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Abstract 

Cancer is one of the most common causes of death in the world. Currently, breast cancer is 

the most frequent in female cancers. Although the significant improvement made last decades 

in cancer management, an accurate cancer management is still needed to help physicians take 

the necessary treatment decisions and thereby reducing its related adverse effects as well as its 

expensive medical costs. This work addresses the use of machine learning techniques to 

develop such tools of breast cancer management.  

Clinical factors, such as patient age and histo-pathological variables, are still the basis of day-

to-day decision for cancer management. However, with the emergence of high throughput 

technology, gene expression profiling is gaining increasing attention to build more accurate 

predictive tools for breast cancer. Nevertheless, several challenges have to be faced for the 

development of such tools mainly (1) high dimensionality of data issued from microarray 

technology; (2) low signal-to-noise ratio in microarray measurement; (3) membership 

uncertainty of patients to cancer groups; and (4) heterogeneous (or mixed-type) data present 

usually in clinical datasets.  

In this work we propose some approaches to deal appropriately with such challenges. A first 

approach addresses the problem of high data dimensionality by taking use of ℓ1 learning 

capabilities to design an embedded feature selection algorithm for SVM (ℓ1 SVM) based on a 

gradient descent technique. The main idea is to transform the initial constrained convex 

optimization problem into an unconstrained one through the use of an approximated loss 

function. A second approach handles simultaneously all challenges and therefore allows the 

integration of several data sources (clinical, microarray …) to build more accurate predictive 

tools. In this order a unified principle to deal with the data heterogeneity problem is proposed. 

This principle is based on the mapping of different types of data from initially heterogeneous 

spaces into a common space through an adequacy measure. To take into account membership 

uncertainty and increase model interpretability, this principle is proposed within a fuzzy logic 

framework. Besides, in order to alleviate the problem of high level noise, a symbolic approach 

is proposed suggesting the use of interval representation to model the noisy measurements. 

Since all data are mapped into a common space, they can be processed in a unified way 

whatever its initial type for different data analysis purposes. We particularly designed, based 

on this principle, a supervised fuzzy feature weighting approach. The weighting process is 

mainly based on the definition of a membership margin for each sample. It optimizes then a 
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membership-margin based objective function using classical optimization approach to avoid 

combinatorial search. An extension of this approach to the unsupervised case is performed to 

develop a weighted fuzzy rule-based clustering algorithm. The effectiveness of all approaches 

has been assessed through extensive experimental studies and compared with well-know 

state-of-the-art methods. Finally, some breast cancer applications have been performed based 

on the proposed approaches. In particular, predictive and prognostic models were derived 

based on microarray and/or clinical data and compared with genetic and clinical based 

approaches. 
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Résumé 

Le cancer est l'une des causes les plus fréquentes de décès dans le monde. Actuellement, le 

cancer du sein est le plus répandu dans les cancers féminins. Malgré les avancées 

significatives faites ces dernières décennies en vue d’améliorer la gestion du cancer, des outils 

plus précis sont toujours nécessaires pour aider les oncologues à choisir le traitement 

nécessaire à des fins de guérison ou de prévention de récidive tout en réduisant les effets 

néfastes des ces traitements ainsi que leurs coûts élevés. Ce travail porte sur l'utilisation de 

techniques d'apprentissage automatique pour développer de tels outils de gestion du cancer du 

sein.  

Les facteurs cliniques, tels que l'âge du patient et les variables histo-pathologiques, 

constituent encore la base quotidienne de prise de décision pour la gestion du cancer du sein. 

Cependant, avec l'émergence de la technologie à haut débit, le profil d'expression génique 

suscite un intérêt croissant pour construire des outils plus précis de prédiction du cancer du 

sein. Néanmoins, plusieurs challenges doivent être relevés pour le développement de tels 

outils, principalement: (1) la dimensionnalité des données issues de la technologie des puces, 

(2) le faible rapport signal sur bruit dans la mesure de biopuces, (3) l'incertitude 

d'appartenance des patients aux différents groupes du cancer, et (4) l’hétérogénéité des 

données présentes habituellement dans les bases de données cliniques.  

Dans ce travail, nous proposons quelques approches pour surmonter de manière appropriée de 

tels challenges. Une première approche aborde le problème de haute dimensionnalité des 

données en utilisant les capacités d'apprentissage dit normé ℓ1 pour la conception d'un 

algorithme de sélection de variables intégré à la méthode SVM (machines à vecteurs 

supports), algorithme basé sur une technique de gradient. Une deuxième approche permet de 

gérer simultanément tous les problèmes, en particulier l'intégration de plusieurs sources de 

données (cliniques, puces à ADN, ...) pour construire des outils prédictifs plus précis. Pour 

cela, un principe unifié est proposé pour surmonter le problème de l'hétérogénéité des 

données. Pour tenir compte de l'incertitude d'appartenance et augmenter l'interprétabilité du 

modèle, ce principe est proposé dans le cadre de la logique floue. Par ailleurs, afin d'atténuer 

le problème du bruit de niveau élevé, une approche symbolique est proposée suggérant 

l'utilisation de la représentation par intervalle pour modéliser les mesures bruitées. Nous 

avons conçu en particulier, basée sur ce principe, une approche floue supervisée de 



Résumé 

 

pondération de variables. Le processus de pondération repose essentiellement sur la définition 

d'une marge d'appartenance pour chaque échantillon. Il optimise une fonction objective basée 

sur la marge d’appartenance afin d’éviter la recherche combinatoire. Une extension de cette 

approche au cas non supervisé est effectuée pour développer un algorithme de regroupement 

automatique basé sur la pondération des règles floues. 

L'efficacité de toutes les approches a été évaluée par des études expérimentales extensives, et 

comparée avec des méthodes bien connues de l'état de l'art. Enfin, un dernier travail est 

consacré à des applications des approches proposées dans le domaine du cancer du sein. En 

particulier, des modèles prédictifs et pronostiques ont été extraits à partir des données de 

puces à ADN et/ou des données cliniques, et leurs performances comparées avec celles 

d’approches génétiques et cliniques existantes. 
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Introduction- Résumé  

Le cancer du sein est actuellement le plus fréquent des cancers féminins. Dans le monde, 

chaque année, l'on compte plus de 1 050 000 de nouveaux cas diagnostiqués et plus de 400 

000 décès causés par le cancer du sein. Rien qu'en France, il est prévu que près de 53 000 

nouveaux cas de cancer du sein seront diagnostiqués et que 11 500 patientes mourront du 

cancer du sein en 2011 (Institut de Veille Sanitaire, 2011). Malgré les avancées significatives 

faites ces dernières décennies en vue d’améliorer la gestion du cancer, des outils de 

diagnostic et de pronostic plus précis sont encore nécessaires pour aider les oncologues à 

choisir le traitement nécessaire à des fins de guérison ou de prévention de récidives 

La gestion du cancer du sein peut se résumer en trois problèmes principaux: diagnostic, 

pronostic et prédiction de bénéfice thérapeutique. Bien que le diagnostic du cancer du sein 

puisse être entièrement assuré par des outils d'imagerie médicale, le pronostic et la 

prédiction du bénéfice thérapeutique semblent être des tâches plus difficiles. En effet, à cause 

de l'hétérogénéité et la complexité de la maladie du cancer, les patients avec les mêmes 

symptômes auraient des évolutions de cancer très différentes. Les approches traditionnelles 

sont basées principalement sur un petit ensemble de variables cliniques et histo-

pathologiques. Cependant, ces outils de pronostique et de prédiction sont loin d'être parfaits 

et des modèles plus précis sont nécessaires pour améliorer la gestion du cancer du sein. 

L'émergence de technologies à haut débit dans la dernière décennie, comme la technologie 

des biopuces (puces à ADN), a rendu possible la mesure simultanée de l'expression de 

milliers de gènes. Ces technologies ont apporté avec elles l'espoir de gagner de nouveaux 

aperçus sur la biologie du cancer et d'améliorer les outils actuels de gestion du cancer. 

Cependant, ces technologies ont aussi apporté avec elles de sérieux challenges liés aux 

caractéristiques intrinsèques des données produites telles que: (1) la grande dimensionnalité 

des données et (2) la nature bruitée des mesures. Toutefois, l'incertitude de mesure n'est pas 

le seul type d'incertitude auquel on est confronté lorsque l’on veut appliquer les méthodes 

d'apprentissage automatique à des problèmes réels. En raison de la grande complexité de la 

maladie du cancer du sein, la tumeur d'un patient peut en effet appartenir simultanément à 

des groupes moléculaires différents de cancer avec un certain degré d'appartenance. Par 

ailleurs, pour éviter le problème du faible  nombre de patients sur lesquels on dispose 

d’informations, il serait préférable d'utiliser l’ensemble des bases de données issues de 
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biopuces disponibles. Néanmoins, cela soulève plusieurs problèmes tels que la différence 

entre les populations et les technologies biopuces utilisées nécessitant la prise en compte de 

l'incertitude d’appartenance dans le processus de décision. Vu que les méthodes statistiques 

traditionnelles sont mal adaptées pour faire face à de tels problèmes, les méthodes 

d'apprentissage automatique ont été choisies comme une bonne alternative pour surmonter 

ces challenges. 

Des études récentes ont démontré la valeur potentielle de la signature d’expressions 

génétiques dans l'évaluation du risque de récurrence de la maladie post-chirurgicale. 

Cependant, ces études tentent de développer des outils de pronostique basés sur des 

marqueurs génétiques pour remplacer les critères cliniques existants, ce qui suggère que 

chaque approche doit être utilisée indépendamment. De plus,  le fait qu’en procédant de cette 

manière nous occultons complètement la richesse des informations contenues dans les 

marqueurs cliniques établies durant des décennies de recherche sur le cancer, les cliniciens 

peuvent faire face à la situation critique où le patient a un critère pathologique clinique en 

contradiction avec le résultat fourni par la signature génétique. Une approche typique alors 

serait d'intégrer les deux types d'informations (cliniques et l'expression des gènes) dans le 

processus de prise de décision. Cependant, en plus des défis indiqués précédemment liés 

principalement aux données de biopuces, d'autres dilemmes tels que l'hétérogénéité des 

données caractérisant les données cliniques doivent être confrontés pour intégrer à la fois les 

deux types d’information. Les facteurs cliniques utilisés pour la description de l'état du 

patient sont en effet généralement représentés de différentes manières selon la perception des 

médecins. 

Par conséquent, ce qui est vraiment nécessaire pour améliorer la gestion du cancer actuelle 

est le développement d'approches d'apprentissage automatique capables d’aborder tous les 

problèmes indiqués ci-dessus. Pour résumer, trois défis doivent être principalement 

confrontés: le premier est lié à la dimensionnalité élevée dans les données en particulier 

celles issues de la technologie des biopuces, le second est le problème du bruit et des 

incertitudes associés généralement aux données alors que le dernier est lié à la présence de 

données de type mixte dans les bases de données cliniques. C’est l’ensemble de ces problèmes 

que nous avons abordés dans cette thèse dans un cadre d'apprentissage automatique dans le 

but de concevoir des outils de gestion plus précis du cancer pour aider les médecins dans leur 

décision. 

 



Introduction   

 

1 

 

Introduction 

Cancer is one of the most common causes of death in the world. Due to the rapid increase in 

cancer cases, cancer will soon replace heart disease as the leading cause of deaths worldwide. 

Currently, breast cancer is the most frequent in female cancers. In the world, each year, the 

there are more than 1 050 000 new diagnosed cases and more than 400 000 deaths caused by 

breast cancer. In France alone, it is expected that around 53 000 new breast cancer cases will 

be diagnosed and 11 500 will die from breast cancer in 2011 (Institut de Veille Sanitaire, 

2011). Although the significant improvement made last decades in cancer management, an 

accurate cancer diagnosis and prognosis is still needed to help physicians take the necessary 

treatment decisions and thereby reducing its related adverse effects as well as its expensive 

medical costs. 

Breast cancer management can be summarized by three main issues: diagnosis, 

prognostication and prediction of therapy benefit. An early breast cancer diagnosis improves 

the chances of cure and may avoid distant metastasis development, i.e. development of new 

tumors in different organs. A prognostic tool would enable the physicians to forecast the 

likely course of the disease (e.g. Relapse or Remission) and therefore spare patients from 

unnecessary anti-cancer toxic treatments such as chemotherapy. A predictive tool would 

enable however to predict the tumor response to a particular treatment and therefore to 

prescribe the optimal tailored treatment for each patient. Although breast cancer diagnosis can 

be fully assured by imaging modalities and computer-aided detection tools, breast cancer 

prognostication and prediction of therapy benefit seems to be more challenging tasks. Due 

indeed to the high cancer heterogeneity and complexity, patients with the same symptoms 

would have very different evolutions and outcome.     

Traditional approaches are based mainly on a small set of clinical and histo-pathological 

variables (e.g. tumor size and lymph node status). However, these prognostic and predictive 

tools are far from perfect and more accurate models are needed to improve breast cancer 

management. Clinician practitioners have rapidly grasped the urgent need of new accurate 

tools as well as a good understanding of the biological mechanisms involved in breast cancer 

progression.   

The emergence of high throughput technologies in the last decade, such as microarray 

technology, has made possible the simultaneous measurement of the expression of thousands 
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of genes. These technologies have carried with them the hope to gain new insights into cancer 

biology and improve current tools for cancer management. Meanwhile, these technologies 

have brought with them also serious challenges related to intrinsic characteristics of the issued 

data such as: (1) high data dimensionality (thousands of gene expressions for few a number of 

samples); and (2) the noisy nature of measurements. Since traditional statistical methods are 

ill-conditioned to deal with such problems, machine learning approaches have been picked up 

as a good alternative to overcome these difficulties.  

However, measurement uncertainty is not the only type of uncertainty to be faced with in real-

world problems by machine learning approaches. Due to the high complexity of breast cancer 

disease, a patient's tumor can belong simultaneously to many cancer groups with some degree 

of membership. Moreover, to alleviate the problem of small sample size, it would be 

preferable to use all available microarray datasets. Nevertheless, this raises several problems 

such as the difference among populations and the use of different microarray technologies 

requiring the consideration of membership uncertainty in the decision making process.  

Recent studies have demonstrated the potential value of gene expression signature in 

assessing the risk of post-surgical disease recurrence. However, these studies attempt to 

develop genetic marker-based prognostic tools to replace the existing clinical criteria, 

suggesting that each approach should be used independently. Besides the fact that by doing so 

we are ignoring the rich information contained in clinical markers established over decades of 

cancer research, clinicians can face the critical situation where the patient has a clinical 

pathological criterion in contradiction with the gene signature outcome. One typical approach 

would be to integrate both types of information (clinical and gene-expression) in the decision-

making process. However, in addition to the challenges stated previously related mainly to 

microarray data, other dilemmas should be faced to integrate both information, such as data 

heterogeneity in clinical data. Clinical features used for patient state description are generally 

represented in different ways according to the physician perception (one may note for 

example the age for a patient by a quantitative value (e.g. age= 35) whereas another prefers a 

symbolic value (e.g. age< 35)). 

Therefore, what is really needed to improve current cancer management is developing 

machine learning approaches capable of handling all above stated challenges. To summarize, 

three challenges are mainly faced: the first one is related to high dimensionality in data 

especially issued from microarray technology, the second one is the problem of noise and 
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uncertainties associated usually to both data whereas the last one is related to the presence of 

mixed-type data in daily produced clinical datasets. Addressing efficiently those problems is 

urgently needed provided that in some cancer applications the three challenges can be even 

faced simultaneously (e.g. integration of clinical and microarray data). Indeed, in order to 

improve the accuracy of current predictive tools recent trends in bioinformatics and 

biomedicine are directed towards the integration of increasing numbers of sources of data. 

This thesis addresses such problems within a machine learning framework with the aim to 

design more accurate cancer management tools to help the physicians in their decision making 

process.  

This work is the result of a collaboration which has been initiated 4 years ago between the 

group DISCO of LAAS and the Institut Claudius Regaud first of all through  a common PhD 

scholarship obtained after competition from Université Paul Sabatier («bourse dite du 

Président» and the participation to the project named ONCOMATE, (labelled by the 

fondation INNABIOSANTE). This project aimed to develop a novel technological platform 

for the detection of cancer marker proteins, by combining three major technologies: molecular 

imprints of target marker proteins into sugar hybrid polymers, a label free sensor chip based 

on diffraction of light by nanoscale structures, and machine learning algorithms fed with the 

screening of a cancer tissues database with full anonymous patient records. 

The manuscript is organized as follows: 

The first chapter provides a brief overview about the most important tasks in breast cancer 

management: cancer diagnosis, prognosis and prediction of treatment benefit. We briefly 

describe their evolution over decades of cancer research and their challenging aspects from 

medical point of view. We explain their medical aspects and the approaches usually used to 

deal with them.  

The second chapter reviews the state-of-the-art of machine learning in cancer research. We 

have described the three machine learning tasks mostly used in cancer management: 

supervised classification, clustering and feature selection. A few examples of the most known 

approaches for each task are briefly described by highlighting their advantages and 

drawbacks. Then some application examples of such approaches in breast cancer management 

are provided. This chapter ends with a description of the recent challenges that have to be 

faced to improve cancer management and treatment. In particular, we give further details 
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about the problems of data heterogeneity, high dimensionality, low signal-to-noise ratio and 

membership uncertainties. 

The third chapter addresses the problem of data dimensionality by taking advantage of ℓ1 

learning capabilities. We particularly propose an embedded feature selection approach for 

SVM problem using gradient descent techniques without resorting to any dual formulation. 

The basic idea is the transformation of the initial SVM convex optimization problem into 

unconstrained non-convex one. The non differentiable property of the hinge loss function has 

been overcome by using its approximated Huber loss function. We show that this approach 

guarantees the global optimality of the solution while exhibiting a good computational 

efficiency compared to other approaches solving the same problem. Large-scale numerical 

experiments have been conducted to demonstrate these claims. 

In chapter four we consider to deal simultaneously with the problems of data heterogeneity 

and membership uncertainty. In this order a unified principle, referred to as SMSP 

(Simultaneous Mapping for Single Processing), is introduced to cope with the problem of data 

heterogeneity within a fuzzy logic framework. This principle is based on a simultaneous 

mapping of data from initially heterogeneous spaces into only one homogeneous space using 

an appropriate measure of typicality (or membership). Once the heterogeneous data are 

represented in a unified space, only a single processing for various analysis purposes such as 

machine learning tasks can be performed. We considered the three most used types of 

features: (1) quantitative; (2) interval; and (3) qualitative. 

In chapter five the problem of supervised learning based on the SMSP principle is addressed. 

A new feature weighting method is proposed for mixed-type and high dimensional data based 

on a membership margin to improve the performance of fuzzy-rule based classifiers. For this 

reason, a weighted fuzzy rule concept is introduced and a membership margin-based objective 

function is defined. A classical optimization approach is used to avoid heuristic combinatorial 

search. Large-scale experiments have been also conducted to compare the proposed approach 

with some well-known feature selection approaches on three state-of-the-art classifiers. 

In chapter six the problem of unsupervised learning based on the SMSP principle is 

considered. We propose a novel approach based on online feature weighting for clustering of 

heterogeneous data. The proposed algorithm is an extension of our supervised feature 

weighting algorithm. To cope with the problem of data heterogeneity, the SMSP principle is 
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extended here also to reason in a unified way about heterogeneous data in an unsupervised 

framework. An extensive experimental study has been then performed on artificial and real-

world problems to prove the effectiveness of the proposed approach.  

Finally, some breast cancer applications of the proposed approaches are shown in chapter 

seven. In particular, the works presented here develop (1) Cancer prognosis based only on 

clinical data (2) Derivation of 20 genes signature for cancer prognosis based on microarray 

data (3) Derivation of a hybrid signature for cancer prognosis based on the integration of 

clinical and microarray data (4) Derivation of a more robust prognostic signature (referred to 

as GenSym) based on a symbolic approach by modeling the different noises as symbolic 

intervals (5) Derivation of 4-markers signature for the prediction of neoadjuvant treatment 

benefit in HER2 over-expressed breast cancer patients. 
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CHAPITRE 1-Résumé 
Gestion et traitement du cancer 

Le cancer est l'une des causes les plus fréquentes de décès dans le monde. Selon la dernière 

édition du rapport mondial sur le cancer (World Cancer Report WCR) de l'Agence 

internationale de recherche sur le cancer, dû à l'augmentation rapide des cas de cancer, le 

cancer va bientôt remplacer les maladies cardiaques comme la principale cause de décès 

dans le monde. WCR prévoit que 12,4 millions de personnes seront diagnostiquées avec 

certaines formes de cancer chaque année et que 7,6 millions de personnes en mourront.  

Les cancers les plus courants dans le monde en termes d'incidence ont été: poumon (1,52 

millions de cas), sein (1,29 million) et colorectal (1,15 millions). En raison de son mauvais 

pronostic, le cancer du poumon a également été la cause la plus fréquente de décès (1,31 

millions), suivi par le cancer de l'estomac (780 000 décès) et le cancer du foie (699 000 

décès). Nous nous concentrons dans notre travail sur le cancer du sein comme l'une des 

tumeurs malignes les plus fréquemment diagnostiquées chez les femmes. 

Des stratégies de gestion du cancer sont nécessaires de toute urgence pour réduire la 

morbidité et la mortalité par cancer, et améliorer la qualité de vie des patients atteints de 

cette maladie. Des travaux de recherche considérables ont été réalisés ces dernières 

décennies dans l'espoir d'apporter de nouvelles perspectives à la maitrise de la biologie du 

cancer et l'amélioration des approches utilisées actuellement pour la gestion du cancer en 

particulier celui du sein. 

La gestion du cancer du sein peut se résumer en trois tâches principales successives:  

1- La détection précoce et le diagnostic efficace du cancer,  

2- Une pronostication efficace pour prédire le risque de développer des métastases (de 

nouvelles tumeurs dans les différents organes) sans traitement systématique,  

3- Le choix d'un traitement optimal et personnalisé en fonction de l'agressivité du cancer 

en prédisant le bénéfice thérapeutique.  

Le premier chapitre de cette thèse décrit chaque tâche et donne brièvement leur évolution au 

cours des décennies de recherche sur le cancer. Nous avons essayé de souligner leurs aspects  
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difficiles d’un point de vue médical en expliquant les questions d'intérêt et les approches 

habituellement utilisées pour les traiter. 

Malgré les nombreuses tentatives effectuées en matière de recherche sur le cancer, il peut 

être constaté que la tâche de diagnostic de cancer du sein est toujours basée principalement 

sur des outils de détection par imagerie (Hayat, 2008). Cependant, contrairement au 

diagnostic de cancer, les tâches de pronostic et de prédiction du bénéfice d’un traitement ont 

connu une véritable révolution au cours des dernières décennies. Les approches 

traditionnelles utilisées pour effectuer ces deux tâches ont été basées essentiellement sur 

l'utilisation des connaissances qualitatives acquises au cours de plusieurs décennies de 

recherche sur le cancer. Cette connaissance est formulée généralement sous la forme de 

règles en fonction de certains facteurs cliniques tels que l’âge, le grade histologique et le 

statut des récepteurs hormonaux. On note parmi ces approches l’indice NIH adopté aux Etats 

Unis (Eifel et al., 2001) et le critère de St-Gallen en Europe (Goldhirsh et al., 2003). Des 

modèles plus sophistiqués ont été aussi proposés tels que Adjuvant! (Olivotto et al., 2005) et 

l’indice de pronostic de Nottingham (NPI (Galea et al., 1992)) et sa version améliorée (Belle 

et al., 2010). Ces approches ne parviennent pas néanmoins à fournir une gestion précise du 

cancer. Cependant, l’introduction des nouvelles technologies de pointe récemment ont permis 

d'obtenir quelques éclaircissements sur les processus biologiques qui sous-tendent la grande 

hétérogénéité du cancer du sein. En particulier, la technologie des biopuces a largement 

marqué la recherche sur le cancer pendant le siècle courant ouvrant la porte à une prise en 

charge adaptée et personnalisée du cancer du sein en se basant sur l’extraction des 

signatures génétiques moléculaires. Les travaux de grands impacts inclus mais ne se limitent 

pas aux signatures d’Amsterdam (Van’t Veer et al., 2002), et de Rotterdam (Wang et al., 

2005a) pour la tâche pronostic et la signature de prédiction de survie sans rechute pour la 

tâche de prédiction (Ma et al., 2004). 

Toutefois, ces progrès significatifs en terme de technologie ont amené avec eux de sérieux 

défis liés à l'énorme quantité de données produites par ces technologies et ont requis 

également une révolution similaire en termes d'approches permettant de traiter ces données. 

Cela fera l’objet du chapitre suivant dans lequel nous nous concentrons sur l’analyse de l'une 

des approches les plus utilisées (méthodes d'apprentissage automatique) pour effectuer les 

trois tâches de gestion du cancer. Sur cette base, nous décrivons les enjeux récents liés à ce 

domaine qui feront les problématiques que nous abordons dans cette thèse. 
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CHAPTER 1 
Cancer Management and Treatment  

Cancer is one of the most common causes of death in the world. According to the last edition 

of the World Cancer Report (WCR) from the International Agency for Research on Cancer, 

due to rapid increase in cancer cases, cancer will soon replace heart disease as the leading 

cause of deaths worldwide. WCR projected that 12.4 million people will be diagnosed with 

some forms of cancer each year and 7.6 million people will die. WCR said: “The global 

cancer burden doubled in the last 30 years of the 20th century, and it is estimated that this will 

double again between 2000 and 2020 and nearly triple by 2030”. 

According to WCR, 26.4 million people per year may be diagnosed with cancer by 2030, with 

17 million people dying from it. There will be 1% increase in cancer incidences each year, 

with larger increases in China, Russia, and India. Adoption of tobacco use and higher-fat diets 

and demographic changes, including a projected population increase of 38% in less-developed 

countries between 2008 and 2030 are the main reasons of increase in cancer cases in these 

countries. 

The most common cancers in the world in terms of incidence were: lung (1.52 million cases), 

breast (1.29 million) and colorectal (1.15 million). Because of its poor prognosis, lung cancer 

was also the most common cause of death (1.31 million), followed by stomach cancer (780 

000 deaths) and liver cancer (699 000 deaths). We focus in our work on breast cancer as one 

of the most frequently diagnosed malignancy in women in the world.  

Cancer management strategies are needed urgently to reduce the morbidity and mortality from 

cancer, and to improve the quality of life of cancer patients. Tremendous research works were 

performed last decades in the hope to bring new insights to cancer biology and improving 

current approaches for breast cancer management.   

Breast cancer management can be summarized in three main successive tasks:  

• Early detection and efficient cancer diagnosis, 

• Efficient prognostication to predict the risk to develop metastases (new tumors in 

different organs) without systematic treatment, 
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• Selection of an optimal and personalized treatment according to cancer 

aggressiveness by predicting the therapy benefit. 

Usually traditional clinical tools are used to perform such tasks based on histo-pathological 

factors such patient age and tumor size. However, recently new advanced high throughput 

technologies, such as gene expression profiling through microarray, have being introduced 

extensively in this field.  

This chapter describes each task and gives briefly their evolution over decades of cancer 

research. We try highlights their challenging aspects from medical point of view. We explain 

the medical questions of interest and the approaches usually used to deal with them.  

1.1 Cancer detection and diagnosis 

Early cancer detection plays a key role in decreasing the death rates from cancer and achieves 

a better prognosis (Hayat, 2008). Indeed, different sources (Institut National du Cancer, 2011; 

Association pour la Recherche sur le Cancer, 2011) shows that breast cancer treatment in an 

early stage of development can increase significantly the patient’s survival chance. Moreover, 

early breast cancer detection increases the chances for conservative surgery to be carried out 

instead of radical mastectomy, the only solution in advanced stage breast cancers (Haffty et 

al., 1991). However, the main aim of this task should not be only to detect the existence of the 

cancer but also to identify the cancer class among the pre-established classes and discover 

new cancer subclasses. For decades many techniques were proposed to perform an accurate 

breast cancer diagnosis.  

Usually, the most used technique is based on imaging detection tools (e.g. mammography is 

considered as the most cost-effective method for detecting breast cancer (Hayat, 2008). 

However, due to the complex structure of the breast, thousands of mammograms must be 

processed to detect a few cancers (Gallardo-Caballero et al., 2007). This task can be tedious 

and stressful, and can cause radiologist confusion leading to diagnosis errors (Hayat, 2008). 

Moreover, despite the availability and recommended use of mammography as a routine 

screening method for women older than 50 years of age, it is still inefficient and insufficient 

to identify accurately the cancer class (Antman and Shea , 1999; Hayat, 2008).  For that other 

techniques that could be used individually or in combination with existing modality for cost-

effective screening of breast cancer have been investigated.   
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In addition, there is a wide spectrum in cancer morphology and many tumors are atypical or 

lack morphologic features that are useful for differential diagnosis. Therefore, with the 

increasing need of an accurate detection of cancer, the search is on for reliable markers that 

will be clinically helpful in the diagnosis of small tumors. To this end, a large number of 

blood tumor markers have been proposed for breast cancer detection, including CEA 

(CarcinoEmbryonic Antigen), ESR (Erythrocyte Sedimentation Rate) (Cheung et al., 2000; Li 

et al., 2002), but have not been well adopted in clinical practices. However, due to the high 

cancer heterogeneity the currently accepted clinical diagnostic markers fall short to classify 

the disease in subtypes and there is a critical need to identify novel diagnostic markers (Golub 

et al., 1999). Golub and co-authors pointed out that cancer classification task can be divided 

into two challenges: class discovery and class prediction. Class discovery refers to defining 

previously unrecognized tumor subtypes whereas class prediction refers to the assignment of 

particular tumor samples to already-defined subtypes (or classes). Therefore, reliable markers 

are required to gain new insights into cancer biology and can be clinically helpful in the 

diagnosis of small tumors.  

It has been found out recently that cancer diseases including breast cancer result from the 

accumulation of mutations, chromosomal instabilities and epigenetic changes that together 

facilitate an increased rate of cellular evolution and damage that progressively impairs the 

cell’s detailed and complex regulation system of cell growth and death. This fact has 

motivated cancer researchers initially to investigate the importance of one or only few genes 

at a time in order to improve cancer detection and diagnosis (Matsumura and Tarin, 1992). 

Although hundreds of such studies have pointed out differences in the expression of one or 

few genes, no one of them have provided a comprehensive study of gene expression in cancer 

cells (Zhang et al., 1997; Ramaswamy et al., 2001). Recent advances in high throughput 

technologies, such as microarray and mass spectrometry (see Appendix 1), have made it 

possible to answer such questions through simultaneous analysis of the expression patterns of 

thousands of genes and proteins (Golub et al., 1999; Ramaswamy et al., 2001; Li et al., 2002). 

These technologies are considered promising for gaining new insights into cancer biology.  

1.2 Cancer prognosis 

After the diagnosis of breast cancer, the next important step is the prognosis which aims to 

predict the survival of a patient, or her risk to develop metastases without treatment (Figure 

1.1) (Haibe-Kains, 2009). Roughly speaking, prognosis attempts to accurately forecast the 
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evolution or outcome of a specific situation (e.g. Relapse or Remission) using input 

information obtained from a concrete set of variables that potentially describe that situation 

(Gómez-Ruiz et al., 2004). Naturally, this task depends strongly of the diagnosis task 

presented previously, as an accurate diagnosis will allow giving some information about the 

likely evolution of the disease. Moreover, this can be also extremely important because it 

assists oncologists, as described in the next subsection, to select the optimal treatment 

required for a breast cancer patient chemo-, hormone-, or other systematic therapies; and 

which patient can be treated with loco-regional treatment alone (Haibe-Kains, 2009). 

 

 

 

 

 

 

 

Fig. 1.1. Breast cancer prognosis. 

Similarly to cancer diagnosis, many approaches were proposed in the literature to perform 

cancer prognosis. For a long time cancer prognosis was guided by the clinical and histo-

pathological knowledge gained from many decades of cancer research. In this approaches, the 

risk of recurrence is primarily determined by the age of the patient, nodal status, tumor size, 

histological grade, the expression status of hormonal receptors, i.e. estrogen (ER) and the 

progesterone (PgR) as quantified by immunohistochemistry (IHC), the status of HER2 

oncogene, vascular emboli, proliferation index and histologic type (Haibe-Kains, 2009) (See 

Glossary and Appendix 1 for definitions). Many cancer prognosis criterions were proposed 

based on these variables; among them we find the National Institute of Health index for USA 

(Eifel et al., 2001) and the St Gallen consensus criteria (Goldhirsh et al., 2003) for Europe in 

order to assist clinicians in their decision-making (see Figure 1.2). However, using only one 

variable at a time (e.g. histological grade) has been found insufficient and not accurate enough 

(Perez et al., 2006). To improve prognosis accuracy, more sophisticated models based on a 

combination of these variables has been also proposed such as multivariable outcome 

prediction models (e.g. Adjuvant! (Olivotto et al., 2005)) and the Nottingham Prognostic 

Index (NPI (Galea et al., 1992)) and its improved version (Belle et al., 2010)) (see Figure 
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1.2). However, the prognosis accuracy is far from perfect and more accurate models are 

needed before it will be possible to clearly identify whether a patient will relapse, especially 

patients with early breast cancer (node-negative, i.e. nodal status equal to 0), to spare them 

from receiving unnecessary systematic therapy as well as reduce its related expensive medical 

costs. It is reported that a third of breast cancer patients are over treated which makes them 

undergo its side effects in the short and long terms. On the contrary a more moderated number 

undergoes an under treatment by underestimating their distance recurrence and therefore they 

are wrongly spared from systemic adjuvant treatment. Moreover, two patients with exactly the 

same clinical and pathological characteristics can have different outcomes. Therefore, a more 

accurate prognosis could avoid any adverse side effects of adjuvant therapies and its related 

high costs. 

 

  

 

 

 

 

 

 

Fig. 1.2. Traditional prognostic and predictive tools for breast cancer. 
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provide simultaneously the expression differentiation of thousands of genes in the aim to 

derive prognosis models based only on a set of genetic markers.   

A first outstanding work in this direction was performed by the Netherlands Cancer Institute 

(NKI) which has conducted a comprehensive study in order to derive a more accurate tool for 

early breast cancer prognosis (Van’t Veer et al., 2002). In this work the Agilent microarray 

technology was used to extract a set of genes differentially expressed among two groups of 

patients having different survival outcomes. First group include patients that have developed a 

distant metastases within five years from diagnosis whereas the second does not. In this study 

a set of genes was identified including mainly genes involved in the cell cycle, invasion, 

metastasis, and angiogenesis. This signature is known under the name of “Amsterdam 

genomic signature” and enables to classify node-negative breast cancer patients, with a tumor 

size inferior or equal to 5 cm (stage I or II) and aged less than 61, either in a high or a low risk 

group. A supplementary study was also performed on a new large population of patients from 

the same institution, including both node-negative, node-positive, treated and untreated breast 

cancers, to validate the predictive power of this signature (Van de Vijver et al., 2009). This 

signature was also compared to classical clinical criterions (i.e. NIH, St Gallen). In this study 

the authors have shown the superiority of this genetic signature, compared to NIH and St 

Gallen criterions, in term of predictive power of patients’ outcomes. In the conclusion of this 

work it has been pointed out that this predictive ability could spare a large number of patients 

to be over-treated or to receive unnecessary toxicity from chemotherapy.  

In recent studies, many attempts were also performed in the same direction to identify new 

gene signatures. A gene-expression signature known as the Reccurence Score signature 

include only 21 genes has been derived allowing to refine the stratification of ER-positive and 

Node-negative breast cancer patients receiving tamoxifen in adjuvant setting (Paik et al., 

2004). Three risk levels have been defined: weak risk, intermediate risk and high risk. We 

distinguish also the signature known as the Rotterdam signature (Wang et al., 2005a), where 

76 genes have been identified for the same purpose of that designed by (Van’t Veer et al, 

2002) for node-negative patients who did not receive a systematic treatment. However, this 

study was performed using Affermetrix technology and has been shown to better identify 

patients with poor prognosis compared to classical clinical criterions.  

Although the major contribution of such retrospective studies to open new directions for 

cancer practitioners, they should be still validated in prospective by randomized trials to 
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obtain a sufficient LOE (Level Of Evidence) and therefore be used in routine practices 

(Institut National du Cancer, 2009). A randomized clinical trial, called MINDACT for 

‘Microarray In Node negative Disease may Avoid ChemoTherapy’, is ongoing to be 

performed in order to compare the predictive accuracy of the Amsterdam signature with 

clinical and pathological criteria such as adjuvant! Online, to identify women with node-

negative breast cancer with a low risk of relapse. Another randomized trial called TAILORx 

is also now under consideration to validate the Recurrence Score signature by putting them in 

competition with classical factors having a level of evidence LOE 1 such as ER, HER-

negative, and uPA/PAI-1. The results expected from these studies will attribute to these 

signatures a predictive power of level LEO 1 required for clinical implementations (Institut 

National du Cancer, 2009).     

Although the potential of the studies presented above in breast cancer research, several critical 

reviews can be found in literature about such genomic approaches (Reis-Filho et al., 2006; 

Koscielny, 2008). For instance, Reis-Filho et al (2006) have pointed out that the clinicians 

may face the situation where the patient has a clinical pathological criterion corresponding to 

poor prognosis and a good gene signature. One typical approach would be to integrate both 

types of information (clinical and gene-expression) in the decision-making process which has 

been shown recently effective in improving the prognosis tasks (Gevaert et al., 2006; Sun et 

al., 2007a).   

1.3 Systemic treatment responsiveness prediction  

The prediction task aims to predict the response of a breast cancer patient to a treatment. In 

other words, for each patient, we need to decide which therapy will be the most effective. To 

this end, as in the case of cancer prognosis and diagnosis, this task consists also to identify a 

set of markers that could predict response of a given patient to a particular drug (predictive 

factors). This would spare patients from receiving unnecessary treatment and decrease its 

associated medical and financial cost. We can distinguish two settings for treatment 

responsiveness prediction in breast cancer: adjuvant (Figure 1.3) and neo-adjuvant settings 

(Figure1.4) (Mauri et al., 2005).  

In the last decade, the systematic adjuvant treatment is usually prescribed in the aim to 

decrease the recurrence risk of breast cancer patients. An important consequence of such 

procedure is overtreatment resulting from the administration of adjuvant therapy to patients 

for whom only a surgery would be sufficient (Straver et al., 2009). This leads mainly to 
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expose the patients to adverse side effect of the treatment while increasing its associated cost. 

In this case, the prediction is similar to the prognosis task as illustrated in Figure 1.1, except 

that a treatment is selected for each patient by the end. Precisely, in this setting we try to 

predict whether the administration of a particular adjuvant therapy to a patient after surgery 

will be beneficial after some years of follow-up (generally more than 5 years). However, 

although the response to a treatment in advanced breast cancer can be assessed by tumor 

measurement in this case, it is still relatively difficult to be characterized in the case of early 

stage breast cancers after surgery (Chang et al., 2005). An accepted practice in this case is to 

administrate adjuvant chemotherapy even if we know that it is not beneficial for a significant 

number of patients (Chang et al., 2005).  

