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Introduction

The main goals of the ATLAS [1] scientific programme are the observation or exclusion
of physics beyond the Standard Model (SM), as well as the measurement of production
cross-sections of SM processes. As the rate of events N of a given physics process is
linked to the cross-section o by the relation N = L - g, where L is the luminosity at the

interaction point, it is important to measure the luminosity with great precision.

The ATLAS experiment has two major luminosity monitors, LUCID (Luminosity mea-
surement Using Cerenkov Integrating Detector), which consists of Cerenkov tubes located
around the beam axis 17 m away from the interaction point, and BCM (Beam Condition
Monitor) which is a diamond-based detector and has both beam-abort and luminosity
capabilities. As these detectors provide a relative luminosity measurement, they were
absolutely calibrated in 2010 using the van der Meer procedure, achieving a total sys-
tematic uncertainty of 3.4%. The ultimate plan is to provide an absolute calibration using

the ALFA detector during a run with special beam optics.

In order to provide more cross-checks and a better control on the systematic un-
certainties, other luminosity handles are always needed. In particular, an independent
measurement using the liquid argon forward calorimeter (FCal), based on the readout

current of its high-voltage system, has been developed.

This document starts, in Chapter 1, by laying out the physics motivations behind
the construction of the LHC and the ATLAS detector before describing their layout and

performance. Chapter 2 offers a detailed description of the ATLAS liquid argon calorimeter,



and Chapter 3 focuses on its high-voltage system, which is used to perform the luminosity

determination presented in Chapter 4.



Chapter 1

The ATLAS experiment at the Large

Hadron Collider

After a description of the Standard Model of particle physics and the scientific motivations
behind the construction of the Large Hadron Collider (LHC) and its experiments in Section
1.1, Section 1.2 details the LHC layout and main characteristics, followed by a description

of the ATLAS experiment in Section 1.3.

1.1 Physics motivations

Theoretical and experimental progress has lead to the formulation of the standard model
of particle physics, which describes elementary particles and their interaction via the
electromagnetic, weak, and strong forces. Gravity is not included in the model. For the
past 40 years, many experimental results have helped build up and strengthen the validity
of this model, particularly at high energy particle physics colliders. These results include,

in chronological order:

e observation of neutral currents in the Gargamelle detector in 1973 [7],

e observation of the W and Z bosons in pp collisions at the CERN SPS by the UAT
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(3], [4]) and UA2 experiments [5] in 1983,
e determination of the number of light neutrino species by the LEP experiments [0, 7, 8],
e precise measurement of the W mass at the CERN LEP [9] and Fermilab Tevatron
[10}
e observation of the top quark in pp collisions by the CDF [11] and DO [17] at the

Fermilab Tevatron in 1995.

Thanks to the data gathered by operating the SPS and LEP at CERN and the Tevatron
at Fermilab, we now know that the Standard Model of particle physics correctly describes
the observed phenomena up to energies of O(100 GeV). However, the Standard Model has
its limits. Firstly, it does not include the gravitational interaction and general relativity.
Secondly there are 19 free parameters in the model, including the fermions masses,
which values are not predicted. Three parameters should be added to these 19 to include
the neutrino masses, following experimental evidence of neutrino oscillations. Thirdly,
the Standard Model does not explain why there are three generations of fermions or
why their masses cover such a large range. Finally, from a cosmological viewpoint, no
explanation on the nature of cold dark matter, which seems to occupy most of the universe,
has been provided. An extension of the standard model predicts the existence of the Higgs
boson, which is believed to give other particles their masses, but has yet to be observed
experimentally. For instance, its involvement in WW scattering implies that its mass must
be lower than ~ 1 TeV in order to maintain unitarity. Theories beyond the Standard
Model, such as Supersymmetry, Technicolor, Extra-Dimensions models have been trying

to take on these issues.

It was therefore decided to build a collider giving access to mass domains up to a few
TeV in order to cover all the searches for new physics. Finding evidence of the Higgs
boson and search for new physics beyond the Standard Model are the main goal of the

ATLAS and CMS experiments installed on the LHC collider.

The quark model allows for a classification of the elementary constituents of matter

with three generations of fermions: six quarks, six leptons and their antimatter counter-
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parts. The quarks are constituents of hadrons, e.g. protons and neutrons, and are confined
to these bound states: free quarks have not been observed experimentally. They carry
fractional electric charges (-2/3, 1/3) and have very different masses. The six leptons are
divided into three charged and three neutral particles. Properties of these elementary
particles are listed in Table 1.1. The lightest quark and leptons pairs, the up and down
quarks, the electron, and the electron neutrino, are responsible for all the stable matter

in the universe.

Quarks Leptons
u d e~ Ve
First generation up down electron electron neutrino
Q=23e Q=-13e Q=-e Q=0
m=15-45MeV | m=5-85MeV | m= 0511 MeV m < 3eV
c s U vy
Second generation charm strange muon muon neutrino
Q=23e Q=-13e Q=-e Q=0
m=1-14GeV | m=280-15 MeV | m = 1057 MeV m < 0.19 eV
t b T~ Ve
Third generation top bottom tau tau neutrino
Q=23e Q=-13e Q=-e Q=0
m = 1743 GeV m =4 -45 GeV m = 1777 MeV m < 18.2 eV

Table 1.1: Quarks and leptons properties [13].

In the standard model, the interaction between two elementary particles is described
by the exchange of messenger particles associated with each of the three forces in-
cluded in the model. The electromagnetic interaction governs the interaction between
two charged particles. It is carried out by the photon, which is massless, hence the infi-
nite range of its extent. It manifests macroscopically as electromagnetic waves, electric
currents, and attractive of repulsive phenomena depending on the electric charge. The
strong interaction acts as the binding force in hadrons and atomic nuclei. Its range is
approximately 107" m. It is carried out by gluons, which have neither mass nor electric
charge but another charge named colour. The weak interaction is responsible for the
decay of heavy quarks and leptons into lighter ones, which has for consequence that all
stable matter in comprised of solely first generation fermions. It is also responsible for
the flavour change of the up quark to a down quark during proton-proton fusion, which

occurs in the Sun. It is carried by the massive W and Z vector bosons. The range of the
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Particle y W+ 70 g

Force Electromagnetic Weak Weak Strong
Charge Q=0 Q==+e Q=0 Q=0
Mass m<2-1071%eV|{m=802GCeV | m=912GCeV | m=0

Table 1.2: Gauge bosons properties [13].

weak interaction is approximately 107" m. The charges and masses of the four vector

bosons of the standard model are listed in Table 1.2.

The electroweak theory, which unifies the electromagnetic and weak interactions,
predicts the existence of the photon, the neutral Z° and the charged W* and W~ bosons.
The fact that the photon has zero mass and the W and Z are massive is however an issue
as the theory requires the gauge bosons to be massless. The mechanism of spontaneous
symmetry breaking [14, 15] describes how these four massless gauge bosons couple with a
new field, called the Higgs field, giving three of them their masses. The particle associated
with the Higgs field is called the Higgs boson, and has yet to be observed experimentally.
However data collected at the Tevatron pp collider allowed physicist to put boundaries
on its mass, as shown on Figure 1.1, which illustrates the latest results [10] Additionally,
the data collected in 2011 by the ATLAS collaboration allowed a similar study, of which
the summary is depicted in Figure 1.2. These results exclude the Standard Model Higgs

with a 95% confidence level in the [155,190] and [295,450] GeV mass ranges.

1.2 The Large Hadron Collider

The Large Hadron Collider (LHC, [1/]) is aimed at colliding protons (lead ions) at the
design energy of 7 TeV (2.76 TeV/nucleon). It is installed in the tunnel that used to host

the Large Electron-Positron collider (LEP) at CERN until 2000.

The centre-of-mass energy of 14 TeV has been chosen due to theoretical motivations
as well as results from the LEP and Tevatron experiments indicating new physics at the

TeV-scale. Despite the fact that the standard model predicts the existence of the Higgs
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and DO analyses [16].

boson, there is no indication on its mass. This is the main reason why a hadron collider
was chosen to discover it. Indeed, by colliding protons at a centre-of-mass energy of
14 TeV, the energy available in each collision ranges from 0 to 14 TeV, because of the
proton compositeness. This leads to the production of a wide spectrum of decay products,
thus increasing the potential for discovery. Moreover, an electron collider with 7 TeV
per beam in the existing 27 km tunnel would not be efficient because of energy losses
due to synchrotron radiation, which scales as m~. As protons are ~2000 times heavier
than electrons, these losses are much smaller, allowing for a favourable yield between

the energy given to the proton during acceleration and the amount lost by synchrotron

radiation at each turn.

The CERN accelerator complex is illustrated in Figure 1.3. The 26.7 km tunnel of
the LHC lies between 45 m and 170 m below France and Switzerland and was built
between 1984 and 1989. Protons are provided by a hydrogen source at the Linac2 linear
accelerator, accelerated to 50 MeV and sent to the Proton Synchrotron Booster (PSB)
where their energy is increased to 1.4 GeV. After the PSB, the protons reach the Super
Proton Synchrotron (SPS) where they are accelerated to 450 GeV, before being injected
as two bunched beams into the LHC. The Radio Frequency (RF) cavities of the LHC finally

accelerates both beams up to their nominal energies of 7 TeV. The beams circulating in
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the LHC are not continuous: the protons are packed into bunches nominally 25 ns apart
and form bunch trains, up to the design maximum number of filled bunches of 2808. The
LHC is also able to collide lead ions at 2.76 TeV/nucleon centre-of-mass: the ions are
provided by a lead source and injected by the Linac3 into the Low Energy lon Ring (LEIR)

before reaching the PSB from where they follow the same chain as protons.

CMS

LHC

1976 [7 km)

ATLAS

EnelS Gran Sasso

AD
1989 (182 m) 3
s BOOSTER
1972 (157 m]. .
@ ; » ISOLDI
Ty East Area
n<fleF s =™y o 7 G
2001 |
LINAC 2 : CTF3
neutrons LEIR e
g
b » ion » neutrons » P [antiproton) —H— / antiproton conversion » neutrinos P electron
LHC Large Hadron Collider  SPS Super Proton Synchrotron ~ PS  Proton Synchrotron
AD Antiproton Decelerator CTF3 Clic Test Facility ~CNGS Cern Neutrinos to Gran Sasso  ISOLDE Isotope Separator OnLine DEvice

LEIR Low Energy lon Ring  LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

Figure 1.3: The CERN accelerator complex.

Because two proton beams cannot circulate in opposite directions in the same vacuum
chamber with a single bending magnetic field, a twin-bore design was chosen for the 1232
dipole magnets, as illustrated in Figure 1.4. Two superconducting dipole magnets and
two beam pipes lie in a single cryostat cooled down to the superfluid Helium temperature
of 1.9 K. The magnets are made NbTi and a current of ~ 12 kA allows for magnetic fields
up to 8.4 T. Additionally, the LHC is equipped with quadrupole magnets that provide

focusing, as well as higher multipole magnets for corrections.

The LHC is divided into eight straight sections with different purposes:
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Figure 1.4: Cross section of an LHC dipole magnet showing the two separate vacuum chambers [17].

Beam dump Beams are dumped into large graphite cylinders to protect the machine and
the experiments.

Radio Frequency cavities Particles circulating in the LHC are accelerated to their nom-
inal energy.

Momentum cleaning Particles with a too large momentum dispersion with respect to
nominal are cleaned up by a dedicated set of magnets and collimators .

Betatron cleaning Particles which drift too much from their nominal orbit are cleaned
up by a specific collimation configuration.

ATLAS A Toroidal LHC ApparatuS [1]. General purpose detector designed to achieve the
main LHC goals: Higgs, SUSY, extra dimensions, ...

CMS Compact Muon Solenoid [18] Same goals as ATLAS, but uses different detector
technologies.

ALICE A Large lon Collider Experiment [19]. Specifically designed to observe heavy ion
collisions, its main physics goal is understanding the properties of the quark-gluon
plasma.

LHCb Large Hadron collider beauty experiment [20]. Designed to measure differences
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in the properties of matter and antimatter, primarily through the observation of CP

violation in B mesons, and more generally B physics studies.

One of the main features that characterises a machine like the LHC is its ability to
produce collisions, described by a parameter called the (uminosity. For two bunches

containing Ny and N, protons meeting at the revolution frequency f,, the instantaneous

21

luminosity, expressed in cm~“s™', can be written as follows [21]:

N1 N5,
- NG

4o, o,

where o, , are the transverse beam sizes at the interaction point. Furthermore, as the
rate of events N of a given physics process is linked to the cross-section o by the relation
N = L -0, one needs to measure the luminosity with great precision. For instance, Figure
1.5 depicts the evolution of the production cross-sections times the branching ratio of the
Higgs boson as a function of its mass, which illustrates the importance of precise cross-

section measurements and therefore precise luminosity determination.

In the above expression of the luminosity with the beam parameters, the measurement
of the number of proton per beam is performed by measuring their currents using current
transformers placed around the beam pipes. As of summer 2011, the uncertainty on the
beam current measurements dominate the total uncertainty on the luminosity. A detailed

review of the luminosity determination in ATLAS is given in Chapter 4.

In 2011 the LHC has been colliding protons with half the designed energy because
of the consolidation work and additional magnet training required to safely operate the
machine higher than 3.5 TeV per beam. This work will be performed during the 2012-2013
shutdown period. In 2011, the LHC successfully managed to collide up to 1331 proton
bunches at IP1, where the ATLAS experiment is located, achieving a peak instantaneous

2

luminosity of 3.3 10> cm~?s™" and an average number of 16 inelastic p-p collisions per

bunch crossing. These achievements, as well as the LHC design parameters, are listed in

Table 1.3.
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Figure 1.5: Production cross-section times branching ratio of the Higgs boson decay channels as a function
of its mass.

| | September 2011 | Nominal |

Collision proton energy [GeV] 3500 7000
Centre-of-mass energy [GeV] 7000 14000
Number of filled bunches 1380 2808
Number of particles per bunch 1.15 10" 1.15 10"
Distance between two filled bunches [ns] 50 25
Peak luminosity at ATLAS [cm—2 s '] 3310% 10%
Average number of p-p collisions per bunch crossing 16 23

Table 1.3: LHC design and 2011 operational parameters.

The evolution of the peak instantaneous luminosity and the delivered integrated lu-

minosity in 2011 are illustrated on Figures 1.6 and 1.7".

1.3 The ATLAS detector

The ATLAS [1] detector construction started in 1997, and its installation in the 80 m deep

dedicated experimental cavern began in 2003. Test beams studies, followed by extensive

L https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults#2011_pp_Collisions
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commissioning with cosmic muons [22, 23, 24, 25], allowed the ATLAS collaboration to be
ready for the first LHC circulating beams in 2008. The year 2009 saw the first proton-
proton collisions at 900 CeV of center-of-mass energy, and in 2010 the first 7 TeV collisions.

The detector layout is presented on Figure 1.8.

In order to satisfy its performance requirements with respect to LHC collision products,
it has three-fold structure with a tracking system, a calorimetry system, and a muon

spectrometer surrounding the interaction point with maximum coverage.

The tnner detector system, surrounded by a 2 T solenoidal magnetic field used to bend
charged particle tracks, is composed of a high granularity Pixel detector, a silicon micro-
strip (SCT) detector, and a Transition Radiation Tracker (TRT). It provides high precision

tracking of charged particles, vertex measurements, as well as electron identification with

the TRT.

The calorimetry system consists of a liquid argon sampling calorimeter (LAr) sur-
rounded by a scintillating tiles hadronic calorimeter in the barrel region. Its main goal is
to provide trigger capabilities on electrons, photons, jets, and missing transverse energy

as well as particle identification (electrons, photons) and energy measurements.

Strong bending power in the volume of the muon spectrometer is provided by three
large air-core toroid systems (one barrel and two end-cap superconductive magnets).

The muon spectrometer consists of chambers placed all around the toroid magnets, to
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13

both trigger and perform high precision tracking of muons, the only charged particles

remaining outside of the

calorimetry system.

The ATLAS coordinate system is defined with the interaction point as its origin. The

x-axis is pointing towards the center of the LHC ring, and the y-axis upwards. The

detector is separated in two sides along the z-axis, the A-side for z > 0 and the C-side

for z < 0. The azimuthal angle ¢ spans around the beam axis in the transverse plane, and

the polar angle 6 is defined from the z-axis. In collider experiments, the pseudo-rapidity

coordinate 1 is generally used instead of the polar angle since particle production from

collisions is rather constant as a function of pseudo-rapidity in the range covered by the

main detectors (around || < 5). It is defined as follows:

n=—In

N D@

o(3)

The n coverage, as well as the design performance of each sub-detector, is summarized

in table 1.4.

’ Detector component \

Required resolution

ry coverage

|

Measurement

Trigger (Level-1)

[nner detector 0y Ip7 = 0.05% pr ® 1% +2.5

EM calorimeter orlE = 10%/VE @©0.7% +3.2 +25
Hadronic calorimeter

barrel and end-cap or|E = 50%/VE & 3% +32 +32
forward 0clE = 100%/VE @ 10% |31 <|n <49| 31<|n <49
Muon spectrometer Op,Ipr = 10% at pr =1 TeV +2.7 +2.4

Table 1.4: Design performance and coverage of the ATLAS detectors. pr denotes the transverse momentum
of particles traversing the detector, i.e. the momentum projection on the x-y plane.
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1.3.1 Magnet system

The ATLAS magnet system [20] is aimed at providing bending power for charged particles
momentum measurements. Around the Inner Detector lies a Nb/Ti/Cu superconductive
solenoid providing a 2 T magnetic field parallel, for |z| < 2 m, to the beam axis. Its
thin design is crucial for minimizing the material in front of the barrel calorimeter, with
which it shares the cold cryostat vessel. Three large air-core toroid magnets surround the
calorimeters: one barrel (Figure 1.9), providing a maximum field of 0.5 T at its centre; two
end-caps (Figure 1.10), providing a 1 T field. All magnets are operated at a temperature of
45 K and operative currents of 7.73 kA for the solenoid and 20.4 kA for the toroids. As the
toroid magnets follow an eight-fold structure, the magnetic fields are not homogeneous
in ¢. Therefore, approximately 1800 Hall probes are mounted on the muon spectrometer
to measure and monitor the field intensity in the ATLAS cavern. This ensures good
knowledge of the magnetic field intensity in the cavern in order to satisfy the performance

requirement on the momentum resolution.

Figure 1.9: Barrel toroid magnet Figure 1.10: Endcap toroid magnet
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1.3.2 Inner detector

In order to perform high precision tracking of charged particles and accurate vertex re-
construction, three detectors comprise the innermost layer of the ATLAS detector [27, 28].
From the interaction point: a silicon pixel detector (Pixel), a silicon microstrip detector
(SCT) and a Transition Radiation Tracker (TRT). The global layout, as well as a section
of the Inner Detector, are shown on Figures 1.11 and 1.12. Additionally, the Inner Detec-
tor is equipped with the Beam Condition Monitor, a set of diamond detectors which act
as a protection system from unstable LHC beams and also have luminosity monitoring
capabilities.

R = 1082 mm

r( i . TRT
R =554 mm [ N

21m

R =122.5 mm|
Pixels 4 R = 88.5 mm
R =50.5mm

R=0mm

End-cap semiconductor fracker

Figure 1.11: The ATLAS Inner detector. It is approx-  Figure 1.12: Section of the ATLAS Inner detector bar-
imately 7 m in length and 1.2 m in diameter. rel region.

1.3.2.1 Pixel detector

The Pixel detector [2/, 28] is the closest to the interaction point and covers |n| < 2.5
in pseudo-rapidity. The charge collected in a pixel over a certain threshold is used to
determine if a charged particle went through. In the high-multiplicity environment of the
LHC, it must provide excellent spatial resolution for measurements such as secondary
vertices and impact parameters. Its 80.4 million 50 x 400 pm? silicon pixels are divided
among three cylindrical barrel layers and three end-cap disks on each side. The design

intrinsic accuracy is 10 pym in the R — ¢ direction and 115 pym in z. Measurements with



1.3 The ATLAS detector 17

collision data have shown that the pixels alignment is very close to the design, as shown
on Figure 1.13 for the x direction, which shows a FWHM (Full Width Half-Maximum) of
19 um. The three barrel layers are located at respectively 5.05 cm, 8.85 cm, and 12.25 cm
of the beam axis, and the end-cap disks at |z| = 49.5 cm, 58.0 cm and 65.0 cm. The high
radiation environment causes the effective doping concentration of the silicon sensors
to increase with time, hence requiring a higher bias voltage. As this phenomenon is
temperature-dependant, the Pixel detector is operated at temperatures ranging between

—5°C and —10 °C.
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Figure 1.13: Distribution of the local x unbiased residuals of the pixel barrel modules. Plot produced
with tracks (pr > 2GeV) reconstructed in LHC Minimum Bias events at centre-of-mass energy 7 TeV. Full
blue circles show the real data residuals after the detector alignment, and the open red circles show the
residuals using Monte Carlo with a perfectly aligned detector (normalized to the number of entries in the
data distribution). The local x coordinate of the pixels is along the most precise pixel direction.

In the next long-term LHC shutdown, in 2013-2014, the addition of inner barrel layer
is planned. The project, called Insertable B-Layer [29], aims at extending the lifetime of
the Pixel detector at the LHC design luminosity, as well as improving secondary vertex

reconstruction, essential for b-tagging in Higgs searches.
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1.3.2.2 Semi-Conductor Tracker

The Semi-Conductor Tracker (SCT, [2/, 28)) surrounds the Pixel detector for charged par-
ticle tracking. It is comprised of four barrel layers (|n| < 1.4) and nine end-cap disks
(1.1 < |n] < 2.5) on each side. One of the 4088 SCT modules, as shown on Figure 1.14,
consists of two pairs of silicon microstrip planes glued together back-to-back. The planes
are rotated with respect to each other by a 40 mrad angle, which allows measurements
along the length of a strip. The microstrip pitch is approximately 80 pm, and the intrinsic
accuracy is 16 ym (R — ¢) x 580 pm (z). The SCT contains approximately 6.2 million

read-out channels.

280 microns thick p-n

(Hamamatsu) 2. 3" Mounting poin
Strip length 12cm

Pitch 80um \ > amcdniod
Vmac = 500V Flex circuit with 12 x ABCD
chips.

Overlap in r¢ and Z to
adjacent modules

Upper or lower detector pairs
rotated by 40 mRad

4. Be Facing & Central
‘\'\TPG (thermal pyrolythic
graphite) plate for sensor cooling

n 5. Module support & Lc

Power & Data fix to brackets, one hole & one slot

Figure 1.14: Semi-Conductor Tracker barrel module

1.3.2.3 Transition Radiation Tracker

The Transition Radiation Tracker (TRT, [2/, 28)) is the outermost part of the Inner detector.
It is made of 351000 individually read out straw tubes of 4 mm in diameter. In the three
barrel layers, the 144 cm tubes are aligned along the beam axis; in the three end-cap
disks, the 37 cm tubes are arranged radially. Each tube is filled with a gas mixture of

Xe/CO,/0O, and contains a gold plated tungsten anode at its center. The operative voltage
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of 1530 V applied to the cathode yields to a gain of approximately 2.5 x 10*.

When a charged particle goes through a tube, it ionizes the gas producing electron-
ions pairs; the electrons drift induces a current on the anode as the signal. Moreover, the
drift time (duration of the current pulse) allows the determination of the distance of the
track with respect to the center of the tube. A minimum of 36 straws will be traversed
in the barrel region (22 in the end-caps), and the intrinsic resolution is designed to be
130 pym in R—¢. Measurements with collision data show for instance a FWHM of 138 um

in the x direction in the TRT barrel, as illustrated on Figure 1.15.
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Figure 1.15: The TRT unbiased residuals, as obtained from 7 TeV LHC collision data after detector alignment
and Monte Carlo (perfectly aligned detector) for the TRT barrel. The Monte Carlo distributions (open red
circles) are normalized to the number of entries in the data (full blue circles). Tracks are required to have
pr > 2 GeV. For low-momentum tracks, the width of the residual distribution is expected to be larger

than the intrinsic accuracy per hit as predicted from the drifttime measurement because of the contribution
from multiple scattering.

The transition radiation emitted in the TRT allows for the separation of electrons and
pions, providing an additional handle for electron identification in the electromagnetic
calorimeter. The photons produced at the transition are absorbed by the gas mixture,
inducing a much larger signal than the standard ionization process. Therefore, both
tracking and particle identification are made possible by setting two separate thresholds

on a tube-by-tube basis.
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1.3.2.4 Beam Condition Monitor

The ATLAS Beam Condition Monitor [30] is designed as the experiment's way to detect
unstable LHC beams and trigger safety beam dumps in order to protect the inner detector.
It is comprised of two stations, located at z & 184 cm of the ATLAS interaction point. One
BCM station is made of four radiation hard diamond-based sensors, as seen on Figure
1.16, each module sitting at a radius of 5.5 cm from the beam axis. By using time-of-flight
information between the two stations, the BCM is capable of distinguishing collision-like
events, L.e. in-time coincidences, from beam induced background, and, if the conditions are
met, is capable of sending a beam abort trigger to the LHC. In addition to its beam abort
capabilities, the BCM has access to information related to the luminosity, as it effectively
measures a collision rate. Therefore by adjusting the detector thresholds and calibrating
it using similar techniques as developed in the next section, it has been successfully used
as a luminosity monitor during the 2011 data-taking period. The BCM calibration and

luminosity algorithms are discussed in Chapter 4.

Figure 1.16: BCM station, with its four modules, mounted inside the inner detector.
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1.3.3 Forward detectors

Three additional detectors cover the forward region of ATLAS. Their location with respect
to ATLAS is shown on Figure 1.17. LUCID (LUminosity measurement using Cerenkov
Integrating Detector, [31]) is located at & 17 m of the interaction point (IP) and measures
proton-proton inelastic scattering. It consists of an array of Cerenkov tubes surrounding
the beam pipe and read out by photomultiplier tubes. It is one of the main handles
on relative luminosity monitoring. The Zero Degree Calorimeter (ZDC, [37]) is located
+ 140 m from the IP, just before the two independent LHC beam pipes merge into a
single one for ATLAS. Its main goal is to detect forward neutrons for heavy-ions centrality
measurements up to |n] = 8.3. ALFA (Absolute Luminosity For ATLAS, [31]) consists of
scintillating fibre trackers located in eight roman pot stations &+ 240 m from the IP. Its
purpose is to provide an absolute luminosity calibration to the other luminosity detectors

during dedicated data-taking periods with special machine optics.

Figure 1.17: Location of the LUCID, ZDC, and ALFA forward detectors along the beam line on one side
of the ATLAS detector. The same set of detectors are place symmetrically with respect to the interaction
point.
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1.3.3.1 LUCID

The LUCID [31] detector surrounds the LHC beam pipe on both sides of the ATLAS inter-
action point at a distance of 17 m. Its layout and position are illustrated on Figure 1.18.
One vessel contains 20 aluminium tubes pointing towards the interaction point approxi-
mately 10 cm from the beam axis. Each vessel is filled with C4F49 at 1.3 bar for Cerenkov
light measurement. Sixteen of the 20 tubes are read out through 15 mm photomultipliers
(PMT) and 4 tubes have their collected light transmitted through quartz fibers outside of

the forward shielding to be read out by multi-anode photomultiplier tubes.

150 ¢m

20 Cerenkov tubes Beampipe support cone

Beampipe

=

Figure 1.18: Computer-generated view of the LUCID Cerenkov tubes and their arrangement around the
beam pipe.

The 16 photomultipliers signals are individually sent to the front-end electronics and,
if they pass a predefined threshold, the considered tube is registered to have been hit. In
addition to providing trigger capabilities, the signals from both sides are sent to LUMAT
cards programmed with luminosity algorithms and calibration constants, which allows
for an online luminosity determination for each LHC bunch crossing. The algorithms are
predefined as coincidence (AND), exclusive, and inclusive OR between the two LUCID
detectors. The calibrations can be derived from Monte Carlo studies [33] van der Meer

scans [33, 34], or ultimately using the ALFA detectors.
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1.3.3.2 ZDC

The ZDC [32] is comprised of four modules, one electromagnetic and three hadronic. The
EM module, depicted on Figure 1.19, consists of eleven 10 mm thick tungsten plates,
extended by steel plates, traversed by 96 quartz rods forming an 8 x 12 matrix perpen-
dicular to the beam axis. On the front face of the module the rods are bent upwards
and read out at the top by multi-anode photomultiplier tubes. Therefore, the Cerenkov
light induced by particle showers traversing the module provides both position (rods hit)
and energy (light intensity) measurements. In order to get an improved measurement of
the incident particle energy over that of the position measuring rods, quartz strips are
installed between the plates and read out from the top by photomultiplier tubes. The
hadronic module, shown in Figure 1.20, is similar to the electromagnetic module except
that four rods (instead of one) are mapped to one pixel of the multi-anode photomultiplier

tube and not that all hadronic modules have position sensing rods.
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Figure 1.19: ZDC electromagnetic module. Figure 1.20: ZDC hadronic module.



24 The ATLAS experiment at the Large Hadron Collider

For p-p collisions, the ZDC single-side signals and coincidence rates provides trigger
capabilities as well as, similarly to LUCID, the possibility to monitor relative luminosity.
Since 2011, LUMAT cards have been installed on the ZDC readout chain in order to
provide an online, bunch-by-bunch luminosity measurement. The calibration is performed

the same way, using van der Meer scans.

1.3.3.3 ALFA

The ALFA [31] detector is designed to measure elastic scattering at small angles - and
the total elastic p-p cross-section - in order to obtain an absolute luminosity calibration
independent from the LHC machine parameters. The goal is to achieve an uncertainty
of 1% on the absolute calibration of the luminosity. The detector consists of four roman
pot stations (Figure 1.21-a) placed at 240 m on each side of the ATLAS interaction point.
The very small scattering angle (~ 3.5 prad) requires the active detector parts to be very
close (<2 mm) to the proton beams. Therefore, set of scintillating fibres (Figure 1.21-b)
are mounted on the top a bottom half-pots and are allowed to move very close to the
beams through bellows with direct access to the beam pipe vacuum. One module consists
of ten layers of 64 scintillating fibres, alternating with a 90° angle. The light from each
layer is collected and routed to a dedicated 64-channel multi-anode photomultiplier tube
on the base of the roman pot, before being sent to the readout electronics (Figure 1.21-c).
Additionally, for triggering, each module is equipped with two dedicated scintillating tiles

read out by photomultiplier tubes.

As mentioned previously, the ALFA detectors aim at measuring p-p elastic scattering
at very small angles. In order to achieve this, it uses parallel-to-point focusing optics:
the protons scattered at the same angle at the ATLAS interaction point will end up at
the same y-position of the ALFA tracker, regardless of their collision vertex position. For
scattering angles as small as 3.5 prad, a machine requirement is that the beam angular
divergence must be smaller than the angle to be measured. This leads to a set of machine

parameters very different from those of nominal p-p collisions. Therefore, ALFA will have
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Figure 1.21: (a) Schematic view of an ALFA roman pot - (b) ALFA scintillating fibres - (c) ALFA readout
electronics.

dedicated runs in the LHC machine schedule in order to perform its measurements, the

first of which, somewhat intermediary, being in the fall 2011 [35].

As of the 2010 winter shutdown, the complete ALFA detectors are installed in the
LHC tunnel. Their Detector Control System infrastructure is in place, as well as their
integration in the ATLAS Trigger and Data Acquisition chain. Commissioning is continuing,

pending interesting results from their special run in the fall 2011.

