapes introduced in 1982 and soon superseded by the backward compati-
bleBetacam SPin 1986. This format, although in decline, is still in use today.

• Digital Betacamintroduced in 1993. It is the first digital format that became main-
stream. The compression is nearly lossless with a ratio of 2:1 and involves intra-
frame DCT-based data reduction. It is currently thede factostandard in the broad-
cast industry.

Besides Digital Betacam which will probably be around for many years, several dig-
ital video formats with higher compression ratios are currently struggling for a share of
the market. Whereas it is too early to make any prediction, some of them may become
mainstream in the future and will therefore join the long list of formats that archives
holders have to cope with. These formats are based either on the DV (such as DVCAM,
DVCPRO25, DVCPRO50) or on the MPEG-2 (such as Betacam SX or IMX) compres-
sion standards.

2.1.3 Film-to-video conversion

In this section, only problems related to frame rate conversion will be described as this
has an influence on how film documents converted to video are processed afterwards.
However, the reader should be aware that the film-to-video conversion process involves
other issues such as soundtrack synchronization or aspect ratio conversion (e.g. from
Cinemascope 2.35:1 to 4/3 or 16/9).

Film is converted to video during what is called thetelecineprocess. A telecine device
has the capability to scan in real time the film frames and convert them into a video signal.
The conversion from film to PAL/SECAM video is quite straightforward: as the film 24
frames/s is close to the PAL/SECAM 25 frames/s, two video fields (i.e. one video frame)
are generated from one single film frame. This amounts to a slight acceleration which is
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usually not noticeable. With NTSC, conversion is a bit more complicated. As the NTSC
field rate is approximately 60 fields/s, that is 2.5 times the film frame rate, one out of two
film frames is scanned to generate 3 fields while the other one is scanned to generate 2
fields (see figure 2.4). Therefore, 5 NTSC video frames are generated from 4 film frames.
This conversion process is referred to as3:2 pulldown.

Film

24 frames/s ~60 fields/s

NTSC video

A

C

D

B

A

A

A

B

B

C

C

C

D

D
frame 5

frame 4

frame 3

frame 2

frame 1

Figure 2.4: 3:2 pulldown

A consequence of this conversion on restoration and all subsequent image and video
processing operations is that a document should be processed differently according to its
origin. When the original document is video, all fields capture distinct moments of time
and the digitized video should be processed on a field-by-field basis. When the original
document is film, there must be a pre-processing step to recover the original film frames
at video resolution from the digitized video. Processing algorithms can then proceed on
a frame-by-frame basis.

2.2 Archives re-exploitation

The business of a TV archivist at the head of huge holdings of film and video documents
can be mainly divided into three parts:

• thecollectionof programmes, including their identification and documentation in
a database in order to allow requests to be made;

• the preservationof the archives. This encompasses preventing the physical dete-
rioration of the supports by appropriate storage and handling conditions, but also
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keeping in working order old playback devices and maintaining the associated hu-
man skills;

• there-exploitationof the archives for the creation of new programmes.

Our attention will be more specifically focused on this last task. Collection and preser-
vation tend to the same final aim: enable the audiovisual professionals (broadcasters,
producers, editors) to re-use archived material in a new context for their own needs. The
corresponding demand has noticeably increased in the last few years with the multipli-
cation of available media for distribution (cable, satellite, DVD). There are often two
slightly different procedures depending on whether the request concerns excerpts or in-
tegral works. We now concentrate on the technical steps involved in the re-exploitation
regardless of the legal issues that are often very intricate.

Whatever the type of document, the first step is thetransferfrom the original support
to digital video. The original document is first cleaned on a specific device. Then in the
case of film, it is transferred to video by the telecine process, preceded if necessary by a
physical restoration (e.g. fixing of the damaged perforations); if the original document is
video, it is played in the best possible conditions on the appropriate VTR and copied to
a digital video format. The goal of the transfer step is only to get a copy that is as close
as possible to the original. This digital copy, currently a Digital Betacam tape for most
archivists, is called thepreservation master.

When the request concerns excerpts, a copy of the preservation master is usually di-
rectly delivered to the customer. This is possible because quality expectations for short
duration sequences are much less stringent than for long programmes. Moreover, es-
pecially for excerpts intended for TV news programmes, deliveries at very short notice
are required and this leaves no spare time for further processing. For integral works on
the other hand, there is often no emergency and the expectations concerning the visual
quality of the documents are much higher and keep increasing with broadcast technol-
ogy advances. However, due to ageing and/or to early technical limitations, archives are
generally affected by a number of deteriorations and are not in a condition that enables
to re-use long sequences directly for broadcast. Examples of such deteriorations will be
detailed in the next section. For this reason, after the transfer onto a digital medium, a
step ofdigital restoration is usually necessary (figure 2.5). The restoration leads to a
“commercial” master(or PAD for Prêt A Diffuser) that is used for exploitation.

The video-to-video digital restoration is performed by an expert operator who takes
the decisions and makes all required adjustments. With present tools, this process is long
and may take up to several tens of hours of work per hour of programme. The problem
is the associated cost, essentially in human resources, which can be as high as many
thousands of euros per hour of programme.

This is why moreautomationis essential for significant cost reduction. This automa-
tion is to be partly achieved by the development of specific processing algorithms. The
aim is to relieve the operator from the most tedious tasks and to enable him to concentrate
on high-level issues and supervision. Restoration time is thus expected to drop to at most
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digital video
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Figure 2.5: re-exploitation workflow

a few hours per hour of programme.

2.3 Typology of the main impairments

A very wide diversity of visual impairments can be encountered by archivists. They
may have occurred at all the different steps of the lifecycle of the programme (shooting,
editing, post-production, transmission, storage, encoding, systems conversion, film↔
video transfer, playback, etc). We now provide a brief description of the main defects
without aspiring to exhaustivity: this list is far from including all known artifacts, but is
rather meant to give an idea of the variety of the problems and their origins.

• Flicker (battement d’intensitéor pompage) is defined as unnatural temporal fluc-
tuations in intensity from frame to frame. This can have many origins, the most
common of which are variations in the shutter time of early cameras causing varia-
tions in exposure time, inhomogeneous ageing or degradation of the film support or
problems in lighting synchronization. This impairment can be a spatially localized
effect. Efficient solutions have been proposed to tackle this problem, see [Roo 99b]
and [Roo 99a], chap. 3.

• Unsteadiness(instabilité) appears as unwanted fast shaking. For film documents,
this global frame-to-frame displacement can be caused by a lack of reliability of
the film transport system in the camera or the telecine or by damaged perfora-
tions along the support. More generally, it can also be due to bad shooting con-
ditions. This artifact is easily removed by compensating high-frequency global
displacements (see [Uom 90], [Kin 90] among the earliest works). Unsteadiness
suppression technology is even readily available to the consumer market as many
hand-held cameras now incorporate dedicated real-time hardware.
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• Twin-lens telecine flicker(battement de téléciné à double trajet optique) is closely
related to unsteadiness. In some early telecine devices, the optical paths for the gen-
eration of the two video fields were different. When these devices were not prop-
erly calibrated, there could be an alternate displacement between each recorded
field, appearing as a kind of “flicker” effect, although it is not due to the change of
light intensity between fields. Figure 2.6 shows the odd and even field of a video
document affected by this artifact. This issue has been addressed in [Vla 96].

• Dirty splices(collures sales) are frequently found in film documents. During film
editing, the two pieces of film are joined together with scotch tape. With ageing
these joins can accumulate dirt and become visible (figure 2.7). For such doc-
uments, frames right before and after each shot change have to be retouched or
replaced.

• Line scratches(rayures film) are defects typically related to film which are rela-
tively common. They are due to the abrasion of the film in a direction parallel to
the direction of film transport by a particle caught in the mechanism. Line scratches
can occur either on the base side or on the emulsion side, in which case they can
partially or completely damage the light-sensitive material. They are visible as usu-
ally bright or dark vertical lines (figure 2.8), and can occasionally have a specific
colour when only part of the emulsion has been damaged. They usually have the
same or nearly same location in consecutive frames. One of the most successful
approaches to date considers an additive model for these scratches [SW 01]. Alter-
native techniques include [Kok 98] chap. 9, [Dec 97] chap. 5, [Joy 99], [Joy 00]
chap. 3 and 4.

• Video scratches(rayures vidéo) are the video counterparts of line scratches, with
a similar cause but a completely different look; they are however less frequent. In
the video case, horizontal scratches on the physical medium disturb the magnetic
information stored on the tape. As a result of the helical scanning, the heads of
the VTR sweep over the scratch periodically as they rotate. The consequence on
the image is the presence of horizontal pulses with a comet-like tail to the right
following a regular pattern (figure 2.9). Few works exist on this problem [Har 97],
[Arm 99] chap. 4.

• Noise(bruit) is a very general problem in all recorded signals. Film and video
are not exceptions and can show various types of noise. Noise removal has been
extensively studied in many contexts including animated images. Among others,
[Bra 95], [Dek 01], [Roo 99a] chap. 5 are interesting reviews of the subject.Film
grain (grain film) is a specific kind of noise due to the individual light-sensitive
elements in the film emulsion and has the particularity to be not uncorrelated from
pixel to pixel and to be signal-dependent. Its level increases with the physical
degradation of the film (figure 2.10). Whereas it should be reduced in some cases,
a complete removal of this kind of noise is usually not desirable as it significantly
contributes to the film “feel”.

• Colour fading(virage colorimétrique) occurs when one or several dye layers used
in colour films degrade over time (figure 2.11). The individual layers often fade
unevenly, at different rates resulting in colour variations.
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• Tear damage(déchirures) can occasionally affect one or several consecutive frames
of a film document (figure 2.12), which must then be edited.

• Line jitter (jitter ligne) is a video problem of synchronization between lines: they
appear to have been displaced by a pseudo-random horizontal shift (figure 2.13).
Line jitter can have various origins such as interferences with an electrical signal or
a failure of the Time-Base Corrector (TBC) of the VTR. This is not a very common
impairment, but the resulting visual discomfort is especially severe. Relatively
little work has been devoted to this problem, see [Kok 98], chap. 5 and [Kok 97].

• Moiré is an artifact found on kinescope documents once they are transferred back
to video by the telecine process. As the geometry, orientation and spacing of the
scan lines of the TV monitor recorded on film differ slightly from those used by
the telecine device to scan the film, aliasing appears in the resulting signal. This
aliasing is visible as periodic dark rings that can be curved near the extremities of
the image (figure 2.14). Moiré is a very difficult problem that is just beginning to
be studied in the context of television [Sid 02].

• The vinegar syndrome(syndrome du vinaigre) specifically affects film material
on a cellulose triacetate base. When exposed to improper ambient storage condi-
tions, such film can undergo a chemical hydrolysis reaction which is not reversible.
This slow degradation causes breakdowns of gelatine that will eventually be visible
(figure 2.15). Vinegar syndrome owes its name to the very characteristic odour of
acetic acid that emanates from contaminated films.

• Blotches(taches) are at the heart of this thesis. This impairment will be detailed in
the next section.

• Video dropouts(“dropouts” vidéo) will similarly be detailed in the next section.
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Figure 2.6: twin-lens telecine flicker

Figure 2.7: dirty scotch tape
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Figure 2.8: film scratches (image by courtesy of the BBC)

Figure 2.9: video scratches, here on a 2-inch tape (image by courtesy of the BBC)
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Figure 2.10: film grain (image by courtesy of the BBC)

Figure 2.11: colour fading
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Figure 2.12: film tear damage (image by courtesy of the BBC)

Figure 2.13: line jitter
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Figure 2.14: kinescope moiré

Figure 2.15: vinegar syndrome
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2.4 Impulsive defects

2.4.1 Description

Among all types of impairments that can affect archived material, so-calledimpulsive
defectsare among the most frequent. They embrace two distinct types of artifacts, namely
blotchesandvideo dropouts.

What is generically calledblotchesis a film defect encompassing two different phys-
ical processes: the loss of pieces of gelatine constituting the film (sparkle) or the electro-
static adhesion of various particles on the film (dirt), such as dust, hair, pieces of cloth,
glue or solvent spots, etc. Both kinds of corruption appear as flashing blotches on the
images after transfer to video (figure 2.16). This problem occurs very frequently and
affects to a certain extent almost all film archives.

Similar artifacts are found to a lesser extent in video: what is referred to asdropoutis
when one or more lines cannot be read properly during the tape playback. Some VTRs do
include a DropOut Compensator (DOC) which replaces the missing signal by samples of
a previous signal properly read. Others do not perform any compensation. These losses
of signal result in the replacement of portions of lines or entire lines by a uniform colour
or by a replication of one of the preceding lines, with colours often inverted or strongly
distorted (figure 2.17).

These defects have in common their impulsive nature, either on a frame-by-frame ba-
sis for blotches or on a field-by-field basis for dropouts. Our thesis is more specifically
focused on these impairments. These defects, especially blotches, often occupy a sig-
nificant portion of the operators’ time in typical restorations. There is therefore a strong
operational demand for effective solutions and previous works on these artifacts, which
will be detailed in the next chapter, have but partly come up to these expectations.

2.4.2 Experimental observations

Extensive experimental observations of corrupted documents yield the following remarks
on blotches:

• They can be opaque as they can be transparent (glue spots for example) causing a
complete or partial loss of information.

• They are often rather bright or dark but the whole spectrum of intermediate cases
can also be found.

• Their size can range from a few pixels to a significant portion of the image.

• Their shape can be extremely varied, whether in terms of topology (presence or
absence of “internal holes” inside the blotch), compacity (regularity of the shape)
or elongation (ratio of the largest dimension over the smallest).
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(a)

(b)

Figure 2.16: blotches (image (b) by courtesy of the BBC)

• Blotches often look similar in the same sequence even though it is absolutely not
incompatible with the occasional appearance of “atypical” blotches within this very
sequence.

Similarly, the following observations can be made on dropouts:
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Figure 2.17: video dropout, here for a SECAM Beta SP tape (resized field)

• The underlying information is completely lost.

• They appear differently according to the involved video technology: for example
there can be a copy of one of the last two preceding lines or the line before, with or
without horizontal shifts, with or without colour inversion, or simply no copy at all
and the replacement by a uniform signal. This depends on whether the system is
PAL, SECAM or NTSC as well as on the video format (e.g. 2-inch tape, U-matic,
Beta SP, ...).

• They can affect small portions of a line (a few pixels) or huge blocks of entire lines
(up to one half of a field).

• They naturally show a strong horizontal orientation, since they are a disruption of
the line scanning process.

• In the same sequence are often found many small dropouts and/or less frequently a
few large ones.

2.4.3 Detection and correction steps

A global processing of the whole image is not reasonable in so far as we are dealing with
artifacts which are essentially local both in time and space. The removal of impulsive
defects is therefore performed in two steps:

• detectionwhich consists of flagging pixels that are considered as damaged;
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• correctionwhich consists of resynthesizing missing information in the flagged ar-
eas.

2.5 Target objectives

In order to have a practical interest for real-world restoration applications, algorithms for
the detection and correction of impulsive defects should target several objectives:

• efficiencyis undoubtedly the primary objective

• genericity, i.e. no specialization toward a very specific category of impulsive defect
and relative independence with respect to the other “blocks” of a restoration system

• robustness, or the ability to be efficient on a wide variety of documents with differ-
ent contents, levels of activity and states of degradation

• automation: there should be a very restricted number of parameters that would
need to be hand-tuned to maintain efficiency in different contexts. This can be
either because the algorithms involve few parameters, or because most parameters
do not need to be changed.

• computational speed: ideally, the restoration operator should have a real-time feed-
back from his actions. However, because of the huge amount of data, software
processing of uncompressed video in real time is currently hardly feasible. Al-
gorithms should nevertheless be as fast as possible: in a first step, this makes a
real-time hardware or semi-hardware implementation conceivable; in a more re-
mote prospect, it leaves the door open to a real-time software implementation in
the near future. This objective has a significant importance even at the research
stage as it is essential to enable experiments on large enough testing datasets.



Chapter 3

Existing approaches for the
concealment of impulsive defects

Before getting deeper into algorithmic details, we first discuss in this chapter how detec-
tion and correction methods are currently evaluated. We then review the main families
of existing methods for these two steps. We finally highlight in the last section the major
limitations that prevent them to come up to expectations and the main orientations which
we decided on to alleviate these shortcomings.

3.1 Evaluation issues

The most obvious way to evaluate how well an image processing algorithm fulfils its
goal is often to simply look at its output. This especially makes sense for restoration
algorithms as they are ultimately intended for the television viewers at the very end of
the process. However, beside individual subjective evaluation, it can be desirable to be
able to put figures over the performance of different algorithms. Although the number
and complexity of algorithms developed in the field of restoration has grown, relatively
little attention has been devoted in comparison to this problem of quantitative assessment.
This is all the more true for such a specific defect as blotches or dropouts. Evaluation in
such a case is an intrinsically difficult problem as human perception is involved to some
extent. This section discusses the related issues and analyses the main trends found in the
literature.

3.1.1 Interest of quantitative evaluation

The ability to quantitatively assess the quality of a performed detection or correction is
interesting for mainly two reasons:

• Firstly, it can be employed tochoose the optimal parameter settingsof a given
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algorithm. The parameters of a detection or correction algorithm can thus be tuned
such as the measured quality of the output is optimal.

• Secondly, it can be used tocompare the performance of different algorithms. Once
a testing dataset has been carefully chosen, several algorithms can be benchmarked
on this corpus and this would be very helpful to determine which one produces the
best results.