 

 

 

 

 

 

 

Fig. 1.3. Adjuvant setting for prediction of treatment benefit 

With respect to the neo-adjuvant setting, a biopsy of breast cancer is firstly performed before 

the administration of the neo-adjuvant therapy (pre-operative therapy including chemotherapy 

and hormone therapy, Figure 1.4). Then the tumor is removed by surgery to assess the benefit 

from the treatment such as a decreased tumor size and axillary lymph nodes. Indeed, although 

the fact that both settings (adjuvant and neoadjuvant) were reported equivalent in terms of 

survival and overall disease progression, neoadjuvant therapy was found to be a safe approach 

allowing to avoid mastectomy in a significant number of women (Makris et al., 1998; Cleator 

et al., 2004; Mauri et al., 2005). The benefit from a treatment for patients in these cases is 

usually characterized in terms of pathological complete response (cPR) defined as the 

complete disappearance of cancer cells in the breast and lymph nodes. Even of the fact that 

the concern in this case is to analyze the response or resistance to the treatment without 

paying much attention to the survival issue, it has been pointed out that the response to some 

neoadjuvant therapies (e.g. chemotherapy) correlates closely with improved clinical outcome 

(Fisher et al., 1998).  
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However, in both settings the identification of a set of biomarkers that predicts the response to 

treatment accurately is not an easy task. The fact is that over 20 years of cancer research for 

new important markers, we still have very few biomarkers that predict accurately the response 

to particular therapies. Mainly there are two biomarkers used actually in the day-to-day 

clinical practice: Hormone Receptors (HR: Estrogen Receptor ER and Progestrone Receptor 

PgR) and HER2/ ERBB2 receptor (Chang et al., 2005; Colozza et al., 2005). Hormone 

receptors are effective factors for prediction of hormonotherapy response whereas HR-

negative is considered as a powerful predictive factor of chemotherapy response in the 

neoadjuvant setting. HER2-positive enables to predict the patient responsiveness to anti-

HER2 treatments. Although several attempts were also performed to identify additional 

biomarkers, they are still to date unconvincing due especially to the huge heterogeneity of 

breast cancer (Konecny et al., 2004; Colozza et al., 2005). 

 

 

 

 

 

 

 

Fig. 1.4. Neoadjuvant setting for prediction of treatment benefit 

 Similarly to cancer prognosis and diagnosis, these limitations have pushed the cancer 

researchers to take advantage of the genomic approaches to develop more accurate markers 
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recurrence in patients receiving adjuvant tamoxifen (Wang et al., 2005a). Both signatures 

were derived using a set of patients treated with adjuvant hormonotherapy, i.e. treated after 

surgery, which enables to address the prognosis issue (appearance of metastases) as well as 

the prediction of response to treatment. Another gene-expression signature also to be 

mentioned is known by the Reccurence Score signature include only 21 genes for 
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hormonotherapy responsiveness prediction (Paik et al., 2004). Concerning the neo-adjuvant 

setting, Chang et al. (2003a) have used gene expression profiling to derive 92-gene signature 

that predict the response to neoadjuvant docetaxel in primary breast cancer patients. A 

neoadjuvant approach was also assessed to analyze the change of gene expression during 

chemotherapy (Buchholz et al., 2002). Another neoadjuvant study has also reported a 74-gene 

markers signature using microarray data to predict some therapies (Ayers et al., 2004). These 

encouraging results have strongly suggested that microarray profiling will have a promised 

future in the optimal neoadjuvant treatment selection. Several works have been reported 

recently within the neoadjuvant setting framework (Lee et al., 2007, Straver et al., 2009). In 

(Straver et al., 2009), the predictive capacity of the 70-gene signature (Van’t Veer et al., 

2002) has been assessed on neoadjuvant chemotherapy treatment in breast cancer.  

1.4 Conclusion 

In this chapter we provided an overview about the main tasks in breast cancer management: 

diagnosis, prognostication and prediction of treatment benefit. We briefly described each task 

and its most important research works. Their challenging aspects have been also highlighted 

from medical point of view. 

Although the many attempts performed in cancer research fields, breast cancer diagnosis task 

is still based mainly on imaging detection tools. However, unlike cancer diagnosis, prognosis 

and treatment response prediction tasks have known a real revolution over the last decades. 

Traditional approaches to perform both tasks have been based mainly on using the qualitative 

knowledge gained over many decades of cancer research. This knowledge is reformulated 

usually on the form of rules about some clinical factors but fails short to provide an accurate 

cancer management. However, advanced technologies have made it possible to get some 

insights into the biological process underlying the high heterogeneity of breast cancer. 

Particularly, microarray technology has widely marked the cancer research in the current 

century by opening the door to tailored and personalized management of breast cancer based 

on molecular signatures derivation.  

However, such advancements have brought with them serious challenges related to the huge 

amount of data issued by these technologies, and thereby required also a similar revolution in 

terms of approaches enabling to process this data. For that, in the next chapter we focus on the 

reviewing of one of the most used approaches (Machine Learning approaches) to perform the 
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three cancer management tasks. Based on that, we describe the recent challenges related to 

this field which will make the concerns of the present thesis.  
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CHAPITRE 2- Résumé  
Méthodes par apprentissage pour la 
gestion et le traitement du cancer 

La gestion du cancer et le choix de son traitement adéquat ont été pour longtemps effectués 

sur la base de connaissances qualitatives retenues par des experts ou en utilisant les diverses 

directives médicales. Toutefois, la maladie du cancer s'est avérée complexe et très hétérogène 

ce qui rend l'approche qualitative insuffisante et le processus de prise de décision très 

compliqué. A titre d’exemple, la tâche de pronostic implique plusieurs oncologues utilisant 

différents bio-marqueurs et facteurs cliniques. Habituellement, dans de tels cas de nombreux 

types d'informations qualitatives sont intégrées pour arriver à une décision raisonnable sur le 

pronostic par les cliniciens participants. Ce n'est pas une tâche facile, même pour les 

cliniciens les plus qualifiés. Si l'on ajoute à cela le besoin accru d'explorer la grande quantité 

de données biologiques étant disponibles (mesures protéomiques et génomiques), des 

approches plus efficaces sont devenues indispensables pour aider les médecins dans leur 

décision. Récemment, les approches d'apprentissage automatique se sont montrées très 

efficaces pour aider à la prise de décision en fournissant une prédiction plus précise et des 

modèles de classification efficaces. La première utilisation de ce type d’approche dans le 

domaine du cancer date d’environ 25 ans par des méthodes populaires telles que les réseaux 

de neurones et les arbres de décision (Simes, 1985, Maclin et al., 1991). Avec l’introduction 

de la technologie à haut débit, le recours à des méthodes de calcul plus intensif est 

indispensable. 

Dans ce chapitre nous décrivons l’état de l’art sur l’utilisation des méthodes d’apprentissage 

automatique dans le domaine du cancer en soulignant leurs avantages et inconvénients. Cette 

utilisation peut être résumée en trois tâches principales: 

• Classification de nouveaux patients en des classes de cancer prédéfinies en utilisant 

un modèle obtenu par apprentissage, connue sous le nom de classification supervisée.  

• Regroupement des patients ayant des propriétés similaires en sous-groupes, connu 

sous le nom de classification non supervisée. Les approches utilisées pour effectuer 

cette tâche peuvent être divisées en deux catégories: hiérarchiques et en se basant sur 

la partition de l’espace.  
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Puis quelques applications de ces approches dans la gestion du cancer du sein sont 

rapportées. Malgré leur utilisation réussie dans la gestion du cancer du sein en se basant sur 

les facteurs cliniques classiques, il a été remarqué que la plupart d'entre elles ne parviennent 

pas à faire face aux défis récents apportés par l'introduction des données issues de 

technologies avancées. Nous pouvons par exemple mentionner le problème de sur-

apprentissage dans les méthodes de classification supervisée en raison souvent du faible ratio 

attribut/échantillon (nombre de patient). Cela nécessite un recours aux méthodes de sélection 

largement étudiées et développées pour surmonter ce problème. Nous avons examiné 

brièvement les travaux de recherche considérables effectués dans cette direction. Il a été 

constaté cependant que la sélection de variables n'est pas seulement utile pour la réduction 

de la dimensionnalité du problème, mais permet des progrès majeurs pour acquérir de 

nouvelles connaissances sur la biologie du cancer en utilisant les profils d'expression 

génétique. Grace à ces approches, des méthodes adaptées et personnalisées sont aujourd'hui 

en cours de développement en se basant sur l’extraction de plusieurs signatures génétiques 

afin d’améliorer la précision de gestion du cancer. Nous avons enfin décrit les approches 

d'apprentissage non supervisées et leurs applications dans la gestion du cancer de sein en 

particulier à travers leur utilisation dans l'identification de groupe de gènes co-exprimés. 

Ce chapitre se termine par une description des défis récents auxquels il faut faire face pour 

améliorer la gestion et le traitement du cancer. Nous avons considéré principalement les 

problèmes d'hétérogénéité des données, la dimensionnalité élevée, le faible rapport signal-

bruit et les incertitudes d'appartenance. L'hétérogénéité des données est liée à l'utilisation 

quotidienne de variables de type mixte dans la création des bases de données, une pratique 

courante dans de nombreux problèmes de cancer. Malgré le nombre important de travaux 

consacrés à résoudre le problème de la dimensionnalité élevée des données, il est toujours 

considéré comme un problème de recherche ouvert et l'un des principaux défis dans la théorie 

de l'apprentissage statistique. Alors que le problème du faible rapport signal sur bruit est lié 

au problème de la reproductibilité des technologies à haut débit (puces à ADN, spectrométrie 

de masse), dû principalement aux variations de conditions expérimentales et biologiques. Au 

mieux de notre connaissance, ce problème n'a jamais été abordé par la communauté 

d'apprentissage automatique. Nous avons aussi noté que les bruits ne sont pas les seules 

incertitudes dans les données du cancer, l'incertitude d’appartenance d'une tumeur à chacun 

des sous-types de cancer est une réalité évidente, et elle gagne une attention croissante dans 

les études récentes qui utilisent des données recueillies à partir de différentes technologies 

par les différents centres médicaux (Haibe-Kains et al., 2010). 



Chapter 2: Machine Learning for Cancer Management and Treatment   

 

19 

 

CHAPTER 2 
Machine Learning for Cancer Mana-
gement and Treatment 

For a long time cancer management and treatment were performed based on expert qualitative 

knowledge held by individuals or using diverse medical guidelines.  However, cancer disease 

has been shown to be complex and very heterogeneous which make the qualitative approach 

insufficient and the decision-making process very complicated. Breast cancer diagnosis for 

instance is based on the analysis of thousands of mammograms issued by imaging detection 

tools. This important task seems to be very complex and tiring, and can even lead the 

radiologists to commit some diagnosis errors. Furthermore, the prognosis task involves 

usually multiple physicians with different skills using different biomarkers and clinical 

factors. Typically in such cases many types of qualitative information are integrated to come 

up with a reasonable decision about the prognosis by the attending physicians based on their 

own intuition. This is not an easy task even for the most skilled clinicians. If we add to that 

the increased need to explore the large amount of biological data being available (proteomic 

and genomic measurements), more efficient approaches to help physicians in their day-to-day 

practices have become indispensable. Recently, machine learning has been shown very 

effective to help physicians in their decision making by constructing more accurate prediction 

and classification models. Machine learning is a branch of artificial intelligence that employs 

a variety of statistical, probabilistic and optimization techniques that allows computers to 

“learn” from past examples and to detect hard-to-discern patterns from large, noisy, 

heterogeneous or complex datasets (Baldi and Brunak, 2001; Cruz and Wishart, 2006). 

Although machine learning was basically much related to statistics, it offers nowadays a 

powerful mean to deal with statistically ill-posed problems such as curse of dimensionality 

(small sample size characterized by a high feature dimensionality (Bellman, 1961)) and noisy 

measure (Mitchell, 1997; Duda et al., 2001)). Since nearly 25 years artificial neural networks 

(ANN) and decision trees (DTs) have been widely used for cancer detection and diagnosis 

(Simes , 1985, Maclin et al., 1991, Cicchetti, 1992). More recently, machine learning methods 

are being also used increasingly for cancer prognosis and treatment planning. Firstly, Machine 

learning approaches have been used mainly to perform cancer prognosis and diagnosis, as 

explained in the previous chapter, based on some clinical and histo-patholgical factors, 
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including histological grade, size of tumor and the age of the patient (Cochran, 1997; Gómez-

Ruiz et al., 2004). With the development of high throughput technologies (DNA microarray, 

sequencing), proteomic (protein chips, immune-histology), physicians have find themselves 

faced to thousands of genetic, cellular and clinical markers. In this situation, for which human 

intuition and traditional statistics fails, the resort to more intensively computational methods 

is unavoidable, such as machine learning approaches. This helps physicians to analyze and 

interpret data, and gain new insights into cancer biology. To this end, machine learning 

approaches have known recently a wide spread use in cancer research to scale with such 

complex experimental data for different purposes (diagnosis, prognosis and treatment 

planning) (Khan et al., 2001; Guyon et al., 2002).  

Generally, machine learning methods are used to analyze medical datasets organized in table 

form containing a set of patient (individuals or patterns) in term of their properties (attributes, 

features, variables). The use of machine learning methods in cancer research can be 

summarized in three main tasks: 

• Classifying new patients based on trained models to already-defined cancer classes, 

known as supervised classification within machine learning community 

• Regrouping patients having similar properties into subgroups, known as 

unsupervised classification or clustering within machine learning community 

• Selecting relevant biomarkers using feature selection approaches either in a 

supervised or unsupervised context. 

However not every machine learning method is appropriate for any cancer research problem. 

For instance some machine learning methods scale very well to the size of data, others do not. 

Likewise some methods may have some data requirements and assumptions that render them 

inappropriate to the problem under investigation. This is not necessarily a weakness to 

machine learning, it is only to highlight the attention should be paid to choose a suitable 

method for a particular problem (Cruz and Wishart, 2006).  

This chapter describes each task and gives briefly their associated challenging aspects in the 

bioinformatics context. We explain the medical questions of interest, the approaches usually 

used, and the state of bioinformatics research. This chapter ends with a description of the 

main challenges that have to be faced to improve cancer management and treatment.  
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2.1 Supervised classification  

Classification is considered as one of the fundamental problems in machine learning. Duda 

and Hart (2001) define it as the problem of assigning an element or instance to one of several 

pre-specified categories. Only available information is a set of patterns characterized by a set 

of features each of them assigned to a predefined class. Each pattern is classified based on a 

set of classification rules which are often unknown in many real-life situations (Baldi and 

Brunak, 2001). As a simple example, we can cite the problem of breast cancer diagnosis as a 

supervised classification problem (Wolberg et al., 1994). The elements to be classified form a 

set of patients as shown in Table 2.1.  

Tab. 2.1 Cancer diagnosis dataset used for supervised classification.  

ID number Clump thickness Uniformity of 
cell size   

… Mitoses Class 

842302 17.99 10.38 … 0.11890 Malignant 

842517 20.57 17.77 … 0.08902 Malignant 

… … … …     …     … 

… … … …     …     … 

926954 16.6 28.08 … 0.78200 Malignant 

927241 20.6 29.33 … 0.12400 Malignant 

92751 7.76 24.54 … 0.07039 Benign 

The attributes (features) of a given patient are some variables including around thirty features 

computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They 

describe characteristics of the cell nuclei present in the image. The outcome of each patient is 

taken as either diagnosed to have a breast cancer or not, representing its predefined class. This 

simple example has been for a long time used to assess the performance of newly proposed 

machine learning approaches. Compared to other fields, oncology is possibly the area in 

which more applications of machine learning have been performed (Vellido and Lisboa, 

2007). Almost all machine learning approaches applied on this problem employ supervised 

learning such as artificial neural networks (Rumelhart et al., 1986), decision trees (Quinlan, 

1986), discriminant analysis (Fisher, 1936), k- nearest neighbor (Cover and Hart, 1967) and 

Support Vector Machines (Vapnik, 1998). We list below some of the most used supervised 

machine learning approaches in cancer research. 

2.1.1 Artificial neural networks 

Artificial neural networks (ANN) were originally inspired from the human-being brain which 

works with interconnected neurons (Figure 2.1). The strength of neural connection is 
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determined through a learning process on labeled data characterized by weights (Cruz and 

Wishart, 2006). In an ANNs, the neurons are organized in layers, in such a way that usually 

only neurons belonging to two consecutive layers are connected.  

 

Fig. 2.1. Artificial Neural Network 

During the classification process, ANNs enable to perform statistical operations (linear, 

logistic, and non linear regression) and logical operations or inferences (AND, XOR, NOT, 

IF-THEN) (Mitchell, 1997; Rodvold et al., 2001). The perceptron (Rosenblatt, 1962) is the 

simplest neural network that, using a threshold activation function, enables to separate two 

classes by a linear discrimination function. Adjustment of connection strength is usually based 

on an optimization approach called backpropagation algorithm (Rumelhart, 1986). One of the 

first applications of machine learning approaches in cancer research were through neural 

networks (Maclin et al., 1991; Cicchetti, 1992). Recently, their use has also been extended to 

other cancer applications such as cancer prognosis and treatment planning (Gómez-Ruiz et 

al., 2004; Jerez et al., 2004; Ripley et al., 2004; Mian et al., 2005). Some limitation of the 

ANNs is the lack of interpretability and the problem of overfitting especially when a high 

dimensional data is faced (e.g. microarray data) (Cruz and Wishart, 2006). 

2.1.2 Decision trees  

A decision tree is a structured graph or flow chart of decisions (nodes) and their possible 

consequences (leaves or branches) used to create a plan to reach a goal (Quinlan, 1986) 

(Figure 2.2). In a classification tree, pattern classification starts from the root node by 

successively asking questions about each of its properties (features). Different exclusive links 

from a root node correspond to the different possible values of the property (feature). 
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According to the answer, this process is followed until arriving to a leaf node which has no 

further question. The pattern is finally assigned to the class represented by this node. 

 

 

 

 

 

 

Fig. 2.2. Decision tree 

A variety of approaches can be found for choosing the appropriate order of features in the 

decision tree and how possibly make reduce the large trees. Decision trees are very well 

accepted in medical applications owing to its high model transparency and comprehensive 

interpretability. This is argued by the fact that decision trees are a sort of rule-based methods 

which provide a comprehensive interpretation. Indeed, the factor of interpretability should not 

be underestimated in the real medical practice where “most physicians are not even 

accustomed to the idea of computer-aided problem solving” (Lucas, 1997). Decision trees are 

also one of the first methods applied in breast cancer research such as predicting breast cancer 

survivability (Delen et al., 2005), diagnosis (Lee et al., 2010a) and treatment planning (Khan 

et al., 2008).  Some potential limitations affecting the application of decision trees in cancer 

research is its difficulty to scale with high dimensional data (e.g. microarray data) and the 

strong assumption on mutual exclusivity of classes (Cruz et al., 2006).             

2.1.3 Discriminant analysis 

Fisher linear discriminant analysis (Fisher, 1936) constructs a linear hyperplan based on the 

maximization of between-group to within-group ratio.  Assuming a multivariate normal 

distribution and homogeneity of covariance matrices, the hyperplan is described by a linear 

discriminant function which equals zero at the hyperplan. In this case, the hyperplan is 

defined by geometric means between the centroids (i.e. the center of each classe) (Baldi and 

Brunak, 2001). Recently, a variety of non linear discriminant analysis approaches were 

proposed based on kernel concept to improve its classification performance (Mika et al., 

1999). This approach has found its place in some breast cancer applications (Miller et al., 
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2005; Michiels et al., 2005; Reid et al., 2005; Sun et al., 2007a). However, this approach 

suffers from several limitations such as the small sample size problem due to within-class 

matrix singularity (Fukunaga, 1990). This problem arises whenever the number of samples is 

smaller than the dimensionality of samples (the case of cancer classification with gene 

expression profiling characterized by thousands of genes and less than one hundred patients).        

2.1.4 k- nearest neighbor 

The k- nearest neighbor method classifies each unlabelled sample by the majority label among 

its k nearest neighbors in the training set (Cover and Hart, 1967). This makes it very well 

suited for non-linear classification problems. One potential of this approach is that it does not 

make any assumption on data distribution. A variety of breast cancer studies can be found in 

literature based on this approach (Parry et al., 2002; Olshen and Jain, 2002; Zheng et al., 

2010). Though simple, however, it is known that k-NN classifier is very sensitive to the 

presence of irrelevant features. Moreover, this method tends to be slow for large training 

dataset because the nearest neighbors should be searched over all instances (Baldi and 

Brunak, 2001).   

2.1.5 Support vector machines 

The key idea of this approach is that by an appropriate mapping into sufficiently high 

dimensional space, it is always possible to define a hyperplan that separates the data from two 

categories (Vapnik, 1998) (Figure 2.3).  

 

 

 

 

 

Fig. 2.3. Support Vector Machines 

The mapping is performed using some specific functions (known as kernel functions) which 

are chosen by the user among a variety of functions (Gaussian, polynomial, linear,…) 

according to the problem under investigation. The goal in all cases is to find the separating 

hyperplan in the resulted space with the largest margin, expecting that the larger is the margin, 
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the better is the generalization of classifier (Vapnik, 1998). This problem is generally 

reformulated as a constrained optimization problem and solved generally by resorting to its 

dual reformulation. Various applications using SVM has been performed on breast cancer 

research (Liu et al., 2003; Chang et al., 2003b; Land and Verheggen., 2009). SVM approach 

is known to be very robust to noisy features and the overffiting problem is unlikely to occur. 

This has encouraged recently its use in many breast cancer studies using microarray data 

(Guyon et al., 2002; Buness et al., 2009; Lee, 2010b). Although its demonstrated efficiency in 

wide range of classification problems, SVM presents major limitations such as the problem of 

selecting a suitable kernel function, its parameters and penalties (Baldi and Brunak, 2001).              

2.2 Unsupervised classification (clustering)  

Clustering is considered as one of the fundamental research problems in various data analysis 

fields such as machine learning and pattern recognition (Jain and Dubes, 1988; Jain et al., 

1999; Xu and Wunch, 2005). Cluster analysis seeks to organize a set of patterns (e.g. patients 

or genes) into clusters such that patterns within a given cluster have a high degree of 

similarity, whereas patterns belonging to different clusters have a high degree of dissimilarity 

(Duda et al., 2001). Unlike supervised classification, the outcome of each element in the 

unsupervised context is unknown making the learning task more challenging.  

One typical example in cancer research is the clustering of genes expression data (Belle et al., 

2010). In microarray experiment, the expression value of thousands of genes is obtained for 

only few patients. Extracting co-expressed genes in different samples from this data is of great 

importance as it may allow gaining new insights into cancer biology. This is typically a 

clustering problem where co-expressed genes should be grouped into the same cluster (Baldi 

and Brunak, 2001).     

Many algorithms have been proposed to address this problem for different purposes (Jain and 

Dubes, 1988; Jain et al., 1999; Baraldi et al., 1999; Xu and Wunch, 2005). Clustering 

techniques can be roughly divided into two main categories: Hierarchical and partitioning.  

2.2.1 Hierarchical clustering  

Hierarchical clustering produces a nested series of partitions on the form of tree diagram or 

dendogram (Jain and Dubes, 1988; Jain et al., 1999). In hierarchical clustering we can 

distinguish two situations between two groups from different partitions: either they are 

disjoint or one group wholly contains the other (Figure 2.4). Two clusters are merged in 
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hierarchical measure based on a distance or dissimilarity measure such as Minkowski and 

Mahalanobis measures (Jain and Dubes, 1988; Jain et al., 1999). It exist several algorithms to 

establish a hierarchical tree: agglomerative and divisive. Hierarchical clustering is the most 

commonly used method to summarize data structures in bioinformatics generally and in breast 

cancer specifically (Baldi and Brunak, 2001). Many studies can be found in cancer research 

literature about the use of this clustering approach, especially for microarray data analysis. In 

(Sotiriou et al., 2003), the use of hierarchical cluster analysis has led to distinguish between 

two groups of patients based on their ER status. This approach has also been used in the 

famous Stanford study to identify subgroups of cancers with separate gene expression profiles 

(Perou et al., 2000). Alizadeh et al. (2000) were able to identify formerly unknown types of 

B-cell lymphoma with distinct clinical behaviour by using hierachical clustering of expression 

data. The use of this approach, however, was not only limited to cancer class discovery, 

prognosis and treatment responsiveness prediction were respectively targeted in (Belle et al., 

2010) and (Rouzier et al., 2005).  

 

 

 

 

 

 

                        

  

Fig. 2.4: Hierarchical clustering 

2.2.2 Partitioning clustering  

Partitioning clustering identifies only one partition of the data that optimizes an appropriate 

objective function (kernel, spectral, fuzzy and classical) (Jain and Dubes, 1988; Jain et al., 

1999; Xu and Wunch, 2005) (Figure 2.5).  

The clustering can be either hard (each pattern belongs to only one class) or fuzzy (where 

each pattern belongs with a certain degree of membership to each resulting cluster) (Jain et 

al., 1999). Fuzzy clustering offers the advantage to provide a basis for constructing rule-based 

fuzzy model that has simple representation and good performance for non-linear problems 

(Yao et al., 2000).  

A B C D E 
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Fig. 2.5 Partitioning clustering 

The k-means algorithm (MacQueen, 1967) is one of the most popular partitioning clustering 

algorithms. This algorithm is based on a “hard” partition of the data into k clusters based on 

the minimization of the within-group sum of squares. A direct extension of the k-means 

algorithm is the Fuzzy C-means (FCM) (Bezdec, 1981), where the fuzzy set notion is 

introduced into the class definition. In this case, each element belongs to a given class with 

certain membership degree. Likewise, FCM minimizes the within-group sum of squares but 

by taking into account the membership degrees of each element. Another interesting 

clustering approach is the Self-Organizing feature Maps (SOM) (Kohonen, 1982 ).  In this 

approach the data are represented by means of codevectors on a grid with fixed topology. 

Codevectors are adaptive according to input distribution, but adaptation is propagated along 

the grid to neighborhood codevectors, according to a specific neighborhood function 

(Filippone et al., 2008).  

These clustering approaches are widely used in breast cancer research. For instance, a 

molecular classification of tumor samples can be achieved using either unsupervised methods 

like k-means clustering (Bertucci et al., 2002; Wang et al., 2003; Wiseman et al., 2005) or 

‘SOMs’ (self organizing maps) (Covell et al., 2003). Tamayo et al. (1999) have also used 

SOMs on DNA array data to differentiate subtypes of acute leukaemia. Clustering approaches 

have been also used to cluster the gene in groups and establish the relation between the co-

expressed genes in each group (De Souto et al., 2008). Many studies can be found also where 

the clustering is performed in both directions, i.e. patients and genes, called biclustering 

(Cheng and Church, 2000; Sheng et al., 2003). However, the use of different methods may 

yield different results. Therefore, those approaches should be used with caution according to 

the problem under consideration. 
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2.3 Feature selection  

Usually, for many learning domains potential useful attributes, also called features, for pattern 

description are defined randomly. However, not all of these features are important for learning 

task (i.e. supervised or unsupervised learning): some of them can be irrelevant, some may be 

redundant, and some can even misguide learning results.  The problem of selecting important 

features is known in the literature as feature selection. Feature selection is defined as the 

problem of choosing a small subset of features that ideally is necessary and sufficient to 

describe the target concept (Kira and Rendell, 1992a). Cancer research is the field in which 

feature selection is being extensively employed. With the involvement of high throughput 

technology in breast cancer management, feature selection has become a necessary step in 

order to discard the huge number of irrelevant genes. The most important objectives of feature 

selection are: (a) to avoid overfitting and improve model accuracy, i.e. classification 

performance in the supervised learning and better clusters detection in the case of clustering, 

(b) reducing training time of the model, (c) to gain deeper insight into the underlying 

processes that generated the data (Saeys et al., 2007). A typical feature selection task consists 

of four basic steps: subset generation, subset evaluation, stopping criterion and result 

validation (Liu and Yu, 2005). Subset generation produces candidate feature subsets for 

evaluation based on a certain search strategy. According to the evaluation criterion, this new 

subset can be either retained to replace the previous best subset or rejected. This process is 

repeated until a given stopping criterion is satisfied. Then the winner feature subset is 

validated finally via a real world dataset (see (Liu and Yu, 2005) and reference therein for 

review). Many research efforts have been directed in the last two decades towards developing 

efficient feature selection methods in a supervised framework (Kira and Rendell, 1992a; 

Weston et al., 2001; Gilad-Bachrach et al., 2004). However, only few works have been 

devoted to address this problem in the unsupervised learning and clustering. This is mainly 

due to the absence of class labels, unlike in supervised learning, to assess the importance of a 

subset of features. Most of unsupervised feature selection algorithms are based on information 

or consistency measures (Mitra et al., 2002; Dy and Brodley, 2004; Wei and Billings, 2007). 

 In the context of classification, existing feature selection methods are traditionally 

categorized as filter, wrapper, hybrid or embedded methods, with respect to the criterion used 

to search for relevant features (Kohavi and John, 1997; Guyon and Elisseeff, 2003). We 

describe below the three approaches and review some of their advantages and drawbacks.  
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2.3.1 Filter methods  

In filter methods an independent evaluation function based generally on a measure of 

information content is used to select a set of features that maximizes this function, regardless 

of their effects on model performance. Then different classification methods can be applied 

using only this subset of features. Filter approaches are computationally very efficient and can 

scale well with high dimensional data. Thanks to its computational properties, many cancer 

research studies have resorted to use filter approaches especially for microarray data analysis. 

In these approaches all the genes are evaluated individually, e.g. through t-test and Fisher 

score (Dudoit et al., 2002; Li et al., 2004). However, filter approaches presents some 

limitations related to the problem of interactions between features. Furthermore, they do not 

often guarantee a maximum classification performance because they totally ignores the effects 

of the selected subset of features and thereby sometimes perform very poor.       

2.3.2 Wrapper methods  

Wrapper methods use the performance of a learning method to assess the relative usefulness 

of the selected feature subset (e.g. by cross validation) (Kohavi and John, 1997; Guyon and 

Elisseeff, 2003). In other words, wrapper method requires one learning method (e.g. decision 

trees, SVM, k-NN,…) and uses its performance as the evaluation criterion. For feature subset 

search step, an exhaustive procedure can be performed, if the number of features is not too 

large. But, with ten thousands of features, the search becomes quickly intractable to perform 

the combinatorial searching required in wrapper methods. A wide range of search strategies 

can be used, including best-first, branch-and-bound, simulated annealing, genetic algorithms 

(see (Kohavi and John, 1997) for review). With the aim to improve the classification accuracy 

in cancer applications, wrapper methods have known also rapidly a wide spread use (Blanco 

et al., 2004; Wang et al., 2005b). In (Sun et al., 2007a) a more advanced approach that avoids 

the computational issue by optimizing a margin-based objective function has been used for 

gene selection. A relevant comparative study between filter and wrapper methods for gene 

selection has been performed in (Inza et al., 2004).  

2.3.3 Hybrid methods 

In hybrid feature selection approaches a filter feature selection method is firstly used to 

reduce the initial feature dimension and then a wrapper approach is applied on the reduced 

subset of features (Das, 2001). Nevertheless, the search in this approach is time consuming 
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and depending on the learning approach used by the wrapper method. Some attempts can be 

found in cancer literature using such approaches for microarray data analysis (Xing et al., 

2001).        

2.3.4 Embedded methods  

In these approaches the feature selection task is incorporated into the learning process. Just 

like in wrapper approaches, embedded approaches require therefore a learning algorithm. 

Embedded approaches have the advantage that they integrate the interaction with the learning 

method, while at the same time being less computationally intensive than wrapper methods. 

Embedded methods are not new in machine learning as some of the oldest decision trees such 

as CART (Breiman et al., 1984) encompass a built-in mechanism to perform feature selection. 

Weston and his co-authors have proposed an embedded feature selection approach for SVM 

methods (Weston et al., 2001). Recursive Feature Elimination RFE (Guyon et al., 2002) is a 

well-known feature selection method designed specifically for microarray data analysis. It 

works by iteratively training an SVM classifier with a current set of features, and then 

heuristically removing the features with small feature weights.   

2.4 Recent challenges in breast cancer management 

In spite of the intensive research performed in the machine learning filed (see previous 

sections) in past decades, many challenges are still needed to be addressed seriously to 

improve cancer management. Challenges are mainly related to data characteristics used in 

decision-making process. Three challenges are mainly faced: the first one is related to the 

presence of mixed-type data in daily produced clinical datasets, the second one is related to 

high dimensionality in data especially issued from microarray technology and the last one is 

the problem of noise and uncertainties associated usually to both data. Addressing efficiently 

those problems is urgently needed provided that in some cancer applications the three 

challenges can be even faced simultaneously (e.g. integration of clinical and microarray data 

to improve breast cancer management (Sun et al., 2007a, Gevaert et al., 2006). We describe 

thereafter in detail the three challenges which will make the focus of the present thesis. 

2.4.1 Data heterogeneity 

Features used by physicians for patient state description are generally represented in different 

ways. The most used representation is the pure quantitative one which assumes a complete 

accuracy about the information. Taken as it appears, a real number contains an infinite 
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amount of precision whereas human knowledge is finite and discrete. So, there is a need to 

use data represented by symbolic values to fit with human perception. The representation of 

data can be therefore done in different ways: quantitative (e.g. Age=50), symbolic intervals 

(e.g. age belongs to the interval [40,60]) or qualitative values (e.g. old, young, 

menopause,…). Thus, the development of an automatic mechanism for medical support is 

faced with this problem of data heterogeneity (quantitative, qualitative and interval data). 

Indeed, daily produced medical datasets are commonly characterized by a subset of 

heterogeneous (mixed type) features. For instance, many datasets from the popular UCI 

machine learning repository (Blake and Merz, 1998) are described by heterogeneous features. 

During the last decades, few research works have been directed to defy the issue of 

representation multiplicity for data analysis purposes (Michalski and Stepp, 1980; Mohri and 

Hidehiko, 1994; Hu et al., 2007). However, to the best of our knowledge, no standard 

principle has been proposed in the literature to handle in a unified way heterogeneous data. 

Indeed, a lot of proposed techniques process separately quantitative and qualitative data. In 

feature selection tasks for example, they are either based on distance measures for the former 

type (Kira and Rendell, 1992a) and on information or consistency measures for the later one 

(Dash and Liu, 2003). Whereas in classification and clustering tasks, eventually only a 

Hamming distance is used to handle qualitative data (Aha, 1989; Aha, 1992; Kononenko, 

1994). Other approaches are originally designed to process only quantitative data and 

therefore arbitrary transformations of qualitative data into a quantitative space are performed 

without taking into account their nature in the original space (Cover and Hart, 1967; Kira and 

Rendell, 1992a; Weston et al., 2001). Another inverse practice is to enhance the qualitative 

aspect and discretize the quantitative value domain into several intervals, then objects in the 

same interval are labeled by the same qualitative value (Liu et al., 2002; Hall, 2000). 

Obviously, both approaches introduce distortion and end up with information loss with 

respect to the original data. Moreover, none of the previously proposed approaches combines 

in a fully adequate way, the processing of symbolic intervals simultaneously with quantitative 

and qualitative data. An interesting approach would be to unify the different heterogeneous 

spaces into one homogeneous space and then reason in a unified way about the whole data to 

make the appropriate decision. To avoid any type of distortion and/or information loss the 

space’s unification process should be performed appropriately for each type of data. 
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2.4.2 High feature-to-sample ratio (curse of dimensionality) 

The recent introduction of high throughput technology in breast cancer management has 

brought with it a new challenge related to the high dimensionality of microarray data. Indeed, 

this problem, known as curse of dimensionality (or high feature-to-sample ratio), is still 

considered as one of the principal challenges in statistical machine learning (Lafferty and 

Wasserman, 2006). As it has been pointed out in section 2.2, due to the presence of large 

amount of irrelevant genes, many traditional classification approaches either present some 

limitations (e.g. overfitting) or important computational time (e.g. k-NN). Even when the use 

of feature selection approaches can help to alleviate this problem, most of them become 

unpractical when the problem of dimensionality is associated with the problem of 

heterogeneity (section 2.4.1) or the noisy nature of microarray measurement (detailed in next 

section). Therefore, there is a need to develop new approaches enabling to deal efficiently and 

simultaneously with such problems. 

2.4.3 Noise and uncertainty 

From other side, the features used to describe a patient state can also be corrupted by several 

types of noise and uncertainties due to measurement, human approximations or biological 

interaction. For instance, it has been reported recently that the major difficulty in deciphering 

high throughput gene expression experiments comes from the noisy nature of the data (Tu et 

al., 2002). Indeed, data issued from high throughput technology are not only characterized by 

dimensionality problem but present also another challenging aspect related to thier low signal-

to-noise ratio. The noise in such type of data is multisource: Biological and noisy 

measurement, slide manufacturing errors, hybridization errors, scanning errors of hybridized 

slide (Tu et al., 2002; Nykter et al., 2006). Biological errors are typically due to internal 

stochastic noise of the cells and error sources related to sample preparation (Blake et al., 

2003). This type of intrinsic noise is present in all measurements, regardless of the 

measurement technology. Measurement errors, on the other hand, include error sources that 

are directly related to the measurement technology and its limitation (e.g. bias due to the used 

dyes) (Nykter et al., 2006). The properties of this kind of extrinsic noise depend on the 

measurement technology (Blake et al., 2003). Slide manufacturing errors are related to 

microarray slide images. These include variation in the spot position and size. In addition the 

marks done by a print tip and deformations in the spot shape can be produced (Nykter et al., 

2006). Hybridization errors include background noise, spot bleeding, scratches, and air 
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bubbles (Nykter et al., 2006). Another possible source of error is the digitization of hybridized 

slide by scanning. The hybridized slide is read by scanning each dye color separately, it might 

be possible that channels do not align perfectly (Nykter et al., 2006). Many studies were 

performed to study the different effects of experimental, physiological, and sampling 

variability (Lee et al., 2000; Novak et al., 2002). An interesting study has been performed in 

(Tu et al., 2002) to analyze the quantitative noise in gene expression microarray experiments. 

The authors have shown through two illustrative concrete examples the difference in gene 

expression due to experimental noises. In the first example, a comparison between gene 

expression values measured on the same sample has been performed. Figure 2.6a shows the 

overall difference in two measured gene expression due to measurement error alone as 

provided in (Tu et al., 2002). The deviation of the scattered points from the diagonal line 

represents the difference between the two measured transcriptomes. In the second example 

two samples from different cultures are compared as shown in figure 2.6 (b) so that the 

measured expression value differences contain the combined effect of the genuine gene 

expression differences caused by measurement error.  

 
Fig. 2.6: The scatter plot of gene expression pairs (a) experiments pair on the same sample (b) experiment pair 

between two different samples. Figure taken from (Tu et al., 2002). 

Although Figures (a) and (b) appear similar, the deviations in the expression values from the 

diagonal line are completely different. The first one is due only to gene expression 

measurement error whereas the second is due to the combined effect of the gene expression 

differentiation and measurement error. Therefore, it is crucial to characterize the difference 

caused purely by experimental measurement from the expression differentiation due to the 

difference between the two cultures.  
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All existing feature and classification approaches assume that microarray data is perfect 

without wondering about its reliability. One common practice to deal with this problem is to 

transform in non-linear way the gene-expression levels in a preprocessing phase so that the 

variance across experiments becomes comparable for each gene (Huber et al., 2002). A 

drawback with this approach is that a global transformation does not adequately account for 

the fact that the same gene may be measured with different precision in different experiments 

(Huber et al., 2002). Another drawback with this approach is that a complex non-linear 

transformation of the data complicates the interpretation of measurement when compared with 

a global transformation. Machine learning approaches can offer also a powerful tool to tackle 

such problem. An interesting approach would be to use symbolic data analysis (SDA) 

popularized by Bock and Diday (Bock and Diday, 2000). Within this framework, interval data 

representation can be used to take into account the usually uncertainty and noise inherent to 

measurements (Billard, 2008). Symbolic interval features are extensions of pure real data 

types, in the way that each feature may take an interval of values instead of a single value 

(Gowda and Diday, 1992). In this framework, the value of a quantity  x (e.g. gene expression 

value) is expressed as a closed interval [x-,x+] whenever x is noised or uncertain; representing 

the information that +≤≤−
xxx . However, the introduction of interval representation makes the 

data processing task more complex than when only a numerical value is considered, 

especially when high dimensionality problem is faced jointly. It is worthwhile to note that 

interval data presentation can be useful also for many other real world problems in cancer 

field.  

