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Abstract

Abstract

Cancer is one of the most common causes of dedtieimvorld. Currently, breast cancer is
the most frequent in female cancers. Although theificant improvement made last decades
in cancer management, an accurate cancer managensgéifitneeded to help physicians take
the necessary treatment decisions and therebyiregiie related adverse effects as well as its
expensive medical costs. This work addresses tkheotignachine learning techniques to
develop such tools of breast cancer management.

Clinical factors, such as patient age and histtxgdagical variables, are still the basis of day-
to-day decision for cancer management. Howevelh wie emergence of high throughput
technology, gene expression profiling is gainingréasing attention to build more accurate
predictive tools for breast cancer. Neverthelessemal challenges have to be faced for the
development of such tools mainly (1) high dimenaliy of data issued from microarray
technology; (2) low signal-to-noise ratio in micnay measurement; (3) membership
uncertainty of patients to cancer groups; and gtg¢rlogeneous (or mixed-type) data present
usually in clinical datasets.

In this work we propose some approaches to deabppptely with such challenges. A first
approach addresses the problem of high data diowalgy by taking use of; learning
capabilities to design an embedded feature seteatgorithm for SVM (; SVM) based on a
gradient descent technique. The main idea is tostoam the initial constrained convex
optimization problem into an unconstrained one ugtothe use of an approximated loss
function. A second approach handles simultanecaitlghallenges and therefore allows the
integration of several data sources (clinical, macray ...) to build more accurate predictive
tools. In this order a unified principle to deathvthe data heterogeneity problem is proposed.
This principle is based on the mapping of differpes of data from initially heterogeneous
spaces into a common space througladeguacymeasure. To take into account membership
uncertainty and increase model interpretabilitys firinciple is proposed within a fuzzy logic
framework. Besides, in order to alleviate the peablof high level noise, a symbolic approach
is proposed suggesting the use of interval reptasen to model the noisy measurements.
Since all data are mapped into a common space, dapybe processed in a unified way
whatever its initial type for different data anasypurposes. We particularly designed, based
on this principle, a supervised fuzzy feature werghapproach. The weighting process is

mainly based on the definition ofraembership margifor each sample. It optimizes then a
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membership-margin based objective function usimgsital optimization approach to avoid
combinatorial search. An extension of this apprdactihe unsupervised case is performed to
develop a weighted fuzzy rule-based clusteringrélyn. The effectiveness of all approaches
has been assessed through extensive experimeathéstand compared with well-know
state-of-the-art methods. Finally, some breast@aapplications have been performed based
on the proposed approaches. In particular, pregicind prognostic models were derived
based on microarray and/or clinical data and coetawith genetic and clinical based

approaches.
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Résumé

Le cancer est l'une des causes les plus fréqudatedgces dans le monde. Actuellement, le
cancer du sein est le plus répandu dans les cariéergins. Malgré les avancées
significatives faites ces derniéres décennies enkameéliorer la gestion du cancer, des outils
plus précis sont toujours nécessaires pour aiderolecologues a choisir le traitement
nécessaire a des fins de guérison ou de prévedaorécidive tout en réduisant les effets
néfastes des ces traitements ainsi que leurs étggs. Ce travail porte sur |'utilisation de
techniques d'apprentissage automatique pour dé@e&iaje tels outils de gestion du cancer du

sein.

Les facteurs cliniques, tels que l'age du patientles variables histo-pathologiques,
constituent encore la base quotidienne de pris#édesion pour la gestion du cancer du sein.
Cependant, avec I'émergence de la technologie tiddédit, le profil d'expression génique
suscite un intérét croissant pour construire degsoplus précis de prédiction du cancer du
sein. Néanmoins, plusieurs challenges doivent @ievés pour le développement de tels
outils, principalement: (1) la dimensionnalité diesinées issues de la technologie des puces,
(2) le faible rapport signal sur bruit dans la mreswe biopuces, (3) lincertitude
d'appartenance des patients aux différents grodpesancer, et (4) I'hétérogénéité des

données présentes habituellement dans les baslesdées cliniques.

Dans ce travail, nous proposons quelques apprgehassurmonter de maniere appropriée de
tels challenges. Une premiére approche abordedblgme de haute dimensionnalité des
données en utilisant les capacités d'apprentisddégaormé ¢1 pour la conception d'un

algorithme de sélection de variables intégré a kEthode SVM (machines a vecteurs
supports), algorithme basé sur une technique diiegria Une deuxieme approche permet de
gérer simultanément tous les problémes, en padiclintégration de plusieurs sources de
données (cliniques, puces a ADN, ...) pour congtrdes outils prédictifs plus précis. Pour
cela, un principe unifié est proposé pour surmoigeprobléeme de I'hétérogénéité des
données. Pour tenir compte de l'incertitude d'appance et augmenter l'interprétabilité du
modele, ce principe est proposé dans le cadre lbgilgue floue. Par ailleurs, afin d'atténuer
le probléme du bruit de niveau élevé, une apprarabolique est proposée suggérant
l'utilisation de la représentation par intervalleup modéliser les mesures bruitées. Nous

avons congu en particulier, basée sur ce principee approche floue supervisée de
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pondération de variables. Le processus de pondaregpose essentiellement sur la définition
d'une marge d'appartenance pour chaque échantlligotimise une fonction objective basée
sur la marge d’appartenance afin d'éviter la redhercombinatoire. Une extension de cette
approche au cas non supervisé est effectuée pgalog@er un algorithme de regroupement

automatique basé sur la pondération des reglesdlou

L'efficacité de toutes les approches a été evglaéeles études expérimentales extensives, et
comparée avec des méthodes bien connues de l&tkdrd Enfin, un dernier travail est
consacré a des applications des approches propdagsde domaine du cancer du sein. En
particulier, des modeles prédictifs et pronostiquas été extraits a partir des données de
puces a ADN et/ou des données cliniques, et learfomances comparées avec celles

d’approches génétigues et cliniques existantes.



Contents

Contents

| g} e T 11 [ oY 1RSSR 1
1. Cancer Management and Treatment .......ccoviiiii i e 7
1.1 Cancer detection and diagnoSis .....oiueieiiiiii e 8
3 A O o Tl =] gl o} Yo | a0 7] 1= 9
1.3 Systemic treatment responsivness prediction ..o 13
3 @ o ol 11 1= o o PP 16
2. Machine Learning for Cancer Management and Treatment............... 19
2.1 Supervised classifiCation ......iii i 21
2.1.1 Artificial neural NetWOrKS ....viiii i e 21
B A B T =T = Lo o B o T 22
2.1.3 Discriminant @nalySis .uuvuiiiiiiiii i i e 23
2.1.4 k-nearest NeighbDOr ..o 24
2.1.5 Support vECtOr MacChings ..t e 24
2.2 Unsupervised classification (Clustering)......ccvviiiiiiiiiiiii i i e 25
2.2.1 Hierarchical ClUStEING .. o e ae e aes 25
2.2.2 Partitioning ClUSTEIING .ooiiii i e e e 26
2.3 Feature SeleCtion ..uviiiii i e e e e e e 28
2.3. 1 Filter Methods . oo e e 29
2.3. 2 Wrapper MeEthOAS ..t e 29
2.3. 3 Hybrid methods ..o e 29
2.3.4 Embedded methods .....ocviiiiiiiii e 30
2.4 Recent challenges in breast cancer management ........cooiiiiiiiiiic i 30
2.4.1 Data heterogen ity it e e 30
2.4.2 High feature-to-sample ratio ......c.oooiiiiiiii e 32
2 G B\ (o1 Y= I-Y o Lo BT [ g Vol o o= 1 ) Y 32
20T o of 1T =3 Lo T 1P 35

3. Embedded Feature Selection for SVM by Gradient Descent Methods. 37

3.1 Gradient descent based method for solving I1 regularized problems ................... 38

3.2 Implementation details ..oovi i 42



Contents

3.2.1 Hybrid conjugate gradient...... ..o 43
3.2.2 Computational CompleXity ..o 44
3.3 NUMEriCal @XPEIMENES 1ttt i i e e a e e e e e aareanes 44
3.3.1 EXpereimental SELUP .vvviiiiiii i i i 45
3.3.2 Experimental resUlLS ...ooiiii i e 46
T oY 'of LT =3 Lo 1 50

4. Towards a Unified Principle for Reasoning about Heteregeneous Data:

A Fuzzy LOGIiC FrameWorK. ... .c.eeiiiiiii s i e nsaee s snnnnnee s ennns 51
4.1 Simultaneous mapping for single processing prinCiple.......ccoviiiiiiiii i 52
4.2 Homogeneous spaces Of fEatUres ..o e ee e 54
4.3 Membership fUNCHIONS ... e 56
4.3.1 Quantitative type features .....cvviiiiiiiii i i e 56
4.3.2 Interval type fEatUres. . ..viiiii i i e 57
4.3.3 Qualitative type fEatures ..o i e 59
4.4 Common MemMeEDErShip SPaCe ..oviiiii i e 60
T ©{o] o o] 11 1= o o PP 61
5. Supervised Learning based on SMSP principle......cc.coiiiiiiiiiiinnenn. 63
5.1 Fuzzy rule-based classifier for mixed-type data ..o 64
5.2 Weighted fuzzy rule-based classifier for mixed-type data............ccoeeviiiiiinnee, 65
5.3 Membership Margin ... 66
5.4 Membership margin based feature selection: MEMABS........ccoi i 67
5.4.1 Fuzzy feature weight estimation ... 68
5.4.2 Membas Algorithm ... ..o 69
5.4.3 Membas for multiclass problems ......c.coviiiiiiiiii 70
5.5 EXperiments and COmMPariSON S .ottt ii et ittt r e s r e aaas 71
5.5.1 Feature selection Methods .....ooviiiiiiiii i e e neas 71
5.5.2 EXperimental SeUP ..viiiii i i 73
5.5.3 Experiments on low-dimensional datasets .........ccoviiiiiii i 74
5.4.4 Experiments on high-dimensional datasets.........coooiiiiiiii i 83
oI S 3 o] o Tl U T3 'e Y o 1 PP 86

5. Unsupervised Learning based on SMSP principle...........cccvvviiiinnnnn. 89



Contents

6.1 Iterative membership function updating .......ccooviiiiiii i 90
6.1.1 Quantitative type features ....coviiiii 90
6.1.2 Interval type features. . i 91
6.1.3 Qualitative type fEatUres ...iiiriiii i e 91

6.2 Online fuzzy clustering for mixed-type data ........coiiiiiiiiiiii i e i 92

6.3 Online fuzzy feature weighting for heterogeneous data clustering ...................... 94

6.4 EXPerimeEntS reSUITS .. ittt i e e e e e e 98
6.4.1 SyNthetiC data. . oo e 99
6.4.2 ReAl data....ciiiiiiii i e 99

ST T @10 [l 1T 1= Lo I PP 103

7. Breast Cancer Applications .....cvviiiiiiii i i 105

7.1 Cancer prognosis based on clinical data and/or microarray data....................... 105
7.1.1 cancer prognosis application based on clinical data...............ccooiiiinnee. 105
7.1.2 Cancer prognosis application based on microarray data................ccoevviinee. 110
7.1.3 Hybrid signature derivation by integrating clinical and microarray data for

(or=1 g Lol <] ol o] e T | o Lo 1= =30 116
7.1.4 Symbolic gene selection to defy low signal-to-noise ratio for cancer prognosis
....................................................................................................... 121

1= 1= 126
728G T ©{o ] Y of 11 1] e T 131
Conclusion and fUutUre WOrK.....vviiiiiiiiiiiiiie e et reeees 133
(€] [o1F-1 0 VA o) il ot=1 g Lol g =] o 1 [ 137
FAY 0] 0 1< g Lo {5 C=E P 141

ST 8} =1 2 =1 161






List of Figures

List of Figures

Figure 1.1. Breast cancer prognosis 10
Figure 1.2. Traditional prognostic and predictive tools for breast cancer 11
Figure 1.3. Adjuvant setting for prediction of treatment benefit 14
Figure 1.4. Neoadjuvant setting for prediction of treatment benefit 15
Figure 2.1. Artificial Neural Network 22
Figure 2.2. Decision tree 23
Figure 2.3. Support Vector Machines 24
Figure 2.4. Hierarchical clustering 26
Figure 2.5. Partitionning clustering 27
Figure 2.6. The scatter plot of gene expression pairs: (a) experiments pair on the same
sample, (b) experiments pair on two different samples 33
Figure 3.1. Running time of DGM-{;SVM and LPNewton performed on eight benchmark
datasets using different A values 48
Figure 3.2. Precision time of DGM-{1SVM and LPNewton performed on eight benchmark
datasets using different A values 49
Figure 4.1. SMSP principle 54
Figure 5.1. Classification errors obtained by LAMDA on UCI datatsets using Membas,
I-Relief, Relief and Simba 79
Figure 5.2. Classification errors obtained by k-NN on UCI datatsets using Membas,
I-Relief, Relief and Simba 80
Figure 5.3. Classification errors obtained by SVM on UCI datatsets using Membas,
I-Relief, Relief and Simba 81
Figure 5.4. Feature weights obtained by Membas, I-Relief, Relief and Simba on Heart
data set 82
Figure 5.5. Feature weights obtained by Membas, I-Relief, Relief and Simba on
Ljubljana dataset 82
Figure 5.6. Feature weights obtained by Membas, I-Relief, Relief and Simba on
Diabetes data set 83
Figure 5.7. Classification errors obtained by LAMDA on DNA microarray datatsets using
Membas, I-Relief, Relief and Simba 85
Figure 5.8. Classification errors obtained by k-NN on DNA microarray datatsets using
Membas, I-Relief, Relief and Simba 85
Figure 5.9. Classification errors obtained by SVM on DNA microarray datatsets using
Membas, I-Relief, Relief and Simba 86
Figure 6.1. (a) Clustering results (b) Fuzzy feature weights 99
Figure 6.2. Fuzzy feature weights resulted by WFCA 102
Figure 7.1. (left) Feature weights by Membas, (Center) Features weights by Simba,
(right) Dependency measure by NRS 107

Figure 7.2. Classification errors obtained by LAMDA on Ljubljana datatset using
Membas, NRS and Simba 107



List of Figures

Figure 7.3. Classification errors obtained by k-NN on Ljubljana datatset using Membas,

NRS and Simba 107
Figure 7.4. Class prototypes obtained by clustering for interval features "Age, Tumor
size, Invaded nodes" 109
Figure 7.5. Class prototypes obtained by clustering for qualitative feature "Ablation
ganglia" 109
Figure 7.6. Class prototypes obtained by clustering for interval features "Irradiation"
109

Figure 7.7. Class prototypes obtained by clustering for interval features "Malignancy
degree" 109
Figure 7.8. Class prototypes obtained by classification for interval features "Age, Tumor
size, Invaded nodes" 110
Figure 7.9. Class prototypes obtained by classification for qualitative feature "Ablation
ganglia" 110
Figure 7.10. Class prototypes obtained by clustering for interval features "Irradiation"
110

Figure 7.11. Class prototypes obtained by clustering for interval features "Malignancy
degree" 110
Figure 7.12. ROC curve of clinical, 20-gene and 70-gene signatures 112
Figure 7.13. Kaplan-Meier estimation of the probabilities of remaining metastases free
for the good and poor prognosis groups (20-gene signature) 113
Figure 7.14. ROC curve of hybrid, clinical and 70-gene signatures 118
Figure 7.15. Kaplan-Meier estimation of the probabilities of remaining metastases free
for the good and poor prognosis groups (Hybrid signature) 119
Figure 7.16. ROC curve of GenSym, clinical, 20-gene and 70-gene approaches 123
Figure 7.17. Kaplan-Meier estimation of the probabilities of remaining metastases free
for the good and poor prognosis groups (GenSym signature) 124
Figure 7.18. Markers weights obtained by Membas 127
Figure 7.19. Profiles of negative and positive classes 130

Figure 7.20. ROC curve of three approaches 130



List of Tables

List of Tables

Table 2.1. Cancer diagnosis dataset used for supervised classification 21
Table 3.1. Summury of datasets 46
Table 3.2. CPU time of the two algorithms performed on the eight datasets for all A

values 47
Table 3.3. CPU time of the two algorithms performed on the eight datasets for all A

values 47
Table 4.1. Group of patterns characterized by three mixed-feature type 56
Table 5.1. Summury of used datasets 74
Table 5.2. Optimal Testing Errors (%) and corresponding number of features on the ten

datasets with LAMDA 75
Table 5.3. Optimal Testing Errors (%) and corresponding number of features on the ten

datasets with k-NN 75
Table 5.4. Optimal Testing Errors (%) and corresponding number of features on the ten

datasets with SVM. 76
Table 6.1. Summury of used datasets 100
Table 6.2. Clustering error of the proposed and FCM approaches 101
Table 7.1. Optimal Testing Errors (%) and corresponding optimal number of factors on

Ljubljana dataset 108
Table 7.2. Clustering error for Ljubljana dataset 109
Table 7.3. Classification performance using 20-gene signature, 70-gene signature, all

clinical markers, St Gallen consensus and NIH criteria 111
Table 7.4. Notation and description of 20-gene signature 113
Table 7.5. Comparative results between hybrid, clinical and genetic signature 117
Table 7.6. Notation and description of hybrid signature 119
Table 7.7. Comparative results between Gensym, clinical and genetic signatures 122
Table 7.8. Notation and description of GenSym signature 124
Table 7.9. List of ranked predicitive factors obtained by Membas. 128

Table 7.10. Comparative results between 4-marker, 2-marker and all data approaches
130






Introduction- Résumé

Introduction- Résumeé

Le cancer du sein est actuellement le plus frégdest cancers féminins. Dans le monde,
chaque année, I'on compte plus de 1 050 000 deeaoxdvcas diagnostiqués et plus de 400
000 déces causeés par le cancer du sein. Rien duaamce, il est prévu que pres de 53 000
nouveaux cas de cancer du sein seront diagnostiguésie 11 500 patientes mourront du
cancer du sein en 2011 (Institut de Veille Sargta®011). Malgré les avancées significatives
faites ces derniéres décennies en vue d’améliaaegdstion du cancer, des outils de
diagnostic et de pronostic plus précis sont enaugeessaires pour aider les oncologues a

choisir le traitement nécessaire a des fins de igoérou de prévention de récidives

La gestion du cancer du sein peut se résumer @s nmblemes principaux: diagnostic,
pronostic et prédiction de bénéfice thérapeutigBien que le diagnostic du cancer du sein
puisse étre entierement assuré par des outils d@mea médicale, le pronostic et la
prédiction du bénéfice thérapeutigue semblent étetaches plus difficiles. En effet, a cause
de I'hétérogénéité et la complexité de la maladiecdncer, les patients avec les mémes
symptémes auraient des évolutions de cancer tfé&relites. Les approches traditionnelles
sont basées principalement sur un petit ensemblevaeables clinigues et histo-
pathologiques. Cependant, ces outils de pronostejue prédiction sont loin d'étre parfaits

et des modeles plus précis sont nécessaires pagiraaer la gestion du cancer du sein.

L'émergence de technologies a haut débit dans dai@e décennie, comme la technologie
des biopuces (puces a ADN), a rendu possible laumpesimultanée de I'expression de
milliers de génes. Ces technologies ont apporté& @les I'espoir de gagner de nouveaux
apercus sur la biologie du cancer et d'améliores lautils actuels de gestion du cancer.
Cependant, ces technologies ont aussi apporté alles de sérieux challenges liés aux
caractéristiques intrinseques des données prodtgéss que: (1) la grande dimensionnalité
des données et (2) la nature bruitée des mesupegefbis, l'incertitude de mesure n'est pas
le seul type d'incertitude auquel on est confrdotéque I'on veut appliquer les méthodes
d'apprentissage automatique a des problemes reelgaison de la grande complexité de la
maladie du cancer du sein, la tumeur d'un patienitpen effet appartenir simultanément a
des groupes moléculaires différents de cancer awecertain degré d'appartenance. Par
ailleurs, pour éviter le probléeme du faible nomhde patients sur lesquels on dispose

d’'informations, il serait préférable d'utiliser Fesemble des bases de données issues de
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biopuces disponibles. Néanmoins, cela souléve qultsiproblemes tels que la difféerence
entre les populations et les technologies bioputidisées nécessitant la prise en compte de
l'incertitude d’appartenance dans le processus éeision. Vu que les méthodes statistiques
traditionnelles sont mal adaptées pour faire faceda tels problemes, les méthodes
d'apprentissage automatique ont été choisies coomeebonne alternative pour surmonter

ces challenges.

Des études récentes ont démontré la valeur potentae la signature d’expressions
génétiques dans I'évaluation du risque de récumene la maladie post-chirurgicale.
Cependant, ces études tentent de développer dés det pronostique basés sur des
marqueurs géeneétiques pour remplacer les criterésiqules existants, ce qui suggere que
chaque approche doit étre utilisée indépendamnizmplus, le fait qu’en procédant de cette
maniére nous occultons complétement la richesse imfesmations contenues dans les
marqueurs cliniques établies durant des décenngesedherche sur le cancer, les cliniciens
peuvent faire face a la situation critique ou letipat a un critere pathologique clinique en
contradiction avec le résultat fourni par la signe¢ génétique. Une approche typique alors
serait d'intégrer les deux types d'informationsnigues et I'expression des génes) dans le
processus de prise de décision. Cependant, endaasdéfis indiqués précédemment liés
principalement aux données de biopuces, d'autrémmdies tels que I'hétérogénéité des
données caractérisant les données cliniques dogteatconfrontés pour intégrer a la fois les
deux types d’information. Les facteurs cliniqueBisédis pour la description de ['état du
patient sont en effet généralement représentésfideethtes manieres selon la perception des

médecins.

Par conséquent, ce qui est vraiment nécessaire powdliorer la gestion du cancer actuelle
est le développement d'approches d'apprentissageratique capables d’aborder tous les
problemes indiqués ci-dessus. Pour résumer, trofisddoivent étre principalement
confrontés: le premier est lié a la dimensionnakiévée dans les données en particulier
celles issues de la technologie des biopuces, dengseest le probleme du bruit et des
incertitudes associés généralement aux données glog le dernier est lié a la présence de
données de type mixte dans les bases de donngéigsiesi. C'est 'ensemble de ces problemes
gue nous avons abordés dans cette thése dans vm dagprentissage automatique dans le
but de concevoir des outils de gestion plus prégisancer pour aider les médecins dans leur

décision.
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Introduction

Cancer is one of the most common causes of dedtieiworld. Due to the rapid increase in
cancer cases, cancer will soon replace heart @isesathe leading cause of deaths worldwide.
Currently, breast cancer is the most frequent male cancers. In the world, each year, the
there are more than 1 050 000 new diagnosed cademare than 400 000 deaths caused by
breast cancer. In France alone, it is expectedattvatind 53 000 new breast cancer cases will
be diagnosed and 11 500 will die from breast camte&2011 (Institut de Veille Sanitaire,
2011). Although the significant improvement madst ldecades in cancer management, an
accurate cancer diagnosis and prognosis is sellle to help physicians take the necessary
treatment decisions and thereby reducing its mlatverse effects as well as its expensive
medical costs.

Breast cancer management can be summarized by thma@ issues: diagnosis,

prognostication and prediction of therapy bendfit. early breast cancer diagnosis improves
the chances of cure and may avoid distant metastiesielopment, i.e. development of new
tumors in different organs. A prognostic tool wowddable the physicians to forecast the
likely course of the disease (e.g. Relapse or Raamy and therefore spare patients from
unnecessary anti-cancer toxic treatments such esatherapy. A predictive tool would

enable however to predict the tumor response taréicplar treatment and therefore to

prescribe the optimal tailored treatment for eaatiemt. Although breast cancer diagnosis can
be fully assured by imaging modalities and compatded detection tools, breast cancer
prognostication and prediction of therapy beneftras to be more challenging tasks. Due
indeed to the high cancer heterogeneity and contp)gxatients with the same symptoms

would have very different evolutions and outcome.

Traditional approaches are based mainly on a ssallof clinical and histo-pathological

variables (e.g. tumor size and lymph node statdsjvever, these prognostic and predictive
tools are far from perfect and more accurate modetsneeded to improve breast cancer
management. Clinician practitioners have rapidlgsged the urgent need of new accurate
tools as well as a good understanding of the bicddgnechanisms involved in breast cancer

progression.

The emergence of high throughput technologies m ldst decade, such as microarray
technology, has made possible the simultaneousureraent of the expression of thousands

1
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of genes. These technologies have carried with thenhope to gain new insights into cancer

biology and improve current tools for cancer managa. Meanwhile, these technologies

have brought with them also serious challengesa@l® intrinsic characteristics of the issued

data such as: (1) high data dimensionality (thodsar gene expressions for few a number of
samples); and (2) the noisy nature of measurem8&irise traditional statistical methods are

ill-conditioned to deal with such problems, machie&ning approaches have been picked up
as a good alternative to overcome these difficsiltie

However, measurement uncertainty is not the orpg ©f uncertainty to be faced with in real-
world problems by machine learning approaches. tbuke high complexity of breast cancer
disease, a patient's tumor can belong simultangéaishany cancer groups with some degree
of membership. Moreover, to alleviate the problemsmall sample size, it would be
preferable to use all available microarray datadé¢vertheless, this raises several problems
such as the difference among populations and tkeotiglifferent microarray technologies

requiring the consideration of membership uncetyamthe decision making process.

Recent studies have demonstrated the potentialevafugene expression signature in
assessing the risk of post-surgical disease rewmareHowever, these studies attempt to
develop genetic marker-based prognostic tools mace the existing clinical criteria,
suggesting that each approach should be used indepiy. Besides the fact that by doing so
we are ignoring the rich information contained limical markers established over decades of
cancer research, clinicians can face the critidalason where the patient has a clinical
pathological criterion in contradiction with thengesignature outcome. One typical approach
would be to integrate both types of informationn{clal and gene-expression) in the decision-
making process. However, in addition to the chajéenstated previously related mainly to
microarray data, other dilemmas should be facedtagrate both information, such as data
heterogeneity in clinical data. Clinical feature®d for patient state description are generally
represented in different ways according to the s perception (one may note for
example the age for a patient by a quantitativeeré.g. age= 35) whereas another prefers a

symbolic value (e.g. age< 35)).

Therefore, what is really needed to improve curreahcer management is developing
machine learning approaches capable of handlingbaile stated challenges. To summarize,
three challenges are mainly faced: the first oneelated to high dimensionality in data

especially issued from microarray technology, teeosd one is the problem of noise and
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uncertainties associated usually to both data velsetfee last one is related to the presence of
mixed-type data in daily produced clinical datas@ddressing efficiently those problems is
urgently needed provided that in some cancer agipias the three challenges can be even
faced simultaneously (e.g. integration of cliniead microarray data). Indeed, in order to
improve the accuracy of current predictive toolserg trends in bioinformatics and
biomedicine are directed towards the integrationnafeasing numbers of sources of data.
This thesis addresses such problems within a madesrning framework with the aim to
design more accurate cancer management toolspgdhephysicians in their decision making

process.

This work is the result of a collaboration whichshaeen initiated 4 years ago between the
group DISCO of LAAS and the Institut Claudius Regjdiust of all through a common PhD
scholarship obtained after competition from UniitérsPaul Sabatier («bourse dite du
Président» and the participation to the project eAinONCOMATE, (labelled by the
fondation INNABIOSANTE). This project aimed to déme a novel technological platform
for the detection of cancer marker proteins, by loming three major technologies: molecular
imprints of target marker proteins into sugar hglpolymers, a label free sensor chip based
on diffraction of light by nanoscale structuresd anachine learning algorithms fed with the

screening of a cancer tissues database with falhymous patient records.

The manuscript is organized as follows:

The first chapter provides a brief overview abdw tnost important tasks in breast cancer
management: cancer diagnosis, prognosis and pradiof treatment benefit. We briefly
describe their evolution over decades of cancerared and their challenging aspects from
medical point of view. We explain their medical esfs and the approaches usually used to

deal with them.

The second chapter reviews the state-of-the-arhathine learning in cancer research. We
have described the three machine learning taskstlymased in cancer management:
supervised classification, clustering and featetedion. A few examples of the most known
approaches for each task are briefly described ighlighting their advantages and
drawbacks. Then some application examples of spploaches in breast cancer management
are provided. This chapter ends with a descriptibthe recent challenges that have to be

faced to improve cancer management and treatmempaiticular, we give further details
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about the problems of data heterogeneity, high dgiemality, low signal-to-noise ratio and

membership uncertainties.

The third chapter addresses the problem of datambmnality by taking advantage of
learning capabilities. We particularly propose anbedded feature selection approach for
SVM problem using gradient descent techniques withiesorting to any dual formulation.
The basic idea is the transformation of the ini8®MM convex optimization problem into
unconstrained non-convex one. The non differergigbperty of the hinge loss function has
been overcome by using its approximated Huber fimsstion. We show that this approach
guarantees the global optimality of the solutionilevrexhibiting a good computational
efficiency compared to other approaches solvingsdume problem. Large-scale numerical
experiments have been conducted to demonstrate ¢thems.

In chapter four we consider to deal simultaneoughy the problems of data heterogeneity
and membership uncertainty. In this order a unifjgihciple, referred to as SMSP
(Simultaneous Mapping for Single Processing), isatuced to cope with the problem of data
heterogeneity within a fuzzy logic framework. Thpsinciple is based on a simultaneous
mapping of data from initially heterogeneous spantsonly one homogeneous space using
an appropriate measure of typicality (or membedshipnce the heterogeneous data are
represented in a unified space, only a single @ng for various analysis purposes such as
machine learning tasks can be performed. We comsidthe three most used types of

features: (1) quantitative; (2) interval; and (Bpttative.

In chapter five the problem of supervised learrdaged on the SMSP principle is addressed.
A new feature weighting method is proposed for mikge and high dimensional data based
on amembership margito improve the performance of fuzzy-rule basedsifeers. For this
reason, a weighted fuzzy rule concept is introdwsretla membership margin-based objective
function is defined. A classical optimization apgeh is used to avoid heuristic combinatorial
search. Large-scale experiments have been alsacimudto compare the proposed approach

with some well-known feature selection approachetheee state-of-the-art classifiers.

In chapter six the problem of unsupervised learnbaged on the SMSP principle is
considered. We propose a novel approach basedlme deature weighting for clustering of
heterogeneous data. The proposed algorithm is aens®n of our supervised feature

weighting algorithm. To cope with the problem otal&eterogeneity, the SMSP principle is
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extended here also to reason in a unified way abetdrogeneous data in an unsupervised
framework. An extensive experimental study has leen performed on artificial and real-
world problems to prove the effectiveness of theppsed approach.

Finally, some breast cancer applications of thepgsed approaches are shown in chapter
seven. In particular, the works presented hereldpvd) Cancer prognosis based only on
clinical data (2) Derivation of 20 genes signatfoe cancer prognosis based on microarray
data (3) Derivation of a hybrid signature for canpeognosis based on the integration of
clinical and microarray data (4) Derivation of anmoobust prognostic signature (referred to
as GenSym) based on a symbolic approach by modtimglifferent noises as symbolic
intervals (5) Derivation of 4-markers signature tbe prediction of neoadjuvant treatment
benefit in HER2 over-expressed breast cancer gatien
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CHAPITRE 1-Résumé
Gestion et traitement du cancer

Le cancer est l'une des causes les plus fréqueeteces dans le monde. Selon la derniere
édition du rapport mondial sur le cancer (World €an Report WCR) de I'Agence

internationale de recherche sur le cancer, di admentation rapide des cas de cancer, le
cancer va bientét remplacer les maladies cardiago@mme la principale cause de déces
dans le monde. WCR prévoit que 12,4 millions desgreres seront diagnostiquées avec

certaines formes de cancer chaque année et quailliéns de personnes en mourront.

Les cancers les plus courants dans le monde eretediincidence ont été: poumon (1,52
millions de cas), sein (1,29 million) et colorec(a|15 millions). En raison de son mauvais
pronostic, le cancer du poumon a également étélsse la plus fréquente de déces (1,31
millions), suivi par le cancer de I'estomac (78000féces) et le cancer du foie (699 000
décés). Nous nous concentrons dans notre travailleseancer du sein comme l'une des

tumeurs malignes les plus frequemment diagnostsciéez les femmes.

Des stratégies de gestion du cancer sont nécessaieetoute urgence pour réduire la
morbidité et la mortalité par cancer, et améliodar qualité de vie des patients atteints de
cette maladie. Des travaux de recherche considémalint été réalisés ces derniéres
décennies dans l'espoir d'apporter de nouvellespgmstives a la maitrise de la biologie du
cancer et I'amélioration des approches utiliséetua@dement pour la gestion du cancer en

particulier celui du sein.
La gestion du cancer du sein peut se résumer éntéohes principales successives:

1- La détection précoce et le diagnostic efficace ahcer,

2- Une pronostication efficace pour prédire le risqie développer des métastases (de
nouvelles tumeurs dans les différents organes) saitement systématique,

3- Le choix d'un traitement optimal et personnalisdanrction de I'agressivité du cancer

en prédisant le bénéfice thérapeutique.

Le premier chapitre de cette these décrit chaqube&t donne brievement leur évolution au
cours des décennies de recherche sur le cancers Bvans essayé de souligner leurs aspects
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difficiles d’'un point de vue médical en expliqudes questions d'intérét et les approches

habituellement utilisées pour les traiter.

Malgré les nombreuses tentatives effectuées eremaalie recherche sur le cancer, il peut
étre constaté que la tache de diagnostic de caduesein est toujours basée principalement
sur des outils de détection par imagerie (Hayat0&0 Cependant, contrairement au
diagnostic de cancer, les taches de pronostic girddiction du bénéfice d’'un traitement ont
connu une Vvéritable révolution au cours des dessérdécennies. Les approches
traditionnelles utilisées pour effectuer ces deazhes ont été basées essentiellement sur
l'utilisation des connaissances qualitatives acgsisau cours de plusieurs décennies de
recherche sur le cancer. Cette connaissance eshuige généralement sous la forme de
régles en fonction de certains facteurs cliniquels que I'age, le grade histologique et le
statut des récepteurs hormonaux. On note parmappsoches l'indice NIH adopté aux Etats
Unis (Eifel et al., 2001) et le critere de St-Gallen Europe (Goldhirsh et al., 2003). Des
modeles plus sophistiqués ont été aussi propotggue Adjuvant! (Olivotto et al., 2005) et
I'indice de pronostic de Nottingham (NPI (Galeaaét 1992)) et sa version améliorée (Belle
et al., 2010). Ces approches ne parviennent pasméms a fournir une gestion précise du
cancer. Cependant, I'introduction des nouvellehtetogies de pointe recemment ont permis
d'obtenir quelques éclaircissements sur les praceslogiques qui sous-tendent la grande
hétérogénéité du cancer du sein. En particuliertdahnologie des biopuces a largement
marqué la recherche sur le cancer pendant le siéalgant ouvrant la porte a une prise en
charge adaptée et personnalisée du cancer du seirsee basant sur l'extraction des
signatures génétiques moléculaires. Les travaugrdads impacts inclus mais ne se limitent
pas aux signatures d’Amsterdam (Van't Veer et 2002), et de Rotterdam (Wang et al.,
2005a) pour la tache pronostic et la signature dédgction de survie sans rechute pour la
tache de prédiction (Ma et al., 2004).

Toutefois, ces progrés significatifs en terme ddrelogie ont amené avec eux de sérieux
défis liés a I'énorme quantité de données produites ces technologies et ont requis
egalement une révolution similaire en termes d'appes permettant de traiter ces données.
Cela fera I'objet du chapitre suivant dans lequels nous concentrons sur I'analyse de I'une
des approches les plus utilisees (méthodes d'apgsage automatique) pour effectuer les
trois taches de gestion du cancer. Sur cette bases décrivons les enjeux récents liés a ce
domaine qui feront les problématiques que nous@dts dans cette thése.
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CHAPTER 1
Cancer Management and Treatment

Cancer is one of the most common causes of dedhteiworld. According to the last edition
of the World Cancer Report (WCR) from the Interoasil Agency for Research on Cancer,
due to rapid increase in cancer cases, cancersaglh replace heart disease as the leading
cause of deaths worldwide. WCR projected that 12illon people will be diagnosed with
some forms of cancer each year and 7.6 million lgeopll die. WCR said: “The global
cancer burden doubled in the last 30 years of @hie @ntury, and it is estimated that this will
double again between 2000 and 2020 and nearly topP030".

According to WCR, 26.4 million people per year nieydiagnosed with cancer by 2030, with
17 million people dying from it. There will be 1%dadrease in cancer incidences each year,
with larger increases in China, Russia, and Inéldption of tobacco use and higher-fat diets
and demographic changes, including a projectedlpbpn increase of 38% in less-developed
countries between 2008 and 2030 are the main reasfoimcrease in cancer cases in these

countries.

The most common cancers in the world in terms afience were: lung (1.52 million cases),
breast (1.29 million) and colorectal (1.15 millioBecause of its poor prognosis, lung cancer
was also the most common cause of death (1.31omjjijlfollowed by stomach cancer (780
000 deaths) and liver cancer (699 000 deaths).dbesfin our work on breast cancer as one

of the most frequently diagnosed malignancy in wonmethe world.

Cancer management strategies are needed urgendgitioe the morbidity and mortality from
cancer, and to improve the quality of life of cangatients. Tremendous research works were
performed last decades in the hope to bring newghis to cancer biology and improving

current approaches for breast cancer management.
Breast cancer management can be summarized inrtfai@esuccessive tasks:

» Early detection and efficient cancer diagnosis,
» Efficient prognostication to predict the risk toveop metastases (hew tumors in

different organs) without systematic treatment,
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e« Selection of an optimal and personalized treatmeatording to cancer

aggressiveness by predicting the therapy benefit.

Usually traditional clinical tools are used to penh such tasks based on histo-pathological
factors such patient age and tumor size. Howeeeently new advanced high throughput
technologies, such as gene expression profilingutgit microarray, have being introduced
extensively in this field.

This chapter describes each task and gives brte8yr evolution over decades of cancer
research. We try highlights their challenging asp&om medical point of view. We explain

the medical questions of interest and the apprcackeally used to deal with them.

1.1 Cancer detection and diagnosis

Early cancer detection plays a key role in decrepsie death rates from cancer and achieves
a better prognosis (Hayat, 2008). Indeed, diffesentrces (Institut National du Cancer, 2011;
Association pour la Recherche sur le Cancer, 28hajvs that breast cancer treatment in an
early stage of development can increase signifigainé patient’s survival chance. Moreover,
early breast cancer detection increases the chéocesnservative surgery to be carried out
instead of radical mastectomy, the only solutioradtvanced stage breast cancers (Hadfty
al., 1991). However, the main aim of this task shawdtibe only to detect the existence of the
cancer but also to identify the cancer class antbegpre-established classes and discover
new cancer subclasses. For decades many techmiguesproposed to perform an accurate

breast cancer diagnosis.

Usually, the most used technique is based on ingaggtection tools (e.g. mammography is
considered as the most cost-effective method faeatieg breast cancer (Hayat, 2008).
However, due to the complex structure of the brehstusands of mammograms must be
processed to detect a few cancers (Gallardo-Cabateal, 2007). This task can be tedious
and stressful, and can cause radiologist confugiading to diagnosis errors (Hayat, 2008).
Moreover, despite the availability and recommendsd of mammography as a routine
screening method for women older than 50 yearsgyef & is still inefficient and insufficient

to identify accurately the cancer class (Antman 8hda , 1999; Hayat, 2008). For that other
techniques that could be used individually or imbanation with existing modality for cost-

effective screening of breast cancer have beersiigated.
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In addition, there is a wide spectrum in cancerphology and many tumors are atypical or
lack morphologic features that are useful for ddfgial diagnosis. Therefore, with the
increasing need of an accurate detection of cativersearch is on for reliable markers that
will be clinically helpful in the diagnosis of snhalbmors. To this end, a large number of
blood tumor markers have been proposed for breaster detection, including CEA
(CarcinoEmbryonic Antigen), ESR (Erythrocyte Seduta¢ion Rate) (Cheunet al, 2000; Li

et al, 2002), but have not been well adopted in clinpactices. However, due to the high
cancer heterogeneity the currently accepted clid@gnostic markers fall short to classify
the disease in subtypes and there is a critical teeaentify novel diagnostic markers (Golub
et al, 1999). Golub and co-authopsinted out that cancer classification task canlibled
into two challenges: class discovery and classigtied. Class discovery refers to defining
previously unrecognized tumor subtypes whereas @esdiction refers to the assignment of
particular tumor samples to already-defined sulgype classes). Therefore, reliable markers
are required to gain new insights into cancer lgpland can be clinically helpful in the

diagnosis of small tumors.

