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Introduction

The main goals of the ATLAS [1] scientific programme are the observation or exclusionof physics beyond the Standard Model (SM), as well as the measurement of productioncross-sections of SM processes. As the rate of events N of a given physics process islinked to the cross-section σ by the relation N = L · σ , where L is the luminosity at theinteraction point, it is important to measure the luminosity with great precision.
The ATLAS experiment has two major luminosity monitors, LUCID (Luminosity mea-surement Using Cerenkov Integrating Detector), which consists of Cerenkov tubes locatedaround the beam axis 17 m away from the interaction point, and BCM (Beam ConditionMonitor) which is a diamond-based detector and has both beam-abort and luminositycapabilities. As these detectors provide a relative luminosity measurement, they wereabsolutely calibrated in 2010 using the van der Meer procedure, achieving a total sys-tematic uncertainty of 3.4%. The ultimate plan is to provide an absolute calibration usingthe ALFA detector during a run with special beam optics.
In order to provide more cross-checks and a better control on the systematic un-certainties, other luminosity handles are always needed. In particular, an independentmeasurement using the liquid argon forward calorimeter (FCal), based on the readoutcurrent of its high-voltage system, has been developed.
This document starts, in Chapter 1, by laying out the physics motivations behindthe construction of the LHC and the ATLAS detector before describing their layout andperformance. Chapter 2 offers a detailed description of the ATLAS liquid argon calorimeter,
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and Chapter 3 focuses on its high-voltage system, which is used to perform the luminositydetermination presented in Chapter 4.



Chapter 1

The ATLAS experiment at the Large

Hadron Collider

After a description of the Standard Model of particle physics and the scientific motivationsbehind the construction of the Large Hadron Collider (LHC) and its experiments in Section1.1, Section 1.2 details the LHC layout and main characteristics, followed by a descriptionof the ATLAS experiment in Section 1.3.

1.1 Physics motivations

Theoretical and experimental progress has lead to the formulation of the standard modelof particle physics, which describes elementary particles and their interaction via theelectromagnetic, weak, and strong forces. Gravity is not included in the model. For thepast 40 years, many experimental results have helped build up and strengthen the validityof this model, particularly at high energy particle physics colliders. These results include,in chronological order:
• observation of neutral currents in the Gargamelle detector in 1973 [2],
• observation of the W and Z bosons in pp̄ collisions at the CERN SPS by the UA1
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([3], [4]) and UA2 experiments [5] in 1983,
• determination of the number of light neutrino species by the LEP experiments [6, 7, 8],
• precise measurement of the W mass at the CERN LEP [9] and Fermilab Tevatron[10],
• observation of the top quark in pp̄ collisions by the CDF [11] and D0 [12] at theFermilab Tevatron in 1995.
Thanks to the data gathered by operating the SPS and LEP at CERN and the Tevatronat Fermilab, we now know that the Standard Model of particle physics correctly describesthe observed phenomena up to energies of O(100 GeV). However, the Standard Model hasits limits. Firstly, it does not include the gravitational interaction and general relativity.Secondly there are 19 free parameters in the model, including the fermions masses,which values are not predicted. Three parameters should be added to these 19 to includethe neutrino masses, following experimental evidence of neutrino oscillations. Thirdly,the Standard Model does not explain why there are three generations of fermions orwhy their masses cover such a large range. Finally, from a cosmological viewpoint, noexplanation on the nature of cold dark matter, which seems to occupy most of the universe,has been provided. An extension of the standard model predicts the existence of the Higgsboson, which is believed to give other particles their masses, but has yet to be observedexperimentally. For instance, its involvement in WW scattering implies that its mass mustbe lower than ∼ 1 TeV in order to maintain unitarity. Theories beyond the StandardModel, such as Supersymmetry, Technicolor, Extra-Dimensions models have been tryingto take on these issues.
It was therefore decided to build a collider giving access to mass domains up to a fewTeV in order to cover all the searches for new physics. Finding evidence of the Higgsboson and search for new physics beyond the Standard Model are the main goal of theATLAS and CMS experiments installed on the LHC collider.
The quark model allows for a classification of the elementary constituents of matterwith three generations of fermions: six quarks, six leptons and their antimatter counter-
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parts. The quarks are constituents of hadrons, e.g. protons and neutrons, and are confinedto these bound states: free quarks have not been observed experimentally. They carryfractional electric charges (-2/3, 1/3) and have very different masses. The six leptons aredivided into three charged and three neutral particles. Properties of these elementaryparticles are listed in Table 1.1. The lightest quark and leptons pairs, the up and downquarks, the electron, and the electron neutrino, are responsible for all the stable matterin the universe. Quarks Leptonsu d e− νeFirst generation up down electron electron neutrinoQ = 2/3 e Q = -1/3 e Q = -e Q = 0m = 1.5 - 4.5 MeV m = 5 - 8.5 MeV m = 0.511 MeV m < 3 eVc s µ− νµSecond generation charm strange muon muon neutrinoQ = 2/3 e Q = -1/3 e Q = -e Q = 0m = 1 - 1.4 GeV m = 80 - 155 MeV m = 105.7 MeV m < 0.19 eVt b τ− ντThird generation top bottom tau tau neutrinoQ = 2/3 e Q = -1/3 e Q = -e Q = 0m = 174.3 GeV m = 4 - 4.5 GeV m = 1777 MeV m < 18.2 eV
Table 1.1: Quarks and leptons properties [13].

In the standard model, the interaction between two elementary particles is describedby the exchange of messenger particles associated with each of the three forces in-cluded in the model. The electromagnetic interaction governs the interaction betweentwo charged particles. It is carried out by the photon, which is massless, hence the infi-nite range of its extent. It manifests macroscopically as electromagnetic waves, electriccurrents, and attractive of repulsive phenomena depending on the electric charge. Thestrong interaction acts as the binding force in hadrons and atomic nuclei. Its range isapproximately 10−15 m. It is carried out by gluons, which have neither mass nor electriccharge but another charge named colour. The weak interaction is responsible for thedecay of heavy quarks and leptons into lighter ones, which has for consequence that allstable matter in comprised of solely first generation fermions. It is also responsible forthe flavour change of the up quark to a down quark during proton-proton fusion, whichoccurs in the Sun. It is carried by the massive W and Z vector bosons. The range of the



6 The ATLAS experiment at the Large Hadron Collider

Particle γ W ± Z 0 gForce Electromagnetic Weak Weak StrongCharge Q = 0 Q = ± e Q = 0 Q = 0Mass m < 2 · 10−16 eV m = 80.2 GeV m = 91.2 GeV m = 0
Table 1.2: Gauge bosons properties [13].

weak interaction is approximately 10−17 m. The charges and masses of the four vectorbosons of the standard model are listed in Table 1.2.
The electroweak theory, which unifies the electromagnetic and weak interactions,predicts the existence of the photon, the neutral Z0 and the charged W+ and W− bosons.The fact that the photon has zero mass and the W and Z are massive is however an issueas the theory requires the gauge bosons to be massless. The mechanism of spontaneoussymmetry breaking [14, 15] describes how these four massless gauge bosons couple with anew field, called the Higgs field, giving three of them their masses. The particle associatedwith the Higgs field is called the Higgs boson, and has yet to be observed experimentally.However data collected at the Tevatron pp̄ collider allowed physicist to put boundarieson its mass, as shown on Figure 1.1, which illustrates the latest results [16]. Additionally,the data collected in 2011 by the ATLAS collaboration allowed a similar study, of whichthe summary is depicted in Figure 1.2. These results exclude the Standard Model Higgswith a 95% confidence level in the [155,190] and [295,450] GeV mass ranges.

1.2 The Large Hadron Collider

The Large Hadron Collider (LHC, [17]) is aimed at colliding protons (lead ions) at thedesign energy of 7 TeV (2.76 TeV/nucleon). It is installed in the tunnel that used to hostthe Large Electron-Positron collider (LEP) at CERN until 2000.
The centre-of-mass energy of 14 TeV has been chosen due to theoretical motivationsas well as results from the LEP and Tevatron experiments indicating new physics at theTeV-scale. Despite the fact that the standard model predicts the existence of the Higgs
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boson, there is no indication on its mass. This is the main reason why a hadron colliderwas chosen to discover it. Indeed, by colliding protons at a centre-of-mass energy of14 TeV, the energy available in each collision ranges from 0 to 14 TeV, because of theproton compositeness. This leads to the production of a wide spectrum of decay products,thus increasing the potential for discovery. Moreover, an electron collider with 7 TeVper beam in the existing 27 km tunnel would not be efficient because of energy lossesdue to synchrotron radiation, which scales as m−4. As protons are ∼2000 times heavierthan electrons, these losses are much smaller, allowing for a favourable yield betweenthe energy given to the proton during acceleration and the amount lost by synchrotronradiation at each turn.

The CERN accelerator complex is illustrated in Figure 1.3. The 26.7 km tunnel ofthe LHC lies between 45 m and 170 m below France and Switzerland and was builtbetween 1984 and 1989. Protons are provided by a hydrogen source at the Linac2 linearaccelerator, accelerated to 50 MeV and sent to the Proton Synchrotron Booster (PSB)where their energy is increased to 1.4 GeV. After the PSB, the protons reach the SuperProton Synchrotron (SPS) where they are accelerated to 450 GeV, before being injectedas two bunched beams into the LHC. The Radio Frequency (RF) cavities of the LHC finallyaccelerates both beams up to their nominal energies of 7 TeV. The beams circulating in



8 The ATLAS experiment at the Large Hadron Collider

the LHC are not continuous: the protons are packed into bunches nominally 25 ns apartand form bunch trains, up to the design maximum number of filled bunches of 2808. TheLHC is also able to collide lead ions at 2.76 TeV/nucleon centre-of-mass: the ions areprovided by a lead source and injected by the Linac3 into the Low Energy Ion Ring (LEIR)before reaching the PSB from where they follow the same chain as protons.

Figure 1.3: The CERN accelerator complex.
Because two proton beams cannot circulate in opposite directions in the same vacuumchamber with a single bending magnetic field, a twin-bore design was chosen for the 1232dipole magnets, as illustrated in Figure 1.4. Two superconducting dipole magnets andtwo beam pipes lie in a single cryostat cooled down to the superfluid Helium temperatureof 1.9 K. The magnets are made NbTi and a current of ∼ 12 kA allows for magnetic fieldsup to 8.4 T. Additionally, the LHC is equipped with quadrupole magnets that providefocusing, as well as higher multipole magnets for corrections.
The LHC is divided into eight straight sections with different purposes:
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Figure 1.4: Cross section of an LHC dipole magnet showing the two separate vacuum chambers [17].

Beam dump Beams are dumped into large graphite cylinders to protect the machine andthe experiments.
Radio Frequency cavities Particles circulating in the LHC are accelerated to their nom-inal energy.
Momentum cleaning Particles with a too large momentum dispersion with respect tonominal are cleaned up by a dedicated set of magnets and collimators .
Betatron cleaning Particles which drift too much from their nominal orbit are cleanedup by a specific collimation configuration.
ATLAS A Toroidal LHC ApparatuS [1]. General purpose detector designed to achieve themain LHC goals: Higgs, SUSY, extra dimensions, ...
CMS Compact Muon Solenoid [18]. Same goals as ATLAS, but uses different detectortechnologies.
ALICE A Large Ion Collider Experiment [19]. Specifically designed to observe heavy ioncollisions, its main physics goal is understanding the properties of the quark-gluonplasma.
LHCb Large Hadron collider beauty experiment [20]. Designed to measure differences
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in the properties of matter and antimatter, primarily through the observation of CPviolation in B mesons, and more generally B physics studies.
One of the main features that characterises a machine like the LHC is its ability toproduce collisions, described by a parameter called the luminosity. For two bunchescontaining N1 and N2 protons meeting at the revolution frequency fr , the instantaneous

luminosity, expressed in cm−2s−1, can be written as follows [21]:
L = N1N2fr4πσxσy

where σx,y are the transverse beam sizes at the interaction point. Furthermore, as therate of events N of a given physics process is linked to the cross-section σ by the relation
N = L·σ , one needs to measure the luminosity with great precision. For instance, Figure1.5 depicts the evolution of the production cross-sections times the branching ratio of theHiggs boson as a function of its mass, which illustrates the importance of precise cross-section measurements and therefore precise luminosity determination.

In the above expression of the luminosity with the beam parameters, the measurementof the number of proton per beam is performed by measuring their currents using currenttransformers placed around the beam pipes. As of summer 2011, the uncertainty on thebeam current measurements dominate the total uncertainty on the luminosity. A detailedreview of the luminosity determination in ATLAS is given in Chapter 4.
In 2011 the LHC has been colliding protons with half the designed energy becauseof the consolidation work and additional magnet training required to safely operate themachine higher than 3.5 TeV per beam. This work will be performed during the 2012-2013shutdown period. In 2011, the LHC successfully managed to collide up to 1331 protonbunches at IP1, where the ATLAS experiment is located, achieving a peak instantaneousluminosity of 3.3 1033 cm−2s−1 and an average number of 16 inelastic p-p collisions perbunch crossing. These achievements, as well as the LHC design parameters, are listed inTable 1.3.
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Figure 1.5: Production cross-section times branching ratio of the Higgs boson decay channels as a functionof its mass.
September 2011 NominalCollision proton energy [GeV] 3500 7000Centre-of-mass energy [GeV] 7000 14000Number of filled bunches 1380 2808Number of particles per bunch 1.15 1011 1.15 1011Distance between two filled bunches [ns] 50 25Peak luminosity at ATLAS [cm−2 s−1] 3.3 1033 1034Average number of p-p collisions per bunch crossing 16 23

Table 1.3: LHC design and 2011 operational parameters.
The evolution of the peak instantaneous luminosity and the delivered integrated lu-minosity in 2011 are illustrated on Figures 1.6 and 1.71.

1.3 The ATLAS detector

The ATLAS [1] detector construction started in 1997, and its installation in the 80 m deepdedicated experimental cavern began in 2003. Test beams studies, followed by extensive
1https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults#2011_pp_Collisions
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Figure 1.7: Cumulative integrated luminosity versusday in 2011.
commissioning with cosmic muons [22, 23, 24, 25], allowed the ATLAS collaboration to beready for the first LHC circulating beams in 2008. The year 2009 saw the first proton-proton collisions at 900 GeV of center-of-mass energy, and in 2010 the first 7 TeV collisions.The detector layout is presented on Figure 1.8.

In order to satisfy its performance requirements with respect to LHC collision products,it has three-fold structure with a tracking system, a calorimetry system, and a muonspectrometer surrounding the interaction point with maximum coverage.
The inner detector system, surrounded by a 2 T solenoidal magnetic field used to bendcharged particle tracks, is composed of a high granularity Pixel detector, a silicon micro-strip (SCT) detector, and a Transition Radiation Tracker (TRT). It provides high precisiontracking of charged particles, vertex measurements, as well as electron identification withthe TRT.
The calorimetry system consists of a liquid argon sampling calorimeter (LAr) sur-rounded by a scintillating tiles hadronic calorimeter in the barrel region. Its main goal isto provide trigger capabilities on electrons, photons, jets, and missing transverse energyas well as particle identification (electrons, photons) and energy measurements.
Strong bending power in the volume of the muon spectrometer is provided by threelarge air-core toroid systems (one barrel and two end-cap superconductive magnets).The muon spectrometer consists of chambers placed all around the toroid magnets, to
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both trigger and perform high precision tracking of muons, the only charged particlesremaining outside of the calorimetry system.
The ATLAS coordinate system is defined with the interaction point as its origin. Thex-axis is pointing towards the center of the LHC ring, and the y-axis upwards. Thedetector is separated in two sides along the z-axis, the A-side for z > 0 and the C-sidefor z < 0. The azimuthal angle φ spans around the beam axis in the transverse plane, andthe polar angle θ is defined from the z-axis. In collider experiments, the pseudo-rapiditycoordinate η is generally used instead of the polar angle since particle production fromcollisions is rather constant as a function of pseudo-rapidity in the range covered by themain detectors (around |η| < 5). It is defined as follows:

η = − ln ∣∣∣∣tan(θ2
)∣∣∣∣

The η coverage, as well as the design performance of each sub-detector, is summarizedin table 1.4.
Detector component Required resolution η coverageMeasurement Trigger (Level-1)Inner detector σpT /pT = 0.05% pT ⊕ 1% ±2.5EM calorimeter σE /E = 10%/√E ⊕ 0.7% ±3.2 ±2.5Hadronic calorimeterbarrel and end-cap σE /E = 50%/√E ⊕ 3% ±3.2 ±3.2forward σE /E = 100%/√E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9Muon spectrometer σpT /pT = 10% at pT = 1 TeV ±2.7 ±2.4

Table 1.4: Design performance and coverage of the ATLAS detectors. pT denotes the transverse momentumof particles traversing the detector, i.e. the momentum projection on the x-y plane.
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1.3.1 Magnet system

The ATLAS magnet system [26] is aimed at providing bending power for charged particlesmomentum measurements. Around the Inner Detector lies a Nb/Ti/Cu superconductivesolenoid providing a 2 T magnetic field parallel, for |z| < 2 m, to the beam axis. Itsthin design is crucial for minimizing the material in front of the barrel calorimeter, withwhich it shares the cold cryostat vessel. Three large air-core toroid magnets surround thecalorimeters: one barrel (Figure 1.9), providing a maximum field of 0.5 T at its centre; twoend-caps (Figure 1.10), providing a 1 T field. All magnets are operated at a temperature of4.5 K and operative currents of 7.73 kA for the solenoid and 20.4 kA for the toroids. As thetoroid magnets follow an eight-fold structure, the magnetic fields are not homogeneousin φ. Therefore, approximately 1800 Hall probes are mounted on the muon spectrometerto measure and monitor the field intensity in the ATLAS cavern. This ensures goodknowledge of the magnetic field intensity in the cavern in order to satisfy the performancerequirement on the momentum resolution.

Figure 1.9: Barrel toroid magnet Figure 1.10: Endcap toroid magnet



16 The ATLAS experiment at the Large Hadron Collider

1.3.2 Inner detector

In order to perform high precision tracking of charged particles and accurate vertex re-construction, three detectors comprise the innermost layer of the ATLAS detector [27, 28].From the interaction point: a silicon pixel detector (Pixel), a silicon microstrip detector(SCT) and a Transition Radiation Tracker (TRT). The global layout, as well as a sectionof the Inner Detector, are shown on Figures 1.11 and 1.12. Additionally, the Inner Detec-tor is equipped with the Beam Condition Monitor, a set of diamond detectors which actas a protection system from unstable LHC beams and also have luminosity monitoringcapabilities.

Figure 1.11: The ATLAS Inner detector. It is approx-imately 7 m in length and 1.2 m in diameter. Figure 1.12: Section of the ATLAS Inner detector bar-rel region.

1.3.2.1 Pixel detector

The Pixel detector [27, 28] is the closest to the interaction point and covers |η| < 2.5in pseudo-rapidity. The charge collected in a pixel over a certain threshold is used todetermine if a charged particle went through. In the high-multiplicity environment of theLHC, it must provide excellent spatial resolution for measurements such as secondaryvertices and impact parameters. Its 80.4 million 50 × 400 µm2 silicon pixels are dividedamong three cylindrical barrel layers and three end-cap disks on each side. The designintrinsic accuracy is 10 µm in the R −φ direction and 115 µm in z . Measurements with
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collision data have shown that the pixels alignment is very close to the design, as shownon Figure 1.13 for the x direction, which shows a FWHM (Full Width Half-Maximum) of19 µm. The three barrel layers are located at respectively 5.05 cm, 8.85 cm, and 12.25 cmof the beam axis, and the end-cap disks at |z| = 49.5 cm, 58.0 cm and 65.0 cm. The highradiation environment causes the effective doping concentration of the silicon sensorsto increase with time, hence requiring a higher bias voltage. As this phenomenon istemperature-dependant, the Pixel detector is operated at temperatures ranging between
−5 ◦C and −10 ◦C.

Figure 1.13: Distribution of the local x unbiased residuals of the pixel barrel modules. Plot producedwith tracks (pT > 2GeV ) reconstructed in LHC Minimum Bias events at centre-of-mass energy 7 TeV. Fullblue circles show the real data residuals after the detector alignment, and the open red circles show theresiduals using Monte Carlo with a perfectly aligned detector (normalized to the number of entries in thedata distribution). The local x coordinate of the pixels is along the most precise pixel direction.

In the next long-term LHC shutdown, in 2013-2014, the addition of inner barrel layeris planned. The project, called Insertable B-Layer [29], aims at extending the lifetime ofthe Pixel detector at the LHC design luminosity, as well as improving secondary vertexreconstruction, essential for b-tagging in Higgs searches.
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1.3.2.2 Semi-Conductor Tracker

The Semi-Conductor Tracker (SCT, [27, 28]) surrounds the Pixel detector for charged par-ticle tracking. It is comprised of four barrel layers (|η| < 1.4) and nine end-cap disks(1.1 < |η| < 2.5) on each side. One of the 4088 SCT modules, as shown on Figure 1.14,consists of two pairs of silicon microstrip planes glued together back-to-back. The planesare rotated with respect to each other by a 40 mrad angle, which allows measurementsalong the length of a strip. The microstrip pitch is approximately 80 µm, and the intrinsicaccuracy is 16 µm (R − φ) × 580 µm (z). The SCT contains approximately 6.2 millionread-out channels.

Figure 1.14: Semi-Conductor Tracker barrel module

1.3.2.3 Transition Radiation Tracker

The Transition Radiation Tracker (TRT, [27, 28]) is the outermost part of the Inner detector.It is made of 351000 individually read out straw tubes of 4 mm in diameter. In the threebarrel layers, the 144 cm tubes are aligned along the beam axis; in the three end-capdisks, the 37 cm tubes are arranged radially. Each tube is filled with a gas mixture ofXe/CO2/O2 and contains a gold plated tungsten anode at its center. The operative voltage
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of 1530 V applied to the cathode yields to a gain of approximately 2.5× 104.
When a charged particle goes through a tube, it ionizes the gas producing electron-ions pairs; the electrons drift induces a current on the anode as the signal. Moreover, thedrift time (duration of the current pulse) allows the determination of the distance of thetrack with respect to the center of the tube. A minimum of 36 straws will be traversedin the barrel region (22 in the end-caps), and the intrinsic resolution is designed to be130 µm in R−φ. Measurements with collision data show for instance a FWHM of 138 µmin the x direction in the TRT barrel, as illustrated on Figure 1.15.

Figure 1.15: The TRT unbiased residuals, as obtained from 7 TeV LHC collision data after detector alignmentand Monte Carlo (perfectly aligned detector) for the TRT barrel. The Monte Carlo distributions (open redcircles) are normalized to the number of entries in the data (full blue circles). Tracks are required to have
pT > 2 GeV . For low-momentum tracks, the width of the residual distribution is expected to be largerthan the intrinsic accuracy per hit as predicted from the drifttime measurement because of the contributionfrom multiple scattering.

The transition radiation emitted in the TRT allows for the separation of electrons andpions, providing an additional handle for electron identification in the electromagneticcalorimeter. The photons produced at the transition are absorbed by the gas mixture,inducing a much larger signal than the standard ionization process. Therefore, bothtracking and particle identification are made possible by setting two separate thresholdson a tube-by-tube basis.
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1.3.2.4 Beam Condition Monitor

The ATLAS Beam Condition Monitor [30] is designed as the experiment’s way to detectunstable LHC beams and trigger safety beam dumps in order to protect the inner detector.It is comprised of two stations, located at z± 184 cm of the ATLAS interaction point. OneBCM station is made of four radiation hard diamond-based sensors, as seen on Figure1.16, each module sitting at a radius of 5.5 cm from the beam axis. By using time-of-flightinformation between the two stations, the BCM is capable of distinguishing collision-likeevents, i.e. in-time coincidences, from beam induced background, and, if the conditions aremet, is capable of sending a beam abort trigger to the LHC. In addition to its beam abortcapabilities, the BCM has access to information related to the luminosity, as it effectivelymeasures a collision rate. Therefore by adjusting the detector thresholds and calibratingit using similar techniques as developed in the next section, it has been successfully usedas a luminosity monitor during the 2011 data-taking period. The BCM calibration andluminosity algorithms are discussed in Chapter 4.

Figure 1.16: BCM station, with its four modules, mounted inside the inner detector.
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1.3.3 Forward detectors

Three additional detectors cover the forward region of ATLAS. Their location with respectto ATLAS is shown on Figure 1.17. LUCID (LUminosity measurement using CerenkovIntegrating Detector, [31]) is located at ± 17 m of the interaction point (IP) and measuresproton-proton inelastic scattering. It consists of an array of Cerenkov tubes surroundingthe beam pipe and read out by photomultiplier tubes. It is one of the main handleson relative luminosity monitoring. The Zero Degree Calorimeter (ZDC, [32]) is located
± 140 m from the IP, just before the two independent LHC beam pipes merge into asingle one for ATLAS. Its main goal is to detect forward neutrons for heavy-ions centralitymeasurements up to |η| = 8.3. ALFA (Absolute Luminosity For ATLAS, [31]) consists ofscintillating fibre trackers located in eight roman pot stations ± 240 m from the IP. Itspurpose is to provide an absolute luminosity calibration to the other luminosity detectorsduring dedicated data-taking periods with special machine optics.

Figure 1.17: Location of the LUCID, ZDC, and ALFA forward detectors along the beam line on one sideof the ATLAS detector. The same set of detectors are place symmetrically with respect to the interactionpoint.
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1.3.3.1 LUCID

The LUCID [31] detector surrounds the LHC beam pipe on both sides of the ATLAS inter-action point at a distance of 17 m. Its layout and position are illustrated on Figure 1.18.One vessel contains 20 aluminium tubes pointing towards the interaction point approxi-mately 10 cm from the beam axis. Each vessel is filled with C4F10 at 1.3 bar for Cerenkovlight measurement. Sixteen of the 20 tubes are read out through 15 mm photomultipliers(PMT) and 4 tubes have their collected light transmitted through quartz fibers outside ofthe forward shielding to be read out by multi-anode photomultiplier tubes.

Figure 1.18: Computer-generated view of the LUCID Cerenkov tubes and their arrangement around thebeam pipe.

The 16 photomultipliers signals are individually sent to the front-end electronics and,if they pass a predefined threshold, the considered tube is registered to have been hit. Inaddition to providing trigger capabilities, the signals from both sides are sent to LUMATcards programmed with luminosity algorithms and calibration constants, which allowsfor an online luminosity determination for each LHC bunch crossing. The algorithms arepredefined as coincidence (AND), exclusive, and inclusive OR between the two LUCIDdetectors. The calibrations can be derived from Monte Carlo studies [33], van der Meerscans [33, 34], or ultimately using the ALFA detectors.
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1.3.3.2 ZDC

The ZDC [32] is comprised of four modules, one electromagnetic and three hadronic. TheEM module, depicted on Figure 1.19, consists of eleven 10 mm thick tungsten plates,extended by steel plates, traversed by 96 quartz rods forming an 8 × 12 matrix perpen-dicular to the beam axis. On the front face of the module the rods are bent upwardsand read out at the top by multi-anode photomultiplier tubes. Therefore, the Cerenkovlight induced by particle showers traversing the module provides both position (rods hit)and energy (light intensity) measurements. In order to get an improved measurement ofthe incident particle energy over that of the position measuring rods, quartz strips areinstalled between the plates and read out from the top by photomultiplier tubes. Thehadronic module, shown in Figure 1.20, is similar to the electromagnetic module exceptthat four rods (instead of one) are mapped to one pixel of the multi-anode photomultipliertube and not that all hadronic modules have position sensing rods.

Figure 1.19: ZDC electromagnetic module. Figure 1.20: ZDC hadronic module.
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For p-p collisions, the ZDC single-side signals and coincidence rates provides triggercapabilities as well as, similarly to LUCID, the possibility to monitor relative luminosity.Since 2011, LUMAT cards have been installed on the ZDC readout chain in order toprovide an online, bunch-by-bunch luminosity measurement. The calibration is performedthe same way, using van der Meer scans.
1.3.3.3 ALFA

The ALFA [31] detector is designed to measure elastic scattering at small angles - andthe total elastic p-p cross-section - in order to obtain an absolute luminosity calibrationindependent from the LHC machine parameters. The goal is to achieve an uncertaintyof 1% on the absolute calibration of the luminosity. The detector consists of four romanpot stations (Figure 1.21-a) placed at 240 m on each side of the ATLAS interaction point.The very small scattering angle (∼ 3.5 µrad) requires the active detector parts to be veryclose (<2 mm) to the proton beams. Therefore, set of scintillating fibres (Figure 1.21-b)are mounted on the top a bottom half-pots and are allowed to move very close to thebeams through bellows with direct access to the beam pipe vacuum. One module consistsof ten layers of 64 scintillating fibres, alternating with a 90◦ angle. The light from eachlayer is collected and routed to a dedicated 64-channel multi-anode photomultiplier tubeon the base of the roman pot, before being sent to the readout electronics (Figure 1.21-c).Additionally, for triggering, each module is equipped with two dedicated scintillating tilesread out by photomultiplier tubes.
As mentioned previously, the ALFA detectors aim at measuring p-p elastic scatteringat very small angles. In order to achieve this, it uses parallel-to-point focusing optics:the protons scattered at the same angle at the ATLAS interaction point will end up atthe same y-position of the ALFA tracker, regardless of their collision vertex position. Forscattering angles as small as 3.5 µrad, a machine requirement is that the beam angulardivergence must be smaller than the angle to be measured. This leads to a set of machineparameters very different from those of nominal p-p collisions. Therefore, ALFA will have
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Figure 1.21: (a) Schematic view of an ALFA roman pot - (b) ALFA scintillating fibres - (c) ALFA readoutelectronics.

dedicated runs in the LHC machine schedule in order to perform its measurements, thefirst of which, somewhat intermediary, being in the fall 2011 [35].
As of the 2010 winter shutdown, the complete ALFA detectors are installed in theLHC tunnel. Their Detector Control System infrastructure is in place, as well as theirintegration in the ATLAS Trigger and Data Acquisition chain. Commissioning is continuing,pending interesting results from their special run in the fall 2011.