Measurement uncertainty is not the only type of uncertainty to be faced in real-world 

problems generally and medical field specifically. Another uncertainty type of big interest is 

the membership uncertainty of patients to each class, i.e. a patient's tumor can belongs 

simultaneously to many cancer groups with some degree of membership, in a way that the 

decision making mechanisms become reproducible and robust, because clinically relevant 

cancer groups are identified in several public datasets using different populations of breast 

cancer patients. Indeed, breast cancer has been shown to be a highly heterogeneous disease 

requiring the consideration of such uncertainty in decision making process. Even in the day-

to-day practice, physicians in their decision process incorporate naturally such uncertainty for 

any disease management.  Fuzzy set theory, introduced by Lotfi Zadeh (Zadeh, 1965), 

represents an appropriate framework to deal with membership uncertainties. Medicine was 

one of the first fields in which Zadeh’s fuzzy set theory was applied, to deal with vagueness in 
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perceptions of reality phenomena (Zadeh, 1969). Although fuzzy approaches have started to 

gain increasing attention in wide range of cancer applications (Ressom et al., 2003; Andrews 

et al., 2003; Haibe-Kains et al., 2010), its scalability with recent challenges is still far to be 

convincing compared to other classical machine learning approaches. Therefore efficient 

fuzzy approaches to deal with such problems may make a major contribution in the 

improvement of cancer management.      

2.5 Conclusion 

In this chapter we have reviewed the state-of-the-art of machine learning in cancer research. 

We have described the main three machine learning tasks most used in cancer management: 

supervised classification, clustering and feature selection. A few examples of the most famous 

approaches for each task have been briefly described by highlighting their advantages and 

drawbacks. Then some applications of such approaches in breast cancer management have 

been provided. Although their successful use in breast cancer management based on 

traditional clinical factors, we have noticed that most of them fail to deal with the recent 

challenges brought by the introduction of data issued from advanced technologies. We can for 

instance mention the problem of overfitting in supervised classification methods due usually 

to the low feature-to-sample ratio. This requires a resort to feature selection approaches 

extensively studied and developed to overcome this problem. We reviewed briefly the 

tremendous research work have been made in that direction. We have noticed however that 

feature selection is not only useful for dimension reduction but has made major advancements 

to gain new insights in cancer biology by using gene expression profiles. Thanks to feature 

selection approaches a tailored and personalized cancer management is today underway by 

the derivation of several genetic signatures for different purposes. We have finally described 

the unsupervised learning approaches and their applications in breast cancer management 

especially through their use in the identification of group of coexpressed genes.  

This chapter ends with a description of the recent challenges that have to be faced to improve 

cancer management and treatment. We considered mainly the problems of data heterogeneity, 

high dimensionality, low signal-to-noise ratio and membership uncertainties. Data 

heterogeneity is related to the use of mixed-type features in daily produced datasets, a 

common practice in many cancer problems. Although the important number of works devoted 

to address the problem of high data dimensionality, it is still considered as an open research 

problem and one of the principal challenges in statistical learning theory. Whereas the 
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problem of low signal-to-noise ratio is related to the problem of reproducibility in high-

throughput technologies (microarray, mass-spectrometry), due mainly to the variations in 

experimental and biological conditions. To the best of our knowledge, this problem has never 

been addressed by the machine learning community. We noted also that the noises are not the 

only uncertainties in cancer; membership uncertainty of a tumor to cancer subtypes is an 

evident reality and is gaining increasing attention in recent studies using gathered datasets 

issued from different technologies by different medical centers.  

In next chapter we address the problem of high dimensionality through the development of an 

embedded feature selection for SVM based on descent gradient method. 
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CHAPITRE 3- Résumé  
Sélection de variables intégrée dans 
les machines à vecteurs supports par 
une méthode de gradient  

Les technologies à haut débit fournissent régulièrement des bases de données caractérisées 

par un nombre sans précédent de variables pour représenter chacun des individus. Grace à 

sa capacité de fournir des solutions creuses, la régularisation d'apprentissage de type ℓ1 a été 

montrée comme étant une méthode prometteuse pour la sélection de variables dans les 

problèmes de classification. Parmi le large éventail d'applications de régularisation de type 

ℓ1, nous pouvons distinguer une régularisation ℓ1 pour la régression logistique (Ng, 2004), 

LASSO (Tibshirani, 1996) et ℓ1-SVM (Bradely et Mangasarian, 1998; Zhu et al, 2003). Nous 

nous concentrons dans ce chapitre sur le problème de régularisation ℓ1-SVM afin de 

développer une approche de sélection de variables dite de type intégrée (ou «embedded» en 

anglais) pour surmonter le problème de dimensionnalité élevée. 

En dépit de ses propriétés intéressantes, la mise en œuvre rapide des algorithmes ℓ1-SVM 

pour des données de grande dimension a été considérée pendant longtemps comme un 

problème difficile, car la fonction objective ainsi obtenue est non-différentiable. Les méthodes 

génériques utilisées pour résoudre des problèmes convexes non-différentiables tels que les 

méthodes basées sur le gradient sont typiquement très lents. Diverses techniques 

d'optimisation avancées ont été exploitées pour développer des dizaines d'algorithmes 

capables de traiter des problèmes de moyenne et de grande échelle. Durant les années 

passées très peu de travaux ont été consacrés pour résoudre ce problème. En particulier, on 

peut distinguer le travail de Zhu et ses co-auteurs (Zhu et al., 2003) et plus récemment les 

travaux de Fung and Mangasarian (Fung and Mangasarian, 2004; Mangasarian, 2006). 

Dans le premier travail,  le problème ℓ1-SVM est formulé comme un problème de 

programmation dynamique afin d’utiliser les logiciels classiques pour le résoudre alors que 

dans le deuxième travail une méthode de Newton a été utilisée pour résoudre le problème 

dual comme un problème à pénalité extérieure. La dernière méthode est caractérisée 

cependant par une grande complexité en raison du nombre de paramètres à ajuster (cinq dont 

le paramètre de régularisation), ce qui la rend inutilisable par des utilisateurs non 

spécialistes. De plus on montre dans ce chapitre que la méthode de Newton ne garantit pas 
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toujours une solution optimale globale. Il a été souligné cependant par Chapelle (Chapelle, 

2007) que le problème d’optimisation initial peut être résolu aussi efficacement sans passer 

par une formulation duale étant donné que dans les deux cas le même résultat est obtenu.  

On propose ici d’utiliser une approche générique basée sur une technique de descente du 

gradient, notée ici DGM (Direct Gradient Method), pour résoudre le problème initial ℓ1-

SVM. Cette méthode s’est montrée efficace pour résoudre les problèmes de régression 

logistique normés ℓ1 (Cai et al., 2010a). Cependant, elle suppose que la fonction objective soit 

différentiable, ce qui n’est pas le cas dans le cas du problème ℓ1-SVM. Pour surmonter ce 

problème, la fonction de perte est remplacée par une fonction approximée dites de Hubber. 

Ensuite le problème d’optimisation convexe initial est transformé en un problème non-

convexe sans contrainte, avec lequel, en utilisant une méthode de descente du gradient, une 

solution optimale globale est garantie. Cette méthode a été implémentée sur Matlab et 

comparée avec la méthode proposée par (Fung and Mangasarian, 2004; Mangasarian, 2006) 

dite LPNewton sur huit bases de données de grande dimension pour démontrer son efficacité. 

Il a été montré que cette méthode surpasse la méthode LPNewton en termes de temps 

d’exécution (CPU time) et en termes de précision atteinte en variant le paramètre de 

régularisation. A titre d’exemple, sur une base de données de cancer de la prostate 

(Stephenson et al., 2005) contenant 97 patients caractérisés par l’expression de 22291 gènes, 

la méthode proposée atteint le coût ciblé dans un temps d’exécution de 40.3 secondes alors 

que la méthode LPNewton demande 2147 secondes ; elle est donc 50 fois plus rapide. Il a été 

de plus constaté que la méthode LPNewton échoue à converger pour certaines valeurs de 

paramètre de régularisation dans la plupart des cas.  

Il est à noté que ce travail a été réalisé dans le cadre d’un séjour de recherche au 

Laboratoire ICBR (Interdisciplinary Center for Biotechnology Research) à l’Université de 

Floride cofinancé par l’Ecole Doctorale EDSYS, l’Université Paul Sabatier et le groupe de 

recherche DISCO (Diagnostic et Conduite des Systèmes) du LAAS. 

La grande dimensionnalité des données n'est cependant pas le seul problème rencontré dans 

les applications pratiques du cancer. Des problèmes tels que l’hétérogénéité des données, les 

incertitudes et les bruits peuvent également être rencontrés conjointement avec le problème 

de dimensionnalité élevée. Par conséquent, des méthodes plus efficaces sont nécessaires pour 

faire face simultanément à tous ces problèmes. Cette problématique représentera notre sujet 

d'intérêt dans les chapitres suivants afin de développer des approches appropriées capables 

de gérer de tels problèmes simultanément. 
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CHAPTER 3 
Embedded Feature Selection for SVM 
by Gradient Descent Methods 

High-throughput technologies produce routinely large datasets characterized by 

unprecedented number of features representing each data sample. ℓ1 regularized learning, due 

to its ability to produce sparse solutions, has been shown to be a promising method for feature 

selection in classification problems. Among the wide range of ℓ1 regularization applications, 

we can distinguish ℓ1 regularized logistic regression (Ng, 2004), LASSO (Tibshirani, 1996) 

and ℓ1-SVM (Bradely and Mangasarian, 1998; Zhu et al., 2003). We focus in the present work 

on the problem of ℓ1 regularized SVM in the primal domain.  

Despite its attractive properties, the fast implementation of ℓ1-SVM algorithms for high-

dimensional data has long been considered as difficult computational problem since the so-

obtained objective function is non-differentiable. Generic methods for non-differential convex 

problems such sub-gradient methods are typically very slow. Various advanced optimization 

techniques were exploited to develop dozens of algorithms capable of handling medium and 

large scale problems. In the last few years only few works have been devoted to solve this 

problem. In (Zhu et al., 2003) the ℓ1-SVM problem is formulated as a linear programming 

problem and a standard software packages was used to solve it. Whereas in (Fung and 

Mangasarian, 2004; Mangasarian, 2006) a Newton method was used to solve the dual linear 

program formulation as an exterior penalty problem. The basic idea of this approach is to set 

up the 1-norm SVM problem as unconstrained minimization problem in the dual space. This 

method has been tested on a wide variety of data sets and compared with other methods (Fung 

and Mangasarian, 2004; Mangasarian, 2006). However, this method ends up with a high 

complexity due to the number of the resulted parameters to be adjusted (five including the 

regularization parameter), which makes it impracticable by non proficient users. Furthermore, 

as it is shown in this chapter, reaching an optimal global solution by the adopted Newton 

method is not always guaranteed. Nevertheless, it has been pointed out recently by (Chapelle, 

2007) that dual and primal optimization problems are two equivalent ways of reaching the 

same result. Indeed, it has been shown that the primal problem can be solved efficiently 

without need to pass by the dual formulation.  
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A generic approach based on descent gradient technique has been recently proposed, referred 

to as DGM for Direct Gradient Method, capable to solve various ℓ1 regularized learning 

problems, provided that the loss function is differentiable (Cai et al., 2010a). It has been 

shown through an application on ℓ1 regularized logistic regression that this method has the 

advantage to provide a simple and fast implementation. We show in the present work that the 

ℓ1-SVM problem can be solved easily in the primal domain by using a generic gradient-

descent technique based on DGM (Cai et al., 2010b). The basic idea is to transform a convex 

optimization problem with a non-differential objective function into an unconstrained one. It 

has been proved theoretically therein that if the initial point is properly selected, DGM 

provides an optimal global solution. We take advantage here of this property to extend it to 

solve one of the important problems in machine learning; the ℓ1-SVM problem in the primal 

domain. This approach is however not straightforward provided that the hinge loss function in 

the objective function is non-differentiable. To overcome this problem, we replaced the non-

differentiable hinge loss function by its approximate differentiable Huber loss function. It has 

been pointed out indeed that the SVM using this loss function provides the same sparse 

solution as SVM with the hinge loss function within certain condition (Chappelle, 2007). We 

then transform the initial constrained convex optimization problem into an unconstrained 

problem in the primal domain. Some numerical experiments was performed to compare the 

proposed approach with the Newton family approaches proposed by (Fung and Mangasarian, 

2004; Mangasarian, 2006). We demonstrate that our algorithm, though simple, outperforms 

this method in term of computational efficiency and the optimal quality of the obtained 

solution.  

It is worthwhile to note that this work has been performed during a research stay in ICBR 

(Interdisciplinary Center for Biotechnology Research) at the University of Florida, under the 

supervision of Ph.D Yijun Sun. The chapter is organized as follows. Section 2 describes the 

main idea of the DGM approach. Section 3 presents the detailed implementation of the ℓ1-

SVM method. Section 4 presents some numerical experiments to compare the new approach 

with one of the well known state-of-art algorithm.  

3.1 Gradient descent based method for solving ℓ1 regularized problems 

This section describes the main idea of the Gradient descent method for solving ℓ1 regularized 

problems. This description has been taken from (Cai et al., 2010a). Let { }N

nn
n y 1

)( ,xD == denote 
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a training dataset, where Jn ℜ∈)(x is the n-th pattern and ℜ∈ny  is the corresponding class. 

We seek an optimal solution ( )** b,w  to the following ℓ1 regularized learning problem: 

( ) ( )
1

1

)(
1

bw,

wbxw,
1

bw,min λ++= ∑
=

N

n

nT
nyL

N
f  

   (3.1) 

 

Where ∑=
j j1
ww , jw is the j-th element of w, L(·) is a loss function and λ is a 

regularization parameter that controls the sparseness of the solution. We herein require that 

L(·) be a convex and differentiable function with respect to the second argument. The above 

formulation encompasses a wide range of learning algorithms, including LASSO (Tibshirani, 

1996) and ℓ1 regularized logistic regression algorithm (Ng, 2004). If a modified hinge loss is 

used (see, for example, (Rennie & Srebro, 2005; Chapelle, 2007)), equation (3.1) represents 

an approximate formulation of ℓ1-SVM. 

The above formulation has a very appealing property for high-dimensional data analysis. It 

has been proved in (Rosset et al., 2004) that solving problem (3.1) leads to a globally optimal 

solution *w with at most N non-zero elements. When JN << , it provides an explicit 

mechanism to perform feature selection to significantly reduce model complexity. This 

property, however, comes at a price. Unlike ℓ2 regularization, 
1

w is a non-differentiable 

function of w. The efficient implementation of ℓ1 regularized formulations poses a serious 

challenge to the machine learning community. We below show how a simple gradient descent 

technique can be used to efficiently solve ℓ1 regularized learning problems.  

Denote [ ]TTnTnn )x( ,)x(x )()()( −= . Let us consider the following optimization problem:                                                     

( ) ( )
0w       ..

 bxw,
1

b,w
2J

1i1

)(
2

b,w
min

≥

++= ∑∑
==

ts

wyL
N

f i

N

n

nT
n λ

 

 

(3.2) 

 

The following lemma shows that the solution to (3.1) can be recovered from the solution to 

(3.2). 

Lemma 3.1. Let ( )** b,w  be an optimal solution to (3.2) where [ ]TTT )w(,)w(w *(2)*(1)* =  and 

.w,w *(2)*(1) Jℜ∈  Then, ( )**(2)*(1) b,ww −  is an optimal solution to (3.1). Also, if ( )** b,w  is 

an optimal solution to (3.1), then there exists o(1)w and o(2)w , so that o(2)o(1)* www −=  and 

[ ]( )*o(2)o(1) b ,)w(,)w(
TTT  is an optimal solution to (3.2).  

Proof. See Appendix 2. 
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The following lemma shows that at least half of the elements of the optimal solution to (3.2) 

are zero. We will exploit this property in our algorithm implementation in Section 3. 

Lemma 2.2. Let ( )** b,w be an optimal solution to (3.2) and [ ]TTT )w(,)w(w *(2)*(1)* = . Then, 

[ ] ],...,1[ Jj =ℑ∈∀ , either )2*()1*(  jj worw or both equal to zero. 

 Proof. See Appendix 2. 

The conversion from (3.1) to (3.2) is a standard step that has been previously used in many 

algorithms (e.g. (Schmidt et al., 2007) and (Duchi et al., 2008)).  Note that Eq. (3.2) is a 

constrained convex optimization problem, with a differentiable objective function. In order to 

use gradient descent, we convert it into an unconstrained optimization problem.  

Let 2
jj vw = , [ ]ℑ∈∀ 2j . Then, (3.2) can be re-written as 

( ) ∑∑ ∑
== =

+

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bv,min λ  
   (3.3) 

 

After the above transformation, the objective function of (3.3) is no longer a convex function, 

which is usually an undesitable property in optimization, except for some rare cases 

(Evtushenkjo and Zhadan, 1996; Faybusovich, 1991). We show by next that the 

transformation is beneficial in the sense that it not only preserves global convergence property 

of the original problem, but also enables removal of irrelevant features.  

Taking the derivative of f with respect to v and b, respectively, yields 
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(3.4) 

 

where tL ∂∂ /(.)  is the derivative of L with respect to the second argument, and ⊗  is 

Hadamard operator. 

For convenience, we denote TT b] ,[vv =  and ])
b

(,)
v

[( TT ff
g

∂
∂

∂
∂= . Let )(v k be the estimate of 

v  in the k-th iteration and )(g k  be the value of g at )(v k . A gradient descent method uses the 

following updating rule 

)()()1( g vv kkk η−=+     (3.5) 

where η  is determined via a line search. 
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Theorem 3.1. Let ( )bw,f  be a differential convex function of w and b, where 0w,w J ≥ℜ∈ , 

and ℜ∈b . Let ( )bw,)v( fG =  where TT
J J

vvww ],...,[],...,[w 22
1 1

== and 1b += Jv . If 

0
v vv

=
∂
∂

+=

G
, then +v is not a local minimizer, but a saddle point or a global minimizer of 

)v(G . If the Hessian )vH( +  is positive semi-definite, then +v  is a global minimizer. 

Theorem 3.2. For )v(G and +v  defined above, if +v  is found through gradient descent with a 

line search satisfying the following conditions:  

1. interval condition: a line searche splits  the selection under search into a finite number 

of intervals, 

2. Descending condition (see the definition below), 

3. Greedy condition (see the definition below); 

and an initial point )0(v  staisfying ,0)0( ≠jv [ ]ℑ∈∀j , then with probability one, +v  is a 

global minimizer of )v(G . 

Here we give the definitions of the descending and greedy conditions for a line search: 

Definition 3.1. (descending condition). Let )v(G be an objective function, )v(g be its 

gradient, )(v k be the solution obtained in the k-th iteration, and )(kd−  be the descending 

direction, a line search is said to satisfy the descending condition if the chosen step length η 

satisfies                                       

                                                     ( ) ,0v )((k))( >− kTk dgd η  

Definition 3.2. (greedy condition). Given )v(G and )v(g  defined above, and )(kε  be the 

length of the intervals at the k-th iteration, a line search is said to satisfy the greedy condition 

if the step length η chosen satisfies                                                      

( ) ( ),)(vv )()()()()( kkkkk dGdG εηη +−≤−  

or ( ))()()( )(v kkk dεη +−  is excluded from the line search;and 

( ) ( ),)(vv )()((k))((k) kkk dGdG εηη −−≤−  

or ( ))()()( )(v kkk dεη −−  is excluded from the line search. 

The proof of theorems 3.1 and 3.2 is given in Appendix 2.  

The interval condition prevents the algorithms from over-exploring along a gradient descent 

direction. The descending and greedy conditions ensure that a line search approaches a local 
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optimum along the descending direction, but never hits or goes beyond it. With these 

conditions a gradient descent method can improve its quality step by step and to be immune 

from misleading gradient information. Golden section search (Kiefer, 1953) is an example 

that satisfies the greedy condition and splits the section into finite intervals according to the 

golden section rule. 

3.2 Implementation details 

We present below the detailed implementation of DGM for solving ℓ1-SVM problem in the 

primal domain. In ℓ1-SVM the following hinge loss function is usually used: 

) 1 ,0( max),( ayayL −=     (3.6) 

 

However, the hinge loss function is not differentiable and therefore the application of DGM 

method is not straightforward in this case. To overcome this problem, we replace the non-

differential hinge loss function by its approximate differentiable Huber loss function as 

suggested by (Chapelle, 2007), given by 
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(3.7) 

 

where h is a tunable parameter. If h is sufficiently small, SVM using the Huber loss provides 

the same sparse solution as SVM with the hinge loss (Chapelle, 2007). Hence, DGM 

described in section 2 can be directly used to solve ℓ1-SVM in the primal domain. The 

gradients of f  in Eq.(3.3) with respect to v and b in this case is given as follows 
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(3.8) 

 

and 
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The gradient descent steps in (3.5) is then applied. In each step, we first apply back-tracking 

line search (Nocedal and Wright, 1999) to obtain an end point )(v e where )v()v( )()( ke ff ≤ , 

then apply golden section line search on the section between )(v k and )(v e . 

3.2.1 Hybrid Conjugate Gradient 

Because a simple gradient descent method is known to zig-zag in some function contours, the 

Fletcher-Reeves conjugate gradient descent method (Fletcher, 1997) can be used to enhance 

the performance of the algorithm: 
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where )(d k  is the conjugate gradient, and . is the inner product. Note that conjugate gradient 

method does not ensure that the objective function decreases monotonically. Hence, when 

0, )()( ≤kk dg , one usually replaces )(d k  with )(kg as the search direction to ensure that the 

algorithm always proceeds in a descending direction. In all our implementation, we adopt a 

hybrid gradient descent scheme. Denote )(kf as the objective function obtained in the k-th 

iteration and )b,(a∠  the angle between vectors a and b. If 1
)()1()( /)( θ<− − kkk fff  and 

2
)()( )d,( θ<∠ kkg , we use )(kd−  as the descending direction, and )(kg− otherwise. In all our 

implementations, we set θ1 = 0.01 and θ2 = 5/12π. It should be noted that with the descending 

condition, the global convergence property also holds for conjugate gradient descent.  

We stated in the previous section that the solution *w has at most min(N, J) non-zero 

elements. We exploit this property to speed up the implementation. Note in (3.4) that if 0=jv

, then the gradient will be zero on the j-th element, and jv will remain zero thereafter. Hence, 
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if some elements of v are extremely small, the corresponding features can be eliminated from 

further consideration with a negligible impact on the subsequent iterations and the final 

solution found. In all our implementations, the criterion for eliminating small-valued weights 

is 
∞

−< w10 10
jw , where { }jj wmaxw =

∞
. 

3.2.2 Computational Complexity 

With conjugate gradient descent, in each iteration, the flops needed to compute gradient is 

O(NJ), and the memory required is O(N +J), where N is the sample size and J the data 

dimensionality. We give by the following the pseudo-code of DGM Algorithm. 

DGM Algorithm 

1. Initiate 0 ,0b,)2(/1v (0))0( === kJ , stopping criteriaδ , parameters 21,θθ  

2. TT b],)v[(v (0))0( =  

3. Compute )0(f using Eq. (3.3) 
4. Repeat 

a- k=k+1 

b- Compute )(kg using Eq. (3.7) 

c- If  k>1 and 1
)1()( θ<− −kk ff  then 

     Compute )(kd using Eq. (3.7) 

      If 2
)()( )d,( θ<∠ kkg  then 

          )()( kk gd =  
      End if 
Else  

       )()( kk gd =  
End if  

d- Update  )()()1()( d vv kkkk η−= − , where )(kη is determined via line search. 

e- If ,v10 )(5)(

∞

−< kk
jv [ ]ℑ∈∀ 2j   then    

              0)( =k
jv    

  End if 

5. until δ<− − )1()( kk ff  

6. Tk
J

k vv ])(,...,)[(w 2)(2)(
1

(1) =  

7. Tk
J

k
J vv ])(,...,)[(w 2)(

2
2)(

1
(2)

+=  

8. (2)(1) www −=  

9. )(
12b k

Jv +=                       

 

3.3 Numerical experiments 

We present in the following some numerical experiments to compare DGM-ℓ1SVM with one 

recent state-of-the-art method, namely, generalized LPNewton family algorithms proposed in 
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(Fung and Mangasarian, 2004; Mangasarian, 2006). Indeed, the method described in 

(Mangasarian, 2006) is only a special case of the one proposed by (Fung and Mangasarian, 

2004) where the penalty parameter α is fixed to be one. It was stated in (Mangasarian, 2006) 

that this value of α leads to an exact solution of the SVM problem. This method has been 

tested on a wide variety of data sets and compared with other methods such as standard 

software packages (Fung and Mangasarian, 2004; Mangasarian, 2006).  

3.3.1 Experiment Setup 

Each algorithm has been applied to eight datasets using a specified set of λ values. Each 

algorithm is stoped when the achieved objective function is within a desired precision of the 

optimal solution. However, only a locally optimum solution is may be achieved which makes 

the comparison in term of CPU time in this case unbalanced. In order to make a fair 

comparison, in our experiments, for every dataset and λ value, we first run both algorithms 

within 10-6 precision. At the end of this stage, each algorithm provided one solution )b,(w ** .  

Obviously, the good solution is the one which provided the minimal cost value on the 

objective function of the original SVM problem which has to be minimized (Eq. 3.1). Then, 

we set the so-obtained minimal cost achieved over both algorithms as the target value and we 

run each algorithm so that it stopped when the achieved objective function was within10-6 

precision of this target cost. However, it is possible that the algorithm diverges and never 

achieves the desired target cost. To overcome this problem, the maximum number of iteration 

for each λ value was fixed to be 3105× . The CPU time consumed to achieve the target cost 

was then recorded and compared. By using this experimental protocol, we verified that the 

solution obtained by DGM-ℓ1SVM was, as proved theoretically, a global minimizer. 

LPNewton algorithm was programmed in Matlab as provided by (Fung and Mangasarian, 

2004). For a fair comparison, we developped DGM-ℓ1SVM also on Matlab. LPNewton 

algorithm requires the specification of many parameters including regularization parameter. It 

is worthwhile to note here that for DGM-ℓ1SVM the only requisite is to specify the 

regularization parameter λ as the parameter h must be specified to be very small (here we take 

h=10-8) , in order to guarantee the same sparse solution as that would be obtained when a 

hinge loss function is used (Chapelle, 2007). In our experiments the values of λ (or 

equivalently ν/1  in LPNewton algorithm) are taken in the range [2-7, 27] and -110=ε  , δ  

belongs to the interval [10-3, 103] as suggested by (Fung and Mangasarian, 2004).  For the 

parameterα , it must be noted that we have found out empirically that this method performed 
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poorly when the special case 1=α  was considered. For that reason we opted to take 310=α  

as suggested also by (Fung and Mangasarian, 2004).  It must be noted also that all 

experiments was performed on a personal computer with Intel Core 2, 2.26 GHZ CPU, 1.98 

GB memory, and Windows operating system.  

3.3.2 Experimental results 

We have compared the two algorithms on eight medium and large-scale data sets with feature 

dimensionality ranging from 1,000 to 44,932. Seven among them are cancer microarray data: 

Colon, leukemia, internet Ads. (Koh et al., 2007; Lee et al., 2006), prostate cancer 

(Stephenson et al., 2005), GSE4922 (Ivshina et al., 2006), Arcene (Guyon et al., 2005) , 

ETABM77 (Buyse et al., 2006). The Linear data is an artificially generated binary 

classification problem, with each class having 200 samples characterized by 104 features. The 

first 500 features are drawn from two normal distributions N (−1, 1) and N (1, 1), depending 

on class labels. The rest of the features are drawn from the standard normal distribution, thus 

providing no discriminant information. The internet Ads Data has a sparse data matrix where 

only a few features have non-zero values, whereas all other datasets have a dense data matrix. 

The summary of the data is given in Table 3.1. For each dataset, standardization was 

performed on the data matrix so that the effect of mean shift in microarray profiling is 

reduced. 

                                           Table 3.1 Summary of datasets 

Dataset No. of features No. of samples 

Colon cancer 2000 62  

Leukemia 7129 72 

Internet Ads. 1430 2359  

Prostate cancer 22291 79 

TABM77 1145 291 

GSE4922 44932 249 

Arcene 10000 200       

Linear 10000 400 

We have applied the two algorithms on each dataset and recorded in Table 3.2 the total 

running time summed over fifteen λ values uniformly spaced on a logarithmic scale over 

interval ]2,2[ 77− . Indeed, the regularization parameter λ is usually estimated in practical 

applications, through a cross validation procedure. Hence, the total running time summed over 

all possible λ values is an important criterion to evaluate an algorithm. We plot also the CPU 
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time and the corresponding precision in term of cost for each λ value as shown in Figures 3.1 

and 3.2. It can be observed that: 

1. Figure 3.1 shows that DGM-ℓ1SVM outperforms the LPNewton algorithm for all λ 

values on all datasets. The overall CPU time reported in Table 3.2 confirms this result. 

2. Precision and the CPU time plotted in Figures 3.1 and 3.2 show that the minimal cost 

value is always achieved by DGM-ℓ1SVM, which is consistent with our claim 

supported by a well founded theoretical demonstration that it provides a global 

minimum.  

3. Except for Linear data set, when λ is large, LPNewton algorithm fails to converge to 

the target optimal cost which justifies the obtained poor precision generally when λ> 

23 as shown in Figure 3.2. 

4. DGM-ℓ1SVM converges always in a finite time to a solution corresponding to the 

minimal cost whatever the value of λ. 

To further demonstrate the effectiveness of our approach, we report also in Table 3.3 the 

overall summed CPU time for only the eleven λ values [2-7,23] for whom both methods 

converge (before 5x103 iterations). These results confirm that the proposed approach 

outperforms LPNewton approach even in the cases when this last converges to a finite 

solution. One possible explanation is that the solution provided by DGM-ℓ1SVM is more 

optimal than the so-obtained by LPNewton approach.   

Tab. 3.2. CPU time (in seconds) of the two algorithms performed on the eight data sets for all λ values. The 
algorithm stops when the achieved objective function is within 10-6 precision of the target cost.  

      Data/Method Colon Leuki. Internet Ads. Prostate ETABM77 GSE4922 Arcene Linear 

       DGM 4.1 11 57.7 40.3 21.3 497.9 2149 86.8 

       LPNewton 317 806 3012 2147 1105.4 11532 41631 5051.1 

Tab. 3.3. CPU time (in seconds) of the two algorithms performed on the eight data sets for only eleven λ values. 
The algorithm stops when the achieved objective function is within 10-6 precision of the target cost.  

      Data/Method Colon Leuki. Internet Ads. Prostate ETABM77 GSE4922 Arcene 

       DGM 3.6 10 50.5 36.2 20.3 462.2 1794.6 

       LPNewton 114.8 132 766.1 438.5 366.9 2865.9 2228.6 
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Fig. 3.1. Running time (in seconds) of DGM-ℓ1SVM and LPNewton performed on eight benchmark data sets 

using different λ values. 
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Fig. 3.2. Precision of DGM-ℓ1SVM and LPNewton performed on eight benchmark data sets using different  λ 

values. 
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3.4 Conclusion 

We have proposed in this chapter an efficient approach to solve the ℓ1SVM problem in the 

primal. We have shown that the proposed method, though simple, perform very well in 

practical situations. The basic idea is to take advantage of the global solution optimality which 

can be achieved using gradient descent techniques. Firstly, the hinge loss function is replaced 

by its approximated Huber loss function to overcome its non-differentiable property. Then, 

the initial convex optimization problem is transformed into an unconstrained non-convex 

problem, upon which, via gradient descent, reaching a globally optimum solution is 

guaranteed. We have conducted large-scale numerical experiments to demonstrate the 

theoretical claim and prove the computational efficiency over a well known state-of-art 

method. 

High data dimensionality however is not the only problem to be faced in cancer applications. 

Other major issues such as data heterogeneity, uncertainties and noises can also be 

encountered jointly with high dimensionality problem. Therefore, more efficient methods are 

urgently needed to cope simultaneously with all above stated problems. This problematic will 

present our subject of interest in next chapters in an attempt to develop appropriate 

approaches capable of handling such problems. 
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CHAPITRE 4- Résumé  
Vers un principe unifié pour le rai-
sonnement sur des données hétéro-
gènes  

Pour une bonne compréhension du comportement d’un processus, le raisonnement humain 

traite habituellement des connaissances incomplètes et hétérogènes. Par conséquent, des 

méthodes appropriées pour représenter le processus avec des connaissances partielles sont 

nécessaires. La représentation la plus utilisée est celle purement quantitative qui suppose une 

exactitude complète de l'information. Cependant, un nombre réel contient une quantité infinie 

de précision alors que la connaissance humaine est finie et discrète. Ainsi, il est nécessaire 

d'utiliser les données représentées par des valeurs symboliques pour s'adapter à la perception 

humaine. La représentation des connaissances incomplètes sur les données peut être effectuée 

de différentes manières: intervalles symboliques ou valeurs qualitatives. Par conséquent, le 

développement d'un mécanisme automatique de raisonnement sur les données est confronté à 

cette multiplicité de représentations possibles. 

Nous abordons dans ce chapitre l'une des principales difficultés rencontrées dans les tâches 

d'analyse de données: la diversité des types d'information. Une telle information est 

représentée par des données qualitatives, nominales ou ordinales, mélangées avec des 

données quantitatives et intervallaires. Notre objectif est de proposer un principe unifié pour 

établir différents mécanismes de raisonnement en utilisant simultanément trois types de 

données: purement quantitative, intervallaire symbolique et qualitatives. De nombreuses 

situations menant à des algorithmes bien conditionnés pour les données quantitatives, 

deviennent très complexes lorsque certaines informations sont sous forme qualitative. Dans 

une liste non exhaustive, on peut citer, déduction basée sur les règles, classification, 

«clustering», la réduction de dimensionnalité .... 

Pour surmonter ce problème,  une approche classique consistera à raisonner sur chaque type 

de données séparément pour déduire des décisions partielles. Cependant, cela représente un 

autre problème sérieux similaire à notre problème initial lié à la façon dont on doit procéder 

pour intégrer de telles décisions partielles et finir avec une décision globale pour l'ensemble 

des données. Une autre approche intéressante serait d'unifier les différents espaces
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hétérogènes dans un espace homogène, puis raisonner de manière unifiée sur l’ensemble des 

données pour prendre la décision appropriée. Afin d'éviter tout type de distorsion et/ou perte 

d'information, le processus d'unification de l'espace devrait être effectué avec précaution 

pour chaque type de données. Dans ce but, nous introduisons ici un principe unifié permettant 

de raisonner sur des données hétérogènes, dénommé SMSP pour Simultaneous Mapping for 

Single Processing. Le principe est basé initialement sur une projection appropriée et 

simultanée des données hétérogènes dans un espace unifié. Cette projection peut être obtenue 

en utilisant une fonction caractéristique pour chaque type de données pour les amener dans 

un espace homogène. Ces fonctions peuvent être conçues de telle façon qu'elles expriment une 

mesure relative comme par exemple la mesure du degré d’adéquation (ou typicité) de chaque 

valeur d’une variable à des partitions existantes. Par exemple, dans le cadre de la théorie des 

ensembles flous, cette mesure est techniquement synonyme du terme de mesure 

d’appartenance qui est un nombre réel dans l'intervalle unitaire I = [0,1]. Quand une mesure 

relative différente, autre que l’adéquation à chaque classe, doit être considérée d'autres 

solutions alternatives peuvent être envisagées. Une solution possible est d'utiliser le concept 

de fonction noyau (Atkeson et al., 1997), popularisé dans le cadre de la théorie 

d’apprentissage statistique, pour la conception des fonctions caractéristiques adaptées à 

chaque type de données. Une fois que ces fonctions appropriées ont été choisies et que toutes 

les données sont représentées dans un espace homogène, un traitement unique peut être 

effectué en utilisant un mécanisme de raisonnement unique. Afin de prendre en compte 

l'incertitude d’appartenance, le principe SMSP est proposé ici dans le cadre de la théorie des 

ensembles flous. Une fois que les fonctions d'appartenance adaptées caractérisant 

l'adéquation à chaque classe sont choisies en fonction des types de variable, une partition 

floue des variables peut être effectuée à partir des données empiriques. Comme il est montré 

dans ce chapitre, chaque individu de la base de donnée initiale, décrite par m variables de 

plusieurs types (qualitative, quantitative, intervallaire), sera représenté par m degrés 

d'appartenance, c.-à-d. m nombres de l'intervalle unitaire. Les données transformées sont 

donc inclues dans un espace homogène isomorphe à un hypercube unité. Par conséquent, un 

mécanisme flou de raisonnement simple et unique peut être utilisé pour raisonner sur les 

données obtenues quel que soit leur type initial. On démontrera dans les chapitres suivants 

qu’en utilisant ce principe, il est possible d'effectuer une variété de tâches d'analyse de 

données (classification, réduction de dimensionnalité, regroupement ...). 
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CHAPTER 4 
Towards a Unified Principle for Rea-
soning about Heterogeneous Data: A 
Fuzzy Logic Framework 

For a good understanding of any process behavior, human reasoning deals usually with 

incomplete and heterogeneous knowledge. Therefore, appropriate methods for representing 

the process with partial knowledge are required. The most used representation is the pure 

quantitative one which assumes a complete exactitude about the information. Taken as it 

appears, a real number contains an infinite amount of precision whereas human knowledge is 

finite and discrete. So, there is a need to use data represented by symbolic values to fit with 

human perception. The representation of incomplete knowledge about the data can be done in 

different ways: symbolic intervals or qualitative values. Thus, the development of an 

automatic mechanism for reasoning about the data is faced with this multiplicity of possible 

representations.  

We address here one of the main difficulties encountered in data analysis tasks: the diversity 

of information types. Such information is given by qualitative valued data, which can be 

nominal or ordinal, mixed with quantitative and interval data. Our focus is to propose a 

unified principle to establish various reasoning mechanisms using simultaneously three types 

of data: pure quantitative, symbolic interval and pure qualitative modalities. Many situations 

leading to well conditioned algorithms for quantitative valued information, become very 

complex whenever there are several data given in qualitative form. In a non exhaustive list, 

we can mention, rule based deduction, classification, clustering, dimensionality reduction… 

Although the problem of representation multiplicity has been addressed within the machine 

learning framework in some works (Michalski and Stepp, 1980; Mohri and Hidehiko, 1994; 

Hu et al., 2007), no standard principle has been proposed in the literature to handle in a 

unified way heterogeneous data. The proposed methods respectively use distance and 

information content measures to process separately quantitative and qualitative in dimension 

reduction tasks (Kira and Rendell, 1992a; Dash and Liu, 2003), whereas a Hamming distance 

is usually used to handle qualitative data in classification and clustering tasks (Aha, 1989; 

Aha, 1992; Kononenko, 1994).  
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Other approaches are originally designed to process only quantitative data and therefore 

arbitrary transformations of qualitative data into a quantitative space are proposed without 

taking into account their nature in the original space (Cover and Hart, 1967; Kira and Rendell, 

1992a; Weston et al., 2001). For example, the feature color can take values in a discrete 

unordered set {red, black, green, white}. These values are transformed respectively to 

quantitative values 1, 2, 3 and 4. However, we can also choose to transform them to 4, 1, 2 

and 3. This can represent a potential source of information loss. 

In the opposite, the transformation of quantitative values in qualitative objects by discretizing 

the quantitative value domain into several intervals (Hall, 2000; Liu et al., 2002) introduce 

also distortion and information loss with respect to the original data since objects in the same 

interval are labeled by the same qualitative value.  

Although extensive studies were performed to process interval type data in the Symbolic Data 

Analysis framework (Bock and Diday, 2000), they were focused generally more on the 

clustering tasks (Gowda and Diday, 1992; De Carvalho et al., 2010). Indeed, no standard 

principle has been proposed in the literature to handle in a unified way heterogeneous data 

and combine furthermore in a fully adequate way, the processing of symbolic intervals 

simultaneously with quantitative and qualitative data for different analysis purposes.  