3.1.2 The testing dataset

A prerequisite for the quantitative assessment of detection and correction algorithms is
the availability of sequences for which the expected output is known. This is commonly
referred to asfull-referenceevaluation. Ideally, there should exist a reference dataset
which is shared among the research community.

For blotch detection, the reference dataset could consist of “clean” sequences along
with the same sequences corrupted by blotches. Such a dataset is not yet a reality: there is
currently no well-accepted reference dataset that can be used for evaluation as this exists
for other applications, such as the Yosemite sequence for motion estimation, the FERET
database for face recognition, the Brodatz and VisTex datasets for texture analysis and
synthesis and many others. This is mainly due to the fact that archives restoration has
traditionally attracted less attention than other domains and also partly to the inherent
difficulties of copyright issues. As there is no such dataset, researchers in this field usu-
ally experiment their algorithms on the sequences they have at hand. These sequences
often contain very little motion and are usually very short, sometimes as short as a few
frames. Artificial blotches, often consisting of uniform patches, are added to these se-
quences. For missing data correction, what should be known for full-reference evaluation
is simply the underlying original information. The variety of images and sequences used
by researchers for testing is even wider.

3.1.3 Quantitative evaluation for detection

Blotch detectors are usually compared in the literature through theirReceiver Operating
Characteristics(ROC) ([Kok 98], chap. 6.4, [Roo 99a], chap. 4.2.1). An ROC plots the
correct detection rateversus thefalse alarm ratefor all possible variations of a parameter,
as shown in figure 3.1. The correct detection rate is defined as the number of pixels
correctly flagged as corrupted divided by the total number of corrupted pixels. The false
alarm rate is defined as the number of pixels incorrectly flagged as corrupted divided
by the total number of clean pixels. Usually, as many detectors involve more than one
parameter, some of them are arbitrarily set or tied together so that we are left with a single
value to tune. Another possibility is to test all possible parameter settings and keep the
ROC which corresponds to the best performance of the algorithm. The ROC averaged on
whole test sequences is usually plotted.
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Figure 3.1: Receiver Operating Characteristic

3.1.4 Quantitative evaluation for correction

The best way to assess the quality of a restoration is certainly to involve human view-
ers as they are the ones that should ultimately benefit from the whole process. This is
known assubjectivequality evaluation. One of the most widely used methodologies is
the Double Stimulus Continuous Quality Scale (DSCQS) protocol of Recommendation
ITU-R 500 [ITU 00] and the associated Mean Opinion Score (MOS). Several other test-
ing methodologies exist, among which the Two-Alternative Forced Choice (2AFC) or
the Reaction Time (RT) method [Yeh 98] which accounts for sensibilities well above the
visibility threshold. Because they must involve a significant number of human observers,
they have the major drawback to be costly, time-consuming and very impractical for use
during a research cycle in progress. For these reasons, much work has been devoted to
the design of metrics that could successfully replace the use of subjective assessment.

The most popular metrics in missing data correction ([Roo 99a], chap. 4.2.2) and used
much more widely are the Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio
(PSNR). These simple, mathematically defined measures are completely equivalent. The
MSE between original imageIorig and corrected imageIcorr over N indexed, replaced
pixels is defined as

MSE =
1

N

N∑
n=1

[Iorig(n)− Icorr(n)]2 (3.1)

The Root Mean Squared Error (RMSE) is simply the square root of the MSE. PSNR is
measured in decibels (dB) and is defined for an 8-bit image as

PSNR= −20 log10

RMSE

255
(3.2)

These two measures are in overwhelming use in archives restoration as well as in many
other contexts.
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Many much more sophisticated measures have been proposed that attempt to model
to some extent the Human Visual System (HVS), among which [Dal 93, Teo 94, Lub 95].
They try to incorporate known psychovisual effects such ascontrast sensitivity(also
called luminance sensitivity) expressed by the Weber-Fechner law,spatial frequency sen-
sitivity or pattern sensitivitytypically described by a Contrast Sensitivity Function (CSF)
andmasking effects[Dal 93, Vle 02]. Masking effects can be defined as the reduction of
visibility of a signal by the presence of another signal (spatial or edge masking, contrast
or pattern masking, activity masking, etc) and remain very complicated and largely ill-
known phenomena. It must be noted that very few of these measures incorporate motion
and/or colour. Some of them are restricted to very specific types of distortions, such as
compression artifacts which attracted much interest [Yu 02].

3.2 Detection

The detection step is concerned with flagging pixels that are damaged. Blotch detection
methods developed so far mostly rely on the following principle [Kok 95a]: when motion
estimation is performed, blotches are the elements that are ill-matched both toward the
previous and the next frame. For this reason, motion estimation plays a very important
role in this process.

estimation
motion

compensation
motion

n−1 n+1n (n,n−1)
DFD

(n,n+1)
DFD

Figure 3.2: principle of detection

We will distinguish three main categories of works for the detection of impulsive
defects: heuristic methods, methods involving mathematical morphology and methods
based on probabilistic models within a Bayesian framework. All these methods only
incorporate three frames in the detection process.

3.2.1 Heuristic methods

Heuristic methods follow the simplest strategy, which consists in directly comparing a
pixel with the corresponding pixels in the motion-compensated previous and next frame.
The first algorithm based on this idea is known as SDIa (Spike Detection Index - a): it
has been introduced by the BBC [Sto 85, BBC 84], although the original algorithm did
not involve motion compensation at the time. For each pixelp in imagen, the backward
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and forward Displaced Frame Differences (DFD) are computed:

DFDb(p) = In(p)− I
(mc)
n−1 (p)

DFDf (p) = In(p)− I
(mc)
n+1 (p)

whereI(mc) denotes motion-compensated intensities.

A backward or forward discontinuity is set when these differences are over a selected
thresholdTh:

bb(p) =

{
1 if |DFDb(p)| > Th

0 otherwise

bf (p) =

{
1 if |DFDf (p)| > Th

0 otherwise

The pixel is then considered as corrupted if it supports both a backward and forward
temporal discontinuity:

bSDIa(p) =

{
1 if bb(p) = 1 andbf (p) = 1
0 otherwise

3.2.2 Mathematical morphology

Other works [Bui 97, Dec 97] rely on mathematical morphology to perform the detec-
tion. As their name suggests, morphological operations do have a reliance on shapes and
are based on connectivity properties. Opening and closing operations, controlled by the
choice of a structuring element, are used to build a detector of local intensity extrema.
These tools are then combined with an analysis of temporal continuity to locate the arti-
facts. However, the size of the structuring element and the assumption of local extrema
restrict this kind of detector to impulsive defects having a very specific profile.

3.2.3 Bayesian framework and Markov Random Field models

The last category of work deals with probabilistic approaches developed within the frame-
work of Bayesian theory [Gem 92, Mor 95, Cho 97, Kok 98]. Bayesian estimation pro-
vides a probabilistic framework to infer the values of unknownsX from the values of
observationsY . A prior distribution P (X = x) is defined for the unknowns as well as
the likelihood, i.e. the conditional distributionP (Y = y|X = x) linking the unknowns
to the observations. Aposterior distributionP (X = x|Y = y) is then computed thanks
to Bayes’ rule. From this posterior distribution, an estimator is chosen to infer the values
of the unknowns. All this theoretical framework will be detailed in chapter 4.

Here, the unknown variables are typically temporal discontinuities between two im-
ages and distributions are modelled by Markov Random Fields (MRF). The scheme de-
veloped in [Mor 95] can be seen as the probabilistic equivalent of SDIa (figure 3.3): the
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unknown variables are the backward discontinuitiesBb or forward discontinuitiesBf and
the observations are the motion-compensated intensities:

{
X = Bb

Y = (In, I
(mc)
n−1 )

or

{
X = Bf

Y = (In, I
(mc)
n+1 )

motion−compensated

frame n+1
frame n

temporal discontinuity

pixel

Figure 3.3: Morris’ temporal discontinuity detection

But a more global strategy can also be pursued such as Kokaram’s JOMBADI algo-
rithm (JOint Model BAsed Detection and Interpolation) [Kok 98], chap. 7. In this tech-
nique, Markovian and autoregressive models (introduced in section 3.3.2.3) are made to
cooperate together within a common Bayesian framework and the detection mask, the
motion fields and the corrected intensities are simultaneously estimated, at the cost how-
ever of a significant computational complexity.

3.3 Correction

During the correction step, we aim at automatically interpolating missing information in
the damaged regions from the surrounding. The ultimate goal is that a person viewing
only the corrected document should not be able to realize that it may have undergone
changes. Existing works in this field are not restricted to restoration as many other ap-
plications have the same requirement of being able to resynthesize information in whole
image regions.

We distinguish two categories of works specifically targeted at missing data correc-
tion, depending on whether they deal with still images or image sequences. We also
describe a third complementary group of techniques which is not directly related to our
problem but which has been very influential for our work: texture synthesis.
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3.3.1 Still image correction

The first category is focused on still images and involves the spatial surrounding. For
all techniques belonging to this category, the extension to several frames is far from
straightforward.

Figure 3.4: spatial correction

3.3.1.1 Frequency-based techniques

A possible approach is to correct missing areas by reshaping the Fourier spectrum of
the regions of interest according to a reference spectrum. This is the correction strategy
developed in [Hir 96], expressed in the general framework of Projection Onto Convex
Sets (POCS): the reference spectrum is computed from a sample subimage which must
be very carefully selected by the user. This is also the approach chosen in [Bui 97] and
[Joy 00] by reconstructing the low frequencies with polynomial interpolation and the high
frequencies with Fourier series. This is however applicable only for small deteriorations.

3.3.1.2 Partial Differential Equations

Other approaches based on the use of Partial Differential Equations (PDE) [Mas 98],
[Ber 00], [Ber 01] show impressive results. The idea is to extend inward the lines arriving
at the hole boundaries.

In particular, for theimage inpaintingalgorithm ([Ber 00], [Ber 01] chap. 3), the
iterative process can be written as

Ik+1(p) = Ik(p) + ∆tIk
t (p) (3.3)

wheret denotes the inpainting “time” andk the iteration index. The updateIk
t (p) is given

by
Ik
t (p) = ~δLk(p) · ~Nk(p) (3.4)
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whereL is the information being propagated and~N is the direction of propagation.L is
chosen to be the intensity Laplacian, which can be considered as a “smoothness estima-
tor”. ~N should be the direction of the isophotes (lines of equal grey values) and is given
by the perpendicular to the gradient vector. This propagation process is interleaved with
anisotropic diffusion.

This approach performs well on a wide variety of examples. However these results
are obtained at a high computational expense and the lack of textural information in
reconstructed regions can be visible, especially when these regions are large. It should be
noted that recent techniques are also related to this approach although they are not based
on PDEs [Rar 02]. They can be considered as simplified versions restricted to structured
areas: their principle is to prolong and join disrupted edges for faster reconstructions.

3.3.2 Image sequence correction

The second group of works deals with missing data in image sequences and with how
to extract information from the previous and next frames. These techniques cannot in
general be applied to still images and cannot be used when the region to be corrected
runs across several frames. They require accurate motion vectors to be efficient and a
preliminary step of motion vector repair is therefore usually necessary.

Figure 3.5: spatio-temporal correction

3.3.2.1 Preliminary motion vector repair

The presence of corrupted regions make some motion vectors unreliable and likely to be
completely wrong (cf. [Kok 98], chap. 6.6). For this reason, a step of motion vector in-
terpolation can be required to avoid extracting erroneous data from the previous and next
frames: this is actually the case for all correction methods using motion-compensated
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frames. Two possibilities can be considered for motion vector repair: rely on the in-
tensities of the surrounding pixels or rely on the neighbouring motion vectors. Several
methods have been developed for this purpose (see [Kok 98], chap. 6.6 and 8, [Roo 99a],
chap. 4.2.2). This remains however a delicate issue as interpolating wrong motion vectors
or missing pixels are challenges of the same order of difficulty.

3.3.2.2 Rank-order filters

A rank-order filter consists of a sliding window the output of which is chosen as one of
its inputs on the basis of a rank-ordering of those inputs. These filters are included in
the more general class of order statistic (OS) filters, which take as their output a linear
combination of its rank-ordered input values.

Median-type filters are the most famous examples of rank-order filters. Originally
introduced for noise suppression [Arc 91], Multistage Median Filters (MMF) have been
proposed for blotch correction, such as Kokaram’s ML3Dex algorithm ([Kok 98], chap.
6.5 and 6.6, [Kok 95b]). ML3Dex first applies five sub-filters shown in figure 3.6. In this
figure, the top plane of each sub-filter represents the motion-compensated next frame,
the centre plane represents the current frame and the bottom plane represents the motion-
compensated previous frame. The central pixel refers to the pixel being processed. The
final output of the ML3Dex filter is defined as

zl = median[Wl] for 1 ≤ l ≤ 5

ML3Dex = median[z1, z2, z3, z4, z5]

W W

W W W

1 2

3 4 5

Figure 3.6: Kokaram’s ML3Dex sub-filter masks
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3.3.2.3 Autoregressive models

A spatio-temporal autoregressive (AR) model defines a pixel as a weighted combination
of the surrounding pixels ([Kok 98], chap. 2.3 and 3). The intensity of a pixelp is then
given by

In(p) =

N(n)∑
q=1

aqIn(q) +
F+∑

f=1

N(n+f)∑
q=1

aqI
(mc)
n+f (q) +

F−∑

f=1

N(n−f)∑
q=1

aqI
(mc)
n−f (q) (3.5)

wheref is the frame offset andF+ andF− are the maximum frame offsets in the forward
and backward directions,

q is the index of a pixel in the AR support andN(k) is the total number of pixels
in the AR support in framek.

Usually, the AR coefficientsaq are assumed to be the same for all pixels in a given
block. The optimal coefficients in the least-square sense can then be estimated for each
block. Figure 3.7 shows an example of a causal AR model with a support of nine pixels
in the previous frame. It should be noted that simple temporal frame averagingIn(p) =

(I
(mc)
n−1 (p) + I

(mc)
n+1 (p))/2 can be seen as a special case of AR models with a support of

one single pixel in the previous and in the next frame and no estimation of the optimal
coefficients.
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Figure 3.7: example of an AR model

The use of AR models for spatio-temporal correction is developed in [Kok 95b],
[Kal 97] and [Kok 02]. The main shortcoming of the AR assumption is that its valid-
ity is practically restricted to highly textured regions.
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3.3.2.4 Parametric Markov random fields

Parametric probabilistic models can also be introduced to interpolate missing data. The
original sequence is then modelled as a spatio-temporal Markov random field and the
corrupted pixels are corrected by drawing a representative sample from the Markovian
distribution. The specified Markovian distribution usually encourages spatial and tempo-
ral smoothness between neighbouring pixels. Examples of explicit Markovian distribu-
tions for this purpose can be found in [Mor 95, Kok 95b]. For computational tractability,
these models involve very small neighbourhoods.

3.3.3 Texture synthesis

Complementary to these works on correction are recent works in texture synthesis. The
main goal is here to generate from a sample texture large and/or tileable texture patches
that are suitable for mapping (figure 3.8). While a variety of approaches had been
proposed including the use of Markov random fields parametrized by filter responses
[Zhu 98], this domain has known a renewed interest with the insightful heuristic tech-
nique introduced in [Efr 99]. In this algorithm as well as in subsequent works derived
from the same idea [Wei 00, Ash 01, Efr 01, Har 01], the synthesis is based on a non-
parametric Markovian model. Unlike [Zhu 98], the probability distribution is not con-
structed explicitly, it is rather directly approximated from the reference sample texture.
The corresponding improvement in terms of quality is very significant.

Figure 3.8: texture synthesis

Rare attempts have been made to apply texture synthesis to image correction [Ige 97].
Although these techniques generate high-quality results, their efficiency is limited to tex-
ture, i.e. stationary patterns and often to some specific classes of texture (e.g. stochastic
textures).
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3.4 Limitations and proposed strategy

Beyond shortcomings that can be specific to a given group of techniques, all the previ-
ously proposed detection methods have a major practical limitation: they are very sensi-
tive to motion estimation failures, which are the source of false alarms. Unfortunately,
it is precisely in these situations that the efficiency of existing spatio-temporal correction
methods declines dramatically: they incorporate from the previous and next frames in-
formation which is not relevant. The combination of the false alarms and the erroneous
use of temporal information gives rise to the creation of visually disturbing artifacts in
regions which were initially free from trouble. As this makes a manual intervention nec-
essary, it has a critical impact on the performance of the overall system.

From a careful analysis of these failures arises the awareness that they have a common
origin. They are due to natural events perceived as complex, which are not artifacts and
yet represent violations of the motion estimation model.

The key element in our strategy is therefore to take into account what we shall call
“pathological” motion in this thesis. A reliable detection scheme should be able to dis-
tinguish impulsive defects from pathological motion. This could be achieved by incorpo-
rating a larger temporal aperture. Similarly, an ideal correction technique should be wise
enough to use very little temporal information in the presence of pathological motion. A
mechanism of fallback on spatial information should be provided in this case.

The other important point in our strategy is the use ofprobabilistic modelssuch as
Markov random fields. They indeed provide enough flexibility to express implicitly or
explicitly what we wish about pathological motion. The proposed detection method be-
longs to the category of Markovian models within a Bayesian framework. Computational
efficiency is sought by the incorporation of multiscale techniques. This is described along
with our definition of pathological motion in chapter 5. For the correction step, the un-
knowns are not binary any more and a larger spatial neighbourhood should be involved
to model the underlying original sequence. We therefore turn for our correction scheme
to non-parametric Markov random fields inspired by texture synthesis approaches. This
scheme is presented in chapter 6.