1.3.4 Calorimeters

The ATLAS calorimeters (see Figure 1.22) cover the large pseudo-rapidity range |n| < 4.9
and will be described in detail in Chapter 2. Their design is dictated by physics searches
such as H — yy or Z' and W’ bosons, which involve electrons, photons and constraint their
performance requirements as shown in Table 1.4. With those requirements in mind, the
calorimeters role is therefore to provide trigger capabilities, electron/photon/jet identifica-
tion, as well as energy measurements for electrons, photons, jets, and missing transverse
energy (E7*°). The electromagnetic and end-cap hadronic calorimeters are sampling

2

calorimeters [36] with liquid argon (LAr) as an active medium, and will be detailed in



26 The ATLAS experiment at the Large Hadron Collider

chapter 2. The barrel and extended barrels of the hadronic are also sampling calorime-

ters, made of scintillating plastic tiles.

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr electromagnetic

LAr electromagnetic
barrel
LAr forward (FCal)

Figure 1.22: The ATLAS calorimeters.

1.3.4.1 Electromagnetic calorimeters

The electromagnetic (EM) calorimeter is divided into a central barrel (|n| < 1.475) and
two end-caps (1.375 < |n| < 3.2). In the forward region (3.15 < [n| < 4.30), the first
module of the forward calorimeter (FCal) is part of the EM calorimeter. The EM barrel
and end-caps are made of a succession of lead absorbers and copper electrodes, with
gaps of liquid argon in between. Each gap harbours an electric field provided by a
dedicated high-voltage system, which will be described in detail in chapter 3. The FCal
layout consists of electrode tubes in a copper-tungsten matrix (absorber) arranged along

the beam axis.
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Barrel The accordion geometry of the electrodes allows fast signal extraction and full
¢-coverage with no gap. The barrel is segmented in three compartments in depth (layers
1,2, and 3) with different cell sizes. The first layer (as seen from the interaction point) is
very finely segmented in n (0.0031), which is crucial for discriminating photons coming
from a 7% meson decay and so-called prompt photons (i.e. coming from a p-p collision
product). This is particularly useful for physics searches such as H — yy, where the
photon background is extremely large. An additional detector layer is installed in front of
the EM barrel: the Pre-Sampler (PS). Its purpose is to allow for an estimate of the energy

lost by the charged particles before entering the calorimeter, mainly in the solenoid

magnet and cryostat vessel.

End-cap The electromagnetic end-caps (EMEC) extends the EM calorimetry further in
pseudo-rapidity. The EMEC is divided in two coaxial wheels: the outer wheel (OW)
covers 1.375 < |n| < 2.5 and the inner wheel (IW) covers 2.5 < |n| < 3.2. The OW
is segmented into three layers in depth whereas the IW is two-layers deep. The main
feature of the EMEC is its variable gap size: the LAr gap varies with the radius and,
in order to obtain a uniform response across the EMEC, the high-voltage applied to the

different n-sectors varies accordingly.

Forward The Forward Calorimeter (FCal) is the innermost calorimeter in the end-cap
cryostats and is made of three modules. They share the same design: an absorber matrix
filled with electrode tubes arranged along the beam axis. For the first module (FCal-1),
aimed at forward electrons and photons energy measurements, the absorber is copper;
the two other modules, optimized for hadronic energy measurments (FCal-2 and 3) are
made of tungsten. Inside each tube is a rod, where the high-voltage is applied; the gap

between the rod and its tube is filled with liquid argon.
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1.3.4.2 Hadronic calorimeters

Tile calorimeter The Tile calorimeters (TileCal, [3/]) surround the barrel and end-cap
cryostats and are aimed at measuring jet and hadron energies. The TileCal is divided into
three parts: a barrel (|n| < 1) and two extended barrels on each side (0.8 < |n]| < 1.7). It
is a sampling calorimeter with steel absorbers and scintillating plastic tiles as an active
material. Each tile as read by a pair of wavelength shifting optical fibres connected to

photomultiplier tubes. One of the modules (or ¢-wedge) is represented on Figure 1.23.

The calibration of the readout electronics, photomultiplier tubes, and scintillating tiles
are performed with three dedicated systems. The first is calibrated by injecting a known
charge in the front-end electronics and measure the response, the photomultiplier tubes
are calibrated by a laser system, and the tiles are calibrated by scanning the modules

with a ¥Cs source through small tubes in the modules arranged along the beam axis.

In radius, the tile calorimeter ranges from 2.28 m to 425 m. The pseudo-projective
segmentation (longitudinally and in depth) lead to cell sizes of A xA® = 0.1 x 0.1 in the
first two compartments and AnxA® = 0.1 x 0.2 in the last; the TileCal has approximately
9600 read-out channels. The energy resolution, determined during test beam studies, can

be written as follows:

Hadronic End-cap The Hadronic End-Cap (HEC) calorimeter shares the end-cap cryostats
along with the EMEC and FCal and cover the pseudo-rapidity range 1.5 < |n| < 3.2. It
is a sampling calorimeter with copper absorbers and liquid argon as an active medium.
The electrode planes are flat and arranged orthogonally with respect to the beam axis.

The HEC is divided in two wheels, each segmented in two layers in depth.
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Figure 1.23: Schematic of a Tile calorimeter module.

1.3.5 Muon spectrometer

The outermost layers of the ATLAS detector consist of a scattering of different types of
detectors forming the muon spectrometer [38] as shown on Figure 1.24. lts purpose is
to perform trigger and precision tracking of muons, as well as measure their momentum
with an aim of g,,/pr = 10% for pr = 1 TeV. The muon tracking can be extended by
combining tracks from both the inner detector and the muon spectrometer. The momentum
measurement is made possible by the bending power of the three toroidal fields, whose
geometry has been chosen so that the fields are almost always perpendicular the muon
trajectory, hence improving the momentum resolution of the spectrometer. The relation
between a charged particle’'s momentum p, the intensity of the magnetic field 5, and the

radius of curvature of its track r can be written as follows:

pGeV]=03x B[T]xr[m]

Two types of chambers are used for measurements, and two other for trigger. All the

chambers are aligned with respect to each other using a grid of 5800 triplets of infrared
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Figure 1.24: Rendered 3D view of the ATLAS muon spectrometer.

optical sensors, allowing a constant monitoring of the detectors’ position in the cavern

and achieving a 30 ym precision on the relative position of the chambers.

1.3.5.1 Resistive Plate Chambers and Thin Gap Chambers

The Muon Spectrometer uses two types of chambers for trigger purposes. The require-

ments for such a setup include:

e discrimination of transverse momentum
e bunch-crossing identification

e fast tracking information to be used by high-level trigger

Two different technologies have been chosen: Resistive Plate Chambers (RPC) and Thin

Gap Chambers (TGC).

The RPC, which covers the pseudo-rapidity range |n| < 1.05, consists of three concen-

tric cylindrical layers in the barrel region. The layer spacing allows for high-transverse
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momentum (p7) and low-pr trigger capabilities. The RPC is a gaseous parallel electrode-
plate detector. Two plastic resistive plates are separated by a 2 mm gas mixture (G;H>F4//so—
CyHi0/SFe) where lies an electric field of 4.9 kV/mm. The signal is read out by capacitive

coupling to metallic strips placed on the outer faces of the resistive plates.

The TGC provides the measurement of the second coordinate in the range 1.05 <
|n| < 2.7 as well as muon trigger capabilities in the range 1.05 < |n| < 2.4. Seven layers
complement the MDT in the middle end-cap wheel, and two in the innermost n region.
The TGC's requirements include good timing resolution for bunch-crossing identification
and good granularity for a trigger dependent on momentum resolution. The TGC are
multiwire proportional chambers operated in quasi-saturated mode: the wires, 1.4 mm
away from the graphite cathodes, are put at a potential of 29 kV and are surrounded by
a highly quenching gas mixture of CO;, / n — CsHy;, resulting in an amplification gain of

~ 3 x 10°. This leads to an overall very good timing resolution.

1.3.5.2 Monitored Drift Tubes and Cathode Strip Chambers

The Monitored Drift Tubes (MDT) are chambers comprised of aluminium tubes of 30 mm
in diameter filled with an Ar/CO, gas mixture and a tungsten anode. The tubes are
operated at a pressure of 3 bar and a voltage of 3080 V, resulting in an amplification
gain of 2 x 10". The average spatial resolution of one of the 350000 tubes of the MDT
is approximately 80 pym. The chambers are placed in three cylindrical layers in the
barrel and three axial disks around the end-caps. The MDT covers the pseudo-rapidity
range |n| < 2.7, except for the innermost layer of the end-cap (2.0 < |n| < 2.7), where
Cathode Strip Chambers (CSC) are installed. At |7 > 2, the particle rate exceeds the
MDT maximum allowed counting rate of 100 Hz/cm?, whereas the CSC can safely operate

at rates approaching 1 kHz/cm?

. The CSC are multiwire proportional chambers with
cathodes segmented into strips; wires perpendicular to the strips provide the precision
coordinate and wires parallel to the strips provide the transverse coordinate. The design

resolution of one CSC plane is 60 pm.
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1.3.6 Trigger and Data acquisition

The ATLAS trigger system is divided into three stages: L1, L2, and Event Filter. The
two latter form the High Level Trigger (HLT). The calorimetry and muons systems front-
end electronics acquire the lowest level of signals, gathers them, and sends them to the
L1 trigger. The L1 then looks for basic patterns that could identify muons, electrons,
photons, jets, or missing transverse energy and makes a decision: the L7 Accept (LTA).
The time needed by the L1 to provide the L1A (2.5 ps) is limited by the overall L1 ouput
rate of ~75 kHz, by design. Once the L1A has been issued, the buffered data is sent
to the L2 along with regions of interest (Rol), which are n — ¢ regions of the detector
where information has been deemed interesting, to be processed further by applying more
refined algorithms. This process takes ~40 ms and the L2 maximum rate is limited to
~35 kHz. If an event passes the L2 stage, it is sent to the Event Filter to be permanently
stored as raw data, at a maximum rate of 300 Hz. The raw data is then available offline
to be fully reconstructed by dedicated algorithms and made available to the users for

analysis.

Since 2010, a 36 h calibration loop has been implemented between the recording
of the raw data and their reconstruction, in order to allow for data quality assessment
and appropriate actions if necessary (e.g. masking of noisy readout channels, adjusting
alignment). Immediately after data-taking, a data stream (Express Stream) containing
10% of the total amount is reconstructed and used to identify and define action items.
After 36 hours, the reconstruction is performed on the entire dataset (Bulk) taking into

account all these corrections.

Infrastructure-wise, the different elements of the chain just described are as follows:
the L1 is a purely hardware trigger (necessary for speed) located in the ATLAS technical
cavern; the L2 and Event Filter are handled by a computer farm located at the surface
above the ATLAS cavern; the data are stored in the CERN Computer Centre and recon-

structed there. The latter stage, also known as Tier-0 (first stage of the LHC Computing
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Grid), is where all the data are made available to eleven Tier-1 sites in the world, which
in turn make the data available to all the Tier-2 sites and so on. This allows optimal
availability of data and best usage of the computing resources of all the ATLAS institutes

around the world.
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Chapter 2

The ATLAS liquid argon calorimeters

2.1 Introduction

As mentioned in the previous chapter the ATLAS liquid argon (LAr) calorimeters are a set
of sampling calorimeters installed in three cryostats in between the trackers and the toroid
magnets. Their goal is to provide Level-1 trigger capabilities along with Tile calorimeter,
as well as electron/photon identification with very good y / 70— yy separation, crucial for
the H — yy analyses, and EM energy measurements with a good linearity up to 1.5 TeV
(' and W' searches).. Reconstruction of jets and measurements of missing transverse

energy and total transverse energy are also part of the calorimeters’ tasks.

When a particle such as an electron or a photon traverses matter, it interacts and
loses part of its energy though different processes. At high energies, two processes
govern these energy losses: a charged particle will lose energy by emitting radiation
(Bremsstrahlung) as it crosses material, and photon will produce electron-positron pairs
by interacting with the high-Z absorber material. The combination of these two processes
give birth to an electromagnetic shower, with a cascade of Bremsstrahlung radiation and

pair production until the products reach very low energies and are absorbed.

Liquid argon has been chosen as an active medium because of the linearity of its



36 The ATLAS liquid argon calorimeters

response, its stability, and its radiation hardness. A liquid argon gap functions as an
tonisation chamber: when a charged particle traverses the gap it ionises the liquid argon
and the presence of an electric field allows for the drift of the electron-ion pairs produced.
The electron drift induces a current proportional the energy lost in the gap. The signal

generation will be detailed in Section 2.5.

The LAr calorimeters are housed in three cryostats, one barrel and two endcaps.
The electromagnetic barrel calorimeter (EMB) lies in the barrel cryostat and one endcap
cryostat contains the electromagnetic endcap calorimeter (EMEC), the hadronic endcap

calorimeter (HEC), and the forward calorimeter (FCal).

After a description of the main characteristics of the liquid argon calorimeters in
Sections 2.2, 2.3, and 2.4, Section 2.5 summarises how an energy measurement is extracted

from the detector. Finally, Section 2.6 describes their performance and status as of 2011.

2.2 Electromagnetic calorimeters

2.21 Geometry and granularity

In order to provide full ¢p-coverage without crack and fast extraction of the signal, an accor-
dion geometry has been chosen for the electrodes and absorbers for the electromagnetic
barrel (EMB) and endcap (EMEC) calorimeters, as shown on Figure 2.1. This geometry
also ensures that a particle will cross multiple gaps/absorbers on its path allowing the

development of an electromagnetic shower.

In the barrel the accordion waves are parallel to the beam axis and their folding angle
varies along the radius in order to keep the liquid argon gap as constant as possible.
In the electromagnetic endcaps, the accordion waves run axially and the folding angle
varies with radius. As it will be discussed in Chapter 3, the constant liquid argon gap in
the barrel leads to a uniform setting of the high-voltage applied, whereas in the endcaps,

as the gap varies with radius, a segmentation into high-voltage sectors with different
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Figure 2.1: The fours types of electrodes of the electromagnetic calorimeter. The two top ones correspond to
barrel electrodes: |n] < 0.8 (left) and |n] > 0.8 (right). The bottom left is an endcap inner wheel electrode
and the bottom right is the outer wheel. Dimensions are in mm.

settings was chosen in order to obtain a uniform response.

The barrel calorimeter [39] is divided into two half-barrels, each consisting of 16
modules in ¢ build for practical assembly reasons. It is 6.4 m in length, 4 m in diameter
and covers the pseudo-rapidity range 0 < |n| < 1.475. One half-barrel module contains 64
absorber planes interleaved with readout electrodes. Each lead/stainless steel absorber
is fixated on a glass-fibre composite bars at its extremities, which allows for the accurate
positioning and protection of the connectors, and maintains the liquid argon gap size
of 21 mm. In addition, honeycomb spacers have been installed between the absorber
and electrode planes to help maintain the gap and limit sagging effects due to material
weight. Additionally, the barrel is equipped with a presampler [40] module which role
is to measure the energy lost in front of the calorimeter, which consists mainly of the
solenoid and the cryostat wall. It shares the same cryostat and is placed front of the
barrel as seen from the interaction point. The presampler is made of 32 azimuthal sectors,

11 mm deep, each divided into eight modules in pseudo-rapidity, providing a coverage of

AnxA¢p =152x0.2
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The endcap calorimeter [41] covers the pseudo-rapidity range 1.375 < |n| < 3.2 and is
made of two coaxial wheels, each wheel itself divided into eight ¢-wedges. Each endcap
contains 768 absorber-electrode planes in the outer wheel and 256 in the inner wheel.
In the region 1.5 < |n| < 1.8, a presampler layer in installed against the cryostat wall,

and is made of 32 azimuthal sectors made of 2 mm thick liquid argon active layers.

As seen from the interaction point, the electromagnetic calorimeters are segmented
into depth layers (Figure 2.2): in the precision region (|n] < 2.4, the front layer is finely
segmented in ) primarily to allow for the distinction between prompt photons (i.e. coming
from a pp collision) and photons due to the decay of 1% mesons; the middle layer, which
is the largest, collects most of the energy deposited by the shower; the back layer (up to
|n| = 2.5), sees the tail of the electromagnetic shower and contributes to the separation

of electromagnetic and hadronic showers.
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Figure 2.2: Sketch of the granularity and segmentation of electromagnetic calorimeter cells.

The granularity and pseudo-rapidity coverage of the electromagnetic calorimeters are

listed in Table 2.1.
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Barrel Endcap
Presampler 0.025 x 0.1 |n| <1.52 | 0.025 x 0.1 15<|n <18
Layer 1 (front) 0.025/8 x 0.1 |n| < 1.40 | 0.050 x 0.1 1.375 < |n] < 1.425
0.025 x 0.025 1.40 < |n] < 1.475 | 0.025 x 0.1 1.425 < |n| < 1.5
0.025/8 x 0.1 15<|n <18
0.025/6 x 0.1 1.8 <|nl <20
0.025/4 x 0.1 20< |nl <24
0.025 x 0.1 24 <|n <25
0.1x0.1 25<n <32
Layer 2 (middle) 0.025 x 0.025 |n] < 1.40 | 0.050 x 0.025 1.375 < |n| < 1.425
0.075 % 0.025 1.40 < |n] < 1.475 | 0.025 x 0.025 1425 < |n| <25
0.1x0.1 25<|n <32
Layer 3 (back) 0.050 x 0.025 |n] < 1.35 | 0.050 x 0.025 15<nl <25
Total number
of readout channels | 109568 63744 (both sides)

Table 2.1: Granularity and coverage of the electromagnetic calorimeters.

2.2.2 Liquid argon gap

Figure 2.3 illustrates the layout of an electromagnetic calorimeter readout cell. One lead
absorber is surrounded by two steel plates glued on each side to provide mechanical
strength. The absorbers are connected to the common cryostat ground at the calorimeter
inner and outer edges. The copper readout electrode is surrounded by two copper high-
voltage electrodes using layers of insulating kapton. One of the key features of this
calorimeter is highlighted by this layout, indeed one readout electrode effectively sees
two liquid argon half-gaps, with their independently fed electric fields. This ensure
redundancy in the occurrence of the loss of one of the two high-voltage sources. The
EMB electrodes are uniformly set to a of 2000 V potential, and the EMEC electrodes,
because of the varying gaps, are set to voltages ranging from 1000 V to 2500 V and
- 2000 V in the EMEC presampler. The high-voltage system and its distribution inside
the calorimeter will be described in Chapter 3. The signal induced by the tonisation
electron drift in the liquid argon gap is collected by capacitive coupling in the readout
electrode and transmitted to the electronic readout chain for amplification and processing,

as discussed in Section 2.5.
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Figure 2.3: Sketch of an electromagnetic calorimeter liquid argon gap.

Hadronic endcap
An x A¢ 0.1 x 0.1 15<|n <25
02x0.2 25<|nl <32

’ # of readout channels \ 5632 (both sides) ‘

Table 2.2: Granularity and coverage of the hadronic endcap calorimeter.

2.3 Hadronic calorimeters

The hadronic endcap calorimeter (HEC) [4] shares the endcap cryostat along with the
EMEC and forward calorimeter. As illustrated on Figure 2.4, it is made of two modules,
each divided into two longitudinal wheels. Each wheel consists of 32 ¢-wedges. There
is a total of 26 flat absorber copper plates in the two front wheels and 16 in the two
rear wheels. A distance of 85 mm is maintained between the plates where lies four
distinct 1.8 mm liquid argon gaps. The HEC granularity, coverage, and number of readout

channels is detailed in Table 2.2.

As shown on Figure 2.5, four electrodes divide the gap between two copper plates into
four liquid argon gaps. The two central electrodes are back to back and separated from

the central copper readout electrode by insulating kapton. These PAD layers define the
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Figure 2.4: Schematic transverse (left) and lateral (right) views of the hadronic endcap calorimeter.

lateral segmentation of the HEC by a high-resistivity padding and are independently fed
high-voltage. The outermost electrodes, or EST for electrostatic transformers, have their
high-resistivity side facing the PAD with a high-voltage applied to the other side. This
layout effectively creates four distinct drift gaps, each independently fed by a different
high-voltage line. The nominal voltage applied to the HEC electrodes is 1800 V, which

corresponds to a 1 kV/mm electric field and an average electron drift time of 430 ns.

2.4 Forward calorimeters

The forward calorimeter (FCal) [43] is a sampling calorimeter that covers the pseudo-
rapidity range 3.2 < |n| < 4.9 and is housed in the two end-cap cryostats along with
the electromagnetic end-cap (EMEC) and the hadronic end-cap (HEC) calorimeters, as
illustrated on Figure 2.6. Each of the two FCal modules (FCal A and FCal C) is divided
into three longitudinal absorber matrices, one made of copper (FCal-1) and the other

two of tungsten (FCal-2/3). Each matrix, contains tubes arranged along the beam axis
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Figure 2.5: Schematic view of a hadronic endcap liquid argon gap.
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Forward calorimeter

FCal-1 (EM) 3.0x26 315 <[] < 4.30
(3.0 x 2.6)/4 310 < || < 3.15
(3.0 x 2.6)/4 430 < |n| < 4.83
FCal-2 (Had) 33x42 324 < |n| < 450
(3.3 x 4.2)/4 320 < |n| < 3.24
(3.3 x 4.2)/4 450 < |n| < 4.81
FCal-3 (Had) 5.4 x 47 332< |n| < 4.60
(5.4 x 4.7)/4 3.29 < |n| < 3.32
(5.4 x 4.7)/4 460 < |n| < 475

’ # of readout channels \ 3524 (both sides) ‘

Table 2.3: Granularity and coverage of the forward calorimeter. Cell sizes are expressed in cm in the

transverse plane Ax x Ay.

which are filled with liquid argon, the active medium. Figure 2.7 shows the section of

an FCal matrix and its tube arrangement. An FCal tube houses a central rod on which

a high-voltage (HV) is applied to drift ionisation electrons by the effective electric field

of approximately 1 kV/mm. As per its design, the FCal granularity is better expressed in

the x-y plane: the readout cell segmentation is detailed in Table 2.3.

T
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Figure 2.6: Lateral view of the positioning of the forward calorimeters inside the endcap cryostats.

Each FCal-1 matrix is divided into 16 ¢-sectors, each of them fed by four independent

high-voltage lines. There are two types of readout channels: summed channels are made

of 4 groups of 4 tubes and unsummed channels which consist of a single 4-tube group.

The latter type only covers the inner and outer edges of the FCal modules. In the case
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of summed channels (see Figure 2.8, each of the 4 tube groups is fed by one of the four
HV lines in this sector. This ensures redundancy in the event of HV-related issues, and
allows for an offline correction of the cell energy in case of a failure of one of the HV
lines. The two hadronic matrices, FCal-2 and FCal-3, follow a similar layout. The three

FCal-A matrices are illustrated in Figure 2.9.
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Interconnect ° Q ©
40 board I_ T o
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SZ%? 00000000000 <«— electrode Summing board unit cell

Figure 2.7: Transverse view the forward calorimeter  Figure 2.8: Cold cabling of four forward calorime-

tube matrix. ter tube groups. The high-voltage feed, analogue
summing, and feedthrough connection are also rep-
resented.

2.5 From the ionization signal to the digitized samples

The ultimate goal of the calorimeter is to provide energy measurement from the tonisation
signals produces in the different liquid argon gaps previously described, the following
section details the signal extraction and processing by the electronics chain, as well as

the calibration of the calorimeters readout electronics.

As mentioned previously, when a charged particle traverses a gap, it tonises the liquid
argon, producing electron-ion pairs which drift in the electric field provided by the high-
voltage system. The ions drift speed being negligible compared to that of electrons, their
contribution can be ignored. If we consider a single charge g drifting in a liquid argon

.,
gap harbouring a electric field E provided by a constant potential Uy, the power it is
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Figure 2.9: Transverse view of the three FCal-A modules. The tiles, consisting of tube groups, represent
readout channels.
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supplied can be expressed as follows:

where v is the charge drift velocity. With g denoting the liquid argon gap width, the

current induced by the drifting charge can be written:

P E vy :
=" — gl - E-va _ |q]-va
Uo Uo g

Back to the case when a charge particle instantly and uniformly ionises a liquid argon gap.
Creating N electron-ion pairs and considering that the maximum total current induced at

t =01is lp and is null when all the electrons are collected after 7, = vy/g (drift time):

It =N e (1-%) — b (1-})

An electron drift velocity in the liquid argon of approximately 45 mm/us, an electric field
of 1 kV/mm and a drift gap g ~ 2.1 mm, the drift time is ~ 450 ns. This duration is long
compared to the LHC design bunch crossing frequency: 1/25 ns. Therefore this signal

has to be processed properly in the electronic readout chain [44].

The signal is then extracted to the front-end electronic boards [45] located outside the

cryostats, as shown of Figure 2.10.

Here it first meets the pre-amplifiers where it is amplified away from the electronic
noise. The signal is then shaped through a bipolar CR—(RC)? filter which outputs a pulse
with an early narrow peak, reflecting the y current, and a longer, negative, undershoot.
The goal of the shaping is to minimise the out-of-time pile-up, and the bipolarity ensure
that the pulses average to zero. Both triangular and shaped signal are illustrated in
figure 2.11. Each of the three outputs - for the three gains - of the shaper is analogically
sampled at 40 MHz and sent to be temporarily buffered in the Switch Capacitor Arrays

(SCA). The SCA allows for the storage of 144 pulses, corresponding to a duration of
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approximately 3.6 ps, awaiting a signal from the Level-1 trigger to send the selected

pulses further down the chain, which shouldn’t take more than 2.5 ps.

In parallel, the shaper outputs are analogically summed and sent to the Level-1 trigger
for decision. If an event is selected, five samples are digitised around the Level-1 Accept
time at 40 MHz by the 12 bits ADC and sent via optical fibres to the back-end electronics

[40] located in the ATLAS technical cavern, USA15.

Detector p
inputs reamp

4

128 L T

channels [

Analogue il 144 cells
trigger sum LSB

Figure 2.10: Front-End Board schematic
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Figure 2.11: LAr signal before and after shaping. The black markers represent the 40 MHz sampling of the
pulse.

The back-end electronics process the signals sent from the front-end and provide the
ATLAS data acquisition (DAQ) system energy and time measurements for each of the

calorimeter readout channels. The Read-Out Drivers (ROD) [4/] receive the digitised



48 The ATLAS liquid argon calorimeters

samples and Digital Processor Units (DSP) compute the energy and time as follows:

Ns(lmples ,I Nsamp[es
E = Z a; (si—p) T:E Z bi (si —p)
i=0 =0

where Nsgmpies is the number of digitised samples, s; the number of ADC counts of sample
i, p the pedestal - i.e. the number of ADC counts in the absence of signal, and a; and b;

a set of coefficients extracted from the calibration of the calorimeter.

Going back to the ionisation current induced in the liquid argon gap. Every time a
charge particle traverses a gap, charges are lost, inducing a voltage drop. To compensate
for the voltage drop, the high-voltage system has to inject a number of charges equivalent

to the amount lost due to tonisation. A schematic view of the process is illustrated in

Figure 2.12.

Instantaneous charge Bivolar sianal
/ . production and drift ' ipolar signal
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b= 7 e

IHv Absorber oo
Length = 400ns Peak at 40ns

invy = HV feed current
High Voltage . )
Source is = Signal current

Figure 2.12: Schematic view of a calorimeter cell (equivalent to a capacitor) being traversed by a charged
particle. As the ionisation current is flows out to the readout chain (right) for the energy deposition
measurement. The high-voltage power supply (left) injects the current iy to maintain the potential U
constant across the liquid argon gap.

2.6 Performance

The expected performance of the liquid argon calorimeters [48] is mostly governed by
physics searches involving the Higgs boson, such as the H — yy and H — 4e decays
channels, as well as searches for the Z" and W' which produce very high energy electrons.

The performance requirements involve a good energy resolution as well as a good angular
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resolution between the two photons in case of the di-photon decay channel of the Higgs.

Test beam results have led to the following expression of the energy resolution:

AE a b
— =——=8_-&c

E JVE'E

The first term corresponds to the sampling term, related to the shower across the calorime-
ter gaps. The value of a is approximately 10% in the electromagnetic calorimeters, 50% in
the hadronic calorimeters, and 100% in the forward calorimeters. The second term corre-
sponds to the noise contribution, dominated by the noise of the electronic readout. The
noise term grows with the pile-up noise due to the increase of the luminosity. The last
term reflects the effects of the non-uniformity of the calorimeter response as well as qual-
ity of the detector calibration. It must be maintained below 0.7% as per the calorimeter
design requirements. The angular resolution is provided by the fine segmentation of the
electromagnetic calorimeters first layer is found to be approximately 50urad/~/E[GeV]
overall. Finally, for searches such as long-lived tonising particles, a good timing resolu-
tion is required, with an achieved resolution of 100 to 170 ps across the calorimeters, as

shown on Figures 2.13 and 2.14.
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Figure 2.13: Average time per Front-End Board in the electromagnetic barrel and endcap calorimeters
extracted from 7 TeV collision data in 2011

Table 2.4 illustrates the status of the LAr calorimeter readout as of July 2011. Overall,

99.79% of the readout channels are usable for data-taking. The faulty channels are
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Figure 2.14: Average time per Front-End Board in the hadronic endcap and forward calorimeters extracted
from 7 TeV collision data in 2011

’ Detector \ # readout channels \ Percentage of faulty channels ‘
EM 173312 0.29%
HEC 5632 0.37%
FCal 3524 0.23%

] Overall LAr \ 182468 \ 0.21%

Table 2.4: LAr calorimeter faulty channels as of July 2011. The percentages are dominated by dead channels
and extremely noisy channels that need to be masked out of the readout chain.

mostly due to dead or disconnected channels, either at the time of assembly or during

commissioning, and very noisy channels that need to be masked out of the readout.

Overall, the LAr calorimeter performance is under control and well within its design

parameters.

2.7 Conclusion

The ATLAS liquid argon calorimeters, their main characteristics and performance have
been described in this chapter. As discussed, the high-voltage system feeding the liquid
argon gaps is a crucial part of the calorimeter. The high-voltage system and its operation
will therefore be described in Chapter 3 and a relative luminosity measurement, using

the currents injected by the HV system due to ionisations losses, will be discussed in
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Chapter 4.
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Chapter 3

The LAr high-voltage system

3.1 Introduction

As mentioned in Chapter 2, the LAr high-voltage system is designed to feed the calorimeter
liquid argon gaps with electric fields allowing for the drift of ionisation electrons induced
by charged particles passing through. Without the drift field, the electron-ton pairs
produced would recombine, thus preventing the creation of the drift current and any

energy measurement.

The installation of the LAr HV system in the ATLAS technical cavern was performed
between 2004 and 2007 following a series of studies with prototypes at the CERN North
Area test beam lines. At my arrival in the group in 2007, approximately half of the system
was installed and cabled. | consequently contributed to the finalisation of the power
supplies installation and cabling, and actively helped in the development of the control
system framework. | then continued my work as high-voltage expert during which time |

assisted in the daily maintenance of the system, as well as continuing developments.

The choice of the operational regime of the HV system is motivated by two reasons:
the drift time of the tonisation electrons and the breakdown voltage of the liquid argon.

As the drift velocity of the electrons in the liquid argon gap is found to be approximately
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proportional to E3, a too low electric field will increase the drift time of the electrons and
challenge the electronic readout through pile-up effect of the shaped signals. Furthermore,
if the electric field is too intense, the risk of causing sparks in the gaps rises, hence
disturbing the operation of the calorimeter and compromising the gap integrity. These
considerations have led to the setting of an operational field of approximately 1 kV/mm
across all the calorimeters, with various operating voltages depending on the liquid argon

gap sizes.

Additionally, the requirements of the high-voltage system include constraints on fea-
tures such as the grounding scheme and safety systems to protect the detector as well

as the HV system.