1.3.4 Calorimeters

The ATLAS calorimeters (see Figure 1.22) cover the large pseudo-rapidity range |η| < 4.9and will be described in detail in Chapter 2. Their design is dictated by physics searchessuch as H → γγ or Z’ and W’ bosons, which involve electrons, photons and constraint theirperformance requirements as shown in Table 1.4. With those requirements in mind, thecalorimeters role is therefore to provide trigger capabilities, electron/photon/jet identifica-tion, as well as energy measurements for electrons, photons, jets, and missing transverseenergy (EmissT ). The electromagnetic and end-cap hadronic calorimeters are samplingcalorimeters [36] with liquid argon (LAr) as an active medium, and will be detailed in



26 The ATLAS experiment at the Large Hadron Collider

chapter 2. The barrel and extended barrels of the hadronic are also sampling calorime-ters, made of scintillating plastic tiles.

Figure 1.22: The ATLAS calorimeters.

1.3.4.1 Electromagnetic calorimeters

The electromagnetic (EM) calorimeter is divided into a central barrel (|η| < 1.475) andtwo end-caps (1.375 < |η| < 3.2). In the forward region (3.15 < |η| < 4.30), the firstmodule of the forward calorimeter (FCal) is part of the EM calorimeter. The EM barreland end-caps are made of a succession of lead absorbers and copper electrodes, withgaps of liquid argon in between. Each gap harbours an electric field provided by adedicated high-voltage system, which will be described in detail in chapter 3. The FCallayout consists of electrode tubes in a copper-tungsten matrix (absorber) arranged alongthe beam axis.
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Barrel The accordion geometry of the electrodes allows fast signal extraction and full
φ-coverage with no gap. The barrel is segmented in three compartments in depth (layers1,2, and 3) with different cell sizes. The first layer (as seen from the interaction point) isvery finely segmented in η (0.0031), which is crucial for discriminating photons comingfrom a π0 meson decay and so-called prompt photons (i.e. coming from a p-p collisionproduct). This is particularly useful for physics searches such as H → γγ , where thephoton background is extremely large. An additional detector layer is installed in front ofthe EM barrel: the Pre-Sampler (PS). Its purpose is to allow for an estimate of the energylost by the charged particles before entering the calorimeter, mainly in the solenoidmagnet and cryostat vessel.

End-cap The electromagnetic end-caps (EMEC) extends the EM calorimetry further inpseudo-rapidity. The EMEC is divided in two coaxial wheels: the outer wheel (OW)covers 1.375 < |η| < 2.5 and the inner wheel (IW) covers 2.5 < |η| < 3.2. The OWis segmented into three layers in depth whereas the IW is two-layers deep. The mainfeature of the EMEC is its variable gap size: the LAr gap varies with the radius and,in order to obtain a uniform response across the EMEC, the high-voltage applied to thedifferent η-sectors varies accordingly.

Forward The Forward Calorimeter (FCal) is the innermost calorimeter in the end-capcryostats and is made of three modules. They share the same design: an absorber matrixfilled with electrode tubes arranged along the beam axis. For the first module (FCal-1),aimed at forward electrons and photons energy measurements, the absorber is copper;the two other modules, optimized for hadronic energy measurments (FCal-2 and 3) aremade of tungsten. Inside each tube is a rod, where the high-voltage is applied; the gapbetween the rod and its tube is filled with liquid argon.
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1.3.4.2 Hadronic calorimeters

Tile calorimeter The Tile calorimeters (TileCal, [37]) surround the barrel and end-capcryostats and are aimed at measuring jet and hadron energies. The TileCal is divided intothree parts: a barrel (|η| < 1) and two extended barrels on each side (0.8 < |η| < 1.7). Itis a sampling calorimeter with steel absorbers and scintillating plastic tiles as an activematerial. Each tile as read by a pair of wavelength shifting optical fibres connected tophotomultiplier tubes. One of the modules (or φ-wedge) is represented on Figure 1.23.
The calibration of the readout electronics, photomultiplier tubes, and scintillating tilesare performed with three dedicated systems. The first is calibrated by injecting a knowncharge in the front-end electronics and measure the response, the photomultiplier tubesare calibrated by a laser system, and the tiles are calibrated by scanning the moduleswith a 137Cs source through small tubes in the modules arranged along the beam axis.
In radius, the tile calorimeter ranges from 2.28 m to 4.25 m. The pseudo-projectivesegmentation (longitudinally and in depth) lead to cell sizes of ∆η×∆Φ = 0.1×0.1 in thefirst two compartments and ∆η×∆Φ = 0.1×0.2 in the last; the TileCal has approximately9600 read-out channels. The energy resolution, determined during test beam studies, canbe written as follows: ∆E

E = 53%√
E
⊕ 5.7%

Hadronic End-cap The Hadronic End-Cap (HEC) calorimeter shares the end-cap cryostatsalong with the EMEC and FCal and cover the pseudo-rapidity range 1.5 < |η| < 3.2. Itis a sampling calorimeter with copper absorbers and liquid argon as an active medium.The electrode planes are flat and arranged orthogonally with respect to the beam axis.The HEC is divided in two wheels, each segmented in two layers in depth.
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Figure 1.23: Schematic of a Tile calorimeter module.

1.3.5 Muon spectrometer

The outermost layers of the ATLAS detector consist of a scattering of different types ofdetectors forming the muon spectrometer [38] as shown on Figure 1.24. Its purpose isto perform trigger and precision tracking of muons, as well as measure their momentumwith an aim of σpT /pT = 10% for pT = 1 TeV . The muon tracking can be extended bycombining tracks from both the inner detector and the muon spectrometer. The momentummeasurement is made possible by the bending power of the three toroidal fields, whosegeometry has been chosen so that the fields are almost always perpendicular the muontrajectory, hence improving the momentum resolution of the spectrometer. The relationbetween a charged particle’s momentum p, the intensity of the magnetic field B, and theradius of curvature of its track r can be written as follows:
p [GeV ] = 0.3× B [T ]× r [m]

Two types of chambers are used for measurements, and two other for trigger. All thechambers are aligned with respect to each other using a grid of 5800 triplets of infrared
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Figure 1.24: Rendered 3D view of the ATLAS muon spectrometer.
optical sensors, allowing a constant monitoring of the detectors’ position in the cavernand achieving a 30 µm precision on the relative position of the chambers.
1.3.5.1 Resistive Plate Chambers and Thin Gap Chambers

The Muon Spectrometer uses two types of chambers for trigger purposes. The require-ments for such a setup include:
• discrimination of transverse momentum
• bunch-crossing identification
• fast tracking information to be used by high-level trigger

Two different technologies have been chosen: Resistive Plate Chambers (RPC) and ThinGap Chambers (TGC).
The RPC, which covers the pseudo-rapidity range |η| < 1.05, consists of three concen-tric cylindrical layers in the barrel region. The layer spacing allows for high-transverse
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momentum (pT ) and low-pT trigger capabilities. The RPC is a gaseous parallel electrode-plate detector. Two plastic resistive plates are separated by a 2 mm gas mixture (C2H2F4/Iso−
C4H10/SF6) where lies an electric field of 4.9 kV/mm. The signal is read out by capacitivecoupling to metallic strips placed on the outer faces of the resistive plates.

The TGC provides the measurement of the second coordinate in the range 1.05 <
|η| < 2.7 as well as muon trigger capabilities in the range 1.05 < |η| < 2.4. Seven layerscomplement the MDT in the middle end-cap wheel, and two in the innermost η region.The TGC’s requirements include good timing resolution for bunch-crossing identificationand good granularity for a trigger dependent on momentum resolution. The TGC aremultiwire proportional chambers operated in quasi-saturated mode: the wires, 1.4 mmaway from the graphite cathodes, are put at a potential of 2.9 kV and are surrounded bya highly quenching gas mixture of CO2 / n− C5H12, resulting in an amplification gain of
∼ 3 × 105. This leads to an overall very good timing resolution.
1.3.5.2 Monitored Drift Tubes and Cathode Strip Chambers

The Monitored Drift Tubes (MDT) are chambers comprised of aluminium tubes of 30 mmin diameter filled with an Ar/CO2 gas mixture and a tungsten anode. The tubes areoperated at a pressure of 3 bar and a voltage of 3080 V, resulting in an amplificationgain of 2 × 104. The average spatial resolution of one of the 350000 tubes of the MDTis approximately 80 µm. The chambers are placed in three cylindrical layers in thebarrel and three axial disks around the end-caps. The MDT covers the pseudo-rapidityrange |η| < 2.7, except for the innermost layer of the end-cap (2.0 < |η| < 2.7), whereCathode Strip Chambers (CSC) are installed. At |η| > 2, the particle rate exceeds theMDT maximum allowed counting rate of 100 Hz/cm2, whereas the CSC can safely operateat rates approaching 1 kHz/cm2. The CSC are multiwire proportional chambers withcathodes segmented into strips; wires perpendicular to the strips provide the precisioncoordinate and wires parallel to the strips provide the transverse coordinate. The designresolution of one CSC plane is 60 µm.
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1.3.6 Trigger and Data acquisition

The ATLAS trigger system is divided into three stages: L1, L2, and Event Filter. Thetwo latter form the High Level Trigger (HLT). The calorimetry and muons systems front-end electronics acquire the lowest level of signals, gathers them, and sends them to theL1 trigger. The L1 then looks for basic patterns that could identify muons, electrons,photons, jets, or missing transverse energy and makes a decision: the L1 Accept (L1A).The time needed by the L1 to provide the L1A (2.5 µs) is limited by the overall L1 ouputrate of ∼75 kHz, by design. Once the L1A has been issued, the buffered data is sentto the L2 along with regions of interest (RoI), which are η − φ regions of the detectorwhere information has been deemed interesting, to be processed further by applying morerefined algorithms. This process takes ∼40 ms and the L2 maximum rate is limited to
∼3.5 kHz. If an event passes the L2 stage, it is sent to the Event Filter to be permanentlystored as raw data, at a maximum rate of 300 Hz. The raw data is then available offlineto be fully reconstructed by dedicated algorithms and made available to the users foranalysis.

Since 2010, a 36 h calibration loop has been implemented between the recordingof the raw data and their reconstruction, in order to allow for data quality assessmentand appropriate actions if necessary (e.g. masking of noisy readout channels, adjustingalignment). Immediately after data-taking, a data stream (Express Stream) containing10% of the total amount is reconstructed and used to identify and define action items.After 36 hours, the reconstruction is performed on the entire dataset (Bulk) taking intoaccount all these corrections.
Infrastructure-wise, the different elements of the chain just described are as follows:the L1 is a purely hardware trigger (necessary for speed) located in the ATLAS technicalcavern; the L2 and Event Filter are handled by a computer farm located at the surfaceabove the ATLAS cavern; the data are stored in the CERN Computer Centre and recon-structed there. The latter stage, also known as Tier-0 (first stage of the LHC Computing
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Grid), is where all the data are made available to eleven Tier-1 sites in the world, whichin turn make the data available to all the Tier-2 sites and so on. This allows optimalavailability of data and best usage of the computing resources of all the ATLAS institutesaround the world.
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Chapter 2

The ATLAS liquid argon calorimeters

2.1 Introduction

As mentioned in the previous chapter the ATLAS liquid argon (LAr) calorimeters are a setof sampling calorimeters installed in three cryostats in between the trackers and the toroidmagnets. Their goal is to provide Level-1 trigger capabilities along with Tile calorimeter,as well as electron/photon identification with very good γ / π0 → γγ separation, crucial forthe H → γγ analyses, and EM energy measurements with a good linearity up to 1.5 TeV(Z’ and W’ searches).. Reconstruction of jets and measurements of missing transverseenergy and total transverse energy are also part of the calorimeters’ tasks.
When a particle such as an electron or a photon traverses matter, it interacts andloses part of its energy though different processes. At high energies, two processesgovern these energy losses: a charged particle will lose energy by emitting radiation(Bremsstrahlung) as it crosses material, and photon will produce electron-positron pairsby interacting with the high-Z absorber material. The combination of these two processesgive birth to an electromagnetic shower, with a cascade of Bremsstrahlung radiation andpair production until the products reach very low energies and are absorbed.
Liquid argon has been chosen as an active medium because of the linearity of its



36 The ATLAS liquid argon calorimeters

response, its stability, and its radiation hardness. A liquid argon gap functions as anionisation chamber: when a charged particle traverses the gap it ionises the liquid argonand the presence of an electric field allows for the drift of the electron-ion pairs produced.The electron drift induces a current proportional the energy lost in the gap. The signalgeneration will be detailed in Section 2.5.
The LAr calorimeters are housed in three cryostats, one barrel and two endcaps.The electromagnetic barrel calorimeter (EMB) lies in the barrel cryostat and one endcapcryostat contains the electromagnetic endcap calorimeter (EMEC), the hadronic endcapcalorimeter (HEC), and the forward calorimeter (FCal).
After a description of the main characteristics of the liquid argon calorimeters inSections 2.2, 2.3, and 2.4, Section 2.5 summarises how an energy measurement is extractedfrom the detector. Finally, Section 2.6 describes their performance and status as of 2011.

2.2 Electromagnetic calorimeters

2.2.1 Geometry and granularity

In order to provide full φ-coverage without crack and fast extraction of the signal, an accor-dion geometry has been chosen for the electrodes and absorbers for the electromagneticbarrel (EMB) and endcap (EMEC) calorimeters, as shown on Figure 2.1. This geometryalso ensures that a particle will cross multiple gaps/absorbers on its path allowing thedevelopment of an electromagnetic shower.
In the barrel the accordion waves are parallel to the beam axis and their folding anglevaries along the radius in order to keep the liquid argon gap as constant as possible.In the electromagnetic endcaps, the accordion waves run axially and the folding anglevaries with radius. As it will be discussed in Chapter 3, the constant liquid argon gap inthe barrel leads to a uniform setting of the high-voltage applied, whereas in the endcaps,as the gap varies with radius, a segmentation into high-voltage sectors with different
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Figure 2.1: The fours types of electrodes of the electromagnetic calorimeter. The two top ones correspond tobarrel electrodes: |η| < 0.8 (left) and |η| > 0.8 (right). The bottom left is an endcap inner wheel electrodeand the bottom right is the outer wheel. Dimensions are in mm.
settings was chosen in order to obtain a uniform response.

The barrel calorimeter [39] is divided into two half-barrels, each consisting of 16modules in φ build for practical assembly reasons. It is 6.4 m in length, 4 m in diameterand covers the pseudo-rapidity range 0 < |η| < 1.475. One half-barrel module contains 64absorber planes interleaved with readout electrodes. Each lead/stainless steel absorberis fixated on a glass-fibre composite bars at its extremities, which allows for the accuratepositioning and protection of the connectors, and maintains the liquid argon gap sizeof 2.1 mm. In addition, honeycomb spacers have been installed between the absorberand electrode planes to help maintain the gap and limit sagging effects due to materialweight. Additionally, the barrel is equipped with a presampler [40] module which roleis to measure the energy lost in front of the calorimeter, which consists mainly of thesolenoid and the cryostat wall. It shares the same cryostat and is placed front of thebarrel as seen from the interaction point. The presampler is made of 32 azimuthal sectors,11 mm deep, each divided into eight modules in pseudo-rapidity, providing a coverage of∆η × ∆φ = 1.52× 0.2.
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The endcap calorimeter [41] covers the pseudo-rapidity range 1.375 < |η| < 3.2 and ismade of two coaxial wheels, each wheel itself divided into eight φ-wedges. Each endcapcontains 768 absorber-electrode planes in the outer wheel and 256 in the inner wheel.In the region 1.5 < |η| < 1.8, a presampler layer in installed against the cryostat wall,and is made of 32 azimuthal sectors made of 2 mm thick liquid argon active layers.
As seen from the interaction point, the electromagnetic calorimeters are segmentedinto depth layers (Figure 2.2): in the precision region (|η| < 2.4, the front layer is finelysegmented in η primarily to allow for the distinction between prompt photons (i.e. comingfrom a pp collision) and photons due to the decay of π0 mesons; the middle layer, whichis the largest, collects most of the energy deposited by the shower; the back layer (up to

|η| = 2.5), sees the tail of the electromagnetic shower and contributes to the separationof electromagnetic and hadronic showers.
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Figure 2.2: Sketch of the granularity and segmentation of electromagnetic calorimeter cells.

The granularity and pseudo-rapidity coverage of the electromagnetic calorimeters arelisted in Table 2.1.
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Barrel EndcapPresampler 0.025× 0.1 |η| < 1.52 0.025× 0.1 1.5 < |η| < 1.8Layer 1 (front) 0.025/8× 0.1 |η| < 1.40 0.050× 0.1 1.375 < |η| < 1.4250.025× 0.025 1.40 < |η| < 1.475 0.025× 0.1 1.425 < |η| < 1.50.025/8× 0.1 1.5 < |η| < 1.80.025/6× 0.1 1.8 < |η| < 2.00.025/4× 0.1 2.0 < |η| < 2.40.025× 0.1 2.4 < |η| < 2.50.1× 0.1 2.5 < |η| < 3.2Layer 2 (middle) 0.025× 0.025 |η| < 1.40 0.050× 0.025 1.375 < |η| < 1.4250.075× 0.025 1.40 < |η| < 1.475 0.025× 0.025 1.425 < |η| < 2.50.1× 0.1 2.5 < |η| < 3.2Layer 3 (back) 0.050× 0.025 |η| < 1.35 0.050× 0.025 1.5 < |η| < 2.5Total numberof readout channels 109568 63744 (both sides)
Table 2.1: Granularity and coverage of the electromagnetic calorimeters.

2.2.2 Liquid argon gap

Figure 2.3 illustrates the layout of an electromagnetic calorimeter readout cell. One leadabsorber is surrounded by two steel plates glued on each side to provide mechanicalstrength. The absorbers are connected to the common cryostat ground at the calorimeterinner and outer edges. The copper readout electrode is surrounded by two copper high-voltage electrodes using layers of insulating kapton. One of the key features of thiscalorimeter is highlighted by this layout, indeed one readout electrode effectively seestwo liquid argon half-gaps, with their independently fed electric fields. This ensureredundancy in the occurrence of the loss of one of the two high-voltage sources. TheEMB electrodes are uniformly set to a of 2000 V potential, and the EMEC electrodes,because of the varying gaps, are set to voltages ranging from 1000 V to 2500 V and- 2000 V in the EMEC presampler. The high-voltage system and its distribution insidethe calorimeter will be described in Chapter 3. The signal induced by the ionisationelectron drift in the liquid argon gap is collected by capacitive coupling in the readoutelectrode and transmitted to the electronic readout chain for amplification and processing,as discussed in Section 2.5.
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Figure 2.3: Sketch of an electromagnetic calorimeter liquid argon gap.
Hadronic endcap∆η × ∆φ 0.1× 0.1 1.5 < |η| < 2.50.2× 0.2 2.5 < |η| < 3.2# of readout channels 5632 (both sides)

Table 2.2: Granularity and coverage of the hadronic endcap calorimeter.
2.3 Hadronic calorimeters

The hadronic endcap calorimeter (HEC) [42] shares the endcap cryostat along with theEMEC and forward calorimeter. As illustrated on Figure 2.4, it is made of two modules,each divided into two longitudinal wheels. Each wheel consists of 32 φ-wedges. Thereis a total of 26 flat absorber copper plates in the two front wheels and 16 in the tworear wheels. A distance of 8.5 mm is maintained between the plates where lies fourdistinct 1.8 mm liquid argon gaps. The HEC granularity, coverage, and number of readoutchannels is detailed in Table 2.2.
As shown on Figure 2.5, four electrodes divide the gap between two copper plates intofour liquid argon gaps. The two central electrodes are back to back and separated fromthe central copper readout electrode by insulating kapton. These PAD layers define the
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Figure 2.4: Schematic transverse (left) and lateral (right) views of the hadronic endcap calorimeter.

lateral segmentation of the HEC by a high-resistivity padding and are independently fedhigh-voltage. The outermost electrodes, or EST for electrostatic transformers, have theirhigh-resistivity side facing the PAD with a high-voltage applied to the other side. Thislayout effectively creates four distinct drift gaps, each independently fed by a differenthigh-voltage line. The nominal voltage applied to the HEC electrodes is 1800 V, whichcorresponds to a 1 kV/mm electric field and an average electron drift time of 430 ns.

2.4 Forward calorimeters

The forward calorimeter (FCal) [43] is a sampling calorimeter that covers the pseudo-rapidity range 3.2 < |η| < 4.9 and is housed in the two end-cap cryostats along withthe electromagnetic end-cap (EMEC) and the hadronic end-cap (HEC) calorimeters, asillustrated on Figure 2.6. Each of the two FCal modules (FCal A and FCal C) is dividedinto three longitudinal absorber matrices, one made of copper (FCal-1) and the othertwo of tungsten (FCal-2/3). Each matrix, contains tubes arranged along the beam axis
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Figure 2.5: Schematic view of a hadronic endcap liquid argon gap.
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Forward calorimeterFCal-1 (EM) 3.0× 2.6 3.15 < |η| < 4.30(3.0× 2.6)/4 3.10 < |η| < 3.15(3.0× 2.6)/4 4.30 < |η| < 4.83FCal-2 (Had) 3.3× 4.2 3.24 < |η| < 4.50(3.3× 4.2)/4 3.20 < |η| < 3.24(3.3× 4.2)/4 4.50 < |η| < 4.81FCal-3 (Had) 5.4× 4.7 3.32 < |η| < 4.60(5.4× 4.7)/4 3.29 < |η| < 3.32(5.4× 4.7)/4 4.60 < |η| < 4.75# of readout channels 3524 (both sides)
Table 2.3: Granularity and coverage of the forward calorimeter. Cell sizes are expressed in cm in thetransverse plane ∆x × ∆y.
which are filled with liquid argon, the active medium. Figure 2.7 shows the section ofan FCal matrix and its tube arrangement. An FCal tube houses a central rod on whicha high-voltage (HV) is applied to drift ionisation electrons by the effective electric fieldof approximately 1 kV/mm. As per its design, the FCal granularity is better expressed inthe x-y plane: the readout cell segmentation is detailed in Table 2.3.
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Figure 2.6: Lateral view of the positioning of the forward calorimeters inside the endcap cryostats.

Each FCal-1 matrix is divided into 16 φ-sectors, each of them fed by four independenthigh-voltage lines. There are two types of readout channels: summed channels are madeof 4 groups of 4 tubes and unsummed channels which consist of a single 4-tube group.The latter type only covers the inner and outer edges of the FCal modules. In the case
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of summed channels (see Figure 2.8, each of the 4 tube groups is fed by one of the fourHV lines in this sector. This ensures redundancy in the event of HV-related issues, andallows for an offline correction of the cell energy in case of a failure of one of the HVlines. The two hadronic matrices, FCal-2 and FCal-3, follow a similar layout. The threeFCal-A matrices are illustrated in Figure 2.9.

R

LAr gap

Beam-
pipe
Warm
wall

Super-
insulation
Cold
wallFigure 2.7: Transverse view the forward calorimetertube matrix.

Tube
electrode Summing board unit cell 

HV

Pig-tail

Feed-through

Transmission
line

transformer

Interconnect
board

Figure 2.8: Cold cabling of four forward calorime-ter tube groups. The high-voltage feed, analoguesumming, and feedthrough connection are also rep-resented.

2.5 From the ionization signal to the digitized samples

The ultimate goal of the calorimeter is to provide energy measurement from the ionisationsignals produces in the different liquid argon gaps previously described, the followingsection details the signal extraction and processing by the electronics chain, as well asthe calibration of the calorimeters readout electronics.
As mentioned previously, when a charged particle traverses a gap, it ionises the liquidargon, producing electron-ion pairs which drift in the electric field provided by the high-voltage system. The ions drift speed being negligible compared to that of electrons, theircontribution can be ignored. If we consider a single charge q drifting in a liquid argongap harbouring a electric field ~E provided by a constant potential U0, the power it is
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Figure 2.9: Transverse view of the three FCal-A modules. The tiles, consisting of tube groups, representreadout channels.
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supplied can be expressed as follows:
P = q ~E · ~vd

where ~vd is the charge drift velocity. With g denoting the liquid argon gap width, thecurrent induced by the drifting charge can be written:
i(t) = P

U0 = |q| · E · vdU0 = |q| · vdg

Back to the case when a charge particle instantly and uniformly ionises a liquid argon gap.Creating N electron-ion pairs and considering that the maximum total current induced at
t = 0 is I0 and is null when all the electrons are collected after τd = vd/g (drift time):

I(t) = N e
(1− t

τd

) = I0
(1− t

τd

)
An electron drift velocity in the liquid argon of approximately 4.5 mm/µs, an electric fieldof 1 kV/mm and a drift gap g ∼ 2.1 mm, the drift time is ∼ 450 ns. This duration is longcompared to the LHC design bunch crossing frequency: 1/25 ns. Therefore this signalhas to be processed properly in the electronic readout chain [44].

The signal is then extracted to the front-end electronic boards [45] located outside thecryostats, as shown of Figure 2.10.
Here it first meets the pre-amplifiers where it is amplified away from the electronicnoise. The signal is then shaped through a bipolar CR−(RC )2 filter which outputs a pulsewith an early narrow peak, reflecting the I0 current, and a longer, negative, undershoot.The goal of the shaping is to minimise the out-of-time pile-up, and the bipolarity ensurethat the pulses average to zero. Both triangular and shaped signal are illustrated infigure 2.11. Each of the three outputs - for the three gains - of the shaper is analogicallysampled at 40 MHz and sent to be temporarily buffered in the Switch Capacitor Arrays(SCA). The SCA allows for the storage of 144 pulses, corresponding to a duration of
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approximately 3.6 µs, awaiting a signal from the Level-1 trigger to send the selectedpulses further down the chain, which shouldn’t take more than 2.5 µs.
In parallel, the shaper outputs are analogically summed and sent to the Level-1 triggerfor decision. If an event is selected, five samples are digitised around the Level-1 Accepttime at 40 MHz by the 12 bits ADC and sent via optical fibres to the back-end electronics[46] located in the ATLAS technical cavern, USA15.
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Figure 2.10: Front-End Board schematic

Figure 2.11: LAr signal before and after shaping. The black markers represent the 40 MHz sampling of thepulse.

The back-end electronics process the signals sent from the front-end and provide theATLAS data acquisition (DAQ) system energy and time measurements for each of thecalorimeter readout channels. The Read-Out Drivers (ROD) [47] receive the digitised
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samples and Digital Processor Units (DSP) compute the energy and time as follows:
E = Nsamples∑

i=0 ai (si − p) τ = 1
E

Nsamples∑
i=0 bi (si − p)

where Nsamples is the number of digitised samples, si the number of ADC counts of sample
i, p the pedestal - i.e. the number of ADC counts in the absence of signal, and ai and bia set of coefficients extracted from the calibration of the calorimeter.

Going back to the ionisation current induced in the liquid argon gap. Every time acharge particle traverses a gap, charges are lost, inducing a voltage drop. To compensatefor the voltage drop, the high-voltage system has to inject a number of charges equivalentto the amount lost due to ionisation. A schematic view of the process is illustrated inFigure 2.12.

Figure 2.12: Schematic view of a calorimeter cell (equivalent to a capacitor) being traversed by a chargedparticle. As the ionisation current iS flows out to the readout chain (right) for the energy depositionmeasurement. The high-voltage power supply (left) injects the current iHV to maintain the potential Uconstant across the liquid argon gap.

2.6 Performance

The expected performance of the liquid argon calorimeters [48] is mostly governed byphysics searches involving the Higgs boson, such as the H → γγ and H → 4e decayschannels, as well as searches for the Z’ and W’ which produce very high energy electrons.The performance requirements involve a good energy resolution as well as a good angular
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resolution between the two photons in case of the di-photon decay channel of the Higgs.Test beam results have led to the following expression of the energy resolution:
∆E
E = a√

E
⊕ b
E ⊕ c

The first term corresponds to the sampling term, related to the shower across the calorime-ter gaps. The value of a is approximately 10% in the electromagnetic calorimeters, 50% inthe hadronic calorimeters, and 100% in the forward calorimeters. The second term corre-sponds to the noise contribution, dominated by the noise of the electronic readout. Thenoise term grows with the pile-up noise due to the increase of the luminosity. The lastterm reflects the effects of the non-uniformity of the calorimeter response as well as qual-ity of the detector calibration. It must be maintained below 0.7% as per the calorimeterdesign requirements. The angular resolution is provided by the fine segmentation of theelectromagnetic calorimeters first layer is found to be approximately 50µrad/√E [GeV ]overall. Finally, for searches such as long-lived ionising particles, a good timing resolu-tion is required, with an achieved resolution of 100 to 170 ps across the calorimeters, asshown on Figures 2.13 and 2.14.
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Figure 2.13: Average time per Front-End Board in the electromagnetic barrel and endcap calorimetersextracted from 7 TeV collision data in 2011
Table 2.4 illustrates the status of the LAr calorimeter readout as of July 2011. Overall,99.79% of the readout channels are usable for data-taking. The faulty channels are
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Figure 2.14: Average time per Front-End Board in the hadronic endcap and forward calorimeters extractedfrom 7 TeV collision data in 2011
Detector # readout channels Percentage of faulty channelsEM 173312 0.29%HEC 5632 0.37%FCal 3524 0.23%Overall LAr 182468 0.21%

Table 2.4: LAr calorimeter faulty channels as of July 2011. The percentages are dominated by dead channelsand extremely noisy channels that need to be masked out of the readout chain.
mostly due to dead or disconnected channels, either at the time of assembly or duringcommissioning, and very noisy channels that need to be masked out of the readout.