Before detailing the proposed techniques, we now describe the probabilistic tools that
will be used in the remainder of the thesis.



Chapter 4

Probabilistic tools in image analysis

This chapter aims at giving an overview of the probabilistic tools commonly used in
image processing and in particular Markovian models, which allow to express non-linear
probabilistic interactions. These models, known for long in statistical physics, gained
wide popularity among the signal processing and computer vision communities thanks to
the pioneering article from Geman and Geman [Gem 84]. They have since been used in
a variety of problems.

This chapter reviews the main definitions and algorithms assuming that the reader is
familiar with the basic concepts of probability theory. For an in-depth introduction to
these concepts, see for example [Sap 90], [All 90] or [Bre 99].

4.1 Markov Random Fields

4.1.1 Basic introduction to graph theory

Graph theory is a field of mathematics which has applications in a wide variety of do-
mains [Ber 91] and is especially popular in artificial intelligence and for network mod-
elling. A graph can usefully represent structure and connections in a generic way and
express relations and dependencies between different elements.

4.1.1.1 Definition and representation of a graph

A graphG = (V, E) is defined by:

• a finite or denumerable setV = {v1, v2, ...}, the elements of which are called
vertices, nodesor sites. In most applications,V is a finite set comprised ofN = |V |
elements;

49
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• a setE of pairs of elements fromV called eitheredgesor arcs.

A graph is said to bedirected(or called adigraph) if elements ofE are considered
asorderedpairs. In this case, elements ofE are called arcs. The graph is referred to as
undirectedif E is considered to be a set ofunorderedpairs. These pairs are then called
edges. A graph can be graphically represented by dots connected by lines (for undirected
graphs) or by arrows (for directed graphs). Figure 4.1 shows examples of such graphical
representations.

v2

v3

v4

v5

v1

V = {v1, v2, v3, v4, v5}

E =
{{v1, v2}, {v2, v3}, {v2, v5},

{v3, v4}, {v4, v5}, {v1, v5}
}

(a) Undirected graph defined by(V, E)

v2

v3

v4

v5

v1

V = {v1, v2, v3, v4, v5}

E =
{{v2, v1}, {v3, v2}, {v2, v5},

{v3, v4}, {v5, v4}, {v1, v5},
{v5, v1}, {v3, v3}

}

(b) Directed graph defined by(V, E)

Figure 4.1: examples of undirected and directed graphs

4.1.1.2 Multigraphs and simple graphs

A multigraphis a graph which can contain the same arc or edge more than once. Aloop
is a node connected with itself, i.e. an element ofE of the form{v, v}, v ∈ V . A graph
is said to besimpleif:

• it does not contain multiple edges or arcs,

• it does not contain loops.

As most applications involve simple graphs, we shall restrict in the following to this
category.

4.1.1.3 Neighbourhood system

For undirected graphs, two nodesv andw are said to be neighbours if{v, w} ∈ E. The
set of edgesE defines aneighbourhood systemN onV :

N : V −→ P(V )

v −→ Nv =
{
w ∈ V |{v, w} ∈ E

}
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The subsetNv is called the neighbourhood of nodev. Equivalently, any familyN =
{Nv}v∈V of subsets ofV having the following properties:

• ∀v ∈ V, v /∈ Nv (4.1)

• ∀(v, w) ∈ V × V, w ∈ Nv ⇐⇒ v ∈ Nw (4.2)

uniquely defines a simple undirected graph onV . The graphG = (V, E) can thus equiv-
alently be notedG = (V,N ). The graph is said to becompleteif all nodes are mutually
neighbours of each other, i.e.∀(v, w) ∈ V × V, w 6= v ⇒ w ∈ Nv.

For directed graphs, we can very similarly define the notions ofin-neighbourhood
andout-neighbourhood.

4.1.1.4 Neighbourhood degree

The degreed(v) of a nodev in an undirected graph is the number of its neighbours:

d(v) = |Nv| (4.3)

Similarly, the in-degree and out-degree of each node can be defined for directed
graphs.

4.1.1.5 A particular type of graph: grids

Grids are a very important type of graph in image and video processing. A grid of di-
mensiond (usually 2 ou 3) is a graph such asV is a part ofZd and for which each
node can consequently be identified with the vector of its integer coordinates. This al-
lows to associate a distance function, usually theL2 distance, to the considered grid. It
is then possible to define neighbourhood systems from this distance as “successive lay-
ers” of nearest nodes: the first-order neighbours of a node are all surrounding nodes at
the smallest distance; thek-order neighbours are recursively defined as the union of the
(k − 1)-order neighbours with all the nearest nodes that are not among the(k − 1)-order
neighbours. The most widely used neighbourhood systems on grids are the first-order
and second-order neighbourhoods for theL2 distance. In the case of 2-D grids, they
are commonly referred to as 4-neighbourhood and 8-neighbourhood systems for obvious
reasons (see figure 4.2).

4.1.1.6 Subgraphs

Let Vs denote a subset ofV . Gs = (Vs, Es) is said to be thesubgraphof G = (V, E)
generated byVs if Es = (Vs × Vs) ∩ E. Gs is simply the graph the nodes of which are
elements ofVs and the edges (or arcs) of which are the edges (or arcs) ofG having their
two ends inVs.
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(a) (b)

Figure 4.2: 2-D grids with (a) 4- and (b) 8-neighbourhood systems

4.1.1.7 Cliques

A clique c for the graphG = (V,N ) is a subset ofV such as:

• eitherc consists of a single site,

• or all pairs of sites inc are mutual neighbours, i.e.∀{v, w} ⊂ c, w 6= v ⇒ w ∈ Nv.

In other words,c is a clique if the subgraph generated byc is complete. A cliquec
is calledmaximalif for any sitev /∈ c, c ∪ {v} is not a clique. The set of all cliques
of graphG is denoted byC. Figure 4.3 shows the cliques associated to the 4- and 8-
neighbourhood systems in 2-D grids. As will be seen later, this notion of clique is very
important in Markovian models.

(a)

(b)

Figure 4.3: cliques associated to (a) 4- and (b) 8-neighbourhood systems

4.1.2 Random fields

In the following, given definitions will be “weak” definitions, in the sense that they will
be expressed without summoning explicitly notions of measure theory such asσ-algebras
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(also calledσ-fields or tribes), measurable spaces and probability measures. For math-
ematically accurate definitions involving these notions of measure theory, the reader is
referred to [Per 93], chap. 1.

Let V = {v1, v2, ...} be a finite or denumerable set. Let us associate to each element
v ∈ V a random variableXv taking its values in a setΛv. A Random Field(RF) onV is
a collectionX = {Xv}v∈V of such random variables. The setsΛv are in practice often
taken to be the same setΛ called thestate space. A random field is said to be discrete-
valued or continuous-valued, scalar or vector depending on the nature of the state space
Λ. Typical state spaces include:

• Λ = {0, 1} for binary fields,

• Λ = {1, ..., M} for labels involvingM possible classes,

• Λ = {0, ..., 255} ⊂ IN for greyscale quantized images,

• Λ = [−Dmax, Dmax]× [−Dmax, Dmax] ⊂ IR2 for motion fields.

A sample realisationx = (xv)v∈V where∀v ∈ V, xv ∈ Λ is said to be aconfiguration
of the random fieldX. The setΩ = Λ|V | of all possible configurations is called the
configuration space.

4.1.3 Graphical models

Graphical modelscan be seen as a marriage between probability theory and graph theory
[Mur 01]. A graphical model is a simple graph (i.e. with no loops and no multiple edges
or arcs) in which:

• the set of nodes (often called sites in this case) represents a random field,

• the lack of arcs or edges between nodes represents conditional independence as-
sumptions.

Graphical models fall into two main classes, those based on directed graphs and
those based on undirected graphs. Directed graphical models are commonly known
as Bayesian Networksor Belief Networks(BN). They are used to express causal re-
lations represented by the direction of the arcs. It should be noted that despite their
names, Bayesian Networks do not necessarily have any direct relation with the notion
of Bayesian inference that will be defined later. Graphical models based on undirected
graphs are usually known asMarkov Random Fields(MRF).
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4.1.4 Markov Random Fields and Gibbs Random Fields

The development of Markov random fields historically owes a lot to statistical physics
(i.e. the science of the transition from local interactions between particles and molecules
to the macroscopic properties of matter). For this reason, much of the vocabulary used
originates from this domain. Markov random fields can be seen as a generalization of
1-D causal Markov chains based on the same notion ofconditional independence. The
key difference however is that the principle of causality is lost.

For the sake of clarity, all definitions and properties will be expressed in the following
for discrete-valued random fields. They all extend to the case of continuous variables by
replacing summations by integrals and probability masses by probability density func-
tions (pdf).

4.1.4.1 Markov Random Fields

The random fieldX = {Xv}v∈V is called aMarkov Random Field(MRF) with respect
to the neighbourhood systemN = {Nv}v∈V if

P (Xv = xv|Xw = xw, w 6= v) = P (Xv = xv|Xw = xw, w ∈ Nv) (4.4)

for all v ∈ V andx = (xv)v∈V ∈ Ω.

The Markovian property (4.4) states that the probability distribution for one site given
the value of its neighbours is independent of the rest of the field. It expresses the fact that
all the information about one variable is carried by the value of its neighbours. This does
not mean that two variables on sites that are not neighbours are independent of each other:
all variables are in general mutually dependent, but only through the combination of suc-
cessivelocal interactions. These local interactions are specified by thelocal conditional
probabilitiesP (Xv = xv|Xw = xw, w ∈ Nv). It should be noted that any random field is
Markovian with respect to the trivial complete topology, where∀v ∈ V,Nv = V \ {v}.
However, interesting MRFs in practice are those with very small neighbourhoods for
computational reasons that will be detailed later.

The specification of an MRF from this definition is far from convenient: there is no
obvious intuitive relation between the local conditional probabilities and the joint global
probabilityP (X = x) governing the behaviour of the whole field. This is addressed by
the Hammersley-Clifford theorem as will be seen later.

4.1.4.2 Positivity condition

An MRF X is said to satisfy thepositivity conditionif all possible configurations have a
non-zero probability:

∀x ∈ Ω, P (X = x) > 0 (4.5)

This condition is sometimes considered to be an integral part of the definition of an MRF.
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4.1.4.3 Gibbs Random Fields

The random fieldX = {Xv}v∈V is said to be aGibbs Random Field(GRF) with respect
to the neighbourhood systemN = {Nv}v∈V if the global probability distribution ofX
can be expressed as

P (X = x) =
1

Z
exp

(
−

∑
c∈C

Vc(x)
)

(4.6)

whereC is the set of all cliques associated toN and the collection of functions{Vc}c∈C,
calledpotentials, is such as eachVc depends only on the values at sitesv ∈ c.

The form of the distribution in (4.6) is called aGibbs distribution. Z is a normalizing
constant known as thepartition function:

Z =
∑
x∈Ω

exp
(
−

∑
c∈C

Vc(x)
)

(4.7)

The functionU defined for any configuration inΩ as

U(x) =
∑
c∈C

Vc(x) (4.8)

is theenergy functionassociated to the potentials{Vc}c∈C. For a GRF, the most likely
configuration is the one having the lowest energy, while low probabilities are associated
to configurations with high energies.

4.1.4.4 Hammersley-Clifford Theorem

Let X = {Xv}v∈V be a random field on a finite setV . X is a Markov random field on
G = (V,N ) verifying the positivity condition (4.5) if and only ifX is a Gibbs random
field onG.

This important theorem states theequivalence between the concepts of Markov and
Gibbs random fields. The major practical consequence of this theorem is that an MRF is
completely specified by:

• its neighbourhood system,

• a family of potentials over the cliques of this neighbourhood.

The specification of theselocal characteristicsis sufficient to completely determine its
global behaviour, characterised by a Gibbs distribution. The choice of the potential func-
tions should be practically based on intuition of the desirable properties. It can be shown
that the local conditional probabilities derived from these potentials are

P (Xv = xv|Xw = xw, w ∈ Nv) =
1

Z(xNv)
exp

(
−

∑

c∈C|v∈c

Vc(x)
)

(4.9)
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where

Z(xNv) =
∑
xv∈Λ

exp
(
−

∑

c∈C|v∈c

Vc(x)
)

(4.10)

This important theoretical theorem was originally proved in [Bes 74] based on Ham-
mersley and Clifford’s unpublished paper of 1971. Alternative proofs can be found for
example in [Bre 99], chap. 7.2 or [Per 93], appendix B for the case of a finite state space
Λ.

4.1.4.5 Complementary definitions

An MRF is said to bestationaryor homogeneousif the local conditional probabilities
P (Xv = xv|Xw = xw, w ∈ Nv) are independent of the considered sitev. This implies
in particular that all sites must have the same neighbourhood degree. For such a field,
only a limited number of clique potentials needs to be defined. A stationary MRF can be
seen as “translation-invariant”. MRFs defined on finite grids are also commonly termed
stationary when this property is true except at the grid boundaries, even though this does
not strictly comply with the definition of stationarity.

An MRF is said to beisotropicif the potentials{Vc}c∈C|v∈c for cliques containing any
given sitev only depend on the total number of sites|c| in these cliques. For example,
an MRF on a 2-D grid with a first-order neighbourhood system (see figure 4.3(a)) is
isotropic if the potential functions associated to the horizontal and vertical pair cliques
are the same. This can be similarly seen as a property of “rotational invariance”.

4.1.4.6 Local smoothness, the example of the Ising model

The Ising modelis a very standard example which gives an idea of the kind of local
interaction that can be expressed with MRFs. It was introduced in the twenties in the
context of ferromagnetism. Each site can take a binary value in the state spaceΛ =
{−1, 1} which models the orientation of an elementary magnetic dipole. In the absence
of an external magnetic field, the global energy assigned to each configuration is:

U(x) = −J
∑

{v,w}∈C
xvxw with J > 0

For each pair of neighbouring sites, the potential is equal toJ if the two spins have the
same orientation and to−J if they have a different orientation. AsJ > 0, the interactions
statistically favour identical neighbours. On a more general basis, this kind of interaction
implying that two neighbouring sites should usually have close values can be seen as
local smoothnessinteractions. They are commonly employed for any type of state space
Λ and can be enforced by choosing potential functions on pair cliques that are distance
functions.
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4.1.5 Monte Carlo simulation techniques

4.1.5.1 Sampling from a Gibbs distribution

Once an MRF model is defined, a key necessity for its practical use is the ability to draw
samples from its Gibbs distributionP (X = x). Unfortunately, the very high dimension-
ality of Ω in typical problems makes the expression (4.6) ofP (X = x) very difficult to
handle. In particular, computing the normalizing constantZ in (4.7) would require an
exhaustive visit ofΩ and is therefore practically completely out of reach. On the other
hand, the local conditional probabilities (4.9) are much easier to handle since they involve
summations overΛ. For this reason, techniques developed to sample successfully from
P (X = x) rely on the locality of the model. These simulation methods belong to the
class ofMarkov Chain Monte Carlo (MCMC)techniques.

4.1.5.2 Principle of Monte Carlo simulation

The principle of MCMC simulation is to construct a Markov chain admittingπ(x) =
P (X = x) as a stationary distribution (for a review of the concept of Markov chain, the
reader is referred to [Res 92] or [Bre 99]). Each state of the constructed Markov chain
corresponds to a global configuration of our MRF. At each transition, the value of a single
site of the field is changed and this change is based on the local conditional probabilities.
An MCMC simulation algorithm will thus be characterised by:

• an update algorithm, i.e. how the transition of a site will be decided according to
the local conditional probabilities,

• a scanning strategy, i.e. in what order the sites will be visited.

If these characteristics are well-chosen, it can be shown that the constructed Markov
chain{X(t)}t∈IN is irreducible, aperiodic and admits the target distributionπ as its sta-
tionary distribution independently of the initial configurationx0:

lim
t→+∞

P (X(t) = x|X(0) = x0) = π(x) (4.11)

Practically, the simulation has to be stopped after a finite number of runs which should
be large enough. Deciding whether we are “close enough” to the equilibrium distribution
from a numerical point of view is not a simple issue.

X(0) X(1) X(2) X(t)

Figure 4.4: Markov chain constructed for Monte Carlo simulation

For the scanning strategy, there are many possibilities. Theoretical convergence is
guaranteed if each site is visited “infinitely often”. The most common strategies are
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random visiting and raster scan visiting, with a forward pass followed by a backward pass
in order to reduce the bias that could be introduced by a specific propagation direction.
Two very common update algorithms are now presented without detailing the proof of
the desirable convergence of the associated Markov chain: theGibbs samplerand the
Metropolis algorithm. A more general description of these methods can be found in
[Rua 96].

4.1.5.3 Gibbs sampler

The Gibbs sampler, introduced in [Gem 84] is the most popular algorithm for drawing
samples from an MRF. This algorithm is applicable when the state spaceΛ is a finite set.
It can be readily extended to continuous-valued fields if samples can be drawn directly
from the local conditional distribution or by discretizing the continuous state space. The
transition for each site is here directly based on the local conditional distribution ex-
pressed by equation (4.9):

P (Xv = xv|Xw = xw, w ∈ Nv) =
1

Z(xNv)
exp

(
−

∑

c∈C|v∈c

Vc(x)
)

(4.12)

Let us assume that we are in configurationX(t) = x aftert iterations and thatv is the
site being updated at iterationt + 1. The update is conducted as follows:

• for all possible valuesλ ∈ Λ, P (Xv = λ|Xw = xw, w ∈ Nv) is computed;

• the new valueλa for sitev is drawn from this distribution. The new configuration
X(t + 1) is therefore such asXv(t + 1) = λa and∀w 6= v, Xw(t + 1) = Xw(t).