3.2 High-voltage distribution

Table 3.1 lists the granularity, gap size, and nominal high-voltage settings of the liquid

argon calorimeters.

In the barrel, each high-voltage line supplies one side of all the electrodes in a HV
sector of An x A¢ = 0.2 x 0.2, corresponding to 32 electrodes in ¢. As the gap size is

constant, the applied voltage is the same across the entire barrel, +2000 V.

In the electromagnetic endcap calorimeter, each HV line feeds one side of all the
electrodes in a sector of A¢p = 0.2 and An varying from 0.1 to 0.4. Because of the gap
size variation, the high-voltage settings have to be adapted in order to keep a uniform
response of the EMEC. If a continuous variation of the high-voltage settings would have
been ideal, for practical reasons a variation by steps was chosen. A total of seven HV
sectors in the outer wheel and two in the inner wheel have different nominal high-voltage

settings. These variations are illustrated on Figure 3.1.

In the hadronic endcap calorimeters, the high-voltage is fed to the PAD and EST

boards through HV patch panels mounted on the HEC modules inside the cryostats [49].
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Detector
|
Gap [mm]
Voltage [V]

EMB Presampler
0—-152
19-20
+2000

EMBB
0—1.475
21
+2000

EMEC Presampler
15-18
20
-2000

EMEC outer wheel
1375—-15115-16 | 16—-18 | 1.8—=20 | 20—-21|21-231]23-25
27 25 22 19 1.6 14 12
+2500 +2300 +2100 +1700 +1400 +1250 -+1000

EMEC inner wheel
25-28 28—-32
25 20
+2300 +1800

HEC
15-32
85
+1800

FCAL
31—-49
025-0375-05

+250 [/ 4375/ +500

Table 3.1: Coverage, gap size, and operative voltage of the liquid argon calorimeters.
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Figure 3.1: High-voltage distribution as a function of |n| for the EMEC. A uniform calorimeter response
requires a high-voltage which varies continuously as a function of |n| (open circles), which has been
approximated by a set of discrete values (full triangles) corresponding the nine high-voltage sectors.

Via strip-line connectors, the HV is distributed on the electrode with highly resistive
polyimide layers, which helps reducing the noise induced by the high-voltage system

and limits the risk of electric discharges.

The forward calorimeter high-voltage distribution is performed via summing boards
mounted on the faces of the absorber matrices. One FCal readout cell is divided into four
tubes groups, each fed by separate HV lines. This ensures that in case of HV failure, a

fourth of the signal will be lost at most.

The following section describes how the calorimeter cell energy is corrected with

respect to changes in the high-voltage settings.

3.3 High-voltage corrections

From the high-voltage system viewpoint, two reasons can lead to the correction for the

measured energy [H0].

The first, as illustrated in the previous section, is inherent to the EMEC, is permanent
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and is by construction due to the fact that the high-voltage varies by steps whereas the
EMEC gap sizes varies continuously. Therefore, the cell energy in a specific HV sector
has to be corrected depending on its n position within that sector. The corrected cell
energy in the HV sector S can be expressed as follows:

BS

1 + 0(5(/7 - I7§entre)

Ecorr(r]r S) = Emeas .

where n2,,,.. is the n position at the centre of HV sector S. The parameters > and 8°

originate from the linear dependence of the energy with n.

The second type of high-voltage correction has to be performed when one or more
high-voltage lines are OFF or at a voltage lower than their nominal value. Test beam
results have shown that the measured energy is proportional to ~ V93 Therefore, if two

sides an electrode group are at a reduced by identical voltage, the corrected energy is:

0.38
Vnom )

Ecorr = Emeas ’ ( Vv
op

where Vo, is the nominal voltage and V,, the reduced, operative voltage.

Finally, in the more general case where the two HV lines are at two different operative

voltages Vo1 and V;p, the corrected energy becomes:

2 : Emeas

Ecorr = V038 1038
opl _|_ op2
( \/ITDIN ) ( \/I7{7I77 )

As of the 121" of July 2011, 244 out of the 4320 liquid argon high-voltage lines are
operated at a non-nominal voltage. The breakdown by sub-detector is listed in Table 3.2,
and the geometrical location of the correction factors in the electromagnetic calorimeters

are illustrated on Figure 3.2.

The cause of high-voltage reduction comes mostly from observation of effects on the

calorimeter trigger rates and related noisy readout channels which leads to the manual
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| Detector | A-side | C-side |
EMEC 32 29
EMEC PS 1 3
EMB 24 21
EMB PS 24 28
HEC 27 54
FCAL 1 0

Table 3.2: Number of non-nominal LAr high-voltage lines as of 12/07/2011.

setting of a lower operative value. Noise hunting campaigns were performed where HV
and L1Calo trigger experts worked in the ATLAS control room to identify noise induced by
the high-voltage system. By looking at Level-1 trigger rates coming from the calorimeter
analogue sums and changing the high-voltage settings, they were able to identify several
HV lines inducing noise at their nominal voltage. Therefore, these lines are operated at

a lower voltage. These campaigns mainly took place in the HEC and EMBPS.

301 N W 1 | N P T ST SR A
-3 -2 -1 05 0 05 1

Figure 3.2: Electromagnetic calorimeter high-voltage correction factor in the middle layer versus (n, ¢)
coordinates of the calorimeter cells. Status at the beginning of October 2009. The current situation does
not differ significantly.

Another source of non-nominal voltage are HV lines that draw large amounts of cur-
rent. This is caused by shorts in the calorimeter, which leads to the power supply injecting

a DC current. If the power supply feeding that particular short cannot inject enough cur-
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rent to maintain the nominal voltage, or if the power dissipation exceeds the limit of the

filter box resistor, the operative voltage is decreased accordingly.

The following section describes the layout the high-voltage system hardware, from

the electrodes to the power supplies.

3.4 Hardware

This section describes the hardware equipment constituting the LAr high-voltage system.
The feedthroughs, allowing the passage of the HV lines into the liquid argon cold cryostat,
as well as the high-voltage power supplies and their crates are detailed. Finally, the

grounding scheme and return current measurements are described.

3.41 Feedthroughs

The high-voltage is carried out of the technical cavern to the experimental cavern, where
lies the ATLAS detector, by ~ 120 m cables. The 168 cables coming from the power
supply units are connected to the 3 cryostats onto 6 high-voltage feedthroughs (HVFT,
[51)), two for the barrel and two for each endcap cryostat, as illustrated on Figure 3.3. The
role of the HVFT is to allow the transfer of the warm HV lines into the the liquid argon
cryostats at 88 K. The HVFT is kept at room temperature, and the wires pass through a

buffer of gaseous argon before entering the cryostat vessel.

The schematic design of a HVFT is shown on Figure 3.4. The HV wire is first connected
to an RC filter, the purpose of which is to reduce the noise entering the cryostat, it then
goes through the wire feedthrough plane and down into a stainless steel bellow sitting
within the cryostat wall. The bellow's role is to accommodate the mechanical strains
between the cold and warm cryostat wall, especially during the cryostat cooldown. At
the bellow level also lies the interface between the gaseous argon buffer and the cryostat'’s

liquid argon. The HV wires are finally distributed to the calorimeter electrodes through
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LAr HV Frontend

Figure 3.3: The six high-voltage feedthroughs sitting on top the calorimeter cryostats.

different patch panels.

3.4.2 Modules

The HV power supply system hardware was manufactured by the ISEG SPEZIALELEKTRONIK
GmBH! company, located in Dresden, Germany. The technical specifications are listed in

Appendix A.

A high-voltage power supply unit must comply to comply to a set of requirements,

including:

e the unit and connector housings, as well as the cable shield, must be connected
to the HV return to the cryostat ground, whilst being separated from the crate
connection to the safety ground grid, therefore ensuring that the HV supply remains

floating

1 http://www.iseg-hv.com


http://www.iseg-hv.com/start.php/lang.en/
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Figure 3.4: Schematic of a high-voltage feedthrough.
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e cach high-voltage line voltage must be individually settable and requlated from 0 V

up to its nominal value
e the voltage setting and regulation must be better than 100 mV

e the maximum current output must comply with the estimations derived from the
expected particle fluxes at the LHC design luminosity, ranging from 75 pA to 6 mA

depending on the subdetector

e cach unit must possess an interlock system to allow for the safe discharge of the

calorimeter in case of emergency, such as cooling or power failures

Each HV power supply unit contains two boards of 8 (FCal) or 16 (everything but
the FCal) channels, as shown on Figure 3.5. A unit is insertable on rails into a 19"-6U-
Eurocrate chassis and connected via its backplane to the crate communication bus and
the primary 24 V power supply. The front face displays each board's status on LED, and

exhibits the following features:

e two potentiometers that allow for the setting of the hardware voltage and current
limits over the whole module range, above which the entire unit is automatically

switched off

e the safety loop connector, illustrated on Figure 3.6, which is connected to the inter-

lock system for safety controls

e a 32 pin connector, illustrated on Figures 3.8 and 3.7, which carries out the high-
voltage to the detector, contains the HV return lines, as well as interlock pins that,
being different for each module type depending on the subdetector fed, prevents
accidentally connecting detector parts to HV lines with improper characteristics;

additionally, the interlock pins act as ground pins

The high-voltage is generated per channel, reqgulated around the set value via a

voltage comparator and current is injected towards the detector whenever a voltage drop
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Figure 3.5: A 32-channel high-voltage power supply unit.
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Figure 3.6: Layout of a high-voltage power supply and its connection to the cryostat.
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Figure 3.7: High-voltage cable connectors. Figure 3.8: High-voltage cable connector and its
counterpart on the HV power supply unit.

occurs in any of the liquid argon gaps fed by the HV channel. In order to limit the power
dissipation in the filter resistor of the filter box (3.4), the maximum allowed current can
be set via software. But as a failsafe, a hardware current limit can be adjusted via a
potentiometer located on the HVPS unit. The maximum voltage allowed can similarly be
adjusted, i.e. if a part of the calorimeter is normally fed 1800 V, one can use standard
2500 V power supplies but limit their voltage output to allow safe operation. To ensure
the integrity of the circuit and protect the power supplies, a internal interlock loop is
present on each unit, which is closed only if an HV cable is plugged in the unit. This way
if a cable is accidentally disconnected from the unit, the power supply will ramp down to
0 V. Since different modules feed different parts of the calorimeter with different operative
voltages, it is important to categorise the connectors to avoid plugging the wrong cable
to the wrong unit. This is done by an interlock pin configuration on the connector, which
is different for each subdetector, and will not allow the cable connector to enter the unit

connector.

3.4.3 Crates

The LAr HV crates are located in the ATLAS underground technical cavern, USA15, along

with all the ATLAS backend electronic infrastructure. The crates are describes in length
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in Appendix C. An overview of the USA15 counting room with the LAr racks is shown on
Figure 3.9. As illustrated on Figure 3.10, there are a total of 20 crates installed in five
racks. Each rack contains four crates separated by heat exchangers and fans to control
the temperature and air flow, additionally to a cooling water circuit. The cooling water
circuit is protected by a redundant tap water circuit in case of a failure of the cooling
system of technical cavern. The crates are powered individually through the ATLAS
Uninterruptable Power Supply (UPS) system, and each is connected to the safety ground
grid of the ATLAS cavern. The connection to the UPS serves as a protection against
disturbances of the general power grid. A single crate houses up to eight power supply
units, and possesses its own crate controller unit. All the crate controllers are linked
together in chain via CAN? lines to a dedicated computer to allow for their control and

monttoring.

3.4.4 Return current measurement

In order to safely operate the detector and minimise electromagnetic interferences to
the readout electronics, the grounding of the entire ATLAS experiment must be done
in a well controlled manner. The grounding strateqy, described in great detail in [57],
follows the CERN safety instructions and electrical code, as well French, Swiss, and
European regulations. The grounding guidelines include requirements regarding the
electrical insulation of all the detectors with a single connection to the ATLAS “Safety
Network’, as well as floating power supply systems. The latter, described previously,
includes the liquid argon calorimeter high-voltage power supply system, which therefore

was designed to be floating.

Concerning the liquid argon calorimeters, they have been designed to be entirely
insulated from the ground of the experimental cavern, as well as other subdetectors. The
safety grounding of the calorimeter cryostats is performed via dedicated ground cables

leading to the technical cavern USA15, some 100 m away. Two cables (for redundancy)

2http:/fwww.dcd.pl/dcdpdf/can2spec.pdf
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Figure 3.9: Overview of the ATLAS technical cavern, USA15. Shown are the five HV racks (red), the low
voltage power supplies racks (purple), and the DCS and ROD racks (blue). This dynamic panel reflects the
status of the racks by monitoring their temperatures, the humidity, and the main power supplies.
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Figure 3.10: High-voltage power supply crates in USA15.
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per cryostat (the barrel and the two endcaps) end up connected to one of the racks in
USA15 (one of the L1 racks as seen on Figure 3.9), which is itself connected to the Safety
Ground. In order to detect possible current leaks due accidental contacts between the
LAr system and other detectors or services, a DC current monitoring system has been put
in place. As illustrated on Figure 3.11, the principle is to inject a reference 500 mA DC
current to each cryostat, let it come back through the ground, and measure the difference.
This is achieved by using and Integrated Parametric Current Transformer (IPCT), a high
precision contactless DC measurement coil®. The IPCT has a resolution of 12 pA over its
full dynamic range of £ 10 mA, enough to detect small leakage currents. The IPCT data
is readout and can be visualised via a web trending display and included into an alarm

system.

Iyy

Feed through | | Ground point

Y

Larg Calorimeter HV LVPS

(Barrel or Endcap)

+
ICPT
Trv + Itest l

Figure 3.11: Schematic of the grounding monitoring of the liquid argon calorimeter cryostats

As shown on Figure 3.11, the return current from the high-voltage system also also

goes through the IPCT monitoring coil. The HV return current reflects the voltage drops in

3 http://www.bergoz.com
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the calorimeter gaps as charged particles ionise the liquid argon, as illustrated on Figure
212 of the previous Chapter. Measuring this return current for each HV subsystem could
therefore give interesting handles on the amount of current induced by collision products
in the calorimeters, as well as performing a more localised monitoring of the HV system
grounding. For those reasons, a set of six additional IPCT coils were installed on the
different return lines of the HV crates. The coil installation, data acquisition setup, and
complete layout can be seen on Figures 3.12, 3.13 and 3.14. The six coils measure the
return currents corresponding to the following sub-detectors: EMEC-FCal-A, EMEC-
FCal-C, HEC-A, HEC-C, EMB-EMBPS, and finally the total return current of the three
cryostats. The IPCT having a resolution of 12 pA, they are not sensitive enough to provide
a competitive handle on the luminosity at the current state. The IPCT data are read out
through 12 bit ADCs and sent to one of the high-voltage control machine (Figure 3.15,

where they are archived in the DCS Oracle database, as well as displayed on the LAr

FSM.

Figure 3.12: Return current measurement coils. Figure 3.13: Return current data acquisition setup.
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3.5 Slow control

A maijor requirement of the LAr high-voltage system is the ability to control and monitor
all its operational parameters. To achieve this, a software layer has been developed
to read out and control the system on top of a proprietary software that communicates
with the hardware. The deployment of the software infrastructure was done according to
the ATLAS central Detector Control System (DCS, [53]) recommendations, which aims at

harmonising all the ATLAS DCS systems under a common framework.

3.5.1 Software

The lowest layer is the Object Linking and Embedding for Process Control (OPC) software,
which handles the real-time communication with the hardware. An OPC server has been
developed by the HV power supply manufacturer, ISEG SPeziALELEKTRONIK GMmBH, and is
maintained by their engineers as per its proprietary status. lIts role is to provide direct
access to data items related to the control and monitoring of the HV crates and power

supply units. The OPC server manual is attached in Appendix D.

The next software layers were developed by the ATLAS collaboration using the PVSS?
framework, a distributed software used for real-time control and monitoring of large scale
hardware installations. In the PVSS framework, the OPC client’s purpose it to communi-
cate with OPC server, linking hardware data items to so-called datapoint elements within
PVSS. These datapoint elements can be grouped by device, and setting or reading them
out defines the communication with the HV system. Therefore, items such as module
temperatures, HV line voltage, current and status can be read-out and items such as the
set voltage and the current limits can be controlled, all directly from PVSS in a uniform

manner.

As an example, Figure 3.16 shows the PVSS crate control panel. As mentioned pre-

viously, all the crate controllers are linked by a CAN line to a single control computer.

4http://vvvvvvetm.at
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On this computer, a PVSS instance is running, and this panel allows for the control and

monitoring of the crate parameters:

e crate general information such as serial number, power supply unit contained,

rack/subrack names

environmental parameters like temperature and humidity

crate status, including interlock alerts, main power supply status, communication

status

switching each crate ON/OFF, which consequently switches OFF the main power

supply, hence all the modules inside

3 Wision_1: Main Control
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Figure 3.16: Crate control PVSS panel.

A total of seven computers run the control software of the high-voltage system, each
independently connected a to a set of crates organised per subdetector. On each computer

runs an instance of the PVSS software, with its own OPC server/client, as well as its
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own datapoint element structure. However a generic set of control panels, as shown on
Figure 3.17 were designed and run on each machine. These panels allow for the control of
parameters of the OPC server, which in turn sets the parameters in the hardware, such as
the OPC deadband, which filter numerical values like voltages and currents to reduce the
CAN traffic and module general parameters like the fine adjustment, a parameter which
improves the voltage regulation around the set value. Furthermore, control of entire
crates/modules is possible through a panel which allows loading a set of parameters
from a configuration database. This eases the operation of the HV system when group
commands are required, for instance when the entire system needs to be switched OrFr/ON

before and after a technical stop for maintenance.
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Figure 3.17: Main HV control software panels.

Additionally, visualisations of all the power supplies and each of their channels is

available. This provides the ability to control a single line as illustrated on Figure 3.18,
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with features such as:

e switching ON/OFF an HV line
e setting the operative voltage and software current limit
e setting the voltage ramp speed

e reading out the module/channel information, e.g. measured voltage, current, status,

temperature

e displaying module/channel general information, e.g. sertal number, geometrical lo-

cation
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Figure 3.18: Single HV line control panel.

Some of the data being read out is needed offline for reasons such as calorimeter

energy correction due to voltage variations, luminosity measurement using the HV line
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currents, data quality assessments that requires knowledge of each HV line's status, to
general long-term analyses of temperature trends or calibration drifts. The permanent
storage is performed within the PVSS environment to centralised databases common to
all the ATLAS detectors. The storage and handling of the HV information is discussed in

the following section.

3.5.2 Archiving and visualization of the high-voltage system data

The high-voltage dataflow is illustrated on Figure 3.19.

PVSS . { Online %/ Offline
environment replica

Oracle i | Oracle
archive |: 7| archive

OPC PVSS
Client Project

Figure 3.19: Dataflow of the high-voltage system. Shown are the path of the data readout and storage
(blue) and the commands (red).

The PVSS instances running on each high-voltage machine have, in addition to their
control and monitoring capabilities, a module that archives a set of selected datapoint
values to an Oracle database inside the ATLAS technical network. Any standard data
type can be archived, such as floats (e.g. voltages, temperatures) or booleans (e.g. status).
Due to the large amount of data requiring archiving, smoothing can be applied to reduce
the throughput. The online database contents are subsequently replicated to an offline
database outside the technical network, and made available to the ATLAS collaboration.

This precaution is taken in order to protect the online database integrity, as it sits in the
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firewall-protected technical network.

DCS data needed for by the ATLAS reconstruction software can in parallel by stored
in the COOL configuration database. In particular, the calorimeter reconstruction software
includes a instance that corrects the energy of cells fed by high-voltage lines that are
not at nominal voltage, as described previously. This requires the voltage of every single

line to be continuously stored in COOL.

The following section will describe some of the aspects of the operation of the high-

voltage system.

3.6 Operation of the high-voltage system

Standard operation of the high-voltage system include switching all or part of the power
supplies ON/OFF, which, as mentioned previously, is achieved by bulk loading prepared
settings from a database. Modifications of the operational parameters, such as operative
voltages, current limits, deadbands, ramp speed, and archiving settings, are also part of
the daily activity, following discussions with the liquid argon operation community. In
an effort to maintain a consistent operation of the calorimeter, interventions on the high-
voltage system are kept to a minimum during data-taking periods, except during system
malfunctions when experts need to act on either the hardware of the software. All the

interventions are thoroughly documented in the ATLAS electronic logbook system.

During technical stops or shutdown periods, deeper interventions on the system can
be performed. Typically, the entire high-voltage system is switched off, and maintenance
can be done on the hardware and software. Maintenance includes replacement of faulty
power supply units in case of hardware failures (one or more faulty HV lines) or firmware
malfunctions. The replacement of a power supply unit can also be performed with the
rest of the system ON, with a “hot swap"’ procedure: the faulty PS is switched off, the

software infrastructure halted, and the PS unit can be exchanged.
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3.6.1 High-voltage trips

During physics data-taking, the high-voltage system is principally prone to one type of
problem: high-voltage trips. Trips occur when a calorimeter liquid argon gap temporarily
asks for more current - in order to keep the voltage constant - than the power supply is
able to feed. Trips cause the affected HV line to switch off and ramp down to 0 V. As the
power supply tries to inject current into the calorimeter, it crosses either the software or
hardware (usually higher) current limit, and trips as a safety measure. Additionally, as
observed during the 2010 and 2011 data-taking periods, the trip occurrence seems to be
influenced by magnetic field activity (when the magnets are ramped up or down) but is
dominated by the increase of instantaneous luminosity. Naturally, when the luminosity
increases, the particle flux traversing the calorimeter gains in intensity, which increases
the strain on the power supplies to keep the liquid argon gap electric fields constant.
Before the 2010 winter shutdown, high-voltage on-call experts, of which | was part of,
had to manually ramp up tripped HV lines as soon as possible, which happened more
often as the instantaneous luminosity increased. It was therefore decided to implement a
feature in the power supplies that would automatically ramp up the high-voltage after a
trip. This feature is in place since spring 2011 and eased the load on the HV experts, but,
more importantly, reduced the amount of collected data that had to be deemed unusable

for physics analyses by decreasing the duration of voltage variations.

3.6.2 Miscellaneous HYV issues

Over the four years that | have worked on the high-voltage system, we encountered many
issues disturbing normal operation: the “hospitalisation” of HV lines feeding detector
regions containing shorts, the infamous “channel 14" issue which turned out to be a
construction defect, and issues with the communication with the hardware via the CAN

lines and the OPC server.
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3.6.2.1 Hospital lines

As mentioned previously, liquid argon gaps are susceptible to shorts, which are believed
to be impurities in the argon. When a short occurs, the high-voltage power supply, trying
to maintain the voltage around the set value, injects a DC current. However this current
can exceed the maximum current output of the standard power supplies, e.g. 1T mA in
the EMB compared to the 75 pA allowed. This prevents feeding an entire high-voltage
sector (32 gaps in the EMB), including the other liquid argon gaps with no short. The
solution to this issue has been to bypass the affected HV lines so that their corresponding
HV region can be fed by a special type of power supply, custom made for this purpose,
up to currents of 3 mA. The cabling in the HV racks had to be entirely redesigned to
accommodate this feature. In the barrel, the 16 cables from each side, instead of going
directly to the feedthrough, are redirected to custom-made panels in the back of the racks,
as illustrated on Figures 3.20 and 3.21. From there 16 cables make their way normally to
the detector. On each panel, a 32 pin connector from a 3 mA power supply comes in and
its cable is stripped of its housing to enable picking single lines. Each hospital “patient’
is then pulled out of its original connector and replaced with one of the hospital lines.
From this point on, the affected detector region is fed by the 3 mA power supply instead
of the standard one. However, in most cases, even though a higher current output is
allowed, operating at nominal voltage is impossible due to the limit on power dissipation
at the level of the filer box resistor. Therefore the majority of hospital lines are operated
at reduced voltages. In the endcap C, the EMEC and a fourth of the HEC are connected
to the C backplane. In the endcap A, only the EMEC is connected. This is mainly due to

historical reasons related to the lack of HEC hospital candidates.

The number of hospital lines as of July 2011 are listed in Table 3.3.
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Figure 3.20: EMBA hospital Figure 3.21: EMBC hospital

| Detector | A-side | C-side |

EMEC 18 16
EMB 10 160
HEC N/A 7/

Table 3.3: Number of hospitalised high-voltage lines as of 12/07/2011.



80 The LAr high-voltage system

3.6.2.2 Channel 14

During my work on the monitoring of the power supplies readout, | came across a feature
exhibited by a specific module type. Even though they performed normally in terms of
voltage regulation, the 2kV/75pA units populating the EMB and EMBPS showed excessive
noise (~ TpA compared to the “normal” ~ 100nA) in their current readout, systematically
on one channel out of the 16 per board. Always channel 14, in most modules. In order
to disentangle a possible detector effect, measurements were performed before and af-
ter swapping HV cables feeding completely different parts of the detector. The results
confirmed that the source of the noise was in the power supplies and after providing the
constructor with a report, they found a design flaw on their boards. The affected power
supplies were consequently shipped off by small batches, replacing them with healthy
ones. The refurbished units were received and tested in our test setup and confirmed to
have been fixed. Even though this event did not jeopardise the operation of the system,
it allowed us to gain experience in the understanding of the power supplies, and helped

the constructor in their own developments.

3.6.2.3 CAN-bus communication

Each high-voltage control machine continuously communicates with a few dozen power
supply units, with the exception of the crate control machine which handles all of the 21
crates. This implies having a stable and reliable communication throughput. In the past
few years we have encountered, on many occasions, cases where commands were not
properly sent to the hardware, or data not correctly readout. After investigating the CAN
lines connections with and communication, a few CAN buses were found to be faulty,
thus impeding on the overall performance of the control. Replacing them, and carefully
verifying the quality of the transmitted signals, allowed us to improve the readout and

control performance.
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3.6.2.4 OPC server

Along with fixing the hardware communication issues, a lot of developments have occurred
on the OPC server’ side. The OPC server, as mentioned previously, acts as a bridge
between our PVSS control software and the high-voltage system. During operation,
many issues with crashes, lost commands, hangs, were experienced with the OPC server.
A continuous effort to document and transmit reports to the constructor have led to many
improvements in the code behind the OPC server. Since the beginning of 2011, we have
reached a state with very few OPC communications issues, especially because of the
implementation of a cache mechanism that optimises the way commands are sent to the

hardware and how parameters are read-out.

3.7 DCS and data quality

In order to ensure the usability of the data recorded by the ATLAS experiment for physics
analyses, constant monitoring of the detector systems is required. The Detector Control
System data quality (DCSDQ) assessment [54] is the lowest level of the data validation
process and therefore provides early information about detector-related issues which can

be acted upon by either offline correction or data samples rejection.

The liquid argon calorimeter data quality strategy aims at identifying and classifying
detector problems and their possible solutions, with a duty to provide ATLAS with the
status of the data recorded by the calorimeter. Concerning the LAr DCS data quality,
the sole source of issues stems from high-voltage trips, mentioned in the previous sec-
tion. Indeed, during HV trips the voltage applied varies, affecting the gap electric fields
hence the measured energy. Because the recorded data is cut into 1 min slices (lumi-
nosity blocks) and the computing resources only allow one set of calibration parameters
(including high-voltage corrections) per luminosity block, if the voltage across the liquid

argon gaps varies during a luminosity block because of a trip, the measured energy can-

5http://vvvvvviseg—hv.de
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not be corrected properly. Therefore the data recorded by the calorimeter in the affected
subdetector needs to be flagged “unusable’ for physics analyses. Offline data quality
teams appointed by the LAr DQ group are in charge the daily reporting, investigation,
and flagging of the data affected by trips, with the help of a series of dedicated soft-
ware tools. Finally, the autorecovery feature described in the previous section helps in
diminishing the duration of high-voltage trips, and ongoing studies are investigating the
effect of a slow voltage variation (ramp-up) during a luminosity block on the reconstructed

energy, which if demonstrated negligible, would decrease the amount of unusable data.

3.8 Conclusion

This chapter described the liquid argon calorimeter high-voltage system hardware layout
and characteristics, its control software and operation, as well as its influence of the
data recorded by the calorimeters. Even though the high-voltage system is primarily
designed as support system to the calorimeters, it can also be used to perform a luminosity
measurement. Indeed, as mentioned before, the current induced in the liquid argon gaps
by tonising particles is compensated by the high-voltage power supplies in order to keep
the voltage constant. This current is found to be directly proportional to the number
of electron-ion pair produced during the ionisation process, hence to the instantaneous

luminosity at the ATLAS interaction point.

The next chapter will describe how a relative luminosity measurement can be per-
formed by measuring and calibrating the high-voltage power supply currents of the for-

ward calorimeters.



Chapter 4

Luminosity determination with the

ATLAS forward calorimeters

41 Introduction

During proton-proton collisions at the LHC, a large flux of minimum bias particles tra-
verses the detector forward regions. Minimum bias events stem from soft pp interactions
: 0t : ; : - ;
and consist of mostly 77° /7™ mesons with low transverse momentum. Most of their energy
is deposited in the electromagnetic forward calorimeter as electromagnetic showers of
photon pairs from 7% decays. The induced particle flux intensity is directly proportional to
the interaction rate, so to the luminosity. The current injected by the FCal-1 high-voltage
system to compensate for ionisation losses from minimum bias events is correlated to the

flux, and therefore gives a direct handle on the luminosity [55].

This approach has two advantages. The response is linear with the luminosity and
it is independent from the ATLAS trigger and data acquisition (DAQ) system hence does
not suffer from event selection biases and DAQ downtime. However, as the currents
measurement from the power supplies is part of a slow control environment, it prevents

the possibility of distinguishing individual LHC bunch crossings. Finally, this method is
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not capable of rejecting beam background, e.g. by performing A/C coincidences.

The following will describe the linearity assessment in test beam in Section 4.2, before
detailing results obtained from simulations in Section 4.3. Section 4.4 will detail the
different luminosity handles and their absolute calibration. Finally Sections 4.5, 4.6, 4.7
will discuss how the FCal high-voltage lines have been monitored, selected and calibrated

in order to perform a luminosity determination in 2010 and 2011.

4.2 Linearity assessment in test beam

The linearity has been demonstrated during test beams for the high luminosity LHC R&D
phase in Protvino. Using a 50 GeVproton beam and a prototype of the FCal, the non-

2

linear fraction of the response was shown to be 0.36% up to 10** cm?s~!, the LHC design

instantaneous luminosity [50].

4.2.1 Protvino test beam setup

The goal of the HilLum project is to assess the performance of the liquid argon calorimeters

251 This has

under the high particle rate expected at the sLHC luminosity of 10 cm~
been performed at the 60 GeV proton beam at the Institute for High Energy Physics
(IHEP) in Protvino, Russia, using FCal, EM, and HEC prototypes. The experimental setup
is depicted on Figure 4.1. In addition the calorimeter prototypes and their iron absorbers,
the test beam line is equipped with instruments to measure the beam position (secondary

emission chamber), beam profile (hodoscope), and beam intensity (ionisation chamber and

six scintillation counters for cross-checks).

One of the three prototypes is a miniature version of the electromagnetic section of the
ATLAS forward calorimeter. It consists of an copper matrix containing 16 electrodes with
a 250 pm (similar to the ATLAS FCal) liquid argon gap adjacent to 16 electrodes with a

100 pm gap, one of the foreseen configurations for a cold FCal at HL-LHC. The electrodes
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Figure 4.1: Test beam setup of the high luminosity project in Protvino.

are grouped by four, each group having its own readout and high-voltage wires. Similarly
to the ATLAS LAr production system, the high-voltage power supply used during this test
beam is manufactured by Isec, with 250 V operative voltage and a maximum allowed
current of 10 mA. The study of the current response of the FCal prototype high-voltage
lines was performed by illuminating either group of 16 electrodes and simultaneously

measuring the beam intensity and HV currents.