It has been found out recently that cancer disesmdsding breast cancer result from the
accumulation of mutations, chromosomal instabgitend epigenetic changes that together
facilitate an increased rate of cellular evoluteamd damage that progressively impairs the
cell's detailed and complex regulation system off ggowth and death. This fact has
motivated cancer researchers initially to invesgghe importance of one or only few genes
at a time in order to improve cancer detection drgnosis (Matsumura and Tarin, 1992).
Although hundreds of such studies have pointedddterences in the expression of one or
few genes, no one of them have provided a compsahestudy of gene expression in cancer
cells (Zhanget al, 1997; Ramaswamgt al, 2001). Recent advances in high throughput
technologies, such as microarray and mass spedinorge Appendix 1), have made it
possible to answer such questions through simwtananalysis of the expression patterns of
thousands of genes and proteins (Gauhbl, 1999; Ramaswangt al, 2001; Liet al, 2002).
These technologies are considered promising fanmgginew insights into cancer biology.

1.2 Cancer prognosis

After the diagnosis of breast cancer, the next ntamb step is the prognosis which aims to
predict the survival of a patient, or her risk ®vdlop metastases without treatment (Figure
1.1) (Haibe-Kains, 2009). Roughly speaking, progh@dtempts to accurately forecast the
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evolution or outcome of a specific situation (eRelapse or Remission) using input
information obtained from a concrete set of vaealthat potentially describe that situation
(Gémez-Ruizet al, 2004). Naturally, this task depends strongly loé tdiagnosis task

presented previously, as an accurate diagnosisallolv giving some information about the
likely evolution of the disease. Moreover, this da also extremely important because it
assists oncologists, as described in the next stibse to select the optimal treatment
required for a breast cancer patient chemo-, hoemoor other systematic therapies; and

which patient can be treated with loco-regionatmeent alone (Haibe-Kains, 2009).

Breast surgery Follow-up
] ] +/- Radiotherapy ; 5-10 years
Diagnosis Adjuvant R Treatment
Therapy response
Recurrence Remission

Prognosis 1

Fig. 1.1. Breast cancer prognosis.

Similarly to cancer diagnosis, many approaches wweoposed in the literature to perform
cancer prognosis. For a long time cancer progneais guided by the clinical and histo-
pathological knowledge gained from many decadesp€er research. In this approaches, the
risk of recurrence is primarily determined by tlge af the patient, nodal status, tumor size,
histological grade, the expression status of hoahoaceptors, i.e. estrogen (ER) and the
progesterone (PgR) as quantified by immunohistocsteyn (IHC), the status of HER2
oncogene, vascular emboli, proliferation index arelologic type (Haibe-Kains, 2009) (See
Glossary and Appendix 1 for definitions). Many canprognosis criterions were proposed
based on these variables; among them we find thierd Institute of Health index for USA
(Eifel et al, 2001) and the St Gallen consensus criteria (Galdlet al, 2003) for Europe in
order to assist clinicians in their decision-mak{sge Figure 1.2). However, using only one
variable at a time (e.g. histological grade) haanbfeund insufficient and not accurate enough
(Perezet al, 2006). To improve prognosis accuracy, more soighied models based on a
combination of these variables has been also pegpatich as multivariable outcome
prediction models (e.g. Adjuvant! (Olivottet al, 2005)) and the Nottingham Prognostic
Index (NPI (Galeeet al, 1992)) and its improved version (Beke¢ al, 2010)) (see Figure
10
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1.2. However, the prognosis accuracy is far from periEnd more accurate models are
needed before it will be possible to clearly idniwhether a patient will relapse, especially

patients with early breast cancer (node-negatiee,niodal status equal to 0), to spare them
from receiving unnecessary systematic therapy dsaweeduce its related expensive medical
costs. It is reported that a third of breast campadrents are over treated which makes them
undergo its side effects in the short and long $e@n the contrary a more moderated number
undergoes an under treatment by underestimatingdistance recurrence and therefore they
are wrongly spared from systemic adjuvant treatndoteover, two patients with exactly the

same clinical and pathological characteristics ltave different outcomes. Therefore, a more
accurate prognosis could avoid any adverse sidetsfiof adjuvant therapies and its related

high costs.

___________________________________

Tumor size
NPI
Age
HER-2
AOL Prognosis
R and
Prediction
PgR
NIH /
Lymph node status P St Gallen

Histological grade

Fig. 1.2. Traditional prognostic and predictiveltofor breast cancer.

To this aim, firstly two protein biomarkers knows @aPA/PAI-1 (for respectively Urokinase-
type Plasminogen Activator and Plasminogen Activé&tbibitor typel) have been shown to
be effective to identify subclasses of patienta &snction of their recurrence risk (Janicke
al., 2001). It has been shown in a retrospective stbdithese biomarkers have a superior
prognostic power than other classical factors (Aggmone receptors, Grade). Meanwhile,
recent advances in high throughput technologie® ledso open the door to new research
orientations in this field aiming to achieve a mapeurate cancer prognosis. Indeed, clinical
investigators have found out that these technotogen not only be useful to gain new
insights into cancer biology but can also be a pawerognostic tool. Unlike traditional

clinical variables which are usually limited to fethese technologies give the advantage to

11
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provide simultaneously the expression differertiatof thousands of genes in the aim to

derive prognosis models based only on a set oftgemarkers.

A first outstanding work in this direction was parhed by the Netherlands Cancer Institute
(NKI) which has conducted a comprehensive studyrder to derive a more accurate tool for
early breast cancer prognosis (Van't Vegeral, 2002). In this work the Agilent microarray
technology was used to extract a set of genesréliffelly expressed among two groups of
patients having different survival outcomes. Fistup include patients that have developed a
distant metastases within five years from diagnasiereas the second does not. In this study
a set of genes was identified including mainly geimevolved in the cell cycle, invasion,
metastasis, and angiogenesis. This signature isviknender the name of “Amsterdam
genomic signature” and enables to classify nodexineg)breast cancer patients, with a tumor
size inferior or equal to 5 cm (stage | or 1) aagkd less than 61, either in a high or a low risk
group. A supplementary study was also performed naw large population of patients from
the same institution, including both node-negathaje-positive, treated and untreated breast
cancers, to validate the predictive power of thgmature (Van de Vijveet al, 2009). This
signature was also compared to classical clinigerions (i.e. NIH, St Gallen). In this study
the authors have shown the superiority of this giersgnature, compared to NIH and St
Gallen criterions, in term of predictive power @tignts’ outcomes. In the conclusion of this
work it has been pointed out that this predictiladity could spare a large number of patients

to be over-treated or to receive unnecessary tg¥i@m chemotherapy.

In recent studies, many attempts were also perfornmehe same direction to identify new
gene signatures. A gene-expression signature krasvithe Reccurence Score signature
include only 21 genes has been derived allowingfioe the stratification of ER-positive and
Node-negative breast cancer patients receiving xder in adjuvant setting (Paikt al,
2004). Three risk levels have been defined: weskk, intermediate risk and high risk. We
distinguish also the signature known as the Ratardignature (Wangt al, 2005a), where
76 genes have been identified for the same purpbsleat designed by (Van't Veest al,
2002) for node-negative patients who did not rezevsystematic treatment. However, this
study was performed using Affermetrix technologyd dras been shown to better identify

patients with poor prognosis compared to classidaical criterions.

Although the major contribution of such retrospeetistudies to open new directions for

cancer practitioners, they should be still validate prospective by randomized trials to

12
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obtain a sufficient LOE (Level Of Evidence) and rifere be used in routine practices
(Institut National du Cancer, 2009). A randomizdadical trial, called MINDACT for
‘Microarray In Node negative Disease may Avoid Cbdimerapy’, is ongoing to be
performed in order to compare the predictive aaouraf the Amsterdam signature with
clinical and pathological criteria such as adjuvadnline, to identify women with node-
negative breast cancer with a low risk of relagsether randomized trial called TAILORx
is also now under consideration to validate theuReace Score signature by putting them in
competition with classical factors having a levélevidence LOE 1 such as ER, HER-
negative, and uPA/PAI-1. The results expected ftbese studies will attribute to these
signatures a predictive power of level LEO 1 reegifor clinical implementations (Institut
National du Cancer, 2009).

Although the potential of the studies presented/atio breast cancer research, several critical
reviews can be found in literature about such gea@pproaches (Reis-Filhet al, 2006;
Koscielny, 2008). For instance, Reis-Filebal (2006) have pointed out that the clinicians
may face the situation where the patient has acealipathological criterion corresponding to
poor prognosis and a good gene signature. Onealyppproach would be to integrate both
types of information (clinical and gene-expressionjhe decision-making process which has
been shown recently effective in improving the pragjs tasks (Gevaeet al, 2006; Suret

al., 2007a).

1.3 Systemictreatment responsiveness prediction

The prediction task aims to predict the responsa bfeast cancer patient to a treatment. In
other words, for each patient, we need to decidiewtherapy will be the most effective. To
this end, as in the case of cancer prognosis aghdsis, this task consists also to identify a
set of markers that could predict response of argpatient to a particular drug (predictive
factors). This would spare patients from receivurecessary treatment and decrease its
associated medical and financial cost. We can ngjgish two settings for treatment
responsiveness prediction in breast cancer: adjufragure 1.3) and neo-adjuvant settings
(Figurel.4) (Mauret al, 2005).

In the last decade, the systematic adjuvant tre#tnse usually prescribed in the aim to
decrease the recurrence risk of breast cancernpati@n important consequence of such
procedure is overtreatment resulting from the adstration of adjuvant therapy to patients

for whom only a surgery would be sufficient (Strawt al, 2009). This leads mainly to

13
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expose the patients to adverse side effect ofrfanhent while increasing its associated cost.
In this case, the prediction is similar to the progjs task as illustrated in Figure 1.1, except
that a treatment is selected for each patient byetid. Precisely, in this setting we try to
predict whether the administration of a particiddjuvant therapy to a patient after surgery
will be beneficial after some years of follow-upe(grally more than 5 years). However,
although the response to a treatment in advanceasbicancer can be assessed by tumor
measurement in this case, it is still relativelffidilt to be characterized in the case of early
stage breast cancers after surgery (Clerag, 2005). An accepted practice in this case is to
administrate adjuvant chemotherapy even if we ktfwat it is not beneficial for a significant
number of patients (Charag al., 2005).

Breast surgery Follow-up
+ Radiotherapy Adjuvant >-10years Treatment
»

Therapy ~ 7| response

Diagnosis

1
1
1
1
1
1
; Therapy resistance Therapy benefit
1
1
1
1
1
1
1

Prediction ]

Fig. 1.3. Adjuvant setting for prediction of tream benefit

With respect to the neo-adjuvant setting, a biogfSlyreast cancer is firstly performed before
the administration of the neo-adjuvant therapy-perative therapy including chemotherapy
and hormone therapy, Figure 1.4). Then the tumoensved by surgery to assess the benefit
from the treatment such as a decreased tumor stzevallary lymph nodes. Indeed, although
the fact that both settings (adjuvant and neoadj)vaere reported equivalent in terms of
survival and overall disease progression, neoadjuveerapy was found to be a safe approach
allowing to avoid mastectomy in a significant numbewomen (Makriset al, 1998; Cleator
et al, 2004; Mauriet al, 2005). The benefit from a treatment for patiantshese cases is
usually characterized in terms of pathological clatep response (cPR) defined as the
complete disappearance of cancer cells in the begaslymph nodes. Even of the fact that
the concern in this case is to analyze the respongesistance to the treatment without
paying much attention to the survival issue, it basn pointed out that the response to some
neoadjuvant therapies (e.g. chemotherapy) coreeldtsely with improved clinical outcome
(Fisheret al, 1998).
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However, in both settings the identification ofed sf biomarkers that predicts the response to
treatment accurately is not an easy task. Theidaittat over 20 years of cancer research for
new important markers, we still have very few biokeas that predict accurately the response
to particular therapies. Mainly there are two biokeas used actually in the day-to-day
clinical practice: Hormone Receptors (HR: Estrogateptor ER and Progestrone Receptor
PgR) and HER2/ ERBB2 receptor (Chaegal, 2005; Colozzaet al, 2005). Hormone
receptors are effective factors for prediction afrrhonotherapy response whereas HR-
negative is considered as a powerful predictivdofaof chemotherapy response in the
neoadjuvant setting. HER2-positive enables to ptetlie patient responsiveness to anti-
HER2 treatments. Although several attempts were alsrformed to identify additional
biomarkers, they are still to date unconvincing @seecially to the huge heterogeneity of
breast cancer (Konecmy al, 2004; Colozza&t al, 2005).

Follow-up
- - . Breast surgery 5-10 vears
Diagnosis .| Neoadjuvant > Treatment .| Outcome
Therapy response
pCR ~pCR Recurrence Remission

Y N7

e Prediction _ _ _ _ . _ . _._._._._._. e, i

Fig. 1.4. Neoadjuvant setting for prediction oftraent benefit

Similarly to cancer prognosis and diagnosis, thisetations have pushed the cancer
researchers to take advantage of the genomic agmedo develop more accurate markers
that predict the response to particular regimeins.the adjuvant setting, at least two gene
signatures can be found in literature derived bgegexpression profiling. The, first one
concerns the prediction of relapse-free survivdt§Rsee Glossary for details) developed by
(Ma et al, 2004) whereas the second is the 16-gene signatuah can predict the risk of
recurrence in patients receiving adjuvant tamoxif@fang et al, 2005a). Both signatures
were derived using a set of patients treated wdflavant hormonotherapy, i.e. treated after
surgery, which enables to address the prognosig iGppearance of metastases) as well as
the prediction of response to treatment. Anothemegexpression signature also to be

mentioned is known by the Reccurence Score sigmainclude only 21 genes for
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hormonotherapy responsiveness prediction (Rai&l, 2004). Concerning the neo-adjuvant
setting, Changt al. (2003a) have used gene expression profiling tvel®2-gene signature
that predict the response to neoadjuvant docetexgdrimary breast cancer patients. A
neoadjuvant approach was also assessed to anakyzehinge of gene expression during
chemotherapy (Buchhokt al, 2002). Another neoadjuvant study has also rep@té4-gene
markers signature using microarray data to preshate therapies (Ayeet al, 2004). These
encouraging results have strongly suggested thatoarray profiling will have a promised
future in the optimal neoadjuvant treatment sedectiSeveral works have been reported
recently within the neoadjuvant setting framewdrkget al, 2007, Straveet al, 2009). In
(Straveret al, 2009), the predictive capacity of the 70-genenaligre (Van't Veeret al,
2002) has been assessed on neoadjuvant chemothexatmyent in breast cancer.

1.4 Conclusion

In this chapter we provided an overview about trenntasks in breast cancer management:
diagnosis, prognostication and prediction of treaitrbenefit. We briefly described each task
and its most important research works. Their chgileg aspects have been also highlighted

from medical point of view.

Although the many attempts performed in canceraresefields, breast cancer diagnosis task
is still based mainly on imaging detection toolewgver, unlike cancer diagnosis, prognosis
and treatment response prediction tasks have kraovaal revolution over the last decades.
Traditional approaches to perform both tasks haenlbased mainly on using the qualitative
knowledge gained over many decades of cancer wse@his knowledge is reformulated

usually on the form of rules about some clinicaltéas but fails short to provide an accurate
cancer management. However, advanced technologies imade it possible to get some

insights into the biological process underlying thigh heterogeneity of breast cancer.

Particularly, microarray technology has widely neatkthe cancer research in the current
century by opening the door to tailored and persoed management of breast cancer based

on molecular signatures derivation.

However, such advancements have brought with theious challenges related to the huge
amount of data issued by these technologies, ardlil required also a similar revolution in

terms of approaches enabling to process this Batahat, in the next chapter we focus on the
reviewing of one of the most used approaches (M&chearning approaches) to perform the
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three cancer management tasks. Based on that, seeilse the recent challenges related to

this field which will make the concerns of the pesthesis.
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CHAPITRE 2- Résumé
Méthodes par apprentissage pour la
gestion et le traitement du cancer

La gestion du cancer et le choix de son traitenaglétquat ont été pour longtemps effectués
sur la base de connaissances qualitatives retepaesles experts ou en utilisant les diverses
directives médicales. Toutefois, la maladie du eastest averée complexe et tres hétérogéne
ce qui rend l'approche qualitative insuffisante letprocessus de prise de décision trés
compliqué. A titre d’exemple, la tache de pronostiplique plusieurs oncologues utilisant
différents bio-marqueurs et facteurs cliniques. itdaddlement, dans de tels cas de nombreux
types d'informations qualitatives sont intégréesrparriver a une décision raisonnable sur le
pronostic par les cliniciens participants. Ce n'gss une tache facile, méme pour les
cliniciens les plus qualifiés. Si I'on ajoute aatd besoin accru d'explorer la grande quantité
de données biologiques étant disponibles (mesuretgegmiques et génomiques), des
approches plus efficaces sont devenues indispessgdaur aider les médecins dans leur
décision. Récemment, les approches d'apprentissag@ematique se sont montrées tres
efficaces pour aider a la prise de décision en miggant une prédiction plus précise et des
modéles de classification efficaces. La premieiksation de ce type d’approche dans le
domaine du cancer date d’environ 25 ans par dedaoagts populaires telles que les réseaux
de neurones et les arbres de décision (Simes, M&8in et al., 1991). Avec l'introduction
de la technologie a haut débit, le recours a deshodes de calcul plus intensif est

indispensable.

Dans ce chapitre nous décrivons I'état de I'art $utilisation des méthodes d’apprentissage
automatique dans le domaine du cancer en souligieam$ avantages et inconvénients. Cette

utilisation peut étre résumée en trois taches ppales:

» Classification de nouveaux patients en des cladeesancer prédéfinies en utilisant
un modele obtenu par apprentissage, connue sausntede classification supervisée.

* Regroupement des patients ayant des propriétédagiesi en sous-groupes, connu
sous le nom de classification non supervisée. lppsoghes utilisées pour effectuer
cette tache peuvent étre divisées en deux caté&gdiirarchiques et en se basant sur

la partition de I'espace.
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Puis quelgues applications de ces approches dangelktion du cancer du sein sont
rapportées. Malgré leur utilisation réussie dangylestion du cancer du sein en se basant sur
les facteurs cliniques classiques, il a été remarque la plupart d'entre elles ne parviennent
pas a faire face aux défis récents apportés partrdduction des données issues de
technologies avancées. Nous pouvons par exempldiomesr le probleme de sur-
apprentissage dans les méthodes de classificatipargisée en raison souvent du faible ratio
attribut/échantillon (nombre de patient). Cela n&sige un recours aux méthodes de sélection
largement étudiées et développées pour surmonteprobleme. Nous avons examiné
brievement les travaux de recherche considérablfectaés dans cette direction. Il a été
constaté cependant que la sélection de variablest pas seulement utile pour la réduction
de la dimensionnalité du probleme, mais permet glegres majeurs pour acquérir de
nouvelles connaissances sur la biologie du canaeruglisant les profils d'expression
génétique. Grace a ces approches, des méthodeséadagt personnalisées sont aujourd'hui
en cours de développement en se basant sur I'éxtrade plusieurs signatures génétiques
afin d’améliorer la précision de gestion du cancBious avons enfin décrit les approches
d'apprentissage non supervisées et leurs applioatidans la gestion du cancer de sein en
particulier a travers leur utilisation dans l'iddfitation de groupe de genes co-exprimeés.

Ce chapitre se termine par une description dessdéftents auxquels il faut faire face pour
ameliorer la gestion et le traitement du cancer.ubl@avons considéré principalement les
problemes d'hétérogénéité des données, la dimeraith élevée, le faible rapport signal-
bruit et les incertitudes d'appartenance. L'hétémgité des données est liée a l'utilisation
guotidienne de variables de type mixte dans latwéades bases de données, une pratique
courante dans de nombreux problemes de cancer. r®lddgnombre important de travaux
consacrés a résoudre le probleme de la dimensidgnélevée des données, il est toujours
considéré comme un probleme de recherche ouvkunhades principaux défis dans la théorie
de l'apprentissage statistique. Alors que le prot#edu faible rapport signal sur bruit est lié
au probléeme de la reproductibilité des technologidsaut débit (puces a ADN, spectrométrie
de masse), di principalement aux variations de itimms expérimentales et biologiques. Au
mieux de notre connaissance, ce probleme n'a jardtdsabordé par la communauté
d'apprentissage automatique. Nous avons aussi guéeles bruits ne sont pas les seules
incertitudes dans les données du cancer, l'ineatétd’appartenance d'une tumeur a chacun
des sous-types de cancer est une réalité évidentdle gagne une attention croissante dans
les études récentes qui utilisent des données itkesiéx partir de différentes technologies
par les différents centres médicaux (Haibe-Kainal€2010).
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CHAPTER 2
Machine Learning for Cancer Mana-
gement and Treatment

For a long time cancer management and treatmem peformed based on expert qualitative
knowledge held by individuals or using diverse roatlguidelines. However, cancer disease
has been shown to be complex and very heterogenduul make the qualitative approach
insufficient and the decision-making process vesynplicated. Breast cancer diagnosis for
instance is based on the analysis of thousandsaaimograms issued by imaging detection
tools. This important task seems to be very com@es tiring, and can even lead the
radiologists to commit some diagnosis errors. Furttore, the prognosis task involves
usually multiple physicians with different skillssing different biomarkers and clinical
factors. Typically in such cases many types of itatale information are integrated to come
up with a reasonable decision about the progngsihé attending physicians based on their
own intuition. This is not an easy task even fa thost skilled clinicians. If we add to that
the increased need to explore the large amouniotddical data being available (proteomic
and genomic measurements), more efficient appragachkelp physicians in their day-to-day
practices have become indispensable. Recently, inadearning has been shown very
effective to help physicians in their decision nmakby constructing more accurate prediction
and classification models. Machine learning is @anbh of artificial intelligence that employs
a variety of statistical, probabilistic and optimimn techniques that allows computers to
“learn” from past examples and to detect hard-smelin patterns from large, noisy,
heterogeneous or complex datasets (Baldi and BruB@®l1; Cruz and Wishart, 2006).
Although machine learning was basically much relate statistics, it offers nowadays a
powerful mean to deal with statistically ill-pospbblems such as curse of dimensionality
(small sample size characterized by a high featumensionality (Bellman, 1961)) and noisy
measure (Mitchell, 1997; Dudd al, 2001)). Since nearly 25 years artificial neuratworks
(ANN) and decision trees (DTs) have been widelydule cancer detection and diagnosis
(Simes , 1985, Macliet al, 1991, Cicchetti, 1992). More recently, machireahéng methods
are being also used increasingly for cancer pragreosl treatment planning. Firstly, Machine
learning approaches have been used mainly to peréancer prognosis and diagnosis, as

explained in the previous chapter, based on sonmécal and histo-patholgical factors,
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including histological grade, size of tumor and #ge of the patient (Cochran, 1997; Gémez-
Ruiz et al, 2004). With the development of high throughpuhtelogies (DNA microarray,
sequencing), proteomic (protein chips, immune-togfy), physicians have find themselves
faced to thousands of genetic, cellular and climearkers. In this situation, for which human
intuition and traditional statistics fails, the oeisto more intensively computational methods
is unavoidable, such as machine learning approadies helps physicians to analyze and
interpret data, and gain new insights into candelogy. To this end, machine learning
approaches have known recently a wide spread usarioer research to scale with such
complex experimental data for different purposesaduosis, prognosis and treatment
planning) (Kharet al, 2001; Guyoret al, 2002).

Generally, machine learning methods are used tlyzamanedical datasets organized in table
form containing a set of patient (individuals ottpens) in term of their properties (attributes,
features, variables). The use of machine learnirgghads in cancer research can be

summarized in three main tasks:

» Classifying new patients based on trained mode#dready-defined cancer classes,
known as supervised classification within machesthing community

* Regrouping patients having similar properties insobgroups, known as
unsupervised classification or clustering withincmae learning community

* Selecting relevant biomarkers using feature se&rctapproaches either in a

supervised or unsupervised context.

However not every machine learning method is appatgfor any cancer research problem.
For instance some machine learning methods scayemadl to the size of data, others do not.
Likewise some methods may have some data requitsraed assumptions that render them
inappropriate to the problem under investigatiohisTis not necessarily a weakness to
machine learning, it is only to highlight the atien should be paid to choose a suitable

method for a particular problem (Cruz and Wish2006).

This chapter describes each task and gives btilefly associated challenging aspects in the
bioinformatics context. We explain the medical dues of interest, the approaches usually
used, and the state of bioinformatics researchs €Thapter ends with a description of the
main challenges that have to be faced to impromeerananagement and treatment.
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2.1 Supervised classification

Classification is considered as one of the funddategroblems in machine learning. Duda
and Har{(2001) define it as the problem of assigning amel& or instance to one of several
pre-specified categories. Only available informati® a set of patterns characterized by a set
of features each of them assigned to a predefiles.cEach pattern is classified based on a
set of classification rules which are often unknowrmany real-life situations (Baldi and
Brunak, 2001). As a simple example, we can citeptioblem of breast cancer diagnosis as a
supervised classification problem (Wolbetgal, 1994). The elements to be classified form a

set of patients as shown in Table 2.1.

Tab. 2.1Cancer diagnosis dataset used for supervised fitasisin.

ID number Clump thickness  Uniformity of Mitoses Class

cell size
842302 17.99 10.38 0.11890 Malignant
842517 20.57 17.77 0.08902 Malignant
926954 16.6 28.08 0.78200 Malignant
927241 20.6 29.33 0.12400 Malignant
92751 7.76 24.54 0.07039 Benign

The attributes (features) of a given patient amaesvariables including around thirty features
computed from a digitized image of a fine needlpirate (FNA) of a breast mass. They
describe characteristics of the cell nuclei pregefthte image. The outcome of each patient is
taken as either diagnosed to have a breast canoet,aepresenting its predefined class. This
simple example has been for a long time used tesasthe performance of newly proposed
machine learning approaches. Compared to othadsfi@dncology is possibly the area in
which more applications of machine learning havenbgerformed (Vellido and Lisboa,
2007). Almost all machine learning approaches apptin this problem employ supervised
learning such as artificial neural networks (Ruradilet al, 1986), decision trees (Quinlan,
1986), discriminant analysis (Fisher, 1936)nearest neighbor (Cover and Hart, 1967) and
Support Vector Machines (Vapnik, 1998). We listdvelsome of the most used supervised

machine learning approaches in cancer research.
2.1.1 Artificial neural networks

Artificial neural networks (ANN) were originally gpired from the human-being brain which

works with interconnected neurons (Figure 2.1). W®teength of neural connection is
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determined through a learning process on label¢a claaracterized by weights (Cruz and
Wishart, 2006). In an ANNSs, the neurons are orgahin layers, in such a way that usually

only neurons belonging to two consecutive layeescannected.

InpUt Hldden 0utput
Layer Layer Layer
Input 1
Input 2
Output
Input 3
Input 4

Fig. 2.1. Artificial Neural Network

During the classification process, ANNs enable tofgrm statistical operations (linear,
logistic, and non linear regression) and logicatragions or inferences (AND, XOR, NOT,
IF-THEN) (Mitchell, 1997; Rodvoldet al, 2001). The perceptron (Rosenblatt, 1962) is the
simplest neural network that, using a thresholavatbn function, enables to separate two
classes by a linear discrimination function. Adjosht of connection strength is usually based
on an optimization approach callbdckpropagatioralgorithm (Rumelhart, 1986). One of the
first applications of machine learning approachescancer research were through neural
networks (Macliret al, 1991; Cicchetti, 1992). Recently, their use Hae Aeen extended to
other cancer applications such as cancer progmosistreatment planning (Gomez-R@tz
al., 2004; Jerest al, 2004; Ripleyet al, 2004; Mianet al, 2005). Some limitation of the
ANNSs is the lack of interpretability and the prambleof overfitting especially when a high
dimensional data is faced (e.g. microarray data)Z@nd Wishart, 2006).

2.1.2 Decision trees

A decision tree is a structured graph or flow chadrdecisions (nodes) and their possible
consequences (leaves or branches) used to crealnao reach a goal (Quinlan, 1986)
(Figure 2.2). In a classification tree, patternsslfication starts from the root node by
successively asking questions about each of itggpties (features). Different exclusive links

from a root node correspond to the different pdesimlues of the property (feature).
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According to the answer, this process is followadilwarriving to a leaf node which has no

further question. The pattern is finally assignethie class represented by this node.

Lymph nodes positive

negative /\:ositive

No chemo

Tumor size

Fig. 2.2. Decision tree

A variety of approaches can be found for choosheg dppropriate order of features in the
decision tree and how possibly make reduce theeltmges. Decision trees are very well
accepted in medical applications owing to its highdel transparency and comprehensive
interpretability. This is argued by the fact thati$ion trees are a sort of rule-based methods
which provide a comprehensive interpretation. lulélee factor of interpretability should not
be underestimated in the real medical practice ah@nost physicians are not even
accustomed to the idea of computer-aided probldwinggd (Lucas, 1997). Decision trees are
also one of the first methods applied in breastearesearch such as predicting breast cancer
survivability (Delenet al, 2005), diagnosis (Leet al, 2010a) and treatment planning (Khan
et al, 2008). Some potential limitations affecting #ygplication of decision trees in cancer
research is its difficulty to scale with high dinsesnal data (e.g. microarray data) and the

strong assumption on mutual exclusivity of clag§asizet al, 2006).
2.1.3 Discriminant analysis

Fisher linear discriminant analysis (Fisher, 1986)structs a linear hyperplan based on the
maximization of between-group to within-group raticAssuming a multivariate normal
distribution and homogeneity of covariance matri¢es hyperplan is described by a linear
discriminant function which equals zero at the hppn. In this case, the hyperplan is
defined by geometric means between the centroiestfie center of each classe) (Baldi and
Brunak, 2001). Recently, a variety of non lineascdiminant analysis approaches were
proposed based on kernel concept to improve itssifieation performance (Mikat al,
1999). This approach has found its place in soneadircancer applications (Millet al,
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2005; Michielset al, 2005; Reidet al, 2005; Suret al, 2007a). However, this approach
suffers from several limitations such as 8mall sample size probledue to within-class
matrix singularity (Fukunaga, 1990). This problenses whenever the number of samples is
smaller than the dimensionality of samples (theecat cancer classification with gene

expression profiling characterized by thousandgeofes and less than one hundred patients).
2.1.4 k- nearest neighbor

Thek- nearest neighbor method classifies each unlabsfienple by the majority label among
its k nearest neighbors in the training set (Cover aad,H967). This makes it very well
suited for non-linear classification problems. Qua¢ential of this approach is that it does not
make any assumption on data distribution. A varadtreast cancer studies can be found in
literature based on this approach (Pastyal, 2002; Olshen and Jain, 2002; Zhestgal,
2010). Though simple, however, it is known thkaliN classifier is very sensitive to the
presence of irrelevant features. Moreover, thishoettends to be slow for large training
dataset because the nearest neighbors should behesgaover all instances (Baldi and
Brunak, 2001).

2.1.5 Support vector machines

The key idea of this approach is that by an appatgormapping into sufficiently high
dimensional space, it is always possible to deditgperplan that separates the data from two
categories (Vapnik, 1998) (Figure 2.3).

Optimal hyperplane

Fig. 2.3. Support Vector Machines

The mapping is performed using some specific fomsti(known as kernel functions) which
are chosen by the user among a variety of functi@aussian, polynomial, linear,...)
according to the problem under investigation. Tbalgn all cases is to find the separating

hyperplan in the resulted space with the largesgmaexpecting that the larger is the margin,
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the better is the generalization of classifier (M&p 1998). This problem is generally
reformulated as a constrained optimization probserd solved generally by resorting to its
dual reformulation. Various applications using S\ds been performed on breast cancer
research (Litet al, 2003; Changet al, 2003b; Land and Verhegge2009). SVM approach

is known to be very robust to noisy features ardadverffiting problem is unlikely to occur.
This has encouraged recently its use in many breaster studies using microarray data
(Guyonet al, 2002; Bunesst al, 2009; Lee, 2010b). Although its demonstrateccificy in
wide range of classification problems, SVM presenggor limitations such as the problem of

selecting a suitable kernel function, its paranseterd penalties (Baldi and Brunak, 2001).
2.2 Unsupervised classification (clustering)

Clustering is considered as one of the fundameasaarch problems in various data analysis
fields such as machine learning and pattern retiogn{Jain and Dubes, 1988; Jahal,
1999; Xu and Wunch, 2005). Cluster analysis seeksdanize a set of patterns (e.g. patients
or genes) into clusters such that patterns withigiven cluster have a high degree of
similarity, whereas patterns belonging to differelisters have a high degree of dissimilarity
(Duda et al, 2001). Unlike supervised classification, the oute of each element in the

unsupervised context is unknown making the leartasg more challenging.

One typical example in cancer research is thealungt of genes expression data (Bellal,
2010). In microarray experiment, the expressiomealf thousands of genes is obtained for
only few patients. Extracting co-expressed genelkfiarent samples from this data is of great
importance as it may allow gaining new insightictncer biology. This is typically a
clustering problem where co-expressed genes shmmufgfouped into the same cluster (Baldi
and Brunak, 2001).

Many algorithms have been proposed to addresptbidem for different purposes (Jain and
Dubes, 1988; Jairt al, 1999; Baraldiet al, 1999; Xu and Wunch, 2005). Clustering

techniques can be roughly divided into two mairegaties: Hierarchical and partitioning.
2.2.1 Hierarchical clustering

Hierarchical clustering produces a nested serigsaditions on the form of tree diagram or
dendogram (Jain and Dubes, 1988; Jainal, 1999). In hierarchical clustering we can
distinguish two situations between two groups frdifferent partitions: either they are

disjoint or one group wholly contains the otherg(ie 2.4). Two clusters are merged in
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hierarchical measure based on a distance or dissitpyimeasure such as Minkowski and
Mahalanobis measures (Jain and Dubes, 1988gfah 1999). It exist several algorithms to
establish a hierarchical tree: agglomerative amibige. Hierarchical clustering is the most
commonly used method to summarize data structarb®informatics generally and in breast
cancer specifically (Baldi and Brunak, 2001). Mastydies can be found in cancer research
literature about the use of this clustering apphpaspecially for microarray data analysis. In
(Sotiriou et al, 2003), the use of hierarchical cluster analysis led to distinguish between
two groups of patients based on their ER statuss @pproach has also been used in the
famous Stanford study to identify subgroups of eamevith separate gene expression profiles
(Perouet al, 2000). Alizadelet al. (2000) were able to identify formerly unknown tgpef
B-cell lymphoma with distinct clinical behaviour loging hierachical clustering of expression
data. The use of this approach, however, was niyt lonited to cancer class discovery,
prognosis and treatment responsiveness predictevae vespectively targeted in (Bebeal,
2010) and (Rouziest al, 2005).

T

E D C B A
Fig. 2.4: Hierarchical clustering

2.2.2 Partitioning clustering

Partitioning clustering identifies only one paditi of the data that optimizes an appropriate
objective function (kernel, spectral, fuzzy andsslaal) (Jain and Dubes, 1988; Jainal,
1999; Xu and Wunch, 2005) (Figure 2.5).

The clustering can be either hard (each patteranigsl to only one class) or fuzzy (where
each pattern belongs with a certain degree of meshipeto each resulting cluster) (Jah
al., 1999). Fuzzy clustering offers the advantagerdwige a basis for constructing rule-based
fuzzy model that has simple representation and gmatbrmance for non-linear problems
(Yaoet al, 2000).
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Fig. 2.5 Partitioning clustering

The k-means algorithm (MacQueen, 1967) is one of thetpopular partitioning clustering
algorithms. This algorithm is based on a “hard"tgpan of the data intk clusters based on
the minimization of the within-group sum of squardsdirect extension of th&-means
algorithm is the Fuzzy C-means (FCM) (Bezdec, 19&ihere the fuzzy set notion is
introduced into the class definition. In this casach element belongs to a given class with
certain membership degree. Likewise, FCM minimittes within-group sum of squares but
by taking into account the membership degrees ah eslement. Another interesting
clustering approach is the Self-Organizing featMiaps (SOM) (Kohonen, 1982 ). In this
approach the data are represented by means of exidev on a grid with fixed topology.
Codevectors are adaptive according to input digtioin, but adaptation is propagated along
the grid to neighborhood codevectors, accordingatasspecific neighborhood function
(Filipponeet al, 2008).

These clustering approaches are widely used insbreancer research. For instance, a
molecular classification of tumor samples can bd@ea@d using either unsupervised methods
like k-means clustering (Bertucet al, 2002; Wanget al, 2003; Wisemaret al, 2005) or
‘SOMs’ (self organizing maps) (Covedlt al, 2003). Tamaycet al. (1999) have also used
SOMs on DNA array data to differentiate subtypeaaite leukaemia. Clustering approaches
have been also used to cluster the gene in graup®stablish the relation between the co-
expressed genes in each group (De Seutd, 2008). Many studies can be found also where
the clustering is performed in both directions, patients and genes, called biclustering
(Cheng and Church, 2000; Sheeigal, 2003). However, the use of different methods may
yield different results. Therefore, those approacsi®ould be used with caution according to

the problem under consideration.
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2.3 Feature selection

Usually, for many learning domains potential usettiitibutes, also called features, for pattern
description are defined randomly. However, nobathese features are important for learning
task (i.e. supervised or unsupervised learninghesof them can be irrelevant, some may be
redundant, and some can even misguide learnindisestihe problem of selecting important
features is known in the literature as feature cdele. Feature selection is defined as the
problem of choosing a small subset of features idhelly is necessary and sufficient to
describe the target concept (Kira and Rendell, &4292ancer research is the field in which
feature selection is being extensively employedthWie involvement of high throughput
technology in breast cancer management, featueets®l has become a necessary step in
order to discard the huge number of irrelevant gefbe most important objectives of feature
selection are: (a) to avoid overfitting and improwedel accuracy, i.e. classification
performance in the supervised learning and beltestars detection in the case of clustering,
(b) reducing training time of the model, (c) to myadeeper insight into the underlying
processes that generated the data (Setegls 2007). A typical feature selection task consists
of four basic steps: subset generation, subsetuawah, stopping criterion and result
validation (Liu and Yu, 2005). Subset generationdpices candidate feature subsets for
evaluation based on a certain search strategy.r8icgpto the evaluation criterion, this new
subset can be either retained to replace the prewest subset or rejected. This process is
repeated until a given stopping criterion is setsf Then the winner feature subset is
validated finally via a real world dataset (seeu(land Yu, 2005) and reference therein for
review). Many research efforts have been direatettie last two decades towards developing
efficient feature selection methods in a supervifathework (Kira and Rendell, 1992a;
Westonet al, 2001; Gilad-Bachracket al, 2004). However, only few works have been
devoted to address this problem in the unsupenisaehing and clustering. This is mainly
due to the absence of class labels, unlike in sige=t learning, to assess the importance of a
subset of features. Most of unsupervised featueetsen algorithms are based on information
or consistency measures (Migtal, 2002; Dy and Brodley, 2004; Wei and Billings, ZD0

In the context of classification, existing featuselection methods are traditionally
categorized as filter, wrapper, hybrid or embedaethods, with respect to the criterion used
to search for relevant features (Kohavi and Jol@971 Guyon and Elisseeff, 2003). We

describe below the three approaches and review sbtheir advantages and drawbacks.
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2.3.1 Filter methods

In filter methods an independent evaluation functivased generally on a measure of
information content is used to select a set ofuieat that maximizes this function, regardless
of their effects on model performance. Then differelassification methods can be applied
using only this subset of features. Filter appreacire computationally very efficient and can
scale well with high dimensional data. Thanks sodbmputational properties, many cancer
research studies have resorted to use filter appesaespecially for microarray data analysis.
In these approaches all the genes are evaluateddually, e.g. through t-test and Fisher
score (Dudoitet al, 2002; Li et al, 2004). However, filter approaches presents some
limitations related to the problem of interactidmetween features. Furthermore, they do not
often guarantee a maximum classification perforradrecause they totally ignores the effects
of the selected subset of features and therebytsosseperform very poor.