This second step is practically carried out by dividing the real interval [0,1] into|Λ|
segments, each of which having a length proportional toP (Xv = λ|Xw = xw, w ∈ Nv).
A numbera is then randomly drawn between 0 and 1 according to a uniform distribution
and the new valueλa is defined by the segment to whicha belongs.

4.1.5.4 Metropolis algorithm

For the Metropolis (also known as Metropolis-Hastings) algorithm, unlike what is the
case for the Gibbs sampler, the transition of the site being updated depends on its current
value. As previously, we consider the global configurationX(t) after t iterations and
update of sitev at iterationt + 1. A valueλa ∈ Λ is drawn from a uniform distribution.
The new proposed configuration isx′ such asx′v = λa and∀w 6= v, x′w = xw. This
proposed configuration is accepted or rejected depending on the energy difference:

∆U = U(x′)− U(x) =
∑

c∈C|v∈c

[Vc(x
′)− Vc(x)] (4.13)

We are faced with two possibilities:
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• if ∆U ≤ 0, thenX(t + 1) = x′, the proposed configuration is accepted;

• if ∆U > 0, then

{
X(t + 1) = x′ with probability exp(−∆U)
X(t + 1) = x with probability1− exp(−∆U)

When we are in the latter case (∆U > 0), another random number is drawn between 0
and 1 to decide whether the new state is accepted or rejected.

As in the case of the Gibbs sampler, an increase in energy is possible at each transi-
tion. The computational cost of both algorithms is proportional to the number of cliques
containing sitev. This explains why computationally tractable MRFs are those involv-
ing small neighbourhoods: the number of cliques increases considerably with the degree
of the graph supporting the MRF. Both algorithms are suited to massive parallelization:
many sites can be synchronously updated provided they are not neighbours of each other.

4.2 Bayesian theory of estimation

4.2.1 Inverse problems and statistical inference

In many computer vision and signal processing problems, we are interested the physical
properties of a given system. This system is indirectly analysed by means of sensors
which record data. The nature of the recorded information can vary very widely de-
pending on the specific problem: it can be for example visible light for photography or
video, other electromagnetic waves in medical imaging, remote sensing, astrophysics or
microscopy, air vibrations for sound, seismic waves in geophysics and many others. All
these problems can be seen in a unifying perspective as attempting to extract informa-
tion about unknown properties of the system from the set of observed data. This type of
problem is known as aninverse problem.

An analysis of the physical phenomena involved allows to define amodeldescribing
the formation process of the observations and how they are influenced by the unknown
physical properties. When the phenomena are modelled as a stochastic process, recover-
ing information about the unknowns from the set of observations is known asstatistical
inference(see figure 4.5). Unfortunately, because the nature of the sought properties is
often more complex than what is measured, the observation process is in general asso-
ciated with aconsiderable loss of information, which is the source of uncertainty. In
particular, this is typically the case when we are interested in the 3-D characteristics of
a world recorded on a 2-D surface. In addition, the sensors themselves and the subse-
quent recording process may introduce distortions of the observed data, e.g. noise. For
these reasons, the sole model of the link between the unknowns and the observations,
either deterministic or probabilistic, is usually not sufficient to fully extract the desired
information. We are faced with what is calledill-posed problems. In this case, it becomes
necessary to incorporate additional assumptions and knowledge about the unknown prop-



60 Chapter 4. Probabilistic tools in image analysis

erties themselves in order to remove the ambiguities. The integration of such constraints
in the information extraction process is calledregularization.

X

Unknowns

X

Unknowns

Observations

Y
inference

probabilistic
model

Observations

Y
random process

Statistical inference:

Random phenomenon:

Figure 4.5: principle of statistical inference

4.2.2 Bayesian inference

As stated previously, the general purpose of statistical inference is to extract informa-
tion about the unknown properties when our model of the cause-effect relationship is
probabilistic.Bayesian inferenceis specifically based on the concept of theinversion of
probabilities.

In the Bayesian framework, we perform a semantic drift: our point of view is changed
from a fixed but unknown cause to a random and “probabilized” cause. The regularization
is then introduced by defining a prior probability for these unknown properties. Bayesian
inference therefore revolves around two points:

• the probabilistic model linking the unknowns to the observations. It is expressed as
the conditional distribution of the observations given the unknownsP (Y = y|X =
x). This conditional probability is commonly referred to as thelikelihood of the
observations;

• the introduction of prior knowledge about the unknowns for regularization purpose.
This is done by specifying aprior distribution on the unknownsP (X = x). This
prior distribution is designed to express in a generic way what types of configu-
rations are intuitively more likely than others. In the worst case where we have
absolutely no prior expectation, it can be chosen as the uniform distribution when
possible.



4.2. Bayesian theory of estimation 61

From these two distributions and from the well-known Bayes’ theorem, we are able
to derive theposteriordistribution of the unknowns conditional on the observations:

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

=
P (Y = y|X = x)P (X = x)

P (Y = y)

which can be written as

P (X = x|Y = y) =
1

Z(y)
P (Y = y|X = x)P (X = x) (4.14)

4.2.3 Optimal Bayesian estimators

In the great majority of cases, the information we want to extract about the unknowns is
no less than their numerical value. This is calledestimationand more specifically point
estimation. An estimator̂x is a function which associates to a given set of observationsy
an estimated valuêx(y) of the unknowns. In other words, it can be seen as a “guess” of
the value of the unknowns.

How should this estimator be chosen, based on the posterior distribution, in order to
be the “best possible”? An optimal estimator can only be defined in conjunction with
what we consider as “small and large errors” between the estimated value and the actual
value. This is specified by acost function.

4.2.3.1 Cost function

We will here consider the most general case whereX is a random field on a setV with
the notations defined in section 4.1.2.Y is a random field on the same or a different set
of sites, with a configuration space denotedΩobs.

A cost functionC is a distance defined onΩ. The performance of an estimatorx̂ can
then be measured byC(x, x̂). The risk associated to a given estimatorx̂ is defined as the
average cost over all possible observations and unknowns:

R(x̂) =
∑

y∈Ωobs

∑
x∈Ω

C(x, x̂(y))P (X = x, Y = y)

=
∑

y∈Ωobs

( ∑
x∈Ω

C(x, x̂(y))P (X = x|Y = y)

)
P (Y = y)

Theoptimal Bayesian estimator̂x∗ with respect to the cost functionC is defined as
the estimator which minimizes the riskR. From the formulation above, it can be easily
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seen that such an estimator must minimize the marginal expected cost for each possible
observation:

x̂∗(y) = arg min
x′∈Ω

( ∑
x∈Ω

C(x, x′)P (X = x|Y = y)

)
(4.15)

Several cost functions are in common use in the literature. Three popular examples are
given here along with the corresponding optimal Bayesian estimators. For the derivation
of these estimators from equation (4.15), see [Per 93], chap. 2.2 and [Mar 85], chap. 3.3
and 3.4 for more details.

4.2.3.2 Maximum A Posteriori (MAP)

Let us first consider the “hit-or-miss” cost function:

C(x, x′) = 1− δ(x− x′) (4.16)

where

δ(a) =

{
1 if a = 0
0 otherwise

This cost function is rather crude as it makes no distinction between all configurationsx′

different fromx. It can be shown that the corresponding optimal Bayesian estimator is
the maximizer of the posterior distribution:

x̂MAP(y) = arg max
x∈Ω

P (X = x|Y = y) (4.17)

This estimator, known as theMaximum A Posteriori(MAP) estimator, selects the most
“likely” configuration given the observationsy. Despite the “brutality” of the cost func-
tion, it remains the most employed in practice for computational reasons that will be
detailed later.

4.2.3.3 Maximizer of the Posterior Marginals (MPM)

The slightly more sophisticated cost function:

C(x, x′) =
∑
v∈V

(
1− δ(xv − x′v)

)
(4.18)

counts the number of sites on whichx andx′ are different. The associated optimal esti-
mator, theMaximizer of the Posterior Marginals(MPM) is defined by:

∀v ∈ V, x̂MPM
v (y) = arg max

xv∈Λ
P (Xv = xv|Y = y) (4.19)

This estimator was first introduced in [Mar 85].
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4.2.3.4 Mean Field (MF)

Let us finally consider the quadratic cost function:

C(x, x′) =
∑
v∈V

(xv − x′v)2 (4.20)

The optimal estimator in this case can be shown to be

∀v ∈ V, x̂MF
v (y) =

∑
x∈Ω

xvP (X = x|Y = y) (4.21)

As its name implies, thisMean Field(MF) estimator is the expectation ofX conditional
on the observationsY = y.

4.2.4 Summary

The different steps of Bayesian estimation explained in section 4.2 are summarized in
figure 4.6.

Bayes’ rule P(X=x| Y=y)
posterior distribution

estimation

cost function

x*(y)^
optimal estimator

P(Y=y | X=x)
link unknowns observations

prior distributionP(X=x)

observations y

Figure 4.6: overview of Bayesian estimation

4.3 Markovian models within a Bayesian framework

In the previous section, we have reviewed the general principle of Bayesian estimation.
The combination of this framework with Markovian models proves very fruitful: as will
be shown now, the posterior distribution has in this case the desirable property to follow
as well a Gibbs distribution. It is then possible to take advantage of this specific form and
to rely on MCMC sampling techniques to compute the optimal Bayesian estimators.

4.3.1 Nature of the posterior probability

Let us consider that the fieldX is a Markov random field. The prior distribution can then
be expressed as a Gibbs distribution (4.6):

P (X = x) =
1

Z0

exp
(
−

∑
c∈C

Vc(x)
)

(4.22)
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For the sake of simplicity, we shall consider that the observations are located on the
same set of sitesV and that during the formation of the observations, observationyv on
sitev is only influenced by unknownxv on the very same site. However, the following
reasoning can be generalized to more complex cases: observations and unknowns can
be located on different sites and a single observation can be affected by a subset ofV
not restricted to a single site (e.g. a blurring process) [Gem 84]. When assumed to be
Markovian, the link between the observations and the unknowns can in our simple case
be defined as

P (Y = y|X = x) =
∏
v∈V

P (Yv = yv|X = x)

=
∏
v∈V

P (Yv = yv|Xv = xv)

= exp
(
−

∑
v∈V

Wv(xv, yv)
)

(4.23)

with Wv(xv, yv) = − ln P (Yv = yv|Xv = xv)

Using Bayes’ rule (4.14) with (4.22) and (4.23), the posterior distribution can be
written as

P (X = x|Y = y) =
1

Zy

P (Y = y|X = x)P (X = x)

=
1

Zy

1

Z0

exp
(
−

∑
c∈C

Vc(x)−
∑
v∈V

Wv(xv, yv)
)

=
1

Z
exp

(
− U(x, y)

)
(4.24)

with
U(x, y) =

∑
c∈C

Vc(x) +
∑
v∈V

Wv(xv, yv) (4.25)

This posterior distribution has the form of a Gibbs distribution with respect to the
prior neighbourhood system of fieldX. Therefore,the field of the unknowns conditional
on the observationsY = y is a Markov random fieldwith respect to this neighbourhood
system. When a single observation is influenced by several unknowns at different sites,
the posterior neighbourhood system is bigger than the prior one.

4.3.2 MAP optimization

As we are faced with a Markov random field, MCMC techniques can be used to draw
samples from this posterior distribution. Let us considerm samplesx1, x2, ..., xm, not
necessarily consecutive, drawn from the Markov chain constructed for this purpose, e.g.
with the Metropolis algorithm or the Gibbs sampler. Because of the ergodicity of the
underlying Markov chain, the MF estimator (4.21) can then be approximated by

∀v ∈ V, x̂MF
v (y) ≈ 1

m

m∑
i=1

xi
v (4.26)



4.3. Markovian models within a Bayesian framework 65

and the MPM estimator (4.19) is approximated at each site by the value appearing the
most frequently:

∀v ∈ V, x̂MPM
v (y) ≈ arg max

xv∈Λ

m∑
i=1

δ(xi
v − xv) (4.27)

As these estimators require drawing a large number of samples from the posterior Gibbs
distribution, the MAP estimator is usually preferred.

As seen in equation (4.17), the MAP estimator is the configuration that maximizes
the posterior probability. In this case, it is equivalent to minimizing the energy function
(4.25) onΩ. As this energy functionU(x, y) usually has many local minima, this is a
difficult optimization problem, complicated further by the very high dimensionality of
Ω. For this reason, iterative algorithms updating one site at a time based on the local
variations of the energy function must be used. They fall into two categories:stochastic
methodsbased on simulated annealing combined with MCMC sampling techniques or
deterministic methodsthat reach a local minimum depending on their initialization.

4.3.2.1 Simulated Annealing (SA)

The principle of Simulated Annealing (SA) is to modify a standard Monte Carlo sampling
procedure (e.g. the Metropolis algorithm or the Gibbs sampler) in order to converge to
the desired minimum of energy. To that end, atemperature parameterT is introduced in
the target Gibbs distribution:

πT,y(x) =
1

ZT (y)
exp

(
− U(x, y)

T

)
(4.28)

WhenT = 1, this is the posterior probability (4.24). WhenT → 0, it can be shown
thatπT,y converges in probability to an impulse at the configuration(s) of minimum en-
ergy. The idea behind simulated annealing is to decrease progressively the temperature
while we are sampling from the modified Gibbs distribution. Anannealing schedule
is defined as a series of temperatures(T (t))t∈IN such as∀t ∈ IN, T (t + 1) ≤ T (t)
and limt→+∞ T (t) = 0. This annealing schedule is combined with the chosen MCMC
technique: at iterationt, the site under consideration is updated for the Gibbs distribu-
tion (4.28) with temperatureT (t). Intuitively, this can be understood as progressively
“stretching” the original energy and amplifying the differences between energy “valleys”
and “peaks” in order to ensure that the drawn samples will get “trapped” in the global
minimum.

[Gem 84] shows that if (i) there is an upper bound on the time interval between two
consecutive visits of any site and (ii) the cooling rate is logarithmic, i.e.T = T0/ ln(t +
e) with T0 sufficiently large, then the convergence to a configuration minimizing the
original energy is guaranteed. Condition (i) imposes no limitation in practice: sites are
usually visited in a forward-backward raster scan ordering ensuring that each site has
been updated twice after2|V | iterations. Very often, the temperature is kept to a constant
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value Tn during the whole sweepn before being decreased for the following sweep.
Unfortunately, condition (ii) is too restrictive: the logarithmic rate is much too slow to
be followed in practice. Instead, an exponential cooling schedule is most of the time
preferred, withTn = T0a

n and0 < a < 1. Although simulated annealing algorithms
with this kind of cooling schedule are outside the scope of the theoretical conditions of
convergence, they usually give very good results that are largely insensitive to the initial
configuration. However, they remain rather slow.

4.3.2.2 Iterated Conditional Modes (ICM)

In order to reduce the amount of computation, deterministic methods rely on transitions
between configurations that do not involve random sampling. They systematically de-
crease the global energy at each update. The ICM algorithm (for Iterated Conditional
Modes) introduced by Besag [Bes 86] and its variants are the most widespread determin-
istic methods. They perform a succession of local optimizations in replacement of the
global optimization problem.

In the basic ICM algorithm, the new value for visited sitev is the value which maxi-
mizes the local conditional probability

P (Xv = xv|Y = y, Xw = xw, w ∈ Nv) =
1

Z(xNv , y)
exp

(
−

∑

c∈C|v∈c

Vc(x)−Wv(xv, yv)

)

=
1

Z(xNv , y)
exp

(
− Uv(x, y)

)

or equivalently the value which minimizes the local energy

Uv(x, y) =
∑

c∈C|v∈c

Vc(x) + Wv(xv, yv) (4.29)

The algorithm therefore performs the update as follows:

• for all possible valuesλ ∈ Λ, Uv(x
λ,v, y) is computed wherexλ,v

v = λ and∀w 6=
v, xλ,v

w = xw;

• the new valueλa for sitev is such asλa = arg minλ∈Λ Uv(x
λ,v, y).

It should be noted that this algorithm implies exploring the whole state spaceΛ at each
iteration, as is also the case for simulated annealing coupled with Gibbs sampling. As the
global energy is systematically decreased, convergence is reached after a finite number
of iterations. However, the configuration at convergence corresponds to a local minimum
of energy in the sense that we cannot decrease the energy any more by changing only a
single site. The local minimum reached depends on the initial configuration and there is
absolutely no guarantee that it coincides with the global minimum.



Chapter 5

Impulsive defect detection and
pathological motion

As highlighted in section 3.4, the major limitation of detection methods developed so far
is that they are very sensitive to motion estimation failures, which are the source of false
alarms.

To overcome this problem, one possible approach is to improve further the models
used for motion estimation and make them even more realistic. A great deal of effort has
been devoted to this task for twenty years and a wealth of motion estimation algorithms
have been and are still proposed (see notably [Sti 99], [Bar 94], [Bea 95] and [Tek 95]
chap. 5 to 8 for a description of the main ones). However, motion estimation remains
today a difficult and largely open problem: as acknowledged in the conclusion of [Sti 99]
p. 89, “we are still far from generic, robust, real-time motion-estimation algorithms”.
Each method has its weaknesses that are bound to appear on real sequences showing a bit
of activity. We shall term“pathological” motion (PM) the events which are the source
of such weaknesses and that we shall detail in the next section.