4.2.2 Estimation of the non-linearity

The proton beam is structured as 116 ns long bunches separated by 990 ns, and is
extracted onto the targets as 1.2 s “spills’. Therefore, each spill contains approximately
10° proton bunches. By varying the bunch intensities (number of protons per bunch), the
total number of protons per spill can span the range between 107 to 10" p/spill. In order
to construct an analogy to the LHC luminosity, let us consider the inelastic collision rate
Ninet = L0iner, Where 0,61 is the p-p inelastic cross-section (71.5 mb, [57]). Now to find

the LHC luminosity equivalent to a certain number N, ,s of protons per spill at the test
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beam, one can rewrite N, as follows:

Npps

Tspill

Ninel =
where T is the spill duration, 1.2 s. This effectively gives the particle rates in both

cases. Now, the LHC equivalent luminosity can be written:

N[nel o Npps

Oinel Tspill - Oinel

L —

Therefore, as shown in Table 4.1, the LHC equivalent luminosities can be expressed for all
the beam intensities measured in Protvino and can be used to extrapolate the analysis

results to ATLAS.

Protons per spill 107 | 10% | 107 | 107 | 10™
LHC equivalent luminosity [cm=2 s~'] | 10% | 10%* | 10%* | 10%° | 10%°

Table 4.1: Test beam intensities and their LHC equivalent luminosity.

For each spill, the high-voltage power supply currents were measured every 100 ms
and all the measurements integrated over the spill duration, providing one measurement
per spill per HV line. To measure currents at this speed, a 24-bit ADC was specifically
designed by the HiLum group. The internal power supply ADC only allows a maximum
measurement rate of 0.2 Hz. Every HV measurement was matched with a beam current
measurement using the ionisation chamber and consequently compared. By fitting the
beam intensities versus HV integrated currents per spill with a second degree polynomial,
one can then estimate the non-linearity of the response. The data collected as well as
the fit are illustrated on Figure 4.2. Assuming an uncertainty on the beam intensity mea-
surement by the tonisation chamber of 1.2%, a non-linear fraction of 0.36% was measured

for 10° protons/spill, equivalent to an LHC luminosity of 10*" cm~2s~".
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Figure 4.2: Measured HV current summed over three FCal prototype channels versus beam intensity
compared to a non-linear fit [50].

4.3  Simulation

This section describes a study performed in order to have an idea of the currents expected
in the forward calorimeter in the presence of p-p collisions. A study of the minimum bias
energy deposition in the FCal with data can be used to run a simulation of the electronic
chain separating the FCal and its high-voltage power supplies, thus providing a rough
estimate of the DC currents expected as well as the minimum instantaneous luminosity

required to measure them.

4.3.1 Collision data

Prior to running the simulation, one must first determine the average amount of energy
deposited in the forward calorimeter by minimum bias events and particularly the amount
of energy as seen by a single high-voltage line. In the FCal-1, each of the sixteen ¢-

sectors is fed by four separate HV lines, each either feeding a fourth of a summed channel
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(four electrode groups) or a single unsummed channel (a single electrode group). Hence,
depending of the case, the energy “seen’ by an HV line will either be the energy measured
in on unsummed channel or a fourth of the energy of a summed channel. Therefore it is
important to look at the average energy deposited in each FCal-1 cell in order to estimate

the energy seen by a single HV line.

Figure 4.3 illustrate the average energy deposited in each FCal-1 cell during a p-p
run at 7 TeV. The energy is plotted versus the (i, i¢) indices of the calorimeter readout
channels. There are 1008 readout channels per side, so a 16 x 64 map is enough to
identify them all. The data is from the minimum bias stream and the run (166786') was
recorded in October 2010. During this run, with 233 colliding bunches at IP1, the average
number of inelastic interactions per bunch crossing 1 was 2.7 for a peak instantaneous

luminosity of approximately 10%* cm=?s~".

[ FCallA: Average Energy | [ FCallC: Average Energy |

iPhi
iPhi
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|
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60
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Figure 4.3: Average energy deposited in the FCall A (left) and C (right) by minimum bias events versus
the (i, ig) indices of the readout channels.

The induced current in an FCal cell can be derived from the measured energy using

the pA2MeV? conversion factor, which has been determined during test beam, as follows:

<Ecell>

AMey <

</cell> =

where the factor 2 represents the contribution from the ions drift.

"http://atlas-runquery.cern.ch/query.py?q=find+run+166786+%2F+show+1lhc
2uA2MeV = 669 MeV/uA in the FCal-1


http://atlas-runquery.cern.ch/query.py?q=find+run+166786+%2F+show+lhc
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Finally, by matching each of the FCal-1 high-voltage lines to their respective readout
channels and adding up the induced currents contributions, the current seen by a single

HV line is expressed as follows:

<lce[[>summed
/H\/ = § T + E </cell>unsummed

Averaging across the 128 FCal-1 high-voltage lines leads to (/yy) = 12.4 £ 1.7 pA

This value is used as an input to the simulation described in the next section.

4.3.2 PSpice simulation

The idea behind this simulation is to demonstrate the rise of the DC current induced
by minimum bias interactions in the calorimeter. For this study, the PSpice’® software
was used to model the electronic chain between an FCal-1 high-voltage line and the

electrodes it feeds.

As depicted on Figure 4.4, the model consists of four parts. The high-voltage line
is modelled by an ideal voltage source set at 250 V. Then the HV lines connect to its
filter box, consisting of an RC filter (10 kQ, 200 nF) and a blocking resistor (1 kQ), which
purpose is to limit the noise induced in the cryostat by the HV system. The next section
consists of 48 FCal cells arranged in parallel. One FCal cell can be modelled by a 1.5 nF
capacitive load with its own protection resistor. Most FCal cells have a T MQ protection
resistor, however the innermost (closest to the beam pipe) cells have 2 MQ resistor in
order to cope with the higher particle flux by limiting the voltage drop. Putting those
cells in parallel leads R, = 21 kQ and C;; = 72 nF. The final part, on the right-hand
side of Figure 4.4, consists of a pulsed current source which purpose is to emulate the
current induced by energy deposition in the calorimeter. It is modelled by a triangular
signal (Figure 4.5) whose amplitude is proportional to the amount of current induced by

one minimum bias event. The pulse rate relates to how often such events occur.

3 http://www.electronics-lab.com/downloads/schematic/013/
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Figure 4.4: Spice model schematic of an FCal high-  Figure 4.5: Shape of the Spice simulation signal. The
voltage line (left) connected to an HV sector (middle  amplitude A corresponds to the current induced by
right). Also shown are the HV filter box (middle left)  one minimum bias event and the period P average
and the current pulse generator (right). See text for ~ duration between two such events.
detalils.

The simulation was performed during a 30 ms period, where all the values of the
circuits are calculated every 5 ms. This proved to be enough to see the rise of the DC

current at the level of the power supply. In order to compare the outputs, this simulation

was performed using two different parametrisations of the current pulse.

The first uses a fixed amplitude and varying pulse frequency. This is motivated by the
fact that the inelastic interaction rate can be expressed as N = L0;,.;. So, on average,
one interaction will occur every 1/N seconds. This of course is not true at high luminosity
because of pile-up, however this model is reasonable at low luminosity. In this approach
we use the current extracted from data as the amplitude, and run the simulation for four
values of the period, corresponding to four luminosity values. The results of the simulation
are shown on Figure 4.6 and summarised in Table 4.2. The curves represent the current

lch measured at the power supply level (one high-voltage line) for the four luminosities.

P [us] 14000 | 1400 | 140 | 14
Log [ecm™?s7']| 10 | 10°" | 10%2 | 10
len [LA] 0.024 | 0.235| 235 | 109

Table 4.2: Parameters and results of fixed amplitude simulation. The pulse amplitude A is fixed at 12.4 pA.
The period P between each pulse is related to the luminosity by the relation P = 1/(L0;ne)). The DC
current expected is for a single FCal-1 high-voltage line. ATLAS uses the PyTHIA value of 71.5 mb for gjje.

The second simulation is based on a more realistic approach, using pile-up to parametrise
the pulse amplitude. Therefore, as the average number of inelastic interactions per bunch

crossing increases, the pulse amplitude can be weighted by the p-value. In this case the
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* D:\pspice\fcal_cell.sch

27.0

Temperature:

08/18/11 12:40:38

Date/Time run:

(A) fcal_cell.dat

100uA

15:38:13

Time:

Page 1

Date: August 18, 2011

Figure 4.6: Current response at the power supply level for a single FCal-1 high-voltage line in simulation
with fixed pulse amplitude. The four curves correspond to the four simulations with different P-values. See

text for details.
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duration between two consecutive pulses is kept constant at 50 ns. The average current
induced by one minimum bias event in the FCal-1 is determined in the previous section
and amounts to approximately 12.4 pA for a fill with an average p was about 2.7. The
parametrisation of the simulation has been chosen to scan four p values: 0.01, 0.1, 1, and
10. Therefore, in order to obtain the base current value at, let us say, ¢ = 1, one must
rescale the value of the current, which brings it to 4.6 pyA. Finally, the amplitude of the
pulse can be set to be A = 4.6 x p for each case. The current responses are depicted on
Figure 4.7 and summarised in Table 4.3.
* D:\pspice\fcal_cell_mu.sch

Date/Time run: 08/18/11 12:57:09 Temperature: 27.0
(B) fcal_cell_mu.dat (active)

100uA

1.0uA

10nA

Os Sms 10ms 15ms 20ms 25ms 30ms
oo v a I(RL)

Time
Date: August 18, 2011 Page 1 Time: 15:39:39

Figure 4.7: Current response at the power supply level for a single FCal-1 high-voltage line in the simulation
with p-dependent pulse amplitude. The four curves correspond to the four simulations with different A-
values. See text for details.

AuAl | 0046 | 046 | 46 | 46
Heq 0.01 0.1 1 10
len [WA] | 0032 1 0316 | 316 | 316

Table 4.3: Parameters and results of fixed period simulation. The period P between each pulse is fixed at
50 ns. The amplitude A corresponds to an average current induced at p = 1 weighted by peq. The DC
current expected is for a single FCal-1 high-voltage line.



4.4 Luminosity calibration 93

The results of both simulations are compatible in terms of the order of magnitude of
the expected DC currents. They are to be compared with the currents actually measured
during data-taking. In the first simulation, the currents measured at a instantaneous
luminosity of 102 cm~?s~ ! range from 1.2 to 1.7 pA, depending on the high-voltage line.
The simulation predicts a current of 2.35 p/A. In the second simulation, if we look at a fill

with a peak p value of 10, the currents observed in the FCal-1 HV lines range from 25 to

35 pA, whereas the simulation predicts a DC current of 31.6 pA.

To summarise, this proof of concept, which purpose is to demonstrate the birth of a DC
current due to minimum bias interactions, rather successfully illustrates the behaviour of
the modelled system. DC currents compatible with measurements are predicted over the
range of operation of the LHC in 2011. Finally, is also illustrates the lower limit on the
instantaneous luminosity required to observe a signal in the FCal-1 high-voltage lines,

which is approximately 10°" cm=2s~".

4.4 Luminosity calibration

This section describes the absolute calibration of the two ATLAS major luminosity detec-
tors, LUCID and BCM. During the 2010 [33] and 2011 [58] data-taking periods, the ATLAS
luminosity algorithms were calibrated using dedicated van der Meer [34] (or beam sep-
aration) scans. It is those calibrated quantities that are used to calibrate the forward

calorimeter high-voltage currents.

4.41 Luminosity algorithms

Of all of the 3564 LHC slots available for protons bunches, only 2808 can be filled due to
the injection and dump gaps. Each of these slots is assigned in Bunch Crossing IDentifier
(BCID) synchronised with the ATLAS data acquisition system. By matching their rate

measurements with the BCID, the LUCID and BCM detectors are able to provide a bunch-
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by-bunch luminosity determination. This quantity depends on whether or not the BCIDs
are colliding in ATLAS, and estimating the contribution of non-colliding BCIDs can provide
essential information on backgrounds to the luminosity measurements. The LUCID and
BCM readouts are configured with online algorithms that provide the Online Luminosity
Calculator (OLC) with raw counts based on logical operations (such as a coincidence on
the two sides of the detector) of registered events, an event being defined as a signal
passing a preset detector threshold. From there the OLC applies the relevant calibrations
to the raw counts, provides luminosities to online displays, and allows for their archiving

in the COOL conditions database for offline analysis.

The different LUCID and BCM algorithms used throughout the document are briefly

described in Table 4.4.

’ Algorithm name \ Description ‘

LUCID Event_OR A/C inclusive OR

LUCID Event_AND A/C coincidence

LUCID Event_A A exclusive OR

LUCID Event_C C exclusive OR

BCM Event_OR A/C inclusive OR , horizontal sensors
BCM Event_AND A/C coincidence , horizontal sensors
BCM Event_ OR_V A/C inclusive OR , vertical sensors
BCM Event_ AND_V A/C coincidence , vertical sensors

Table 4.4: LUCID and BCM algorithms descriptions. With the x-axis of the ATLAS coordinate system pointing
towards the inside of the LHC ring, the C-side corresponds to positive z and the A- side to negative z.

4.4.2 van der Meer calibration

The principle of a van der Meer scan, described in length in [59, 33] is to measure
simultaneously the luminosity, beam currents, and collision rates during a procedure

where one beam moves with respect to the other in the transverse plane.

The luminosity can be written:
Hnpfty

L

Oinel

where p1 is the number of inelastic collisions per bunch crossing, n, the number of colliding
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bunches at IP1, f, the machine revolution frequency of 112455 Hz, and 0, the inleastic
proton-proton cross-section. The problem with this formulation is that y/ is not a directly
measurable quantity and o,. has yet to be measured for 7 TeV p-p collisions®. However,

their ratio can be expressed as follows:

H o Hyis _,Uvis

Oinel EO0ipel Oyis

where pi,is is the observed number of collisions per bunch crossing (i.e. measurable)
and 0,is = €0i,e the visible cross-section, which depends on the detector efficiency,

acceptance and algorithm used. Therefore, the luminosity can be rewritten:

_ HuisNplr
Ovis

L

On another hand, using machine parameters such as the transverse beam profiles £, and
L, as well as the single bunch currents in each beam ny and n», the luminosity can also

be expressed as follows:

Nnphq;
E _ ——
27L,X,

During the vdM scan, one beam is moved step-wise with respect to the other by a known

distance given by the magnet settings, called nominal beam separation, thus allowing

for the measurement of L, and ¥, by fitting the rates, as shown for example on Figure

MAX

4.8 during a scan taken in May 2011. The peak rate 1)/ can then be compared to the

measured luminosity and the visible cross-section extracted as follows:
MAX EMAXUV[S . Nn1N20y;s MAX Zﬁzng

. = — Oyis = U,,;
vt npf, 2L L, e S g

In parallel, the numbers of protons per bunch (nyn;) are measured by LHC instru-
ments somewhat similar to the return current coils described in the previous chapter and

described in detail in [00]. The uncertainty on these bunch currents measurements dom-

4ATLAS uses the PyTHIA value of 71.5 mb
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Figure 4.8: Specific interaction rate versus nominal beam separation for the BCM Event_OR algorithm
during the May 2011 vdM scan. The residual deviation of the data from the Gaussian plus constant
background fit assuming statistical errors only is shown in the bottom panel [58].
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inates the total systematic uncertainty on the determination of the visible cross-section,
and tremendous efforts from the Beam Current Normalisation Working Group (BCNWGQ)

has helped improve and continues improving this issue.

Now that the visible cross-sections have been determined for each detector algo-
rithm, the remaining calculations involve converting observed event rates during normal
physics data-taking into visible numbers of interactions per bunch crossing, and finally

into instantaneous luminosities.

In the case of EventOR inclusive algorithms, the probability of detecting such an
event, assuming that the probability of detecting none follows a Poisson distribution, can

be expressed as follows:

Nor

OR
PEventOR = /\/_ =1- exp (—,LI-S )
BC

s )

=1 —exp (—u
with Npr the number of bunch crossings with an event satisfying the OR conditions

amongst the total number of bunch crossing Ng¢, with an efficiency 9%,

Therefore, the visible number of interactions per bunch crossing is the following:

N
Pl =1n ( — ﬂ)
BC

For the EventAND coincidence algorithms, the probability of observing an event is

AND
vis

less trivial and non invertible analytically to express p as a function of Nanp/Nace. In

this case look-up-tables are used in order to find the best value of p.

OR

Finally, the luminosity is derived from the ;> value and the visible cross-section

obtained from the vdM calibration using the well-known relation:

 thenf,
Ovis

L

Concerning the systematic uncertainty on the luminosity determination using the van



98 Luminosity determination with the ATLAS forward calorimeters

der Meer procedure, it is discussed in length in the references cited in this section. Let
us just note that it is dominated by the LHC bunch current measurements and that a total
systematic uncertainty of 3.7% has been achieved following vdM scan performed in May
2011 [58]. However some of the contributions to this uncertainty and their implications

on the FCal luminosity determination are discussed in the following sections.

This uncertainty will be carried over as the forward calorimeter high-voltage currents
are calibrated using vdM-calibrated LUCID and BCM algorithms and will come in addition

of other sources of uncertainties.

4.5 FCal high-voltage power supplies currents

Sanity checks have been performed in order to only retain valid high-voltage lines for
the luminosity determination by eliminating any biases. These checks are described in

the following section.

451 Shorted tubes

The first issue preventing the use of HV lines is the fact that some of them are connected
to tube groups containing one or more shorted tubes. A short occurs when impurities in
the liquid argon connect the central rod of the tube to the outer edge of electrode. This
effectively closes the circuit and the current fed into this tube by the HV system flows
continuously to the ground. Since tubes are fed as a group, the current injected by the
HV line includes a DC component if the group contains a shorted tube. This DC current
is prone to unpredictable fluctuations due to the very nature of the shorts, hence it is
safer to exclude any of these HV lines from the luminosity analysis. In the electromagnetic
section of the FCal, a total of 33 HV lines out of 128 feed tube groups containing a shorted

tube.
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Figure 49: Gap gcp = {len) — 3 - 0cp distribution of the 128 EM-FCal high-voltage lines currents during
periods with no LHC beam. The vertical line at zero indicates the cut applied on the gap for an HV line to
be eligible for the luminosity measurement. Only positive values of g are allowed.

4.5.2 Pedestal measurability

The luminosity measurement is relative and the method is to measure a current varying
relative to a pedestal value determined during periods without beam. In many cases, the
measurability of the current pedestal is not possible because of ADC calibration drifts of
the HV power supply. The power supply has an internal calculation which, from ADC
counts, provides only positive calibrated current values. The calibration parameters were
put in at the factory during manufacturing and the procedure in described in Appendix E.
For some HV lines, this calibration turned out to be slightly shifted so that the pedestal
is negative. Therefore an extraction of the pedestal cannot be performed in these cases.
To correct for this effect during the 2011 data taking, a new firmware was flashed on
the power supplies feeding the EM-FCal shortly after the 2010 winter shutdown. The
new firmware artificially offsets all current measurements towards positive values by
approximately 2.6 pA (negligible compared to the ADC dynamic range of 0-10 mA), as
shown on Figure 4.10. This does not affect the luminosity measurement as the pedestal is

subtracted before calibrating the currents, as discussed in section 4.6. A full recalibration
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of the power supplies ADC by the constructor is planned at the next shutdown. Since
this new feature was not available during the 2010 data taking period, and in order to
select HV lines with a measurable pedestal, the quantity g., = (lep) — 3 - 0.y was used
as a discriminator, where (/) is the average current during a period with no LHC beam
and o, its rms. . If g, s negative, the current fluctuations around the pedestal are not
symmetrical as the tail towards smaller currents is cut away, introducing a bias on the
noise estimation. Zero values of g., indicate cases where only the tail towards larger
values of the pedestal fluctuations are readout, hence very small values (/.,) and o.p.
Therefore only HV lines with a strictly positive g, value were selected for the luminosity

measurement.
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Figure 410: One FCal high-voltage line current versus time during periods with no LHC beam presence.
Top: Before ADC offset implementation, only the positive tail of the noise fluctuations are read and the
pedestal cannot be estimated. Bottom: After new ADC offset, current fluctuates around a positive value
and pedestal can be measured.

4.5.3 Pedestal noise

The power supplies are not designed for high precision, low noise current measurements.

In order to perform the most accurate luminosity determination, it is first imperative to
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ensure that only high-voltage lines with a low current noise are selected. This selection
is illustrated in Figure 4.11, which shows the distribution of the root mean square values
of all HV lines in the EM FCal over periods with no LHC beam presence. High-voltage
lines with a null rms. represent, as discussed previously, extreme cases where only
the positive tail of the current pedestal is measured, resulting in a flat current evolution
with time. Therefore only high-voltage lines with a current noise between 0.001 pA and
0.015 pA are selected.

For the 2010 data taking period, the combination of these selection criteria bring down
the total number of HV lines usable for luminosity to 16 out of 64 in FCal-A and 15 out
of 64 in FCal-C. The new ADC offset allows more lines to be used in 2011, with a total

of 30 lines on FCal-A and 40 on FCal-C.
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Figure 4.11: Root mean square distribution of the 128 EM-FCal high-voltage lines currents during periods
with no LHC beam. The vertical lines at 0.001 pA and 0.015 pA indicate the cuts applied on the noise for
an HV line to be eligible for the luminosity measurement.

To summarise, in order for an HV line to be usable for a luminosity determination, it must:

e not be connected to a shorted tube group,
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e have a positive pedestal sufficiently above noise,

e have low current noise.

4.6 Luminosity calibration of the FCal high-voltage cur-

rents in 2010

4.6.1 Comparing LUCID and FCal data

The LUCID relative luminosity measurement was absolutely calibrated in 2010 during a
van der Meer (vdM) scan. However, the technical implementation of the vdM scans could
not allow for an absolute calibration of the FCal measurement. Firstly, the instantaneous
luminosity during a vdM is significantly lower than during normal LHC operation to
avoid emittance blowup, and was below the minimum sensitivity of the FCal high-voltage
system. Secondly, the scan steps, at which the rates are recorded in order to perform the
calibration, are too short (typically 30 s) for the FCal DC current to set in and provide an
accurate measurement. This is worsened by the fact the maximum sampling rate of the

FCal HV current is of the order of 0.2 Hz.

There is however another way to calibrate the FCal HV currents. By comparing the
FCal currents to an absolutely calibrated LUCID luminosity, it then possible to extract
calibration constants for each usable HV line. In 2010, one specific LUCID algorithm was
chosen as the default preferred luminosity: LUCID_Event_OR. It is based on an inclusive
OR event counting between the A and C LUCID detectors. In order to verify the stability
and robustness of the 2010 FCal calibration, a single ATLAS run was used to extract
the calibrations. Run 166786, recorded on October 13" 2010, was chosen because of it
covers a large range of instantaneous luminosity (~ 55—100 10°° cm~2 s~') and contains
no oddities.

For one high-voltage line, the calibration procedure consists of the following steps:

>http://atlas-runquery.cern.ch/query.py?q=find+run+166786+%2F+show+lhc


http://atlas-runquery.cern.ch/query.py?q=find+run+166786+%2F+show+lhc
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e average the measured current by luminosity block (120 s periods),

e calculate the pedestal before the LHC fill (1 h period with no beam present in the
machine), as illustrated on Figure 4.12 for a typical selection,

e select 'ATLAS "Ready’ luminosity blocks (after 'STABLE BEAMS" has been declared
by the LHC and after warm start of the stand-by subdetectors),

e for the selected luminosity blocks, compare the pedestal-subtracted current to the
LUCID luminosity, as shown on Figure 4.13 for the FCal-C selection,

e fit the comparison with a first degree polynomial and extract fit parameters as

described by the following relation: lrcqr = a - Liucip Fvent or + b.

In order to check the validity of the calibration throughout the 2010 data taking period,
the constants extracted from the fit on the reference run were applied to a set of runs
recorded during October 2010. This period consists of the late 2010 data with high enough
instantaneous luminosities to perform a measurement with the forward calorimeters. The
quantity L,ycip/Lrcar can be computed for each high-voltage line and each luminosity
block considered. Figure 4.14 shows the evolution of this ratio over time for the 17 runs
for each of the 15 FCal-C selected HV lines. The distribution of this quantity for all
these runs is shown on Figure 4.15 and displays a root mean square value of ~ 0.5%.
The consistency between each run can be check by computing an average ratio per run:
(LiuciplLEcat)run, Which is found to be flat over the considered run range as shown on
Figure 4.16. Figure 4.17 illustrates the LUCID_Event_OR and FCal calibrated luminosities

time evolution during one of the considered runs.
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Figure 4.13: Current versus luminosity for a selection of FCal HV lines.
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Figure 4.15: Distribution of the ratio L;ycip/Lrcar for 17 ATLAS runs in 2010. One ratio is computed per
luminosity block and high-voltage line.

4.6.2 Systematic uncertainties

The following systematic uncertainties are included in the 0.5% spread of the 2010 cali-

bration, as shown on Figure 4.15.

Current measurement resolution As shown on Figure 4.11, the typical standard devi-
ation of selected high-voltage lines lies between 0.001 pA and 0.015 pA during period
with no LHC beam presence. The average pedestal level being approximately 2.6 pA, this

leads to a current measurement uncertainty of A/// ~ 0.4%.

Liquid argon temperature The liquid argon cryostats are kept at a constant temperature
of ~885 K, which is monitored by ~430 probes as part of the LAr DCS. A temperature
variation of 1 K is leads to a 2% variation of the measured signal, due to effects on the
argon density and electron drift speed. During the 2010 data taking period, the end-cap
cryostats - where the FCal are located - show a temperature stability of ~1.5 mK over

time [01]. This value is well below the technical requirement (50-60 mK) and can be
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Figure 4.16: Average ratio per run (L;ycinlLrcat)run for 17 ATLAS runs in 2010.
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therefore considered to have a negligible effect on the stability of the FCal luminosity

calibration.

Beam-induced background During proton-proton physics operation, the LHC fill cycle
follows a procedure consisting of a series of predetermined steps, from injection to stable

collisions, followed by beam dump. A typical LHC physics fill goes as follows:

e INJECTION PHYSICS BEAM: dipole magnets are ramped up to injection energy
(450 GeV), injection of proton bunch trains,

e PREPARE RAMP: injection complete, preparing for ramp,

e RAMP: bunch trains are accelerated to collision energy (3.5 TeVper beam), dipole
magnets are ramped up accordingly,

e FLAT TOP: immediately after ramp, beams have reached nominal energy,

e SQUEEZE: switch from injection/ramp optics to collision optics using focusing mag-
nets,

e ADJUST: both beams are brought together to collide,

e STABLE BEAMS: colliding beams, stable conditions for physics data-taking,

e BEAM DUMP: both beams are dumped after stable beams period,

e RAMP DOWN: dipole magnets are ramped down to injection energy.

Figure 4.18 illustrates the evolution of the current in one high-voltage line during a
physics fill. The FCal HV current shows no significant variation between periods with
no beam in the machine (before step 1) until the ADJUST phase (step 5), when both
beams are brought together to collide at nominal energy. Therefore the high-voltage
system appears to be insensitive to beam presence except for colliding beams. This can
partly be explained by the fact that the particle flux intensity coming from beam-induced

background is orders of magnitude lower than for the minimum bias flux due to collisions.

The following section will focus on changes in the luminosity calibration of the LUCID

and BCM detectors between the 2010 and 2011 data taking periods, cross-checks with
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Figure 4.18: Current of one FCal-C HV line versus time for a typical LHC fill on June 5 2011. The left
graph, from 8.00AM to 9.45AM,, is a zoom of the beginning of the fill from injection to stable beams. The
right graph, from 23.00pm to 1.00am, is a zoom of the end of fill and after the beam dump.

the newly calibrated FCal measurement, as well as the consequent rescaling of the LUCID

and BCM calibrations.

4.7 FCal luminosity in 2011

During the 2010/2011 winter shutdown, ATLAS-wide hardware and software interven-
tions were performed. Concerning the BCM detector, the analog front-end electronics
were modified in order to better accommodate both its luminosity and beam-protection
capabilities. Although difficult to quantify, the BCM luminosity calibration was expected
to be different from 2010, because of the effect of the modifications on the detector effi-
citency. However, following these changes, the BCM thresholds were adjusted in order
to retrieve a calibration as close as possible to situation in 2010. On the other side, the
LUCID strategy during the shutdown was to keep from modifying anything that could

affect the luminosity calibration.

Regarding the FCal, a major intervention took place on the detector. Indeed, following
analyses with early 2010 collision data, a position shift of the endcap cryostats with
respect to the nominal geometry were observed. The analyses were performed by looking

at the ¢-distribution of the energy flow in the forward calorimeters. The most significant
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shift observed was in the y-direction, and amounted to approximately 2 mm for each
cryostat. In August 2010, an re-alignment in the reconstruction software allowed the
recording of the rest of the 2010 collision data with the correct positioning of the endcaps.
However, during the winter shutdown, the opportunity to physically raise the cryostats
presented itself and was seized. The effect of the positioning on the energy flow was
sine-modulated in ¢ and amounted to approximately 2% in amplitude of transverse energy.
Concerning the FCal HV currents, as the original 2010 calibration was performed with
the old positioning of the cryostats, no modulation is observed in the 2010 data. However,
as the procedure was to keep the 2010 calibration and apply it to the 2011 data, the fact
that the cryostats were raised gives raise to an ¢-asymmetry in the FCal luminosities,

as depicted in Figure 4.19. There are three ways to cope with this asymmetry:

e re-calibrate the individual FCal high-voltage lines with 2011 data and the new
positioning of the cryostats: this cannot be done before the LUCID and BCM are
absolutely calibrated

e correct the ¢p-asymmetry by fitting the ¢-distribution of the 2011 FCal luminosities

e average s-symmetric high-voltage line to cancel the effects of the asymmetry: this

method was used in the comparison with the 2011 LUCID and BCM data

4.7.1 Early 2011 data

In 2010, the LUCID and BCM luminosity measurements agree at ~ 0.5% [33] Consistency
checks between the LUCID and BCM observed luminosity in 2011 show discrepancies at

the level of 7 to 12%, depending on the algorithms.

To view this issue from another angle, comparisons with the calibrated FCal lumi-
nosity were performed with the LUCID and BCM measurements. The quantity chosen
to estimate the discrepancies is the ratio L4/Lrcq, Where alg denotes the specific al-
gorithm. Table 45 shows these ratios for early 2011 ATLAS runs taken on March 22"

and 23" These ratios indicate that from the FCal measurement point of view, the BCM
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Figure 4.19: Average ratio between FCal A and C HV lines luminosities to the offline preferred luminosity
(here LUCID_EventOR) versus the ¢ index of the line in 2011. The calibration of the FCal HV lines is
extracted from 2010 data, hence the ¢ modulation. The amplitude of the modulation is approximately 2%.
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luminosity calibration in 2011 is comparable to 2010, despite the changes in the BCM
analog front-end. However, regarding the LUCID calibration, a difference of the order of

4 to 6% with the FCal is observed.

178044 178109
All ‘ Phys | Al ‘ Phys
LUCID Event_OR | 1.049 | 1.030 | 1.058 | 1.039
LUCID Event_AND | 1.046 | 1.045 | 1.059 | 1.059
BCM Event_OR 1.007 | 1.001 | 1.007 | 1.000
BCM Event_AND | 1.000 | 1.000 | 1.001 | 1.000

Table 45: Average ratios of LUCID and BCM luminosities to FCal. These two ATLAS runs were recorded
on March 22" and 23" before the 2011 LUCID and BCM modifications. Ratios labelled All are taken over
all the BCIDs, and Phys only the BCIDs colliding at IP1.