In this chapter we present a general principle, introduced here as “Simultaneous Mapping for 

Single Processing (SMSP)”, which enables reasoning in a unified way about heterogeneous 

data for several data analysis purposes (Hedjazi et al., 2010a; Hedjazi et al., 2011a). The only 

requisite is to define characteristic functions that characterize a relative measure based on 

available knowledge about each feature. Once these functions are chosen appropriately, the 

initial heterogeneous space, where the information is of mixed nature, is transformed into a 

homogeneous space. Consequently, only a unique reasoning mechanism can be used to reason 

about the resulted data whatever its initial type.  

We introduce below this principle noted SMSP principle and an example of simultaneous 

mapping of mixed features into a common space is presented within a fuzzy logic framework.  

4.1 Simultaneous mapping for single processing principle 

Many learning problems involve usually data of mixed type characterized especially within 

different heterogeneous spaces. The lacks of analogy between such spaces make the reasoning 

task to extract a reliable knowledge rather complex. To overcome this issue, due mainly to 

space’s heterogeneity, one typical approach is to reason about each type of data separately to 
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derive separate partial decisions. However, this brings another serious issue similar to the 

initial one related to the way to integrate such partial decisions to end up with only a global 

decision for the whole data. Another interesting approach would be to unify the different 

heterogeneous spaces into one homogeneous space and then reason in a unified way about the 

whole data to take the appropriate decision. To avoid any type of distortion and/or 

information loss the space’s unification process should be performed appropriately for each 

type of data. In this aim, we introduce here a unified principle for reasoning about 

heterogeneous data, referred to as Simultaneous Mapping for Single Processing (SMSP). The 

principle is based initially on an appropriate simultaneous mapping of heterogeneous data 

into a unified space. This mapping can be obtained by using a characteristic function for each 

type of data to bring them into a homogeneous space. These functions can be designed in such 

way that they express a relative measure as for example the measure of the appropriateness 

(adequacy, typicality) of each feature value of patterns to existing partitions. For instance, in 

the fuzzy set theory framework, this measure is technically synonymous to the term of 

membership measure which is a number of the real unit interval I= [0,1]. When a different 

relative measure other than the pattern appropriateness to each class is considered, other 

alternative solutions can be envisaged. One possible solution is to use the kernel function 

concept (Atkeson et al., 1997), extensively studied in statistical learning theory, for designing 

suitable characteristic functions for each type of data. Once suitable functions are chosen and 

all data are represented in a homogeneous space, a single processing can be performed using a 

unique reasoning mechanism. The general concept of the SMSP principle is illustrated in 

Figure 4.1. 

In order to take into account the membership uncertainty, the SMSP principle is proposed in 

the present work within the fuzzy set theory framework to reason about heterogeneous data. 

Once suitable membership functions that characterize the adequacy to each class are chosen 

according to feature types, a fuzzy partition of features can be performed based on empirical 

data. As it will be shown hereafter, each pattern of the initial data, described by m features 

having several types, (qualitative, quantitative, symbolic intervals), will be represented by m 

membership degrees, i.e. m numbers of the unit interval; therefore the transformed data set is 

included in a homogeneous space isomorph to an unit hypercube. Thus, a unique and simple 

fuzzy reasoning mechanism can be used to reason about the resulting data whatever its 

original type. It will be shown by next chapters that based on this principle it is possible to 

perform a wide variety of analysis (classification, dimensionality reduction, clustering…). 
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Fig. 4.1. SMSP principle 

4.2 Homogeneous space of features 
Basically we consider the three above mentioned types of data:  

(a) Quantitative features: real numbers that can be normalized into the unit interval 

[0,1]. 

(b) Symbolic intervals of the real line: with no restriction of relative position 

(regular or overlapped). 

(c) Qualitative features:  that can be ordinal or nominal modalities.  

According to (Dubois and Prade, 1997), three main semantics of fuzzy membership functions 

can be distinguished in the fuzzy literature. Among them we find similarity (or distance) and 

uncertainty, widely used in fuzzy pattern recognition, applied to the estimation of membership 

functions from data (Medasani and Kim, 1998). For instance, Bezdek (Bezdek, 1981) take use 

of the similarity semantic to define a relation r between two objects x(1) and x(2) as fuzzy (i.e 

]1,0[∈r  if )x,x( (2)(1)ρ=r  where ρ is a metric (distance measure) otherwise it is considered 

as crisp (i.e { }1,0∈r ). Regarding uncertainty semantic, it is reported in (Dubois and Prade, 

1997) that uncertainty is often measured in terms of frequency of observed situations in a 
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random experiment. However, this approach leads to probability theory when the repeated 

observations are precise. In that sense, probability assignments to the elements of referential 

set U can be viewed as special membership functions such that the sum of membership grades 

is one (Dubois and Prade, 1997). In our work both semantics have been used to define an 

adequate membership function according to the type of data. However, in mixed data types 

the features are images of unrelated concepts. In order to bypass this difficulty, we take 

advantage of the commensurability assumption in the framework of fuzzy logic (Dubois and 

Prade, 1997) to end up with a unique space (unit hypercube) where all the features are 

represented by their memberships to a reference fuzzy partition. Therefore, a single 

processing of their membership degrees for data analysis purpose is straightforward based on 

aggregation in the resulting space. 

Let { } CC N
nk

n ×Χ∈=1
)(  =D ,x  be a dataset, where ],...,,[ )()(

2
)(

1x n
m

nn(n) xxx= is the nth pattern (item) and 

N is the number of patterns. Each pattern is represented by m features possibly of different 

types (quantitative, qualitative or symbolic interval), and Ck is the class label assigned to each 

pattern in the pre-established partitions: k=1,2,…,l. 

Based on an appropriate data-driven process using the training dataset D, to each feature 

correspond l fuzzy sets representing the membership functions to each class. Namely, let  

{mff1
i, mff2

i …, mffl
i } be the l fuzzy sets that form a fuzzy partition for the i th feature. 

The fuzzy set mffk
i is defined by its membership function µk

i in the rank Xi of the i th feature 

depending on a parameter θki as follows: 

µk
i(xi) = fi(xi, θki);               k=1,2,…,l (4.1) 

where θki represents the i th prototype of class Ck and can be estimated from the i th feature 

values of patterns belonging to class Ck in the training dataset D. For each feature type, a 

particular learning process can be adopted to estimate its membership functions from data. 

We present by next how this fuzzy partition is performed here using a particular membership 

functions to each type of feature and we support it by the following toy example. 

Example: Consider the set of samples shown in Table 4.1. This set is classified into two 

classes {C1, C2} and is described by three types of features: x1 (quantitative feature), x2 

(interval feature) and x3 (qualitative feature). 
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Tab. 4.1. Group of patterns characterized by three mixed-feature types 

Samples x1 

(Quantitative feature) 
x2 

(Interval feature) 
x3 

(Qualitative feature) 
Class 

x(1) 5 [1.5 , 2.5] Red C1 

x(2) 5.22 [ 3.5, 4.5] Yellow C1 
x(3) 6.78 [5.5, 6.5] Red C1 
x(4) 7 [7.5, 8.5] Black C1 
x(5) 6 [9.5, 10.5] Yellow C1 
x(6) 5.5 [11.5, 12.5] Red C1 
x(7) 7 [13.5 , 14.5] Black C1 
x(8) 9 [7.5 , 8.5] Black C2 

x(9) 8 [9.5, 10.5] White C2 
x(10) 10.5 [11.5, 12.5] Red C2 
x(11) 8.5 [13.5, 14.5] Black C2 
x(12) 9.5 [15.5, 16.5] Black C2 
x(13) 10 [17.5, 18.5] Red C2 
x(14) 11 [19.5, 20.5] Black C2 

4.3 Membership functions 
4.3.1 Quantitative type features 

It will be generally assumed that the universe of discourse of each quantitative feature is 

included in a compact interval; either the bounds of this interval are known, or they can be 

induced by the dataset. Therefore, without loss of information, its numerical values can be 

normalized within the interval [ximin, ximax]. This linear re-scaling of the feature into the 

interval [0,1] is performed by:    

 min

max min

ˆ ˆ
 

ˆ ˆ
i i

i
i i

x x
x

x x

−=
−  

(4.2) 

where ˆix is the i th raw feature value and ix is its normalized value.  

In the case of quantitative features, several membership functions proposed by (Aguado and 

Aguilar-Martin, 1999) can be used for µk
i (.). Among them we find: 

a. Gaussian-like membership function 

( )
22/)(

2
1 i

i
ki

i
i
k

x
ex

σϕ
µ

−−
=  

(4.3) 

where φi
k and σi are respectively the mean and the standard deviation of the i th feature values 

based on the samples belonging to the class Ck. Therefore, the resulted prototype of class Ck is 

the mean vector of dimension m noted φk=[ φ1
k, φ

2
k,..., φ

m
k] . In case of a too small number of 

samples provided in real applications, the standard deviation vector σ=[ σ1, σi,..., σm]  may be 

estimated over all the training samples.                                  

b. Binomial membership function  

( ) ( ) ii xi
k

xi
ki

i
k x

−
−=

1
1 ϕϕµ  

(4.4) 
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where φi
k is the mean of the i th feature values based on the samples belonging to the class Ck. 

c. Centered binomial membership function  

( ) i
kii

k

i
kii

k
i
k

i
ki

i
k

xx
x

ϑϕ
ϑ

ϕϕϑµ −−
−−

= 1
1

),(
 

(4.5) 

where kϑ  is a prototype for class Ck, and parameter kϕ  measures the proximity to the 

prototype so that ),(),(: i
k

i
ki

i
k

i
k

i
k

i
k

i
k

i
ki xx ϕϑµϕϑϑµϑ ≥≠∀  and for i

kix ϑϕϕ ≠∀≤    21  we have the 

ordered memberships ),(),( 12 ϕϑµϕϑµ i
ki

i
k

i
ki

i
k xx ≥ . 

An example of resulting fuzzy partition for quantitative features using Gaussian-like 

membership function is illustrated in the following example. 

Example: If we consider the Gaussian-like membership function (4.3) for the quantitative 

feature x1, the obtained parameters of membership functions with respect to the two classes 

after normalization are 1786.01
1 =ϕ , 7979.01

2 =ϕ and . 1123.0=σ   

4.3.2 Interval type features 

To take into account the various uncertainties (noises) and/or to reduce large datasets, the 

interval representation of data has seen widespread use in recent years (Billard, 2008). In this 

work, a fuzzy similarity measure is proposed to handle this type of features in such a way that 

their symbolic nature is preserved.  

The membership function for interval type features is taken as the similarity between the 

symbolic interval value of the i th feature xi and the interval 






 +−= i
k

i
k

i
k ρρρ , representing class Ck 

as: 

( ) ( )i
kii

i
k xSx ρµ ,=  (4.6) 

Symbolic interval features are extensions of pure real data types, in the way that each feature 

may take an interval of values instead of a single value (Gowda and Diday, 1992). In this 

framework, the value of a quantity x is expressed as a closed interval [x-,x+] whenever only an 

incomplete knowledge is available about it; representing the knowledge that +≤≤−
xxx

(Kuipers, 1994). 

Definition 4.1: Let us consider a universe of discourse V as a compact subset of the real line 

R; that can be continuous or discrete. Any fuzzy subset will be defined as ( ) RVX X ⊂∈= ξξµ ; .  
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We denote measure ϖ of a fuzzy set on a discrete universe its scalar cardinal. Here the sigma-

count [ ] ( )∑=
∈Vi

X iX
ξ

ξµϖ  has been chosen; its extension to a continuous universe is 

[ ] ( )∫=
V

X dX ξξµϖ . .  

Let us define a fuzzy interval ( )ξµAA =
)

 as a fuzzy set such that ( ) 0; =∉∀ ξµξ AA , where A is a 

crisp interval called the base of A
)

. It must be noticed that for a non fuzzy intervalX  its 

measure is given by its length [ ] ( ) ( )XboundlowerXboundupperX .. −=ϖ .  

Given two crisp intervals [ ]+−= aaA , and [ ]+−= bbB ,  let us define their distance ∂  as:  

[ ] { } { }( ), ,, max 0, max mina b a bA B − − + +∂ = − 
   

(4.7) 

Then the definition of the similarity measure between two fuzzy intervals A
)

 and B
)

is given in 

the discrete case by:  
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and its extension to the continuous case is: 
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(4.9) 

This similarity measure combines two terms. The first term corresponds to the well known 

Jaccard’s similarity measure (Jaccard, 1908) which computes the similarity when the intervals 

are overlapped; We add to it the second term which allows to take into account the similarity 

when the intervals are not overlapped. 

It shall be remarked that if only crisp intervals are considered this similarity measure can be 

written as given in (Hedjazi et al., 2011b): 

( ) [ ]
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2
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(4.10) 

For the learning step, let us consider a class Ck having Nk samples. The parameters that 

characterize this class, for the interval type features, are estimated based on an appropriate 

learning procedure such that the class is represented by a vector whose components are 
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intervals. The bounds of the interval of each component of this vector are given by the 

following arithmetic means: 

 and ,
1

)(1 ∑
=

−− =
kN

j

j
i

k

i
k xNρ  ∑

=

++ =
kN

j

j
i

k

i
k xN

1

)(1ρ   (4.11) 

Where −)( j
ix is the ith feature lower bound of the j th sample and +)( j

ix is its upper bound. 

Therefore, the class Ck is then represented by the interval ,i

k

i i
k kρ ρ ρ− +=  , and its similarity to the i th 

interval feature value of the nth sample is given by ],[ )( i
k

n
ixS ρ  according to formulas (4.8), 

(4.9) or (4.10). 

Consequently, the resulted class prototype for the r interval features is given by the vector of 

intervals [ ] .21 ,...,, Tr
kkkk ρρρρ =  

For a better conditioning of magnitudes and processing time minimization, a normalization 

within the interval [0,1] is also performed: 
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(4.12) 

Where ],[ +−= iii xxx  is the normalized interval value of ˆ ˆ ˆ[ , ]i i ix x x− += . Consequently, the domain Vi 

becomes the unit interval [0, 1] for all features. This normalization does not introduce 

distortion on behalf of the linearity of the normalizing transform. 

It is worthwhile here to note that the function S (A, B) fulfills the properties commonly used 

to characterize a similarity measure : 

i. 0 ≤ S(A,B) ≤ 1 ; 

ii.  S(A,B) = 1 if and only if A equals to B ;  

iii.  S(A,B) = S(B,A).  

Example: If we consider the interval feature x2 in the set of patterns described in Table 4.1, 

the resulting parameters of classes for the interval feature after normalization are: 

]3684.0,3158.0[2
1 =ρ  and ]6842.0,6316.0[2

2 =ρ .  

4.3.3 Qualitative type features 

In the qualitative case, the possible values of the i th feature form a set of modalities: 

{ }1 , ,i i i
i j MiD Q Q Q= … …

 
(4.13) 
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Frequency is a quantity that has been used for measuring fuzzy set membership in several 

fuzzy applications (Dubois and Prade, 1997). Leti
kjΦ be the frequency of modality i

jQ  for 

class Ck. The membership function of qualitative feature xi can be specified as:  

( ) ( ) ( )1

1

i iMiq qi i i
k k kMiixµ = Φ ∗ ∗ ΦL

 (4.14) 

where:
                                  




≠
== i
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jii

j Qx  if 
Qx  if 

q
  0
  1

 

Obviously the class parameters are represented by 
1, , , ,  i i i i

k k kj kMi Ω = Φ Φ Φ K K  and the resulting 

fuzzy partition of the qualitative feature case is described by the following example. 

Example: The resulting parameters of fuzzy partitions for the qualitative feature x3 in the set 

of samples given in Table 4.1 are: ]0 ,2857.0 ,4286.0 ,2857.0[3
1 =Ω and ]1429.0 ,5714.0 ,2857.0 ,0[3

2 =Ω . 

4.4 Common membership space 

A consequence of the fuzzy partition described previously is the mapping of different types of 

features from completely heterogeneous spaces into a common space which is the 

membership space. Thus, having a v-dimensional quantitative space, a q-dimensional 

qualitative space and an r-dimensional interval space, the resulting membership space with 

the respect each class is m-diemnsional (Rm) with m= v+q+r which is the total number of 

features. In case of dichotomy problems, only one Rm space is necessary as the other can be 

obtained by complementary of membership.  

Definition 4.2: Membership Degree Vector 

A Membership Degree Vector (MDV) of dimension m, can be associated for a given pattern 

x(n) to each class as follows: 

[ ] lk
Tn

m
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nc xxx m

kkkk
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2
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1
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(4.15) 

Where )( )(n
ixi

k
µ  (i.e. )( )(n

ii xxi

k
=µ ) is the membership function of class Ck evaluated at the 

given value )(n
ix  of the i th feature of pattern x(n) .  

If we consider the previous example, using the definition 3 two MDVs are obtained for the 

fifth pattern x(5) with respect to its class C1 and alternative class C2 as follows: 
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which yields 
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MDV is a mth dimensional image of pattern xn with respect to the considered class. All the 

components of the MDV are positive numbers in the unit interval [0,1], therefore 
kncU can be 

considered as a discrete fuzzy subset and the function ∑= i
n

i
i
k x )( )(U )(

nck
µψ  represents its scalar 

cardinality (power or sigma count) as defined in (Zwick et al., 1987) and (Wygralak, 2000). 

Once all features are simultaneously mapped into a common space, they can be henceforth 

processed similarly either for classification, feature selection or clustering. We show by next 

chapters the usefulness of the SMSP principle to perform those data analysis tasks. 

4.5 Conclusion 

In this chapter a unified principle is introduced to cope with the problem of data 

heterogeneity. This principle is based on a simultaneous mapping of data from initially 

heterogeneous spaces into only one homogeneous space using appropriate characteristic 

functions. Once the heterogeneous data are represented in a unified space, only a single 

processing for various analysis purposes such as machine learning tasks can be performed. 

We considered here the three most used types of features which are quantitative, interval and 

qualitative. 

In the present work, this principle is proposed within the fuzzy set theory framework to reason 

about heterogeneous data. Once suitable membership functions that characterize the adequacy 

(typicality, appropriateness) of a pattern to each class are chosen according to feature types, a 

fuzzy partition of features can be performed based on empirical data. In the present work two 

well-known semantics (similarity and uncertainty semantics) have been adopted to define an 

adequate membership function according to the feature type. The first one has been used for 

quantitative and interval data whereas the later one has been adopted for the qualitative data.  

We take advantage of the commensurability assumption in the framework of fuzzy logic to 

end up with a unique space (unit hypercube) where all the features are represented by their 

memberships to a reference fuzzy partition. We show by next chapters that by employing this 

principle within a fuzzy logic framework, only a simple fuzzy reasoning mechanism can be 

used to perform several machine learning tasks such as classification, feature selection and 

clustering.
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CHPITRE 5- Résumé  
Apprentissage supervisé basé sur le 
principe «SMSP» 

Il est reconnu dans la pratique que la plupart des connaissances médicales employées pour la 

prise de décision sont généralement exprimées sous la forme de règles qualitatives. Ceci est 

principalement la raison qui rend les systèmes à base de règles bien acceptés par les 

praticiens. Les systèmes flous à base de règles peuvent être particulièrement d'un grand 

intérêt car ils offrent une grande transparence et interprétabilité tout en permettant de traiter 

des informations bruitées, imprécises ou incomplètes présentes souvent dans de nombreux 

problèmes du monde réel. 

La relation entre le résultat de la classification et la variable originelle est généralement non 

linéaire et complexe. Cependant, si la variable originelle est correctement «fuzzifiée», la 

relation peut être approchée par une fonction linéaire et un classifieur simple peut être utilisé 

(Li et Wu, 2008). Récemment, des systèmes basés sur des règles floues (Si-Alors) ont été 

appliqués à des problèmes de classification où les vecteurs de données non-floues (ou 

numériques) d'entrée doivent être attribuées à l'une des classes existantes (Ishibuchi et al, 

1992; Chiu, 1997; Abe et Thawonmas, 1997). Toutefois, cette classe de classifieurs devient 

inutilisable dès qu’un problème de dimension élevée et/ou présentant une hétérogénéité des 

données est rencontré. Ce cas est fréquent dans les applications du cancer qui représente 

notre sujet d'intérêt. Nous montrons tout d'abord dans ce chapitre qu’un simple classifieur 

basé sur des règles floues peut être conçu selon le principe SMSP introduit dans le chapitre 

précédent pour faire face à l'hétérogénéité des données. Ensuite, en se basant toujours sur le 

même principe, une approche de pondération de variables est conçue et intégrée dans le 

classifieur flou dans le but de l’adapter à des problèmes de dimension élevée. 

Dans ce travail, chaque ensemble flou de la prémisse de chaque règle floue (Si-Alors) est 

pondéré afin de caractériser l'importance de chaque proposition et donc de la variable 

correspondante. Pour justifier une telle opération, le processus d'estimation du poids est basé 

sur la maximisation des marges d'appartenance afin d'estimer un poids flou de chaque 

variable dans l'espace d’appartenance. Il est montré aussi que la définition de la fonction 

objective en se basant sur le concept de marge peut réduire efficacement la complexité de
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calcul grâce à l'utilisation de techniques d'optimisation standards, qui permettent d’éviter une 

recherche heuristique combinatoire. Une extension de la méthode pour traiter les problèmes 

multi-classes est aussi proposée. Une étude expérimentale extensive a été menée pour 

démontrer l’efficacité de la méthode proposée sur deux ensembles de bases de données. Le 

premier est caractérisé par l’hétérogénéité des données et le deuxième par la dimension 

élevée. Cette méthode a été comparée avec des méthodes de pondération de variables bien 

connues dans la littérature: Relief (Kira and Rendell, 1992a), I-Relief (Sun, 2007b) and 

Simba (Gilad-Bachrach et al., 2004). Afin d’assurer une comparaison sans biais, les deux 

classifieurs populaires k-NN (Cover and Hart, 1967) et SVM (Vapnik, 1998) ont été aussi 

utilisés en plus du classifier flou que nous proposons. Les résultats obtenus montrent que la 

méthode proposée apporte des améliorations significatives combinée avec le classifieur flou. 

En particulier, nous avons observé que l'approche par pondération floue proposée améliore 

significativement les performances du classifieur sur presque l’ensemble des bases de 

données hétérogènes. Un gain significatif de performance est obtenu en ne conservant que 

quelques variables plutôt que l'ensemble des variables originelles. Par exemple, près de 5% 

de gain de performance est réalisé en utilisant uniquement les quatre premières variables au 

lieu des neuf variables originelles du jeu de données de Ljubljana sur le pronostic du cancer 

du sein. Il a été constaté aussi que la méthode de pondération floue fournit des résultats 

comparables ou même meilleurs que les autres méthodes de pondération classiques sur 

presque toutes les bases de données hétérogènes en utilisant les deux autres classifieurs (k-

NN et SVM). Pour une comparaison plus rigoureuse entre les trois méthodes de sélection de 

variables, une analyse statistique a été aussi effectuée. En ce qui concerne les expériences sur 

le deuxième ensemble de bases de données caractérisé par la présence d’un nombre 

important de variables non pertinentes, les résultats fournis par la méthode proposée sont 

encourageants. En particulier il a été constaté que, bien que cette méthode possède une 

complexité numérique faible, elle permet de réduire significativement le nombre de gènes 

nécessaires pour effectuer les tâches de diagnostic et/ou pronostic. A titre d’exemple, sur la 

base de données du cancer de la prostate caractérisée par la mesure de l’expression de 10509 

gènes, la méthode proposée surpasse les autres méthodes de pondération en fournissant une 

erreur de classification minimale de 5% pour juste 10 gènes en utilisant le classifieur flou. Ce 

résultat suggère que l’utilisation des 10 gènes sélectionnés au lieu de l’ensemble des 10509 

gènes permet d’atteindre la performance de classification maximale en vue de pronostiquer 

ce type de cancer. 
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CHAPTER 5 
Supervised learning based on SMSP 
principle 

It is recognized in medical practice that most of physicians’ knowledge employed for decision 

are usually expressed in the form of rules. This is mainly the reason that makes the rule-based 

systems very well accepted by medical practitioners. Fuzzy-rule based systems can be 

particularly of big interest as they offer a high transparency and comprehensive 

interpretability while they allow dealing with noisy, imprecise or incomplete information 

often present in many real world problems. They provide indeed a good trade-off between the 

empirical precision of traditional engineering techniques and its high interpretability. Fuzzy-

rule based systems have been widely used in control problems (Lee, 1990; Sugeno, 1997). 

From this point of view, fuzzy logic can be seen as more appropriate rather than other 

classical methods which fail when the system model is highly dimensional and non linear. 

This is mainly due to its attractive properties that enable to handle imprecise and noisy data.  

Usually the relationship between the result of classification and the original feature is 

nonlinear and complicated. However, if the original feature is appropriately fuzzified, the 

relationship may be approximated by a linear function and a simple classifier may be used (Li 

and Wu, 2008). Recently, fuzzy rule based systems have often been applied to classification 

problems where nonfuzzy (or numerical) input vectors have to be assigned to one of the given 

set of classes (Ishibuchi et al., 1992; Chiu, 1997; Abe and Thawonmas, 1997). However, this 

class of classifiers becomes impracticable whenever high dimensional and/or heterogeneous 

problems have to be faced. This case is common to occur in cancer applications that are our 

subject of interest. Traditional fuzzy classifiers are commonly based on arbitrary choice to 

determine the number of linguistic terms of the fuzzified features, which is not always 

possible and accurate enough whenever a huge number of features is encountered. We show 

firstly in this chapter that a simple fuzzy rule based-classifier can be designed based on the 

previously introduced SMSP principle to deal with data heterogeneity. Then, based on the 

same principle, a feature weighting approach is designed and integrated into the fuzzy rule-

based classifier in the aim to make it scalable with high dimensional problems. Indeed, 

weighting fuzzy if-then rules to improve classification performance is a common practice in 

fuzzy rule-based classifier systems (Ishibuchi and Nakashima, 2001; Ishibuchi and 
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Yamamoto, 2005; Jahromi and Taheri, 2008; Sanz et al., 2010). However, this weighting aims 

usually to characterize the importance of each fuzzy rule by a scalar weight. For example, 

Ishibuchi and Yamamoto (2005) have proposed a heuristic automatic way to estimate the rule 

weights based on sample membership to each class in a supervised context. In the present 

work, each antecedent fuzzy set in the fuzzy if-then rule is weighted to characterize the 

importance of each proposition and therefore of the corresponding feature (Hedjazi et al., 

2011c). To justify such an operation, weight estimation process is based on membership 

margin maximization to estimate a fuzzy weight of each feature in the membership space. As 

it will be shown, the margin concept can efficiently decrease the computation complexity 

through the use of standard optimization techniques avoiding combinatorial search. 

Experiments on high and low dimensional datasets are performed in order to demonstrate that 

the proposed approach can improve significantly the performance of fuzzy rule-based as well 

as state-of-the-art classifiers and can even outperform classical feature selection approaches. 

 We start first by describing the fuzzy-rule based classifier for mixed-type data and then we 

describe the weight integration process into the classifier.  

5.1 Fuzzy rule-based classifier for mixed-type data  

In this section, we illustrate the problem of heterogeneous data classification as a reasoning 

problem in a common space based on the SMSP principle. Indeed, once the different types of 

features have been mapped into a common space it is possible to establish a unified reasoning 

scheme for a classification purpose. This approach is based on using the fuzzy partitions, 

resulted from the mapping described in chapter 4, to establish a fuzzy inference engine.  

We describe by next the fuzzy-rule based classifier for mixed type data. We consider the 

following type of fuzzy if-then rules for m-dimensional problem:  

Rk: If x1 is A1 and x2  is A2...and xm  is Am then x belongs to class Ck 

where the antecedent fuzzy sets Ai correspond to membership functions µk
i(xi) for each class 

Ck defined in section 4.3 according to the type of i th feature. It must be noticed here that the 

set of features used to evaluate each fuzzy if-then rule can possibly be of mixed types 

(quantitative, qualitative or interval-valued).  

Then, the truth value of the consequent of each rule is determined by a fuzzy logic implication 

function which consists in a linear interpolation between a (t-norm) and a (t-conorm). Finally, 
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the sample is assigned to the class corresponding to the maximum membership obtained using 

the following fuzzy inference engine:  
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where γ and β are dual fuzzy aggregation functions T-norm and its dual T-conorm that 

combine memberships (given by the components of the MDV 
kncU ) of features values of a 

sample ],...,,[ )()(
2

)(
1x n

m
nn(n) xxx=  to a class Ck (Piera and Aguilar, 1991). The parameter α, called 

exigency allows to adjust the compensation between the union and the intersection operators 

which can be pre-specified by the user or estimated through a cross-validation using training 

data. 

Without the unification of the space of features, this simple inference mechanism could not be 

applied, and the influence of the different types of features would not be equal. Such a 

classifier is referred to here as LAMDA (Aguilar and Lopez De Mantaras, 1982; Isaza et al., 

2004; Hedjazi et al., 2009; Hedjazi et al., 2010b).  

5.2 Weighted fuzzy rule-based classifier for mixed-type data  

For many learning domains potential useful features, for sample description are defined 

randomly. Nevertheless, not all of the features have equal importance for classification task, 

some of them can be irrelevant and can even hurt classification performance. We describe in 

this section how a feature weighting process can be easily integrated in the previously 

described fuzzy-rule based classifier, through a weighted fuzzy rule concept in the aim to 

improve its performance. The concept of fuzzy weighted rule introduced here consists of 

weighting each proposition of the fuzzy rule to characterize the importance of each feature.  

Definition 5.1: Weighted Fuzzy If-Then Rules (WFR) 

 A weighted If-then rule is similar to a conventional rule with the exception that a weight is 

assigned to each antecedent proposition. A WFR is defined as: 

R: IF a THEN c, wf , 

Where a={a1,a2,…,am} is the antecedent portion which is composed of one or more 

propositions connected by “AND” or ”OR”. Each proposition ai ( 1≤ i ≤ m) can have the 

format “ xi is Fi”, where Fi is a fuzzy set corresponding to the type of the i th feature 

established  in the learning step. The feature value xi can be quantitative, qualitative or 
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interval-valued type. Whereas, wf={wf1, wf2, …, wfm} is a weight vector. The weight wfi of a 

proposition ai shows the degree of importance of ai to contribute to the consequence c and 

therefore the importance of the i th feature value xi to the classification task.  

Thus the classification rule becomes: 

Rk: If x1 is (wf1 ) A1 and x2  is (wf2 ) A2 ...and xm  is (wfm) Am  then x belongs to class Ck 

where the antecedent fuzzy sets Ai correspond to the established fuzzy set in the universe of 

discourse of the i th feature. 

The remaining issue is to evaluate appropriately the weights of each feature, taking into 

account that they will be used to modify the membership to antecedent fuzzy sets of each 

classification rule. A natural idea is to estimate these weights in the membership space based 

on SMSP principle to justify such an operation.  

5.3  Membership margin  

In classical feature weighting methods, the feature relevance is estimated in a space assumed 

to be quantitative. This requires that other feature types must be transformed arbitrarily, 

without taking any consideration about their original space. While, based on SMSP principle, 

an appropriate mapping of different features into a common space is achieved; this allows 

bypassing the assumption of pure quantitative features. In recent machine learning theory, 

margin concept plays an important role to estimate the decision making confidence (Vapnik, 

1998). In the following, we define a Membership Margin which enables to estimate the 

features weight in the membership space whatever their type and number. 

Definition 5.2: Membership Margin (MM). 

Let us consider class
1

Cc = , and its complement
2

~
Cc = . We assume that the nth data sample 

],...,,[ )()(
2

)(
1x n

m
nn(n) xxx= is labeled by classc . Let’s define the membership margin for sample x(n) 

by:   

( ) ( )nβ = ψ U -ψ Unc nc%  
 

(5.1) 

Where Unc  and Unc%  are respectively the membership degree vectors of sample x(n) to classes

candc~ , computed with respect to all samples contained in D excluding x(n) (“leave-one-out 

margin”) and ψ is an aggregation function. We define here ∑=Ψ i iY (Y) , which can be extended 

to any other aggregation function.  

Thus, in our case the function ψ is given as follows:  
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(5.2) 

The feature membership can be seen as the contribution (relevance) of this feature to the 

rule’s consequence of a given class. Consequently, when an assignment decision is necessary, 

if the contribution average of all features for the sample x(n)
 to its class is greater than its 

average contribution to the alternative class it is clear to assign it to the class with maximum 

contribution (which corresponds to its correct class). Therefore, sample x(n) is considered 

correctly classified if βn >0.  

The arithmetic sum given by (5.2) defines a compromise aggregation between membership 

functions and lies in equal way between union and intersection (Dubois et Prade, 1988). On 

the other hand, if the MDV 
kncU is considered as a discrete fuzzy subset, function ψ represents 

the scalar cardinality (power or sigma count) of 
kncU as defined by (Zwick et al., 1987; 

Wygralak, 2000). Therefore, the membership margin βn given by (5.1) is the scalar 

cardinalities difference of these resulted fuzzy subsets. 

Intuitive interpretation: This membership margin is a measure of how much the features 

memberships can be modified in the membership space before a sample x(n) being 

misclassified. According to the margin types described in (Grammer et al., 2002), this margin 

can be also considered as an hypothesis-margin. Note that the membership margin is affected 

by the selected subset of features through the function ψ. It is worthwhile to note that our 

feature weighting approach is also based implicitly on maximum membership rule to label an 

pattern by an existing class. Membership margin for pattern cn ∈)(x  is based on the 

aggregation )(UncΨ  computing its global membership to the class c. Of course, other 

alternatives can be opted also using different types of aggregation functions. We stated 

previously that x(n) is considered correctly classified if βn>0. This is equivalent to write: 

{ })ψ(U),ψ(U c~nnc~
,

maxarg
CC

nC =  
 

(5.3) 

which is equivalent to the maximum membership rule, that x(n) belongs to the class with 

maximum global membership. Therefore, this approach encompasses implicitly the decision 

process in the feature selection task. 

5.4  MEmbership Margin Based feAture Selection: MEMBAS 

Similarly to the classification task, since all features are simultaneously mapped into a 

common space thanks to SMSP principle, they can be henceforth processed in unified way for 



Chapter 5: Supervised Learning based on SMSP Principle 

 

68 

 

feature weighting task. In the case of the compromise aggregation via the arithmetic sum 

described by (5.2), importance assignment is easily incorporated in the aggregation through a 

weighted sum (Dubois et Prade, 1988; Cross and Sudkamp, 2002).  

Definition 5.3: Fuzzy Feature Weight. FFW is defined as the relative degree of usefulness of 

each feature in the membership space for the discrimination between two classes. These fuzzy 

feature weights are non-negative numbers expressing the discriminative power of the fuzzy 

sets between existing classes. It results that FFW is a vector, referred to as

f 1W , Rm
f fmw w = ∈ K , assigned in the membership space, where the term ‘fuzzy weight’ 

comes from.  

Definition 5.4: Weighted adequacy of a pattern. 

Given a vector of positive fuzzy feature weights
f 1W , Rm

f fmw w = ∈ K , the weighted 

adequacy of the nth pattern is defined by the cardinality of the new fuzzy set that takes into 

account the weight of each feature in the membership space. It is given by the scalar product: 
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 nkffnk
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5.4.1 Fuzzy Feature Weight Estimation 

The basic idea to calculate the fuzzy feature weights is to scale feature memberships in the 

membership space by minimizing the leave-one-out error. Therefore, the margin given by 

(5.1) in the weighted membership space becomes: 

( ) ( )n f nc f nc fβ (w )= ψ U /w -ψ U /w%  (5.5) 

However, the problem which remains is to find a procedure to estimate the weight vector wf. 

One approach among others would be to take advantage of the membership margin definition 

(5.5) to define a margin-based objective function and then reformulate this problem as an 

optimization problem in the membership space as it is usually performed in the large margin 

theory framework. 

a) Problem statement 

It has been proved recently, within the margin theory framework (Vapnik, 1998), that a 

classifier based on minimizing a margin-based error function generalizes well on unseen test 

data. For this reason, it has also been extended for feature selection purposes (Weston et al., 

2001; Freund and Schapire, 1997). The present work takes its originality in the use of the 
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membership margin concept. To solve the above described problem, one can transform it to 

the following optimization problem in the feature membership space:  

( )( )
f

1 n f
w

Min   h β w 0N
n=∑ <  (5.6) 

Where βn(wf) is the x(n) margin computed with respect to wf and h is an indicator function. To 

solve the above problem, we define an objective function so that the averaged membership 

margin in the resulted weighted feature membership space is maximized:      
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Subject to the following constraints :                                                                                (5.7) 

1. 1=|| w|| 2
2f ,  

2. 0w f ≥ .                                      

The first constraint is the normalized bound for the modulus of wf so that the maximization 

ends up with non infinite values, whereas the second guarantees the nonnegative property of 

the obtained weight vector. Then (5.7) can be simplified as:  

0 w1,=|| w||   Subject to

s)(w   Max

f
2
2f

T
f
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≥
 (5.8) 

where 

{ }1 nc ncs= U -UN
n=∑ %  (5.9) 

In the statement of this optimization problem, we must assume that there exists at least one 

feature i≤m, such that si>0.  

b)  Lagrangian optimization approach 

This is a classical optimization problem stated in the framework of Lagrange multipliers (see 

Appendix 3). Therefore, taking in advantage that it provides an analytical solution, we get 

finally a closed form for wf:  

*
f

s
w

|| s || 

+

+=  (5.10) 

with s+= [max(s1,0), …, max(sm,0)]T    

5.4.2 MEMBAS Algorithm  

We present bellow the algorithm of the proposed approach. We consider here the online 

learning version of Membas rather than the batch one due to its attractive properties. Although 

both approaches are equivalent in terms of the final result, it is known that an online algorithm 
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is computationally more efficient than its batch version when the amount of training data is 

large. Moreover, it enables also to update weights by the information brought by a new 

sample which was not available when starting the training. The computational complexity of 

Membas is O (N m), where N is the sample size and m the data dimensionality, and it can be 

summarized by the following algorithm:  

1. Initiate the fuzzy weight vector to zero, T number of iterations (T=N when the training is 
performed over all patterns). 

2. For t=1…T 
a) Select randomly a sample x(n) from D 
b) Determine the fuzzy partition of each feature according to its type with respect to 

D\{x(n)}. 

c) Calculate the membership degree vectors MDVs ncU and ncU %  for sample x(n). 

d) Update vector  s  as 

                          
{ }nc nc       s  s U -U= + %  

3. Calculate the optimal fuzzy weight vector as 

                                               *
f

s
w

|| s || 
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+= ,  

            with   s+= [max(s1,0), …, max(sm,0)]T     

5.4.3 MEMBAS for multiclass problems 

The extension of the MEMBAS method for multiclass problems is considered in this section. 

Once the membership function parameters of each class have been determined from the 

training dataset, the feature space is partitioned into a number of fuzzy sets equal to the 

number of classes. Consequently an equal number of membership degree vectors is resulted. 

Therefore, a similar margin definition for multiclass problems to the one given in (Sun, 

2007b) can be used for the same purpose, by taking the maximum marginal membership with 

respect to all classes other than class c: 
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Thus (5.9) becomes    
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By using this last expression of s and following the same steps we arrive to a form of *
fw

  

similar to the one obtained in (5.10).  
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Finally, the estimated *
fw in the membership space can be used now to weight each proposition 

of the fuzzy rule-based classifier with objective of improving its performance. Nevertheless, 

albeit a direct feature-weight assignment to each proposition can be very useful to improve 

the performance of the fuzzy rule-based classifier for relatively low dimensional problems, it 

becomes undesirable for high dimensional problems, such as bioinformatics problems 

characterized by thousands of features. However, feature-weight assignment process can be 

regarded as a generalization of feature selection (Wang et al., 2004). In the present work we 

focus on feature selection problem rather than a direct feature-weight assignment. This is 

equivalent to activate or deactivate the proposition corresponding to each feature in the fuzzy 

if-then rule according whether it was deemed important or not by Membas. From other side, 

we formulated the weight computation procedure in the way that the proposed approach 

approximates the leave-one-out cross validation error. Therefore, this approach chooses 

features only if they contribute to the overall classification performance regardless of their 

redundancy or correlation. It is reported that often redundant features can deteriorate 

classification performance and removing them is necessary. However, it has been pointed out 

recently in some applications such as DNA microarray, that the ultimate goal is not always 

the identification of a small gene subset with good predictive power, but to help the 

physicians to have a good insight about the relationship between genes and certain diseases 

(Jenssen and Hovig, 2005). Discovering redundant (or coregulated) genes may provide some 

useful information about their interactions.  