Overall, the LAr calorimeter performance is under control and well within its designparameters.

2.7 Conclusion

The ATLAS liquid argon calorimeters, their main characteristics and performance havebeen described in this chapter. As discussed, the high-voltage system feeding the liquidargon gaps is a crucial part of the calorimeter. The high-voltage system and its operationwill therefore be described in Chapter 3 and a relative luminosity measurement, usingthe currents injected by the HV system due to ionisations losses, will be discussed in
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Chapter 4.
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Chapter 3

The LAr high-voltage system

3.1 Introduction

As mentioned in Chapter 2, the LAr high-voltage system is designed to feed the calorimeterliquid argon gaps with electric fields allowing for the drift of ionisation electrons inducedby charged particles passing through. Without the drift field, the electron-ion pairsproduced would recombine, thus preventing the creation of the drift current and anyenergy measurement.
The installation of the LAr HV system in the ATLAS technical cavern was performedbetween 2004 and 2007 following a series of studies with prototypes at the CERN NorthArea test beam lines. At my arrival in the group in 2007, approximately half of the systemwas installed and cabled. I consequently contributed to the finalisation of the powersupplies installation and cabling, and actively helped in the development of the controlsystem framework. I then continued my work as high-voltage expert during which time Iassisted in the daily maintenance of the system, as well as continuing developments.
The choice of the operational regime of the HV system is motivated by two reasons:the drift time of the ionisation electrons and the breakdown voltage of the liquid argon.As the drift velocity of the electrons in the liquid argon gap is found to be approximately
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proportional to E 13 , a too low electric field will increase the drift time of the electrons andchallenge the electronic readout through pile-up effect of the shaped signals. Furthermore,if the electric field is too intense, the risk of causing sparks in the gaps rises, hencedisturbing the operation of the calorimeter and compromising the gap integrity. Theseconsiderations have led to the setting of an operational field of approximately 1 kV/mmacross all the calorimeters, with various operating voltages depending on the liquid argongap sizes.
Additionally, the requirements of the high-voltage system include constraints on fea-tures such as the grounding scheme and safety systems to protect the detector as wellas the HV system.

3.2 High-voltage distribution

Table 3.1 lists the granularity, gap size, and nominal high-voltage settings of the liquidargon calorimeters.
In the barrel, each high-voltage line supplies one side of all the electrodes in a HVsector of ∆η × ∆φ = 0.2 × 0.2, corresponding to 32 electrodes in φ. As the gap size isconstant, the applied voltage is the same across the entire barrel, +2000 V.
In the electromagnetic endcap calorimeter, each HV line feeds one side of all theelectrodes in a sector of ∆φ = 0.2 and ∆η varying from 0.1 to 0.4. Because of the gapsize variation, the high-voltage settings have to be adapted in order to keep a uniformresponse of the EMEC. If a continuous variation of the high-voltage settings would havebeen ideal, for practical reasons a variation by steps was chosen. A total of seven HVsectors in the outer wheel and two in the inner wheel have different nominal high-voltagesettings. These variations are illustrated on Figure 3.1.
In the hadronic endcap calorimeters, the high-voltage is fed to the PAD and ESTboards through HV patch panels mounted on the HEC modules inside the cryostats [49].
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Detector
|η|Gap [mm]Voltage [V]EMB Presampler0− 1.521.9 - 2.0+2000EMB0− 1.4752.1+2000EMEC Presampler1.5− 1.82.0-2000EMEC outer wheel1.375− 1.5 1.5− 1.6 1.6− 1.8 1.8− 2.0 2.0− 2.1 2.1− 2.3 2.3− 2.52.7 2.5 2.2 1.9 1.6 1.4 1.2+2500 +2300 +2100 +1700 +1400 +1250 +1000EMEC inner wheel2.5− 2.8 2.8− 3.22.5 2.0+2300 +1800HEC1.5− 3.28.5+1800FCAL3.1− 4.90.25 - 0.375 - 0.5+250 / +375 / +500

Table 3.1: Coverage, gap size, and operative voltage of the liquid argon calorimeters.
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Figure 3.1: High-voltage distribution as a function of |η| for the EMEC. A uniform calorimeter responserequires a high-voltage which varies continuously as a function of |η| (open circles), which has beenapproximated by a set of discrete values (full triangles) corresponding the nine high-voltage sectors.

Via strip-line connectors, the HV is distributed on the electrode with highly resistivepolyimide layers, which helps reducing the noise induced by the high-voltage systemand limits the risk of electric discharges.
The forward calorimeter high-voltage distribution is performed via summing boardsmounted on the faces of the absorber matrices. One FCal readout cell is divided into fourtubes groups, each fed by separate HV lines. This ensures that in case of HV failure, afourth of the signal will be lost at most.
The following section describes how the calorimeter cell energy is corrected withrespect to changes in the high-voltage settings.

3.3 High-voltage corrections

From the high-voltage system viewpoint, two reasons can lead to the correction for themeasured energy [50].
The first, as illustrated in the previous section, is inherent to the EMEC, is permanent
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and is by construction due to the fact that the high-voltage varies by steps whereas theEMEC gap sizes varies continuously. Therefore, the cell energy in a specific HV sectorhas to be corrected depending on its η position within that sector. The corrected cellenergy in the HV sector S can be expressed as follows:
Ecorr(η, S) = Emeas ·

βS1 + αS (η − ηScentre)
where ηScentre is the η position at the centre of HV sector S. The parameters αS and βSoriginate from the linear dependence of the energy with η.

The second type of high-voltage correction has to be performed when one or morehigh-voltage lines are Off or at a voltage lower than their nominal value. Test beamresults have shown that the measured energy is proportional to ∼ V 0.38. Therefore, if twosides an electrode group are at a reduced by identical voltage, the corrected energy is:
Ecorr = Emeas ·

(
Vnom
Vop

)0.38

where Vnom is the nominal voltage and Vop the reduced, operative voltage.
Finally, in the more general case where the two HV lines are at two different operativevoltages Vop1 and Vop2, the corrected energy becomes:

Ecorr = 2 · Emeas(
Vop1
Vnom

)0.38 + ( Vop2Vnom

)0.38

As of the 12th of July 2011, 244 out of the 4320 liquid argon high-voltage lines areoperated at a non-nominal voltage. The breakdown by sub-detector is listed in Table 3.2,and the geometrical location of the correction factors in the electromagnetic calorimetersare illustrated on Figure 3.2.
The cause of high-voltage reduction comes mostly from observation of effects on thecalorimeter trigger rates and related noisy readout channels which leads to the manual
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Detector A-side C-sideEMEC 32 29EMEC PS 1 3EMB 24 21EMB PS 24 28HEC 27 54FCAL 1 0
Table 3.2: Number of non-nominal LAr high-voltage lines as of 12/07/2011.

setting of a lower operative value. Noise hunting campaigns were performed where HVand L1Calo trigger experts worked in the ATLAS control room to identify noise induced bythe high-voltage system. By looking at Level-1 trigger rates coming from the calorimeteranalogue sums and changing the high-voltage settings, they were able to identify severalHV lines inducing noise at their nominal voltage. Therefore, these lines are operated ata lower voltage. These campaigns mainly took place in the HEC and EMBPS.

Figure 3.2: Electromagnetic calorimeter high-voltage correction factor in the middle layer versus (η, φ)coordinates of the calorimeter cells. Status at the beginning of October 2009. The current situation doesnot differ significantly.

Another source of non-nominal voltage are HV lines that draw large amounts of cur-rent. This is caused by shorts in the calorimeter, which leads to the power supply injectinga DC current. If the power supply feeding that particular short cannot inject enough cur-
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rent to maintain the nominal voltage, or if the power dissipation exceeds the limit of thefilter box resistor, the operative voltage is decreased accordingly.
The following section describes the layout the high-voltage system hardware, fromthe electrodes to the power supplies.

3.4 Hardware

This section describes the hardware equipment constituting the LAr high-voltage system.The feedthroughs, allowing the passage of the HV lines into the liquid argon cold cryostat,as well as the high-voltage power supplies and their crates are detailed. Finally, thegrounding scheme and return current measurements are described.
3.4.1 Feedthroughs

The high-voltage is carried out of the technical cavern to the experimental cavern, wherelies the ATLAS detector, by ∼ 120 m cables. The 168 cables coming from the powersupply units are connected to the 3 cryostats onto 6 high-voltage feedthroughs (HVFT,[51]), two for the barrel and two for each endcap cryostat, as illustrated on Figure 3.3. Therole of the HVFT is to allow the transfer of the warm HV lines into the the liquid argoncryostats at 88 K. The HVFT is kept at room temperature, and the wires pass through abuffer of gaseous argon before entering the cryostat vessel.
The schematic design of a HVFT is shown on Figure 3.4. The HV wire is first connectedto an RC filter, the purpose of which is to reduce the noise entering the cryostat, it thengoes through the wire feedthrough plane and down into a stainless steel bellow sittingwithin the cryostat wall. The bellow’s role is to accommodate the mechanical strainsbetween the cold and warm cryostat wall, especially during the cryostat cooldown. Atthe bellow level also lies the interface between the gaseous argon buffer and the cryostat’sliquid argon. The HV wires are finally distributed to the calorimeter electrodes through
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Figure 3.3: The six high-voltage feedthroughs sitting on top the calorimeter cryostats.
different patch panels.
3.4.2 Modules

The HV power supply system hardware was manufactured by the Iseg SpezialelektronikGmbH1 company, located in Dresden, Germany. The technical specifications are listed inAppendix A.
A high-voltage power supply unit must comply to comply to a set of requirements,including:
• the unit and connector housings, as well as the cable shield, must be connectedto the HV return to the cryostat ground, whilst being separated from the crateconnection to the safety ground grid, therefore ensuring that the HV supply remainsfloating

1http://www.iseg-hv.com

http://www.iseg-hv.com/start.php/lang.en/
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Figure 3.4: Schematic of a high-voltage feedthrough.
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• each high-voltage line voltage must be individually settable and regulated from 0 Vup to its nominal value
• the voltage setting and regulation must be better than 100 mV
• the maximum current output must comply with the estimations derived from theexpected particle fluxes at the LHC design luminosity, ranging from 75 µA to 6 mAdepending on the subdetector
• each unit must possess an interlock system to allow for the safe discharge of thecalorimeter in case of emergency, such as cooling or power failures
Each HV power supply unit contains two boards of 8 (FCal) or 16 (everything butthe FCal) channels, as shown on Figure 3.5. A unit is insertable on rails into a 19”-6U-Eurocrate chassis and connected via its backplane to the crate communication bus andthe primary 24 V power supply. The front face displays each board’s status on LED, andexhibits the following features:
• two potentiometers that allow for the setting of the hardware voltage and currentlimits over the whole module range, above which the entire unit is automaticallyswitched off
• the safety loop connector, illustrated on Figure 3.6, which is connected to the inter-lock system for safety controls
• a 32 pin connector, illustrated on Figures 3.8 and 3.7, which carries out the high-voltage to the detector, contains the HV return lines, as well as interlock pins that,being different for each module type depending on the subdetector fed, preventsaccidentally connecting detector parts to HV lines with improper characteristics;additionally, the interlock pins act as ground pins
The high-voltage is generated per channel, regulated around the set value via avoltage comparator and current is injected towards the detector whenever a voltage drop
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Figure 3.5: A 32-channel high-voltage power supply unit.

Figure 3.6: Layout of a high-voltage power supply and its connection to the cryostat.
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Figure 3.7: High-voltage cable connectors. Figure 3.8: High-voltage cable connector and itscounterpart on the HV power supply unit.
occurs in any of the liquid argon gaps fed by the HV channel. In order to limit the powerdissipation in the filter resistor of the filter box (3.4), the maximum allowed current canbe set via software. But as a failsafe, a hardware current limit can be adjusted via apotentiometer located on the HVPS unit. The maximum voltage allowed can similarly beadjusted, i.e. if a part of the calorimeter is normally fed 1800 V, one can use standard2500 V power supplies but limit their voltage output to allow safe operation. To ensurethe integrity of the circuit and protect the power supplies, a internal interlock loop ispresent on each unit, which is closed only if an HV cable is plugged in the unit. This wayif a cable is accidentally disconnected from the unit, the power supply will ramp down to0 V. Since different modules feed different parts of the calorimeter with different operativevoltages, it is important to categorise the connectors to avoid plugging the wrong cableto the wrong unit. This is done by an interlock pin configuration on the connector, whichis different for each subdetector, and will not allow the cable connector to enter the unitconnector.

3.4.3 Crates

The LAr HV crates are located in the ATLAS underground technical cavern, USA15, alongwith all the ATLAS backend electronic infrastructure. The crates are describes in length
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in Appendix C. An overview of the USA15 counting room with the LAr racks is shown onFigure 3.9. As illustrated on Figure 3.10, there are a total of 20 crates installed in fiveracks. Each rack contains four crates separated by heat exchangers and fans to controlthe temperature and air flow, additionally to a cooling water circuit. The cooling watercircuit is protected by a redundant tap water circuit in case of a failure of the coolingsystem of technical cavern. The crates are powered individually through the ATLASUninterruptable Power Supply (UPS) system, and each is connected to the safety groundgrid of the ATLAS cavern. The connection to the UPS serves as a protection againstdisturbances of the general power grid. A single crate houses up to eight power supplyunits, and possesses its own crate controller unit. All the crate controllers are linkedtogether in chain via CAN2 lines to a dedicated computer to allow for their control andmonitoring.
3.4.4 Return current measurement

In order to safely operate the detector and minimise electromagnetic interferences tothe readout electronics, the grounding of the entire ATLAS experiment must be donein a well controlled manner. The grounding strategy, described in great detail in [52],follows the CERN safety instructions and electrical code, as well French, Swiss, andEuropean regulations. The grounding guidelines include requirements regarding theelectrical insulation of all the detectors with a single connection to the ATLAS “SafetyNetwork", as well as floating power supply systems. The latter, described previously,includes the liquid argon calorimeter high-voltage power supply system, which thereforewas designed to be floating.
Concerning the liquid argon calorimeters, they have been designed to be entirelyinsulated from the ground of the experimental cavern, as well as other subdetectors. Thesafety grounding of the calorimeter cryostats is performed via dedicated ground cablesleading to the technical cavern USA15, some 100 m away. Two cables (for redundancy)

2http://www.dcd.pl/dcdpdf/can2spec.pdf

http://www.dcd.pl/dcdpdf/can2spec.pdf
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Figure 3.9: Overview of the ATLAS technical cavern, USA15. Shown are the five HV racks (red), the lowvoltage power supplies racks (purple), and the DCS and ROD racks (blue). This dynamic panel reflects thestatus of the racks by monitoring their temperatures, the humidity, and the main power supplies.
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Figure 3.10: High-voltage power supply crates in USA15.
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per cryostat (the barrel and the two endcaps) end up connected to one of the racks inUSA15 (one of the L1 racks as seen on Figure 3.9), which is itself connected to the SafetyGround. In order to detect possible current leaks due accidental contacts between theLAr system and other detectors or services, a DC current monitoring system has been putin place. As illustrated on Figure 3.11, the principle is to inject a reference 500 mA DCcurrent to each cryostat, let it come back through the ground, and measure the difference.This is achieved by using and Integrated Parametric Current Transformer (IPCT), a highprecision contactless DC measurement coil3. The IPCT has a resolution of 12 µA over itsfull dynamic range of ± 10 mA, enough to detect small leakage currents. The IPCT datais readout and can be visualised via a web trending display and included into an alarmsystem.

Figure 3.11: Schematic of the grounding monitoring of the liquid argon calorimeter cryostats

As shown on Figure 3.11, the return current from the high-voltage system also alsogoes through the IPCT monitoring coil. The HV return current reflects the voltage drops in
3http://www.bergoz.com

http://www.bergoz.com
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the calorimeter gaps as charged particles ionise the liquid argon, as illustrated on Figure2.12 of the previous Chapter. Measuring this return current for each HV subsystem couldtherefore give interesting handles on the amount of current induced by collision productsin the calorimeters, as well as performing a more localised monitoring of the HV systemgrounding. For those reasons, a set of six additional IPCT coils were installed on thedifferent return lines of the HV crates. The coil installation, data acquisition setup, andcomplete layout can be seen on Figures 3.12, 3.13 and 3.14. The six coils measure thereturn currents corresponding to the following sub-detectors: EMEC-FCal-A, EMEC-FCal-C, HEC-A, HEC-C, EMB-EMBPS, and finally the total return current of the threecryostats. The IPCT having a resolution of 12 µA, they are not sensitive enough to providea competitive handle on the luminosity at the current state. The IPCT data are read outthrough 12 bit ADCs and sent to one of the high-voltage control machine (Figure 3.15,where they are archived in the DCS Oracle database, as well as displayed on the LArFSM.

Figure 3.12: Return current measurement coils. Figure 3.13: Return current data acquisition setup.
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Figure 3.14: Layout of the return current measurements.

Figure 3.15: Return currents.
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3.5 Slow control

A major requirement of the LAr high-voltage system is the ability to control and monitorall its operational parameters. To achieve this, a software layer has been developedto read out and control the system on top of a proprietary software that communicateswith the hardware. The deployment of the software infrastructure was done according tothe ATLAS central Detector Control System (DCS, [53]) recommendations, which aims atharmonising all the ATLAS DCS systems under a common framework.
3.5.1 Software

The lowest layer is the Object Linking and Embedding for Process Control (OPC) software,which handles the real-time communication with the hardware. An OPC server has beendeveloped by the HV power supply manufacturer, Iseg Spezialelektronik GmbH, and ismaintained by their engineers as per its proprietary status. Its role is to provide directaccess to data items related to the control and monitoring of the HV crates and powersupply units. The OPC server manual is attached in Appendix D.
The next software layers were developed by the ATLAS collaboration using the PVSS4

framework, a distributed software used for real-time control and monitoring of large scalehardware installations. In the PVSS framework, the OPC client’s purpose it to communi-cate with OPC server, linking hardware data items to so-called datapoint elements withinPVSS. These datapoint elements can be grouped by device, and setting or reading themout defines the communication with the HV system. Therefore, items such as moduletemperatures, HV line voltage, current and status can be read-out and items such as theset voltage and the current limits can be controlled, all directly from PVSS in a uniformmanner.
As an example, Figure 3.16 shows the PVSS crate control panel. As mentioned pre-viously, all the crate controllers are linked by a CAN line to a single control computer.

4http://www.etm.at

http://www.etm.at
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On this computer, a PVSS instance is running, and this panel allows for the control andmonitoring of the crate parameters:
• crate general information such as serial number, power supply unit contained,rack/subrack names
• environmental parameters like temperature and humidity
• crate status, including interlock alerts, main power supply status, communicationstatus
• switching each crate On/Off, which consequently switches Off the main powersupply, hence all the modules inside

Figure 3.16: Crate control PVSS panel.

A total of seven computers run the control software of the high-voltage system, eachindependently connected a to a set of crates organised per subdetector. On each computerruns an instance of the PVSS software, with its own OPC server/client, as well as its
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own datapoint element structure. However a generic set of control panels, as shown onFigure 3.17 were designed and run on each machine. These panels allow for the control ofparameters of the OPC server, which in turn sets the parameters in the hardware, such asthe OPC deadband, which filter numerical values like voltages and currents to reduce theCAN traffic and module general parameters like the fine adjustment, a parameter whichimproves the voltage regulation around the set value. Furthermore, control of entirecrates/modules is possible through a panel which allows loading a set of parametersfrom a configuration database. This eases the operation of the HV system when groupcommands are required, for instance when the entire system needs to be switched Off/Onbefore and after a technical stop for maintenance.

Figure 3.17: Main HV control software panels.

Additionally, visualisations of all the power supplies and each of their channels isavailable. This provides the ability to control a single line as illustrated on Figure 3.18,
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with features such as:
• switching On/Off an HV line
• setting the operative voltage and software current limit
• setting the voltage ramp speed
• reading out the module/channel information, e.g. measured voltage, current, status,temperature
• displaying module/channel general information, e.g. serial number, geometrical lo-cation

Figure 3.18: Single HV line control panel.

Some of the data being read out is needed offline for reasons such as calorimeterenergy correction due to voltage variations, luminosity measurement using the HV line
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currents, data quality assessments that requires knowledge of each HV line’s status, togeneral long-term analyses of temperature trends or calibration drifts. The permanentstorage is performed within the PVSS environment to centralised databases common toall the ATLAS detectors. The storage and handling of the HV information is discussed inthe following section.
3.5.2 Archiving and visualization of the high-voltage system data

The high-voltage dataflow is illustrated on Figure 3.19.

Figure 3.19: Dataflow of the high-voltage system. Shown are the path of the data readout and storage(blue) and the commands (red).

The PVSS instances running on each high-voltage machine have, in addition to theircontrol and monitoring capabilities, a module that archives a set of selected datapointvalues to an Oracle database inside the ATLAS technical network. Any standard datatype can be archived, such as floats (e.g. voltages, temperatures) or booleans (e.g. status).Due to the large amount of data requiring archiving, smoothing can be applied to reducethe throughput. The online database contents are subsequently replicated to an offlinedatabase outside the technical network, and made available to the ATLAS collaboration.This precaution is taken in order to protect the online database integrity, as it sits in the
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firewall-protected technical network.
DCS data needed for by the ATLAS reconstruction software can in parallel by storedin the COOL configuration database. In particular, the calorimeter reconstruction softwareincludes a instance that corrects the energy of cells fed by high-voltage lines that arenot at nominal voltage, as described previously. This requires the voltage of every singleline to be continuously stored in COOL.
The following section will describe some of the aspects of the operation of the high-voltage system.

3.6 Operation of the high-voltage system

Standard operation of the high-voltage system include switching all or part of the powersupplies On/Off, which, as mentioned previously, is achieved by bulk loading preparedsettings from a database. Modifications of the operational parameters, such as operativevoltages, current limits, deadbands, ramp speed, and archiving settings, are also part ofthe daily activity, following discussions with the liquid argon operation community. Inan effort to maintain a consistent operation of the calorimeter, interventions on the high-voltage system are kept to a minimum during data-taking periods, except during systemmalfunctions when experts need to act on either the hardware of the software. All theinterventions are thoroughly documented in the ATLAS electronic logbook system.
During technical stops or shutdown periods, deeper interventions on the system canbe performed. Typically, the entire high-voltage system is switched off, and maintenancecan be done on the hardware and software. Maintenance includes replacement of faultypower supply units in case of hardware failures (one or more faulty HV lines) or firmwaremalfunctions. The replacement of a power supply unit can also be performed with therest of the system On, with a “hot swap" procedure: the faulty PS is switched off, thesoftware infrastructure halted, and the PS unit can be exchanged.
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3.6.1 High-voltage trips

During physics data-taking, the high-voltage system is principally prone to one type ofproblem: high-voltage trips. Trips occur when a calorimeter liquid argon gap temporarilyasks for more current - in order to keep the voltage constant - than the power supply isable to feed. Trips cause the affected HV line to switch off and ramp down to 0 V. As thepower supply tries to inject current into the calorimeter, it crosses either the software orhardware (usually higher) current limit, and trips as a safety measure. Additionally, asobserved during the 2010 and 2011 data-taking periods, the trip occurrence seems to beinfluenced by magnetic field activity (when the magnets are ramped up or down) but isdominated by the increase of instantaneous luminosity. Naturally, when the luminosityincreases, the particle flux traversing the calorimeter gains in intensity, which increasesthe strain on the power supplies to keep the liquid argon gap electric fields constant.Before the 2010 winter shutdown, high-voltage on-call experts, of which I was part of,had to manually ramp up tripped HV lines as soon as possible, which happened moreoften as the instantaneous luminosity increased. It was therefore decided to implement afeature in the power supplies that would automatically ramp up the high-voltage after atrip. This feature is in place since spring 2011 and eased the load on the HV experts, but,more importantly, reduced the amount of collected data that had to be deemed unusablefor physics analyses by decreasing the duration of voltage variations.

3.6.2 Miscellaneous HV issues

Over the four years that I have worked on the high-voltage system, we encountered manyissues disturbing normal operation: the “hospitalisation" of HV lines feeding detectorregions containing shorts, the infamous “channel 14" issue which turned out to be aconstruction defect, and issues with the communication with the hardware via the CANlines and the OPC server.
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3.6.2.1 Hospital lines

As mentioned previously, liquid argon gaps are susceptible to shorts, which are believedto be impurities in the argon. When a short occurs, the high-voltage power supply, tryingto maintain the voltage around the set value, injects a DC current. However this currentcan exceed the maximum current output of the standard power supplies, e.g. 1 mA inthe EMB compared to the 75 µA allowed. This prevents feeding an entire high-voltagesector (32 gaps in the EMB), including the other liquid argon gaps with no short. Thesolution to this issue has been to bypass the affected HV lines so that their correspondingHV region can be fed by a special type of power supply, custom made for this purpose,up to currents of 3 mA. The cabling in the HV racks had to be entirely redesigned toaccommodate this feature. In the barrel, the 16 cables from each side, instead of goingdirectly to the feedthrough, are redirected to custom-made panels in the back of the racks,as illustrated on Figures 3.20 and 3.21. From there 16 cables make their way normally tothe detector. On each panel, a 32 pin connector from a 3 mA power supply comes in andits cable is stripped of its housing to enable picking single lines. Each hospital “patient"is then pulled out of its original connector and replaced with one of the hospital lines.From this point on, the affected detector region is fed by the 3 mA power supply insteadof the standard one. However, in most cases, even though a higher current output isallowed, operating at nominal voltage is impossible due to the limit on power dissipationat the level of the filer box resistor. Therefore the majority of hospital lines are operatedat reduced voltages. In the endcap C, the EMEC and a fourth of the HEC are connectedto the C backplane. In the endcap A, only the EMEC is connected. This is mainly due tohistorical reasons related to the lack of HEC hospital candidates.
The number of hospital lines as of July 2011 are listed in Table 3.3.
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Figure 3.20: EMBA hospital Figure 3.21: EMBC hospital

Detector A-side C-sideEMEC 18 16EMB 16 16HEC N/A 7
Table 3.3: Number of hospitalised high-voltage lines as of 12/07/2011.
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3.6.2.2 Channel 14

During my work on the monitoring of the power supplies readout, I came across a featureexhibited by a specific module type. Even though they performed normally in terms ofvoltage regulation, the 2kV/75µA units populating the EMB and EMBPS showed excessivenoise (∼ 1µA compared to the “normal" ∼ 100nA) in their current readout, systematicallyon one channel out of the 16 per board. Always channel 14, in most modules. In orderto disentangle a possible detector effect, measurements were performed before and af-ter swapping HV cables feeding completely different parts of the detector. The resultsconfirmed that the source of the noise was in the power supplies and after providing theconstructor with a report, they found a design flaw on their boards. The affected powersupplies were consequently shipped off by small batches, replacing them with healthyones. The refurbished units were received and tested in our test setup and confirmed tohave been fixed. Even though this event did not jeopardise the operation of the system,it allowed us to gain experience in the understanding of the power supplies, and helpedthe constructor in their own developments.

3.6.2.3 CAN-bus communication

Each high-voltage control machine continuously communicates with a few dozen powersupply units, with the exception of the crate control machine which handles all of the 21crates. This implies having a stable and reliable communication throughput. In the pastfew years we have encountered, on many occasions, cases where commands were notproperly sent to the hardware, or data not correctly readout. After investigating the CANlines connections with and communication, a few CAN buses were found to be faulty,thus impeding on the overall performance of the control. Replacing them, and carefullyverifying the quality of the transmitted signals, allowed us to improve the readout andcontrol performance.
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3.6.2.4 OPC server

Along with fixing the hardware communication issues, a lot of developments have occurredon the OPC server5 side. The OPC server, as mentioned previously, acts as a bridgebetween our PVSS control software and the high-voltage system. During operation,many issues with crashes, lost commands, hangs, were experienced with the OPC server.A continuous effort to document and transmit reports to the constructor have led to manyimprovements in the code behind the OPC server. Since the beginning of 2011, we havereached a state with very few OPC communications issues, especially because of theimplementation of a cache mechanism that optimises the way commands are sent to thehardware and how parameters are read-out.
3.7 DCS and data quality

In order to ensure the usability of the data recorded by the ATLAS experiment for physicsanalyses, constant monitoring of the detector systems is required. The Detector ControlSystem data quality (DCSDQ) assessment [54] is the lowest level of the data validationprocess and therefore provides early information about detector-related issues which canbe acted upon by either offline correction or data samples rejection.
The liquid argon calorimeter data quality strategy aims at identifying and classifyingdetector problems and their possible solutions, with a duty to provide ATLAS with thestatus of the data recorded by the calorimeter. Concerning the LAr DCS data quality,the sole source of issues stems from high-voltage trips, mentioned in the previous sec-tion. Indeed, during HV trips the voltage applied varies, affecting the gap electric fieldshence the measured energy. Because the recorded data is cut into 1 min slices (lumi-nosity blocks) and the computing resources only allow one set of calibration parameters(including high-voltage corrections) per luminosity block, if the voltage across the liquidargon gaps varies during a luminosity block because of a trip, the measured energy can-

5http://www.iseg-hv.de

http://www.iseg-hv.com/start.php/lang.en/start/download/dwl_category/id.372/
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not be corrected properly. Therefore the data recorded by the calorimeter in the affectedsubdetector needs to be flagged “unusable" for physics analyses. Offline data qualityteams appointed by the LAr DQ group are in charge the daily reporting, investigation,and flagging of the data affected by trips, with the help of a series of dedicated soft-ware tools. Finally, the autorecovery feature described in the previous section helps indiminishing the duration of high-voltage trips, and ongoing studies are investigating theeffect of a slow voltage variation (ramp-up) during a luminosity block on the reconstructedenergy, which if demonstrated negligible, would decrease the amount of unusable data.
3.8 Conclusion

This chapter described the liquid argon calorimeter high-voltage system hardware layoutand characteristics, its control software and operation, as well as its influence of thedata recorded by the calorimeters. Even though the high-voltage system is primarilydesigned as support system to the calorimeters, it can also be used to perform a luminositymeasurement. Indeed, as mentioned before, the current induced in the liquid argon gapsby ionising particles is compensated by the high-voltage power supplies in order to keepthe voltage constant. This current is found to be directly proportional to the numberof electron-ion pair produced during the ionisation process, hence to the instantaneousluminosity at the ATLAS interaction point.
The next chapter will describe how a relative luminosity measurement can be per-formed by measuring and calibrating the high-voltage power supply currents of the for-ward calorimeters.