4.7.2 After new LUCID RX cards

Additional interventions were performed in 2011 on the LUCID and BCM detectors. Firstly,
in order to enable smooth operation with 50 ns LHC bunch trains, new receiver cards
were installed on the LUCID electronics chain. These cards allow for a faster baseline
restoration after a signal pulse in the photomultiplier tubes as well as narrower pulse
width. The downside of this intervention is that it further impacts the luminosity cali-
bration of the LUCID detector. The same study with the FCal was performed after the
new receiver cards were installed, for two ATLAS runs recorded on April 151 and 16,
As shown on Table 4.6, the BCM ratios are comparable to the ones listed in Table 4.5.
Regarding LUCID, the ratios have gone up by ~ 2 — 3% after the new receiver cards,

depending on the algorithm.

4.7.3 BCM thresholds changes

Following a BCM threshold scan in early March 2011, it was decided to adjust these
thresholds in order to rejoin the BCM efficiency plateau. This intervention had an ex-

pected impact on the BCM luminosity calibration. A third series of ATLAS runs, recorded
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179739 179804
All \ Phys | Al \ Phys
LUCID Event_OR | 1.078 | 1.054 | 1.084 | 1.060
LUCID Event_AND | 1.081 | 1.081 | 1.089 | 1.088
BCM Event_OR 1.008 | 1.002 | 1.010 | 1.004
BCM Event_ AND | 1.001 | 1.001 | 1.003 | 1.003

Table 4.6: Average ratios of LUCID and BCM luminosities to FCal for two ATLAS runs recorded on April
15" and 16" 2011. These runs were taken after the replacement of the LUCID receiver cards and before
the BCM threshold changes. Ratios labelled All are taken over all the BCIDs, and Phys only the BCIDs
colliding at IP1.

in April 2011 was analysed in comparison with the FCal measurement. Tables 4.7 and 4.8
summarise the ratios of the LUCID and BCM algorithms with respect to the FCal for these
runs. Averaging over the entire period provides a handle on quantifying the discrepan-
cles. The results show that for this dataset, as illustrated on Figure 4.20, after the new
LUCID receiver cards and the new BCM thresholds, the FCal luminosity measurement
overestimates the LUCID_Event_OR and BCM_Event_OR algorithms by 6.3% and 3.7%

respectively.
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Figure 4.20: Average ratios of LUCID and BCM luminosities to FCal for a set of ATLAS runs recorded in

April 2011, after the installation of the new LUCID receiver cards and the BCM thresholds changes. The
horizontal axis represents the ATLAS run number.

4.7.4 Rescaling of the 2011 early BCM and LUCID data

Following the discrepancies observed in the comparison between FCal, LUCID, and BCM
in early 2011 data, and in addition to the fact that FCal seemed to agree well with BCM
before its thresholds changes, the decision was taken to take FCal as a new reference
and rescale the BCM and LUCID visible cross-sections. The LUCID and BCM visible
cross-sections were rescaled according to several data-taking periods, as listed on Table
4.21. Figure 4.22 illustrates the comparisons between LUCID and BCM after the rescaling.

The ratios are centred around 1, with however still a mu-dependence.

The 2010 total systematic uncertainty on the luminosity, 3.4%, had to be revised in
early 2011 to take into account the rescaling with respect to the FCal luminosity. The main
changes stemmed from the mu-dependence (+1.5%), the long-term consistency (+1%), and
the FCal-TileCal discrepancy observed in early 2011 (+2%). This led to a new systematic

uncertainty of 4.5%.
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Lumi  Lucid Oyis scale BCM Oy scale

Period Run Range (pb~) (OR/AND) (OR/AND) Notes
177531 - 177965 8 1.035/1.08% 1/ Magnets
partly off
177986 - 178109 17 1.035/1.08% 1/ before RX
card swap
179581 - 180122 | 36 1.06/1.15 11 after RX
card swap
wores-eorio [ 200 | 1067115 | 1,037/ 1.075 | feer BCM
threshold
180776 | 171 171 OLC updated

* Educated guess, not in FCal study
no attempt to correct for magnet-off data

Figure 4.21: FCal-based LUCID and BCM 2011
rescaling factors for different ATLAS data-taking pe-
riods, corresponding to different detector statuses.
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Figure 4.22: Ratios of LUCID and BCM luminosities
after FCal-based rescaling, compared to the num-
ber of interactions per bunch crossing measured by

LUCID.

In order to improve this uncertainty, a vdm scan was performed in May 2011, and the

results are described in the following section.

4.7.5 Cross-comparisons after the May 2011 vdM calibration

In May 2011, a new van der Meer scan [58] took place in order to absolutely re-calibrate
the LUCID and BCM detectors, as they were shown to have lost their calibrations during
the previous winter shutdown. Consequently, new cross-checks with the FCal luminosity
measurement (still using the 2010 calibration) could be performed in order to shed light
on possible discrepancies. Figure 4.23 shows the ratio between various luminosities per
ATLAS run compared to a reference algorithm, BCM_H_EventOR. The relative variations
are contain within +1%, which leads to an additional systematic uncertainty associated

with long-term stability of 1%.

A final check consists of comparing the evolution of the luminosity ratios as a function
of the number of interactions per bunch crossing, p. Figure 4.24 illustrates this compar-
ison and all methods agree at the level of 1%, which comes as an additional systematic

associated with the p-dependence.
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Figure 4.23: Fractional deviation in the integrated
luminosity obtained using different algorithms with
respect to the BCM_H_EventOR value as a function
of time. Each point shows the average deviation for a
single ATLAS run. Statistical uncertainties per point
are negligible. Extracted from [58].
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The feasibility of a relative luminosity measurement using the currents of the forward

calorimeter high-voltage system has been demonstrated. It has been shown to be linear

up the LHC design luminosity and stable within 0.5% across a two months period in

2010. Cross-checks with the LUCID and BCM luminosity determinations in 2011 have led

to a rescaling of their visible cross-sections for part on the 2011 dataset, leading to a

temporary re-evaluation of the total systematic uncertainty to 4.5%. In addition, following

improvements on the FCal HV system in early 2011 and an absolute calibration of the

LUCID and BCM luminosities using the May vdM scans, the total systematic uncertainty

has been reduced to 3.7% for the 2011 dataset.



Conclusions and outlook

This document presents a luminosity determination using the currents of the high-voltage
system of the ATLAS liquid argon calorimeter. By measuring the currents drawn by the
forward calorimeter high-voltage lines, where the minimum bias flux is the highest, it is
possible to calibrate them to the absolutely-calibrated LUCID luminosity determination
with a precision of 0.5%, not including the 2010 uncertainty of the LUCID calibration of

3.4%.

One of the strongest advantages of using the forward calorimeter as a luminosity mon-
itor is based on the linearity of its response with luminosity, which has been demonstrated
during test beam studies by the ATLAS HiLum collaboration, as well as reproduced in
situ in ATLAS. Simulations based on recorded collision data have also helped defining

the limits of the FCal luminosity capabilities.

In 2011, using the 2010 calibration, cross-checks with other luminosity monitors such
as the LUCID, BCM, and TileCal detectors helped in deepening the understanding of the

luminosity determination within ATLAS.

In order to achieve the full capabilities of the forward calorimeter as a luminosity mon-
itor, we will first need to re-calibrate the FCal high-voltage power supplies. Following
this operation, a complete recalibration of the high-voltage currents with respect to an
absolutely-calibrated luminosity measurement will have to be performed. In parallel, the
online infrastructure has to be completed in order to acquire, calibrate, and publish an

FCal luminosity within the official ATLAS framework. This will allow for continuous moni-
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toring of the FCal response with respect to other luminosities and a better understanding

of the overall ATLAS luminosity determination.
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1. INTRODUCTION

The Large Hadron Collider (LHC) project was approved by the CERN Council in
December 1994. The LHC will be the next major research tool for particle physics
and it is expected to be commissioned in 2006.

This new proton beam collider facility will be installed in the existing underground
ring tunnel of approximately 27 km circumference at CERN.

Within the context of LHC, one of the two major experiments to be built is called
ATLAS (A Toroida LHC ApparatuS).

This experiment, built and funded by an international collaboration between high-
energy physics institutes from thirty four countries and by CERN, consists basically
of a superconducting magnet system equipped with several particle detectors.

ATLAS will be installed around the LHC interaction point |1 in an underground
cavern at a depth of 90 meters. Entrance to this area is made via access shafts from a
surface complex called P1, near the main CERN Laboratory 1 site in Switzerland.

The expected lifetime of the experiment is at least 15 years from the LHC
commissioning date.

One of the ATLAS detectorsisthe Liquid Argon Calorimeter (LArg) that uses
ionisation chambers immersed in liquid argon to detect energy from penetrating
charged particles which ionise the argon.

The ions produced are collected, amplified and sent to the readout chain for further
processing.

The ionisation chambers will be biased with a voltage up to 2.5 kVolts. The maximal
ion current induced at the highest LHC intensity depends on the location of the
chamber with respect to the interaction point of the experiment and ranges from
75mA to 6mA.

A modular High Voltage Power Supply System is foreseen to accomplish such
functionality.

The stringent definition of and full compliance with the Technical Specifications is
absolutely necessary in order to guarantee that this HV Power Supply System can be
used as measurement apparatus to complement the acquisition of physics data.



2.SCOPE OF THE SUPPLY

This technical specification concerns the manufacturing of

- the multichannel High Voltage Modules
- the subracks (crates)
- the monitoring and control system for the components

by matching
- the experiment and detector boundary conditions
- thetechnical specifications

and fullfilling
- the environmental requirements

- thereiability requirements

- and the calibration requirements



3. TECHNICAL REQUIREMENTS FOR THE HIGH
VOLTAGE POWER SUPPLY SYSTEM

3.1. Experiment and Detector Boundary Conditions

The type of multicore HV cable for 32 HV lines and the type of multipin HV
connectors used to connect the HV power supply output to the LArg calorimeter
detector are described in Annex 1 and Annex 2 respectively. The output cable is
about 130 m long with a single wire resistance of 147 W/ km. The connector pin
layout is described in Annex 3.

Requirement 1: The output connector mounted on the HV module front panel must
be compatible with the specifications given in Annex 2 and 3.

Requirement 2: The HV applied must be floating with its return (the common leg)
connected to the ATLAS-Larg-Cryostat mass connection in the vicinity of the HV
rack. A lockable single point connector to the HV return on the backplane of the
subrack must be provided in order to implement a cable link to the cryostat mass.
Requirement 3: The HV module housing, the output connector housing, the HV-
return and guide pins and the cable shield must al be connected to the HV return.
Requirement 4: The return of the HV supply must be separated from the safety
ground of primary power sources, subracks and cabinets which are connected to the
safety ground grid in the ATLAS cavern. The potential difference between the HV
return and the safety ground must be limited to lessthan +30 Volts.

The output load in terms of resistor and capacitance depends on the different
ionisation chamber construction for the different subdetectors of the ATLAS LArg
calorimeter. The R and C values, asdefined in Fig. 1, are summarised in Table 1.

HV
Internal R - Filter R pb——o

Internal C | Filter C

Common (Cryostat)

Fig. 1 Simplified Detector Characteristics




Internal | Internal | Filter | Filter | RC time constant
R C R C via OWto common
Versus
RC time constant
via 50MWto
common
Electromagnetic | 30to 3nF 0.4to01sec
Barrel Detector | 60 kW | to6nF | 100 kW | 27 nF Versus
(EMB) 150 to 300 sec
Electromagnetic
Barrel Detector 0.15 sec
Presampler 10kw | 0.3nF | 500 kW | 27 nF Versus
(EMB-PS) 15 sec
Electromagnetic 0.5sec
End-Cap Detector | 30kW | 3.5nF | 100kW | 27 nF Versus
(EMEC) 175 sec
Electromagnetic
End-Cap Detector 0.01sec
Presampler 100 kW | 0.03nF | 200kW | 27nF Versus
(EMEC-PS) 1.5sec
Hadronic 1.1 sec
End-Cap Detector | 500 kW | 1.6 nF | 200kW | 27 nF Versus
(HEC) 80 sec
Forward Detector 0.055sec
(FCAL) 45kW | 09nF | 10kwW [100 nF VErsus
45 sec
Purity Control 0.050 sec
Detector (PCD) 20MW | 0.001 nF | 2MW | 27 nF Versus
2 sec

Table 1 LArg Calorimeter Subdetectors




3.2. HV Module Requirements

With the maximum current I, drawn and the maximum high voltage bias Vmax
defined for the different subdetectors the power supplies needed can be grouped into
four supply categories (Table 2).Within these four supply categories different
nominal voltages are applied:

Supply | Maximal Voltage | Maximal Current Subdetectors and their
type V max | max nominal voltages
1 +2.5kV 75 mA EMB +2.1 kV
EMB-PS  +2.1kV
HEC +1.8 kV
PosPCD +2.5 kV
2 +25kV 200 mA EMEC
between +0.9 kV and +2.5 kV
3 + 600 Volt 6 mA FCAL
+250V or +375V or +500 V
4 -2.5kV 75 mA EMEC-PS —2.5kV
NegPCD —-2.5kV

Table 2 Definition of Supply Categories

Requirement 5: Each HV-circuit must be insulated (“floating”) and the voltage of
each channel must be individually setable and regulated between zero and Vax -

Requirement 6: The voltage output accuracy compared to an external calibration
source must be better than
+4x10 % Vina
which correspondsto +1V at Vi = 2.5kV and = 0.25V at Ve = 600V.
For the voltage calibration refer to Requirement 15 and 33.

Requirement 7: The voltage ripple measured peak to peak at maximum load must
be

DVkn <10 mVp, for type 1,3 and 4

and <20 mVp, for type 2 modules
for frequencies from 10 Hz to 100 MHz and nominal voltages > 400 V for type 1,2
and 4 modules and > 50 V for type 3 modules. Refer also to Requirement 20.

Requirement 8: The cross talk of any module channel at nominal voltage and



maximum load onto neighbour channels must be
for frequencies from 10 Hz to 100 MHz.

Requirement 9: The temperature coefficient in the range 10 to 50 deg.C must be
Kt < 5x10 °/deg.C
Requirement 10:
Voltage variations due to no-load/load effects and module input voltage
fluctuations must be
less than 5x10 ~°

Requirement 11:
The voltage setting and readout resolution must be at least

100 mV for type 1,2 and 4 modules

and 20 mV for type 3 modules.

Requirement 12:

The measured current leas must depend linearly on the load I, e to better than
s=+3x10 3

with s defined in (Imeas — loffset ) = (1+S) ltrue

and with lg¢rset being the value of Iineas @ lirye = 0.

For the linearity calibration refer to Requirement 15 and 33.

Requirement 13: The current accuracy must be better than
DI = £0.5 % lnax for type 1,2 and 4 modules

DI =+ 0.06 % |4 for type 3 modules
For the current calibration refer to Requirement 15 and 33.

Requirement 14: The current measurement resolution must be at |least
20 nA for type 1 and 4 modules,
50 nA for type 2 modules
and 100 nA for type 3 modules.

Requirement 15: The voltage (reg. 6), current (reg. 13) and linearity (reg. 12)
calibration must be certified for at least one year and the results must be
documented .

The calibration procedure must be documented such that recalibration can be
performed in situ at CERN.



3.3. Technical Requirements for the HV Subracks (Crates)

Five subracks will be mounted into each Standard 19” ATLAS 52U Rack with
Cooling System located in the ATLAS control room USA15-Level-2. Rack
specifications and a sketched arrangement of subracks within are given in Annex 4.

Requirement 16: The subracks must fit the 19” standard in width and must have
not more than 6U in height. For fan tray of 1U height refer to requirement 17,21 and
22.

Requirement 17: The flow direction of forced air cooling through the modules
housed in rackmounted subracks must be vertical upwards.

Requirement 18: The subracks must be mountable on rails in the racks, such that
the position of the connector front of the modules allows routing of the HV-cables
within the rack through the rack top or the rack bottom (closed door scenario).
Refer to sketch in Annex 4. The minimum bending radius of the multiwire HV
cablesisabout 3 inch.

Requirement 19: Power input for the subracks must be 230 + 10%VAC 50Hz
monophase using an IEC connector. A primary power supply needed within the
subrack to drive the modules must use this power input and must be modular and
exchangeble in situ.

Requirement 20:
Compliance with "CE" rules (Low Voltage Directives and EMC
Directives) must be checked by an independent laboratory certified to do so.

Requirement 21: A modular fan tray with integrated dust filter and 1U in height
must be provided for insertion below the subrack. Its functioning must be monitored
and ist must cope with Req. 17.

Requirement 22: .

The fan tray (Req. 21) dust filter must be removable for cleaning purposes. For the
case that the subrack is mounted in the ATLAS standard rack this filter will not be
inserted, in order to avoid stopping the cooled air flow within the rack.



3.4. Monitoring and Control Requirements

The ATLAS standard for remote monitoring and control of detector equipment is
CAN bus.

Requirement 23: The controller interface within a HV module must comply with
the CAN standard defined in CAN specification 2.0A.

Requirement 24: A cable must be provided to connect external floating power and
the CAN bus to the module supply connector in order to be able to drive and
monitor and control a HV module in stand alone mode (out of the subrack).
Requirement 25:

The following software and hardware control and limiting functions must be
implemented:

Req 25. 1: Voltage setting per channel from Zero to Umax (ref. to Req. 5)

Req 25. 2: Voltage measuring per channel

Req 25. 3: Current measuring per channel

Req 25. 4: (Refer also to requirement 36.4)

Overcurrent fast trip for each channel.

Trip level setting via potentiometer per module for type 1,2 and 4 and per channel
for type 3 modules. The tripping channel must be indicated in the status information.
The switch time of the comparator must be ~ 2 psec or better.

Req 25. 5: (Refer also to requirement 36.4)

Overvoltage fast trip for each channel.

Trip level setting via potentiometer per module for type 1,2 and 4 and per channel
for type 3 modules. The tripping channel must be indicated in the status
information.The switch time of the comparator must be ~ 2 psec or better.

Req 25. 6: (Refer also to requirement 36.4)

Overvoltage and Overcurrent trip level setting per channel viafirmware.

The switch time must be ~ 2 msec or better.

The tripping channel must be indicated in the status information.

Req 25. 7: (Refer also to requirement 36.4)

In case of trip of a channel the module must send an error flag viathe CAN bus to
the control program.The error flag generation time must be ~ 10 msec or better
and the channel status involved must be indicated.

Req 25. 8:

Up/ down ramping control per channel within steps ranging from 1 to 200 V/sec
aswell as channel or module switch off function by discharging according to the
enabled mode of Requirement 36.4.

Req 25. 9:

Low frequency (1Hz) periodic ramping within a voltage window of 50V + 20V.



Req 25. 10:

The module firmware watchdog must generate auto reset and put channels to zero.
Req 25. 11:

CAN bus connection loss/resume/reset must not change the channel status.

Req 25. 12: Interlock status must be indicated for each module and subrack.
Refer to requirement 36.3.

Req 25. 13: Liveinsertion and extraction of modules must be supported.

Requirement 26: The module temperature must be measured and read out.

Requirement 27: Readout latencies for 125 kbit/sec CAN bus transfer mode must

be better than:

10 sec / 1000 channels in case of 3 values (I,U,Status) read out for every channel
4 sec / 1000 channels in case of 1 packet (I,U,Status) read out for every channel.

The 250 kbit/sec CAN bus transfer mode must be selectable with correspondingly

reduced latencies.

Requirement 28: Theinternal refresh cycle must be better than:
500 msec  for 16 bit ADC resolution (type 3 modules)
200 msec  for 12 bit ADC resolution (type 1,2 and 4 modules)

Requirement 29: The control software must run on MS-Windows-2000 PC
systems and must be adapted for future system and SCADA software upgrades.
Adaptation after the guarantee period has elapsed shall be considered asa
repair.Refer to Article 3.3 of the Tender Form.

Requirement 30: The PC to CAN bus interface must have optical coupling.

Requirement 31: The collected control and monitoring data must be offered to
clients viaan OPC server implementation into the control software.

Requirement 32: The remote control and monitoring of the subrack and primary
power supply parameters must be implemented using CAN bus standard.
Parameters must include:

Subrack supply voltages and temperature, On/Off of internal supply voltages.

Requirement 33:
Firmware upgrade and calibration parameters must be downloadable via CAN bus.



3.5. Environmental Conditions and Reliability Requirements

The HV system will be operated at
temperatures of 20C+5C
and humidity of < 70%
controlled environment, within closed racks (cabinets) operating with a controlled,
forced airflow cooled by air/water heat exchangers (see Annex 4 and
requirements 16 to 20). The maximum cooling power per rack is 9 kWaitts.

In test set-up applications, it will be operated in a normal laboratory environment
(refer also to requirement 21 and 24).

The system will operate in normal magnetic (< 50 Gauss) and normal radiation
environment.

The warm-up time to rated accuracy is one hour.
The HV power supply system will be in service for fifteen years starting 2005.

Requirement 34:

The calculated MTTF for the HV system parts must be 100.000 hours or more.
The system must be protected against dust contamination in case of use outside of
the rack (refer to requirement 21).

Requirement 35:

The test, operation and calibration procedures for the system must be documented
and must be such, that they can be performed by ATLAS personnel at CERN.
This applies especially to al calibration tasks referred to in requirement 15.

Requirement 36:
Failsafe installations to protect the HV system against power failure, control failure
and mistaken cable connection must be provided:

Req 36. 1: Watchdog implementation for firmware with auto reset function as cited
in requirement 25.10.

Req 36. 2: The channd status must be conserved in case of CAN bus disconnect

or control PC failure ( refer to requirement 25.11).



Req 36. 3:
Interlock circuitry (Safety Loop) with status control (requirement 25.12)
must be implemented to be fed by the following external sources:

Source type 1: HV cable disconnect must trip and discharge al channels of the
corresponding module. In order to accomplish this function the cable and connectors
have a dedicated interlock pair of wires and pins respectively (see Annex 3).
Source type 2: Externa interlock via optically coupled DC-level fed to module SL-
connector must trip and discharge al channels of that module.

Source type 3: External interlock via optically coupled DC-level fed to subrack SL-
connector must trip and discharge al modules of that subrack..

Source type 4: Operator interlook viathe control software and CAN bus.

For al interlock casesthe selected discharge modus according to Requirement 36.4
must apply.

Req 36. 4: A channel must discharge if trip conditions are fulfilled (refer to
requirements 25.4, 25.5, 25.6, 25.7).

Two aternatively selectable discharge modes must be implemented to achieve the
corresponding discharge times cited in Table 1:

Mode 1:

Discharge of the concerned channel viathe internal HV module resistor (~ 50
MOhm) left in after disconnecting from the regulation.

Mode 2: Discharge viareed relay (0 Ohm) of agroup of 16 channels for type 1,2
and 4 modules and agroup of 8 channels for type 3 modulesiif the trip channel isa
member of the group.

Requirement 37:

The HV system must fulfill the relevant European safety regulations and el ectrical
EMC standards.

The HV system must be conform to the CERN Electrical Safety Code (Annex 5)
and to the CERN Safety Instruction 41 ( 1$41) regarding “ The use of Plastics and
other Non-Metallic Materials at CERN with respect to Fire Safety and Radiation
Resistance” (see also requirement 20).

Requirement 38:

The voltage difference between the safety ground and the return of the HV lines
must be limited viatwo anti-parallel suppressor-diodes with Vz = 56 Volt.
Refer also to requirement 2,3 and 4.



3.6. Documentation

Requirement 39:
All Documentation describing the technical characteristics of al the system
components must be delivered in English. The documentation must include:

1) Thefunctiona diagram of the High Voltage Supply System
2) The organisation of the components of module boards and subracks
3) Description of the control software and CAN bus read out structure

Requirement 40:
Additional documentsin English:

1) Theinstructions for use (user’s guide, user’ s reference manual, etc.)

2) Thetechnica description (functional block diagram, electrical schematics, etc.)
of each module type and of the subrack

3) Documents containing the diagrams of the installation

4) Initial test and calibration report

5) Test, operation and calibration instructions

6) Full manufacturing documents conditionally



Annex 1: Multi core 37-fold HV cable specification

KERPEN High Voltage Cable SL -v2YCeH
( multi core) 6 kV (DC) / 70C
screened zero halogen, flame retardant

i

Used as fixed or flexible installed control sable for high voltage (dc) supply for electrical equipments and
control units in research. For indoor and outdoor use in dry and wet locations. With reduced smokeiemission,
corrosivenass and toxicity of combustion gages acc. to CERN safety instruction IS 23.

« Cores
Conductor...... Tinned copper, flexible stranded, AWG26/7
Insulation ....... Polyethylene

Colour Code . Natural-coloured

e Further Construction ‘
Wrapping....... Min. 1 layer of plastic tape, nom. 36um i
Screen.......... Tinned copper wire braid, opt. coverage min. 80 % |

over tinned copper drain wire, AWG26/7 ¢
Quter Sheath.Zero halogen, flame retardant polymer
Colour... ........Red

« Cable Marking
Imprint ........... KERPENWERK TYPE 6kV(DC) ZERO HALOGEN yyWww Length marking
Manufacturer’s identification thread

Flame retardancy: IEC 60332-1 Temperature range: SL- high voltage cable

Flame propagation: IEC 60332-3 cat. C -30°C up to +70°C Y tinned copper conductor
Smoke density: IEC 61034-1 and -2 {during operstion) 2y Insulation of PE
Amount of halogen acld gas: |EC 60754-1, 0% -5°C up to +50°C C screen
Deagree of acidity of gases: IEC 60754-2 (during installation) E drain wire
H outer sheath of LSZH

Outer sheath: Min. bending radius:
Limlting Oxygen Index (LOI): min. 43% 6 x cable-@

(IEC 60332-3 ann. B)

(fixed installation)
10 x cable-@
(flexible installation)

Temperature Index (T1): min. 260°C
(ASTM-D-2863)

Character Unit
Core/Core norm, kV (DC) 12
Core/Screen nom. kv (DC) 12




High Voltage Cable SL —v2YCeH
(multicore) 6 kV (DC) / 70C
screened zero halogen, flame retardant

37TXAWG 26/7, red

Number Conductor Core Cable Part
of Number
Corss
Single- | Conductor | Core«Z | Screen- Sheath- Overall Weight
wire-¢&’ | resistance wire-¢ | thickness | Diameter :
at 20°C

(nom.) (max.) (approx.) | (nom.) (nom.) | (approx.) | (approx.)

mm km mm ‘mm mm mm kg/km

10 | o016 147 1.3 | 0.5 o100 8.1 85 ||
120 0.16 147.. 13 | 015 10. | 97 120 || .
23 | 0.6 147 1.3 015 . | . 12 10.7 145 }
25 0.16 147 13 | 015 1.2 11.2 155 1| !
30 0.16 147 1.3 0.15 1.2 12.0 170
32 0.16 147 1.3 0.15 12 120 180
34 0.16 147 1.3 0.15 1.2 12.4 190 |
@ | 0.16 147 1.3 0.15 il 12.4 195
Co82 @118 47 g | o220t B R & e 1 2855

56 0.18 147 13 0.20 1.2 14.8 280 ]




Annex 2: Multi pin HV connector specification

The specifications below refer to the REDEL Kft S series. Please consult the
LEMO-REDEL Kft catalog, April 2000, page 16,18,19 and 20 for details.

two screw fixing

Sle Fixed socket with key (code G or A),

Cable Group C?;ggot Marking

tact male black

T female red
] male black

female red
2 rale black

female red

S series chassis panel cut-out
S series
FFA-ERA High Voltage Contacts
of Cable L
Female contact || group | [(mm)

ERA.05.403.ZLL1

ERA.05.403.2LL2




Annex 3: Pin layout for HV chassis connector

The pin assgnment for the LEMO-REDEL Kft S series SLG.H51.LLZG chassis
connector, as mounted on the HV module front panel, is shown below.

HV pins of LEMO type male FFA.05.403.ZL A1 are numbered from 0 to 31

(HV modules 1,2 and 4).

For HV modules of type 3 only pin position 0 to 15 are used.

Common pins C are of the same type as the HV pins and positionned at the corners.
The gide male pin sits at the top and the gide female pin Sits at the bottom.

O @ R
——| |1®00®| |=" o /nteriock .fea"cu“r?
0 @L0,A0| = @ EMEC /PURITY 2.5
——| 8o %Yo (i ® eng 21 .75 |
4 ] G @@0 17 28
——| 8236%2e 2 ® svB 14 07 g
5 7— 9@@@@ — 5 2% @ HEC ~. 8 |
——| l0Qce| |FE2  © reme 500V
1 13” @@@@Q — 2 ® FeAr 375V J
e 6@%@2 »-——n: ® Femr 250V
— gO Og||—— ® ErECPS/PuriT1Q2S
L_;@._./

o =/

The interlock return pinis sitting at the top of the central pin column.

One of eight interlock key pins attributed to its kind of module sits in the central
column (position 1 to 8 counted from below top).

All male interlock pins are of LEMO type FGG.2B.565.ZZC

r-_"!
EARTHING CONTACT Lt ol

l.
Usually, some H.V. contacts are used to connect earthing from the cable shield fo the instrument pane
For su:éh earthing connection it is also possible fo use LY. crimp contacts. With a crimp barrel of 1.4 mm,
these contacts can be used with wires AWG 18-20.

Contact ‘ Positioner | Cnmp tool |
port number part number pch mmber |

GG QB 565.22C DLE 91. 132, BV(,
GG.3B.665.27M DCC 91.133, BvVM

|| DPC.91.701.v" ‘

Note: 1) according to specification MIL-C-225620/7-01

Termination instructions
Refer to 05 series (page 6 & 7) for each individual H.V. contacts



Annex 4: ATLAS rack specification

The ATLAS Standard racks are 19 inch electronic enclosures in compliance with
IEC-60297 part 1 and 2 (for max weight 500 kg).
The external dimensions are:
52U x 600 mm x 900 mm
The front and rear door structure is symmetric to allow opening right or |eft.

C RETuRW

Corrhon




Annex 5: CERN Electrical Safety Code

The CERN Electrical Safety Code can be consulted directly by selecting the
underlined title or viathe following Web-Link to CERN:

http://cern.ch/CERN/DivisionsT|S/safdoc/ CODES/C1l/electrical code.html

The printed version can be made available on request.



Annex 6: Glossary of Terms and Abbreviations

ATLAS =

A Toroidal LHC Apparatus

Liquid Argon Calorimeter Detectors:

EMB =

Electromagnetic Barrel Detector

EMB-PS = Electromagnetic Barrel Detector Presampler

EMEC =

Electromagnetic End-Cap Detector

EMEC-PS =Electromagnetic End-Cap Detector Presampler

HEC =
FCAL =
PCD =

CERN =

EMC =
LHC =
MTTF =
OPC =

QAP =

SCADA=

Hadronic End-Cap Detector
Forward Calorimeter Detector
Purity Control Detector

Consell Europeen pour la Recherche Nucléaire
which was turned into

“European Organization for Nuclear Research”
as official name.

ElectroM agnetic Compatibility

Large Hadron Collider

Mean Time To Failure

OLE Process Control (a MicroSoft term)
Quality Assurance Plan

Safety Loop

Slow Control and Data Aquisition






Appendix B

FCal high-voltage power supply
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16-channel High Voltage Power Supply EHQ F 006p_605-F

The EHQ F 006p-F is a 16-channel high voltage power supply in 6U Eurocard format. Each single
channel is independently controllable. The outputs HV-out (-) - floating HV-GND - and HV-out (+) of
each channel are both floating against each other and against ground.
The EHQ F 006p-F is made ready for mounting into a crate. It is also possible to supply the modules
separately with the necessary power. The unit is software controlled via CAN Interface directly
through a PC or similar controller. The HV output at the EHQ F 006p-F is available with ERNI-
Multipin-Connector or with REDEL-Connector.