The other approach that is followed in this thesis is to take into account within the
detection the undesirable failures of motion estimation, rather than attempting to get rid
of them. In other words, we overcome these failures by integrating them in the detection
model. This implies in particular considering alarger temporal windowthan the usual
three frames as suggested in [Roo 99a], chap. 4.4.

5.1 Definition of pathological motion

Motion estimation failures are due either to natural events which represent violations of
the model or to artifacts. It is precisely on this characteristic of impulsive defects that
their detection relies. We therefore define pathological motion as the motion estimation
failures that are not due to impulsive defects. This pathological motion is an integral part
of the original document and acts as a disturbance with respect to the detection as it is
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the source of false alarms.

What this notion precisely encompasses depends on the considered motion estimation
technique: a given motion will be pathological for some motion estimators whereas it
may not be for others. However, some natural events are the source of problems for
the great majority of motion estimators. Based on experimental observations and on the
classification initiated in [Rar 01], we shall in particular distinguish the following events:

• occlusionanduncovering

• intermittent motionis a somewhat repetitive motion with a high frequency. Heli-
copter blades, plane propellers, flapping wings of a bird, a blinking light are typical
examples of intermittent motion.

• erratic motion, which can be described as a fast and highly irregular motion. Flames,
swirls, hair during a sudden head movement, leaves, flags or clothes swept by the
wind are examples of this kind of motion.

• motion bluraffects the appearance of objects which move too fast compared to the
exposure time. This can even affect the entire scene during a very quick pan.

• large displacements, larger than the maximum displacement that the motion esti-
mator is able to track. This limit depends a lot on the specific motion estimator and
its parameter settings.

• changing lighting effects: transparency (typically with windows or glass doors),
reflections (e.g. on the body of a car or on the water surface), or shadows and
displacements of light sources

Our purpose is not to model each type of PM precisely, but only to find a common
characteristic that allows to distinguish them from impulsive defects. We shall leave
aside occlusion and uncovering which are simple isolated temporal discontinuities and
present no risk to be mistaken for blotches. The principle on which we rely is that other
types of pathological motion have a temporal persistence of several images. A blotch
is then assimilated to a double temporal discontinuity, whereas pathological motion is
considered to be a discontinuity repeated on a larger window.

The method proposed in this chapter belongs to the category of probabilistic ap-
proaches within a Bayesian framework and is more specifically inspired by Morris’ work
[Mor 95]. In addition to involving a larger temporal aperture, we do not consider any
more that a pixel can have only two possible states, i.e. corrupted or non-corrupted but
we also consider that it can be affected by pathological motion.

5.2 Proposed model

The proposed method is composed of two steps: thelocalization of temporal discontinu-
ities on one hand, followed by theirinterpretation in terms of blotches or pathological
motionon the other hand.
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5.2.1 Localization of the temporal discontinuities

The graph A set of 5 frames is considered around the current framen: this is prob-
ably the smallest temporal aperture which allows to distinguish between blotches and
pathological motion. A 3-D grid is defined on this set with each site representing a pixel.
We associate to this grid the first-order neighbourhood for theL2 distance: each site
which is not on the grid boundary has 4 spatial and 2 temporal neighbours. The choice
of this very small neighbourhood is dictated by computational reasons: a second-order
neighbourhood would certainly improve the model, but at the price of a significant com-
putational overhead. The graph thus defined is coupled with its dual edge graph, i.e. the
graph the nodes of which represent the arcs between pixels (figure 5.1). The nodes of the
edge graph will be the supports for possible binary spatial and temporal discontinuities
between pixels.

frame n−2

motion−compensated

frame n+1

motion−compensatedmotion−compensatedmotion−compensated

frame n−1 frame n+2
frame n

pixel

spatial discontinuity
support for

temporal discontinuity
support for

Figure 5.1: graph defined on the set of 5 frames

The Bayesian framework We consider a Bayesian framework: the unknowns in which
we are interested are the temporal discontinuitiesB. The observations are the binary
spatial discontinuitiesL and the greyscale intensitiesI motion-compensated with respect
to the current framen, i.e. simple compensation for framesn − 1 andn + 1, double
compensation for framesn−2 andn+2. This means that we consider at a spatial location
x the intensitiesIn−2(x + dn,n−1 + dn−1,n−2), In−1(x + dn,n−1), In(x), In+1(x + dn,n+1)
andIn+2(x + dn,n+1 + dn+1,n+2), wheredk,l is the motion field from framek to frame
l. As for the observed spatial discontinuities, they can be obtained from a classic edge
detector, such as [Can 86, Der 87]. We consider here the most general model, although a
simpler model without any spatial discontinuity has been preferred for the experiments.
With the notations of section 4.2, we then haveX = B andY = (I, L). The associated
state spaces are respectivelyΛB = {0, 1}, ΛI = {0, ..., 255} andΛL = {0, 1}.
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The likelihood The likelihood and the prior distribution are modelled asstationary
andspatially isotropicMarkov random fields (see section 4.1.4.5). The likelihood of the
motion-compensated intensities knowing the discontinuities is defined by:

P (I = i|B = b,L = l) =

1

Z1(b, l)
exp


−

∑
p∈V


α′1

∑

q∈S(p)

(i(p)− i(q))2(1− l(p, q))

+α′2
∑

q∈T (p)

(i(p)− i(q))2(1− b(p, q))







(5.1)

with the following notations:
V is the set of pixel sites,
S(p) is the spatial neighbourhood of pixelp,
T (p) is the temporal neighbourhood of pixelp,
l(p, q) andb(p, q) are respectively the spatial and temporal discontinuities between

sitesp andq.

This distribution involves two local interactions. The first termα′1
∑

q∈S(p)(i(p) −
i(q))2(1−l(p, q)) expresses a constraint of spatial smoothness on the intensities, switched
off if there is explicitly a spatial discontinuity. Similarly, the second termα′2

∑
q∈T (p)(i(p)−

i(q))2(1− b(p, q)) is its temporal counterpart and introduces temporal smoothness. Pos-
itive parametersα′1 andα′2 determine the relative weights of these interactions. It should
be noted that the first term does not depend on the unknownsB and only involves obser-
vations.

p
q

l(p,q)

(a) spatial smoothness weighted byα ′
1

p q
b(p,q)

(b) temporal smoothness weighted byα ′
2

Figure 5.2: local interactions in the likelihood
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The prior distribution Similarly, the prior distribution on the temporal discontinuities
is defined by:

P (B = b|L = l) =

1

Z2(l)
exp


−

∑

v∈B(V )


−β′1

∑

w∈S(v)

(b(v)− 1/2)(b(w)− 1/2)(1− l(p(v), q(w)))

+β′2b(v) + β′3b(v)
∑

w∈T (v)

b(w)







(5.2)
with the following notations:

B(V ) is the set of temporal discontinuity sites,
S(v) is the spatial neighbourhood of discontinuityv, containing four sites except at

the grid boundaries,
T (v) is the temporal neighbourhood of discontinuityv, containing either two sites if

v is between framesn− 1 andn or n andn + 1, or one single site ifv is between frames
n− 2 andn− 1 or n + 1 andn + 2,

p(v) andq(w) are the pixel sites at the same spatial locations asv andw, belonging to
the surrounding frame closest to framen (e.g. framen + 1 if v andw are between frame
n + 1 and framen + 2).

The term−β′1
∑

w∈S(v)(b(v)− 1/2)(b(w)− 1/2)(1− l(p(v), q(w))) expresses a con-
straint of spatial smoothness on the temporal discontinuities, again switched off if nec-
essary. It is a negative quantity if both discontinuities are set to 0 or 1 and positive
if they are different.β′2b(v) is a bias toward the absence of discontinuities. The term
β′3b(v)

∑
w∈T (v) b(w) modulates this bias on multiple discontinuities. The global penalty

for a single temporal discontinuity is thusβ′2, it is 2β′2 + 2β′3 for two adjacent discon-
tinuities, 3β′2 + 4β′3 for three adjacent discontinuities and4β′2 + 6β′3 for four adjacent
discontinuities. Unlike the other weighting parameters,β′3 is not necessarily positive.
Without this parameter, the four temporal discontinuity fields would be independent of
each other.

n+1 n+2

v
w

p(v)
q(w)

l(p(v),q(w))

(a) spatial smoothness weighted byβ ′
1

v w

(b) bias modulation on multiple disconti-
nuities weighted byβ ′

3

Figure 5.3: local interactions in the prior distribution
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The posterior distribution From the prior distribution on the temporal discontinuities
and the likelihood of the motion-compensated intensities knowing the discontinuities, the
posterior probability would be given by:

P (B =b|L = l, I = i) =

1

Z3(l, i)
P (I = i|B = b, L = l)P (B = b|L = l)

(5.3)

After reorganising the sums and changing the weight notations (to remove factors of
2 induced by sum modifications), based on (5.3) or alternatively by specifying it directly,
the posterior distribution is chosen as:

P (B = b|L = l, I = i) =
1

Z
exp


−

(
α

∑

v∈B(V )

(1− b(v))(i(v+)− i(v−))2

− β1

∑

{v,w}∈Cspat

(b(v)− 1/2)(b(w)− 1/2)(1− l(p(v), q(w)))

+β2

∑

v∈B(V )

b(v) + β3

∑

{v,w}∈Ctemp

b(v)b(w)

)


(5.4)

wherev+ andv− are the two pixel sites between which temporal discontinuity sitev is
located,Cspat andCtemp are respectively the sets of all spatial and temporal pair cliques
in B(V ). As the first term weighted byα′1 in (5.1) did not involve temporal discontinu-
ities, it has been be isolated and included in the normalizing constantZ. The weighting
parameterα thus stands only for the formerα′2.

The estimator From this posterior distribution, the estimator chosen to infer the value
of the unknowns is theMaximum A Posteriori(see section 4.2.3.2). This is here the
configuration on the four temporal discontinuity fields which maximizes the posterior
distribution. This configuration depends on parametersα, β1, β2 andβ3 but is unchanged
if they are multiplied by a scaling factor. It then actually depends on 3 independent
parameters.

Extension to dropouts This model has been primarily designed for blotches because
this artifact is very common whereas dropouts are less frequent in practice. However, it
can be also applied to dropout detection with minor modifications. The first difference is
that we should use in this case motion-compensated fields instead of motion-compensated
frames. The second difference is that the MRFs should not be spatially isotropic any more
for dropouts since they naturally show a strong horizontal orientation. It can be done by
weighting differently horizontal and vertical spatial pair cliques and thus replacing the
parameterβ1 by two parametersβ1h andβ1v, with β1h À β1v.
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5.2.2 Interpretation

Once temporal discontinuities have been located, we proceed with an interpretation step
to determine the state of each pixel belonging to the current frame. Pixels in framen that
are between two discontinuities with framesn− 1 andn + 1 are examined more closely,
the others being considered as non-problematic. For these pixels, we need to take a closer
look at the discontinuity fields betweenn− 2 andn− 1 and betweenn + 1 andn + 2 in
a large neighbourhood. In each of these two fields, the number of discontinuities in the
vicinity of the spatial location of interest is counted in a radiusr (figure 5.4). There are
two possible cases: if the surrounding contains few discontinuities, say below a threshold
M , the double discontinuity can be seen as isolated and is consequently considered as a
blotch; if the surrounding contains more thanM discontinuities, the nearby repetition of
temporal disruptions is considered to be the symptom of pathological motion.

discontinuities
temporal temporal temporal temporal

discontinuities
(n−1, n) (n, n+1) (n+1, n+2)(n−2, n−1)

discontinuities discontinuities

Figure 5.4: interpretation of the temporal discontinuities

This interpretation step involves long-range interactions between temporal discon-
tinuities. These interactions could in theory be integrated to the Markovian model by
choosing a neighbourhood system with a sufficient size. The potential associated to each
pair clique could be weighted by a constant parameter or by a function of the distance
between the two sites. Unfortunately, the extension of the neighbourhood size would
greatly increase the computational complexity and neighbourhoods with an order higher
than the first or second order would be intractable in practice. It is therefore mainly for
computational efficiency reasons that these constraints have been expressed in a purely
deterministic way.

5.3 Multiscale optimization for MAP estimation

The most tricky point in the proposed method is clearly the localization of the temporal
discontinuities and more precisely the MAP estimation. MAP computation is a difficult
optimization problem because of the huge number of possible configurations: the set
Ω of all possible global configurations of the unknowns has a dimension which is here
2|B(V )|. As explained in section 4.3.2, algorithms to approximate the MAP estimator
can be either stochastic or deterministic. Stochastic algorithms, the most employed of
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which is Gibbs sampling coupled with Simulated Annealing (section 4.3.2.1), converge
to the global maximum whatever the initialization, but are extremely slow. Deterministic
algorithms, such as ICM (section 4.3.2.2), are much faster, but reach local maxima that
are highly dependent on the initial configuration.

To alleviate these shortcomings, hierarchical approaches have been developed ac-
tively during the last decade. As classified in [Gra 95], hierarchical approaches can be
divided betweenexplicit hierarchyand induced hierarchy. In the former case, the hier-
archy is directly integrated in the model definition; in the latter case, the initial problem
is transformed into a succession of simpler optimization problems. As the graph defined
for our model is not intrinsically hierarchical, we turn to the family of induced hierarchy
approaches. Besides renormalization group methods that can only be applied to very spe-
cific classes of MRFs, Pérez’s multiscale approach [Per 93, Hei 94] gives a rigorous and
efficient framework inspired by multigrid methods developed for the numerical analysis
of partial differential equations. This is the approach that we implemented to get fast
computation times without sacrificing the quality of the final result. The principle is to
define hierarchised subsets of the set of all possible configurationsΩ:

ΩK ⊂ ΩK−1 ⊂ . . . ⊂ Ωk ⊂ . . . ⊂ Ω0 = Ω (5.5)

As k is increased, these correspond to sets of all configurations that are constant on
“bigger and bigger” parts of the setB(V ) of temporal discontinuity sites. We therefore
define a hierarchised set of cells that form connected partitionsBk(V ) of the set of all
sitesB(V ) = B0(V ). At each levelk, Ωk is the set of all configurations that are constant
on every cell ofBk(V ). The choice of square cells containing2k × 2k sites is very
common and it is what we implemented in our case (see figure 5.5).

level 0 level 1 level 2

Figure 5.5: example of allowed configurations with associated square cells

At each levelk, the initial problem, i.e. the minimization of the global energy over
Ω is replaced by the minimization of the global energy over the smaller setΩk. In the
following, we will leave aside spatial edges for simplification purpose. The global energy
corresponding to (5.4) can be written as:

U(b, i) = α
∑

v∈B(V )

(1− b(v))(i(v+)− i(v−))2 − β1

∑

{v,w}∈Cspat

(b(v)− 1/2)(b(w)− 1/2)

+ β2

∑

v∈B(V )

b(v) + β3

∑

{v,w}∈Ctemp

b(v)b(w)
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The global energy can be divided into two terms: a first termU1(b) which is known as the
contextual energyand is only related to the unknowns and a second termU2(b, i) which
is the link to the dataand also involves the observations. Both of these energies can be
re-expressed on the setΩk in order to exploit the constraint that all configurations must
now be constant on each cell. This will be explained for our specific energy function, but
a more general-purpose description can be found in [Per 93, Hei 94].

For the contextual energy, terms that involve a single site can be grouped by cells. As
for terms involving pair cliques, we will group separately cliques that are within the same
cell and cliques that link two sites belonging to two different cells:

U1(b) =− β1

∑

{v,w}∈Cspat

(b(v)− 1/2)(b(w)− 1/2) + β2

∑

v∈B(V )

b(v) + β3

∑

{v,w}∈Ctemp

b(v)b(w)

=− β1 × 1/4×
∑

v∈Bk(V )

dk
v − β1

∑

{v,w}∈Ck
spat

lk{v,w}(b(v)− 1/2)(b(w)− 1/2)

+ β2

∑

v∈Bk(V )

ck
vb(v) + β3

∑

{v,w}∈Ck
temp

ck
vb(v)b(w)

(5.6)

wheredk
v = 2× 2k(2k − 1) is the number of pair cliques within cellv,

lk{v,w} = 2k is the number of pair cliques linking spatially neighbouring cellsv and
w or the “spatial contact surface”,

ck
v = 2k × 2k is the cardinal of cellv. It can also be seen as a “temporal contact

surface”, since it is the number of pair cliques linking two temporally neighbouring cells.

For the link to the data, we can perform similar groupings:

U2(b, i) = α
∑

v∈B(V )

(1− b(v))(i(v+)− i(v−))2

= α
∑

v∈Bk(V )

(1− b(v))
∑
w∈v

(i(w+)− i(w−))2

As both of these energies can be expressed as a sum of local interactions over sin-
gle cells and pair cliques of cells, it is natural to assimilate each cell with a single site
belonging to a new graph (see figure 5.6). On this graph is defined a new MRF with an
associated energy very similar to the original one: there are simply additional weights
depending on the cell size for the contextual energy and sum of square differences in-
stead of square differences for the link to the data. The characteristics of this field are
thus completely defined from those of the original model.
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level 2level 1level 0

Figure 5.6: natural pyramidal structuration

The multiscale algorithm sets a cooperation strategy between theK + 1 optimization
problems. Because of the inclusionΩk+1 ⊂ Ωk, the algorithm is the following:

• optimization is first performed at the coarsest level,

• optimization at levelk is initialized by the result obtained at levelk + 1,

• at levelk = 0, the final result is the solution of the initially considered problem.