2.3.2 Wrapper methods

Wrapper methods use the performance of a learnetpod to assess the relative usefulness
of the selected feature subset (e.g. by crossatadn) (Kohavi and John, 1997; Guyon and
Elisseeff, 2003). In other words, wrapper methaglines one learning method (e.g. decision
trees, SVM, k-NN,...) and uses its performance astfauation criterion. For feature subset
search step, an exhaustive procedure can be pedoimthe number of features is not too
large. But, with ten thousands of features, theckebecomes quickly intractable to perform
the combinatorial searching required in wrapperhogs. A wide range of search strategies
can be used, including best-first, branch-and-bpsirdulated annealing, genetic algorithms
(see (Kohavi and John, 1997) for review). With &lma to improve the classification accuracy
in cancer applications, wrapper methods have knalao rapidly a wide spread use (Blanco
et al, 2004; Wanget al, 2005b). In (Suret al, 2007a) a more advanced approach that avoids
the computational issue by optimizing a margin-dasbjective function has been used for
gene selection. A relevant comparative study batwiéer and wrapper methods for gene
selection has been performed in (Iretal, 2004).

2.3.3 Hybrid methods

In hybrid feature selection approaches a filtertuiem selection method is firstly used to
reduce the initial feature dimension and then appea approach is applied on the reduced

subset of features (Das, 2001). Nevertheless, éhecls in this approach is time consuming
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and depending on the learning approach used bwitapgper method. Some attempts can be
found in cancer literature using such approachesnigroarray data analysis (Xingt al,
2001).

2.3.4 Embedded methods

In these approaches the feature selection taskc@porated into the learning process. Just
like in wrapper approaches, embedded approachesreetperefore a learning algorithm.
Embedded approaches have the advantage that tegyate the interaction with the learning
method, while at the same time being less compuualily intensive than wrapper methods.
Embedded methods are not new in machine learnisgrag of the oldest decision trees such
as CART (Breimaret al, 1984) encompass a built-in mechanism to perfaatuire selection.
Weston and his co-authors have proposed an embédedtunle selection approach for SVM
methods (Westoet al, 2001). Recursive Feature Elimination RFE (Gugbml, 2002) is a
well-known feature selection method designed smadiy for microarray data analysis. It
works by iteratively training an SVM classifier Wita current set of features, and then

heuristically removing the features with small teatweights.

2.4 Recent challengesin breast cancer management

In spite of the intensive research performed in itingchine learning filed (see previous
sections) in past decades, many challenges atenetded to be addressed seriously to
improve cancer management. Challenges are maifdjedeto data characteristics used in
decision-making process. Three challenges are ynémckd: the first one is related to the
presence of mixed-type data in daily produced cdihdatasets, the second one is related to
high dimensionality in data especially issued fromeroarray technology and the last one is
the problem of noise and uncertainties associasedlly to both data. Addressing efficiently
those problems is urgently needed provided thasame cancer applications the three
challenges can be even faced simultaneously (@&gration of clinical and microarray data
to improve breast cancer management (8ual, 2007a, Gevaesgt al, 2006). We describe

thereafter in detail the three challenges whiclh mvdke the focus of the present thesis.
2.4.1 Data heterogeneity

Features used by physicians for patient state iggiscr are generally represented in different
ways. The most used representation is the puretitatare one which assumes a complete
accuracy about the information. Taken as it appearseal number contains an infinite
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amount of precision whereas human knowledge isefiand discrete. So, there is a need to
use data represented by symbolic values to fit Wittnan perception. The representation of
data can be therefore done in different ways: dizive (e.g. Age=50), symbolic intervals
(e.g. age belongs to the interval [40,60]) or datlie values (e.g. old, young,
menopause,...). Thus, the development of an automaichanism for medical support is
faced with this problem of data heterogeneity (dtztive, qualitative and interval data).
Indeed, daily produced medical datasets are comymohbracterized by a subset of
heterogeneous (mixed type) features. For instam@y datasets from the popular UCI
machine learning repository (Blake and Merz, 19®)described by heterogeneous features.
During the last decades, few research works hawn labrected to defy the issue of
representation multiplicity for data analysis pwses (Michalski and Stepp, 1980; Mohri and
Hidehiko, 1994; Huet al, 2007). However, to the best of our knowledge, standard
principle has been proposed in the literature todleain a unified way heterogeneous data.
Indeed, a lot of proposed techniques process gepaguantitative and qualitative data. In
feature selection tasks for example, they are eliheed on distance measures for the former
type (Kira and Rendell, 1992a) and on informatiorcansistency measures for the later one
(Dash and Liu, 2003). Whereas in classification ahgstering tasks, eventually only a
Hamming distance is used to handle qualitative date, 1989; Aha, 1992; Kononenko,
1994). Other approaches are originally designedortmcess only quantitative data and
therefore arbitrary transformations of qualitatdega into a quantitative space are performed
without taking into account their nature in thegoral space (Cover and Hart, 1967; Kira and
Rendell, 1992a; Westoet al, 2001). Another inverse practice is to enhancequmitative
aspect and discretize the quantitative value donmanseveral intervals, then objects in the
same interval are labeled by the same qualitatiakeiev (Liu et al, 2002; Hall, 2000).
Obviously, both approaches introduce distortion a&amdl up with information loss with
respect to the original data. Moreover, none ofgieviously proposed approaches combines
in a fully adequate way, the processing of symbioliervals simultaneously with quantitative
and qualitative data. An interesting approach wdaddto unify the different heterogeneous
spaces into one homogeneous space and then reagamified way about the whole data to
make the appropriate decision. To avoid any typélistortion and/or information loss the

space’s unification process should be performedagpiately for each type of data.
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2.4.2 High feature-to-sample ratio (curse of dimensionality)

The recent introduction of high throughput techgglan breast cancer management has
brought with it a new challenge related to the hdghensionality of microarray data. Indeed,
this problem, known as curse of dimensionality kegh feature-to-sample ratio), is still
considered as one of the principal challenges atissical machine learning (Lafferty and
Wasserman, 2006). As it has been pointed out itiose@.2, due to the presence of large
amount of irrelevant genes, many traditional cfasgtion approaches either present some
limitations (e.g. overfitting) or important comptitmal time (e.gk-NN). Even when the use
of feature selection approaches can help to atiewuiais problem, most of them become
unpractical when the problem of dimensionality issaciated with the problem of
heterogeneity (section 2.4.1) or the noisy natdimmicroarray measurement (detailed in next
section). Therefore, there is a need to developamgwoaches enabling to deal efficiently and

simultaneously with such problems.

2.4.3 Noise and uncertainty

From other side, the features used to describgi@enpatate can also be corrupted by several
types of noise and uncertainties due to measurerhentan approximations or biological
interaction. For instance, it has been reportedndy that the major difficulty in deciphering
high throughput gene expression experiments conoes the noisy nature of the data (&u
al., 2002). Indeed, data issued from high throughgctiriology are not only characterized by
dimensionality problem but present also anothel@hging aspect related to thier low signal-
to-noise ratio. The noise in such type of data igltisource: Biological and noisy
measurement, slide manufacturing errors, hybridinagrrors, scanning errors of hybridized
slide (Tuet al, 2002; Nykteret al, 2006). Biological errors are typically due toemtal
stochastic noise of the cells and error sourcesta@lto sample preparation (Blake al,
2003). This type of intrinsic noise is present ilh measurements, regardless of the
measurement technology. Measurement errors, ootttex hand, include error sources that
are directly related to the measurement technaodwglyits limitation (e.g. bias due to the used
dyes) (Nykteret al, 2006). The properties of this kind of extrinsioise depend on the
measurement technology (Blalet al, 2003). Slide manufacturing errors are related to
microarray slide images. These include variatiothespot position and size. In addition the
marks done by a print tip and deformations in thet shape can be produced (Nykéeral,

2006). Hybridization errors include background egispot bleeding, scratches, and air
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bubbles (Nykteet al, 2006). Another possible source of error is thggtidiation of hybridized
slide by scanning. The hybridized slide is readtgnning each dye color separately, it might
be possible that channels do not align perfectlyk{dr et al, 2006). Many studies were
performed to study the different effects of expemtal, physiological, and sampling
variability (Leeet al, 2000; Novaket al, 2002). An interesting study has been performed in
(Tu et al, 2002) to analyze the quantitative noise in geqpgression microarray experiments.
The authors have shown through two illustrativecctete examples the difference in gene
expression due to experimental noises. In the @sample, a comparison between gene
expression values measured on the same sampleebaspbrformed. Figure 2.6a shows the
overall difference in two measured gene expressioe to measurement error alone as
provided in (Tuet al, 2002). The deviation of the scattered points frithe diagonal line
represents the difference between the two meaduamadcriptomes. In the second example
two samples from different cultures are comparedtaswvn in figure 2.6 (b) so that the
measured expression value differences contain tmebimed effect of the genuine gene

expression differences caused by measurement error.
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Fig. 2.6: The scatter plot of gene expression gajy&xperiments pair on the same sample (b) axeaiti pair

between two different samples. Figure taken froméfal, 2002).

Although Figures (a) and (b) appear similar, theiaens in the expression values from the
diagonal line are completely different. The firsheois due only to gene expression
measurement error whereas the second is due twothbined effect of the gene expression
differentiation and measurement error. Therefdrés crucial to characterize the difference
caused purely by experimental measurement fromexpeession differentiation due to the

difference between the two cultures.
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All existing feature and classification approaclessume that microarray data is perfect
without wondering about its reliability. One commpractice to deal with this problem is to
transform in non-linear way the gene-expressiomrlein a preprocessing phase so that the
variance across experiments becomes comparableafdt gene (Hubeet al, 2002). A
drawback with this approach is that a global tramsftion does not adequately account for
the fact that the same gene may be measured i#netit precision in different experiments
(Huber et al, 2002). Another drawback with this approach ist thacomplex non-linear
transformation of the data complicates the intdgti@n of measurement when compared with
a global transformation. Machine learning approaaten offer also a powerful tool to tackle
such problem. An interesting approach would be $e symbolic data analysis (SDA)
popularized by Bock and Diday (Bock and Diday, 200Uithin this framework, interval data
representation can be used to take into accounighally uncertainty and noise inherent to
measurements (Billard, 2008). Symbolic intervaltdeas are extensions of pure real data
types, in the way that each feature may take arval of values instead of a single value
(Gowda and Diday, 1992). In this framework, theueabf a quantityx (e.g. gene expression
value) is expressed as a closed interat’] wheneveirx is noised or uncertain; representing
the information thak™ <x<x". However, the introduction of interval represeistaimakes the
data processing task more complex than when onlyumerical value is considered,
especially when high dimensionality problem is thgeintly. It is worthwhile to note that
interval data presentation can be useful also fanyrother real world problems in cancer
field.

Measurement uncertainty is not the only type ofeutainty to be faced in real-world
problems generally and medical field specificalyother uncertainty type of big interest is
the membership uncertainty of patients to eachsgclas. a patient's tumor can belongs
simultaneously to many cancer groups with someeasegf membership, in a way that the
decision making mechanisms become reproduciblerahdst, because clinically relevant
cancer groups are identified in several public skt using different populations of breast
cancer patients. Indeed, breast cancer has beamdbobe a highly heterogeneous disease
requiring the consideration of such uncertaintgl@cision making process. Even in the day-
to-day practice, physicians in their decision psscmcorporate naturally such uncertainty for
any disease management. Fuzzy set theory, inteddby Lotfi Zadeh (Zadeh, 1965),
represents an appropriate framework to deal witimbership uncertainties. Medicine was

one of the first fields in which Zadeh'’s fuzzy setory was applied, to deal with vagueness in
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perceptions of reality phenomena (Zadeh, 1969hlgh fuzzy approaches have started to
gain increasing attention in wide range of cangglieations (Ressorat al, 2003; Andrews

et al, 2003; Haibe-Kain®t al, 2010), its scalability with recent challengestd far to be
convincing compared to other classical machinenlagr approaches. Therefore efficient
fuzzy approaches to deal with such problems mayemakmajor contribution in the

improvement of cancer management.
2.5 Conclusion

In this chapter we have reviewed the state-of-the@famachine learning in cancer research.
We have described the main three machine learaiskstmost used in cancer management:
supervised classification, clustering and featetection. A few examples of the most famous
approaches for each task have been briefly deschlyehighlighting their advantages and
drawbacks. Then some applications of such apprgachéreast cancer management have
been provided. Although their successful use ina&irecancer management based on
traditional clinical factors, we have noticed tlmbst of them fail to deal with the recent
challenges brought by the introduction of dataesisiiom advanced technologies. We can for
instance mention the problem of overfitting in sweed classification methods due usually
to the low feature-to-sample ratio. This requireseaort to feature selection approaches
extensively studied and developed to overcome phablem. We reviewed briefly the
tremendous research work have been made in thattioin. We have noticed however that
feature selection is not only useful for dimensieduction but has made major advancements
to gain new insights in cancer biology by usingegemnpression profiles. Thanks to feature
selection approaches a tailored and personalizedecananagement is today underway by
the derivation of several genetic signatures féfledednt purposes. We have finally described
the unsupervised learning approaches and theiicagiphs in breast cancer management
especially through their use in the identificatadrgroup of coexpressed genes.

This chapter ends with a description of the rechiallenges that have to be faced to improve
cancer management and treatment. We consideredyrntianproblems of data heterogeneity,
high dimensionality, low signal-to-noise ratio amghembership uncertainties. Data
heterogeneity is related to the use of mixed-typatures in daily produced datasets, a
common practice in many cancer problems. Althoinghitnportant number of works devoted
to address the problem of high data dimensionatitig still considered as an open research

problem and one of the principal challenges inistiaal learning theory. Whereas the
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problem of low signal-to-noise ratio is related ttee problem of reproducibility in high-
throughput technologies (microarray, mass-spectiginedue mainly to the variations in
experimental and biological conditions. To the l#sbur knowledge, this problem has never
been addressed by the machine learning communigyndted also that the noises are not the
only uncertainties in cancer; membership uncerfagita tumor to cancer subtypes is an
evident reality and is gaining increasing attentiorrecent studies using gathered datasets

issued from different technologies by different maticenters.

In next chapter we address the problem of high dgiwmality through the development of an

embedded feature selection for SVM based on deggcadient method.
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CHAPITRE 3- Résumé

Sélection de variables intégrée dans
les machines a vecteurs supports par
une meéthode de gradient

Les technologies a haut débit fournissent régufiezet des bases de données caractérisées
par un nombre sans précédent de variables pourésgmter chacun des individus. Grace a
sa capacité de fournir des solutions creuses, tplarisation d'apprentissage de typea éte
montrée comme étant une méthode prometteuse poséldgtion de variables dans les
problemes de classification. Parmi le large évdntia@applications de régularisation de type
{1, nous pouvons distinguer une régularisati@npour la régression logistique (Ng, 2004),
LASSO (Tibshirani, 1996) é{-SVM (Bradely et Mangasarian, 1998; Zhu et al, 2008us
nous concentrons dans ce chapitre sur le problemerétjularisation £1-SVM afin de
développer une approche de sélection de variabitesdg type intégrée (ou «embedded» en
anglais) pour surmonter le probleme de dimensioibd&leveée.

En dépit de ses propriétés intéressantes, la miseeavre rapide des algorithmésSVM
pour des données de grande dimension a été cosmsidéendant longtemps comme un
probléme difficile, car la fonction objective airditenue est non-différentiable. Les méthodes
génériques utilisées pour résoudre des problemese@s non-différentiables tels que les
méthodes basées sur le gradient sont typiquemesd tents. Diverses techniques
d'optimisation avancées ont été exploitées poureldgper des dizaines d'algorithmes
capables de traiter des problemes de moyenne airalede échelle. Durant les années
passées trés peu de travaux ont été consacrésrgsoudre ce probléme. En particulier, on
peut distinguer le travail de Zhu et ses co-autdiiisu et al., 2003) et plus récemment les
travaux de Fung and Mangasarian (Fung and Mangasgri2004; Mangasarian, 2006).
Dans le premier travail, le problemé;-SVM est formulé comme un probléme de
programmation dynamique afin d’utiliser les logisielassiques pour le résoudre alors que
dans le deuxieme travail une méthode de Newtoré aitdisée pour résoudre le probléme
dual comme un probleme a pénalité extérieure. Lenidee méethode est caractérisée
cependant par une grande complexité en raison dobme de parametres a ajuster (cing dont
le paramétre de régularisation), ce qui la rend tiisable par des utilisateurs non

spécialistes. De plus on montre dans ce chapiteelguméthode de Newton ne garantit pas
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toujours une solution optimale globale. Il a ét@lggné cependant par Chapelle (Chapelle,
2007) que le probleme d’optimisation initial petteérésolu aussi efficacement sans passer
par une formulation duale étant donné que dansléas< cas le méme résultat est obtenu.

On propose ici d'utiliser une approche génériquesdsa sur une technique de descente du
gradient, notée ici DGM (Direct Gradient Methodpyr résoudre le probléme initial;-
SVM. Cette méthode s’est montrée efficace pourudéeoles problemes de régression
logistigue normég; (Cai et al., 2010a). Cependant, elle suppose gderiction objective soit
différentiable, ce qui n’est pas le cas dans le dasoroblémef;-SVM. Pour surmonter ce
probleme, la fonction de perte est remplacée par famction approximée dites de Hubber.
Ensuite le probleme d’optimisation convexe initedt transformé en un probléme non-
convexe sans contrainte, avec lequel, en utilisene méthode de descente du gradient, une
solution optimale globale est garantie. Cette mdéh@ été implémentée sur Matlab et
comparée avec la méthode proposée par (Fung andydsmian, 2004; Mangasarian, 2006)
dite LPNewton sur huit bases de données de graimdendion pour démontrer son efficacité.
Il a été montré que cette méthode surpasse la méthd®Newton en termes de temps
d’exécution (CPU time) et en termes de précisiorimte en variant le parametre de
régularisation. A titre d’exemple, sur une base diennées de cancer de la prostate
(Stephenson et al., 2005) contenant 97 patientgot@risés par I'expression de 22291 génes,
la méthode proposée atteint le colt ciblé dansemmps d’exécution de 40.3 secondes alors
gue la méthode LPNewton demande 2147 secondesestlionc 50 fois plus rapide. Il a été
de plus constaté que la méthode LPNewton échowmnéerger pour certaines valeurs de

parametre de régularisation dans la plupart des.cas

Il est & noté que ce travail a été realisé danscéelre d'un séjour de recherche au
Laboratoire ICBR (Interdisciplinary Center for Bexthnology Research) a I'Université de
Floride cofinancé par I'Ecole Doctorale EDSYS, I'Mersité Paul Sabatier et le groupe de
recherche DISCO (Diagnostic et Conduite des SystpthelL AAS.

La grande dimensionnalité des données n'est cepémds le seul probleme rencontré dans
les applications pratiques du cancer. Des probleteésque I'hétérogénéité des donneées, les
incertitudes et les bruits peuvent également &recontrés conjointement avec le probleme
de dimensionnalité élevée. Par conséquent, desoaesiplus efficaces sont nécessaires pour
faire face simultanément a tous ces probléemese@etibléematique représentera notre sujet
d'intérét dans les chapitres suivants afin de diyetr des approches appropriées capables

de gérer de tels problemes simultanément.
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CHAPTER 3
Embedded Feature Selection for SVM
by Gradient Descent Methods

High-throughput technologies produce routinely déargdatasets characterized by
unprecedented number of features representingdsahsamplel; regularized learning, due
to its ability to produce sparse solutions, hastsewn to be a promising method for feature
selection in classification problems. Among the evidnge oft; regularization applications,
we can distinguisi{; regularized logistic regression (Ng, 2004), LASSdbshirani, 1996)
and(1-SVM (Bradely and Mangasarian, 1998; Zhu et alQ30We focus in the present work

on the problem of; regularized SVM in the primal domain.

Despite its attractive properties, the fast impletagon of (;-SVM algorithms for high-
dimensional data has long been considered as uiftomputational problem since the so-
obtained objective function is non-differentiabBeneric methods for non-differential convex
problems such sub-gradient methods are typically skow. Various advanced optimization
techniques were exploited to develop dozens ofriélgos capable of handling medium and
large scale problems. In the last few years only ¥eorks have been devoted to solve this
problem. In (Zhuet al, 2003) thet;-SVM problem is formulated as a linear programming
problem and a standard software packages was wssdlte it. Whereas in (Fung and
Mangasarian, 2004; Mangasarian, 2006) a Newton adetvas used to solve the dual linear
program formulation as an exterior penalty probldime basic idea of this approach is to set
up the 1-norm SVM problem as unconstrained minitromaproblem in the dual space. This
method has been tested on a wide variety of dédeasel compared with other methods (Fung
and Mangasarian, 2004; Mangasarian, 2006). Howdkher, method ends up with a high
complexity due to the number of the resulted patarseto be adjusted (five including the
regularization parameter), which makes it impradile by non proficient users. Furthermore,
as it is shown in this chapter, reaching an optigiabal solution by the adopted Newton
method is not always guaranteed. Neverthelesssiteen pointed out recently by (Chapelle,
2007) that dual and primal optimization probleme &awo equivalent ways of reaching the
same result. Indeed, it has been shown that thmeaprproblem can be solved efficiently
without need to pass by the dual formulation.
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A generic approach based on descent gradient tpodimas been recently proposed, referred
to as DGM for Direct Gradient Method, capable tdveovarioust; regularized learning
problems, provided that the loss function is ddfarable (Caiet al, 2010a). It has been
shown through an application da regularized logistic regression that this methad the
advantage to provide a simple and fast implementatiVe show in the present work that the
£1-SVM problem can be solved easily in the primal domby using a generic gradient-
descent technique based on DGM (€&al, 2010b). The basic idea is to transform a convex
optimization problem with a non-differential objeet function into an unconstrained one. It
has been proved theoretically therein that if thitial point is properly selected, DGM
provides an optimal global solution. We take adagathere of this property to extend it to
solve one of the important problems in machineniedy, the(;-SVM problem in the primal
domain. This approach is however not straightfodyaovided that the hinge loss function in
the objective function is non-differentiable. Toeosome this problem, we replaced the non-
differentiable hinge loss function by its approxtmdifferentiable Huber loss function. It has
been pointed out indeed that the SVM using this fsction provides the same sparse
solution as SVM with the hinge loss function witldertain condition (Chappelle, 2007). We
then transform the initial constrained convex opation problem into an unconstrained
problem in the primal domain. Some numerical experits was performed to compare the
proposed approach with the Newton family approa@neposed by (Fung and Mangasarian,
2004; Mangasarian, 2006). We demonstrate that lgaritnm, though simple, outperforms
this method in term of computational efficiency ate optimal quality of the obtained
solution.

It is worthwhile to note that this work has beenfg@ened during a research stay in ICBR
(Interdisciplinary Center for Biotechnology Resdgrat the University of Florida, under the
supervision of Ph.D Yijun Sun. The chapter is orgeah as follows. Section 2 describes the
main idea of the DGM approach. Section 3 presdmsdetailed implementation of the-
SVM method. Section 4 presents some numerical erpats to compare the new approach

with one of the well known state-of-art algorithm.
3.1 Gradient descent based method for solving £, regularized problems

This section describes the main idea of the Gradiescent method for solvirg regularized

problems. This description has been taken from é€al, 2010a). LetD :{x(”), yn},ildenote
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a training dataset, whene™ 00" is the n-th pattern angt, 00 is the corresponding class.

We seek an optimal solutidmv* ,b*) to the following(; regularized learning problem:

: 1< 3.1
min f.(w, b)zﬁz L(yn,wa(”) +b)+)l||w||l (3.1)
w,b

n=1

Wherg\wulzzj‘wj , W;is the j-th element of wlL(-) is a loss function and is a

regularization parameter that controls the spassepé the solution. We herein require that
L(-) be a convex and differentiable function witepect to the second argument. The above
formulation encompasses a wide range of learniggrhms, including LASSO (Tibshirani,
1996) andt, regularized logistic regression algorithm (Ng, 200f a modified hinge loss is
used (see, for example, (Rennie & Srebro, 2005p€lke 2007)), equation (3.1) represents

an approximate formulation éf-SVM.

The above formulation has a very appealing propiemtyhigh-dimensional data analysis. It
has been proved in (Rossttal, 2004) that solving problem (3.1) leads to a gligtaptimal
solutionw” with at most N non-zero elements. WHér<J, it provides an explicit

mechanism to perform feature selection to sigmifilya reduce model complexity. This

property, however, comes at a price. Unlikeregularization,|w| is a non-differentiable

function of w. The efficient implementation &f regularized formulations poses a serious
challenge to the machine learning community. Wewedhow how a simple gradient descent

technique can be used to efficiently solyeegularized learning problems.

Denotex™ = [(x‘”’ )Y, - (x‘”))T]T. Let us consider the following optimization pratle

1 N 2J
min f(wb) =2 L(y, WX +b)+ 1>
w,b i=1

n=1

(3.2)
st. w=0

The following lemma shows that the solution to JX&n be recovered from the solution to
(3.2).

Lemma 3.1. Let (W* ,b*) be an optimal solution to (3.2) whene =[(W*(l))T,(W*(2))T]T and

N

w®,w® 007, Then, W™ -w'®,b’) is an optimal solution to (3.1). Also, {iv",b") is

0(2) o(1)

an optimal solution to (3.1), then there exigi8® and w°?, so thatw™ = w°® -w°? and
([(W"(l))T,(WO‘Z))T]T ,b*) is an optimal solution to (3.2).

Proof. See Appendix 2.
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The following lemma shows that at least half of #kements of the optimal solution to (3.2)

are zero. We will exploit this property in our atlom implementation in Section 3.

Lemma 2.2. Let (W* ,b*)be an optimal solution to (3.2) and’ = [(W*(l’ )" ,(W*(Z))T]T . Then,
0jo[o]=[,...,d], eitherw,Yor W, or both equal to zero.

Proof. See Appendix 2.

The conversion from (3.1) to (3.2) is a standagsp ghat has been previously used in many
algorithms (e.g. (Schmidtt al, 2007) and (Duchet al, 2008)). Note that Eqg. (3.2) is a
constrained convex optimization problem, with deténtiable objective function. In order to
use gradient descent, we convert it into an uncaimgtd optimization problem.

Let w, = vf, O d Z[D]. Then, (3.2) can be re-written as

_ 1y 2, 2 (3.3)
n]!)n f(v,b) _an;‘ L(yn,évij + bj +/]JZ=;4V1
After the above transformation, the objective fumtiof (3.3) is no longer a convex function,
which is usually an undesitable property in optiaia@n, except for some rare cases
(Evtushenkjo and Zhadan, 1996; Faybusovich, 1994k show by next that the
transformation is beneficial in the sense thabitanly preserves global convergence property
of the original problem, but also enables removalrelevant features.
Taking the derivative dfwith respect to v and b, respectively, yields

20 o (n
ﬂ s i N GL(yn,Zj:lezxj( ) +b)
ov N & ot

X,+A([0Ov

2 2 (3.4)
of 13 al—(yn’zl':lvizxi +b)

ob N ot

where 0L(.)/o0t is the derivative ofL with respect to the second argument, didis

Hadamard operator.

For convenience, we denote=[v',b]" and g :[(Z_f)T,(%)T]. Let v be the estimate of
v

v in thek-th iteration andg™ be the value of g &t . A gradient descent method uses the

following updating rule

v =y —p g® (3.5)

wherer is determined via a line search.
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Theorem 3.1. Let f (w,b) be a differential convex function of w and b, weey 107, w >0,
and bOO. Let G(V)=f(w,b) where w=[w,..,w,]" =[v3,..v]"andb=v,,,. If

9

e =0, thenVv”is not a local minimizer, but a saddle point orlabgl minimizer of
v

G(V) . If the HessiarH(V") is positive semi-definite, then* is a global minimizer.
Theorem 3.2. For G(V) andv* defined above, i7" is found through gradient descent with a
line search satisfying the following conditions:

1. interval condition: a line searche splits the ctdb® under search into a finite number

of intervals,

2. Descending condition (see the definition below),

3. Greedy condition (see the definition below);
and an initial pointv® staisfying v\® = 0, 0j O[], then with probability oney” is a
global minimizer ofG(V) .
Here we give the definitions of the descending gmegdy conditions for a line search:

Definition 3.1. (descending condition)Let G(V) be an objective functiong(Vv)be its

gradient, v be the solution obtained in the k-th iteration, ardd™ be the descending
direction, a line search is said to satishe descending condition if the chosen step length

satisfies

qT g(\—,(m —nd® ) >0,

Definition 3.2. (greedy condition)Given G(v) and g(Vv) defined above, and® be the

length of the intervals at the k-th iteration, adisearch is said to satisfy the greedy condition

if the step lengthy chosen satisfies

6o )z 6lo (g + £y

or (\_/(k) -7 +£(k’)d(k)) is excluded from the line search;and

G(\—/(k) —pd® ) < G(\‘/“" —(7-£%)d® )

or (\_/(k) -7 —e(k))d(k’) is excluded from the line search.

The proof of theorems 3.1 and 3.2 is given in Apgjpe2.
The interval condition prevents the algorithms fromer-exploring along a gradient descent

direction. The descending and greedy conditionsirenthat a line search approaches a local
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optimum along the descending direction, but nevigs br goes beyond it. With these
conditions a gradient descent method can imprevqutlity step by step and to be immune
from misleading gradient information. Golden settsearch (Kiefer, 1953) is an example
that satisfies the greedy condition and splitsg&etion into finite intervals according to the

golden section rule.
3.2 Implementation details

We present below the detailed implementation of D@Ksolving £;-SVM problem in the

primal domain. Int;-SVM the following hinge loss function is usuallgad:

L(y,a) = max (0,1- ya) (3.6)

However, the hinge loss function is not differebkgaand therefore the application of DGM
method is not straightforward in this case. To owere this problem, we replace the non-
differential hinge loss function by its approximadéferentiable Huber loss function as
suggested by (Chapelle, 2007), given by

0 ya>1+h

—va)? 3.7

L(y,a) = % l-h<ya<il+h @.7)
1-ya ya<l1-h

whereh is a tunable parameter.Hfis sufficiently small, SVM using the Huber loss yides
the same sparse solution as SVM with the hinge (&sapelle, 2007). Hence, DGM
described in section 2 can be directly used toes6ivSVM in the primal domain. The

gradients of in Eq.(3.3) with respect toandb in this case is given as follows

2A0v ya>1+h,
of 1 T (n n
Fvi 2(/1 -mz:qyn((H h-vy, (wa( )+ b))x‘ ))j Ov 1-h< yasi+h, (3:8)
A '%ZLM‘“’)DV ya<l+h,
and
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0 ya>1+h,

o _ [-%Z:‘:lynj 1-h< ya<l+h, (3.9)

ob
1
(25

The gradient descent steps in (3.5) is then appliedach step, we first apply back-tracking

line search (Nocedal and Wright, 1999) to obtairead pointv‘® where f (v®) < f (v),

then apply golden section line search on the sett@weerv® and v® .
3.2.1 Hybrid Conjugate Gradient

Because a simple gradient descent method is knowigizag in some function contours, the
Fletcher-Reeves conjugate gradient descent mefflettiier, 1997) can be used to enhance

the performance of the algorithm:

vk =gk — p ¢

d® = g®
d® =g + gd*?, Ok >1, (3.10)
<g‘k), g(k)>
- <g<k‘1), g<k—1)> '

whered® is the conjugate gradient, afdis the inner product. Note that conjugate gradient
method does not ensure that the objective funaiecreases monotonically. Hence, when
<g("’,d"‘)> <0, one usually replaces® with g™ as the search direction to ensure that the
algorithm always proceeds in a descending directimrall our implementation, we adopt a
hybrid gradient descent scheme. Dendt& as the objective function obtained in tk¢h
iteration andJ(a,b) the angle between vectorsaad b. If (f® —f*?)/{® <g and

O(g®,d®) <8, we use-d® as the descending direction, ard)™ otherwise. In all our
implementations, we sét = 0.01 andd, = 512x. It should be noted that with the descending
condition, the global convergence property alsalfdbr conjugate gradient descent.

We stated in the previous section that the soluti@nhas at mosmin(N, J non-zero

elements. We exploit this property to speed uprtiementation. Note in (3.4) thatvif =0

, then the gradient will be zero on thth element, and/; will remain zero thereafter. Hence,
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if some elements of are extremely small, the corresponding featuresbeaeliminated from

further consideration with a negligible impact dre tsubsequent iterations and the final

solution found. In all our implementations, theterion for eliminating small-valued weights

is w, <10™|w|_, where|w]_ =max {w,}.

3.2.2 Computational Complexity

With conjugate gradient descent, in each iterattbe, flops needed to compute gradient is

O(NJ), and the memory required B3(N +J), whereN is the sample size anilthe data

dimensionality. We give by the following the psetmtmle of DGM Algorithm.

DGM Algorithm

3.3

Ll A

© o N o O

Initiate V© =1/,/(2J),b® =0,k =0, stopping criteriad , parameterss,, 6,
v© :[(V(O))T,b]T
compute f @ using Eq. (3.3)

Repeat
a- k=k+1

b- Computeg(k) using Eq. (3.7)
c- If k>1 and”f () —f H < @, then

Computed “ using Eq. (3.7)
it 0(g™ ,d*®) <6, then

d® = g®
End if
Else
d® = g®
End if

d- Update V& =v*™® —p® d® wheren®is determined via line search.
e- 1f v <10°|v®| , 0j020] then
v =0
End if
until Hf 0 — f (H)H <o
=) — 1ok o (k
w® =[(%)?,..., (V)T
v —r(ok o (k
W@ =[(V5)%,.. (V) T
W = W(l) _W(z)
— sk
b= V(ZJ)+1

Numerical experiments

We present in the following some numerical experiments to compare DGWM with one

recent state-of-the-art method, namely, generalized LPNewton falgdyithms proposed in
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(Fung and Mangasarian, 2004; Mangasarian, 2006)jeelh, the method described in
(Mangasarian, 2006) is only a special case of thee moposed by (Fung and Mangasarian,
2004) where the penalty parameigs fixed to be one. It was stated in (Mangasarziq6)
that this value ofx leads to an exact solution of the SVM problem. Tisthod has been
tested on a wide variety of data sets and compaitdd other methods such as standard

software packages (Fung and Mangasarian, 2004; dsanign, 2006).
3.3.1 Experiment Setup

Each algorithm has been applied to eight datassteywa specified set df values. Each

algorithm is stoped when the achieved objectivestion is within a desired precision of the
optimal solution. However, only a locally optimumlgion is may be achieved which makes
the comparison in term of CPU time in this casealaiced. In order to make a fair

comparison, in our experiments, for every datasetiavalue, we first run both algorithms
within 10° precision. At the end of this stage, each algorifitovided one solutiofw” ,b") .

Obviously, the good solution is the one which pded the minimal cost value on the
objective function of the original SVM problem whitas to be minimized (Eq. 3.1). Then,
we set the so-obtained minimal cost achieved ow#r Algorithms as the target value and we
run each algorithm so that it stopped when theeaelti objective function was withinf0
precision of this target cost. However, it is pbksithat the algorithm diverges and never
achieves the desired target cost. To overcomeptbisiem, the maximum number of iteration
for each) value was fixed to &x10°. The CPU time consumed to achieve the target cost
was then recorded and compared. By using this arpatal protocol, we verified that the
solution obtained by DGM-.SVM was, as proved theoretically, a global minimize
LPNewton algorithm was programmed in Matlab as pled by (Fung and Mangasarian,
2004). For a fair comparison, we developped DGMVYM also on Matlab. LPNewton
algorithm requires the specification of many pareerseincluding regularization parameter. It
is worthwhile to note here that for DGEMSVM the only requisite is to specify the
regularization paramet@ras the parametérmust be specified to be very small (here we take
h=10%) , in order to guarantee the same sparse solasothat would be obtained when a
hinge loss function is used (Chapelle, 2007). Im emMperiments the values df (or
equivalentlyl/v in LPNewton algorithm) are taken in the rang€,[2] ande =10* , &
belongs to the interval [19) 10% as suggested by (Fung and Mangasarian, 2004j.th€o

parametear, it must be noted that we have found out empigdhlat this method performed
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poorly when the special cage=1 was considered. For that reason we opted to takd 0°
as suggested also by (Fung and Mangasarian, 2004)must be noted also that all
experiments was performed on a personal computérIniel Core 2, 2.26 GHZ CPU, 1.98
GB memory, and Windows operating system.

3.3.2 Experimental results

We have compared the two algorithms on eight medinthlarge-scale data sets with feature
dimensionality ranging from 1,000 to 44,932. Semerong them are cancer microarray data:
Colon, leukemia, internet Ads. (Kokt al, 2007; Lee etal.,, 2006), prostate cancer
(Stephenson edl., 2005), GSE4922 (lvshinat al, 2006), Arcene (Guyomet al, 2005) ,
ETABM77 (Buyse et al, 2006). The Linear data is an artificially genetdatbinary
classification problem, with each class having 88thples characterized by 104 features. The
first 500 features are drawn from two normal dmsttionsN (-1, 1) andN (1, 1), depending
on class labels. The rest of the features are dfeamm the standard normal distribution, thus
providing no discriminant information. The interds Data has a sparse data matrix where
only a few features have non-zero values, wherkash&r datasets have a dense data matrix.
The summary of the data is given in Table 3.1. Each dataset, standardization was
performed on the data matrix so that the effecimafan shift in microarray profiling is
reduced.

Table 3.1 Summary of datasets

Dataset No. of features No. of samples
Colon cancer 2000 62

Leukemia 7129 72

Internet Ads. 1430 2359

Prostate cancer 22291 79

TABM77 1145 291

GSE4922 44932 249

Arcene 10000 200

Linear 10000 400

We have applied the two algorithms on each datasdtrecorded in Table 3.2 the total

running time summed over fifteen values uniformly spaced on a logarithmic scalerove
interval[2”,2"]. Indeed, the regularization parameteris usually estimated in practical

applications, through a cross validation proceddence, the total running time summed over

all possiblel values is an important criterion to evaluate agjoathm. We plot also the CPU
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time and the corresponding precision in term ot émseach) value as shown in Figures 3.1

and 3.2. It can be observed that:

1. Figure 3.1 shows that DGNESVM outperforms the LPNewton algorithm for all
values on all datasets. The overall CPU time replart Table 3.2 confirms this result.
2. Precision and the CPU time plotted in Figures 3d &2 show that the minimal cost
value is always achieved by DGMSVM, which is consistent with our claim
supported by a well founded theoretical demonsinatihat it provides a global
minimum.
3. Except for Linear data set, whans large, LPNewton algorithm fails to converge to
the target optimal cost which justifies the obtdim®or precision generally whew
2* as shown in Figure 3.2.
4. DGM-{£;SVM converges always in a finite time to a solutimorresponding to the
minimal cost whatever the value of
To further demonstrate the effectiveness of our@gugh, we report also in Table 3.3 the
overall summed CPU time for only the elevervalues [2?,2%] for whom both methods
converge (before 5xfOiterations). These results confirm that the pregospproach
outperforms LPNewton approach even in the casemwhis last converges to a finite
solution. One possible explanation is that the temluprovided by DGME;SVM is more
optimal than the so-obtained by LPNewton approach.

Tab. 3.2. CPU time (in seconds) of the two algonghperformed on the eight data sets foriallalues. The
algorithm stops when the achieved objective fumcisowithin 10° precision of the target cost.

Data/Method Colon Leuki. Internet Ads. Prostate ETABM77 GSE4922 Arcene Linear
DGM 4.1 11 57.7 40.3 21.3 497.9 2149 86.8
LPNewton 317 806 3012 2147 1105.4 11532 41631 5051.1

Tab. 3.3. CPU time (in seconds) of the two algonglperformed on the eight data sets for only eléveslues.
The algorithm stops when the achieved objectivetion is within 10° precision of the target cost.