2. Technical data

EHQ F 006p_605-F

Output current I max. 6 mA
Output voltage Vo 0to + 600V
Floating Connector HV-out (-) to GND: < |15 V|

Connector HV-out (+) to GND: < [15 V] + Vo

Ripple and noise

f=10Hzto 100 kHz: < 50 mV (at max. load and
f>100 kHz: < 50 mV Vo >50V)

Hardware current limit .«

Potentiometer per channel internal

Interface

CAN-Interface

Voltage setting

Via software, resolution 12 mV

Voltage measurement

Via software, resolution 12 mV

Current measurement

Via software, resolution 120 nA

Accuracy of voltage
measurement

<+ 200 mV

Accuracy of current
measurement

+(0,01% * lo + 0,01% # lo max + 1 dligit)

Temperature coefficient

<5%10%/

Stability

<100 mV (no load/load and A V)

Rate of change of
output voltage

Via software:
0,2 V/sto 50 V/s resolution 0,5V

Channel control
via software

Status 8 bit: channel error, KILL- enable, channel
emergency cut-off, ramp, channel on/off, input error,
current trip

8 channels error control via
software

Current limit ("Channels are OK” is signalled if
these limits do not exceed on each.)

Error signal with green LED

”Channels 0-7 OK” and “Channels 8-15 OK”

Protection loop (ls)
(2 pin Lemo-socket)

5mA<Ils<20 mA = module on
ls<0,5mA = module off

Power requirements Vy

+24V(<2A) and +5V (<0,5A)

Packing 16-channels in 6U Euro cassette
(40,64 mm wide and 220 mm deep)
Connector 96-pin connector according to DIN 41612

HV connector

32-pin Erni Multipin-Connector or REDEL-Connector

EHQ F 006p-F
46 x+500 V/ EmA

e —————————

iseg Spezialelektronik GmbH

Bautzner Landstr. 23

Email: sales@iseg-hv.de Phone ++ 49 351/26996 -0

htt//www.iseg-hv.de Fax

D - 01454 Radeberg/Rossendorf Germany

++ 49 351 /26 996 - 21
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3. Handling

The supply voltages and the CAN interface is connected to the module via a 96-pin connector on the
rear side of the module. The 16 channel version is added with two independently boards.

The maximum output current for each channel is defined through the position of the corresponding
internal potentiometer |0 t0 |7 per board.

The output current will be limited to the setting value after it exceeds the threshold and the green LED
on the front panel is ‘OFF".

At the bottom on the right side of the front panel is the socket for the safety loop. If the safety loop is
active then output voltage on all channels is only present if a current is flowing in a range of 5 to
20mA of any polarity ( i.e. safety loop closed). If the safety loop is opened during operation then the
output voltages are shut off without ramp and the corresponding bit in the ‘Status module’ will be
cancelled. After the loop will be closed again the channels must be switched ‘ON’ and a new set
voltage must be given before it is able to offer an output voltage. The pins of the loop are potential
free, the internal voltage drop is ca. 3 V. Coming from the factory the safety loop is not active (the
corresponding bit is always set). Removing of an internal jumper makes the loop active (s. App. A).

The connector HV-out (-) - floating HV-GND - of each channels should be connected to ground at a
certain chosen point. Otherwise it must be sure, that the potential between HV-out (-) and GND
should not exceed the amount of |15 V|,

Pin assignment 96-pin connector according to DIN 41612:

PIN PIN PIN Data
al b1 ci +5V
a3 b3 c3 +24V
a5 b5 c5 GND
a1t @CAN_GND |
b11 @CANL ¢ potential free
cli @CANH )
al3 RESET
b13 OFF with ramp (e.g. 10s after power fail)
a30 | A4 | b30 | A5 | c30 | GND ]
a3l | A2 | b31 | A3 | c31 | GND ¢ Address field
a32 | A0 | b32 | A1 | ¢32 | GND ) module address ( AO ... A5)

The hardware signal “OFF with ramp” (Pulse High-Low-High, pulse width < 100 ps) on pin b13 will be
shut off the output voltage for all channels with a ramp analogue to the Group access “Channel
ON/OFF”. The ramp speed is defined to Vourmax / 50 s. This is the actually module ramp speed after
“OFF with ramp”.

With help of the Group access “Channel ON/OFF” all channels are switched “ON” again.

With the address field a30/b30 ..... a32/b32 the module address will be coded.
Connected to GND = A(n) = 0 ; contact open = A(n) = 1

iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 351/26996-0
Bautzner Landstr. 23 http://www.iseg-hv.com Fax ++ 49 351 /26 996 - 21
2 D-01454 Radeberg/Rossendorf Germany
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Communication via interface

Device Control Protocol DCP

The communication between the controller and the module works according to the Device Control
Protocol DCP, which has been designed for the use of multi-level-hierarchy systems for instruments.

This protocol works according to the master slave principle. Therefore, the controllers who are on
higher hierarchy always are masters while devices, which are in lower hierarchy, work as slaves.

In the event of the control of the HV device through a controller the controller will have the master
function in this system, while the module (as a Front-end device with intelligence) will be the slave.

The data exchange between the controller and the Front-end (FE) device works with help of data
frames. These data frames are assembled of one direction bit DATA_DIR, one identifier bit DATA_ID
and further data bytes. The direction bit DATA_DIR defines whether the data frame is a write or read-
write access. The DATA_ID carries the information of the type of the data frame and occasionally sub
addresses (GO, G1). It is characterised through the first byte of the data frame with bit 7=1. The
function of the module as part of a complex system will be defined through the DATA_ID .

In such systems with many hierarchical levels a single function of a single module can be addressed
by using group controllers (GC). Then, for each GC on the way to the module the data frame is
crated through nesting of the address fields of the GC-addresses followed by the DATA_ID (not
necessary in case of control a single module).

EXT_|DATA DATA_ID A
INSTR| _DIR . ceess
Bit
71651432110
X O|x|x|x|x]|x|x|x]| NoDATA_ID
0/1 0 110 x|x|x]|x]| x| x| Write access on Front-end device
0/1 1 110|x|x|x| x| x| x| Read-write access on Front-end device
(Request at Write)
0/1 0 1| x| x|x]|x |G1/GO| Write access on group
0/1 1 111 |x|x]|x]|x|G1/GO| Read-write access on group (Request at Write)
GO0, G1 sub address
Only needed if group controller (GC) is used

These data frames correspond to a transfer into layer 3 (Network Layer) respectively layer 4
(Transport Layer) of the OSI model of ISO. The transmission medium is CAN Bus according to
specification 2.0A, related to level1 (Physical Layer) and level 2 (Data Link Layer).

The Device Control Protocol DCP has been matched to the CAN Bus according to specification CAN
2.0A, but it is also possible to be matched to further transmission media (e.g. RS232). Therefore
specials of layer 1 and 2 are only mentioned if absolutely necessary and if misunderstandings of
functions between the Transport Layer and functions of the Data Link Layer may be possible. The
communication between the controller and a module on the same bus segment will be described as
follows.

iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 351/26996 -0
Bautzner Landstr. 23 http://www.iseg-hv.com Fax ++ 49 351 /26 996 - 21
D - 01454 Radeberg/Rossendorf Germany 3
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Summary of CAN data frames

Following list describes the accesses of the DCP made for the 8-channel module EHQ 8005-F.

EXT_ |DATA DATA_ID read/ | DATA
— - write -
INSTR| DIR i Access active | Bytes
ID1 Do (7| 6| 5|4 |3|2]1(0
X 0| x| x| x| x| x| x| x |NoDATA_ID
X X 1 | 0 |C1|CO|N3|N2|N1|NO |Single access CHANNEL:
1 1/0 1 0] 0| O [N3|N2|N1]|NO| Currenttrip r/w 4
0 1 1 O O | O |N3|[N2|N1|[NO| Actualvoltage r 4
0 1 1 01]0 1 | N3 | N2 | N1|[NO| Actualcurrent r 4
0 1/0 1[0 1] 0 |N3|N2|N1|[NO|[ Setvoltage r/w 4
0 1 1 0| 1 1 | N3 [N2|N1|NO| Statuschannel r 3
1 1 |C3|C2[C1|CO0|G1|GO |Group access module
1 1 1 1 o|jojo0o|J]O0O]|]0O0]|O Voltage supplies and module r 8
temperature
1 1 1 1 O|0] 0] 1 0O offen r 8
1 1 1 1 0|0 |1 00| O Placed hardware channels r 3
1 1 1 1 0|01 1 oo Channel works according control r 3
1 1 111101 ]0]0]| 0| 0| Status4 Sense voltage # Set voltage r 3
0 1/0 1 1 o(o0jo0|O0O|O0]O General status module r/w 2
a
0 1 1 1 O|0] 0] 1 OO Status1 Voltage limit was exceeded r 3
at single channel
0 1 1 1 0O ofo0foO Status2 Hardware current limit was r 3
exceeded at single channel
0 1/0 1 1 (0|0 1 10| 0| Channel ON/OFF r/w 3
0 1/0 1 1 0|1 0O|l0]|]0f|0O Ramp speed r/w 3
0 0 1 1 0|1 0| 1 oo Emergency cut-off w 3
0 1 1 1 0| 1 1 0Oo|0]O0 Log-on Front-end device in superior a 3
layer
0 0 1 1 0| 1 0O|0] O Log-off superior layer at Front-end w 3
device
0 1/0 1 110 |1 1| 0| O | Bitrate r/w 3
1/0 1 1 1 ojo0]JO0O]0]|O Serial number, software release and r'w | 7/2
CAN message configuration
0 0 1 1 1 0] 0] 1 oo Set voltage for all channels w 4
0 1/0 1 1 1 0] 1 1 oo KILL-enable r/w 3
0 1/0 1 1 1 1 oOo|0|0]O ADC filter setting r/w 3
0 1 1 1 1 1 0| 1 0|0 Module nominal values r 5
0 1 1 1 1 1 1 ofo0foO Status3 Software current trip was r 3
exceeded at single channel
G Accesses N; 0 to 15: Channel 0 to 15
G;0to 3: Group 0to 3 Only needed if group controller (GC) used

4
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Manual extension

Crate ECH 228 to

Crate ECH 238 and option UPS
with CAN-Control

The crates ECH 238 are supplied with a controller for remote and monitoring control via CAN-bus.

Option UPS:
together with an UPS and a battery back up, short term power failure (<10s) can be bridged and in case of
longer AC power failure a defined shut down procedure for the HV modules is guaranteed.

Installation

After unpacking the crate has to be installed under the described condition.

For crates with UPS option the 16A fuse which is included has to put into the fuse holder on the rear side.
Afterwards the battery is activated.

With AC line ON the crate is in Stand-by mode.

Technical Data version 1.

CAN bus speed 20, 50, 100, 125 and 250 kbit/s

Analogue functions ADC with 10-Bit resolution, control of supplies voltages and temperature of this crate.
Digital functions ON - and OFF switch of internal supply voltages via CAN-Bus in Stand-by mode
Power-ON/OFF Power cable connected and AC line is ON, now the crate is in Stand-by mode.

In Stand-by mode the internal DC supply voltages can be switched ON and OFF with
help of a push button, even if no CAN-control is present.

With option UPS In case of AC power failure the internal voltages are saved by the acc. battery.

If the power is failing more than 10 sec. a signal will be provided , which is going to
start a defined shut down procedure. (HLH- impulses on each module-slot, Pin b13).
The bridge time for the battery is 1 min at least.

CAN-Interface

The CAN-control is completely configurable via software. The Structures is following to CAN-Open (CAL-based
Draft Standard 301 / release 3.0).

After Power_ON-Reset the controller is running into CAN-Status “Initialisation”. During this state Write access is
possible to all EEPROM-cells via the sub identifier. If control is already configured (e.g. from factory), control is
running into CAN-status “Pre-operational”.

Only in these both states it is possible to work with services Network-Management (NMT) and Distribution -
Management (DBT).
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CAN-Status “Pre-operational“ is necessary for the further description.

In order to allow the control of the crate via CAN-Bus, with global command ,START* the CAN-Status ,Pre-
operational” will be switched into CAN-Status “Operational®:

Services ID DLC DATA 1

(with
RTR
:0)

Network - Management (NMT)

START / STOP / RESET 0 1 |Bit0O=10 Start
Bit1=10 Stop
global Bit2 =10 Reset
CAN-interf.
broadcast message to all ECH Bit3=10 Reset
CAN nodes Controller

Now control can work via two identifier (see ID - Distribution):

1. Control (EMCY-ID)

The internal supply voltages will be controlled cyclically (Vwess ca all 100 ms). The voltage control is factory fixed
with AV = + 5% given through tolerance values Vrensoa in @an EEPROM. If the thresholds of voltage and/or
temperature will be exceeding then the controller is sending a message with EMCY-ID to the Bus (send only).

Controls of EMCY-ID’s are working only after the controller has been set into Operational mode with NMT-Start.

ID |R|D Voltage DATA 2 | DATA_3 | DATA 4 | DATA 5
T|L
R|C
EMCY-|0]5|0|0|0|0|0|x|x|x| 12-bit unsigned 12-bit unsigned xxx: 000 +24V = VNominal 0
ID ADC-word: ADC-word: 001 +5V = VNominal 1
VMeas VThreshoId 01 0 24VBattery = VNominaI 2
Veas resp. Vhreshold = Vominal x JADC-word / 2048
ID |R|D Temperature DATA 2 | DATA 3 | DATA 4 | DATA 5
TIL
R|C
EMCY-|0]5|0(0(0|0|0|x|x|x 0 Tweas 0 Trheshoid | Xxx: 011 temperature sensor 1
ID [°C] [°C] (24V-DC PS)
100 temperature sensor 2
(Back plane)
101 temperature sensor 3
110 temperature sensor 4
(3 and 4: reserved)
ID [R|D| AC line power DATA_2 | DATA_3 | DATA_4 | DATA_5
T|L failure signal
R|C
EMCY-|0]5/0|0|0|0[0fx|x|x 0 0 7 7c xxx: 111 AC line power failure
ID
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2. Subidentifier (Sub-ID)

E- ID |R|D|r Command DATA n Remarks
command TIL/
R|C|w
Multiplex- | Sub-ID [0 x|x|0|x|x]|x]|x]|x]|X multiplexed DAC/ADC — work on channels
command of selected module (Sub-ID)
ADC Sub-ID|0]1[1[0[1]0]|0|x|x|x Read Access, (call from host)

Sub-ID[0]3[1|0|1|0|0|x|x[x]| 2 Byte ADC-word | Vieas = VNominaix JADC-word / 2048

xxx: 000 +24V = VNominal 0
001 +5V = VNominal 1
01 0 24VBaﬂery = VNominaI 2

Sub-ID|0]4]1|0|1|0|0(x|x|x|2 Byte ADC-value |ADC-value = Temperature [°C]

+
1 Byte fan status [Byte fan status =

0: stage 1,

1: stage 2, full cooling

xxx: 011 temperature sensor 1
(Back plane)
100 temperature sensor 2
(24V-DC Power supply)
101 temperature sensor 3
110 temperature sensor 4
(3 and 4: not installed)

Sub-ID(0]|3[1|0[1|0|0f1]1

—_

1. Byte AC line | Status AC line power
power status 1: AC line power OK
0: AC line power wrong
2. Byte crate power| Capture status if voltages were out of range.
status Bit b7=1 temperature to high
Bit b5=1 +24V to high
Bit b4=1 +24V to low
Bit b3=1 +5V to high
Bit b2=1 +5V to low
Bit b1=1 24V battery voltage to high
Bit b0=1 24V battery voltage to low

Sub-ID(0]3|0|0|1|0|0f1]1

—_

1. Byte AC line | In order to reset the AC power line status it
power status have to be set bit 0 to one in DATA 1.

2. Byte crate power] In order to reset the corresponding bit of the

status crate status it have to be set in the DATA_2.
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Module- [Sub-ID|0|x|x|1|x|x[x[x|x[|x Use module functions of selected module
command (Sub-ID)
EEPROM ([Sub-ID|0]2]1]|1|0|0|0(0(0|0|EEPROM-address| Read / Write access, ( call from host)
[Tolerances|Sub-ID|0|3|1[1[{0({0[0|0|0]|0 Data_1: Byte oriented reading of tolerances from
EEPROM-address | EEPROM-address:
\ Higher ADC- Lower ADC-
threshold threshold

High low high low

+24V | 0x3d Ox3e | Ox3f 0x40
+5V 0x41 0x42 | O0x43 | O0x44
24Vatiery | 0x45 0x46 | O0x47 | 0x48

Sub-ID|0|3]|0|1|0|0|0|0Of0O|0O Data_1: -byte oriented writing of tolerances on above
EEPROM-address| EEPROM-address, tolerance = word ADC-
Data_2: threshold
tolerance high/low [ tojerance = (calculated set-ADC-value) [
(1£AV)
iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 (0)351 /26 996 -0
Bautzner Landstr 23 http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21

D - 01454 Radeberg / Rossendorf Germany 4




—\iseg

Spezialelektronik GmbH

E- ID |R|D|r Command DATA n Remarks
command TIL/
R|C|w
Module- [Sub-ID|0|x|x|1|x|x|x[x[X|x Use module function of selected modules
commands (Sub-ID)
ON/OFF |Sub-ID(0[1]1 0(0]|0]1 Read / Write Access, (call from host)
Sub-ID|0] 3|1 0(o|0|1|0|0|0|0O|O]|0O 0| 0| O[ Of 0] 0] 0] 1| x=0... switched on
x=1... switched off
Read/Write Access
ON/OFF |Sub-ID|0|3]0|1|0|0|0|O|0O|1(0|0O(0O|0O(O|O 0| 0| 0[ 0f 0] 0] 0] 1| x=0... switched on
x=1... switched off
Write Access
Bitrate |[Sub-ID|0|1]1 0[0f1(1 Read / Write Access, (call from host)
Sub-ID|0]2(1 0(0|1]1 Data_0 Bit rate [kBit/s]
Read/Write Access
Bitrate |[Sub-ID|0]|2]|0|1|0|0|0|0|1|1 Data 0 New bit rate:
only 20, 50, 100, 125 for bit rate [kBit/s] is
allowed!
Write Access
Unit-ID | Sub-ID|0|6[1|1|0{0({0[1]|1]|0]| 3 Byte BCD-unit-no. and 2 Byte BCD-software-release
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These identifiers will be fixed by ID - Distribution (DBT) Service:

ID - Distribution (DBT) ID DLC | DATA_1 DATA n remarks
Service
DBT - Master - Request 2024d 0 Call from host only by
7E8h connected module:
(RTR=1) message address
and ID’s of module
DBT - Slave - Service 2023d 8 |mod.-addr.|2|3| 4|5 (6|7 Message with module
7E7h address and
(RTR=0) corresponding ID’s
DBT - Master - Service 2024d 8 |mod.-addr. |0 | 0| EMCY | Sub
7E8h
(RTR=0) -ID -ID
DBT - Master - Service 2024d 2 0x80 module-addr. Call from host
7E8h to module address:
O (RTR=0) message of ID’s to
address
DBT - Slave - Service 2023d 8 |mod.-addr.|2|3| 4|5 (6|7 Message with module
7E7h address and the
(RTR=0) corresponding ID’s
Example: DBT-Master-Request ID RTR DLC Data
send to crate Ox7E8 1 0
recive from crate Ox7E8 0 8 0x30 0x00 0x00 0x40 0x80 0x60 0x80 0x00

mod.-addr.
EMCY-ID
SUB-ID

0x30
0x408 (left justified)
0x608 (left justified)

The remote control module will be configured with help of Network-Management (NMT) Service:

Network - Management (NMT) ID DLC DATA 1 remark
NMT - Slave — Service 2025d 2 | Mod.-addr. (OxFF) After stop of CAN-Status
7ES9h (0x20):
(only in initialising mode ) 0x80:
Operational
0x40: Pre-
operational
0x20:
Initialisation
NMT - Master - Service 2026d 2 |Mod.-addr. old Mod.-Adr. new,
7EAQ Addr. 0x80
forbidden !
Start / Stop / Reset 0 1 |Bit0O=10 Start
Bit1=10 Stop
global Bit2 =10 Reset
CAN:-Interf.
broadcast message to all ECH Bit3=1 [0 Reset
CAN nodes Controller
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Maintenance

The crate and the included battery are free from any support. If the crate is not in use for more than half a year it
has to be connected to mains and switched ON for at least 8 hours, so that the batteries will be charged to full
capacity again. After 5 years time the batteries have to be replaced by new ones.
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Chapter Il

The isegHVOPCServer for iseg Multi-Channel HV systems

Document: isegHVOPCServer.odt Version: 5.01.0003 Date: 10/ August 2010 16:35

iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 (0)351/26 996 -0
Bautzner Landstr. 23 http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21
D - 01454 Radeberg / Rossendorf Germany



—\iseg

Spezialelektronik GmbH

2

iseg Spezialelektronik GmbH
Bautzner Landstr. 23
D - 01454 Radeberg / Rossendorf

Email: sales@iseg-hv.de
http://www.iseg-hv.com
Germany

Phone ++ 49 (0)351 /26 996 -0
Fax ++ 49 (0)351 / 26 996 - 21



—\iseg

Spezialelektronik GmbH

Table of Contents

The isegHVOPCServer for iseg Multi-Channel HV systems..........ccccoooiiiiiiiiiiiiii e 1
OLE for Process Control (OPC) for the iseg Multi-Channel HV systems..............ccccceeeeeeneeeeee.. 5
1INt OAUCHION. e 5
2 MOAUIES. ... e eaaaaeees 6
S A . ettt sttt ettt ettt ettt aa e ee ettt 6
4 SOftWANE. ... e iaeeeetti e eaaaaeees 7
4.1 General iINformation............uueiiiiiieieeeee et 7
5 OPC Server part for Multi-ChannelHV devices .............ooeveeeeeeiinieiniiiiiiiiiiiiiiiiiiiiiiieeeianne 7
5.1 CoNfIQUIAtION. ...ttt 7
5.2 Data Access Server _and Alarmand Events Server................ooeeeeeeeeeeeeeeeeeeeeeeeeeeee. 8
5.2.1 Data ACCESS SOIVEN ...ttt ettt ettt e e et e e e e e eeeeeeeeeeae 8
5.2.1.1 Item’s propertiesS..........uuuuuueueeeiiiiiiieiiiiiiiiiiiiiiiiiiii 9
5.2.1.2 ltems of the status from the server components............ccccceiiiiiciniiiiiiiiiiiieeennn, 10
5.2.1.3 Items of Data Access to the channel properties...........cccceeeeiiiiiiiiiiiiiiiiiiiiiienees 12
5.2.1.4 ltems of Data Access to the module properties.............occceeiiiiiiiiiiiiiiiiiiiiee 13
5.2.1.5 Items to signal an alarm from the HV devices via Data AccesS...........cccceeeennnnnnn...... 14
5.2.1.6 Notes to the item Status channel (EHQ)............ococveeiieeiiiiieieeee 15
5.2.1.7 Notes to the item Channel status (EHS)..............ccooeiiiiiiinniiiiiiiiiie 16
5.2.1.8 Notes to the items of the Channel control (EHS).......cccceeeeeeeeeiiiiiiiiciiiieeeeeeeeeeeeee 16
5.2.1.9 Notes to the item Channel event status (EHS).............ccccceeiiiiiiis 17
5.2.1.10 Notes to the item Channel event mask (EHS)...........ccceeeiiiiiniiiiiiiiiiiiieeii 17
5.2.1.11 Notes to the item Module status (EHS).........cccccveeeeeeeeeiiiiiiiiiieee e 18
5.2.1.12 Notes to the items of the Module control (EHS)...........cccceeeeeeeeeeiiiiiiiieeeeee 18
5.2.1.13 Notes to the item Module event status (EHS)..........oooeeiiiiiiiiiiiee 19
5.2.1.14 Notes to the item Module event mask (EHS)............ccoeeeiiiiiiiiiiiiiiieen. 19
5.2.1.15 Notes to the item Event channel status (EHS)...........ccccceeeeiiiiiiiiiiiiiiiinn, 19
5.2.1.16 Notes to the item Event channel mask (EHS)..........cccoeeiiiinneiiiiiiiiiiiiiiieeeee, 19
5.2.1.17 Notes to the item General status (EHQ)...........ooeeiiieeeiiiiieiiiiiiiiiee 20
5.2.1.18 Notes to the items VsetAllChannels, ITripAllChannels and ISetAllChannels........... 21
5.2.1.19 Notes to the item Configuration of the relay and requlation error............................. 21
5.2.1.20 Notes to GroupNumber and GroupVariable (EHS).......cccoeeiiiieeeiiiiiiiiiiiiieeeeeeeen, 22
5.2.1.21 Notes to the item Alarm information.............cccceeeiieiiiieeee e 25
5.2.1.22 Notes to the item Option (EHS)......ccccueeeeiiiiiiiieiiiiiiiiiiiieeiiiiee e 25
5.2.1.23 Notes to OptionSingleSpec (EHS)......cccouveeeiieeeeiiiiiiiiiieeee e 25
5.2.1.24 ltems for public groups defined by the OPC server:.........ccccceeeeeeeeiiiiiciiieeeeeee. 26
iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 (0)351 /26 996 - 0
Bautzner Landstr 23 http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21

D - 01454 Radeberg / Rossendorf Germany 3



—\iseg

Spezialelektronik GmbH

5.2.2 Alarms and EVENES SEIVer............uuuuuuiiiiiii e 28
522 1SimpleeventS............cceeeenniinniiiiiiiiiiiiiii 28
5.2.2.2 TracKiNg EVENES. ... ... 28
6 OPC server part for iseg system crate ECHX38............eeeiieeniiiiiieeeeeee 29
6.1 CoNfiQUIatioN.....ueeeeeeiiei ittt 29
6.2 Data Access Serverand Alarmand EventServer..................ooooveeeeeiieeeieiiiiiiiiiiiiinnn, 29
6.2.1 Data ACCESS SEIVEI ...ttt ettt e e e e e e e e e eeeeeeee 29
6.2.1.1 ltems of the releases from the server components...........ccoceeeeeiiiiiiiiiiiiiiiiiiiiiiennneens 30
6.2.1.2 1tems Of Data ACCESS...uuuuiiiiiiiiiiieee ettt 30
6.213Cratepowerstatus..................oooeeeenennnnnnnnnnnnnnnii 31
6.2.2 Alarm and Events Server...........cccuueueeeiiii ittt 31
ADPDENAIX A ittt ettt ettt e et et ettt ee et e e e e e 32
iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 (0)351 /26 996 -0
Bautzner Landstr. 23 http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21

4 D - 01454 Radeberg / Rossendorf Germany



—\iseg

Spezialelektronik GmbH

OLE for Process Control (OPC) for the iseg Multi-Channel HV
systems

The isegHVOPCServer as a part of OLE process control is the link between the OPC client, the iseg Multi-
Channel HV modules and / or the iseg system crates.

1 Introduction

The iseg Multi-Channel HV system is made of several devices of hardware and software components. The

hardware devices are as follows:

Multi-Channel HV power supply modules

System crates carrying the HV modules

Each module and each crate offers a microprocessor-based intelligence. The interface which controls and
monitors the hardware is the CAN bus. It is following the CAN 2.0B ( passive ) specification. The data points for
the accesses to the module and the crate properties comes together in one executable file and can work on one
CAN bus or on different CAN buses in conformity with the configuration files.

The system software interface is made by an OPC server, which follows the rules defined by the OPC
Foundation (DA 3.0, 2.0 and 1.0 are supported). Therefore the users of the system must not know the internal
protocols in detail.

In order to understand the OPC interface (server namespace), the relevant details of the modules and the crates

are described as follows:

iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 (0)351/26 996 - 0
Bautzner Landstr 23 http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21
D - 01454 Radeberg / Rossendorf Germany 5



—\iseg

Spezialelektronik GmbH

2 Modules

Each modules offers up to 32 channels, made of one or two internal cards ( PCB ). Each internal card

represents one CAN node (the most of the modules have 16 channels per card, some modules comes also with

another number of channels per card — see instruction “Placed hardware channels” of the EHQ Multi-

Channel CAN operators manual). Each channel of the module offers individual properties (see below).

In addition there are properties as groups that summarize a property for all channels and which are controlled by

one CAN node.

Properties of one channel:
set voltage
current trip
actual current
actual voltage
status

write / read
write / read
read
read
read

Properties of a channel group (some examples):

sum error
ramp speed
set voltage for all channels

emergency cut-off

3 Crates

Properties of a crate (some examples):

actual voltage of single lines
temperature

Power ON / OFF

Status

StatusACLinePower

The most important information of the crate is the status of the power supplies.

read
read / write
write

write

read
read
read / write
read / write

read
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4 Software

4.1 General information

The isegCANHVControl.exe control software performs all basic monitor and control tasks for modules and
crates. It provides a HMI (human machine interface) for all properties of the modules and crates using the
proprietary driver of the CAN interface (PEAK). It can be used in order to configure the modules and crates
before the work with the isegHVOPCServer. Such configurations are the flash update, changing the bit rate and
identifiers for crates, the offset calibration of the module temperature and the permanent saving of setting values
inside of the modules.

An alternative and more general control software is based on the standardized OPC interface. With means of
the OPC tools is it possible to establish a sever client system in order to access the iseg Multi-Channel HV
system, too. The properties of the Multi-Channel HV hardware can be accessed via the item data points.

5 OPC Server part for Multi-Channel HV devices

The OPC server has been developed using the following tools:
Softing OPC Toolkit, Ver. 4.10, DA 3.0, AE1.01
Microsoft’s Visual C++, Ver. 6.01
PEAK System’s CAN device driver

The OPC server for Multi-Channel HV system is divided into ‘Data Access’ part and an ‘Alarms and Events’ part.

5.1 Configuration

First the OPC server has to be configured. It must get all information about the kind of iseg HV hardware
connected to the CAN bus. This information is stored in the configuration file isegHVOPCServer.ini. The tool
isegHVOPCcfg.exe is used to create this configuration file. It performs a scan on the CAN bus and collects
information from the connected CAN nodes (modules and crates). Also it supports the graphical access to the
initialising file isegHVOPCServer.ini.

For further details see the configuration manual isegHVOPCSetup.pdf.
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52 Data Access Server and Alarm and Events Server

521 Data Access Server

The OPC DA server is made to work with more than one crate. Therefore each item has to be addressed in a

geographical way to build a fully qualified item ID that means:

STATUS.COMPONENT iseg OPC server components (software releases
and status of CAN bus)

CANBUS.NODE.CHANNEL.ITEMNAME data point for channel depending properties

CANBUS.NODE.ITEMNAME data point for module depending properties

By the use of a special namespace text file — isegHVOPCServer.nsp — can build user defined fully qualified
item IDs. The description is placed in the file isegHVOPCUserNameSpace.pdf. The program
isegHVOPCUserNameSpace.exe is able to make a scan over the namespace and save the information

prepared to read by the isegHVOPCServer from the namespace file.

The properties of Multi-Channel HV system in the OPC server are defined as items. In the simplest case, such
an item is directly coupled to a read or write via CAN bus. The ‘set voltage’ is one example.

Some OPC items have to be built up from data read results via CAN. The ‘status current limit’ is one example,
which is read as an unsigned integer (2 bytes). Each bit of these 2 bytes represents the status of the current limit
of one channel. This bit is interpreted as Boolean. All channels result in an array with 16 elements of Boolean,
the ‘StatHwlLimitBoolArray’.

There is a feature of ranking these many requests because a client can send many of them. First priority is
assigned to emergency off ‘Emcy’, second priority to the command set voltage ‘VSet'. All other requests are
under normal (lowest) priority.