5.5  Experiments and Comparisons 

In the present section, we show how the proposed method can improve the performance of the 

fuzzy rule-based classifiers as well as other well known state-of-the-art classifiers on some 

real-world problems. To further demonstrate its effectiveness, several comparisons have been 

performed: Membas versus three well-known feature selection approaches using three 

different classifiers to avoid biased comparison. They concern experiments on low-

dimensional datasets (less than 50 features) and high-dimensional datasets (more than 1000 

features). 

5.5.1 Feature selection methods 

For comparison purposes we used three methods: Relief (Kira and Rendell, 1992a), I-Relief 

(Sun, 2007b) and Simba (Gilad-Bachrach et al., 2004), widely used for the validation of 
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newly proposed feature selection approaches. We give below a brief description of these three 

methods.  

Relief is considered as one of the most successful feature selection methods due to its 

simplicity and effectiveness (Dietterich, 1997). In Relief the feature weights are estimated 

iteratively according to their discrimination ability based on samples neighbouring. For each 

iteration, a sample is selected randomly and its two nearest neighbours are found: one from 

the same class (nearest hit) and the other from the alternative class (nearest miss). An 

extension of Relief to multiclass problems has been presented in (Kononenko, 1994). 

Moreover, it has been proven recently that Relief is not an heuristic filter method as it has 

been long time considered but an online learning algorithm that solves an optimization 

problem (Sun, 2007b). In the same work, (Sun, 2007b) have proposed an efficient iterative 

version of Relief, referred to as I-Relief, by using an Expectation-Maximization algorithm. I-

Relief searches the real nearest neighbor in the weighted feature space, unlike Relief which 

makes the assumption that the nearest neighbor in the original space is the same one in the 

weighted feature space. Further theoretical convergence analysis of I-Relief and its online 

version have been also provided to prove its superiority over the Relief family algorithms. I-

Relief has one free parameter, the width of kernel Gaussian function, to be defined by the 

user. This parameter should be selected properly to guarantee the I-Relief convergence.          

Concerning the Simba method, a gradient ascent to maximize a margin based evaluation 

function is performed. Simba also is based on samples neighboring as Relief. At each 

iteration, for a given randomly selected sample, the feature weight is updated by using the rule 

obtained by the gradient ascent procedure. I-Relief, Relief and Simba are recognized by 

machine learning community as efficient wrapper approaches, and widely used in literature to 

prove the effectiveness of recently proposed feature selection approaches (Dietterich, 1997). 

The three approaches are distance-based methods that maximize a 1-NN margin. Relief 

algorithm used here for comparison is also multiclass as proposed and used by (Gilad-

Bachrach et al., 2004). However, most of existing probabilistic and information-theoretic 

based approaches are of filter type (Wettschereck and Aha, 1995; Mitra et al., 2002). It is a 

recognized fact now within the machine learning community that such filter approaches are 

computationally more efficient but perform worse than wrapper methods (Kohavi and John, 

1997; Guyon and Elisseeff, 2003). Moreover, extensive comparative studies performed in last 

decades have proved their superiority against filter approaches on wide range of real-world 

problems. For example, Gilad-Bachrach et al. (2004) have compared Relief and Simba with a 
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mutual-information based approach. Many works can be also found in literature comparing 

Relief and Simba with information-theoretic and probabilistic approaches (Wettschereck and 

Aha, 1995; Wettschereck et al., 1997; Robnik-Šikonja and Kononenko, 2003; Li and Lu, 

2009;).  

5.5.2 Experimental setup 

Here, the three feature selection methods are evaluated based on the classification error 

obtained using their selected feature subset. Besides the fuzzy rule based classifier LAMDA, 

we used also the well known k-NN classifier (Cover and Hart, 1967). Moreover, in order to 

achieve a more accurate classification performance, they are also compared using SVM 

classifier (Vapnik, 1998). The k-NN method classifies each unlabelled sample by the majority 

label among its k nearest neighbors in the training set (Cover and Hart, 1967). It is known that 

k-NN classifier is very sensitive to the presence of irrelevant features and therefore adequate 

to compare feature selection methods (see chapter 2). While the Support Vector Machine 

method finds the separating hyper-plane with the largest sample-margin (Vapnik, 1998). 

Unlike k-NN, it is well known that SVM is very robust against noise, and that the presence of 

a few irrelevant features in the original feature set should not significantly affect its 

performance (see chapter 2). Consequently, SVM may perform similarly with the different 

feature selection methods in this case. 

The main reason of using these three different classifiers is to assess whether this approach 

can, in addition to the fuzzy rule based classifier LAMDA, improve other state of the art 

classifiers. This comparative study was performed on two dataset collections. The first 

collection concerns six UCI Repository datasets (Blake and Merz, 1998): Diabetics, Thyroid, 

WDBC, Ljubljana, Twonorm and Heart. Two datasets (Ljubljana, Heart) among them have 

mixed feature types (quantitative, qualitative as well as interval). Moreover, 50 independently 

normal distributed irrelevant features with zero mean and unit variance were added to the 

original features of all datasets to assess the robustness of the newly proposed method against 

irrelevant features. The second collection concerns four DNA microarray datasets: DLBCL 

(Shipp et al., 2002), Lung cancer (Bhattacharjee et al., 2001), prostate cancer (Singh et al., 

2002), SRBC (Khan et al., 2001). The main characteristic of these datasets is their high 

feature dimensionality (several thousands to ten thousands) and the small sample size (ten to 

one hundred). It must be noted also that some of datasets are multiclass. Additional 

information about each dataset is given in Table 5.1. 
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Tab. 5.1. Summary of used Datasets 
Dataset No. Train No. Test No. Feature Class Task description 

 Diabetics 615 153 8 2 Diabetes onset forecast  
 Thyroid 172 43 5 3 Thyroid disease diagnosis 
WDBC 456 113 30 2 Breast cancer diagnosis  
Ljubljana 222 55 9 2 Breast cancer prognosis 
Twonorm 371 7029 20 2 Artificial dataset 
Heart 216 54 13 2 Heart disease diagnosis 
DLBCL 77 / 7129 2 Outcome prediction of Diffuse Large B-cell       
Lung cancer 203 / 12600 5 Diagnosis of four lung cancer  types  
Prostate cancer 102 / 10509 2 Prostate cancer prognosis  
SRBC 83 / 2308 4 Small, Round Blue-Cell tumors diagnosis 

In all cases, the classification error was used as the criterion to evaluate the performance of 

the compared methods. I-Relief have one free parameter to be defined by the user. Sun 

(2007b) suggested that this parameter should be selected superior to 0.5 in order to guarantee 

the I-Relief convergence (we set it to 0.7 in the present experiments). As mentioned in the 

previous section, Simba suffers of local maxima problem because it performs a gradient 

ascent. To overcome this problem Simba performs a gradient ascent from several initial points 

predefined by the user. The number of points is set here to the Simba default value, 5 (Gilad-

Bachrach et al., 2004). Concerning SVM, the supervised binary classifier was used for binary 

class problems whereas a multiclass SVM “one against one” is used in the case of multiclass 

problems (Vapnik, 1998). As the focus of this work is the comparison between the feature 

selection methods, only a simple linear kernel for binary class problems and polynomial 

kernel for the multiclass ones have been used. 

5.5.3 Experiments on low-dimensional datasets 

As mentioned above, firstly the experiments have been performed on the six UCI datasets to 

compare Membas with Simba, Relief and I-Relief methods. These datasets contain mixed 

feature-type data, and each classifier has one parameter which has been adjusted through a 

cross-validation process (i.e. the exigency index assuring a linear interpolation between the 

fuzzy logic connectives for the fuzzy-rule based classifier LAMDA, the number of nearest 

neighbours k for the k-NN method and the regularization parameter for SVM). For this 

purpose each dataset was randomly partitioned into two subsets training and test data as it is 

detailed in Table 5.1. The three parameters are estimated through a cross validation using the 

training dataset (70% vs 30%). The optimal parameters values are taken according to the 

smallest classification error obtained on the remaining 30% of the training subset. Then, the 

classification error is calculated on the test subset consisting in unseen samples for the three 

classification methods. To eliminate any statistical variation and make the comparisons 
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between different methods more balanced, this procedure was repeated 20 times for each 

dataset. The averaged error over the 20 runs is considered as the classification error for a 

given feature subset. The averaged testing error for LAMDA, k-NN and SVM methods is 

plotted as a function of the top ranked features respectively in Figure 5.1, Figure 5.2 and 

Figure 5.3. Moreover, the optimal obtained averaged classification errors with the three 

classifiers and the corresponding number of selected features by each feature selection 

method are reported in Tables 5.2 to 5.4. 

Tab. 5.2. Optimal Testing Errors (%) and corresponding number of features on the Ten Data Sets with LAMDA. 
Last raw (W/T/L) summarizes Win/Tie/Loss in comparing MEMBAS with other approaches based on 
significance level 0.05.   

Dataset MEMBAS SIMBA RELIEF I-RELIEF P-value (MEMBAS-RELIEF) P-value (MEMBAS-SIMBA) P-value (MEMBAS-IRELIEF) 

Diabetics 25.5 (5) 27.2 (5) 28.2 (2) 25.6 (3) 0.00 0.00 0.31 

Thyroid 4.9 (4) 5.6 (3) 6 (5) 5.3 (5) 0.25 0.89 0.90 

WDBC 5 (21) 6.7 (30) 7.3 (29) 5 (28) 0.00 0.00 0.01 

Ljubljana 24.6 (4) 29.9 (8) 34.9 (8) 25.3 (4) 0.00 0.00 0.09 

Twonorm 2.4 (20) 4.4 (19) 3.4 (20) 2.5 (20) 0.91 0.80 0.97 

Heart 15.3 (7) 25.8 (13) 23.2 (13) 28 (11) 0.00 0.00 0.00 

DLBCL 5.2 (80) 8.5 (25) 6.5 (60) 3.4 (300) 0.00 0.00 0.27 

Lung cancer 4.4 (70) 5.5(70) 4.4(100) 7.4 (100) 0.17 0.52 0.03 

Prostate cancer 5(10) 13.3(40) 11(20) 6.8 (50) 0.00 0.00 0.07 

SRBC 0 (20) 0(100) 0(160) 0 (60) 0.19 0.53 0.38 

     W/T/L= 6/4/0 W/T/L= 6/4/0 W/T/L= 3/7/0 

 

Tab. 5.3. Optimal Testing Errors (%) and corresponding number of features on the Ten Data Sets with k-NN. 
Last raw (W/T/L) summarizes Win/Tie/Loss in comparing MEMBAS with other approaches based on 
significance level 0.05.   

Dataset MEMBAS SIMBA RELIEF I-RELIEF P-value (MEMBAS-RELIEF) P-value (MEMBAS-SIMBA) P-value (MEMBAS-IRELIEF) 

Diabetics 24.8 (5) 26.5 (6) 25.3(8) 26.1 (6) 0.23 0.07 0.11 

Thyroid 4.9 (4) 6 (3) 5.8(3) 5.8 (3) 0.41 0.72 0.96 

WDBC 6.8 (17) 7.3 (9) 6.7 (12) 6.6 (22) 0.02 0.00 0.02 

Ljubljana 25.8 (5) 28.2 (4) 29.2(9) 25.8 (7) 0.00 0.00 0.55 

Twonorm 4.2 (19) 6.1 (18) 5.2(20) 4 (20) 0.90 0.80 0.97 

Heart 30.3 (5) 35.7 (4) 36.6(12) 28 (10) 0.00 0.03 0.00 

DLBCL 4.7 (120) 6.8 (40) 5.3(90) 5.3 (200) 0.84 0.89 0.01 

Lung cancer 5.7 (80) 8.4 (180) 7.3(200) 6.2 (300) 0.32 0.45 0.09 

Prostate cancer 7.5(15) 18 (90) 17.8(40) 17.2 (30) 0.00 0.00 0.00 

SRBC 0(40) 0 (140) 0(40) 0 (40) 0.43 0.81 0.27 

     W/T/L= 3/6/1 W/T/L= 4/6/0 W/T/L= 2/6/2 
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Tab. 5.4. Optimal Testing Errors (%) and corresponding number of features on the Ten Data Sets with SVM. 
Last raw (W/T/L) summarizes Win/Tie/Loss in comparing MEMBAS with other approaches based on 
significance level 0.05.   

Dataset MEMBAS SIMBA RELIEF I-RELIEF P-value (MEMBAS-RELIEF) P-value (MEMBAS-SIMBA) P-value (MEMBAS-IRELIEF) 

Diabetics 23.8 (5) 25.7 (8) 24.5 (7) 24.9 (7) 0.20 0.00 0.05 

Thyroid 4 (4) 4 (3) 4.4 (4) 4 (3) 0.27 0.79 0.94 

WDBC 2.4( 22) 3.9 (20) 5.2 (30) 4.6 (30) 0.00 0.01 0.00 

Ljubljana 27 (4) 28.5 (7) 29.4 (8) 27.6 (3) 0.00 0.00 0.10 

Twonorm 3.6 (20) 5.4 (20) 4.7 (20) 3.6 (20) 0.88 0.81 0.99 

Heart 14.2 (9) 18.5 (13) 17.3 (12) 15.9 (11) 0.00 0.00 0.14 

DLBCL 1.3 (30) 3.8(90) 2.6 (50) 1.2 (50) 0.29 0.05 0.88 

Lung cancer 2.9 (40) 5.4 (180) 7.4 (300) 4.9 (300) 0.07 0.26 0.15 

Prostate cancer 2.9(40) 7.1 (300) 4.9 (200) 4.9 (140) 0.00 0.00 0.11 

SRBC      0 (50) 0 (25) 0 (40) 0 (120) 0.62 0.98 0.30 

     W/T/L= 4/6/0 W/T/L= 6/4/0 W/T/L= 2/8/0 

A comparison between the obtained results leads mainly to the following observations:  

1. Concerning the fuzzy-rule based classifier, we can observe from Figure 5.1 that, 

except for the Twonorm dataset, the proposed fuzzy weighting approach improves 

significantly the classifier performance on almost all datasets. A significant gain of 

performance is achieved by retaining only few features rather than the whole set of 

original features. For instance, almost 5% of performance gain is achieved using only 

the four top ranked features rather the nine original features of the Ljubljana dataset. 

Similarly for the Heart dataset, we gain almost 5% in term of classification 

performance with only seven features. 

2. Although Relief, Simba and I-Relief are based on 1-NN principle, Membas performs 

similarly or best than I-Relief in nearly all datasets regardless of the used classifier 

(LAMDA, k-NN or SVM) and outperforms Relief and Simba. For more rigorous 

comparison between the three feature selection methods, a student’s paired two-tailed 

t-test is also performed. The p-value of the t-test reported in each row in Tables 5.2 to 

5.4 represents the probability that two sets of compared results come from 

distributions with equal means. The smaller the p-value, the more significant the 

difference of the two average values is. At the 0.05 p-value level, Membas wins 

against Relief and Simba on four cases out of six on UCI datasets with the fuzzy rule 

based classifier LAMDA (Diabetes, WDBC, Ljubljana, Heart), and in two cases 

against I-Relief method, and ties on the remaining cases. With k-NN, Membas wins on 

two cases against Relief, in three cases against Simba, and loss in two cases against I-
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Relief. Whereas with SVM, Membas wins on four cases with Simba, three cases with 

Relief, two cases with I-Relief and ties on the remaining cases. 

3. Moreover, Membas performs well on UCI datasets containing mixed-type data (ex: 

Heart, Ljubljana). Especially when the classifier handles appropriately mixed-type 

data as it can be observed with the fuzzy rule-based classifier LAMDA.  

To further demonstrate these interesting properties of the proposed method, we focus on three 

datasets: Heart (6 qualitative and 7 quantitative features), Ljubljana (6 qualitative and 3 

interval features) and Diabetes (8 quantitative features). Figures 5.4, 5.5 and 5.6 give, for the 

three datasets respectively, the obtained fuzzy weights for one run. For ease of comparison, a 

normalization of the maximum value of each weight vector is performed to be 1. For Heart 

dataset, we observe that I-Relief, Relief and Simba do not only assign zeros weights to 

irrelevant features (the last 50 features in Figure 5.4) but also to the first six qualitative 

features which are assumed useful ones. Whereas Membas does not only succeed to identify 

these qualitative features but its top ranked feature is qualitative (feature No.6). The obtained 

classification errors on this dataset, shown in Figures 5.1, 5.2 and 5.3, prove that Membas can 

significantly improve the performance of the three classifiers. One possible explanation is that 

the top ranked features obtained by Membas are more useful for the classification task. As 

expected, Membas leads to significant improvements of classification performance in the case 

of mixed feature-type data, due mainly to an appropriate and similar processing for each type 

of data with minimal loss of information.  

Let us focus now on Ljubljana dataset which includes interval and qualitative type features, 

for which other feature selection methods cannot be applied directly. As the interval feature 

values of this dataset are regular (not overlapped), they are transformed into ordered numbers 

to enable I-Relief, Relief and Simba to handle them. It is worthwhile to note that Membas 

handles the interval features in their original form without any restriction on their relative 

positions (overlapped or regular); no arbitrary mapping is therefore required. Let us recall that 

I-Relief, Relief and Simba could not handle intervals if they were overlapped. We observe 

from Figure 5.5 that Membas identifies correctly the 9 presumably useful features (whatever 

their type) and assigns approximately zero weights to the 50 last added irrelevant features, 

whereas Simba and Relief identify mistakenly some irrelevant features as relevant ones. From 

Tables 5.1 to 5.3, we observe that the minimal classification error on this dataset is obtained 

with the fuzzy rule-based classifier LAMDA when only the first four top ranked features are 
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used. This result highlights also the attention to be devoted for choosing an adequate classifier 

when the data are of mixed type.  

We finally focus on the Diabetes dataset (Figure 5.6), for which all the feature selection 

methods succeed to identify presumably useful features with at least the first common top 

ranked feature. The obtained classification errors illustrated in Figures 5.1, 5.2 and 5.3 prove 

the efficiency of Membas to process quantitative features as well as symbolic data. Whereas, 

we point out that I-Relief, Relief and Simba are typically well-conditionned for processing 

quantitative features, but are not proficient for handling a dataset of mixed-type data. As 

expected, SVM performs better than other classifiers on this dataset, especially when only the 

selected features by Membas are used (see Figure 5.3 and Table 5.3). 
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Fig. 5.1. Classification errors obtained by LAMDA on UCI datasets using Membas, I-Relief, Relief and Simba. 
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Fig. 5.2. Classification errors obtained by k-NN on UCI datasets using Membas, I-Relief, Relief and Simba 
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Fig. 5.3. Classification errors obtained by SVM on UCI datasets using Membas, I-Relief, Relief and Simba 

 



Chapter 5: Supervised Learning based on SMSP Principle 

 

82 

 

   

 

Fig. 5.4. Feature weights obtained by Membas, I-Relief, Relief and Simba on Heart dataset.  
The first 13 features are the original ones 

 

 

Fig. 5.5. Feature weights obtained by Membas, I-Relief, Relief and Simba on Ljubljana dataset.  
The first 9 features are the original ones 
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Fig. 5.6. Feature weights obtained by Membas, I-Relief, Relief and Simba on Diabetes dataset.  
The first 8 features are the original ones 

5.5.4 Experiments on high-dimensional datasets 

In this section, Membas is compared with I-Relief, Relief and Simba on four microarray 

datasets. Due to the limited number of samples, the leave-one-out cross validation has been 

performed to assess the performance of each algorithm. However, in this section we aim to 

illustrate how the proposed method performs in the presence of huge number of irrelevant 

features. We noticed in the previous section that Membas processes quantitative data as good 

as, or better, than other methods on small datasets.  

The classification errors obtained using LAMDA, k-NN and SVM of the top 400 ranked 

features are plotted respectively in Figures 5.7 to 5.9 and the corresponding optimal 

classification performance are reported in Tables 5.2 to 5.4. It can be observed that Membas 

perform similarly or best than I-Relief, and outperforms Relief and Simba nearly in all 

datasets using the three classifiers. For prostate cancer dataset, Membas outperforms Relief 

and Simba over all ranges by 5 to 20 percent with respect to the three classifiers, whereas it 

yields a better optimal (Test error, No. genes) than I-Relief : a classification error of 5% for 

only 10 genes with Membas against 6.8% for 50 genes with I-Relief. For SRBC, with 

LAMDA classifier, Membas converges for only 20 genes whereas I-Relief converges for 60 
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gens, Simba for 100 genes and Relief for 160 genes. Nevertheless, with k-NN classifier, 

Membas, I-Relief and Relief converge together at 40 genes but it can be observed that 

Membas provides the minimal classification error before attaining the convergence. For 

example, in SRBC using LAMDA and k-NN classifiers, with 5 genes the error for Membas is 

7 percent compared to more than 20 percent for Relief and I-Relief. One possible explanation 

is that Membas ranks the genes according to their real relevance to this problem so that the k-

NN classifier performance is maximized. Note also that Membas in SRBC with k-NN and 

SVM reaches near zero percent for only 10 genes. For DLBCL dataset, Membas performs 

better than Relief and Simba with SVM and LAMDA classifier and yields nearly similar 

results to these two approaches with k-NN classifier. However, it achieves quite similar or 

slightly good results compared to I-Relief. For Lung-cancer, we observe that with both 

classifiers LAMDA and k-NN, the error obtained by Membas converges for 70 genes. 

Whereas with SVM, the classification error achieves its minimal value for only 40 genes. 

However, one important issue in using feature selection algorithms in gene selection tasks is 

to determine a cut-off threshold in a ranked gene list. For some feature weighting approaches 

(e.g. Relief) a heuristic threshold is proposed for this purpose computed as a function of the 

number of features (Kira and Rendell, 1992b). One more commonly used method is through 

cross validation that uses a training data subset to estimate cut-off thresholds simultaneously 

with the classification parameters, and then using the estimated parameters to classify the 

held-out testing samples.  
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Fig. 5.7. Classification errors obtained by LAMDA on DNA microarray datasets using Membas, Relief  
and Simba. 

 

 

Fig. 5.8. Classification errors obtained by k-NN on DNA microarray datasets using Membas, Relief  
and Simba. 
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Fig. 5.9. Classification errors obtained by SVM on DNA microarray datasets using Membas, Relief  

and Simba. 

5.6 Conclusion 

In this chapter, we have proposed a new feature weighting method for mixed type data based 

on a membership margin to improve the performance of fuzzy-rule based classifiers. Thanks 

to the SMSP principle described in the previous chapter, a mapping of all the features from 

completely heterogeneous spaces to a common space represented by the membership space is 

performed. Then, the processing of issued data by the mapping step in unified way becomes 

straightforward for feature weighting. In this order, we introduced a new concept of weighted 

fuzzy rules such that each antecedent fuzzy set in the fuzzy if-then classification rule is 

weighted to characterize the importance of each proposition, and thereby the importance of 

the corresponding feature to the rule’s consequence. This operation of fuzzy rule weighting is 

naturally justified by the estimation of weight in the membership space based on membership 

margin concept. To avoid any heuristic combinatorial search, these fuzzy weights are 

estimated by optimizing an objective function within the membership margin framework. An 

extension of the proposed method to multiclass problems has also been performed. The 

advantages of the proposed method were firstly illustrated and compared on low-dimensional 
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real-world datasets, characterized by the presence of mixed-type data, with some well-known 

feature weighting approaches. The experimental results show that this method leads to a 

significant improvement of classification performance using fuzzy rule based classifiers as 

well as other state-of-the art classifiers. The proposed method is however distinguished from 

other feature weighting methods by its ability to process symbolic intervals without any 

restrictions on their relative position (regular or overlapped intervals). Further experiments on 

high-dimensional datasets (DNA microarray dataset) have also proved the effectiveness of the 

proposed method to perform high-dimensional data. 

Unlike the supervised case, feature weighting in the unsupervised case is revealed to be more 

challenging due to the absence of pattern labels. We try by next chapter to extend this 

weighting approach to the unsupervised case. 
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CHAPITRE 6- Résumé  
Apprentissage non supervisé basé 
sur le principe «SMSP» 

Le résultat de classification n’est pas toujours disponible au moment de la prise de décision 

dans de nombreux problèmes pratiques. Dans de telles situations le recours à l'apprentissage 

non supervisé est une pratique courante. Cependant, pour maintenir une interprétation facile 

et une grande transparence dans les applications médicales, l'utilisation d'approches non 

supervisée basées sur des règles peut être aussi d'un grand intérêt. L’apprentissage non 

supervisé flou notamment offre l'avantage de fournir une base pour la construction des 

modèles basés sur des règles floues fournissant une représentation simple et une bonne 

performance pour les problèmes non-linéaires (Yao et al., 2000). 

D'un coté, selon la façon dont les données sont traitées, les approches de regroupement non-

supervisés (ou «clustering» en anglais) peuvent être divisés en deux classes: «batch» et en 

ligne. Les algorithmes «batch» traitent à la fois toutes les données disponibles représentées 

sous la forme d’une table d’individus hors ligne. Alors que dans le cas des algorithmes en 

ligne, nous considérons que les individus sont reçues en ligne et les partitions de données doit 

être adaptée itérativement au cours du temps par les informations apportées par les nouveaux 

individus. Il est maintenant bien reconnu par la communauté d'apprentissage automatique 

qu'un algorithme de type en ligne est plus efficace qu’un algorithme de type «batch» (Cai et 

al., 2009). Une approche en ligne est adaptative dans la façon que chaque fois qu'un nouvel 

individu est reçu, soit un nouveau cluster est généré, dues par exemple à l'apparition d’un 

nouveau mode, ou seulement les clusters existants sont mis à jours. Le regroupement en ligne 

nécessite donc un apprentissage non supervisée et incrémental permettant d'incorporer de 

nouvelles informations dans l'évolution de la partition fur et à mesure qu’un nouvel individu 

est reçu. Les approches en ligne sont plus générales que les approches dites «batch» dans le 

sens où les premiers peuvent être utilisés également pour traiter une table d’individus de 

façon itérative. 

D’un autre coté, à l'instar du contexte de classification supervisée, non pas toutes les 

variables sont utiles pour la tâche de classification non-supervisée et donc juste l'ensemble 

des variables qui aident à guider le processus de regroupement devrait être sélectionné. 

Cependant, le problème est plus complexe que lorsqu’une partition de référence est 
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disponible afin d'évaluer l'importance des variables. Par rapport à l'apprentissage supervisé, 

peu de travaux ont été consacrés pour aborder le problème de sélection de variables dans le 

contexte d'apprentissage non supervisé. La plupart des algorithmes de sélection de variables 

non supervisés sont basées sur des mesures d'information ou de consistance (Mitra et al, 

2002; Dy et Brodley, 2004; Wei et Billings, 2007). Comme une approche non supervisée, 

l’ACP (Analyse en Composantes Principales), par exemple, permet de trouver le sous-

ensemble des composants utiles pour la représentation des données. Néanmoins, ces 

composantes ne sont pas nécessairement utiles pour discriminer entre les groupes dans une 

tâche de classification non-supervisée (Duda et al., 2001). Si certains de cet ensemble de 

variables, indépendamment de leur pertinence et importance, sont de type mixte la tâche de 

classification non-supervisée devient beaucoup plus compliquée. 

Dans ce chapitre, nous avons proposé une nouvelle approche basée sur la pondération en 

ligne de variable pour le regroupement de données hétérogènes. L'algorithme proposé est une 

extension de notre algorithme de pondération de variables développé précédemment pour la 

classification supervisée. Pour faire face au problème de l'hétérogénéité des données, le 

principe SMSP est étendu ici aussi pour traiter d’une façon unifiée les données hétérogènes 

dans un cadre non supervisé. Toutefois, il a été montré que l'étape de projection des données 

dans un espace commun doit être réalisée de façon incrémentale pour tenir compte du nouvel 

individu reçu à chaque itération du processus d'apprentissage. Pour cette raison, une version 

itérative de la fonction caractéristique introduit dans le cas supervisé a été fournie en 

fonction de chaque type de variable.  

Tout d’abord, l'algorithme de la méthode de regroupement incrémental en ligne basé sur des 

règles floues a été décrit. Ensuite, nous avons étudié comme pour le contexte supervisé, 

l'intégration de la tâche de pondération de variables dans le processus du regroupement pour 

la conception de notre approche en se basant sur le concept de règles floues pondérées. Cette 

approche est basée aussi sur la maximisation itérative de la marge d’appartenance. Une 

étude extensive expérimentale a été ensuite effectuée sur des problèmes artificiels et réels 

pour prouver l'efficacité de l'approche proposée. Sur un exemple artificiel cette approche a 

permet d’identifier correctement l’ensemble des classes et aussi l’ensemble des variables non 

pertinentes. Alors que dans le cas des problèmes réels, cette approche a gagné contre la 

méthode C-Moyennes Floues (FCM) dans 12 cas sur 14. Cet algorithme ne parvient pas 

cependant à traiter des problèmes de haute dimension (par exemple données issues de 

biopuces). Cela est dû probablement au grand nombre de variables non pertinentes (des 

milliers) par rapport à celle pertinentes (des dizaines au maximum). 
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CHAPTER 6 
Unsupervised learning based on 
SMPS principle 

The pattern labels are not always available the time of decision making in many practical 

problems. In such situations a resort to unsupervised learning capabilities is a common 

practice. However, to maintain an easy interpretation and high transparency in medical 

applications, the use of rule-based unsupervised approaches can be also of big interest. Fuzzy 

unsupervised learning particularly offers the advantage to provide a basis for constructing 

rule-based fuzzy model that has simple representation and good performance for non-linear 

problems (Yao et al., 2000). 

 From one hand, according to how the data is processed, clustering approaches can be divided 

into two classes: batch and online. Batch algorithms process at once all available data 

represented by a table of patterns offline. Whereas in online algorithms we consider that 

patterns are received online and data partitions should be adapted iteratively over the time by 

information brought by new patterns. It is now well-recognized by the machine learning 

community that an online algorithm is computationally more efficient than a batch one (Cai et 

al., 2009). An online approach is adaptive in the way that each time a new pattern is received, 

it either generates a new cluster, due for instance to new mode apparition, or only updates the 

existing clusters. Online clustering requires therefore unsupervised and incremental learning 

rules that enable to incorporate new information in partition evolution over time. Online 

approaches are more general than batch approaches in the sense that they can be used also to 

process a table of patterns in an iterative manner. 

From other hand, similarly to the supervised classification context, not all the features are 

important for clustering task and therefore only the set of features that help to guide the 

clustering process should be selected. However, the problem is more complex than when a 

reference partition of patterns is available to assess the importance of features. Compared to 

the supervised learning only few works have been devoted to address the feature selection 

problem for unsupervised learning. Most of unsupervised feature selection algorithms are 

based on information or consistency measures (Mitra et al., 2002; Dy and Brodley, 2004; Wei 

and Billings, 2007). As an unsupervised approach, PCA (Principal Component Analysis) for 
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instance enables to find subset of components useful for data representation. Nevertheless, 

these components are not necessarily useful to discriminate between clusters in a clustering 

task (Duda et al., 2001). If some of the original set of features, regardless of their relevance 

and importance, are of mixed type the clustering task becomes more challenging. 

In this chapter we propose a novel approach based on online feature weighting for clustering 

of heterogeneous data. The proposed algorithm is built based on an extension of our 

previously developed supervised learning feature weighting algorithm. So, first, to cope with 

the problem of data heterogeneity, the SMSP principle presented in chapter 4 is extended here 

also to reason in a unified way about heterogeneous data in an unsupervised framework. 

However, the mapping step should be performed in an incremental fashion to take into 

account new pattern at each iteration of the learning process. In this order, iterative version of 

the mapping function introduced in chapter 4 is provided here according to each feature type. 

We describe first an online incremental clustering algorithm based on a fuzzy rule-based 

system. We investigate then, as for the supervised context, the integration of the feature 

weighting task in the clustering process to design our proposed approach based on fuzzy 

weighted rules concept. An extensive experimental study is then performed on artificial and 

real-world problems to prove its effectiveness. However, it is worthwhile to note that, even of 

its interesting properties, this approach has been found unable to fit with high-dimensional 

data.   

6.1 Iterative membership functions updating 

Unlike the supervised case, the mapping step in the unsupervised framework should be 

performed iteratively based on online learning. At each iteration the membership functions are 

updated by the information brought by a new pattern according to each feature type as 

follows: 

6.1.1 Quantitative type features 

Different possible membership functions used in the supervised case can be adapted for the 

unsupervised case to quantitative feature type such as: 

a. Gaussian-like memebership function 

( )
22

2

1 /)( i
i
ki

i
i
k

x
ex

σϕ
µ

−−
=  (6.1) 



Chapter 6: Unsupervised Learning based on SMSP Principle 

 

91 

 

b. Binomial membership function  
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(6.2) 

However, the major difference with the supervised case is that the parameters i
kϕ  representing 

the i th feature’s mean of the Nk patterns clustered in class Ck are updated iteratively by online 

learning as follows:  
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σi represents an approximation of the standard deviation, which converges to the real one 

whenever a big number of samples is considered, and is updated iteratively by the following 

expression:    
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6.1.2 Interval type features 

The membership function for interval type features is also taken as the similarity described by 

the equations (5.6, 5.7 or 5.8) between the symbolic interval value of the i th feature xi and the 

interval 






 +−= i
k

i
k

i
k ρρρ ,

 
representing cluster Ck as 
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i
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For Nk patterns assigned to cluster Ck, the cluster prototype is a vector whose components are 

the intervals obtained by the mean bounds updated also iteratively by online learning as 

follows:  
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(6.6) 

Where j
ix −  is the i th feature lower bound for the j th sample and j

ix +  is its upper bound. 

Consequently, the resulted cluster prototype at each iteration for the r interval features is 

given by the vector of intervals:  

[ ]Tr
kkkk ρρρρ ,...,, 21=  

6.1.3 Qualitative type features 

The membership function for the i th qualitative feature is specified as: 
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Where 
 

i
kjΦ is the frequency of modality i

jQ  in cluster Ck updated iteratively by online 

learning as: 
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Therefore, the cluster prototypes at each iteration are represented by 

1, , , ,  i i i i
k k kj kMi Ω = Φ Φ Φ K K   

Unlike the supervised case, the mapping step of the SMSP principle is performed here online 

for different types of features in the membership space. At each learning iteration (i.e. receive 

a new pattern) a Membership Degree Vector (MDV) of dimension m is associated for a given 

pattern x 
(n)  to each cluster as follows: 
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where  )( )(n
ixi

k
µ  (i.e. )( )(n

ii xxi

k
=µ ), is the membership function of cluster Ck at the current 

iteration evaluated for a given value xni  of the i th feature of pattern x 
(n) .  

As for the supervised learning, once all features are simultaneously mapped into a common 

space, they can be henceforth processed similarly for clustering. 

6.2  Online fuzzy clustering for mixed-type data  

We describe here separately the approach used to cluster online a set of patterns, possibly 

represented by mixed type of features, based on a simple fuzzy reasoning mechanism. 

Contrary to the supervised case, no predefined partition is available, for that, an adaptive 

fuzzy reasoning mechanism based on incremental online learning is adopted. 

 When a new pattern is received, the reasoning mechanism should place it in one of the 

already pre-established clusters corresponding to the highest degree of adequacy. To ensure 

that each pattern satisfies a minimal threshold of adequacy to each cluster, a Virtual Cluster 

(VC) is assumed to be always present in the space of clusters. This cluster receives the pattern 

for whom its adequacy degree is not sufficient to place it in any of the previously created 

clusters. Whenever a pattern appears to have a higher membership to VC, it means that a new 

cluster must be created to correspond to the new information brought by this pattern. Then, 
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the representation of the cluster which receives this pattern (VC or one of the pre-established 

clusters) is updated to take into account the information brought by this element.  

As for the supervised context, the fuzzy inference mechanism proposed here for clustering of 

heterogeneous data is rule-based. In the beginning of a clustering task, the rule base is 

initialized by a single If-Then rule representing the virtual class VC given as:  

Rvc: If x1 is A1vc and x2  is A2vc and xm  is Amvc then x belongs to cluster VC 

Where the antecedent fuzzy sets Aivc are pre-defined membership functions specified here 

according to the i th feature type as follow:  

(i) Quantitative type feature 
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VCϕ  

(ii)  Interval type feature 
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(iii)  Qualitative type feature     
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xµ =   with Di the set of possible modalities of the i th feature 

Then, whenever the creation of new cluster Ck is deemed necessary, a single adaptive fuzzy 

If-Then rule is generated and associated to this cluster in the clustering rule base: 

Rk: If x1 is A1 and x2  is A2...and xm  is Am then x belongs to cluster Ck 

When a new pattern should be allocated to a cluster, the following fuzzy adaptive inference 

engine can be used also but taking into account its membership to class VC as follows:  
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where γ and β are dual fuzzy aggregation functions that combine membership (given by the 

components of the MDV 
kncU ) of features value of a pattern ],...,,[ )()(

2
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1x n
m

nn(n) xxx= to a cluster 

Ck. and α is the  “exigency” parameter playing the same role as in the supervised context.  

If the new pattern is placed in one of the existing clusters, the antecedent fuzzy sets in the rule 

corresponding to this class are updated by the information brought by this element as 

described in section (6.1). Otherwise, a new cluster including this unique element is created 

using VC and therefore its corresponding fuzzy If-Then rule must also be generated and 

added to the already established rule base.  
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Consequently, the word adaptive refers here to the fact that the reasoning mechanism is able 

to either update the membership functions corresponding to antecedent fuzzy sets of the 

winner rule or generate new rules, according to the fuzzy reasoning decision made about the 

current processed pattern. Without the unification of the space of features, this simple 

inference mechanism could not be applied, and the influence of the different types of features 

would not be equal. 

This simple approach of online fuzzy clustering can be described by the following algorithm.   

Algorithm  

1. Initiate the space of classes by the cluster VC 

2. For t=1…T (T : number of input patterns) 

a) Input a new pattern x(n)  

b) Obtain membership degree vectors MDVs ncU and ncU %  for sample x(n) through 

antecedent fuzzy  set of If-Then rules 

c) Perform the fuzzy inference and assign x(n) to a cluster based on maximum 

membership rule. 

d) Update the parameters of antecedent fuzzy sets of the winner rule by the information 

brought by x(n). 

As reported for the supervised case, not all of the features are important for clustering task 

and therefore there is a need to discard the irrelevant ones. We describe by next an online 

feature weighting approach for clustering of heterogeneous data based on the previously 

presented clustering approach.  

6.3  Online fuzzy feature weighting for heterogeneous data clustering  

Online learning was considered previously to describe clustering process. In the aim to 

improve the clustering performance, we investigate here an integration of a feature weighting 

task in the clustering process based on fuzzy weighted rule concept. In literature, a first 

attempt to use a similar concept, denoted as Weighted Fuzzy Production Rules WFPR, was 

performed by (Chen, 1994). In addition to the assignment of a weight to each proposition in 

the antecedent part, WFPR allows to contain some fuzzy quantifiers (such as “strong”, “ 

weak”,…) and introduces a certainty factor to characterize the belief on the rule (Ishibuchi 

and Yamamato, 2005; Ishibuchi and Tomoharu, 2001). In (Chen, 1994) weighted fuzzy rules 

were used to perform medical diagnosis but assuming that the rules and their corresponding 

weights were known or fixed a priori by the expert. An alternative approach is reported in 
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(Rasmani and Shen, 2004) which uses subsethood concept to promote certain linguistic terms 

as part of the antecedent of a fuzzy rule. However, in all previously stated works only a 

supervised learning problem (classification task) was considered. Moreover, although the 

weight assignment borrows the idea of fuzzy classification in these works, it is still actually 

not explicitly related to feature selection. We propose here to assign a weight to each 

proposition in the antecedent of the fuzzy clustering rule that represents, at each iteration, the 

degree of importance of its corresponding feature in the membership space.  