Data/Method Colon Leuki. Internet Ads. Prostate ETABM77 GSE4922 Arcene
DGM 3.6 10 50.5 36.2 20.3 462.2 1794.6
LPNewton 114.8 132 766.1 438.5 366.9 2865.9 2228.6
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Fig. 3.1. Running time (in seconds) of DGIY8VM and LPNewton performed on eight benchmark data
using differenfA values.
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3.4 Conclusion

We have proposed in this chapter an efficient agpgrdo solve th€:SVM problem in the
primal. We have shown that the proposed methodygihcsimple, perform very well in
practical situations. The basic idea is to takeaatlhge of the global solution optimality which
can be achieved using gradient descent technigirstly, the hinge loss function is replaced
by its approximated Huber loss function to overcatsenon-differentiable property. Then,
the initial convex optimization problem is transf@d into an unconstrained non-convex
problem, upon which, via gradient descent, reachangglobally optimum solution is
guaranteed. We have conducted large-scale numesigaériments to demonstrate the
theoretical claim and prove the computational efficy over a well known state-of-art

method.

High data dimensionality however is not the onlglgem to be faced in cancer applications.
Other major issues such as data heterogeneity, rtamiees and noises can also be
encountered jointly with high dimensionality promleTherefore, more efficient methods are
urgently needed to cope simultaneously with allvebstated problems. This problematic will
present our subject of interest in next chaptersam attempt to develop appropriate

approaches capable of handling such problems.
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CHAPITRE 4- Résumé

Vers un principe unifié pour le rai-
sonnement sur des données hétéro-
genes

Pour une bonne compréhension du comportement dacepsus, le raisonnement humain
traite habituellement des connaissances incomplétekétérogenes. Par conséquent, des
meéthodes appropriées pour représenter le proceasas des connaissances partielles sont
nécessaires. La représentation la plus utiliséecebé purement quantitative qui suppose une
exactitude complete de l'information. Cependantoambre réel contient une quantité infinie
de précision alors que la connaissance humaindimst et discrete. Ainsi, il est nécessaire
d'utiliser les données représentées par des vakurgoliques pour s'adapter a la perception
humaine. La représentation des connaissances inébespsur les données peut étre effectuée
de différentes maniéeres: intervalles symboliques/aleurs qualitatives. Par conséquent, le
développement d'un mécanisme automatique de rasoemt sur les données est confronté a
cette multiplicité de représentations possibles.

Nous abordons dans ce chapitre I'une des princgdiéficultés rencontrées dans les taches
d'analyse de données: la diversité des types dirdton. Une telle information est
représentée par des données qualitatives, nominalesordinales, mélangées avec des
données quantitatives et intervallaires. Notre objeest de proposer un principe unifié pour
établir différents mécanismes de raisonnement disarntt simultanément trois types de
données: purement quantitative, intervallaire syhgu® et qualitatives. De nombreuses
situations menant a des algorithmes bien condigsnipour les données quantitatives,
deviennent tres complexes lorsque certaines infooms sont sous forme qualitative. Dans
une liste non exhaustive, on peut citer, déducti@sée sur les regles, classification,
«clustering», la réduction de dimensionnalité ....

Pour surmonter ce probleme, une approche classigusistera a raisonner sur chaque type
de données séparément pour déduire des décisiatislies. Cependant, cela représente un
autre probléme sérieux similaire a notre problemigial lié a la facon dont on doit procéder
pour intégrer de telles décisions partielles etrfavec une décision globale pour I'ensemble
des données. Une autre approche intéressante selfaitifier les différents espaces
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hétérogénes dans un espace homogéne, puis raisdanmeaniere unifiée sur 'ensemble des
données pour prendre la décision appropriée. Afaviter tout type de distorsion et/ou perte
d'information, le processus d'unification de l'espadevrait étre effectué avec précaution
pour chaque type de données. Dans ce but, nouslunigons ici un principe unifié permettant
de raisonner sur des données hétérogenes, dénoMi®E Sour Simultaneous Mapping for
Single Processing. Le principe est basé initialdmsmr une projection appropriée et
simultanée des données hétérogénes dans un espfiée Qette projection peut étre obtenue
en utilisant une fonction caractéristique pour chadype de données pour les amener dans
un espace homogeéne. Ces fonctions peuvent étreeode telle fagcon qu'elles expriment une
mesure relative comme par exemple la mesure dwédEgdéquation (ou typicité) de chaque
valeur d’une variable a des partitions existantear exemple, dans le cadre de la théorie des
ensembles flous, cette mesure est techniquemerdnysye du terme de mesure
d’appartenance qui est un nombre réel dans l'ira#evunitaire | = [0,1]. Quand une mesure
relative différente, autre que l'adéquation a chaqclasse, doit étre considérée d'autres
solutions alternatives peuvent étre envisagées. sdhdion possible est d'utiliser le concept
de fonction noyau (Atkeson et al., 1997), popudardgans le cadre de la théorie
d’apprentissage statistique, pour la conception d@sctions caractéristiques adaptées a
chaque type de données. Une fois que ces fonatpprepriées ont été choisies et que toutes
les données sont représentées dans un espace hwmage traitement unique peut étre
effectué en utilisant un mécanisme de raisonnerasijue. Afin de prendre en compte
l'incertitude d’appartenance, le principe SMSP @sipose ici dans le cadre de la théorie des
ensembles flous. Une fois que les fonctions d'dppance adaptées caractérisant
'adéquation a chaque classe sont choisies en ifimates types de variable, une partition
floue des variables peut étre effectuée a partg dennées empiriques. Comme il est montré
dans ce chapitre, chaque individu de la base dendlennitiale, décrite par m variables de
plusieurs types (qualitative, quantitative, intdfame), sera représenté par m degrés
d'appartenance, c.-a-d. m nombres de l'intervalgtaire. Les données transformées sont
donc inclues dans un espace homogene isomorphehgpancube unité. Par conséquent, un
mécanisme flou de raisonnement simple et uniqué gteel utilisé pour raisonner sur les
données obtenues quel que soit leur type initial.d®montrera dans les chapitres suivants
gu’en utilisant ce principe, il est possible d'efteer une variété de taches d'analyse de
données (classification, réduction de dimensioné@ategroupement ...).
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CHAPTER 4

Towards a Unified Principle for Rea-
soning about Heterogeneous Data: A
Fuzzy Logic Framework

For a good understanding of any process behaviomah reasoning deals usually with
incomplete and heterogeneous knowledge. There&meropriate methods for representing
the process with partial knowledge are requirede Wost used representation is the pure
guantitative one which assumes a complete exaetialgbut the information. Taken as it
appears, a real number contains an infinite amoftiptecision whereas human knowledge is
finite and discrete. So, there is a need to usa kgiresented by symbolic values to fit with
human perception. The representation of incomdetsviedge about the data can be done in
different ways: symbolic intervals or qualitativealwes. Thus, the development of an
automatic mechanism for reasoning about the dafacesd with this multiplicity of possible
representations.

We address here one of the main difficulties entared in data analysis tasks: the diversity
of information types. Such information is given fualitative valued data, which can be
nominal or ordinal, mixed with quantitative andental data. Our focus is to propose a
unified principle to establish various reasoningchaisms using simultaneously three types
of data: pure quantitative, symbolic interval anggyqualitative modalities. Many situations
leading to well conditioned algorithms for quarttita valued information, become very
complex whenever there are several data given alitgtive form. In a non exhaustive list,
we can mention, rule based deduction, classifinattustering, dimensionality reduction...
Although the problem of representation multiplicitgs been addressed within the machine
learning framework in some works (Michalski and#te1980; Mohri and Hidehiko, 1994;
Hu et al, 2007), no standard principle has been proposethanliterature to handle in a
unified way heterogeneous data. The proposed methedpectively use distance and
information content measures to process separgtegtitative and qualitative in dimension
reduction tasks (Kira and Rendell, 1992a; Dashland2003), whereas a Hamming distance
is usually used to handle qualitative data in d@&sgion and clustering tasks (Aha, 1989;
Aha, 1992; Kononenko, 1994).
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Other approaches are originally designed to proosdg quantitative data and therefore
arbitrary transformations of qualitative data irtajuantitative space are proposed without
taking into account their nature in the originahsp (Cover and Hart, 1967; Kira and Rendell,
1992a; Westoret al, 2001). For example, the featurelor can take values in a discrete
unordered set {red, black, green, white}. Theseuesl are transformed respectively to
guantitative values 1, 2, 3 and 4. However, we alan choose to transform them to 4, 1, 2
and 3. This can represent a potential source ofnmdtion loss.

In the opposite, the transformation of quantitatreéues in qualitative objects by discretizing
the quantitative value domain into several intesv@all, 2000; Liuet al, 2002) introduce
also distortion and information loss with respecthte original data since objects in the same
interval are labeled by the same qualitative value.

Although extensive studies were performed to preaeterval type data in the Symbolic Data
Analysis framework(Bock and Diday, 2000), they were focused generailyre on the
clustering tasks (Gowda and Diday, 1992; De Cawahal, 2010). Indeed, no standard
principle has been proposed in the literature todlein a unified way heterogeneous data
and combine furthermore in a fully adequate wag fmocessing of symbolic intervals
simultaneously with quantitative and qualitativéadfor different analysis purposes.

In this chapter we present a general principlepthiced here as “Simultaneous Mapping for
Single Processing (SMSP)”, which enables reasomrey unified way about heterogeneous
data for several data analysis purposes (Hedjaai, 2010a; Hedjazet al, 2011a). The only
requisite is to define characteristic functionst tbharacterize a relative measure based on
available knowledge about each feature. Once thesgions are chosen appropriately, the
initial heterogeneous space, where the informasoof mixed nature, is transformed into a
homogeneous space. Consequently, only a uniqueniegsmechanism can be used to reason

about the resulted data whatever its initial type.

We introduce below this principle noted SMSP pmheiand an example of simultaneous

mapping of mixed features into a common spacedsamted within a fuzzy logic framework.

4.1 Simultaneous mapping for single processing principle

Many learning problems involve usually data of nixgpe characterized especially within
different heterogeneous spaces. The lacks of apdlegveen such spaces make the reasoning
task to extract a reliable knowledge rather complex overcome this issue, due mainly to

space’s heterogeneity, one typical approach igasan about each type of data separately to
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derive separate partial decisions. However, thisglsranother serious issue similar to the
initial one related to the way to integrate suchtiphdecisions to end up with only a global
decision for the whole data. Another interestingrapch would be to unify the different
heterogeneous spaces into one homogeneous spatteearrdason in a unified way about the
whole data to take the appropriate decision. Toicavany type of distortion and/or
information loss the space’s unification processusdh be performed appropriately for each
type of data. In this aim, we introduce here a iadifprinciple for reasoning about
heterogeneous data, referred to as SimultaneoupiMafor Single Processing (SMSP). The
principle is based initially on aappropriate simultaneous mapping of heterogeneous data
into a unified space. This mapping can be obtamedsing a characteristic function for each
type of data to bring them into a homogeneous spdesse functions can be designed in such
way that they express a relative measure as fanpbeathe measure of the appropriateness
(adequacy, typicality) of each feature value otgrat to existing partitions. For instance, in
the fuzzy set theory framework, this measure idi@mally synonymous to the term of
membership measure which is a number of the realinterval I= [0,1]. When a different
relative measure other than the pattern appropeate to each class is considered, other
alternative solutions can be envisaged. One passiblution is to use thkernel function
concept (Atkesort al, 1997), extensively studied in statistical leagniheory, for designing
suitable characteristic functions for each typelata. Once suitable functions are chosen and
all data are represented in a homogeneous spatggla processing can be performed using a
unique reasoning mechanism. The general conceteoSMSP principle is illustrated in

Figure 4.1.

In order to take into account the membership uagest, the SMSP principle is proposed in
the present work within the fuzzy set theory framgito reason about heterogeneous data.
Once suitable membership functions that charaetdéhie adequacy to each class are chosen
according to feature types, a fuzzy partition @ttees can be performed based on empirical
data. As it will be shown hereafter, each pattdrthe initial data, described by features
having several types, (qualitative, quantitativeaniBolic intervals), will be represented by
membership degrees, im.numbers of the unit interval; therefore the transied data set is
included in a homogeneous space isomorph to arhypércube. Thus, a unique and simple
fuzzy reasoning mechanism can be used to reasout @he resulting data whatever its
original type. It will be shown by next chaptersithbased on this principle it is possible to

perform a wide variety of analysis (classificatidimensionality reduction, clustering...).
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1.0 0.25 3.0
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Quantitative
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A ‘ ' [1.45 3] [1.4 2]

Qualitative Interval
space space

P 4

Simultaneous Mapping

Fig. 4.1. SMSP principle

4.2 Homogeneous space of features
Basically we consider the three above mentionedsyyf data:
(a) Quantitative featuregeal numbers that can be normalized into theintetval
[0,1].
(b) Symbolic intervals of the real linavith no restriction of relative position
(regular or overlapped).

(c) Qualitative features:that can be ordinal or nominal modalities.

According to (Dubois and Prade, 1997), three mamamtics of fuzzy membership functions
can be distinguished in the fuzzy literature. Amaoimgm we find similarity (or distance) and
uncertainty, widely used in fuzzy pattern recogmitiapplied to the estimation of membership
functions from data (Medasani and Kim, 1998). fastance, Bezdek (Bezdek, 1981) take use
of the similarity semantic to define a relatiohetween two objects™X and ¥? as fuzzy (i.e
rofo1] if r=p(x™,x?) wherep is a metric (distance measure) otherwise it issiciered

as crisp (i.e EI{O,]}). Regarding uncertainty semantic, it is reportedDubois and Prade,

1997) that uncertainty is often measured in terinfemuency of observed situations in a
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random experiment. However, this approach leadsrobability theory when the repeated
observations are precise. In that sense, probabsisignments to the elements of referential
set U can be viewed as special membership functioals that the sum of membership grades
is one (Dubois and Prade, 1997). In our work baimantics have been used to define an
adequate membership function according to the tfpgata. However, in mixed data types
the features are images of unrelated conceptsrdardo bypass this difficulty, we take
advantage of the commensurability assumption infrdm@ework of fuzzy logic (Dubois and
Prade, 1997) to end up with a unique space (uniettpbe) where all the features are
represented by their memberships to a referenceyfymartition. Therefore, a single
processing of their membership degrees for datyysiagurpose is straightforward based on

aggregation in the resulting space.

N is the number of patterns. Each pattern is represented fegtures possibly of different
types (quantitative, qualitative or symbolic interval), apdsGhe class label assigned to each
pattern in the pre-established partitioksl,2,...,l

Based on an appropriate data-driven process using the training dataseedrh feature
correspond fuzzy sets representing the membership functions to each class.yNtel

{mff,, mff' ..., mff' } be thel fuzzy sets that form a fuzzy partition for tifefeature.

The fuzzy semff is defined by its membership functign' in the rankX; of thei™ feature

depending on a parametgr as follows:
(%) =i, Oi); k=1,2,...,l (4.1)

where 6 represents thé" prototype of class (Cand can be estimated from tH2 feature
values of patterns belonging to clasgi the training dataset D. For each feature type, a
particular learning process can be adopted to estimate its membersiprfsifrom data.

We present by next how this fuzzy partition is performed hargywsparticular membership
functions to each type of feature and we support it by the follpvan example.

Example: Consider the set of samples shown in Table 4.1. This seassifoéd into two
classes {G, C;} and is described by three types of featunes(quantitative feature)x,

(interval feature) angs (qualitative feature).
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Tab. 4.1. Group of patterns characterized by threed-feature types

Sample X1 Xo X3 Clas:
(Quantitative featur (Interval feature (Qualitative feature
X 5 [1.5,25 Rec C.
x@ 5.22 [3.5,4.5 Yellow C,
x® 6.7¢ [5.5, 6.5 Rec C.
x“ 7 [7.5,8.5 Black (o
x®) 6 [9.5,10.5 Yellow (o
x© 5.F [11.5,12.5 Rec (o
X 7 [13.5, 14.5 Black C,
x® 9 [7.5,8.5 Black C,
X9 8 [9.5,10.5 White C,
x10) 10. [11.5,12.5 Rec C,
X 8.E [13.5, 14.5 Black C,
X2 9.t [15.5, 16.5 Black C,
X3 1C [17.5, 18.5 Rec C,
x4 11 [19.5, 20.5 Black C,

4.3 Member ship functions
4.3.1 Quantitativetype features

It will be generally assumed that the universe istaurse of each quantitative feature is
included in a compact interval; either the bounfiths interval are known, or they can be
induced by the dataset. Therefore, without losgnffrmation, its numerical values can be
normalized within the intervalxjnin, Xmad. This linear re-scaling of the feature into the
interval [0,1] is performed by:

)Ag — Xmin
)Aﬁmax - X min

where X is thei™ raw feature value any is its normalized value.

X = (4.2)

In the case of quantitative features, several meshige functions proposed by (Aguado and
Aguilar-Martin, 1999) can be used fmj (.). Among them we find:
a. Gaussian-like member ship function

whereg'y andg; are respectively the mean and the standard dewiafi thei™ feature values
based on the samples belonging to the clas$t&refore, the resulted prototype of clagssC
the mean vector of dimension notedg=[ o'k, ¢’%...., »™d . In case of a too small number of
samples provided in real applications, the standakdation vectos=[ o1, ai,..., o] Mmay be
estimated over all the training samples.

b. Binomial membership function
wix)= 0. -gl) " (44)
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whereg', is the mean of thi" feature values based on the samples belongingtddiss ¢

c. Centered binomial membership function

9.4 = g g (4.5)

M (%
where ., is a prototype for clas€, and parametew, measures the proximity to the

prototype so thatOx z 3. : 1 (Si|9,6.) = u. (x|5.,4,) and for ¢, <¢, Ox 25, we have the
Xl k k \"k k k A\ %k 17k

ordered membershipg, (x5, ,8,) = 1 (X |5 ,,) -

An example of resulting fuzzy partition for quaative features using Gaussian-like

membership function is illustrated in the followiagample.
Example: If we consider the Gaussian-like membership fumcij.3) for the quantitative
featurex;, the obtained parameters of membership functioitis r@spect to the two classes

after normalization argf; = 0.1786 ¢1=0.7979 and ¢ = 01123

4.3.2 Interval typefeatures

To take into account the various uncertainties §@®)j and/or to reduce large datasets, the
interval representation of data has seen widesprsadn recent years (Billard, 2008). In this
work, a fuzzy similarity measure is proposed todtarthis type of features in such a way that
their symbolic nature is preserved.

The membership function for interval type featurgdaken as the similarity between the

symbolic interval value of th featurex; and the interva, =| p| . ," | representing class,C

as:

i (xi) = sxi i) (4.6)
Symbolic interval features are extensions of pea data types, in the way that each feature
may take an interval of values instead of a singlleile (Gowda and Diday, 1992). In this
framework, the value of a quantityis expressed as a closed intervak|] whenever only an
incomplete knowledge is available about it; repnéisg the knowledge thak™ <xs<x”
(Kuipers, 1994).
Definition 4.1: Let us consider a universe of discouxsas a compact subset of the real line

R; that can be continuous or discrete. Any fuzzysstiwill be defined 36, (9); sovORr.
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We denoteneasurew of a fuzzy set on a discrete universe its scalatiical. Here the sigma-

countw[X]={Z yx(fi) has been chosen; its extension to a continuousrersa Iis
15Y}
|

a X] =\£;ux (f)df

Let us define a fuzzy interval = p,(¢) as a fuzzy set such thatdA; u,(6)=0, whereAis a

crisp interval called théaseofA. It must be noticed that for a non fuzzy interxalts

measure is given by its lengt{ x | = upper.bound(x ) - lower bound(x ).

Given two crisp intervals\ = [a_,a+]andB = [b‘,b*] let us define theidistanced as:

o[A 8] = max| of mafap} - mifa*5])] (4.7)
Then the definition of theimilarity measurédetween two fuzzy intervals and Bis given in

the discrete case by:

(4.8)
and its extension to the continuous case is:

oy 1 \{'u/?\né({i)'df O[A B]
s(A, B)_E e @ )'d€+ o] (4.9)

This similarity measure combines two terms. Thstfterm corresponds to the well known
Jaccard’s similarity measure (Jaccard, 1908) wharhputes the similarity when the intervals
are overlapped; We add to it the second term walidws to take into account the similarity

when the intervals are not overlapped.

It shall be remarked that if only crisp intervate @onsidered this similarity measure can be
written as given irfjHedjaziet al, 2011b):

N

For the learning step, let us consider a clagh&ving Nx samples. The parameters that

(4.10)

characterize this class, for the interval type dezt, are estimated based on an appropriate

learning procedure such that the class is repredeby a vector whose components are
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intervals. The bounds of the interval of each congmb of this vector are given by the

following arithmetic means:

N Ny
- K o it _ 1 i+
Pi =—,\}k > X" and P —szjzlxi] (4.11)

j=1
Where xis the i" feature lower bound of th@" sample andx"is its upper bound.

Therefore, the classc@ then represented by the intene] 44" ], and its similarity to the"

interval feature value of the™ sample is given bygx®™,g] according to formulas (4.8),

(4.9) or (4.10).

Consequently, the resulted class prototype for timerval features is given by the vector of

intervalsp, =[pt,pz,...0:] .

For a better conditioning of magnitudes and processing timemaziation, a normalization

within the interval [0,1] is also performed:

— 5\(i_ _)’Zi_min + — )’Zi+ _)’Zi_min
X =% 1 X =< — (4.12)
Ximax - Ximin Ximax - Ximin
Wherex =[x, X" Jis the normalized interval value 6f=[%, X]. Consequently, the domaif
becomes the unit interval [0, 1] for all features. This normalimatioes not introduce

distortion on behalf of the linearity of the normalizing transform.

It is worthwhile here to note that the function S (A, B) fldfthe properties commonly used

to characterize a similarity measure :
. O0<S(AB)<1,;
i. S(A,B)=1ifand onlyif A equalsto B;
iii.  S(A,B) =S(B,A).
Example: If we considerthe interval feature;, in the set of patterns described in Table 4.1,

the resulting parameters of classes for the interval feature after normalizagon
pf =[0.31580.3684 and p5 = [0.63160.6847 .

4.3.3 Qualitativetypefeatures
In the qualitative case, the possible values of'ttieature form a set of modalities:

D ={Q...q...q,} (4.13)
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Frequency is a quantity that has been used for umiegsfuzzy set membership in several

fuzzy applications (Dubois and Prade, 1997).dgbe the frequency of modalit®) for

class G. The membership function of qualitative featyrean be specified as:

H (Xi) = ((Dikl)q1 O E(cbikMi)qM‘ (4.14)

where: o JLifx =Q
Fo0if x 2Q

Obviously the class parameters are representegl m{“"kl,--- Do ,cpikMi] and the resulting
fuzzy partition of the qualitative feature caséescribed by the following example.
Example: The resulting parameters of fuzzy partitions fog gualitative featurg;in the set

of samples given in Table 4.1 aﬂﬂf:: [0.28570.42860.28570] anng = [0,0.2857,057140.1429 .

4.4 Common member ship space

A consequence of the fuzzy partition described iptesly is the mapping of different types of
features from completely heterogeneous spaces @ntcommon space which is the
membership space. Thus, havingvalimensional quantitative space, ggdimensional
gualitative space and andimensional interval spac¢he resulting membership space with
the respect each classrisdiemnsional R") with m= v+q+r which is the total number of
features. In case of dichotomy problems, only oflespace is necessary as the other can be
obtained by complementary of membership.

Definition 4.2: Membership Degree Vector

A Membership Degree Vector (MDV) of dimension can be associated for a given pattern

x™ to each class as follows:
U :[ﬂi(&(n)),ﬂi(xén)),---,ﬂf(xﬂ) )]T k=12 (4.15)
Where 4 (x™) (i.e. ' (x =x™)) is the membership function of clasg évaluated at the

given valuex™ of thei™ feature of pattern® .

If we consider the previous example, using the definition 3Mi®/s are obtained for the

fifth pattern ¥ with respect to its class;@nd alternative class,@s follows:

Uye, = (69 =), 1 (6 = [951081), 222 (<9 = vellow)] sk = 12

which yields
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Ug, =[06370,0.4703,02857]" and U,, =[0.3000,0.4208,0.0000]"

MDV is a m™ dimensional image of pattern with respect to the considered class. All the

components of the MDV are positive numbers in thit interval [0,1], thereforeu . can be
considered as a discrete fuzzy subset and theidang(U, . ) =3 1 (x) represents its scalar

cardinality (power or sigma count) as defined imwi@k et al.,1987) and (Wygralak, 2000).
Once all features are simultaneously mapped intoramon space, they can be henceforth
processed similarly either for classification, teatselection or clustering. We show by next

chapters the usefulness of the SMSP principle tiopa those data analysis tasks.

45 Conclusion

In this chapter a unified principle is introduced tope with the problem of data
heterogeneity. This principle is based on a simelbais mapping of data from initially
heterogeneous spaces into only one homogeneoug sty appropriate characteristic
functions. Once the heterogeneous data are repeelsém a unified space, only a single
processing for various analysis purposes such ahinelearning tasks can be performed.
We considered here the three most used types wirésawhich are quantitative, interval and

qualitative.

In the present work, this principle is proposedhiitthe fuzzy set theory framework to reason
about heterogeneous data. Once suitable membédusitions that characterize the adequacy
(typicality, appropriateness) of a pattern to eglelss are chosen according to feature types, a
fuzzy partition of features can be performed base@mpirical data. In the present work two
well-known semantics (similarity and uncertaintynsetics) have been adopted to define an
adequate membership function according to the fedtype. The first one has been used for
guantitative and interval data whereas the later lnas been adopted for the qualitative data.
We take advantage of the commensurability assumptiche framework of fuzzy logic to
end up with a unique space (unit hypercube) whitrthe features are represented by their
memberships to a reference fuzzy partition. We shpwext chapters that by employing this
principle within a fuzzy logic framework, only angple fuzzy reasoning mechanism can be
used to perform several machine learning tasks assctlassification, feature selection and

clustering.
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CHPITRE 5- Résumé
Apprentissage supervise basé sur le
principe «SMSP»

Il est reconnu dans la pratique que la plupart deanaissances médicales employées pour la
prise de décision sont généralement exprimées laoiasme de regles qualitatives. Ceci est
principalement la raison qui rend les systemes &ebde regles bien acceptés par les
praticiens. Les systemes flous a base de reglesepewétre particulierement d'un grand
intérét car ils offrent une grande transparencénéerprétabilitétout en permettant de traiter
des informations bruitées, imprécises ou incomplg@esentes souvent dans de nombreux

problemes du monde réel.

La relation entre le résultat de la classificatiehla variable originelle est généralement non
linéaire et complexe. Cependant, si la variablegmelle est correctement «fuzzifiée», la
relation peut étre approchée par une fonction liné@t un classifieur simple peut étre utilisé
(Li et Wu, 2008). Récemment, des systemes basdesuegles floues (Si-Alors) ont été
appligués a des problemes de classification ouvesteurs de données non-floues (ou
numeriques) d'entrée doivent étre attribuées ael'des classes existantes (Ishibuchi et al,
1992; Chiu, 1997; Abe et Thawonmas, 1997). Towgefmtte classe de classifieurs devient
inutilisable des qu’un probleme de dimension élestdeu présentant une hétérogénéité des
données est rencontré. Ce cas est fréquent danaplg&cations du cancer qui représente
notre sujet d'intérét. Nous montrons tout d'aboehsl ce chapitre qu’un simple classifieur
basé sur des regles floues peut étre congu selprineipe SMSP introduit dans le chapitre
précédent pour faire face a I'nétérogénéité desnden. Ensuite, en se basant toujours sur le
méme principe, une approche de pondération de bktaest concue et intégrée dans le

classifieur flou dans le but de I'adapter a deslgémes de dimension élevée.

Dans ce travail, chague ensemble flou de la préndss chaque régle floue (Si-Alors) est
pondéré afin de caractériser l'importance de chagueposition et donc de la variable
correspondante. Pour justifier une telle opératittnprocessus d'estimation du poids est basé
sur la maximisation des marges d'appartenance dfestimer un poids flou de chaque
variable dans l'espace d’appartenance. Il est mdratussi que la définition de la fonction

objective en se basant sur le concept de marge néeluire efficacement la complexité de
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calcul grace a l'utilisation de techniques d'opsition standards, qui permettent d’éviter une
recherche heuristique combinatoire. Une extensiemadméthode pour traiter les problémes
multi-classes est aussi proposée. Une étude expérae extensive a été menée pour
démontrer l'efficacité de la méthode proposée suxdensembles de bases de données. Le
premier est caractérisé par I'hétérogénéité desrdms et le deuxiéme par la dimension
élevée. Cette méthode a été comparée avec desdegttle pondération de variables bien
connues dans la littérature: Relief (Kira and Rehd#992a), I-Relief (Sun, 2007b) and
Simba (Gilad-Bachrach et al., 2004). Afin d’assutgre comparaison sans biais, les deux
classifieurs populaires k-NN (Cover and Hart, 19€1)SVM (Vapnik, 1998) ont été aussi
utilisés en plus du classifier flou que nous prapes Les résultats obtenus montrent que la
méthode proposée apporte des améliorations siguiifies combinée avec le classifieur flou.
En particulier, nous avons observé que I'approche gpndération floue proposée améeliore
significativement les performances du classifieur presque I'ensemble des bases de
données hétérogenes. Un gain significatif de peréorce est obtenu en ne conservant que
guelques variables plutét que I'ensemble des vhgabriginelles. Par exemple, prés de 5%
de gain de performance est réalisé en utilisanguement les quatre premiéres variables au
lieu des neuf variables originelles du jeu de dasnée Ljubljana sur le pronostic du cancer
du sein. Il a été constaté aussi que la méthodpatwlération floue fournit des résultats
comparables ou méme meilleurs que les autres m&shdé pondération classiques sur
presque toutes les bases de données hétérogenggisamt les deux autres classifieurs (k-
NN et SVM). Pour une comparaison plus rigoureugeedns trois méthodes de sélection de
variables, une analyse statistique a été ausstieffe. En ce qui concerne les expériences sur
le deuxieme ensemble de bases de données car@cpaisla présence d'un nombre
important de variables non pertinentes, les rédslfaurnis par la méthode proposée sont
encourageants. En particulier il a été constaté ,qoien que cette méthode possede une
complexité numérique faible, elle permet de rédgignificativement le nombre de géenes
nécessaires pour effectuer les tdches de diagneda pronostic. A titre d’exemple, sur la
base de données du cancer de la prostate caraéeépar la mesure de I'expression de 10509
genes, la méthode proposée surpasse les autresdesétide pondération en fournissant une
erreur de classification minimale de 5% pour jus@géenes en utilisant le classifieur flou. Ce
résultat suggere que l'utilisation des 10 génesd@nnés au lieu de I'ensemble des 10509
genes permet d’atteindre la performance de clasgifin maximale en vue de pronostiquer

ce type de cancer.
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CHAPTER 5
Supervised learning based on SMSP
principle

It is recognized in medical practice that most lmygicians’ knowledge employed for decision
are usually expressed in the form of rules. Thimasnly the reason that makes the rule-based
systems very well accepted by medical practitian€szzy-rule based systems can be
particularly of big interest as they offer a highartsparency and comprehensive
interpretability while they allow dealing with ngisimprecise or incomplete information
often present in many real world problems. Thewjol® indeed a good trade-off between the
empirical precision of traditional engineering teijues and its high interpretability. Fuzzy-
rule based systems have been widely used in coptofilems (Lee, 1990; Sugeno, 1997).
From this point of view, fuzzy logic can be seennagre appropriate rather than other
classical methods which fail when the system maslélighly dimensional and non linear.
This is mainly due to its attractive propertiestthiaable to handle imprecise and noisy data.
Usually the relationship between the result of sifasation and the original feature is
nonlinear and complicated. However, if the origif@hture is appropriately fuzzified, the
relationship may be approximated by a linear furcand a simple classifier may be used (Li
and Wu, 2008). Recently, fuzzy rule based systeave loften been applied to classification
problems where nonfuzzy (or numerical) input vestoave to be assigned to one of the given
set of classes (Ishibucht al, 1992; Chiu, 1997; Abe and Thawonmas, 1997). Henahis
class of classifiers becomes impracticable whenbigdr dimensional and/or heterogeneous
problems have to be faced. This case is commormdoran cancer applications that are our
subject of interest. Traditional fuzzy classifiene commonly based on arbitrary choice to
determine the number of linguistic terms of thezftied features, which is not always
possible and accurate enough whenever a huge nwhleatures is encountered. We show
firstly in this chapter that a simple fuzzy rulesbd-classifier can be designed based on the
previously introduced SMSP principle to deal withtad heterogeneity. Then, based on the
same principle, a feature weighting approach isgdesl and integrated into the fuzzy rule-
based classifier in the aim to make it scalablehwitigh dimensional problems. Indeed,
weighting fuzzy if-then rules to improve classifica performance is a common practice in

fuzzy rule-based classifier systems (Ishibuchi aNdkashima, 2001; Ishibuchi and
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Yamamoto, 2005; Jahromi and Taheri, 2008; Sarat.,2010). However, this weighting aims
usually to characterize the importance of eachyuzie by a scalar weight. For example,
Ishibuchi and Yamamoto (2005) have proposed a $tstiautomatic way to estimate the rule
weights based on sample membership to each clagssupervised context. In the present
work, each antecedent fuzzy set in the fuzzy ifthele is weighted to characterize the
importance of each proposition and therefore of dgbeesponding feature (Hedjagt al,
2011c). To justify such an operation, weight estiora process is based on membership
margin maximization to estimate a fuzzy weight atte feature in the membership space. As
it will be shown, the margin concept can efficigntlecrease the computation complexity
through the use of standard optimization techniqae®iding combinatorial search.
Experiments on high and low dimensional dataset$arformed in order to demonstrate that
the proposed approach can improve significantlypgr@ormance of fuzzy rule-based as well

as state-of-the-art classifiers and can even oiaiperclassical feature selection approaches.

We start first by describing the fuzzy-rule bastassifier for mixed-type data and then we
describe the weight integration process into thesfier.

5.1 Fuzzy rule-based classifier for mixed-type data

In this section, we illustrate the problem of hetgmeous data classification as a reasoning
problem in a common space based on the SMSP pendileed, once the different types of
features have been mapped into a common spacpdsssble to establish a unified reasoning
scheme for a classification purpose. This appraadbased on using the fuzzy partitions,

resulted from the mapping described in chapteo 4stablish a fuzzy inference engine.

We describe by next the fuzzy-rule based classfbermixed type data. We consider the

following type of fuzzy if-then rules fan-dimensional problem:

Ri: If X1 iIs A; andx; is Aq...andXy, is Anthen x belongs to classC

where the antecedent fuzzy sétsorrespond to membership function&x) for eachclass
C« defined in section 4.3 according to the typa"bfeaturelt must be noticed here that the
set of features used to evaluate each fuzzy if-thé@ can possibly be of mixed types
(quantitative, qualitative or interval-valued).

Then, the truth value of the consequent of eadhisuietermined by a fuzzy logic implication

function which consists in a linear interpolaticgtween a (t-norm) and a (t-conorm). Finally,
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the sample is assigned to the class corresponditigetmaximum membership obtained using

the following fuzzy inference engine:
R = wgmadali ). 00 - k). 1
= Arg max(@|fe (%), 48" () |+ A= @) Bl (%), a8 (x) | K =1,...,
Rk

wherey and p are dual fuzzy aggregation functions T-norm arsddtial T-conorm that

combine memberships (given by the components oMbB¥ U, ) of features values of a
samplex®™ =[x, x{",...x"] to a clasCx (Piera and Aguilar, 1991). The parametecalled

exigencyallows to adjust the compensation between thenuara the intersection operators
which can be pre-specified by the user or estimttesligh a cross-validation using training

data.

Without the unification of the space of featuréss simple inference mechanism could not be
applied, and the influence of the different typdsfeatures would not be equal. Such a
classifier is referred to here as LAMDA (Aguilarcahopez De Mantaras, 1982; Isaziaal,
2004; Hedjazet al, 2009; Hedjazet al, 2010b).

5.2 Weighted fuzzy rule-based classifier for mixed-type data

For many learning domains potential useful featufes sample description are defined
randomly. Nevertheless, not all of the featuresehegual importance for classification task,
some of them can be irrelevant and can even hassification performance. We describe in
this section how a feature weighting process caredsly integrated in the previously
described fuzzy-rule based classifier, through @&glted fuzzy rule concept in the aim to
improve its performancelhe concept of fuzzy weighted rule introduced hevesists of

weighting each proposition of the fuzzy rule toratderize the importance of each feature.

Definition 5.1: Weighted Fuzzy If-Then Rules (WFR)
A weighted If-then rule is similar to a conventibmale with the exception that a weight is

assigned to each antecedent proposition. A WFRfiset as:
R: IFaTHENCc, w; ,

Where a={a;,a,...,a} is the antecedent portion which is composed ot a@r more
propositions connected by “AND” or "OR”. Each prgitmn & ( 1< i < m) can have the
format “ x is F", where F; is a fuzzy set corresponding to the type of ifiefeature

established in the learning step. The feature evalucan be quantitative, qualitative or
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interval-valued type. Whereas={/ws, W, ..., Wm} IS @ weight vector. The weight; of a
propositiong; shows the degree of importanceaptto contribute to the consequencand
therefore the importance of tifefeature value to the classification task.

Thus the classification rule becomes:

Ri: If X1 is (Wi ) A andxz is (W) A ...andXy, is Wim) A then x belongs to clagxk

where the antecedent fuzzy s@{orrespond to the established fuzzy set in theeaunsér of
discourse of thé" feature

The remaining issue is to evaluate appropriate®y weights of each feature, taking into
account that they will be used to modify the merabgr to antecedent fuzzy sets of each
classification rule. A natural idea is to estimtitese weights in the membership space based

on SMSP principle to justify such an operation.
5.3 Membership margin

In classical feature weighting methods, the featatevance is estimated in a space assumed
to be quantitative. This requires that other feattypes must be transformed arbitrarily,
without taking any consideration about their orajispace. While, based on SMSP principle,
an appropriate mapping of different features intoommon space is achieved; this allows
bypassing the assumption of pure quantitative featuln recent machine learning theory,
margin concept plays an important role to estintla¢edecision making confidence (Vapnik,
1998). In the following, we define a Membership Biar which enables to estimate the
features weight in the membership space whateeartifpe and number.

Definition 5.2: Membership Margin (MM)
Let us consider classc,, and its complemegt=c,. We assume that tha" data sample
x® =[x x" .. x"]is labeled by clags. Let's define the membership margin for samgfé x
by:

Ba=w(Une)-w(Upe) (5.1)
Where U . and U, are respectively the membership degree vectoraropke X" to classes

candc , computed with respect to all samples contained iexBluding X (“leave-one-out
margin”) andy is an aggregation function. We define herg =y v, , which can be extended
to any other aggregation function.

Thus, in our case the functignis given as follows:
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CEDEDWT (x™) (5.2)

The feature membership can be seen asctméribution (relevance) of this feature to the
rule’s consequence of a given class. Consequemnitlgn an assignment decision is necessary,
if the contribution average of all features for themple £ to its class is greater than its
average contribution to the alternative class tlésar to assign it to the class with maximum
contribution (which corresponds to its correct s)asTherefore, sample®is considered
correctly classified iff,>0.

The arithmetic sum given by (5.2) defines a compsenaggregation between membership
functions and lies in equal way between union amersection (Dubois et Prade, 1988). On

the other hand, if the MDW . is considered as a discrete fuzzy subset, funeticepresents
the scalar cardinality (power or sigma count) wf. as defined by (Zwicket al, 1987;

Wygralak, 2000). Therefore, the membership mar@ingiven by (5.1) is the scalar
cardinalities difference of these resulted fuzzysais.