A background loop process can be used to update the cache of the changeable channel items continuously.
This process reads all measurement data and channel status data from the HV modules and fills the cache of
the OPC server namespace. To implement a background loop process the “ReadSync” entry in the OPC
initialising file “EHQ3216Srv.ini” have to be a different value from zero. The advantages of this mechanism is a
very fast update of the really interesting module properties (Vmeas, Imeas and Stat item) because the group
update of this items of an OPC client will cause no device reads if the time stamps of the items are as newer as

the last update of the group.
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5211 Item’s properties

The items own a sum of the same and a sum of specific item properties.

Each item has as standard properties: ltem Canonical Data Type
Item Value
Item Quality
Iltem Time Stamp
Item Access Rights
Server Scan Rate
Item Description

Specific item properties: ltem EU Type
Iltem EU
Item High EU  (the maximum value that the device will accept and/or return)
Iltem Low EU  (the minimum value that the device will accept and/or return)
Application Description

iseg Spezialelektronik GmbH Email: sales@iseg-hv.de Phone ++ 49 (0)351/26 996 - 0
Bautzner Landstr 23 http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21
D - 01454 Radeberg / Rossendorf Germany 9



e

—\is g

Spezialelektronik GmbH

521.2 Items of the status from the server components
fully qualified identifier device class | description access variant type
Status.release_isegHVOPCServer all isegHVOPCServer.EXE readable | VT_BSTR
Status.HeartBeat all heart beat of the server readable VT U1
Status.release_isegCAN all iseg[p/s]can.DLL readable | VT_BSTR
Status.CAN all status of CAN bus readable | VT_BSTR
Status.Force all 0=mode1 1=mode2 readable | VT_BOOL
Status.Refresh all mode1=0 Readable VT_UN

Status.CAN Actual status of the CAN line
Possible values are “OK”

"BUSHEAVY" bus errors e.g. when there is a mix of different bit rates
"BUSOFF" bus error e.g. a short on the bus
“OVERRUN" overflow of the buffer of the CAN driver

In order to select another CAN line for evaluation or to make a reset of the interface hardware of
the corresponding CAN line, the number of the real hardware line has to be written to this item
(not the number of the user namespace file).

A parallelization of the send and receive thread can be made with the items Force and Refresh to increase:
the update rate of the item cache.
the CAN busload without a noticeable increasing of the system load.

Status.Force

Force=false Mode1

An access to the item cache via an OPC client will be made with a request to the
device hardware through the event handler of the item tag connected with a
delay until the answer from the device or the time out.

iseg
Multi-Channel Device

-

isegHVOPCServer

—— —

Force=true Mode2 (for Multi-Channel devices and crate monitoring units, not for crate
monitoring units only)

An access to the item cache via an OPC client will be made without a request to

the device hardware. The update of the item cache can be adjusted with the

item Refresh.

N
\ 1

; i i iseg
isegHYOPCServer ulti-Channel Device

Refresh>0
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Status.Refresh
The Items listed in Appendix A will refreshed as fast as possible in background.

Useful values are: Refresh=0 - no update of the item cache in background
Refresh>0 up to 32 - update of the item cache in background

A higher value of the item “Refresh” means that more data will request in background with that a
higher update rate of the OPC groups is possible, but which increase also the CAN bus load.

A possible handling is:
The client reads all stable items such as canx.mtyy.chzz.NominalV after the OPC server
has been started. In a next step the item “Force” will be set on true value and the group
update rate for instance of the items to measurement data points will decrease. The
background refresh can be started now with set the “Refresh” item to a value unequal to
zero.
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5.2.1.3 Items of Data Access to the channel properties
Syntax: t € [alp] module type (active or passive)

x €[0..15] number of the CAN bus

yy € [0..63] number of the CAN node

zz€[0..15] number of the channel
fully qualified identifier device class |description access variant

type
canx.mfyy.chzz.\VSet all set voltage write-/ readable VT_R4
canx.mtyy.chzz.VMeas all actual voltage readable VT_R4
canx.mtyy.chzz.NominalV all nominal voltage readable VT_R4
canx.mtyy.chzz.ISet (all) set current / set current trip write-/ readable VT _R4
canx.mtyy.chzz.|Trip all (set current) / set current trip write-/ readable VT _R4
canx.mtyy.chzz.IMeas all actual current readable VT_R4
canx.mtyy.chzz.Nominall all nominal current readable VT_R4
canx.mtyy.chzz.Stat all status channel in the kind of EHQ readable VT _UI2
canx.mtyy.chzz.0On all seton=-1,setoff=0 writeable VT_BOOL
canx.mfyy.chzz.Emergency all set emergency = -1, writeable VT_BOOL
reset emergency =0
canx.mtyy.chzz.doClear all reset the errors (EHQ), events writeable VT_BOOL
(EHS) of the channels
canx.mtyy.chzz.Status all status channel (OPC quality is bad, readable VT _UlI2
(< 20 without | when it is not an EHS module in
any function) | EHS mode

canx.mfyy.chzz.EventStatus| >20/(all) |channel event status write-/ readable | VT_UI2
canx.mtyy.chzz.EventMask >20/ (all) |channel event mask write-/ readable | VT_UI2
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5214 Items of Data Access to the module properties
fully qualified identifier device classfdescription access type
canx.mtyy.GeneralStat all general status readable VT_UlI1
canx.mtyy.GeneralSafetyLoop all safety loop is closed write-/ readablelVT _BOOL
canx.mtyy.GeneralHwVLimitLow 0/ (all) |hardware voltage limit is to low write-/ readablelVT_BOOL|
canx.mtfyy.Status >20/ (all) jmodule status (EHS) readable VT UlI2
anx.mtyy.EventStatus >20/ (all) jmodule event status write-/ readable| VT _UI2
anx.mtyy.EventMask >20/ (all) jmodule event mask write-/ readable| VT _UI2
anx.mtyy.EventChannelStatus | >20/ (all) gevent channel status write-/ readable| VT _UI2
anx.mtyy.EventChannelMask | >20/ (all) fevent channel mask write-/ readable| VT _UI2
canx.mtyy.setAdjust all Adjust of the HV on = -1 writeable [VT_BOOL|
Adjust of the HV off = 0
canx.mfyy.setKillEnable all hardware kill enable = -1 writeable [VT_BOOL|
hardware Kill disable = 0
canx.mfyy.doClear all Clear all events / errors of the whole HV|  writeable [VT_BOOL
module
icanx.mtyy.GroupNumber >20/ (all) |Index of the variable groups 0 to 31 write-/ readable] VT _UI1
canx.mfyy.GroupVariable >20/ (all) lextended and flexible range of groupwrite-/ readable| VT_Ul4
functions
canx.mfyy.StatHardwareVLimit all status voltage limit — correspondinglwrite-/ readable] VT_UI2
channel voltage limit = 1
canx.mtyy.StatHardwarelLimit all status current limit — correspondingwrite-/ readable| VT _UI2
channel current limit = 1
canx.mfyy.StatINHIBIT 7/ (all) status INHIBIT — corresponding INHIBITjwrite-/ readable] VT_UI2
=1
canx.mfyy.StatlTrip all status current trip — correspondinglwrite-/ readable] VT_UI2
channel current trip = 1
canx.mfyy.StatRegulationErr 0, 1, 2/ (all)jstatus regulation error — corres-pondingjwrite-/ readablel VT_UI2
channel error = 1
canx.mtyy.On all corresponding channel set on = 1 write-/ readablel VT_UI2
or setoff =0
canx.mtyy.VSetAllChannels all set voltage of all channels write-/ readable| VT R4
anx.mtyy.lSetAllChannels all set current of all channels write-/ readable] VT R4
anx.mtyy.ITripAllChannels 0-5, 8 / (all) |set current trip of all channels write-/ readable] VT R4
canx.mtyy.RampSpeed all speed of the voltage ramp in per-cent ofjwrite-/ readable| VT_R4
the nominal voltage of the channel per
second
canx.mtyy.IRampSpeed all speed of the current ramp in per-cent ofjwrite-/ readable| VT _R4
the nominal current of the channel pern
second (OPTION)
canx.mtyy.Emcy all emergency - corresponding channel setwrite-/ readable| VT _UI2
emergency = 1
reset emergency =0
canx.mfyy. ADCSmplsPScnd >20 ADC samples per second write-/ readable] VT Ul2
?{.mtvv.DigitalFilter >20 Digital filter write-/readable| VT UI2
anx.mtyy.DevicelD all device identifier readable  [VT_BSTR
canx.mtyy.SoftwarelD all software release readable VT _BSTR
canx.mtyy.BitRate all bit rate readable VT _UI2
canx.mtyy.Option >20/ (all) loptions readable |VT BSTR
canx.mtyy.OptionSingleSpec >20/ (all) joption single specification write-/ readablelVT BSTR
Eanx.th.ODtionSDec >20 / (all) Ispecification readable VT Ul1
Eanx.th.HardwarelLimit all hardware current limit readable VT R4
anx.mtyy.HardwareVLimit all hardware voltage limit readable VT R4
anx.mt ly24V all supply 24V readable VT R4
canx.mtyy.Supply5V all supply 5V readable VT R4
canx.mtyy.BoardTemp all board temperature readable VT R4
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fully qualified identifier device class | description access type
canx.mtyy.ErrThreshold all threshold of error evaluation | write-/ readable VT _R4
in percent of the nominal
voltage
canx.mfyy.ConfigRelFErr 0,1,2/(all) [configuration mask of relay| write-/ readable VT Ul
and regulation error
canx.mtyy.Polarity 5/ (all) electronical polarity switch write-/ readable VT U1
canx.mtyy.Alive all module is alive readable VT _BOOL
canx.mfyy.DeviceClass all device class readable VT U1
5215 Items to signal an alarm from the HV devices via Data Access
fully qualified identifier device class | description access type
canx.mtyy.Alarm all alarm status readable VT_BOOL
canx.mtyy.AlarmInformation all alarm information readable VT U1

The items “Alarm” and “Alarminformation” are implemented as event driven update inside of the
isegHVOPCServer. These two items are included ( on request of Cern ) in order to have an access to the fast
alarm messages of the modules. The better way is to use the faster “Alarm & Event” part of the
isegHVOPCServer. Since version 4.01 the items as there are “Alarm” and “Alarminformation” can be cleared by
reset of the corresponding status bit. If an error occurs the “alarm status” will become to a true value. The error
of the modules can be reset only by a reset of the reason of the error followed by writing a ‘7’ to the
corresponding status bit.

The item “Alarminformation” describes the kind of the alarm (see Hints to the item alarm information). The
server refreshes ,Alarm“ and ,AlarmInformation® if a new alarm is attempted but the client will register the new

alarm only if the DA-value has been changed.
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Notes to the item Status channel (EHQ)

device classes 0, 1, 2

DATA _1to DATA O bool array ui2
b15 | b14 | b13 | b12 | b11 | b10 | b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
v [ k e r o p X X X X X X X s t
device class 6
DATA_1to DATA O bool array ul2
b15 | b14 | b13 | b12 | b11 | b10 | b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
v C X e r o) p X X X X X X X X t
device class 7
DATA_1to DATA_O bool array ul2
b15 | b14 | b13 | b12 | b11 | b10 | b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
v C X e r 0 p X i X X X X X X t
t current trip =0 channel is ok
t=1 Vo shut of OV because software current trip has been exceeded
S  sum error = channel is ok
=1 detection of a sum error - consist of an OR between current and voltage
limit error in time slots of 1ms, which means that it exists an error in the
regulation of the channel, see to ("
X no information
I INHIBIT i=0 no INHIBIT channel is ok
i=1 detection of an INHIBIT if the HV is above the threshold to arm the
error detection
p  input-error p=0 no input-error
p=1 wrong message to control the module
o switch channel to 0=0 channel OFF
o=1 channel ON
r ramping r=0 voltage is stable
r=1 voltage ramps
e emergency cut-off e=0 channel works
e=1 cut-off Vo shut off to OV without ramp
k  Kill function k=0 disable (see hardware current limit and software current trip)
k=1 enable (see hardware current limit and software current trip)
c current limit error c=0 channel is ok
c=1 Vo shut off OV because hardware current limit has been exceeded
v voltage limit error v=0 channel is ok
v=1

Vo shut of permanently because voltage limit has been exceeded

For detection of a current or voltage limit error flag the firmware must evaluate the channel voltage at first.
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5.21.7 Notes to the item Channel status (EHS)
canx.mtyy.chzz.Status channel status readable VT_UI2
Bit15 Bit14 Bit13 | Bit12 | Bit11 Bit10 Bit9 |Bit8| Bit7 | Bit6 Bit5 Bit4 Bit3 | Bit2 | Bit1 | Bit0
isVLIM | isCLIM | isTRP |isEINH|isVBND | isCBND res |res|isCV | isCC |iSEMCY |isRAMP | isON | IERR | res | res
isVLIM IsVoltageLimitExceeded voltage limit set by Vimax is exceeded
isCLIM IsCurrentLimitExceeded current limit set by Inax is exceeded
isTRP IsTripExceeded Trip is set when Voltage or Current limit or Iset has been exceeded (when KillEnable=1)
iSEINH IsExtInhibit External Inhibit
isVBND IsVoltageBoundsExceeded | Voltage out of bounds
isCBND [ IsCurrentBoundsExceeded [ Current out of bounds
isCV IsControlledVoltage Voltage control active
isCC IsControlledCurrent Current control active
isSEMCY | IsEmergencyOff Emergency off without ramp
isON IsOn On
isRAMP IsRamping Ramp is running
IERR InputError Input error
res Reserved
isVLIM=0  channel is ok isCBND=0 channel is ok
isVLIM=1  the hardware voltage limit is exceeded isSCBND=1 |Imeas-Iset| > Ibounds (to detect a voltage or
isCLIM=0  channel is ok current out of bound
isCLIM=1  the hardware current limit is exceeded flag the firmware has
(to detect a hardware voltage or current limit error flag the to ramp the channel
firmware has to evaluate the channel voltage and current voltage Vset at first)
at first) isCV=1 channel is in state of voltage control
isTRP=0 channel is ok isCC=1 channel is in state of current control
isTRP=1 Vo is shut off to OV without ramp because the iSEMCY=1  channel is in state of emergency off, VO has
channel has been tripped. been shut off to 0V without ramp
isSEINH=0  channel is ok isON=0 channel is off
iSEINH=1 External Inhibit was scanned isON=1 channel voltage follows the Vset value
isVBND=0 channel is ok iSRAMP=0 no voltage is in change
isVBND=1 |Vmeas-Vset| > Vbounds isSRAMP=1 voltage is in change with the stored ramp speed
value
IERR=0 no input-error
IERR=1 incorrect message to control the module
5.2.1.8 Notes to the items of the Channel control (EHS)
setOn Set on channel
setEemergencyY Set Emergency
doClear Do clear events (EHS) or

errors signals (EHQ) of the
channel.

setEmergency = 0
setEmergency =1

setOn =0
setOn =1

reset Emergency

switch the channel to OFF
switch the channel to ON

set Emergency (cut-off Vo shut off to OV without ramp)

(When Vset has been set to a value unequal to zero (0V) before the status bit ‘isOn’ is changed from (1) one to (0) zero a ramp down of
the voltage to zero (0V) will be started.)

doClear=0
doClear=1

do nothing

reset the errors (EHQ), events (EHS) of the channels
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5.21.9 Notes to the item Channel event status (EHS)

canx.mtyy.chzz.EventStatus channel event status write-/ readable VT_UI2

Bit15 | Bit14 [ Bit13 Bit12 Bit11 Bit10 Bit9 | Bit8 | Bit7 | Bit6 Bit5 Bit4 Bit3 Bit2 | Bit1 [ Bit0
EVLIM [ ECLIM | ETRP | EEINH | EVBNDs | ECBNDs | res | res | ECV | ECC| EEMCY | EEOR |EONn20ff| EIER | res | res
EVLIM EventVoltageLimit Event: Hardware- voltage limit has been exceeded

ECLIM EventCurrentLimit Event: Hardware- current limit has been exceeded

ETRP EventTrip Eyent: Trif) is set when Voltage or Current limit or Iset has been exceeded (when

illEnable=1)

EEINH EventExtInhibit Event external Inhibit

EVBNDs EventVoltageBounds Event: Voltage out of bounds

ECBNDs EventCurrentBounds Event: Current out of bounds

ECV EventControlledVoltage Event: Voltage control

ECC EventControlledCurrent Event: Current control

EEMCY EventEmergencyOff Event: Emergency off

EEOR EventEndOfRamp Event: End of ramp

EOn20ff EventOnToOff Event: Change from state "On" to "Off"

EIER EventlnputError Event: Input Error

res Reserved

An event bit is permanently set if the status bit is 1 or is changing to 1. Different to the status bit an event bit isn't

automatically reset. A reset has to be done by the user by writing an 1 to this event bit.

5.2.1.10 Notes to the item Channel event mask (EHS)
canx.mtyy.chzz.EventMask channel event mask write-/ readable VT_UI2
Bitts | Bitt4 | Bu3 | B2 | Bttt | w0 | S| %[ w7 | Bits | 5| B4 | miz | sz | B |Bito
MEVLIM MECLIM | MECTRP | MEEINH | MEVBNDs | MECBNDs | res | res | MECV | MECC | res | MEEOR | MEONn20ff | MEIERR | res | res

MEVLIM MaskEventVoltageLimit EventMask: Hardware- voltage limit has been exceeded

MECLIM MaskEventCurrentLimit EventMask: Hardware- current limit has been exceeded

METRIP MaskEventTrip EventMask: Voltage limit or Current limit or Iset has been exceeded (when KillEnable=1)

MEEINH MaskEventExtInhibit EventMask: External Inhibit

MEVBNDs MaskEventVoltageBounds EventMask: Voltage out of bounds

MECBNDs MaskEventCurrentBounds EventMask: Current out of bounds

MECV MaskEventControlledVoltage | EventMask: Voltage control

MECC MaskEventControlledCurrent | EventMask: Current control

MEEMCY MaskEventEmergencyOff EventMask: Emergency off

MEEOR MaskEventEndOfRamp EventMask: End of ramp

MEON20ff MaskEventOnToOff EventMask: Change from state on to off

MEIER MaskEventinputError EventMask: Input Error

res Reserved
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5.2.1.11 Notes to the item Module status (EHS)
canx.mtyy.Status module status readable VT _UlI2
Bit15 | Bit14 | Bit13 | Bit12 Bit11 Bit10 Bit9 Bit8  [Bit7[Bit6]  Bit5 | Bit4 |Bit3[Bit2 | Bit1 | Bit0

isKILenalisTMPgd

isSPLYgd|isMODgd[isEVNTact| isSFLPgd [isnoRAMP[isnoSERR] res]| res fisHWVLIMgd|isSrvc] res | res | res | isAdj

IsKILena IsKillEnable Module state of kill enable
isTMPgd IsTemperatureGood Module temperature good
isSPLYgd IsSupplyGood Power supply good
isMODgd IsModuleGood Module in state good
isEVNTact [ IsEventActive Any event is active and mask is set
isSFLPgd IsSafetyLoopGood Safety loop closed
isnoRAMP IsNoRamp All channels stable, no ramp active .
isnoSERR IsNoSumError Module without failure
isHwVLIMgd [ IsHardwareVoltageLimitGood | Hardware voltage limit in proper range, only for HV distributor modules with current mirror;
IsSrvc IsService Hardware failure detected (consult iseg Spezialelektronik GmbH)
isADJ IsFineAdjustment Mode of the fine adjustment
res Reserved
isKILLena=0 Module in state kill disable
isKILLena=1 Module in state kill enable
isTMPgd=0 if module temperature is higher than 55°C then all channel are switched off permanently
isTMPgd=1 module temperature is within working range
isSPLYgd=0 supply voltages are out of range (range of 24V +/-10% and of 5V +/-5%)
isSPLYgd=1 supply voltages are within range
isMODgd=0 module is not good, that means (isnoSERR AND (ETMPngd OR ESPLYngd OR ESFLPngd))==0
isMODgd=1 module is good, that means (isnoSERR AND NOT(ETMPngd OR ESPLYngd OR ESFLPngd))==
(see module event status also)
isEVNTact=0 no Event is active
isEVNTact=1 any Event is active
isSFLPgd=0 safety loop is broken -V, bas been shut off,
isSFLPgd=1 safety loop is closed
isnoRAMP=0 Vo is ramping in at least one channel
isnoRAMP=1 no channel is ramping
isnoOSERR=0 voltage limit, current limit, trip, voltage bound or current bound has been exceeded in at least one of the channels or
external INHIBIT O error, reset by reset of the corresponding flag of the ‘Channel Status’
isnoSERR=1 evaluation of the ‘Channel Status’ over all channels to a sum error flag
O VLIM&CLIM&CTRP&EINH&VBND&CBND=0 O no errors
isHwWVLIMgd=0 hardware voltage limit not in proper range
isHwWVLIMgd=1 hardware voltage limit in proper range
isADJ=0 Fine adjustment is off.
isADJ=0 Fine adjustment is on (default)
5.2.1.12 Notes to the items of the Module control (EHS)
setAdjust Set adjust Switch ON of fine adjustment
setKillEnable Set kill enable Kill function
doClear Clear events (EHS) and errors (EHQ) Clear event (EHS) or error signals (EHQ) in the channels and the module

setAdjust =0
setAdjust = 1

setKillEnable = 0
setKillEnable = 1

fine adjustment OFF
fine adjustment ON

kill function disable
kill function enable

doClear=0 do nothing

doClear=1 reset the errors (EHQ), events (EHS) of the channels
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5.2.1.13 Notes to the item Module event status (EHS)

canx.mtyy.EventStatus module event status write-/ readable VT_UI2
Bit15| Bit14 Bit13 Bit12 | Bit11 Bit10 Bit9 | Bit8 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 Bit1 Bit0
res |[ETMPngd| ESPLYngd | res res | ESFLPngd | res res res res res res res res res res
ETMPngd EventTemperatureNotGood Event: Temperature is above 55°C
ESPLYngd | EventSupplyNotGood Event: at least one of the supplies is not good
ESFLPngd [ EventSafetyLoopNotGood Event: Safety loop is open
res Reserved

5.21.14 Notes to the item Module event mask (EHS)

canx.mtyy.EventMask module event mask write-/ readable VT_UI2
Bit15 Bit14 Bit13 Bit12]| Bit11 Bit10 Bitd [ Bit8 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 Bit0
res IMETMPngd| MESPLYngd [ res | res |MESFLPngd| res res res res res res res res res res
METMPngd | MaskEventTemperatureNotGood | MEventMask: Temperature is above 55°C

MESPLYngd | MaskEventSupplyNotGood MEventMask: at least one of the supplies is not good

MESFLPngd | MaskEventSafetyLoopNotGood MEventMask: Safety loop (SL) is open

res Reserved

5.21.15 Notes to the item Event channel status (EHS)

canx.mtyy.EventChannelStatus event channel status write-/ readable VT_UI2

Bit15 | Bit14 [ Bit13 Bit12 Bit11 Bit10 Bit9 | Bit8 | Bit7 | Bit6 Bit5 Bit4 Bit3 Bit2 | Bit1 [ Bit0
CH15 | CH14 | Ch13 CH12 CH11 CH10 | CH9 | CH8 [CH7 | CH6| CH5 CH4 CH3 CH2 | CH1 ] CHO

The n-th bit of the register is set, if an event is active in the n-th channel and the associated bit in the EventMask
register of the n-th channel is set too.

CHn = EventStatus[n] & EventMask[n]
Reset of a bit is done by writing a 1 to this bit.

5.2.1.16 Notes to the item Event channel mask (EHS)

canx.mtyy.EventChannelMask event channel mask write-/ readable VT_UI2

Bit15 | Bit14 | Bit13 | Bit12 [ Bit11 | Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

CH15 | CH14 | Ch13 | CH12 | CH11 | CH10 | CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CHO

This register decides whether a pending event leads to the sum event flag of the module or not. If the n-th bit of
the mask is set and the n-th channel has an active event in the EventChannelStatus the bit isEventActive in the
ModuleStatus register is set
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5.21.17 Notes to the item General status (EHQ)

canx.mtyy.GeneralStat general status readable VT U1
b7 b6 b5 b4 b3 b2 b1 b0
save killena/ hwVLimNoExceed vsply | avad stbl | sloop |nramp| sum
sum sum error flag sum =0 voltage limit, current limit or trip were exceeded in the module
sum =1 status channel flags v & ¢ & t = O for all channels
nramp  no ramp flag nramp =0 Vo is ramping at least one channel
nramp = 1 no channel is ramping
sloop safety loop flag sloop =0 safety loop is broken -Vo has been shut off, clear this bit by

reading the general status information
sloop =1 safety loop is closed
stbl stable stbl =0 all channels are stable with programmable ADC filter frequency fy
(ADC conversion time =1/ fy see ‘ADC filter frequency setting’,
default fy = 50 Hz)

stbl =1 at least one channel is ramping Vo or not yet stable after ramping
(with ADC filter frequency fy = 100 Hz)
avad average adjust avad=0 fine adjustment OFF for device classes 0, 6 and 7

average of voltage and current measurement OFF for device
classes 1,2 and 7

avad=1 fine adjustment ON for device classes 0, 6 and 7
average of voltage and current measurement ON for device

classes 1,2and 7

vsply supply voltages  vsply=0 supply voltages or module temperature are out of range
vsply=1 supply voltages and module temperature are in range

kilena  Kkill enable killena=0 kill function disable, only at modules of device class 6 and 7
killena=1 kill function enable only at modules of device class 6 and 7

hwVLimNoExceed =0 hardware voltage limit to “Low”, only at modules of device class 0
=1 hardware voltage limit in a proper range, only at modules of

device class 0
save save set values save=0 no write access to EEPROM

save=1 store all set values to EEPROM (time to save ca. 10s)

sn. serial numbers
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5.2.1.18 Notes to the items VsetAllChannels, ITripAllChannels and ISetAllChannels

All items are readable since isegHVOPCServer release 4.10. The item VsetAllChannels, ITripAllChannels and
IsetAllChannels has been implemented for a fast possibility to set all channel items of the same kind such as
VSet on a value. The read access of the OPC items VsetAllChannels, ITripAllChannels and IsetAllChannels
deliver only the value from cache of the OPC server, which has been written as last. The really value of the
channel items can be differ for instance in case of a mix module or a hardware limit and others but the channel
items VSet, ITrip and ISet contain always the proper values.

5.2.1.19 Notes to the item Configuration of the relay and regulation error
canx.mtyy.ConfigRelFErr configuration of relay and regulation error write-/readable VT U1
b7 b6 b5 b4 b3 b2 b1 b0
X dcRACRO | dcRACSO | dcRRErr dcRSLp dcRTErr dcRVErr dcRIErr
dcRIErr 1 discharge if the hardware current limit was exceeded for at least one channel
0 no discharging with help of the relay
dcRVErr 1 discharge if the hardware voltage limit was exceeded for at least one channel
0 no discharging with help of the relay
dcRTErr 1 discharge if the software current trip was exceeded for at least one channel
0 no discharging with help of the relay
dcRSLp 1 discharge if the safety loop has been disconnected, the output voltages are shut off
without ramp
0 no discharging with help of the relay
(If the safety loop has been disconnected, the set voltages are shut off with the actual
ramp speed.)
dcRRErr 1 discharge if the regulation was out of order for at least one channel (reaction >= 1ms)
0 no discharging with help of the relay
dcRACSO 1 discharge if all channels set to “OFF”(Group access module “Channel ON/OFF” or
“‘Emergency cut-off”) - is working only if the dcRACRO bit has been set also
0 no discharging with help of the relay
(ramp down the set voltages with the actual ramp speed)
dcRACRO 1 discharge if all channels set to “OFF” (Group access module “Channel ON/OFF” and

the end of ramping has been reached or “Emergency cut-off”)
0 no discharging with help of the relay
(when the set voltages of all channels are set to “OFF”)

Under the setting of one of these conditions and the corresponding error occurs following will happen:
shut off the HV without ramp in all channels and the set voltage in all channels to 0V by

software.

close contact of discharge relay.

The relay contacts will discharge capacities connected to the output with help of an integrated load resistor (see
Appendix B Operators Manual - Multi-channel High Voltage Power Supply EHQ). This item configures the
conditions of how this does work.

Under the setting of one of these conditions and the corresponding error occurs following will happen:

- shut off the HV without ramp in all channels and the set voltage in all channels to OV by software.
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- close contact of discharge relay.

5.2.1.20

Notes to GroupNumber and GroupVariable (EHS)

With mean of the item GroupNumber is it possible to access to one of the 32 variable group functions.

Each variable group definition will set via the item GroupVariable. The item GroupVariable consists out of 2
words each of 16 bits. In variable groups one word carries the information about the members of the group or
gives an overview about a selected situation in all channels, the other word carries the information about type

and characteristics of the goup.

Set group:

Set groups will be used in order to set channels to a same value, which happen to carry the identical channel
value. Therefore within the group following will be defined:

- Member of the group:

- Type of the group:

- Channel characteristics:
- Control mode:

- Master channel:

Each member will be activated in the channel setting list ChSetLst
Set group type TypeSet
Coding of characteristics, which have to be set commonly

Divides between a one-time setting of the slave channel property and a
permanently copying of the Master channel’s property to the slave channels

Number of the channel, which characteristics will be transferred to the other
channels. Is just necessary for Set groups which set a value.
If functions have to be initialized e.g. start of ramp then there is no Master

channel
ChSetLst ChannelSettingList Ul2
[ Bit31 [ Bit30 [ Bit29 [ Bit28 [ Bite7 | Bit26 | Bite5 | Bit24 | Bite23 | Bit22 [ Bit21 | Bit20 | Bit!9 | Bit18 | Bit17 | Bitl6 |
| cH15 | cH14 [ cH13 | cH12 [ cH11 [ cH10 | cH9 [ cH8 | cH7 | cHe | cHs | cH4 | cH3 [ cH2 | cH1 [ cHo |
TypeSet DATA 0 to DATA 1 TypeSet Ul2
[ Bit15 | Bit1t4 [ Bit13 [ Bit12 [ Bitt1 | Bitto | Bit9 [ Bits | Bitz [ Bite | Bits | Bit4a | Bit3 [ Bit2 [ Bitt [ Bit0 |
| TYPE1 [ TYPEO | res | res | res | res | res | mMoDo | SET3 | SET2 [ SET1 | SETO [ MCH3 [ MCH2 | MCH1 [ MCHo |
[ TYPE1 [ TYPEO pvalue | |
| 0o [ 0o IsetGroupType [Group is defined as Set group |
MODO Value
0 0 [The group function is done one time
1 1 [The group function is done permanently
SET3 SET2 SET1 SETO Value
0 0 0 1 SetVset ICopy Vset from MCH _to all members
0 0 1 0 Setlset ICopy Iset from MCH to all members
0 1 0 0 SetVbnds ICopy Vbounds from MCH to all members
0 1 0 1 Setlbnds ICopy Ibounds from MCH to all members
1 0 1 0 SetOn ISwitch ON/OFF _all members depending on setON in MCH
1 0 1 1 SetEmrgCutOff ISwitch OFF all members ( Emergeny OFF )
1 1 1 1 Cloning Set all properties of members like MCH properties (in preparation)
MCH3 MCH2 MCH1 MCHO Value
0 0 0 0 0 [1: Channel 0 is MasterChannel MCH
0 0 0 1 1 1: Channel 1is MasterChannel MCH
1 1 1 1 15 [1: Channel 15 ist MasterChannel MCH
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Status group:
Status groups are used to report the status of a single characteristic of all channels simultaneously. No action is
foreseen. Therefore within the group following has to be defined :

Members of the group: Each member will be activated in the channel status list ChStatLst.

Type of the group: Status group type TypeStat

Channel characteristics:Coding of characteristics , which is to be reported.