Similarly to the supervised case, we propose here to perform the clustering by weighting the 

antecedents of all IF-THEN rules according to the current estimated importance (fuzzy 

weight) of each feature in the membership space. Thus the clustering rule associated to each 

cluster becomes: 

Rk: If x1 is A1 and x2 is A2...and xm  is Am then x belongs to cluster Ck , w 

Which can be noted equivalently 

Rk: If x1 is (w1) A1 and x2  is (w2) A2...and xm  is (wm) Am then x belongs to cluster Ck 

Each of the antecedent fuzzy sets Ai is modeled by a membership function according to the i th 

feature type. 

Therefore, the remaining issue is how to evaluate appropriately the weights of each feature 

knowing that they must be used to modify the membership to antecedent fuzzy sets of 

clustering rules. Similarly to the supervised case, it would be natural to estimate these weights 

also in the membership space to justify such an operation. In this order, we take advantage of 

the SMSP principle here to define a membership-margin based objective function to evaluate 

the importance of each feature in the membership space. The main difference with the 

supervised framework is that the weights have to be estimated and updated iteratively to guide 

the clustering task. At each iteration the weights are computed such that the discriminative 

power between all existing clusters is maximized based on an optimization approach. 

Therefore, only a single weight vector is needed to weight fuzzy antecedents’ sets of all 

clustering rules such that it reflects the relevance of each feature simultaneously to all rule’s 

consequences. Furthermore, the integration of feature weighting into the clustering process 

becomes straightforward thanks to the unification of feature spaces described in chapter 4. 
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Weighted Fuzzy Rule-based Clustering Algorithm 

Our final aim is to combine clustering and feature weighting by introducing the feature 

weighting method into the online clustering algorithm described previously. The fuzzy feature 

weighting approach proposed in chapter 5 is based on online learning. We show by next that 

this approach can be extended for the clustering task. For ease of presentation, let’s consider 

for a moment that after some iterations of fuzzy weighted clustering the resulted partition of 

data is described by the dataset { } CC nk
n ×Χ∈=

tN
1

)(
t  =D ,x , where x(n) is the nth pattern (item) and 

Nt is the number of already clustered patterns. Ck is the class label assigned to each pattern 

among the clusters generated by the fuzzy weighted clustering task; k=1,2,…,l. Let us 

consider that wt is the fuzzy weight vector computed during the fuzzy clustering task. The 

margin concept proposed for feature weighting in supervised case can be extended here to 

perform an iterative feature weighting task for clustering. When a new pattern x(n) should be 

processed, our clustering system based on the weights wt , estimated in the previous iteration, 

assigns it either to one of existing clusters or to the VC cluster (i.e. creation of new cluster). 

For simplicity, let’s consider that after the clustering of the pattern x(n) the data exhibits only 

two clusters, namely the cluster to whom x(n) has been affected noted 1
Cc =  and an alternative 

cluster noted 2

~
Cc = . We seek in a next step to take into account the information brought by 

x(n) for updating the feature weights to use them then for the clustering of future patterns. 

Once the pattern x(n) is clustered, its Membership Margin can be defined based on SMSP 

principle as:  

( ) ( )nβ = ψ U -ψ Unc nc%  (6.10) 

where c is the cluster in which x(n) has just been clustered and c~ is the alternative cluster. As 

for the supervised context, by scaling the features in the membership space a weighted version 

of the membership margin can be defined. A similar margin-based objective function can be 

therefore designed for the same purpose and the feature weighting problem can be solved 

using the same optimization approach.  Consequently, the weight vector can be updated using 

the analytical solution ++= s/sw *
f  at each iteration, through the updating of the vector s 

resulted at the previous iteration by the information brought by x(n). The extension of this 

approach to the multiclass problems is also straightforward using the definition employed in 

the supervised framework.  

The proposed approach can be summarized in two alternating steps: 



Chapter 6: Unsupervised Learning based on SMSP Principle 

 

97 

 

1-  Clusters a new pattern based on weighted fuzzy clustering rule. 

In this step, the clustering is performed by weighting the antecedents of all IF-THEN rules 

according to the a priori estimated importance (fuzzy weight) of each feature in the 

membership space. For initialization step, the fuzzy weight should be set to one which means 

that initially all features, and thereby their associated propositions in the fuzzy IF-THEN 

rules, are considered of equal importance. 

The clustering rule associated to each cluster is given by: 

Rk: If x1 is (w1) A1 and x2  is (w2) A2...and xm  is (wm) Am then x belongs to cluster Ck (k=1,…,l) 

where Ai (i=1,…m) is the antecedent fuzzy set defined according to the type of feature xi. 

When a new pattern ],...,,[ )()(
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m
nn(n) xxx= should be clustered, its membership degree vector 

for a cluster Ck is [ ]Tn
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1
21 µµµ= , obtained by evaluating the 

antecedent fuzzy sets of the rule Rk. If we characterize the operation of weighting the 

antecedent fuzzy sets as a scalar multiplication, the weighted membership degree vector of 

x(n) can be computed as: 

 (6.11) 

This is equivalent to write )(.)(ˆ ni
i
kini

i
k xwx µµ = .  

Then, a fuzzy adaptive engine inference can be used to cluster x(n) using its previously 

computed weighted membership degree vector as follows: 
 

 

2- Updating the fuzzy weights by information brought by this new pattern. 

The second step pertains the updating of fuzzy weights by the information brought by the new 

pattern x(n)  which has been clustered in the step 1. To ensure that any of the features, at a 

given iteration, is not definitely excluded from clustering process, its weight wi must be 

updated through the vector s calculated in the previous iteration. When a new pattern brings 

new information attesting an increasing importance of one feature which was deemed till 

previous iteration irrelevant, our fuzzy system should take into account this information 

online and update the confidence of clustering task on this feature and therefore on its 

associated proposition in the IF-THEN rule. 

For that, we update firstly the vector s given by (5.9): 
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Thus, the fuzzy weight vector wf at this iteration can be computed based on s by 
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(6.13) 

where    s+= [max(s1,0), …, max(sm,0)]T    
 

Interpretation: The weights are estimated in the membership space so it is natural that we 

take advantage of this available information to change iteratively the importance of each 

fuzzy set in the If-Then rules to guide the clustering task.  

Algorithm 

The weighted fuzzy clustering algorithm can be described as follows: 

1. Initiate the fuzzy weight vector to one, initiate the space of clusters by the class VC 

2. For t=1…T 

a) Input a new pattern x(n)  

b) Calculate the membership degree vectors MDVs ncU  for sample x(n) to each cluster 

through antecedent fuzzy set of If-Then rules. 

c) Perform the weighted fuzzy inference and assign x(n) to the cluster corresponding to 

the winner rule 

d) Update the parameters of antecedent fuzzy sets of the winner rule by the information 

brought by x(n). 

e) Update vector s as 

                     { }cnnc ~UUss −+=  

f) Calculate the new optimal fuzzy weight vector at iteration t as 

                                     
+

+

=
s

s
w*

f  

         with   s+= [max(s1,0), …, max(sm,0)]T     

6.4  Experimental results 

The performance of the proposed weighted fuzzy clustering approach, referred to as WFCA, 

was evaluated using artificial and real-world datasets described in Table 6.1. Patterns are 

already grouped into a priori known classes of unequal size corresponding to their class label. 

An independent clustering on all datasets using the weighted fuzzy reasoning tool is 

performed and the obtained cluster partitions are compared with the classes known a priori. 
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6.4.1 Synthetic Data 

The used synthetic dataset here consists of 800 data points from a mixture of four 

equiprobable Gaussians (200 patterns for each class) described by 20 quantitative relevant 

features. Moreover, 30 independently normal distributed irrelevant features with zero mean 

and unit variance were appended to the 20 relevant features to assess the robustness of the 

newly proposed method against irrelevant features, yielding a set of 800 50-dimensional 

patterns. We ran the proposed algorithm 10 times using a Gaussian-like membership function, 

and feature weight vector initialized at 1. For better visualization, a normalization of the 

maximum value of each weight vector is performed to be 1. In all the 10 runs, the four 

clusters were correctly identified. Figure 6.1 (a) shows the obtained classification results and 

(b) the fuzzy weights of all the 50 features. It can be observed in this case that the algorithm 

successfully clusters all the patterns and correctly identifies the last 30 irrelevant features 

from the relevant ones by assigning them close to zero weights. 

However, we have found out empirically that when the number of irrelevant features becomes 

very important (10 times multiple of the number of relevant features) this approach fails 

completely to locate the good clusters. That is may be the reason why it becomes unpractical 

on high dimensional data. This algorithm was applied without success on microarray data 

characterized by a huge number (thousands) of irrelevant features.  

  
(a)                                                                             (b) 

Fig. 6.1. (a) Clustering results (b) Fuzzy features weights 

6.4.2 Real data 

We tested our algorithm on several datasets with different characteristics (Table 6.1). Since all 

datasets have been collected for supervised classification (i.e. a previous partition of the 

dataset was available), the class labels were only used to evaluate the clustering performance. 

An independent clustering was carried out on all datasets and the overall rate of accuracy is 
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shown in Table 6.2. Clustering accuracy is calculated by comparing the obtained clusters with 

the real partition provided in the dataset.  

Tab. 6.1.  Summary of used Datasets 

Dataset No. Feature Quant. Qual. Interv. Class Nb. patterns 

 Iris 4 4 0 0 3 150 

Ljubljana* 9 0 6 3 2 286 

Thyroid 5 5 0 0 3 215 

WDBC 30 30 0 0 2 699 

Liver 6 6 0 0 2 345 

Australian credit card*  15 6 9 0 2 690 

Hepatitis*  17 4 13 0 2 155 

Diabetics  8 8 0 0 2 768 

Heart 13 7 6 0 2 270 

Wine 13 13 0 0 2 178 

Car data 8 0 0 8 4 33 

Fish data 13 0 0 13 4 12 

Barcelona water 48 0 0 48 5 316 

Temperature cities 11 0 0 11 4 37 

 (*) Missing data excluded 

To further evaluate the performance of the proposed methodology for clustering, we 

compared it with the well known Fuzzy c-means clustering method (FCM) (Bezdek, 1981) 

using all features. We simply set the number of clusters equal to the number of original labels 

provided in the dataset. However, various clustering validity indices (Wang and Zhang, 2007) 

can be used here to select the optimal number of clusters whenever the number of original 

clusters is unavailable. It must be noted that FCM does not handle qualitative and interval 

data. However, qualitative and regular intervals (interval features take their values from a 

countable set of interval values), are transformed into quantitative values to enable handling 

them by FCM. We notice also that three of the fourteen used datasets (“Car”, “temperature 

cities”, “Fish” and “Barcelona water”) are characterized by overlapped interval features and 

therefore FCM could not be applied on them. Results obtained with FCM are shown also in 

Table 6.2. It can be observed that the proposed approach outperforms the FCM on almost all 

datasets (12 among 14). One possible explanation is the incorporation of the importance of 

each feature to guide the clustering process. Moreover, thanks to the SMSP principle, the 

proposed approach allows handling appropriately the qualitative and interval data, unlike 

FCM which requires a transformation of qualitative and interval spaces into quantitative 

space. Figure 6.2 shows the fuzzy weights obtained at the end of clustering task for each 

dataset. FWCA approach can provide online precious information about the importance of 
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each feature for the ongoing clustering task. Moreover, the user can fix a weight threshold in 

some specific cases to discard the deemed irrelevant features during the clustering task.  

                                     Tab. 6.2. Clustering error of the proposed and FCM approaches 

Dataset FWCA* FCM 

Iris 1.33 3.74 

Ljubljana 26.71 28.88 

Thyroid 3.72 51.16 

WDBC 15.47 7.21 

Liver 11.01 51.30 

Credit card 13.63 17.15 

Hepatitis 10.85 33.33 

Heart 16.67 26.76 

Diabetics 28.26 33.33 

Wine 28.65 5.06 

Car data 36.36 - 

Temperature cities 16.22 - 

Fish data 41.67 - 

Barcelona Water 35.76 - 

14 12 2 

(*): Fuzzy Weighted Clustering Approach 
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Fig. 6.2. Fuzzy feature weights resulted by WFCA 
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6.5 Conclusion 

In this chapter we proposed a novel approach based on online feature weighting for clustering 

of heterogeneous data. The proposed algorithm is an extension of our previously developed 

supervised feature weighting algorithm. To cope with the problem of data heterogeneity, the 

SMSP principle is extended here also to reason in a unified way about heterogeneous data in 

an unsupervised framework. However, we have shown that the mapping step should be 

performed in an incremental fashion to take into account a new pattern at each iteration of the 

learning process. In this order, an iterative version of the mapping function introduced in the 

supervised case has been provided according to each feature type.  

First, we described separately the online incremental clustering algorithm based on a fuzzy 

rule-based system. Then, we investigated as for the supervised context, the integration of the 

feature weighting task in the clustering process to design our proposed approach based on 

fuzzy weighted rule concept. An extensive experimental study has been then performed on 

artificial and real-world problems to prove the effectiveness of the proposed approach. This 

algorithm fails however to scale with high dimensional data (e.g. microarray data) 

characterized by a huge number of irrelevant features.  
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CHAPITRE 7- Résumé  
Application au cancer du sein 

Avant l’ère des biopuces, la gestion du cancer a été guidée uniquement par les connaissances 

cliniques et histo-pathologiques acquises durant plusieurs décennies de recherche sur le 

cancer. Cependant, la forte mortalité par le cancer du sein a poussé les chercheurs à 

rechercher de nouveaux outils de pronostic du cancer plus précis aidant les médecins à 

prendre les décisions de traitement nécessaire et réduire ainsi les frais médicaux. Pendant la 

dernière décennie, l'analyse par biopuces a eu un grand intérêt dans la gestion du cancer tels 

que le diagnostic (Ramaswamy et al., 2001), le pronostic (Van't Veer et al., 2002), et la 

prédiction de la réponse au traitement (Straver et al., 2009). Cependant, l'introduction de 

cette technologie a apporté avec elle de nouveaux défis tels que la dimension élevée en termes 

de nombre de marqueurs et un ratio bruit/signal élevé. Dans ce chapitre, quelques 

applications au problème du cancer du sein en utilisant les approches proposées dans les 

chapitres précédents ont été présentées. Nous nous sommes concentrés surtout sur le 

pronostic du cancer du sein et la prédiction de la réponse au traitement comme des tâches 

primordiales pour l’amélioration de la vie des patientes atteintes du cancer, en se basant sur 

les données cliniques et/ou données de biopuces. Les applications sont appuyées par des 

analyses statistiques diverses et des interprétations biologiques sur la base des connaissances 

actuelles. 

D'abord une application sur le pronostic du cancer basée uniquement sur des données 

hétérogènes cliniques a été effectuée. Grâce à cette application, nous avons montré que 

l'approche de pondération des variables floue sélectionne des facteurs cliniques significatifs. 

Deux autres approches de sélection de variables ont été testées sur le même problème, afin de 

comparer les performances de la méthode que nous avons développée. 

Dans la deuxième application, le pronostic du cancer est basé uniquement sur des données 

issues de biopuces pour extraire une signature de pronostique constituée de 20 gènes. Les 

résultats obtenus en utilisant plusieurs critères de comparaison montrent que la valeur 

prédictive de cette signature de pronostique peut être supérieure à celle d'autres signatures 

de pronostique existantes et les facteurs cliniques classiques. En particulier, la signature de 

20 gènes améliore significativement la spécificité de l'une des approches génétiques bien 

connues (signature des 70 gènes dite « d’Amsterdam »). 
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La troisième application a été consacrée à étudier l'intégration des données cliniques aux 

données de biopuce. Dans de telles applications,  les problèmes d'hétérogénéité des données 

et la dimensionnalité élevée doivent être confrontés conjointement. Nous avons profité de la 

propriété intéressante de l'approche proposée qui permet de gérer simultanément les deux 

problèmes pour extraire une signature pronostique hybride. Nous avons montré ensuite à 

travers quelques analyses que l'intégration des approches peut améliorer le pronostic du 

cancer du sein. En particulier, la signature hybride améliore la sensibilité de la signature des 

20 gènes, tout en maintenant une spécificité comparable. 

Pour défier le problème du faible rapport signal/bruit dans les données de biopuces pour le 

pronostic du cancer, une approche symbolique a été considérée pour extraire une signature 

de pronostique plus robuste, dénommé ici GenSym. Nous avons décrit d’abord la génération 

de la base de données intervallaires par le remplacement de l’expression de chaque gène par 

un intervalle en y incorporant un bruit blanc gaussien avec un ratio signal/bruit spécifique. 

Nous avons montré à travers quelques expériences et analyses statistiques que la signature 

GenSym peut surpasser les autres approches existantes. En particulier, elle permet de 

conserver la bonne sensibilité apportée par la signature hybride tout en améliorant la bonne 

spécificité de la signature des 20 gènes. Par ailleurs, la liste des gènes de cette signature 

comporte des gènes significatifs liés à l'invasion, le cycle cellulaire et la prolifération. Nous 

croyons que cette première tentative dans cette direction a également ouvert la porte à la 

communauté d'apprentissage automatique pour développer d'autres approches afin de 

résoudre ce problème. 

La dernière application concerne le problème de la prédiction de la réponse à un traitement 

néoadjuvant pour des patientes atteintes du cancer du sein avec HER2 surexprimé. Grâce à 

l’approche proposée, une signature constituée de quatre marqueurs (PTEN, HER2, eI4E, 

EGFR) a été extraite,  qui améliore significativement le pouvoir discriminant entre les deux 

groupes des répondeurs positifs et négatifs comparé à celui obtenu avec la signature de 2 

marqueurs utilisés habituellement (PTEN, HER2). En particulier, la combinaison de 4 

marqueurs améliore significativement la spécificité de la combinaison 2-marqueurs. Ceci 

souligne l'importance de deux nouveaux facteurs prédictifs (eI4E, EGFR) pour améliorer la 

précision de la prédiction de la réponse à un traitement néoadjuvant pour des patientes 

atteintes de cancer du sein avec HER2 surexprimé. 
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CHAPTER 7 
Breast Cancer Applications  

During the pre-microarray era cancer management was guided only by the clinical and histo-

pathological knowledge gained from many decades of cancer research. However, the high 

mortality from breast cancer has pushed researcher to seek for accurate cancer prognosis tools 

that help physicians to take the necessary treatment decisions and thereby reduce its related 

expensive medical costs. In the past decade microarray analysis has had a great interest in 

cancer management such as diagnosis (Ramaswamy et al., 2001), prognosis (Van’t Veer et 

al., 2002), and treatment response prediction (Straver et al., 2009). However, the introduction 

of this technology has brought with it new challenges such as high feature-to-sample and 

noise-to-signal ratios. In this chapter we present some breast cancer applications based on our 

proposed approaches in previous chapters. We focus particularly on breast cancer prognosis 

and treatment benefit prediction based on clinical and/or microarray data. The applications are 

supported by various statistical analysis and biological interpretations based on the current 

knowledge. 

7.1 Cancer prognosis based on clinical and/or microarray data 

7.1.1 Cancer prognosis application based on clinical information 

a- Ljubljana Prognosis Dataset 

The dataset used here concerns the Ljubljana breast cancer prognosis dataset; it contains a 

total of 286 patients where 201 have not relapsed after five years and 85 have relapsed (Blake 

and Merz, 1998). Patients with missing data were excluded from this study (9 patients). All 

patients are described by 9 features (6 qualitative and 3 interval type): 

(a) Menopause: >40, <40, pre-menopause. 

(b) Ablation Ganglia: yes, no. 

(c) Malignancy Degree (Grade): I, II, III 

(d) Breast: right, left   

(e) Quadrant: sup. left, inf. left sup. right, inf. right, center. 

(f)  Irradiation: yes, no  

(g) Age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99 
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(h) Tumor Size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 

50-54, 55-59.  

(i) Involved Nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 

30-32, 33-35, 36-39.  

b- Experimental setup and results 

1. Factor selection for cancer prognosis within supervised context 

Choosing accurately the powerful prognostic factors among the nine features is of big interest 

as it can help the physician to predict, based only on those factors, whether a patient will 

relapse. In this aim, the proposed reasoning tool in chapter 5, referred to as Membas, is used 

to identify the set of important factors for this problem. We compared then the proposed 

approach with some existing feature selection approaches: Neighborhood Rough Set (NRS) 

(Hu et al., 2008) and Simba (Gilad-Bachrach et al., 2004). Indeed, NRS is a heterogeneous 

feature subset selection based on neighborhood rough set concept and Simba is based on 1-

NN rule. To assess the robustness of each method against irrelevant features, 50 random 

quantitative features were also added. To analyze the importance of each selected feature, the 

weights obtained respectively by Membas and Simba in a random realization have been 

plotted for respectively each feature in Figure 7.1. NRS ranks the features based on a 

dependency measure shown also in Figure 7.1. It can be observed for Membas that only four 

of the nine features have a significant weights and the others seems to be weakly relevant. The 

order of the most relevant features by Membas appears to be: 

1- “Involved Nodes” (interval feature type),  

2- “Ablation ganglia” (qualitative feature type), 

3- “Grade” (qualitative feature type),  

4- “Irradiation" (qualitative feature type).  

In addition, the proposed mechanism succeeds to identify the 50 added irrelevant features by 

assigning them approximately zero weights (they correspond to the last 50 features in Figure 

7.1 (left)). Furthermore, the two features selected by Membas (“Involved Nodes” and 

“Grade”) are still considered as important prognostic factors in day-to-day clinical practice 

(Deepa et al., 2005). Obviously, the selection of the two additional factors (“Ablation 

ganglia” and “Irradiation") suggests that these treatments have influenced the breast cancer 

evolution and therefore the prognosis outcome. On the other hand the optimal set of feature 

selected by Simba contains many irrelevant features (first top ranked is irrelevant). Moreover, 

Figure 7.1 (center) shows that only two among the five top ranked features are relevant which 
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are “Involved nodes” and “Quadrant”. However, only one feature among the nine presumably 

useful features has been deemed important by NRS as shown by Figure 7.1 (right). 

In order to assess the relevance of selected factors to improve the cancer prognosis task, we 

compared the three feature selection methods on two classifiers: the fuzzy reasoning tool 

LAMDA and k-NN. The same procedure of cross-validation and statistical variation 

elimination as in section 5 of the fifth chapter, is adopted here. Figure 7.2 and 7.3 show the 

obtained classification error with respectively LAMDA and k-NN approaches as a function of 

the top ranked features by MEMBAS, NRS and Simba. 

 

Fig. 7.1. (left) Feature weights by Membas; (center) Feature weights by Simba; (right) Dependency by NRS

 

Fig. 7.2. Classification error by LAMDA as function of top ranked features using Membas, NRS and Simba 

 

Fig. 7.3. Classification error by k-NN as function of top ranked features using Membas, NRS and Simba  
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minimal classification error on both classifiers corresponds to the resulted four top ranked 

features by MEMBAS (Figure 7.1), provided that the error difference on k-NN with five or 

four features is insignificant (Figure 7.2 and 7.3). Table 7.1 summarizes the optimal obtained 

averaged classification errors with the two classifiers and the corresponding optimal number 

of selected features by each feature selection method. It can be observed that the best couple 

(classification performance, number of selected features) is obtained by Membas on both 

classifiers. Furthermore, a student t-test was performed to assess if the classification error 

comes from the same distribution. At a level of p-value= 0.05, Membas wins against NRS and 

Simba whatever the used classifier (Table 7.1). It must be noted also that Figure 7.2 and 7.3 

show that LAMDA outperforms k-NN on this heterogeneous dataset almost over all the rang 

of feature subsets. 

Table 7.1. Classification error (%) and corresponding optimal number of factors on 
Ljubljana dataset 

       Method 

 

Membas   NRS   Simba 

 

p-value 

(Membas-NRS) 

p-value 

(Membas -Simba) 

       LAMDA 24.64 (4) 27.82 (9) 28.27 (7) 1.79e-005 1.97e-004 

k-NN 25.55 (5) 29.27 (7) 28.18 (4) 1.34e-005 4.43e-004 

2. Unsupervised learning  

An independent clustering using the fuzzy reasoning tool proposed in section 6.2 of the sixth 

chapter has been also performed on this dataset and the obtained 2-cluster partitions are 

compared with the 2-clusters known a priori. The obtained clustering error is given in Table 

7.2 with nine features. To further demonstrate the performance of the proposed methodology 

for clustering, we compared it with the well known Fuzzy c-means clustering (FCM) method 

(Bezdek, 1981). It must be noted that FCM does not handle neither qualitative nor interval 

data. However, as interval features in this dataset are regulars (interval features take their 

values from an accountable set of interval values), their transformation into quantitative 

values is straightforward to enable handling them by FCM. A similar procedure is adopted for 

the transformation of qualitative data. Results obtained with FCM are reported also in Table 

7.2. It can be observed that the proposed approach outperforms the FCM on this specific 

problem of cancer prognosis. One possible explanation is that the transformation of 

qualitative and interval spaces into a quantitative space required for FCM leads probably to 

information loss whereas the proposed approach based on SMSP principle allows handling 

appropriately the qualitative and interval data.   
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Table 7.2. Clustering error for Ljubljana dataset 

Method Number of clusters Accuracy 

LAMDA-cluster 2 22.74% 

FCM 2 28.88% 

Furthermore, to show the effectiveness of the proposed approach, we analyzed the obtained 

prototypes of each class which correspond to the parameters of the fuzzy features partition 

resulted at the end of the clustering task. The obtained class parameters for the three interval 

features are shown in Figure 7.4. It can be observed that the interval feature “Involved Nodes” 

has the most discriminatory power between the two classes which may be considered as a 

confirmation of its selection as an important predictive factor in the previous section (top 

ranked in Figure 7.1). Nonetheless, that does not mean that the other two interval features are 

not useful but their relevance is weaker for this specific problem as it can be seen in Figure 

7.1. The prototypes of the other three qualitative features: Ablation ganglia, Malignancy 

Degree, Irradiation are also shown in Figures 7.5, 7.6 and 7.7 respectively. Interestingly, the 

three features exhibit also an important discrimination power between classes. These results 

are in complete agreement with the selection of the three qualitative features by the fuzzy 

mechanism proposed in chapter 5 (see Figure 7.1). 

                    
Fig. 7.4. Class prototypes obtained by clustering for               Fig. 7.5. Class prototypes obtained by clustering for 

interv. features “Age, Tumour size, Invaded Nodes”               qual.  feature “Ablation ganglia” 
 

 

Fig. 7.6. Class prototypes obtained by clustering                   Fig. 7.7. Class prototypes obtained by clustering for 
for qual. feature “Irradiation”                                                 qual. feature “Malignancy degree” 

 

Age Tumour size Invaded Nodes
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interval variables Prototypes 

In
te

rv
al

s

Number of interval features

Relapse

No Relapse

Relapse No relapse
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classes

F
re

qu
en

cy

Profile of the feature Ablation ganglia

yes

no

yes

no

Relapse No Relapse
0

0.2

0.4

0.6

0.8

1

Classes

F
re

q
u

e
n

cy

Profile of the feature Irradiation

yes

no

no

yes

Relapse No Relapse
0

0.2

0.4

0.6

0.8

1

Classes

F
re

qu
en

cy

Profile of the feature Malignancy Degree

I

II

III

I

II

III



Chapter 7: Breast Cancer Applications 

 

110 

 

Let’s now compare these class prototypes with those obtained when a supervised learning is 

considered. Using the fuzzy rule based classifier LAMDAwe obtained the prototypes shown 

in figures (7.8 to 7.11) for respectively all features. It can be observed that the profiles in both 

cases are quite similar. 

                   
Fig 7.8. Class prototypes obtained by classification for          Fig. 7.9. Class prototypes obtained by classification 

for interv. features “Age, Tumor size, Involved Nodes”            for qual. feature “Ablation ganglia” 

                   

 Fig. 7.10. Class prototypes by classification                    Fig. 7.11. Class prototypes obtained by classification 
                for qual. feature “Irradiation”                                     qual. feature “Malignancy degree” 

7.1.2 Cancer prognosis application based on microarray data  

Recent studies have demonstrated the potential value of gene expression signatures in 

assessing the risk of post-surgical disease. In this study we focus on the use of our proposed 

approaches for gene signature derivation for cancer prognosis.  

a- Dataset and experimental setup 

The study is performed using the well-known Van’t Veer dataset (Van’t Veer et al., 2002). 

Van’t Veer and colleagues used a dataset containing 78 sporadic lymph-node-negative 

patients younger than 55 years of age and less than 5 cm in tumour size, to derive a prognostic 

signature in their gene expression profiles. Forty-four patients remained disease-free after 

their initial diagnosis for an interval of at least 5 years (good prognosis group), and 34 patients 

had developed distant metastases within 5 years (poor prognosis group). We use the same 

group of patients in the aim to derive a gene prognostic signature. Patients with missing data 
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(1 poor prognosis patient) were excluded in our study. We use our feature selection approach 

described in chapter 5, referred to as MEMBAS, to build a computational model that 

accurately predicts the risk of distant recurrence after 5-years period of breast cancer 

diagnosis. Due to the small sample size we performed a LOOCV (Leave One-Out Cross 

Validation) to estimate the optimal classification parameters. At each iteration of this 

procedure one sample is held-out for testing and the remaining samples are used for training. 

The training data are used to estimate the optimal parameters of the classifier and to perform 

the feature selection task. The resulting model is employed then to classify the held-out 

sample. This experiment is repeated until each sample has been used for testing. In this study 

we used LAMDA classifier for which only one parameter needed to be specified in the 

training phase (exigency index). It is worthwhile to note here that in the study performed by 

Van’t Veer and its colleagues, a 70-gene signature has been derived from the same dataset 

using a feature selection method based on correlation coefficient.  

We demonstrate the predictive values of the gene signature derived using Membas on this 

microarray dataset by comparing its performance with those of the clinical markers, 70-gene 

signature, St Gallen and NIH criterions. The performances are also estimated through a 

LOOCV procedure.  

b- Results 

A 20-gene signature was derived based on Membas approach corresponding to the optimal 

classification performance using LAMDA classifier based on the Guassian-like membership 

function. Classification performance obtained based on this signature with LAMDA are 

reported in Table 7.3. For comparison, classification performance using the 70-gene signature, 

the clinical markers, the St-Gallen consensus and the NIH criterion using LAMDA classifier 

are also reported in Table 7.3. We observe that the 20-gene signature outperforms the 70-

gene, clinical and classical clinical criterions (St-Gallen, NIH). Particularly, the 20-gene 

signature improves significantly the specificity of 70-gene signature while assuring a 

comparable sensitivity. 

Tab. 7.3. Classification performance using 20-gene signature, 70-gene signature, all clinical markers, St Gallen 
consensus and NIH criteria 

Method TP FP FN TN sensitivity Specificity Accuracy 

20-gene 28/33 5/44 6/33 38/44 82.35 88.37 85.71 

70-gene 27/33 9/44 6/33 35/44 81.82 79.55 80.52 

Clinical 26/33 14/44 7/33 30/44 78.79 68.18 72.73 

St-Gallen 33/33 39/44 0/33 6/44 100 6.49 50.65 

NIH 33/33 44/44 0/33      0/33 100 0 42.86 
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Classification performance is not always a sufficient criterion for comparing predictive value 

of marker signatures. Performance measurement can also depend strongly on a decision 

threshold when only a limited number of patients are available. Varying this decision 

threshold enables to visualize the performance of a given classifier over all sensitivity and 

specificity levels through a Receiver Operating Characteristic (ROC) curve (See Appendix 4). 

To further demonstrate the superiority of the 20-gene signature, we decided to plot in Figure 

7.12 also the ROC curve of the three models based respectively on the 20-gene signature, 70-

gene signature and clinical markers. The obtained ROC curve confirms the outperformance of 

the 20-gene signature over other signatures. 

 

Fig. 7.12. ROC curve of clinical, 20-gene and 70-gene signatures. 

We perform also survival data analysis of the four approaches, 20-gene signature, 70-gene 

signature, clinical markers and St-Gallen criterion, to further demonstrate the prognostic value 

of the 20-gene signature. The St-Gallen and NIH criteria are not shown here since the good 

prognosis group contains very few patients. The Kaplan-Meier curves with 95% confidence 

intervals of respectively the four approaches are shown in Figure 7.13. Particularly the 20-

gene signature induces a significant difference in the probability of remaining metastases-free 

in patients with a good signature and the patients with a poor prognostic signature (P-

value<0.001). Hazard ratio estimated by Mantel-Cox approach of distant metastases within 

five years for the 20-gene signature is 7.6 (95% CI: 3.86- 15.06), which is superior to either 

the 70-gene, St Gallen consensus or clinical markers. 
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Fig. 7.13. Kaplan-Meier estimation of the probabilities of remaining metastases-free for the good and poor 

prognosis groups. The p-value is computed by using log-rank test. 

c- Analysis of the twenty-gene signature 

Among the 20-gene signature, given in Table 7.4, eight genes are listed in the 70-gene 

signature and both gene signatures share the first gene (AL080059). Note that the number of 

genes derived is significantly short compared to the number required to perform the caner 

prognosis task using Amsterdam 70-gene signature. A brief description of the biological 

implication of gene is provided in Table 7.4 according to the National Center for 

Biotechnology Information (NCBI) databases. 

Tab. 7.4: Notation and description of 20-gene signature. 

Rank Gene ID 70-gene Notation Description 

1 AL080059 

 

 

 

 

 

■ TSPYL5 A subsequent analysis has revealed a significant 
homology with human protein factors, including NAPs, 
which play a role in DNA replication and thereby 
proliferation (Schnieders et al., 1996). It is thought that 
NAPs act as histone chaperones shuttline histone 
proteins involved in regulating chromatin structure and 
accessibility and therefore can impact gene expression. 
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2 
NM_003748 

 

 

 

 

 

 

 

 

■ ALDH4A1 This protein belongs to the aldehyde dehydrogenase 
family of proteins. This enzyme is a mitochondrial 
matrix NAD-dependent dehydrogenase which catalyzes 
the second step of the proline degradation pathway, 
converting pyrroline-5-carboxylate to glutamate. 
Deficiency of this enzyme is associated with type II 
hyperprolinemia, an autosomal recessive disorder 
characterized by accumulation of delta-1-pyrroline-5-
carboxylate (P5C) and proline. Alternatively spliced 
transcript variants encoding different isoforms have 
been identified for this gene. 

3 NM_020974  

 

 

 

 
 

■ SCUBE2 SCUBE2 signal peptide, CUB domain, EGF-like 2 [ 
Homo sapiens ]. The SCUBE2 (known also as CEPG1) 
is located on human chromosome 11p15 and has 
homology to the achaetescute complex (ASC)of genes 
in the basic helix-loop-helix (bHLH) family of 
transcription factors.  

4 D42044 □ KIAA0090 Protein binding  

5 NM_006681 ■ NMU NMU neuromedin U [ Homo sapiens ] 

6 NM_006544 

 

 

 

 

 

 

 

 

 

 

□ EXOC5 Exocyst complex component 5 [Homo sapiens].The 
protein encoded by this gene is a component of the 
exocyst complex, a multiple protein complex essential 
for targeting exocytic vesicles to specific docking sites 
on the plasma membrane. Though best characterized in 
yeast, the component proteins and functions of exocyst 
complex have been demonstrated to be highly 
conserved in higher eukaryotes. At least eight 
components of the exocyst complex, including this 
protein, are found to interact with the actin cytoskeletal 
remodeling and vesicle transport machinery. The 
complex is also essential for the biogenesis of epithelial 
cell surface polarity. 

7 Contig14882_RC □ N\A N\A 

8 Contig20217_RC ■ N\A N\A 

9 Contig37063_RC □ N\A  N\A 

10 NM_019028 □ ZDHHC13  Zinc finger, DHHC-type containing 13 [Homo sapiens] 

11 NM_003450 □ ZNF174 Zinc finger protein 174 [ Homo sapiens]  

12 Contig54742_RC □ N\A N\A 

13 Contig63649_RC ■ N\A N\A 

14 Contig42933_RC □ N\A N\A 

15 NM_004994 

 

 

 

 

 

 

 

 

 

 

 

 

■ MMP9 Matrix metallopeptidase 9 (gelatinase B, 92kDa 
gelatinase, 92kDa type IV collagenase) [Homo 
sapiens]. Proteins of the matrix metalloproteinase 
(MMP) family are involved in the breakdown of 
extracellular matrix in normal physiological processes, 
such as embryonic development, reproduction, and 
tissue remodeling, as well as in disease processes, such 
as arthritis and metastasis. Most MMP's are secreted as 
inactive proproteins which are activated when cleaved 
by extracellular proteinases. The enzyme encoded by 
this gene degrades type IV and V collagens. Studies in 
rhesus monkeys suggest that the enzyme is involved in 
IL-8-induced mobilization of hematopoietic progenitor 
cells from bone marrow, and murine studies suggest a 
role in tumor-associated tissue remodeling. 

16 NM_000286 □ PEX12 Peroxisomal biogenesis factor 12 [Homo sapiens]. This 
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gene belongs to the peroxin-12 family. Peroxins 
(PEXs) are proteins that are essential for the assembly 
of functional peroxisomes. The peroxisome biogenesis 
disorders (PBDs) are a group of genetically 
heterogeneous autosomal recessive, lethal diseases 
characterized by multiple defects in peroxisome 
function. The peroxisomal biogenesis disorders are a 
heterogeneous group with at least 14 complementation 
groups and with more than 1 phenotype being observed 
in cases falling into particular complementation groups. 
Although the clinical features of PBD patients vary, 
cells from all PBD patients exhibit a defect in the 
import of one or more classes of peroxisomal matrix 
proteins into the organelle. Defects in this gene are a 
cause of Zellweger syndrome (ZWS). 

17 Contig6238_RC □ N\A N\A 

18 NM_014489 □ PGAP2 Post-GPI attachment to proteins 2 [Homo sapiens] . 

19 NM_002779 □ PSD Pleckstrin and Sec7 domain containing [Homo sapiens] 

20 Contig32185_RC ■ N\A N\A 

■: Listed in 70-gene signature, □: Not listed in 70-gene signature 

The functional annotation for the genes should provide insight into the underlying biological 

mechanism leading to rapid metastases. Among the 20-gene signature, genes involved in 

proliferation, invasion and metastasis are significantly unregulated in the metastasis group. 

For instance we find SCUB2 which has been revealed to play important roles in development, 

inflammation and perhaps carcinogenesis (Yang et al., 2002). The expression of SCUBE2 

gene has been found to be associated with ER status in a recent SAGE-based study of breast 

cancer specimens (Abba et al., 2005). It has been reported recently that SCUBE2 suppresses 

breast tumor cell proliferation and confers a favorable prognosis in invasive breast cancer 

(Cheng et al., 2009). TSPYL5 is involved in modulation of cell growth and cellular response 

probably via regulation of the akt signaling pathway. It is reported that TSPYL5 is a poor 

prognosis marker and reduces the p53 protein levels and inhibits activation of p53-target 

genes. It is known that EXOC5 gene is related to cell mobility and invasion. MMP-9 are 

related to tumor invasion and metastasis by their capacity for tissue remodeling via 

extracellular matrix as well as basement membrane degradation and induction of 

angiogenesis. Evaluation of MMP-9 expression seems to add valuable information on breast 

cancer prognosis. The KIAA0090 is one of the breast cancer markers identified in (Dettling et 

al., 2005). 
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7.1.3 Hybrid Signature derivation by integrating clinical and microarray data for 

cancer prognosis  

In the past decade microarray analysis has had a great interest in cancer management. 