Chapter 4

Luminosity determination with the

ATLAS forward calorimeters

4.1 Introduction

During proton-proton collisions at the LHC, a large flux of minimum bias particles tra-verses the detector forward regions. Minimum bias events stem from soft pp interactionsand consist of mostly π0/π± mesons with low transverse momentum. Most of their energyis deposited in the electromagnetic forward calorimeter as electromagnetic showers ofphoton pairs from π0 decays. The induced particle flux intensity is directly proportional tothe interaction rate, so to the luminosity. The current injected by the FCal-1 high-voltagesystem to compensate for ionisation losses from minimum bias events is correlated to theflux, and therefore gives a direct handle on the luminosity [55].
This approach has two advantages. The response is linear with the luminosity andit is independent from the ATLAS trigger and data acquisition (DAQ) system hence doesnot suffer from event selection biases and DAQ downtime. However, as the currentsmeasurement from the power supplies is part of a slow control environment, it preventsthe possibility of distinguishing individual LHC bunch crossings. Finally, this method is
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not capable of rejecting beam background, e.g. by performing A/C coincidences.
The following will describe the linearity assessment in test beam in Section 4.2, beforedetailing results obtained from simulations in Section 4.3. Section 4.4 will detail thedifferent luminosity handles and their absolute calibration. Finally Sections 4.5, 4.6, 4.7will discuss how the FCal high-voltage lines have been monitored, selected and calibratedin order to perform a luminosity determination in 2010 and 2011.

4.2 Linearity assessment in test beam

The linearity has been demonstrated during test beams for the high luminosity LHC R&Dphase in Protvino. Using a 50 GeVproton beam and a prototype of the FCal, the non-linear fraction of the response was shown to be 0.36% up to 1034 cm2s−1, the LHC designinstantaneous luminosity [56].
4.2.1 Protvino test beam setup

The goal of the HiLum project is to assess the performance of the liquid argon calorimetersunder the high particle rate expected at the sLHC luminosity of 1035 cm−2s−1. This hasbeen performed at the 60 GeV proton beam at the Institute for High Energy Physics(IHEP) in Protvino, Russia, using FCal, EM, and HEC prototypes. The experimental setupis depicted on Figure 4.1. In addition the calorimeter prototypes and their iron absorbers,the test beam line is equipped with instruments to measure the beam position (secondaryemission chamber), beam profile (hodoscope), and beam intensity (ionisation chamber andsix scintillation counters for cross-checks).
One of the three prototypes is a miniature version of the electromagnetic section of theATLAS forward calorimeter. It consists of an copper matrix containing 16 electrodes witha 250 µm (similar to the ATLAS FCal) liquid argon gap adjacent to 16 electrodes with a100 µm gap, one of the foreseen configurations for a cold FCal at HL-LHC. The electrodes
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Figure 4.1: Test beam setup of the high luminosity project in Protvino.

are grouped by four, each group having its own readout and high-voltage wires. Similarlyto the ATLAS LAr production system, the high-voltage power supply used during this testbeam is manufactured by Iseg, with 250 V operative voltage and a maximum allowedcurrent of 10 mA. The study of the current response of the FCal prototype high-voltagelines was performed by illuminating either group of 16 electrodes and simultaneouslymeasuring the beam intensity and HV currents.

4.2.2 Estimation of the non-linearity

The proton beam is structured as 116 ns long bunches separated by 990 ns, and isextracted onto the targets as 1.2 s “spills". Therefore, each spill contains approximately106 proton bunches. By varying the bunch intensities (number of protons per bunch), thetotal number of protons per spill can span the range between 107 to 1011 p/spill. In orderto construct an analogy to the LHC luminosity, let us consider the inelastic collision rate
Ninel = Lσinel, where σinel is the p-p inelastic cross-section (71.5 mb, [57]). Now to findthe LHC luminosity equivalent to a certain number Npps of protons per spill at the test
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beam, one can rewrite Ninel as follows:
Ninel = Npps

τspill

where τspill is the spill duration, 1.2 s. This effectively gives the particle rates in bothcases. Now, the LHC equivalent luminosity can be written:
L = Ninel

σinel
= Npps
τspill · σinel

Therefore, as shown in Table 4.1, the LHC equivalent luminosities can be expressed for allthe beam intensities measured in Protvino and can be used to extrapolate the analysisresults to ATLAS.
Protons per spill 107 108 109 1010 1011LHC equivalent luminosity [cm−2 s−1] 1032 1033 1034 1035 1036

Table 4.1: Test beam intensities and their LHC equivalent luminosity.

For each spill, the high-voltage power supply currents were measured every 100 msand all the measurements integrated over the spill duration, providing one measurementper spill per HV line. To measure currents at this speed, a 24-bit ADC was specificallydesigned by the HiLum group. The internal power supply ADC only allows a maximummeasurement rate of 0.2 Hz. Every HV measurement was matched with a beam currentmeasurement using the ionisation chamber and consequently compared. By fitting thebeam intensities versus HV integrated currents per spill with a second degree polynomial,one can then estimate the non-linearity of the response. The data collected as well asthe fit are illustrated on Figure 4.2. Assuming an uncertainty on the beam intensity mea-surement by the ionisation chamber of 1.2%, a non-linear fraction of 0.36% was measuredfor 109 protons/spill, equivalent to an LHC luminosity of 1034 cm−2s−1.
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Figure 4.2: Measured HV current summed over three FCal prototype channels versus beam intensitycompared to a non-linear fit [56].

4.3 Simulation

This section describes a study performed in order to have an idea of the currents expectedin the forward calorimeter in the presence of p-p collisions. A study of the minimum biasenergy deposition in the FCal with data can be used to run a simulation of the electronicchain separating the FCal and its high-voltage power supplies, thus providing a roughestimate of the DC currents expected as well as the minimum instantaneous luminosityrequired to measure them.

4.3.1 Collision data

Prior to running the simulation, one must first determine the average amount of energydeposited in the forward calorimeter by minimum bias events and particularly the amountof energy as seen by a single high-voltage line. In the FCal-1, each of the sixteen φ-sectors is fed by four separate HV lines, each either feeding a fourth of a summed channel
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(four electrode groups) or a single unsummed channel (a single electrode group). Hence,depending of the case, the energy “seen" by an HV line will either be the energy measuredin on unsummed channel or a fourth of the energy of a summed channel. Therefore it isimportant to look at the average energy deposited in each FCal-1 cell in order to estimatethe energy seen by a single HV line.
Figure 4.3 illustrate the average energy deposited in each FCal-1 cell during a p-prun at 7 TeV. The energy is plotted versus the (iη, iφ) indices of the calorimeter readoutchannels. There are 1008 readout channels per side, so a 16 × 64 map is enough toidentify them all. The data is from the minimum bias stream and the run (1667861) wasrecorded in October 2010. During this run, with 233 colliding bunches at IP1, the averagenumber of inelastic interactions per bunch crossing µ was 2.7 for a peak instantaneousluminosity of approximately 1032 cm−2s−1.
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Figure 4.3: Average energy deposited in the FCal1 A (left) and C (right) by minimum bias events versusthe (iη, iφ) indices of the readout channels.
The induced current in an FCal cell can be derived from the measured energy usingthe µA2MeV 2 conversion factor, which has been determined during test beam, as follows:

〈Icell〉 = 〈Ecell〉
µA2MeV × 2

where the factor 2 represents the contribution from the ions drift.
1http://atlas-runquery.cern.ch/query.py?q=find+run+166786+%2F+show+lhc2µA2MeV = 669 MeV /µA in the FCal-1

http://atlas-runquery.cern.ch/query.py?q=find+run+166786+%2F+show+lhc
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Finally, by matching each of the FCal-1 high-voltage lines to their respective readoutchannels and adding up the induced currents contributions, the current seen by a singleHV line is expressed as follows:
IHV =∑ 〈Icell〉summed4 +∑〈Icell〉unsummed

Averaging across the 128 FCal-1 high-voltage lines leads to 〈IHV 〉 = 12.4 ± 1.7 µA.This value is used as an input to the simulation described in the next section.
4.3.2 PSpice simulation

The idea behind this simulation is to demonstrate the rise of the DC current inducedby minimum bias interactions in the calorimeter. For this study, the PSpice3 softwarewas used to model the electronic chain between an FCal-1 high-voltage line and theelectrodes it feeds.
As depicted on Figure 4.4, the model consists of four parts. The high-voltage lineis modelled by an ideal voltage source set at 250 V. Then the HV lines connect to itsfilter box, consisting of an RC filter (10 kΩ, 200 nF) and a blocking resistor (1 kΩ), whichpurpose is to limit the noise induced in the cryostat by the HV system. The next sectionconsists of 48 FCal cells arranged in parallel. One FCal cell can be modelled by a 1.5 nFcapacitive load with its own protection resistor. Most FCal cells have a 1 MΩ protectionresistor, however the innermost (closest to the beam pipe) cells have 2 MΩ resistor inorder to cope with the higher particle flux by limiting the voltage drop. Putting thosecells in parallel leads R// = 21 kΩ and C// = 72 nF. The final part, on the right-handside of Figure 4.4, consists of a pulsed current source which purpose is to emulate thecurrent induced by energy deposition in the calorimeter. It is modelled by a triangularsignal (Figure 4.5) whose amplitude is proportional to the amount of current induced byone minimum bias event. The pulse rate relates to how often such events occur.

3http://www.electronics-lab.com/downloads/schematic/013/
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Figure 4.4: Spice model schematic of an FCal high-voltage line (left) connected to an HV sector (middleright). Also shown are the HV filter box (middle left)and the current pulse generator (right). See text fordetails.
Figure 4.5: Shape of the Spice simulation signal. Theamplitude A corresponds to the current induced byone minimum bias event and the period P averageduration between two such events.

The simulation was performed during a 30 ms period, where all the values of thecircuits are calculated every 5 ms. This proved to be enough to see the rise of the DCcurrent at the level of the power supply. In order to compare the outputs, this simulationwas performed using two different parametrisations of the current pulse.
The first uses a fixed amplitude and varying pulse frequency. This is motivated by thefact that the inelastic interaction rate can be expressed as N = Lσinel. So, on average,one interaction will occur every 1/N seconds. This of course is not true at high luminositybecause of pile-up, however this model is reasonable at low luminosity. In this approachwe use the current extracted from data as the amplitude, and run the simulation for fourvalues of the period, corresponding to four luminosity values. The results of the simulationare shown on Figure 4.6 and summarised in Table 4.2. The curves represent the current

Ich measured at the power supply level (one high-voltage line) for the four luminosities.
P [µs] 14000 1400 140 14
Leq [cm−2s−1] 1030 1031 1032 1033
Ich [µA] 0.024 0.235 2.35 10.9

Table 4.2: Parameters and results of fixed amplitude simulation. The pulse amplitude A is fixed at 12.4 µA.The period P between each pulse is related to the luminosity by the relation P = 1/(Lσinel). The DCcurrent expected is for a single FCal-1 high-voltage line. ATLAS uses the Pythia value of 71.5 mb for σinel.

The second simulation is based on a more realistic approach, using pile-up to parametrisethe pulse amplitude. Therefore, as the average number of inelastic interactions per bunchcrossing increases, the pulse amplitude can be weighted by the µ-value. In this case the
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Date/Time run: 08/18/11 12:40:38
* D:\pspice\fcal_cell.sch

Temperature: 27.0

Date: August 18, 2011 Page 1 Time: 15:38:13

(A) fcal_cell.dat

           Time

0s 5ms 10ms 15ms 20ms 25ms 30ms
I(R1)

100pA

10nA

1.0uA

100uA

Figure 4.6: Current response at the power supply level for a single FCal-1 high-voltage line in simulationwith fixed pulse amplitude. The four curves correspond to the four simulations with different P-values. Seetext for details.
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duration between two consecutive pulses is kept constant at 50 ns. The average currentinduced by one minimum bias event in the FCal-1 is determined in the previous sectionand amounts to approximately 12.4 µA for a fill with an average µ was about 2.7. Theparametrisation of the simulation has been chosen to scan four µ values: 0.01, 0.1, 1, and10. Therefore, in order to obtain the base current value at, let us say, µ = 1, one mustrescale the value of the current, which brings it to 4.6 µA. Finally, the amplitude of thepulse can be set to be A = 4.6× µ for each case. The current responses are depicted onFigure 4.7 and summarised in Table 4.3.
Date/Time run: 08/18/11 12:57:09

* D:\pspice\fcal_cell_mu.sch
Temperature: 27.0

Date: August 18, 2011 Page 1 Time: 15:39:39

(B) fcal_cell_mu.dat (active)

           Time

0s 5ms 10ms 15ms 20ms 25ms 30ms
I(R1)

100pA

10nA

1.0uA

100uA

Figure 4.7: Current response at the power supply level for a single FCal-1 high-voltage line in the simulationwith µ-dependent pulse amplitude. The four curves correspond to the four simulations with different A-values. See text for details.

A [µA] 0.046 0.46 4.6 46
µeq 0.01 0.1 1 10
Ich [µA] 0.032 0.316 3.16 31.6

Table 4.3: Parameters and results of fixed period simulation. The period P between each pulse is fixed at50 ns. The amplitude A corresponds to an average current induced at µ = 1 weighted by µeq. The DCcurrent expected is for a single FCal-1 high-voltage line.
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The results of both simulations are compatible in terms of the order of magnitude ofthe expected DC currents. They are to be compared with the currents actually measuredduring data-taking. In the first simulation, the currents measured at a instantaneousluminosity of 1032 cm−2s−1 range from 1.2 to 1.7 µA, depending on the high-voltage line.The simulation predicts a current of 2.35 µA. In the second simulation, if we look at a fillwith a peak µ value of 10, the currents observed in the FCal-1 HV lines range from 25 to35 µA, whereas the simulation predicts a DC current of 31.6 µA.
To summarise, this proof of concept, which purpose is to demonstrate the birth of a DCcurrent due to minimum bias interactions, rather successfully illustrates the behaviour ofthe modelled system. DC currents compatible with measurements are predicted over therange of operation of the LHC in 2011. Finally, is also illustrates the lower limit on theinstantaneous luminosity required to observe a signal in the FCal-1 high-voltage lines,which is approximately 1031 cm−2s−1.

4.4 Luminosity calibration

This section describes the absolute calibration of the two ATLAS major luminosity detec-tors, LUCID and BCM. During the 2010 [33] and 2011 [58] data-taking periods, the ATLASluminosity algorithms were calibrated using dedicated van der Meer [34] (or beam sep-

aration) scans. It is those calibrated quantities that are used to calibrate the forwardcalorimeter high-voltage currents.
4.4.1 Luminosity algorithms

Of all of the 3564 LHC slots available for protons bunches, only 2808 can be filled due tothe injection and dump gaps. Each of these slots is assigned in Bunch Crossing IDentifier(BCID) synchronised with the ATLAS data acquisition system. By matching their ratemeasurements with the BCID, the LUCID and BCM detectors are able to provide a bunch-
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by-bunch luminosity determination. This quantity depends on whether or not the BCIDsare colliding in ATLAS, and estimating the contribution of non-colliding BCIDs can provideessential information on backgrounds to the luminosity measurements. The LUCID andBCM readouts are configured with online algorithms that provide the Online LuminosityCalculator (OLC) with raw counts based on logical operations (such as a coincidence onthe two sides of the detector) of registered events, an event being defined as a signalpassing a preset detector threshold. From there the OLC applies the relevant calibrationsto the raw counts, provides luminosities to online displays, and allows for their archivingin the COOL conditions database for offline analysis.
The different LUCID and BCM algorithms used throughout the document are brieflydescribed in Table 4.4.Algorithm name DescriptionLUCID Event_OR A/C inclusive ORLUCID Event_AND A/C coincidenceLUCID Event_A A exclusive ORLUCID Event_C C exclusive ORBCM Event_OR A/C inclusive OR , horizontal sensorsBCM Event_AND A/C coincidence , horizontal sensorsBCM Event_OR_V A/C inclusive OR , vertical sensorsBCM Event_AND_V A/C coincidence , vertical sensors

Table 4.4: LUCID and BCM algorithms descriptions. With the x-axis of the ATLAS coordinate system pointingtowards the inside of the LHC ring, the C-side corresponds to positive z and the A- side to negative z.

4.4.2 van der Meer calibration

The principle of a van der Meer scan, described in length in [59, 33], is to measuresimultaneously the luminosity, beam currents, and collision rates during a procedurewhere one beam moves with respect to the other in the transverse plane.
The luminosity can be written:

L = µnbfr
σinel

where µ is the number of inelastic collisions per bunch crossing, nb the number of colliding
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bunches at IP1, fr the machine revolution frequency of 11245.5 Hz, and σinel the inleasticproton-proton cross-section. The problem with this formulation is that µ is not a directlymeasurable quantity and σinel has yet to be measured for 7 TeV p-p collisions4. However,their ratio can be expressed as follows:
µ
σinel

= µvis
εσinel

= µvis
σvis

where µvis is the observed number of collisions per bunch crossing (i.e. measurable)and σvis = εσinel the visible cross-section, which depends on the detector efficiency,acceptance and algorithm used. Therefore, the luminosity can be rewritten:
L = µvisnbfr

σvis

On another hand, using machine parameters such as the transverse beam profiles Σx andΣy as well as the single bunch currents in each beam n1 and n2, the luminosity can alsobe expressed as follows:
L = nbn1n22πΣxΣy

During the vdM scan, one beam is moved step-wise with respect to the other by a knowndistance given by the magnet settings, called nominal beam separation, thus allowingfor the measurement of Σx and Σy by fitting the rates, as shown for example on Figure4.8 during a scan taken in May 2011. The peak rate µMAXvis can then be compared to themeasured luminosity and the visible cross-section extracted as follows:
µMAXvis = LMAXσvisnbfr

= n1n2σvis2πΣxΣy =⇒ σvis = µMAXvis
2πΣxΣy
n1n2

In parallel, the numbers of protons per bunch (n1n2) are measured by LHC instru-ments somewhat similar to the return current coils described in the previous chapter anddescribed in detail in [60]. The uncertainty on these bunch currents measurements dom-
4ATLAS uses the Pythia value of 71.5 mb
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Figure 4.8: Specific interaction rate versus nominal beam separation for the BCM Event_OR algorithmduring the May 2011 vdM scan. The residual deviation of the data from the Gaussian plus constantbackground fit assuming statistical errors only is shown in the bottom panel [58].
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inates the total systematic uncertainty on the determination of the visible cross-section,and tremendous efforts from the Beam Current Normalisation Working Group (BCNWG)has helped improve and continues improving this issue.
Now that the visible cross-sections have been determined for each detector algo-rithm, the remaining calculations involve converting observed event rates during normalphysics data-taking into visible numbers of interactions per bunch crossing, and finallyinto instantaneous luminosities.
In the case of EventOR inclusive algorithms, the probability of detecting such anevent, assuming that the probability of detecting none follows a Poisson distribution, canbe expressed as follows:

PEventOR = NOR
NBC

= 1− exp (−µεOR) = 1− exp (−µORvis )
with NOR the number of bunch crossings with an event satisfying the OR conditionsamongst the total number of bunch crossing NBC , with an efficiency εOR .

Therefore, the visible number of interactions per bunch crossing is the following:
µORvis = ln(1− NORNBC

)

For the EventAND coincidence algorithms, the probability of observing an event isless trivial and non invertible analytically to express µANDvis as a function of NAND/NBC . Inthis case look-up-tables are used in order to find the best value of µ.
Finally, the luminosity is derived from the µORvis value and the visible cross-sectionobtained from the vdM calibration using the well-known relation:

L = µvisnbfr
σvis

Concerning the systematic uncertainty on the luminosity determination using the van
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der Meer procedure, it is discussed in length in the references cited in this section. Letus just note that it is dominated by the LHC bunch current measurements and that a totalsystematic uncertainty of 3.7% has been achieved following vdM scan performed in May2011 [58]. However some of the contributions to this uncertainty and their implicationson the FCal luminosity determination are discussed in the following sections.
This uncertainty will be carried over as the forward calorimeter high-voltage currentsare calibrated using vdM-calibrated LUCID and BCM algorithms and will come in additionof other sources of uncertainties.

4.5 FCal high-voltage power supplies currents

Sanity checks have been performed in order to only retain valid high-voltage lines forthe luminosity determination by eliminating any biases. These checks are described inthe following section.

4.5.1 Shorted tubes

The first issue preventing the use of HV lines is the fact that some of them are connectedto tube groups containing one or more shorted tubes. A short occurs when impurities inthe liquid argon connect the central rod of the tube to the outer edge of electrode. Thiseffectively closes the circuit and the current fed into this tube by the HV system flowscontinuously to the ground. Since tubes are fed as a group, the current injected by theHV line includes a DC component if the group contains a shorted tube. This DC currentis prone to unpredictable fluctuations due to the very nature of the shorts, hence it issafer to exclude any of these HV lines from the luminosity analysis. In the electromagneticsection of the FCal, a total of 33 HV lines out of 128 feed tube groups containing a shortedtube.
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Figure 4.9: Gap gch = 〈Ich〉 − 3 · σch distribution of the 128 EM-FCal high-voltage lines currents duringperiods with no LHC beam. The vertical line at zero indicates the cut applied on the gap for an HV line tobe eligible for the luminosity measurement. Only positive values of g are allowed.
4.5.2 Pedestal measurability

The luminosity measurement is relative and the method is to measure a current varyingrelative to a pedestal value determined during periods without beam. In many cases, themeasurability of the current pedestal is not possible because of ADC calibration drifts ofthe HV power supply. The power supply has an internal calculation which, from ADCcounts, provides only positive calibrated current values. The calibration parameters wereput in at the factory during manufacturing and the procedure in described in Appendix E.For some HV lines, this calibration turned out to be slightly shifted so that the pedestalis negative. Therefore an extraction of the pedestal cannot be performed in these cases.To correct for this effect during the 2011 data taking, a new firmware was flashed onthe power supplies feeding the EM-FCal shortly after the 2010 winter shutdown. Thenew firmware artificially offsets all current measurements towards positive values byapproximately 2.6 µA (negligible compared to the ADC dynamic range of 0-10 mA), asshown on Figure 4.10. This does not affect the luminosity measurement as the pedestal issubtracted before calibrating the currents, as discussed in section 4.6. A full recalibration
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of the power supplies ADC by the constructor is planned at the next shutdown. Sincethis new feature was not available during the 2010 data taking period, and in order toselect HV lines with a measurable pedestal, the quantity gch = 〈Ich〉 − 3 · σch was usedas a discriminator, where 〈Ich〉 is the average current during a period with no LHC beamand σch its r.m.s. . If gch is negative, the current fluctuations around the pedestal are notsymmetrical as the tail towards smaller currents is cut away, introducing a bias on thenoise estimation. Zero values of gch indicate cases where only the tail towards largervalues of the pedestal fluctuations are readout, hence very small values 〈Ich〉 and σch.Therefore only HV lines with a strictly positive gch value were selected for the luminositymeasurement.

Figure 4.10: One FCal high-voltage line current versus time during periods with no LHC beam presence.Top: Before ADC offset implementation, only the positive tail of the noise fluctuations are read and thepedestal cannot be estimated. Bottom: After new ADC offset, current fluctuates around a positive valueand pedestal can be measured.

4.5.3 Pedestal noise

The power supplies are not designed for high precision, low noise current measurements.In order to perform the most accurate luminosity determination, it is first imperative to
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ensure that only high-voltage lines with a low current noise are selected. This selectionis illustrated in Figure 4.11, which shows the distribution of the root mean square valuesof all HV lines in the EM FCal over periods with no LHC beam presence. High-voltagelines with a null r.m.s. represent, as discussed previously, extreme cases where onlythe positive tail of the current pedestal is measured, resulting in a flat current evolutionwith time. Therefore only high-voltage lines with a current noise between 0.001 µA and0.015 µA are selected.For the 2010 data taking period, the combination of these selection criteria bring downthe total number of HV lines usable for luminosity to 16 out of 64 in FCal-A and 15 outof 64 in FCal-C. The new ADC offset allows more lines to be used in 2011, with a totalof 30 lines on FCal-A and 40 on FCal-C.

Figure 4.11: Root mean square distribution of the 128 EM-FCal high-voltage lines currents during periodswith no LHC beam. The vertical lines at 0.001 µA and 0.015 µA indicate the cuts applied on the noise foran HV line to be eligible for the luminosity measurement.

To summarise, in order for an HV line to be usable for a luminosity determination, it must:
• not be connected to a shorted tube group,
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• have a positive pedestal sufficiently above noise,
• have low current noise.

4.6 Luminosity calibration of the FCal high-voltage cur-

rents in 2010

4.6.1 Comparing LUCID and FCal data

The LUCID relative luminosity measurement was absolutely calibrated in 2010 during avan der Meer (vdM) scan. However, the technical implementation of the vdM scans couldnot allow for an absolute calibration of the FCal measurement. Firstly, the instantaneousluminosity during a vdM is significantly lower than during normal LHC operation toavoid emittance blowup, and was below the minimum sensitivity of the FCal high-voltagesystem. Secondly, the scan steps, at which the rates are recorded in order to perform thecalibration, are too short (typically 30 s) for the FCal DC current to set in and provide anaccurate measurement. This is worsened by the fact the maximum sampling rate of theFCal HV current is of the order of 0.2 Hz.
There is however another way to calibrate the FCal HV currents. By comparing theFCal currents to an absolutely calibrated LUCID luminosity, it then possible to extractcalibration constants for each usable HV line. In 2010, one specific LUCID algorithm waschosen as the default preferred luminosity: LUCID_Event_OR. It is based on an inclusiveOR event counting between the A and C LUCID detectors. In order to verify the stabilityand robustness of the 2010 FCal calibration, a single ATLAS run was used to extractthe calibrations. Run 1667865, recorded on October 13th 2010, was chosen because of itcovers a large range of instantaneous luminosity (∼ 55−100 1030 cm−2 s−1) and containsno oddities.For one high-voltage line, the calibration procedure consists of the following steps:

5http://atlas-runquery.cern.ch/query.py?q=find+run+166786+%2F+show+lhc

http://atlas-runquery.cern.ch/query.py?q=find+run+166786+%2F+show+lhc
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• average the measured current by luminosity block (120 s periods),
• calculate the pedestal before the LHC fill (1 h period with no beam present in themachine), as illustrated on Figure 4.12 for a typical selection,
• select "ATLAS "Ready" luminosity blocks (after "STABLE BEAMS" has been declaredby the LHC and after warm start of the stand-by subdetectors),
• for the selected luminosity blocks, compare the pedestal-subtracted current to theLUCID luminosity, as shown on Figure 4.13 for the FCal-C selection,
• fit the comparison with a first degree polynomial and extract fit parameters asdescribed by the following relation: IFCal = a · LLUCID_Event_OR + b.
In order to check the validity of the calibration throughout the 2010 data taking period,the constants extracted from the fit on the reference run were applied to a set of runsrecorded during October 2010. This period consists of the late 2010 data with high enoughinstantaneous luminosities to perform a measurement with the forward calorimeters. Thequantity LLUCID/LFCal can be computed for each high-voltage line and each luminosityblock considered. Figure 4.14 shows the evolution of this ratio over time for the 17 runsfor each of the 15 FCal-C selected HV lines. The distribution of this quantity for allthese runs is shown on Figure 4.15 and displays a root mean square value of ∼ 0.5%.The consistency between each run can be check by computing an average ratio per run:

〈LLUCID/LFCal〉run, which is found to be flat over the considered run range as shown onFigure 4.16. Figure 4.17 illustrates the LUCID_Event_OR and FCal calibrated luminositiestime evolution during one of the considered runs.
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Figure 4.15: Distribution of the ratio LLUCID/LFCal for 17 ATLAS runs in 2010. One ratio is computed perluminosity block and high-voltage line.

4.6.2 Systematic uncertainties

The following systematic uncertainties are included in the 0.5% spread of the 2010 cali-bration, as shown on Figure 4.15.
Current measurement resolution As shown on Figure 4.11, the typical standard devi-ation of selected high-voltage lines lies between 0.001 µA and 0.015 µA during periodwith no LHC beam presence. The average pedestal level being approximately 2.6 µA, thisleads to a current measurement uncertainty of ∆I/I ∼ 0.4%.
Liquid argon temperature The liquid argon cryostats are kept at a constant temperatureof ∼88.5 K, which is monitored by ∼430 probes as part of the LAr DCS. A temperaturevariation of 1 K is leads to a 2% variation of the measured signal, due to effects on theargon density and electron drift speed. During the 2010 data taking period, the end-capcryostats - where the FCal are located - show a temperature stability of ∼1.5 mK overtime [61]. This value is well below the technical requirement (50-60 mK) and can be
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Figure 4.16: Average ratio per run 〈LLUCID/LFCal〉run for 17 ATLAS runs in 2010.