Intuitive interpretation: This membership margin is a measure of how muchfdhtures
memberships can be modified in the membership spmefere a sample ®* being
misclassified. According to the margin types ddsaxliin (Grammeet al, 2002), this margin
can be also considered as an hypothesis-margir. that the membership margin is affected
by the selected subset of features through thetibmg. It is worthwhile to note that our
feature weighting approach is also based impli@tiymaximum membership rule to label an
pattern by an existing class. Membership margin gattern x™ (c is based on the

aggregationW(U,.) computing its global membership to the classOf course, other

alternatives can be opted also using different dype aggregation functions. We stated
previously thak™ is considered correctly classifiedBif>0. This is equivalent to write:

C, =arcmaxw(U,.),v(Uz)
n C’E { nc nc } (53)

which is equivalent to the maximum membership rtat x™ belongs to the class with

maximum global membership. Therefore, this appraaatompasses implicitly the decision

process in the feature selection task.
5.4 MEmbership Margin Based feAture Selection: MEMBAS

Similarly to the classification task, since all ti@@s are simultaneously mapped into a
common space thanks to SMSP principle, they cdmebeeforth processed in unified way for
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feature weighting task. In the case of the compsen@ggregation via the arithmetic sum
described by (5.2), importance assignment is easilyrporated in the aggregation through a
weighted sum (Dubois et Prade, 1988; Cross and&apk2002).

Definition 5.3: FuzzyFeatureWeight. FFWis defined as the relative degree of usefulness of
each feature in the membership space for the digwation between two classes. These fuzzy
feature weights are non-negative numbers expresbmgliscriminative power of the fuzzy
sets between existing classes. It results thR&W is a vector, referred to as

W, :[wfl,... wfm]D R™, assigned in the membership space, where the ‘famzy weight’

comes from.

Definition 5.4: Weighted adequacy of a pattern

Given a vector of positive fuzzy feature weights=[w,,,...w,, |OR", the weighted

adequacy of the™ pattern is defined by the cardinality of the newZy set that takes into

account the weight of each feature in the membergbace. It is given by the scalar product:
— T _ '
W(Undwg) =2 Wy Upe = Zwg 4 x") (5.4)
| |
5.4.1 Fuzzy Feature Weight Estimation

The basic idea to calculate the fuzzy feature wsighto scale feature memberships in the
membership space by minimizing the leave-one-owdreifherefore, the margin given by
(5.1) in the weighted membership space becomes:

B, (W, )=y (U )y (U /w,) (5.5)
However, the problem which remains is to find acedure to estimate the weight vectar w
One approach among others would be to take advewataitpe membership margin definition
(5.5) to define a margin-based objective functiowd @ghen reformulate this problem as an
optimization problem in the membership space &s usually performed in the large margin
theory framework.

a) Problem statement

It has been proved recently, within the margin thelwamework (Vapnik, 1998), that a
classifier based on minimizing a margin-based eiunction generalizes well on unseen test
data. For this reason, it has also been extendef@dture selection purposes (Westdral,
2001; Freund and Schapire, 1997). The present tai#s its originality in the use of the
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membership margin concept. To solve the above ibestproblem, one can transform it to

the following optimization problem in the featurembership space:
Min o h(B, (w,)<0) (5.6)

Wherepn(ws) is the ¥ margin computed with respect t@ and h is an indicator function. To
solve the above problem, we define an objectivetion so that the averaged membership

margin in the resulted weighted feature memberspgte is maximized:
I\OV?XZ::‘:an(Wf )= 2?:1{2{21 Wit (X") = 22y wi s (X )}
Subject to the following constraints : (5.7)
Ll [p=1,
2. w; 20,
The first constraint is the normalized bound fog thodulus of wso that the maximization

ends up with non infinite values, whereas the seéa@prarantees the nonnegative property of

the obtained weight vector. Then (5.7) can be sfiaglas:

Max (w, )Ts
W (5.8)
Subject td|w; | =1,w, =0

where
s=2n{ U,.-Uqd (5.9)

In the statement of this optimization problem, westassume that there exists at least one
featurei<m, such thas>0.

b) Lagrangian optimization approach
This is a classical optimization problem statedhia framework of Lagrange multipliers (see
Appendix 3). Therefore, taking in advantage thagtritvides an analytical solution, we get
finally a closed form for yv

+

S

W*:_
RTEH]

(5.10)

with s= [max(,,0), ..., maxém0)]"

5.4.2 MEMBAS Algorithm

We present bellow the algorithm of the proposedraggh. We consider here the online
learning version of Membas rather than the bat@hdure to its attractive properties. Although

both approaches are equivalent in terms of the fesault, it is known that an online algorithm
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is computationally more efficient than its batchrsien when the amount of training data is
large. Moreover, it enables also to update weidiytsthe information brought by a new
sample which was not available when starting tamitng. The computational complexity of
Membas is ON m), whereN is the sample size amd the data dimensionality, and it can be

summarized by the following algorithm:

1. Initiate the fuzzy weight vector to zero, T numobkiterations (T=N when the training is
performed over all patterns).
2. Fort=1...T
a) Select randomly a sampt&’ from D
b) Determine the fuzzy partition of each feature adouy to its type with respect to
D\{x™}.

c) Calculate the membership degree vectors Misand U . for samplex®.
d) Update vectors as

s= s+{ U -4}

3. Calculate the optimal fuzzy weight vector as

+

. _ s
Wi =y
IIs™ |l

with s"= [max(s,0), ..., max(g0)]"

543 MEMBAS for multiclass problems

The extension of the MEMBAS method for multiclagselpgems is considered in this section.
Once the membership function parameters of eacts di@ve been determined from the
training dataset, the feature space is partitioméal a number of fuzzy sets equal to the
number of classes. Consequently an equal numbereaibership degree vectors is resulted.
Therefore, a similar margin definition for multisk problems to the one given in (Sun,
2007b) can be used for the same purpose, by takenghaximum marginal membership with

respect to all classes other than class

Pn= {EC?JQ(XH)}{\V(UM)_\V(UnE)} (5.11)
Thus (5.9) becomes
szg“ min  {U..-Uz} (5.12)

1 {@ocezc(x,))

By using this last expression of s and following 8ame steps we arrive to a formpf

similar to the one obtained in (5.10).
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Finally, the estimated ; in the membership space can be used now to weaght @roposition

of the fuzzy rule-based classifier with objectivieimproving its performance. Nevertheless,
albeit a direct feature-weight assignment to eadpgsition can be very useful to improve
the performance of the fuzzy rule-based classiGerelatively low dimensional problems, it
becomes undesirable for high dimensional problemsh as bioinformatics problems
characterized by thousands of features. Howevatufe-weight assignment process can be
regarded as a generalization of feature selectdan@et al, 2004). In the present work we
focus on feature selection problem rather thanractifeature-weight assignment. This is
equivalent to activate or deactivate the propasitiorresponding to each feature in the fuzzy
if-then rule according whether it was deemed imgoatror not by Membas. From other side,
we formulated the weight computation procedureha tvay that the proposed approach
approximates the leave-one-out cross validatiorerfherefore, this approach chooses
features only if they contribute to the overallsdidication performance regardless of their
redundancy or correlation. It is reported that mftedundant features can deteriorate
classification performance and removing them isessary. However, it has been pointed out
recently in some applications such as DNA microgrthat the ultimate goal is not always
the identification of a small gene subset with gga@dictive power, but to help the
physicians to have a good insight about the relahgp between genes and certain diseases
(Jenssen and Hovig, 2005). Discovering redundantdqregulated) genes may provide some

useful information about their interactions.
5.5 Experiments and Comparisons

In the present section, we show how the proposdtodecan improve the performance of the
fuzzy rule-based classifiers as well as other \webwn state-of-the-art classifiers on some
real-world problems. To further demonstrate it®etiveness, several comparisons have been
performed: Membas versus three well-known featusection approaches using three
different classifiers to avoid biased comparisorhey concern experiments on low-
dimensional datasets (less than 50 features) agiddimensional datasets (more than 1000
features).

5.5.1 Feature selection methods
For comparison purposes we used three methodefRElra and Rendell, 1992a), |-Relief

(Sun, 2007b) and Simba (Gilad-Bachrasthal, 2004), widely used for the validation of
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newly proposed feature selection approaches. Weelgglow a brief description of these three
methods.

Relief is considered as one of the most succedshture selection methods due to its
simplicity and effectiveness (Dietterich, 1997). Relief the feature weights are estimated
iteratively according to their discrimination abjlbased on samples neighbouring. For each
iteration, a sample is selected randomly and its tearest neighbours are found: one from
the same class (nearest hit) and the other fromatteznative class (nearest miss). An
extension of Relief to multiclass problems has beeesented in (Kononenko, 1994).
Moreover, it has been proven recently that Rebehat an heuristic filter method as it has
been long timeconsidered but an online learning algorithm thaves an optimization
problem (Sun, 2007b). In the same work, (Sun, 2DGi#ve proposed an efficient iterative
version of Relief, referred to as I-Relief, by upi@n Expectation-Maximization algorithm. |-
Relief searches the real nearest neighbor in thghtesl feature space, unlike Relief which
makes the assumption that the nearest neighbdweiriginal space is the same one in the
weighted feature space. Further theoretical comrerg analysis of I-Relief and its online
version have been also provided to prove its sapsgriover the Relief family algorithms. I-
Relief has one free parameter, the width of kefalssian function, to be defined by the

user. This parameter should be selected propedydoantee the I-Relief convergence.

Concerning the Simba method, a gradient ascentaximize a margin based evaluation
function is performed. Simba also is based on sampleighboring as Relief. At each
iteration, for a given randomly selected sample,fdature weight is updated by using the rule
obtained by the gradient ascent procedure. |-ReReflief and Simba are recognized by
machine learning community as efficient wrapperrapphes, and widely used in literature to
prove the effectiveness of recently proposed feasatection approaches (Dietterich, 1997).
The three approaches are distance-based methodsntbamize a 1-NN margin. Relief
algorithm used here for comparison is also mubkglas proposed and used by (Gilad-
Bachrachet al, 2004). However, most of existing probabilisticdamformation-theoretic
based approaches are of filter type (Wettscheradk/ha, 1995; Mitraet al, 2002). It is a
recognized fact now within the machine learning oamity that such filter approaches are
computationally more efficient but perform worsarthwrapper methods (Kohavi and John,
1997; Guyon and Elisseeff, 2003). Moreover, extansomparative studies performed in last
decades have proved their superiority againstr fdfgroaches on wide range of real-world
problems. For example, Gilad-Bachraathal. (2004) have compared Relief and Simba with a
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mutual-information based approach. Many works caralso found in literature comparing
Relief and Simba with information-theoretic and lpabilistic approaches (Wettschereck and
Aha, 1995; Wettschereckt al, 1997; Robnik-Sikonja and Kononenko, 2003; Li dng
2009;).

5.5.2 Experimental setup

Here, the three feature selection methods are aemlubased on the classification error
obtained using their selected feature subset. Bedite fuzzy rule based classifier LAMDA,
we used also the well knowaNN classifier (Cover and Hart, 1967). Moreoveroider to
achieve a more accurate classification performatiogy are also compared using SVM
classifier (Vapnik, 1998). ThieNN method classifies each unlabelled sample byrtaprity
label among itk nearest neighbors in the training set (Cover aad,H967). It is known that
k-NN classifier is very sensitive to the presencéraievant features and therefore adequate
to compare feature selection methods (see chapteBile the Support Vector Machine
method finds the separating hyper-plane with thgelst sample-margin (Vapnik, 1998).
Unlike k-NN, it is well known that SVM is very robust agaimoise, and that the presence of
a few irrelevant features in the original featuret should not significantly affect its
performance (see chapter 2). Consequently, SVM peaform similarly with the different
feature selection methods in this case.

The main reason of using these three differentsiflass is to assess whether this approach
can, in addition to the fuzzy rule based classii&®MDA, improve other state of the art
classifiers. This comparative study was performedtwo dataset collections. The first
collection concerns six UCI Repository datasetakBland Merz, 1998): Diabetics, Thyroid,
WDBC, Ljubljana, Twonorm and Heart. Two datasetpilfljana, Heart) among them have
mixed feature types (quantitative, qualitative a&dlas interval). Moreover, 50 independently
normal distributed irrelevant features with zeroamend unit variance were added to the
original features of all datasets to assess thestaobss of the newly proposed method against
irrelevant features. The second collection concéons DNA microarray datasets: DLBCL
(Shippet al, 2002), Lung cancer (Bhattacharjeteal, 2001), prostate cancer (Singhal,
2002), SRBC (Kharet al, 2001). The main characteristic of these datasetbeir high
feature dimensionality (several thousands to temghnds) and the small sample size (ten to
one hundred). It must be noted also that some ¢hsdts are multiclass. Additional

information about each dataset is given in Takle 5.
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Tab. 5.1. Summary of used Datasets

Dataset No. Train No. Test No. Feature Class Taskrition

Diabetics 615 153 8 2 Diabetes onset forecast

Thyroid 172 43 5 3 Thyroid disease diagnosis

WDBC 456 113 30 2 Breast cancer diagnosis

Ljubljana 222 55 9 2 Breast cancer prognosis

Twonorm 371 7029 20 2 Artificial dataset

Heart 216 54 13 2 Heart disease diagnosis

DLBCL 77 / 7129 2 Outcome prediction of Diffuse LarB-cell
Lung cancer 203 / 12600 5 Diagnosis of four lungeea types
Prostate cancer 102 / 10509 2 Prostate cancer @ssgn

SRBC 83 / 2308 4 Small, Round Blue-Cell tumors diagnosis

In all cases, the classification error was usethascriterion to evaluate the performance of
the compared methods. I-Relief have one free pamanme be defined by the user. Sun
(2007b) suggested that this parameter should leetsel superior to 0.5 in order to guarantee
the I-Relief convergence (we set it to 0.7 in thespnt experiments). As mentioned in the
previous section, Simba suffers of local maximabpgm because it performs a gradient
ascent. To overcome this problem Simba perfornrradignt ascent from several initial points
predefined by the user. The number of points ideet to the Simba default value, 5 (Gilad-
Bachrachet al, 2004). Concerning SVM, the supervised binarysifees was used for binary
class problems whereas a multiclass SVM “one agams’ is used in the case of multiclass
problems (Vapnik, 1998). As the focus of this wiskthe comparison between the feature
selection methods, only a simple linear kernel forary class problems and polynomial

kernel for the multiclass ones have been used.

5.5.3 Experiments on low-dimensional datasets

As mentioned above, firstly the experiments havenbgerformed on the six UCI datasets to
compare Membas with Simba, Relief and I-Relief mad&h These datasets contain mixed
feature-type data, and each classifier has onegdiea which has been adjusted through a
cross-validation process (i.e. the exigency indesueng a linear interpolation between the
fuzzy logic connectives for the fuzzy-rule basedsslfier LAMDA, the number of nearest
neighboursk for the k-NN method and the regularization parameter for $VKbr this
purpose each dataset was randomly partitionedtwiosubsets training and test data as it is
detailed in Table 5.1. The three parameters amnat&d through a cross validation using the
training dataset (70% vs 30%). The optimal pararsetalues are taken according to the
smallest classification error obtained on the revwngi 30% of the training subset. Then, the
classification error is calculated on the test stilg®nsisting in unseen samples for the three
classification methods. To eliminate any statisticariation and make the comparisons
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between different methods more balanced, this piwweewas repeated 20 times for each

dataset. The averaged error over the 20 runs isidened as the classification error for a

given feature subset. The averaged testing ermotAMDA, k-NN and SVM methods is

plotted as a function of the top ranked featurepeetively in Figure 5.1, Figure 5.2 and

Figure 5.3. Moreover, the optimal obtained averagkdsification errors with the three

classifiers and the corresponding number of seleféamtures by each feature selection

method are reported in Tables 5.2 to 5.4.

Tab. 5.2. Optimal Testing Errors (%) and corresjprgpehumber of features on the Ten Data Sets witMDA.
Last raw (W/T/L) summarizes Win/Tie/Loss in compgri MEMBAS with other approaches based on
significance level 0.05.

Dataset MEMBAS SIMBA  RELIEF I-RELIEF P-value (MEMBRARELIEF)  P-value (MEMBAS-SIMBA)  P-value (MEMBAS-ERLIEF)
Diabetics 255(5)  27.2(5) 28.2(2) 25.6(3) 0.00 0.00 0.31
Thyroid 4.9(4) 56(3)  6(5) 5.3(5) 0.25 0.89 0.90
WDBC 5(21) 6.7(30) 7.3(29) 5(28) 0.00 0.00 0.01
Ljubljana 246(4)  299(8) 34.9(8) 25.3(4) 0.00 0.00 0.09
Twonorm 24(200  44(19)  3.4(20) 2.5(20) 0.91 0.80 0.97
Heart 153(7)  25.8(13) 23.2(13)  28(11) 0.00 0.00 0.00
DLBCL 5.2(80) 8.5(25) 6.5 (60) 3.4(300) 0.00 0.00 0.27
Lung cancer  4.4(70)  55(70)  4.4(100) 7.4 (100) 0.17 0.52 0.03
Prostate cancer 5(10) 13.3(40)  11(20) 6.8 (50) 0.00 0.00 0.07
SRBC 0(20) 0(100)  0(160) 0(60) 0.19 0.53 0.38
W/T/L= 6/4/0 W/T/L= 6/4/0 W/T/L= 3/7/0

Tab. 5.3. Optimal Testing Errors (%) and correspogchumber of features on the Ten Data Sets WANN.
Last raw (W/T/L) summarizes Win/Tie/Loss in compgri MEMBAS with other approaches based on
significance level 0.05.

Dataset MEMBAS  SIMBA RELIEF I-RELIEF  P-value (MEMBRRELIEF)  P-value (MEMBAS-SIMBA)  P-value (MEMBAS-ERLIEF)
Diabetics 24.8(5) 26.5 (6) 25.3(8)  26.1(6) 0.23 0.07 0.11
Thyroid 4.9(4) 6(3) 5.8(3) 5.8(3) 0.41 0.72 0.96
WDBC 6.8(17) 7.3(9) 6.7(12) 6.6(22) 0.02 0.00 0.02
Ljubljana 25.8(5) 28.2(4) 29.2(9)  25.8(7) 0.00 0.00 0.55
Twonorm 4.2(19) 6.1(18) 5.2(20)  4(20) 0.90 0.80 0.97
Heart 30.3(5) 35.7 (4) 36.6(12) 28(10) 0.00 0.03 0.00
DLBCL 47(120)  6.8(40) 5.3(90)  5.3(200) 0.84 0.89 0.01
Lung cancer 5.7 (80) 8.4(180)  7.3(200) 6.2 (300) 0.32 0.45 0.09
Prostate cancer 7.5(15) 18 (90) 17.8(40)  17.2(30) 0.00 0.00 0.00
SRBC 0(40) 0(140) 0(40) 0 (40) 0.43 0.81 0.27

W/T/L=3/6/1

W/T/L=4/6/0

W/T/L=2/6/2
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Tab. 5.4. Optimal Testing Errors (%) and correspagahumber of features on the Ten Data Sets witiMSV
Last raw (W/T/L) summarizes Win/Tie/Loss in compgriMEMBAS with other approaches based on
significance level 0.05.

Dataset MEMBAS SIMBA RELIEF I-RELIEF  P-value (MEMBR\RELIEF) P-value (MEMBAS-SIMBA)  P-value (MEMBAS-ERLIEF)
Diabetics 23.8(5) 25.7(8) 24.5 (7) 24.9 (7) 0.20 0.00 0.05
Thyroid 4(4) 4(3) 4.4(4) 4(3) 0.27 0.79 0.94
WDBC 2.4(22) 3.9(20) 5.2 (30) 4.6 (30) 0.00 0.01 0.00
Ljubljana 27 (4) 28.5(7) 29.4 (8) 27.6(3) 0.00 0.00 0.10
Twonorm 3.6 (20) 5.4 (20) 4.7 (20) 3.6 (20) 0.88 0.81 0.99
Heart 14.2 (9) 18.5 (13) 17.3(12) 15.9 (11) 0.00 0.00 0.14
DLBCL 1.3 (30) 3.8(90) 2.6 (50) 1.2 (50) 0.29 0.05 0.88
Lung cancer 2.9 (40) 5.4 (180) 7.4 (300) 4.9 (300) 0.07 0.26 0.15
Prostate cancer 2.9(40) 7.1(300) 4.9 (200) 4.9 (140) 0.00 0.00 0.11
SRBC 0(50) 0(25) 0(40) 0(120) 0.62 0.98 0.30
W/T/L=4/6/0 W/T/L=6/4/0 W/T/L=2/8/0

A comparison between the obtained results leadslynta the following observations:

1.

2.

Concerning the fuzzy-rule based classifier, we oaserve from Figure 5.1 that,
except for the Twonorm dataset, the proposed fugeighting approach improves
significantly the classifier performance on almaelitdatasets. A significant gain of
performance is achieved by retaining only few fesdurather than the whole set of
original features. For instance, almost 5% of penfnce gain is achieved using only
the four top ranked features rather the nine oaigieatures of the Ljubljana dataset.
Similarly for the Heart dataset, we gain almost 586 term of classification
performance with only seven features.

Although Relief, Simba and I-Relief are based oNN.-principle, Membas performs
similarly or best than I-Relief in nearly all da¢ts regardless of the used classifier
(LAMDA, k-NN or SVM) and outperforms Relief and Simba. Foorenrigorous
comparison between the three feature selectionadsila student’s paired two-tailed
t-test is also performed. The p-value of the t-teported in each row in Tables 5.2 to
5.4 represents the probability that two sets of mamad results come from
distributions with equal means. The smaller theaj®, the more significant the
difference of the two average values is. At the50mvalue level, Membas wins
against Relief and Simba on four cases out of BiXJ&I datasets with the fuzzy rule
based classifier LAMDA (Diabetes, WDBC, LjubljanBeart), and in two cases
against |I-Relief method, and ties on the remaicages. Wittk-NN, Membas wins on
two cases against Relief, in three cases againgic&giand loss in two cases against |-
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Relief. Whereas with SVM, Membas wins on four caségh Simba, three cases with
Relief, two cases with I-Relief and ties on the agrmg cases.

3. Moreover, Membas performs well on UCI datasets aiaittg mixed-type data (ex:
Heart, Ljubljana). Especially when the classifieantlles appropriately mixed-type
data as it can be observed with the fuzzy ruledbaksessifier LAMDA.

To further demonstrate these interesting propedid¢le proposed method, we focus on three
datasets: Heart (6 qualitative and 7 quantitateatures), Ljubljana (6 qualitative and 3
interval features) and Diabetes (8 quantitativeuies). Figures 5.4, 5.5 and 5.6 give, for the
three datasets respectively, the obtained fuzzghtgifor one run. For ease of comparison, a
normalization of the maximum value of each weigétter is performed to be 1. For Heart
dataset, we observe that I-Relief, Relief and Sirdbanot only assign zeros weights to
irrelevant features (the last 50 features in Figh4) but also to the first six qualitative
features which are assumed useful ones. Whereashdfedoes not only succeed to identify
these qualitative features but its top ranked feaisi qualitative (feature No.6). The obtained
classification errors on this dataset, shown irufég 5.1, 5.2 and 5.3, prove that Membas can
significantly improve the performance of the thotessifiers. One possible explanation is that
the top ranked features obtained by Membas are omeul for the classification task. As
expected, Membas leads to significant improvemehttassification performance in the case
of mixed feature-type data, due mainly to an appatg and similar processing for each type

of data with minimal loss of information.

Let us focus now on Ljubljana dataset which inckidgerval and qualitative type features,
for which other feature selection methods cannoaaied directly. As the interval feature
values of this dataset are regular (not overlappedy are transformed into ordered numbers
to enable I-Relief, Relief and Simba to handle théms worthwhile to note that Membas
handles the interval features in their originalrowithout any restriction on their relative
positions (overlapped or regular); no arbitrary piag is therefore required. Let us recall that
I-Relief, Relief and Simba could not handle intésvé they were overlapped. We observe
from Figure 5.5 that Membas identifies correctlg & presumably useful features (whatever
their type) and assigns approximately zero weightthe 50 last added irrelevant features,
whereas Simba and Relief identify mistakenly sormret@vant features as relevant ones. From
Tables 5.1 to 5.3, we observe that the minimalsdiaation error on this dataset is obtained

with the fuzzy rule-based classifier LAMDA when wrihe first four top ranked features are
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used. This result highlights also the attentiobealevoted for choosing an adequate classifier

when the data are of mixed type.

We finally focus on the Diabetes dataset (Figu®,5for which all the feature selection
methods succeed to identify presumably useful featwith at least the first common top
ranked feature. The obtained classification erilustrated in Figures 5.1, 5.2 and 5.3 prove
the efficiency of Membas to process quantitativedees as well as symbolic data. Whereas,
we point out that I-Relief, Relief and Simba argitally well-conditionned for processing
guantitative features, but are not proficient f@andlling a dataset of mixed-type data. As
expected, SVM performs better than other classifoer this dataset, especially when only the

selected features by Membas are used (see Figuen8.Table 5.3).
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Fig. 5.1. Classification errors obtained by LAMDA t/CI datasets using Membas, I-Relief, Relief amdba.
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The first 8 features are the original ones

5.5.4 Experiments on high-dimensional datasets

In this section, Membas is compared with I-ReliRElief and Simba on four microarray
datasets. Due to the limited number of samples]aaee-one-out cross validation has been
performed to assess the performance of each dlguoriiowever, in this section we aim to
illustrate how the proposed method performs in ghesence of huge number of irrelevant
features. We noticed in the previous section thatiidas processes quantitative data as good

as, or better, than other methods on small datasets

The classification errors obtained using LAMDKRNN and SVM of the top 400 ranked
features are plotted respectively in Figures 5.75t8 and the corresponding optimal
classification performance are reported in Tabl@sté 5.4. It can be observed that Membas
perform similarly or best than I-Relief, and oufpems Relief and Simba nearly in all
datasets using the three classifiers. For prostateer dataset, Membas outperforms Relief
and Simba over all ranges by 5 to 20 percent va#ipect to the three classifiers, whereas it
yields a better optimal (Test error, No. geneshthRelief : a classification error of 5% for
only 10 genes with Membas against 6.8% for 50 gemdis I-Relief. For SRBC, with
LAMDA classifier, Membas converges for only 20 gemnehereas I-Relief converges for 60
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gens, Simba for 100 genes and Relief for 160 geNesertheless, wittk-NN classifier,
Membas, |-Relief and Relief converge together atgédes but it can be observed that
Membas provides the minimal classification errofobe attaining the convergence. For
example, in SRBC using LAMDA andNN classifiers, with 5 genes the error for Memisas
7 percent compared to more than 20 percent foeRatd I-Relief. One possible explanation
is that Membas ranks the genes according to thelrrelevance to this problem so that khe
NN classifier performance is maximized. Note alsattMembas in SRBC witk-NN and
SVM reaches near zero percent for only 10 genes DEBCL dataset, Membas performs
better than Relief and Simba with SVM and LAMDA sddier and yields nearly similar
results to these two approaches with k-NN clagsifiowever, it achieves quite similar or
slightly good results compared to I-Relief. For gurancer, we observe that with both
classifiers LAMDA andk-NN, the error obtained by Membas converges forgédes.

Whereas with SVM, the classification error achiengsninimal value for only 40 genes.

However, one important issue in using feature selealgorithms in gene selection tasks is
to determine a cut-off threshold in a ranked geste For some feature weighting approaches
(e.g. Relief) a heuristic threshold is proposedtfos purpose computed as a function of the
number of features (Kira and Rendell, 1992b). Omeentommonly used method is through
cross validation that uses a training data sulosestimate cut-off thresholds simultaneously
with the classification parameters, and then usihmg estimated parameters to classify the

held-out testing samples.
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Fig. 5.9. Classification errors obtained by SVMDNA microarray datasets using Membas, Relief
and Simba.

5.6 Conclusion

In this chapter, we have proposed a new featurghtiag method for mixed type data based
on a membership margin to improve the performaridezzy-rule based classifiers. Thanks
to the SMSP principle described in the previousptdra a mapping of all the features from
completely heterogeneous spaces to a common spaiesented by the membership space is
performed. Then, the processing of issued datdéyrtapping step in unified way becomes
straightforward for feature weighting. In this ordee introduced a new concept of weighted
fuzzy rules such that each antecedent fuzzy sehenfuzzy if-then classification rule is
weighted to characterize the importance of eaclpgsition, and thereby the importance of
the corresponding feature to the rule’s consequerius operation of fuzzy rule weighting is
naturally justified by the estimation of weighttime membership space based on membership
margin concept. To avoid any heuristic combinatosaarch, these fuzzy weights are
estimated by optimizing an objective function withhe membership margin framework. An
extension of the proposed method to multiclass Iprob has also been performed. The

advantages of the proposed method were firstlgtiifded and compared on low-dimensional
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real-world datasets, characterized by the preseho@xed-type data, with some well-known

feature weighting approaches. The experimentallteesihhow that this method leads to a
significant improvement of classification perfornsanusing fuzzy rule based classifiers as
well as other state-of-the art classifiers. Theppsed method is however distinguished from
other feature weighting methods by its ability tamgess symbolic intervals without any

restrictions on their relative position (regularomerlapped intervals). Further experiments on
high-dimensional datasets (DNA microarray datasate also proved the effectiveness of the

proposed method to perform high-dimensional data.

Unlike the supervised case, feature weighting euthsupervised case is revealed to be more
challenging due to the absence of pattern labels. tiy by next chapter to extend this

weighting approach to the unsupervised case.
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CHAPITRE 6- Résumé
Apprentissage non supervisé base
sur le principe «SMSP»

Le résultat de classification n’est pas toujourspdinible au moment de la prise de décision
dans de nombreux problémes pratiques. Dans des telleations le recours a l'apprentissage
non supervisé est une pratique courante. Cepengant, maintenir une interprétation facile
et une grande transparence dans les applicationdicakes, I'utilisation d'approches non
supervisée basées sur des régles peut étre aussigdand intérét. L’apprentissage non
supervisé flou notamment offre I'avantage de fouume base pour la construction des
modeles basés sur des regles floues fournissantreprésentation simple et une bonne
performance pour les problemes non-linéaires (Maad.£2000).

D'un coté, selon la fagon dont les données soités, les approches de regroupement non-
supervisés (ou «clustering» en anglais) peuverd 8ivisés en deux classes: «batch» et en
ligne. Les algorithmes «batch» traitent a la fasites les données disponibles représentées
sous la forme d’'une table d’'individus hors ligndor& que dans le cas des algorithmes en
ligne, nous considérons que les individus sontes@n ligne et les partitions de données doit
étre adaptée itérativement au cours du temps mmi®rmations apportées par les nouveaux
individus. Il est maintenant bien reconnu par lantbunauté d'apprentissage automatique
gu'un algorithme de type en ligne est plus efficgicein algorithme de type «batch» (Cai et
al., 2009). Une approche en ligne est adaptativesda facon que chaque fois qu'un nouvel
individu est recu, soit un nouveau cluster est g&nédues par exemple a l'apparition d’'un
nouveau mode, ou seulement les clusters existantsygs a jours. Le regroupement en ligne
nécessite donc un apprentissage non superviséeceimental permettant d'incorporer de
nouvelles informations dans I'évolution de la gaoti fur et a mesure qu’un nouvel individu
est recu. Les approches en ligne sont plus gérgrple les approches dites «batch» dans le
sens ou les premiers peuvent étre utilisés égalepmur traiter une table d’individus de

facon itérative.

D’un autre coté, a linstar du contexte de classifion supervisée, non pas toutes les
variables sont utiles pour la tache de classifioatnon-supervisée et donc juste I'ensemble
des variables qui aident a guider le processus egraupement devrait étre sélectionné.

Cependant, le probléme est plus complexe que lamsgupartition de référence est
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disponible afin d'évaluer I'importance des variabl®ar rapport a I'apprentissage supervise,
peu de travaux ont été consacrés pour aborder déblpme de sélection de variables dans le
contexte d'apprentissage non supervisé. La plugestalgorithmes de sélection de variables
non supervisés sont basées sur des mesures daifomou de consistance (Mitra et al,
2002; Dy et Brodley, 2004; Wei et Billings, 200Cbmme une approche non supervisée,
'ACP (Analyse en Composantes Principales), parmgde, permet de trouver le sous-
ensemble des composants utiles pour la représentaties données. Néanmoins, ces
composantes ne sont pas nécessairement utilesdariminer entre les groupes dans une
tache de classification non-supervisée (Duda et 2001). Si certains de cet ensemble de
variables, indépendamment de leur pertinence ebitapce, sont de type mixte la tache de
classification non-supervisée devient beaucoup ebuspliquée.

Dans ce chapitre, nous avons proposé une nouvepjeoahe basée sur la pondération en
ligne de variable pour le regroupement de donnédérbgénes. L'algorithme proposé est une
extension de notre algorithme de pondération deatées développé précédemment pour la
classification supervisée. Pour faire face au pewmhé de I'hétérogénéité des données, le
principe SMSP est étendu ici aussi pour traitern@dacon unifiée les données hétérogenes
dans un cadre non supervisé. Toutefois, il a étdtréajue I'étape de projection des données
dans un espace commun doit étre réalisée de fagwamentale pour tenir compte du nouvel
individu recu a chaque itération du processus dfapfissage. Pour cette raison, une version
itérative de la fonction caractéristique introdulans le cas supervisé a été fournie en
fonction de chaque type de variable.

Tout d’abord, I'algorithme de la méthode de regrement incrémental en ligne basé sur des
régles floues a été décrit. Ensuite, nous avondi€&taomme pour le contexte supervisé,
I'intégration de la tache de pondération de varggbtans le processus du regroupement pour
la conception de notre approche en se basant scomeept de regles floues pondérées. Cette
approche est basée aussi sur la maximisation itératie la marge d’appartenance. Une
étude extensive expérimentale a été ensuite effectur des problemes artificiels et réels
pour prouver l'efficacité de I'approche proposéar 8n exemple artificiel cette approche a
permet d’identifier correctement I'ensemble dessés et aussi 'ensemble des variables non
pertinentes. Alors que dans le cas des problemels,réette approche a gagné contre la
méthode C-Moyennes Floues (FCM) dans 12 cas sulC&#l.algorithme ne parvient pas
cependant a traiter des problemes de haute dimen@@ar exemple données issues de
biopuces). Cela est di probablement au grand nonderevariables non pertinentes (des

milliers) par rapport a celle pertinentes (des diEs au maximum).
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CHAPTER 6
Unsupervised learning based on
SMPS principle

The pattern labels are not always available the tohdecision making in many practical
problems. In such situations a resort to unsupedviearning capabilities is a common
practice. However, to maintain an easy interpretatand high transparency in medical
applications, the use of rule-based unsupervispdoaphes can be also of big interest. Fuzzy
unsupervised learning particularly offers the adage to provide a basis for constructing
rule-based fuzzy model that has simple representatnd good performance for non-linear
problems (Yacet al, 2000).

From one hand, according to how the data is peste<lustering approaches can be divided
into two classes: batch and online. Batch algorithpnocess at once all available data
represented by a table of patterns offline. Wheigasnline algorithms we consider that
patterns are received online and data partitionsildhbe adapted iteratively over the time by
information brought by new patterns. It is now weltognized by the machine learning
community that an online algorithm is computatibnatore efficient than a batch one (@i

al., 2009). An online approach is adaptive in the Weat each time a new pattern is received,
it either generates a new cluster, due for instémecew mode apparition, or only updates the
existing clusters. Online clustering requires thae unsupervised and incremental learning
rules that enable to incorporate new informationpartition evolution over time. Online
approaches are more general than batch approachias sense that they can be used also to

process a table of patterns in an iterative manner.

From other hand, similarly to the supervised cfasgion context, not all the features are
important for clustering task and therefore onlg get of features that help to guide the
clustering process should be selected. Howeverptbblem is more complex than when a
reference partition of patterns is available toeasghe importance of features. Compared to
the supervised learning only few works have beerowel to address the feature selection
problem for unsupervised learning. Most of unsuisexy feature selection algorithms are
based on information or consistency measures (Mtted, 2002; Dy and Brodley, 2004; Wei
and Billings, 2007). As an unsupervised approa&n PPrincipal Component Analysis) for
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instance enables to find subset of components lutsfidata representation. Nevertheless,
these components are not necessarily useful toidisate between clusters in a clustering
task (Dudeaet al, 2001). If some of the original set of featuresyardless of their relevance

and importance, are of mixed type the clusterisg tlecomes more challenging.

In this chapter we propose a novel approach baseshline feature weighting for clustering
of heterogeneous data. The proposed algorithm ik based on an extension of our
previously developed supervised learning featurghtimg algorithm. So, first, to cope with
the problem of data heterogeneity, the SMSP pria@pesented in chapter 4 is extended here
also to reason in a unified way about heterogeneata in an unsupervised framework.
However, the mapping step should be performed innaremental fashion to take into
account new pattern at each iteration of the learprocess. In this order, iterative version of
the mapping function introduced in chapter 4 isvmted here according to each feature type.
We describe first an online incremental clusteraigorithm based on a fuzzy rule-based
system. We investigate then, as for the supervisedext, the integration of the feature
weighting task in the clustering process to design proposed approach based on fuzzy
weighted rules concept. An extensive experimeritadysis then performed on artificial and
real-world problems to prove its effectiveness. ldoer, it is worthwhile to note that, even of
its interesting properties, this approach has eand unable to fit with high-dimensional

data.
6.11terative member ship functions updating

Unlike the supervised case, the mapping step inutigupervised framework should be
performed iteratively based on online learningeAth iteration the membership functions are
updated by the information brought by a new pattecoording to each feature type as

follows:

6.1.1 Quantitativetypefeatures
Different possible membership functions used inghpervised case can be adapted for the

unsupervised case to quantitative feature type asch

a. Gaussian-like memebership function

4 (x)=e AN (6.1)
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b. Binomial membership function

ui(x)=0""-0.) (62)
However, the major difference with the supervisasecis that the parametess representing

thei™ feature’s mean of thi patterns clustered in clasg &e updated iteratively by online
learning as follows:

1

N +1

(3 (N - g N) (6.3)

B (N +D) = g (N) +

oi represents an approximation of the standard dewativhich converges to the real one
whenever a big number of samples is consideredjsanpgdated iteratively by the following
expression:

s o
X (N - @, (Ny) o, (Ny)

.2 22
o (N +D) =0, (N)+
N +1

(6.4)

6.1.2 Interval typefeatures
The membership function for interval type featusealso taken as the similarity described by
the equations (5.6, 5.7 or 5.8) between the symholerval value of thé" featurex, and the

interval p, = [pf(‘, pﬂ representing cluster,@s

uy (xi) = s(xi. ok) (6.5)
For Nk patterns assigned to clustey, @e cluster prototype is a vector whose companard
the intervals obtained by the mean bounds updatsal iteratively by online learning as

follows:

i- i- 1 j- i-
(N 1) = o (N +—— ()T (N - o7 (N))
N 1 (6.6)

1+1(Xij+(Nk) - PL+(Nk))

pL+(Nk +1) = PL+(N|<) + N
k

Where x/” is thei™ feature lower bound for thg" sample andx'* is its upper bound.

Consequently, the resulted cluster prototype ah eteration for ther interval features is

given by the vector of intervals:

6.1.3 Qualitativetypefeatures

The membership function for i qualitative feature is specified as:
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IUIi< (Xi) = (q)ikl)ql1 0 [(q)ikMi)qM‘ (6.7)

Where q)‘kj is the frequency of modalit)Q} in cluster G updated iteratively by online

learning as:
i i 1 i i
CDkJ-(Nk +1) = (ij(Nk)+m(qj(Nk)_q)kj(Nk)) (68)
K
C_J1if x =Q!
and % ‘{o it % %Q

Therefore, the cluster prototypes at each iteratioexe represented by

Qlk = |:CDik1,... ,cDik]—,... ,CDikMi:'

Unlike the supervised case, the mapping step oS8P principle is performed here online
for different types of features in the membersigace. At each learning iteration (i.e. receive
a new pattern) a Membership Degree Vector (MDWliafensionm is associated for a given
pattern X" to each cluster as follows:

Upe = 106, 160, tf )] k= 220 6.9)
where ' (xX™) (i.e. ¢ (x =x™)), is the membership function of clusteg & the current

iteration evaluated for a given valng of thei™ feature of pattern @
As for the supervised learning, once all features are simultaneoushedaypp a common

space, they can be henceforth processed similarly for clustering.