Meanwhile, clinical and histo-pathological factors are still considered as valuable tool to 

make day-to-day cancer management decisions. It has been however established recently that 

the integration of both information may improve cancer management (Sun et al., 2007a; 

Gevaert et al., 2006). In (Sun et al., 2007a) a feature selection method (I-Relief) was used to 

perform markers selection. However, the used method works under the assumption that all the 

data are of quantitative type and therefore a transformation of symbolic data to quantitative 

one was performed to cope with data heterogeneity. This transformation can be a source of 

distortion and information loss as it introduces a distance which was not present in the 

original data. In (Gevaert et al., 2006), a Bayesian network was used to perform breast cancer 

prognosis. The obtained results show only that their approach performs similarly to the 70-

gene signature established by Van’t Veer and colleagues (Van’t Veer et al., 2002) and claim 

that a feature selection is implicitly performed based on their (in) dependency through the 

Markov Blanket concept. These results do not mean necessarily that the clinical data contains 

no additional information to the genetic data; it only tells us that their approach does not fit 

well (Sun et al., 2007a). In the present study, we use our hybrid feature selection method, 

referred to as MEMBAS, to assess the usefulness of the integration of both types of data by 

addressing both challenges simultaneously: high-dimensionality and heterogeneity of data 

(Hedjazi et al., 2011d).  

a- Dataset and experimental setup 

We use here also the Van’t Veer data set of 78 patients (Van’t Veer et al., 2002) to derive a 

hybrid signature by integrating clinical and microarray data. The clinical data contains eight 

features:  

a) Age (quantitative) 

b) Tumour grade (interval:[3,5]~ Grade I; [6,7] ~ Grade II; [8,9] ~ Grade III) 

c) Tumour size (quantitative: mm) 

d) Estrogen Receptor expression (quantitative: intensity)  

e) Progesterone Receptor expression (quantitative: intensity) 

f) Angioinvasion (qualitative: ‘yes’ or ‘no’) 

g) Lymphocytic Infiltrate (qualitative: ‘yes’ or ‘no’) 
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h) BRCA1 mutation (qualitative: ‘yes’ or ‘no’) 

The same LOOCV procedure employed in the previous study was adopted here to perform 

feature selection and learn classifier parameters, and then testing the performance on a hold-

out sample not used for training. The classification task was performed by using the fuzzy 

classifier LAMDA. MEMBAS based on the binomial membership function is used here to 

derive a hybrid prognostic marker without resorting to any data transformation. To 

demonstrate the predictive power of the hybrid prognostic signature derived from the genetic 

and clinical markers, its performance was compared also with those of clinical markers and 

the well known Amsterdam 70-genes signature (Van’t Veer et al., 2002). Another comparison 

with purely clinical indices (NIH, St Gallen) was also performed. 

b- Results 

Table 7.5 shows the obtained comparative results between the hybrid markers approach and 

other approaches. It can be observed that the best overall prediction accuracy is obtained by 

the proposed approach which achieves more than 87%. Particularly, the hybrid signature 

provides an improved specificity compared to the 70-gene signature while maintaining a 

relatively high sensitivity (~88%). If we compare to the 20-gene signature, the hybrid 

signature maintains an improved overall accuracy while gaining in sensitivity (2 more poor-

prognosis patients have been correctly identified). A comparison with clinical conventional 

prognostic factors (St. Gallen’s and NIH) is also reported in Table 7.5. Both indices have a 

very high sensitivity, but an intolerable low specificity which would lead to give unnecessary 

adjuvant systematic treatment to almost all patients. Thus the obtained hybrid markers 

outperforms also the pure clinically indices.  

It must be noticed here that MEMBAS selects only 15 hybrid markers, among them three are 

mixed-type clinical markers (Angioinvasion “qualitative” , Grade “interval” and Age 

“quantitative), added to them 12 genes as listed in Table 7.6. 

Tab. 7.5: Comparatives results between hybrid, clinical and genetic signatures. 
Method TP FP FN TN sensitivity Specificity Accuracy 

Hybrid 29/33 6/44 4/33 38/44 87.88 86.36 87.01 

70-gene 27/33 9/44 6/33 35/44 81.82 79.55 80.52 

20-gene 28/33 5/44 6/33 38/44 82.35 88.37 85.71 

Clinical 26/33 14/44 7/33 30/44 78.79 68.18 72.73 

St-Gallen 33/33 39/44 0/33 5/44 100 6.49 50.65 

NIH 33/33 44/44 0/33      0/33 100 0 42.86 
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Fig. 7.14. ROC curve of hybrid, clinical and 70-gene signature. 

For further comparison, we plotted the ROC curves for Hybrid, 70-gene signature and clinical 

markers. Figure 7.14 shows that the hybrid signature outperforms both the 70-gene signature 

and clinical markers.     

To further demonstrate the prognostic value of the hybrid signature, we performed survival 

analysis using four approaches (hybrid signature, 70-gene signature, clinical markers and St-

Gallen criterion). The Kaplan-Meier curves with 95% confidence intervals for respectively 

the four approaches are shown in Figure 7.15. Particularly, we can see that the hybrid 

signature induces a significant difference in the probability of remaining metastases-free in 

patients with a good signature and the patients with a bad prognostic signature (P-

value<0.001). Hazard ratio estimated by Mantel-Cox approach of distant metastases within 

five years for the hybrid signature is 6.1 (95% CI: 3.22- 11.48), which is superior to either 70-

gene and clinical markers. 

a- Analysis of the Hybrid signature 

Among the 12 genes of the hybrid signature, reported in Table 7.6, 4 genes are listed in the 

70-gene signature and 4 in the 20-gene signature (with 2 in common). Note that the number of 

derived genetic markers is also significantly short compared to the number required to 

perform the cancer prognosis task using the 70-gene Amsterdam signature (12 Versus 70 

genes). A brief description is provided about each marker in Table 7.6 according to the 

National Center for Biotechnology Information (NCBI) databases. 
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Fig. 7.15. Kaplan-Meier estimation of the probabilities of remaining metastases-free for the 

good and poor prognosis groups. The p-value is computed by using log-rank test. 

Tab. 7.6: Notation and description of hybrid signature. 

Rank Gene ID 70-gene 20-gene Notation Description 

1 Angioinvasion -  N\A N\A 

2 Grade -  N\A N\A 

3 Contig63649_RC ■  N\A N\A 

4 AL080059 ■ x TSPYL5 See Table 7.4 

5 NM_006544 □ x EXOC5 See Table 7.4 

6 Contig55725_RC ■  N\A N\A 

7 NM_020974 ■ x SCUBE2 See Table 7.4 

8 Age -  N\A N\A 

9 NM_019028 □ x ZDHHC13 See Table 7.4 

10 NM_001787 □  LOC87720 Protein coding 

11 AJ011306 

 

 

 

 

 

 

□  EIF2B4 Eukaryotic translation initiation factor 2B, subunit 4 
delta, 67kDa [Homo sapiens]. Eukaryotic initiation 
factor 2B (EIF2B), which is necessary for protein 
synthesis, is a GTP exchange factor composed of five 
different subunits. The protein encoded by this gene is 
the fourth, or delta, subunit. Defects in this gene are a 
cause of leukoencephalopathy with vanishing white 
matter (VWM) and ovarioleukodystrophy. Multiple 
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transcript variants encoding different isoforms have 
been found for this gene.  

12 NM_012429 

 

 

 

 

 

 
 

□  SEC14L2 SEC14-like 2 (S. cerevisiae) [Homo sapiens]. This 
gene encodes a cytosolic protein which belongs to a 
family of lipid-binding proteins including Sec14p, 
alpha-tocopherol transfer protein, and cellular retinol-
binding protein. The encoded protein stimulates 
squalene monooxygenase which is a downstream 
enzyme in the cholesterol biosynthetic pathway. 
Alternatively spliced transcript variants encoding 
different isoforms have been identified for this gene. 

13 Contig14882_RC □  N\A N\A 

14 Contig47042 □  N\A N\A 

15 NM_005176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

□  ATP5G2 ATP synthase, H+ transporting, mitochondrial Fo 
complex, subunit C2 (subunit 9) [ Homo sapiens ]. 
This gene encodes a subunit of mitochondrial ATP 
synthase. Mitochondrial ATP synthase catalyzes ATP 
synthesis, utilizing an electrochemical gradient of 
protons across the inner membrane during oxidative 
phosphorylation. ATP synthase is composed of two 
linked multi-subunit complexes: the soluble catalytic 
core, F1, and the membrane-spanning component, Fo, 
comprising the proton channel. The catalytic portion 
of mitochondrial ATP synthase consists of 5 different 
subunits (alpha, beta, gamma, delta, and epsilon) 
assembled with a stoichiometry of 3 alpha, 3 beta, and 
single representatives of the gamma, delta, and epsilon 
subunits. The proton channel likely has nine subunits 
(a, b, c, d, e, f, g, F6 and 8). There are three separate 
genes which encode subunit c of the proton channel 
and they specify precursors with different import 
sequences but identical mature proteins. The protein 
encoded by this gene is one of three precursors of 
subunit c. Alternatively spliced transcript variants 
encoding different isoforms have been identified. This 
gene has multiple pseudogenes. 

■: Listed in 70-gene signature, □: Not listed in 70-gene signature, x: listed in 20-gene signature, -: Clinical markers. 

Clinical markers included in the previously derived hybrid signature are “Angioinvasion”, 

“Grade” and “Age”. Interestingly, the two first markers have been also identified as important 

factors by similar studies (Sun et al., 2007a; Gevaert et al., 2006). The “Age” has also been 

identified by (Gevaert et al., 2006) as a supplementary clinical marker which is still used in 

day-to-day clinical practices. Regarding genetic markers, we can find some of the genes 

included in the previously reported 20-gene signature (SCUBE2, TSPYL5, EXO5, 

ZDHHC13) and other new genes such as the Eukaryotic translation factor 2B EIF2B4 which 

is necessary for protein synthesis, ATP5G2 and cytosolic protein SEC14L2. 
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7.1.4 Symbolic gene selection to defy low signal-to-noise ratio for cancer prognosis 

It has been reported recently that the major difficulties in deciphering high throughput gene 

expression experiments comes from the noisy nature of the data (Stolovitzky et al., 2002). 

Data issued from high throughput technology indeed is not only characterized by the 

dimensionality problem but present also another challenging aspect related to its low signal-

to-noise ratio. The noise in such type of data is multisource: biological and noise 

measurement, slide manufacturing errors, hybridization errors, scanning errors of hybridized 

slide (see section 2.4.3, chapter 2, for more details).  

All existing feature and classification approaches assume that microarray data is perfect 

without wondering about its reliability. The lack of appropriate methods does not mean that 

machine learning approaches are unable to tackle such problems. An interesting approach for 

instance would be to use symbolic data analysis (SDA) (Bock and Diady, 2000) to model 

usually uncertainty and noise inherent to gene expression measurements by an interval 

representation (Billard, 2008). Symbolic interval features are extensions of pure real data 

types, in the way that each feature may take an interval of values instead of a single value 

(Gowda and Diady, 1992). In this framework, the value of a quantity x (e.g. gene expression 

value) is expressed as a closed interval [x-,x+] whenever x is noisy or uncertain; representing 

the information that +≤≤−
xxx . Therefore, what is really needed is an approach that enables to 

process efficiently high dimensional interval datasets. We take advantage here of our 

proposed approaches that support such requirements to derive a more robust gene signature 

for cancer prognosis from microarray datasets. 

a- Dataset and experimental setup 

We use here also the Van’t Veer data set of 78 patients (Van’t Veer et al., 2002) to derive a 

signature for cancer prognosis. In order to take into account the uncertainty in gene expression 

measurements under the form of symbolic intervals, an appropriate setup should be followed. 

The m gene expression levels are initially represented in a matrix X=[x1,x2,...,xm] where m is 

the number of genes. The microarray interval dataset generation is performed by adding a 

white Gaussian noise with a specific Signal-to-Noise Ratio (SNR=3). Let’s consider that the 

added white Gaussian noise has an absolute value b, then the j th interval feature yj=[yj
-, yj

+] 

corresponding to the j th gene having an expression xj is generated as follows:   

                                                           yj
-=  xj – b 

                                                           yj
+=  xj + b 
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It results that  

                                                     yj= [yj
-, yj

+]=[  xj – b, xj + b]. 

At the end of this step the m gene expression levels are represented in a matrix Y=[y1,y2,...,ym] 

where yj is an interval vector. Once the microarray interval dataset is obtained, our proposed 

approaches can be used to derive a genetic signature. To do so, we adopted similar a LOOCV 

procedure as previously to assess the predictive value of this symbolic gene signature, 

referred to here as GenSym.  

a- Results 

GenSym signature was derived based on the Membas approach corresponding to the optimal 

classification performance using the LAMDA classifier. We note that both of Membas and 

LAMDA enable to handle appropriately interval data for classification and feature selection 

(see previous chapters for more details). Table 7.7 shows the classification performance 

obtained with LAMDA using GenSym signature. For comparison, classification performance 

using 70-gene signature, clinical markers, St-Gallen consensus and NIH criterion are also 

reported in Table 7.7. We observe that the GenSym signature significantly outperforms the 

70-gene, clinical and classical clinical criterions (St-Gellen, NIH). GenSym achieves indeed a 

high accuracy (~90%) while significantly improving specificity and sensitivity of the 70-gene 

signature (by more than 5 % and 10% respectively). Moreover, GenSym improves the 

sensitivity of the previously derived 20-gene signature and improves the specificity of the 

hybrid signature while maintaining the high sensitivity of the latter one.  

Tab. 7.7: Comparatives results between GenSym, clinical and genetic signatures. 

Method TP FP FN TN sensitivity Specificity Accuracy 

GenSym 29/33 4/44 4/33 40/44 87.88 90.91 89.61 

70-gene 27/33 9/44 6/33 35/44 81.82 79.55 80.52 

20-gene 28/33 5/44 6/33 38/44 82.35 88.37 85.71 

Clinical 26/33 14/44 7/33 30/44 78.79 68.18 72.73 

St-Gallen 33/33 39/44 0/33 5/44 100 6.49 50.65 

NIH 33/33 44/44 0/33      0/33 100 0 42.86 

For further comparison of the different approaches, we plotted in Figure 7.16 the ROC curves 

for GenSym, 20-gene, 70-gene and clinical approaches. It can be observed that the GenSym 

signature significantly outperforms the 20-gene and 70-gene signatures as well as clinical 

markers.    
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Fig. 7.16. ROC curve of GenSym, 20-gene, 70-gene, clinical approaches. 

For more rigorous comparison, survival data analysis for the four approaches is also 

performed to further demonstrate the predictive value of the GenSym signature. The Kaplan-

Meier curve with 95% confidence intervals of the GenSym signature, plotted in figure 7.17, 

exhibits a significant difference in the probability of remaining free of distant metastases in 

patients with a good signature and the patients with a poor prognostic signature (P-

value<0.001). Hazard ratio estimated by Mantel-Cox approach of distant metastases within 

five years for the GenSym-23 signature is 8.20 (95% CI: 4.16- 16.2), which is superior to 

either 70-gene and clinical markers. 

a- Analysis of GenSym signature 

The GenSym signature is composed from 23 genes, given in Table 7.8, among them 12 genes 

are listed in the 70-gene signature. A brief description is provided about each gene in Table 

7.8 according to the National Center for Biotechnology Information (NCBI) databases. 

Additionally to the few genes identified in the previous signatures (TSPYL5, MMP9, NMU), 

GenSym signature holds many new meaningful genes (such as FBP1, IGFBP1, FGF18, 

SSX1, NUSAP1, C1GALT1, BTG2, PEX12). The importance of both (FBP1, IGFBP1) can 

be highlighted by the actually suspected relation between the insulin and tumor growth. But 

neither FBP1 nor IGFBP1 have been evaluated independently in human cancers. However, 

FBP1 have been also found strongly associated with disease outcome among the 231 top 

ranked genes in (Van’t Veer et al., 2002). FGF18 have been revealed clearly involved in the 

carcinogenesis of ~10% breast cancer. NUSAP1 has also been found to be related to 

proliferation and cells division. SSX1 is involved in certain sarcomas; it controls the cell cycle 
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and is considered as an important transcription factor. C1GALT1 is a protein that plays an 

important role in cell adhesion whereas BTG2 is considered as a tumor suppressor.             

 

 
Fig. 7.17. Kaplan-Meier estimation of the probabilities of remaining metastases-free for the good and poor 

prognosis groups. The p-value is computed by using log-rank test. 

Tab. 7.8: Notation and description of GenSym signature. 

Rank Gene ID 70-gene Notation Function 

1 Contig37063_RC □ N\A N\A 

2 Contig26388_RC □ N\A N\A 

3 NM_003748 ■ ALDH4A1 See Table 7.4 

4 NM_006681 ■ NMU See Table 7.4 

5 NM_000507 

 

 

 

 

□ FBP1 Fructose-1,6-bisphosphatase 1 [Homo sapiens]. The 
protein encoded by this gene is a gluconeogenesis 
regulatory enzyme, catalyzes the hydrolysis of fructose 
1,6-bisphosphate to fructose 6-phosphate and inorganic 
phosphate. Fructose-1,6-diphosphatase deficiency is 
associated with hypoglycemia and metabolic acidosis. 

6 AF055033 

 

■ IGFBP5 Insulin-like growth factor binding protein 5 [Homo 
sapiens]  

7 NM_000286 □ PEX12 See Table 7.4 

8 AL080059 ■ TSPYL5 See Table 7.4 

0 2 4 6 8 10 12 14 15
0

0.2

0.4

0.6

0.8

1

1.2
Kaplan−Meier Plot (GenSym−23)

P
ro

ba
bi

lit
y 

of
 M

et
as

ta
se

s 
F

re
e

Time (years)

 

 

Good signature
Poor signature
Censored

p−value<0.001
HR= 8.20 ( 95% CI: 4.16−16.2)

0 2 4 6 8 10 12 14 15
0

0.2

0.4

0.6

0.8

1

1.2
Kaplan−Meier Plot (70−gene)

P
ro

ba
bi

lit
y 

of
 M

et
as

ta
ts

es
 F

re
e

Time (years)

 

 

Good signature
Poor signature
Censored

p−value<0.001
HR=5.6 ( 95% CI: 3.1−10.2)

0 2 4 6 8 10 12 14 15
0

0.2

0.4

0.6

0.8

1

1.2
Kaplan−Meier Plot (clinical)

P
ro

ba
bi

lit
y 

of
 M

et
as

ta
se

s 
F

re
e

Time (years)

 

 
Good signature
Poor signature
Censored

p−value=0.0019
HR=2.32 (95% CI: 1.36−3.95)

0 2 4 6 8 10 12 14 15
0

0.2

0.4

0.6

0.8

1

1.2
Kaplan−Meier Plot (St−Gallen)

P
ro

ba
bi

lit
y 

of
 M

et
as

ta
se

s 
F

re
e

Time (years)

 

 

Good signature
Poor signature
Censored

p−value=0.73
HR=1.17 ( 95% CI: 0.46−2.92)



Chapter 7: Breast Cancer Applications 

 

125 

 

9 Contig33814_RC □ N\A N\A 

10 NM_012429 □ SEC14L2 See Table 7.6 

11 NM_000599 

 

■ IGFBP5 Insulin-like growth factor binding protein 5 [Homo 
sapiens] 

12 NM_003862 

 

 

 

 

 

 

 

 

 

 

 

 

 

■ FGF18 Fibroblast growth factor 18 [Homo sapiens] . The 
protein encoded by this gene is a member of the 
fibroblast growth factor (FGF) family. FGF family 
members possess broad mitogenic and cell survival 
activities, and are involved in a variety of biological 
processes, including embryonic development, cell 
growth, morphogenesis, tissue repair, tumor growth, 
and invasion. It has been shown in vitro that this 
protein is able to induce neurite outgrowth in PC12 
cells. Studies of the similar proteins in mouse and chick 
suggested that this protein is a pleiotropic growth factor 
that stimulates proliferation in a number of tissues, 
most notably the liver and small intestine. Knockout 
studies of the similar gene in mice implied the role of 
this protein in regulating proliferation and 
differentiation of midline cerebellar structures.  

13 Contig63649_RC ■ N\A N\A 

14 NM_004994 ■ MMP9 See Table 7.4 

15 Contig11065_RC ■ N\A N\A 

16 Contig32185_RC ■ N\A N\A 

17 NM_016359 

 

 

 

■ NUSAP1 Nucleolar and spindle associated protein 1 is a 
nucleolar-spindle-associated protein that plays a role in 
spindle microtubule organization (Raemaekers et al., 
2003). 

18 Contig15954_RC □ N\A N\A 

19 NM_005635 

 

 

 

 

 

 

 

 

 

 

 

 

□ SSX1 Synovial sarcoma, X breakpoint 1. The product of this 
gene belongs to the family of highly homologous 
synovial sarcoma X (SSX) breakpoint proteins. These 
proteins may function as transcriptional repressors. 
They are also capable of eliciting spontaneously 
humoral and cellular immune responses in cancer 
patients, and are potentially useful targets in cancer 
vaccine-based immunotherapy. SSX1, SSX2 and SSX4 
genes have been involved in the t(X;18) translocation 
characteristically found in all synovial sarcomas. This 
translocation results in the fusion of the synovial 
sarcoma translocation gene on chromosome 18 to one 
of the SSX genes on chromosome X. The encoded 
hybrid proteins are probably responsible for 
transforming activity. 

20 Contig49388_RC ■ N\A N\A 

21 Contig52554_RC □ N\A N\A 

22 
NM_020156 

 

 

 

 

 

 

□ C1GALT1 Core 1 synthase, glycoprotein-N-acetylgalactosamine 
3-beta-galactosyltransferase, 1 [Homo sapiens]. The 
protein encoded by this gene generates the common 
core 1 O-glycan structure, Gal-beta-1-3GalNAc-R, by 
the transfer of Gal from UDP-Gal to GalNAc-alpha-1-
R. Core 1 is a precursor for many extended mucin-type 
O-glycans on cell surface and secreted glycoproteins. 
Studies in mice suggest that this gene plays a key role 
in thrombopoiesis and kidney homeostasis. 
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23 NM_006763 

 

 

 

 

□ BTG2 BTG family, member 2 [ Homo sapiens ]. The protein 
encoded by this gene is a member of the BTG/Tob 
family. This family has structurally related proteins that 
appear to have antiproliferative properties. This 
encoded protein is involved in the regulation of the 
G1/S transition of the cell cycle 

■: Listed in 70-gene signature, □: Not listed in 70-gene signature, N/A: No Available 

7.2 Systemic responsiveness prediction to neoadjuvant treatment in breast 
cancer patients 

Accurate prediction of treatment response in breast cancer can decrease significantly the 

number of patients receiving unnecessary systematic treatment and reduce its expensive 

medical costs. Currently, the selection of patient eligible for a treatment is generally based on 

classical factors such as tumor grade, age, lymph nodes status. However, the high 

heterogeneity of breast cancer highlights the need to design treatment regimens tailored 

specifically for each sub-molecular type cancer. HER2 overexpressed breast cancer for 

instance has an aggressive biological behavior and poor prognosis, requiring the design of 

specific treatment regimens. Although trastuzumab (Herceptin) has been shown to be a 

valuable remarkable therapeutic in certain HER2 overexpressing breast cancer patients, its 

overall response rate is still limited and its function mechanism is not yet very well 

understood. Less than 35% of patients with HER2 overexpressing metastatic breast cancer 

indeed respond to trastuzumab as a single therapy, whereas ~5% of patients suffer from 

severe side effects (e.g. cardiac dysfunction) and 40% of patients experience other adverse 

effects (Fujita et al. 2006). Therefore, the identification of new trastuzumab’s predictive 

markers is urgently required to reduce the number of patients undergoing the side effects and 

unnecessary cost. The present study aims to identify new predictors of therapeutic 

responsiveness, among both available proteomic and clinical marker information, in HER2-

overexpressing invasive breast cancer receiving neoadjuvant treatment. We used our proposed 

approach for feature selection that performs mixed-type data to derive a set of predictive 

factors.  

a- Material and methods 

Fifty-three patients with HER2-overexpressing invasive breast carcinoma received 

trastuzumba based neoadjuvant treatment from the cancer institute of Toulouse (ICR). The 

pathological response was evaluated on surgical specimens and categorized as complete 

response (pCR) (no residual or minimal invasive carcinoma) or incomplete response (pIR) 

(residual invasive carcinoma) according to sataloff criteria (Zindy et al., 2011). In the present 
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study, among the 53 HER2-positive invasive breast cancer patients that received specific 

neoadjuvant treatment, 20 (37,73%) had achieved a pCR and 33 (62,26%) did not. Each 

patient is characterized by 14 features (proteomics and clinicopathological factors, see Table 

7.9 for more details) and its outcome (pCR) listed below: 

1. ER                                      9. HER2  

2. PgR                                  10. HER4 

3. Involved lymph Nodes    11. PAX2 

4. HER3                               12. EGFR 

5. PTEN                               13. Age (qualitative: <40, 40-50, >50) 

6. CMYC                             14. Grade (interval: [3-5];[6-7],[8-9]) 

7. 4-EBP1                            15.  pCR : outcome (positive vs negative)               

8. eI4E                              

b- Results and discussion 

In order to select important predictive factors, we applied Membas to this dataset and we 

obtained the weights shown in Figure 7.18 for respectively each factor. The marker’s ranking 

is reported in Table 7.10 with brief description of its biological role in breast cancer evolution. 

It can be observed that, among the 14 markers, only 6 have a relatively significant weights 

and remaining factors seem to be weakly relevant to prediction task.     

 
Fig. 7.18. Marker weights obtained by Membas 
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Tab. 7.9.  List of Ranked predictive factors obtained by Membas. 

Rank Marker Notation Function 
1 Phosphatase and tensin hom-

ologue deleted on chromoso-
me 10. 
 
 
 

PTEN A protein that helps control many cell functions, 
including cell division and cell death. Mutations 
(changes) in the gene that makes PTEN are found in 
many types of cancer and other diseases. It is a type 
of tumor suppressor protein. Also called PTEN 
tyrosine phosphatase. 

2 Human Epidermal gro-wth 
factor receptor-2 status 

HER2 See Glossary  

3 Eukaryotic transaltion initia-
tion factor 

eI4E Eukaryotic initiation factor 

4 
Epidermal Growth Factor 
Receptor 
 
 
 
 

EGFR/HER1 The protein found on the surface of some cells and to 
which epidermal growth factor binds, causing the 
cells to divide. It is found at abnormally high levels 
on the surface of many types of cancer cells, so these 
cells may divide excessively in the presence of 
epidermal growth factor. Also called epidermal 
growth factor receptor, ErbB1, and HER1. 

5 Human Epidermal gro-wth 
factor receptor-4 status 

HER4 Tumor gene repressor 

6 Progesterone receptor PgR See Glossary  
7 4-EBP1 4-EBP1 Translation repressor 
8 Paired box gene 2 

 
 
 
 
 
 

Pax2 PAX2 encodes paired box gene 2, one of many 
human homologues of the Drosophila melanogaster 
gene prd. The central feature of this transcription 
factor gene family is the conserved DNA-binding 
paired box domain. PAX2 is believed to be a target of 
transcriptional suppression by the tumor suppressor 
gene WT1. 

9 C-MYC 
 
 
 
 
 
 
 
 
 

CMYC Protein codes for a transcription factor that is located 
on chromosome 8 in humans and is believed to 
regulate expression of 15% of all genes through 
binding on Enhancer Box sequences (E-boxes) and 
recruiting histone acetyltransferases (HATs). This 
means that in addition to its role as a classical 
transcription factor, Myc also functions to regulate 
global chromatin structure by regulating histone 
acetylation both in gene-rich regions and at sites far 
from any known gene 

10 Involved lymph Nodes 
 

Invaded lymph 
Nodes 

See Glossary 

11 Human Epidermal gro-wth 
factor receptor-3 status 

HER3 Tumor gene repressor 

12 Estrogen receptor ER See Glossary 
13 Age / See Glossary 
14 Grade / See Glossary 

LAMDA classifier has been used then to assess the importance of selected factors by 

retaining only a set of markers optimizing its classification performance. In this order, it has 

been found that the four top ranked markers by MEMBAS (PTEN, HER2, eI4E, EGFR) 

provide the optimal classification performance. Interestingly, the relation of both PTEN and 

HER2 with the response to trastuzumab is well established in cancer research literature (Fujita 

et al., 2006; Vogel et al., 2002) and are recognized as powerful predictive factors. In the very 
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close past, patients with metastatic are selected for trastuzumab-therapy if the primary tumor 

overexpresses the HER2 protein or HER2 gene amplification. However, in spite the 

importance of HER2 marker, less than 30% of patients respond to trastuzumab. This 

highlighted the fact that HER2 gene amplification is a necessary biomarker but not sufficient 

to predict the efficacy of trastuzumab (Fujita et al., 2006). Recently, PTEN has been found to 

be one of the most common targets of mutation in human cancer and that a decreased PTEN 

expression is associated with invasive breast cancer and poor prognosis (Fujita et al., 2006). It 

has been reported therein also that PTEN is a powerful predictive marker for the efficacy of 

trastuzumab in drug-resistant and parental HER2 over-expressing breast cancer cells. 

Eukaryotic transaltion initiation factor eIF4E is one of the most prominent downstream 

effector of mTOR (mammalian Target Of Rapamycin) signaling. It has been reported that a 

high level of eIF4E is often associated with poor prognosis (Byrnes et al., 2006; Zhou et al., 

2004). In a recent study using the same group of patients, it has been found out that etopic 

expression of eIF4E in breast cancer tumors led to a loss in the trastuzumab-dependent 

decrease in both eIF4F formation and cell proliferation (Zindy et al., 2011). This highlights 

the possible association between the expression of eIF4E and the pathological response to 

trastuzumab. A validation of such finding is underway on an independent multicenter cohort 

of patients.     

The epidermal growth factor receptor (EGFR) is observed in 19-67% of malignant breast 

tumors and also appears to correlate with an adverse prognosis (Hudelist et al., 2005). Both 

receptors EGFR and HER2 from the EGF family are linked to each other in an interdependent 

signaling network of considerable complexity (Hudelist et al., 2005). It has been reported that 

EGFR Kinase activity largely depends upon the integrity of the HER2 kinase domain. 

Likewise, it has been found that the inhibition of EGFR kinase activity may be attenuated by 

HER2 overexpression. Conversely, HER2 activation is also strongly influenced by the 

presence and activation of EGFR (Hudelist et al., 2005). It is therefore not surprising to 

consider EGFR marker in predicting the course of disease in patients receiving trastuzumab-

based therapy. 

Classification performance using those four markers is reported in Table 7.11. To show the 

effectiveness of the four markers combination, we compared this result with the performance 

with two different predictors: 1) when only two classical markers (PTEN and HER2) are 

used; and 2) when all available data (proteomics and clinical) are considered. It can be 

observed that the 4-markers combination outperforms both the 2-markers approach 
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(HER2+PTEN) and all the data. Particularly, the 4-markers combination 

(HER2+PTEN+eI4E+EGFR) improves significantly the specificity (more than 80% of 

positive responders are detected) compared to 2-marker combination. Figure 7.19 shows the 

obtained class profile for each marker.  

Tab. 7.10. Comparatives results between 4-markers, 2-markers and all data approaches. 

Method TP FP FN TN Sensitivity (%) Specificity (%) Accuracy 

4-markers* 15/20 6/33 5/23 27/33 75 81.82 79.25   

HER2+ PTEN 15/20 11/33 5/20 22/33 75 66.67 69.81 

All data 9/20 7/33 11/20 26/33 45 46.48 66.04 

(* ): PTEN+HER2+eI4E+EGFR 

 
Fig. 7.19 Profile of negative and positive classes 

To further demonstrate the predictive value of the 4-markers combination, we plotted in 

Figure 7.20 the ROC curve for the three predictors. It can be observed that the 4-markers 

combination outperforms significantly other approaches   

 
Fig. 7.20 ROC curve of three approaches. 
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7.3 Conclusion 

In this chapter we presented some applications of our proposed approaches in breast cancer. 

We focused throughout this chapter on two main breast cancer management tasks: Prognosis 

and treatment responsiveness prediction.  

First an application of cancer prognosis based only on heterogeneous clinical data was shown. 

Through this application we have shown that the feature weighting approach selects 

meaningful clinical factors. Two other feature selection approaches were tested on the same 

problem in order to compare the performance of our proposal. 

In the second application cancer prognosis is based only on microarray data by deriving a 

prognostic signature. Obtained results using several criterions have shown that the predictive 

value 20-gene prognostic signature can be superior to other existing prognostic signatures and 

classical clinical guidelines. Particularly, the 20-gene signature improves significantly the 

specificity of one of the well known genetic approaches (70-gene signature). 

The third application was devoted to investigate the integration of both clinical and 

microarray data. In such applications both problems of data heterogeneity and high 

dimensionality should be faced jointly. We have taken advantage of the interesting property 

of the proposed approach that enable to handle simultaneously both problems to derive a 

hybrid prognostic signature. We have shown then through some analysis that the integration 

of both approach may improve the breast cancer prognosis. The hybrid signature improves the 

sensitivity of 20-gene signature while maintaining comparable specificity.  

To defy low signal-to-noise ratio in microarray data for cancer prognosis, a symbolic 

approach has been considered to derive a more robust prognostic signature, referred to as 

GenSym. We described first the microarray interval dataset generation by incorporating a 

white Gaussian noise with a specific Signal-to-Noise Ratio. We have shown through some 

experiments and analysis that the GenSym signature can outperform other existing 

approaches. Particularly, it enables to keep the good sensitivity raised with the hybrid 

signature while improving further the good specificity of the 20-gene signature. Moreover, the 

gene list of this signature holds meaningful genes related to invasion, cell cycle and 

proliferation. We believe that this first attempt in that direction open also the door to the 

machine learning community to investigate other approaches for addressing this problem. 
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The last application concerns the problem of responsiveness prediction to neoadjuvant 

treatment in HER2 over-expressed breast cancer patients. Using our proposed approach we 

derived a signature constituted of four markers (PTEN, HER2, eI4E, EGFR), that improves 

significantly the discriminative power among positive and negative responders compared to 

the usually used 2-marker approach (PTEN, HER2). Particularly, the 4-markers combination 

improves significantly the specificity of the 2-marker combination. This highlights the 

importance of two new predictive factors (eI4E, EGFR) to predict accurately the 

responsiveness of HER2 over-expressed breast cancer patients to neoadjuvant treatment.   
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Conclusion et perspectives- Résumé 

Notre objectif dans ce travail était de développer de nouveaux outils pour une gestion plus 

précise du cancer de sein. Nous présentons ici une tentative pour proposer des approches 

adaptées dans le cadre de l'apprentissage automatique, permettant de surmonter les 

principaux défis récents rencontrés dans le domaine du cancer tels que la dimension élevée 

des informations à traiter, les bruits de mesure, les incertitudes sur l'appartenance du patient 

aux différents sous-types de cancer et l’hétérogénéité des données (quantitatif ou 

symbolique). 

Dans un premier travail, une approche intégrée de sélection de variables basée sur 

l'apprentissage ℓ1 capable de traiter des données de haute dimension a été proposée. En 

particulier, cette approche propose un nouvel algorithme pour résoudre le problème ℓ1SVM 

dans le domaine primal. Cependant, avec la récente tendance vers une bioinformatique 

intégrative qui vise à intégrer différentes sources de données, l'occurrence conjointe de trois 

défis est possible dans certaines applications. Pour faire face simultanément à ces trois défis,  

une deuxième approche a été proposée. Tout d'abord, un principe unifié pour faire face au 

problème de l'hétérogénéité des données a été établi. Ensuite, une approche floue de 

pondération de variables supervisée a été proposée en se basant sur ce principe. Le processus 

de pondération est basé principalement sur l’optimisation d’une fonction objective intégrant 

la notion de marge d’appartenance. En se basant sur le même principe, la méthode de 

pondération a été ensuite étendue au cas non supervisé afin de développer un nouvel 

algorithme de pondération à base de règles floues pour effectuer la tâche de regroupement. 

L’efficacité de toutes ces approches a été validée dans une étude expérimentale extensive et 

comparées avec celles de méthodes bien connues dans la littérature. Enfin, certaines 

applications dans le domaine du cancer du sein ont été effectuées en utilisant les approches 

proposées. Ces applications ont concerné essentiellement le développement de modèles 

pronostiques et prédictifs à partir de l’analyse de données de puces à ADN et/ou de données 

cliniques. Nous avons montré à travers une étude comparative l'efficacité de ces modèles en 

termes de précision et de détermination de la survie. Nous avons examiné aussi 

l’interprétation de ces signatures d'un point de vue biologique. Enfin des perspectives de ce 

travail ont été présentées que ce soit de nature méthodologique ou applicative.  
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Conclusion and future works 

Our aim in this work was to develop new tools for breast cancer management to help the 

physicians in their decision-making practices. In this order an attempt to propose suitable 

approaches has been performed within machine learning framework, to enable handling the 

main recent challenges encountered in breast cancer management field. Some challenges are 

due to the intrinsic complexity of data issued from high throughput technologies introduced 

recently in cancer management such as microarrays. The gene expression profiling, through 

microarray technology, has indeed brought the hope to gain new insights into cancer biology 

but requires meanwhile smart approaches capable to fit with high dimensional data and 

uncertainties. Uncertainties can be in the form of either measurement noise or membership 

uncertainty of a patient to different cancer subtype groups. Another challenge is related to the 

use of traditional clinical factors characterized by its heterogeneity; the data can be of 

quantitative or symbolic type.   

In a first work an embedded feature selection approach based on ℓ1 learning able to deal with 

high dimensional data has been proposed. This approach proposes a new algorithm to solve 

the ℓ1SVM problem in the primal domain. The basic idea is the transformation of the initial 

convex optimization problem into unconstrained non-convex one, upon which, via gradient 

descent method, reaching a globally optimum solution is guaranteed. The non differentiable 

property of the hinge loss function has been overcome by using its approximated Huber loss 

function. It has been shown through large-scale numerical experiments that the proposed 

approach is computationally more efficient than the few existing methods solving the same 

problem.  

However, with the recent trends towards an integrative bioinformatics that aims to integrate 

different data sources, the occurrence of three challenges simultaneously is possible in some 

cancer applications. To deal simultaneously with these three challenges; data dimensionality, 

heterogeneity and uncertainties, a second approach has been proposed. First of all, a unified 

principle to deal with data heterogeneity problem has been established. To take into account 

membership uncertainty and increase model interpretability, this principle has been proposed 

within a fuzzy logic framework. Besides, in order to alleviate the problem of high level noise, 

a symbolic approach has been developed suggesting the use of interval representation to 

model the noisy measurements. This principle is based on the mapping of different type of 
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data from initially heterogeneous spaces into a common space through an adequacy measure. 

This allows then to reason in unified way about the data in the new space whatever its initial 

type for different data analysis purposes.  

In particular, a supervised fuzzy feature weighting approach has been proposed based on this 

principle. This approach has been integrated based on a fuzzy weighted rule concept into a 

fuzzy rule-based classifier in the aim to improve its performance. In addition to its ability to 

handle the problems of data heterogeneity and uncertainties, the proposed approach is capable 

to fit with high data dimensionality. The weighting process is mainly based on the definition 

of a membership margin for each sample. It optimizes then a membership-margin objective 

function using classical optimization approach to avoid combinatorial search. The 

effectiveness of this approach has been assessed through an extensive experimental study and 

compared with well-know feature selection methods. Based on the same principle, the 

weighting approach has been then extended to the unsupervised case in order to develop a 

new weighted fuzzy rule-based clustering algorithm. An extensive study has been also 

performed to compare this algorithm with one of the state-of-the-art clustering algorithm.  