Figure 4.17: FCal calibrated instantaneous luminosity (red) for an ATLAS run taken in 2010. Superimposedis the ATLAS preferred instantaneous luminosity (blue).
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therefore considered to have a negligible effect on the stability of the FCal luminositycalibration.
Beam-induced background During proton-proton physics operation, the LHC fill cyclefollows a procedure consisting of a series of predetermined steps, from injection to stablecollisions, followed by beam dump. A typical LHC physics fill goes as follows:
• INJECTION PHYSICS BEAM: dipole magnets are ramped up to injection energy(450 GeV), injection of proton bunch trains,
• PREPARE RAMP: injection complete, preparing for ramp,
• RAMP: bunch trains are accelerated to collision energy (3.5 TeVper beam), dipolemagnets are ramped up accordingly,
• FLAT TOP: immediately after ramp, beams have reached nominal energy,
• SQUEEZE: switch from injection/ramp optics to collision optics using focusing mag-nets,
• ADJUST: both beams are brought together to collide,
• STABLE BEAMS: colliding beams, stable conditions for physics data-taking,
• BEAM DUMP: both beams are dumped after stable beams period,
• RAMP DOWN: dipole magnets are ramped down to injection energy.

Figure 4.18 illustrates the evolution of the current in one high-voltage line during aphysics fill. The FCal HV current shows no significant variation between periods withno beam in the machine (before step 1) until the ADJUST phase (step 5), when bothbeams are brought together to collide at nominal energy. Therefore the high-voltagesystem appears to be insensitive to beam presence except for colliding beams. This canpartly be explained by the fact that the particle flux intensity coming from beam-inducedbackground is orders of magnitude lower than for the minimum bias flux due to collisions.
The following section will focus on changes in the luminosity calibration of the LUCIDand BCM detectors between the 2010 and 2011 data taking periods, cross-checks with
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Figure 4.18: Current of one FCal-C HV line versus time for a typical LHC fill on June 5 2011. The leftgraph, from 8.00AM to 9.45AM, is a zoom of the beginning of the fill from injection to stable beams. Theright graph, from 23.00pm to 1.00am, is a zoom of the end of fill and after the beam dump.
the newly calibrated FCal measurement, as well as the consequent rescaling of the LUCIDand BCM calibrations.

4.7 FCal luminosity in 2011

During the 2010/2011 winter shutdown, ATLAS-wide hardware and software interven-tions were performed. Concerning the BCM detector, the analog front-end electronicswere modified in order to better accommodate both its luminosity and beam-protectioncapabilities. Although difficult to quantify, the BCM luminosity calibration was expectedto be different from 2010, because of the effect of the modifications on the detector effi-ciency. However, following these changes, the BCM thresholds were adjusted in orderto retrieve a calibration as close as possible to situation in 2010. On the other side, theLUCID strategy during the shutdown was to keep from modifying anything that couldaffect the luminosity calibration.
Regarding the FCal, a major intervention took place on the detector. Indeed, followinganalyses with early 2010 collision data, a position shift of the endcap cryostats withrespect to the nominal geometry were observed. The analyses were performed by lookingat the φ-distribution of the energy flow in the forward calorimeters. The most significant
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shift observed was in the y-direction, and amounted to approximately 2 mm for eachcryostat. In August 2010, an re-alignment in the reconstruction software allowed therecording of the rest of the 2010 collision data with the correct positioning of the endcaps.However, during the winter shutdown, the opportunity to physically raise the cryostatspresented itself and was seized. The effect of the positioning on the energy flow wassine-modulated in φ and amounted to approximately 2% in amplitude of transverse energy.Concerning the FCal HV currents, as the original 2010 calibration was performed withthe old positioning of the cryostats, no modulation is observed in the 2010 data. However,as the procedure was to keep the 2010 calibration and apply it to the 2011 data, the factthat the cryostats were raised gives raise to an φ-asymmetry in the FCal luminosities,as depicted in Figure 4.19. There are three ways to cope with this asymmetry:
• re-calibrate the individual FCal high-voltage lines with 2011 data and the newpositioning of the cryostats: this cannot be done before the LUCID and BCM areabsolutely calibrated
• correct the φ-asymmetry by fitting the φ-distribution of the 2011 FCal luminosities
• average π-symmetric high-voltage line to cancel the effects of the asymmetry: thismethod was used in the comparison with the 2011 LUCID and BCM data

4.7.1 Early 2011 data

In 2010, the LUCID and BCM luminosity measurements agree at ∼ 0.5% [33]. Consistencychecks between the LUCID and BCM observed luminosity in 2011 show discrepancies atthe level of 7 to 12%, depending on the algorithms.
To view this issue from another angle, comparisons with the calibrated FCal lumi-nosity were performed with the LUCID and BCM measurements. The quantity chosento estimate the discrepancies is the ratio Lalg/LFCal, where alg denotes the specific al-gorithm. Table 4.5 shows these ratios for early 2011 ATLAS runs taken on March 22nd

and 23rd. These ratios indicate that from the FCal measurement point of view, the BCM
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Figure 4.19: Average ratio between FCal A and C HV lines luminosities to the offline preferred luminosity(here LUCID_EventOR) versus the φ index of the line in 2011. The calibration of the FCal HV lines isextracted from 2010 data, hence the φ modulation. The amplitude of the modulation is approximately 2%.
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luminosity calibration in 2011 is comparable to 2010, despite the changes in the BCManalog front-end. However, regarding the LUCID calibration, a difference of the order of4 to 6% with the FCal is observed.
178044 178109All Phys All PhysLUCID Event_OR 1.049 1.030 1.058 1.039LUCID Event_AND 1.046 1.045 1.059 1.059BCM Event_OR 1.007 1.001 1.007 1.000BCM Event_AND 1.000 1.000 1.001 1.000

Table 4.5: Average ratios of LUCID and BCM luminosities to FCal. These two ATLAS runs were recordedon March 22nd and 23rd before the 2011 LUCID and BCM modifications. Ratios labelled All are taken overall the BCIDs, and Phys only the BCIDs colliding at IP1.

4.7.2 After new LUCID RX cards

Additional interventions were performed in 2011 on the LUCID and BCM detectors. Firstly,in order to enable smooth operation with 50 ns LHC bunch trains, new receiver cardswere installed on the LUCID electronics chain. These cards allow for a faster baselinerestoration after a signal pulse in the photomultiplier tubes as well as narrower pulsewidth. The downside of this intervention is that it further impacts the luminosity cali-bration of the LUCID detector. The same study with the FCal was performed after thenew receiver cards were installed, for two ATLAS runs recorded on April 15th and 16th.As shown on Table 4.6, the BCM ratios are comparable to the ones listed in Table 4.5.Regarding LUCID, the ratios have gone up by ∼ 2 − 3% after the new receiver cards,depending on the algorithm.
4.7.3 BCM thresholds changes

Following a BCM threshold scan in early March 2011, it was decided to adjust thesethresholds in order to rejoin the BCM efficiency plateau. This intervention had an ex-pected impact on the BCM luminosity calibration. A third series of ATLAS runs, recorded
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179739 179804All Phys All PhysLUCID Event_OR 1.078 1.054 1.084 1.060LUCID Event_AND 1.081 1.081 1.089 1.088BCM Event_OR 1.008 1.002 1.010 1.004BCM Event_AND 1.001 1.001 1.003 1.003
Table 4.6: Average ratios of LUCID and BCM luminosities to FCal for two ATLAS runs recorded on April15th and 16th 2011. These runs were taken after the replacement of the LUCID receiver cards and beforethe BCM threshold changes. Ratios labelled All are taken over all the BCIDs, and Phys only the BCIDscolliding at IP1.
in April 2011 was analysed in comparison with the FCal measurement. Tables 4.7 and 4.8summarise the ratios of the LUCID and BCM algorithms with respect to the FCal for theseruns. Averaging over the entire period provides a handle on quantifying the discrepan-cies. The results show that for this dataset, as illustrated on Figure 4.20, after the newLUCID receiver cards and the new BCM thresholds, the FCal luminosity measurementoverestimates the LUCID_Event_OR and BCM_Event_OR algorithms by 6.3% and 3.7%respectively.
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Figure 4.20: Average ratios of LUCID and BCM luminosities to FCal for a set of ATLAS runs recorded inApril 2011, after the installation of the new LUCID receiver cards and the BCM thresholds changes. Thehorizontal axis represents the ATLAS run number.

4.7.4 Rescaling of the 2011 early BCM and LUCID data

Following the discrepancies observed in the comparison between FCal, LUCID, and BCMin early 2011 data, and in addition to the fact that FCal seemed to agree well with BCMbefore its thresholds changes, the decision was taken to take FCal as a new referenceand rescale the BCM and LUCID visible cross-sections. The LUCID and BCM visiblecross-sections were rescaled according to several data-taking periods, as listed on Table4.21. Figure 4.22 illustrates the comparisons between LUCID and BCM after the rescaling.The ratios are centred around 1, with however still a mu-dependence.
The 2010 total systematic uncertainty on the luminosity, 3.4%, had to be revised inearly 2011 to take into account the rescaling with respect to the FCal luminosity. The mainchanges stemmed from the mu-dependence (+1.5%), the long-term consistency (+1%), andthe FCal-TileCal discrepancy observed in early 2011 (+2%). This led to a new systematicuncertainty of 4.5%.
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Figure 4.21: FCal-based LUCID and BCM 2011rescaling factors for different ATLAS data-taking pe-riods, corresponding to different detector statuses.
Figure 4.22: Ratios of LUCID and BCM luminositiesafter FCal-based rescaling, compared to the num-ber of interactions per bunch crossing measured byLUCID.

In order to improve this uncertainty, a vdm scan was performed in May 2011, and theresults are described in the following section.

4.7.5 Cross-comparisons after the May 2011 vdM calibration

In May 2011, a new van der Meer scan [58] took place in order to absolutely re-calibratethe LUCID and BCM detectors, as they were shown to have lost their calibrations duringthe previous winter shutdown. Consequently, new cross-checks with the FCal luminositymeasurement (still using the 2010 calibration) could be performed in order to shed lighton possible discrepancies. Figure 4.23 shows the ratio between various luminosities perATLAS run compared to a reference algorithm, BCM_H_EventOR. The relative variationsare contain within ±1%, which leads to an additional systematic uncertainty associatedwith long-term stability of 1%.
A final check consists of comparing the evolution of the luminosity ratios as a functionof the number of interactions per bunch crossing, µ. Figure 4.24 illustrates this compar-ison and all methods agree at the level of 1%, which comes as an additional systematicassociated with the µ-dependence.
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Figure 4.23: Fractional deviation in the integratedluminosity obtained using different algorithms withrespect to the BCM_H_EventOR value as a functionof time. Each point shows the average deviation for asingle ATLAS run. Statistical uncertainties per pointare negligible. Extracted from [58].

Figure 4.24: Fractional deviation in the averagenumber of interactions per bunch crossing (averagedover BCIDs) obtained using different algorithms withrespect to the BCM_H_EventOR value as a functionof 〈µ〉. Statistical uncertainties per point are negli-gible. Extracted from [58].
4.8 Conclusion

The feasibility of a relative luminosity measurement using the currents of the forwardcalorimeter high-voltage system has been demonstrated. It has been shown to be linearup the LHC design luminosity and stable within 0.5% across a two months period in2010. Cross-checks with the LUCID and BCM luminosity determinations in 2011 have ledto a rescaling of their visible cross-sections for part on the 2011 dataset, leading to atemporary re-evaluation of the total systematic uncertainty to 4.5%. In addition, followingimprovements on the FCal HV system in early 2011 and an absolute calibration of theLUCID and BCM luminosities using the May vdM scans, the total systematic uncertaintyhas been reduced to 3.7% for the 2011 dataset.



Conclusions and outlook

This document presents a luminosity determination using the currents of the high-voltagesystem of the ATLAS liquid argon calorimeter. By measuring the currents drawn by theforward calorimeter high-voltage lines, where the minimum bias flux is the highest, it ispossible to calibrate them to the absolutely-calibrated LUCID luminosity determinationwith a precision of 0.5%, not including the 2010 uncertainty of the LUCID calibration of3.4%.
One of the strongest advantages of using the forward calorimeter as a luminosity mon-itor is based on the linearity of its response with luminosity, which has been demonstratedduring test beam studies by the ATLAS HiLum collaboration, as well as reproduced in

situ in ATLAS. Simulations based on recorded collision data have also helped definingthe limits of the FCal luminosity capabilities.
In 2011, using the 2010 calibration, cross-checks with other luminosity monitors suchas the LUCID, BCM, and TileCal detectors helped in deepening the understanding of theluminosity determination within ATLAS.
In order to achieve the full capabilities of the forward calorimeter as a luminosity mon-itor, we will first need to re-calibrate the FCal high-voltage power supplies. Followingthis operation, a complete recalibration of the high-voltage currents with respect to anabsolutely-calibrated luminosity measurement will have to be performed. In parallel, theonline infrastructure has to be completed in order to acquire, calibrate, and publish anFCal luminosity within the official ATLAS framework. This will allow for continuous moni-
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toring of the FCal response with respect to other luminosities and a better understandingof the overall ATLAS luminosity determination.
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1. INTRODUCTION

The Large Hadron Collider (LHC) project was approved by the CERN Council in
December 1994. The LHC will be the next major research tool for particle physics
and  it is expected to be commissioned in 2006.

This new proton beam collider facility will be installed in the existing underground
ring tunnel of approximately 27 km circumference at CERN.

Within the context of LHC, one of the two major experiments to be built is called
ATLAS (A Toroidal LHC ApparatuS).
This experiment, built and funded by an international collaboration between high-
energy physics institutes from thirty four countries and by CERN, consists basically
of a superconducting magnet system equipped with several particle detectors.

ATLAS will be installed around the LHC interaction point I1 in an underground
cavern at a depth of 90 meters. Entrance to this area is made via access shafts from a
surface complex called P1, near the main CERN Laboratory 1 site in Switzerland.

The expected lifetime of the experiment is at least 15 years from the LHC
commissioning date.

One of the ATLAS detectors is the Liquid Argon Calorimeter (LArg)  that uses
ionisation chambers immersed in liquid argon to detect energy from penetrating
charged particles which ionise the argon.

The ions produced are collected, amplified and sent to the readout chain for further
processing.

The ionisation chambers will be biased with a voltage up to 2.5 kVolts. The maximal
ion current induced at the highest LHC intensity depends on the location of the
chamber with respect to the interaction point of the  experiment and ranges from
75µA to 6mA.

A modular High Voltage Power Supply System is foreseen to accomplish such
functionality.

The stringent definition of and full compliance with the Technical Specifications is
absolutely necessary in order to guarantee that this HV Power Supply System can be
used as  measurement apparatus to complement the acquisition of physics data.



2. SCOPE OF THE SUPPLY

This technical specification concerns the manufacturing of

- the multichannel High Voltage Modules
- the subracks (crates)
- the monitoring and control system for the components

by matching
- the experiment and detector boundary conditions
- the technical  specifications

and fullfilling
- the environmental requirements
- the reliability requirements
- and the calibration requirements



3. TECHNICAL REQUIREMENTS FOR THE HIGH
VOLTAGE POWER SUPPLY SYSTEM

3.1. Experiment and Detector Boundary Conditions

The type of  multicore HV cable for 32 HV lines and the type of multipin HV
connectors used to connect the HV power supply output to the LArg calorimeter
detector are described in Annex 1 and Annex 2 respectively. The output cable is
about 130 m long with a single wire resistance of  147 Ω / km. The connector pin
layout is described in Annex 3.

Requirement 1: The output connector mounted on the HV module front panel  must
be compatible with the specifications given in Annex 2 and 3.
Requirement 2: The HV applied must be floating with its return (the common leg)
connected to the ATLAS-Larg-Cryostat mass connection in the vicinity of the HV
rack. A lockable single point connector to the HV return on the backplane of the
subrack must be provided in order to implement a cable link to the cryostat mass.
Requirement 3: The HV module housing, the output connector housing, the HV-
return and guide pins and the cable shield must all be connected to the HV return.
Requirement 4: The return of the HV supply must be separated from the safety
ground of primary power sources, subracks and cabinets which are connected to the
safety ground grid in the ATLAS cavern. The potential difference between the HV
return and the safety ground  must be limited to less than  ±30 Volts.

The output load in terms of resistor and capacitance depends on  the different
ionisation chamber construction for the different subdetectors of the ATLAS LArg
calorimeter. The R and C values, as defined in Fig. 1, are summarised in Table 1.

Fig. 1 Simplified Detector Characteristics



Internal
R

Internal
C

Filter
R

Filter
C

RC time constant
via 0Ω to common

versus
RC time constant

via 50MΩ to
common

Electromagnetic
Barrel Detector

(EMB)

30 to
60 kΩ

3 µF
to 6 µF 100 kΩ 27 nF

0.4 to 1 sec
versus

150 to 300 sec

Electromagnetic
Barrel Detector

Presampler
(EMB-PS)

10 kΩ 0.3 µF 500 kΩ 27 nF
0.15 sec
versus
15 sec

Electromagnetic
End-Cap Detector

(EMEC)
30 kΩ 3.5 µF 100 kΩ 27 nF

0.5 sec
versus
175 sec

Electromagnetic
End-Cap Detector

Presampler
(EMEC-PS)

100 kΩ 0.03 µF 200 kΩ 27nF
0.01sec
versus
1.5 sec

Hadronic
End-Cap Detector

(HEC)
500 kΩ 1.6 µF 200 kΩ 27 nF

1.1 sec
versus
80 sec

Forward Detector
(FCAL) 45 kΩ 0.9 µF 10 kΩ 100 nF

0.055sec
versus
45 sec

Purity Control
Detector (PCD) 20 MΩ 0.001 µF 2 MΩ 27 nF

0.050 sec
versus
2 sec

Table 1 LArg Calorimeter Subdetectors



3.2. HV Module Requirements

With the maximum current Imax drawn and the maximum high voltage bias Vmax

defined for the different subdetectors the power supplies needed can be grouped into
four supply categories (Table 2).Within these four supply categories different
nominal voltages are applied:

Supply
type

Maximal Voltage
Vmax

Maximal Current
Imax

Subdetectors and their
nominal voltages

1 + 2.5 kV 75 µA EMB            +2.1 kV
EMB-PS       +2.1 kV
HEC             +1.8 kV
PosPCD        +2.5 kV

2 + 2.5 kV 200 µA EMEC
between +0.9 kV  and +2.5 kV

3 + 600 Volt 6 mA FCAL
+250 V or +375 V or +500 V

4 - 2.5 kV 75 µA EMEC-PS  –2.5 kV
NegPCD     –2.5 kV

Table 2 Definition of Supply Categories

Requirement 5: Each HV-circuit must be insulated (“floating”) and the voltage of
each channel must be individually setable and regulated between zero and Vmax .

Requirement 6: The voltage output accuracy compared to an external calibration
source must be better than

 ± 4 x 10 -  4 Vmax

which corresponds to ±1V at Vmax  = 2.5 kV and  ± 0.25V at Vmax  = 600V.
For the voltage calibration refer to Requirement 15 and 33.

Requirement 7: The voltage ripple measured peak to peak  at maximum load must
be

∆∆VRN  < 10 mVp-p for type 1,3 and 4
and    < 20 mVp-p for type 2 modules

for frequencies from 10 Hz to 100 MHz and nominal voltages > 400 V for type 1,2
and 4 modules and > 50 V for type 3 modules. Refer also to Requirement 20.

Requirement 8: The cross talk of any module channel at nominal voltage and



maximum load onto neighbour channels must be
∆∆VCT  < 10 mVp-p

for frequencies from 10 Hz to 100 MHz.

Requirement 9: The temperature coefficient in the range 10 to 50 deg.C must be
ΚΚΤΤ  <  5x10 - 5 / deg.C

Requirement 10: 
Voltage variations due to no-load/load effects and module input voltage
fluctuations must be

 less than 5x10 – 5

Requirement 11: 
The voltage setting and readout resolution  must be at least

100 mV for type 1,2 and 4 modules
and 20 mV for type 3 modules.

Requirement 12: 
The measured current Imeas must depend  linearly on the load Itrue to better than

s = ± 3x10 – 3

with s defined in  ( Imeas – Ioffset )  =  ( 1+s )   Itrue

and with Ioffset being the value of  Imeas  at  Itrue = 0.
For the linearity calibration refer to Requirement 15 and 33.

Requirement 13: The  current accuracy must be better than
∆∆I =  ± 0.5 % Imax for type 1,2 and 4 modules

∆∆I = ± 0.06 % Imax for type 3 modules
For the current calibration refer to Requirement 15 and 33.

Requirement 14: The current measurement resolution must be at least
20 nA for type 1 and 4 modules,

50 nA for type 2 modules
and 100 nA for type 3 modules.

Requirement 15: The voltage (req. 6), current (req. 13) and linearity (req. 12)
calibration must be certified for at least one year and the results must be
documented .
The calibration procedure must be documented such that recalibration can be
performed in situ at CERN.



3.3. Technical Requirements for the HV Subracks (Crates)

Five subracks will be mounted into each Standard 19” ATLAS 52U Rack with
Cooling System located in the ATLAS control room USA15-Level-2. Rack
specifications and a sketched arrangement of subracks within are given in Annex 4.

Requirement 16: The subracks must fit the 19” standard in width and must have
not more than 6U in height. For fan tray of 1U height refer to requirement 17,21 and
22.

Requirement 17: The flow direction of forced air cooling through the modules
housed in rackmounted subracks must be vertical upwards.

Requirement 18: The subracks must be mountable on rails in the racks, such that
the position of  the connector front of the modules allows routing of the HV-cables
within the rack through the rack top or the rack bottom (closed door scenario).
Refer to sketch in Annex 4. The minimum bending radius of the multiwire HV
cables is about 3 inch.

Requirement 19: Power input for the subracks must be 230 ± 10%VAC 50Hz
monophase using an IEC connector. A primary power supply needed within the
subrack to drive the modules must use this power input and must be modular and
exchangeble in situ.

Requirement 20: 
Compliance with "CE" rules (Low Voltage Directives and EMC
Directives)  must be checked by an independent laboratory certified to do so.

Requirement 21: A modular fan tray with integrated dust filter and 1U in height
must be provided for insertion below the subrack. Its functioning must be monitored
and ist must cope with Req. 17.

Requirement 22: .
The fan tray (Req. 21) dust filter must be removable for cleaning purposes. For the
case that the subrack is mounted in the ATLAS standard rack this filter will not be
inserted, in order to avoid stopping the cooled air flow within the rack.



3.4. Monitoring and Control Requirements

The ATLAS standard for remote monitoring and control of detector equipment is
CAN bus.
Requirement 23: The controller interface within a HV module must comply with
the CAN standard defined in CAN specification 2.0A.
Requirement 24: A cable  must be provided to connect external floating power and
the CAN bus to the module supply connector in order to be able to drive and
monitor and control a HV module in stand alone mode (out of the subrack).
Requirement 25: 
The following software and hardware control and limiting functions  must be
implemented:
Req 25. 1: Voltage setting per channel from Zero to Umax (ref. to Req. 5)
Req 25. 2: Voltage measuring per channel
Req 25. 3: Current measuring per channel
Req 25. 4: (Refer also to requirement 36.4)
Overcurrent fast trip for each channel.
Trip level setting via potentiometer  per module for type 1,2 and 4 and per channel
for type 3 modules. The tripping channel must be indicated in the status information.
The  switch time of the comparator  must be  ~ 2 µsec or better.
Req 25. 5: (Refer also to requirement 36.4)
Overvoltage fast trip for each channel.
Trip level setting via potentiometer  per module for type 1,2 and 4 and per channel
for type 3 modules. The tripping channel must be indicated in the status
information.The  switch time of the comparator  must be  ~  2 µsec or better.
Req 25. 6: (Refer also to requirement 36.4)
Overvoltage and Overcurrent trip level setting per channel via firmware.
The  switch time must be ~  2 msec or better.
The tripping channel must be indicated in the status information.
Req 25. 7: (Refer also to requirement 36.4)
In case of trip of a channel the module must send an error flag via the CAN bus to
the control program.The error flag generation time must be  ~ 10 msec or better
and the channel status involved must be indicated.
Req 25. 8: 
Up/ down ramping control per channel within steps ranging from 1 to 200 V/sec
aswell as channel or module switch off  function by discharging  according  to the
enabled mode of Requirement 36.4.
Req 25. 9: 
Low frequency  (1Hz) periodic ramping within a voltage window of 50V ± 20V.



Req 25. 10: 
The module firmware watchdog must generate auto reset and put channels to zero.
Req 25. 11: 
CAN bus connection loss/resume/reset must not change the channel status.
Req 25. 12: Interlock status must be indicated for each module and subrack.
Refer to requirement 36.3.
Req 25. 13: Live insertion and extraction of modules must be supported.

       

Requirement 26: The module temperature must be measured and read out.

Requirement 27: Readout latencies for 125 kbit/sec CAN bus transfer mode must
be better than:
10 sec / 1000 channels in case of 3 values (I,U,Status) read out for every channel
  4 sec / 1000 channels in case of 1 packet (I,U,Status) read out for every channel.
The 250 kbit/sec CAN bus transfer mode must be selectable with correspondingly
reduced latencies.

Requirement 28: The internal refresh cycle must be better than:
500 msec     for 16 bit ADC resolution (type 3 modules)
200 msec     for 12 bit ADC resolution (type 1,2 and 4 modules)

Requirement 29: The control software must run on MS-Windows-2000  PC
systems and must be adapted for future system and SCADA software upgrades.
Adaptation after the guarantee period has elapsed shall be considered  as a
repair.Refer to Article 3.3 of the Tender Form.

Requirement 30: The PC to CAN bus interface must  have optical coupling.

Requirement 31: The collected control and monitoring data must be offered to
clients via an OPC server implementation into the control software.

Requirement 32: The remote control and monitoring of the subrack and primary
power supply parameters must be implemented using CAN bus standard.
Parameters must include:
Subrack supply voltages and temperature, On/Off of internal supply voltages.

Requirement 33: 
Firmware upgrade and calibration parameters must be downloadable via CAN bus.



3.5. Environmental Conditions and Reliability Requirements

The HV system will be operated at
temperatures  of 20 C ± 5 C

and humidity of < 70%
controlled environment, within closed racks (cabinets) operating with a controlled,
forced airflow cooled by  air/water heat exchangers (see Annex 4 and
requirements 16 to 20). The maximum cooling power per rack is 9 kWatts.

In test set-up  applications, it will be operated in a normal laboratory environment
(refer also to requirement 21 and 24).

The system will operate in normal magnetic (< 50 Gauss) and normal radiation
environment.

The warm-up time to rated accuracy is one hour.

The HV power supply system will be in service for fifteen years starting 2005.

Requirement 34: 
The calculated MTTF for the HV system parts must be 100.000 hours or more.
The system must be protected against dust contamination in case of use outside of
the rack (refer to requirement 21).

Requirement 35: 
The test, operation and calibration procedures for the system must be documented
and  must be such, that they can be performed  by ATLAS personnel at CERN.
This applies especially to all calibration tasks referred to in requirement 15.

Requirement 36: 
Failsafe installations to protect the HV system against power failure, control failure
and mistaken cable connection must be provided:

Req 36. 1: Watchdog  implementation for firmware with auto reset function as cited
in requirement 25.10.
Req 36. 2: The channel status must be conserved in case of CAN bus disconnect
or control PC failure ( refer to requirement 25.11).



Req 36. 3: 
Interlock  circuitry (Safety Loop) with status control  (requirement 25.12)
must be implemented to be fed by the following external sources:

Source type 1: HV cable disconnect must trip and discharge all channels of the
corresponding module. In order to accomplish this function the cable and connectors
have a dedicated  interlock pair of  wires and pins respectively (see Annex 3).
Source type 2: External interlock via optically coupled DC-level fed to module SL-
connector must trip and discharge all channels of that module.
Source type 3:  External interlock via optically coupled DC-level fed to subrack SL-
connector must trip and discharge all modules of that subrack..
Source type 4: Operator interlook via the control software and CAN bus.

For all interlock cases the  selected discharge modus according to Requirement 36.4
must apply.

Req 36. 4: A channel must discharge if trip conditions are fulfilled (refer to
requirements 25.4, 25.5, 25.6, 25.7).
Two alternatively selectable discharge modes must be implemented to achieve the
corresponding discharge times cited in Table 1:
Mode 1:
Discharge of the concerned channel via the internal HV module  resistor (~ 50
MOhm) left in after disconnecting from the regulation.
Mode 2: Discharge via reed relay (0 Ohm) of a group of 16 channels for type 1,2
and 4 modules and a group of  8 channels for type 3 modules if the trip channel is a
member of  the group.

Requirement 37: 
The HV system must fulfill the relevant European safety regulations and electrical
EMC standards.
The HV system must be conform to the CERN Electrical Safety Code (Annex 5)
and to the CERN Safety Instruction 41 ( IS41 ) regarding “ The use of Plastics and
other Non-Metallic Materials at CERN with respect to Fire Safety and Radiation
Resistance” (see also requirement 20).

Requirement 38: 
The voltage difference between the safety ground and the return of the HV lines
must be limited via two anti-parallel suppressor-diodes with VZ = 56 Volt.
Refer also to requirement 2,3 and 4.