6.2 Online fuzzy clustering for mixed-type data

We describe here separately the approach used to cluster onlinefgpattems, possibly
represented by mixed type of features, based on a simple fuzzy reasoedamgnism.
Contrary to the supervised case, no predefined partition is aegifabl that, anadaptive
fuzzy reasoning mechanism based on incremental online learningpieddo

When a new pattern is received, the reasoning mechanism should tpiacene of the
already pre-established clusters corresponding to the highest aégrdequacy. To ensure
that each pattern satisfies a minimal threshold of adequacy tockestér, a Virtual Cluster
(VC) is assumed to be always present in the space of clustesclUs$tier receives the pattern
for whom its adequacy degree is not sufficient to place it in artheofpreviously created
clusters. Whenever a pattern appears to have a higher membershipitoné@ns that a new
cluster must be created to correspond to the new information broydhishpattern. Then,
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the representation of the cluster which receivesghttern (VC or one of the pre-established
clusters) is updated to take into account the médron brought by this element.

As for the supervised context, the fuzzy inferemmehanism proposed here for clustering of
heterogeneous data is rule-based. In the beginoing clustering task, the rule base is
initialized by a single If-Then rule representihg tvirtual class VC given as:

Rye: If X1 is Agve @nd % is Agyc and X, is Anvcthen x belongs to cluster VC

Where the antecedent fuzzy sétg are pre-defined membership functions specifiece her
according to thé&" feature type as follow:

() Quantitative type feature

i — i 17X [ ; i
Hc (Xi ) =P (1_ ¢vc) with  ¢,c =1/2
(ii) Interval type feature

ﬂ\i/c (Xi) = S(Xi , Pyc ) with g == [0,1]

(ii) Qualitative type feature

e (x)=— = with D the set of possible modalities of iifEfeature
cardinal(D)

Then, whenever the creation of new clustelisCdeemed necessary, a singtiaptivefuzzy
If-Then rule is generated and associated to this cluster in thierahgsrule base:

Ri: If X1 i1s Ag andx, is Ay...andxy, is Amthen x belongs to clustél

When a new pattern should be allocated to a cluster, the foljofuzzyadaptiveinference

engine can be used also but taking into account its membeostigss VC as follows:

R = Arg&maﬁa WL O et )|+ @ @) Bl (%),.tt? ()1 K =VC L.}

wherey andp are dual fuzzy aggregation functions that combine membershign(giy the

components of the MDW,, ) of features value of a pattes® =[x, x{",...x"]to a cluster
C«. anda is the ‘exigency parameter playing the same role as in the supervised context.

If the new pattern is placed in one of the existing clustergrtexedent fuzzy sets in the rule
corresponding to this class are updated by the information brdmghhis element as

described in section (6.1). Otherwise, a new cluster includinguthgue element is created
using VC and therefore its corresponding fuzzy If-Then rule malssi be generated and

added to the already established rule base.
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Consequently, the woradaptiverefers here to the fact that the reasoning mechmissable

to either update the membership functions corredipgnto antecedent fuzzy sets of the
winner rule or generate new rules, according toftizegy reasoning decision made about the
current processed pattern. Without the unificatadnthe space of features, this simple
inference mechanism could not be applied, andrttigeince of the different types of features
would not be equal.

This simple approach of online fuzzy clustering bardescribed by the following algorithm.

Algorithm
1. Initiate the space of classes by the cluster VC
2. Fort=1...T (T : number of input patterns)
a) Inputa new pattern®
b) Obtain membership degree vectors MDW.and U . for sample ® through
antecedent fuzzy set of If-Then rules
c) Perform the fuzzy inference and assigh to a cluster based on maximum
membership rule.
d) Update the parameters of antecedent fuzzy seteafinner rule by the information
brought by £.

As reported for the supervised case, not all offdfatures are important for clustering task
and therefore there is a need to discard the waeteones. We describe by next an online
feature weighting approach for clustering of hejerteous data based on the previously

presented clustering approach.
6.3 Online fuzzy featureweighting for heter ogeneous data clustering

Online learning was considered previously to déscrelustering process. In the aim to
improve the clustering performance, we investidegee an integration of a feature weighting
task in the clustering process based on fuzzy weighule concept. In literature, a first
attempt to use a similar concept, denoted as Walghtizzy Production Rules WFPR, was
performed by (Chen, 1994). In addition to the assignt of a weight to each proposition in
the antecedent part, WFPR allows to contain soraeyfujuantifiers (such as “strong”, “

weak”,...) and introduces a certainty factor to chteaze the belief on the rule (Ishibuchi
and Yamamato, 2005; Ishibuchi and Tomoharu, 2001)Chen, 1994) weighted fuzzy rules
were used to perform medical diagnosis but assuthiagthe rules and their corresponding

weights were known or fixed a priori by the expéth alternative approach is reported in
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(Rasmani and Shen, 2004) which uses subsethooeiotacpromote certain linguistic terms
as part of the antecedent of a fuzzy rule. Howewemll previously stated works only a
supervised learning problem (classification taslgswonsidered. Moreover, although the
weight assignment borrows the idea of fuzzy classgibn in these works, it is still actually
not explicitly related to feature selection. We pgwee here to assign a weight to each
proposition in the antecedent of the fuzzy clustgrule that represents, at each iteration, the

degree of importance of its corresponding featurtdé membership space.

Similarly to the supervised case, we propose hepetform the clustering by weighting the
antecedents of all IF-THEN rules according to therent estimated importance (fuzzy
weight) of each feature in the membership spacasThe clustering rule associated to each

cluster becomes:

Ri: If X1 is A; andxzis Ay...andxm is Apthen x belongs to clustéli, w

Which can be noted equivalently
R If X1 is (W) Az andxz is (W2) As...andXy, is W) Am then x belongs to clustéx

Each of the antecedent fuzzy satés modeled by a membership function according &i'th

feature type

Therefore, the remaining issue is how to evalugapriately the weights of each feature
knowing that they must be used to modify the mestiprto antecedent fuzzy sets of
clustering rules. Similarly to the supervised casepuld be natural to estimate these weights
also in the membership space to justify such amatip@. In this order, we take advantage of
the SMSP principle here to define a membership-mdrgsed objective function to evaluate
the importance of each feature in the membershgrespThe main difference with the

supervised framework is that the weights have tedbenated and updated iteratively to guide
the clustering task. At each iteration the weighrts computed such that the discriminative
power between all existing clusters is maximizedela on an optimization approach.

Therefore, only a single weight vector is neededveaght fuzzy antecedents’ sets of all

clustering rules such that it reflects the relewanteach feature simultaneously to all rule’s
consequences. Furthermore, the integration of feateighting into the clustering process

becomes straightforward thanks to the unificatibfeature spaces described in chapter 4.
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Weighted Fuzzy Rule-based Clustering Algorithm

Our final aim is to combine clustering and featweighting by introducing the feature
weighting method into the online clustering alduomtdescribed previously. The fuzzy feature
weighting approach proposed in chapter 5 is baseohtine learning. We show by next that
this approach can be extended for the clusterigk) feor ease of presentation, let’'s consider

for a moment that after some iterations of fuzzygived clustering the resulted partition of
data is described by the dataset{x"”,C,} JOXxC, where £ is the ' pattern (item) and

N; is the number of already clustered patternsis@he class label assigned to each pattern
among the clusters generated by the fuzzy weighted clustering kasl2,...,| Let us
consider that wis the fuzzy weight vector computed during the fuzzy clusietask. The
margin concept proposed for feature weighting in supervised case catielneled here to
perform an iterative feature weighting task for clustering. When a neerpa™ should be
processed, our clustering system based on the weightsstimated in the previous iteration,
assigns it either to one of existing clusters or to the VCailyse. creation of new cluster).

For simplicity, let's consider that after the clustering of the pabt@?nhe data exhibits only

two clusters, namely the cluster to whoff{ Ras been affected noted-C, and an alternative

cluster notedC =C,. We seek in a next step to take into account the information Hordyg

x™ for updating the feature weights to use them then for the clustefifuture patterns.
Once the pattern® is clustered, its Membership Margin can be defined based orPSMS

principle as:

Ba=v(Up)-vw(Upe) (6.10)

wherec is the cluster in which® has just been clustered afds the alternative cluster. As
for the supervised context, by scaling the features in the membssdte a weighted version
of the membership margin can be defined. A similar margin-based obj&atiction can be
therefore designed for the same purpose and the feature weighting pazbiebe solved

using the same optimization approach. Consequently, the wweagtor can be updated using

+

the analytical solutiow; = s’ 43 at each iteration, through the updating of the vector s

resulted at the previous iteration by the information broughxBy The extension of this
approach to the multiclass problems is also straightforward tisendefinition employed in

the supervised framework.

The proposed approach can be summarized in two alternating steps:
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1- Clustersanew pattern based on weighted fuzzy clustering rule.

In this step, the clustering is performed by wdigitthe antecedents of all IF-THEN rules
according to the a priori estimated importance Ajuzveight) of each feature in the
membership space. For initialization step, the yuzeight should be set to one which means
that initially all features, and thereby their asated propositions in the fuzzy IF-THEN

rules, are considered of equal importance.
The clustering rule associated to each clusteivendoy:

Ri: If X1 is (wy) Apandx; is Wy) Az...andxy is (W) Am then x belongs to clusték (k=1,...,)
where A (i=1,...m) is the antecedent fuzzy se¢fined according to the type of featue

When a new pattern® =[x, x{",...x™]should be clustered, its membership degree vector

for a cluster Cx isU,, :[,u;(xl‘”)),,uj(xé”)),...,,ukm(x,ﬁ?))]T, obtained by evaluating the

antecedent fuzzy sets of the rulg@. ® we characterize the operation of weighting the
antecedent fuzzy sets as a scalar multiplicatioa,weighted membership degree vector of

x™ can be computed as:

Une, =W, % Uy =L ) (Koo )] 5K =VE 12,101 (6.11)
This is equivalent to writg (x..) = w,.z4 (X,;) -
Then, a fuzzyadaptive engine inference can be used to clust using its previously
computed weighted membership degree vector asasilo

Ry

2- Updating the fuzzy weights by information brought by this new pattern.

The second step pertains the updating of fuzzy kteilgy the information brought by the new
pattern ¥ which has been clustered in the step 1. To entiateany of the features, at a
given iteration, is not definitely excluded fromustering process, its weight; must be
updated through the vectsrcalculated in the previous iteration. When a nettgon brings
new information attesting an increasing importantene feature which was deemed till
previous iteration irrelevant, our fuzzy system wdbotake into account this information
online and update the confidence of clustering taskthis feature and therefore on its
associated proposition in the IF-THEN rule.

For that, we update firstly the vector s given ByJ:
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sS=s+_min {U —Ung} (6.12)

{mcsze(x,)} "€

Thus, the fuzzy weight vector;\at this iteration can be computed based on s by

+

W = 6.13
e (6.13)

where & [max(s,,0), ..., maxén,0)]"

Interpretation: The weights are estimated in the membership spacdeis natural that we
take advantage of this available information tongeiteratively the importance of each
fuzzy set in the If-Then rules to guide the clusigitask.

Algorithm

The weighted fuzzy clustering algorithm can be iesd as follows:
1. Initiate the fuzzy weight vector to one, initidte space of clusters by the class VC
2. Fort=1...T

a) Inputa new pattern®
b) Calculate the membership degree vectors MIYY/s for sample ® to each cluster

through antecedent fuzzy set of If-Then rules.
c) Perform the weighted fuzzy inference and assfjtoxthecluster corresponding to
the winner rule
d) Update the parameters of antecedent fuzzy sekeafihner rule by the information
brought by £.
e) Update vector s as
s=s+{U, ~Ug}

f)  Calculate the new optimal fuzzy weight vectorextition t as

+
*

W, =

+

with &= [max(s,,0), ..., max(g0)]"
6.4 Experimental results

The performance of the proposed weighted fuzzytetingy approach, referred to as WFCA,
was evaluated using artificial and real-world datasdescribed in Table 6.1. Patterns are
already grouped into a priori known classes of wakgize corresponding to their class label.
An independent clustering on all datasets using wheeghted fuzzy reasoning tool is

performed and the obtained cluster partitions arepared with the classes known a priori.
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6.4.1 Synthetic Data

The used synthetic dataset here consists of 808 daints from a mixture of four
equiprobable Gaussians (200 patterns for each)atessribed by 20 quantitative relevant
features. Moreover, 30 independently normal distel irrelevant features with zero mean
and unit variance were appended to the 20 relefeattires to assess the robustness of the
newly proposed method against irrelevant featuyedding a set of 800 50-dimensional
patterns. We ran the proposed algorithm 10 timesgus Gaussian-like membership function,
and feature weight vector initialized at 1. Fortéetvisualization, a normalization of the
maximum value of each weight vector is performedoél. In all the 10 runs, the four
clusters were correctly identified. Figure 6.1 gapws the obtained classification results and
(b) the fuzzy weights of all the 50 features. Ih d@ observed in this case that the algorithm
successfully clusters all the patterns and cogddentifies the last 30 irrelevant features
from the relevant ones by assigning them closeto weights.

However, we have found out empirically that whea tlumber of irrelevant features becomes
very important (10 times multiple of the number refevant features) this approach fails
completely to locate the good clusters. That is l@yhe reason why it becomes unpractical
on high dimensional data. This algorithm was applthout success on microarray data
characterized by a huge number (thousands) oéuaglt features.
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Fig. 6.1. (a) Clustering results (b) Fuzzy featuesghts

6.4.2 Real data
We tested our algorithm on several datasets witardint characteristics (Table 6.1). Since all
datasets have been collected for supervised datzg®h (i.e. a previous partition of the

dataset was available), the class labels wereusdd to evaluate the clustering performance.

An independent clustering was carried out on alaskts and the overall rate of accuracy is
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shown in Table 6.2. Clustering accuracy is caleddiy comparing the obtained clusters with
the real partition provided in the dataset.

Tab. 6.1. Summary of used Datasets

Dataset No. Feature Quant. Qual. Interv. Class Httems
Iris 0 0 3 150
Ljubljana 6 3 2 286
Thyroid 5 5 0 0 3 215
WDBC 30 30 0 0 2 699
Liver 6 6 0 0 2 345
Australian credit card 15 6 9 0 2 690
Hepatitis 17 4 13 0 2 155
Diabetics 8 8 0 0 2 768
Heart 13 7 6 0 2 270
Wine 13 13 0 0 2 178
Car data 8 0 0 8 4 33
Fish data 13 0 0 13 4 12
Barcelona water 48 0 0 48 5 316
Temperature cities 11 0 0 11 4 37

©) Missing data excluded

To further evaluate the performance of the proposegthodology for clustering, we
compared it with the well known Fuzzy c-means dtesg method (FCM) (Bezdek, 1981)
using all features. We simply set the number o$telts equal to the number of original labels
provided in the dataset. However, various clustevalidity indices (Wang and Zhang, 2007)
can be used here to select the optimal numberusterls whenever the number of original
clusters is unavailabldt must be noted that FCM does not handle qualgatind interval
data. However, qualitative and regular intervatgefival features take their values from a
countable set of interval values), are transfornméal quantitative values to enable handling
them by FCM. We notice also that three of the feemt used datasets (“Car”, “temperature
cities”, “Fish” and “Barcelona water”) are charatzed by overlapped interval features and
therefore FCM could not be applied on them. Reslitained with FCM are shown also in
Table 6.2. It can be observed that the proposedbapp outperforms the FCM on almost all
datasets (12 among 14). One possible explanatitimeisncorporation of the importance of
each feature to guide the clustering process. Meredhanks to the SMSP principle, the
proposed approach allows handling appropriately ghalitative and interval data, unlike
FCM which requires a transformation of qualitati@ed interval spaces into quantitative
space. Figure 6.2 shows the fuzzy weights obtaatethe end of clustering task for each

dataset. FWCA approach can provide online precinfggmation about the importance of
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each feature for the ongoing clustering task. Meeeothe user can fix a weight threshold in

some specific cases to discard the deemed irrdiévatures during the clustering task.

Tab. 6.2. Garing error of the proposed and FCM approaches

Dataset FWCA* FCM
Iris 133 3.74
Ljubljana 26.71 28.88
Thyroid 3.72 51.16
WDBC 15.47 7.21
Liver 11.01 51.30
Credit card 13.63 17.15
Hepatitis 10.85 33.33
Heart 16.67 26.76
Diabetics 28.26 33.33
Wine 28.65 5.06
Car data 36.36

Temperature cities 16.22

Fish data 41.67

Barcelona Water 35.76

14 12 2

O Fuzzy Weighted Clustering Approach
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6.5 Conclusion

In this chapter we proposed a novel approach basexhline feature weighting for clustering
of heterogeneous data. The proposed algorithm isxéansion of our previously developed
supervised feature weighting algorithm. To copehwiite problem of data heterogeneity, the
SMSP principle is extended here also to reasonuniféed way about heterogeneous data in
an unsupervised framework. However, we have shdvat the mapping step should be
performed in an incremental fashion to take intcoaat a new pattern at each iteration of the
learning process. In this order, an iterative w@raf the mapping function introduced in the
supervised case has been provided according tofeaithe type.

First, we described separately the online increalesitistering algorithm based on a fuzzy
rule-based system. Then, we investigated as fosupervised context, the integration of the
feature weighting task in the clustering processldésign our proposed approach based on
fuzzy weighted rule concept. An extensive experiralestudy has been then performed on
artificial and real-world problems to prove theeefiveness of the proposed approach. This
algorithm fails however to scale with high dimemsib data (e.g. microarray data)
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CHAPITRE 7- Résumé
Application au cancer du sein

Avant I'ére des biopuces, la gestion du canceréagéidée uniguement par les connaissances
cliniques et histo-pathologiques acquises durantsiglurs décennies de recherche sur le
cancer. Cependant, la forte mortalité par le canckr sein a poussé les chercheurs a
rechercher de nouveaux outils de pronostic du campdes précis aidant les médecins a
prendre les décisions de traitement nécessair@dtire ainsi les frais médicaux. Pendant la
derniere décennie, I'analyse par biopuces a eurandjintérét dans la gestion du cancer tels
gue le diagnostic (Ramaswamy et al., 2001), le @sta (Van't Veer et al., 2002), et la
prédiction de la réponse au traitement (Stravemkt 2009). Cependant, l'introduction de
cette technologie a apporté avec elle de nouveéfix tels que la dimension élevée en termes
de nombre de marqueurs et un ratio bruit/signalvéleDans ce chapitre, quelques
applications au probleme du cancer du sein ensatilt les approches proposées dans les
chapitres précédents ont été présentées. Nous somsnes concentrés surtout sur le
pronostic du cancer du sein et la prédiction dadponse au traitement comme des taches
primordiales pour I'amélioration de la vie des paties atteintes du cancer, en se basant sur
les données cliniques et/ou données de biopucesagpglications sont appuyées par des
analyses statistiques diverses et des interprétatimologiques sur la base des connaissances

actuelles.

D'abord une application sur le pronostic du candmsée uniquement sur des données
hétérogenes cliniqgues a été effectuée. Grace & egiplication, nous avons montré que
I'approche de pondération des variables floue d&lane des facteurs cliniques significatifs.
Deux autres approches de sélection de variablegtintestées sur le méme probleme, afin de

comparer les performances de la méthode que naussaléveloppée.

Dans la deuxieme application, le pronostic du carest basé uniquement sur des données
issues de biopuces pour extraire une signature rdagstique constituée de 20 génes. Les
résultats obtenus en utilisant plusieurs criteres @bmparaison montrent que la valeur
prédictive de cette signature de pronostique pénat €upérieure a celle d'autres signatures
de pronostique existantes et les facteurs cliniquassiques. En particulier, la signature de
20 genes améliore significativement la spécifidieé 'une des approches génétiques bien
connues (signature des 70 génes dite « d’Amsterjam
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La troisieme application a été consacrée a étudliatégration des données cliniques aux
données de biopuce. Dans de telles applicatioas,ptoblemes d'hétérogénéité des données
et la dimensionnalité élevée doivent étre confrem@njointement. Nous avons profité de la
propriété intéressante de l'approche proposée qumet de gérer simultanément les deux
problemes pour extraire une signature pronostiqyeridle. Nous avons montré ensuite a
travers quelques analyses que l'intégration desragmes peut améliorer le pronostic du
cancer du sein. En particulier, la signature hyleridméliore la sensibilité de la signature des

20 genes, tout en maintenant une spécificité coatyper

Pour défier le probleme du faible rapport signalitirdans les données de biopuces pour le
pronostic du cancer, une approche symbolique acétéidérée pour extraire une signature
de pronostique plus robuste, dénommé ici GenSyms Boons décrit d’abord la génération
de la base de données intervallaires par le rengiaent de I'expression de chaque gene par
un intervalle en y incorporant un bruit blanc gassavec un ratio signal/bruit spécifique.
Nous avons montré a travers quelques expériencagatyses statistiques que la signature
GenSym peut surpasser les autres approches exstaBin particulier, elle permet de
conserver la bonne sensibilité apportée par la atgre hybride tout en améliorant la bonne
spécificité de la signature des 20 génes. Par @ifiela liste des genes de cette signature
comporte des genes significatifs liés a l'invasiengycle cellulaire et la prolifération. Nous
croyons que cette premiere tentative dans cettection a également ouvert la porte a la
communauté d'apprentissage automatique pour dépetom'autres approches afin de

résoudre ce probléme.

La derniére application concerne le probleme deiédiction de la réponse a un traitement
néoadjuvant pour des patientes atteintes du caduesein avec HER2 surexprimé. Grace a
'approche proposée, une signature constituée datrqumarqueurs (PTEN, HER2, el4E,
EGFR) a été extraite, qui améliore significativenke pouvoir discriminant entre les deux
groupes des répondeurs positifs et négatifs compatélui obtenu avec la signature de 2
marqueurs utilisés habituellement (PTEN, HERZ2). garticulier, la combinaison de 4
marqueurs ameliore significativement la spécifiake la combinaison 2-marqueurs. Ceci
souligne l'importance de deux nouveaux facteursliptiés (el4dE, EGFR) pour améliorer la
précision de la prédiction de la réponse a un taient néoadjuvant pour des patientes

atteintes de cancer du sein avec HER2 surexprimé.
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CHAPTER 7
Breast Cancer Applications

During the pre-microarray era cancer managementgwaed only by the clinical and histo-
pathological knowledge gained from many decadesaoicer research. However, the high
mortality from breast cancer has pushed reseatotsek for accurate cancer prognosis tools
that help physicians to take the necessary tredtawgisions and thereby reduce its related
expensive medical costs. In the past decade mraypanalysis has had a great interest in
cancer management such as diagnosis (Ramaswaialy 2001), prognosis (Van't Veaat

al., 2002), and treatment response prediction (Stratval.,2009). However, the introduction
of this technology has brought with it new challeagsuch as high feature-to-sample and
noise-to-signal ratios. In this chapter we presemie breast cancer applications based on our
proposed approaches in previous chapters. We foaudgularly on breast cancer prognosis
and treatment benefit prediction based on cliracal/or microarray data. The applications are
supported by various statistical analysis and Ilgickl interpretations based on the current

knowledge.
7.1Cancer prognosis based on clinical and/or microarray data
7.1.1 Cancer prognosis application based on clinical information

a- Ljubljana Prognosis Dataset

The dataset used here concerns the Ljubljana becaaser prognosis dataset; it contains a
total of 286 patients where 201 have not relapsed five years and 85 have relapsed (Blake
and Merz, 1998). Patients with missing data werdugbed from this study (9 patients). All
patients are described by 9 features (6 qualitainee3 interval type):

(a) Menopause: >40, <40, pre-menopause.

(b) Ablation Ganglia: yes, no.

(c) Malignancy Degree (Grade): I, II, I

(d) Breast: right, left

(e) Quadrant: sup. left, inf. left sup. right, inf. i center.

(N lrradiation: yes, no

(9) Age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 908D-89, 90-99
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(h) Tumor Size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-2833, 35-39, 40-44, 45-49,
50-54, 55-59.
() Involved Nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-18-20, 21-23, 24-26, 27-29,
30-32, 33-35, 36-39.

b- Experimental setup and results

1. Factor selection for cancer prognosiswithin supervised context
Choosing accurately the powerful prognostic factor®ng the nine features is of big interest
as it can help the physician to predict, based omlthose factors, whether a patient will
relapse. In this aim, the proposed reasoning tochapter 5, referred to as Membas, is used
to identify the set of important factors for thisoplem. We compared then the proposed
approach with some existing feature selection agagres: Neighborhood Rough Set (NRS)
(Hu et al, 2008) and Simba (Gilad-Bachraehal, 2004). Indeed, NRS is a heterogeneous
feature subset selection based on neighborhoodhreegconcept and Simba is based on 1-
NN rule. To assess the robustness of each methakisagrrelevant features, 50 random
guantitative features were also added. To analyzemportance of each selected feature, the
weights obtained respectively by Membas and Simmba irandom realization have been
plotted for respectively each feature in Figure. WRS ranks the features based on a
dependency measure shown also in Figure 7.1. Ibeasbserved for Membas that only four
of the nine features have a significant weights thiedothers seems to be weakly relevant. The
order of the most relevant features by Membas appede:

1- “Involved Nodes” (interval feature type),

2- “Ablation ganglia” (qualitative feature type),

3- “Grade” (qualitative feature type),

4- “Irradiation” (qualitative feature type).

In addition, the proposed mechanism succeeds tuifigehe 50 added irrelevant features by
assigning them approximately zero weights (theyesmond to the last 50 features in Figure
7.1 (left)). Furthermore, the two features selectsd Membas (“Involved Nodes” and
“Grade”) are still considered as important progiwofdctors in day-to-day clinical practice
(Deepaet al, 2005). Obviously, the selection of the two aduhitil factors (“Ablation
ganglia” and “Irradiation”) suggests that thesatireents have influenced the breast cancer
evolution and therefore the prognosis outcome. l@nother hand the optimal set of feature
selected by Simba contains many irrelevant featffirss top ranked is irrelevant). Moreover,

Figure 7.1 (center) shows that only two among ibe top ranked features are relevant which
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are “Involved nodes” and “Quadrant”. However, oahe feature among the nine presumably
useful features has been deemed important by NRBasn by Figure 7.1 (right).

In order to assess the relevance of selected fatdomprove the cancer prognosis task, we
compared the three feature selection methods onctassifiers: the fuzzy reasoning tool
LAMDA and k-NN. The same procedure of cross-validation andissital variation
elimination as in section 5 of the fifth chapter,adopted here. Figure 7.2 and 7.3 show the
obtained classification error with respectively LAY andk-NN approaches as a function of
the top ranked features by MEMBAS, NRS and Simba.

Ljubljana\ 50 irrelevant quantitative variables Ljubiana/ 50 irelevant quantitative features Ljubljana/ 50 Irrelevant quantitative features
1 T T T T T 1
[0 Membas] [—o—trs]
0.9
0.8
. 07
E
= 086
] g
¥ 2os
z g
§ . Q04
.. 0.3
0.2
0.1
2 0 'eonRRDiGeRRERD- & GED 65 &-85-GRRRREE—GREERE— 6650
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Fig. 7.1. (left) Feature weights by Membas; (cénfferature weights by Simba; (right) Dependency RSN
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Fig. 7.2. Classification error by LAMDA as functiaf top ranked features using Membas, NRS and Simba
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Fig. 7.3. Classification error NN as function of top ranked features using Memb#gS and Simba

It can be observed that MEMBAS performs best o thataset regardless of the used

classifier (LAMDA or k-NN), Simba the second and 8IRhe worst. Interestingly, the
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minimal classification error on both classifiersrresponds to the resulted four top ranked
features by MEMBAS (Figure 7.1), provided that @reor difference ork-NN with five or
four features is insignificant (Figure 7.2 and 7Bble 7.1 summarizes the optimal obtained
averaged classification errors with the two classsfand the corresponding optimal number
of selected features by each feature selectionadeth can be observed that the best couple
(classification performance, number of selectedutes) is obtained by Membas on both
classifiers. Furthermore, a student t-test wasoperdd to assess if the classification error
comes from the same distribution. At a level ofgue= 0.05, Membas wins against NRS and
Simba whatever the used classifier (Table 7.1nust be noted also that Figure 7.2 and 7.3
show that LAMDA outperform&-NN on this heterogeneous dataset almost ovehaltdng

of feature subsets.

Table 7.1. Classification error (%) and correspogdiptimal number of factors on
Ljubljana dataset

Method Membas NRS Simba p-value p-value
(Membas-NRS) (Membas -Simba)

LAMDA 2464 (4) 27.82(9) 28.27(7) 1.79e-005 1.97e-004

k-NN 2555(5) 29.27 (7) 28.18 (4) 1.34e-005 4.43e-004

2. Unsupervised learning

An independent clustering using the fuzzy reasotmad proposed in section 6.2 of the sixth
chapter has been also performed on this datasethendbtained 2-cluster partitions are
compared with the 2-clusters known a priori. Théaoted clustering error is given in Table

7.2 with nine features. To further demonstrategbdormance of the proposed methodology
for clustering, we compared it with the well knownzzy c-means clustering (FCM) method
(Bezdek, 1981). It must be noted that FCM doeshamidle neither qualitative nor interval

data. However, as interval features in this datasetregulars (interval features take their
values from an accountable set of interval valuésgjr transformation into quantitative

values is straightforward to enable handling thgnkF6M. A similar procedure is adopted for

the transformation of qualitative data. Resultsaoted with FCM are reported also in Table
7.2. It can be observed that the proposed approatberforms the FCM on this specific

problem of cancer prognosis. One possible explanats that the transformation of

gualitative and interval spaces into a quantitaipace required for FCM leads probably to
information loss whereas the proposed approachdbaseSMSP principle allows handling

appropriately the qualitative and interval data.
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Table 7.2. Clustering error for Ljubljana dataset

M ethod Number of clusters Accuracy
LAMDA-cluster 2 22.74%
FCM 2 28.88%

Furthermore, to show the effectiveness of the pgegoapproach, we analyzed the obtained
prototypes of each class which correspond to thanpeters of the fuzzy features partition
resulted at the end of the clustering task. Thaiobt class parameters for the three interval
features are shown in Figure 7.4. It can be obsktivat the interval feature “Involved Nodes”
has the most discriminatory power between the tlasses which may be considered as a
confirmation of its selection as an important pcéde factor in the previous section (top
ranked in Figure 7.1). Nonetheless, that does r@mthat the other two interval features are
not useful but their relevance is weaker for tipedsfic problem as it can be seen in Figure
7.1. The prototypes of the other three qualitafiwatures: Ablation ganglia, Malignancy
Degree, Irradiation are also shown in Figures 7.6,and 7.7 respectively. Interestingly, the
three features exhibit also an important discrimiamapower between classes. These results
are in complete agreement with the selection oftkinee qualitative features by the fuzzy

mechanism proposed in chapter 5 (see Figure 7.1).

Profile of the feature Ablation ganglia
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Fig. 7.4. Class prototypes obtained by clusterorg f Fig. 7.5. Class prototypes obtdibg clustering for
interv. features “Age, Tumour size, Invaded Nodes” qual. feature “Ablation ganglia”
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Fig. 7.6. Class prototypes obtained by clustering Fig. 7.7. Class prototypes obtdibg clustering for
for qual. feature “Irradiation” qual. feature “Maligrty degree”
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Let's now compare these class prototypes with tludgained when a supervised learning is
considered. Using the fuzzy rule based classif@MDAwe obtained the prototypes shown
in figures (7.8 to 7.11) for respectively all feats. It can be observed that the profiles in both

cases are quite similar.
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Fig 7.8. Class prototypes obtained by classificafar Fig. 7.9. Class prototypes obtaibgdlassification
for interv. features “Age, Tumor size, Involved Nsd for qual. feature “Ablation ganglia”
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7.1.2 Cancer prognosisapplication based on microarray data

Recent studies have demonstrated the potentiale vafugene expression signatures in
assessing the risk of post-surgical disease. ;ghidy we focus on the use of our proposed
approaches for gene signature derivation for cam@enosis.

a- Dataset and experimental setup
The study is performedsing the well-known Van't Veer dataset (Van't Vesral, 2002).
Van't Veer and colleagues used a dataset contaiigsporadic lymph-node-negative
patients younger than 55 years of age and lessStiecamin tumour size, to derive a prognostic
signature in their gene expression profiles. Footy- patients remained disease-free after
their initial diagnosis for an interval of at le&syears (good prognosis group), and 34 patients
had developed distant metastases within 5 yearsr (pagnosis group). We use the same

group of patients in the aim to derive a gene posgo signature. Patients with missing data
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(1 poor prognosis patient) were excluded in oudgt¥We use our feature selection approach
described in chapter 5, referred to as MEMBAS, toldboa computational model that
accurately predicts the risk of distant recurreradter 5-years period of breast cancer
diagnosis. Due to the small sample size we perfdramd.OOCV (Leave One-Out Cross
Validation) to estimate the optimal classificatipmrameters. At each iteration of this
procedure one sample is held-out for testing ardemaining samples are used for training.
The training data are used to estimate the optpaedmeters of the classifier and to perform
the feature selection task. The resulting mode¢ngployed then to classify the held-out
sample. This experiment is repeated until each kahgs been used for testing. In this study
we used LAMDA classifier for which only one paramreneeded to be specified in the
training phase (exigency index). It is worthwhigertote here that in the study performed by
Van't Veer and its colleagues, a 70-gene signatae been derived from the same dataset

using a feature selection method based on comwalabefficient.

We demonstrate the predictive values of the gegeasiire derived using Membas on this
microarray dataset by comparing its performancé wibse of the clinical markers, 70-gene
signature, St Gallen and NIH criterions. The perfances are also estimated through a
LOOCYV procedure.

b- Results
A 20-gene signature was derived based on Memba®agp corresponding to the optimal
classification performance using LAMDA classifiemd®ed on the Guassian-like membership
function. Classification performance obtained basedthis signature with LAMDA are
reported in Table 7.3. For comparison, classifaraperformance using the 70-gene signature,
the clinical markers, the St-Gallen consensus had\iH criterion using LAMDA classifier
are also reported in Table 7.3. We observe thalthgene signature outperforms the 70-
gene, clinical and classical clinical criterionst-Ggllen, NIH). Particularly, the 20-gene
signature improves significantly the specificity @D-gene signature while assuring a
comparable sensitivity.

Tab. 7.3. Classification performance using 20-gggrature, 70-gene signature, all clinical mark8tallen
consensus and NIH criteria

Method TP FP FN TN sensitivity Specificity Accuracy
20-gene 28/33 5/44 6/33 38/44 82.35 88.37 85.71
70-gene 27/33 9/44 6/33 35/44 81.82 79.55 80.52
Clinical 26/33 14/44 7133 30/44 78.79 68.18 72.73
St-Gallen 33/33 39/44 0/33 6/44 100 6.49 50.65
NIH 33/33 44/44 0/33 0/33 100 0 42.86

111



Chapter 7: Breast Cancer Applications

Classification performance is not always a suffitieriterion for comparing predictive value
of marker signatures. Performance measurement ksandgpend strongly on a decision
threshold when only a limited number of patiente awvailable. Varying this decision
threshold enables to visualize the performance givan classifier over all sensitivity and
specificity levels through a Receiver Operating i@bteristic (ROC) curve (See Appendix 4).
To further demonstrate the superiority of the 2@egsignature, we decided to plot in Figure
7.12 also the ROC curve of the three models bassgukctively on the 20-gene signature, 70-
gene signature and clinical markers. The obtain®@€ Rurve confirms the outperformance of

the 20-gene signature over other signatures.
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Fig. 7.12. ROC curve of clinical, 20-gene and 7@gysignatures.

We perform also survival data analysis of the fapproaches, 20-gene signature, 70-gene
signature, clinical markers and St-Gallen criterimnfurther demonstrate the prognostic value
of the 20-gene signature. The St-Gallen and NIlitega are not shown here since the good
prognosis group contains very few patients. Thel&@aMeier curves with 95% confidence
intervals of respectively the four approaches &@v® in Figure 7.13. Particularly the 20-
gene signature induces a significant differencéhéprobability of remaining metastases-free
in patients with a good signature and the patievitt a poor prognostic signature (P-
value<0.001). Hazard ratio estimated by Mantel-@pproach of distant metastases within
five years for the 20-gene signature is 7.6 (95%3&6- 15.06), which is superior to either

the 70-gene, St Gallen consensus or clinical marker
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Kaplan—Meier Plot (20—-gene)
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. 7.13. Kaplan-Meier estimation of the probala of remaining metastases-free for the goodpara

prognosis groups. The p-value is computed by usiggank test.

c- Analysisof thetwenty-gene signature
Among the 20-gene signature, given in Table 7.4htegenes are listed in the 70-gene
signature and both gene signatures share thegérst (ALO80059). Note that the number of

genes derived is significantly short compared t® mlumber required to perform the caner

prognosis task using Amsterdam 70-gene signaturériéf description of the biological
implication of gene is provided in Table 7.4 acdogd to the National Center for

Biotechnology Information (NCBI) databases.

Tab. 7.4: Notation and description of 20-gene digrea

Rank

Gene ID 70-gene Notation

Description

1

ALO80059 = TSPYL5
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A subsequent analysis has revealed a mgnif
homology with human protein factors, including NAPs
which play a role in DNA replication and thereby
proliferation (Schnieders et al., 1996). It is tgbtthat
NAPs act as histone chaperones shuttline histone
proteins involved in regulating chromatin structarel
accessibility and therefore can impact gene exjmess



10
11
12
13
14
15

16

NM_003748

NM_020974

D42044
NM_006681
NM_006544

Contig14882_RC
Contig20217_RC
Contig37063_RC
NM_019028
NM_003450
Contig54742_RC
Contigb3649_RC
Contig42933_RC
NM_004994

NM_000286

" 0O " 0O O O O m O

ALDH4A1

SCUBE2

KIAA0090
NMU
EXOCS5

N\A

N\A

N\A
ZDHHC13
ZNF174
N\A

N\A

N\A
MMP9

PEX12
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This protein belongs to the aldehyde dehydrogenase
family of proteins. This enzyme is a mitochondrial
matrix NAD-dependent dehydrogenase which catalyzes
the second step of the proline degradation pathway,
converting pyrroline-5-carboxylate to glutamate.
Deficiency of this enzyme is associated with type |
hyperprolinemia, an autosomal recessive disorder
characterized by accumulation of delta-1-pyrrolie-
carboxylate (P5C) and proline. Alternatively spliced
transcript variants encoding different isoforms dav
been identified for this gene.

SCUBE?2 signal peptide, CUB domain, EGF-like 2 [
Homo sapiens ]. The SCUBE2 (known also as CEPG1)
is located on human chromosome 11p15 and has
homology to the achaetescute complex (ASC)of genes
in the basic helix-loop-helix (bHLH) family of
transcription factors.

Protein binding
NMU neuromedin U Homo sapien$

Exocyst complex component 5 [Homo sapiens].The
protein encoded by this gene is a component of the
exocyst complex, a multiple protein complex essgnti
for targeting exocytic vesicles to specific docksites

on the plasma membrane. Though best charactenzed i
yeast, the component proteins and functions of ystoc
complex have been demonstrated to be highly
conserved in higher eukaryotes. At least eight
components of the exocyst complex, including this
protein, are found to interact with the actin cielstal
remodeling and vesicle transport machinery. The
complex is also essential for the biogenesis dhepal

cell surface polarity.