ChStatLst ChannelStatusList uUl2
Bit31 | Bit30 | Bit29 | Bit28 | Bit27 | Bit26 | Bit25 | Bit24 | Bit23 | Bit22 | Bit21 | Bit20 | Bit19 | Bit18 | Bitl7 | Bit16 |

| cH15 | cH14 [ cH13 | cH12 [ cH11 [ cH10 | cH9 [ cH8 | cH7 | cHe | cHs | cH4 | cH3 [ cH2 | cH1 [ CHo |

TypeStat DATA 0 to DATA 1 TypeStatus Ul2

[ Bitt5 | Bit14 [ Bit13 [ Bit12 [ Bitt11 [ Bit1o | Bit9 [ Bite | Bitz | Bit6e | Bit5 | Bit4 | Bit3 [ Bitz2 [ Bit1 [ Bit0 |

| TYPE1 [ TYPEO | res | res | res [ res | res | res | STAT3 | STAT2 | STAT1 [ STATO| res | res | res | res

I TYPE1 | TYPEO }Value | |

0 | 1 IstatusGroupType [Group will be defined as Status group |
STAT3 | STAT2 | STAT1 STATO |Value
0 0 1 1 IChklsOn check channel Status.isON (is on)
0 1 0 0 IChklsRamping check channel Status.isRAMP (is ramping)
0 1 1 0 IChklIsControlledCurrent check channel Status.isCC (is current control)
0 1 1 1 IChkIsControlledVoltage check channel Status.isCV (is voltage control)
1 0 1 0 IChklsCurrentBounds check channel Status.isCBNDs (is current bounds)
1 0 1 1 IChklsVoltageBounds check channel Status.isVBNDs (is voltage bounds)
1 1 0 0 ChklsExternallnhibit check channel Status.isEINH (is external inhibit)
1 1 0 1 IChklIsTrip check channel Status.isTRIP(is trip)
1 1 1 0 IChklIsCurrentLimit check channel Status.isCLIM (is current limit exceeded)
1 1 1 1 IChklIsVoltageLimit check channel Status.isVLIM (is voltage limit exceeded)

Monitoring group:
Monitoring groups are used to observe a single characteristic of selected channels simultaneously and in case of
need take action. Therefore the group has to be defined :

Members of the group: Each member will be activated in the channel monitoring list ChMonLst.
Type of the group: Monitoring group type TypeMon
Channel characteristics:Coding of characteristics , which is to be monitored.
Control mode: Coding of the control function, i.e. which kind of change in the group-image shall
cause a signal.
Activity: Define , which activity has to happen after the event.
ChMonLst ChannelMonitoringList Ul2
[ Bit31 [ Bit30 | Bit29 | Bit28 | Bit27 | Bit26 | Bit25 | Bit24 | Bit23 | Bit22 | Bite1 | Bit20 | Bit19 | Bitd18 | Bit17 | Bit16 |
| cH15 | cH14 [ cH13 | cH12 [ cH11 [ cH10 | cH9 [ cH8 | cH7 | cHe | cHs | cH4 | cH3 | cH2 | CH1 [ CHo
TypeMon DATA 0 to DATA 1 TypeMonitoring Ul2
[ Bit15 [ Bit14 [ Bit13 [ Bit12 [ Bitt1 | Bitto | Bit9 [ Bit8 | Bitz | Bite | Bits | Bit4 | Bit3 [ Btz | Bit1 [ Bito |
| TyPE1 [ TYPEO | ACT1 | ACTO [ res | res | res | mMoDO | MON3 | MON2 | MON1 | MONO | res [ res | res [ res |
[ TYPE1 | TYPEO | Value | |
1 |0 | MonitoringGroupType | Group will be defined as Monitoring group |
ACT1 ACTO Value
0 0 0 No special action ; EventGroupStatus[grp] will be set
0 1 1 Ramp down of group EventGroupStatus[grp] will be set
1 0 2 Switch OFF of group without ramp; EventGroupStatus[grp] will be set
1 1 3 Switch OFF of module without ramp; EventGroupStatus[grp] will be set
MODO Value
0 0 event will happen if at least one Channel == 0
1 1 event will happen if at least one Channel == 1
MON3 MON2 MON1 MONO Value
0 0 1 1 MonitorlsOn monitor channel Status.isON (is on)
0 1 0 0 MonitorlsRamping monitor channel Status.isRAMP (is ramping)
0 1 1 0 MonitorlsControlledCurrent monitor channel Status.isCC (is current control)
0 1 1 1 MonitorlsControlledVoltage monitor channel Status.isCV (is voltage control)
1 0 1 0 MonitorlsCurrentBounds monitor channel Status.isCBNDs (is current bounds)
1 0 1 1 MonitorlsVoltageBounds monitor channel Status.isVBNDs (is voltage bounds)
1 1 0 0 MonitorlsExternallnhibit monitor channel Status.isEINH (is external inhibit)
1 1 0 1 MonitorlsTrip monitor channel Status.isTRIP (is trip)
1 1 1 0 MonitorlsCurrentLimit monitor channel Status.isCLIM (is current limit exceeded)
1 1 1 1 MonitorlsVoltageLimit monitor channel Status.isVLIM (is voltage limit exceeded)
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Delayed Trip group:
Trip timeout groups are necessary to keep the timing for the time controlled delayed Trip function and to define

the action which has to happen after a Trip.

Therefore in the group following will be defined:
- Members of group: Each member will be activated in a word channel trip timeout list ChTrpTotLst.
Type of the group:  Time out group type TypeTime
Activity: Define , which activity has to happen after time controlled Trip
- Timeout: Coding of Timeout-time as 12 Bit Integer.

Timeout groups have to stay unchanged for the whole time as long they are used.
An overwriting will cause the definition of a new group. An overlay of the channels of multiple Trip groups is not
allowed.

ChTrpTotLst ChannelTripTimoutList U2
[ Bit31 [ Bit3do [ Bit2o [ Bite28 | Bit2z [ Bit26é | Bite5 [ Bit24 [ Bite3 [ Bit22 [ Bit21 [ Bit20 [ Bit19 [ Bit18 [ Bit17 | Bit16 |
[ CH15 | CH14 [ CH13 | CH12 | CH11 | CH10 | CH9 | CH8 [ CH7 | CH6 | CH5 [ CH4 | CH3 | CH2 | CH1 | CHO |
TypeTime DATA_0 to DATA_1 TypeTimeOut uUl2
[ Bit15 [ Bitt4 [ Bit13 [ Bit12 | Bitt11 [ Bit1lo | Bit9 [ Bit8 | Bitz | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |

| TYPE1 [ TYPEO | ACT1 [ Acto [ TOT11 | TOT10 | TOT9 [ TOT8 [ TOT7 | TOT6 [ TOT5 | TOT4 | TOT3 [ TOT2 | TOT1 [ TOTO |

[ TYPE1 [ TYPEO | Value | |
1 [ 1 | TimeOutGroupType | Group will be defined as Timeout group ]
ACT1 ACTO Action
0 0 0 No special action; EventGroupStatus[grp] will be set.
0 1 1 Ramp down of group with ramp; EventGroupStatus[grp] will be set
1 0 2 Switch OFF the group without ramp; EventGroupStatus[grp] will be set
1 1 3 Switch OFF the module without ramp; EventGroupStatus[grp] will be set
[ ToT[11..0}: | Binary coded Timeout-time in ms (8..4088ms) resolution is 8ms |
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Alarm information

alarm status readable VT_UN

b7 b6

b5 b4 b3 b2 b1 b0

HWV it 0 1ow / INHIBIT | Mremp

VSupI SLoop VLimi't CLimit RError CTrip

Criip current trip

Rer regulation error
Climit current limit

Vimit voltage limit

Stoop safety loop

Viupi voltage supplies
Mremp module temperature

HWV Limit_10_1ow (device class 0 only)

INHIBIT (device class 7 only)

5.2.1.22 Notes to the item

Ctip = 0 O no channel has tripped

Cwip =1 0O software current trip at least one of the channels

Reror = 0 0 no channel has a regulation error (see channel status)

Reror = 1 0 at least one of the channels has detected a regulation error

Cumit = 0 O no channel has exceeded the hardware current limit

Cumit =1 0O at least one of the channels has exceeded the current limit

Vimit = 0 0 no channel has exceeded the voltage limit

Viume= 1 0 at least one of the channels has exceeded the voltage limit

Sieop = 0 O safety loop is closed

Sieop = 1 O safety loop is broken

Vs = 0 O supply voltages are in range

Vs =1 0O supply voltages are out of range

Mremp = 0 O module temperature <= 60°C, no action

Mremp = 1 0 module temperature > 60°C, HV has been switched off

HWVLimit10o_ow = 0 O hardware voltage limit in range

HWViimit 0 1ow = 1 O hardware voltage limit to low - it is not possible to
switch on any channel

INHIBIT =0 O no channel has detected an INHIBIT
INHIBIT =1 O at least one of the channels has detected an INHIBIT

Option (EHS)

canx.mtyy.Option option readable VT _BSTR

Option Description Specification

“EDCP” Enhanced Device Control Protocol no

“HVBM” HV boards per (CAN nodes) module no

“CLIM” hardware current limit no

“VLIM” hardware voltage limit no

"INHB” external INHIBIT signals no

“‘RELY” discharge relay no

“FRMP” fast ramp yes (1 - 25% of Nominal V,
2 - 50% of Nominal V,
3 - 75% of Nominal V)

“NIPL” not implemented

5.2.1.23 Notes to OptionSingleSpec (EHS)

In order to request the specification of one option item OptionSpec the corresponding option string have to be
written to the item OptionSingleSpec.

iseg Spezialelektronik GmbH
Bautzner Landstr 23
D - 01454 Radeberg / Rossendorf

Email: sales@iseg-hv.de Phone ++ 49 (0)351/26 996 - 0
http://www.iseg-hv.com Fax ++ 49 (0)351 / 26 996 - 21
Germany

25



—\iseg

Spezialelektronik GmbH

5.2.1.24

GroupDevicelD
GroupSoftwarelD

GroupStatHardwarelLimit

GroupStatHardwareVLimit

GroupStatITrip

GroupStatRegulationErr

GroupGeneralSumError

GroupGeneralStable

GroupGeneralSafetyLoop

GroupGeneralFineAdjust

GroupGeneralHwVLimitLow
GroupBitRate
GroupErrThreshold
GroupConfigRelFErr

GroupAlarm

GroupAlive

If an error occurs it will be signalled by the item alarm status in connection with the check of the sum error flag

from the item GeneralStat (GeneralStatSumError). These items will catch the errors by read and they will cancel

Items for public groups defined by the OPC server:

list of all device identifiers

list of all software identifiers

list of all status current limits

list of all status voltage limits

list of all status current trips

list of all status regulation errors

list of all sum errors

list of all stable status

list of all safety loop status

list of all fine adjustment flags

list of all HW voltage limit tow low flags
list of bit rates that are stored in modules
list error thresholds

list of bit mask for relay configurations
list of all alarm status information

list of all alive information

the errors by write with the corresponding channel flag is set to “1”.

readable

readable

readable
readable
readable
readable

readable
readable
readable
readable
readable
readable
readable
readable
readable

readable

VT_BSTR
VT _BSTR

VT_UI2
VT_UI2
VT _UI2
VT _UI2

VT_BOOL
VT _BOOL
VT _BOOL
VT_BOOL
VT_BOOL
VT _UI2

VT _UI2

VT_UI2

VT_BOOL
VT_BOOL
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ORC alarm events under Data Rccess via EHP3216Srv
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(1) A current trip happens and will generate one CAN alarm message with higher priority as the normal
messages of the data transfer.
(2) The isegHVOPCServer sets the item Alarm to TRUE and gives a note of the kind of the alarm by the

item “Alarminformation” (both were build as a reported item in the name space).
(3,4, 5,6) The Client has to read which channel has tripped and is able to cancel the error flag by a write of the

item “StatlTrip” with the corresponding channel flag is set to “1”.

(7) Not necessary up to version 4.0.
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522 Alarms and Events server

The OPC server offers the “Alarms & Events” feature built into the same executable in order to let the OPC client

act quickly on a single event or an alarm.

The following alarms and events have been defined:

5.2.21 Simple events
canx.ErrorSafetyLoop error status of safety loop readable
canx.ErrorSupply error status of supply voltages readable
canx.ErrorSumError error status of general sum status readable
5222 Tracking events
Computer.KeyboardPressed access to local keyboard on server readable
Computer.MouseActivity access to local mouse on server readable
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6 OPC server part for iseg system crate ECHx38

The OPC server has been developed using the following tools:
Softing OPC Toolkit, Ver. 4.0 DA3.0
Microsoft Visual C++, Ver. 6.01
PEAK System CAN device driver

The executable is included in isegHVOPCServer.exe also as OPC “Data Access” server and “Alarm and Event”

server.

6.1  Configuration

The OPC server has to be configured at the beginning. It must get all information about the kind of iseg HV
hardware connected to the CAN bus. This information is stored into the configuration file. The tool
isegHVOPCcfg.exe is used to create this configuration file. It performs a scan on the CAN bus and collects
information from the connected CAN nodes (modules and crates). Also it supports the graphical access to the
initialising file isegHVOPCServer.ini.

For further details see the configuration manual isegHVOPCSetup.pdf.

6.2 Data Access Server and Alarm and Event Server

6.2.1 Data Access Server

The OPC (DA) server is made to work with more than one crate. Therefore each property of the iseg system

crate has to be addressed in a geographical way to build a fully qualified item ID that means:
CANBUS.CRATE.ITEMNAME

The properties in the OPC server are defined as items. In the simplest case, such an item is directly coupled to a
read or write via CAN bus. The “On” is an example. The OPC “Data Access” method is working via request

queues.
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6.2.1.1 Iltems of the releases from the server components
6.2.1.2 Items of Data Access
Syntax: x € [0..15] number of the CAN bus
yy € [0..63] number of the CAN node
canx.crateyy.Supply24V crate power 24V readable VT _R4
canx.crateyy.Supply5V crate power 5V readable VT _R4
canx.crateyy.Battery battery voltage for the UPS ca. 24V readable VT_R4
canx.crateyy. TempBackPlane temperature on the back plane readable VT_R4
canx.crateyy.TempPowerSupply temperature on the DC/DC converter readable VT _R4
canx.crateyy.FanStageBackPlane  stage on the back plane fan unit readable VT_UI1
canx.crateyy.FanStagePowerSupply stage on the crate power supply fan unit  readable VT_UN
canx.crateyy.Status crate power status write-/readable VT _UI1
canx.crateyy.StatusACLinePower  status of the AC line power write-/readable VT_BOOL
canx.crateyy.On status of the power write-/readable VT _BOOL
canx.crateyy.DevicelD device identifier readable VT_BSTR
canx.crateyy.SoftwarelD software release readable VT_BSTR
canx.crateyy.BitRate bit rate readable VT_UI2
canx.crateyy.Alive crate is alive readable VT_BOOL
canx.crateyy.AlarmFlag alarm status readable VT _BOOL
canx.crateyy.Alarminformation alarm information readable VT _BSTR
When the AlarmFlag goes true the item value of Alarminformation will get one of the following strings: “EMCY supply 24V”
“EMCY supply 5V”
“EMCY battery 24V”

“Temperature PS”

“Temperature BP”

“AC line power”
If there are more than one alarm sources the item value will display the latest received alarm. With help of the status items it will
display all received alarms. It has to reset an alarm by write a one to the corresponding status bit of the Status item or a true to the
StatusACLinePower item.

canx.crateyy.AlarmValue alarm value readable VT _R4
alarm information — “EMCY supply 24V”  measurement supply 24V
alarm information — “EMCY supply 5V” measurement supply 5V
alarm information — “EMCY battery 24V”  measurement 24V battery voltage
alarm information — “Temperature PS” measurement Temperature PS
alarm information — “Temperature BP” measurement Temperature BP
alarm information — “AC line power” nothing - 0

The items “AlarmFlag”, “Alarminformation” and “AlarmValue” are implemented as event driven update inside of
the isegHVOPCServer. The “AlarmFlag” will become a true if an error occurs. The “AlarmValue” is the
corresponding measurement to the “Alarminformation” item. The “Alarminformation” describes the kind of the
alarm (see Hints to the item Alarminformation). The alarm will be generated with help of EMCY ID (see manual
ECH-CANwithUPS_eng.pdf). The crate will repeat the alarm trigger until the error will go away. These items
are included ( on request of Cern ) in order to have an access to the fast alarm messages of the crates. The
better way is to use the faster “Alarm & Event” part of the isegHVOPCServer. Since version 4.01 the items as
there are “AlarmFlag”, “AlarmInformation” and “AlarmValue” can be cleared by reset of the corresponding status
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bit. The error of the crate can be reset only by a reset of the reason of the error followed by writing a ‘7’ to the
corresponding status bit.
The “Alarm Flag”, “AlarmInformation” and “AlarmValue” will refreshed by the server if a new alarm is attempted

but the client will register the new alarm only if the DA-value has been changed.

6.2.1.3 Crate power status

Capture status if voltages were out of range.

b7 b6 b5 b4 b3 b2 b1 b0
temperature to high +24V to high [ +24V to low | +5V to high [ +5V to low |24V battery to high| 24V battery to low
6.2.2 Alarm and Events Server

The OPC server offers the ‘Alarms & Events’ feature built into the same executable in order to let the OPC client

act quickly on a single event or an alarm.

The following alarms and events have been defined:

Simple events:

canx.ErrorSupply24V error of supply 24V readable
canx.ErrorSupply5V error of supply 5V readable
canx.ErrorBattery24V error of battery 24V (possible only if the crate power is off)  readable
canx.ErrorTemperaturePS error of temperature senor on power supply 24V-DC-PS readable
canx.ErrorTemperatureBP error of temperature sensor on pack plane readable
canx.ErrorACline_power error of AC line power readable

Tracking events:

Computer.KeyboardPressed access to local keyboard on server readable
Computer.MouseActivity access to local mouse on server readable
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Appendix A

Following items will refreshed via the background cycle:

canx.mtyy.GeneralStat
canx.mtyy.Status
canx.mtyy.EventStatus
canx.mtyy.EventMask
canx.mtyy.EventChannelStatus
canx.mtyy.EventChannelMask
canx.mtyy.RampSpeed
canx.mtyy.IRampSpeed
canx.mtyy.On
canx.mtyy.Emcy
canx.mtyy.StatHardwareVLimit
canx.mtyy.StatHardwarelLimit
canx.mtyy.StatlTrip
canx.mtyy.StatINHIBIT
canx.mtyy.StatRegulationErr
canx.mtyy.HardwareVLimit
canx.mtyy HardwarelLimit
canx.mtyy.Supply24V
canx.mtyy.Supply5V
canx.mtyy.BoardTemp
canx.mtyy.ErrThreshold
canx.mtyy.ConfigRelFErr

canx.mtyy.chzz.Vset
canx.mtyy.chzz.VMeas
canx.mtyy.chzz.lset
canx.mtyy.chzz.Itrip
canx.mtyy.chzz.IMeas
canx.mtyy.chzz.Stat
canx.mtyy.chzz.Status
canx.mtyy.chzz.EventStatus
canx.mtyy.chzz.EventMask

canx.crateyy.Supply24V
canx.crateyy.Supply5V
canx.crateyy.Battery
canx.crateyy.TempBackPlane
canx.crateyy.TempPowerSupply
canx.crateyy.FanStageBackPlane
canx.crateyy.FanStagePowerSupply
canx.crateyy.On
canx.crateyy.Status
canx.crateyy.StatusACLinePower
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Calibration of iseg Multi-Channel HV systems

1 Hardware equipment of the calibration unit

- iseg system CALIBRATION CRATE (CAN-IF / RS232-IF)

- load unit for 16 channel HV modules (Inputs 1:1 / 1:400, GPIB IF)
- KETHLEY 2001 Multimeter

- Pentium PC (delivered Compagq Intel Pentium Il 1GHz)

- PEAK CAN PCI card

- National Instruments GPIB card

2 Software parts for the calibration unit

- OS WIN2000 SP2 or higher

- Calibration program CALEHQ

- OPC server for EHQ Multi-channel HV modules EHQ3216Srv

- Program SETOHM to test the calibration of modules to control the load unit separately

- Program to control the modules after the calibration

The last four programs will be installed during the set up of iseg OPC software package.
The set up of iseg OPC software package copies the database twice to disk in order to have a copy of the
factory database:

- “[INSTALLDIR\HVCAL\DB\EHQDB.MDB" — database to recalibration with the program EHQCAL

- “[INSTALLDIRNEHQDB.MDB" — database without ODBC connection

2.1  Program for re-calibration EHQCAL

2.1.1 General description

The program EHQCAL provides an easy to handle tool for calibration of iseg Multi-Channel EHQ HV devices.

2.1.2 The calibration procedure

The purpose of this calibration is, on the one hand to ensure a correct voltage setting, and on the other hand to

enable the device for precise measurements of the voltage and the current.
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The first point (‘DAC-calibration’) determines the transformation of voltages into an integer DAC-value. The
second (‘ADC-calibration’) is to determine a transformation from the values, measured by the ADC into physical

voltages and currents respectively. All transformations are linear and in general given by

DAC =U * N, —Opsc )
U =(ADC, —0,)*N, @
| =(ADC, —-0,)*N, —U *K, , 3)

where N, Opac: Ny, Oy, N,, O, and K, are the calibration values to be determined. U and | are

physical voltages and currents.
The calibration is performed in two separate steps:

1. DAC- / Voltage measurement calibration: For a set of DAC-values the corresponding voltages and
their ADC-values are measured. Since two constants are to be determined, two points would be the
minimum. By default three points are used and the best fit is calculated.

2. Current measurement calibration: In order to determine the three constants NI, Ol and Kl, at least
three independent measurements with two different resistors must be performed. Here by default at
three different voltages for each of both resistors the current and it's ADC-value are measured. Note,

that also the voltage must be measured. This is done using the results of the first calibration step.

2.2 Database EHQDB

All information of the calibration are stored to the database “ehqdb.mdb”.

First location is in directory “[INSTALLDIR]\hvcal\db\ehqdb.mdb” to which also the ODBC is linked.

The second copy of this is in directory “[INSTALLDIR\opc\ehqdb.mdb”.

The MS Access database EHQDB contains complete calibration and configuration data of all HV-devices.
The data is structured in 6 tables:

Device Data

Device Properties

Channel Data
Measurement Specification
Voltage Measurement Data
Current Measurement Data

ogkrwpnr

Device Data stores general specifications and properties that are applicable to every device type.
Examples are the number of channels, device type, nominal voltage and current. There is exactly one entry
per device. It is referenced by the ID number of the device.

Device Properties: specific properties, depending on the device type. For internal use only.
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Channel Data contains the calibration values and errors (relative deviations between the fit and measured
points). A complete set for one device implies one entry per channel. For each device there can be up to
two sets, a master set (generated by iseg) and a user set to store your calibration results.

Measurement Specifications stores the location of measurement points (voltages and resistors).

Voltage / Current Measurement Data: the raw data of a calibration (all measurement results during

calibration). Only the latest data will be stored, a new calibration overwrites the previous.

Caution: The database is not intended for any direct editing (outside EHQCAL)!

2.3 OPC Server EHQ3216Srv

Set up and registration see “isegOPCSetup.pdf”.

2.4 Program Setohm

Control of the load unit

2.5 Program isegHVM

See manual “isegHVM220_eng.pdf”

3 Preparations before the start of a calibration

3.1 How to connect the iseg-Multi-channel HV devices to the calibration equipment

The iseg system CALIBRATION CRATE was build to calibrate and heat up EHQ modules before calibration. All
slots can be equipped with EHQ modules during the calibration, but it is necessary that only one of the switches
above the modules shows up. The switch in the line of the calibrating board have to switched up all others

down. The correct set up of the switches must be done before power on.

3.2 How to start program CALEHQ

Start CALEHQ from folder START—Programs—HVCalib—CALEHQ.
Before a calibration procedure can be started, the name or ID of the operator must be entered. This is for

bookkeeping purposes and the name will be saved into the database together with the results of the calibration.
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4 Calibrating an iseg-Multi-channel HV module

4.1

Basic calibration

The dialog bar that appears below the pull-down menus summarizes the calibration procedure.

Step 1:

Step 2:

Preparation

Start Open Device from the dialog bar or via Database—Open Device. When delivered, the database
contains a master set of calibration data. If the device has been calibrated before, it will also contain a
user set. In this case an extra dialog will ask, which set to load.

Enter the 6 digit device ID

All information, necessary for calibration including current calibration data is loaded from the database
EHQDB

Button Hardware Setup or Setup—Hardware shows the measurement devices and the resistor that are
intended to use for calibration. If not done yet, please connect them with the PC interface and to the

resistor unit. Plug the voltmeter into the resistor socket with the shown ratio.

Calibration

Start Calibration from the dialog bar or via Device—Run Calibration.

First of all, the interfaces to all contributing devices (HV unit, resistor unit, measurement devices) will be
tested. If a test fails, an error message is shown. If this happens, please check that everything is
connected properly and try again.

Now the main calibration dialog appears:
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channel selection

wisualisation &

manual adjustment

A TTT T rrrrrr e

calibration status

Current measurement
calibration

ent S8 YW | e = N 5 P e

DAC and Voltage measurement calibration

Calibration Dialog

TREMimUm EMmor... | max A0C fuctuations |

~ UADAC ¥
O N N 2 A e

Specity MP |

>0 1| 25| ] 5[5 7] s]0]n]2] 5] 4] ] et

v update DAC-calibration pdate DAL |

mL
N I 2 N O N 2 O T R o B

Specify MP

T

Fun Calibration | Stop Channel | Stop | Finizh |

messages from the calibration thread

- Make your selection within the channels and calibration tasks.

- Run Calibration starts the calibration thread in the background.
- To stop the thread before finishing, press Stop or Stop channel. Stop will interrupt the calibration

immediately (although this may take a few seconds), while Stop channel finish’s the currently calibrated

channel first. The thread can be stopped and restarted any time.

- For the status the following abbreviations are used:

cal
OK

currently calibrating

successfully calibrated

calibrated, but with deviations larger than the maximum allowed error (see device

specification)

errserious error, calibration had to be stopped

- When all calibration is done, press Finish

Step 3:

- Button Data>>Database or Database —»Save updates the data base with the new measurement and

calibration results.

- Data>>Device or Device—»Cal Data->EEPROM writes the new calibration values into the device.
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4.2  Visualization and manual adjustment

The visualization dialogs are opened from the main calibration dialog via the channel buttons. A plot gives an
overview of the calibration. Manual changes of the calibration values are possible there. If such a dialog is
opened for a channel that was not calibrated yet, the data from database is displayed.

42.1 The visualization dialog for DAC / Voltage calibration

¥ - adjustment, channel 1 ilil

Scale: < I1EDLI — DAL
+ max. error M <<|<I':'>'=E‘7"|3"3I jﬁl

0 <<| < IUHUUE3 b |>>|

—WabC

. | M <<|<IUH':E3D >|>>|
0 <<|<I|:|:-:FFF1 >|>>|

Redraw

V_DMM-V_DAC

Feset Walues from DB

Dirop M eazurement

- max. error <|| ak. I ->| Cancel |

Along the X-axis of the diagram we have the voltage of the measured points, starting from 0 V in the origin, up
to the nominal voltage of the device. In the case of the blue plot, the Y-axis is the difference between the
voltage, measured by the external voltmeter, and the voltage that by eq. (1) would lead to the DAC-value which
was given for the point. The green plot shows the difference between the voltage, measured by the voltmeter
and the ADC (together with the transformation in eq. (2) ). Both plots are scaled by their maximum allowed
errors that are given in the device specification.

On the right the calibration values can be modified. Redraw will update the plot for the changes. To restore the
originally obtained values (which are the best fit, if every point has the same weight), press Reset. Via Values
from DB previous values can be loaded from the data base, in order to check if they are still compatible with the
new points. Drop Measurement will remove the points permanently.
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4.2.2 The visualization dialog for Current measurement calibration

I - adjustment, channel 10 x|

—labc

N ocd c[0:E24C 55

K <e| < [0+FFC3 - 5

0 <¢ < [ox0180 o b

Scale: < [1ED |

Redraw

I Feszet Walues from DB

Drop Measurement

max. Error: <_| 0k I_;,I Ean.:ell

Here the measurement points are specified by the voltage and the current, since the transformation from the
ADC-value to the current explicitly depends on the voltage (eq. 3). The axes range from 0 to the nominal current
and voltage, respectively. The length of the arrows correspond to the difference between the current, measured
by the external ampermeter, and the current, obtained by the transformed ADC-value. The scale is again
relative to the maximum allowed error (shown by the arrow on the bottom). Points with larger deviation are
drawn in red color.

Manual changes are analogous to the previous section.

4.3  Measurement specifications

Via the buttons SpecMP in the main calibration dialog it is possible to change the number of measurement
points and their voltages.

For the DAC / Voltage calibration, select the number by the radio buttons and enter the voltage for each point.
For the Current measurement calibration, two numbers (one for each resistor) can be changed on the left side
in the dialog. The corresponding voltages must be entered on the right side.

In both cases make sure, that the selected voltages and corresponding currents are safely below the hardware
limits (at least 5-10%).

4.4 Offline visualization

It is possible to view the measurement data from previous calibrations with the device and the calibration

hardware offline. To do so, Open a device and select Device—View Calibration in the main menu. The main
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calibration dialog appears. Go through the channels to view and change calibration data. It is not possible to

start a calibration in this mode.

5 Restoration of the original device configuration

- Press Open Device and enter the ID-number. Load the master set.

- Data>>Device to restore the EEPROM settings.

6 Check the calibration

To check the calibration use the delivered program “setohm.exe” and the monitor program “icanHVcontrol.exe.”
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Resumé

Les principaux objectifs du programme scientifique de l'experience ATLAS sont l'observation
ou l'exclusion de physique au-dela du Modele Standard, ainst que la mesure de sections
efficaces de production de processus du Modeéle Standard. Pour ce faire, il est impor-
tant de mesurer la luminosité au point d'interaction avec une grande précision. Dans
lexperience ATLAS, la luminosité est extraite a l'aide de plusieurs détecteurs possé-
dant des efficacités et acceptances géométriques variées. Différentes méthodes, telles
que le comptage inclusif (ou en coincidence) d'événements, ainsi que des mesures de
courants intégrés provenant des calorimétres, sont calibrées et comparées afin d'assurer
une détermination précise de la luminosité. Afin de permettre une comparaison addi-
tionelle et un meilleur controle sur les incertitudes systématiques liées a la détermination
de la luminosité, une mesure indépendante utilisant le compartiment avant du calorimetre
électromagnétique, basé sur la mesure du courant de son systeme haute-tension, a été
développée. Ce document décrit comment la mise en route dud systeme haute-tension du
calorimetre a argon liquide du détecteur ATLAS, ainsi que son application a une mesure
de luminosité.

Abstract

The main goals of the ATLAS scientific programme are the observation or exclusion of
physics beyond the Standard Model (SM), as well as the measurement of production
cross-sections of SM processes. In order to do so, it is important to measure the lumi-
nosity at the interaction point with great precision. The ATLAS luminosity is extracted
using several detectors with varying efficiencies and acceptances. Different methods,
such as inclusive - or coincidence - event counting and calorimeter integrated current
measurements, are calibrated and cross-compared to provide the most accurate lumi-
nosity determination. In order to provide more cross-checks and a better control on the
systematic uncertainties, an independent measurement using the liquid argon (LAr) for-
ward calorimeter (FCal), based on the readout current of its high-voltage system, has
been developed. This document describes how the LAr calorimeter high-voltage system
has been installed and commissioned, as well as its application to a relative luminosity
determination.
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