3.6. Documentation

Requirement 39: 
All Documentation describing the technical characteristics of all the system
components must be delivered in English. The documentation must include:

1)  The functional diagram of the High Voltage Supply System
2)  The organisation of the components of module boards and subracks
3)   Description of the control software and CAN bus read out structure

Requirement 40: 
Additional documents in English:

1)  The instructions for use (user’s guide, user’s reference manual, etc.)
2)  The technical description (functional block diagram, electrical schematics, etc.)

 of each module type and of the subrack
3)  Documents containing the diagrams of the installation
4)  Initial test and calibration report
5)  Test, operation and calibration instructions
6)  Full manufacturing documents conditionally



Annex 1: Multi core 37-fold HV cable specification

KERPEN  High Voltage Cable                                        SL – v2YCeH
    ( multi core )                                                              6 kV (DC) / 70C

 screened                                               zero halogen, flame retardant



High Voltage Cable                                                          SL – v2YCeH
(multicore)                                                                                     6 kV (DC) / 70C
 screened                                                                  zero halogen, flame retardant

37xAWG 26/7, red



Annex 2: Multi pin HV connector specification

The specifications below refer to the REDEL Kft S series. Please consult the
LEMO-REDEL Kft catalog, April 2000, page 16,18,19 and 20 for details.

S series chassis panel cut-out



Annex 3: Pin layout for HV chassis connector

The pin assignment for the  LEMO-REDEL Kft S series SLG.H51.LLZG chassis
connector, as mounted on the HV module front panel, is shown below.
HV pins of LEMO type male FFA.05.403.ZLA1 are numbered from 0 to 31
(HV modules 1,2 and 4).
For HV modules of type 3 only pin position 0 to 15 are used.
Common pins C are of the same type as the HV pins and positionned at the corners.
The gide male pin sits at the top and the gide female pin sits at the bottom.

The interlock return pin is sitting at the top of the central pin column.
One of eight interlock key pins attributed to its  kind of module sits in the central
column (position 1 to 8 counted from below top).
All male interlock pins are of LEMO type FGG.2B.565.ZZC



Annex 4: ATLAS rack specification

The ATLAS Standard racks are 19 inch electronic enclosures in compliance with
IEC-60297 part 1 and 2  (for max weight 500 kg).

The external dimensions are:
52U x 600 mm x 900 mm

The front and rear door structure is symmetric to allow opening right or left.



Annex 5: CERN Electrical Safety Code

The CERN Electrical Safety Code can be consulted directly by selecting the
underlined title or via the following Web-Link to CERN:
http://cern.ch/CERN/Divisions/TIS/safdoc/CODES/C1/electrical_code.html

The printed version can be made available on request.



Annex 6: Glossary of Terms and Abbreviations

ATLAS =
A Toroidal LHC Apparatus

Liquid Argon Calorimeter Detectors:
EMB = Electromagnetic Barrel Detector
EMB-PS = Electromagnetic Barrel Detector Presampler
EMEC = Electromagnetic End-Cap Detector
EMEC-PS =Electromagnetic End-Cap Detector Presampler
HEC = Hadronic End-Cap Detector
FCAL = Forward Calorimeter Detector
PCD = Purity Control Detector

CERN =
Conseil Européen pour la Recherche Nucléaire 
which was turned into
“European Organization for Nuclear Research”
as official name.

EMC =
ElectroMagnetic Compatibility

LHC =
Large Hadron Collider

MTTF =
Mean Time To Failure

OPC =
OLE Process Control (a MicroSoft term)

QAP =
Quality Assurance Plan

SL =
Safety Loop

SCADA=
Slow Control and Data Aquisition
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FCal high-voltage power supply

datasheet
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16-channel High Voltage Power Supply EHQ F 006p_605-F 

 
The EHQ F 006p-F is a 16-channel high voltage power supply in 6U Eurocard format. Each single 
channel is independently controllable. The outputs HV-out (-) - floating HV-GND - and HV-out (+) of 
each channel are both floating against each other and against ground. 
The EHQ F 006p-F is made ready for mounting into a crate. It is also possible to supply the modules 
separately with the necessary power. The unit is software controlled via CAN Interface directly 
through a PC or similar controller. The HV output at the EHQ F 006p-F is available with ERNI- 
Multipin-Connector or with REDEL-Connector. 
 

2. Technical data 

 EHQ F 006p_605-F 

Output current IO max. 6 mA  

Output voltage VO  0 to + 600 V 

Floating Connector HV-out (-) to GND: ≤  15 V 

Connector HV-out (+) to GND: ≤  15 V + VO 

Ripple and noise f = 10 Hz to 100 kHz: < 50 mV  
f > 100 kHz: < 50 mV  

(at max. load and 
VO > 50 V) 

Hardware current limit Imax Potentiometer per channel internal 

Interface CAN-Interface  

Voltage setting Via software, resolution 12 mV 

Voltage measurement Via software, resolution 12 mV 

Current measurement Via software, resolution 120 nA 

Accuracy of voltage 
measurement 

< ±  200 mV 
 

Accuracy of current 
measurement 

± (0,01% ∗ IO + 0,01% ∗ IO max + 1 digit) 
 

Temperature coefficient  < 5 ∗ 10
-5

/K 

Stability  < 100 mV (no load/load and ∆ VIN) 

Rate of change of 
output voltage  

Via software: 
0,2 V/s to 50 V/s resolution 0,5 V 

Channel control 
via software 

Status 8 bit: channel error, KILL- enable, channel 
emergency cut-off, ramp, channel on/off, input error, 
current trip 

8 channels error control via 
software 

Current limit (″Channels are OK″ is signalled if 

these limits do not exceed on each.) 

Error signal with green LED ″Channels 0-7 OK″ and ″Channels 8-15 OK″ 

Protection loop (Is) 
(2 pin Lemo-socket) 

5 mA < Is < 20 mA  ⇒  module on 

 Is < 0,5 mA  ⇒  module off 

Power requirements VIN + 24 V (< 2 A)  and  + 5 V (< 0,5 A) 

Packing 16-channels in 6U Euro cassette  
(40,64 mm wide and 220 mm deep) 

Connector 96-pin connector according to DIN 41612 

HV connector 32-pin Erni Multipin-Connector or REDEL-Connector 
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3. Handling 
 
The supply voltages and the CAN interface is connected to the module via a 96-pin connector on the 
rear side of the module. The 16 channel version is added with two independently boards. 

The maximum output current for each channel is defined through the position of the corresponding 
internal potentiometer Imax0 to Imax7 per board. 
The output current will be limited to the setting value after it exceeds the threshold and the green LED 
on the front panel is ‘OFF‘. 

At the bottom on the right side of the front panel is the socket for the safety loop. If the safety loop is 
active then output voltage on all channels is only present if a current is flowing in a range of 5 to 
20mA of any polarity ( i.e. safety loop closed). If the safety loop is opened during operation then the 
output voltages are shut off without ramp and the corresponding bit in the ‘Status module’ will be 
cancelled. After the loop will be closed again the channels must be switched ‘ON’ and a new set 
voltage must be given before it is able to offer an output voltage. The pins of the loop are potential 
free, the internal voltage drop is ca. 3 V. Coming from the factory the safety loop is not active (the 
corresponding bit is always set). Removing of an internal jumper makes the loop active (s. App. A). 

The connector HV-out (-) - floating HV-GND - of each channels should be connected to ground at a 
certain chosen point. Otherwise it must be sure, that the potential between HV-out (-) and GND 

should not exceed the amount of 15 V. 

 

Pin assignment 96-pin connector according to DIN 41612: 
 

PIN  PIN  PIN  Data 

a1  b1  c1     +5V 
a3  b3  c3   +24V 
a5  b5  c5   GND 

a11        @CAN_GND  
  b11      @CANL  potential free 
    c11    @CANH  

a13       RESET 

  b13     OFF with ramp (e.g. 10s after power fail) 

a30 A4 b30 A5 c30 GND    
a31 A2 b31 A3 c31 GND    Address field 
a32 A0 b32 A1 c32 GND    module address ( A0 ... A5) 

 

The hardware signal “OFF with ramp” (Pulse High-Low-High, pulse width ≤ 100 µs) on pin b13 will be 
shut off the output voltage for all channels with a ramp analogue to the Group access “Channel 
ON/OFF”. The ramp speed is defined to VOUTmax / 50 s. This is the actually module ramp speed after 
“OFF with ramp”.  
With help of the Group access “Channel ON/OFF” all channels are switched “ON” again. 

With the address field a30/b30 ..... a32/b32 the module address will be coded.  

Connected to GND ⇒ A(n) = 0 ; contact open ⇒ A(n) = 1 
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Communication via interface 

Device Control Protocol DCP 

The communication between the controller and the module works according to the Device Control 
Protocol DCP, which has been designed for the use of multi-level-hierarchy systems for instruments. 

This protocol works according to the master slave principle. Therefore, the controllers who are on 
higher hierarchy always are masters while devices, which are in lower hierarchy, work as slaves. 

In the event of the control of the HV device through a controller the controller will have the master 
function in this system, while the module (as a Front-end device with intelligence) will be the slave. 

The data exchange between the controller and the Front-end (FE) device works with help of data 
frames. These data frames are assembled of one direction bit DATA_DIR, one identifier bit DATA_ID 
and further data bytes. The direction bit DATA_DIR defines whether the data frame is a write or read-
write access. The DATA_ID carries the information of the type of the data frame and occasionally sub 
addresses (G0, G1). It is characterised through the first byte of the data frame with bit 7=1. The 
function of the module as part of a complex system will be defined through the DATA_ID . 

In such systems with many hierarchical levels a single function of a single module can be addressed 
by using group controllers (GC). Then, for each GC on the way to the module the data frame is 
crated through nesting of the address fields of the GC-addresses followed by the DATA_ID (not 
necessary in case of control a single module). 

EXT_ 
INSTR 

DATA
_DIR 

DATA_ID 
 

Bit 

  
Access 

  7 6 5 4 3 2 1 0   

 x 0 x x x x x x x  No DATA_ID 

0/1 0 1 0 x x x x x x  Write access on Front-end device 

0/1 1 1 0 x x x x x x  Read-write access on Front-end device  
(Request at Write) 

0/1 0 1 1 x x x x G1 G0  Write access on group 

0/1 1 1 1 x x x x G1 G0  Read-write access on group (Request at Write) 

           G0, G1 sub address 
Only needed if group controller (GC) is used 

These data frames correspond to a transfer into layer 3 (Network Layer) respectively layer 4 
(Transport Layer) of the OSI model of ISO. The transmission medium is CAN Bus according to 
specification 2.0A, related to level1 (Physical Layer) and level 2 (Data Link Layer). 

The Device Control Protocol DCP has been matched to the CAN Bus according to specification CAN 
2.0A, but it is also possible to be matched to further transmission media (e.g. RS232). Therefore 
specials of layer 1 and 2 are only mentioned if absolutely necessary and if misunderstandings of 
functions between the Transport Layer and functions of the Data Link Layer may be possible. The 
communication between the controller and a module on the same bus segment will be described as 
follows. 
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Summary of CAN data frames 

Following list describes the accesses of the DCP made for the 8-channel module EHQ 8005-F. 
 

EXT_ 
INSTR 

DATA_
DIR 

DATA_ID 
 

Bit 

 

Access 
read/ 
write/
active 

DATA 
- 

Bytes 

ID1 ID0 7 6 5 4 3 2 1 0    

 x 0 x  x x x x x x No DATA_ID   

x x 1 0 C1 C0 N3 N2 N1 N0 Single access CHANNEL:    

1 1/0 1 0 0 0 N3 N2 N1 N0 Current trip r/w 4 

0 1 1 0 0 0 N3 N2 N1 N0 Actual voltage r 4 

0 1 1 0 0 1 N3 N2 N1 N0 Actual current r 4 

0 1/0 1 0 1 0 N3 N2 N1 N0 Set voltage r/w 4 

0 1 1 0 1 1 N3 N2 N1 N0 Status channel r 3 

  1 1 C3 C2 C1 C0 G1 G0 Group access module   

1 1 1 1 0 0 0 0 0 0 Voltage supplies and module 
temperature  

r 8 

1 1 1 1 0 0 0 1 0 0 offen r 8 

1 1 1 1 0 0 1 0 0 0 Placed hardware channels r 3 

1 1 1 1 0 0 1 1 0 0 Channel works according control r 3 

1 1 1 1 0 1 0 0 0 0 Status4 Sense voltage ≠ Set voltage r 3 

0 1/0 1 1 0 0 0 0 0 0 General status module  r/w 
a 

2 

0 1 1 1 0 0 0 1 0 0 Status1 Voltage limit was exceeded 
 at single channel 

r 3 

0 1 1 1 0 0 1 0 0 0 Status2 Hardware current limit was  
 exceeded at single channel 

r 3 

0 1/0 1 1 0 0 1 1 0 0 Channel ON / OFF  r/w 3 

0 1/0 1 1 0 1 0 0 0 0 Ramp speed r/w 3 

0 0 1 1 0 1 0 1 0 0 Emergency cut-off w 3 

0 1 1 1 0 1 1 0 0 0 Log-on Front-end device in superior 
layer  

a 3 

0 0 1 1 0 1 1 0 0 0 Log-off superior layer at Front-end 
device 

w 3 

0 1/0 1 1 0 1 1 1 0 0 Bit rate  r/w 3 

0 1/0 1 1 1 0 0 0 0 0 Serial number, software release and 
CAN message configuration 

r/w 7/2 

0 0 1 1 1 0 0 1 0 0 Set voltage for all channels  w 4 

0 1/0 1 1 1 0 1 1 0 0 KILL-enable r/w 3 

0 1/0 1 1 1 1 0 0 0 0 ADC filter setting r/w 3 

0 1 1 1 1 1 0 1 0 0 Module nominal values r 5 

0 1 1 1 1 1 1 0 0 0 Status3 Software current trip was  
 exceeded at single channel 

r 3 

Ci:  Accesses Ni 0 to 15: Channel 0 to 15 

Gi 0 to 3: Group 0 to 3 Only needed if group controller (GC) used 
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Manual extension

Crate ECH 228 to

Crate ECH 238 and option UPS

with CAN-Control

The crates ECH 238 are supplied with a controller for remote and monitoring control via CAN-bus. 

Option UPS:
together with an  UPS and a battery back up, short term power failure  (<10s) can be bridged and in case of 
longer AC power failure a defined shut down procedure for the HV modules is guaranteed.

Installation

After unpacking the crate has to be installed under the described condition. 
For crates with UPS option the 16A fuse which is included has to put into the fuse holder on the rear side.
Afterwards the battery is activated. 
With AC line ON the crate is in Stand-by mode.

Technical Data version 1.

CAN bus speed 20, 50, 100, 125 and 250 kbit/s

Analogue functions ADC with 10-Bit resolution, control of supplies voltages and temperature of this crate.

Digital functions ON – and OFF switch of internal supply voltages via CAN-Bus in Stand-by mode

Power-ON/OFF

With option UPS

Power cable connected and AC line is ON, now the crate is in Stand-by mode.

In Stand-by mode the internal DC supply voltages can be switched ON and OFF with 
help of a push button, even if no CAN-control is present.

In case of AC power failure the internal voltages are saved by the acc. battery.

If the power is failing more than 10 sec. a signal will be provided , which is going to 
start a defined shut down procedure. (HLH- impulses on each module-slot, Pin b13). 
The bridge time for the battery is 1 min at least.

CAN-Interface

The CAN-control is completely configurable via software. The Structures is following to CAN-Open (CAL-based 
Draft Standard 301 / release 3.0).

After Power_ON-Reset the controller is running into CAN-Status “Initialisation“. During this state Write access is 
possible to all EEPROM-cells via the sub identifier. If control is already configured (e.g. from factory), control is 
running into CAN-status “Pre-operational”.

Only in these both states it is possible to work with services Network-Management (NMT) and  Distribution - 
Management (DBT).
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CAN-Status “Pre-operational“ is necessary for the further description.

In order to allow the control of the crate via CAN-Bus, with global command „START“ the CAN-Status „Pre-
operational“ will be switched into CAN-Status “Operational“:

Services ID DLC DATA_1
(with 

RTR
=0)

Network - Management (NMT)

START / STOP / RESET

global

broadcast message to all ECH 
CAN nodes

0 1 Bit 0 = 1 ⇒ Start
Bit 1 = 1 ⇒ Stop
Bit 2 = 1 ⇒ Reset 
CAN-interf.
Bit 3 = 1 ⇒ Reset 
Controller

Now control can work via two identifier (see ID - Distribution): 

1. Control (EMCY-ID)

The internal supply voltages will be controlled cyclically (VMeas ca all 100 ms). The voltage control is factory fixed 
with  ∆V =  ± 5% given through tolerance values VTrehsold in an EEPROM. If  the thresholds of  voltage and/or 
temperature will be exceeding then the controller is sending a message with EMCY-ID to the Bus (send only). 

Controls of EMCY-ID´s are working only after the controller has been set into Operational mode with NMT-Start.

ID R
T
R

D
L
C

Voltage DATA_2 DATA_3 DATA_4 DATA_5

EMCY-
ID

0 5 0 0 0 0 0 x x x 12-bit unsigned 
ADC-word:

VMeas 

12-bit unsigned 
ADC-word:

VThreshold 

xxx: 000 + 24 V = VNominal 0

001 + 5 V = VNominal 1

010 24VBattery = VNominal 2

VMeas resp. VThreshold = VNominal x ∗ ADC-word / 2048

ID R
T
R

D
L
C

Temperature DATA_2 DATA_3 DATA_4 DATA_5

EMCY-
ID

0 5 0 0 0 0 0 x x x 0 TMeas 
[°C]

0 TThreshold

[°C]
xxx: 011 temperature sensor 1

(24V-DC PS)
100 temperature sensor 2

(Back plane)
101 temperature sensor 3
110 temperature sensor 4

(3 and 4: reserved)

ID R
T
R

D
L
C

AC line power 
failure signal

DATA_2 DATA_3 DATA_4 DATA_5

EMCY-
ID

0 5 0 0 0 0 0 x x x 0 0 7 7c xxx: 111 AC line power failure 
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2. Subidentifier (Sub-ID)

E-
command

ID R
T
R

D
L
C

r
/
w

Command DATA_n Remarks

Multiplex-
command

Sub-ID 0 x x 0 x x x x x x multiplexed DAC/ADC – work on channels 
of selected module (Sub-ID)

ADC Sub-ID 0 1 1 0 1 0 0 x x x Read Access, (call from host)

Sub-ID 0 3 1 0 1 0 0 x x x 2 Byte ADC-word VMeas = VNominal x ∗ ADC-word / 2048

xxx: 000 + 24 V = VNominal 0

001 + 5 V = VNominal 1

010 24VBattery = VNominal 2

Sub-ID 0 4 1 0 1 0 0 x x x 2 Byte ADC-value 
+

1 Byte fan status

ADC-value = Temperature [°C]

Byte fan status =
0: stage 1, 
1: stage 2, full cooling

xxx: 011 temperature sensor 1
(Back plane)

100 temperature sensor 2
(24V-DC Power supply) 

101 temperature sensor 3
110 temperature sensor 4

(3 and 4: not installed) 

Sub-ID 0 3 1 0 1 0 0 1 1 1 1. Byte AC line 
power status

2. Byte crate power 
status

Status AC line power
1: AC line power OK
0: AC line power wrong

Capture status if voltages were out of range.
Bit b7=1 temperature to high
Bit b5=1 +24V to high
Bit b4=1 +24V to low
Bit b3=1 +5V to high
Bit b2=1 +5V to low
Bit b1=1 24V battery voltage to high
Bit b0=1 24V battery voltage to low

Sub-ID 0 3 0 0 1 0 0 1 1 1 1. Byte AC line 
power status

2. Byte crate power 
status

In order to reset the AC power line status it 
have to be set bit 0 to one in DATA_1. 

In order to reset the corresponding bit of the 
crate status it have to be set in the DATA_2.
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Module-
command

Sub-ID 0 x x 1 x x x x x x Use module functions of selected module 
(Sub-ID)

EEPROM Sub-ID 0 2 1 1 0 0 0 0 0 0 EEPROM-address Read / Write access, ( call from host)

/Tolerances Sub-ID 0 3 1 1 0 0 0 0 0 0 Data_1:
EEPROM-address

Byte oriented reading of tolerances from 
EEPROM-address:

V Higher ADC-
threshold

Lower ADC-
threshold

High low high low

+ 24 V
+ 5 V
24VBattery

0x3d
0x41
0x45

0x3e
0x42
0x46

0x3f
0x43
0x47

0x40
0x44
0x48

Sub-ID 0 3 0 1 0 0 0 0 0 0 Data_1:
EEPROM-address 

Data_2:
tolerance high/low

-byte oriented writing of tolerances on above 
EEPROM-address, tolerance = word ADC-
threshold

-tolerance = (calculated set-ADC-value) ∗
(1 ± ∆V)
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E-
command

ID R
T
R

D
L
C

r
/
w

Command DATA_n Remarks

Module-
commands

Sub-ID 0 x x 1 x x x x X x Use module function of selected modules 
(Sub-ID) 

ON/OFF Sub-ID 0 1 1 1 0 0 0 0 0 1 Read / Write Access, (call from host)

Sub-ID 0 3 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 1 x=0... switched on
x=1... switched off

Read/Write Access

ON/OFF Sub-ID 0 3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 1 x=0... switched on
x=1... switched off

Write Access

Bit rate Sub-ID 0 1 1 1 0 0 0 0 1 1 Read / Write Access, (call from host)

Sub-ID 0 2 1 1 0 0 0 0 1 1 Data_0 Bit rate [kBit/s]
Read/Write Access

Bit rate Sub-ID 0 2 0 1 0 0 0 0 1 1 Data_0 New bit rate:
only 20, 50, 100, 125 for bit rate [kBit/s] is 
allowed!
Write Access

Unit-ID Sub-ID 0 6 1 1 0 0 0 1 1 0 3 Byte BCD-unit-no. and 2 Byte BCD-software-release
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These identifiers will be fixed by ID - Distribution (DBT) Service:

ID - Distribution (DBT) ID DLC DATA_1 DATA_n remarks
Service

DBT - Master - Request 2024d
7E8h

(RTR=1)

0 Call from host only by 
connected module: 
message address 
and  ID´s of module

DBT - Slave - Service 2023d
7E7h

(RTR=0)

8 mod.-addr. 2 3 4 5 6 7 8 Message with module 
address and 
corresponding ID´s

DBT - Master - Service 2024d
7E8h

(RTR=0)

8 mod.-addr. 0 0 EMCY

-ID

Sub

-ID

0

DBT - Master - Service

⇓

2024d
7E8h

(RTR=0)

2 0x80 module-addr. Call from host
to  module address:
message of  ID´s to 
address

DBT - Slave - Service 2023d
7E7h

(RTR=0)

8 mod.-addr. 2 3 4 5 6 7 8 Message with module 
address and the 
corresponding ID´s

Example: DBT-Master-Request ID RTR DLC Data
send to crate 0x7E8 1 0
recive from crate 0x7E8 0 8 0x30 0x00 0x00 0x40 0x80 0x60 0x80 0x00

mod.-addr. 0x30
EMCY-ID 0x408 (left justified)
SUB-ID 0x608 (left justified)

The remote control module will be configured with help of Network-Management (NMT) Service:

Network - Management (NMT) ID DLC DATA_1 remark

NMT - Slave – Service

(only in initialising mode )

2025d
7E9h

2 Mod.-addr. (0xFF) After stop of CAN-Status 
(0x20):

0x80: 
Operational

0x40: Pre-
operational

0x20: 
Initialisation

NMT - Master - Service 2026d
7EAh

2 Mod.-addr. old Mod.-Adr. new, 
Addr. 0x80 
forbidden !

Start / Stop / Reset

global

broadcast message to all ECH 
CAN nodes

0 1 Bit 0 = 1 ⇒ Start
Bit 1 = 1 ⇒ Stop
Bit 2 = 1 ⇒ Reset 
CAN-Interf.
Bit 3 = 1 ⇒ Reset 
Controller
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Maintenance

The crate and the included battery are free from any support. If the crate is not in use for more than half a year it 
has to be connected to mains and switched ON for at least 8 hours, so that the batteries will be charged to full 
capacity again. After 5 years time the batteries have to be replaced by new ones.
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Chapter II

The isegHVOPCServer for iseg Multi-Channel HV systems
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OLE for Process Control (OPC) for the iseg Multi-Channel HV 
systems

The isegHVOPCServer as a part of OLE process control is the link between the OPC client, the iseg Multi-

Channel HV modules and / or the iseg system crates.

1  Introduction

The  iseg Multi-Channel HV system is made of several devices of hardware and software components. The 

hardware devices are as follows:

- Multi-Channel HV power supply modules

- System crates carrying the HV modules

Each module  and each crate  offers  a  microprocessor-based intelligence.  The interface  which  controls  and 

monitors the hardware is the CAN bus. It is following the CAN 2.0B ( passive ) specification. The data points for 

the accesses to the module and the crate properties comes together in one executable file and can work on one 

CAN bus or on different CAN buses in conformity with the configuration files.

The  system  software  interface  is  made  by an  OPC  server,  which  follows  the  rules  defined  by  the  OPC 

Foundation (DA 3.0, 2.0 and 1.0 are supported). Therefore the users of the system must not know the internal  

protocols in detail.

In order to understand the OPC interface (server namespace), the relevant details of the modules and the crates  

are described as follows:

iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 (0)351 / 26 996 - 0
Bautzner Landstr 23 http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21
D - 01454 Radeberg / Rossendorf Germany 5



Spezia le lektronik  GmbH

2 Modules

Each modules  offers  up  to  32 channels,  made of  one or  two  internal  cards  (  PCB ).  Each  internal  card  

represents one CAN node (the most of the modules have 16 channels per card, some modules comes also with 

another number of  channels per card – see instruction “Placed hardware channels”  of  the EHQ Multi-

Channel CAN operators manual). Each channel of the module offers individual properties (see below). 

In addition there are properties as groups that summarize a property for all channels and which are controlled by 

one CAN node.

Properties of one channel:

- set voltage write / read

- current trip write / read

- actual current read

- actual voltage read

- status read

Properties of a channel group (some examples):

- sum error read

- ramp speed read / write

- set voltage for all channels write

- emergency cut-off write

3 Crates

Properties of a crate (some examples):

- actual voltage of single lines read

- temperature  read 

- Power ON / OFF read / write

- Status read / write

- StatusACLinePower read

The most important information of the crate is the status of the power supplies.
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4 Software

4.1 General information

The  isegCANHVControl.exe control software performs all basic monitor and control tasks for modules and 

crates. It  provides a HMI (human machine interface) for all  properties of  the modules and crates using the 

proprietary driver of the CAN interface (PEAK). It can be used in order to configure the modules and crates  

before the work with the isegHVOPCServer. Such configurations are the flash update, changing the bit rate and 

identifiers for crates, the offset calibration of the module temperature and the permanent saving of setting values 

inside of the modules.

An alternative and more general control software is based on the standardized OPC interface. With means of  

the OPC tools is it possible to establish a sever client system in order to access the iseg Multi-Channel HV 

system, too. The properties of the Multi-Channel HV hardware can be accessed via the item data points.

5 OPC Server part for Multi-Channel HV devices 

The OPC server has been developed using the following tools:

- Softing OPC Toolkit, Ver. 4.10, DA 3.0, AE1.01

- Microsoft’s Visual C++, Ver. 6.01

- PEAK System’s CAN device driver

The OPC server for Multi-Channel HV system is divided into ‘Data Access’ part and an ‘Alarms and Events’ part.

5.1 Configuration

First  the OPC server has to be configured. It  must  get all information about the kind of  iseg HV hardware 

connected to the CAN bus. This information is stored in the configuration file isegHVOPCServer.ini. The tool 

isegHVOPCcfg.exe is used to create this configuration file. It performs a scan on the CAN bus and collects 

information from the connected CAN nodes (modules and crates). Also it supports the graphical access to the 

initialising file isegHVOPCServer.ini.

For further details see the configuration manual isegHVOPCSetup.pdf.
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5.2 Data Access Server   and   Alarm and Events Server

5.2.1 Data Access Server

The OPC DA server is made to work with more than one crate. Therefore each item has to be addressed in a  

geographical way to build a fully qualified item ID that means: 

STATUS.COMPONENT iseg  OPC  server  components  (software  releases  

and status of CAN bus)

CANBUS.NODE.CHANNEL.ITEMNAME data point for channel depending properties

CANBUS.NODE.ITEMNAME data point for module depending properties

By the use of a special namespace text file  – isegHVOPCServer.nsp – can build user defined fully qualified 

item  IDs.  The  description  is  placed  in  the  file  isegHVOPCUserNameSpace.pdf.  The  program 

isegHVOPCUserNameSpace.exe is  able  to  make  a  scan  over  the  namespace  and  save  the  information 

prepared to read by the isegHVOPCServer from the namespace file.

The properties of Multi-Channel HV system in the OPC server are defined as items. In the simplest case, such 

an item is directly coupled to a read or write via CAN bus. The ‘set voltage’ is one example.

Some OPC items have to be built up from data read results via CAN. The ‘status current limit’ is one example,  

which is read as an unsigned integer (2 bytes). Each bit of these 2 bytes represents the status of the current limit 

of one channel. This bit is interpreted as Boolean. All channels result in an array with 16 elements of Boolean, 

the  ‘StatHwILimitBoolArray’.

There is a feature of ranking these many requests because a client can send many of them. First priority is 

assigned to emergency off ‘Emcy’, second priority to the command set voltage ‘VSet’. All other requests are 

under normal (lowest) priority.

A background loop process can be used to update the cache of the changeable channel items continuously.  