N\A

N\A

N\A

Zinc finger, DHHC-type containing 13 [Homo sapiens]
Zinc finger protein 174 [ Homo sapiens]

N\A

N\A

N\A

Matrix metallopeptidase 9 (gelatinase B, 92kDa
gelatinase, 92kDa type IV collagenase) [Homo
sapiens]. Proteins of the matrix metalloproteinase
(MMP) family are involved in the breakdown of
extracellular matrix in normal physiological proses,
such as embryonic development, reproduction, and
tissue remodeling, as well as in disease processeh,

as arthritis and metastasis. Most MMP's are satrte
inactive proproteins which are activated when atelv
by extracellular proteinases. The enzyme encoded by
this gene degrades type IV and V collagens. Studies
rhesus monkeys suggest that the enzyme is invatved
IL-8-induced mobilization of hematopoietic progemit
cells from bone marrow, and murine studies suggest
role in tumor-associated tissue remodeling.

Peroxisomal biogenesis factor 12 [Homo sapiensis Th
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gene belongs to the peroxin-12 family. Peroxins
(PEXs) are proteins that are essential for thenaislse

of functional peroxisomes. The peroxisome biogenesi
disorders (PBDs) are a group of genetically
heterogeneous autosomal recessive, lethal diseases
characterized by multiple defects in peroxisome
function. The peroxisomal biogenesis disorders are
heterogeneous group with at least 14 complementatio
groups and with more than 1 phenotype being obderve
in cases falling into particular complementatioougs.
Although the clinical features of PBD patients vary,
cells from all PBD patients exhibit a defect in the
import of one or more classes of peroxisomal matrix
proteins into the organelle. Defects in this gere &
cause of Zellweger syndrome (ZWS).

17 Contig6238_RC m N\A N\A
18 NM_014489 o PGAP2 Post-GPI attachment to proteins 2 [Homo sapiens] .
19 NM_002779 O PSD Pleckstrin and Sec7 domain containing [Honpaeses)

20 Contig32185_RC u N\A N\A
m: Listed in 70-gene signature; Not listed in 70-gene signature

The functional annotation for the genes should jg@nsight into the underlying biological
mechanism leading to rapid metastases. Among thgeB6 signature, genes involved in
proliferation, invasion and metastasis are sigarftty unregulated in the metastasis group.
For instance we find SCUB2 which has been reveagday important roles in development,
inflammation and perhaps carcinogenesis (Yah@l, 2002). The expression of SCUBE2
gene has been found to be associated with ER statusecent SAGE-based study of breast
cancer specimens (Able al, 2005). It has been reported recently that SCUBIE#$resses
breast tumor cell proliferation and confers a falbe prognosis in invasive breast cancer
(Chenget al.,2009). TSPYLS5 is involved in modulation of cell grin and cellular response
probably via regulation of the akt signaling patlgwh is reported that TSPYL5 is a poor
prognosis marker and reduces the p53 protein lemeds inhibits activation of p53-target
genes. It is known that EXOC5 gene is related 1b roebility and invasion. MMP-9 are
related to tumor invasion and metastasis by thejpacity for tissue remodeling via
extracellular matrix as well as basement membraegradiation and induction of
angiogenesis. Evaluation of MMP-9 expression setenald valuable information on breast
cancer prognosis. The KIAA0090 is one of the breaster markers identified in (Dettlirg

al., 2005).
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7.1.3 Hybrid Signature derivation by integrating clinical and microarray data for
cancer prognosis

In the past decade microarray analysis has hadeat gnterest in cancer management.
Meanwhile, clinical and histo-pathological factaee still considered as valuable tool to
make day-to-day cancer management decisions. Ibé&s however established recently that
the integration of both information may improve can management (Sugt al, 2007a;
Gevaertet al, 2006). In (Suret al, 2007a) a feature selection method (I-Relief) wsed to
perform markers selection. However, the used metaréts under the assumption that all the
data are of quantitative type and therefore a foamation of symbolic data to quantitative
one was performed to cope with data heterogen€itis transformation can be a source of
distortion and information loss as it introducediatance which was not present in the
original data. In (Gevaedt al, 2006), a Bayesian network was used to perforradbreancer
prognosis. The obtained results show only thatr tapproach performs similarly to the 70-
gene signature established by Van't Veer and oglles (Van't Veeet al, 2002) and claim
that a feature selection is implicitly performedséd on their (in) dependency through the
Markov Blanket concept. These results do not memessarily that the clinical data contains
no additional information to the genetic data; ntyotells us that their approach does not fit
well (Sunet al, 2007a). In the present study, we use our hylwature selection method,
referred to as MEMBAS, to assess the usefulneskeointegration of both types of data by
addressing both challenges simultaneously: higredsionality and heterogeneity of data
(Hedjaziet al, 2011d).

a- Dataset and experimental setup

We use here also the Van't Veer data set of 7&piti(Van't Veeret al, 2002) to derive a
hybrid signature by integrating clinical and miamag data. The clinical data contains eight

features:
a) Age (quantitative)
b) Tumour grade (interval:[3,5]~ Grade I; [6,7] ~ Geddt [8,9] ~ Grade IlI)
¢) Tumour size (quantitative: mm)
d) Estrogen Receptor expression (quantitative: intgnsi
e) Progesterone Receptor expression (quantitativengitty)
f) Angioinvasion (qualitative: ‘yes’ or ‘no’)

g) Lymphocytic Infiltrate (qualitative: ‘yes’ or ‘no’)
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h) BRCAL mutation (qualitative: ‘yes’ or ‘no’)

The same LOOCV procedure employed in the previtudyswas adopted here to perform
feature selection and learn classifier parameterd,then testing the performance on a hold-
out sample not used for training. The classificatiask was performed by using the fuzzy
classifier LAMDA. MEMBAS based on the binomial meeanbhip function is used here to
derive a hybrid prognostic marker without resortit any data transformation. To
demonstrate the predictive power of the hybrid posgic signature derived from the genetic
and clinical markers, its performance was compaited with those of clinical markers and
the well known Amsterdam 70-genes signature (Veegret al, 2002). Another comparison

with purely clinical indices (NIH, St Gallen) waksa performed.

b- Results
Table 7.5 shows the obtained comparative resulisdem the hybrid markers approach and
other approaches. It can be observed that theovesall prediction accuracy is obtained by
the proposed approach which achieves more than ®&ticularly, the hybrid signature
provides an improved specificity compared to thegéfle signature while maintaining a
relatively high sensitivity (~88%). If we compare the 20-gene signature, the hybrid
signature maintains an improved overall accuracyendgining in sensitivity (2 more poor-
prognosis patients have been correctly identifiddzomparison with clinical conventional
prognostic factors (St. Gallen’s and NIH) is alsparted in Table 7.5. Both indices have a
very high sensitivity, but an intolerable low spgiiy which would lead to give unnecessary
adjuvant systematic treatment to almost all pagiefthus the obtained hybrid markers

outperforms also the pure clinically indices.

It must be noticed here that MEMBAS selects onlyhybrid markers, among them three are
mixed-type clinical markers (Angioinvasion “quatite” , Grade “interval” and Age
“quantitative), added to them 12 genes as listélhinle 7.6.

Tab. 7.5: Comparatives results between hybridjagirand genetic signatures.

Method TP FP FN TN sensitivity Specificity Accuracy
Hybrid 29/33 6/44 4/33 38/44 87.88 86.36 87.01
70-gene 27/33 9/44 6/33 35/44 81.82 79.55 80.52
20-gene 28/33 5/44 6/33 38/44 82.35 88.37 85.71
Clinical 26/33 14/44 7/33 30/44 78.79 68.18 72.73
St-Gallen 33/33 39/44 0/33 5/44 100 6.49 50.65
NIH 33/33 44/44 0/33 0/33 100 0 42.86
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Fig. 7.14. ROC curve of hybrid, clinical and 70-gesignature.

For further comparison, we plotted the ROC cureedHybrid, 70-gene signature and clinical
markers. Figure 7.14 shows that the hybrid sigeatwtperforms both the 70-gene signature

and clinical markers.

To further demonstrate the prognostic value ofhigerid signature, we performed survival
analysis using four approaches (hybrid signatubegéhe signature, clinical markers and St-
Gallen criterion). The Kaplan-Meier curves with 95¥nfidence intervals for respectively
the four approaches are shown in Figure 7.15. ddatly, we can see that the hybrid
signature induces a significant difference in thebpbility of remaining metastases-free in
patients with a good signature and the patientd veit bad prognostic signature (P-
value<0.001). Hazard ratio estimated by Mantel-@pproach of distant metastases within
five years for the hybrid signature is 6.1 (95% &R2- 11.48), which is superior to either 70-

gene and clinical markers.

a- Analysisof theHybrid signature
Among the 12 genes of the hybrid signature, reporieTable 7.6, 4 genes are listed in the
70-gene signature and 4 in the 20-gene signatdtle 2an common). Note that the number of
derived genetic markers is also significantly shootmpared to the number required to
perform the cancer prognosis task using the 70-gemsterdam signature (12 Versus 70
genes). A brief description is provided about eawdrker in Table 7.6 according to the

National Center for Biotechnology Information (NGBlatabases.

118



Chapter 7: Breast Cancer Applications

Probability of Metastases Free

Probability of Metastases Free

1.2

Kaplan—Meier Plot (Hybrid)

p-value<0.001
HR=6.1:(95% CI: 3.22-11.48)

= R b ok s

- = = Good signature
Poor signature
+ Censored

Probability of Metastatses Free

1.2

o
®

o©
o

o
S

0.2

Kaplan—-Meier Plot (70-gene)

p-value<0.001
HR=5.6 (95% CI: 3.1-10.2)

=

= = = Good signature |
Poor signature
+ Censored

0 s 0 R
0 2 4 6 8 10 12 14 15 0 2 6. 8 10 12 14 15
Time (vears) Time (years)
Kaplan—-Meier Plot (clinical) 1.2 Kaplan—Meier Plot (St-Gallen)
1.2 T -

o
©
T

o
o
T

o
IS
T

= = = Good signature
Poor signature
+ Censored

TUT U bt = . b e

Probability of Metastases Free

p-value=0.73
HR=1.17 ( 95% CI: 0.46-2.92)

o o o )

= = = Good signature
Poor signature

0.2 02y + Censored
p-value=0.0019
HR=2.32 (95% CI::1.36-3.95)
0 ; ; ; ; ; ; - 0 ; P
0 2 4 6 8 10 12 14 15 0 2 12 14 15

Time (years)

6 8 10
Time (years)

Fig. 7.15. Kaplan-Meier estimation of the probdigi# of remaining metastases-free for the

good and poor prognosis groups. The p-value is at&ojby using log-rank test.

Tab. 7.6: Notation and description of hybrid sigmat

Rank Gene ID 70-gene 20-gene Notation Description
1 Angioinvasion - N\A N\A
2 Grade > N\A N\A
3 Contig63649_RC n N\A N\A
4 AL080059 (] X TSPYL5  See Table 7.4
5 NM_006544 O X EXOC5 See Table 7.4
6 Contig55725_RC L] N\A N\A
7 NM_020974 m X SCUBE2  See Table 7.4
8 Age - N\A N\A
9 NM_019028 O X ZDHHC13 See Table 7.4
10 NM_001787 m LOC87720 Protein coding
11 AJ011306 o EIF2B4 Eukaryotic translation initiation factor 2B, subudit
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delta, 67kDa [Homo sapiens]. Eukaryotic initiation
factor 2B (EIF2B), which is necessary for protein
synthesis, is a GTP exchange factor composed ef fiv
different subunits. The protein encoded by thisegisn
the fourth, or delta, subunit. Defects in this gane a
cause of leukoencephalopathy with vanishing white
matter (VWM) and ovarioleukodystrophy. Multiple
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12 NM_012429 O

13 Contig14882_RC o N\A

14 Contigd7042 | N\A

15 NM_005176 m ATP5G2

SEC14L2

transcript variants encoding different isoforms dav
been found for this gene.

SEC14-like 2 (S. cerevisiae) [Homo sapiens]. This
gene encodes a cytosolic protein which belongs to a
family of lipid-binding proteins including Secl4p,
alpha-tocopherol transfer protein, and cellulaincgt
binding protein. The encoded protein stimulates
squalene monooxygenase which is a downstream
enzyme in the cholesterol biosynthetic pathway.
Alternatively spliced transcript variants encoding
different isoforms have been identified for thisige

N\A

N\A

ATP synthase, H+ transporting, mitochoaldriFo
complex, subunit C2 (subunit 9)Homo sapieng.
This gene encodes a subunit of mitochondrial ATP
synthase. Mitochondrial ATP synthase catalyzes ATP
synthesis, utilizing an electrochemical gradient of
protons across the inner membrane during oxidative
phosphorylation. ATP synthase is composed of two
linked multi-subunit complexes: the soluble catalyt
core, F1, and the membrane-spanning component, Fo,
comprising the proton channel. The catalytic portio
of mitochondrial ATP synthase consists of 5 différe
subunits (alpha, beta, gamma, delta, and epsilon)
assembled with a stoichiometry of 3 alpha, 3 betdl,
single representatives of the gamma, delta, anitbaps
subunits. The proton channel likely has nine suisuni
(a, b, c,d, e f, g, F6 and 8). There are thrgarsee
genes which encode subunit ¢ of the proton channel
and they specify precursors with different import
sequences but identical mature proteins. The protei
encoded by this gene is one of three precursors of
subunit c¢. Alternatively spliced transcript variant
encoding different isoforms have been identifiedisT
gene has multiple pseudogenes.

m: Listed in 70-gene signature; Not listed in 70-gene signature, x: listed in@the signature, -: Clinical markers.

Clinical markers included in the previously deriviegbrid signature are “Angioinvasion”,

“Grade” and “Age”. Interestingly, the two first mkars have been also identified as important

factors by similar studies (Swet al, 2007a; Gevaesrtt al, 2006). The “Age” has also been

identified by (Gevaeret al, 2006) as a supplementary clinical marker whichtils used in

day-to-day clinical practices. Regarding genetickees, we can find some of the genes
included in the previously reported 20-gene sigmatSCUBE2, TSPYL5, EXOS5,
ZDHHC13) and other new genes such as the Eukaryainslation factor 2B EIF2B4 which
is necessary for protein synthesis, ATP5G2 andsojtoprotein SEC14L2.
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7.1.4 Symbolic gene selection to defy low signal-to-noise ratio for cancer prognosis

It has been reported recently that the major diffies in deciphering high throughput gene
expression experiments comes from the noisy naifitbe data (Stolovitzket al, 2002).

Data issued from high throughput technology indéednot only characterized by the
dimensionality problem but present also anothetl@hging aspect related to its low signal-
to-noise ratio. The noise in such type of data isltisource: biological and noise
measurement, slide manufacturing errors, hybriginagrrors, scanning errors of hybridized

slide (see section 2.4.3, chapter 2, for more Id¢tai

All existing feature and classification approaclessume that microarray data is perfect
without wondering about its reliability. The lack appropriate methods does not mean that
machine learning approaches are unable to tackle gwblems. An interesting approach for
instance would be to use symbolic data analysisAjSBock and Diady, 2000) to model
usually uncertainty and noise inherent to gene esgon measurements by an interval
representation (Billard, 2008). Symbolic intervekfures are extensions of pure real data
types, in the way that each feature may take asrvat of values instead of a single value
(Gowda and Diady, 1992). In this framework, theueabf a quantitx (e.g. gene expression
value) is expressed as a closed intersat’] wheneverx is noisy or uncertain; representing
the information thak™ < x<x". Therefore, what is really needed is an approaahenables to
process efficiently high dimensional interval datas We take advantage here of our
proposed approaches that support such requirert@ioksrive a more robust gene signature

for cancer prognosis from microarray datasets.

a- Dataset and experimental setup
We use here also the Van't Veer data set of 7&piti(Van't Veeret al, 2002) to derive a
signature for cancer prognosis. In order to take &cwcount the uncertainty in gene expression
measurements under the form of symbolic intenasappropriate setup should be followed.
The m gene expression levels are initially represented matrix X=ki,%...,%;] wherem is
the number of genes. The microarray interval datgeaeration is performed by adding a
white Gaussian noise with a specific Signal-to-Mdiatio (SNR=3). Let’s consider that the
added white Gaussian noise has an absolute Wmltren thg™ interval featurey=[y;, y']

corresponding to thi' genehaving an expression is generated as follows:
y=%-D
y=x+b
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It results that

y= Iy, '1=0 %= b, x+ b].

At the end of this step tha gene expression levels are represented in a mét{i,ys...., Y|
wherey; is an interval vector. Once the microarray intedetaset is obtained, our proposed
approaches can be used to derive a genetic signdtordo so, we adopted similar a LOOCV
procedure as previously to assess the predictieevaf this symbolic gene signature,
referred to here as GenSym.

a- Results
GenSym signature was derived based on the Memlpaieaagh corresponding to the optimal
classification performance using the LAMDA classifiWe note that both of Membas and
LAMDA enable to handle appropriately interval déba classification and feature selection
(see previous chapters for more details). Table shdws the classification performance
obtained with LAMDA using GenSym signature. For g@amson, classification performance
using 70-gene signature, clinical markers, St-Gattensensus and NIH criterion are also
reported in Table 7.7. We observe that the GenSgmagire significantly outperforms the
70-gene, clinical and classical clinical criteridi@-Gellen, NIH). GenSym achieves indeed a
high accuracy (~90%) while significantly improvisgecificity and sensitivity of the 70-gene
signature (by more than 5 % and 10% respectivédgreover, GenSym improves the
sensitivity of the previously derived 20-gene signa and improves the specificity of the

hybrid signature while maintaining the high sengyiof the latter one.

Tab. 7.7: Comparatives results between GenSynicaliand genetic signatures.

Method TP FP FN TN sensitivity Specificity Accuracy
GenSym 29/33 4/44 4/33 40/44 87.88 90.91 89.61
70-gene 27/33 9/44 6/33 35/44 81.82 79.55 80.52
20-gene 28/33 5/44 6/33 38/44 82.35 88.37 85.71
Clinical 26/33 14/44 7/33 30/44 78.79 68.18 72.73
St-Gallen 33/33 39/44 0/33 5/44 100 6.49 50.65
NIH 33/33 44/44 0/33 0/33 100 0 42.86

For further comparison of the different approaches plotted in Figure 7.16 the ROC curves
for GenSym, 20-gene, 70-gene and clinical appraadhean be observed that the GenSym
signature significantly outperforms the 20-gene &@0@egene signatures as well as clinical

markers.
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Fig. 7.16. ROC curve of GenSym, 20-gene, 70-geimécal approaches.

For more rigorous comparison, survival data anslyer the four approaches is also
performed to further demonstrate the predictiveigaf the GenSym signature. The Kaplan-
Meier curve with 95% confidence intervals of thenSgm signature, plotted in figure 7.17,

exhibits a significant difference in the probalilaf remaining free of distant metastases in
patients with a good signature and the patientd vait poor prognostic signature (P-
value<0.001). Hazard ratio estimated by Mantel-@pproach of distant metastases within
five years for the GenSym-23 signature is 8.20 (95P64.16- 16.2), which is superior to

either 70-gene and clinical markers.

a- Analysisof GenSym signature
The GenSym signature is composed from 23 genesngivTable 7.8, among them 12 genes
are listed in the 70-gene signature. A brief dgsiom is provided about each gene in Table
7.8 according to the National Center for Bioteclggl Information (NCBI) databases.

Additionally to the few genes identified in the yieus signatures (TSPYL5, MMP9, NMU),
GenSym signature holds many new meaningful genesh(as FBP1, IGFBP1, FGF18,
SSX1, NUSAP1, C1GALT1, BTG2, PEX12). The importaméeboth (FBP1, IGFBP1) can
be highlighted by the actually suspected relatietwieen the insulin and tumor growth. But
neither FBP1 nor IGFBP1 have been evaluated inalpely in human cancers. However,
FBP1 have been also found strongly associated eigbase outcome among the 231 top
ranked genes in (Van't Veet al, 2002). FGF18 have been revealed clearly involaethe
carcinogenesis of ~10% breast cancer. NUSAP1 hss laken found to be related to

proliferation and cells division. SSX1 is involvadcertain sarcomas; it controls the cell cycle
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and is considered as an important transcriptiotofa€1GALT1 is a protein that plays an

important role in cell adhesion whereas BTG2 issodered as a tumor suppressor.

1.2
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Fig. 7.17. Kaplan-Meier estimation of the probataf of remaining metastases-free for the goodpard

prognosis groups. The p-value is computed by usiggank test.

Tab. 7.8: Notation and description of GenSym sigreat

Rank GenelD 70-gene Notation Function

1 Contig37063_RC m N\A N\A

2 Contig26388_RC o N\A N\A

3 NM_003748 u ALDH4A1 See Table 7.4

4 NM_006681 [ ] NMU See Table 7.4

5 NM 000507 o FBP1 Fructose-1,6-bisphosphatase 1 [Homo sapi€Fis}.
protein encoded by this gene is a gluconeogenesis
regulatory enzyme, catalyzes the hydrolysis oftbise
1,6-bisphosphate to fructose 6-phosphate and inarga
phosphate. Fructose-1,6-diphosphatase deficiency is
associated with hypoglycemia and metabolic acidosis

6 AF055033 ] IGFBP5 Insulin-like growth factor binding protein 5 [Homo
sapiens]

7 NM_000286 a PEX12 See Table 7.4

8 ALO80059 u TSPYL5 See Table 7.4
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9 Contig33814_RC 0 N\A

10 NM_012429 o SEC14L2
11 NM_000599 u IGFBP5
12 NM_003862 u FGF18

13 Contig63649_RC u N\A

14 NM_004994 u MMP9

15 Contig11065_RC u N\A

16 Contig32185_RC ] N\A

17 NM_016359 u NUSAP1
18 Contig15954_RC | N\A

19 NM_005635 m SSX1

20 Contigd9388_RC u N\A

21 Contig52554_RC o N\A

22 | C1GALT1

NM_020156
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N\A
See Table 7.6

Insulin-like growth factor binding protein [BHlomo
sapiens]

Fibroblast growth factor 18 [Homo sapiens] . The
protein encoded by this gene is a member of the
fibroblast growth factor (FGF) family. FGF family
members possess broad mitogenic and cell survival
activities, and are involved in a variety of bioioa
processes, including embryonic development, cell
growth, morphogenesis, tissue repair, tumor growth,
and invasion. It has been shown in vitro that this
protein is able to induce neurite outgrowth in PC12
cells. Studies of the similar proteins in mouse elmidk
suggested that this protein is a pleiotropic grofattior
that stimulates proliferation in a number of tissue
most notably the liver and small intestine. Knodkou
studies of the similar gene in mice implied thesrof

this protein in regulating proliferation and
differentiation of midline cerebellar structures.

N\A
See Table 7.4
N\A
N\A

Nucleolar and spindle associated proteinisla
nucleolar-spindle-associated protein that playslain
spindle microtubule organization (Raemaekers et al.,
2003).

N\A

Synovial sarcoma, X breakpoint 1. The prodidi¢his
gene belongs to the family of highly homologous
synovial sarcoma X (SSX) breakpoint proteins. These
proteins may function as transcriptional repressors
They are also capable of eliciting spontaneously
humoral and cellular immune responses in cancer
patients, and are potentially useful targets incean
vaccine-based immunotherapy. SSX1, SSX2 and SSX4
genes have been involved in the t(X;18) translocati
characteristically found in all synovial sarcoma@kis
translocation results in the fusion of the synovial
sarcoma translocation gene on chromosome 18 to one
of the SSX genes on chromosome X. The encoded
hybrid proteins are probably responsible for
transforming activity.

N\A
N\A

Core 1 synthase, glycoprotein-N-acetylgalactosamine
3-beta-galactosyltransferase, 1 [Homo sapiens]. The
protein encoded by this gene generates the common
core 1 O-glycan structure, Gal-beta-1-3GalNAc-R, by
the transfer of Gal from UDP-Gal to GalNAc-alpha-1-
R. Core 1 is a precursor for many extended mucin-type
O-glycans on cell surface and secreted glycoprstein
Studies in mice suggest that this gene plays ardiey

in thrombopoiesis and kidney homeostasis.
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23 NM 006763 o BTG2 BTG family, member 2 [ Homo sapiens ]. The @irot
B encoded by this gene is a member of the BTG/Tob
family. This family has structurally related proteithat
appear to have antiproliferative properties. This
encoded protein is involved in the regulation oé th
G1/S transition of the cell cycle
m: Listed in 70-gene signature; Not listed in 70-gene signature, N/A: No Availabl

7.2 Systemic responsiveness prediction to neoadjuvant treatment in breast
cancer patients

Accurate prediction of treatment response in breasicer can decrease significantly the
number of patients receiving unnecessary systemeggtment and reduce its expensive
medical costs. Currently, the selection of pat@igible for a treatment is generally based on
classical factors such as tumor grade, age, lympHes status. However, the high
heterogeneity of breast cancer highlights the nteedesign treatment regimens tailored
specifically for each sub-molecular type cancer.RaEoverexpressed breast cancer for
instance has an aggressive biological behaviorpamt prognosis, requiring the design of
specific treatment regimens. Although trastuzumBler¢eptin) has been shown to be a
valuable remarkable therapeutic in certain HER2rex@ressing breast cancer patients, its
overall response rate is still limited and its filme mechanism is not yet very well
understood. Less than 35% of patients with HER2eymessing metastatic breast cancer
indeed respond to trastuzumab as a single therabgreas ~5% of patients suffer from
severe side effects (e.g. cardiac dysfunction) 40 of patients experience other adverse
effects (Fujita et al. 2006). Therefore, the idicdiion of new trastuzumab’s predictive
markers is urgently required to reduce the numb@atents undergoing the side effects and
unnecessary cost. The present study aims to iglem#w predictors of therapeutic
responsiveness, among both available proteomicchnidal marker information, in HER2-
overexpressing invasive breast cancer receivingdjagant treatment. We used our proposed
approach for feature selection that performs mixge- data to derive a set of predictive
factors.

a- Material and methods
Fifty-three patients with HERZ2-overexpressing invas breast carcinoma received
trastuzumba based neoadjuvant treatment from theecanstitute of Toulouse (ICR). The
pathological response was evaluated on surgicatimpas and categorized as complete
response (PCR) (no residual or minimal invasiveciomma) or incomplete response (pIR)

(residual invasive carcinoma) according to satatateria (Zindyet al, 2011). In the present
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study, among the 53 HERZ2-positive invasive breasicer patients that received specific
neoadjuvant treatment, 20 (37,73%) had achieve€R pnd 33 (62,26%) did not. Each
patient is characterized by 14 features (proteomaintk clinicopathological factors, see Table

7.9 for more details) and its outcome (pCR) lidtetbw:

b-

© N o g A~ w D PE

ER 9. HER2

PgR 10. HER4

Involved lymph Nodes 11. PAX2

HERS3 12. EGFR

PTEN 13. Age (qudlita: <40, 40-50, >50)
CMYC 14. Grade (intdr\&-5];[6-7],[8-9])
4-EBP1 15. pCR : outeofpositivevs negative)
el4dE

Results and discussion

In order to select important predictive factors, agplied Membas to this dataset and we

obtained the weights shown in Figure 7.18 for respely each factor. The marker’s ranking

is reported in Table 7.10 with brief descriptionitsfbiological role in breast cancer evolution.

It can be observed that, among the 14 markers, ®@rigve a relatively significant weights

and remaining factors seem to be weakly relevaptediction task.
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Fig. 7.18. Marker weights obtained by Membas
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Tab. 7.9. List of Ranked predictive factors ob¢alithy Membas.

Rank Marker Notation Function
1 Phosphatase and tensin honPTEN A protein that helps control many cell funogp
ologue deleted on chromoso- including cell division and cell death. Mutations
me 10. (changes) in the gene that makes PTEN are found in

many types of cancer and other diseases. It ipa ty
of tumor suppressor protein. Also called PTEN
tyrosine phosphatase.

2 Human Epidermal gro-wth HER2 See Glossary
factor receptor-2 status

3 Eukaryotic transaltion initia- el4E Eukaryotic initiation factor
tion factor

4 EGFR/HER1 The protein found on the surface of some cellstand
Epidermal Growth Factor which epidermal growth factor binds, causing the
Receptor cells to divide. It is found at abnormally high és

on the surface of many types of cancer cells, seeth
cells may divide excessively in the presence of
epidermal growth factor. Also called epidermal
growth factor receptor, ErbB1, and HER1.

5 Human Epidermal gro-wth HER4 Tumor gene repressor
factor receptor-4 status
6 Progesterone receptor PgR See Glossary
7 4-EBP1 4-EBP1 Translation repressor
8 Paired box gene 2 Pax2 PAX2 encodes paired box gene 2, one of many

human homologues of the Drosophila melanogaster
gene prd. The central feature of this transcription
factor gene family is the conserved DNA-binding
paired box domain. PAX2 is believed to be a tacjet
transcriptional suppression by the tumor suppressor
gene WT1.

9 C-MYC CMYC Protein codes for a transcription factor thatacated
on chromosome 8 in humans and is believed to
regulate expression of 15% of all genes through
binding on Enhancer Box sequences (E-boxes) and
recruiting histone acetyltransferases (HATS). This
means that in addition to its role as a classical
transcription factor, Myc also functions to regelat
global chromatin structure by regulating histone
acetylation both in gene-rich regions and at dites
from any known gene

10 Involved lymph Nodes Invaded lymph  See Glossary
Nodes
11 Human Epidermal gro-wth HER3 Tumor gene repressor
factor receptor-3 status
12 Estrogen receptor ER See Glossary
13 Age / See Glossary
14 Grade / See Glossary

LAMDA classifier has been used then to assess mmgoitance of selected factors by
retaining only a set of markers optimizing its sifisation performance. In this order, it has
been found that the four top ranked markers by MASBPTEN, HER2, el4dE, EGFR)

provide the optimal classification performanceetestingly, the relation of both PTEN and
HER2 with the response to trastuzumab is well distedd in cancer research literature (Fujita

et al, 2006; Vogekt al, 2002) and are recognized as powerful predicthtors. In the very
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close past, patients with metastatic are seledettdstuzumab-therapy if the primary tumor
overexpresses the HER2 protein or HER2 gene awggidn. However, in spite the
importance of HER2 marker, less than 30% of patiemtspond to trastuzumab. This
highlighted the fact that HER2 gene amplificatisrainecessary biomarker but not sufficient
to predict the efficacy of trastuzumab (Fugtbal, 2006). Recently, PTEN has been found to
be one of the most common targets of mutation mdrucancer and that a decreased PTEN
expression is associated with invasive breast cara® poor prognosis (Fujit al, 2006). It
has been reported therein also that PTEN is a gowmedictive marker for the efficacy of
trastuzumab in drug-resistant and parental HERZ2r-expressing breast cancer cells.
Eukaryotic transaltion initiation factor elF4E isxe of the most prominent downstream
effector of mMTOR (mammalian Target Of Rapamycimgnaling. It has been reported that a
high level of elF4E is often associated with poargmosis (Byrne®t al, 2006; Zhouet al,
2004). In a recent study using the same group témts, it has been found out that etopic
expression of elF4E in breast cancer tumors le@ toss in the trastuzumab-dependent
decrease in both elF4F formation and cell proltfera(Zindy et al, 2011). This highlights
the possible association between the expressialFgfE and the pathological response to
trastuzumab. A validation of such finding is undaywon an independent multicenter cohort

of patients.

The epidermal growth factor receptor (EGFR) is o= in 19-67% of malignant breast
tumors and also appears to correlate with an adv@sgnosis (Hudelistt al, 2005). Both
receptors EGFR and HER2 from the EGF family arkdlthto each other in an interdependent
signaling network of considerable complexity (Hustett al, 2005). It has been reported that
EGFR Kinase activity largely depends upon the intggof the HER2 kinase domain.
Likewise, it has been found that the inhibitionE€5FR kinase activity may be attenuated by
HER2 overexpression. Conversely, HER2 activationalso strongly influenced by the
presence and activation of EGFR (Hudebstal, 2005). It is therefore not surprising to
consider EGFR marker in predicting the course eéale in patients receiving trastuzumab-

based therapy.

Classification performance using those four markenseported in Table 7.11. To show the
effectiveness of the four markers combination, wegared this result with the performance
with two different predictors: 1) when only two stacal markers (PTEN and HER2) are
used; and 2) when all available data (proteomiad elmical) are considered. It can be
observed that the 4-markers combination outperforoash the 2-markers approach
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(HER2+PTEN) and all the data. Particularly, the drkers combination
(HER2+PTEN+el4dE+EGFR) improves significantly theegificity (more than 80% of
positive responders are detected) compared to Ramapmbination. Figure 7.19 shows the

obtained class profile for each marker.

Tab. 7.10. Comparatives results between 4-marRemsarkers and all data approaches.

Method TP FP FN TN Sensitivity (%) Specificity (%) Accuracy
4-markers* 15/20 6/33 5/23 27/33 75 81.82 79.25
HER2+ PTEN 15/20 11/33 5/20 22/33 75 66.67 69.81
All data 9/20 7/33 11/20 26/33 45 46.48 66.04
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Fig. 7.19 Profile of negative and positive classes

To further demonstrate the predictive value of4hmarkers combination, we plotted in
Figure 7.20 the ROC curve for the three predictibisan be observed that the 4-markers

combination outperforms significantly other appioes

ROC

i

Sensitivity
o o o o o
o (2] ~ © ©
‘\uq/‘

I
~

A A_A —*— 4-markers
AAAAA —A— All data

— — —HER2+PTEN|

o
w

0 0.2 0.4 0.6 0.8 1
1-Specificity

Fig. 7.20 ROC curve of three approaches.
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7.3 Conclusion

In this chapter we presented some applicationsuofpooposed approaches in breast cancer.
We focused throughout this chapter on two maindireancer management tasks: Prognosis

and treatment responsiveness prediction.

First an application of cancer prognosis based onlizeterogeneous clinical data was shown.
Through this application we have shown that thetutea weighting approach selects
meaningful clinical factors. Two other feature séten approaches were tested on the same

problem in order to compare the performance ofpvaposal.

In the second application cancer prognosis is baség on microarray data by deriving a
prognostic signature. Obtained results using séeeitarions have shown that the predictive
value 20-gene prognostic signature can be supriother existing prognostic signatures and
classical clinical guidelines. Particularly, the-@8ne signature improves significantly the

specificity of one of the well known genetic apprbes (70-gene signature).

The third application was devoted to investigate thtegration of both clinical and

microarray data. In such applications both probleaisdata heterogeneity and high
dimensionality should be faced jointly. We haveetaladvantage of the interesting property
of the proposed approach that enable to handleltsineously both problems to derive a
hybrid prognostic signature. We have shown theautpin some analysis that the integration
of both approach may improve the breast cancemosig. The hybrid signature improves the

sensitivity of 20-gene signature while maintainaagnparable specificity.

To defy low signal-to-noise ratio in microarray aator cancer prognosis, a symbolic
approach has been considered to derive a more trpbognostic signature, referred to as
GenSym. We described first the microarray intemdalaset generation by incorporating a
white Gaussian noise with a specific Signal-to-Moiatio. We have shown through some
experiments and analysis that the GenSym signatare outperform other existing
approaches. Particularly, it enables to keep thedgsensitivity raised with the hybrid
signature while improving further the good spedyiof the 20-gene signature. Moreover, the
gene list of this signature holds meaningful gemelated to invasion, cell cycle and
proliferation. We believe that this first attempt that direction open also the door to the

machine learning community to investigate otherapghes for addressing this problem.
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The last application concerns the problem of respemess prediction to neoadjuvant
treatment in HER2 over-expressed breast canceenpatiUsing our proposed approach we
derived a signature constituted of four markersERTHER2, el4E, EGFR), that improves
significantly the discriminative power among pogtiand negative responders compared to
the usually used 2-marker approach (PTEN, HER2}ida&arly, the 4-markers combination
improves significantly the specificity of the 2-rkar combination. This highlights the
importance of two new predictive factors (eldE, EQFto predict accurately the

responsiveness of HER2 over-expressed breast cpattents to neoadjuvant treatment.
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Conclusion et perspectives- Résumeé

Notre objectif dans ce travail était de dévelopgernouveaux outils pour une gestion plus
précise du cancer de sein. Nous présentons icitem&tive pour proposer des approches
adaptées dans le cadre de l'apprentissage automatigpermettant de surmonter les
principaux défis récents rencontrés dans le domdineancer tels que la dimension élevée
des informations a traiter, les bruits de mesues, ihcertitudes sur I'appartenance du patient
aux differents sous-types de cancer et [I'hétérotnées données (quantitatif ou

symbolique).

Dans un premier travail, une approche intégrée ddedion de variables basée sur
l'apprentissagel; capable de traiter des données de haute dimersi@te proposée. En
particulier, cette approche propose un nouvel alpone pour résoudre le problendgSVM
dans le domaine primal. Cependant, avec la réceatelance vers une bioinformatique
intégrative qui vise a intégrer différentes sourdesdonnées, I'occurrence conjointe de trois
défis est possible dans certaines applicationsr Paite face simultanément a ces trois défis,
une deuxieme approche a été proposée. Tout d'abargyrincipe unifié pour faire face au
probléeme de I'hétérogénéité des données a étéi.etabsuite, une approche floue de
pondération de variables supervisée a été propesése basant sur ce principe. Le processus
de pondération est basé principalement sur I'ogation d’'une fonction objective intégrant
la notion de marge d’appartenance. En se basantlsuméme principe, la méthode de
pondération a été ensuite étendue au cas non sspeafin de développer un nouvel
algorithme de pondération a base de regles floums pffectuer la tache de regroupement.
L'efficacité de toutes ces approches a été valies une étude expérimentale extensive et
comparées avec celles de méthodes bien connues ldalitérature. Enfin, certaines
applications dans le domaine du cancer du seinéb@teffectuées en utilisant les approches
proposées. Ces applications ont concerné essamtiehit le développement de modéles
pronostiques et prédictifs a partir de I'analyse diennées de puces a ADN et/ou de données
cliniques. Nous avons montré a travers une étudepeoative |'efficacité de ces modeéles en
termes de précision et de détermination de la surWlous avons examiné aussi
l'interprétation de ces signatures d'un point dee\hiologique. Enfin des perspectives de ce

travail ont été présentées que ce soit de natutbedélogique ou applicative.
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Conclusion and future works

Our aim in this work was to develop new tools foedst cancer management to help the
physicians in their decision-making practices. hirs torder an attempt to propose suitable
approaches has been performed within machine hleafnamework, to enable handling the
main recent challenges encountered in breast canaeagement field. Some challenges are
due to the intrinsic complexity of data issued froigh throughput technologies introduced
recently in cancer management such as microaridyes.gene expression profiling, through
microarray technology, has indeed brought the hopgin new insights into cancer biology
but requires meanwhile smart approaches capablé teith high dimensional data and
uncertainties. Uncertainties can be in the forneittier measurement noise or membership
uncertainty of a patient to different cancer subtgpoups. Another challenge is related to the
use of traditional clinical factors characterized its heterogeneity; the data can be of

guantitative or symbolic type.

In a first work an embedded feature selection agpgrdased ofy learning able to deal with

high dimensional data has been proposed. This apprproposes a new algorithm to solve
the £:SVM problem in the primal domain. The basic ide&his transformation of the initial

convex optimization problem into unconstrained onvex one, upon which, via gradient
descent method, reaching a globally optimum satuisoguaranteed. The non differentiable
property of the hinge loss function has been ovasby using its approximated Huber loss
function. It has been shown through large-scale arigal experiments that the proposed
approach is computationally more efficient than e existing methods solving the same

problem.

However, with the recent trends towards an inteéggabioinformatics that aims to integrate
different data sources, the occurrence of thredlestgies simultaneously is possible in some
cancer applications. To deal simultaneously wigsththree challenges; data dimensionality,
heterogeneity and uncertainties, a second approashoeen proposed. First of all, a unified
principle to deal with data heterogeneity probleas been established. To take into account
membership uncertainty and increase model inteapiléi, this principle has been proposed
within a fuzzy logic framework. Besides, in orderaileviate the problem of high level noise,
a symbolic approach has been developed suggestengide of interval representation to

model the noisy measurements. This principle istbas the mapping of different type of
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data from initially heterogeneous spaces into amomspace through an adequacy measure.
This allows then to reason in unified way aboutdaéa in the new space whatever its initial
type for different data analysis purposes.