This multiscale algorithm actually explores the complete setΩ in an implicit man-
ner. The power of the algorithm resides in the fact that a single transition at levelk
is equivalent to many simultaneous transitions at level0. This results in an increase in
the convergence speed. In the deterministic case, as each optimization is started with a
“good” initialization from the previous level, better local minima are usually reached.

5.4 Experimental comparison of optimization algorithms

Optimization algorithms were evaluated for a simple model of an isolated temporal dis-
continuity field between two images without spatial edges. The two images chosen to
compare the optimization algorithms are shown on figure 5.7. These are two consecutive
frames of the same PAL sequence (720 × 576 pixels) with a real transparent blotch and
nearly no motion; motion estimation and compensation are thus not necessary here and
do not bias the comparison.

For all algorithms, the sites are visited in a forward-backward raster scan ordering.
Convergence is assumed and optimization is consequently stopped when no single dis-
continuity has been changed at the end of a forward-backward sweep (considered as one
iteration). For stochastic algorithms, specific care must be taken in the design of the ran-
dom number generator: its pseudo-period should be much larger than the total number of
sites. Unfortunately, this is not the case with random number generators provided in the
standard library of most programming languages. We therefore implemented Park and
Miller’s multiplicative linear congruential generator for this purpose [Par 88]. For the
exponential cooling schedule employed in stochastic algorithms, we chooseT0 = 50 and
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(a) Framen− 1 (b) Framen with circled blotch

Figure 5.7: test images for the comparison of optimization algorithms

a = 0.95. In the multiscale version of stochastic and deterministic algorithms, we use a
total ofK = 7 levels, which yields cells of size64× 64 at the highest level.

In the case of stochastic optimization, there is much random agitation at the beginning
and convergence is relatively slow (see figure 5.8). More than a hundred iterations are
necessary to reach the maximum. A comparable maximum is reached for multiscale
stochastic optimization with roughly the same number of iterations, but as many of them
are performed at a higher level, they have a significantly reduced computational cost.
However, the gain is not as large as one could expect. The optimization process for the
multiscale stochastic algorithm is shown on figure 5.9.

In the case of deterministic optimization, a local maximum is reached very fast with
very few iterations but this maximum highly depends on the initial configuration as il-
lustrated by figure 5.10. The incorporation within a multiscale scheme makes the result
much less sensitive to initial conditions while preserving the speed of the algorithm.
Multiscale deterministic optimization is shown on figure 5.11.

All the results are summarized in figure 5.12 where the result for ICM (figure 5.12(c))
was computed from an initialization with the thresholded DFD atTh = 30 (see figure
5.10(c)). The corresponding computation times using C++ code on a PC with a 1.5
GHz Pentium 4 processor can be found in table 5.1. For multiscale algorithms, the total
number of iterations in this table includes iterations at full resolution as well as iterations
at coarser levels. These tests lead to the selection of the multiscale ICM algorithm for
further experiments: it provides satisfactory results while being very efficient in terms of
computation time.
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(a) After iteration 1 (b) After iteration 25

(c) After iteration 50 (d) After iteration 75

(e) After iteration 100 (f) After final iteration 119

Figure 5.8: stochastic optimization
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(a) After iteration 1 (b) After iteration 6

(c) After iteration 12 (d) After iteration 42

(e) After iteration 82 (f) After final iteration 112

Figure 5.9: multiscale stochastic optimization
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(a) Initial configuration 1 (all discontinuities
set off)

(b) Deterministic optimization with initial con-
figuration 1

(c) Initial configuration 2 (thresholded DFD
with Th = 30)

(d) Deterministic optimization with initial con-
figuration 2

Figure 5.10: deterministic optimization
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(a) After iteration 2 (b) After iteration 4

(c) After iteration 6 (d) After iteration 8

(e) After iteration 10 (f) After final iteration 12

Figure 5.11: multiscale deterministic optimization
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(a) Stochastic (b) Stochastic multiscale

(c) Deterministic (d) Deterministic multiscale

Figure 5.12: comparison of maxima reached

stochastic
stochastic

deterministic
deterministic

multiscale multiscale
SA coupled multiscale SA

Algorithm with coupled with ICM multiscale ICM
Gibbs sampling Gibbs sampling

Total number
119 112 4 12

of iterations
Computation time 1mn 29s 29s 0.4s 0.4s

Table 5.1: comparison of computation times (1.5 GHz Pentium 4 processor)

5.5 Interest of the Markovian model

On the same test images, the comparison of the estimatedMaximum A Posterioriwith
simple thresholdings gives a good insight into the interest of Markovian models (figure
5.13). Among other interactions, the proposed model includes spatial interactions be-
tween pixels in a flexible and natural way. For this reason, it clearly gives much less
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spurious responses than basic thresholding (figures 5.13(b), 5.13(c) and 5.13(d)) or even
hysteresis thresholding (figure 5.13(e)). It is in particular much less sensitive to noise or
film grain.

(a) MAP

(b) Thresholding withTh = 25 (c) Thresholding withTh = 35

(d) Thresholding withTh = 45 (e) Hysteresis thresholding withThigh = 40
andTlow = 20

Figure 5.13: comparison of MAP with thresholding
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5.6 Discussion on evaluation

The performance of a detection algorithm is typically evaluated with an ROC curve plot-
ting the correct detection rate versus the false alarm rate as explained in section 3.1.3.
This type of evaluation is unsatisfactory because it counts similarly missed detections
and false alarms without regard to their subsequent effects. The consequence of a missed
detection is that a blotched pixel will not be removed from the document. This will result
in a certain visual discomfort that can be approximated to be equivalent for all non-
removed blotched pixels. The way the missed detection rate (or equivalently the correct
detection rate) is evaluated is therefore satisfactory. However, the situation is completely
different for false alarms. The consequence of a false alarm will be the unnecessary in-
terpolation of a “clean” pixel. The visual discomfort resulting from this mistake can be
dramatically different depending on the performance of the correction scheme in the spe-
cific situation. This discomfort can vary from null to highly annoying and is quite often
much more disturbing than the visual impact of a non-removed blotch. It is therefore
highly undesirable to count with the same weight all pixels in false alarm. To incorporate
this fact, the question should rather be “how much” the correction of each false alarm will
be visible. This shifts the problem of quantitative evaluation of detection to the problem
of perceived quality measurement.

These remarks lead to the conclusion that an impulsive defect detector cannot be
properly evaluated independently of the subsequent correction step. More precisely, it is
in the counting of false alarms that the consequences of correction must be accounted for,
either implicitly or explicitly.

If correction is explicitly taken into consideration, then for each false alarm, the cor-
responding correction should be temporarily performed with the chosen technique and its
quality should be measured. Once these measures have been summed over the image, we
should be able to plot ROCs with the correct detection rate versus the introduced distor-
tion rate. This is deferred to the existence of a suitable objective metric for video quality.
This is believed to be a long-term prospect and will be discussed in section 6.2.

Another possibility is to account implicitly for the correction and thus simplify the
problem by stating that some false alarms will be usually more dangerous than others for
most correction algorithms. This classification between problematic and non-problematic
false alarms could revolve around the notion of pathological motion: we could for each
pixel in false alarm wonder whether this pixel iswithin (usually implying serious reper-
cussions) oroutside(implying a likely invisible correction) areas of PM. We could then
count differently these two kinds of false alarms by penalizing them differently: a false
alarm within PM would be somewhat arbitrarily consideredκ times more dangerous than
a false alarm outside PM. In order to be able to make this distinction, a pathological mo-
tion detector would be necessary. This is a problem as we are aware of no other published
work on the identification of PM. The use of our PM masks to evaluate detection meth-
ods including ours would certainly introduce a bias. In the absence of an independent
technique for this purpose, we consider that a visual evaluation of the binary masks is the
best way to grasp the benefits of our approach.
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5.7 Experimental results

A simplified version of the described method has been tested: experiments were per-
formed without the incorporation of spatial edges. Our model is combined with a soft-
ware phase-correlation motion estimator with subpixel accuracy (see appendix B) and
bilinear motion compensation. This motion estimator was specifically developed to test
the validity of our approach and this family of motion estimators was mainly chosen for
its ease of implementation. However, it must be kept in mind that this approach can be
used with any motion estimator and will give results all the more impressive as the chosen
motion estimator is efficient and accurate.

5.7.1 Comparison with SDIa and Morris’ method

As an illustration of the benefit of this approach, our method is compared to Morris’ al-
gorithm which is the closest to ours (section 3.2.3). This algorithm consists in computing
the blotch mask on 3 images based on independent Markovian models on backward and
forward discontinuities. These models are intrinsically 2-D and do not involve any tem-
poral neighbourhood on the discontinuities. As a reference point, comparison with SDIa
based on simple thresholding (section 3.2.1) is also given.

5.7.1.1 ROC comparison

Despite the limited interest of conventional ROC plots as explained in previous section
5.6, this type of curve is provided here, if only to give a common point to compare
with existing evaluations. These measurements are performed on the artificially degraded
“Mobile and Calendar” sequence1 used in previous work ([Kok 98] chap. 6.4 and 7.9).
This very short sequence (1s, 25 frames) consists in256× 256 portions of the full frame
size. Its activity in terms of motion can be described as moderately difficult. This se-
quence has been artificially corrupted with completely opaque and uniform blotches, i.e.
having a flat intensity profile set at a random grey level (see figure 5.14). Because these
artificial blotches are rather unrealistic, the sequence should be used with much care. In
particular, it should be noted that any detection algorithm which would explicitly model
blotches as uniform would give exceptionally good results on this sequence regardless of
its possible good or bad performance on real sequences. This is not anyway the case for
any of the three algorithms tested here. Compared to what can be commonly seen in real
archives, the sequence can be considered as very heavily corrupted.

For the three algorithms, the average correct detection and false alarm rates, as defined
in section 3.1.3, are computed. For SDIa, the curve corresponds to all possible variations
of parameterTh. For Morris’ method and our proposed method, which both include more
than one single parameter, many different parameter settings are tested in order to cover

1The sequence is available on the CD-ROM provided with [Kok 98].



86 Chapter 5. Impulsive defect detection and pathological motion

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Degraded “Mobile and Calendar” sequence (Origin: CCETT, artificial cor-
ruptions by Kokaram). Left: Frames 2, 3 and 4. Right: corresponding corruption masks.



5.7. Experimental results 87

the ROC space as much as possible. The curves corresponding to the best performance
are then plotted from the respective clouds of points. The ROC averaged on the sequence
is plotted for the three detectors in figure 5.15.
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Figure 5.15: ROC averaged on the “Mobile and Calendar” sequence for several detectors

With in mind the limitations of this type of measurement on the counting of false
alarms, SDIa seems to perform significantly worse than the two other detectors. On the
other hand, the improvement of our method over Morris’ detector is nearly imperceptible
on these curves for mainly two reasons. Firstly, as the contents of the sequence is poor
in terms of pathological motion, this leaves little room for the reduction of false alarms
due to it. Secondly, as the level of corruption is very high compared to what typically
occurs in real sequences, it is not uncommon that blotches appear at the same or close
locations in successive images. For these reasons, the benefit of removing the few false
alarms due to pathological motion is cancelled by the decrease in the correct detection
rate. Therefore, the testing sequence chosen here does not allow our algorithm to fully
express its potential.

5.7.1.2 Visual comparison

A much better way to compare the three algorithms is to show the detection masks on
real examples which contain pathological motion. Among others, this can be illustrated
on the “pigeon” sequence (figure 5.16): while it is not corrupted by noticeable artifacts,
it contains very difficult motion with the fast displacement of the bird combined with
the flapping of its wings. For our Markovian model, the parameters have been set to
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the following values:α = 0.005, β1 = 0.65, β2 = 0.4, β3 = −0.07. The number of
levels for the multiscale optimization is set toK = 7. For the interpretation, we use a
radiusr = 38 and a threshold on the number of discontinuitiesM = 1. For Morris’
algorithm, the parametersα, β1 andβ2, which exist and play a similar role, are set to
the same values. We also include the result for SDIa with a thresholdTh = 15. Figure
5.17 clearly shows the benefit of taking into account pathological motion: false alarms
are dramatically reduced with our method.

(a) Framen− 1

(b) Framen

(c) Framen + 1

Figure 5.16: the “pigeon” sequence (images by courtesy of the BBC)
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(a) Blotch mask with SDIa

(b) Blotch mask with Morris’ method

(c) Blotch mask with our method (d) Pathological motion mask with our method

Figure 5.17: blotch masks on the “pigeon” sequence using different methods

5.7.2 Large scale validation on real sequences

On a larger scale, our detection prototype has been validated on several minutes of real
video sequences with many blotches. These sequences were gathered from various ori-
gins and were all chosen for the complexity of their contents in terms of motion. The
prototype flags in green what it detects as blotches and in red the pathological motion.
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Our testing architecture is described in appendix C. The evaluation of the results is purely
visual. These results are very encouraging: computed masks are subjectively relevant and
correspond to what is intuitively expected. Examples of results with the parameter set-
tings given previously are shown on figures 5.18 and 5.19.

(a) (b)

(c) (d)

(e) (f)

Figure 5.18: results with our detection prototype. Left: original. Right: detection masks.
Original images by courtesy of the BBC.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19: results with our detection prototype (continued). Left: original. Right:
detection masks. Original images by courtesy of the BBC.
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The carried out experiments entitle to hope for a very high degree of automation:
good results have been obtained on very different sequences without having to change
the set of parameters. This hopefully allows us to avoid the very tricky issue of parameter
estimation in our Markovian context: this is usually performed with schemes based on
the Expectation-Maximization (EM) [Dem 77] or Iterative Conditional Estimation (ICE)
[Pie 92] algorithms (see [Cha 00, Per 98]), at the cost however of a very significant com-
putational overhead. Our parameters can be understood and tuned intuitively once and for
all: α is left to a reference value,β1 is changed to increase or decrease spatial coherence,
β2 acts as the equivalent of the thresholdTh for SDIa,β3 allows slight modulations of the
previous parameter as it affects more pathological motion than blotches; as forM and the
radiusr for interpretation, they can roughly be seen as changing the ratio among flagged
pixels between blotches and pathological motion. Because computed masks are usually
well delineated, the incorporation of spatial edges as considered in the original model
was not thought as absolutely necessary; it would be simply expected to bring a slight
improvement in the accuracy of the masks at the expense of a computational overhead.

5.8 Final comments

In this chapter, we presented a new method for blotch detection which dramatically re-
duces the number of false alarms. The use of appropriate multiscale schemes has here
a significant importance to maintain the computational load to a reasonable level. An
additional step could be taken to go even further: although this has much less critical
consequences, some blotches are now incorrectly flagged as pathological motion, either
because they areclose to pathological motionor because they arewithin pathological
motion areas. This is discussed in the concluding chapter 8.



Chapter 6

Correction in missing data areas

The ability to replace data in damaged regions is of key importance for the efficient
concealment of missing data artifacts. A reliable correction scheme, performing well
even in the presence of pathological motion, would allow to significantly alleviate the
shortcomings of many detection techniques: the better the correction scheme, the less
critical the impact of false alarms resulting from the detection step.

In this chapter, we develop an algorithm which automatically interpolates missing in-
formation in the corrupted regions from the surrounding. The locations of the pixels to be
corrected are here assumed to be known. Although the proposed technique has been pri-
marily developed for blotch correction (and its obvious extension to dropout correction),
it can also be applied to the correction of scratches, which belong to the same family of
missing data artifacts. Beyond the scope of archives restoration, other applications have
the same requirement of being able to fill-in whole regions in a “natural” way and can
therefore greatly benefit from our algorithm. Superimposed logos, dates, names, subtitles
or others are sometimes intentionally added to a document at a given moment and can
be undesirable for use in a different context whereas the original document is no longer
available. Another typical application is the concealment of selected objects in digital
photograph retouching or special effects (wires, unwanted characters, ungainly details).

Unlike what was the case for detection, we now deal with unknowns which are not
binary any more but belong to a much larger state space, e.g.{0, ..., 255} for greyscale
images or{0, ..., 255}3 for colour images. In addition, the complexity of what we attempt
to model is greater as this is no less than the underlying original sequence: larger neigh-
bourhood systems would certainly be necessary to account for this complexity. For these
reasons, Markovian models such as the one developed in the previous chapter cannot be
considered any more: they would undoubtedly have a prohibitive cost. Our algorithm
therefore relies on non-parametric Markovian models: it is inspired by texture synthesis
techniques and especially by the algorithm presented in [Efr 99]. Our general-purpose
algorithm is suited to any complex natural scene and not restricted to stationary patterns.
It has the property to be adapted to both still images and image sequences. The resulting
computational cost is relatively low and corrections are usually produced within seconds.

93
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6.1 Algorithm

Efros and Leung’s original algorithm is based on a non-parametric Markovian model.
This statistical model is based on the assumption of spatial locality: the probability dis-
tribution for one pixel given the values of its neighbourhood is independent of the rest
of the image. The neighbourhoodN (p) of a pixelp is here chosen to be a square win-
dow around this pixel (illustrated in figure 6.1 for a5 × 5 neighbourhood). The model
is non-parametric in the sense that the probability function is not imposed or constructed
explicitly. Instead, it is approximated from a reference sample image which must be large
enough to capture the stationarity of the texture.