Finally some breast cancer applications have been presented. These applications have 

concerned mainly cancer prognosis and prediction of treatment benefit.  Predictive and 

prognostic models were derived based on microarray and/or clinical data. We have shown 

through a comparison the effectiveness of these models in term of accuracy and survivability.  

Since the aim of developing new predictive tools for breast cancer prognostication from 

microarray data is twofold, i.e. to yield good prediction performance and to gain new 

biological insights into cancer biology, we have shown also that the derived models were 

interpretable from a biological point of view. In particular, the applications have concerned  

1) Cancer prognosis based only on clinical data  

2) Derivation of 20 genes signature for cancer prognosis based on microarray data  

3) Derivation of hybrid signature for cancer prognosis based on the integration of clinical 

and microarray data  

4) Derivation of more robust prognostic signature (referred to as GenSym) based on a 

symbolic approach by modeling the noisy microarray measurments as symbolic 

intervals  

5) Derivation of 4-markers signature for the prediction of neoadjuvant treatment benefit 

in HER2 over-expressed breast cancer patients.  

Different future works are twofold in the framework of the current work such as:  
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a) Methodological 

- The implementation of the proposed approach in one package with suitable interface 

destined for medical applications is underway to facilitate its use by clinicians. This 

package should enable also the comparison with existing predictive models. 

- In the present work we consider only three types of data (quantitative, qualitative and 

interval data). Although these are the most used type of data, there are other types of data 

which could be faced in many real-world applications (such as histograms, fuzzy numbers, 

…). So it will be interesting to investigate the extension of this approach to further type of 

data. 

- Another interesting direction would be to propose other shapes of membership function for 

different types of data and investigate their use. 

b) Cancer applications 

- With the recent trends towards an integrative bioinformatics, it will be interesting to use 

the proposed approach to integrate other type sources of data instead of only microarray 

and clinical data. High dimensional data will be generated by new high throughput 

technologies, e.g. single nucleotide polymorphism (SNP) or comparative genomic 

hybridization (CGH), at a continuously growing rate. Therefore, with this huge quantity of 

data, an increase need of more effective tools by physicians is expected, enabling to extract 

useful biological knowledge and gain insights into cancer biology.  

- We considered here only the breast cancer. However, this approach can be applied for the 

derivation of molecular signatures for other type of cancers. 

- It has been reported recently that breast cancer is very heterogeneous disease and can be 

divided to several molecular subtypes. It is possible to investigate the application of this 

approach to derive molecular signature for each subtype. 

- The factor of time is still to date neglected in the design of predictive and prognostic tools. 

Cancer progressiveness is strongly related to time and we believe that taking into account 

this factor, jointly with molecular cancer subtyping, can play a central role in improving 

cancer management tools. This direction can also be investigated using the proposed 

approach.  

Moreover, it must be noted here also that the proposed approaches have been applied with 

success on other fields related to dynamical system diagnosis such as the diagnosis of 

chemical reactors (Hedjazi et al., 2010c; Hedjazi et al., 2011e, Hedjazi et al., 2011f). 
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Finally, it is worthwhile to note that the results presented in this work are now subject of use 

in a recent ANR project (INNODIAG: Innovation in molecular diagnostic in health using the 

latest development in Nanotechnology: Application to breast cancer prognosis). This project 

is concerned first of all by the selection of a set of genetic and clinical markers for breast 

cancer treatment derived from the obtained signatures during the present work. A big number 

of public datasets issued from different medical centers and using different technologies is 

being used for the signature extraction and validation. This set of biomarkers will be tested 

then and compared to other signatures on a pool of patients issued from the Institut Claudius 

Regaud. In parallel a new bioship generation relied on soft lithography and optical detection 

will be developed. A first prototype developed with the optimal signature derived in the first 

part will be then designed. This new type of bioship will enable to direct toward a 

personalized medicine and help clinicians and oncologists to select the optimal cancer 

treatment. 
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Glossary of Cancer Terms 
Estrogen receptor A protein found inside the cells of the female reproductive tissue, some 
other types of tissue, and some cancer cells. The hormone estrogen will bind to the receptors 
inside the cells and may cause the cells to grow. Also called ER. 

Estrogen receptor negative Describes cells that do not have a protein to which the hormone 

estrogen will bind. Cancer cells that are estrogen receptor negative do not need estrogen to 

grow, and usually do not stop growing when treated with hormones that block estrogen from 

binding. Also called ER-. 

Estrogen receptor positive Describes cells that have a receptor protein that binds the 

hormone estrogen. Cancer cells that are estrogen receptor positive may need estrogen to grow, 

and may stop growing or die when treated with substances that block the binding and actions 

of estrogen. Also called ER+. 

Estrogen receptor test A lab test to find out if cancer cells have estrogen receptors (proteins 

to which estrogen will bind). If the cells have estrogen receptors, they may need estrogen to 

grow, and this may affect how the cancer is treated. 

Progesterone receptor A protein found inside the cells of the female reproductive tissue, 

some other types of tissue, and some cancer cells. The hormone progesterone will bind to the 

receptors inside the cells and may cause the cells to grow. Also called PR or PgR. 

Progesterone receptor negative Describes cells that do not have a protein to which the 

hormone progesterone will bind. Cancer cells that are progesterone receptor negative do not 

need progesterone to grow, and usually do not stop growing when treated with hormones that 

block progesterone from binding. Also called PR-. 

Progesterone receptor positive Describes cells that have a protein to which the hormone 

progesterone will bind. Cancer cells that are progesterone receptor positive need progesterone 

to grow and will usually stop growing when treated with hormones that block progesterone 

from binding. Also called PR+. 

Progesterone receptor test A lab test to find out if cancer cells have progesterone receptors 

(proteins to which the hormone progesterone will bind). If the cells have progesterone 

receptors, they may need progesterone to grow, and this can affect how the cancer is treated. 



Glossary of Cancer Terms 

 

138 

 

HER2/neu A protein involved in normal cell growth. It is found on some types of cancer 

cells, including breast , ovarian and other cancer type. Cancer cells removed from the body 

may be tested for the presence of HER2/neu to help decide the best type of treatment. 

HER2/neu is a type of receptor tyrosine kinase. Also called c-erbB-2, human EGF receptor 2, 

and human epidermal growth factor receptor 2. 

uPA An enzyme that is made in the kidney and found in the urine. A form of this enzyme is 

made in the laboratory and used to dissolve blood clots or to prevent them from forming. Also 

called u-plasminogen activator, urokinase, and urokinase-plasminogen activator. 

Biopsy The removal of cells or tissues for examination by a pathologist. The pathologist may 

study the tissue under a microscope or perform other tests on the cells or tissue. There are 

many different types of biopsy procedures. The most common types include: (1) incisional 

biopsy, in which only a sample of tissue is removed; (2) excisional biopsy, in which an entire 

lump or suspicious area is removed; and (3) needle biopsy, in which a sample of tissue or 

fluid is removed with a needle. When a wide needle is used, the procedure is called a core 

biopsy. When a thin needle is used, the procedure is called a fine-needle aspiration biopsy. 

Adjuvant therapy Additional cancer treatment given after the primary treatment to lower the 

risk that the cancer will come back. Adjuvant therapy may include chemotherapy, radiation 

therapy, hormone therapy, targeted therapy. 

Neoadjuvant therapy Treatment given as a first step to shrink a tumor before the main 

treatment, which is usually surgery, is given. Examples of neoadjuvant therapy include 

chemotherapy, radiation therapy, and hormone therapy. It is a type of induction therapy.  

Mastectomy Surgery to remove the breast (or as much of the breast tissue as possible) 

Docetaxel A drug used together with other drugs to treat certain types of breast cancer, 

stomach cancer, prostate cancer, and certain types of head and neck cancer. It is also being 

studied in the treatment of other types of cancer. Docetaxel is a type of mitotic inhibitor. Also 

called Taxotere. 

Tamoxifen A drug used to treat certain types of breast cancer in women and men. It is also 

used to prevent breast cancer in women who have had ductal carcinoma in situ (abnormal 

cells in the ducts of the breast) and in women who are at a high risk of developing breast 

cancer (in US). Tamoxifen is also being studied in the treatment of other types of cancer. It 
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blocks the effects of the hormone estrogen in the breast. Tamoxifen is a type of antiestrogen. 

Also called tamoxifen citrate. 

Immunohistochemistry A technique used to identify specific molecules in different kinds of 

tissue. The tissue is treated with antibodies that bind the specific molecule. These are made 

visible under a microscope by using a color reaction, a radioisotope, colloidal gold, or a 

fluorescent dye. Immunohistochemistry is used to help diagnose diseases, such as cancer, and 

to detect the presence of microorganisms. It is also used in basic research to understand how 

cells grow and differentiate (become more specialized).  

Chemotherapy Treatment with drugs that kill cancer cells. It is usually followed by 

docetaxel and anthracyclin. 

Adjuvant! Online It is a tool that helps health professionals make estimates of the risk of 

poor outcome (cancer related mortality or relapse) without systemic adjuvant therapy, 

estimates of the reduction of these risks affored by therapy, and risks of side effects of the 

therapy. These estimates are based on information entered about individual patients and their 

tumors (e.g. patient age, tumor size, nodal involvement,or histological grade). These estimates 

are then provided on printed sheets in simple graphical and text formats to be used in 

consultations. 

Radiation therapy The use of high-energy radiation from x-rays, gamma rays, neutrons, 

protons, and other sources to kill cancer cells and shrink tumors. Radiation may come from a 

machine outside the body (external-beam radiation therapy), or it may come from radioactive 

material placed in the body near cancer cells (internal radiation therapy). Systemic radiation 

therapy uses a radioactive substance, such as a radiolabeled monoclonal antibody, that travels 

in the blood to tissues throughout the body. Also called irradiation and radiotherapy.  

Aromatase inhibitor A drug that prevents the formation of estradiol, a female hormone, by 

interfering with an aromatase enzyme. Aromatase inhibitors are used as a type of hormone 

therapy for postmenopausal women who have hormone-dependent breast cancer. 

Hormone therapy Treatment that adds, blocks, or removes hormones. For certain conditions 

(such as diabetes or menopause), hormones are given to adjust low hormone levels. To slow 

or stop the growth of certain cancers (such as prostate and breast cancer), synthetic hormones 

or other drugs may be given to block the body’s natural hormones. Sometimes surgery is 
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needed to remove the gland that makes a certain hormone. Also called endocrine therapy, 

hormonal therapy, and hormone treatment. It is usually followed by Tamoxifen and anti-

aromatase or aromatase inhibitors.  

Axillary lymph node A lymph node in the armpit region that drains lymph from the breast 

and nearby areas. 

Overall survival rate The percentage of people in a study or treatment group who are alive 

for a certain period of time after they were diagnosed with or treated for a disease, such as 

cancer. The overall survival rate is often stated as a five-year survival rate, which is the 

percentage of people in a study or treatment group who are alive five years after diagnosis or 

treatment. Also called survival rate. 

Disease-free survival The length of time after treatment for a specific disease during which a 

patient survives with no sign of the disease. Disease-free survival may be used in a clinical 

study or trial to help measure how well a new treatment works. 

Fine-needle aspiration biopsy The removal of tissue or fluid with a thin needle for 

examination under a microscope. Also called FNA biopsy. 

TNM staging system A system developed by the American Joint Committee on Cancer 

(AJCC) that uses TNM to describe the extent of cancer in a patient’s body. T describes the 

size of the tumor and whether it has invaded nearby tissue. N describes whether cancer has 

spread to nearby lymph nodes, and M describes whether cancer has metastasized (spread to 

distant parts of the body). The TNM staging system is used to describe most types of cancer. 

Also called AJCC staging system. 

Level Of Evidence (LOE) Three levels of evidence can be distinguished: 
• LOE III: Low level of evidence 

• LOE II: Intermediate level of evidence  

• LOE I: High level of evidence 
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Appendixes  
Appendix 1 

A.1 Prognostic and predictive factors in breast cancer 

It is crucial to have a clear understanding of the definitions of prognostic factors and 
predictive factors and their roles in guiding patient care before embarking on a discussion of 
their utility in breast cancer. 

A.1.1 Prognostic factors 

Prognostic factors determine the natural history of disease progression, in the absence of 

systemic therapies. Such factors often reflect the intrinsic biologic characteristics of tumors, 

such as their ability to proliferate and metastasize. Putative tumor markers or factors are 

ideally evaluated for their prognostic ability prospectively in the systemically untreated 

patient in order to eliminate the confounding effects of treatment. Unfortunately, much of the 

data about prognostic factors is obtained from retrospective analysis of banked tumor 

samples. As a result, published studies often include only small sample sizes, have different 

lengths of follow-up, lack complete data on conventional prognostic factors, do not control for 

confounding variables, and report a variety of different endpoints, including overall survival 

(OS) and disease-free survival (DFS). All of the stated factors render it difficult to compare 

results from different studies, and diminish the strength of the evidence obtained. 

A.1.2 Predictive factors 

Predictive factors are cues that a particular tumor might respond (or not) to a specific therapy. 

A purely predictive factor separates treated patients into good and poor outcome groups, but 

does not predict outcome in untreated patients. Usually, factors are often both prognostic and 

predictive, rather than purely prognostic or purely predictive. A classic example is estrogen-

receptor (ER) status. Not only does ER-negativity give a less favorable prognosis, but more 

significantly, it predicts the category of patients who do not derive benefit from anti-estrogen 

therapy. 

We review by next the important prognostic and predictive factors and their role in breast 

cancer care: 

a- Classical prognostic factors 

- Axillary lymph node status: Characterized by N-positive or N-negative according 

whether the patient present invaded nodes or not. It has been reported that 20 to 30% 
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of N-negative patients likely present a recurrence within 10 years compared to 70% 

for N-positive patients.  The number of invaded nodes is also an important prognostic 

factor, patients with 4 invaded lymph nodes or more will likely have a poor prognosis 

than patients with less than 4 invaded lymph nodes (Carter et al., 1989). To date, the 

single most powerful prognostic factor in primary breast cancer remains the status of 

the auxiliary lymph nodes. 

- Tumor size: It has been reported that patients with tumor less than 1 cm had a 5-year 

relative OS of close to 99%, compared to 89% for those with tumors 1 to 3 cm, and 

86% for those with tumors 3 to 5 cm (Carter et al., 1989).  

- Histologic subtype: The most common histological subtypes of breast cancer are 

infiltrating ductal and lobular carcinomas. Infrequent histologies such as pure tabular, 

mucinos, or modullary subtypes are associated with a particularly favorable prognosis 

with long-term recurrence rates of less than 10% (Diab et al., 1999). Wong et al. 

(2002) examined the rate of axillary lymph node involvement in more than 3300 

women with breast cancer. axillary lymph node were identified in 35% of women with 

infiltrating ductal carcinoma, but in only 11% of those with favorable subtypes. In 

addition, women with inflammatory breast cancer have an extremely poor prognosis.  

- Hormone receptor status: It concerns Estrogen Receptor status (ER) and Progestrone 

Receptor status (PgR). While ER status has been reported a relatively weak prognostic 

factor, it strongly predicts for response to adjuvant hormonal therapy (Smith et al., 

2003). More specifically, ER-negative status appears to predict lack of responsiveness 

to hormonal therapy. Thus, ER status should be used primarily in making 

recommendations regarding the use of hormonal therapy in the adjuvant setting. 

Whereas the impact of progesterone receptor (PR) status as a prognostic and 

predictive marker was recently analyzed in a retrospective study of a large dataset of 

early-stage breast cancer patients who were randomized to either no adjuvant systemic 

therapy or adjuvant tamoxifen alone. Progesterone receptor status was found to add 

little further prognostic information over and above ER status. However, it appeared to 

further predict responsiveness to tamoxifen. Patients with ER+/PR+ tumors treated 

with tamoxifen had a 53% reduction in their risk of recurrence compared to a 25% 

reduction in risk noted in those with ER+/PR- tumors, relative to the risk of recurrence 

in ER-/PR- tumors (Bardou et al., 2003).  

- Tumor grade: The most widely accepted grading system is the semiquantitative 

Elston and Ellis modification of the Scarff-Bloom-Richardson (SBR) classification 
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(Bloom et al., 1957). Investigators using the SBR classification observed a statistically 

significant correlation between histological grade and 5-year DFS for both node-

negative and node-positive patients. Women with tumors with an SBR score of grade 

3 had a relative risk of recurrence of 4.4 when compared with those with an SBR of 

grade 1. However, tumor grade as a prognostic factor are limited by the high degree of 

inter-observer variability and the lack of consistent methodology of objective and 

quantitative grading. Comparisons between studies are difficult because of varying 

grading systems. Moreover, studies examining the prognostic significance of tumor 

grade are inconsistent in the groupings of tumor grades. Whereas studies typically 

compare grade 1 versus grade 3, the position of grade 2 is variable. In some studies, 

grade 2 is clustered with grade 1, and in others, with grade 3. As a result of the above 

inconsistencies, the most recent revision of the American Joint Committee on Cancer 

Staging (AJCC) chose not to include histological grade in the TNM-staging criteria for 

breast cancer (Singletary et al., 2002). 

- Human epidermal growth factor receptor-2 status (HER-2): HER-2 amplification 

(and the overexpression of receptor by the tumors) is associated to a poor prognosis 

and maybe predictive to certain treatments response. Studies suggest that tumors with 

HER-2 overexpression or amplification may have differential sensitivities to 

chemotherapeutic agents and to hormonal agents. The knowledge of HER2 status is 

required in all clinical situations. Human epidermal growth factor receptor-2 levels 

can be measured in several ways, including IHC utilizing a variety of antibodies to 

determine protein expression, and fluorescence in situ hybridization (FISH) or 

chromogenic in situ hybridization (CISH) to determine gene amplification.  

b- Newer prognostic factors 

- Urokinase Plasminogen Activator system: Research in the past decade has provided 

increasingly compelling evidence to suggest that the urokinase plasminogen activator 

(uPA) system plays a critical role in cancer invasion and metastasis. Urokinase 

plasminogen activator proteolytically converts plasminogen to plasmin. Plasmin 

activates matrix metalloproteases that degrade the extracellular matrix and modulate 

cellular adhesion, proliferation and migration. Both uPA and its physiologic inhibitor, 

plasminogen activator inhibitor-1 (PAI-1) have been shown to be upregulated in 

multiple cancer types, especially breast cancer (Duffy et al., 2004). Based on large, 

well-controlled, retrospective studies and data from a prospective randomized trial, 

high levels of uPA/PAI-1 have been demonstrated to provide independent prognostic 
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value. In addition, data are mounting to suggest that these factors may also predict for 

tumor response to chemotherapy. The determination of uPA/PAI-1 levels must be 

performed by enzyme-linked immunosorbent assay (ELISA), which requires fresh 

frozen tissue. This issue limits its routine integration in clinical practice. Current 

studies are underway to develop reproducible assays from smaller amounts of tissue 

obtained from core needle biopsy material. 

- Markers of proliferation: S-phase fraction, thymidine-labeling index, Ki-6 

The role of markers of proliferation as prognostic factors has been extensively 

investigated. Different methodologies exist to assess the rate of proliferation including 

thymidine labeling index (TLI), DNA-flow cytometry, S-phase fraction (SPF), mitotic 

index, bromodeoxyuridine (BrDu) incorporation, and IHC techniques with antibodies 

directed at antigens present during cell proliferation, such as Ki-67 (MIB-1) and 

PCNA. There is abundant literature on this topic, with over 200 publications 

examining the role of SPF as a prognostic marker alone. This literature is complex to 

interpret because of the variability of methodologies and assay systems and different 

cut-offs for high versus low rates of proliferation. Nonetheless, the majority of the 

studies that included large numbers of women with long follow-up, that controlled for 

the classical prognostic factors, suggest that proliferative rate is an independent 

predictor of patient outcome. 

-  Gene expression profile by cDNA microarray: Recently microarray technology has 

made it possible to measure simultaneously thousands of gene expressions. By 

analyzing the expression differentiation, genetic markers can be derived either for 

prognosis or prediction purposes that has been shown able to outperform classical 

factors in many prospective studies (Van’t Veer et al., 2002). However, this field is 

still presenting various challenges related to the incoherence between the obtained 

results (variability observed according to the used platform, data samples,…) and the 

lack of prospective studies to validate its use in the clinical routine. We review below 

the practical aspects related to the microarray technology and different existing 

platforms. 

A.2 Microarray technology: 

Microarray technology is based on the central dogma of molecular biology, namely the 

production of proteins from DNA as illustrated in Figure A.1. Briefly, this operation is based 

mainly on two steps (Figure A.1): Transcription and Translation which consists in the first 
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step of DNA (gene) translation into pre-mRNA and once this pre-mRNA is processed the 

resulting mRNA message is in the second step translated by ribosome in order to produce 

proteins (Translation). The detailed biological operation can be summarized as follow:     

A.2.1 Transcription  

Transcription is the process by which the information contained in a section of DNA is 

transferred to a newly assembled piece of messenger RNA (mRNA). It is facilitated by RNA 

polymerase and transcription factors. In eukaryote cells the primary transcript (pre-mRNA) is 

often processed further via alternative splicing. In this process, blocks of mRNA are cut out 

and rearranged, to produce different arrangements of the original sequence. 

A.2.2 Translation 

Eventually, this mature mRNA finds its way to a ribosome, where it is translated. In 

prokaryotic cells, which have no nuclear compartment, the process of transcription and 

translation may be linked together. In eukaryotic cells, the site of transcription (the cell 

nucleus) is usually separated from the site of translation (the cytoplasm), so the mRNA must 

be transported out of the nucleus into the cytoplasm, where it can be bound by ribosomes. The 

mRNA is read by the ribosome as triplet codons, usually beginning with an AUG, or initiator 

methionine codon downstream of the ribosome binding site. Complexes of initiation factors 

and elongation factors bring aminoacylated transfer RNAs (tRNAs) into the ribosome-mRNA 

complex, matching the codon in the mRNA to the anti-codon in the tRNA, thereby adding the 

correct amino acid in the sequence encoding the gene. As the amino acids are linked into the 

growing peptide chain, they begin folding into the correct conformation. Translation ends 

with a UAA, UGA, or UAG stop codon. The nascent polypeptide chain is then released from 

the ribosome as a mature protein. In some cases the new polypeptide chain requires additional 

processing to make a mature protein. The correct folding process is quite complex and may 

require other proteins, called chaperone proteins. Occasionally, proteins themselves can be 

further spliced; when this happens, the inside "discarded" section is known as an intein. 
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Fig. A.1 Biology dogma, from the DNA (gene) to the protein. Image from Wikipedia. 

The concept behind DNA chip or microarray technology relies on the accurate binding, or 

hybridization, of strands of DNA with their precise complementary copies in experimental 

conditions where one sequence is also bound onto a solid-state substrate (glass). RNA is 

extracted from frozen breast tumour samples collected either at surgery or before treatment, 

labeled with a detectable marker (fluorescent dye), and hybridized to the array containing 

individual gene-specific probes. Gene-expression levels are estimated by measuring the 

fluorescent intensity for each gene probe (Figure A.2). A gene-expression vector is then 

collected by summarizing the expression levels of each gene in the sample. To facilitate the 

comparison between the different experiments and compensate for difference in labeling, 

hybridizations and detection methods, a normalization step is usually performed (Figure A.2). 

Gene-expression prognostic classifiers are usually built by correlating gene-expression 

patterns, generated from tumour surgical specimens, with clinical outcome (development of 

metastases during follow-up). Gene-expression predictive classifiers of response to treatment 

are generated by correlating gene-expression data, derived from biopsies taken before pre-

operative systemic therapy, with clinical and/or pathological response to the given treatment.  
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Fig. A.2 Microarray experiment schema. Image from (Duggan et al., 1999). 
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Appendix 2 

Proof Lemma 3.1:  

For notational convenience lets denote [N]  = [1, · · · ,N]. We first prove that the minimum of 

the objective functions of both problems are identical given the same data set. By the triangle 

inequality,
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By construction, we thus have 1
**

1
*o(2)o(1)
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Hence, 21 minmin ff = , and )b,ww( **(2)*(1) − or )b,w( ** ) and )b,w( ** (or )b,w( *o ) are the 

optimal solutions to (3.1) and (3.2), respectively.  

Proof Lemma 3.2:  

Let *(2)*(1)* www −= . By Lemma 3.1, )b,w( **  is an optimal solution to (3.1). Using Eq. 

(A3.1), we construct a vectorow . Suppose that there exists an element j so that 0*(1) ≠jw  and 

0*(2) ≠jw . Then, by the triangle inequality, it follows that
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Proof Theorem 3.1:  
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that matrix A is positive definite or semi-definite, respectively.  
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 Note that some elements of +v may be equal to zero. For simplicity and without loss of 

generality, assume that the first M elements of +v belong to { }JjvvS jj ≤≤== ++ 1 ,0:0 , while 

the rest J −M elements belong to { }JjvvS jj ≤≤≠= ++
≠ 1 ,0:0 . From Eq. (A3.2), we have 

0/ =∂∂ +
jwf  for 0≠

+ ∈ Sv j . Then, the Hessian matrix of )v(G , evaluated at +v , is given by 
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Hence, by Schur product theorem (Horn et al., 1985), +=
⊗Β=Α

vv2 C)(  is a positive semi-

definite matrix. It follows that 0)v( ≥Η + if and only if 01 ≥Α .  

If )v( +Η is not positive semi-definite, then +v is a saddle point (Note that it cannot be a 

maximizer because )v(G is convex with respect to 1+Jv  and )v( +Η cannot be negative semi-

definite). If 0)v( ≥Η + , +v can be either a saddle point, or a local or global minimizer.  We 

now prove that if 0)v( ≥Η + , +v must be a global minimizer.  

Let us first consider the following optimization problem:  

),bw,(min f  subject to 0w ≥  (A2.4) 

Since both the objective function and constraints are convex, the Karush–Kuhn–Tucker 

(KKT) conditions are the sufficient conditions of a global optimal solution. It can be shown 

that )b,w( ++ is a global minimizer of )bw,(f , if for all [ ]ℑ∈∀j the following KKT 

conditions hold simultaneously: 

1) ,0b/ =∂∂ +f  

2) ,0/ =∂∂ +
jwf or  0=+

jw and ,0/ ≥∂∂ +
jwf  

Since +v is a stationary point, by Eq. (A3.2),  

{ } 0/ ,: 0 =∂∂∈∈∀ +
≠

+
ji wfSvii and 0b/

1
=∂∂ +

+= Jvb
f  

Moreover, 0)v( ≥Η + implies that 01 ≥Α . Since 1Α is a diagonal matrix, it holds that 

{ }0:,0/ ≠
++ ∈∈∀≥∂∂ Sviiwf ij  

Hence by the KKT conditions, ),w( 1
+

+
+

Jv and +v is a global minimizer of )bw,(f  and )v(G , 

respectively. 

Proof Theorem 3.2  

Suppose that 0v/ * =∂∂G and *v is a saddle point. Again, we assume that the first M elements 

of *v belong to 0S , while the following J − M elements belong to 0≠S . There exists an element 

0Sj ∈  so that 0/ * <∂∂ jwf  (otherwise 0)v( * ≥Η  and *v  is a global minimizer). Due to the 
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continuity, there exists 0>ξ , such that 0/ <∂∂ jwf for every { }ξ<−=Ω∈ *: jj wwww . It 

follows that 0)/(2/ <∂∂=∂∂ jjj wfvvG for jj wv = , and 0/ >∂∂ jvG  for jj wv −= .That 

is, a gradient descent method given by )/( )()()1( k
j

k
j

k
j vGvv ∂∂−←+ η , drives the solution out of 

the neighborhood of a saddle point except when (1) the component )(k
jv is set to exactly zero, 

or (2) )(k
jv is outside Ω and a line search hits *v exactly. The latter event cannot happen since 

gradient )vg( *  equals to zero at*v , and thus the descending condition does not hold (see 

Definition 1). Instead, a line search will find a solution around *v , and in the subsequent steps 

the solution will move away from*v . On the contrary, if *v is a global optimal, )1(v +k will 

approach it continuously with improved solution quality. We go on to prove that if 0)0( ≠jv , 

)(k
jv will be set to exactly zero at a non-stationary point with a zero probability. Let )(v k be the 

solution obtained in the k-th iteration, )(d- k be the descending direction, )()()( d v-v kkk η−=  be 

a point in the line-search path at which some elements are zeros, and -g )(k  be the gradient at 

-v )(k
. Since -v )(k is not a stationary point, 0-g )( >k . 

1. If 0-gd )()( ≤kTk , the line search will not reach -v )(k . 

2. On the other hand, If 0-gd )()( >kTk , )(d- k is also a descending direction at -v )(k
. Without 

loss of generality, we assume 1d )( =k ||. Due to the continuity, there exists a 01 >ζ such that 

for all { }1
)(

2
-vv:vv ξ<−=Ω∈ k , 0)v(gd )( >Tk . This means that for any )1,0(∈α ,  

( ) ( ).-v-v )()(
1

)( kkk GdG <−αξ  

a)  If the chosen interval length 1
)( ξε <k , the line search has at least one candidate 

solutions which is correspond with an α > 0 above, hence it goes pass -v )(k and moves 

away from it. 

b) On the other hand, if 1
)( ξε ≥k , the line search will have only one or two candidate 

solutions within 2Ω . In this case, the line search has no prior knowledge about the 

region under search, thus it degenerates to randomly selecting one or two )1 ,1(−∈α

and setting )(
1

)()1( d vv kkk αξ−=+ . Given an arbitrary bounded probability density 

distribution, the probability that a single point α = 0 is chosen, however, is zero. 
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Moreover, due to the continuity, there also exists a 02 >ζ such that for all 

{ }2
)(

3
-vv:vv ξ<−=Ω∈ k , 0-g)v( )( >kTg . This mean that a gradient-based search starting 

in 3Ω  will go pass -v )(k following case (2a) stated above, hence -v )(k is not a point of 

attraction and after a few iterations, case (1) and case (2b) either change to case (2a), or 

change to the case that the descending direction does not drive any element towards zero. 

This completes the proof that the saddle points cannot be reached with the designated gradient 

descent method. 
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Appendix 3 

To solve the stated optimization problem, the well known Lagrangian optimization method is 

applied. The Lagrangian of (5.8) is given by 

)()1w(s)-(wL
1

2

2ff fi

m

i
l

T w−+−+= ∑
=

ξλ  (A3.1) 

where λ and ξ ≥0 are the Lagrange and Kuhn-Tucker multipliers.  

Applying derivative to (A1) with respect to wf and setting it to zero, a closed-form solution 

for wf  can be derived:     

f  f
f

L 1
s  2 w 0  w

w 2 (s )
λ ξ

λ ξ
∂ = − + − = ⇒ =

∂ +
 (A3.2) 

with the assumption (5.4.1), the positivity of λ  is proved by contradiction.  Suppose λ<0 and 

the assumption si>0 we have  

                                                                           si + ξι > 0 

( )
      0

2
i i

fi

s
w

ξ
λ

+
⇒ = <  

This result is contradictory with constraint wf ≥0, thus λ>0.  

By application of Kuhn-Tucker condition, namely ∑iξι wfi=0, the following three cases can be 

verified  

1) si=0 => ξι =0 and wfi=0 

2) si>0 => si + ξι>0 => wfi>0 => ξι=0 

3) si<0 => ξι>0 => wfi=0 =>si =-ξι 

Then, the optimum solution of wf can be calculated in the following closed form: 

      
  0           if  0                

  1
       if  0 

2

i

fi
i

i

s

w
s

sλ

≤
=  >


 

Therefore the normalized values are: 

*
f

s
w

|| s || 

+

+=  (A3.4) 

with s+= [max(s1,0), …, max(sm,0)]T     
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Appendix 4 

A4.1 Receiver operating characteristic 

In signal detection theory, a receiver operating characteristic (ROC), or simply ROC 

curve, is a graphical plot of the sensitivity, or true positive rate, vs. false positive rate (1 − 

specificity or 1 − true negative rate), for a binary classifier system as its discrimination 

threshold is varied. The ROC can also be represented equivalently by plotting the fraction of 

true positives out of the positives (TPR = true positive rate) vs. the fraction of false positives 

out of the negatives (FPR = false positive rate). Also known as a Relative Operating 

Characteristic curve, because it is a comparison of two operating characteristics (TPR & FPR) 

as the criterion changes (Swets, 1996). 

 

Fig. A4.1 An example of ROC curve. Image taken from Wikipedia. 

ROC analysis provides tools to select possibly optimal models and to discard suboptimal ones 

independently from (and prior to specifying) the cost context or the class distribution. ROC 

analysis is related in a direct and natural way to cost/benefit analysis of diagnostic decision 

making. The ROC curve was first developed by electrical engineers and radar engineers 

during World War II for detecting enemy objects in battle fields, also known as the signal 

detection theory, and was soon introduced in psychology to account for perceptual detection 

of stimuli. ROC analysis since then has been used in medicine, radiology, and other areas for 

many decades, and it has been introduced relatively recently in other areas like machine 

learning and data mining. 
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A classification model (classifier or diagnosis) is a mapping of instances into a certain 

class/group. The classifier or diagnosis result can be in a real value (continuous output) in 

which the classifier boundary between classes must be determined by a threshold value, for 

instance to determine whether a person has hypertension based on blood pressure measure, or 

it can be in a discrete class label indicating one of the classes. 

Let us consider a two-class prediction problem (binary classification), in which the outcomes 

are labeled either as positive (p) or negative (n) class. There are four possible outcomes from 

a binary classifier. If the outcome from a prediction is p and the actual value is also p, then it 

is called a true positive (TP); however if the actual value is n then it is said to be a false 

positive (FP). Conversely, a true negative has occurred when both the prediction outcome and 

the actual value are n, and false negative is when the prediction outcome is n while the actual 

value is p. 

To get an appropriate example in a real-world problem, consider a diagnostic test that seeks to 

determine whether a person has a certain disease. A false positive in this case occurs when the 

person tests positive, but actually does not have the disease. A false negative, on the other 

hand, occurs when the person tests negative, suggesting they are healthy, when they actually 

do have the disease. 

Let us define an experiment from P positive instances and N negative instances. The four 

outcomes can be formulated in a 2×2 contingency table or confusion matrix, as follows: 
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The contingency table can derive several evaluation “

the true positive rate (TPR) and false positive rate (FPR) are needed. TPR determines a 

classifier or a diagnostic test performance on classifying positive instances correctly among 

all positive samples available during the test. FPR, on the other hand, defines how many 

incorrect positive results occur among all negative samples available during the 

space is defined by FPR and TPR as 

offs between true positive (benefits) and false positive (costs). Since TPR is equivalent with 

sensitivity and FPR is equal to 1

sensitivity vs (1−specificity) plot. Each prediction 

represents one point in the ROC space.

Fig. A4.2 An example of ROC curve. Image taken from Wikipedia.

The best possible prediction method would yield a point in the upper left corner or coordinate 

(0,1) of the ROC space, representing 100% 

specificity (no false positives). The (0,1) point is also called a 

completely random guess would give a point along a diagonal line (the so

discrimination) from the left bottom to the top right corners. An intuitive example of random 

guessing is a decision by flipping coins (head or tail)

The diagonal divides the ROC space. Po

results, points below the line poor results. Note that the output of a poor predictor could 

simply be inverted to obtain points above the line (See Figure A
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can derive several evaluation “metrics”. To draw an ROC curve, only 

the true positive rate (TPR) and false positive rate (FPR) are needed. TPR determines a 

er or a diagnostic test performance on classifying positive instances correctly among 

all positive samples available during the test. FPR, on the other hand, defines how many 

incorrect positive results occur among all negative samples available during the 

space is defined by FPR and TPR as x and y axes respectively, which depicts relative trade

offs between true positive (benefits) and false positive (costs). Since TPR is equivalent with 

and FPR is equal to 1−specificity, the ROC graph is sometim

specificity) plot. Each prediction result or one instance of a confusion matrix 

represents one point in the ROC space. 

 
.2 An example of ROC curve. Image taken from Wikipedia.

 

The best possible prediction method would yield a point in the upper left corner or coordinate 

e ROC space, representing 100% sensitivity (no false negatives) and 100% 

(no false positives). The (0,1) point is also called a perfect classification

would give a point along a diagonal line (the so

) from the left bottom to the top right corners. An intuitive example of random 

flipping coins (head or tail). 

The diagonal divides the ROC space. Points above the diagonal represent good classification 

results, points below the line poor results. Note that the output of a poor predictor could 

simply be inverted to obtain points above the line (See Figure A4.2). 
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The best possible prediction method would yield a point in the upper left corner or coordinate 

(no false negatives) and 100% 

perfect classification. A 

would give a point along a diagonal line (the so-called line of no-
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results, points below the line poor results. Note that the output of a poor predictor could 
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A4.2 Kaplan-Meier Curve 

The Kaplan–Meier estimator (Kaplan and Meier, 1958; Kaplan and Meier, 1983), also known 

as the product limit estimator, is an estimator for estimating the survival function from life-

time data. In medical research, it is often used to measure the fraction of patients living for a 

certain amount of time after treatment. The estimator is named after Edward L. Kaplan and 

Paul Meier. 

 
Fig. A4.3 An example of Kaplan-Meier curve. Image taken from Wikipedia. 

A plot of the Kaplan–Meier estimate of the survival function is a series of horizontal steps of 

declining magnitude which, when a large enough sample is taken, approaches the true 

survival function for that population. The value of the survival function between successive 

distinct sampled observations ("clicks") is assumed to be constant. 

An important advantage of the Kaplan–Meier curve is that the method can take into account 

some types of censored data, particularly right-censoring, which occurs if a patient withdraws 

from a study, i.e. is lost from the sample before the final outcome is observed. On the plot, 

small vertical tick-marks indicate losses, where a patient's survival time has been right-

censored. When no truncation or censoring occurs, the Kaplan–Meier curve is equivalent to 

the empirical distribution function. In medical statistics, a typical application might involve 

grouping patients into categories, for instance, those with Gene A profile and those with Gene 

B profile. In the graph, patients with Gene B die much more quickly than those with gene A. 

After two years, about 80% of the Gene A patients survive, but less than half of patients with 

Gene B. 



Appendixes 

 

158 

 

Let S(t) be the probability that an item from a given population will have a lifetime exceeding 

t. For a sample from this population of size N let the observed times until death of N sample 

members be 

Ntttt ≤≤≤≤ ...321  

Corresponding to each ti is ni, the number "at risk" just prior to time ti, and di, the number of 

deaths at time ti. 

Note that the intervals between each time typically are not uniform. For example, a small data 

set might begin with 10 cases, have a death at Day 3, a loss (censored case) at Day 9, and 

another death at Day 11. Then we have (t1 = 3, t2 = 11), (n1 = 10, n2 = 8), and (d1 = 1, d2 = 2). 

The Kaplan–Meier estimator is the nonparametric maximum likelihood estimate of S(t). It is a 

product of the form 

∏ −=
tt i

ii

i
n

dn
tS

p

)(ˆ  

 

A4.1 

When there is no censoring, ni is just the number of survivors just prior to time ti. With 

censoring, ni is the number of survivors less the number of losses (censored cases). It is only 

those surviving cases that are still being observed (have not yet been censored) that are "at 

risk" of an (observed) death (Costella, 2010).  

There is an alternative definition that is sometimes used, namely 

∏
≤

−=
tt i

ii

i
n

dn
tS )(ˆ  

 

A4.2 

The two definitions differ only at the observed event times. The latter definition is right-

continuous whereas the former definition is left-continuous. 

Let T be the random feature that measures the time of failure and let F(t) be its cumulative 

distribution function. Note that 

)(1][1][)( tFtTPtTPtS −=≤−=>=  A4.3 
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Consequently, the right-continuous definition of )(ˆ tS may be preferred in order to make the 

estimate compatible with a right-continuous estimate of F(t)
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