In particular, a supervised fuzzy feature weightapgproach has been proposed based on this
principle. This approach has been integrated based fuzzy weighted rule concept into a
fuzzy rule-based classifier in the aim to improtgepgerformance. In addition to its ability to
handle the problems of data heterogeneity and taioges, the proposed approach is capable
to fit with high data dimensionality. The weightipgocess is mainly based on the definition
of a membership margin for each sample. It optisiiteen a membership-margin objective
function using classical optimization approach tgoid combinatorial search. The
effectiveness of this approach has been assessegjthan extensive experimental study and
compared with well-know feature selection methoBssed on the same principle, the
weighting approach has been then extended to thepenvised case in order to develop a
new weighted fuzzy rule-based clustering algorithdm extensive study has been also

performed to compare this algorithm with one of $tede-of-the-art clustering algorithm.

Finally some breast cancer applications have bemsepted. These applications have
concerned mainly cancer prognosis and predictiortredtment benefit. Predictive and
prognostic models were derived based on microaaral/or clinical data. We have shown
through a comparison the effectiveness of theseetaod term of accuracy and survivability.
Since the aim of developing new predictive tools liweast cancer prognostication from
microarray data is twofold, i.e. to yield good potidn performance and to gain new
biological insights into cancer biology, we haveowh also that the derived models were
interpretable from a biological point of view. langticular, the applications have concerned
1) Cancer prognosis based only on clinical data
2) Derivation of 20 genes signature for cancer prognossed on microarray data
3) Derivation of hybrid signature for cancer progndsased on the integration of clinical
and microarray data
4) Derivation of more robust prognostic signature drefd to as GenSym) based on a
symbolic approach by modeling the noisy microarragasurments as symbolic
intervals
5) Derivation of 4-markers signature for the predictmf neoadjuvant treatment benefit
in HER2 over-expressed breast cancer patients.

Different future works are twofold in the framewarkthe current work such as:
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a) Methodological

The implementation of the proposed approach in paekage with suitable interface
destined for medical applications is underway toilitate its use by clinicians. This
package should enable also the comparison withiegipredictive models.

In the present work we consider only three typeslatf (quantitative, qualitative and
interval data). Although these are the most uspd tf data, there are other types of data
which could be faced in many real-world applicasigauch as histograms, fuzzy numbers,
...). So it will be interesting to investigate theension of this approach to further type of
data.

Another interesting direction would be to propotieeo shapes of membership function for
different types of data and investigate their use.

b) Cancer applications

With the recent trends towards an integrative basmatics, it will be interesting to use
the proposed approach to integrate other type sswt data instead of only microarray
and clinical data. High dimensional data will bengeated by new high throughput
technologies, e.g. single nucleotide polymorphis8NFR) or comparative genomic
hybridization (CGH), at a continuously growing raiéerefore, with this huge quantity of
data, an increase need of more effective toolshygipians is expected, enabling to extract
useful biological knowledge and gain insights ioémcer biology.

We considered here only the breast cancer. Howévsrapproach can be applied for the
derivation of molecular signatures for other typeancers.

It has been reported recently that breast canceeris heterogeneous disease and can be
divided to several molecular subtypes. It is pdesib investigate the application of this
approach to derive molecular signature for eachypeab

The factor of time is still to date neglected ie thesign of predictive and prognostic tools.
Cancer progressiveness is strongly related to eantewe believe that taking into account
this factor, jointly with molecular cancer subtygjrcan play a central role in improving
cancer management tools. This direction can alsonbestigated using the proposed

approach.

Moreover, it must be noted here also that the pegapproaches have been applied with

success on other fields related to dynamical systiagnosis such as the diagnosis of
chemical reactors (Hedjagt al, 2010c; Hedjazet al, 2011e, Hedjazt al, 2011f).
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Finally, it is worthwhile to note that the resufteesented in this work are now subject of use
in a recent ANR project (INNODIAG: Innovation in hegular diagnostic in health using the
latest development in Nanotechnology: Applicatiorbteast cancer prognosis). This project
is concerned first of all by the selection of a skgenetic and clinical markers for breast
cancer treatment derived from the obtained sigeatduring the present work. A big number
of public datasets issued from different medicailtees and using different technologies is
being used for the signature extraction and vabdatThis set of biomarkers will be tested
then and compared to other signatures on a pophtiénts issued from the Institut Claudius
Regaud. In parallel a new bioship generation retiedsoft lithography and optical detection
will be developed. A first prototype developed wille optimal signature derived in the first
part will be then designed. This new type of bipshvill enable to direct toward a
personalized medicine and help clinicians and @uists to select the optimal cancer

treatment.
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Glossary of Cancer Terms

Estrogen receptor A protein found inside the cells of the femalerogjuctive tissue, some
other types of tissue, and some cancer cells. Dhmdmne estrogen will bind to the receptors
inside the cells and may cause the cells to grdeo Aalled ER.

Estrogen receptor negative Describes cells that do not have a protein to ke hormone
estrogen will bind. Cancer cells that are estrogeeptor negative do not need estrogen to
grow, and usually do not stop growing when treat@gti hormones that block estrogen from
binding. Also called ER-.

Estrogen receptor positive Describes cells that have a receptor protein thatls the
hormone estrogen. Cancer cells that are estrogepte positive may need estrogen to grow,
and may stop growing or die when treated with sarixsts that block the binding and actions

of estrogen. Also called ER+.

Estrogen receptor test A lab test to find out if cancer cells have eséogeceptors (proteins
to which estrogen will bind). If the cells haveregen receptors, they may need estrogen to

grow, and this may affect how the cancer is treated

Progesterone receptor A protein found inside the cells of the female oefuctive tissue,
some other types of tissue, and some cancer ¢élishormone progesterone will bind to the

receptors inside the cells and may cause thetoefjsow. Also called PR or PgR.

Progesterone receptor negative Describes cells that do not have a protein to whiee
hormone progesterone will bind. Cancer cells thatpaogesterone receptor negative do not
need progesterone to grow, and usually do not@towing when treated with hormones that

block progesterone from binding. Also called PR-.

Progester one receptor positive Describes cells that have a protein to which tbemone
progesterone will bind. Cancer cells that are psteyene receptor positive need progesterone
to grow and will usually stop growing when treatgih hormones that block progesterone
from binding. Also called PR+.

Progesterone receptor test A lab test to find out if cancer cells have prdgesne receptors
(proteins to which the hormone progesterone witidpi If the cells have progesterone

receptors, they may need progesterone to growtrasdan affect how the cancer is treated.
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HER2/neu A protein involved in normal cell growth. It isdad on some types of cancer
cells, including breast , ovarian and other cangpe. Cancer cells removed from the body
may be tested for the presence of HER2/neu to Helpde the best type of treatment.
HER2/neu is a type of receptor tyrosine kinaseoAislled c-erbB-2, human EGF receptor 2,

and human epidermal growth factor receptor 2.

uPA An enzyme that is made in the kidney and fountheurine. A form of this enzyme is
made in the laboratory and used to dissolve bléatd or to prevent them from forming. Also

called u-plasminogen activator, urokinase, and inade-plasminogen activator

Biopsy The removal of cells or tissues for examinatioralpyathologist. The pathologist may

study the tissue under a microscope or performradsts on the cells or tissue. There are
many different types of biopsy procedures. The noashmon types include: (1) incisional

biopsy, in which only a sample of tissue is remq\&)l excisional biopsy, in which an entire

lump or suspicious area is removed; and (3) nelidlpsy, in which a sample of tissue or

fluid is removed with a needle. When a wide neesllased, the procedure is called a core
biopsy. When a thin needle is used, the proceducalied a fine-needle aspiration biopsy.

Adjuvant therapy Additional cancer treatment given after the priyaeatment to lower the
risk that the cancer will come back. Adjuvant tipgranay include chemotherapy, radiation

therapy, hormone therapy, targeted therapy.

Neoadjuvant therapy Treatment given as a first step to shrink a tulmeiore the main
treatment, which is usually surgery, is given. Eplea of neoadjuvant therapy include
chemotherapy, radiation therapy, and hormone tlyetafs a type of induction therapy.

Mastectomy Surgery to remove the breast (or as much of teagbttissue as possible)

Docetaxel A drug used together with other drugs to treatatertypes of breast cancer,
stomach cancer, prostate cancer, and certain tfpkead and neck cancer. It is also being
studied in the treatment of other types of canbecetaxel is a type of mitotic inhibitor. Also

called Taxotere.

Tamoxifen A drug used to treat certain types of breast camceromen and men. It is also
used to prevent breast cancer in women who havedbethl carcinoma in situ (abnormal
cells in the ducts of the breast) and in women b at a high risk of developing breast
cancer (in US). Tamoxifen is also being studiedhia treatment of other types of cancer. It
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blocks the effects of the hormone estrogen in tleadi. Tamoxifen is a type of antiestrogen.

Also called tamoxifen citrate.

I mmunohistochemistry A technique used to identify specific moleculedifierent kinds of
tissue. The tissue is treated with antibodies bivad the specific molecule. These are made
visible under a microscope by using a color react® radioisotope, colloidal gold, or a
fluorescent dye. Immunohistochemistry is used 1p Hdeagnose diseases, such as cancer, and
to detect the presence of microorganisms. It is ated in basic research to understand how

cells grow and differentiate (become more spe@dliz

Chemotherapy Treatment with drugs that kill cancer cells. It usually followed by

docetaxel and anthracyclin.

Adjuvant! Online It is a tool that helps health professionals masineates of the risk of
poor outcome (cancer related mortality or relapas@hout systemic adjuvant therapy,
estimates of the reduction of these risks afforgdherapy, and risks of side effects of the
therapy. These estimates are based on informatitamesl about individual patients and their
tumors (e.g. patient age, tumor size, nodal invalket,or histological grade). These estimates
are then provided on printed sheets in simple gecaptand text formats to be used in

consultations.

Radiation therapy The use of high-energy radiation from x-rays, gammays, neutrons,

protons, and other sources to kill cancer cells simthk tumors. Radiation may come from a
machine outside the body (external-beam radiatienapy), or it may come from radioactive
material placed in the body near cancer cells rinatieradiation therapy). Systemic radiation
therapy uses a radioactive substance, such asadatagled monoclonal antibody, that travels

in the blood to tissues throughout the body. Alalted irradiation and radiotherapy.

Aromatase inhibitor A drug that prevents the formation of estradiofemale hormone, by
interfering with an aromatase enzyme. Aromataséituns are used as a type of hormone

therapy for postmenopausal women who have hormeperdient breast cancer.

Hormone therapy Treatment that adds, blocks, or removes hormdrfmscertain conditions
(such as diabetes or menopause), hormones are tgiatjust low hormone levels. To slow
or stop the growth of certain cancers (such astai®and breast cancer), synthetic hormones

or other drugs may be given to block the body'surthormones. Sometimes surgery is
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needed to remove the gland that makes a certaimdm@. Also called endocrine therapy,
hormonal therapy, and hormone treatment. It is lisdallowed by Tamoxifen and anti-

aromatase or aromatase inhibitors.

Axillary lymph node A lymph node in the armpit region that drains Iymfpom the breast

and nearby areas.

Overall survival rate The percentage of people in a study or treatmenipgwho are alive
for a certain period of time after they were diaggub with or treated for a disease, such as
cancer. The overall survival rate is often statedaafive-year survival rate, which is the
percentage of people in a study or treatment gvaup are alive five years after diagnosis or

treatment. Also called survival rate.

Disease-free survival The length of time after treatment for a spediigease during which a
patient survives with no sign of the disease. Bisdaee survival may be used in a clinical

study or trial to help measure how well a new tresatt works.

Fine-needle aspiration biopsy The removal of tissue or fluid with a thin needtw

examination under a microscope. Also called FNAbjo

TNM staging system A system developed by the American Joint CommitieeCancer
(AJCC) that uses TNM to describe the extent of eamt a patient’s body. T describes the
size of the tumor and whether it has invaded ne&dsyie. N describes whether cancer has
spread to nearby lymph nodes, and M describes whetimcer has metastasized (spread to
distant parts of the body). The TNM staging systemsed to describe most types of cancer.
Also called AJCC staging system.

Level Of Evidence (LOE) Three levels of evidence can be distinguished:
* LOE lll: Low level of evidence

* LOE II: Intermediate level of evidence

* LOE I: High level of evidence
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Appendix 1

A.1 Prognostic and predictive factorsin breast cancer

It is crucial to have a clear understanding of tedinitions of prognostic factors and
predictive factors and their roles in guiding patieare before embarking on a discussion of
their utility in breast cancer.

A.1.1 Prognostic factors

Prognostic factors determine the natural historydisease progression, in the absence of
systemic therapies. Such factors often reflectinirénsic biologic characteristics of tumors,
such as their ability to proliferate and metasesiRutative tumor markers or factors are
ideally evaluated for their prognostic ability ppestively in the systemically untreated
patient in order to eliminate the confounding etf$eaf treatment. Unfortunately, much of the
data about prognostic factors is obtained fromosgective analysis of banked tumor
samples. As a result, published studies often declonly small sample sizes, have different
lengths of follow-up, lack complete data on coni@mdl prognostic factors, do not control for
confounding variables, and report a variety ofatéht endpoints, including overall survival
(OS) and disease-free survival (DFS). All of thatedl factors render it difficult to compare
results from different studies, and diminish thresgth of the evidence obtained.

A.1.2 Predictivefactors

Predictive factors are cues that a particular tumigiht respond (or not) to a specific therapy.
A purely predictive factor separates treated p&i@mno good and poor outcome groups, but
does not predict outcome in untreated patientsallisifactors are often both prognostic and
predictive, rather than purely prognostic or pungtgdictive. A classic example is estrogen-
receptor (ER) status. Not only does ER-negativiye ga less favorable prognosis, but more
significantly, it predicts the category of patiemtso do not derive benefit from anti-estrogen
therapy.
We review by next the important prognostic and mtece factors and their role in breast
cancer care:

a- Classical prognostic factors

- Axillary lymph node status: Characterized by N-positive or N-negative according

whether the patient present invaded nodes or hbad been reported that 20 to 30%
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of N-negative patients likely present a recurremtthin 10 years compared to 70%
for N-positive patients. The number of invaded e also an important prognostic
factor, patients with 4 invaded lymph nodes or meilelikely have a poor prognosis
than patients with less than 4 invaded lymph nd@esteret al, 1989). To date, the
single most powerful prognostic factor in primamgdst cancer remains the status of
the auxiliary lymph nodes.

Tumor size: It has been reported that patients with tumor fkaa 1 cm had a 5-year
relative OS of close to 99%, compared to 89% fos¢hwith tumors 1 to 3 cm, and
86% for those with tumors 3 to 5 cm (Careial, 1989).

Histologic subtype: The most common histological subtypes of breast@&amre
infiltrating ductal and lobular carcinomas. Infrem histologies such as pure tabular,
mucinos, or modullary subtypes are associated avjparticularly favorable prognosis
with long-term recurrence rates of less than 10%al{2t al, 1999). Wonget al.
(2002) examined the rate of axillary lymph nodeoiwement in more than 3300
women with breast cancer. axillary lymph node wdeatified in 35% of women with
infiltrating ductal carcinoma, but in only 11% dfase with favorable subtypes. In
addition, women with inflammatory breast cancereham extremely poor prognosis.
Hormonereceptor status: It concerns Estrogen Receptor status (ER) and Brioge
Receptor status (PgR). While ER status has beamtegpa relatively weak prognostic
factor, it strongly predicts for response to adjuvhormonal therapy (Smitat al,
2003). More specifically, ER-negative status appéampredict lack of responsiveness
to hormonal therapy. Thus, ER status should be usedharily in making
recommendations regarding the use of hormonal pgema the adjuvant setting.
Whereas the impact of progesterone receptor (PBRusstas a prognostic and
predictive marker was recently analyzed in a reieotve study of a large dataset of
early-stage breast cancer patients who were rarsdohto either no adjuvant systemic
therapy or adjuvant tamoxifen alone. Progester@ceptor status was found to add
little further prognostic information over and aled¥R status. However, it appeared to
further predict responsiveness to tamoxifen. Patievith ER+/PR+ tumors treated
with tamoxifen had a 53% reduction in their riskreturrence compared to a 25%
reduction in risk noted in those with ER+/PR- tumoelative to the risk of recurrence
in ER-/PR- tumors (Bardoet al, 2003).

Tumor grade: The most widely accepted grading system is the cpesmtitative

Elston and Ellis modification of the Scarff-BloomeRardson (SBR) classification
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(Bloomet al, 1957). Investigators using the SBR classificatbserved a statistically
significant correlation between histological graaled 5-year DFS for both node-
negative and node-positive patients. Women withasmwith an SBR score of grade
3 had a relative risk of recurrence of 4.4 when garad with those with an SBR of
grade 1. However, tumor grade as a prognosticfactolimited by the high degree of
inter-observer variability and the lack of conantenethodology of objective and
guantitative grading. Comparisons between studiesddficult because of varying
grading systems. Moreover, studies examining tlogrmostic significance of tumor
grade are inconsistent in the groupings of tumadegs. Whereas studies typically
compare grade 1 versus grade 3, the position afegPais variable. In some studies,
grade 2 is clustered with grade 1, and in otheith grade 3. As a result of the above
inconsistencies, the most recent revision of theeAcan Joint Committee on Cancer
Staging (AJCC) chose not to include histologicaldgrin the TNM-staging criteria for
breast cancer (Singletaey al, 2002).

Human epidermal growth factor receptor-2 status (HER-2): HER-2 amplification
(and the overexpression of receptor by the tumigrsssociated to a poor prognosis
and maybe predictive to certain treatments resp@islies suggest that tumors with
HER-2 overexpression or amplification may have addhtial sensitivities to
chemotherapeutic agents and to hormonal agentskiitvwledge of HER2 status is
required in all clinical situations. Human epidefrgeowth factor receptor-2 levels
can be measured in several ways, including IHGzirtg a variety of antibodies to
determine protein expression, and fluorescence itm Isybridization (FISH) or
chromogenic in situ hybridization (CISH) to detenmigene amplification.

Newer prognostic factors

Urokinase Plasminogen Activator system: Research in the past decade has provided
increasingly compelling evidence to suggest thatutokinase plasminogen activator
(uPA) system plays a critical role in cancer ingasiand metastasis. Urokinase
plasminogen activator proteolytically converts piasogen to plasmin. Plasmin
activates matrix metalloproteases that degradesxtracellular matrix and modulate
cellular adhesion, proliferation and migration. BotPA and its physiologic inhibitor,
plasminogen activator inhibitor-1 (PAI-1) have besmown to be upregulated in
multiple cancer types, especially breast cancefffyDet al, 2004). Based on large,
well-controlled, retrospective studies and datanfra prospective randomized trial,

high levels of uPA/PAI-1 have been demonstratedrawvide independent prognostic
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value. In addition, data are mounting to suggest tiese factors may also predict for
tumor response to chemotherapy. The determinationPé/PAIl-1 levels must be
performed by enzyme-linked immunosorbent assay Bl which requires fresh
frozen tissue. This issue limits its routine intgn in clinical practice. Current
studies are underway to develop reproducible asisags smaller amounts of tissue
obtained from core needle biopsy material.

Markersof proliferation: S-phase fraction, thymidine-labeling index, Ki-6

The role of markers of proliferation as prognostactors has been extensively
investigated. Different methodologies exist to asdbe rate of proliferation including
thymidine labeling index (TLI), DNA-flow cytometrn-phase fraction (SPF), mitotic
index, bromodeoxyuridine (BrDu) incorporation, ditC techniques with antibodies
directed at antigens present during cell prolifergt such as Ki-67 (MIB-1) and
PCNA. There is abundant literature on this topidgthwover 200 publications
examining the role of SPF as a prognostic markameal This literature is complex to
interpret because of the variability of methodoésgand assay systems and different
cut-offs for high versus low rates of proliferatiodonetheless, the majority of the
studies that included large numbers of women vatiglfollow-up, that controlled for
the classical prognostic factors, suggest thatifprative rate is an independent
predictor of patient outcome.

Gene expression profile by cDNA microarray: Recently microarray technology has
made it possible to measure simultaneously thowssaridgene expressions. By
analyzing the expression differentiation, genetiarkers can be derived either for
prognosis or prediction purposes that has been shaide to outperform classical
factors in many prospective studies (Van't Veeral, 2002). However, this field is
still presenting various challenges related to ittmherence between the obtained
results (variability observed according to the upkdform, data samples,...) and the
lack of prospective studies to validate its uséhaclinical routine. We review below
the practical aspects related to the microarraynelogy and different existing

platforms.

A.2 Microarray technology:

Microarray technology is based on the central dogrhanolecular biology, namely the

production of proteins from DNA as illustrated irg&re A.1. Briefly, this operation is based

mainly on two steps (Figure A.1): Transcription angnslation which consists in the first
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step of DNA (gene) translation into pre-mRNA anccerihis pre-mRNA is processed the
resulting mMRNA message is in the second step atetslby ribosome in order to produce

proteins (Translation). The detailed biological @®n can be summarized as follow:

A.2.1 Transcription

Transcription is the process by which the inforimaticontained in a section of DNA is
transferred to a newly assembled piece of messdrigér (MRNA). It is facilitated by RNA
polymerase and transcription factors. In eukargelés the primary transcript (pre-mRNA) is
often processed further via alternative splicingtHis process, blocks of mRNA are cut out

and rearranged, to produce different arrangemdriteeariginal sequence.
A.2.2 Trangdation

Eventually, this mature mRNA finds its way to aaslome, where it is translated. In
prokaryotic cells, which have no nuclear compartinghne process of transcription and
translation may be linked together. In eukaryotidls; the site of transcription (the cell
nucleus) is usually separated from the site ofstedion (the cytoplasm), so the mRNA must
be transported out of the nucleus into the cytoplashere it can be bound by ribosomes. The
MRNA is read by the ribosome as triplet codonsallgibeginning with an AUG, or initiator
methionine codon downstream of the ribosome bingitgg Complexes of initiation factors
and elongation factors bring aminoacylated tranRfdAs (tRNAS) into the ribosome-mRNA
complex, matching the codon in the mRNA to the-anton in the tRNA, thereby adding the
correct amino acid in the sequence encoding the.g&s the amino acids are linked into the
growing peptide chain, they begin folding into tb@rect conformation. Translation ends
with a UAA, UGA, or UAG stop codon. The nascentypaptide chain is then released from
the ribosome as a mature protein. In some caseatethgolypeptide chain requires additional
processing to make a mature protein. The corrddini@ process is quite complex and may
require other proteins, called chaperone protédwtasionally, proteins themselves can be

further spliced; when this happens, the insidecatided" section is known as an intein.
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replication
(DNA -= DMNA)
DNA Polymerase

DDA 0N

transcription
(DMNA -> RNA)

RNA Polymerase

translation
(RMNA -> Protein)
Ribosome

O-0-0-0-0-0-0 Prrotein

Fig. A.1 Biology dogma, from the DNA (gene) to thtein. Image from Wikipedia.

The concept behind DNA chip or microarray techngloglies on the accurate binding, or
hybridization, of strands of DNA with their precisemplementary copies in experimental
conditions where one sequence is also bound ordolid-state substrate (glass). RNA is
extracted from frozen breast tumour samples c@teeither at surgery or before treatment,
labeled with a detectable marker (fluorescent dgey hybridized to the array containing
individual gene-specific probes. Gene-expressiorelée are estimated by measuring the
fluorescent intensity for each gene probe (Figutg2)AA gene-expression vector is then
collected by summarizing the expression levelsamhegene in the sample. To facilitate the
comparison between the different experiments andpemsate for difference in labeling,

hybridizations and detection methods, a normabrastep is usually performed (Figure A.2).
Gene-expression prognostic classifiers are usubllit by correlating gene-expression

patterns, generated from tumour surgical specimwiib, clinical outcome (development of

metastases during follow-up). Gene-expression ptigdi classifiers of response to treatment
are generated by correlating gene-expression datajed from biopsies taken before pre-

operative systemic therapy, with clinical and/othpdogical response to the given treatment.
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Fig. A.2 Microarray experiment schema. Image fr@udganet al, 1999).
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Appendix 2

Proof Lemma 3.1;

For notational convenience lets denpt¢ = [1, - - - N]. We first prove that the minimum of

the objective functions of both problems are id=aitgiven the same data set. By the triangle
inequality“W*(l) —W*(z’Hl < Hv‘v“””1 +HW*(2)H1 :HW*Hl. Also by  constructiorijnO[N],
L(y,, wTx®™ +b")=L(y,,wx®™ +b’). It follows that if (W',b") is an optimal solution to
(3.2), we haveninf, < f (W -w® b)<f,(W,b0)=minf,. On the other hand, let

(w",b") be an optimal solution to (3.1). We construct two vectefs and w°® :

W’; W’; >0 0 w, >0
and w*® = ’
0 W <0, : W, W <0, (A2.1)

]

V_\/.O(l) =
J

By construction, we thus hawen f, < f,([(W°®)",(W°?)"T",b") = f(w",b") =minf,.
Hencemin f,=minf,, and (W™ -W® ,b")or (w',b")) and (W ,b") (or (W°,b’)) are the

optimal solutions to (3.1) and (3.2), respectively.

Proof Lemma 3.2:
Letw =w® -w® . By Lemma 3.1(w",b") is an optimal solution to (3.1). Using Eq.
(A3.1), we construct a vectar® . Suppose that there exists an elermesuxthatv_v;(l) #0 and

W® #£0. Then, by the triangle inequality, it follows tﬂl@*H1>HW° . Hence,

1

f,(W,b)> f,(W°,b), which contradicts the fact thaf@ ,b’) is an optimal solution.
Therefore[Jj O[0], eitherw® or W@ or both equal to zero.

Proof Theorem 3.1

For simplicity, we use@G/ov to denoteaG/6v|V:v* . Also, we useA >0and A >0 to denote

that matrix A is positive definite or semi-definite, respectively.
We examine the properties of the Hessian matri®(of, denoted asH. Let V' be a

stationary point ofG(V) satisfying:

.

0G _| of of of
= — 2V ,...—2v ,—| =0

vt o|ow T owl YTab” (A2.2)

wherew™ =[w,....w;]" =[(V{)?,...,(v))*]"and b* =v;,,.
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Note that some elements ®f may be equal to zero. For simplicity and withousslaof

generality, assume that the fitdtelements ofv* belong tdS, ={vj+ v =01<j< J}, while

the restJ —M

elements belong t&,, :{vj+ V) 201< ] sJ}. From Eqg. (A3.2), we have

of /ow; =0 for v; 0S,,. Then, the Hessian matrix &f(V), evaluated av", is given by

H(v*):{Al 0}

0 A, (A2.3)
where
5 af+ 0
ow,
A = : :
0 af+
ow,,
‘A,  Z
A, = T 622 1‘+
L 0°b
B 2 2
4Vr;2+1 ? f Avy.\V; ? f T
‘? Wi +1 a_WM 40W,
A, = b L
avy, ..V, ? f - 4v;? 62 f+
i OWyy 10, 0w, ]
. 0% . 0%f T
z 2VM+1 + + ! J + +
ow;, ,,0b ow;db

Here we have used the fact tieat/ ow; =0 for vi O'S,,. Since f (w,b) is a convex function

of w and b, we have

971
OWyy g

92 f

9% f
| 0w, .00

0*f 0% f
ow,,,,0w; 0ow,,,,0b

aWM +16WJ

02 f

°f |>0,
ow’ ow,0b
0°f 9°f
ow,db b’

It is easy to prove that
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4V|\2/| +1 4V|v| A 2VM +1
c=| o )

av,, v, o Ay 2v,

ZAYVIFRE 2v, 1

Hence, by Schur product theorem (Hatal, 1985), A, =(BO C)|V:V+ IS a positive semi-
definite matrix. It follows thaH(v") = Oif and only if A, >0,

If H(V")is not positive semi-definite, thel*is a saddle point (Note that it cannot be a
maximizer becaus&(v) is convex with respect t¥,,, and H(V") cannot be negative semi-
definite). If H(V') =0,v*can be either a saddle point, or a local or globaimizer. We

now prove that ifH(V*") =0, v* must be a global minimizer.
Let us first consider the following optimizationoptem:

min f (w, b), subject tow =0 (A2.4)

Since both the objective function and constraints eonvex, the Karush—Kuhn-Tucker

(KKT) conditions are the sufficient conditions ofgibbal optimal solution. It can be shown
that (w*,b")is a global minimizer of f (w,b), if for all [j D[D] the following KKT
conditions hold simultaneously:

1) of /ob" =0,

2) of /ow; =0,or w; =0 anddf /ow; 20,
SinceV'is a stationary point, by Eq. (A3.2),
0i O{i -y 08,00 /0w =0andof /ot =0
Moreover,H(V") = Oimplies thatA, = 0. SinceA, is a diagonal matrix, it holds that

of 1ow" > 0,00i Dfi v’ 0S,0f

Hence by the KKT conditiongw™",v;,,)and V' is a global minimizer off (w,b) andG(v),

respectively.
Proof Theorem 3.2

Suppose thadG/ov' =0and V' is a saddle point. Again, we assume that the Kirelements

of V' belong tdS,, while the followingd — M elements belong 8,,. There exists an element

jO0S, so thatof law’; <0 (otherwiseH(V')=0 and V' is a global minimizer). Due to the

150



Appendixes

continuity, there exis§>0, such thatof /dw; <Ofor everyw, 0Q ={w:‘w—w*j‘ <§}. It
follows that dG/dv; = 2v,(df /dow,) <Ofor v, :\/Wj, and 0G/dv; >0 for v, :—\/Wj .That

is, a gradient descent method given\f§¥ — v —1(dG/ov{), drives the solution out of
the neighborhood of a saddle point except wherthi@)component/*’is set toexactlyzero,

or (2) v}") is outsideQ and a line search hitg exactly. The latter event cannot happen since

gradientg(V') equals to zero & , and thus the descending condition does not hald (s

Definition 1). Instead, a line search will find @lstion around’” , and in the subsequent steps
the solution will move away from . On the contrary, ifv"is a global optimal,v®™ will

approach it continuously with improved solution lifya\We go on to prove that if/].(o) £0,
vi9will be set to exactly zero at a non-stationarynpeiith a zero probability. Lev" be the
solution obtained in thieth iteration-d® be the descending directiod™™ =v® —nd™® be
a point in the line-search path at which some etemare zeros, ang®” be the gradient at
v, Sincev™is not a stationary poin"g“‘"” >0.

1. If d¥Tg®” <0, the line search will not reach".

2. On the other hand, df¥"g®” >0, -d®is also a descending direction @{’". Without

loss of generality, we assur*}@"‘)u =1||. Due to the continuity, there exists{a>0such that
for all vOQ, ={\7:HV—V(""H<61}, d®"g(v)>0. This means that for amyd (0]),
Sl - agd®)<cly")

a) If the chosen interval leng#i’ <&, the line search has at least one candidate

solutions which is correspond with ar» 0 above, hence it goes pag$~ and moves

away from it.

b) On the other hand, iE® =&, the line search will have only one or two cantida
solutions withirQ,. In this case, the line search has no prior kndgdeabout the
region under search, thus it degeneratemmolomlyselecting one or twar (0 (-1,1)
and settingv*? =v® —a& d®. Given an arbitrary bounded probability density

distribution, the probability that a single point 0 is chosen, however, is zero.
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Moreover, due to the continuity, there also exis&g, >0such that for all

vOoQ, :{\_/:HV—V(")'H < 52}, g(v)"'g” >0. This mean that a gradient-based search starting

in Q, will go pass v following case (2a) stated above, hern¢& is not a point of

attraction and after a few iterations, case (1) ease (2b) either change to case (2a), or
change to the case that the descending directies daot drive any element towards zero.
This completes the proof that the saddle pointsicbbe reached with the designated gradient

descent method.
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Appendix 3

To solve the stated optimization problem, the \ethwn Lagrangian optimization method is

applied. The Lagrangian of (5.8) is given by
L=-w, Y's+A(w, |5 -0+ & (-w,) (A3.1)
i=1

whereA and ¢ >0are the Lagrange and Kuhn-Tucker multipliers.
Applying derivative to (A1) with respect to;@nd setting it to zero, a closed-form solution
for w; can be derived:

oL 1

an:—s+ 2w -{=0=> V\{:m (A3.2)

with the assumption (5.4.1), the positivitybfis proved by contradiction. Suppodse0 and
the assumptiog>0 we have

§+¢&>0

This result is contradictory with constraimt>0, thusA>0.
By application of Kuhn-Tucker condition, namély¢, w;=0, the following three cases can be
verified

1) s=0=>¢ =0 andw;=0

2) $>0=>5+&>0=>w;>0 =>¢=0

3) s<0=>¢>0=>w;=0 =>5 =-¢,

Then, the optimum solution of;@wan be calculated in the following closed form:

0 ifs< 0
M1l isso
245

Therefore the normalized values are:
(A3.4)

with s"= [max(,,0), ..., maxém0)]"
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Appendix 4
A4.1 Receiver operating characteristic

In signal detection theory, eeceiver operating characteristic (ROC), or simply ROC

curve, is a graphical plot of the sensitivity, or truespive rate, vs. false positive rate (1 -
specificity or 1 — true negative rate), for a biyalassifier system as its discrimination
threshold is varied. The ROC can also be repredeeqaivalently by plotting the fraction of
true positives out of the positives (TPR = trueifpees rate) vs. the fraction of false positives
out of the negatives (FPR = false positive ratelsoAknown as a Relative Operating
Characteristic curve, because it is a comparisdwofoperating characteristics (TPR & FPR)

as the criterion changes (Swets, 1996).

0.8

=
(=)}

— NetChop C-term 3.0
— TAP + ProteaSMM-i
ProteaSMM-i

=
=

True positive rate

0 0.2 0.4 0.6 0.8 1
False positive rate

Fig. A4.1 An example of ROC curve. Image taken fi\Mikipedia.

ROC analysis provides tools to select possiblymatimodels and to discard suboptimal ones
independently from (and prior to specifying) thestcoontext or the class distribution. ROC
analysis is related in a direct and natural wagdst/benefit analysis of diagnostic decision
making. The ROC curve was first developed by elealtrengineers and radar engineers
during World War 1l for detecting enemy objectshattle fields, also known as the signal
detection theory, and was soon introduced in pdggyato account for perceptual detection
of stimuli. ROC analysis since then has been usedddicine, radiology, and other areas for
many decades, and it has been introduced relatreggntly in other areas like machine

learning and data mining.
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A classification model (classifier or diagnosis) dsmapping of instances into a certain
class/group. The classifier or diagnosis result loarin a real value (continuous output) in
which the classifier boundary between classes ineidetermined by a threshold value, for
instance to determine whether a person has hypgstebased on blood pressure measure, or

it can be in a discrete class label indicating oinie classes.

Let us consider a two-class prediction problemgbjrclassification), in which the outcomes
are labeled either as positivy® ©r negativerf) class. There are four possible outcomes from
a binary classifier. If the outcome from a predintisp and the actual value is alppthen it

is called atrue positive(TP); however if the actual value msthen it is said to be false
positive(FP). Conversely, tiue negativehas occurred when both the prediction outcome and
the actual value ane andfalse negatives when the prediction outcomenswhile the actual

value isp.

To get an appropriate example in a real-world @oblconsider a diagnostic test that seeks to
determine whether a person has a certain disealsésé\positive in this case occurs when the
person tests positive, but actually does not haeedisease. A false negative, on the other
hand, occurs when the person tests negative, suggésey are healthy, when they actually

do have the disease.

Let us define an experiment from P positive inségnand N negative instances. The four
outcomes can be formulated in a Zxdhtingency tabler confusion matrixas follows:

Actual value

n
P total
True False

P N . P
Prediction outcome Positive Positive

n False True N

Negative Negative
total P N
Tab. A4.1
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The contingency tablean derive several evaluatiometrics” To draw an ROC curve, on
the true positive rate (TPR) and false positives réiPR) are needed. TPR determine
classifer or a diagnostic test performance on classifyagitive instances correctly amo
all positive samples available during the test. FBR the other hand, defines how m:
incorrect positive results occur among all negatiamples available during titest. A ROC
space is defined by FPR and TPRx andy axes respectively, which depicts relative t-

offs between true positive (benefits) and falsetp@s(costs). Since TPR is equivalent w
sensitivity and FPR is equal to-specificity, the ROC graph is someies called the
sensitivity vs (1specificity) plot. Each predictioresult or one instance of a confusion ma

represents one point in the ROC sp

ROC Space
T

T T T T

Pefect Classification

Oe
m's

TPR or sensitivity
&
T
|

’
Better 2
’

Worse

ol 1 | 1 1 | 1 L I 1
[ 01 02 03 0.4 05 06 o7 08 0.9
FPR or {1 - specificity)

Fig. A4.2 An example of ROC curve. Image taken from Wikiipe

The best possible prediction method would yieldmipin the upper left corner or coordin:
(0,1) of tre ROC space, representing 10(sensitivity (no false negatives) and 10(
specificity (no false positives). The (0,1) point is also ahlke perfect classificatio. A
completely random guesgould give a point along a diagonal line (thecalledline of no-
discriminatior) from the left bottom to the top right corners. ituitive example of randor
guessing is a decision Hfiypping coins (head or ta.

The diagonal divides the ROC spaceints above the diagonal represent good classifia:
results, points below the line poor results. Ndtat tthe output of a poor predictor col
simply be inverted to obtain points above the (iBee Figure 4.2).
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A4.2 Kaplan-Meier Curve

The Kaplan—Meier estimator (Kaplan and Meier, 19&6&8plan and Meier, 1983), also known
as the product limit estimator, is an estimatordstimating the survival function from life-
time data. In medical research, it is often usethéasure the fraction of patients living for a

certain amount of time after treatment. The esomeg named after Edward L. Kaplan and
Paul Meier.

100

Gene A signature

Gene B signature

Percent Survival
h
=

Years

Fig. A4.3 An example of Kaplan-Meier curve. Imagken from Wikipedia.

A plot of the Kaplan—Meier estimate of the survitiahction is a series of horizontal steps of
declining magnitude which, when a large enough $anmp taken, approaches the true
survival function for that population. The valuetbg survival function between successive
distinct sampled observations (“clicks") is assunteble constant.

An important advantage of the Kaplan—Meier curvéhet the method can take into account
some types of censored data, particuladit-censoring which occurs if a patient withdraws
from a study, i.e. is lost from the sample befdre tinal outcome is observed. On the plot,
small vertical tick-marks indicate losses, whergaient's survival time has been right-
censored. When no truncation or censoring occhesKiaplan—Meier curve is equivalent to
the empirical distribution function. In medical t&#cs, a typical application might involve
grouping patients into categories, for instances¢éhwith Gene A profile and those with Gene
B profile. In the graph, patients with Gene B diaam more quickly than those with gene A.

After two years, about 80% of the Gene A patientsise, but less than half of patients with
Gene B.
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Let S(t) be the probability that an item from a given plagion will have a lifetime exceeding
t. For a sample from this population of siddet the observed times until deathdsample

members be
t <t <t <<t

Corresponding to eachis n;, the number "at risk" just prior to tinte andd;, the number of
deaths at timé.

Note that the intervals between each time typicats/not uniform. For example, a small data
set might begin with 10 cases, have a death at3Dayoss (censored case) at Day 9, and
another death at Day 11. Then we haye@,t, = 11), 6. = 10,n, =8), andd; = 1,d, = 2).

The Kaplan—Meier estimator is the nonparametricimar likelihood estimate dit). It is a

product of the form

S0 =T noa A4.1

<t ni

When there is no censoring,is just the number of survivors just prior to titnaVith
censoringn; is the number of survivors less the number ofdegsensored cases). It is only
those surviving cases that are still being obse(liade not yet been censored) that are "at
risk" of an (observed) death (Costella, 2010).

There is an alternative definition that is somesrased, namely

n —d

S® =1

t; <t ]

A4.2

The two definitions differ only at the observed mtviémes. The latter definition is right-
continuous whereas the former definition is leftiouous.

Let T be the random feature that measures the timelofdaand let=(t) be its cumulative

distribution function. Note that

S(t)=P[T >t]=1-P[T <t] =1- F(t) A4.3
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Consequently, the right-continuous definitioné(t) may be preferred in order to make the

estimate compatible with a right-continuous estimate(tf
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