This process reads all measurement data and channel status data from the HV modules and fills the cache of  

the OPC server  namespace.  To  implement  a  background loop process  the “ReadSync”  entry in  the OPC 

initialising file “EHQ3216Srv.ini” have to be a different value from zero. The advantages of this mechanism is a  

very fast update of the really interesting module properties (Vmeas, Imeas and Stat item) because the group 

update of this items of an OPC client will cause no device reads if the time stamps of the items are as newer as  

the last update of the group.
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5.2.1.1 Item’s properties

The items own a sum of the same and a sum of specific item properties.

Each item has as standard properties: Item Canonical Data Type
Item Value
Item Quality
Item Time Stamp
Item Access Rights
Server Scan Rate
Item Description

Specific item properties: Item EU Type
Item EU
Item High EU (the maximum value that the device will accept and/or return)
Item Low EU (the minimum value that the device will accept and/or return)
Application Description
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5.2.1.2 Items of the status from the server components

fully qualified identifier device class description access variant type

Status.release_isegHVOPCServer all isegHVOPCServer.EXE readable VT_BSTR
Status.HeartBeat all heart beat of the server readable VT_UI1
Status.release_isegCAN all iseg[p/s]can.DLL readable VT_BSTR
Status.CAN all status of CAN bus readable VT_BSTR
Status.Force all 0=mode1    1=mode2 readable VT_BOOL
Status.Refresh all mode1=0 Readable VT_UI1

Status.CAN Actual status of the CAN line
Possible values are “OK”

"BUSHEAVY" bus errors e.g. when there is a mix of different bit rates
"BUSOFF" bus error e.g. a short on the bus
“OVERRUN" overflow of the buffer of the CAN driver

In order to select another CAN line for evaluation or to make a reset of the interface hardware of  
the corresponding CAN line, the number of the real hardware line has to be written to this item 
(not the number of the user namespace file).

A parallelization of the send and receive thread can be made with the items Force and Refresh to increase: 
the update rate of the item cache.
the CAN busload without a noticeable increasing of the system load.

Status.Force
Force=false Mode1

An access to the item cache via an OPC client will be made with a request to the 
device hardware through the event handler of  the item tag connected with a 
delay until the answer from the device or the time out.

Force=true Mode2 (for Multi-Channel devices and crate monitoring units, not for crate
monitoring units only)

An access to the item cache via an OPC client will be made without a request to 
the device hardware. The update of the item cache can be adjusted with the 
item Refresh.
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Status.Refresh

The Items listed in Appendix A will refreshed as fast as possible in background.

Useful values are: Refresh=0 - no update of the item cache in background
Refresh>0 up to 32 - update of the item cache in background

A higher value of the item “Refresh” means that more data will request in background with that a 
higher update rate of the OPC groups is possible, but which increase also the CAN bus load. 

A possible handling is: 
The client reads all stable items such as canx.mtyy.chzz.NominalV after the OPC server 
has been started. In a next step the item “Force” will be set on true value and the group 
update rate  for  instance of  the items to measurement  data points will  decrease.  The 
background refresh can be started now with set the “Refresh” item to a value unequal to 
zero.
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5.2.1.3 Items of Data Access to the channel properties

    Syntax: t Є [a|p] module type (active or passive) 
x Є [0..15] number of the CAN bus 

 yy Є [0..63] number of the CAN node
zz Є [0..15] number of the channel

fully qualified identifier device class description access variant 
type

can  x  .m  tyy  .ch  zz  .VSet  all set voltage write-/ readable VT_R4
can  x  .m  tyy  .ch  zz  .VMeas  all actual voltage readable VT_R4
can  x  .m  tyy  .ch  zz  .NominalV  all nominal voltage readable VT_R4
can  x  .m  tyy  .ch  zz  .ISet  (all) set current / set current trip write-/ readable VT_R4
can  x.  m  tyy  .ch  zz  .ITrip  all (set current) / set current trip write-/ readable VT_R4
can  x  .m  tyy  .ch  zz  .IMeas  all actual current readable VT_R4
can  x  .m  tyy  .ch  zz  .NominalI  all nominal current readable VT_R4
can  x  .m  tyy  .ch  zz  .Stat  all status channel in the kind of EHQ readable VT_UI2
can  x  .m  tyy  .ch  zz  .On  all set on = -1, set off = 0 writeable VT_BOOL
can  x  .m  tyy  .ch  zz  .Emergency  all set emergency = -1,

reset emergency = 0
writeable VT_BOOL

canx.mtyy.chzz.doClear all reset  the  errors  (EHQ),  events 
(EHS) of the channels

writeable VT_BOOL

can  x  .m  tyy  .ch  zz  .Status  all
(< 20 without 
any function)

status channel (OPC quality is bad, 
when it  is  not  an EHS module in 
EHS mode

readable VT_UI2

can  x  .m  tyy  .ch  zz  .EventStatus  >20 / (all) channel event status write-/ readable VT_UI2
can  x  .m  tyy  .ch  zz  .EventMask  >20 / (all) channel event mask write-/ readable VT_UI2
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5.2.1.4 Items of Data Access to the module properties

fully qualified identifier device classdescription access type
can  x  .m  tyy  .GeneralStat  all general status readable VT_UI1
canx.mtyy.GeneralSafetyLoop all safety loop is closed write-/ readableVT_BOOL
canx.mtyy.GeneralHwVLimitLow     0 / (all) hardware voltage limit is to low write-/ readableVT_BOOL
can  x  .m  tyy  .Status  >20 / (all) module status (EHS) readable VT_UI2
can  x  .m  tyy  .EventStatus  >20 / (all) module event status write-/ readable VT_UI2
can  x  .m  tyy  .EventMask  >20 / (all) module event mask write-/ readable VT_UI2
can  x  .m  tyy  .EventChannelStatus  >20 / (all) event channel status write-/ readable VT_UI2
can  x  .m  tyy  .EventChannelMask  >20 / (all) event channel mask write-/ readable VT_UI2
can  x  .m  tyy  .setAdjust  all Adjust of the HV on = -1

Adjust of the HV off =  0
writeable VT_BOOL

can  x  .m  tyy  .setKillEnable  all hardware kill enable = -1
hardware kill disable =  0

writeable VT_BOOL

can  x  .m  tyy  .doClear  all Clear all events / errors of the whole HV 
module

writeable VT_BOOL

can  x  .m  tyy  .GroupNumber  >20 / (all) Index of the variable groups 0 to 31 write-/ readable VT_UI1
can  x  .m  tyy  .GroupVariable  >20 / (all) extended  and  flexible  range  of  group 

functions
write-/ readable VT_UI4

can  x  .m  tyy  .StatHardwareVLimit  all status  voltage  limit  –  corresponding 
channel voltage limit = 1

write-/ readable VT_UI2

can  x  .m  tyy  .StatHardwareILimit  all status  current  limit  –  corresponding 
channel current limit = 1

write-/ readable VT_UI2

can  x  .m  tyy  .StatINHIBIT  7 / (all) status INHIBIT – corresponding INHIBIT 
= 1

write-/ readable VT_UI2

can  x  .m  tyy  .StatITrip  all status  current  trip  –  corresponding 
channel current trip = 1

write-/ readable VT_UI2

can  x  .m  tyy  .StatRegulationErr  0, 1, 2 / (all) status regulation error – corres-ponding 
channel error = 1

write-/ readable VT_UI2

can  x  .m  tyy  .On  all corresponding channel set on = 1
 or                                 set off = 0

write-/ readable VT_UI2

can  x  .m  tyy  .VSetAllChannels  all set voltage of all channels write-/ readable VT_R4
can  x  .m  tyy  .ISetAllChannels  all set current of all channels write-/ readable VT_R4
can  x  .m  tyy  .ITripAllChannels  0-5, 8 / (all) set current trip of all channels write-/ readable VT_R4
can  x  .m  tyy  .RampSpeed  all speed of the voltage ramp in per-cent of 

the nominal voltage of the channel per 
second

write-/ readable VT_R4

can  x  .m  tyy  .IRampSpeed  all speed of the current ramp in per-cent of 
the nominal current of the channel per 
second (OPTION)

write-/ readable VT_R4

can  x  .m  tyy  .Emcy  all emergency - corresponding channel set 
emergency = 1
reset emergency = 0

write-/ readable VT_UI2

can  x  .m  tyy  .ADCSmplsPScnd  >20 ADC samples per second write-/ readable VT_UI2
can  x  .m  tyy  .DigitalFilter  >20 Digital filter write-/readable VT_UI2
canx.mtyy.DeviceID all device identifier readable VT_BSTR
canx.mtyy.SoftwareID all software release readable VT_BSTR
canx.mtyy.BitRate all bit rate readable VT_UI2
canx.mtyy.Option >20 / (all) options readable VT_BSTR
canx.mtyy.OptionSingleSpec >20 / (all) option single specification write-/ readable VT_BSTR
canx.mtyy.OptionSpec >20 / (all) specification readable VT_UI1
canx.mtyy.HardwareILimit all hardware current limit readable VT_R4
canx.mtyy.HardwareVLimit all hardware voltage limit readable VT_R4
canx.mtyy.Supply24V all supply 24V readable VT_R4
canx.mtyy.Supply5V all supply 5V readable VT_R4
canx.mtyy.BoardTemp all board temperature readable VT_R4
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fully qualified identifier device class description access type
canx.mtyy.ErrThreshold all threshold  of  error  evaluation 

in  percent  of  the  nominal 
voltage

write-/ readable VT_R4

canx.m  t  yy.ConfigRelFErr  0, 1, 2 / (all) configuration  mask  of  relay 
and regulation error

write-/ readable VT_UI1

canx.mtyy.Polarity 5 / (all) electronical polarity switch write-/ readable VT_UI1
canx.mtyy.Alive all module is alive readable VT_BOOL
canx.m  t  yy.DeviceClass  all device class readable VT_UI1

5.2.1.5 Items to signal an alarm from the HV devices via Data Access

fully qualified identifier device class description access type

canx.mtyy.Alarm all alarm status readable VT_BOOL
canx.mtyy.AlarmInformation all alarm information readable VT_UI1

The  items  “Alarm”  and  “AlarmInformation”  are  implemented  as  event  driven  update  inside  of  the 

isegHVOPCServer. These two items are included ( on request of Cern ) in order to have an access to the fast 

alarm  messages  of  the  modules.  The  better  way  is  to  use  the  faster  “Alarm  &  Event”  part  of  the  

isegHVOPCServer. Since version 4.01 the items as there are “Alarm” and “AlarmInformation” can be cleared by 

reset of the corresponding status bit. If an error occurs the “alarm status” will become to a true value. The error 

of  the  modules  can  be  reset  only by a  reset  of  the  reason  of  the  error  followed  by writing  a  ‘1’ to  the 

corresponding status bit.

The item “AlarmInformation” describes the kind of  the alarm (see Hints to the item alarm information). The  

server refreshes „Alarm“ and „AlarmInformation“ if a new alarm is attempted but the client will register the new 

alarm only if the DA-value has been changed.
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5.2.1.6 Notes to the item Status channel (EHQ)

device classes 0, 1, 2
DATA_1 to DATA_0 bool array UI2
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

v c k e r o p x x x x x x x s t

device class 6
DATA_1 to DATA_0 bool array UI2
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

v c x e r o p x x x x x x x x t

device class 7
DATA_1 to DATA_0 bool array UI2
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

v c x e r o p x i x x x x x x t

t current trip t = 0 channel is ok
t = 1 VO shut of 0V because software current trip has been exceeded

s sum error s = 0 channel is ok
s = 1 detection of a sum error - consist of an OR between current and voltage

limit error in time slots of 1ms, which means that it exists an error in the
regulation of the channel, see to (1)

x no information
I INHIBIT i = 0 no INHIBIT channel is ok

i = 1 detection of an INHIBIT if the HV is above the threshold to arm the
error detection

p input-error p = 0 no input-error
p = 1 wrong message to control the module

o switch channel to o = 0 channel OFF
o = 1 channel ON

r ramping r = 0 voltage is stable
r = 1 voltage ramps

e emergency cut-off e = 0 channel works
e = 1 cut-off VO shut off to 0V without ramp

k kill function k = 0 disable (see hardware current limit and software current trip)
k = 1 enable (see hardware current limit and software current trip)

c current limit error c = 0 channel is ok
c = 1 VO shut off 0V because hardware current limit has been exceeded

v voltage limit error v = 0 channel is ok
v = 1 VO shut of permanently because voltage limit has been exceeded

For detection of a current or voltage limit error flag the firmware must evaluate the channel voltage at first.
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5.2.1.7 Notes to the item Channel status (EHS)

canx.mtyy.chzz.Status channel status readable VT_UI2 
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

isVLIM isCLIM isTRP isEINH isVBND isCBND res res isCV isCC isEMCY isRAMP isON IERR res res

isVLIM IsVoltageLimitExceeded voltage limit set by Vmax is exceeded 
isCLIM IsCurrentLimitExceeded current limit set by Imax is exceeded 
isTRP IsTripExceeded Trip is set when Voltage or Current limit or Iset has been exceeded (when KillEnable=1 )
isEINH IsExtInhibit External Inhibit
isVBND IsVoltageBoundsExceeded Voltage out of bounds
isCBND IsCurrentBoundsExceeded Current out of bounds
isCV IsControlledVoltage Voltage control active
isCC IsControlledCurrent Current control active
isEMCY IsEmergencyOff Emergency off without ramp
isON IsOn On
isRAMP IsRamping Ramp is running
IERR InputError Input error
res Reserved

isVLIM=0 channel is ok
isVLIM=1 the hardware voltage limit is exceeded
isCLIM=0 channel is ok
isCLIM=1 the hardware current limit is exceeded

(to detect a hardware voltage or current limit error flag the 
firmware has to evaluate the channel voltage and current 
at first)

isTRP=0 channel is ok
isTRP=1 VO is  shut  off  to  0V without  ramp because the 

channel has been tripped.
isEINH=0 channel is ok
isEINH=1 External Inhibit was scanned
isVBND=0 channel is ok
isVBND=1 |Vmeas-Vset| > Vbounds

isCBND=0 channel is ok
isCBND=1 |Imeas-Iset| > Ibounds (to detect a voltage or 

current  out  of  bound 
flag  the  firmware  has 
to  ramp  the  channel 
voltage Vset at first)

isCV=1 channel is in state of voltage control
isCC=1 channel is in state of current control
isEMCY=1 channel is in state of emergency off, VO has 

been shut off to 0V without ramp
isON=0 channel is off
isON=1 channel voltage follows the Vset value
isRAMP=0 no voltage is in change
isRAMP=1 voltage is in change with the stored ramp speed 

value
IERR=0 no input-error
IERR=1 incorrect message to control the module

5.2.1.8 Notes to the items of the Channel control (EHS)

setOn Set on channel
setEemergencyY Set Emergency
doClear Do clear  events  (EHS) or 

errors signals (EHQ) of the 
channel.

setEmergency = 0 reset Emergency
setEmergency =1 set Emergency (cut-off VO shut off to 0V without ramp)

setOn = 0 switch the channel to OFF
setOn = 1 switch the channel to ON
(When Vset has been set to a value unequal to zero (0V) before the status bit ‘isOn’ is changed from (1) one to (0) zero a ramp down of 
the voltage to zero (0V) will be started.)

doClear=0 do nothing
doClear=1 reset the errors (EHQ), events (EHS) of the channels
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5.2.1.9 Notes to the item Channel event status (EHS)

canx.mtyy.chzz.EventStatus channel event status write-/ readable VT_UI2 
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

EVLIM ECLIM ETRP EEINH EVBNDs ECBNDs res res ECV ECC EEMCY EEOR EOn2Off EIER res res

EVLIM EventVoltageLimit Event: Hardware- voltage limit has been exceeded
ECLIM EventCurrentLimit Event: Hardware- current limit has been exceeded

ETRP EventTrip Event:  Trip  is  set  when  Voltage  or  Current  limit  or  Iset  has  been  exceeded   (when 
KillEnable=1 )

EEINH EventExtInhibit Event external  Inhibit
EVBNDs EventVoltageBounds Event: Voltage out of bounds  
ECBNDs EventCurrentBounds Event: Current out of bounds
ECV EventControlledVoltage Event: Voltage control
ECC EventControlledCurrent Event: Current control
EEMCY EventEmergencyOff Event: Emergency off
EEOR EventEndOfRamp Event: End of ramp
EOn2Off EventOnToOff Event: Change from state "On" to "Off"
EIER EventInputError Event: Input Error
res Reserved

An event bit is permanently set if the status bit is 1 or is changing to 1. Different to the status bit an event bit isn't  

automatically reset. A reset has to be done by the user by writing an 1 to this event bit.

5.2.1.10 Notes to the item Channel event mask (EHS)

canx.mtyy.chzz.EventMask channel event mask write-/ readable VT_UI2 

Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit
9

Bit
8 Bit7 Bit6 Bit

5 Bit4 Bit3 Bit2 Bit
1 Bit0

MEVLIM MECLIM MECTRP MEEINH MEVBNDs MECBNDs res res MECV MECC res MEEOR MEOn2Off MEIERR res res

MEVLIM MaskEventVoltageLimit EventMask: Hardware- voltage limit has been exceeded
MECLIM MaskEventCurrentLimit EventMask: Hardware- current limit has been exceeded
METRIP MaskEventTrip EventMask: Voltage limit or Current limit or Iset has been exceeded  (when KillEnable=1 )
MEEINH MaskEventExtInhibit EventMask: External Inhibit
MEVBNDs MaskEventVoltageBounds EventMask: Voltage out of bounds  
MECBNDs MaskEventCurrentBounds EventMask: Current out of bounds
MECV MaskEventControlledVoltage EventMask: Voltage control
MECC MaskEventControlledCurrent EventMask: Current control
MEEMCY MaskEventEmergencyOff EventMask: Emergency off
MEEOR MaskEventEndOfRamp EventMask: End of ramp
MEOn2Off MaskEventOnToOff EventMask: Change from state on to off
MEIER MaskEventInputError EventMask: Input Error
res Reserved
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5.2.1.11 Notes to the item Module status (EHS)

canx.mtyy.Status module status readable VT_UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

isKILenaisTMPgdisSPLYgd isMODgd isEVNTact isSFLPgd isnoRAMP isnoSERR Ires res isHwVLIMgd isSrvc res res res isAdj

IsKILena IsKillEnable Module state of kill enable
isTMPgd IsTemperatureGood Module temperature good
isSPLYgd IsSupplyGood Power supply good
isMODgd IsModuleGood Module  in state good
isEVNTact IsEventActive Any event is active and mask is set
isSFLPgd IsSafetyLoopGood Safety loop closed
isnoRAMP IsNoRamp All channels stable, no ramp active .
isnoSERR IsNoSumError Module without failure
isHwVLIMgd IsHardwareVoltageLimitGood Hardware voltage limit in proper range, only for HV distributor modules with current mirror;
IsSrvc IsService Hardware failure detected (consult iseg Spezialelektronik GmbH)
isADJ IsFineAdjustment Mode of the fine adjustment
res Reserved

isKILLena=0 Module in state kill disable
isKILLena=1 Module in state kill enable 
isTMPgd=0 if module temperature is higher than 55°C then all channel are switched off permanently
isTMPgd=1 module temperature is within working range
isSPLYgd=0 supply voltages are out of range (range of 24V +/-10% and of 5V +/-5%)
isSPLYgd=1 supply voltages are within range
isMODgd=0 module is not good, that means (isnoSERR AND (ETMPngd OR ESPLYngd OR ESFLPngd))==0
isMODgd=1 module is good, that means (isnoSERR AND NOT(ETMPngd OR ESPLYngd OR ESFLPngd))==1

(see module event status also)
isEVNTact=0 no Event is active
isEVNTact=1 any Event is active
isSFLPgd=0 safety loop is broken -VO bas been shut off, 
isSFLPgd=1 safety loop is closed
isnoRAMP=0 VO is ramping in at least one channel
isnoRAMP=1 no channel is ramping
isnoSERR=0 voltage limit, current limit, trip, voltage bound or current bound has been exceeded in at least one of the channels or  

external INHIBIT ⇒ error, reset by reset of the corresponding flag of the ‘Channel Status’
isnoSERR=1 evaluation of the ‘Channel Status’ over all channels to a sum error flag

⇒ VLIM&CLIM&CTRP&EINH&VBND&CBND=0 ⇒ no errors
isHwVLIMgd=0 hardware voltage limit not in proper range
isHwVLIMgd=1 hardware voltage limit in proper range
isADJ=0 Fine adjustment is off.
isADJ=0 Fine adjustment is on (default)

5.2.1.12  Notes to the items of the Module control (EHS)

setAdjust Set adjust Switch ON of fine adjustment
setKillEnable Set kill enable Kill function
doClear Clear events (EHS) and errors (EHQ) Clear event (EHS) or error signals (EHQ) in the channels and the module

setAdjust = 0 fine adjustment OFF
setAdjust = 1 fine adjustment ON

setKillEnable = 0 kill function disable 
setKillEnable = 1 kill function enable

doClear=0 do nothing
doClear=1 reset the errors (EHQ), events (EHS) of the channels
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5.2.1.13 Notes to the item Module event status (EHS)

canx.mtyy.EventStatus module event status write-/ readable VT_UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
res ETMPngd ESPLYngd res res ESFLPngd res res res res res res res res res res

ETMPngd EventTemperatureNotGood Event: Temperature is above 55°C
ESPLYngd EventSupplyNotGood Event: at least one of the supplies is not good
ESFLPngd EventSafetyLoopNotGood Event: Safety loop is open 
res Reserved

5.2.1.14 Notes to the item Module event mask (EHS)

canx.mtyy.EventMask module event mask write-/ readable VT_UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
res METMPngd MESPLYngd res res MESFLPngd res res res res res res res res res res

METMPngd MaskEventTemperatureNotGood MEventMask: Temperature is above 55°C
MESPLYngd MaskEventSupplyNotGood MEventMask: at least one of the supplies is not good
MESFLPngd MaskEventSafetyLoopNotGood MEventMask: Safety loop (SL) is open 
res Reserved

5.2.1.15 Notes to the item Event channel status (EHS)

canx.mtyy.EventChannelStatus event channel status write-/ readable VT_UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
CH15 CH14 Ch13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

The n-th bit of the register is set, if an event is active in the n-th channel and the associated bit in the EventMask  
register of the n-th channel is set too.

CHn = EventStatus[n] & EventMask[n]
Reset of a bit is done by writing a 1 to this bit.

5.2.1.16 Notes to the item Event channel mask (EHS)

canx.mtyy.EventChannelMask event channel mask write-/ readable VT_UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
CH15 CH14 Ch13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

This register decides whether a pending event leads to the sum event flag of the module or not. If the n-th bit of  
the mask is set and the n-th channel has an active event in the EventChannelStatus the bit isEventActive in the  
ModuleStatus register is set
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5.2.1.17 Notes to the item General status (EHQ)

canx.mtyy.GeneralStat general status readable VT_UI1

b7 b6 b5 b4 b3 b2 b1 b0
save killena/ hwVLimNoExceed vsply avad stbl sloop nramp sum

sum sum error flag sum = 0 voltage limit, current limit or trip were exceeded in the module

sum = 1 status channel flags v & c & t = 0 for all channels

nramp no ramp flag nramp = 0 VO is ramping at least one channel

nramp = 1 no channel is ramping 

sloop safety loop flag sloop = 0 safety  loop  is  broken  -VO has  been  shut  off,  clear  this  bit  by 

reading the general status information

sloop = 1 safety loop is closed

stbl stable stbl = 0 all channels are stable with programmable ADC filter frequency fN 

(ADC conversion time =1 / fN, see  ‘ADC  filter  frequency  setting‘, 

default fN = 50 Hz)

stbl = 1 at least one channel is ramping VO or not yet stable after ramping

(with ADC filter frequency fN = 100 Hz)

avad average adjust avad=0 fine adjustment OFF for device classes 0, 6 and 7

average  of  voltage  and  current  measurement  OFF  for  device 

classes 1, 2 and 7

avad=1 fine adjustment ON for device classes 0, 6 and 7

average of voltage and current measurement ON for device

classes 1, 2 and 7

vsply supply voltages vsply=0 supply voltages or module temperature are out of range

vsply=1 supply voltages and module temperature are in range

killena kill enable killena=0 kill function disable, only at modules of device class 6 and 7

killena=1 kill function enable only at modules of device class 6 and 7

hwVLimNoExceed =0 hardware voltage limit to “Low”, only at modules of device class 0

=1 hardware voltage limit in a proper range, only at modules of

device class 0

save save set values save=0 no write access to EEPROM

save=1 store all set values to EEPROM (time to save ca. 10s)

sn. serial numbers
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5.2.1.18 Notes to the items VsetAllChannels, ITripAllChannels and ISetAllChannels

All items are readable since isegHVOPCServer release 4.10. The item VsetAllChannels, ITripAllChannels and 

IsetAllChannels has been implemented for a fast possibility to set all channel items of the same kind such as  

VSet on a value. The read access of the OPC items VsetAllChannels, ITripAllChannels and IsetAllChannels 

deliver only the value from cache of the OPC server, which has been written as last. The really value of the 

channel items can be differ for instance in case of a mix module or a hardware limit and others but the channel 

items VSet, ITrip and ISet contain always the proper values.

5.2.1.19 Notes to the item Configuration of the relay and regulation error

canx.mtyy.ConfigRelFErr configuration of relay and regulation error write-/readable VT_UI1

b7 b6 b5 b4 b3 b2 b1 b0
x dcRACRO dcRACSO dcRRErr dcRSLp dcRTErr dcRVErr dcRIErr

dcRIErr 1 discharge if the hardware current limit was exceeded for at least one channel
0 no discharging with help of the relay

dcRVErr 1 discharge if the hardware voltage limit was exceeded for at least one channel
0 no discharging with help of the relay

dcRTErr 1 discharge if the software current trip was exceeded for at least one channel
0 no discharging with help of the relay

dcRSLp 1 discharge if the safety loop has been disconnected, the output voltages are shut off
without ramp

0 no discharging with help of the relay
(If the safety loop has been disconnected, the set voltages are shut off with the actual 
ramp speed.)

dcRRErr 1 discharge if the regulation was out of order for at least one channel (reaction >= 1ms)
0 no discharging with help of the relay

dcRACSO 1 discharge if all channels set to “OFF”(Group access module “Channel ON/OFF” or 
“Emergency cut-off”) - is working only if the dcRACRO bit has been set  also

0 no discharging with help of the relay
(ramp down the set voltages with the actual ramp speed)

dcRACRO 1 discharge if all channels set to “OFF” (Group access module “Channel ON/OFF” and 
the end of ramping has been reached or “Emergency cut-off”)

0 no discharging with help of the relay
(when the set voltages of all channels are set to “OFF”)

Under the setting of one of these conditions and the corresponding error occurs following will happen:

- shut  off  the HV without  ramp in all channels and the set voltage in all  channels to 0V by 

software.

- close contact of discharge relay.

The relay contacts will discharge capacities connected to the output with help of an integrated load resistor (see 

Appendix  B Operators  Manual -  Multi-channel High  Voltage Power  Supply EHQ).  This  item configures  the 

conditions of how this does work.

Under the setting of one of these conditions and the corresponding error occurs following will happen:

- shut off the HV without ramp in all channels and the set voltage in all channels to 0V by software.
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- close contact of discharge relay.

5.2.1.20 Notes to GroupNumber and GroupVariable (EHS)

With mean of the item GroupNumber is it possible to access to one of the 32 variable group functions.

Each variable group definition will set via the item GroupVariable. The item GroupVariable consists out of 2 
words each of 16 bits. In variable groups one word carries the information about the members of the group or  
gives an overview about a selected situation in all channels, the other word carries the information about type  
and characteristics of the goup.

Set group:
Set groups will be used in order to set channels to a same value, which happen to carry the identical channel 
value. Therefore within the group following will be defined:

- Member of the group: Each member will be activated in the channel setting list ChSetLst
- Type of the group: Set group type TypeSet
- Channel characteristics: Coding of characteristics, which have to be set commonly
- Control mode: Divides  between  a  one-time  setting  of  the  slave  channel  property  and  a 

permanently copying of the Master channel’s property to the slave channels
- Master channel: Number of the channel, which characteristics will be transferred to the other 

channels.  Is  just  necessary  for  Set  groups  which  set  a  value.
If  functions have to be initialized e.g.  start  of  ramp then there is no Master 
channel 

ChSetLst ChannelSettingList UI2
Bit31 Bit30 Bit29 Bit28 Bit27 Bit26 Bit25 Bit24 Bit23 Bit22 Bit21 Bit20 Bit19 Bit18 Bit17 Bit16
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

TypeSet DATA_0 to DATA_1 TypeSet UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TYPE1 TYPE0 res res res res res MOD0 SET3 SET2 SET1 SET0 MCH3 MCH2 MCH1 MCH0

TYPE1 TYPE0 Value
0 0 SetGroupType Group is defined as Set group

MOD0 Value
0 0 The group function is done one time
1 1 The group function is done permanently

SET3 SET2 SET1 SET0 Value
0 0 0 1 SetVset Copy Vset from MCH  to all members
0 0 1 0 SetIset Copy Iset from MCH  to all members
0 1 0 0 SetVbnds Copy Vbounds from  MCH to all members
0 1 0 1 SetIbnds Copy Ibounds from MCH to all members
1 0 1 0 SetOn Switch ON/OFF  all members depending on setON in MCH 
1 0 1 1 SetEmrgCutOff Switch OFF all members  ( Emergeny OFF  )
1 1 1 1 Cloning Set all properties of members like MCH properties (in preparation)

MCH3 MCH2 MCH1 MCH0 Value
0 0 0 0 0 1: Channel 0 is MasterChannel MCH
0 0 0 1 1 1: Channel 1 is  MasterChannel MCH
... ... ... ... ... ...
1 1 1 1 15 1: Channel 15 ist MasterChannel MCH
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Status group:
Status groups are used to report the status of a single characteristic of all channels simultaneously. No action is  
foreseen. Therefore within the group following has to be defined :
Members of the group: Each member will be activated in the channel status list ChStatLst.
Type of the group: Status group type TypeStat
Channel characteristics:Coding of characteristics , which is to be reported.