Figure 6.1: square neighbourhood

During the synthesis process, the approximation of the probability distributionP (I(p) =
ip|I(q) = iq, q ∈ N (p)) is made as follows: the sample image is first searched in order
to find all pixels that have a “similar” neighbourhood to the one of the pixel being syn-
thesized. In addition to the neighbourhood giving the best similaritydbest, all neighbour-
hoods that give a similarityd such asd < (1 + ε)dbest are considered as candidates for
replacement. Then one of these candidates is randomly drawn and the centre value of
this neighbourhood is assigned to the pixel being processed.

The similarity of two neighbourhoods is measured according to the normalized sum
of square differences (L2 distance). Since it is desirable to give more importance to the
pixels that are near the centre of the window than to those at the edge, this measure is
weighted by a two-dimensional Gaussian. The pixels within the neighbourhood window
that have not been synthesized yet are not taken into account in the sum. The distance
between the partially filled neighbourhoodN1 of the pixel being synthesized and neigh-
bourhoodN2 from the sample image (figure 6.2) can thus be expressed as

d(N1,N2) =

∑
p∈N b1(p)G(p− pcentre)(I1(p)− I2(p))2

∑
p∈N b1(p)G(p− pcentre)

(6.1)

where the indexp specifies both a pixel inN1 and its corresponding pixel inN2, b1 is the
binary mask set to zero for the pixels to be replaced,G is the square window of Gaussian
weights andI denotes a greyscale value or a three-dimensional colour vector.

It can be noted that by drawing from the conditional probabilities after their approxi-
mation, this algorithm can be seen as a heuristic equivalent of a single pass of a Gibbs
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image being synthesized

Figure 6.2: Efros and Leung’s algorithm overview

sampler. Another point to which attention must be drawn is the choice of the similarity
measure. Ideally, the chosen metric should be a good measure of perceptual similarity.
Although this is certainly not the case for a metric based on theL2 distance, simplicity
and low computational cost are the main arguments in favour of this metric. Readers are
invited to refer to [Efr 99] for a more detailed description of the original algorithm.

6.1.1 Constrained synthesis and pixel ordering

This algorithm is of interest to us not to generate isolated patches, but in the framework
of synthesis with boundary constraints: missing regions are contained within parts of
the image that must not be changed. We choose the synthesis ordering as follows: from
the binary maskb which defines the pixels to be replaced, we can count for each missing
pixel p the number of its valid neighbours. This numberM(p) is the number of unflagged
pixels within the square neighbourhood window, weighted as previously by a Gaussian
kernel:

M(p) =
∑

q∈N (p)

b(q)G(q − p) (6.2)

Pixels are then replaced starting from the ones having the most valid neighbours. All
missing regions are thus simultaneously and progressively filled from the edges to the
centre (see figure 6.3). From our own experience, the choice of the pixel ordering has
a significant influence on the result of the synthesis; this non-linear ordering ensures a
good inward propagation of the surrounding information.

Figure 6.3: filling-in process
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6.1.2 Adaptive sample image

The key difference between texture and an ordinary natural image is that the latter does
not have the property of stationarity. It would therefore be much better modelled as a
non-stationary MRF: the conditional probability distributionP (I(p)|I(q), q ∈ N (p))
should then be different for each pixelp (see section 4.1.4.5). This can be achieved
by approximating it from a different sample subimage for each pixel to be synthesized,
rather than querying the same sample image for all pixels.

For each pixel, the corresponding adaptive sample image is constructed as follows:
we start from a sample image with an initial size centred on the pixel under consideration.
This sample image is then grown as long as it does not contain at least a minimum number
of pixels outside the degraded area. Once this condition is met, the sample image is frozen
and is ready to be subsequently searched. As a consequence, the sample image will be
smaller for pixels near the edges of the missing regions than for those at the centre (figure
6.4).

sample image for pixel p

blotch

q

p

sample image for pixel q

Figure 6.4: adaptive sample image. A different sample image is assigned to each pixel to
be synthesized.

The improvement introduced here plays a crucial role in obtaining good quality re-
sults on general natural images. This is illustrated in figure 6.5: in this example, the
use of adaptive sample images leads to a much better preservation of the curvature of
the wall boundaries. In addition to making the sample subimage contain less irrelevant
information, this also allows it to be much smaller. It has therefore the additional benefit
of significantly reducing the computation time.

6.1.3 Coherence search and partial similarity computation

Most of the computation time is due to the similarity measure between neighbourhoods
during the exhaustive search of the sample images. In order to reduce this cost, we
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(a) Degraded image (b) Correction with a sin-
gle manual sample image
(red box)

(c) Correction with adaptive
sample images

Figure 6.5: correction with and without adaptive sample images

adopt the principle of“coherence” searchintroduced in [Ash 01] and also exploited in
other applications [Her 01]. The idea is to rely, for each new pixelp, on the pixels used
to replace the adjacent already synthesized pixels instead of starting the search from
scratch. Each adjacent synthesized pixelq generates a “shifted” candidatet: the relative
displacement betweent and the pixels used to replaceq is the same as betweenp andq
(figure 6.6). The most similar neighbourhood is found among these “shifted” candidates
only. If the similarity is good enough,p is replaced accordingly; otherwise, the adaptive
sample is constructed and exhaustively searched as before. Practically, we consider the
similarity as good enough ifd(N (p),N (t)) ≤ d(N (q),N (s)).
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Figure 6.6: coherence search. The black pixels in the searched image are the “shifted”
candidates.
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With this approach, the vast majority of pixels are actually replaced without exhaus-
tive search. A step further can be taken when the exhaustive search is triggered. For many
neighbourhoods in the sample images, the similarity measure is undoubtedly too high. In
many cases, the computation of the similarity can be stopped as soon as the partial mea-
sure is higher than a constantly updated reference value as detailed hereafter. During the
exhaustive search of a particular sample image, let us denotedref the best similarity for
the already tested neighbourhoods. When a new neighbourhoodN2 is queried in its turn,
if the computation of the similarity is frozen when only a portionNpart of the complete
square window has been taken into account, we have the partial similarity:

dpart(N1,N2) =

∑
p∈Npart

b1(p)G(p− pcentre)(I1(p)− I2(p))2

∑
p∈Npart

b1(p)G(p− pcentre)
(6.3)

This similarity would decrease the most if all pixels in the remaining of the square win-
dowN \ Npart were identical for the two neighbourhoods. The final similarity can thus
be bounded by:

d(N1,N2) ≥
∑

p∈Npart
b1(p)G(p− pcentre)(I1(p)− I2(p))2

∑
p∈Npart

b1(p)G(p− pcentre) +
∑

p∈N\Npart
G(p− pcentre)

(6.4)

The denominator of the right-hand side can be bounded by a constant equal to the sum
of all the Gaussian weights over the square window,Gtotal =

∑
p∈N G(p − pcentre). We

therefore have the following lower bound for the final similarity:

d(N1,N2) ≥
∑

p∈Npart
b1(p)G(p− pcentre)(I1(p)− I2(p))2

Gtotal
(6.5)

For these reasons, we can simply test the following condition at each step of the
similarity measure, each time a new pixel is taken into account in the partial sum:

∑
p∈Npart

b1(p)G(p− pcentre)(I1(p)− I2(p))2

Gtotal
> (1 + ε)dref (6.6)

As dref ≥ dbest, if condition (6.6) is met, this necessarily impliesd(N1,N2) > (1+ε)dbest.
Therefore, the neighbourhood already has no chance to be among the candidates for
replacement and continuing to compute its similarity becomes pointless. On the opposite
side, if the computation proceeds to its end and if the resulting similarity is lower than
dref, thendref is updated accordingly.

6.1.4 Spatio-temporal synthesis

When considering an image within a sequence, the correction must take into account
information from the previous and next frames; otherwise, even if the correction is un-
noticeable when the image is frozen, its lack of consistency with the rest of the sequence
will be grossly visible when animated. This can be simply achieved by searching three
sample subimages instead of one: one is taken from the current image as we would do
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for still image correction, and the two others are taken from the previous and next frame
respectively. For the previous and the next frame, the problem is that we must know
where to extract the relevant information from, i.e. we need motion vectors. However,
as the sample subimages cover quite a large area, there is no need for accurate motion
vectors for each pixel and an approximate global motion vector is sufficient (figure 6.7).

frame frame frame

blotch

n−1 n n+1

sample subimages

Figure 6.7: three sample subimages taken in the previous, current and next frame for each
pixel to be synthesized

With this strategy to incorporate spatio-temporal information, the algorithm turns out
to behave differently depending on the situation. When there is no or little motion, almost
every pixel used for replacement belongs to the previous or the next frame. In this case,
coherence search is remarkably efficient: whole regions are copied and there is nearly no
computation at all. When the motion is more complex, such as in the case of patholog-
ical motion or when the same information is missing across several frames, much more
similarities will be found with neighbourhoods belonging to the current frame. The algo-
rithm thus implicitly falls back on a spatial correction. Experiments clearly confirm this
relation between the perceived complexity of the motion and the ratio between tempo-
ral replacement (pixels taken from the previous or next frames) and spatial replacement
(pixels taken from the current frame). This smooth adaptation of the algorithm without
any user intervention is a major advantage and makes it suited to a wide range of motion
conditions.

6.1.5 Summary

The main steps of the algorithm are summarized in figure 6.8.
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Figure 6.8: algorithm overview. The dashed part represents the modifications for still
image correction.

6.2 Discussion on evaluation

Methods for the measurement of perceived quality, which is at the core of the assess-
ment of a correction, have been presented in section 3.1.4. Unfortunately, these current
means of quantitative evaluation are far from satisfactory. In particular, PSNR and MSE
are notorious for being very poor measures of perceived visual quality [Gir 93, Dal 93,
Wan 02]. They are in widespread use because they are easy to compute and not com-
pletely deprived of interest for very specific distortions, such as noise, but they are defi-
nitely not adapted for the general-purpose measurement of image quality. This is, among
others, illustrated in [Wan 02], where different distorted images with the same MSE but
with a dramatically different perceived quality are shown side-by-side (see figure 6.9).

Surprisingly, more sophisticated measures do not necessarily perform better. A study
group of the ITU, the Video Quality Experts Group (VQEG) has recently compared many
of these measures and tested them against subjective evaluation [VQEG 00]. Although
most of the tests were related to MPEG compression artifacts, some of the tests were
also concerned with analog degradations. Among the conclusions of the study are the
facts that most of the measures were not statistically distinguishable from PSNR and
that “no objective measurement system in the test is able to replace subjective testing”
([VQEG 00], p. 50). For these reasons, it can be said that there is a clear lack of a
well-accepted metric for the evaluation of image quality.

Given the fact that the current state of the art is still quite far from an ideal measure-
ment, simple visual evaluation is believed to remain the best solution. We have therefore
chosen to leave results to the subjective evaluation of the reader.
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(a) Original Lena image (b) Contrast stretched, MSE =
225

(c) Gaussian noise contami-
nated, MSE = 225

(d) Impulsive noise contami-
nated, MSE = 225

(e) Blurred, MSE = 225 (f) JPEG compressed, MSE =
215

Figure 6.9: evaluation of “Lena” images distorted by different means (reproduced from
[Wan 02])

6.3 Experimental results

The algorithm has been tested and validated on many different images and image se-
quences. The photograph dimensions are700× 466 in portrait or landscape orientation.
All the sequences are excerpts from PAL video (720 × 576 pixels). Colour correction is
performed in the YCbCr colour space, with one luminance and two chrominance compo-
nents. The main parameters of the algorithm were chosen as follows:

• ε = 0.1 for the selection of candidate neighbourhoods during exhaustive searches
This means that all neighbourhoods that give a similarity within a 10% range of
the best similarity are candidates for drawing and replacement.

• the standard deviation of the Gaussian kernel used in the similarity measure is
chosen to be one third of the neighbourhood window size.

• the initial size of the adaptive sample subimage is taken to be41×41. If necessary,
it is extended until the sample contains at least1500 valid pixels.

All these parameters are considered as internal settings and are never modified. As for the
size of the neighbourhood window, unless stated otherwise, it was chosen to be11× 11:
this gave the best results on all our testing dataset including the examples shown here.
However, this size would have to be set to a different value for images with significantly
different resolutions, e.g. high-definition (HD) material.
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6.3.1 Results on still images

6.3.1.1 Comments on results

The algorithm gives very good results in various situations without any boundary arti-
fact. It is able to reconstruct not only textured areas (figures 6.11(c)-(d) and 6.10(c)-(d))
or mixed regions (figure 6.10(a)-(b)), but also structured details or even sharp isolated
elements such as the cable in the upper-right part of figure 6.11(a)-(b) or the edges of the
pyramid in figure 6.11(e)-(f). The computation time significantly depends on the diffi-
culty of the correction. It can range roughly from 0.2 to 1 ms per synthesized pixel using
C++ code on a PC with a 1.5 GHz Pentium 4 processor. For a complete correction, the
order of magnitude is usually from a few tenths of seconds to a few seconds per image.
Typically, between 60 and 95% of the corrupted pixels are replaced by coherence search.

(a) (b)

(c) (d)

Figure 6.10: automated retouching
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: removal of blotches, scratches, superimposed text or logo (original image
(c) by courtesy of Emmanuelle Lecan)
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6.3.1.2 Comparison with “image inpainting”

Our method is also compared to the “image inpainting” algorithm (section 3.3.1.2) based
on the use of PDEs and which gives to our knowledge the most impressive results for
still images. Images in this thesis generated by this algorithm were taken from the web
page of the project1. As shown in figure 6.12, both algorithms give very good results
of comparable quality though our algorithm requires a much smaller computational cost:
a few minutes are required for image inpainting. For the correction of figure 6.12(c),
our neighbourhood window was chosen to be9× 9 given the low resolution of the orig-
inal image. While having a comparable quality, the results have a different “look and
feel” for the two algorithms: “image inpainting” results have a tendency to look “rubbed
off” and the results of our algorithm usually exhibit what could be described as a “high
frequency” aspect. The difference is more visible for textured regions (figure 6.13), es-
pecially when these regions are large: in these cases information tends to be over-blurred
with the inpainting algorithm.

(a) Original image

(b) Correction with image inpainting (c) Correction with our algorithm

Figure 6.12: comparison of correction results

1http://www.ece.umn.edu/users/marcelo/restoration.html
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(a) Detail of the original image

(b) Correction with image inpainting (c) Correction with our algorithm

(d) Detail of the original image

(e) Correction with image inpainting (f) Correction with our algorithm

Figure 6.13: correction details for textured regions. Here, (b) and (e) tend to be over-
blurred.
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6.3.1.3 Limitations

A clear limitation of our algorithm as of most other techniques is their lack of high-level
understanding: artifacts will appear when the surrounding does not contain the necessary
information. For example, it will not able to reconstruct the head of a character if nothing
in the surrounding gives any “hint” of what a head should be. Apart from that, very few
examples of visible imperfections have been reported. Figure 6.14 is one very interesting
illustration of noticeable correction: it contains in the same time textured regions and
geometric elements with great variations in size because of the perspective.

(a) Original image and correction

(b) Zoom in on the region of interest

Figure 6.14: example of visible correction
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6.3.2 Results on image sequences

The algorithm has been tested on whole sequences with impulsive defects or on areas
missing across several frames. The global motion vectors taken as an input by the algo-
rithm as explained in section 6.1.4 are computed using phase correlation (see appendix
B). The algorithm is applied recursively, i.e. framen− 1 used in the correction of frame
n is the already corrected framen − 1. This has proved to be much more efficient than
non-recursive correction. The image sequence of figure 6.15 illustrates how the algo-
rithm adapts to the spatio-temporal context: the blotches and the background behind the
scratch are corrected using temporal information whereas the man which is spanned by
the scratch over several frames is mainly reconstructed from the spatial surrounding. The
algorithm has also proved to be efficient on sequences with pathological motion, as illus-
trated on figure 6.16 with motion blur and figure 6.17 with erratic motion. In this case,
the algorithm implicitly falls back on a spatial correction and relatively few pixels are
taken from the previous or the next frame. The computation time and the ratio of pixels
replaced by coherence search are within the same range as for still images.

(a) Degraded framen− 1 (b) Degraded framen + 1

(c) Degraded framen (d) Framen after correction

Figure 6.15: restoration of an image sequence with artificial blotches and scratch

However, a distinction in the results should be made between impulsive blotches and
missing areas spanning several frames. For impulsive defects, all the results obtained are
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of great quality and virtually invisible. For defects remaining across several frames, some
imperfections may still occasionally be noticeable. They appear as unnatural activity
at precise moments in the reconstructed area and are usually not noticeable when the
image is frozen. In other words, at these moments, the correction is not coherent enough
temporally with the rest of the sequence despite the use of the previous and next frame in
the correction.

(a) Framen− 1 (b) Framen + 1

(c) Degraded framen (d) Framen after correction

Figure 6.16: restoration within a pathological motion area (motion blur)

6.4 Final comments

The algorithm presented in this chapter for general-purpose missing data correction pro-
duces very good visual results and runs reasonably fast without any user intervention.
When processing video, which is of prime importance to us, it has the additional benefit
to avoid the tricky step of motion vector repair as it does not involve motion compensa-
tion. Even more important is the fact that it smoothly adapts to the motion conditions:
much more information is automatically fetched from the spatial vicinity of the missing
area in the case of pathological motion.
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(a) Framen− 1 (b) Framen + 1

(c) Degraded framen (d) Framen after correction

Figure 6.17: restoration within a pathological motion area (erratic motion)

Two directions could be investigated to improve even further the results of our algo-
rithm. Firstly, as just mentioned, there is a need for more temporal coherence when the
damaged region spans several frames. Secondly, as for most other correction methods,
it is assumed here that there is no more underlying information in the damaged regions,
which is generally not true. These two point are developed in the concluding chapter 8.