ChStatLst ChannelStatusList UI2
Bit31 Bit30 Bit29 Bit28 Bit27 Bit26 Bit25 Bit24 Bit23 Bit22 Bit21 Bit20 Bit19 Bit18 Bit17 Bit16
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

TypeStat DATA_0 to DATA_1 TypeStatus UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TYPE1 TYPE0 res res res res res res STAT3 STAT2 STAT1 STAT0 res res res res

TYPE1 TYPE0 Value
0 1 StatusGroupType Group will be defined as Status group 

STAT3 STAT2 STAT1 STAT0 Value
0 0 1 1 ChkIsOn check channel Status.isON (is on)
0 1 0 0 ChkIsRamping check channel Status.isRAMP (is ramping)
0 1 1 0 ChkIsControlledCurrent check channel Status.isCC (is current control)
0 1 1 1 ChkIsControlledVoltage check channel Status.isCV (is voltage control)
1 0 1 0 ChkIsCurrentBounds check channel Status.isCBNDs (is current bounds)
1 0 1 1 ChkIsVoltageBounds check channel Status.isVBNDs (is voltage bounds)
1 1 0 0 ChkIsExternalInhibit check channel Status.isEINH (is external inhibit)
1 1 0 1 ChkIsTrip check channel Status.isTRIP(is trip)
1 1 1 0 ChkIsCurrentLimit check channel Status.isCLIM (is current limit exceeded)
1 1 1 1 ChkIsVoltageLimit check channel Status.isVLIM (is voltage limit exceeded)

Monitoring group:
Monitoring groups are used to observe a single characteristic of selected channels simultaneously and in case of 
need take action. Therefore the group has to be defined :
Members of the group: Each member will be activated in the channel monitoring list ChMonLst.
Type of the group: Monitoring group type TypeMon
Channel characteristics:Coding of characteristics , which is to be monitored.
Control mode: Coding of the control function, i.e. which kind of change in the group-image shall 

cause a signal.
Activity: Define , which activity has to happen after the event.

ChMonLst ChannelMonitoringList UI2
Bit31 Bit30 Bit29 Bit28 Bit27 Bit26 Bit25 Bit24 Bit23 Bit22 Bit21 Bit20 Bit19 Bit18 Bit17 Bit16
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

TypeMon DATA_0 to DATA_1 TypeMonitoring UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TYPE1 TYPE0 ACT1 ACT0 res res res MOD0 MON3 MON2 MON1 MON0 res res res res

TYPE1 TYPE0 Value
1 0 MonitoringGroupType Group will be defined as Monitoring group

ACT1 ACT0 Value
0 0 0 No special action ; EventGroupStatus[grp] will be set
0 1 1 Ramp down of group  EventGroupStatus[grp]  will be set
1 0 2 Switch OFF of group without ramp; EventGroupStatus[grp] will be set
1 1 3 Switch OFF of module without ramp; EventGroupStatus[grp] will be set

MOD0 Value
0 0 event will happen if at least one Channel == 0
1 1 event will happen if at least one Channel == 1

MON3 MON2 MON1 MON0 Value
0 0 1 1 MonitorIsOn monitor channel Status.isON (is on)
0 1 0 0 MonitorIsRamping monitor channel Status.isRAMP (is ramping)
0 1 1 0 MonitorIsControlledCurrent monitor channel Status.isCC (is current control)
0 1 1 1 MonitorIsControlledVoltage monitor channel Status.isCV (is voltage control)
1 0 1 0 MonitorIsCurrentBounds monitor channel Status.isCBNDs (is current bounds)
1 0 1 1 MonitorIsVoltageBounds monitor channel Status.isVBNDs (is voltage bounds)
1 1 0 0 MonitorIsExternalInhibit monitor channel Status.isEINH (is external inhibit)
1 1 0 1 MonitorIsTrip monitor channel Status.isTRIP (is trip)
1 1 1 0 MonitorIsCurrentLimit monitor channel Status.isCLIM (is current limit exceeded)
1 1 1 1 MonitorIsVoltageLimit monitor channel Status.isVLIM (is voltage limit exceeded)
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Delayed Trip group:
Trip timeout groups are necessary to keep the timing for the time controlled delayed Trip function and to define 
the action which has to happen after a Trip.

Therefore in the group following will be defined:
- Members of group: Each member will be activated in a word channel trip timeout list ChTrpTotLst.
- Type of the group: Time out group type TypeTime
- Activity: Define , which activity has to happen after time controlled Trip 
- Timeout: Coding of Timeout-time as 12 Bit Integer.

Timeout groups have to stay unchanged for the whole time as long they are used.
An overwriting will cause the definition of a new group. An overlay of the channels of multiple Trip groups is not  
allowed.

ChTrpTotLst ChannelTripTimoutList UI2
Bit31 Bit30 Bit29 Bit28 Bit27 Bit26 Bit25 Bit24 Bit23 Bit22 Bit21 Bit20 Bit19 Bit18 Bit17 Bit16
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

TypeTime DATA_0 to DATA_1 TypeTimeOut UI2
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TYPE1 TYPE0 ACT1 ACT0 TOT11 TOT10 TOT9 TOT8 TOT7 TOT6 TOT5 TOT4 TOT3 TOT2 TOT1 TOT0

TYPE1 TYPE0 Value
1 1 TimeOutGroupType Group will be defined as Timeout group

ACT1 ACT0 Action
0 0 0 No special action; EventGroupStatus[grp] will be set.
0 1 1 Ramp down of group with ramp; EventGroupStatus[grp] will be set
1 0 2 Switch OFF the group without ramp; EventGroupStatus[grp] will be set
1 1 3 Switch OFF the module without ramp; EventGroupStatus[grp] will be set

TOT[11..0]: Binary coded Timeout-time in ms (8..4088ms) resolution is 8ms 
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5.2.1.21 Notes to the item Alarm information

canx.mtyy.AlarmInformation alarm status readable VT_UI1

b7 b6 b5 b4 b3 b2 b1 b0
HwVLimit_to_low / INHIBIT MTemp VSupl SLoop VLimit CLimit RError CTrip

CTrip current trip CTrip = 0 ⇒ no channel has tripped
CTrip = 1 ⇒ software current trip at least one of the channels

RErr regulation error RError = 0 ⇒ no channel has a regulation error (see channel status)
RError = 1 ⇒ at least one of the channels has detected a regulation error

CLimit current limit CLimit = 0 ⇒ no channel has exceeded the hardware current limit
CLimit = 1 ⇒ at least one of the channels has exceeded the current limit

VLimit voltage limit VLimit = 0 ⇒ no channel has exceeded the voltage limit
VLimit = 1 ⇒ at least one of the channels has exceeded the voltage limit

SLoop safety loop SLoop = 0 ⇒ safety loop is closed
SLoop = 1 ⇒ safety loop is broken

Vsupl voltage supplies Vsupl = 0 ⇒ supply voltages are in range
Vsupl = 1 ⇒ supply voltages are out of range

MTemp module temperature MTemp = 0 ⇒ module temperature <= 60°C, no action
MTemp = 1 ⇒ module temperature > 60°C, HV has been switched off

HwVLimit_to_low (device class 0 only) HwVLimit_to_low = 0 ⇒ hardware voltage limit in range
HwVLimit_to_low = 1 ⇒ hardware voltage limit to low - it is not possible to

switch on any channel

INHIBIT (device class 7 only) INHIBIT = 0 ⇒ no channel has detected an INHIBIT

INHIBIT = 1 ⇒ at least one of the channels has detected an INHIBIT

5.2.1.22 Notes to the item Option (EHS)

canx.mtyy.Option option readable VT_BSTR

Option Description Specification

“EDCP” Enhanced Device Control Protocol no
“HVBM” HV boards per (CAN nodes) module no
“CLIM” hardware current limit no
“VLIM” hardware voltage limit no
”INHB” external INHIBIT signals no
“RELY” discharge relay no
“FRMP” fast ramp yes  (1  -  25% of Nominal V,  

2 -  50% of Nominal V,
3 -  75% of Nominal V)

“NIPL” not implemented

5.2.1.23 Notes to OptionSingleSpec (EHS)

In order to request the specification of one option item OptionSpec the corresponding option string have to be 
written to the item OptionSingleSpec.
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5.2.1.24 Items for public groups defined by the OPC server:

GroupDeviceID list of all device identifiers readable VT_BSTR

GroupSoftwareID list of all software identifiers readable VT_BSTR

GroupStatHardwareILimit list of all status current limits readable VT_UI2

GroupStatHardwareVLimit list of all status voltage limits readable VT_UI2

GroupStatITrip list of all status current trips readable VT_UI2

GroupStatRegulationErr list of all status regulation errors readable VT_UI2

GroupGeneralSumError list of all sum errors readable VT_BOOL

GroupGeneralStable list of all stable status readable VT_BOOL

GroupGeneralSafetyLoop list of all safety loop status readable VT_BOOL

GroupGeneralFineAdjust list of all fine adjustment flags readable VT_BOOL

GroupGeneralHwVLimitLow list of all HW voltage limit tow low flags readable VT_BOOL

GroupBitRate list of bit rates that are stored in modules readable VT_UI2

GroupErrThreshold list error thresholds readable VT_UI2

GroupConfigRelFErr list of bit mask for relay configurations readable VT_UI2

GroupAlarm list of all alarm status information readable VT_BOOL

GroupAlive list of all alive information readable VT_BOOL

If an error occurs it will be signalled by the item alarm status in connection with the check of the sum error flag 

from the item GeneralStat (GeneralStatSumError). These items will catch the errors by read and they will cancel  

the errors by write with the corresponding channel flag is set to “1”. 
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(1) A current trip happens and will generate one CAN alarm message with higher priority as the normal 

messages of the data transfer.

(2) The isegHVOPCServer sets the item Alarm to TRUE and gives a note of the kind of the alarm by the 

item “AlarmInformation” (both were build as a reported item in the name space).

(3, 4, 5, 6) The Client has to read which channel has tripped and is able to cancel the error flag by a write of the 

item “StatITrip” with the corresponding channel flag is set to “1”.

(7) Not necessary up to version 4.0.
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5.2.2 Alarms and Events server  

The OPC server offers the “Alarms & Events” feature built into the same executable in order to let the OPC client 

act quickly on a single event or an alarm.

The following alarms and events have been defined:

5.2.2.1 Simple events

canx.ErrorSafetyLoop error status of safety loop readable

canx.ErrorSupply error status of supply voltages readable

canx.ErrorSumError error status of general sum status readable

5.2.2.2 Tracking events

Computer.KeyboardPressed access to local keyboard on server readable

Computer.MouseActivity access to local mouse on server readable
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6 OPC server part for iseg system crate ECHx38

The OPC server has been developed using the following tools:

- Softing OPC Toolkit, Ver. 4.0 DA3.0

- Microsoft Visual C++, Ver. 6.01

- PEAK System CAN device driver

The executable is included in isegHVOPCServer.exe also as OPC “Data Access” server and “Alarm and Event” 

server.

6.1 Configuration

The OPC server has to be configured at the beginning. It must get all information about the kind of  iseg HV 

hardware  connected  to  the  CAN  bus.  This  information  is  stored  into  the  configuration  file.  The  tool 

isegHVOPCcfg.exe is used to create this configuration file. It performs a scan on the CAN bus and collects 

information from the connected CAN nodes (modules and crates). Also it supports the graphical access to the 

initialising file isegHVOPCServer.ini.

For further details see the configuration manual isegHVOPCSetup.pdf.

6.2 Data Access Server and Alarm and Event Server

6.2.1 Data Access Server

The OPC (DA) server is made to work with more than one crate. Therefore each property of the iseg system 

crate has to be addressed in a geographical way to build a fully qualified item ID that means: 

CANBUS.CRATE.ITEMNAME    

The properties in the OPC server are defined as items. In the simplest case, such an item is directly coupled to a 

read or write via CAN bus. The “On” is an example. The OPC “Data Access” method is working via request 

queues.
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6.2.1.1 Items of the releases from the server components

6.2.1.2 Items of Data Access

    Syntax: x Є [0..15] number of the CAN bus 

 yy Є [0..63] number of the CAN node

canx.crateyy.Supply24V crate power 24V readable VT_R4

canx.crateyy.Supply5V crate power 5V readable VT_R4

canx.crateyy.Battery battery voltage for the UPS ca. 24V readable VT_R4

canx.crateyy.TempBackPlane temperature on the back plane readable VT_R4

canx.crateyy.TempPowerSupply temperature on the DC/DC converter readable VT_R4

canx.crateyy.FanStageBackPlane stage on the back plane fan unit readable VT_UI1

canx.crateyy.FanStagePowerSupply stage on the crate power supply fan unit readable VT_UI1

canx.crateyy.Status crate power status write-/readable VT_UI1

canx.crateyy.StatusACLinePower status of the AC line power write-/readable VT_BOOL

canx.crateyy.On status of the power write-/readable VT_BOOL

canx.crateyy.DeviceID device identifier readable VT_BSTR

canx.crateyy.SoftwareID software release readable VT_BSTR

canx.crateyy.BitRate bit rate readable VT_UI2

canx.crateyy.Alive crate is alive readable VT_BOOL

canx.crateyy.AlarmFlag alarm status readable VT_BOOL

canx.crateyy.AlarmInformation alarm information readable VT_BSTR
When the AlarmFlag goes true the item value of AlarmInformation will get one of the following strings: “EMCY supply 24V”

“EMCY supply 5V”
“EMCY battery 24V”
“Temperature PS”
“Temperature BP”
“AC line power”

If there are more than one alarm sources the item value will display the latest received alarm. With help of the status items it will  
display all received alarms. It has to reset an alarm by write a one to the corresponding status bit of the Status item or a true to the  
StatusACLinePower item.

canx.crateyy.AlarmValue alarm value readable VT_R4
alarm information – “EMCY supply 24V” measurement supply 24V
alarm information – “EMCY supply 5V” measurement supply 5V
alarm information – “EMCY battery 24V” measurement 24V battery voltage
alarm information – “Temperature PS” measurement Temperature PS
alarm information – “Temperature BP” measurement Temperature BP
alarm information – “AC line power” nothing - 0

The items “AlarmFlag”, “AlarmInformation” and “AlarmValue” are implemented as event driven update inside of 

the  isegHVOPCServer.  The  “AlarmFlag”  will  become  a  true  if  an  error  occurs.  The  “AlarmValue”  is  the 

corresponding measurement to the “AlarmInformation” item.  The “AlarmInformation” describes the kind of the 

alarm (see Hints to the item AlarmInformation). The alarm will be generated with help of EMCY ID (see manual 

ECH-CANwithUPS_eng.pdf). The crate will repeat the alarm trigger until the error will go away. These items 

are included ( on request of Cern ) in order to have an access to the fast alarm messages of the crates. The  

better way is to use the faster “Alarm & Event” part of the isegHVOPCServer. Since version 4.01 the items as 

there are “AlarmFlag”, “AlarmInformation” and “AlarmValue” can be cleared by reset of the corresponding status 
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bit. The error of the crate can be reset only by a reset of the reason of the error followed by writing a ‘1’ to the 

corresponding status bit.

The “Alarm Flag”, “AlarmInformation” and “AlarmValue” will refreshed by the server if a new alarm is attempted 

but the client will register the new alarm only if the DA-value has been changed.

6.2.1.3 Crate power status

Capture status if voltages were out of range.

b7 b6 b5 b4 b3 b2 b1 b0
temperature to high +24V to high +24V to low +5V to high +5V to low 24V battery to high 24V battery to low

6.2.2 Alarm and Events Server
The OPC server offers the ‘Alarms & Events’ feature built into the same executable in order to let the OPC client  

act quickly on a single event or an alarm.

The following alarms and events have been defined:

Simple events:

canx.ErrorSupply24V error of supply 24V readable

canx.ErrorSupply5V error of supply 5V readable

canx.ErrorBattery24V error of battery 24V (possible only if the crate power is off) readable

canx.ErrorTemperaturePS error of temperature senor on power supply 24V-DC-PS readable

canx.ErrorTemperatureBP error of temperature sensor on pack plane readable

canx.ErrorACline_power error of AC line power readable

Tracking events:

Computer.KeyboardPressed access to local keyboard on server readable

 Computer.MouseActivity access to local mouse on server readable
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Appendix A 

Following items will refreshed via the background cycle:

canx.mtyy.GeneralStat
canx.mtyy.Status
canx.mtyy.EventStatus
canx.mtyy.EventMask
canx.mtyy.EventChannelStatus
canx.mtyy.EventChannelMask
canx.mtyy.RampSpeed
canx.mtyy.IRampSpeed
canx.mtyy.On
canx.mtyy.Emcy
canx.mtyy.StatHardwareVLimit
canx.mtyy.StatHardwareILimit
canx.mtyy.StatITrip
canx.mtyy.StatINHIBIT
canx.mtyy.StatRegulationErr
canx.mtyy.HardwareVLimit
canx.mtyy HardwareILimit
canx.mtyy.Supply24V
canx.mtyy.Supply5V
canx.mtyy.BoardTemp
canx.mtyy.ErrThreshold
canx.mtyy.ConfigRelFErr

canx.mtyy.chzz.Vset
canx.mtyy.chzz.VMeas
canx.mtyy.chzz.Iset
canx.mtyy.chzz.Itrip
canx.mtyy.chzz.IMeas
canx.mtyy.chzz.Stat
canx.mtyy.chzz.Status
canx.mtyy.chzz.EventStatus
canx.mtyy.chzz.EventMask

canx.crateyy.Supply24V
canx.crateyy.Supply5V
canx.crateyy.Battery
canx.crateyy.TempBackPlane
canx.crateyy.TempPowerSupply
canx.crateyy.FanStageBackPlane
canx.crateyy.FanStagePowerSupply
canx.crateyy.On
canx.crateyy.Status
canx.crateyy.StatusACLinePower
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Calibration of iseg Multi-Channel HV systems 

1 Hardware equipment of the calibration unit 

- iseg system CALIBRATION CRATE (CAN-IF / RS232-IF) 

- load unit for 16 channel HV modules (Inputs 1:1 / 1:400, GPIB IF) 

- KETHLEY 2001 Multimeter 

- Pentium PC (delivered Compaq Intel Pentium III 1GHz) 

- PEAK CAN PCI card 

- National Instruments GPIB card 

2 Software parts for the calibration unit 

- OS WIN2000 SP2 or higher 

- Calibration program CALEHQ 

- OPC server for EHQ Multi-channel HV modules EHQ3216Srv 

- Program SETOHM to test the calibration of modules to control the load unit separately 

- Program to control the modules after the calibration 

 

The last four programs will be installed during the set up of iseg OPC software package. 

The set up of iseg OPC software package copies the database twice to disk in order to have a copy of the 

factory database: 

- “[INSTALLDIR]\HVCAL\DB\EHQDB.MDB” – database to recalibration with the program EHQCAL 

- “[INSTALLDIR]\EHQDB.MDB” – database without ODBC connection 

2.1 Program for re-calibration EHQCAL 

2.1.1 General description 
The program EHQCAL provides an easy to handle tool for calibration of iseg Multi-Channel EHQ HV devices.  
 

2.1.2 The calibration procedure 
The purpose of this calibration is, on the one hand to ensure a correct voltage setting, and on the other hand to 

enable the device for precise measurements of the voltage and the current. 

 
 

 iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 (0)351 / 26 996 - 0 
 Bautzner Landstr. 23 http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21 
4 D - 01454 Radeberg / Rossendorf Germany 



Speziale lektronik   GmbH 
 

The first point (‘DAC-calibration’) determines the transformation of voltages into an integer DAC-value. The 

second (‘ADC-calibration’) is to determine a transformation from the values, measured by the ADC into physical 

voltages and currents respectively. All transformations are linear and in general given by 

 

DACDAC ONUDAC −= *   (1) 

UUU NOADCU *)( −=   (2) 

IIII KUNOADCI **)( −−= ,  (3) 

where , , , , ,  and  are the calibration values to be determined. U and I are 

physical voltages and currents.  

DACN DACO UN UO IN IO IK

The calibration is performed in two separate steps: 

1. DAC- / Voltage measurement calibration: For a set of DAC-values the corresponding voltages and 

their ADC-values are measured. Since two constants are to be determined, two points would be the 

minimum. By default three points are used and the best fit is calculated. 

2. Current measurement calibration: In order to determine the three constants NI, OI and KI, at least 

three independent measurements with two different resistors must be performed. Here by default at 

three different voltages for each of both resistors the current and it’s ADC-value are measured. Note, 

that also the voltage must be measured. This is done using the results of the first calibration step. 

  

 

2.2 Database EHQDB 

All information of the calibration are stored to the database “ehqdb.mdb”. 

First location is in directory “[INSTALLDIR]\hvcal\db\ehqdb.mdb” to which also the ODBC is linked. 

The second copy of this is in directory “[INSTALLDIR]\opc\ehqdb.mdb”. 

The MS Access database EHQDB contains complete calibration and configuration data of all HV-devices. 

The data is structured in 6 tables: 

1. Device Data 
2. Device Properties 
3. Channel Data 
4. Measurement Specification 
5. Voltage Measurement Data 
6. Current Measurement Data 
 

Device Data stores general specifications and properties that are applicable to every device type. 

Examples are the number of channels, device type, nominal voltage and current. There is exactly one entry 

per device. It is referenced by the ID number of the device. 

Device Properties: specific properties, depending on the device type. For internal use only. 
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Channel Data contains the calibration values and errors (relative deviations between the fit and measured 

points). A complete set for one device implies one entry per channel. For each device there can be up to 

two sets, a master set (generated by iseg) and a user set to store your calibration results. 

Measurement Specifications stores the location of measurement points (voltages and resistors). 

Voltage / Current Measurement Data: the raw data of a calibration (all measurement results during 

calibration). Only the latest data will be stored, a new calibration overwrites the previous. 

 

Caution: The database is not intended for any direct editing (outside EHQCAL)!  

2.3 OPC Server EHQ3216Srv 

Set up and registration see “isegOPCSetup.pdf”. 

2.4 Program Setohm 

Control of the load unit 

2.5  Program isegHVM 

See manual “isegHVM220_eng.pdf” 

3 Preparations before the start of a calibration 

3.1 How to connect the iseg-Multi-channel HV devices to the calibration equipment 

The iseg system CALIBRATION CRATE was build to calibrate and heat up EHQ modules before calibration. All 

slots can be equipped with EHQ modules during the calibration, but it is necessary that only one of the switches 

above the modules shows up. The switch in the line of the calibrating board have to switched up all others 

down. The correct set up of the switches must be done before power on. 

3.2 How to start program CALEHQ 

Start CALEHQ from folder START→Programs→HVCalib→CALEHQ. 

Before a calibration procedure can be started, the name or ID of the operator must be entered. This is for 

bookkeeping purposes and the name will be saved into the database together with the results of the calibration. 
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4 Calibrating an iseg-Multi-channel HV module 

4.1 Basic calibration 

The dialog bar that appears below the pull-down menus summarizes the calibration procedure. 

Step 1: Preparation 

- Start Open Device from the dialog bar or via Database→Open Device. When delivered, the database 

contains a master set of calibration data. If the device has been calibrated before, it will also contain a 

user set. In this case an extra dialog will ask, which set to load. 

- Enter the 6 digit device ID 

- All information, necessary for calibration including current calibration data is loaded from the database 

EHQDB 

- Button Hardware Setup or Setup→Hardware shows the measurement devices and the resistor that are 

intended to use for calibration. If not done yet, please connect them with the PC interface and to the 

resistor unit. Plug the voltmeter into the resistor socket with the shown ratio. 

 
Step 2: Calibration 

- Start Calibration from the dialog bar or via Device→Run Calibration.  

- First of all, the interfaces to all contributing devices (HV unit, resistor unit, measurement devices) will be 

tested. If a test fails, an error message is shown. If this happens, please check that everything is 

connected properly and try again. 
- Now the main calibration dialog appears:  
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- Make your selection within the channels and calibration tasks.  

- Run Calibration starts the calibration thread in the background.  
- To stop the thread before finishing, press Stop or Stop channel. Stop will interrupt the calibration 

immediately (although this may take a few seconds), while Stop channel finish’s the currently calibrated 

channel first. The thread can be stopped and restarted any time. 
- For the status the following abbreviations are used:  

cal  currently calibrating 

OK successfully calibrated 

~ calibrated, but with deviations larger than the maximum allowed error (see device 

specification) 

err  serious error, calibration had to be stopped 

- When all calibration is done, press Finish 

 

Step 3:  

- Button Data>>Database or Database→Save updates the data base with the new measurement and 

calibration results. 

- Data>>Device or Device→Cal Data->EEPROM writes the new calibration values into the device. 
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4.2 Visualization and manual adjustment 

The visualization dialogs are opened from the main calibration dialog via the channel buttons. A plot gives an 

overview of the calibration. Manual changes of the calibration values are possible there. If such a dialog is 

opened for a channel that was not calibrated yet, the data from database is displayed. 

4.2.1 The visualization dialog for DAC / Voltage calibration 

 
 

Along the X-axis of the diagram we have the voltage of the measured points, starting from 0 V in the origin, up 

to the nominal voltage of the device. In the case of the blue plot, the Y-axis is the difference between the 

voltage, measured by the external voltmeter, and the voltage that by eq. (1) would lead to the DAC-value which 

was given for the point. The green plot shows the difference between the voltage, measured by the voltmeter 

and the ADC (together with the transformation in eq. (2) ). Both plots are scaled by their maximum allowed 

errors that are given in the device specification. 

On the right the calibration values can be modified. Redraw will update the plot for the changes. To restore the 

originally obtained values (which are the best fit, if every point has the same weight), press Reset. Via Values 

from DB previous values can be loaded from the data base, in order to check if they are still compatible with the 

new points. Drop Measurement will remove the points permanently.  
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4.2.2 The visualization dialog for Current measurement calibration 

 
 

Here the measurement points are specified by the voltage and the current, since the transformation from the 

ADC-value to the current explicitly depends on the voltage (eq. 3). The axes range from 0 to the nominal current 

and voltage, respectively. The length of the arrows correspond to the difference between the current, measured 

by the external ampermeter, and the current, obtained by the transformed ADC-value. The scale is again 

relative to the maximum allowed error (shown by the arrow on the bottom). Points with larger deviation are 

drawn in red color. 

Manual changes are analogous to the previous section.  

4.3 Measurement specifications 

Via the buttons SpecMP in the main calibration dialog it is possible to change the number of measurement 

points and their voltages. 

For the DAC / Voltage calibration, select the number by the radio buttons and enter the voltage for each point. 

For the Current measurement calibration, two numbers (one for each resistor) can be changed on the left side 

in the dialog. The corresponding voltages must be entered on the right side. 

In both cases make sure, that the selected voltages and corresponding currents are safely below the hardware 

limits (at least 5-10%). 

4.4 Offline visualization 

It is possible to view the measurement data from previous calibrations with the device and the calibration 

hardware offline. To do so, Open a device and select Device→View Calibration in the main menu. The main 
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calibration dialog appears. Go through the channels to view and change calibration data. It is not possible to 

start a calibration in this mode. 

5 Restoration of the original device configuration 

- Press Open Device and enter the ID-number. Load the master set. 

- Data>>Device to restore the EEPROM settings. 

6 Check the calibration 

To check the calibration use the delivered program “setohm.exe” and the monitor program “icanHVcontrol.exe.”  
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Resumé

Les principaux objectifs du programme scientifique de l’experience ATLAS sont l’observationou l’exclusion de physique au-delà du Modèle Standard, ainsi que la mesure de sectionsefficaces de production de processus du Modèle Standard. Pour ce faire, il est impor-tant de mesurer la luminosité au point d’interaction avec une grande précision. Dansl’experience ATLAS, la luminosité est extraite à l’aide de plusieurs détecteurs possé-dant des efficacités et acceptances géométriques variées. Différentes méthodes, tellesque le comptage inclusif (ou en coïncidence) d’événements, ainsi que des mesures decourants intégrés provenant des calorimètres, sont calibrées et comparées afin d’assurerune détermination précise de la luminosité. Afin de permettre une comparaison addi-tionelle et un meilleur contrôle sur les incertitudes systématiques liées à la déterminationde la luminosité, une mesure indépendante utilisant le compartiment avant du calorimètreélectromagnétique, basé sur la mesure du courant de son système haute-tension, a étédéveloppée. Ce document décrit comment la mise en route dud système haute-tension ducalorimètre à argon liquide du détecteur ATLAS, ainsi que son application à une mesurede luminosité.
Abstract

The main goals of the ATLAS scientific programme are the observation or exclusion ofphysics beyond the Standard Model (SM), as well as the measurement of productioncross-sections of SM processes. In order to do so, it is important to measure the lumi-nosity at the interaction point with great precision. The ATLAS luminosity is extractedusing several detectors with varying efficiencies and acceptances. Different methods,such as inclusive - or coincidence - event counting and calorimeter integrated currentmeasurements, are calibrated and cross-compared to provide the most accurate lumi-nosity determination. In order to provide more cross-checks and a better control on thesystematic uncertainties, an independent measurement using the liquid argon (LAr) for-ward calorimeter (FCal), based on the readout current of its high-voltage system, hasbeen developed. This document describes how the LAr calorimeter high-voltage systemhas been installed and commissioned, as well as its application to a relative luminositydetermination.
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