Chapter 7

Experimentation of the complete
prototype

Our detection scheme described in chapter 5 is now combined with our correction tech-
nique detailed in the previous chapter to build a complete prototype for impulsive defect
concealment. A delay of one frame must be kept between the detection and correction
processes: correction in framen − 1 can only proceed after detection in framen (figure
7.1). This is required to ensure that when correcting framen − 1, blotched pixels are
known in framen and will consequently not be used for replacement.

n n+1n−1n−2 n+2

detection

n−3 n+3

ncorrection n−1

Figure 7.1: combination of detection and correction

When the two steps are combined, the settings of the detection step can be “lowered”
to detect as many blotches as possible, even to the point where false alarms start to appear:
slight false alarms are generally well handled by our correction scheme. Typical detection
settings that have been used for the complete concealment system areα = 0.005, β1 =
0.3, β2 = 0.26, β3 = 0.01 for the detection of temporal discontinuities,r = 25 andM =
15 for the interpretation. The size of the square neighbourhood window for correction
is kept to11 × 11. These settings have been chosen after a few trials and errors, by
tuning the parameters according to their intuitive meaning and to the visual characteristics
of the outcome. The same video sequences stretching over several minutes used for
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the validation of detection have been processed successfully without modifying these
parameters.

(a) (b)

(c) (d)

(e) (f)

Figure 7.2: processing with the complete prototype
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The total computation time per frame for the complete prototype can be roughly de-
composed as follows (for a 1.5 GHz Pentium 4 processor):

• 7s for motion estimation and compensation

• 5s for blotch detection (localization of discontinuities and interpretation)

• 0.5s for blotch correction





Chapter 8

Conclusions and further research

This thesis has addressed the problem of impulsive defects by introducing the impor-
tant notion of pathological motion. Based on this notion, we presented a new detection
method which dramatically reduces the number of false alarms. We also developed in this
thesis a general-purpose correction algorithm which is able to handle successfully these
cases as well. These algorithms have proven to be efficient in a wide range of conditions.
They achieve a high degree of automation as their parameters do not need to be changed
to maintain efficiency in different contexts. The resulting computational cost is relatively
low and frames are usually processed within seconds. As a continuation of our work,
four promising points can be highlighted as interesting directions for future research.

8.1 Go further in and around PM

A marginal drawback of our detection scheme is the fact that some blotches are now
incorrectly flagged as pathological motion, either because they areclose to pathological
motionor because they arewithin pathological motion areas. To be able to correctly
handle these cases, detection must there undoubtedly rely on criteria other than temporal
impulsivity. The approach undertaken in [Rar 01] is to classify and characterise further
each subtype of pathological motion, e.g. motion blur. While this approach could be
interesting in very specific situations, we believe that it may lack generality. An alterna-
tive point that could be exploited and has never been yet is the fact that blotches often
look similar within the same sequence. In other words, we could make the assumption
of stationarity of well-chosen blotch characteristics along the sequence. This could be
exploited by gathering statistics on blotches identified by our detection method and by
using these statistics to take more sophisticated decisions on what our method flags as
pathological motion. On each detected blotch, global characteristics can thus be com-
puted and the corresponding statistics can be updated on-the-fly. In a first step, these
statistics could be applied to whole connected sets flagged as PM: if the set complies
with the gathered statistics, it is likely to be a real blotch after all; otherwise, the set is
likely to be mainly pathological motion and is left for closer analysis. This would allow
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to correctly re-classify blotchesaround pathological motionand it is believed that this
could be achieved without major difficulties. In a second step, if we want to be able to
identify blotcheswithin pathological motion areas, a segmentation of these areas would
be necessary and each segment would have to be individually tested against the gathered
statistics. This step would probably require much more effort to become really efficient.
The exact nature of the characteristics to be chosen (size, mean luminance, degree of
uniformity, compacity,...) remains an open question.

8.2 More temporal coherence for missing areas across
several frames

For our correction algorithm, when the damaged region spans several frames such as in
the case of line scratches or the concealment of a character tracked over a sequence, there
is a need for more temporal coherence. This could for example be achieved by incor-
porating more frames in our correction, e.g. two frames before and two frames after. It
could also be interesting to incorporate frames that are not immediately before and after,
e.g. framesn − 20 andn + 20: it is not uncommon that with the evolution of the scene,
information which is missing in framen and in the surrounding frames becomes uncov-
ered and therefore available in more distant frames. As our algorithm provides enough
flexibility to incorporate these changes while preserving its simplicity, it is believed that
this could be tested and improved quite easily.

8.3 Incorporate remaining underlying information

Our correction method as well as most others makes the implicit assumption that there is
no more underlying information in the damaged region. While this is true for dropouts,
this is generally not true for other missing data artifacts: dirt is often not completely
opaque and gelatine sparkles or scratches can be more or less superficial. Ideally, we
should attempt to employ this remaining information to some extent. This implies in
particular being able to estimate the degree of underlying information in the corrupted
area. Incorporating this information within the correction algorithm presented in chapter
6 is believed to be a very promising point for further investigation.

8.4 Video quality metrics

This thesis raised the remark that current means for the quantitative evaluation of de-
tection and correction are far from satisfactory. We also stressed that the detection step
cannot be properly evaluated without keeping in mind the fact that it will be followed by
a correction step with shortcomings of its own. A proper evaluation of both steps there-
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fore revolves around a good objective video quality metric. While this is a longer-term
prospect, it is believed that the temporal dimension should play a very significant role
in this metric. Such a metric would have to be fully validated by tedious but necessary
psychovisual experiments involving human viewers.

It should be finally stressed that all these measurements will at best be good hints
about the efficiency of one technique or another. They can prove a very valuable tool
and can ideally complement but not replace extensive experiments on real degraded se-
quences with all their variety and unpredictability. International efforts on this issue such
as the second phase currently under way of the work conducted by the Video Quality
Experts Group should be followed closely.





Appendix A

The YCbCr colour space

The YCbCr colour space used in digital video can be defined from the RGB colour space
by the following formulas, with values between 0 and 255:

Y = 0.2989 R + 0.5866 G + 0.1145 B
Cb = − 0.1688 R − 0.3312 G + 0.5000 B + 128
Cr = 0.5000 R − 0.4184 G − 0.0816 B + 128

(A.1)

Conversely, the RGB values are given from the YCbCr values by:

R = Y + 1.4022 (Cr − 128)
G = Y − 0.3456 (Cb− 128) − 0.7145 (Cr − 128)
B = Y + 1.7710 (Cb− 128)

(A.2)

These conversion rules are specified with an accuracy of three digits after the first
decimal in the 4:2:2 standard (see [ITU 95] and section 2.1.2.2).

In the 8-bit version of the 4:2:2 standard, 220 quantization levels are authorised for
the luminance signal, with the black level corresponding to 16 and the peak white level
corresponding to 235. Similarly, 225 quantization levels are possible for the Cb and Cr
signals, ranging from 16 to 240. For these two signals, the zero value corresponds to level
128. To get values within these ranges, the formulas above have to be scaled accordingly,
which yields from RGB to YCbCr:

Y = 0.2567 R + 0.5038 G + 0.0983 B + 16
Cb = − 0.1483 R − 0.2909 G + 0.4392 B + 128
Cr = 0.4392 R − 0.3675 G − 0.0717 B + 128

(A.3)

and from YCbCr to RGB:

R = 1.1644 (Y − 16) + 1.5963 (Cr − 128)
G = 1.1644 (Y − 16) − 0.3934 (Cb− 128) − 0.8134 (Cr − 128)
B = 1.1644 (Y − 16) + 2.0161 (Cb− 128)

(A.4)

with Y ∈ [16, 235], Cb and Cr∈ [16, 240], R, G and B∈ [0, 255].
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Appendix B

Phase-correlation motion estimation

B.1 Quick overview of motion estimation

Motion estimation deals with estimating the “apparent” motion (or optical flow) between
two images based on intensity variations. Dense flow fields which associate a motion
vector to each pixel are usually estimated using only the luminance information. The fun-
damental assumption on which most estimators rely is the conservation of optical flow:
the intensity of a given point is assumed to remain constant along its motion trajectory.
The main families of motion estimation techniques are:

• differential methods, which are based on the differential equation expressing the
conservation of optical flow. This equation is coupled with a regularization equa-
tion usually imposing a smoothness constraint on the motion field. Expressed as
an energy minimization problem, these methods often lead to a large linear system
of equations. Well-known differential methods include [Hor 81, Nag 86, Luc 81].

• block-based methods, which consider in a first step the motion of entire blocks of
pixels. They can take place in the spatial domain, such as block-matching algo-
rithm [Bie 88] or in the Fourier domain, such as phase-correlation methods. These
methods are very widespread in hardware encoders for MPEG-1 or MPEG-2 com-
pression because of their relatively low complexity.

• pel-recursive methods, which can be seen as predictor-corrector estimators. The
initial prediction for a given pixel is taken as the final estimation for the previously
processed pixel. This prediction is updated by minimizing a quantity related to the
optical flow equation. [Rob 83, Bie 87] are typical pel-recursive estimators.

• Bayesian methods, such as [Kon 92] based on the tools described in chapter 4 with
motion fields as the unknowns.

A more detailed overview of the wealth of existing motion estimation techniques can
be found in [Sti 99], [Bar 94], [Bea 95] and [Tek 95] chap. 5 to 8.
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We implemented for our purpose a phase-correlation motion estimator. This type of
estimator was mainly chosen for its ease of implementation and its computational speed.
It is definitely not the most advanced motion estimator, but it is sufficient to illustrate the
validity of our approach as this latter is meant to be efficient with any type of motion
estimation.

B.2 Principle of phase-correlation motion estimation

Let us consider the case of a translationd between imagesIn andIn+1:

In+1(x + d) = In(x) (B.1)

In the Fourier domain, this relation becomes:

În+1(f) = În(f) exp(2iπf · d) (B.2)

whereˆ denotes the Fourier transform. In other words, a translation in the spatial domain
is equivalent to a phase shift in the Fourier domain. Phase-correlation motion estimation
relies on this principle [BBC 87, Wat 94b].

In the phase-correlation method, we compute the cross-correlation function of the two
frames:

Cn,n+1(x) = In(x) ∗ In+1(−x) (B.3)

where∗ is the 2-D convolution operation. As convolutions in the spatial domain are
equivalent to multiplications in the Fourier domain, taking the Fourier transform of this
equation gives:

Ĉn,n+1(f) = În(f)Î∗n+1(f) (B.4)

in which the exponent∗ denotes the complex conjugate. Normalizing this quantity yields
the phase of the cross-power spectrum:

ĉn,n+1(f) =
În(f)Î∗n+1(f)

|În(f)Î∗n+1(f)| (B.5)

We finally take the inverse Fourier transform of this expression,cn,n+1(x), which is called
the phase-correlation function.

If we now consider a translational motion such as the one expressed by relation (B.2),
we then have:

ĉn,n+1(f) =
În(f)Î∗n(f) exp(−2iπf · d)

|În(f)Î∗n(f) exp(−2iπf · d)|

=
|În(f)|2 exp(−2iπf · d)

|În(f)|2
= exp(−2iπf · d) (B.6)
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From that point, the inverse Fourier transform gives:

cn,n+1(x) = δ(x− d) (B.7)

whereδ is the Dirac function. In practice, even by replacing the Fourier transform by the
discrete Fourier transform (DFT), image functions by discrete arrays and knowing that
a periodic extension of the images outside their support is not realistic, this succession
of operations works remarkably well and a large peak centred on the displacementd is
noticeable. For subpixel displacements, it can be shown that the Dirac function becomes
a 2-D Dirichlet kernel, which can be closely approximated by a 2-D sinc kernel [For 02].
When there are multiple displacements in the frame, all the corresponding peaks are
present in the phase-correlation function.

An important property of phase-correlation motion estimation is that it is largely in-
sensitive to global intensity fluctuations. In particular, in the case of film and video
archives, this type of motion estimation is very robust to intensity flicker (see section
2.3). The main drawback of these motion estimators is that they do not handle very well
rotational and zooming motion.

Based on this principle, motion estimation is performed in two steps: motion vector
candidates are first extracted on a block basis and one of these candidates is then assigned
to each pixel.

B.3 Candidate extraction

The image is first divided into half-overlapping blocks,128×128 blocks in our case. The
half-size of the blocks corresponds to the maximum displacement which can be estimated
with this method. For each block in framen and the corresponding block in imagen+1,
we compute the phase-correlation function. The main dominant peaks are then detected
and their coordinates are considered as motion vector candidates. We chose to detect the
4 main peaks and to obtain their subpixel location with a simple curve fitting strategy. The
relative heights of the peaks reflect the relative areas of moving objects or background
(figure B.1).

B.4 Candidate assignment

During the second step, the candidates are assigned on a pixel basis. As most pixels
belong to 4 overlapping blocks, 16 candidates have to be tested for these pixels in our
case. The chosen candidate is the one minimizing the mean DFD over a small window
centred on the pixel. These local differences can be computed efficiently using sepa-
rable recursive filters. Figure B.2 shows an example of motion field obtained by phase
correlation.
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Figure B.1: phase-correlation function. The two peaks correspond here to a large moving
object on a fixed background.

Figure B.2: overlaid dense motion field



Appendix C

Testing architecture

In this appendix, we describe the testing architecture that we had to set up to conduct
experiments on whole sequences extracted from video tapes. Our testing architecture
involves the following elements:

• a professional VTRwith digital input/output capabilities. In our case, this was a
Digital Betacam player/recorder.

• a video serverwhich is able to store uncompressed video. We used a MMS Pron-
toServer with a capacity of approximately 40 minutes of uncompressed video. This
video server is connected to the VTR through a digital video link (SDI link, Serial
Digital Interface). It is also able to control the VTR using a standard protocol for
the remote control of broadcast devices (RS 422 protocol).

• a remote hostconnected the video server through a SCSI bus (Small Computer
System Interface). This remote host is a Silicon Graphics O2 in our case.

• a local computerwhich performs all the processing. We used a Linux PC with a
1.5 GHz Pentium 4 processor.

In our C++ code, we implemented the built-in capability to issue system calls over
the local network from the local computer to the remote host. Our prototype which is
run on the local computer is thus able to ask the remote host to get or put back images
from/to the video server and to transmit them over the network.

The processing of whole sequences from a video tape is conducted as follows. The
sequences are first entirely transferred from the VTR to the video server. A few frames
are then transmitted from the video server to the local computer which can start to process
them. Each time a frame has been processed, the local computer sends the result back to
the video server via the remote host and asks for a new frame. The frames are thus pro-
gressively exchanged between the video server and the local computer, which only needs
to keep a very limited number of frames in memory. For our combined detection and
correction algorithms, this number amounts to five frames. At the end of the processing,
the whole sequences can be put back to tape.
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Local
Area

Network

SDI video link

RS 422 control

SCSI

VTR
video server remote host

local computer

Figure C.1: testing architecture

With this testing architecture, only a very moderate amount of disk space is required
on the local computer as the sequences remain on the video server. The other advantage
of this architecture is its flexibility: the computational burden can be laid on any machine
connected to the network without having to change the cable configuration. The overhead
resulting from network queries and transmissions is around 2 seconds per frame.
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Résumé

Dans le contexte de la restauration d’archives, nous abordons dans cette thèse la sup-
pression des défauts impulsifs (taches, “dropouts” vidéo). Les méthodes de détection et
correction existantes sont limitées par les défaillances de l’estimation de mouvement dues
à la présence de phénomènes naturels complexes. Nous cherchons à prendre en compte
ces phénomènes que nous qualifions de mouvement pathologique. Pour les deux étapes
de détection et de correction, une approche probabiliste est privilégiée et nos algorithmes
sont exprimés à l’aide de champs de Markov paramétriques ou non-paramétriques.

La méthode de détection que nous proposons s’inscrit dans le cadre de la théorie
bayesienne de l’estimation. Nous considérons une fenêtre temporelle plus large que les
trois images utilisées habituellement afin de mieux distinguer les défauts des mouve-
ments pathologiques et éviter ainsi les fausses alarmes. Nous proposons également une
méthode de correction dans les zones d’information manquante inspirée de travaux sur
la synthèse de texture. Après généralisation aux images naturelles, nous intégrons ces
approches dans un contexte spatio-temporel qui permet un repli implicite sur une cor-
rection spatiale lorsque le mouvement est trop complexe. Les méthodes proposées sont
validées séparément puis intégrées dans un prototype complet de suppression des défauts
impulsifs.

Probabilistic Approaches for the Digital Restoration of
Television Archives

Abstract

Within the context of archives restoration, we investigate in this thesis the concealment of
impulsive defects (blotches, video dropouts). Existing detection and correction methods
reach their limits with the presence of motion estimation failures due to complex natural
events. We aim at taking into account these events that we shall call pathological mo-
tion. For both detection and correction steps, we investigate probabilistic approaches and
our algorithms are expressed by means of parametric or non-parametric Markov random
fields.
The proposed detection method relies on the framework of the Bayesian theory of es-
timation. We consider a larger temporal window than the usual three frames, in order
to better distinguish defects from pathological motion and thus dramatically reduce the
number of false alarms. We also propose a method to correct missing data areas which is
inspired by works on texture synthesis. After generalizing these techniques to natural im-
ages, we integrate them in a spatio-temporal context which allows an implicit fallback on
a spatial correction when motion is too complex. We first validate the proposed methods
separately before combining them to create a complete prototype for the concealment of
impulsive defects.


